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Abstract

This thesis lies at the frontier between Machine Learning, particularly Artificial Neural
Networks, and Photonics. It explores the implementation of neural networks on un-
conventional photonic hardware to propose and highlight low-complexity and efficient
solutions to the existing challenges.

We are in the Information Age characterized by large and ever-growing amounts of
data in various domains and forms. The vast amounts of data contain knowledge that,
once extracted, could be useful in industrial, financial, and medical scenarios. Artifi-
cial Neural Networks gained traction as tools for extracting knowledge from data and
their subsequent application. The general tendency has, so far, been to focus solely on
improving the performance of the resultant models with little regard to the investment
in energy costs and computation effort for the reported performances. We have, how-
ever, come to a realization that this is unsustainable, detrimental to the environment,
and prone to cause severe bottlenecks in the near future.

We explore the applications of neural architectures implemented using photonic
hardware as a direction toward breaking the aforementioned trend. We consider Reser-
voir Computing and Coherent Ising Machines. The two are frameworks for tradi-
tional Recurrent Neural Networks with unique characteristics. Reservoir Computing
emerged about two decades ago as a robust framework simplifying traditional recurrent
networks’ rather complicated training. Ising machines are autonomous ground-state-
seeking recurrent networks suitable for combinatorial optimization applications.

In this thesis, we focus on low complexity and efficiency in various applications.
We begin by proposing a new low-complexity hyperparameter tuning technique for
hardware Reservoir Computers from a system-level perspective. From an application
perspective, we suggest new applications of neuromorphic photonic approaches. We
complement the performance results of each investigation with the energy and com-
putation cost analysis to accentuate the potential for less demanding and eco-friendly
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implementations of neuromorphic methods. We elaborate on our exploration below.

We introduce a low complexity stochastic gradient-based method for tuning the hy-
perparameter of Reservoir Computers in Chapter 3. Our proposal approximates the
gradients using the finite-difference method, alleviating the requirement for the func-
tional relationship between the parameters and the system’s performance. Removal of
this constraint makes the automatic tuning of parameters in hardware setups not only
feasible since the functional relationship is seldom known but also resistant to drifts in
time for the physical settings. Our theoretical analysis, simulation, and experimental
results substantiate the fact that our approach finds the optimal parameters quicker and
more efficiently than the exhaustive search and Simulated Annealing, two well-known
methods. We compare the computation effort and complexity of attaining the optimal
performance for three tasks, the Spoken Digit, Control Charts, and Wafer classification
tasks and obtain consistent results.

As an extension of our interest in low-complexity solutions, we also propose Reser-
voir Computing for Early Stage Alzheimer’s disease detection in numerical and hard-
ware implementations for the first time. To justify our proposal, we benchmark the per-
formance of our Reservoir Computer with that of Bidirectional Long Short-Term Mem-
ory, Convolutional Neural Network, and the state-of-the-art method, the k-Medoids.
Detection is carried on the full handwriting dynamics from the writing of four sets of
cursive-ℓ on a digital tablet. Our implementation of Reservoir Computing yields 85%
in detection accuracy outperforming the Convolutional Neural Network and the state-
of-the-art. While it under-performs by 3% relative to Bidirectional Long Short-Term
Memory, it does so with huge savings in terms of energy efficiency.

Furthermore, we quantify the energy costs (kWh), Carbon-dioxide emissions (kg),
computation duration, and the number of floating point operations for each model. We
assess these costs for the three stages i.e. optimization, training, and inference stages.
We find that the Reservoir Computer requires the least amount of effort in each stage
by a significant margin. For instance, the 3% gain in accuracy by the Bidirectional
Long Short-Term Memory comes with 8 times the electric energy cost and the mass of
CO2 and equivalent Green House Gases emission according to the grid information at
Palaiseau, France, where the experiments were run. This makes Reservoir Computing
a more reasonable approach overall, but even more so, if the models are to be run on
mobile devices, for instance, on the same tablets used for data acquisition, Reservoir
Computing will give an extended battery discharge cycle. We also propose a hard-
ware implementation that is more energy efficient as compared to the digital Reservoir
computer, though with a slight penalty in terms of performance.

Withal, We investigate the Coherent Ising Machines’ application to image process-
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ing. In particular, we reformulate a statistical image denoising task as the minimization
of an Ising Hamiltonian that can be solved using Hopfield Networks that can be imple-
mented using either as a digital or a hardware Coherent Ising Machine. Compared to
standard Simulated Annealing, we show that the proposed approach leads to a favor-
able tradeoff in terms of runtime/complexity vs. probability of successfully reaching
the ground state.

In the final chapter, we conclude our findings and discuss the potential direction of
explorations in the future.
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1
Introduction

Intelligence in inanimate objects has tantalized human minds for ages. There were
Greek myths about an intelligent robot named Talos made from bronze possessing
human qualities such as emotions and wisdom. Another Greek mythology speaks of
Daedalus, a craftsman, who created bronze sculptures that could see, move and speak.
In ancient Indian culture, there were stories of a ’mechanical doll’ named Yantrapu-
traka that was similar to a human, so much so that it fooled and seduced a painter. In
Tanzania, there are stories about Chautope, a life-like girl made from mud and sticks.
The ancient intelligent systems often include the ingenious design, say of a metallic
body, and, as should be expected, supernatural abilities of the designers and creators.
Also, these stories arguably stem from the human fear of the inevitable death and philo-
sophical questions about what it means to be human beyond mundane existence. They,
nonetheless, underline our continued interest in developing human-like forms of intel-
ligence outside the human mind.

The idea of intelligent machines was entertained for millennia, and in the mid 20th

century, Isaac Asimov wrote the book ‘I, Robot‘ and brought forth the recommendations
of acceptable human-robot interactions. His ideas, however, just as in the Greek and
Indian myths, were purely fictional. At about the same epoch and independently, after
inventing what is commonly known as the first computer for deciphering the German’s
Enigma code, Alan Turing started pondering about intelligent machines [1]. Unlike the
Greeks, Indians, Tanzanians, and Asimov, the basis of his contemplation was rooted
in scientific inquiry rather than fiction. He reformulated what it means to think and
designed a test for intelligent systems. He alluded that: should a system be deemed
intelligent, it must generate the test results such that a human observer fails to decipher
whether the test results are from a human or machine subject. His works inspired the
development of intelligent systems as we know them today.

1
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1.1 Artificial Intelligence and Machine Learning

A decade ensued, and the ideas spawned by Turing and the developments in computing
systems witnessed the outlook on intelligent systems gaining traction in the scientific
community and entering the mainstream. Governments and organizations seduced by
the idea poured funds and support into the research in the field. The general masses split
between curious excitement and the fear of the potential tyrannical takeover of robots.
In 1956, John McCarthy and Marvin Minsky organized a workshop named Dartmouth
Summer Research Project on Artificial Intelligence, coining human-made thinking as
Artificial Intelligence (AI) for the first time [2]. Years succeeding the workshop, the
excitement of AI led to bold statements from prominent figures, to cite a few :

"Within ten years, a digital computer will be the world’s chess champion unless the
rules bar it from competition."

- H. A. Simon (Nobel Prize laureate) and Allen Newell (Turing Award) in 1958,

"Within a generation, the problem of creating artificial intelligence will substantially
be solved,"

and
"In from 3 to 8 years, we will have a machine with the general intelligence of an

average human being."
- Marvin Minsky in 1967 and 1970, respectively.

Unfortunately, these predictions grossly exaggerated the prospects of AI, and fail-
ure to deliver incited doubts in the field and encouraged critics. For instance, intense
criticism came from influential figures such as James Lighthill, who wrote a very pes-
simistic assessment of the developments made in the field in a report to the UK Science
Research Council. He accused the researchers of failing to deliver the promises made
and painted the field as merely science fiction inept of real-world applications [3]. His
report diminished the initial enthusiasm for research and the promise of AI, resulting
in the withdrawal of support from the British government and other governments. This
report resulted in a period termed the 1st AI winter, where little progress was made in
AI research.

The tumble of AI was, to a large extent, also due to the implementation of ’intel-
ligence’ based on the assumption that intelligence can be formulated in a top-down
manner as an extensive collection of ’if-then’ commands [4]. These are essentially not
intelligent systems but expert systems relying on expertise rather than knowledge. One
such system was the MYCIN system comprising 600 rules for diagnosing blood infec-
tion [5]. These systems, however, excel at simple problems or problems that are easy
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to formulate. However, some tasks, like speech recognition, that seem to be tackled
easily by human brains, are difficult for expert systems because an exhaustive top-down
formulation is not feasible.

Fortunately, a shift from the programming of expert systems to learning from expe-
rience was embraced in AI research. Instead of attempting to fully formalize a problem
as a sequence of instructions in a Turing-like manner, the system deduces knowledge
from experiences. This is, in essence, how our brains learn how to process seemingly
complex tasks ranging from facial to speech recognition by interacting with the world.
Similarly, for machines, learning requires a means to extract knowledge from obser-
vations - an algorithm to teach the system and a good set of experiences. Depending
on the teaching mechanism, such algorithms can be supervised or unsupervised. Su-
pervised learning translates to the system getting to experience the examples and their
expected outcomes/classes and adjusting to map the two together. In an unsupervised
scheme, the system learns not in the example-target manner but by extracting statistical
relationships between the given unlabeled examples and grouping together those that
show the most similarities.

Machine Learning (ML) as a process of extracting knowledge from data revived
interest in AI research and the shift from under-achieving expert systems. Furthermore,
essential breakthroughs such as honing backpropagation for training artificial neural
networks reignited the hope for AI. However, most of these new advances were slow
and quiet, avoiding re-inciting the previous negative publicity.

1.2 Neural Networks

Today, a considerable amount of effort is dedicated to research and developments in
the field of Artificial Neural Networks (ANN). Of the different avenues of IA, ANNs
represent the most sought solution in many domains of application and are our central
focus. In this section, we will introduce essential notions of ANN that are of interest
for subsequent discussions in this thesis.

1.2.1 The brain

We dare argue that the human brain is the most astounding wonder of evolution. It is a
vast neural network of 100 Billion biological neurons and an equally surprisingly large
number of glial cells, all carefully organized to form a massively complex structure.
Even more astonishing is the fact that trillions upon trillions of connections are created
linking the neurons, neither randomly nor arbitrarily, but systematically to form a struc-
ture capable of unimaginable feats. No wonder brain-inspired scientists like Warren
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McCulloch and Walter Pitts came up with the first mathematical framework for artifi-
cial neurons, the McCulloch-Pitts model [6], to explain the brain’s functioning. Later,
Hebb proposed that neuronal pathways strengthen with learning [7], a hypothesis that
sparked interest in neuronal computing leading to the earliest designs of artificial neural
networks.

1.2.2 Artificial Neural Networks

The McCulloch-Pitts neuron model takes in multiple binary inputs, computes the sum,
passes the sum to some activation function, and then compares the result to a threshold
to decide whether or not to generate an output. Since the outputs (also referred to as
activations) generated are either 0s or 1s, the neuron can thus be considered a Heaviside
function of the sum of the inputs (see Figure 1.1). This model had several limitations
addressed by Frank Rosenblatt and Marvin Minsky and Seymour Papert [8]. The re-
sultant model was the Perceptron Model, which, unlike the McCulloch-Pitts model,
introduced weighing of the inputs before summing. Further improvements resulted in
the modern mathematical model of the artificial neuron. Suppose x1, x2, ...xn are inputs
and w1, w2, ...wn are the weights, the output of a neuron will be a continuous variable
y defined as:

y = fNL(w1x1 + w2x2 + ...+ wnxn) (1.1)

where fNL is a nonlinear activation function (typically a sigmoid, hyperbolic tangent, or
ReLu, as shown in Figure 1.1). Notice, unlike the Perceptron, there is no thresholding,
and the output is analog, taking a range of values and not just in the set {0, 1}.

-6 -4 -2 0 2 4 6
-1

-0.5

0

0.5

1

Figure 1.1: Common activation function for the artificial neuron mathematical model

As interesting as this model is, a neuron does not accomplish much beyond a weighted
sum and a nonlinear output of the aggregate. However, like in the brain, a network of
many neurons possesses more interesting computational properties. These networks
are know as Artificial Neural Networks (ANNs) and have amassed remarkable suc-
cess in signal processing, facial recognition, and pattern generation in commercial and
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non-commercial settings. ANNs can approximate any function [9], which means that
given enough sets of observations for any system, there is a neural network capable of
mimicking the system’s behavior with arbitrary precision.

The generic architectural organization of ANNs is that of multiple layers, the input
layer for handling the input data, the hidden layer(s) for computation, and the output
layer are tasked with generating the prediction or the system’s approximation. If the
ANN has only one (or very few) hidden layer (s), it’s called a shallow network; other-
wise, it is a deep neural network. Deep neural networks perform better than shallow
ones as they introduce hierarchical learning [10]. Depending on how the layers and neu-
rons are organized, the nature and function of the neurons, and whether or not cyclic
connections exist, neural networks can be grouped into several categories, as we discuss
below.

g

Input

Hidden

Output

Shallow Deep
Figure 1.2: Shallow vs. Deep ANNs

1.2.3 Feedforward and recurrent processing

Artificial Neural networks are categorized into two major classes: Feedforward Neural
Networks (FNN) and Recurrent Neural Networks (RNNs). The FNNs are essentially
the class we have already generally evoked in the previous section with a similar ar-
chitecture to those in Figure1.2. They are characterized by a unidirectional flow of
information from the input to the output layer without any cyclic paths in the structure.
These networks are universal function approximations provided certain conditions are
met. ANNs falling in the FNN category are Multilayer Perceptrons (MLPs) and Con-
volutional Neural Networks (CNNs). As their names suggest, a MLP (resp. CNN) is
obtained when each layer consists of a weighted sum (resp. convolution) of the previ-
ous layer’s output, followed by an activation function. MLPs are sometimes utilized to
loosely imply FNNs in general, irrespective of the neuron activation function. In this
thesis, a CNN will be proposed and studied in Chapter 4. On that account, we will
briefly explain CNNs below.
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Convolutional Neural Networks

CNNs are a particular class of ANN notorious for image processing. They consist
of stacked layers performing convolution operations with several filters automatically
learned from the data during training. The layers extract various discriminatory features
from images. These features are then sent to the dense layer(s) for neural processing
and classification, as shown in Figure 1.3. CNNs have enjoyed the most success in the
commercial realm due to their numerous applications. They can be used for automatic
facial recognition, pattern recognition, or digit classification on bank checks and postal
addresses. A few examples of standard CNNs models are:

• LeNet-5 : For digit recognition from images like the MNIST dataset [11].

• AlexNet: This model is much deeper than LeNet-5 and won the 2012 ImageNet
ILSVRC challenge by a significant margin. It has 60 million parameters and
650,000 neurons, employing the dropout technique to reduce overfitting [12].

• VGG−16: An even bigger model, taking inspiration from AlexNet, for image
classification with 138 million parameters designed by the Visual Geometry Group
requires 500Mb of storage space. This model secured first and second places in
the localization and classification tracks in ImageNet Challenge 2014 [13].

• ResNet : A very deep network with 152 layers. ResNet took 1st place on the
ILSVRC 2015 classification task [14].

It is worth noting that, after AlexNet’s victory, the subsequent CNNs kept getting more
extensive and profound to beat the previous models’ accuracy. Later in this thesis, by
virtue of comparison, we implement a CNN architecture to accentuate the shortcoming
of this way of thinking.

In
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Figure 1.3: Block diagram illustrating the CNN working principle.
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Recurrent Neural Networks

As you read this manuscript, your brain processes individual words and extracts their
meanings. Yet, this is insufficient to understand the rather long sentences and para-
graphs. For this, you must recall previously read words and their order to capture con-
text. Therefore, processing data sequences requires incorporating the history of previ-
ous entries in the processing of the recent inputs. And this is where RNNs, such as your
brain, excel. FNNs may be universal approximators but are less adapted for modeling
dynamical systems whose states depend on the current and historical inputs. Being
dynamic, they capture the temporal/sequential dependence of the processed inputs to
extract both meaning and context. As a result, RNNs stand-out in performance for tasks
such as trajectory learning, speech recognition, time series classification, and forecast-
ing. Under conditions, they are universal approximators for dynamical systems [15].
In this thesis, we deal with non-standard RNNs called Bidirectional LSTMs described
below.

Long Short-Term Memory (LSTM) neural networks are a generalized class of RNNs
with special gates that can store, read and reject information from recent history and
further back in time (short and long memories) [16]. Bidirectional LSTM (BiLSTM) is
a variant of LSTM that simultaneously exploits the past and future (hence bidirectional
in time) for computation which makes it well-suited for specific tasks. Fig. 1.4 shows
the principle of operation with the classifier having the serial information (xi) processed
in both past-future and future-past directions to give the output (di) for processing in
the subsequent dense layers. BiLSTM is extensively studied in the literature (we direct
the reader to [17–19]). In our works, we use Python’s Tensorflow to implement the
BiLSTM model in Chapter 4 for pathology detection.

However, unlike FNNs, RNNs come with a hefty price. Training FNNs is relatively
simpler and can be done using linear approaches. The layered structure permits the
backpropagation of gradients layer-wise for adjusting the weights and biases. The ad-
dition of recurrent connections significantly complicates the task of training RNNs via
backpropagation through time, which notoriously suffers from the vanishing gradient
problem. In Chapter 2 of this thesis, we discuss Reservoir Computing (RC), a discrete-
time nonlinear dynamical framework to circumvent the RNNs training difficulties. We
will detail the working principle, explain various implementations, and recount success
stories and the promising future of Reservoir Computers.
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Figure 1.4: Block diagram illustrating the BiLSTM working principle. The serial inputs
features are introduced to the hidden layers both in past-future (right arrows) and future-
past (left arrows) directions.

1.3 Energy trends in training ANNs

Learning is a crucial step for Machine Learning (ML) approaches. Thanks to the
dawn of powerful silicon processing chips, groundbreaking methods for training and
the availability of ever-increasing large datasets, more complex models are trained for
inference. The tendency is to design bigger and deeper networks able to capture poten-
tially complicated structures inside vast amounts of data. We previously discussed this
trend when discussing the winners of image classification challenges. In this section,
we quantitatively elaborate on this trend by analyzing the costs associated with training
several models in practice today. We will define Green AI as a sustainable alternative
to Red AI and point out that the works presented in this thesis took this greener (hence
more environment-friendly) direction of exploration.

1.3.1 Red and Green AI

Colossal computational resources are required to design and train modern-day deep
models. To attain that top-notch accuracy, researchers create even larger networks,
and a profusion of hyperparameters is fine-tuned for days, weeks, and sometimes even
months. The authors of [20] made an interesting observation by examining the environ-
mental impact of training on the environment. They calculated the mass in pounds (lbs)
of CO2 gas emitted to generate the energy consumed for training several well-known
models. Among the models studied is the Transformer model for machine translation
[21]. The big Transformer model has 213 Million parameters to be optimized through
training. We plot in Figure 1.5 the data from [20] to visually illustrate the ludicrous
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amount of CO2 released into the atmosphere for training this model. On the plot, emis-
sion per passenger for a flight across the USA from New York (East) to San Francisco
(West), average emission for a single human in 1 year, average emission for a single
American in 1 year, emission from a car in a lifetime and the emission for training the
Transformer ANN are illustrated. At 626,155 lbs (284019 kg), the model’s impact on
the environment is equivalent to that of five cars in their entire lifetime. This was an
eye-opening discovery for us. A car burning fossil fuel seemed more reprehensible than
a model stored as matrices of weights and biases in computer memory.

NY-SF, 1 passenger 1984 lbs

Human life, 1 year 11023 lbs

American life, 1 year 36156 lbs

Car, 1 lifetime 126000 lbs

Transformer 626155 lbs

Figure 1.5: A bar plot showing environmental impact in pounds of CO2 emitted in
training an ANN model being five times that of a car in its lifetime.

We have pointed out that the success and progress of ANNs can be attributed mainly
to the increase in their depth and complexity, with a significant increase in the cost of
training them. Researchers tend to focus solely on reaching or surpassing state-of-the-
art accuracies with little attention paid to the costs incurred. Often, an insignificant in-
crease in accuracy comes at a substantial increase in training costs. This way of thinking
is not environmentally friendly and has been coined the term Red-AI [22]. Red-AI not
only increases the cost of running the models but also complicates the implementation
of the ANN models on mobile devices such as telephones or tablets, which could be
useful for certain applications [23], such as the pathology detection task in Chapter 4.
The greener approaches, on the other hand, termed Green-AI, should incorporate and
consider the energy efficiency analysis as an added metric for both model selection and
optimization, as we do in this thesis.

Reducing the environmental impact of training ANNs is crucial, even more so now
that effort is directed to this goal in many other fields. Moreover, focusing on boost-
ing resources solely for performance is detrimental to scientific progress [24]. Some
ideas win not because they are superior but because they are suited and adapted to the
existing software and hardware. The term Hardware Lottery was proposed to describe
the biased interest for ideas well adapted to already existing resources [24]. It is thus
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very important to renew and question ourselves continuously to generate a necessary
revitalization of ideas and thought patterns.

Furthermore, complex and expensive solutions limit this area of scientific potential
to the industry labs with access to the necessary resources. For instance, the hardware
budget for an ImageNet classifier proposed [25] is 1.2 million USD, and a similar im-
plementation by Facebook costs 4.1 million USD [26]. Such vast sums of money leave
creative staff in academic institutions behind, not for the lack of better and more creative
innovative ideas, but for lack of proper funding. The consequence is the discourage-
ment of creativity, skewing exploration and hindering progress for certain directions of
interest with the potential to change the future radically.

1.3.2 A humbling Benchmark: The brain

We previously called the brain a miracle of evolution and maintain that stance. While
the costs of training and maintaining ANNs are skyrocketing, the brain does an even
more impressive job at meager demands. The brain constantly recognizes patterns, in-
terprets multiple sensory signals, and predicts. It accomplishes all these at the cost of
only 20 Watts. A typical computer, not nearly as complex nor powerful, runs at about
100 Watts. The Sandberg and Bostrom report estimated the computation effort neces-
sary to emulate a human brain at 20 PFLOPS [27] (other papers gave higher estimates).
Assuming the brain is emulated on an NVIDIA Tesla K20 GPU running at 2 GFLOPS
per Watt [28], we would require 10 MWatts of electricity. You need a small nuclear
power plant to power an artificial brain while we do it at 20 Watts. How, then does
the brain accomplish so much so cheaply? The answer to this question is, in part, the
motivation for our works in this thesis. In the next section, we will discuss efforts to
answer this question.

1.4 Neuromorphic computation

There is increasing talk about neuromorphic computation, and this is no accident (See
Figure 2 in [29]). During the AI inception days, computers were projected to become
majestic thinking machines even surpassing the human minds. The general outlook was
that the brain is slow and ineffective and that it will not take long for computers to take
over. However, even with much more powerful computers today, we are yet to chal-
lenge the computational capabilities of the brain. Our attempts thus far, as we pointed
out in the preceding section, have been towards increasing the size and number of par-
allel hardware to do better and better. The outlook, nevertheless, is shifting towards
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looking closer into the brain for inspiration. Neuromorphic systems imitate the inter-
nal workings of the analog brain units and replicate by using unconventional hardware
such as electronic, photonic, mechanical, biological, and, as we will show in Chapter 2
even liquid substrates. fIn this section, we will look at motivations for neuromorphic
computing and introduce two classes of neuromorphic RNN systems of interest in this
thesis: the non-autonomous (i.e. input driven) RNNs known as Reservoir Computers
(Chapters 2, 3, and the 4 ) and the autonomous RNNs (i.e. RNNs evolving in time
without the driving input) known as Coherent Ising Machines (Chapter 5).

1.4.1 Motivations

In his invited paper [30], Mead investigated the reasons for the disparity between sil-
icon chips and the brain. He alluded that, for electronics, there is a factor of 100 in
thermal losses from heating in the wires and a factor of 10000 from the use of multiple
transistors to do one operation. All together, resulting in a factor of a million in losses
for computation in digital systems. He also argued that the brain uses elementary phys-
ical phenomena as computation primitives using analog rather than digital signals that
complicate efficient designs. Mashing up all computation tasks to a digital implemen-
tation consisting of 0s and 1s complicates the computation of most real-world analog
phenomena in digital electronics. He coined the word Neuromorphic Electronic Sys-
tems, to describe specialized systems that consider the brain’s analog principles when
modeling the capabilities of neural networks found in biological systems. His views are
valid today; with the surge of data to be processed, constricting analysis to 0s and 1s in
digital systems is about to hit the wall. Dedicated ANNs hardware can lead to ground-
breaking efficient computing machines, with gains in speed and considerable savings
in terms of energy efficiency.

To justify the overexertion of silicon electronics, we will discuss two important
laws, Moore’s law and Koomey’s Law. Moore observed that the number of transistors
in integrated circuits (computation power) doubles every two years. However, the rise
of AI computing has accelerated our computational needs beyond Moore’s law. The
amount of computing for AI now doubles every 3.4 months as shown by the fit of sev-
eral popular models in Figure 1.6 [31]. While our computation needs to increase, some
developments in the supporting hardware show asymptotic progress. Koomey had ob-
served a trend of doubling in computations carried per joule of heat dissipated in about
1.57 years. However, a growing gap between the physical hardware and our computa-
tional needs will drive us to an efficiency wall, as shown by the plot in Figure 1.7 [32].
Hence the term ’hit the wall.’

Digital computing systems use the standard Von Neumann architecture, as shown in
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Figure 1.6: Evolution of computational power needs in PFLOPS-days from 2012 to
2018 for popular AI models. The trend shows a doubling of the requirements in 3.4
months.
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Fig. 2. Apparent energy efficiency asymptote, the gap between processing ca-
pability and application need, and general trends of feature size used in leading
edge systems.

Fig. 3. Energy efficiency normalized to a single core versus number of cores.
Plot assumes amount of parallelism in the program is according to Amdahl’s
Law. Note that operations per unit energy peaks and then decreases as number
of cores increases.

total resources of BCEs, monolithic cores consisting of BCEs, and
small cores of a single BCE resource. Hence the chip contains cores
in the many-core model; the model also allows for the multi-core model
where each core has resources so that the chip contains powerful
cores. Amdahl’s law takes the form shown in

Performance (1)

where is the performance of a core with BCEs, using Pol-
lack’s rule we assume this to be here. Additional as-
sumptions are made here that only a single thread can be used as per
the definition of a dataflow application and that eventually a voltage
scaling limit [12] does exist where further lowering the supply voltage
increases energy per operation. Thus assuming each core is at the op-
timal voltage for energy efficiency, adding more cores increases the
total power envelope. The notable result here is that the number of cores
for optimal energy efficiency in dataflow applications is quite low even
for high levels of parallelization .

Physically, the electrical consequences and realities of digital design
at the nanometer scale result in a decrease in energy efficiency that can
be seen in Fig. 2. The asymptotic curve falls off from the linear trend at
approximately the 90 to 65 nm minimum feature size node due to the
failing of Dennard’s Law [13], which predicts that voltage, capacitance,
delay, and power of digital circuits all scale according to a well-defined
rate as the device dimensions scale. Results predicted by Dennard’s

TABLE I
FAILING OF DENNARD’S LAW: FIRST-ORDER EFFECTS

FOR SUB-100 nm CMOS

Law, observed historically, and observed in recent nodes are shown in
Table I. As Table I shows, Dennard’s law fails from the 90 nm minimum
feature size node to the 65 nm node. The primary reason is that the
supply voltage stopped scaling and has remained constant in recent
commercial processes [14]. The approximation for the channel current
in an ideal nMOS device at saturation is

. Thus with the supply voltage not scaling,
in saturation, and with second order effects such as velocity saturation,
saturation currents are not scaling either.

Certainly process improvements such as metal gates, FinFETs, and
architecture improvements such as turning off cores, have enabled
power dissipation per gate to decrease in subsequent chip generations,
even in sub-100 nm nodes, but not nearly as fast as Dennard’s law
predicts. Secondly, Dennard’s law also assumed the wire delay and
capacitance are negligible compared to logic delay and capacitance of
logic, and this assumption is no longer valid at sub-100 nm nodes. In
[15], the authors showed the average chip-wide wire length actually
increases super-linearly as a function of the number of gates in the
chip, impacting large interconnect networks. A third factor causing the
energy efficiency asymptote phenomenon is manufacturing (process)
variations. As devices have scaled down, manufacturing variations
have become extreme, delay of a gate can vary up to 50% or more of
the intended value [16]. It is no coincidence that troublesome process
variation effects are being seen at the same nodes as the beginning of
the asymptotic behavior of energy efficiency.

III. ENERGY DELAY MODEL

This work uses the energy delay product (EDP), expressed as to
quantify energy efficiency. The metric is useful to compare tech-
nologies because reveals not only how much electrical energy is
used, but how efficiently this energy is used towards performing com-
putation where different values of allow different design points to be
explored. In this work, was chosen because this metric results in
measuring energy per operation [17] as opposed to power per operation
or some other metric, and we are concerned with minimizing energy.
Much work has been done to model EDP minimization with several
limiting assumptions on operating behavior and region, for example
the seminal low power CMOS work given in [18], [19]. The traditional
model for delay is based on the dynamic charging of a capacitive load
through a single network.

This simple model upon which much literature assumes
for energy efficiency calculation, where the computation time

ignores leakage current draining charge off
of the load. The simple model also assumes supply voltage is much
greater than threshold voltage . Once again, this model
holds historically where leakage is insignificant during dynamic
charging and is large, but not at sub-100 nm nodes where leakage
is significant or with technologies with near-threshold supply voltages.
We augment this previous work with an EKV model. This model not
only takes leakage into account, which is a simple addition of the
current drawn in the pull-down network, but is correct throughout

Figure 1.7: Evolution of the amount of heat dissipated in Joules per giga-computations
from 2000 to 2020 showing an asymptotic trend and a lag gap for next generation needs.

Figure 1.8. Memory units and computation units are delocalized. As a result, informa-
tion has to be dispatched from the memory units for computation and back for storage
or output. Over the years since his proposal, processors have remarkably increased
in computation speeds whereas the data transfer speeds lag. This results in a bottle-
neck where processors spend more extended idle periods resulting in losses. Attempts
to remedy this by introducing faster memories, such as caches and registers have re-
duced the idle times to some degree. However, these memories are generally small and
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only used to store small immediate data for computation. Most AI tasks require large
amounts of memory so the problem of memory access overhead persists. The brain, on
the contrary, uses associated memory stored concurrently with the computation units,
thus eradicating this overhead problem. In short, implementing ANNs employ com-
putational concepts that are fundamentally different from the traditional computational
workhorse, and this is largely responsible for their inefficient power consumption.

Figure 1.8: The John Von Neumann architecture. The memory and computation units
are separate.

1.4.2 Reservoir Computing

In this thesis, we study a recurrent neuromorphic system with demonstrated potential
for hardware feasibility called Reservoir computing (RC). RC is a powerful RNN frame-
work for processing sequential data characterized by the simplification of the training
procedure while maintaining high computational power. Motivation for the RC origi-
nates from the known difficulties in training the traditional ANNs (particularly RNNs).
RC computing offers an alternative approach by limiting training to the outermost layer
alone and randomly generating most neurons in the hidden reservoir layer. This ap-
proach drastically simplifies training and introduces little to no performance penalty.
Moreover, the randomness of the reservoir reduces constraints in the hardware imple-
mentations of RCs resulting in a plethora of hardware implementations. In-depth dis-
cussion and examples of RCs are detailed in Chapter 2 where we define the important
notions and discuss applications and physical implementations of RC. In Chapters 3
and 4 we will optimize RCs and run several applications.
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1.4.3 Ising machines

Neuromorphic systems are interesting for finding solutions to Combinatorial optimiza-
tion problems. These problems are notoriously hard to solve in the conventional algo-
rithmic approaches and using the Von Neumann approaches. The difficulty stems from
the NP-hard nature of these problems resulting in exponential explosions in the number
of evaluations necessary in the search for extrema with a meager increase in the search
space.

Imitating the computational properties of the connection of a large number of simple
and coupled biological elements is an attractive avenue for these types of problems.
A class of neuromorphic autonomous RNNs known as Hopfield Neural Networks has
demonstrated great potential for these applications [33]. The network’s energy function
monotonically decreases with each neural state update. The natural ability of the RNN
to arrive at an extremum can be leveraged for optimization problems by mapping the
desired solution to the extrema of the system. Hardware solvers for the Ising model
offer an interesting alternative for optimization problems, especially as we become more
mindful of energy efficiency as we search for their solutions. In Chapter. 5 we discuss
Ising machines in more detail and present our findings on the subject.

1.4.4 Neuromorphic photonics

A few decades ago, electronics drove every aspect of technology while photonics was
still in its infancy in many domains of application. Progressively advances in optics
and photonics penetrated different fields ranging from research, medicine, security,
and communications. Today we have witnessed a massive shift into optics. For in-
stance, most of our communication passes as photons at some point. The takeover can
be attributed to many attractive properties of light: low energy cost, parallelism, multi-
ple degrees of freedom, speed, large bandwidth, and low interference. The progress in
photonic computing, however, has been rather slow. The reason is in part due to the dif-
ficulty in harnessing the optical nonlinearities for computation in the digital computing
fashion. The advent of neuromorphic analog computing has, nonetheless, sanctioned
the use of optics for computation. The works presented in this thesis are photonic in na-
ture making use of off-the-shelf components intended for optical telecommunications.

1.5 Goals of this thesis and chapter overview

In this introductory chapter, we have given a brief history of computing with emphasis
on the non-Turing, brain-like style of computation. The works presented in the rest of
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this manuscript follow a common philosophy of low complexity and environmentally
friendly solutions. As we propose novel solutions and applications, we consider the
efficiency of our proposals on top of their brute performances. We provide a general
overview of the chapters below to give a glimpse of our train of thought.

1.5.1 Chapter 2 : Reservoir Computing

We introduce the Reservoir Computing (RC) concept in this chapter. Due to the well-
known difficulties of training traditional RNNs, a special framework for processing
sequential data was proposed that drastically simplifies training. The simplification al-
leviates most of the challenges hindering convergence and efficient training of RNNs.
Two variants of RC: Echo State Networks (ESNs) and Liquid State Machines (LSMs)
are introduced. The ESNs are the variant of interest in this thesis along with their im-
plementation in simulations and physical hardware. We describe several properties of
RCs, such as the Echo State Property, Memory Capacity, and Computational Capac-
ity. Various parameters control these properties, and tuning them prescribes different
modes of operation. Moreover, since RCs are versatile, many neuromorphic imple-
mentations using unconventional hardware and substrates for neuron reservoirs have
been proposed in the literature. Consequently, we elaborate on their theoretical footing
and various design simplifications, such as the delay-based reservoirs. We describe the
various implementations from the Water Bucket reservoir, and mechanical mass oscil-
lators, to electronic and photonic implementations. The utility of RC is brought to light
by the rich variety of applications and their respective domains. By reading this chap-
ter, the theory, advantages, versatility, and potential avenues for applications are made
apparent.

1.5.2 Chapter 3 : Parameter optimization Reservoir Computing

We put forward a low-complexity method for hyperparameter optimization for RCs
in this chapter. Several parameters prescribe the stability, memory, and computational
behavior of RC as a recurrent system. Various methods are employed for finding the best
combination of hyperparameters that correspond to the RC’s optimal performance for
the task at hand. In the literature, some proposed Exhaustive Search and evolutionary
approaches, and others proposed Stochastic Gradient Descent (SGD) based methods.

Our proposal is based on SGD as well, however, we relax the constraint on the
knowledge of the functional relationship between the cost function and the parame-
ters to be tuned. This is particularly interesting for the physical neuromorphic systems
where the exact characteristics of the constituent devices are unknown and can also
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drift in time. This renders gradient computations impossible for the SGD methods, a
challenge we are going to address. Suppose θi is a vector of the p parameters at the ith

iteration and that L(.) is the cost function, then the gradient can be approximated via
finite difference as follows:

∆i =
L(θi−1 + hdi,W

out
i−1)− L(θi−1 − hdi,W

out
i−1)

2h
, (1.2)

where h constant step, Wout is the readout matrix obtained using the training data
and ∆i is the noisy approximation of the gradient for the parameter combination. To
minimize the loss function, we employ an iterative procedure to update each component
of θ, selected randomly one at a time, according to

θi = θi−1 − µdi∆i, (1.3)

where µ is a constant adaptation step-size. The proposed iterative parameter optimiza-
tion scheme is summarized in Algorithm 1. Rather than updating all components of θ
in each iteration, which requires 2p cost function evaluations, the update direction is
randomly and independently chosen such that only one hyperparameter is updated per
iteration. This reduces the complexity of our method and improved convergence.

Our results indicate, that our method consistently converged after relatively fewer
iterations compared to the benchmark alternatives, i.e., Exhaustive search and Simu-
lated Annealing (SAN). We show that the complexity of each algorithm is proportional
to the number of iterations hinting at reduced complexity with our approach. This ob-
servation is consistent when we employ our algorithm to search for optimal parameters
for the spoken digit recognition benchmark and two other tasks not found in RC litera-
ture: the Control Chart classification task and the Wafer classification task. These two
tasks have important industrial applications. We also study the transient state and the
steady state behaviors, both theoretically and numerically, as the systems converge to
the optimum. The steady-state behavior showed agreement between the theoretical and
numerical evaluations thus validating our theoretical analysis of the method.

1.5.3 Chapter 4 : Reservoir Computing for Early-Stage Alzheimer’s
disease Detection

In this chapter, we propose Reservoir Computing (RC) for the Early Stage Alzheimer’s
disease detection task in both numerical and hardware implementations for the first
time. Alzheimer’s disease is a neurodegenerative disorder caused by the progressive
destruction of nerves in the brain. Its slow and progressive nature is responsible for
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its insidious onset which makes early diagnosis difficult. As a result methods for diag-
nosing the disease are either biased or intrusive and expensive, whereas early diagnosis
is crucial for intervention measures. The disease impairs patients’ fine motor control,
making handwriting (HW) a potential biomarker for pathology. The handwritten data
in this work was collected at Broca Hospital in Paris. Diagnosed patients and healthy
controls were asked to write a sequence of cursive-ℓ letters on a digital tablet. With this
data and using RC, we obtained a classification accuracy of 85%, an improvement of
11% over the state-of-the-art.

We benchmark the performance of our RC with that of Bidirectional Long Short-
Term Memory (BiLSTM), k-Medoids, and the Convolution Neural Network (CNN) on
the full HW dynamics taken as a time-series for the classification. By considering accu-
racy as the sole metric, BiLSTM beats RC by 3% in accuracy. However, extending the
comparison by gauging the computation efforts and environmental costs of obtaining
the reported performances we get a more complete picture. Our assessment indicates
that the 3% gain in accuracy for the BLSTM comes at the cost of 8 times the electric
energy cost and the mass of CO2 and equivalent Green House Gases released according
to the grid information at Palaiseau, France, where our experiments were run. We in-
terpret this as an advantage of RC over all other approaches for repeated use. More so,
if the models are to be run on a mobile device, for instance, the same battery-powered
devices used for data acquisition, RC will give the most extended battery discharge cy-
cle. Moreover, our hardware implementation implied roughly more energy efficiency
with a slight penalty in performance with respect to the digital RC.

1.5.4 Chapter 5 : Coherent Ising Machines for Combinatorial Op-
timization

So far in our discussions, we have considered RC, which is non-autonomous (input
driven) and trained in a supervised manner. In this chapter, we consider an autonomous
class of neuromorphic systems that will evolve down to the lowest possible energy state
without being driven by an external input signal. We interest ourselves, particularly in
Coherent Ising Machines (CIMs). They are extremum-seeking neural networks suitable
for combinatorial optimization problems. CIMs imitate the ferromagnetic behavior,
i.e. the temperature-dependent alignment of polarization of the magnetic moments
(spins) of the constituent atoms in the same direction at the microscopic level. Above
a critical temperature, Tcr the spins become randomly oriented resulting in zero net
magnetic fields and vice versa for the temperature below. The total energy of the system
at any time depends on the alignment of the spins. The goal is to formulate the given
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problem such that the solution to the problem coincides with the ground state of the
Ising Hamiltonian of the system, defined as:

E(σ) = −1

2

∑
(s,t)∈N

Js,tσsσt −
∑
s∈Ω

bsσs, (1.4)

where the problem is defined over an n × n square lattice. Any s = (l, c) ∈ Ω can be
assimilated to a position in the lattice with line (resp. column) coordinate l (resp. c),
where 1 ≤ l, c ≤ n. ∀s ∈ Ω, we let the spin σs be a random value in {−1,+1}, J
is the matrix dictating the interaction between the spins and N denotes all couples of
neighboring nodes with end-around boundary conditions.

Following [34] in order to minimize Equation 1.4, we numerically implement a
generalized Hopfield network, whose discrete-time difference equation at instant k has
the form

xs(k) = f

Ñ
αxs(k − 1) + β

Ñ ∑
t:(s,t)∈N

Js,txt(k − 1) + bs

éé
σ̂s(k) = sign(xs(k)), ∀s ∈ Ω

(1.5)

where f(.) is a nonlinear activation function, α and β are scaling coefficients control-
ling the self-coupling and feedback strength affecting the neuron output xs(k), while
σ̂s(k) is the spin estimate of pixel s. We study the ability of the CIM to find solu-
tions to several problems such as the Antiferromagnetic Ising Model and Maximum
A-Posteriori (MAP) image denoising and Traveling Salesman. We gauge the system’s
performance by the success rate/probability of the system evolving sufficiently close to
the optimum, i.e., to energy below a certain threshold.

Our contributions in this chapter are three-fold; first, from an application perspec-
tive, we demonstrate the potential for the CIM for statistical image denoising. For this,
we map the systems such that the ground state of the CIM corresponds to the cleaned
image. Secondly, we compare the proposed mixed digital/hardware system with online
processing to the standard digital implementation of Hopfield Networks and Simulated
Annealing (SAN) in terms of their ground state attaining probabilities, computational
complexity, and energy consumption.

The obtained results indicate that SAN is more powerful with the success proba-
bility of attaining the ground state of 98.9% and 100% for the Antiferromagnetic Ising
Model and the MAP denoising tasks, respectively. Our experiments for the TSP are
ongoing; therefore, some results will not be included in this manuscript. Our digital
CIM (resp. hardware CIM) attained the ground state at 91.4% (resp. 90%) and 89%
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(resp. 86.75%) for the Antiferromagnetic Ising Model and the MAP image denoising
tasks, respectively. Again, considering the probability of reaching the ground state as
the sole metric, CIMs are outperformed by SAN. However, considering also runtime,
FPOs count, and energy consumption, we will see that CIMs offer an interesting per-
formance vs. energy efficiency tradeoff.



2
Reservoir Computing

2.1 Introduction to Reservoir Computing

Training ANN models requires data and/or a teacher that adjusts the weights and biases
to appropriately map the input signals to expected outputs. A teacher in this case is an
algorithm used to train the model by systematically adjusting the weights and biases
of neurons in the model. The hebbian, perceptron and delta learning rules [35] are
considered one of the earliest methods to train a model. A newer method, called Back-
Propagation (BP) revolutionized the development of ANN and re-ignited the interest in
AI after the Second "AI Winter" [36]. BP enjoys remarkable success in the training of
feedforward neural networks such as Multi-Layer Perceptrons and Convolutional Neu-
ral Networks. However, it struggles in the training of RNNs due to the added complexity
of feedback loops that may sometimes prevent convergence unless properly accounted
for [37, 38]. And even when RNNs converge with iterative gradient-based methods,
the convergence is slow, prone to local minima, and computationally demanding.

Several methods have been proposed to circumvent the convergence issues of train-
ing RNNs using gradient-based methods [39–41]. For instance, Backpropagation Through
Time (BPTT) unfolds RNNs in time resulting in multiple FNNs with common weights
that can be trained more easily using BP. However, the emergence of bifurcations ren-
ders gradient calculations intractable and unreliable [42]. The increasing computational
load of the updates with feedback loops and the difficulty of iteratively tracking depen-
dence when long-range memory is in play further limits the success of these methods.
Also, some of these methods are computationally demanding and may require adaptive
tuning of learning rates and other hyperparameters which requires skills and expertise.
An interesting observation in RNN training is that the backpropagated errors impact
the outermost layer the most and the impact fades or degrades inwards. That is the
outermost layers adapt quickly while the internal layers evolve relatively slowly during

20
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training. This fact is exploited in techniques such as the Atiya Parlos Recurrent Learn-
ing (APRL) [43] and Back-Propagation DeCorrelation (BPDC) [44], in an attempt to
mitigate the aforementioned challenges to a certain extent, outperformed BPTT signif-
icantly.

About two decades ago, a framework of RNNs called Reservoir Computing(RC),
which drastically simplifies RNN training was introduced in two flavors: Liquid State
Machines (LSMs) [45] and Echo State Networks (ESNs) [46]. LSMs originated from
a computational neurosciences background hence the proposed neurons closely mimic
the spiking integrate-and-fire neurons in the brain. The design of LSM includes in-
hibitory and excitatory neurons i.e. brain-like microcircuits and employs more bio-
logically plausible spiking neurons. The term liquid in LSM refers to the analogy in
operation between this model and a liquid surface generating ripples in response to
external perturbations.

The other variant, the ESN, stems from an engineering background, employing the
classical non-spiking Sigmoid-based neurons (the mean firing rate approximation). The
design of ESN constraints does not incorporate the sophistication of the brain-like mi-
crocircuits. The design employs the activation functions introduced in Section 1.2.2
and shown in Figure 1.1. The hardware feasibility is not as complex and the avail-
ability of many off-the-shelf photonic devices has allowed many scientists to propose
various creative contributions. In this thesis, we interest ourselves in ESNs and dedicate
this chapter to the expounding of various notions associated with them.

For Reservoir Computing, unlike traditional RNNs, training is implemented at the
readout layer alone. The readout layer is the outermost layer that computes a linear
combination of the states of randomly connected recurrent neurons in the middle layer.
Figure 2.1 shows a visual contrast between training in RNNs and RC. The simplification
of training comes with a significant reduction in the number of parameters to be tuned
for optimal performance. For classical ANNs, for instance, the training computation
effort increases in a polynomial manner with the increase in the number of neurons
using gradient-based methods. Training RNNs using the Back-Propagation Through
Time (BPTT), for example, necessitates O(N2) whereas RC usually takes O(N) where
N is the number of neurons.

Lower complexity for RCs translates to cheaper computations and the ability to
increase N for richer dynamics with a lesser increase in computation times. Richer
dynamics imply the projection of the input information to a much higher dimensional
space. This space is large enough to allow for easier separation of different inputs by the
hyperplanes that separate different classes. The benefit here is that the hyperplanes can
be computed using computationally cheap linear methods. What’s more, the connec-
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Figure 2.1: Differences in training between RC (A) and classical RNN (B) architec-
tures: synaptic link updated during training (dashed) - synaptic links fixed to their ini-
tial pseudo-random value (solid). Note that for the case of RC in (A) the hidden layer
with fixed weights is called the reservoir layer.

tions in the reservoir layer of RC are usually sparse, further reducing the computation
costs of projections in the reservoir, especially when sparse matrix computation meth-
ods are applied in practical implementations.

2.2 Reservoir Computing: The Echo State Network model

The basic model of an ESN consists of three layers: The input layer for formatting and
injecting the signals to be processed to the second layer, called the reservoir layer. The
reservoir layer is the reservoir of randomly connected processing units responsible for
the nonlinear expansion of the input signals to a higher dimensional space. The third
layer is the output layer that takes the reservoir node states (node in this manuscript is
used synonymously with neuron) and predicts the target output. Figure 2.2 shows the
three distinct layers in an ESN.

The basic model of the ESN exploits the fact that, if x(n) is the vector of node states
of neurons in an RNN at a discrete time n then the x(n) can be expressed as a function
of the input history (metaphorically ’echo’) u(n), u(n− 1),... [46] The node states in
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Figure 2.2: Basic Spatiotemporal architecture of a reservoir computer showing the three
layers

the reservoir are a function of previous states and the current input as described by the
discrete-time nonlinear dynamical equation below [46]

x(n) = fNL(W
inu(n) +Wresx(n− 1)), (2.1)

where n is the discrete-time variable, x is the vector of node states, u is the vector of
the input activation signal, Win is the matrix of random input weights also called the
input mask, Wres is the random connectivity matrix for the reservoir, and fNL is the
nonlinear activation function. Also for the rest of this thesis, F denotes the size of the
input vector u, N denotes the size of the reservoir layer (i.e. length of vector x) and C
denotes the size of the output.

Equation 2.1 assumes the neurons are memoryless. It is also possible to introduce
memory leaks in the neurons with the leaking rate ξ such that

x(n) = (1− ξ)x(n− 1) + ξ(fNL(W
inu(n) +Wresx(n− 1))) (2.2)

The output is generated at the output layer as a linear weighted combination of the
node states x to give a prediction vector ŷ as follows:

ŷ(n) = f out(Wout[1;u(n);x(n)]). (2.3)

Here, Wout is the read-out matrix, and ŷ(n) is the estimated output vector at time
step n to be compared to the expected output vector y(n) for the supervised learning
case. Training consists of computing Wout in a recurrence-free fashion hence avoiding
the complexities of loops previously discussed. Unless otherwise stated, the output
function f out (resp. ξ) will be set to an identity function (resp. 1) in the sequel.
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2.3 Designing a Reservoir Computer

From the discussion in Section 2.2, it can be deduced that generating a reservoir com-
puter generally boils down to the choice of the tuple of matrices (Win, Wres, Wout).
These matrices represent the input, the reservoir, and the output layer respectively. The
general guidelines for generating a good RC are [42]:

• Large enough reservoir layer (i.e. the larger the size N ) imply richer dynam-
ics and this could lead to better performance of the model due to easier signal
separation in the bigger phase space.

• Loose coupling between the neurons (sparsity in Wres) to limit the mixing of
the processed signal to a reasonable extent and also moderate the dynamics.

• Random Connections (random elements inWres) to ensure varied, hence richer,
interactions in the reservoir yield richer reservoir outputs.

These recommendations are indeed general, depending on the task at hand, more
fine-tuning may be necessary for optimal performance. The design needs for each layer
are different as described in the Sections below.

2.3.1 The input layer

The input layer is responsible for interfacing between the brute real-world input signal
and the reservoir layer by a process sometimes referred to as masking. It is generally
characterized by its matrix Win. The matrix is called the input mask or just the input
matrix. It is a randomly generated matrix from a given zero mean distribution and is
typically dense. Some implementation makes Win sparse to optimize computation.
Masking allows maximizing the dimensionality of the input signals, which may as well
be uni-dimensional when the sample and hold are applied. Masking, therefore, gener-
ally enriches the system’s response to the inputs.

The choice of the elements of Win has an impact on the dynamics of the reser-
voir layers as the values can drive the dynamics to one side of the activation function.
For sigmoid functions, this could be around the center, where they are mostly linear,
or to the ends where saturation makes the neurons act more nonlinear. Moreover, the
distribution from which the elements of Win are sampled impacts the system’s per-
formance especially when realistic noise-stricken RC implementations are concerned.
This is investigated in [47] where performance of elements sampled from a binary
distribution {−1, 1} and six-valued distribution {1.5, 0.9, 0.3,−0.3,−0.9,−1.5} are
compared. They concluded that the binary distribution performed poorly in face of
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quantization noise. Setting up to six values, however, increased RC’s noise robustness,
and beyond the 6 values, no significant improvement should be expected. In another
work, general recommendations for setting up the optimal input pattern derived from
the concepts of maximum length sequences were proposed by maximizing the vari-
ability of the node states while minimizing the number of elements in the mask [48].
The authors of [49] took a more traditional approach and instead of randomly setting
up the input mask Win, they proposed input mask optimization by a gradient-based
approach similar to other ML techniques. In our work in this thesis, we generate this
mask randomly by selecting multiple values from specified distributions.

2.3.2 The reservoir layer

This layer computes the nonlinear dynamics that are responsible for the expansion of
the input. The neurons are randomly connected to form a random graph, whose adja-
cency matrix corresponds to the non-zero elements in Wres. The adjacency matrix is
also called the reservoir connectivity matrix. Like Win the chosen Wres impacts the
extent of the nonlinearity depending on how it drives the activations. It also controls
the memory capacity of the reservoir. Depending on the spectral radius of Wres, the
reservoir can recall more or less the history of the input. Too much memory can drive
the system to instabilities making the projections intractable and chaotic. The matrix
should be tuned depending on the needs of the task at hand. Tuning Wres is explained
in detail in the discussion on the Echo State Property in Section 2.4.1.

2.3.3 The output layer

This is the only layer optimized through training. Generally, training consists of com-
puting the optimal Wout that minimizes the error between the expected y(n) and pre-
dicted ŷ(n) outputs. Predictions are carried as shown in Equation 2.3. We use the
state vector x(n) instead of the compound vector [1;u(n);x(n)] which can be consid-
ered as a special case that does not alter our general discussion. Taking a column-wise
concatenation of x(n) and y(n) for all n = 1...T as X ∈ RN×T and Y ∈ RC×T re-
spectively. From Equation 2.3, we computeWout by minimizing the squared Frobenius
norm between the reservoir outputs and their expected values:

||Y −WoutX||2F (2.4)

The matrices X and Y are can be very large depending on the time steps T . Invert-
ing large matrices is taxing in terms of memory and computation. A workaround is to
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multiply the transpose of XT on both sides to obtain :

WoutXXT = YXT (2.5)

The solution of which is :
Wout = YXT (XXT )−1 (2.6)

In the formulation of Equation 2.4, YXT and XXT are independent of the input
length T making the complexity of the computation of the inverse independent of T .
Optimizing Wout from the high dimensional X and Y is highly prone to overfitting due
to the curse of dimensionality and/or the small size of some training datasets. Over-
fitting can be reduced by penalizing large coefficients in Wout. This can be done by
introducing a regularization parameter, say λ, in the Equation 2.5 to obtain :

Wout = YXT (XXT + λI)−1 (2.7)

where I is the identity matrix of dimension N .

2.4 Properties of Echo State Networks

ESNs have certain properties responsible for their usefulness. These properties can be
controlled by varying certain parameters of the reservoir as we will describe in Chap-
ter 3. In this section, we explain the properties associated with RC and their contribution
to RC computational abilities.

2.4.1 Echo State Property (ESP)

ESNs rely on their fading memory to process serial input correctly and capture context.
Jaeger [46] coined the term Echo State Property, the ability of reservoirs to retain a
fading recollection of input history while at the same time asymptotically eliminating
distant information in time. The property ensures that the current state of the reservoir
is a result of the recent input information and is insensitive to the initial conditions of
the reservoir and the distant history of the input. Without the ESP, the system’s state
would be dependent on the initial and every transient state visited, which would in turn
make computation unreliable. With ESP, the dynamical RC systems yield a uni-modal
solution i.e. only one stable solution exists. At a given discrete time n, the state x(n)

must be uniquely defined for the given left-infinite inputs ..., u(n − 2), u(n − 1) and
u(n) [50].
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ESP is strongly related to the connectivity matrix of the reservoir Wres. It has been
demonstrated that large values of the spectral radius ρ(wres) can cause the existence of
multiple fixed points or even chaotic behavior. A widespread misconception is that, to
guarantee ESP, the spectral radius of Wres must be less than a unit and that this is a
sufficient and necessary condition [42, 51]. The authors of [50] point out the flaw of this
assumption and demonstrate the new sufficient conditions for the echo state property.

The values of the activations u(n) and the input mask Win can also impact the
ESP of a reservoir. Depending on how far the non-zero input drives the system from
the 0 where the sigmoidal function has a more linear slope to regions that squash the
activations. This removes the necessity of ρ(Wres) < 1 for ESP in some applications.
Also, in the case of the generalized RC introduced in Eq. (3) of [52], the ESP is re-
lated to the notion of effective spectral radius taking into account the presence of leaky
neurons. The effective spectral radius is computed taking into account the nature of
nonlinearities, input data, and the input mask; all of which could impact the ESP.

2.4.2 Memory Capacities (MC)

Temporal signal analysis requires the ability of the computing system to more or less
recall previous information. In engineering, this can be accomplished by employing a
delay line. RNNs, however, have an inherent ability to store this history in the transient
states. The measure of this amount of recalled history is called Memory Capacity (MC).
For ESNs, one way to estimate MC is to evaluate how well the input u(n − k) can be
reconstructed at discrete time n. The inputs u(n) are independently and identically
distributed random variables. The higher the memory the higher the number of times
steps k from which we can reconstruct u(n − k). The upper bound of the MC was
found to not exceed the size of the reservoir. Other measures of MC were proposed in
[53–55] for continuous and discrete time RCs.

The authors of [56] observed that MC depends on the spectral radius of the con-
nectivity matrix ρ(Wres). The smaller values of ρ(Wres) mean the lower the number
of steps k for which we can reconstruct u(n − k) whereas larger values of ρ(Wres)

reverses the effect. Therefore, tuning ρ(Wres) is crucial to adapt RC to the memory
needs of the task at hand.

The memory capacity introduced in [51] is called linear memory capacity quantify-
ing the ability to reconstruct u(n−k) assuming a linear relationship. If we let the recon-
structed variable from k steps be vk(n) then this assumption means vk(n) = u(n− k).
In [57] the notion of memory capacity is extended by introducing non-linear memory
and cross-memory capacities.

The quality of the reconstruction of u(n− k) is measured as a function of the Nor-
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malized Mean squared error (NMSE) by the capacity C calculated as follows :

C(vk) = 1−NMSE(vk) (2.8)

such that a perfect reconstruction with NMSE(y) = 0 will yield a capacity of 1. To
compute the total capacity C, we sum the capacities overall for all delays k.

C =
∑
k

C(vk) (2.9)

Generalizing the results of [51], the sum of the linear, quadratic, cross, and higher order
memory capacities were found to be upper bound by the size N of the reservoir.

2.4.3 Operation at the edge of chaos

Dynamical systems such as the ESNs are prone to exhibit chaotic behavior under certain
conditions. The setting of different parameters plays an important role in determining
the regime of operation as either chaotic or ordered. At certain regions of parameters,
the systems are at the frontier between the two operating regimes. This region is called
the edge of chaos (or edge of stability for some). There are claims that the computation
power of dynamical systems such as RC on time series operating at the edge of chaos
is superior [58–60]. This is attributed to the very high memory capacity of the system
at the edge of chaos, hence the input history does not die out quickly which is favorable
for tasks that require long history and may be detrimental to those that do not. How-
ever, although the term edge of chaos is generally accepted, it can be misleading as the
recurrent systems tend to pass through a number of stable bifurcation before the onset
of chaos.

2.5 Physical RC implementations

The randomness of the reservoir connections offers the potential for the hardware fea-
sibility of the RC. The randomness relieves the strict constraint of having to precisely
design and tune the physical weights and biases of the neurons. As a result, many dy-
namical systems capable of yielding nonlinear responses x(n) to the inputs u(n) can
be used as reservoirs [61, 62]. RCs’ versatility due to loose requirements for produc-
ing a physical reservoir has attracted attention from various fields such as electronics,
mechanics, biology, and photonics to cite a few. The computation units in RC can be
emulated by various substrates which have led to numerous exotic reservoir designs
as we will discuss in this chapter. To design a good hardware reservoir, the proposed
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system has to fulfill the following conditions [61]:

• Fading memory (previously described as Echo State Property): This allows for
stability and ensures that only the recent input (i.e. limited history) is a determi-
nant of the reservoir output. The hardware can therefore capture context while
avoiding instabilities.

• High dimensionality - The hardware reservoir must be able to provide a large
number of independent representations of the input information. This way the
output benefits from the richer representation of the input signal.

• Non-linearity - The physical systems needs to have some source of nonlinearity.
This allows the output system to linearly separate the inputs that would otherwise
be linearly inseparable. Non-linearity is essential for the projections to higher
dimensions to represent computation,

• Separation property - This property guarantees that two different inputs generate
sufficiently different outputs in the much higher dimensional space regardless of
the noise and small perturbations that may affect the RC system,

• Approximation property - This property guarantees that sufficiently similar inputs
generate sufficiently similar outputs in the much higher dimensional space and
remain robust in the face of noise and small perturbations that may be present in
the system.

The demands for high dimensions translate to a large number of interacting phys-
ical nonlinear components. Typically, simulated RCs have hundreds to thousands of
neurons. From the hardware point of view, this translates to the requirements of a large
number of nonlinear elements, with all the cabling/linking to one another to form a
network; and if powered, cabling to electrical sources for each element. Albeit with
difficulty, this can be feasible for smaller reservoirs with few nodes. For instance, in
their pioneering work, the authors of [63] implemented a spatiotemporal network of 25
Semiconductor optical amplifiers as a reservoir. Some applications, however, require a
large number of nodes whose hardware feasibility is unrealistic. Fortunately, a simpler
workaround was introduced by the authors of [64] to alleviate this design impediment.

The proposals in [64, 65] exploit the already well-known fact that, delayed nonlinear
systems, that are ubiquitous in nature, have interesting properties linked to the duration
and the strength of the delay. These systems were initially considered a nuisance and
could now be used for interesting computation applications. They proposed the sim-
plest delay dynamical system consisting of a single nonlinear node coupled to a single



2.5. PHYSICAL RC IMPLEMENTATIONS 30

delay line, of say, duration τ . This system is known to be infinite-dimensional since the
state of the system at time t depends on the states at previous times taking values from
infinite possibilities in the interval ]t−τ, t]. This property coupled with the attenuation
(fading memory) makes such a simple system adaptable for reservoir computing. Their
results encouraged a large number of researchers from various domains to exploit dif-
ferent physical systems for reservoir computation. Below we discuss a few examples of
domain-specific RC implementations with varying choices of substrates, nonlinearity,
and architectures.

2.5.1 Mechanical Reservoirs

Water bucket RC

Taking the metaphor quite literally, the authors of [66] took inspiration from Liquid
State Machines and Reservoir Computing and set up an experiment using a reservoir (a
bucket) filled with liquid (water). This setup is rather interesting and the exact architec-
ture is shown in Figure 2.3. The serial inputs are fed to the system via four mechanical
arms that vibrate in response to a motor. The motor movements are modulated by a cur-
rent proportional to the input signals generated by a computer. The arms, therefore, rep-
resent a low-dimensional mechanical representation of the signal to be processed. The
movements of the arm generate ripples on the surface of the water whose interaction
generates high-dimensional patterns. The patterns are projected on an anti-reflective
surface below after illumination by a projector placed directly above the reservoir. A
webcam records the patterns and sends them to the computer for post-processing. The
interaction between neighboring neurons is emulated by local nonlinear interaction be-
tween close water molecules as they respond to external disturbances. The nonlinear
interaction and response to perturbations are the major source of nonlinearity in the
system. This setup achieved low classification error on the XOR task and Spoken Digit
Recognition, two important benchmarks for machine learning methods.

Coupled oscillators RC

In [67] a network of coupled mechanical springs is used as a reservoir of nonlinear
nodes. The scheme consists of 400 inertial masses (N = 400) coupled with nonlin-
ear springs as shown in Figure 2.4. The masses are under a constant high-frequency
periodic disturbance from a mechanical arm on which the low-frequency input en-
velope modulates the forcing disturbance proportional to the inputs. The position of
the masses represents the output states to be recorded for subsequent post-processing.
Equation 2.10 governs the evolution of the states of the masses (node states xi(t)) in
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Figure 2.3: Reservoir computing using a reservoir of water

time.

d2xi(t)

dt2
=
ω0

Q

dxi
dt

−ω2
0x(t)−βix(t)3+A[1+∆iu(t)] cos(Ωt)+ω

2
1[xi−1(t)−2xi(t)+xi+1(t)]

(2.10)
where i is the mass index, u(t) is the time-variant low-frequency input perturbation, ω0

is the fundamental frequency, and Ω is the constant high-frequency perturbation. Other
parameters are system constants.

The setup, though mechanical can be fabricated in a compact manner using micro-
electromechanical technologies resulting in a very high energy-efficient operation.

Figure 2.4: Reservoir computing coupled oscillating springs
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2.5.2 Electronic Reservoirs

Analog RC

The simplest RC in this class consists of a single nonlinear electric node coupled to a
delay line as a reservoir [64, 68]. The first single-node reservoir was proposed by the
authors of [64]. The node states were virtualized as the smaller time intervals along
the delay line. The input is adapted from the digital form to a staircase signal from the
sample-and-hold operation. This approach simplifies the spatiotemporal architecture
making physical implementation more feasible. The input mask is emulated by a peri-
odic signal whose weights are assigned at each symbol duration. The equation describ-
ing the temporal evolution of nodes states is the input-driven Mackey-Glass nonlinear
equation

dx(t)

dt
= −x(t) + β

x(t− τ) + αu(t)

1 + (x(t− τ) + αu(t))p
(2.11)

where x(t) and u(t) are the node state and input information at time t, α is the input
scaling and β is the feedback scaling (strength) and p controls the nonlinearity in play.

The system is driven by the input signal u(t) yielding states x(t) that are linearly
combined to produce the output. The output weights are obtained by the postprocessing
step done digitally in an offline manner. Data converters are used to transform to and
from digital and analog signals. Other studies proposed different types of single-node
electronic reservoirs for analog processing such as the use of multiple reservoirs [69]
and emulation of spiking non-sigmoidal neurons [70].

FPGA RCs

Field Programmable Gate Arrays (FPGAs) are electronic devices that are essentially
a matrix of configurable logic blocks (CLBs) connected via programmable intra- and
interconnects. The FPGAs are reprogrammable circuits that can be configured to com-
plete certain digital processing tasks at high speeds. Their reconfigurability and ability
to run concurrently make them suitable for RC. They can be used to implement the
reservoirs and/or be employed for the online processing of readouts [71]. Although
sometimes used for single node RCs [72], the Concurrence allows for FPGAs to gener-
ate network-based RC (non-delay based).

The authors of [73, 74] proposed a stochastic bitstream neuronal network that uses
an FPGA. The traditional neurons use a weighted sum of the input excitations to gen-
erate an output. This translates to multiple Multiply-And-Add operations that are not
hardware friendly. To counteract this shortcoming they used stochastic arithmetics, that
is every value of the network is converted to its statistical representation. For example,
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if the output is uni-polar, that is x ∈ [0, 1] then it can be represented as a probability of
having a 1 such that P (x′ = 1) = x. The simplified design was used for benchmark
tasks such as the reproduction of a sine wave and generating the phase-shifted version
of a sinusoidal signal with promising results.

Some others implemented the more sophisticated spiking neural networks (SNNs)
on FPGAs. The SNNs are essentially LSMs processing spikes instead of the sigmoidal
outputs. They were explored for various tasks such as isolated spoken digit recognition
[75] and image processing [76]

Memristive RCs

A memristor, the name etymologically derived from Memory Resistor is a two-terminal
component whose resistance depends on the current that has flowed through it [77, 78].
This interesting characteristic has been exploited for neuromorphic computation sys-
tems and more specifically for reservoir generation. The memristors can be used as
physical synapses with their conductance tuned to emulate synaptic weights of artifi-
cial neuronal connections [79–82]. In these works, the neurons are either spiking or
sigmoidal and the memristors serve as random synaptic weights for the reservoir net-
works, as input mask weights, or as the output weights for linking the reservoir layer
to the output layer. Other studies considered memristors in a more central role and de-
ployed them as the nonlinear nodes responsible for computation. They exploit the fact
that memristors exhibit nonlinear dynamics that depend on the history of the traversing
currents and can, therefore, be used for reservoir design [83–85]. The use of memris-
tors for neuromorphic computing is attractive because they require very low power to
function even for network-like reservoirs offering efficient alternative components for
hardware neuromorphic computation [86].

Very Large Scale Integration (VLSI) RCs

VLSI refers to an integrated circuit technology with numerous devices incorporated on
a single chip. Neuromorphic computing usually consists of a large number of intercon-
nected elements that can be fabricated in a VLSI fashion. For instance, some explored
an Application specific architecture, a VLSI they called a hard liquid, with analog and
digital processing parts [87]. Others employed a platform with Leaky Integrate and Fire
(LIF) neurons with random connectivity on a re-configurable platform [88] and used it
for the biomedical detection of epileptic seizures. Integration is a promising avenue for
electronic RC since it allows the fabrication of compact and energy-efficient reservoirs.
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2.5.3 Photonic Reservoirs

Optical node array RCs

This category consists of reservoir designs with multiple interconnected optical nodes
resulting in a spatiotemporal architecture. The first proposal for this type of reservoir
was proposed in a simulation experiment [63] followed by experimental realization in
[89] consisting of an array of 4 Semiconductor Optical Amplifiers (SOAs) as a reservoir.
Others proposed reservoirs based on photonic crystals [90] and microring resonators
[91]. Some studies explored free space such as the diffractive network of semicon-
ductor lasers [92]. They used an 8 × 8 square lattice of single-mode vertical-cavity
surface-emitting lasers (VCSELs). Light originating from the lattice is passed through
the Diffractive Optical Element (DOE) before being subsequently imaged on a Spatial
Light Modulator (SLM). The loop is completed with feedback from the SLM whose
strength is controlled by the adjustable attenuation controlled by the SLM’s grayscale
values.

Light propagating through any medium gets scattered in random locations and di-
rections. This can be quite an inconvenience in some domains of applications such as
tissue imaging for example. However, the rich randomness of the scattering forms an
image called a speckle figure that can be exploited as the random reservoir connectiv-
ity matrix. The authors of [93] exploited this by expanding a coherent light to cover
the surface of a Digital Micromirror Device (DMD). The DMD micromirrors deter-
mine the reservoir state by the on and off state of individual mirrors. The on-mirrors
reflect light to the SLM and a camera records the image and uses it as feedback to the
DMD completing the loop. The scattering mediums provide the random coupling and
the nonlinearity of the system stems from the square modulus detection of the cam-
era. The computational power of the device is verified on the regression task of the
Mackey-Glass time series.

Delay-based optical RCs

Of the proposed photonic reservoir, the delay-based implementations represent a vast
majority of the studied architectures. This is the consequence of the availability of off-
the-shelf constituent components in the laboratories and the versatility of the resultant
implementations. The spatiotemporal architectures previously discussed are limited
in number as they suffer routing congestion when physical implementations are envi-
sioned. The delay-based architecture is a ring-type topology with signals evolving as
they circulate in a loop. This loop has openings, one for the input injection and the other
for the readout as shown in Figure 2.5. The neurons in this case correspond to smaller
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time intervals of an equal duration along the delay line. For a delay line of duration τD,
N virtual nodes correspond to the τD/N smaller intervals distributed along the line.
In the literature, we find two major classes of optical delay RCs, again depending on
the choice of the constituent devices and the nonlinearity. First, the fully optical reser-
voir implementations whose nonlinearity and reservoir states are generated and mixed
with the input fully in the optical domain [94, 95]. The second class includes reser-
voirs necessitating the Electrical-Optical conversions for the nonlinearity, information
injection, and/or mixing of the feedback [96].

Figure 2.5: Schematic representation of delay reservoir architecture. The delay line is
of duration τD: discrete-time inputs (yellow circles), discrete-time nodes of duration
τD/N (blue circles), discrete-time read-outs (green circles).

The authors of [95] demonstrated a fully optical reservoir using a semiconductor
laser as both the light source and the source of nonlinearity. The delay line is a standard
single-mode fiber of length equating to a light propagation duration of 77.6ns along
which 388 neurons of 200ps each are obtained. The input signal is introduced into the
reservoir via two proposed openings: one is through the electrical current modulating
the laser and another is through optical injection into the laser via the feedback loop.
A part of the light in the loop is extracted by an optical coupler and photo detected
to provide the readout signal for postprocessing. This setup is tested on spoken digit
classification task and the chaotic time-series prediction yielding good results.

Another example of a fully optical implementation of RC is the study that em-
ployed a Semiconductor Optical Amplifier (SOA) as a source of nonlinearity [94]. For
a nonlinear operation, the SOA is driven to saturation. With a delay of 7.9437µs they
obtained 50 neurons of 155.76ns each. For local coupling (mixing) of neurons, the
desynchronization between the input injection and round-trip time was used since the
nonlinearity, in this case, is instantaneous. This setup yielded good performance for
several tasks: the radar prediction task, the isolated spoken digit prediction task, and
the nonlinear channel equalization task.

These implementations of the all-optical reservoir are groundbreaking as they gave a
glimpse into the long-standing question of all-optical computing. However, fully optical
implementations are fewer compared to optoelectronic ones since optical nonlinearity
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is hard to harness for computation. The use of SOA in [94] necessitated driving the SOA
to saturation which brought along its high levels of noise impacting the performance of
the system.

Delay-based optoelectronic RCs

The first delay-based photonic system was an optoelectronic reservoir as the delay loop
with optical-electrical-optical conversions. Larger et al. [96] designed an optoelec-
tronic setup that explores the Ikeda-type nonlinearity described by the equation:

dx(t)

dt
= −x(t) + πµ[1 + 2B cos(x(t− τ)− x0)] (2.12)

where µ is a system constant, π is the ratio of the circumference of a circle to its diam-
eter, τ is the duration of the delay line, x(t) is the state of a node, and x0 is the initial
state. This equation introduces the cosine function that can be emulated in the hardware
implementation by a Mach-Zehnder Modulator (MZM).

The experimental setup consists of a DFB laser in CW operation. The emitted light
goes through an MZM whose RF arm is modulated by an electronic circuit. The resul-
tant modulated signal is delayed in a fiber spool of duration 20.86µs before being photo
detected and sent to an electronic circuit. This circuit acts as a low pass filter allow-
ing some local coupling between the neurons that are essentially time intervals. It also
amplifies the signal and sends a part to the processing units and combines a part with
the incoming information to complete the loop. The preprocessing and postprocessing
were carried out offline on a computer. The computation power of the setup tested on
isolated spoken digit benchmark yields error rates as low as 0.5%. They also studied
the impact of nonlinearity on computation by varying the bias voltage of the MZM.
This setup is also the setup of interest for our experiments in this thesis. We provide
further details of its components and mode of operation in Section 2.6.

A similar optoelectronic RC implementation was studied by the authors of [97].
They incorporated an MZM for nonlinearity and modulation hence the setup experi-
ences the Ikeda-type nonlinearity as well. However, unlike [96] where the electronic
circuit had some intrinsic time scale responsible for local coupling of the nodes, this
setup had instantaneous non-linearity. This means there is no mixing and that the reser-
voirs are one-dimensional. To introduce coupling they employed a sample and hold
procedure with the hold duration τ slightly less than the delay line duration τ . This
allows each part of the signal to be used for the generation of states in the near future.
Also, the readout was done by tapping the delay line using a coupler and photode-
tecting the signal for subsequent processing. They tested their setup on several known
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benchmarks for time series computation. For the Nonlinear Auto Regressive Moving
Average (NARMA) equation of order 10 driven by white noise, they obtained a Nor-
malized Mean Square Error NMSE = 0.168± 0.015 which was similar to the digital
implementation of the system. The setup also was tested for the nonlinear channel
equalization of a wireless communication channel. The signal distortion is due to mul-
tiple propagation paths of the transmitted signal before reaching the nonlinear channel.
The experimental setup yielded a very low error rate of 1.3 × 10−4 falling within the
ranges reported by more complex methods. They also tested the setup on the spoken
digit recognition benchmark and obtained a Word Error Rate (WER) of 0.2%.

In [98] the versatility of RC is further explored. The authors pushed the limits
by processing three different tasks on a single circuit. They interleaved three virtual
reservoirs in a single delay line and employed each to process a certain task. By do-
ing so, they were able to increase the spectral efficiency from 12% to 36% of the total
125Mhz bandwidth they had. The delay line was τ = 69.96µs meaning N = 424

nodes are possible. However, for the proposed tasks, reservoirs of 50 nodes sufficed.
As a result, only 150 of 424 nodes were used. Their idea consisted of interleaving three
internal variables of duration θ = 165ns each. Each variable represents the node state
for 3 reservoirs. They processed three benchmark tasks, the Nonlinear Channel Equal-
ization task, the RADAR signal forecasting task, and the NARMA10 task described
in Section 2.7. Their findings showcase the possibility of running several reservoirs
concurrently without hurting the performances of each. The difficulty is that the hy-
perparameters required for each task, say the input and feedback scalings, are different.
The problem can be solved by introducing modulators in the delay loop and the in-
put allowing the tuning of these parameters separately to their optimal values. These
solutions were implemented and studied in their second work detailed below.

The power of analog computing in photonic hardware implementation suffers a se-
rious bottleneck. The need for input signal-mask multiplication (Equation. 2.1) at the
input layer and the internal states-readout matrix multiplication (Equation. 2.3) at the
output layer imposed the use of digital electronic devices that are slower. This moti-
vated the authors of [99] to propose and study the setup with an analog readout. They
tested their experimental setup on a nonlinear wireless channel equalization and ob-
tained results less accurate than the digital counterpart. The reason is that analog pro-
cessing is more prone to noise than digital domains. Extending on [98, 99] a proof of
concept fully analog RC was implemented with the input masking operation and linear
combination to generate output accomplished online in an analog manner [100]. The
reservoir design consists of an SMF fiber of 1.7km coupled to an MZM modulator re-
sponsible for the system’s sinusoidal nonlinearity. The spool was divided to have 47
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internal variables. The dynamic of the system can be described by :

x(t) = sin(αx(t− τ) + βm(t)u(t)) (2.13)

where x(t) are the node states along the delay, u(t) is the input information, m(t) is
the periodic mask function which is implemented in an analog manner and α and β are
the scaling parameters. For the input layer, the goal is to generate an optical signal I(t)
by sample and hold procedure using an Arbitrary Waveform Generator (AWG) whose
output, u(t) modulates the RF arm of MZM as follows :

I(t) = I0u(t) (2.14)

Where I(t) is the time-dependent intensity and I0 is the maximum amplitude. A second
AWG, with the same baud rate, generates the input maskm(t) that modulates the second
MZM whose input light is the output of the first MZM (I(t)). The resultant optical
signal to be injected into the reservoir layer Iin is, therefore :

Iin(t) = I(t)×m(t) = I0u(t)m(t) (2.15)

For the output layer, 30% of the light in the loop goes through an MZM modulated by a
third AWG that sends an analog readout matrix (w(t)) through a balanced photodiode
setup for detection. The use of a balanced photodiode setup instead of a single pho-
todiode allows negative components to be computed. The fully analog RC performed
slightly worse compared to the one where inputs and output layers are implemented
digitally for the nonlinear equalization task and even worse for the NARMA10 and
RADAR tasks. This can be attributed to the noise tolerance of classification tasks as
opposed to regression tasks. The other two are regression tasks requiring more precise
computations hence the noise has a more profound impact on performance. However,
the system yielded promising results in the direction of fully analog computing and
paves way for fully analog implementation of RC has the potential for high-speed com-
puting.

A very fast RC developed by authors of [101] can process one million words (spoken
digits) per second. The speed stems from the use of high bandwidth of the electro-optic
phase delay setup. It consists of two Electro-Optic Phase modulators (EO PM), the
first one modulated the light’s phase proportional to the input information whereas the
second modulates the light proportional to the feedback. The resultant accumulated
phase change is therefore

ϕ(t) = xi(t) + ρui(t) (2.16)
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where u(t) and x(t) are input and feedback respectively with the input scaled by ρ.
Notice the similarity with the general state evolution Equation 2.1. It had a delay fiber
spool of total duration τ = 63.33ns. It also has a passive fiber-based Mach Zehn-
der Interferometer with a time imbalance of δT = 402.68ps that nonlinearly converts
the signal phase variation to intensity variations according to the standard two-wave
intensity interference function as follows

fNL(ϕ) = κ{cos(ϕ(t)− ϕ(t− δT ) + Φ0)− cos2(Φ0)} (2.17)

where κ is the gain and δT is much greater than the smallest time scale of the system.
Two amplified photodiodes are employed to convert the optical fluctuations to electrical
ones for the feedback and output post-processing respectively. The nodes experience
local coupling thanks to different timescales with filtering but also distant mixing ac-
cording to the δT of the interferometer. A filter of the characteristic response time of
τR = 284ps slows down the 10Ghz bandwidth for node coupling and also for the elec-
tronic AWG slower sampling rate. The resultant equations governing the dynamics of
the system are :

τR
dx(t)

dt
= −x(t) + y(t)

θ
+ fNL

[
ψ(t− τD)

]
dy

dt
= x(t)

(2.18)

The setup was optimized numerically and experimentally for two Isolated Spoken digit
datasets, the cleaner TI46, [102] and the more noisy and distorted Aurora-2. The test
performances yielded perfect detection (0% error) for the former dataset. As for the
Aurora-2, the performances were 4.5% and 8.9% respectively for numerical and exper-
imental implementations. The reported experimental performance was obtained at an
impressive processing speed of 1 million words per second highlighting the power and
speed of RCs.

2.6 The optoelectronic setup by Larger et al.

In this Section, we detail a setup of particular interest in some of our subsequent pre-
sented works. We work with the optoelectronic compact setup provided to us by Lau-
rent Larger one of the authors of [96] with FEMTO-ST in Besançon, France. It is an
Eletcro-Optic (EO) intensity chaos setup shown in Figure 2.6 consisting of off-the-shelf
components that we mounted in our laboratory (laser, photodiode, and the modulator).



2.6. THE OPTOELECTRONIC SETUP BY LARGER ET AL. 40

Figure 2.6: Setup 1 from FEMTO-ST (Reprinted with permission from © The Optical
Society).

We describe the constituent components as follows :

• A distributed feedback (DFB) laser diode (with output power up to 20mW ) emits
light at wavelength 1550nm. The injection current pumping the laser is an im-
portant parameter to tune the overall gain of the optoelectronic system [103].

• A LiNbO3 Mach-Zehnder Modulator (MZM) receives the emitted light. The
transfer function of the MZM is a sinusoidal function. By appropriately setting
the bias voltage (Vbias orϕ0) we fix the point around which the nonlinear dynamics
fluctuate. The light from the laser is modulated by a signal proportional to the
continuous-time input signal uI(t) to be processed[104].

• A 4.2 km fiber spool holds the light for an equivalent duration of τD ≈ 20.87µs

constituting the delay of the system.

• A photodiode receives and converts the optical intensity variations to electrical
variations generating an electric signal proportional to the feedback signal or the
state of the system x(t) [105].

• An electronic feedback circuit completes the optoelectronic loop and has the fol-
lowing functionalities :

– Amplifies the electrical signal from the photodiode this is important to ob-
tain an appropriate voltage swing necessary for the MZM.

– Acts as a low-pass filter with characteristic response time TR slowing down
the dynamics of the system and inducing neuronal local coupling

– Splits the electric signal in a part for the readout recording for the postpro-
cessing stage.
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– Enables the summation of the feedback photodetected signal x(t−τD) with
the input uI(t) to give a single electric signal.

– Sends the signal sum to the RF arm of the MZM to complete the EO loop.

In this way,N = 400 virtual hidden nodes are created via time-division-multiplexing,
where the delay-spacing between consecutive nodes is Ts ≈ 52.18ns [96]. The filter re-
sponse time TR = 4.6Ts allows for local coupling between nodes emulating the sparse
connections inWres. The DDE equation governing this nonlinear delay system is given
by

TR
dx(t)

dt
+ x(t) = κ sin2(αuI(t− τD) + βx(t− τD) + ϕ0), (2.19)

where ϕ0 is the MZM bias and κ is the nonlinearity gain.
In addition, we use an AWG for the generation of the continuous time input uI(t)

from the discrete-time samples Winu(n) via a sample-and-hold procedure. Finally
sampling the electronic feedback circuit output with a DAC N times at the sampling
period Ts reconstitutes the hidden state vector x(n). The linear output layer can then
be implemented via digital postprocessing on a computer.

2.7 Applications

The importance of RC is highlighted by the number and significance of the various
tasks it processes which has drastically increased recently. RCs have been studied and
employed for applications whose data is obtained from various sources, be it simulated
data or real noisy and distorted signals from sensors. Often a fixed random reservoir
can be applied to multiple applications with minimal to no adjustments by only training
the output layer. Moreover, the low complexity and simplicity of the concept have at-
tracted ML experts and non-experts from various domains. In this Section, we present
and discuss the nature, importance, and performances in various domains of applica-
tions. In the literature, the common applications employing reservoir computing can
be categorized into the major classes described below.

2.7.1 Pattern generation

Pattern generation is the process of creating a signal with certain properties that can oc-
cur repeatedly given the same settings. Patterns can represent physical systems, living
organisms, machines, or even designs. In some applications it can be useful to gener-
ate signals of certain properties and RC can be useful in such cases. A simple task of
generating a sine wave time series of a certain frequency (or period) is studied in [106].
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The goal is to generate an output of the form:

y(t) = sin(νt) (2.20)

where the pulsation ν has its value limited by the memory of the reservoir and the
limits of their experimental setup. Due to the limited memory, the authors observed the
success of the generation fell to zero when very long periods were considered. Note
that output (or readout) feedback is needed in such a case.

In many scenarios, random number generation finds interesting applications. The
authors of [106, 107] study this relatively more complex task compared to the previous
one, which consisted of repeated generation of a sequence of random numbers. The
results show that this is heavily dependent on the memory of the system as it aims to
recall the sequence in essence. Apart from the memory, noise has more impact on the
performance of the proposed setup. They obtained similar observations for the other
pattern generation task: the Mackey-Glass series generation (see Equation. 2.11) and
the well-known Lorenz Chaotic Series Generation show dynamics are defined by :

dx

dt
= σ(y − x)

dy

dt
= −xy + rx− y

dy

dt
= xy − bz

(2.21)

where σ, r and b are real and positive.

2.7.2 Time series forecasting

Time series forecasting is the process of making a scientific prediction based on pre-
vious historical sequences. The goal is to train a model via supervised learning and
then use it to predict future trends. The necessity of predicting future trends is ubiq-
uitous and has been applied in various domains such as weather, finance, health, and
communications. We discuss a few examples of time series forecasting tasks below.

Jaeger and Haas studied the use of RC for chaotic series prediction and nonlinear
channel equalization [108]. They studied the Mackey-Glass System governed by Equa-
tion. 2.11 which is a seemingly irregular complex series. They trained the system using
a teacher sequence to obtain a readout Wout which was then used to forecast the sys-
tem’s outputs several time steps ahead. Moreover, the authors of [96] evaluated RC’s
ability in the prediction of chaotic behavior of a far-infrared laser operating in a chaotic
state. The ability to predict chaotic behavior is important since complex systems are
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prevalent such as the weather and systems such as lasers subjected to feedback.
Reservoir computers have also been employed in modeling and predicting complex

financial stock markets and other financial market trends [109, 110]. Using the daily
closing stock prices of the S&P500 Index, New York Stock Exchange Composite, Dow
Jones Industrial Average, Nasdaq Composite Index, Financial Times Stock Exchange
100 Index, Nikkei 225 Index, and Shanghai Stock Exchange Index the authors of [109]
successfully trained a reservoir to predict the future trends in the stock market indices.
Their results were competitive when compared to larger and deeper neural networks. In
[110] an RC-based financial model is studied and used to forecast the long-term behav-
ior of the financial system with high accuracy. The RC model also proved to be robust
to rapidly changing trends and other fluctuating dependencies. These are interesting
applications since the ability to predict behavior in the stock or other financial markets
is crucial. Predictions drive the decision-making and policy formulations in favor of the
practitioners. It is worth noting that RC won the financial time series challenge [111]
highlighting the potential of RC in financial analysis, modeling, and prediction.

Other works considered the RADAR signal forecasting application. Traditionally
RADAR was mostly considered in defense systems but today it has applications in nav-
igation, weather forecasting, space exploration, and pollution control. In [98, 100, 112]
RC is employed in the prediction of the RADAR signal from 1 to 10-time steps in the
future from the radar signal back-scattered from the ocean’s surface. There are many
other instances of RC use in the forecasting of time series with for diverse applications.

2.7.3 Time Series Classification

Time series classification is a process of attributing serial data to a group with similar
properties. This is done by supervised learning using labeled sequential data before
predicting on the new unseen data. In many domains, it is important to group obser-
vations into smaller groups. The classification aids in taking the right measures in the
functioning of machines in industrial settings or decision-making for financial or social
situations. In RC literature, we find many researchers that have designed and imple-
mented RCs for various classification applications. Classification tasks are attractive
to RC because, unlike the regression counterparts, performances suffer less degrada-
tion by noise-infested analogy computing. We provide and discuss a few examples of
classification tasks below.

In communication systems, the transmission of a signal from the transmitter to the
receivers faces many distortive channel imperfections that can potentially cause the mis-
representation of the intended message. For wireless channels, the degradation origi-
nates from the involved components’ thermal noise, the interference with parasite sig-
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nals, multi-path propagation which leads to a superposition of adjacent symbols, and
nonlinear distortion induced by the sender’s and/or receiver’s amplifiers. For optical
channels also a plethora of degrading influences and forces exist such as the optical
fiber nonlinearity at high powers, the dispersion by the spreading out of a light pulse
in time as it propagates down the fiber, and noise from the components. RC has been
successful in restoring the intended message from the distorted signals for wireless
[98, 100, 112, 113] and optical systems [114–118].

Some studies considered the visual data processing both in the form of still images
[119] or sequential images in form of video [119–121]. The authors of [119] employed
RC an unconventional task of still images processing, which is not an essential time se-
ries task. They used the well-known handwritten dataset, the MNIST dataset for visual
digit classification. To convert the time-independent images to sequences adapted for
RCs, they scanned the images pixel-wise from left to right forming time-series-like se-
quences. For this task, RC yielded a competitively low error rate of only 0.92% for the
MNIST dataset. They extended their experiments to include actual video data, where
self-made videos of a door being closed or opened are used to train the RC. For this,
the RC yielded 1.9% prediction accuracy.

Furthermore, RC has been considered in a stand-alone [120] and composite fashion
with a CNN as a feature extractor [121] for visual spatiotemporal applications. In [120]
the CNNs employed were the pre-trained VGG-16 and ResNet-50, which are already
trained to extract relevant features from images. The extracted features are sent to the
RC after passing through the dense layer frame by frame. The input video sequences
considered are: DogCentric activity dataset i.e. a video stream from a camera mounted
on a dog’s back as it does different movements and the second is the UECPark dataset
with recordings of a human either jogging, twisting, or resting with a camera mounted
on his forehead. The combination resulted in 77.2% and 78.7% in accuracy for the
Dogcentric and UECPark tests respectively. The standalone setup was tasked to clas-
sify human action from sequences of videos of people either walking, jogging, running,
boxing, hand waving, or hand clapping. The photonic RC performed with an accuracy
of 91.3% and with a promise for higher speeds compared to the state-of-the-art. Video
processing tasks are crucial for different applications, be it: for security through surveil-
lance video processing, computer vision, or robotics. The challenge is the requirement
of speed and computation power since videos contain large amounts of data to be pro-
cessed. As a consequence, low complexity, low consumption, and hardware RC are
very attractive research directions in this domain.

Automation of spoken digit recognition is an attractive solution as it simplifies com-
munication between people and machines in the form of sound. Digits represent a sig-
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nificant part of our exchanges. As a result, we find interesting applications in settings
such as the exchange of bank information, bills, taxes, social security numbers, and ad-
dresses. It is for this reason that Spoken Digit Recognition (or Speech Recognition in
general) was established as an important benchmark for machine learning methods. It
is also one of the most utilized benchmarks in the RC literature for testing and report-
ing the reservoir’s predictive performance [96, 97, 122], versatility [66, 67] and speed
[95, 101].

Another family of applications belongs to the biomedical field where various time-
varying signals, from sensors or electrodes, are used to either provide a diagnosis or
information about the underlying medical conditions. The electrical signals from the
heart known as the ElectroCardioGram (ECG) have been processed by RC to identify
various heart conditions [69]. Other studies involved the electroencephalogram (EEG)
from the intra-cranial of rats [88, 123]. Of these studies, one employs RC for the task of
classifying two types of signals: those signals corresponding to the absence of seizures
from the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and others corre-
sponding to tonic-clonic seizures from the kainate-induced temporal-lobe epilepsy rats.
We also studied the early-stage detection of Alzheimer’s disease from handwriting by
focusing on accuracy [124] and efficiency [125]

Domain Studies

Robotics Event detection [126]

Security Crack chaos-based cryptographic protocols [127]

Financial Stock price prediction [109] and Financial Modeling [110]

Visual [119–121]

Communications Wireless [98, 100, 112, 113] and Optics [114–118, 128, 129]

Audio Spoken Digit Classification [66, 67, 95–97, 101, 122]

Biomedical Heart Conditions [69], Epileptic seizures, [88, 123] and
Alzheimer’s disease [124, 125]

Table 2.1: Various application domains for RCs in the literature

We have described several applications of RC analog computing in this section.
Table. 2.1 summarizes different classes of applications we found in the literature.



3
Parameter optimization Reservoir Computing

Part of the results and discussions in this chapter are presented in our journal article
titled "A stochastic optimization technique for hyperparameter tuning in reservoir

computing" that, by the time of this writing, has been submitted and is under review.

3.1 Introduction

The power and versatility of Reservoir Computing stems from the fact that most reser-
voir parameters, such as elements of the input mask and connectivity matrices, can be
chosen randomly, as discussed in Chapter 2. This relieves the strict requirement to ad-
just a large number of weights and biases of the recurrent system, unlike the case of
traditional RNNs. However, fully random-generated reservoirs seldom yield optimal
performances [42]. Some parameters, although much fewer than conventional RNNs,
require tuning to obtain the best performance for the task at hand.

In addition, we pointed out that with the randomness in the reservoir layer comes
the possibility for hardware implementation with unconventional devices. However,
the real-time processing capability of such devices brings a potpourri of challenges
nonexistent in digital implementations. The characteristics of constituent physical de-
vices are not always perfectly known and can even drift with time, unlike the case of
digital deterministic variants. The consequence is the impossibility of having neither
the full knowledge of the reservoir’s feedback weights nor the exact nonlinearity of the
system hinders the direct application of fast deterministic gradient-based methods such
as [52, 130, 131]. Brute force parameter selection uses grid search [132] but requires
fine-grained resolution, which, as we will show, can be expensive. More efficient al-
ternatives are based on stochastic optimization, such as genetic algorithms (GA) [133],
particle swarm optimization (PSO) [134], or simulated annealing (SAN) [135]. These
methods, nevertheless, are usually very time-consuming because they need to repeat

46
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similar steps a large number of times to find quasi-optimal parameters.
To address the aforementioned issues, we propose an optimization technique for tun-

ing a p-dimensional vector of RC parameters based exclusively on noisy loss function
evaluations. Our algorithm strikes a balance between the fast convergence of determin-
istic gradient-based methods and the efficiency of stochastic approximations. This is
useful in contexts where the exact functional relationship between the parameters and
loss function values is unavailable, as is the case for hardware implementations of RC.

Similar methods building on the Robbins-Monro algorithm for root finding [136],
procedures for finding the optimum of a loss function based on stochastic finite-difference
gradient approximations have been proposed. For instance, the original Kiefer-Wolfowitz
algorithm [137] needs 2p noisy function evaluations per iteration, which is costly. It was
later simplified to employ the random direction [138, p. 58-59], resulting in only a pair
of function evaluations per iteration. At each iteration, the latter method creates a two-
sided gradient approximation by applying a random perturbation vector sampled uni-
formly and independently from a p−hypersphere in the parameter space. To guarantee
convergence, such procedures usually require strong assumptions on the perturbations,
the decreasing learning step-sizes, and the decreasing finite-difference steps [139].

Taking into account the shortcomings mentioned above, we simplify the random
direction method in several ways to extend the applicability by :

• generating perturbations as random standard unit direction vectors in the hyper-
parameter space,

• keeping the finite-difference step constant, and

• keeping the learning step-size constant.

These modifications are essential for two reasons: first, they are responsible for the low
complexity of our approach, and secondly, they increase the numerical robustness in
the case of hardware RC, where the noise-ridden loss function computation and slow
device time-variations require an ability to track parameter drift. We derive a local
convergence analysis based on quadratic approximations of the loss function. Although
these convergence results are weaker than the original method, our results show that
they hold in practice. In particular, successful hyperparameter optimization will be
demonstrated both for the digitally simulated and experimental hardware RC.

Notations used throughout-out this chapter is as follows; bold letters indicate vec-
tors and matrices while Im is them×m identity matrix. For any vector a, diag (a) is the
diagonal matrix whose principal diagonal is a while off-diagonal entries are zero. For
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any matrix, B, diag(B) is the diagonal matrix, whose diagonal entries are the elements
on the principal diagonal of B while off-diagonal entries are zero. Also Λ(B) denotes
the set of eigenvalues of B. A sequence of vectors {v(t)}nt=m, i.e. vectors from discrete
time m to n, stacked columnwise in a matrix is denoted by v(m : n). The Frobenius
norm of matrix M is denoted by ||M||F . The matrix operators ⊗, ◦, vec(.) and ρ(.)
denote the Kronecker product, the Hadamard (elementwise) product, vectorization, and
the spectral radius, respectively.

Chapter outline and summary

• In Section 3.3, we introduce our stochastic gradient optimization method.

• Then, in Section 3.4 , we tackle the performance analysis issue by providing a
convergence criterion and the expression of the residual error covariance.

• In Section 3.5, the effectiveness of the proposed hyperparameter optimization
method is investigated in three realistic applications i.e. speech recognition ap-
plication, Control Charts classification, and Wafer Classification both for a sim-
ulated RC and in an experimental optoelectronic hardware implementation.

• Finally, in Section 3.6 , we conclude our study of the proposed stochastic gra-
dient descent approach. We highlight the advantages of our system over similar
optimization algorithms and the perspectives for further research.

3.2 System model

Most of the RC system notions have already been addressed in Chapter 2. Here, we
adapt the previous to set the stage for the proposed optimization scheme. For instance,
in this chapter, we introduce two parameters (α and β) and rewrite the discrete state
Equation 2.1 as follows

x(n) = fNL(αW
inu(n) + βWx(n− 1)), (3.1)

where fNL denotes, the nonlinearity applied componentwise. Win ∈ RN×F and W ∈
RN×N are the sparse random matrices. The hyperparameters α and β stand for the
input and feedback scaling factors. They significantly impact the system’s dynamics
because they scale the activations and the spectral radius (thus memory), respectively,
and must therefore be fine-tuned [46]. Let us collect all hyperparameters into the vector
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θ. A natural choice for θ is [α, β]T , but more hyperparameters could also be included
if needed. The linear output layer subsequently generates the n-th readout, ŷ(n), as
prescribed in Equation 2.3 When RC performs a prediction (resp. a classification) task,
ŷ(n) is typically in R (resp. in RC , where C is the number of classes).

Learning a RC model based on a training dataset {utrain(n),ytrain(n)}Tn=1 consists
in minimizing the loss function [46]

L(θ,Wout) = ||ytrain(1 : T )−Woutx(1 : T )||2F + λ||Wout||2F (3.2)

where Tikhonov regularization with parameter λ is used to limit the effect of noise and
overfitting [42]. The computational complexity of a single loss function evaluation is
O(CT (N+2)+CN). This can be obtained from the asymptotic complexity of matrix
subtraction and multiplication in [140]. This learning problem consists in solving

∂L(θ,Wout)

∂Wout
= 0 (3.3)

and admits a unique hyperparameter-dependent closed-form solution expressed as

Ŵout
(
θ, {utrain(n),ytrain(n)}Tn=1

)
= ytrain(1 : T )x(1 : T )T

[
x(1 : T )x(1 : T )T + λIN

]−1

(3.4)
whose computational complexity is O(CN(N + T ) +N3) per hyperparameter vector
and training set.

3.3 The proposed stochastic gradient method

In this Section, we introduce the proposed stochastic approximation method to esti-
mate a parameter vector θ ∈ Rp, to minimize the loss function. Each time we evaluate
an RC hidden layer on a limited training dataset under new hyperparameters, we ob-
tain a noisy value of the loss function. Since stochastic approximations can iteratively
solve optimization problems using only noisy function evaluations, minimizing the loss
function using such methods makes sense. While the random direction method [138, p.
58-59] uses only a pair of loss function evaluations per iteration for the sake of finite-
difference gradient approximation, almost sure convergence results need specific con-
ditions on the perturbations, the decreasing learning step-size, and the finite-difference
step [139]. These conditions cannot always be met in practice. In particular, letting the
finite-difference step converge to zero with an increasing iteration index is not advisable
for the sake of numerical stability. Also, decreasing the learning step-size is unsuitable
for applications where adaptive tracking of a drifting solution is needed. Therefore, in
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the proposed method, we let both steps remain constant while also updating the coor-
dinates of θ one at a time to reduce the complexity by a factor of p during each update.

Let ec be the standard unit vector in the direction of the c-th coordinate (i.e. ec is the
length-p vector containing 1 in its c-th coordinate and 0 elsewhere), for c = 1, . . . , p.
Starting from an initial guess θ0, direction vectors {di} are uniformly, independently
and identically distributed (u.i.i.d.) over {e1, e2, . . . , ep}, where i is the iteration in-
dex. Gradient descent, commonly used for optimization in machine learning [141],
is not feasible in our setting since gradient calculation needs complete knowledge of
the functional relationship between θ and L(., .) that was assumed to be unavailable.
Instead, a stochastic approximation of the gradient of the loss function in the random
direction di, is obtained as

∆i =
L(θi−1 + hdi,W

out
i−1)− L(θi−1 − hdi,W

out
i−1)

2h
, (3.5)

where a central finite-difference approach with constant step h has been used. Note
that on top of the error inherent to the finite-difference method, the numerator in Equa-
tion 3.5 involves two evaluations of an RC loss function using only a limited number
of training data, thus giving rise to noisy evaluations. For the sake of simplicity, the
iterative procedure to minimize the loss function updates each component of θ one at
a time according to

θi = θi−1 − µdi∆i, (3.6)

where µ is a constant learning step size. The proposed parameter optimization proce-
dure is summarized in Algorithm 1.

Algorithm 1 Parameter optimization procedure
Require: µ, h,θ0

Initialize Wout
0 by minimizing L(θ0,W

out)
for i = 1, 2, . . . , do

Pick uniformly at random c ∈ {1, 2, . . . , p}

Set the direction vector di = ec
Compute ∆i according to Equation 3.5
Parameter update: θi = θi−1 − µdi∆i

Update Wout
i by minimizing L(θi,W

out)
end for
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3.4 Performance analysis

In this Section, we give a detailed analysis of the behavior of our proposed optimiza-
tion algorithm around the optimal value, θopt under standard assumptions. We begin
by approximating the recursion for the proposed method around the optimal value of
θ in Section 3.4.1, based on a quadratic approximation of the loss function. In Sec-
tion 3.4.2 , we study the convergence in probability of the transient, provided that the
learning step-size is smaller than some upper bound. We do so by taking into account
the stochastic nature of the proposed method. Finally, in Section 3.4.3, we derive the
steady-state covariance of the parameter vector due to noise terms affecting the stochas-
tic approximation of the gradient.

3.4.1 Linearized behavior around the optimum

Let θopt be the optimal parameter vector and let Ŵout(θopt) be the corresponding output
layer weights. We only consider the variations of the loss function w.r.t θ arount θopt,
which leads to studying the recursion

θi ≈ θi−1 − µdi
C(θi−1 + hdi)− C(θi−1 − hdi)

2h
, (3.7)

where C(θ) = L(θ,Ŵout(θopt)). Assume the Hessian matrix of C(θ) (i.e. the ma-
trix of continuous second-order partial derivatives), HC(θ) exists. Linearizing Equa-
tion 3.7 around θopt leads to the recursion

θi − θopt =
Ä
Ip − µdid

T
i HC(θopt)

ä
(θi−1 − θopt)− µdid

T
i ni, (3.8)

where ni is a noise vector accounting for potential noisy loss function evaluations in our
method. The derivation is postponed to Appendix A.1. Since (3.8) has the structure
of a linear time-variant system, it can be seen as the superposition of the stochastic
transient response.ζ0 = θ0

ζi = θopt +
Ä
Ip − µdid

T
i HC(θopt)

ä
(ζi−1 − θopt),

(3.9)

and the noise contributionP 0 = 0p×1

P i =
Ä
Ip − µdid

T
i HC(θopt)

ä
P i−1 − µdid

T
i ni.

(3.10)

3.4.2 Transient response behavior

Lemma 3.4.1 lim
i→∞

E[ζi − θopt] = 0 if and only if
0 < µ < 2p

ρ(HC(θopt))
.
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Proof 3.4.2 Regarding the mean of {ζi} conditional on the previous direction vectors,
according to Equation 3.9, we have

E[ζi − θopt| . . . ,di−2,di−1] =Ä
Ip − µE[did

T
i ]HC(θopt)

ä
E[(ζi−1 − θopt)| . . . ,di−2,di−1],

(3.11)

using the fact that the {di} are u.i.i.d. Applying the law of total expectation, for all
i ≥ 0, we have

E[ζi − θopt] =
Ä
Ip − µE[did

T
i ]HC(θopt)

ä
E[ζi−1 − θopt]. (3.12)

By induction and using E[did
T
i ] = (1/p)Ip, we have

E[ζi − θopt] =

Å
Ip −

µ

p
HC(θopt)

ãi
(θ0 − θopt). (3.13)

From [142, p. 119], lim
i→∞

E[ζi − θopt] = 0 if and only if ρ
Ä
(Ip − µ

p
HC(θopt)

ä
< 1.

Using the fact that HC(θopt) is symmetric positive-definite completes the proof.

Lemma 3.4.3 There exists µ∗ > 0, such that for all 0 < µ < µ∗,
lim
i→∞

vec
(
E[(ζi − θopt)(ζi − θopt)

T )]
)
= 0.

Proof 3.4.4 We first establish the matrix difference equation (see Appendix A.2)

vec
(
E[(ζi − θopt)(ζi − θopt)

T )]
)

= DC(µ) vec
(
E[(ζi−1 − θopt)(ζi−1 − θopt)

T )]
)
.

(3.14)

whose dynamics are governed by the matrix

DC(µ) =Ip2 −
µ

p
(HC(θopt)⊗ Ip + Ip ⊗HC(θopt))

+
µ2

p
diag (vec(Ip)) (HC(θopt)⊗HC(θopt)) .

(3.15)

Using [143, Thm. 4.4.5],

Λ (HC(θopt)⊗ Ip + Ip ⊗HC(θopt))

= {2λ,∀λ > 0 ∈ Λ(HC(θopt))},
(3.16)
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consequently, HC(θopt) ⊗ Ip + Ip ⊗ HC(θopt) is also symmetric positive-definite so
that in turn

Λ

Å
Ip2 −

µ

p
(HC(θopt)⊗ Ip + Ip ⊗HC(θopt))

ã
=

ß
1− 2µ

p
λ,∀λ > 0 ∈ Λ(HC(θopt))

™
.

(3.17)

Applying the Bauer-Fike theorem [140, p. 321] to Equation 3.15, there exists µ∗ > 0,
such that for all 0 < µ < µ∗ ρ(DC(µ)) < 1.

Finally, lim
i→∞

vec
(
E[(ζi − θopt)(ζi − θopt)

T )]
)

= 0 if and only if ρ(DC(µ)) <

1 [142, p. 119]. Noting that 0 < µ < µ∗ is a sufficient condition for ρ(DC(µ)) < 1

completes the proof.

We are now ready to state our main convergence result regarding the transient be-
havior.

Theorem 3.4.5 When 0 < µ < µ∗, the transient response random vectors ζi −−−→
i→∞

θopt in probability.

Proof 3.4.6 Applying the definition of convergence in probability in the multivariate
case [144, p. 530], we must show that

lim
i→∞

P
(»

(ζi − θopt)T (ζi − θopt) ≥ ϵ
)
= 0, ∀ϵ > 0. (3.18)

Applying Markov’s inequality, for any ϵ > 0, we have

P
(»

(ζi − θopt)T (ζi − θopt) ≥ ϵ
)

= P
(
(ζi − θopt)

T (ζi − θopt) ≥ ϵ2
)

≤ E
[
(ζi − θopt)

T (ζi − θopt)
]

ϵ2

≤ traceE
[
(ζi − θopt)(ζi − θopt)

T
]

ϵ2
.

(3.19)

Letting i→ ∞ when 0 < µ < µ∗, lemma 3.4.3 leads to the desired result.

3.4.3 Steady-state covariance

We assume the {ni} to be white zero-mean with covariance matrix Σ and independent
of the direction vectors {di}.
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Regarding the mean of {P i} conditional on the previous direction vectors, accord-
ing to Equation 3.10, we have

E[P i| . . . ,di−2,di−1] =(
Ip − µE[did

T
i ]HC(θopt)

)
E[P i−1| . . . ,di−2,di−1]

− µE[did
T
i ]E[ni],

(3.20)

using the fact that the {di} are u.i.i.d. Applying the law of total expectation and using
the fact that E[ni] = 0 and E[did

T
i ] = (1/p)Ip, for all i ≥ 0, we have

E[P i] =

Å
Ip −

µ

p
HC(θopt)

ã
E[P i−1]. (3.21)

Thus E[P i] = 0, for all i ≥ 0, since E[P 0] = 0.

It can also be shown that the covariance of {P i} is obtained via the recursion (see
Appendix A.3)

vec
(
E[P iP

T
i ]
)
=DC(µ) vec

(
E[P i−1P

T
i−1]
)

+
µ2

p
vec (diag (Σ)) .

(3.22)

When 0 < µ < µ∗, then ρ(DC(µ)) < 1 and the steady-state solution is given
by [145, p. 27].

lim
i→∞

vec
(
E[P iP

T
i ]
)

=
µ2

p
(Ip2 −DC(µ))

−1 vec (diag (Σ)) .
(3.23)

3.5 Numerical and experimental results

We now assess the performances of the proposed hyperparameter optimization algo-
rithm using both a simulated (see Section 3.5.3) and a hardware implementation (see
Section 3.5.4) of RC. As practical classification tasks, we consider the spoken digit
recognition application described below a well-established reference to evaluate RC
performances. We also add two new tasks in ML literature: the Control Chart and
Wafer classification tasks. Section 3.5.2 describes the considered generic setup, which
is valid for several optoelectronic and optical hardware implementations of RC.
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3.5.1 Time Series Classification tasks

Spoken digits recognition

As we pointed out in Section 2.7.3, the spoken digit classification is the most commonly
used benchmark in the RC literature. And among the spoken digit datasets, the TI46
dataset[102] is the most common benchmark and contains clean and well-formatted
utterances of digits 0−9. However, in our work, we applied the TIDIGITS LDC93S10
[146] dataset that, unlike the TI46, contains utterances in more realistic settings infested
with environmental noise, recorder distortions, and considerable speaker variation. The
dataset consists of 326 speakers of different ages and gender, uttering the digits from 0
to 9 so that C = 10. The individual files are of variable length and are recorded at a
sampling frequency of 20kHz. The speakers are English speakers, and the utterances
are in English. From this dataset, we choose 1500 sound files with equal distribution
between gender and age.

The sound files have an average length of 10k samples after trimming the silent ends
for the longer files and padding the slightly shorter files with zeros. Although this was
done to homogenize the file length, we note that varied input lengths are also feasible
in RC. For more robustness in a speech recognition task, it is customary to incorporate
preprocessing for feature extraction before the process of word classification or speaker
identification. The extracted features incur reduced distortions and format the data in
a way that maximizes the contributions of the actual speech data. In our experiments,
the raw sound files undergo preprocessing to extract the Mel-frequency Cepstral Coeffi-
cients (MFCCs) [147] as input features for the RC processing. The process of extracting
the coefficient can be summarized as follows :

• Pre-emphasis by applying a high-pass filter to the waveform to compensate for
the attenuation of the high frequencies in human speech production.

• Framing by dividing the entire sound wave into smaller overlapping fixed length
segments of duration 20− 30ms with an overlap of up to 15ms. In our case, we
generated 69 frames of 25.6ms every 7.2ms (with an overlap of 18.4ms).

• Windowing by multiplying each segment to a window function in the spectral
domain. The window function tappers each end of a frame producing a smoother
spectrum with fewer artifacts. We use Hanning windowing in our experiments.

• Fast Fourier Transform is applied to each window to generate spectral coeffi-
cients; in our case, we used a 512-point FFT.
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• Filter bank values at Mel Scale permit the reduction of a large number of coef-
ficients to fewer meaningful ones. In our case, we generated 13 coefficients per
frame (the typical number is 12 coefficients) by multiplying cross-wise the FFT
coefficients with 13 triangular weighing functions centered at FMEL computed
as follows :

fMEL = 2595 log10
(
1 +

fLIN
700

)
(3.24)

where fLIN corresponds to the cepstral frequencies in the linear domain.

• Environmental compensation is an optional step included in our preprocessing
to compensate for the multiplicative distortion of the environment. Assuming
invariance, these can be significantly reduced by subtracting the average value
of the MFCCs. This removes any time-invariant multiplicative effects that have
now become additive due to the logarithmic operation.

With the above preprocessing steps, the input sound whose temporal trace is shown in
Figure 3.1a is converted to a 13 × 69 matrix of cepstral coefficients displayed in the
form of an image in Figure 3.1b. The 1500 sound files are decomposed into two sets,
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Figure 3.1: (a) A sound profile corresponding to the pronunciation of the digit 5 with
a visual representation of the MFCCs in (b).

the train-validation set, and the test set, composed of 90% (1350 files) and 10% (150
files) of the total number of files, respectively. The train-validation sets are iteratively
split into two, the validation set and the training set, at 11.11% (150 files) and 88.89%

(1200 files), respectively. Consequently, T = 1500× 69× 90% = 93150 discrete time
instants.

Control chart pattern recognition

In industrial, financial, and medical settings, the need to classify observed time series
patterns produced by equipment or sensors often arises to detect anomalies and guar-
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antee continuous operation. The goal is to establish similarities between the system-
generated temporal signals and known normal or abnormal signals to narrow down
the necessary mitigative measures. However, determining the similarity between time
series is not a trivial task. The typical approach is the computation of some distance
measure, such as the euclidean distance as a dissimilarity measure. It attributes the pat-
terns characterized by shorter distances between themselves to the same subgroup. For
instance, a self-organizing network was proposed [148] and trained to cluster networks
in different clusters yielding a classification accuracy of 96.67% employing a distance
metric. However, as pointed out by the authors of [149], distance metrics are ineffec-
tive as they tend to miss-classify certain series that are visually similar. Their study
explored the extraction of features from time series data and carry computation of dis-
tances in a different reduced space. The state-of-the-art performance is by a technique
named Collective of Transformation-Based Ensembles (COTE) [150] yielded 99.92%

of classification accuracy by transforming the representation into a different space be-
fore distance computation. Despite the high accuracy, we observed in our study [125]
that processing TSC tasks by dissimilarity measures are usually computationally inten-
sive, even for small datasets.

RC is an attractive avenue for the classification of Control Charts, as it avoids dis-
tance computations; hence we will explore the application in the context of RC opti-
mization. We work with the dataset of 600 charts representing operation trends of a
system whose tendencies belong to one of six classes: Normal, Cyclic, Increasing, De-
creasing, Upward shift, and Downward shift [151]. Figure 3.2 shows the more visually
apparent examples of observed trends for each class. The 600 sound files come in two

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Control chart trends : (a) Normal (b) Increasing (c) Upshift (d) Cyclic (e)
Decreasing (f) Downshift

sets, the train and test set composed of 300 examples each. The training data is itera-
tively split into two, the train subset and the validation subset, the validation set, and
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the training set at 60 ( 20% ) and 240 (80%) files, respectively.

Semiconductor microelectronics fabrication: Wafer classification task

The process of manufacturing semiconductor microelectronics is very complex, involv-
ing hundreds of steps. Various layers or materials are added to a silicon wafer and
carefully removed through etching to form circuit patterns. For instance, during the
process, a layer of a very thin photosensitive material called a photoresist is deposited
on the surface of the wafer. This layer is selectively exposed to UV light in accor-
dance with the targeted circuitry; being photosensitive, these layers undergo chemical
changes. A chemical is introduced on the surface to remove areas unaffected by the
UV light leaving the rest intact; the process is called photolithography. Then a reac-
tive plasma is also applied to remove the remaining unprotected regions leaving out the
intended circuit pattern [152].

This process is prone to many imperfections that may cause malfunctions, unreli-
ability, and performance issues during post-production. To control fabrication quality,
several sensors are included in the whole process. In this work, we use the data from
a sensor for the plasma emission at 405 nm, deemed more efficient for faulty detection
[152]. With readings from the sensor, the task is to discriminate between the normal
and abnormal wafers referring to non-faulty and faulty wafers, respectively. Unfortu-
nately, the dataset has a significant class imbalance, with the abnormal class accounting
for only 10.7% of the train data and 12.1% of the test data, respectively. We employed
the SMOTE technique to restrain the overfitting of the majority class, avoid underfitting
the minority class, and improve overall generalization [153]. With this tool, we under-
sample the majority class slightly, and synthetic examples are generated to add more
samples for the minority class. Figure 3.3a and 3.3b show the readings for normal and
abnormal wafers, respectively. The train set contains 1000 files that we split into 900
(90%) for training and 100 (10%) for validation. The performances are reported on the
test set, which contains 6164 files.

(a) Normal wafer (b) abnormal Wafer

Figure 3.3: Plots for the plasma emission sensor readings at 405nm.
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Classification and costs

Let us consider the spoken digit recognition task as our running example. Classification
of the output signal is implemented at the output layer. The ouput layer training in the
Equation 2.7 relies on the fact that if c ∈ {0, 1, . . . , C−1} is the class corresponding to
the n-th training feature vector utrain(n), the corresponding target RC readout ytrain(n)

will be +1 in its c-th coordinate and 0 elsewhere. In our experiments, to classify a
data entry, the node states vectors x(t) are column-wise concatenated to form an N ×
69 matrix X shown in Figure 3.4a (69 is the number of time steps in a single digit
for speech, changes for other tasks). The obtained matrix is multiplied as shown in
Figure 3.4 to get the predicted output matrix (See Figure 3.4b). The predicted output
is expected to be close to the expected output matrix (See Figure 3.4c) To decide the

(a) (b) (c)

Figure 3.4: Graphical representation of the read-out operations where the readout ma-
trix (size 10 × 400) is multiplied by the 400 × 69 node states matrix (a) to obtain the
10 × 69 predicted matrix (b), that is, after successful training, is an approximation of
the expected 10× 69 target matrix (c)

prediction class, we sum the rows of the output matrix and identify the row c that has the
maximum value. This procedure is illustrated in Figure 3.5 with the predicted matrix
placed alongside a bar plot of the row-wise sum.

Figure 3.5: Graphical representation of the class decision process for digit 5.

In addition to the loss function in Equation 3.2, we use the Classification Error
Rate (CER) to gauge the model performances. CER measures the extent of miss-
classification in percentage (%) and computed as:

CER (%) =
Number of wrongly classified entries

Cardinality of the test set
× 100 (3.25)
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Note that for the particular case of the spoken digit task, the CER is also commonly
referred to as the Word Error Rate (WER), since the inputs are classified as words.

3.5.2 Proposed Setup

We consider the delayed feedback loop optoelectronic and optical RC implementa-
tions from [96, 98, 100, 101], which can be modeled as the discrete-time RC model
(Equation 3.1) after digital-to-analog conversion (DAC) and analog-to-digital conver-
sion (ADC) at the input and output of the circuit, respectively. Since the operating
principle of such physical implementations relies on serializing the internal (hidden)
nodes using time-multiplexing, the connectivity matrix W has non-zero coefficients
only on the first lower diagonal. In our numerical simulations, these coefficient are
sampled from discrete coefficients hi of a first order low-pass filter h(t) = e−t/TR of
a response time TR ≈ 240ns where hi = h(iθ), θ = 52.18ns and i discrete time in-
stants. The connectivity matrix W , therefore, can be written using the hi coefficients
as follows :

W =



h0 0 0 0 0 . . . 0

h1 h0 0 0 0 . . . 0

h2 h1 h0 0 0 . . . 0

h3 h2 h1 h0 0 . . . 0

h4 h3 h2 h1 h0 . . . 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . h4 h3 h2 h1 h0



(3.26)

In hardware implementations, the exact values of these coefficients depend on the char-
acteristic time scale of the system, which is not precisely known. Although characteri-
zation of the filter’s coefficients could be attempted, this would not only need a complex
experimental setup on its own but also account for drift in time due to thermal instability
which seems very difficult in practice.

The elements of the input matrix Win at positions (l, c) may be generated from
any distribution. In this work, they are sampled independently from the probability
distribution defined as:

P
(
Win(l, c) = w

)
=

1
5
, if w = −1, 1.

3
5
, if w = 0.

(3.27)
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Moreover, fNL in Equation 3.1 stands for the squared transfer function of a Mach-
Zehnder Modulator (MZM) (where squaring is due to the action of a photodiode), i.e

fNL(.) = sin2(.+ ϕ). (3.28)

The value of the parameter ϕ controls the nonlinearity in play by varying from highly
linear operation regimes (e.g., around point C in Figure 3.6) to highly nonlinear regimes
(e.g., point A or point E in Figure 3.6). Hence, by varying the value of ϕ, the nonlin-
earity can be optimized to meet the needs of the task at hand. We select ϕ = 3 rad in
our simulations, which is located near an extremum of fNL but slightly leaning towards
the negative slope, which gave the best results for the task of spoken digit recognition
in [96]. Finally, hyperparameter vector θ = [α, β]T , where α and β are as defined in

0 1 2 3 4
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0.25

0.5

0.75

1
A

B

C

D
E

Figure 3.6: Squared Mach-Zehnder transfer function (Operating point A, E: highly
nonlinear regimes. Operating point C: essentially linear regime).

Equation 3.1, needs to be fine-tuned since it plays a vital role in controlling the dynam-
ical regime in the reservoir by ensuring the so-called echo state property [46].

3.5.3 Numerical Simulations

We aim to optimize the vector θ = [α, β]T , but we have two global parameters to set,
namely the size of the reservoir, N , and the regularization parameter λ. Regarding the
choice of N , a rule of thumb in [52] states that N should be approximately one-tenth
of the training sequence’s length, and other RC properties can be optimized for smaller
reservoirs and transferred to larger ones. Therefore, in this work, we use N = 400, the
size also used in [96]. Regarding λ, we fix it at 10−8 after running trials manually.

We consider the optimization of the computer simulations of the RC system de-
scribed in Section 3.2. Grid search and simulated annealing (SAN) are the benchmark
methods against which we assess the performances of our optimization method. Grid-
search consists in retaining the hyperparameter value corresponding to the lowest loss
function value (Equation 3.2) after an exhaustive search over the discretized variable
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θ. Table 3.1 lists the parameters for the grid-search algorithm showing the resolution
necessary to find a near-optimal operating point. On the other hand, SAN is a stochastic
optimization algorithm that emulates materials’ slow and controlled cooling until the
lowest energy state is reached. Our implementation of SAN follows [144, 154–156],
with parameters listed in Table 3.2 for the Spoken digit recognition task. Note that to
counteract the effect of noisy (instead of deterministic) evaluations of the loss function,
we use the acceptance threshold τ introduced in [144, p. 115], in the sense that we only
update when the new loss function improves the previous loss function by not less than
τ . For the other two tasks, only the acceptance threshold needed to be adjusted, and the
rest of the parameters remained the same.

The loss function is evaluated at each iteration using a random data split into a
train-validation couple to avoid being stuck in local minima for the proposed method.
We list the parameters of the method in Table 3.3. We set the finite difference step
h = 5 × 10−3 manually, whereas the choice of learning step-size µ is through the
theoretical analysis described later in this section. We follow a similar procedure for
the other two tasks and list their parameters in Table 3.3 as well. The upper bound µ∗,
corresponds to the maximum value guaranteeing ρ(DC(µ)) < 1 and convergence when
0 < µ < µ∗, for the Hessian HC(θopt) computed near the optimum value of θ. The
details of the estimation of HC(θopt) near optimal are also detailed in this section. The
plot of ρ(DC(µ)) on Figure 3.11 (3.13 for the other two tasks) reveals the upper bound
µ∗. Therefore, in our experiments, we can safely set µ to conservative values equal to
5× 10−6, 1× 10−6, and 1.5× 10−5 for the Spoken Digit, Control chart, and the Wafer
classification tasks respectively.

The complexity of the three aforementioned methods is determined by the number
of repeated steps S (see Table 3.4). Note that for the grid-search approach (resp. the
proposed and SAN approaches), S represents the number of grid points (resp. number
of iterations and the number of temperature changes times the number of epochs until
convergence).

Parameter Range Discretization step

Input scaling α (10−2, 1) 6.6× 10−3

Feedback scaling β (0, 1) 10−2

Table 3.1: Exhaustive search parameters.

We started with the grid-search algorithm that evaluates the cost function for every
possible combination ofα and β in the ranges and resolutions provided in Table 3.1. We
maintained the same discretization steps for the three tasks in our study. At the end of
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Parameter Value

Initial temperature (T0) 1

Cooling scheme Geometric

Cooling rate 0.9

Epoch 100

Threshold (τ) 1.8e− 2

Random perturbation of the solu-
tion

Lorentzian distribu-
tion

Table 3.2: Parameters of SAN.

the experiments, we selected the optimal combinations. We reported their performance
on test sets in the second column of Tables 3.5, 3.6 and 3.7 for the Spoken Digit, Control
chart, and the Wafer classification tasks, respectively.

For the sake of fair comparison, the proposed method and SAN were both initialized
at (α = 0.25, β = 0.25) for all the tasks of interest. Sample trajectories of optimization
vs. the number of steps for SAN and the proposed method are shown in Figures 3.7, 3.8
and 3.9 for the Spoken Digit, Control chart, and the Wafer classification tasks, respec-
tively. We place the convergence plots for SAN and our SGD method side by side for
an easier visual comparison of the evolution for α, β, and the cost function (Equa-
tion 3.2). Note that the seemingly erratic behavior of SAN before convergence comes
from the non-zero probability of acceptance of hyperparameter values that increase the
loss function, especially at high temperatures. In practice, a stopping criterion (for
instance, detecting marginal loss function changes) would be implemented to detect
the convergence of SAN and the proposed method. Notice, SAN stops exploring at low
temperatures maintaining seemingly constant values whereas our method seems erratic
since it continues updating with noisy gradients around optimum.

The performance measures of the three methods after RC optimization for the spo-
ken digit recognition task are shown in Table 3.5. Note that the proposed method and
SAN have similar WERs after convergence for this application. We could also improve
the grid-search WER after optimization, but at the expense of higher complexity, by
using a finer grid of values. Moreover, we observe that the computational complexity,
being essentially proportional to the number of steps S defined previously, according
to Table 3.5 the proposed algorithm outperforms the two competing methods at least
by a factor of 13.6 in this respect. We also compare the variance of the values taken
by α and β at convergence, as shown in Table 3.9. We observe that the parameters’
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Spoken Digit Recognition

Parameter Value

Learning step-size (µ) 5× 10−6

Finite-difference step (h) 5× 10−3

Control Chart Classification

Parameter Value

Learning step-size (µ) 1× 10−6

Finite-difference step (h) 5× 10−2

Wafer Classification

Parameter Value

Learning step-size (µ) 1× 10−5

Finite-difference step (h) 5× 10−2

Table 3.3: Parameters of the proposed hyperparameter optimization method of digital
RC simulation. Top, Middle, and Bottom for the Spoken digit, Control Chart, and Wafer
classification tasks, respectively.

empirical and theoretical variances (derived from Equation 3.23) have the same order
of magnitude at convergence. In order to do so, Σ, the covariance of the noise affect-
ing the gradient approximation in all directions around θopt, is reliably estimated by
computing the sample covariance of

C(θopt+he1)−C(θopt−he1)

2h
...

C(θopt+hep)−C(θopt−hep)

2h

 . (3.29)

over 1000 Monte Carlo trials.

Complexity

Grid Search O(S(2CNT +N3))

SAN O(S(2CNT +N3))

Proposed O(S(3CNT +N3))

Table 3.4: Complexity order. Note that the definition of the number of steps S depends
on the optimization algorithm.
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Grid
Search SAN SGD

α 0.06 0.05 0.05

β 0.13 0.13 0.13

WER (%) 2.10 1.88 1.80

Number of steps (S) 15000 3400 250

Table 3.5: Optimization results show the hyperparameters, WER, and number of steps
S for the spoken digits task.
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Figure 3.7: SAN (left column) and SGD (right column) plots for simulated RC. (a)
and (b) show the Input scaling (α) evolution, (c) and (d) show the Feedback scaling
(β) evolution, and (e) and (f) show the Loss and WER evolution, respectively for the
spoken digit recognition task.
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Grid
Search SAN SGD

α 0.19 0.18 0.18

β 0.14 0.14 0.14

CER (%) 3.33 1.97 2.00

Number of steps (S) 15000 3550 1300

Table 3.6: Optimization results show the hyperparameters, WER, and number of steps
S for the Control Charts task.
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Figure 3.8: SAN (left column) and SGD (right column) plots for simulated RC. (a)
and (b) show the Input scaling (α) evolution, (c) and (d) show the Feedback scaling
(β) evolution, and (e) and (f) show the Loss and CER evolution, respectively for the
Control Chart task.
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Grid
Search SAN SGD

α 0.840 0.838 0.836

β 0.383 0.388 0.392

CER (%) 8.73 8.71 8.67

Number of steps (S) 15000 4200 1200

Table 3.7: Optimization results show the hyperparameters, WER, and the number of
steps S for the Wafer classification task.
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Figure 3.9: SAN (left column) and SGD (right column) plots for simulated RC. (a) and
(b) show the Input scaling (α) evolution, (c) and (d) show the Feedback scaling (β)
evolution, and (e) and (d) show the Loss and CER evolution, respectively for the Wafer
classification task.
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A similar analysis is applied to the other tasks under consideration: the Control
Chart and Wafer Classification tasks. The parameters α and β are initialized at the
same values as for the speech task. We examine the performance measures of the three
optimization methods for the Control Chart and Wafer Classification tasks which are
given in Tables 3.6 and 3.7 respectively. The results are:

• For the Control Chart task, the reported error rates belong to the grid search,
proposed method, and SAN. Notice a similar observation to that of the Spo-
ken Digit task. Finer resolution may improve the results of Grid-search at the
price of increasing the computational complexity. To attain convergence of up to
CER ≈ 2%, SAN requires 3550 steps, whereas our method requires 1300. This
corresponds to a factor of 2.73 in complexity reduction by our method. The vari-
ance of α and β at convergence are shown in Table 3.9. We observe an agreement
between the empirical and the theoretical variances to the same order of magni-
tude at convergence.

• For the Wafer Classification, the reported error rates belong to the grid search,
proposed method, and SAN. To attain convergence of up to CER ≈ 2%, SAN
required 4200 steps, whereas our method requires 1200. This corresponds to
a factor of 3.5 in complexity reduction by our method. The variance of α and
β at convergence are also shown in Table 3.9 for this task. Notice, again, the
agreement between the empirical and the theoretical variances to the same order
of magnitude at convergence.

Empirical transient response behavior for each task

Following the theoretical analysis detailed in Section 3.4, we study the behavior around
the optimum found by our method for each task. The optima for each task are:

• Spoken Digit Recognition : θopt = [α, β] = [0.0521, 0.131],

• Control Chart Classification : θopt = [α, β] = [0.18, 0.139],

• Wafer Classification : θopt = [α, β] = [0.836, 0.392].

We compute costs around these optimal points (θopt) and estimate the quadratic
approximation of the loss function. We also study the convergence in probability of
the transient and derive the steady-state covariance of the parameter vector due to noise
affecting the computation of costs. With the computed costs around θopt, we can deduce
the elements of HC(θopt) of the Equation 3.8. The cost function around the optimum
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has a bowl shape and can be approximated as a quadratic function of α and β of the
form of the Equation 3.30.

C(α, β) = a0 + a1α + a2β + a3αβ + a4β
2 + a5α

2 (3.30)

We approximate the coefficients a0, ..., a5 by regression for the speech recognition task.
Then by computing the second-order partial derivatives of C we obtain elements of
HC(θopt) as follows :

HC(θopt) =

[
∂C
∂α2

∂C
∂α∂β

∂C
∂β∂α

∂C
∂β2

]
=

[
4.97× 106 3.08× 106

3.08× 106 5.71× 107

]
(3.31)

Utilizing the estimated HC(θopt), We plot the actual and estimated surface plots in
Figure 3.10. The actual surface here is the average of 20 noisy surface plots averaged
around the optimum. The surface plots show that the estimated HC(θopt) allows us
to model the behavior of the cost function near convergence closely. Satisfied with the
fit, we estimate the upper bound µ∗ that guarantees convergence of our approach to
the optimum. The results of this study are plotted in Figure 3.11 showing the eligible
values of the learning step-size µ and the upper bound µ∗ that guarantees convergence.

Figure 3.10: Actual and fitted bowl-shaped surface plot near the optimal θopt

for the spoken digit task

The procedure elaborated above is repeated for the other two tasks: The Control
Chart and Wafer classification generating, and the surface plots are shown in Fig-
ure 3.12a and Figure 3.12b respectively. The obtained HC matrices are shown in Ta-
ble 3.8 and the estimation for the maximum learning step-size µ∗ is deduced from Fig-
ure 3.13a and Figure 3.13b. In our experiments, We set the µs to their conservative
values of 1× 10−6 and 1.5× 10−5 respectively.
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Figure 3.11: Spectral radius of DC(µ) plotted versus µ for the numerically simulated
RC applied to the spoken digit recognition task.

(a) (b)

Figure 3.12: Actual and estimated surface plots for (a) Control charts and (b) Wafer
classification tasks around their respective optimal parameters (θopt).

Control charts Wafers

HC(θopt)

2.61× 103 −5.2× 104

−5.2× 104 1.38× 106

 2.79× 104 2.81× 104

2.81× 104 1.01× 105


Table 3.8: The Hessian matrices for the control chart and the Wafer applications de-
scribe behavior around the optimal value.

Steady-state mean and covariance

In this section, we study the steady-state behavior at convergence. First, we simulate
the recursion formula developed for the expectation of E[θ − θopt] (Equation 3.21)
for 1000 trajectories. Figure 3.14a and 3.14b show the plots of α − αopt and β − βopt

respectively, showing the expected empirical values converge towards 0, save the noise
deduced empirically from the covariance at θ, as predicted in the theoretical analysis for
the Spoken Digit task. Similar plots are simulated for the Control Chart (Figure 3.14c
and 3.14d) and Wafer classification (Figure 3.14e and 3.14f) tasks.

We also compute the average covariance of the perturbation on α and β for the 1000
trajectories as the algorithm approaches convergence following the theoretical analysis
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Figure 3.13: Spectral radius of DC(µ) plotted versus µ for the numerically simulated
RC for the Control Chart task (a) and the Wafer task (b).

(a) (b)

(c) (d)

(e) (f)

Figure 3.14: The evolution of θ − θopt for 1000 trajectories is shown in blue for the
proposed hyperparameter optimization. For clarity, one trajectory is plotted in orange
to contrast it with the 999 others. The first, second, and third-row show α− αopt (left)
and β−βopt (right) for the Spoken Digit, Control charts, and Wafer Classification tasks
respectively. As the theoretical and empirical evolution of θ approaches θopt these plots
approach 0.



3.5. NUMERICAL AND EXPERIMENTAL RESULTS 72

Spoken Digit Classification
var(α) var(β)

Theoretical 7.94× 10−9 14.9× 10−9

Empirical 8.471× 10−9 16.4× 10−9

Control Chart Classification
var(α) var(β)

Theoretical 5.8× 10−8 2.1× 10−8

Empirical 6.1× 10−8 1.8× 10−8

Wafer Classification
var(α) var(β)

Theoretical 8× 10−6 25.7× 10−6

Empirical 8× 10−6 28.6× 10−6

Table 3.9: Theoretical and empirical variances ofα and β at convergence for the Spoken
Digit (Top), Control Charts (Middle), and Wafer classification (Bottom) tasks.

that led to Equation 3.23. Figure 3.15 tracks the evolution as the perturbation attains a
steady state whose purely theoretical (Equation 3.23) and empirical covariance values
are given in Table 3.9. We plot the Frobenius norm of the perturbation covariance
matrix at each iteration. The empirical and theoretical analyses agree closely and show
a small perturbation of the parameters at convergence, hinting at stability. The more
rugged surface of the Wafer task in Figure 3.12b manifests itself in the noisy nature of
the β − βopt in Figure 3.14f.
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Figure 3.15: The evolution of the perturbation covariance of the proposed hyperparam-
eter optimization method for the Spoken Digit (Top Left), Control charts (Top Right),
and Wafer Classification (Bottom) tasks, respectively.
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3.5.4 Hardware RC optimization

The RC system described in Section 3.2 now uses a hardware implementation that also
needs hyperparameter optimization. Like most physical RCs, many of the parameters of
the setup are unknown, for example, the filter coefficients and many other details of the
electronic circuit components. The optimizable parameters crucial to RC performance
are ϕ (set as in our previous simulations) and the nonlinearity gain κ (set by adjusting
the input power of the laser). Referring to Equation 2.17 and Figure 2.6, we manually
set ϕ and κ at the optimal values obtained in [96]. We use the proposed method to opti-
mize the amplitude of the signal uI(t) generated with an Arbitrary Waveform Generator
(AWG) [157] by varying α, which is the gain of the AWG. An external computer run-
ning our algorithm updates αi at iteration i and communicates the corresponding value
to the AWG through an interface to serve as the new amplitude range of the MZM input
voltage. This way, the proposed algorithm updates α without human intervention.

The parameters of the proposed algorithm for the hardware implementation are
given in Table 3.10. We set the learning step-size in a manner similar to the digital
RC case described in Section 3.5.3. The upper bound for learning step-size is deduced
from the plots in Figure 3.16 for each task. The finite difference step size is manually
set to h = 2 × 10−2 for the Spoken Digit and Control Charts tasks and h = 5 × 10−2

for the Wafer Task. for comparison, the empirical and theoretical variances for α at
convergence for each task are given in Table 3.12 similar to the simulated RC. These
curves are different from those of simulated RC because the numerical simulation isn’t
an exact map of the experimental setup hence the system’s function is different. Also,
α and β are optimized in simulations whereas we only optimize α for hardware. Both
of these reasons would change the shape of the spectral radius curves.

The results of this experiment are plotted in Figure 3.17 showing the trajectories
of α and that of the loss function (and WER or CER) as they converge to the optimal
values for all the studied task, respectively. The value of alpha scales the amplitude of
the output signal from the AWG. We initialized the amplitude at 1.5 Volts (the maxi-
mum output for the AWG). We allowed the proposed optimization algorithm to find the
optimal maximum amplitude based solely on the noisy loss function measurements in
the digital domain. For each iteration, the AWG is given the value of α, which it uses to
scale its output signal, which is the signal modulating the MZM. After a run, the new
value of α is computed on a computer and passed to the AWG for the next run. The
result of these experiments after the convergence of each task is shown in Table 3.11
below. There is a minor degradation in classification accuracy with respect to the dig-
ital RC. The cause may be the noisy nature of the experimental setup and the limited
fine-tuning of other parameters. Also, interestingly, we observe in Fig. 3.17(f) that a
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(a) (b)

(c)

Figure 3.16: The spectral radius of DC(µ) plotted versus µ for the (a) Spoken Digit,
(b) Control Chart, and (c) Wafer classification tasks with the hardware RC.

Spoken Digit Recognition

Learning step-size (µ) 1.5× 10−4

Finite-difference step (h) 2× 10−2

Control Chart Classification

Parameter Value

Learning step-size (µ) 1.8× 10−4

Finite-difference step (h) 2× 10−2

Wafer Classification

Parameter Value

Learning step-size (µ) 1× 10−4

Finite-difference step (h) 5× 10−2

Table 3.10: Parameters of the proposed hyperparameter optimization for hardware RC.
Top, Middle, and Bottom for the Spoken digit, Control Chart, and Wafer classification
tasks, respectively.
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Task α CER or WER (%) steps

Spoken Digit Recognition 0.32 2.6 30

Control Chart Classification 0.18 4 52

Wafer Classification 5× 10−2 12 90

Table 3.11: Result for the hardware experiments showing the optimal parameters, clas-
sification error, and the number of steps required to attain convergence.

var(α)

Type Spoke Digit Control Charts Wafers

Theoretical 5.87× 10−6 3.77× 10−7 3.34× 10−4

Empirical 5.22× 10−6 3.32× 10−7 3.15× 10−4

Table 3.12: Theoretical and empirical values of variances of α for the proposed hyper-
parameter optimization in the optoelectronic hardware experiment.

lower loss function does not always convert to a lower CER. Our interpretation is that
the optimum obtained by minimizing the chosen loss function in Equation. 3.2 need
not be the same as the one obtained by minimizing some other cost function such as the
CER. Nevertheless, it can be checked on all used datasets that a low value of the loss
function is consistent with a low CER.

3.6 Conclusion

In this chapter, an algorithm for automatic tuning of the hyperparameters of RC is intro-
duced. The proposed method is a stochastic optimization version of gradient-descent
on a loss function, where gradients are approximated with finite differences so that the
functional relationship between the desired hyperparameters and the value of the loss
function need not be known. Unlike similar methods, the procedure can track the time
fluctuations of the hyperparameters and is numerically robust since it is governed by
a constant learning step-size and a constant finite-difference step. Under suitable hy-
potheses, the convergence analysis shows that the transient behavior converges to the
optimum value. The effect of noise affecting the loss function can also be predicted.

All aforementioned features constitute a valuable advantage in practical RC hard-
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Figure 3.17: The proposed hyperparameter optimization method for hardware RC de-
vice: (a), (c), and (e) show input scaling (α) evolution and (b), (d), and (f) Loss and
CER (WER) evolution for the Spoken Digit, Control Chart Chart, and Wafer Classifi-
cation tasks on the left and right column respectively.

ware implementations. Indeed, the successful application of an optoelectronic imple-
mentation demonstrated the validity of the proposed approach to the speech recognition,
Control Chart, and Wafer Classification tasks.
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Reservoir Computing for Early-Stage

Alzheimer’s disease Detection

The results presented in this chapter are also, in part, presented in our papers titled
"Optoelectronic Reservoir Computer for Early Stage Alzheimer’s Disease detection"

and
"Reservoir Computing for Early Stage Alzheimer’s Disease Detection"

accepted and published in Conference on Lasers and Electro-Optics, Technical Digest
Series (Optica Publishing Group, 2022) and the IEEE Access respectively.

4.1 Introduction

Chapter 1 elaborated on the necessity for energy efficiency considerations while propos-
ing new solutions. In conjunction with proposing an energy evaluation workflow, we
dedicate this chapter to studying Alzheimer’s disease detection. Alzheimer’s is a brain
disease that causes slow but gradual destruction of memory and a decline in behavioral
and social skills. This results from the progressive destruction of nerve cells in vari-
ous parts of the brain. The disease falls under dementia, an umbrella term describing
the symptoms associated with the decline of an individual’s ability to think, learn, and
memorize information. Alzheimer’s disease interferes with patients’ work and social
lives making them incapable of handling everyday tasks. Of the various causes of de-
mentia, Alzheimer’s is the most common type and accounts for between 60 − 80% of
all neurodegenerative diseases [158]. There is no known cure and the disease starts
with mild memory loss and then worsens over time. In severe forms, the disease can
cause death especially when the patients become incapable of responding appropri-
ately to their environment. In fact, on average the patients live for about 4-8 years
post-diagnosis of the severe symptoms.

Like all other causes of dementia, the majority of Alzheimer’s cases are found in

77
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people aged 65 and older. The strong correlation with age makes the disease more
common among the senior members of the population. The advances in medicine have
brought about an increase in life expectancy, especially in developed countries, and as a
result; Alzheimer’s disease is becoming an alarming cause of death and dependency in
the developed world. For instance, the prevalence of the disease is as high as 13.8% in
the USA (the year 2021) and 17.8% (the year 2015) in France for people aged above 75
years of age and older, respectively [158, 159]. However, there are numerous cases of
an early-onset of the disease for people much younger than 65 years of age and certain
rare genes are thought to be the cause. The pathology has no cure but some medicines,
such as Aducanumab are effective when applied in the early stages, in slowing down
the disease by targeting and removing the toxins accumulating in the brain.

Chapter outline and summary

• In Section 4.2 we explain briefly the known causes and symptoms associated
with Alzheimer’s disease. We describe its nature and state-of-the-art diagnosis
techniques. We further elucidate the strengths and weaknesses of each method.

• In Sections 4.3 and 4.4 we describe the impact of the pathology on the fine mo-
tor control of planned movements. We describe Handwriting as an important
biomarker for the detection of not only Alzheimer’s but also other brain patholo-
gies such as Parkinson’s and Huntington’s. We explain the two types of hand-
writing data acquisition: the dynamic and offline/paper-based types. We also
give examples of writing and/or drawing tasks used for detection.

• In Section 4.4 we present the methods already studied in the literature for neu-
rodegenerative disease detection from handwritten features. We highlight their
findings and point out potential areas of improvement.

• In Section 4.5 we constrict our discussion to focus on ANNs-based approaches
for diagnosis of the neuropathologies. We discuss the utilization of BiLSTM
for Parkinson’s disease detection from voice recordings and also, in combination
with CNN, from handwriting. We point out the elevated complexity of these
ANNs and the limitations of small datasets. We propose RC as a low-complexity
alternative and the study to validate our proposal.

• In Section 4.6 we introduce the dataset of interest in this thesis, obtained from
Broca Hospital in Paris. We elucidate the different features extracted from the
cursive-ℓ writing task and the preprocessing steps employed to format the data.
We also discuss the methods used to measure the performance of the models
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under study, i.e., BiLSTM, CNN, k-Medoids, and RNN. We also detail the esti-
mation of computation effort as a number of Floating point Operations (FPOs),
the energy consumed in kWh, and the environmental impact in terms of the mass
in kg of CO2 and equivalent Green House Gasses (GHG) emitted by the models.

• In Section 4.7 we explain our experiments and present their results. We begin
by comparing prediction accuracy as is customary in the community then extend
the comparison by examining the costs incurred in model optimization and selec-
tion, training, and inference to accentuate the efficiency and suggest reasonable
compromises.

• Finally, in Section 4.8 we give our conclusive remarks based on our observa-
tions. We point out that energy efficiency makes RC attractive for implementa-
tion on mobile devices and gives potential perspectives for the application of RC
for handwriting processing in pathology detection applications.

4.2 Symptoms and diagnosis

The toxic processes in the brain that lead to Alzheimer’s disease are the formation of
amyloid plaques and tau tangles. The latter interferes with the function of the neurons,
blocks their interconnections, and causes the shrinking of the brain tissue. Unfortu-
nately, these processes are slow and the disease may take more than a decade for any
alarming symptoms to show. In the early stages, it is almost asymptomatic, then it
passes through a spectrum of mildly symptomatic pre-dementia phase known as Mild
Cognitive Impairment (MCI) before evolving into more severe forms. This slow pro-
gression complicates the early detection of the disease [160] while late diagnosis, in
turn, reduces the effectiveness of the treatments for slowing the development of severe
symptoms. The need for Early Stage Alzheimer’s Detection (ES-AD) is, therefore, cru-
cial to warrant early intervention.

Several methods have been proposed for the detection of the disease [161] such as :

• Clinical examinations: that consists of the analysis of the memory capabilities
of the patient, family history, deterioration of language and motor skills, altered
behavioral patterns, insomnia, depression, and hallucinations [162]. They may
also include Neurological and Cognitive status checks. These methods are prone
to bias and offer poor repeatability of the test.

• Paraclinical examinations: these consist of more accurate methods such as :
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– Neuroimaging with Magnetic Resonance Imaging (MRI) by targeting the
hippocampus, a complex part of the brain structure responsible for learning
and memory. The images from MRI help physicians rule out many other
diseases that may cause symptoms similar to Alzheimer’s. The images can
reveal abnormal liquid build-ups, tumors, and trauma in the head. By ruling
out these other potential causes, Alzheimer’s as the actual culprit may be
made more apparent.

– Positron Emission Tomography (PET) of brain amyloid, the protein build-
up is known as a cause of Alzheimer’s disease. The method consists of
injecting a radiotracer into the part to be examined then a detailed 3D scan of
the tissue is obtained. From the images, abnormalities such as high levels of
beta-amyloid can suggest a patient has Alzheimer’s disease. This approach
is more accurate compared to clinical tests but is expensive and not readily
available.

– Lumbar puncture or spinal tap is another approach for detection by extract-
ing the cerebrospinal fluid and examining it. Several biomarkers found in
the fluid correlate strongly with diseases offering a much higher sensitivity
to the pathology. However, necessitating the insertion of a needle in be-
tween two lumbar bones to extract the fluid, this approach is intrusive and
also expensive [163].

The methods above for the diagnosis of the pathology have their strengths and weak-
nesses. In practice, a combination of more than one method is needed to give an accu-
rate diagnosis. However, due to the high costs and expertise, these methods are available
in the developed world and inaccessible to poorer nations where they are also needed.

4.3 Handwriting as a biomarker

As Alzheimer’s progresses it affects the frontal lobe, the brain region responsible for
executive functions such as controlled behavior and voluntary motion planning [164].
As a result, neurodegenerative diseases like Alzheimer’s can be characterized by ob-
serving their impact on movement. The study [165] shows that the pathology can be
characterized by analyzing the fine motor control and coordination of patients. Writing
is a task that requires planning, coordination, and fine motor control hence the impact of
the disease manifests itself in the handwriting (HW) of patients. The handwriting kine-
matic patterns are, therefore, important bio-markers that are discriminatory for certain
brain pathologies. The literature contains investigations on using handwritten features
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for characterizing Alzheimer’s [165–172], Parkinson’s [173–175], and Huntington’s
[176, 177] diseases, among many others.

These investigations of handwriting for pathology detection fall into two major cat-
egories based on how the features were recorded. Firstly, the offline handwriting data
processing, [178] and secondly the online variant [179]. The offline methods consist of
paper-based acquisition where semantical [180] or lexical [181] deterioration in hand-
writing is investigated. The offline approaches record only the positional information
of the trajectory generating still image-like features. This requires a subsequent manual
and visual extraction of various features from the handwriting on paper. For a summary
of the methods and the corresponding offline methods, we encourage the reader to read
[161].

The dynamic HW acquisition means that the features are recorded in parallel with
the temporal information of their evolution at every point. The addition of temporal
information gives rise to certain writing kinematics not available in the paper-based
counterparts such as the speed and the jerk of the pen during the writing task. The
online approaches have the benefit of richer data due to the addition of subtle temporal
patterns to the positional HW features. Richer information results in interesting HW
profiles that may be discriminatory for the pathology.

In this thesis, tasks involving both writing and drawing are indiscriminately referred
to as handwriting tasks. Researchers use various acquisition techniques and patterns
such as :

• Drawing shapes such as circles or squares [182, 183]

• Drawing straight horizontal lines, straight vertical lines, and/or spirals [165, 175]

• Copying of numbers and texts [169, 184]

• Drawing a cursive-ℓ pattern on a tablet of numbers and texts [171, 172]

4.4 Handwriting classification techniques in the state-
of-the-art

In the literature, most quantitative studies on AD are based on statistical tests of the
HW. The authors of [165] processed a data set of concentric circles drawn on a digital
tablet by entering the data into the Statistical Package for the Social Sciences (SPSS)
and carrying out the subsequent statistical analysis. Their methodology includes the
analysis of variance (ANOVA), analysis of covariance (ANCOVA), and the minimum
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mean square error (MMSE) estimator on the extracted x and y coordinates of the pen
trajectory. The authors of [167] use a similar approach, they analyze the movement
time (MT) and Movement Jerk which is the third derivative of positional features with
respect to time. They computed the mean values of the two features before using them
to classify patients. The jerk parameter proved to be more discriminatory for the three
profiles of patients considered MCI, Alzheimer’s Patients (APs), and healthy controls
(HCs).

Other studies considered Machine Learning-based classification methods. The au-
thors of [169] combined techniques such as ANOVA and linear discrimination analysis
on dynamic text copying tasks. In [184] Linear Regression is used to process handwrit-
ten letters using a digital pen. They process both the dynamic and the static features
of the handwriting and concluded that kinematic features are indeed more discrimina-
tory. In [168], the Linear Discriminant Analysis method is employed to classify patients
using copied, dictated, and own written sentences. They used the kinematic features
extracted from the dynamic dataset.

The aforementioned works, however, impose a heavy assumption on the HW pro-
files for AD, MCI, and HC. They assume that there is a unique HW style associated
with Alzheimer’s disease. With this idea, the authors approached the Alzheimer’s Dis-
ease detection task by extracting global kinematic parameters (e.g. average velocity,
average jerk, average time etc.). This assumption is challenged by the authors of [171]
who proved that it denies classifiers the subtle temporal tendencies that could improve
pathology detection. Their results indicate the advantage of exploring the full dynamics
of the raw data and highlight the limits of working on the global kinematic parameters.
They allowed the emergence of multimodal patterns in their work by exploring the full
HW dynamics using unsupervised learning techniques and studying the distribution of
different profiles in the clusters obtained.

Building on [171], authors of [172] process the full kinematics of HW time series.
Their approach consists of two layers. The first layer generates different clusters from
the HW time series using Dynamic Time Warping (DTW) as a dissimilarity measure
and k-Medoids as a clustering technique. The second layer, employs the probabilistic
classifier, the Bayesian Classifier, to aggregate the contribution of clusters uncovered
in the previous layer in different possible outcomes of the detection. The conditional
probabilities were used to predict whether a participant has the pathology or not. They
obtained a high accuracy of 74% which is state-of-the-art performance.
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4.5 Artificial Neural Networks for Alzheimer’s detec-
tion

We have witnessed the advent of Artificial Neural Networks (ANNs) and their applica-
tions in information processing in various domains. However, in general, the pathology
detection domain has seen relatively slow progress when it comes to the application of
ANNs. The reasons for the slow progress are the smaller and imbalanced datasets and
the general high complexity of ANNs training leading to poor generalizations. Nev-
ertheless, some studies have recently applied ANNs for processing small datasets by
employing data augmentation techniques and/or models with lower complexities. In
the literature, we find fewer studies harnessing the power of ANNs for brain pathology
diagnosis.

For instance, a standalone implementation of Bidirectional Long Short-Term Mem-
ory (BiLSTM) is proposed in [185] for the detection of Parkinson’s disease from the
voice recording time series of the participants. Parkinson’s disease is known to cause
a decline in cognitive functions, motor skills, and more importantly here, speech. The
speech time series considered in this study consisted of features such as frequency
variations (jitter), amplitude variations (shimmer), harmonicity etc. Their results in-
dicated superior detection performances compared to the traditional machine learn-
ing approaches such as Logistic regression, Support Vector Machine (SVM), Decision
Tree, k-NN and Ensemble bagged tree.

BiLSTM has also been considered in combination with Convolutional Neural Net-
works (CNNs), for Parkinson’s disease detection [186] using handwritten features. They
used dynamic HW features from online recordings of tasks such as cursive-ℓ, triangu-
lar wave, rectangular wave, and repetitive writing of certain words. This study focused
on comparing various visual representations of the original HW time series data. The
time series to image conversion consisted of computing the Gramian angular field and
spectrogram images of the time series to obtain a series of images. The series of images
obtained is processed by the CNN, where several features are learned and extracted, be-
fore being injected, as serial images in the BiLSTM for further processing. They also
compared performance obtained from different combinations of recorded HW features
such as Pressure, x−coordinate, y−coordinate, Altitude, and Azimuth.

In line with our discussions in Section 1.3.1, we point out that BiLSTM and CNN
are both high complexity solutions requiring rather sophisticated algorithms and large
quantities of data to train them and attain acceptable convergence. The high training
complexity and a large number of trainable parameters make them prone to over-fitting
and poor generalization especially when the number of training samples is small, as is
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usually the case for biomedical applications. Moreover, as pointed out in Section 1.3.1,
high complexity models require more computation effort on the processors running
them which, in turn, translates into more energy required for training and inference.
There is an obvious need for methods that can reduce the penalties caused by the small
datasets while maintaining relatively acceptable performance. Not only that but also
finding alternative approaches to maintaining low model complexity in terms of train-
able parameters and the complexity of the training algorithms.

The low complexity and linear regression training of Reservoir Computer make
them candidates for the aforementioned end-goals. In this chapter, we will quantita-
tively measure and analyze the advantages of using RC on time series classification
tasks over more complex BiLSTM and CNNs using the ES-AD task. We gauge the per-
formances of all the models under study using prediction accuracy and extend the com-
parison to include energy consumption estimates. The goal is to compare and propose
a solution that is not only accurate but also the one that has the best energy efficiency.

4.6 Dataset and methodology

4.6.1 Dataset

The HW data in this study were acquired at Broca Hospital in Paris by the authors of
[161] and were processed in numerous other studies [171, 172, 187]. It consists of three
groups of participants, all aged above 60 years of age, such as:

• Healthy Controls (HC): This group consists of members from two senior homes:
the OLD-UP and Génération 13 in France. They were carefully selected follow-
ing the neuropsychological examinations. Their diagnosis showed normal cog-
nitive profiles for their respective ages with no signs of Alzheimer’s in the early
or late stages.

• Mild Cognitive Impairment (MCI): This is the group that was selected based
on the diagnosis following the recommendation of [188] by carrying the general
cognitive tests and non-memory tests to detect MCI.

• Early-Stage Alzheimer’s (ES-AD): This group consists of patients who scored a
Minimum Mean Squared Error (MMSE) of over 20 after filling a questionnaire
of 30 points that evaluates attention, orientation abilities, computation abilities,
language, and other cognitive tests.

Participants from each group were seated in front of a Wacom Intuos Pro Large
digital tablet with a Wacom Inking pen. The tablet records different parameters relative
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to the pen movement both on the surface of the tablet and its on-air trajectory at 125
Hertz. Participants were asked to perform various tasks using the pen and the tablet
and recorded the time series of the features described in Table 4.1. The interface was
designed using C++ programming language and the tablet had a resolution of 5080
pixels/inch (dpi).

Feature Symbol Description

x−coordinates X The position of the pen tip along the x-axis of the tablet screen.

y−coordinates Y The position of the pen tip along the y-axis of the tablet screen.

Pressure P Pressure of the pen tip on the tablet screen

Altitude Al The angle between the pen and the tablet surface (See Figure 4.1)

Azimuth Az The angle between the pen and the tablet’s x-axis (See Figure 4.1

Table 4.1: Description of recorded HW features on the tablet.

Figure 4.1: Visual representation of the difference between the Azimuth and Altitude
of the pen.

Each participant was required to complete several tasks such as :

• Maintain the pen tip on a point for 15 seconds

• Drawing a spiral

• Drawing a circle

• Writing a text, fill a form or a check (imposed text and by self-chosen text)

• Writing four sets of four cursive letters as shown in Figure 4.2
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The writing task of interest in this thesis is the cursive ℓ task where participants
were asked to write four sets of cursive ℓℓℓℓ to form a pattern shown in Figure 4.2.
In this thesis, only two groups among the aforementioned three will be considered for
classification, the Early-Stage Alzheimer’s Disease group, and the Healthy Controls
group.

(a) (b)

(c) (d)

Figure 4.2: (a) and (c), the first column, are sets of ℓ drawn by participants from the
group confirmed to be in the early stages of Alzheimer’s disease while (b) and (d), the
second column, are drawn by participants in the Healthy Control group.

4.6.2 Data preprocessing

The two groups of interest consist of only 54 participants. To properly train an ANN
model one needs to have a sufficient amount of examples to train the model so as to at-
tain acceptable performances. Fortunately, each of the 54 participants drew 16 cursive-
ℓs that can each be considered a separate data point [161]. A loop here is defined as
the combination of the upward stroke and the downward stroke. Strokes correspond to
segments of the drawing between two points where the velocity in the y−axis direction,
Vy = 0. The segmentation of the loop is accomplished as follows :

1. The velocity of the pen is not recorded by the tablet, it can however be deduced
from the positions X and Y and the time (t). Figure 4.3a shows a zoom on the
first four loops written by a patient with the velocity profile in the y-axis (Vy)
plotted in Figure 4.3b. In the figure, one can notice the tremors in the HW.
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2. To determine the point where Vy = 0 the velocity was low-pass filtered with
the cut-off frequency set to its fundamental frequency. This removed the high-
frequency tremors and the smoother profile obtained is shown in Figure 4.3d.

3. The different strokes constituting individual loops are obtained by selecting sets
of two consecutive points where Vy = 0 on the smooth version. The points are
marked by the red crosses in Figure 4.3d.

4. Two consecutive strokes, one corresponding to Vy > 0 and the other correspond-
ing to Vy < 0 are joined together to form a single loop and Figure 4.3c shows
four such loops after segmentation of those in Figure 4.3a

(a) (b)

(c) (d)

Figure 4.3: Preprocessing of HW data. Showing X and Y coordinates for four loops
in (a) and the Y-velocity in (b). By extracting points with VY = 0 after filtering in (d)
we can extract individual loops shown in (c).

After the four steps, a total of 866 loops were obtained. These correspond to 16
loops produced by each of the 54 participants (54 × 16 = 864) and two extra loops
produced by two participants who made 17 loops each. The velocity features along each
axis were added to the set of features mentioned in Table 4.1. Each loop, therefore, has
a new set of time-series features associated to it : x-position (X), y-position (Y ), x-
velocity (Vx), y-velocity (Vy), pen-pressure (P ), pen-azimuth (Az), pen-altitude (Al)

as shown in Figure 4.4 and a corresponding label (AD or HC).

4.6.3 Time-series data as images for CNN

The Convolutional Neural Network is adapted for processing images hence additional
processing is necessary, to convert the time series data to a form compatible with the ap-
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(a) x-axis position (b) y-axis position

(c) x-axis velocity (d) y-axis velocity

(e) Azimuth (f) Altitude

(g) Pressure

Figure 4.4: Time plots of different HW feature from a single loop after segmentation
at Vy = 0.

proach. To this end, we employ the technique proposed by the authors of [189] that gen-
erates images called Gramian Angular Summation/Difference Fields (GASF/GADF)
from univariate time series, while maintaining the maximum temporal relationship be-
tween the successive points. The idea is to rescale the times series samples into [−1, 1]

or [0, 1] and to convert the rescaled cartesian-coordinate version of the input signal, say
U = {u1, u2...un}, in the form of polar coordinates such that:

θi = arccos(ui),−1 ≤ ui ≤ 1, ui ∈ U (4.1)

ri = ti/T, ti ≤ T (4.2)
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where t is the discrete-time of ith discrete sample ui and T the total duration. From the
coordinates above, the images are obtained as follows :

GASF = cos(θi + θj) for (i, j) ∈ {1...T} × {1...T} (4.3)

GADF = sin(θi − θj) for (i, j) ∈ {1...T} × {1...T} (4.4)

Examples of the obtained images under this processing are shown in Figure 4.5
below.

(a) x-axis velocity time-series (b) GASF image for Vx

(c) y-axis velocity time series (d) GASF image for Vy

Figure 4.5: Conversion of time series to static image representation for the HW veloc-
ities.

4.6.4 Model energy efficiency

In line with our discussion on the environmental impact of AI in the Introduction, we
refrain from making the simplistic conclusion that a model is the best model based
solely on prediction accuracy. We extend our studies to include the complexity and
computation effort required to obtain each of the reported performances. To this end, we
examine and quantify the computational cost incurred during the optimization, training,
and inference phases to attain the reported performances.

The complexity of an algorithm is intuitively proportional to the time, the number
of operations, and the energy consumed in the completion of computation. However,
gauging the energy consumption of an algorithm running on a processor is no trivial
task. Fortunately, with the advent of new processors, there are several approaches for
estimating the cost incurred by running algorithms on electronic processors such as :
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• The energy consumed by the devices running the computation [190, 191]

• The time it takes to run the algorithm on a CPU or GPU [190–192],

• The number of Floating Point Operations (FPOs) carried on the processors [191,
193].

Energy, Carbon Dioxide, and Green House Gases Emission

To incentivize responsible research in Machine Learning, the authors of [194] devel-
oped an efficient framework for estimating the cost of running machine learning algo-
rithms. They named the framework: the experiment-impact-tracker, as it tracks the
operations of the target algorithm and estimates :

• The energy in kWh is required to power the system during the runtime. This
framework only estimates the power consumed by DRAM, CPUs, and GPUs ig-
noring all other components. To account for the other components that contribute
to the total consumed power, the power consumed by CPU, GPU, and DRAM is
rescaled using the power usage effectiveness (PUE) factor. This factor allows the
estimation of the overhead due to cooling, network hardware, power conversions,
etc.

• The Carbon Dioxide gas (CO2) and the equivalent Green House Gasses (GHG)
using the unit: (CO2eq) emissions. The amount of these gases released into the
atmosphere depends on the nature of the electricity sources supplied for the grid.
It can vary from greener sources to the most pollutant sources. Therefore, to
get a good estimation of the emission, the frameworks utilize the models from
[195] that take into account the nature of the power lines deployed in the selected
geographical location.

Floating Point Operations and Runtime

The energy and CO2 emission estimation previously discussed, gives more accurate
results for an algorithm running for a relatively extended duration (many minutes or
many hours). The tracker is therefore useful for estimating the time-consuming tasks
such as parameter optimization of the models we considered in our case. To estimate
the relative cost of training and inference, tasks that take a much shorter duration, we
employ the Floating Point Operations (FPOs) count, length of runtime, and the number
of trainable parameters of the models. To count the FPOs running on the processors
throughout the task, we use a tool called PAPI [196].
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PAPI (Performance Application Programming Interface) is a platform and opera-
ting system independent interface for various counters in the systems such as CPUs,
GPUs, File Systems, Memory, and I/O systems. It does so by tracking the software and
hardware events almost in real-time. PAPI allows access to sets of registers that count
events in the hardware giving detailed information necessary for deducing the perfor-
mance and reliability metrics. Among the counters, PAPI gives the FPOs count of the
running computation.

To obtain a rough estimate of the incurred energy costs for the RC hardware imple-
mentation, we compute the sum of the powers consumed by various components of the
setup to estimate the energy consumption when running the experiment on hardware.
The given estimate is a rough average estimation of the consumed power on repeated
runs but sheds light on the orders of magnitude of the cost.

4.7 Classification experiments

The objective is to diagnose the state of the patient as either sick (AD) or not (HC).
We define this as a classification problem and propose models that will predict the
patient’s state given their set or subset of HW features exemplified in Figure 4.4. We
propose three models for this task the BiLSTM, CNN, and RC models described in Sec-
tion 1.2.3 and 2.2 respectively. The RC is implemented both as a computer simulation
and in the hardware optoelectronic implementation described in Section 2.6. We also
re-implement the state-of-the-art approach by the authors [172] of based on clustering
by k-Medoids using Dynamic Time Warping as a dissimilarity measure followed by the
Bayesian classifier for aggregating the contribution of clusters and carrying predictions.
To gauge classification performance in our experiments we use the following metrics :

• Accuracy (Acc): The overall percentage of correctly classified individuals

• Sensitivity (Sens): The percentage of correctly classified Alzheimer’s patients

• Specificity (Spec): The percentage of correctly classified healthy control (HC)
individuals.

To minimize over-fitting and incorrect reporting of performances in our experiments,
we employed techniques known in the machine learning community. We adopted the
Nested-Cross Validation (NCV) technique [197, 198]. This consists of splitting the
dataset in a way to avoid bias in the model selection, i.e., to avoid reporting the accuracy
of parameters selected and tested on the same data. NCV consists of two loops, the inner
and outer loops. In the inner loop, the normal Cross Validation is carried and the best



4.7. CLASSIFICATION EXPERIMENTS 92

parameters are selected. The outer loop supplies the inner loop with data after holding
out the test set. The test set is held to be used only once in the testing phase. The
informal visual representation of NCV is shown in Figure 4.6.

Outer loop Inner loop

Test dataset Train datasetTrain dataset
Validation

dataset

Train the model

Best parameters

Test the model

Best parameters and performance

Figure 4.6: Nested cross-validation scheme.

In the experiments, the data was split into 7
9
-1
9
-1
9

subsets. The 7
9

(42 subjects) and 1
9

(6 subjects) are for the inner cross-validatory loop to be used for training and validation
respectively. The remaining 1

9
(6 subjects) of the data is reserved for testing and final

model selection by the outer loop. This guarantees that the 1
9

(6 subjects) held out for
the test are never used for the optimization of the hyperparameters in the inner loop
offering more unbiased performances.

For the splits, we used another technique known as stratified sampling to ensure
class homogeneity. To this end, we maintained the same number of examples for each
class in the subsets used for testing in the inner and outer loops. Of the 6 randomly
chosen test individuals reserved for testing, 3 are AD and 3 are HC. Since the model
predictions are carried from features of a single loop and not the individual, the pre-
diction of an individual class is obtained through the maximum voting technique. With
this technique, prediction is done on all of the participant’s loops (16 loops) and the
class representing the majority of the predictions is considered the true diagnosis of the
person.

4.7.1 Classification results in prediction accuracy

For each of the models under study, we optimize and select the final model using the
NCV described above in an exhaustive search fashion. We note that, in addition to the
model’s hyper-parameters, we also search for the best combination among the seven
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features to be fed into the proposed predictive models. To this end, we let k denote
the index of a feature combination among the ones listed in the Parameters column of
Table 4.5.

For the RC model, we optimize the size (N ), the input scaling (α), the feedback
scaling (β), and the parameter combination k. Table 4.2 shows the characteristics of
the resultant RC model. The reservoir size of N = 300 yields the best accuracy with
the optimal input features combination being the two (F = 2) velocity features alone
(k = 4 in Table 4.2). The predefined number of discrete time-steps obtained after the
preprocessing of the dataset is T = 100, therefore the input to RC is a F × T matrix.
The optimal scaling factors, α, and β are found to be 0.6 and 0.1 respectively whereas ϕ
is manually set to 0 rads since it only defines the operating point of the RC system - and
when combined with the amplitude it defines the extent of non-linearity experienced
by the system as explained in Section 3.5.2. Finally, the total number of parameters to
be optimized through training is 600, that is, the elements of the read-out matrix W out.

Layer type Output shape Trainable Parameter

Input (N = 300 , T = 100) 0

Reservoir (N = 300, T = 100) 0

Output (C = 2, N = 300) 600

Table 4.2: Resultant digital RC model architecture

The BiLSTM model’s characteristics obtained after optimization are summarized
in Table 4.3. The optimal learning rate is 10−3 using a Sigmoid function. The size
of the recurrent BiLSTM layer to be H = 32 and the dense layer responsible for final
prediction has the size ofD = 128. The predicting layer utilizes a binary-cross entropy
function. The total number of parameters to be optimized through training is 409728
accounting for all the weights and biases in the network.

The CNN architecture, on the other hand, is not deduced through the model selec-
tion procedure similar to RC and BiLSTM described above. It is instead adapted from
the model that already proved successful for Parkinson’s disease detection in [175] con-
sisting of three Convolutional layers, two Max pooling layers, and a Dense layer. The
number of trainable parameters through training sums up to 1168417 as shown in Ta-
ble 4.4

The performances in accuracy are reported in Table 4.5 are the best accuracies for
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Layer type Output shape Trainable parameters

Bidirectional (T = 100, H = 32) 2432

Flatten (Flatten) (3200) 0

Dense (Dense) (D = 128) 409728

Dense (1) 129

Table 4.3: Resultant BiLSTM model architecture

a given k (input feature combination), that is, we retain the highest accuracy and the
corresponding hyper-parameters combination for the model. From these results three
important facts are revealed:

• Confirming the important observation of [172], the VX and VY velocity features
yield the best accuracy. The use of velocity features alone (i.e. k = 4) outper-
formed all other feature combinations across all the models, i.e., the RC, BiL-
STM, and CNN (Table 4.5).

• TheAz, Al, and P features do not add enough discrimination regarding the clas-
sification of Alzheimer’s vs. Control across all three models. Their addition
to X(Y ) or VX(VY ) contributes little accuracy improvement for the models and
sometimes hurts the performance.

• The use of all features for prediction tends to yield the least performances across
all the models. The increased features enlarge the space representing the data
which in turn causes an exponential increase in the amount of data needed for the
model’s proper generalization. In general, the increase in the number of irrelevant
features negatively affects the training on a limited amount of data similar to our
case, this is known as the curse of dimensionality.

We summarize the prediction performance results in Table 4.6 and complete the ta-
ble with other metrics, Specificity, and Sensitivity. We also report the accuracy of 74%
obtained by the authors of [172] on a similar task using clustering with k-Medoids al-
gorithm followed by a Bayesian Classifier. The recurrent models processing the input
as a time series, i.e. BiLSTM and RC outperformed the static methods (CNN and k-
Medoids). The BiLSTM attained the highest accuracy leading to the conclusion that
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Layer type Output shape Trainable parameters

conv2d (Conv2D) (62, 62, 32) 608

MaxPooling2D (31, 31, 32) 0

conv2d (Conv2D) (27, 27, 128) 102528

MaxPooling2D (13, 13, 128) 0

conv2d (Conv2D) (11, 11, 64) 73792

Flatten (Flatten) (7744) 0

Dense (Dense) (128) 991360

Dropout (128) 0

Dense (1) 129

Table 4.4: The CNN model architecture.

it is the most sensitive and most accurate model among the studied models. At 88%
accuracy it surpasses RC and CNN by 3% and 5% respectively. CNN is the least ac-
curate of the three studied models yielding an accuracy of 83% and also provides the
least sensitivity to the pathology.

4.7.2 Classification results in model efficiency

In the previous discussions, we concluded that the BiLSTM is indeed the best model
among those studies in this thesis by looking at the classification accuracy. Indeed
BiLSTM surpasses RC by 3%, CNN by 5%, and the state-of-the-art k-Medoids by
14% in classification accuracy. In this Section, we complement the previous results
by quantifying the costs incurred to obtain the aforementioned accuracies. Then we
analyze the efficiency to determine if the reported gains in accuracy between the models
come at a reasonable price.
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k Parameters
Accuracy(%)

RC BiLSTM CNN

0 X Y - 83 83 81

1 X Y P 83 81 75

2 X Y Az 81 77 79

3 X Y Al 81 70 77

4 Vx Vy - 85 88 83

5 Vx Vy P 81 78 81

6 Vx Vy Az 83 71 79

7 Vx Vy Al 79 85 77

8 All parameters 77 72 77

Table 4.5: Feature combination results for the digital RC, BiLSTM and CNN.

Cost of hyperparameter tuning and model selection

Hyperparameter tuning and final model selection are important steps in finding models
suitable for a given task. For the ES-AD task, the exhaustive search is used to scan the
discretized parameters space to select the tuple yielding the best results. As mentioned
in the Section 4.7.1 we used the Nested cross-validation technique with 7

9
-1
9
-1
9

splits.
This translated to the outer NCV loop running 8 times and the NCV inner loop running
7 times. Inside the inner loop, there is a loop scanning the 8 features combinations
followed by the loops for each model’s hyperparameters. This gives the total train-test
cycles for a model around 8× 7××8×Z where Z is the number of runs necessary to
exhaust the specific model’s parameters.

To track the costs incurred, the experiment-impact-tracker framework introduced
previously is used. We estimate the costs for optimization and selection of the final
model for the digital RC and BiLSTM as they are the two models we designed from
scratch and they are the two best methods in terms of accuracy in Table 4.6. We will
also elaborate on the complexity of the CNN and k-Medoids in the sequel since they
are adapted from already established works hence only a few of the model’s hyperpa-
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Method Acc (%) Sens (%) Spec (%)

BiLSTM 88 96 79

Digital RC 85 88 83

CNN 83 75 91

k-Medoids [172] 74 75.6 72.2

Table 4.6: Comparison of accuracies for all models under consideration for the ES-AD
task.

rameters are to be optimized. The results for the consumption and environmental im-
pact are summarized in Table 4.7. The consumed electric energy is expressed in kWh

consumed and the corresponding mass of carbon dioxide released by our optimization
experiments is expressed in kilograms of the CO2 or equivalent GHG. To scan and se-
lect the optimal parameters for the BiLSTM approach 9.312 kWh of electric energy was
required. The RC approach required only 1.156 kWh. Therefore, the BiLSTM model
costs more than 8 times in electricity compared to the digital RC approach and takes 44
hours (compared to 21 hours) to complete the optimization on our Intel XeonE5−1603

processor.

These results are based on the electric grid information for Palaiseau City in France
where the experiment was carried out. Therefore a total of 0.586 kg of CO2 and equiv-
alent GHG is released into the atmosphere by our experiments. Of which, 0.521 kg
comes from optimizing the BiLSTM whereas the RC contributed 0.065 kg into the
atmosphere. Consequently, the optimizing RC has a relatively lower environmental
impact compared to BiLSTM due to lower emissions are also shown in Table 4.7.

Method CO2eq (kg) Energy (kWh) Duration (hours)

BiLSTM 0.521 9.312 44

Digital RC 0.065 1.156 21

Table 4.7: Energy consumption for hyperparameter tuning and model selection for the
RC and BiLSTM.
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Costs of training the model

The energy consumption and emission results presented previously include a large num-
ber of train-test cycles. But how much does training alone cost relatively between the
models running on the same processor? Unfortunately, the experiment-impact tracker
could not be used to estimate the energy and emissions directly during training since
the training times were short for the models under consideration. However, we com-
pute the number of parameters and the Floating Point Operations using PAPI to have
a glance at the relative costs of training each model. As previously stated, the number
of FPOs provides an idea of how much computation effort an algorithm exerts on the
processor. The results of this experiment are presented in Table 4.8.

Method Trainable Parameters
Billion

Floating Point Operations

CNN 1168417 1313.09

k-Medoids 750016 83.98

BiLSTM 412289 18.93

Digital RC 600 11.92

Table 4.8: Estimates of FPO counts required for training.

In this experiment, the CNN had the largest number of parameters and required the
highest computation effort. Relative to the RC, CNN has 1947 times more parameters
requiring optimization through training. The optimization necessitated more than 110

times the FPOs required by RC to attain optimality. The kMedoids is the second most
expensive approach despite having the least accuracy. The training required about 7
times more computation effort compared to RC having about 1250 times more param-
eters requiring optimization. It is worth noting that, the most expensive part of the
approach was the clustering part, more specifically, the computation of DTW distances
between all the 866-time series features to obtain an 866× 866 matrix of distances.

The two least expensive methods are also the two most accurate for the task. BiL-
STM, the most performant model surpassed RC by 3% in prediction accuracy. However,
this gain in performance was attained by optimizing more than 687 times the param-
eters for RC. The computational effort in FPOs for optimizing RC parameters is only
63% of the effort required by BiLSTM implying 37% savings.
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Cost of using the trained model (inference)

The final trained model is now ready to be deployed to serve as a predictive model. This
means the model will be repeatedly supplied with inputs from numerous new patients
to output a diagnosis. A good model for this case should be the one that will have
lower costs on repeated use while maintaining reasonable accuracy. To measure this,
we analyze the number of FPOs required by the models for inference. We count the
FPOs covering the loading of the saved model, loading the data, and the whole process
resulting in a single prediction. The summary of the results for this experiment is in
Table 4.9. Notice that, even in inference, the digital RC and BiLSTM require the least
computation effort. For instance, RC requires 15.7% the number of FPOs necessary for
BiLSTM to give a prediction. This implies that RC provides a prediction by carrying
significantly fewer computations on the processor hinting at lower energy requirements.
However, one can notice a significant difference in effort between training and inference
for RC (i.e. at 15.7% w.r.t BiLSTM in inference and 63% for training). The reason for
the difference is due to two facts:

• Before the actual training by regression for the RC, a large amount of computation
is required for the multiple projections in the reservoir (Equation 2.1) to obtain
high dimensional states for all time steps n. The projection accounts for more
than 49% of the effort required for training.

• Training for RC depends on the inversion and multiplication of large matrices
such asX andX after columnwise concatenation for all n in Equation 3.4). These
account for more than 50% of the effort required for training.

Because these calculations account for most of the energy cost in training, their
absence in inference reduces the number of FPOs drastically. These results sell
the RC as an even better candidate when implementing the models on mobile de-
vices running on batteries (i.e the very tablets on which the patterns are drawn).
Running repeatedly the model for predictions leads to longer-lasting charge-discharge
cycles on mobile devices but will also incur lower costs of running tests on a dis-
tant server in the cloud or edge computing [199].

Once again for inference, the CNN model required the most computation effort fol-
lowed by k-Medoids. However, the gains for RC relative to other models are much
higher here since the prediction is now simplified to a single simple matrix multiplica-
tion operation.
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Method
Million

Floating Point Operations

CNN 79.8

k-Medoids 54

BiLSTM 8.64

Digital RC 1.36

Table 4.9: Estimates of FPO counts are required for inference.

4.7.3 Hardware performance

We analyzed the larger gain in inference compared to training in Section 4.7.2 and dis-
covered that 49% of the computation effort goes into the projection of the input, that is,
in computing the reservoir states as described in Equation 2.1. The hardware feasibility
of RC offers the possibility to save these FPOs by outsourcing the projection operations
to the dedicated optoelectronic reservoir setup described in Section 2.6. We called this
the hardware RC and the said projection will be carried in a faster analog manner. By
doing so, only the regression operation to compute the W out is implemented on a dig-
ital processor for the hardware RC similar to the digital variant. For a fair comparison
and since the hardware RC is a close imitation of the digital RC, we use the best fea-
tures combination already found for the digital RC (i.e. the one indexed by k = 4 in
Table 4.5. We estimate the average energy consumed by the processor and the opto-
electronic setup for the projection and compare them in Table 4.10. For the hardware
setup, the power consumed is roughly estimated by summing the energies consumed
by the setup’s constituent active components. For the digital RC, the energy consumed
for projection is obtained by the repeated running of the projections and computing the
average energy consumed for a single run. Although the estimated values are rough
estimates, they hint at lower energy costs for the setup. However, there is a marginal
reduction in accuracy by 2% for the hardware RC compared to the digital one. This can
be caused by either the noisier nature of the hardware experiments and/or the limited
and difficult fine-tuning of the physical components. A more compact setup, say inte-
grated hardware RC would not only consume less than our setup but may even improve
the prediction accuracy.
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- Energy (kWh) Acc (%) Sens (%) Spec (%)

Digital RC 1.147× 10−4 85 88 83

Hardware RC 8.3× 10−5 83 92 74

Table 4.10: Estimated end-to-end energy consumption in the reservoir layer.

4.8 Conclusion

In this chapter, we have proposed for the first time the use of Artificial Neural Net-
works (ANNs) for Early-Stage Alzheimer’s Detection from handwritten (HW) tempo-
ral data. We have approached the problem by studying the trade-off between accuracy
and efficiency (number of parameters, number of FPOs, and energy consumed) for
four models RC, BiLSTM, CNN, and k-Medoids. We found that BiLSTM and Reser-
voir Computing are the best approaches for the task, compared to alternative methods
using k-Medoids or CNNs. Both methods provided an improvement in accuracy com-
pared to state-of-the-art with the digital RC yielding a classification accuracy of 85%
whilst that of BiLSTM is 88%, that is, an increase in 3% in accuracy for the BiL-
STM. Further analysis unveils that, with the digital RC, we incur significantly lower
costs in optimization (8 times less energy), training (only 63% of FPOs), and inference
(only 15.7% of FPOs) when compared to BiLSTM. The lower energy requirements for
optimization and training make RC the more efficient and the more environmentally
friendly approach, especially when the small performance penalty is tolerable. More-
over, the digital RC’s lower inference energy cost makes it ideal to run on the same
mobile devices used to record the HW pattern running on battery power for a longer
period in between recharges compared to running the more costly BiLSTM method. If
even slightly lower performances can be tolerated in favor of lower energy costs, the
hardware RC implementations can provide a good route to even greener solutions by
reducing the computation load on power-hungry electronic processors.



5
Coherent Ising Machines for Combinatorial

Optimization

The results presented in this chapter are also, in part, presented in our papers titled
"Image Restoration Using Coherent Ising Machine"

and
"Optoelectronic Coherent Ising Machine For Combinatorial Optimization Problems"
submitted at the Conference on Lasers and Electro-Optics, Technical Digest Series

(Optica Publishing Group, 2022), and Optics Letters respectively.

5.1 Introduction

In the previous chapters, we have presented bio-inspired physical systems made from a
large number of interconnected simple elements that possess interesting computational
properties. We have argued that such systems represent an interesting avenue of explo-
ration in light of increasingly overexerted Turing approaches functioning in a traditional
Von Neumann fashion. They can therefore be employed for unconventional computa-
tion schemes yielding interesting results at unprecedented speeds and efficiency. Our
discussions in the previous chapters were only concerned with non-autonomous imple-
mentations of neuromorphic systems that are driven by an input signal and require a
technique for training (supervision) for their computation to be deemed useful. How-
ever, neuromorphic systems have other properties that make them attractive even in the
autonomous mode of operation i.e. without the driving input signal. In this chapter,
we explore the unsupervised variant of recurrent neuromorphic systems both in digital
and hardware platforms. This area lacks comparisons to other near-global optimization
techniques as well as evaluations of the energy efficiency of the proposed systems and
we will contribute to that.
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Following the philosophy of this thesis, we study a hardware architecture of a Co-
herent Ising Machine (CIM) based on off-the-shelf telecommunication components, i.e.
a semiconductor laser coupled to a Mach-Zehnder Modulator (MZM), a photodiode,
an Arbitrary Waveform Generator (AWG), an Analog-to-Digital Converter (ADC) and
an FPGA board. Our study considers the implementation of such a system in a digital
simulation followed by a physical setup. In addition to the hardware architecture, the
main novelties of our exploration are as follows: from an application perspective, we
demonstrate the potential of the CIM for statistical image denoising - from a system-
level perspective, we compare the proposed mixed hardware/digital system to a standard
digital implementation of Hopfield networks and simulated annealing (SAN) [144] in
terms of the probability of reaching the average ground state, computational complex-
ity, and energy consumption.

5.2 Hopfield neural networks and Ising machines

In his seminal work, Hopfield introduced networks of neuron-like elements and studied
their usefulness in combinatorial optimization problems expressed as the minimization
of a quadratic energy function, both in continuous [200] and discrete time [201]. While
theoretical guidelines to achieve feasible solutions were investigated in [202], several
practical improvements have also been published to escape local minima including tai-
loring the energy function and its hyperparameters [203], incorporating simulated an-
nealing heuristics [204], random noise [205] or transient chaotic behavior [206]. A
generalization to highly nonlinear energy functions has also appeared in [207].

The introduction of efficient hardware architectures of Hopfield networks and their
generalizations during the last decade has sparked renewed interest in this field. These
implementations, known as Ising machines, are based on various physical principles
such as quantum [208]-[209], nanomagnetic [210], memresistive [211] or laser [212]
and photonic [34] technologies. Before defining Ising machines, we will briefly intro-
duce the Ising model which is at the heart of the working principle.

At sufficiently low temperatures, i.e. temperatures below a critical value Tcr, some
metals become magnetized at a macroscopic level. This is known as a ferromagnetic
behavior and is the result of the polarization alignment of the magnetic moments (spins)
of the constituent atoms in the same direction at the microscopic level. Above Tcr the
moments or spins become randomly oriented resulting in zero net magnetic fields. This
is the basis of the Ising model named after Ernst Ising. The model assumes a fixed
lattice structure and that atoms are fixed and the only degree of freedom they possess
is the orientation of the spins.



5.3. COMBINATORIAL OPTIMIZATION PROBLEMS 104

We describe the model formally by letting Ω be a square n × n lattice. Any pixel
s = (l, c) ∈ Ω can be assimilated to a position in the lattice with line (resp. column)
coordinate l (resp. c), where 1 ≤ l, c ≤ n. ∀s ∈ Ω, we let the spin σs be a random
variable in {−1,+1}. The random vector σ is obtained by raster scanning the spins
columnwise. A particular Markov random field (MRF) defines the probability mass
function (pmf) of σ as

P (σ = (σs)s∈Ω) ∝ e−E(σ), (5.1)

where the system’s energy function has the form of an Ising Hamiltonian

E(σ) = −1

2

∑
(s,t)∈N

Js,tσsσt −
∑
s∈Ω

bsσs, (5.2)

where Js,t is the coupling parameter between the spins indexed by s and t while bs is
the bias associated with the spin indexed by s, and N denotes all couples of neighbor-
ing pixels with end-around boundary conditions. Note that finding the most probable
spin configuration (the so-called ground state), which is equivalent to the combinatorial
optimization problem consisting in minimizing Equation 5.2, has found many practical
applications [213].

5.3 Combinatorial Optimization problems

Systems dependent on multiple parameters to characterize their operation are abundant
in many real-world scenarios. As a result, the determination of the parameter tuples cor-
responding to a certain desired mode of operation requires means enabling practitioners
to search for the right set of parameter combinations. Combinatorial Optimization con-
sists of searching for a solution in a discrete set (possibly multidimensional) such that
an objective function is optimized (maximized or minimized).

The search space for the combinatorial optimization problems explodes rapidly with
the increase in the number of parameters prolonging the search duration. In computa-
tion complexity terms, they are NP-hard problems. A straightforward method to ad-
dress combinatorial optimization problems is the Brute Force method, capable of at-
taining exact solutions but ill-famed for coping with the exponential increase in search
space causing complexity outbursts. The elevated computational demand attracted the
application of computationally cheaper heuristics to find near-optimal solutions in a
reasonable amount of time.

However, some problems remain complex even for the less explosive approaches,
therefore, compromises on the exactitude of the solution are made by settling for good-
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enough approximations. Luckily, for most practical applications, good-enough solu-
tions obtained in a reasonable time are more desirable than the exact solutions requir-
ing much more resources. Here, we will discuss two scenarios requiring combinatorial
optimization solutions to divulge the variety and importance of applications that can
benefit from such models.

5.3.1 MAXCUT optimization

This problem consists of finding the split of a graph into two sub-graphs such that the
number (or sum of their weights) of edges cut is maximized. Suppose G = [V,E] is a
graph with vertex set V and edge set E. A cut is a partition of G into G1 = [V1,E1]

andG2 = [V2,E2], such thatV1∩V2 = ∅. Finding the cuts corresponding to the max-
imum possible number of cut edges, known as a MAXCUT problem, is one of the first
challenges identified as NP-complete problems. The number of possible cuts increases
abruptly with meager increases in the graph size. Fortunately, the problem can be re-
formulated such that searching for a solution becomes equivalent to the minimization
of the Ising Hamiltonian [214].

5.3.2 Image Denoising

The advent of cameras, powerful telescopes, and microscopes has brought about mush-
rooming of images taken to capture memories, study galaxies, and observe micro-
organisms. Unfortunately, such devices suffer degradation from the noise or imper-
fections of the photo sensors. Further noise can be introduced in transmission channels
or during compression of obtained images. Noise is a high-frequency addition to the
image, suggesting a low-pass filtering to restore the image. However, edges and tex-
tures are high-frequency components as well therefore imprudent filtering will result
in blurring these important details. The noisy image problem can be formulated by
supposing the clean image y is subjected to additive noise η such that the noisy image
ŷ is defined as :

ŷ = y + η (5.3)

Image denoising, defined as the restoration of y from ŷ has remained a challenging
problem and multiple solutions have been proposed such as filtering [215], Tikhonov
Regularization [216], and CNNs [217]. We consider black and white images corrupted
with Salt and Pepper noise and formulate them such that each bright (dark) pixel is an
upward (downward) spin. In Section 5.5.2 we detail the image model and demonstrate
the denoising capability of our Ising machine.
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5.4 Experiments

We implement the Coherent Ising Model in a digital simulation running on a CPU and
the equivalent optoelectronic hardware. The details of these two implementations are
provided below.

5.4.1 Digital Ising Machine

Following [34], we numerically implement a generalized Hopfield network to minimize
Equation 5.2 at discrete time instant k has the form

xs(k) = f

Ñ
αxs(k − 1) + β

Ñ ∑
t:(s,t)∈N

Js,txt(k − 1) + bs

éé
σ̂s(k) = sign(xs(k)), ∀s ∈ Ω

(5.4)

where f(.) is a nonlinear activation function (for instance a sigmoid, periodic or clipped
nonlinearity as suggested in [218]), α and β are scaling coefficients controlling the
self-coupling and feedback strength affecting the neuron output xs(k), while σ̂s(k) is
the spin estimate of pixel s. The digital CIM executes a Python implementation of
the algorithm described by Equation 5.4 on an Intel Xeon E5-1603 processor. The
nonlinear function is the sin2(.) imitating the transfer function of the MZM followed
by a photodiode used in the hardware implementation. The nonlinear function is shown
in Figure 5.3 together with the span of observed neuron states.

5.4.2 Proposed optoelectronic architecture

Compared to a conventional Von-Neuman architecture for the digital implementation
in Section 5.4.1, mixed analog/digital processing in the form of a CIM can lead to
savings in terms of achievable processing speeds and energy consumption. High-speed
solutions to combinatorial optimization problems are very attractive for applications
requiring real-time processing or adaptation to dynamically changing environments.

We solve the algorithm-architecture adequacy problem by selecting only commer-
cially available telecommunication components in the optoelectronic oscillator setup
shown in Figure 5.1. The details of the components of our setup are as follows:

• A Distributed Feedback (DFB) laser diode emitting light at 1.55µm.

• A Mach-Zehnder Modulator (MZM) modulates the optical phase of the light
emitted by the laser. The phase is modulated by the feedback signal allowing
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for the EO conversion of the system’s state. The MZM also provides the nonlin-
ear activation function in the optical domain thanks to its sin2(.) transfer function.
The bias voltage of the MZM, Vbias, is set such that the activation function after
proper calibration becomes f(x) = sin(x + π/4 + ξ(k))2 − 1/2, where ξ(k)
accounts for photoreceiver and quantization noise.

• A 20 GHz photodiode for OE conversion necessary for the subsequent digital
processing of the spins.

• The Zmod Scope 1410− 125 Analog-to-Digital Converter with 125MSa/s and
14-bit resolution [219]. This supplies the FPGA with the node states vector for
the spin interactions computation according to Equation 5.4.

• The Eclypse-Z7 features a Field Programmable Gate Array (FPGA) board and
two ZMod connectors allowing high-speed processing [220]. We implement via
VHSIC Hardware Description Language (VHDL) the logic for high-speed data
acquisition, matrix multiplication, and transfer of signals. We note that imple-
menting the entire Ising machine in the electrical domain, that is implementing
the activation function itself as a lookup table (LUT) inside the FPGA [221],
would also be feasible.

• The Zmod AWG 1411: 2-channel 14-bit Arbitrary Waveform Generator (AWG)
with a sample rate of 100MSa/s [219]. This allows for the conversion of the
FPGA digital data to a continuous signal that modulates the phase of the MZM.
It has two channels shown in Figures 5.1 and 5.2: channel CH1 sends data to the
oscilloscope for visualization and CH2 completes the optoelectronic CIM loop.

• 10 GHz Analog RF Amplifier Driver with an output voltage of 9Vpp allowing
proper signal scaling before modulating the MZM [103]. The node states in the
digital CIM span the zone shown in Figure. 5.3a. In order to imitate a similar
spanning of the node states (red dots on Figure. 5.3a) on the experimental activa-
tion function in the experimental setting, we tuned the bias (Vbias) of the MZM,
the gain of the MZM driver and the scaling of the feedback signal (xs(k− 1)) to
obtain experimentally a similar mapping illustrated on Figure 5.3b.

• Digital Serial Analyser (DSA) is the high-speed sampling oscilloscope connected
to the CH1 of our DAC as shown in Figure. 5.2. We incorporated the DSA to
visualize in real-time the evolution of the signals and spin formation in the loop.

The presented setup can implement Equation 5.4 only for a single spin, the feedback
delay is decomposed into n2 intervals along which the spins are multiplexed using Time
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Figure 5.1: Experimental setup of the proposed opto-electronic CIM. Vbias is the bias
voltage control of the MZM.

Figure 5.2: The image of our Eclypse Z7 FPGA board mounted with the dual-channel
data converters (ADC and DAC).

Division Multiplexing (TDM). For each iteration, the FPGA waits for n2 readings from
the ADC before computing the resultant spins after spin interaction.

5.4.3 Simulated Annealing

As a benchmark, we implemented SAN similar to [222], arguably the most used heuris-
tic method for gradual cooling of a ’high-temperature’ problem to attain a frozen state
that is, ideally, arbitrarily close to the solution of the problem. SAN is one of the most
popular algorithms for this feat and has been implemented both in computer simulations
as well as in dedicated hardware which provides parallelization of digital hardware ac-
celerators and analog computing [223].
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Figure 5.3: Span of the node states on the sin2(.) for the digital CIM (a) and on the
MZM characteristic function for the optoelectronic CIM (b).

5.4.4 Performance metrics

To compare the optimization implementations under study we propose several met-
rics. Firstly, we evaluate the success probability of reaching (or approximating) the
ground state for each method and compare them. We extend the analysis to incorpo-
rate estimation of computational complexity, that in the digital domain, is measured via
the number of Floating Point Operations (FPOs), while an experiment-impact-tracker
[194] running in parallel is used to report the consumed energy and the corresponding
CO2eq emissions. For the hardware CIM, we estimate the average power consumption
of constituent elements to obtain a rough estimate of the consumption. These metrics
enable further analysis of the studied approaches by shedding light on the complexity
vs. energy vs. performance trade-off, a subject that is mostly overlooked in the literature
despite the recommendations for sustainable practices [22].

5.5 Results and discussion

In this section, we assess the proposed optoelectronic CIM architecture of Section 5.4.2
for the performance metrics introduced in Section 5.4.4 and we compare it to the digital
CIM of Section 5.4.1, while near-global optimization using SAN based on the Gibbs
sampler given in [224] is used as the benchmark method. Unless otherwise stated, N is
chosen as the couple of 4-point nearest neighbors in the lattice under end-around bound-
ary conditions. For the digital and optoelectronic CIM, the initial spin configuration is
chosen uniformly and independently at random, the activation function f(.) is the one
defined Section 5.4.2, the hyperparameters are set to (α = 0.25, β = 0.29), while
the number of iterations is set to Nit = 100. Also for the sake of comparison with the
benchmark method, we use SAN with an initial temperature of 2, a geometric annealing
parameter equal to 0.99, and 200 iterations [224]. Also, the adopted legend for all im-
ages is as follows: bright yellow for spin-up (+1) and dark purple for spin-down (−1).
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We study two problems that can be formulated as the minimization of a Hamiltonian
having the form given by Equation 5.2 such as the Antiferromagnetic Ising model and
MAP image denoising using the optoelectronic Coherent Ising Machine (CIM) both in
the simulations and hardware implementations.

5.5.1 Antiferromagnetic Ising model

We begin with a low-dimensional example where n = 10 with antiferromagnetic inter-
actions, that is Js,t = −1 ∀(s, t) ∈ N and bs = 0 ∀s ∈ Ω. It is well-known that the
ground state corresponds to a checkerboard pattern (alternating spin-up and spin-down
configuration with minimum energy equal to −n2). The exact solution with this pat-
tern is shown in Figure 5.4 for a 10 × 10 spin-lattice. In our experiments, Figure 5.5
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Figure 5.4: The exact solution for the 10 by 10× 10 Antiferromagnetic Ising model.

depicts the initial and final estimated spin configuration for a single run of the proposed
optoelectronic CIM, that successfully converges to the ground state. In this figure, the
x and y-axis indices are pixel positions on the lattice. Over a single successful run, Fig-
ure 5.7 shows that the proposed optoelectronic CIM and the digital CIM have similar
dynamics, with convergence reached typically after a few tens of iterations. Table 5.1
summarizes our performance metrics by repeating all the aforementioned experiments
independently 1000 times. Part of the TDM sequence of spins is copied on channel
CH1 of DAC and sent to a Digital Serial Analyzer Sampling Oscilloscope (DSA). A
screenshot in Figure 5.7 shows the resultant alternating up and down spins as a time
series.

We observe that SAN converges later than both CIMs but reaches the ground state
with approximately 98.9% success probability compared to the approximately 91.4%

digital CIM. For this task, success means attaining exactly the theoretical ground en-
ergy state of E(σ) = −100. From this standpoint, SAN is more performant. With
further analysis, we noticed, however, that this win comes at a cost of 7.47 times the
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(c) Iteration = 50 to 200

Figure 5.5: The initial spins (Iteration = 0) are randomly and independently chosen
for the digital CIM whereas for the optoelectronic CIM the system’s noise initializes
the spins. A checkerboard pattern appears (Iteration = 25) and stabilizes as the system
converges (Iteration = 50 to 200).

Metric Digital Optoeletronic SAN

CIM CIM

Success probability (%) 91.4 90 98.9

Time (ms) 10 2.1 79

FPOs (×106) 0.76 0.32 5.68

Energy (×10−6 kWh) 0.6 3× 10−4 14

COeq (×10−6kg) 0.044 2.2× 10−5 1

Table 5.1: Average performance metrics for the antiferromagnetic model over 1000
runs.

number of FPOs and runtime required by the digital CIM. It, therefore, takes more com-
putational effort to attain a solution with SAN than it does with digital CIM. Moreover,
energy estimates with the experiment-impact-tracker show that SAN requires 23 times
the energy of the digital CIM and the same factor for an increase in COeq emissions.
The optoelectronic CIM has a success probability of 90% - close to that of the digi-
tal CIM. Since the hardware CIM benefits from the speed of optics and the FPGA’s
programmable logic the energy analysis for the hardware CIM becomes interesting.
We observe that the checkerboard solution shown in Figure 5.6 obtained in digital CIM
costs 2017 times more than that from the optoelectronic CIM counterpart. What’s more,
the hardware CIM consumes 1/46667th of the energy required by SAN. A significant
gain in efficiency altogether.



5.5. RESULTS AND DISCUSSION 112

Figure 5.6: Digital Serial Analyzer screen capture showing the spins alternating in
time after 100 iterations.

5.5.2 Maximum a posteriori image denoising

In this Section, we consider a hidden black and white image (σs)s∈Ω to be restored from
an observed image (ys)s∈Ω according to a salt and pepper noise model, i.e. ys = −σs
with probability p and ys = σs with probability 1 − p, independently for each pixel
s ∈ Ω. In our setting, n = 64 and the prior spin pmf is chosen as the MRF in Equa-
tion 5.1 with the coupling parameter between neighboring pixels set to 1 (ferromagnetic
interactions). It is easily shown that maximum a posteriori (MAP) image denoising cor-
responds to selecting Js,t = 1 ∀(s, t) ∈ N and bs = −1

2
log(p/(1 − p))ys ∀s ∈ Ω (as
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Figure 5.7: Energy evolution for a single run for the square-lattice of spins with anti-
ferromagnetic interactions.
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derived in Appendix B). In our experiments, we use p = 0.2 and we show the clean
image and the resultant noisy image after being impacted by the noise in Figure 5.8.
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Figure 5.8: The clean image (a) and the resultant noisy image (b) after the salt and
pepper noise addition.

Figure 5.9 depicts the initial dirty image and the final image after running SAN,
digital and optoelectronic CIM. In this figure, the x and y-axis indices are pixel posi-
tions on the lattice as well. Over a single successful run, Figure 5.10 shows that the
proposed optoelectronic CIM and the digital CIM have similar dynamics, with con-
vergence reached typically after 15 iterations. Table 5.2 summarizes our performance
metrics - adding the pixel-wise classification error rate (PCER %) - by repeating all
aforementioned experiments independently 1000 times.

For this application, we observe that SAN attained the ground state for all the runs
whereas digital and hardware CIM attained the ground state in 89% and 86.75% of the
runs respectively. The success means considered as the system’s falling within three
standard deviations of the average ground state energy which is approximatelyE(σ) =

(a) (b) (c)

Figure 5.9: A sample initial dirty image (iteration 1) shown in (a). After convergence
(iteration 100), we obtain (b) and (c) for the digital and optoelectronic CIMs respec-
tively.
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−5550, thus corresponding to 98% confidence interval. The clean images generated by
SAN contain a PCER of 1.7% whereas the digital and hardware CIMs converged to a
PCER of 2.3% and 3% respectively. For this task as well, SAN excels over the digital
and hardware CIMs in these convergence metrics. Nevertheless, further analysis reveals
that SAN’s performance comes at approximately 9.5 times the execution time, 10 times
the number of FPOs, and 12.22 times the energy (same factor for the COeq emissions)
consumed by the digital CIM. The COeq emissions are reported taking into account the
nature of electric grids in the Palaiseau city in France. The 11% gain in convergence
success probability of SAN costs us at least 10 times the computation cost of digital
CIM by all measures. Following the observation with the Antiferromagnetic model
we analyse the energy costs for the hardware CIM on this task as well. The energy
consumption results for hardware CIM are reported in Table 5.2 showing a factor of
6216 and 75970 gain in energy and environmental impact.
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Figure 5.10: MAP image denoising energy evolution for a single run.

Metric Digital Optoeletronic SAN

CIM CIM

Success probability (%) 89 86.75 100

PCER (%) 2.3 3 1.7

Time (ms) 4110 86 39130

FPOs (×109) 0.7 0.0131 7.1

Energy (×10−6 kWh) 90 1.45× 10−2 1100

COeq (×10−6kg) 5 8× 10−4 62

Table 5.2: Average performance metrics for MAP image denoising over 1000 runs.
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5.6 Conclusion

Our experiments reveal the potential for CIMs in image denoising. SAN has consis-
tently outperformed the CIMs in all of the studied tasks. It converged with the prob-
ability of 98.9% and 100% for the antiferromagnetic spin lattice model and image de-
noising respectively; compared to 91.4% and 89% of the digital CIM approach (slightly
less for the hardware counterpart). The naive conclusion here is that SAN is indeed the
better approach. However, we have presented the energy costs and computation effort
to unveil the fact that SAN requires significantly more resources compared to the digital
CIM implementation. The extra 11% gain is convergence success probability by SAN
requires 7.47 and 23 times the number of FPOs and energy required by digital CIM for
the Antiferromagnetic Model respectively. For the MAP image denoising task, SAN
required 9.5, 10, and 12.22 the runtime, FPOs count, and energy required by the digital
CIM respectively.

With the severalfold increases in energy costs and computation efforts, a compro-
mise on accuracy becomes reasonable. In most practical applications, a choice is often
made to settle for less demanding solutions that yield acceptable performances. In this
light, CIMs appear as the more reasonable and informed choice.

In the future, we aim to explore the more complex and challenging problem of a
Traveling Salesman. This problem finds many practical and interesting applications
in various domains of logistics, scheduling, and security. CIMs carry a promise for
faster and more efficient solutions, this direction of exploration has the potential for
interesting avenues.



6
Conclusions and perspectives

In this thesis, we focused on low-complexity approaches for various applications of
neuromorphic methods. In this chapter we review the works presented in this thesis,
accentuate the obtained results and give perspectives for future exploration building on
our presented works.

The progress of bio-inspired approaches is threatened by the unmatched progress in
speed and efficiency of the hardware they run on. In our presented works, we centered
on neuromorphic approaches that possess the potential to deter the current trajectory
predicted to hit the efficiency wall as we argued in Chapter 1. We studied Reservoir
Computing and Coherent Ising Machines in parallel with proposing new applications.
In Chapter 3 and 4 we focused on Reservoir Computing. First, we proposed and studied
an efficient method based on stochastic gradient descent for hyperparameter tuning. Our
theoretical and numerical analyses demonstrate the advantages of our method over SAN
and the exhaustive search based on the quality and speed of convergence. Second, we
assessed the energy saving and the performance penalties of using Reservoir Computing
for a new task of early-stage Alzheimer’s disease detection. Our results substantiate the
fact that, at a reasonable compromise, significant energy savings can be made by being
mindful of the costs associated with each proposed method.

Extending on our results with RC, we considered another class of hardware feasible
bio-inspired approach: the Coherent Ising Machines. We proposed an image-denoising
application for the first time and obtained good performances in terms of success and
error rates. Furthermore, following the similar workflow we proposed for Reservoir
computing, we demonstrated the potential for speed and efficiency by employing analog
computing with an optoelectronic hardware setup.

Our results for Reservoir Computing and Coherent Ising Machines and their in-
terpretations reveal that our proposals are both environment-friendly and theoretically
sound.
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As we carried on our work, several potential directions and perspectives became
apparent and we will share them below.

In the optic of energy efficiency, parallel information processing has the potential to
reduce consumption by a significant amount. In our presented works, artificial neurons
were emulated using TDM inefficiently consuming the available optical bandwidth, and
energy. However light has the potential for wavelength division multiplexing and mul-
tiple polarization which can allow the emulation of a large number of parallel artificial
neurons. We aim to design and propose new architectures exploiting multiple degrees
of freedom of optics while building on our work on efficiency. With these new archi-
tectures, we could increase the speed and efficiency of neuromorphic systems averting
further the efficiency wall.

We also observed an increase in stability for lasers subject to delayed optoelec-
tronic feedback produced by weak external optical feedback and published our results
[225–227]. In this configuration, the laser is pumped by two sources: a constant cur-
rent source and a current proportional to the intensity of the delayed electrical field
from a distant mirror after an optical-to-electrical conversion. The latter makes the first
feedback loop whereas the second loop consists of the part of the light from the same
mirror fed back optically into the laser. As Reservoir Computers rely on their memory
and computation capacities one could investigate how these properties will be impacted
by such a dual setup. Also, the presence of dual feedback can allow for local neuron
connectivity by one delay and virtual node generation by the other, therefore, study-
ing such as system in an input and readout synchronous mode of operation could be of
interest.

Our experimentation on image denoising with Coherent Ising Machines gave us the
know-how necessary to confront even more complex problems such as the Traveling
Salesman Problem. The practical importance of the solutions to this problem makes
it an interesting avenue for future explorations on our efficient and fast optoelectronic
implementations.



A
Supplementary material for Chapter 2

A.1 Linearization of the proposed method in (3.7)

Assuming C(θ) is locally strictly convex close to its optimum, a second order Taylor
expansion around θopt is obtained as

C(θ) ≈C(θopt) +
1

2
(θ − θopt)

THC(θopt)(θ − θopt) + ν(θ), (A.1)

where the Hessian matrix HC(θopt) is symmetric positive definite [228], since all
second-order partial derivatives were assumed to be continuous. The term ν(θ) is a
noise term accounting for potential noisy loss function evaluations in our method. Re-
placing θ alternatively by θi−1 + hdi and θi−1 − hdi, we get

C(θi−1 + hdi) ≈ C(θopt) + ν(θi−1 + hdi)+

1

2
(θi−1 − θopt + hdi)

THC(θopt)(θi−1 − θopt + hdi),

C(θi−1 − hdi) ≈ C(θopt) + ν(θi−1 − hdi)+

1

2
(θi−1 − θopt − hdi)

THC(θopt)(θi−1 − θopt − hdi).

(A.2)

It follows that

C(θi−1 + hdi)− C(θi−1 − hdi)

2h

≈ dT
i HC(θopt)(θi−1 − θopt) +

ν(θi−1 + hdi)− ν(θi−1 − hdi)

2h
.

(A.3)

Let us define the random noise vector that would be obtained if a gradient approximation
were sought along each direction ec, c ∈ {1, . . . , p} (instead of a single randomly

118



A.2. PROOF OF THE MATRIX DIFFERENCE EQUATION (3.14) 119

chosen di as in the proposed algorithm)

ni =


ν(θi−1+he1)−ν(θi−1−he1)

2h
...

ν(θi−1+hep)−ν(θi−1−hep)

2h

 . (A.4)

It follows that the noise term affecting (A.3) can be rewritten as

ν(θi−1 + hdi)− ν(θi−1 − hdi)

2h
= dT

i ni. (A.5)

Now, injecting (A.3) into (3.7) results in (3.8).

A.2 Proof of the matrix difference equation (3.14)

Starting from (3.9) and recalling that the direction vectors {di} are u.i.i.d.

E
[
(ζi − θopt)(ζi − θopt)

T |ζi−1

]
=

1

p

p∑
c=1

(
Ip − µece

T
c HC(θopt)

)
(ζi−1 − θopt)(ζi−1 − θopt)

T
(
Ip − µece

T
c HC(θopt)

)T
=

Å
Ip −

µ

p
HC(θopt)

ã
(ζi−1 − θopt)(ζi−1 − θopt)

T

− µ

p
(ζi−1 − θopt)(ζi−1 − θopt)

THC(θopt)
T

+
µ2

p

p∑
c=1

ece
T
c HC(θopt)(ζi−1 − θopt)(ζi−1 − θopt)

THC(θopt)
Tece

T
c ,

(A.6)

where we have used the fact that
∑p

c=1 ece
T
c = Ip in the last equality. Applying the law

of total expectation,

E
[
(ζi − θopt)(ζi − θopt)

T
]

=

Å
Ip −

µ

p
HC(θopt)

ã
E
[
(ζi−1 − θopt)(ζi−1 − θopt)

T
]

− µ

p
E
[
(ζi−1 − θopt)(ζi−1 − θopt)

T
]
HC(θopt)

T

+
µ2

p
Ip ◦

(
HC(θopt)E

[
(ζi−1 − θopt)(ζi−1 − θopt)

T
]
HC(θopt)

T
)
.

(A.7)

A straightforward application of the rules of vectorization in [142, p. 97-98] leads to
the desired result in (3.14).
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A.3 Proof of recursion (3.22)

Starting from (3.10) and recalling that the direction vectors {di} are u.i.i.d. and inde-
pendent from the zero-mean white noise process {ni}

E
[
P iP

T
i |P i−1

]
=

1

p

p∑
c=1

(
Ip − µece

T
c HC(θopt)

)
P i−1P

T
i−1

(
Ip − µece

T
c HC(θopt)

)T
+
µ2

p

p∑
c=1

ece
T
c E[nin

T
i ]ece

T
c

=

Å
Ip −

µ

p
HC(θopt)

ã
P i−1P

T
i−1

− µ

p
P i−1P

T
i−1HC(θopt)

T

+
µ2

p

p∑
c=1

ece
T
c HC(θopt)P i−1P

T
i−1HC(θopt)

Tece
T
c ,

+
µ2

p

p∑
c=1

ece
T
c E[nin

T
i ]ece

T
c ,

(A.8)

where we have used the fact that
∑p

c=1 ece
T
c = Ip, in the last equality. Applying the

law of total expectation,

E
[
P iP

T
i

]
=

Å
Ip −

µ

p
HC(θopt)

ã
E
[
P i−1P

T
i−1

]
− µ

p
E
[
P i−1P

T
i−1

]
HC(θopt)

T

+
µ2

p
Ip ◦

(
HC(θopt)E

[
P i−1P

T
i−1

]
HC(θopt)

T
)

+
µ2

p
diag(Σ).

(A.9)

A straightforward application of the rules of vectorization in [142, p. 97-98] leads to
the desired result in (3.22).
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Supplementary material for Chapter 5

B.1 Black and white image denoising application

Consider a set of labels {xi}i∈Ω, xi ∈ {−1, 1} where Ω is a 2D lattice of L×C pixels.
Let X be the vector of labels obtained from {xi}i∈Ω after column-wise raster scanning.

We assume a Markov Random Field (MRF) model for X [224]:

p(X) =
1

Z(β)
exp

(
β
∑
(n,m)

neighbors

δ(xm − xn)
)

=
1

Z(β)
exp

(
β
∑
(n,m)

neighbors

1 + xmxn
2

)

=
1

Z ′(β)
exp

(β
2

∑
(n,m)

neighbors

xmxn

)
=

1

Z ′(β)
exp

(1
2

∑
i<j

Ji,jxixj

)
(B.1)

where the matrix J = [Ji,j] 1≤i≤L
1≤j≤C

is defined by:

Ji,j =

β if pixels indexed by i and j are neighbors

0 otherwise
(B.2)

Let {yi}i∈Ω be the observed image corrupted by salt and pepper noise with proba-
bility p independently at random so that:

yi =

xi with probability 1− p

−xi with probability p
(B.3)

That is:
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⇒ the number of flipped pixels is
∑

i∈Ω
1−xiyi

2

⇒ the number of preserved pixels is L× C −∑i∈Ω
1−xiyi

2

By the noise independence assumption:

p(Y/X) =
∏
i∈Ω

p(yi/xi)

= (1− p)L×C−
∑

i∈Ω
1−xiyi

2 × p
∑

i∈Ω
1−xiyi

2

ln(p(Y/X)) =

(
L× C −

∑
i∈Ω

1− xiyi
2

)
ln(1− p)

+

(∑
i∈Ω

1− xiyi
2

)
ln(p)

= C+ − 1

2
ln

Å
p

1− p

ã∑
i∈Ω

xiyi

=
∑
i∈Ω

biyi

(B.4)

where C+ is a constant and:

bi = −1

2
ln

Å
p

1− p

ã
yi (B.5)

By Bayes’ theorem it follows that the posterior distribution of X can be written as:

p(X/Y) ∝ p(Y/X)p(X)

∝ exp

(
1

2

∑
i<j

Ji,jxixj +
∑
i∈Ω

bixi

)
∝ exp(−E(X))

(B.6)

where:
E(X) = −1

2

∑
i<j

Ji,jxixj −
∑
i∈Ω

bixi (B.7)

has the form of a classical Ising Hamiltonian. Thus finding the restored image X from
the noisy image Y in the maximum a posteriori sense is equivalent to minimizing the
energy function E(X).



C
Introduction (Version française)

C.1 Introduction

Aujourd’hui, une quantité considérable d’efforts est consacrée à la recherche et au
développement dans le domaine des Réseaux de Neurones Artificiels (RNA). Parmi
les différentes voies de l’IA, les RNA représentent la solution neuromorphique la plus
recherchée dans de nombreux domaines d’application et sont au centre de notre atten-
tion. Motivé par la nécessité d’une intelligence artificielle respectueuse de l’environnement,
dans cette thèse, nous étudions deux systèmes neuromorphiques récurrents appelés
Reservoir Computing (RC) et machine de Ising cohérente (Coherent Ising Machine,
CIM) qui présentent un potentiel de faisabilité matérielle.

C.1.1 Le modèle Echo State Network de RC

Le Reservoir Computing (RC) est un cadre puissant de réseau de neurones récurrents
(RNN) pour le traitement de données séquentielles. Il simplifie le processus d’entraînement
tout en maintenant une grande puissance de calcul. La motivation derrière le RC vient
des difficultés rencontrées dans l’entraînement des réseaux de neurones traditionnels,
notamment les réseaux de neurones récurrents. Le RC offre une approche alternative en
limitant l’entraînement à la couche externe et en générant aléatoirement la plupart des
neurones dans la couche de réservoir. Cela simplifie considérablement l’entraînement
sans compromettre les performances. De plus, le caractère aléatoire du réservoir ouvre
la voie à de nombreuses implémentations matérielles.

L’architecture fondamentale d’un RC est constituée de trois couches distinctes, à
savoir la couche d’entrée, la couche de réservoir et la couche de sortie. La couche
d’entrée formate et injecte les signaux qui seront traités dans la couche de réservoir,
qui est essentiellement une collection d’unités de traitement connectées aléatoirement
qui étendent de manière non linéaire les signaux d’entrée vers un espace de dimension

123



C.1. INTRODUCTION 124

supérieure. La couche de sortie prend les états des nœuds de la couche de réservoir, qui
sont synonymes de neurones dans ce contexte, et les utilise pour générer des prédictions
pour la sortie cible. L’architecture et la fonctionnalité de ces trois couches peuvent être
observées dans la Figure C.1. Le modèle de base d’un RC exploite la propriété selon
laquelle le vecteur d’états de nœuds dans un RNN, noté x(n), à un temps spécifique n
peut être exprimé comme une fonction de l’historique d’entrée (ou "écho"),u(n),u(n−
1), etc. Les états de nœuds dans la couche de réservoir, en revanche, dépendent à la
fois des états précédents et de l’entrée actuelle, comme l’indique l’équation dynamique
non linéaire en temps discret:

x(n) = fNL(W
inu(n) +Wresx(n− 1)), (2.1)

où n est une variable de temps discret, x est un vecteur représentant les états des nœuds,
u est un vecteur représentant le signal d’activation d’entrée, W in est une matrice de
poids d’entrée aléatoires également appelée masque d’entrée, W res est une matrice de
connectivité aléatoire pour le réservoir, et fNL est la fonction d’activation non linéaire.
F représente la taille du vecteur d’entrée u, N représente la taille de la couche de
réservoir (c’est-à-dire la longueur du vecteur x), et C représente la taille de la sortie.
Les états des nœuds peuvent être utilisés pour générer la sortie y en utilisant l’équation:

Figure C.1: Architecture spatio-temporelle de base d’un RC montrant les trois couches.

ŷ(n) = f out(Wout[1;u(n);x(n)]). (2.3)

Ici, W out est une matrice de lecture et ŷ(n) représente le vecteur de sortie estimé à
l’étape de temps n, qui est ensuite comparé au vecteur de sortie attendu y(n) dans
le cas de l’apprentissage supervisé. Le processus d’apprentissage consiste à calculer
W out de manière à éliminer la récurrence. Sauf indication contraire, la fonction de
sortie (f out) sera supposée être une fonction identité dans les discussions ultérieures.
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C.1.2 Machine de Ising cohérente

Nous considérons également une classe de systèmes neuromorphiques qui évolueront
d’une façon autonome vers l’état d’énergie le plus bas possible sans être pilotés par un
signal d’entrée externe. Nous nous intéressons particulièrement aux implementation
optoéléctroniques des machines de Ising cohérentes (CIMs). Ce sont des réseaux neu-
ronaux de recherche d’extrema adaptés aux problèmes d’optimisation combinatoire.
Les CIM imitent le comportement ferromagnétique, c’est-à-dire l’alignement dépen-
dant de la température de la polarisation des moments magnétiques (spins) des atomes
constitutifs dans la même direction au niveau microscopique. L’énergie totale du sys-
tème à tout moment dépend de l’alignement des spins.

L’objectif est de formuler le problème donné de manière à ce que la solution du
problème coïncide avec l’état fondamental de l’hamiltonien de Ising du système, défini
comme suit :

E(σ) = −1

2

∑
(s,t)∈N

Js,tσsσt −
∑
s∈Ω

bsσs, (1.4)

où le problème est défini sur une grille carrée de taille n × n. Tout s = (l, c) ∈ Ω

peut être assimilé à une position dans la grille avec une coordonnée de ligne (resp.
de colonne) l (resp. c), où 1 ≤ l, c ≤ n. Pour tout s ∈ Ω, nous posons le spin
σs comme une valeur aléatoire dans {−1,+1}, J est la matrice qui régit l’interaction
entre les spins et N désigne tous les couples de nœuds voisins avec des conditions de
bord périodiques.

Suivant [34] afin de minimiser l’équation 1.4, nous implémentons numériquement
un réseau de Hopfield généralisé, dont l’équation aux différences en temps discret à
l’instant k a la forme :

xs(k) = f

Ñ
αxs(k − 1) + β

Ñ ∑
t:(s,t)∈N

Js,txt(k − 1) + bs

éé
σ̂s(k) = sign(xs(k)), ∀s ∈ Ω

(1.5)

où f(.) est une fonction d’activation non linéaire, α et β sont des coefficients d’échelle
qui contrôlent le couplage autonome et la force de rétroaction affectant la sortie du
neurone xs(k), tandis que σ̂s(k) est l’estimation du spin du pixel s.

Nous étudions la capacité du CIM à trouver des solutions à plusieurs problèmes
tels que le modèle de Ising antiferromagnétique et la restoration d’images à au sens
de MAP. Nous évaluons les performances du système en mesurant le taux/probabilité
de réussite du système à évoluer suffisamment près de l’optimum, c’est-à-dire à une
énergie inférieure à un certain seuil.
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C.2 Optimisation des paramètres pour RC

La puissance et la polyvalence du Reservoir Computing proviennent de la possibilité
de choisir aléatoirement la plupart des paramètres du réservoir, tels que les éléments du
masque d’entrée et les matrices de connectivité. Cela évite la contrainte stricte d’ajuster
un grand nombre de paramètres du système récurrent, contrairement aux RNN tradi-
tionnels. Toutefois, les réservoirs générés entièrement de manière aléatoire donnent
rarement des performances optimales [42]. Certains paramètres, bien moins nombreux
que dans les RNN classiques, nécessitent un réglage pour obtenir les meilleures perfor-
mances pour une tâche définie.

Nous proposons une technique d’optimisation pour régler un vecteur p-dimensionnel
de paramètres du RC basée exclusivement sur des évaluations bruitées de la fonction de
perte. Notre algorithme trouve un compromis entre la convergence rapide des méthodes
déterministes basées sur les gradients et l’efficacité des approximations stochastiques.
Cela est utile dans les contextes où la relation fonctionnelle exacte entre les paramètres
et les valeurs de la fonction de perte n’est pas disponible, comme c’est le cas pour les im-
plémentations matérielles du RC. Des méthodes similaires, s’appuyant sur l’algorithme
de Robbins-Monro pour la recherche de racines [136] et des procédures visant à trouver
l’optimum d’une fonction de perte basée sur des approximations de gradient stochas-
tiques par différences finies, ont été proposées. Par exemple, l’algorithme original de
Kiefer-Wolfowitz [137] nécessite 2p évaluations bruitées de la fonction du perte.

Nous simplifions les méthodes mentionnées précédemment de manière à étendre
leur applicabilité de plusieurs manières:

• Générer des perturbations sous forme de vecteurs de direction aléatoires standard
dans l’espace des hyperparamètres.

• Garder la taille du pas de différences finies constante.

• Garder la taille du pas d’apprentissage constante.

Ces modifications sont essentielles pour deux raisons : premièrement, elles sont respon-
sables de la faible complexité de notre approche, et deuxièmement, elles augmentent la
robustesse numérique dans le cas d’un RC matériel. En effet, le calcul de la fonction
de perte, perturbé par le bruit, ainsi que les variations lentes du dispositif, nécessitent
la capacité de suivre les dérives des paramètres. Nous effectuons une analyse de con-
vergence locale basée sur des approximations quadratiques de la fonction de perte. De
plus, nous démontrons une optimisation emperique des hyperparamètres à la fois dans
le cadre de simulations numériques et d’expérimentations sur le RC matériel.
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C.2.1 La méthode proposée (SGD)

Nous introduisons deux paramètres (α et β) et réécrivons l’Equation d’état discrète 2.1
comme suit :

x(n) = fNL(αW
inu(n) + βWx(n− 1)), (3.1)

ou fNL représente la non-linéarité par composante. Win ∈ RN×F et W ∈ RN×N

sont des matrices aléatoires creuses. α and β sont des facteurs d’échelle d’entrée et de
rétroaction qui influencent la dynamique du système. θ est le vecteur regroupant les
hyperparamètres. La couche de sortie linéaire génère ŷ(n) dans RC où C est le nombre
de classes.

Basé sur un ensemble de données d’entraînement {utrain(n),ytrain(n)}Tn=1, ap-
prendre un modèle RC consiste à minimiser la fonction de perte [46]:

L(θ,Wout) = ||ytrain(1 : T )−Woutx(1 : T )||2F + λ||Wout||2F (3.2)

où la régularisation de Tikhonov avec le paramètre λ est utilisée pour limiter le bruit et
le surajustement [42]. La complexité computationnelle d’une évaluation de la fonction
de perte est O(CT (N + 2) + CN). Ce problème d’apprentissage consiste à résoudre
l’équation suivante:

∂L(θ,Wout)

∂Wout
= 0 (3.3)

et a une solution unique sous forme analytique dépendant des hyperparamètres:

Ŵout
(
θ, {utrain(n),ytrain(n)}Tn=1

)
= ytrain(1 : T )x(1 : T )T

[
x(1 : T )x(1 : T )T + λIN

]−1

(3.4)
dont la complexité computationnelle est deO(CN(N+T )+N3) par vecteur d’hyperparamètres
et ensemble d’entraînement.

Nous introduisons la méthode d’approximation stochastique proposée pour estimer
un vecteur de paramètres θ ∈ Rp afin de minimiser la fonction de perte. Chaque fois
que nous évaluons le RC sur un ensemble de données d’entraînement limité avec de
nouveaux hyperparamètres, nous obtenons une valeur bruitée de la fonction de perte.
Étant donné que les approximations stochastiques peuvent résoudre de manière itérative
des problèmes d’optimisation en n’utilisant que des évaluations de fonction bruitées, il
est logique de minimiser la fonction de perte en utilisant de telles méthodes.

Soit ec le vecteur unitaire standard dans la direction de la c-ième coordonnée (c’est-
à-dire que ec est un vecteur de longueur p contenant 1 dans sa c-ième coordonnée et
0 ailleurs), pour c = 1, . . . , p. À partir d’une estimation initiale θ0, les vecteurs de
direction {di} sont distribués uniformément, indépendamment et de manière identique
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(u.i.i.d.) parmi {e1, e2, . . . , ep}, où i est l’indice d’itération. La descente de gradient,
couramment utilisée pour l’optimisation en apprentissage automatique [141], n’est pas
réalisable dans notre cas car le calcul du gradient nécessite une connaissance complète
de la relation fonctionnelle entre θ et L(., .) qui est supposée indisponible. Au lieu
de cela, une approximation stochastique du gradient de la fonction de perte dans la
direction aléatoire di est obtenue comme suit :

∆i =
L(θi−1 + hdi,W

out
i−1)− L(θi−1 − hdi,W

out
i−1)

2h
, (3.5)

où une approche de différences finies avec un pas constant h est utilisée. Notez qu’en
plus de l’erreur inhérente à la méthode des différences finies, le numérateur dans l’Equation 3.5
implique deux évaluations d’une fonction de perte du RC en utilisant un nombre limité
de données d’entraînement, ce qui donne lieu à des évaluations bruitées. Pour simpli-
fier la procédure itérative de minimisation de la fonction de perte, chaque composante
de θ est mise à jour individuellement selon l’équation suivante :

θi = θi−1 − µdi∆i, (3.6)

où µ est une taille de pas d’apprentissage constante. La procédure d’optimisation des
paramètres proposée est résumée dans l’algorithme 1.

Algorithm 2 Procédure d’optimisation des paramètres
Require: µ, h,θ0

Initialiser Wout
0 en minimisant L(θ0,W

out)
for i = 1, 2, . . . , do

Sélectionner aléatoirement une direction c ∈
{1, 2, . . . , p}
Définir le vecteur de direction di = ec
Calculer ∆i selon l’Equation 3.5
Mettre a jour les parametres: θi = θi−1 − µdi∆i

Mettre à jour Wout
i en minimisant L(θi,W

out)
end for

C.2.2 Les données et leur prétraitement

Nous évaluons les performances de l’algorithme d’optimisation d’hyperparamètres pro-
posé à l’aide d’implémentations en simulation (Section C.2.1) et en matériel. En plus
des tâches de classification pratiques, telles que la reconnaissance de chiffres parlés,
nous introduisons deux nouvelles tâches dans la littérature sur l’apprentissage automa-
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tique : la classification des diagrammes de contrôle et des anomalies dans la fabrication
des wafers. Nos résultats et conclusions pour la tâche de reconnaissance des chiffres
parlés sont cohérents avec les deux tâches. Par conséquent, dans ce résumé, dans un
souci de concision, nous ne présenterons que les resultats la tâche de reconnaissance
des chiffres parlés.

La classification des chiffres prononcés est couramment utilisée comme référence
en recherche sur les RCs. Nous avons utilisé le jeu de données TIDIGITS LDC93S10
[146], qui comprend des enregistrements réalistes avec du bruit, des distorsions et des
variations de locuteurs. Il compte 326 locuteurs enregistrant les chiffres de 0 à 9 en
anglais. Nous avons sélectionné 1500 fichiers audio répartis également selon le sexe
et l’âge. Les fichiers ont été tronqués à une longueur de 10k échantillons (voir Figure
C.2a), permettant des longueurs d’entrée fixe. Un prétraitement a été appliqué pour
extraire les coefficients MFCC [147] (voir Figure ).
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Figure C.2: (a) Un profil sonore correspondant à la prononciation du chiffre 5 avec une
représentation visuelle des coefficients MFCC dans (b).

C.2.3 Résultats expérimentaux

En plus de la fonction de perte dans l’Equation 3.2, nous utilisons le Taux d’Erreur
de Classification (TEC) pour évaluer les performances du modèle. Le TEC mesure
l’étendue des mauvaises classifications en pourcentage (%) et est calculé comme suit :

TEC (%) =
Nombre d’entrées mal classées

Cardinalité de l’ensemble de test
× 100. (3.25)

Dans le cas particulier de la tâche des chiffres parlés, le TEC est également couramment
appelé Taux d’Erreur de Mots (TEM), car les entrées sont classées comme des mots.

La Table C.1 présente les mesures de performance des trois méthodes après optimi-
sation RC pour la tâche de reconnaissance de chiffres parlés. Il est important de men-
tionner que la méthode proposée et SAN obtiennent des TEMs similaires après conver-
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Recherche
en grille SAN SGD

α 0.06 0.05 0.05
β 0.13 0.13 0.13
TEM (%) 2.10 1.88 1.80
Nombre d’étapes (S) 15000 3400 250

Table C.1: Les résultats de l’optimisation montrant les hyperparamètres, le TEM et le
nombre d’étapes S pour la tâche des chiffres parlés.

gence dans cette application. Nous pourrions améliorer le TEM obtenu par recherche
en grille après optimisation, mais cela se ferait au prix d’une complexité accrue en util-
isant une grille de valeurs plus fine. De plus, nous observons que la complexité algorith-
mique, qui est essentiellement proportionnelle au nombre d’étapes S défini précédem-
ment, montre que l’algorithme proposé surpasse les deux méthodes concurrentes d’au
moins un facteur de 13, 6 en termes d’efficacité algorithmique.

Pour la tâche des diagrammes de contrôle nous faisons une observation similaire
à celle de la tâche des chiffres parlés. Pour atteindre une convergence d’environ 2%

de taux d’erreur, SAN nécessite 3550 étapes, tandis que notre méthode nécessite 1300

étapes. Cela correspond à une réduction de la complexité de notre méthode par un fac-
teur de 2, 73. Egalement, pour la tâche de classification des wafers, un taux d’erreur
d’environ 2% est obtenu avec SAN après 4200 étapes, tandis que notre méthode néces-
site 1200 étapes. Cela correspond à une réduction de complexité de notre méthode par
un facteur de 3, 5.

C.3 RC pour la détection de la maladie d’Alzheimer

Nous proposons une méthodologie d’évaluation du coût énergétique sur l’exemple de
la détection de la maladie d’Alzheimer à une stage précoce. La maladie d’Alzheimer
est une maladie du cerveau qui entraîne une destruction lente mais progressive de la
mémoire et une détérioration des compétences comportementales et sociales. Cela ré-
sulte de la destruction progressive des cellules nerveuses dans différentes parties du
cerveau. La maladie fait partie de la démence, un terme général décrivant les symp-
tômes associés au déclin des capacités de réflexion, d’apprentissage et de mémorisation
d’un individu. La maladie d’Alzheimer perturbe le travail et la vie sociale des patients,
les rendant incapables d’accomplir des tâches quotidiennes. Elle affecte le lobe frontal,
la région du cerveau responsable des fonctions exécutives telles que le comportement
contrôlé et la planification volontaire des mouvements [164]. Par conséquent, les mal-
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Figure C.3: Les graphiques pour SAN (gauche) et SGD (droite) pour le RC simulé
sont présentés ci-dessous. (a) et (b) pour l’évolution de la mise à l’échelle de l’entrée
(α), (c) et (d) pour l’évolution de la mise à l’échelle de la rétroaction (β), et (e) et (f)
montrent l’évolution de la fonction du coût et du TEM, respectivement, pour la tâche
de reconnaissance de chiffres parlés.

adies neurodégénératives comme la maladie d’Alzheimer peuvent être caractérisées en
observant leur impact sur les mouvements.

L’étude [165] montre que la pathologie peut être caractérisée en analysant le con-
trôle moteur fin et la coordination des patients. L’écriture est une tâche qui nécessite
de la coordination et un contrôle moteur fin, alors l’impact de la maladie se manifeste
dans l’écriture manuscrite des patients. L’écriture manuscrite est donc un biomarqueur
important permettant de distinguer certaines pathologies cérébrales [165–177].

Nous analyserons quantitativement les avantages de l’utilisation de RC sur des tâches
de classification de l’écriture manuscrite par rapport aux modèles plus complexes, BiL-
STM et CNN, en utilisant les données de l’écriture manuscrite pour la detection de la
maladie d’Alzheimer (Early-stage Alzheimer’s disease detection, ES-AD). Nous éval-
uerons leurs performances en utilisant l’exactitude des prédictions et étendrons la com-
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paraison pour inclure des estimations de la consommation d’énergie. L’objectif est de
proposer une solution non seulement précise, mais aussi qui présente la meilleure effi-
cacité énergétique.

C.3.1 Les données

Les données de l’écriture manuscrite (Handwritting, HW) de cette étude ont été ac-
quises à l’Hôpital Broca à Paris par les auteurs de l’article [161] et ont été traitées dans
de nombreuses autres études [171, 172, 187]. Elles se composent de trois groupes de
participants, tous âgés de plus de 60 ans, à savoir :

• Les témoins en bonne santé (Healthy controls, HC) : Ce groupe est composé de
membres soigneusement sélectionnés après des examens neuropsychologiques.
Leur diagnostic a montré des profils cognitifs normaux sans signes de la maladie
d’Alzheimer aux stades précoce ou avancé.

• Les troubles cognitifs légers (Mild cognitive Impairement, MCI) : Il s’agit du
groupe sélectionné sur la base du diagnostic selon les recommandations de l’article
[188], en effectuant des tests cognitifs généraux et des tests non-mnémoniques.

• Les patients atteints d’Alzheimer à un stade précoce (AD) : Ce groupe est com-
posé de patients ayant les signes précoces de la maladies.

Les participants ont été invités à écrire quatre ensembles de ℓℓℓℓ en cursif pour
former un motif présenté dans la Figure C.4. Dans cette thèse, seuls deux groupes
parmi les trois mentionnés précédemment seront pris en compte pour la classification,
le groupe des personnes atteintes de la maladie d’Alzheimer à un stade précoce et le
groupe des témoins en bonne santé.

(a) (b)

Figure C.4: (a) et (b) sont des ensembles de ℓ tracés par un participant confirmé être
respectivement à un stade précoce de la maladie d’Alzheimer et du groupe de contrôle.

Les deux groupes d’intérêt comprennent uniquement 54 participants. Pour entraîner
correctement un modèle de réseau de neurones artificiels, il est nécessaire d’avoir un
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nombre suffisant d’exemples pour entraîner le modèle afin d’obtenir des performances
acceptables. Heureusement, chacun des 54 participants a dessiné 16 lettres ℓ-cursives
distinctes, qui peuvent être considérées comme des données séparées [161].

C.3.2 L’efficacité computationnelle et énergétique

Conformément à notre discussion sur l’impact environnemental de l’IA dans l’introduction,
nous évitons de tirer la conclusion simpliste qu’un modèle est le meilleur modèle unique-
ment en se basant sur la précision des prédictions. Nous étendons nos études pour
inclure la complexité et l’effort de calcul nécessaires pour obtenir les performances
rapportées. À cette fin, il existe plusieurs approches pour estimer le coût engendré par
l’exécution d’algorithmes sur des processeurs électroniques:

• L’énergie en kWh nécessaire pour alimenter le système pendant l’exécution. On
estime uniquement la consommation d’énergie par les DRAM, les CPUs et les
GPUs en ignorant tous les autres composants.

• Le dioxyde de carbone (CO2) et les équivalents en gaz à effet de serre (GES)
en utilisant l’unité : (CO2eq). La quantité de ces gaz rejetés dans l’atmosphère
dépend de la nature des sources d’électricité fournies au réseau.

• Opérations en virgule flottante et temps d’exécution : Pour estimer le coût re-
latif de l’entraînement et de l’inférence, des tâches qui prennent beaucoup moins
de temps, nous utilisons le nombre d’opérations en virgule flottante (Floating
Point Operations FPO), la durée d’exécution et le nombre de paramètres entraîn-
ables des modèles. Pour compter les FPO effectuées par les processeurs tout au
long de la tâche, nous utilisons un outil appelé PAPI [196].

• Pour la mise en œuvre matérielle du RC, nous calculons la somme des puis-
sances consommées par les différents composants de l’installation pour estimer
la consommation d’énergie lors de l’exécution de l’expérience sur le matériel.
L’estimation fournie est une estimation moyenne approximative de la puissance
consommée lors d’exécutions répétées, mais elle donne un aperçu des ordres de
grandeur des coûts.

C.3.3 Expériences de classification

L’objectif est de diagnostiquer l’état du patient en tant que malade (AD) ou non (HC).
Nous définissons cela comme un problème de classification et proposons des mod-
èles qui prédiront l’état du patient en fonction de leur ensemble de boucles écrites.
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Nous implementons trois modèles pour cette tâche : le BiLSTM, le CNN et le modèle
RC. Le modèle RC est implémenté à la fois en simulation informatique et en version
optoélectronique matérielle. Nous réimplémentons également l’approche des auteurs
[172] basée sur le regroupement par k-Medoids utilisant la Dynamic Time Warping
(DTW) comme mesure de dissimilarité, suivie du classifieur bayésien pour agréger la
contribution des groupes et effectuer des prédictions. Pour évaluer les performances de
classification dans nos expériences, nous utilisons les métriques suivantes la précision
(Pre: pourcentage global d’individus correctement classés), la sensibilité (Sens : Le
pourcentage de patients Alzheimer correctement classés) et la spécificité (Spec : Le
pourcentage de personnes saines correctement classées).

Résultats sur la précision de classification

Pour chacun des modèles étudiés, nous optimisons et sélectionnons le modèle final
en utilisant la NCV décrite ci-dessus selon une recherche exhaustive (voir Table C.2).
Nous constatons que les modèles récurrents traitant l’entrée comme une série tem-
porelle, c’est-à-dire BiLSTM et RC, surpassent les méthodes statiques (CNN et k-
Medoids). Le BiLSTM atteint la plus haute précision, ce qui conduit à la conclusion
qu’il est le modèle le plus sensible et le plus précis parmi les modèles étudiés. Avec
une précision de 88%, il dépasse RC et CNN respectivement de 3% et 5%. CNN est le
moins précis des trois modèles étudiés, avec une précision de 83%, et il offre également
la sensibilité la plus faible à la pathologie.

Méthode Pre (%) Sens (%) Spec (%)
BiLSTM 88 96 79

Digital RC 85 88 83
CNN 83 75 91

k-Medoids [172] 74 75.6 72.2

Table C.2: Une comparaison des métriques de performance pour tous les modèles.

Résultats sur les coûts d’entraînement, de sélection du modèle et d’inférence

Nous estimons les coûts d’optimisation et de sélection du modèle final pour le RC
numérique et le BiLSTM utilisant le framework experiment-impact-tracker, car ce sont
les deux modèles que nous avons conçus à partir de zéro et ce sont les deux meilleures
méthodes en termes de précision dans la Table C.2. Les résultats de la consomma-
tion et de l’impact environnemental sont résumés dans la Table C.3. L’énergie élec-
trique consommée est exprimée en kilowatt-heure (kWh) et la masse correspondante
de CO2 rejetée par nos expériences d’optimisation est exprimée en kilogrammes de
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CO2 et d’équivalent GES. Pour explorer et sélectionner les paramètres optimaux pour
l’approche BiLSTM, il a fallu utiliser 9.312 kWh d’énergie électrique. L’approche RC
a quant à elle nécessité seulement 1.156 kWh. Par conséquent, le modèle BiLSTM
coûte plus de 8 fois plus cher en électricité que l’approche RC numérique et prend 44
heures (comparé à 21 heures) pour terminer l’optimisation sur notre processeur Intel
Xeon E5− 1603. Ces résultats sont basés sur les informations du réseau électrique de
la ville de Palaiseau en France où l’expérience a été réalisée. Par conséquent, un total
de 0.586 kg de CO2 et d’équivalent GES est rejeté dans l’atmosphère par nos expéri-
ences. Dont 0.521 kg proviennent de l’optimisation du BiLSTM, tandis que le RC a
contribué à hauteur de 0.065 kg dans l’atmosphère. En conséquence, l’optimisation du
RC a un impact environnemental relativement plus faible que le BiLSTM en raison des
émissions moins élevées, comme le montre également la Table C.3.

Méthodee CO2eq (kg) Énergie (kWh) Durée (heures)
BiLSTM 0.521 9.312 44

Digital RC 0.065 1.156 21

Table C.3: La consommation énergétique pour l’optimisation des hyperparamètres et
la sélection du modèle final pour le RC et le BiLSTM.

Les résultats de consommation d’énergie et d’émissions présentés précédemment
incluent un grand nombre de cycles d’entraînement et de tests. Cependant, nous souhaitons
maintenant examiner les coûts de l’entraînement seul, de manière relative entre les
modèles fonctionnant sur le même processeur. Malheureusement, experiment-impact-
tracker n’a pas pu être utilisé pour estimer directement l’énergie et les émissions pen-
dant l’entraînement, car les temps d’entraînement étaient courts pour les modèles con-
sidérés. Néanmoins, nous calculons le nombre de paramètres et les opérations en vir-
gule flottante à l’aide de PAPI pour avoir un aperçu des coûts relatifs de l’entraînement
de chaque modèle. Les résultats de cette expérience sont présentés dans la Table C.4.

Dans cette expérience, le CNN avait le plus grand nombre de paramètres et né-
cessitait le plus d’efforts de calcul. Par rapport au RC, le CNN a 1947 fois plus de
paramètres nécessitant une optimisation par l’entraînement. L’optimisation a nécessité
plus de 110 fois les opérations en virgule flottante requises par le RC pour atteindre
l’optimalité. k-Medoids est la deuxième méthode la plus coûteuse malgré sa moindre
précision. L’entraînement a nécessité environ 7 fois plus d’efforts de calcul par rapport
au RC, avec environ 1250 fois plus de paramètres nécessitant une optimisation. Les
deux méthodes les moins coûteuses sont également les deux plus performantes pour
la tâche. Le BiLSTM, le modèle le plus performant, a dépassé le RC de 3% en ter-
mes de précision de prédiction. Toutefois, cette amélioration des performances a été
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obtenue en optimisant plus de 687 fois le nombre de paramètres du RC. L’effort de cal-
cul en termes d’opérations en virgule flottante pour l’optimisation des paramètres du
RC représente seulement 63% de l’effort requis par le BiLSTM, ce qui implique des
économies de 37%.

Méthode Paramètres entraînables Milliards de FPOs
CNN 1168417 1313.09

k-Medoids 750016 83.98
BiLSTM 412289 18.93

Digital RC 600 11.92

Table C.4: Estimations du nombre des FPOs nécessaires pour l’entraînement.

Le modèle final entraîné est maintenant prêt à être déployé pour servir de mod-
èle prédictif. Cela signifie que le modèle sera alimenté en continu avec des entrées
provenant de nombreux nouveaux patients afin de fournir un diagnostic. Un bon mod-
èle pour ce cas devrait avoir des coûts réduits lors d’une utilisation répétée tout en
maintenant une précision raisonnable. Pour mesurer cela, nous analysons le nombre
d’opérations en virgule flottante (FPOs) requises par les modèles pour l’inférence. Nous
comptons les FPOs couvrant le chargement du modèle sauvegardé, le chargement des
données et l’ensemble du processus aboutissant à une seule prédiction. Le résumé des
résultats de cette expérience est présenté dans la Table C.5. Remarquez que, même lors
de l’inférence, le RC numérique et le BiLSTM nécessitent le moins d’efforts de calcul.
Par exemple, le RC ne nécessite que 15.7% du nombre de FPOs nécessaires au BiL-
STM pour effectuer une prédiction. Une fois de plus, pour l’inférence, le modèle CNN
a nécessité le plus d’efforts de calcul, suivi par k-Medoids. Néanmoins, les gains pour
RC par rapport aux autres modèles sont beaucoup plus importants ici, car la prédiction
se réduit maintenant à une simple opération de multiplication matricielle.

Méthode Millions de FPOs
CNN 79.8

k-Medoids 54
BiLSTM 8.64

Digital RC 1.36

Table C.5: Estimations du nombre des FPOs nécessaires pour l’inférence.

Les résultats sur les coûts pour RC physique

Nous avons constaté que 49% des efforts de calcul sont consacrés à la projection de
l’entrée, c’est-à-dire au calcul des états du réservoir tel que décrit dans l’équation 2.1.
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La faisabilité matérielle du RC offre la possibilité de réduire ces FPOs en external-
isant les opérations de projection vers une configuration réservoir optoélectronique
dédiée. Nous appelons cela le RC matériel, et ladite projection sera effectuée de manière
analogique plus rapide. Ce faisant, seule l’opération de régression pour calculer W out

est mise en œuvre sur un processeur numérique pour le RC matériel, similaire à la
variante numérique. Nous estimons la consommation d’énergie moyenne par le pro-
cesseur et la configuration optoélectronique pour la projection et les comparons dans
la Table C.6. Pour la configuration matérielle, la puissance consommée est estimée
approximativement en additionnant les énergies consommées par les composants actifs
de la configuration. Pour le RC numérique, l’énergie consommée pour la projection est
obtenue en exécutant plusieurs fois les projections et en calculant l’énergie moyenne
consommée pour une seule exécution. Bien que les valeurs estimées soient approxima-
tives, elles indiquent des coûts énergétiques inférieurs pour la configuration matérielle.
Pourtant, il y a une réduction marginale de précision de 2% pour le RC matériel par
rapport au RC numérique. Cela peut être dû à la nature plus bruyante des expériences
matérielles et/ou à l’ajustement limité et difficile des composants physiques.

- Énergie (kWh) Pre (%) Sens (%) Spec (%)
Digital RC 1.147× 10−4 85 88 83

Hardware RC 8.3× 10−5 83 92 74

Table C.6: Consommation d’énergie estimée pour la couche de réservoir.

C.4 Machine de Ising pour l’optimisation combinatoire

Nous avons présenté des systèmes physiques bio-inspirés composés d’un grand nom-
bre d’éléments simples interconnectés qui possèdent des propriétés computationnelles
intéressantes. Toutefois, nos discussions portaient uniquement sur des mises en œuvre
non autonomes de systèmes neuromorphiques qui sont pilotés par un signal d’entrée et
nécessitent une technique d’apprentissage (supervision) pour que leur calcul soit con-
sidéré comme utile. Explorons maintenant une variante en mode de fonctionnement au-
tonome et non supervisée des systèmes neuromorphiques. Cette discipline manque de
comparaisons avec d’autres techniques d’optimisation quasi-globale ainsi que d’évaluations
de l’efficacité énergétique des systèmes proposés, et nous contribuerons à combler cette
lacune. Suivant la philosophie de cette thèse, nous étudions une architecture matérielle
d’une machine de Ising cohérente (Coherent Ising Machine, CIM) basée sur des com-
posants de télécommunication disponibles sur étagère. Notre étude considère la mise
en œuvre d’un tel système dans une simulation numérique, suivie d’une configuration
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physique. Outre l’architecture matérielle, les principales nouveautés de notre explo-
ration sont les suivantes : d’un point de vue applicatif, nous démontrons le potentiel de
la CIM pour le débruitage statistique d’images ; d’un point de vue système, nous com-
parons le système mixte matériel/numérique proposé à une mise en œuvre numérique
standard des réseaux de Hopfield et du recuit simulé (simulated Annealing, SAN) [144]
en termes de probabilité d’atteindre l’état fondamental moyen, de complexité de calcul
et de consommation d’énergie.

C.4.1 Les problèmes d’optimisation combinatoire

Les systèmes dépendant de plusieurs paramètres pour caractériser leur fonctionnement
sont nombreux dans des scénarios variés du monde réel. L’optimisation combinatoire
consiste à rechercher une solution dans un ensemble discret (éventuellement multi-
dimensionnel) de telle sorte qu’une fonction objectif du système soit optimisée (soit
maximisée ou minimisée). L’espace de recherche pour les problèmes d’optimisation
combinatoire se développe rapidement avec l’augmentation du nombre de paramètres,
ce qui prolonge la durée de la recherche. En termes de complexité computationnelle,
ces problèmes sont considérés comme des problèmes NP-difficiles. Une méthode di-
recte pour aborder les problèmes d’optimisation combinatoire est la méthode de la force
brute, capable d’obtenir des solutions exactes, mais connue pour sa difficulté à gérer
l’explosion exponentielle de l’espace de recherche, ce qui entraîne une complexité ac-
crue.

Optimisation MAXCUT

Ce problème consiste à trouver la division d’un graphe en deux sous-graphes de manière
à maximiser le nombre (ou la somme de leurs poids) d’arêtes coupées. Supposons que
G = [V,E] soit un graphe avec un ensemble de sommets V et un ensemble d’arêtes
E. Une coupure est une partition de G en G1 = [V1,E1] et G2 = [V2,E2], telle
que V1 ∩V2 = ∅. Trouver les coupures correspondant au nombre maximal possible
d’arêtes coupées, connu sous le nom de problème MAXCUT, est l’un des premiers défis
identifiés comme étant des problèmes NP-complets. Heureusement, le problème peut
être reformulé de telle sorte que la recherche d’une solution devienne équivalente à la
minimisation de l’hamiltonien de Ising [214].

Débruitage d’images

L’avènement des appareils photo, des télescopes puissants et des microscopes a entraîné
une multiplication des images prises pour capturer des souvenirs, étudier les galaxies
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et observer le monde des micro-organismes. Malheureusement, des images subissent
une dégradation due au bruit lié aux imperfections des capteurs photo, introduit par les
canaux de transmission ou lors de la compression des images obtenues. Le problème
de l’image bruitée peut être formulé en supposant que l’image propre y est soumise à
un bruit additif η de sorte que l’image bruitée soit ŷ = y + η. Le débruitage d’image
consiste donc à restaurer y à partir de ŷ, et reste un problème difficile. De multiples
solutions ont été proposées, telles que le filtrage, la régularisation de Tikhonov et les
réseaux de neurones convolutionnels (CNN). Nous considérons des images en noir et
blanc corrompues par un bruit de type "Salt and Pepper" et les formulons de telle sorte
que chaque pixel clair (foncé) soit un spin vers le haut (vers le bas).

C.4.2 Machine de Ising numérique et son implementation physique

En suivant [34], nous mettons en œuvre numériquement un réseau de Hopfield général-
isé à l’instant discret k sous la forme suivante :

xs(k) = f

Ñ
αxs(k − 1) + β

Ñ ∑
t:(s,t)∈N

Js,txt(k − 1) + bs

éé
σ̂s(k) = sign(xs(k)), ∀s ∈ Ω

(5.4)

où f(.) est une fonction d’activation non linéaire (par exemple, une sigmoïde, une
non-linéarité périodique ou tronquée comme suggéré dans [218]), α et β sont des co-
efficients d’échelle qui contrôlent le couplage propre et la force de rétroaction affectant
la sortie du neurone xs(k), tandis que σ̂s(k) est l’estimation de spin du pixel s. Cette
formulation vise à optimiser l’énergie du système definie comme suit:

E(σ) = −1

2

∑
(s,t)∈N

Js,tσsσt −
∑
s∈Ω

bsσs. (5.2)

La machine de Ising numérique exécute une implémentation en Python de l’algorithme
décrit par l’Equation 5.4 sur un processeur Intel Xeon E5-1603. La fonction non-
linéaire est la fonction sin2(.)(imitant la fonction de transfert du MZM). Par rapport
à une architecture Von-Neumann conventionnelle pour l’implémentation numérique,
un traitement mixte analogique/numérique sous la forme d’une CIM peut permettre
des économies en termes de vitesses de traitement réalisables et de consommation
d’énergie. Les solutions à haute vitesse pour les problèmes d’optimisation combina-
toire sont très attrayantes pour les applications nécessitant un traitement en temps réel
ou une adaptation à des environnements en constante évolution.
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Figure C.5: Configuration expérimentale du CIM opto-électronique proposé. Vbias est
le contrôle de tension de polarisation du MZM.

C.4.3 Experiences, résultats et les discussions

Dans cette section, nous évaluons et comparons l’architecture CIM optoélectronique à
la Figure C.5 selon les métriques de performance suivantes:

• La probabilité de réussite d’atteindre (ou d’approximer) l’état fondamental.

• La complexité mesurée par le nombre d’opérations en virgule flottante (FPOs)

• La consommation moyenne d’énergie des éléments constitutifs.

Nous comparons ces métriques avec celles du CIM implémenté numériquement, et nous
utilisons SAN basée sur l’échantillonneur de Gibbs [224] comme méthode de référence.
Sauf indication contraire, N est choisi comme l’ensemble des couples de plus proches
voisins à 4 points dans le réseau avec des conditions limites périodiques. Pour le CIM
numérique et optoélectronique, la configuration initiale des spins est choisie de manière
uniforme et indépendante au hasard, la fonction d’activation f(.) est celle définie par
[34] les hyperparamètres sont fixés à (α = 0.25, β = 0.29), tandis que le nombre
d’itérations est fixé à Nit = 100. Aussi, nous utilisons SAN avec une température
initiale de 2, un paramètre de recuit géométrique égal à 0.99, et 200 itérations [224].
Aussi, la légende adoptée pour toutes les images est la suivante : jaune vif pour spin-up
(+1) et violet foncé pour spin-down (−1). Nous étudions deux problèmes qui peu-
vent être formulés comme la minimisation d’un hamiltonien ayant la forme donnée par
l’Equation 5.2, tels que le modèle de Ising antiferromagnétique et le débruitage d’image
MAP en utilisant la machine de Ising cohérente (CIM) optoélectronique, à la fois dans
les simulations et les implémentations matérielles.
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Le modèle de Ising antiferromagnétique.

Nous commençons par un exemple de faible dimension où n = 10 avec des interac-
tions antiferromagnétiques, c’est-à-dire Js,t = −1 ∀(s, t) ∈ N et bs = 0 ∀s ∈ Ω. Il
est bien connu que l’état fondamental correspond à un motif de damier (configuration
alternée de spins hauts et bas avec une énergie minimale égale à −n2). La solution
exacte avec ce motif est illustrée à la Figure C.6c pour un réseau de 10× 10. Dans nos
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Figure C.6: Les spins initiaux (Itération = 0) sont choisis de manière aléatoire et in-
dépendante pour le CIM numérique, tandis que pour le CIM optoélectronique, le bruit
du système initialise les spins. Un motif de damier apparaît (Itération = 25) et se sta-
bilise lorsque le système converge (Itération = 50 à 200).
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Figure C.7: L’évolution de l’énergie pour une seule exécution de la grille carrée de
spins avec des interactions antiferromagnétiques.

expériences, la Figure C.6 représente la configuration initiale et finale estimée des spins
pour une seule exécution du CIM optoélectronique proposé, qui converge avec succès
vers l’état fondamental. Au cours d’une seule exécution réussie, la Figure C.7 montre
que le CIM optoélectronique proposé et le CIM numérique ont des dynamiques simi-
laires, la convergence étant généralement atteinte après quelques dizaines d’itérations.
la Tableau C.7 résume nos mesures de performance en répétant toutes les expériences
mentionnées précédemment indépendamment 1000 fois.
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Metric Digital Optoeletronic SAN
CIM CIM

Success probability (%) 91.4 90 98.9
Time (ms) 10 2.1 79

FPOs (×106) 0.76 0.32 5.68
Énergie (×10−6 kWh) 0.6 3× 10−4 14

COeq (×10−6kg) 0.044 2.2× 10−5 1

Table C.7: Performance moyennes pour le modèle antiferromagnétique.

Débruitage d’images au sens du maximum a posteriori (MAP)

Nous considérons ici une image cachée en noir et blanc (σs)s∈Ω devant être restau-
rée à partir d’une image observée (ys)s∈Ω selon un modèle de bruit "salt and pepper",
c’est-à-dire ys = −σs avec une probabilité p et ys = σs avec une probabilité 1 − p,
indépendamment pour chaque pixel s ∈ Ω. Dans notre configuration, n = 64 et la
distribution de probabilité a priori des spins est choisie comme le champ aléatoire de
Markov (MRF) avec le paramètre de couplage entre les pixels voisins fixé à 1 (interac-
tions ferromagnétiques). Il est facile de montrer que le débruitage d’image au sens de
maximum a posteriori (MAP) correspond à la sélection de Js,t = 1 pour tous (s, t) ∈ N
et bs = −1

2
log
Ä

p
1−p

ä
ys pour tous les s ∈ Ω (comme dérivé dans l’annexe B).

La Figure C.8a présente l’image initiale bruitée (pour p = 0.2 ), Figure C.8b et
Figure C.8c après l’exécution, du CIM numérique et du CIM optoélectronique respec-
tivement. Au cours d’une seule exécution réussie, la Figure C.9 montre que le CIM
optoélectronique proposé et le CIM numérique ont des dynamiques similaires, avec
une convergence généralement atteinte après 15 itérations. la Table C.8 résume nos
métriques de performance - en ajoutant le taux d’erreur de classification pixel par pixel
(Pixel-wise classification error rate: PCER %) - en répétant toutes les expériences men-
tionnées précédemment indépendamment 1000 fois.

Métrique Digital Optoeletronic SAN
CIM CIM

Probabilité de réussite (%) 89 86.75 100
PCER (%) 2.3 3 1.7

Temps (ms) 4110 86 39130
FPOs (×109) 0.7 0.0131 7.1

Énergie (×10−6 kWh) 90 1.45× 10−2 1100
COeq (×10−6kg) 5 8× 10−4 62

Table C.8: Performance pour la débruitage d’images au sens MAP
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(a) (b) (c)

Figure C.8: (a) Une image bruitée initiale (itération= 1). Après 100 itérations nous
obtenons respectivement (b) et (c) pour les CIM numérique et opto-électronique.
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Figure C.9: Évolution de l’énergie de débruitage d’image au sens de MAP.

Pour cette application, nous constatons que SAN atteint l’état fondamental pour
toutes les exécutions, tandis que le CIM numérique et le CIM matériel atteignent l’état
fondamental dans 89% et 86, 75% des exécutions respectivement. Les critères de réus-
site sont définis par le système qui se situe dans les trois écarts-types de l’énergie
moyenne de l’état fondamental, qui est d’environ E(σ) = −5550, correspondant ainsi
à un intervalle de confiance de 98%. Les images propres générées par SAN ont un
taux d’erreur de classification pixel par pixel (PCER) de 1, 7%, tandis que les CIM
numérique et matériel convergent vers un PCER de 2, 3% et 3% respectivement. Pour-
tant, une analyse plus approfondie révèle que les performances de SAN sont obtenues à
un temps d’exécution environ 9,5 fois plus élevé, 10 fois le nombre des FPOs et avec une
consommation d’énergie 12,22 fois plus élevée (facteur identique pour les émissions de
COeq) par rapport au CIM numérique. Les émissions de COeq sont rapportées en tenant
compte de la nature des réseaux électriques dans la ville de Palaiseau en France. Les
résultats de consommation d’énergie pour le CIM matériel montrent un gain de facteur
6216 et 75970 en termes d’énergie et d’impact environnemental.
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Titre: Systèmes photoniques neuro-morphiques pour le traitement et le transport de
l’information.

Mots clés: Reservoir Computing, Machine d’Ising, Photonique, Neuromorphique

Résumé: Par une utilisation performante
de nombreux algorithmes dont les réseaux
neuronaux, l’intelligence artificielle révo-
lutionne le développement de la société
numérique. Néanmoins, la tendance
actuelle dépasse les limites prédites par la
loi de Moore et celle de Koomey, ce qui
implique des limitations éventuelles des im-
plémentations numériques de ces systèmes.
Pour répondre plus efficacement aux besoins
calculatoires spécifiques de cette révolution,
des systèmes physiques innovants tentent
en amont d’apporter des solutions, nommés
"neuro-morphiques" puisqu’ils imitent le
fonctionnement des cerveaux biologiques.
Les systèmes existants sont basés sur des
techniques dites de "Reservoir Computing"
ou "coherent Ising Machine." Leurs ver-
sions photoniques, ont permis de démon-
trer l’intérêt de ces techniques notamment
pour la reconnaissance vocale avec un état

de l’art en 2017 attestant de bonnes perfor-
mances en termes de reconnaissance à un ry-
thme d’1 million de mots par seconde. Nous
proposons dans un premier temps une tech-
nique d’ajustement automatique des hyper-
paramètres pour le "Reservoir Computing",
accompagnée d’une étude théorique de con-
vergence. Nous proposons ensuite une solu-
tion au problème de la détection précoce de
la maladie d’Alzheimer de type "Reservoir
Computing" optoélectronique. En plus des
taux de classifications obtenus meilleurs que
l’état de l’art, une étude complète du com-
promis coût énergétique performance dé-
montre la validité de cette approche. En-
fin, le problème de la restauration d’image
par maximum de vraisemblance est abordé
à l’aide d’une implémentation optoélectron-
ique appropriée de type "coherent Ising Ma-
chine".

Title: Neuromorphic photonic systems for information processing and transport.

Keywords: Reservoir Computing, Ising Machine, Photonic, Neuromorphic

Abstract:
Artificial Intelligence has revolutionized the
scientific community thanks to the advent of
a robust computation workforce and Artifi-
cial Neural Neural Networks. However, the
current implementation trends introduce a
rapidly growing demand for computational
power surpassing the rates and limitations
of Moore’s and Koomey’s Laws, which im-
plies an eventual efficiency barricade. To re-
spond to these demands, bio-inspired tech-
niques, known as ’neuro-morphic’ systems,
are proposed using physical devices. Of
these systems, we focus on ’Reservoir Com-
puting’ and ’Coherent Ising Machines’ in
our works. Reservoir Computing, for in-

stance, demonstrated its computation power
such as the state-of-the-art performance of
up to 1 million words per second using pho-
tonic hardware in 2017. We propose an
automatic hyperparameter tuning algorithm
for Reservoir Computing and give a theo-
retical study of its convergence. Moreover,
we propose Reservoir Computing for early-
stage Alzheimer’s disease detection with a
thorough assessment of the energy costs ver-
sus performance compromise. Finally, we
confront the noisy image restoration prob-
lem by maximum a posteriori using an opto-
electronic implementation of Coherent Ising
Machine.
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