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Curriculum Vitae Abstract

Interactions between proteins are one of the foundations of the development of life and their identification and understanding are still major elements of fundamental and applied research. In this context, the focus is on post-translational modifications of proteins that can alter their efficiency and lifetime. In addition, specific interactions between proteins can now be studied at the atomic level thanks to the development of experimental methods for solving the structures of protein complexes. However, these methods still do not always provide the expected results and their cost, whether financial or in terms of time, may prevent the understanding of certain phenomena, particularly during the emergence of a health crisis such as COVID-19. This is why, in parallel, computational methods such as molecular docking or molecular dynamics have been developed. This thesis is situated in these two contexts: firstly, the prediction of O-GlcNAcylation sites, a post-translational modification, catalyzed by a single enzyme called OGT, which has been extensively studied and implicated in different diseases such as cancer, Alzheimer's disease and type 2 diabetes.

Secondly, in the context of COVID-19, interactions between human and viral proteins were highlighted through a world-wide study, in which the CAPRI protein docking experiment proposed several of these interactions to expert modelers of protein complexes in order to better understand the mechanisms of COVID-19.

The prediction of O-GlcNAcylation sites is not a new research field, as some tools for this type of prediction already exist. We have created a new data set, in order to compare and differentiate these. As the different algorithms consistently showed too many false positives, we developed an improvement based on a larger dataset but also on structural characteristics. However, the results still show too much heterogeneity to allow a safe prediction. Additional results support the theory that chaperone proteins are required for the enzyme to recognise its substrate. In order to better understand the mechanisms of this modification, the interaction between beta-catenin and OGT was specifically studied. This interaction has been shown to be involved in colorectal cancer and is therefore of particular interest.

Résumé

Les interactions entre les protéines sont l'une des bases du développement de la vie.

Leur identification et compréhension sont toujours des éléments majeurs de la recherche fondamentale et appliquée. Dans cette optique, on s'intéresse aux modifications post-traductionnelles des protéines qui ont la capacité d'altérer leur efficacité et leur durée de vie. Les interactions spécifiques entre protéines sont désormais étudiées au niveau atomique grâce au développement des méthodes expérimentales pour résoudre des structures de complexes protéiques. Cependant, ces méthodes ne permettent toujours pas d'obtenir les résultats escomptés et leur coût, que ce soit financier ou en termes de temps, peut empêcher la compréhension de certains phénomènes, notamment lors d'émergence de crise sanitaire comme le COVID-19. C'est pourquoi, en parallèle, des méthodes informatiques telles que l'amarrage moléculaire ou la dynamique moléculaire ont été développées. Cette thèse se situe dans ces deux contextes: dans un premier temps, la prédiction de sites de O-GlcNAcylation, une modification post-traductionnelle, catalysée par une seule enzyme appelée OGT, très étudiée qui est impliquée dans différentes maladies telles que le cancer, la maladie d'Alzheimer et le diabète de type 2. Dans un second temps, et ceci dans le contexte du COVID-19, des interactions entre les protéines humaines et virales ont été mises en avant mais avec la montée rapide de cas d'infection et les méthodes expérimentales étant trop longues, une expérimentation mondiale appelée CAPRI a proposé plusieurs des ces interactions aux modélisateurs du monde entier.

La prédiction de sites de O-GlcNAcylation n'est pas une recherche récente car des outils proposent déjà cette possibilité. Afin de les comparer, une base de données a été créée pour les différencier. Comme les différents logiciels montraient un trop grand nombre de faux positifs, une amélioration basée sur cette plus grande base de données mais aussi sur des caractéristiques structurelles a été proposée. Malgré cela, les résultats montrent une trop grande hétérogénéité pour permettre une prédiction sûre. Des résultats supplémentaires appuient la théorie du besoin de protéines auxiliaires pour permettre à l'enzyme la reconnaissance de son substrat. Afin de mieux comprendre les mécanismes de cette modification, l'interaction entre la beta-caténine et l'OGT a été étudiée spécifiquement. En effet, cette interaction a été montrée comme étant impliquée dans le cancer colorectal et révèle donc un intérêt particulier.

Pour établir la véracité des modèles proposés pour les interactions entre les protéines du SARS-CoV-2 et de l'humain, une méthode basée sur le consensus de tous les modèles produits a été développée. Au vu des premiers résultats, cette méthode semblait performante. C'est pourquoi sa capacité de prédiction a été testée sur une nouvelle grande base de données, fournie par CAPRI. Une fois encore, la méthode développée a montré de bons résultats. Elle a ensuite été comparée aux logiciels de scoring actuels et montre ici de meilleurs résultats. Hélas, cette méthode montre que les modèles d'interaction entre les protéines virales et humaines ne sont pas aussi fiables que souhaités. O-linked N-acetylglucosamine transferase mOGT: mitochondrial OGT ncOGT: nucleic and cytosolic OGT sOGT: small OGT ORF3a: ORF3a protein 13: Information regarding the quality of the models from the S-set of the four CAPRI previous targets chosen to validate the methods Table 14: Agglomerative coefficient of the four hierarchical clustering methods ("Average", "Single", "Complete", "Ward") applied on the fourth targets T181, T182, T183 and T184 
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I. General introduction A. Proteins

Proteins are biomolecules which participate in a variety of functions in life. They are composed of a chain of amino acids bonded by peptidic linkages at the output of ribosomes.

The ensemble of all proteins is called the proteome, and it corresponds to transcription of the information contained inside the genome. The residue chains are considered a protein if the size is above 20-30 residue long, under this value, they are called peptides. Proteins are defined by their sequences, which are themselves defined by the coding sequences of the DNA. DNA sequences can be divided in codons, which are sets of 3 nucleotides that together encode one residue. As there are 4 codons, 64 combinations are possible. In nature, 20 residues can be found meaning that multiple codons can code for the same amino acid.

Proteins are considered to have up to 4 different levels of structure: the first one is the amino acid sequence, the secondary structure is compound of different possibilities: helices, sheet, loop or coiled part determined by the backbone torsion angles in the amino acid residues, the tertiary structure also called three-dimensional structure is the native form of the structure in the organism and the last one which is not possible for every protein is called the functional assembly and is the interaction between at least two three dimensional proteins (see Figure 1). The function of a protein is related to its structure. Secondary structures will play a role in the final form of the protein and so in its function. The main helices found in protein structures are alpha helices; the form of helice is due to the protein backbone angles and the name of the helice depends on the number of residues found in one turn (3.6/3.7 amino acid per turn for an α-helix). These helices can have two opposite directions, the most common is the clockwise turn and the less frequent is the anticlockwise. This structure is stabilized by the hydrogen bonds between the carbonyl group and the amide group of the amino acid but also by van der Waals forces 1 . The other most common secondary structure is beta-sheet (β-sheet) which corresponds to the alignment of adjacent amino acid chains stabilized by hydrogen bonds. β-sheets can be divided into two categories: parallel and antiparallel depending on the orientation of the polypeptide chains. The antiparallel β-sheet is found more often than the parallel one and the reason may be that the stability is higher thanks to the straight hydrogen bonds. The most common number of chains is around 6 strands and the distance between two chains is generally around 7 Ångström (Å) and the length of one plate is between 6 and 15 residues.

The turn between the chains is called beta turn and is composed of 4 residues including proline, the only residue with a particular backbone. It allows a rotation thanks to the linkage between the carbonyl group and the amide group of the first and fourth amino acids respectively. This turn is part of what is called a loop 2 . Loop structures are parts of protein joining the other secondary structures (helices and beta-strands) with a length of 2 to 6 residues. These loops are responsible for the change of the chain direction and give the three-dimensional shape of the protein. The last category is the coil structure and it is not considered as a true secondary structure but more like a conformation. It is part of a protein with no secondary structure such as alpha-helix or beta-sheet but coil structure is participating in the stable conformation. Some parts of the coil region have a disordered region called random coil structure and are known to have a major role in ligand recognition or binding [START_REF] Romero | Natively Disordered Proteins: Functions and Predictions[END_REF] .

At the output of the ribosomes, some proteins can start to structure themselves and then be functional. Others will be modified by Post Translational Modifications (PTMs) in different cell compartments/organel such as golgi apparatus and the endoplasmic reticulum but also can be modified during their life inside a cytosol. These modifications will have an impact on the structure and therefore the activity of the protein right after the transcription or during the folding but also later in the protein life according to the cell cycle. Proteins are the living molecules inside the cell compared to the other molecules which are inert. They can interact with other molecules as protein, peptide, DNA, RNA, lipids or carbohydrates.

With this capacity of interacting, proteins are involved in many biological processes and can have activating, inhibitory or enzymatic activities, amongst others as signaling and transport.

As their structure is important for their functions, knowing it would help understanding their mechanisms. To that, different experiments have been developed through the years, starting with X-ray crystallization in the beginning of the second half of the twentieth century, by Max Perutz and Sir John Cowdery Kendrew 4 . Since then experimental methods have been improved and new methods have been developed (NMR, FTIR) and we are now able to perform cryo-electron microscopy on large macromolecular assemblies [START_REF] Zhou | Towards atomic resolution structural determination by single-particle cryo-electron microscopy[END_REF][START_REF] Schaefer | Methodological advances and strategies for high resolution structure determination of cellular protein aggregates[END_REF] . In parallel, as protein structures are not always easy to obtain, alternative methods as in silico experiments have emerged to predict structural information of proteins such as secondary, tertiary and quaternary structure but also surface solvent accessibility (SAS) and flexibility. Thanks to technological progress, these methods have also improved a lot lately and allow better prediction. To answer the need for prediction of secondary structure, many software have been proposed, mostly based on protein sequences and now with the larger amount of data with machine learning. It is the case of the PSI-PRED and SPIDER3 algorithm which can predict secondary structure, the dihedral angles and even the Accessible Solvent Area (ASA). These software help predict the tertiary structure of proteins and are often found in pipelines for three-dimensional structure prediction. With the improvement of secondary structure prediction, came best performance for 3D prediction, using template or ab initio algorithms.

These algorithms used information from already resolved structures but also some co-evolution signals.

To evaluate the performance of the protein structure prediction an experiment was created in 1994 called CASP for Critical Assessment of protein Structure Prediction.

Nowadays, CASP experiments are at a number of 15 rounds and show a recent major breakthrough in the protein 3D structure prediction. At the beginning of such prediction, the improvement of algorithms made a big jump, then with the improvement of experiments and the growing number of structures and so of data, machine learning brought a next generation of predictors. The top 10 servers according to the last CASP experiment from 2020 are the following: BAKER-ROSETTASERVER, QUARK, ZHANG-SERVER (also known as I-TASSER), RAPTORX, FEIG-S, TFOLD, T-FOLD-IDT, ZHANG-CETHREADER, ZHANG-TBM and TFOLD-CAT [START_REF] Pereira | High-accuracy protein structure prediction in CASP14[END_REF] . All of these servers are using deep learning and most of them are from the same lab (Zhang and Tfold), some of their algorithms are explained in These results showed the improvement of deep learning algorithms for protein structure prediction. Indeed, with the Google DeepMind software called AlphaFold2 using deep learning on multiple alignment matrices with coevolution signals, structure prediction has been made easily available with good results [START_REF] Jumper | Applying and improving AlphaFold at CASP14[END_REF][START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] . AlphaFold publication was released in 2020 and showed very good results during the CASP13 (2018) edition and better results during CASP14 (2020) with their second version of AlphaFold (AlphaFold2) compared to other predictors as it can be seen on Figure 2.

Figure 2. Rankings for the 2018 and 2020 CASP competitions

The main information here is that AlphaFold outperformed the other predictor groups. (From Foldit)

B. Protein-protein interaction

Interactions between proteins are known to be involved in many biological processes, from life development regarding the cell cycle with signal transduction to control and promote cell division. But these interactions can also be found in host-pathogen relations and through various diseases such as cancer [START_REF] Rabbani | Protein-protein Interactions and their Role in Various Diseases and their Prediction Techniques[END_REF][START_REF] Sun | A comparative study of cancer proteins in the human protein-protein interaction network[END_REF] . Protein function can be regulated by other proteins but also modified through post-translational modifications such as phosphorylation or glycosylation. Their function can also be regulated by peptides or small ligands and the need to highlight them is important to understand the different pathways but also to find interaction inhibitors or modulators in case of associated disease pathologies.

Even if the interactions between proteins can be predicted or found by experimental analyses, most of the time the results will be binary indicating if a protein A will interact with protein B but without giving any details. As no detail is given, the process on how the protein interacts is still unknown and there is a need to find where this interaction occurs while scanning the accessible surface area for example (ASA). If there is a need to understand the mechanism or if the interaction is a problem and finding an inhibitor is needed like in drug design/development then having a more detailed interaction even at an atomic level can be necessary. To this, scientists have developed a lot of experimental techniques such as X-ray crystallography, tandem affinity purification, affinity chromatography, coimmunoprecipitation, protein arrays, protein fragment complementation, phage display and NMR spectroscopy [START_REF] Rao | Protein-Protein Interaction Detection: Methods and Analysis[END_REF] .

As many experimental techniques exist to highlight or find specific Protein-Protein Interaction (PPI), they are still time and money consuming. A relatively cheap alternative is to predict these interactions by computational means [START_REF] Aderinwale | Computational structure modeling for diverse categories of macromolecular interactions[END_REF] . Indeed, even if they are predictions, some results are not possible to obtain experimentally yet, and these theoretical results can help to be close to reality. Predictive results can be discussed with a confidence score, representing the knowledge on which it is based and easily interpretable by humans, or algorithms alike. These in silico methods are to be seen complementary to experimental ones. If the latter are more accurate according to their conditions, the computational algorithms win time, orient research, find new approaches and other.

An extensive list of methods to detect PPI is listed in Table 2 1.

Approach Technique Summary

In vitro

Tandem affinity purification-mass spectroscopy (TAP-MS) TAP-MS is based on the double tagging of the protein of interest on its chromosomal locus, followed by a two-step purification process and mass spectroscopic analysis

Affinity chromatography

Affinity chromatography is highly responsive, can even detect weakest interactions in proteins, and also tests all the sample proteins equally for interaction

Coimmunoprecipitation

Coimmunoprecipitation confirms interactions using a whole cell extract where proteins are present in their native form in a complex mixture of cellular components

Protein microarrays (H) Microarray-based analysis allows the simultaneous analysis of thousands of parameters within a single experiment

Protein-fragment complementation

Protein-fragment complementation assays (PCAs) can be used to detect PPI between proteins of any molecular weight and expressed at their endogenous levels Phage display (H) Phage-display approach originated in the incorporation of the protein and genetic components into a single phage particle 

Phylogenetic tree

The phylogenetic tree method predicts the protein-protein interaction based on the evolution history of the protein

Phylogenetic profile

The phylogenetic profile predicts the interaction between two proteins if they share the same phylogenetic profile

Gene expression

The gene expression predicts interaction based on the idea that proteins from the genes belonging to the common expression-profiling clusters are more likely to interact with each other than proteins from the genes belonging to different clusters

Protein-protein modeling

The protein-protein modeling predicts atomic interaction between two proteins based on template or with a molecular docking or hybrid method For the rest of this manuscript, the methods used and developed are limited to protein-protein and peptide-protein docking, and PTM prediction based on sequences.

Protein-protein interaction for Post Translational Modifications

Post Translational Modifications (PTMs) are modifications which occur on proteins after their translation at the output of the ribosome. These interactions are known to be important for the cell as they may regulate protein activity and folding [START_REF] Leutert | Decoding Post-Translational Modification Crosstalk With Proteomics[END_REF] . PTMs increase the complexity of the proteome by expanding the proteins' functionalities. Nowadays, we estimate a diversity of modification superior to 300, localized on 15 proteinogenic residue side chains or protein backbone [START_REF] Walsh | Protein posttranslational modifications: the chemistry of proteome diversifications[END_REF] . These modifications can occur in the cytosol, in the nucleus, but mainly occur in the Endoplasmic Reticulum and the Golgi organelle. The PTM machinery is a crosstalk of enzymes which control the modifications, thereby defining their cellular function [START_REF] Leutert | Decoding Post-Translational Modification Crosstalk With Proteomics[END_REF] . They are made possible thanks to enzymes which modify protein through their catalytic activities. But some PTMs are enzyme free: glycation, carbamylation, carbonylation and the spontaneous isopeptide bond formation [START_REF] Inagi | Organelle stress and glycation in kidney disease[END_REF][START_REF] Jaisson | Carbamylation-Derived Products: Bioactive Compounds and Potential Biomarkers in Chronic Renal Failure and Atherosclerosis[END_REF][START_REF] Akagawa | Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches[END_REF][START_REF] Kang | Intramolecular isopeptide bonds: protein crosslinks built for stress?[END_REF] . In general, enzymes can be classified in three different categories: "Writers", "Erasers" and "Readers". The first category corresponds to enzymes which transfer modifying groups on the side chain of residues like kinases or glycosyltransferases which catalyze the addition of a phosphate or sugar group, respectively. This addition can be done onto a previously attached group, leading thusly to linearly extended or even branched polymers. The second category, "eraser" enzymes like phosphatases are proteins which catalyze the removal of these modifications on the substrate. The final group, "reader" enzymes, are often proteins that transduce a PTM-dependent function with high affinity to specific PTMs. The PTM crosstalk is summarized in Figure 3 from Leutert et al., 2021 15 . These different modifications induce the need of the enzyme to interact with at least their substrate.

Phosphorylation: kinase interaction

Phosphorylation is one of the most studied PTMs. Involved in many cellular activities like cellular signaling, apoptosis, cell growth and differentiation [START_REF] Singh | Phosphorylation: Implications in Cancer[END_REF] , its deregulation is often found in diseases like cancers. Indeed, the tyrosine kinase family includes the greatest number of oncoproteins. This modification is catalyzed by two kinds of enzymes; kinases and phosphorylases, which respectively add or remove a phosphate moiety on the hydroxyl group of serines, threonines and tyrosines [START_REF] Hunter | Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling[END_REF] . This modification leads to a modification of the substrate conformation or localization and even activates or deactivates it [START_REF] Cohen | The regulation of protein function by multisite phosphorylation--a 25 year update[END_REF][START_REF] Laarse | Crosstalk between phosphorylation and O-Glc NA cylation: friend or foe[END_REF] . The number of kinases and phosphatases is very high and has been estimated to correspond to 2 to 5% of the total human genome. This large amount of enzymes can be explained by the high number of proteins that can be phosphorylated. In fact, thousands of sites can be modified by phosphorylation, and it is estimated that they represent up to 30% of the proteome [START_REF] Cohen | The regulation of protein function by multisite phosphorylation--a 25 year update[END_REF] .

The multiple kinases can be grouped into families and subfamilies, according to which substrate is recognized. The specific interaction between a kinase and its substrate depends on specific patterns. Various in silico algorithms attempt to predict the phosphorylation site based on these different kinase families using a plethora of different algorithms [START_REF] Luo | DeepPhos: prediction of protein phosphorylation sites with deep learning[END_REF] . This modification is (often) in competition with another PTM called O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) [START_REF] Laarse | Crosstalk between phosphorylation and O-Glc NA cylation: friend or foe[END_REF][START_REF] Wang | Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc[END_REF] .

O-GlcNAcylation: one enzyme to modify them all

O-GlcNAcylation consists of the addition of a N-acetylglucosamine (GlcNAc) moiety onto hydroxyl group of serines or threonines of nucleus and cytosolic proteins [START_REF] Yang | Protein O-GlcNAcylation: emerging mechanisms and functions[END_REF] . The nucleotide sugar is derived from the glucose through the Hexosamine Biosynthesis Pathway (HBP) shown on Figure 4 28 . This pathway is nutrient dependent and as such, the activity of this modification can be over-regulated by (mal)-nutrition and lead to various diseases as Alzheimer' disease, diabetes or cancers [START_REF] Very | Cross-Dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR Axis in Human Chronic Diseases[END_REF] . The addition of the GlcNAc is in competition with phosphorylation as they target the same residue [START_REF] Wang | Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc[END_REF] . But, unlike phosphorylation, O-GlcNAcylation is catalyzed by only two enzymes: the OGT (O-GlcNAc Transferase, which attaches an O-GlcNAc group) and OGA (O-GlcNAcase, which removes an O-GlcNAc group).

The first enzyme is composed of two main domains: a catalytic domain and a recognition domain called TPR Domain (TetratricoPeptide Repeats). The catalytic domain first recognizes the nucleotide sugar and attached it in its pocket, then once the substrate is available, the GlcNAc moiety will be added by the action of the histidine 498 [START_REF] Lazarus | Structure of human O-GlcNAc transferase and its complex with a peptide substrate[END_REF] . The second domain is a supra helix domain involved in substrate recognition. The number of TPR will depend on the isoforms. Indeed, this enzyme exists in three different isoforms: ncOGT for nucleus and cytosolic OGT, sOGT stands for small OGT and the mOGT for mitochondrial OGT. All exhibit the same catalytic domain, but differ in the number of TPRs: 13.5 for ncOGT (nucleus and cytosolic OGT), 2.5 for sOGT (small OGT) and 9.5 for mOGT (mitochondrial OGT) [START_REF] Aquino-Gil | OGT: a short overview of an enzyme standing out from usual glycosyltransferases[END_REF] . The enzyme responsible for the removal of the nucleotide sugar is the OGA which recognizes the GlcNAc and removes it through hydrolysis [START_REF] Varki | Essentials of Glycobiology[END_REF] . Today, we hypothesize that thousands of proteins are O-GlcNAcylated and this modification has been shown to be involved in various diseases such as cancer, diabetes and Alzeihmer's disease [START_REF] Bond | A little sugar goes a long way: the cell biology of O-GlcNAc[END_REF] .

The need to have a better understanding of O-GlcNAcylation even when effectuated by only a single enzyme is still relevant. This is largely due to the fact that only few of the possible O-GlcNAcylation sites are in fact O-GlcNAcylated. As the number of proteins estimated to be O-GlcNAcylated is huge, the exact sites are mostly unknown. The experimental methods to highlight the sites are time and money consuming so the need to develop a O-GlcNAcylation prediction software has risen. Many labs have tried and claim to have a good sensitivity while having based their algorithms on protein sequences [START_REF] Jia | O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique[END_REF][START_REF] Gupta | Prediction of glycosylation across the human proteome and the correlation to protein function[END_REF][START_REF] Kao | A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs[END_REF] . But the mechanism behind the substrate is still unknown even if an asparagine ladder has been

shown to be important in the OGT activity [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] . There are hypotheses that O-GlcNAcylation needs scaffold proteins to be able to recognize target substrates.

Also, OGT has been identified as a protease, in particular in the case of Human HCF-1

where a region called HCF-1 PRO repeat has been shown to be a binding site for the OGT [START_REF] Bhuiyan | Distinct OGT-Binding Sites Promote HCF-1 Cleavage[END_REF] .

This particular region contains 26 amino acids with a conserved 20 amino acid core sequence shared among vertebrate species [START_REF] Capotosti | O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1[END_REF] . The proteolyse of the HCF-1 protein leads to two subunits (N-and C-), closely attached, involved in the regulation of distinct phases of the cell-division cycle [START_REF] Bhuiyan | Distinct OGT-Binding Sites Promote HCF-1 Cleavage[END_REF] .

OGT is able to interact with a very high amount of proteins, with different roles and even with different catalytic activities. But the recognition of the difference in such a number of different substrates is still an unresolved process. In silico predictions of protein-protein interactions became more and more important during the last years. Indeed, with the improvement of computational technologies in parallel with the high number of information retrieved with the new experiments leading to a better understanding of the important information implicated in protein-protein interactions. This information, including interaction surface prediction, contact prediction but also biochemical interaction and co-evolution of residues, led to a significant increase in the amount of data that could be used by predictors and their algorithms. Recently, the interest of big companies such as Google to enter the world of protein-protein interaction prediction created a breakthrough showing the power of machine learning or precisely deep learning when such amount of data is available. Unfortunately, this major step still needs to be improved because protein-protein interactions are not only complex structures but also need additional information such as modifications like glycosylation or interface prediction.

The protein-protein interaction simulations start with finding the putative interface and then dock the two molecules together. Starting in the early 1970s, the prediction of protein-protein interactions has been developed with bioinformatics by predicting interaction based on sequence similarity. This was followed by solvent accessibility calculations to identify the potential interaction surface with PDB structures studied in 1999 by Lo Conte et al. [START_REF] Wodak | Structural basis of macromolecular recognition[END_REF][START_REF] Lo Conte | The atomic structure of protein-protein recognition sites[END_REF] . In parallel, an alternative approach had been developed, relying on atomic packing analyses. This method is based on the complementary surfaces forming compact interfaces with few cavities and close-packed atoms [START_REF] Wodak | Structural basis of macromolecular recognition[END_REF] . This theory used Voronoi calculations, proposed by Richards (1974) and Finney (1975) and applied by Janin and Chothia (1976) [START_REF] Richards | The interpretation of protein structures: total volume, group volume distributions and packing density[END_REF][START_REF] Finney | Volume occupation, environment and accessibility in proteins. The problem of the protein surface[END_REF][START_REF] Janin | Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes[END_REF] . Voronoi calculations are the transformation of atoms to polyhedra to calculate covalent or noncovalent bonds between proteins. But considering the interface with Voronoi calculations reduces the accuracy because the atoms must be completely surrounded and only one third of the residues contributing to the interface have zero accessibility to the surface.

The predicting and the simulating of protein-protein interaction by docking of proteins instead of small ligands was first considered by Wodak and Janin in 1978 [START_REF] Wodak | Computer analysis of protein-protein interaction[END_REF] . A rigid body search of six degrees of freedom (five rotational and one translational) was used to bring the two molecules in direct contact. As it was very expensive in terms of the number of calculations needed, an approximation was made in 1980 where residues were modeled as balls.

Today, protein-protein docking remains one of the central and challenging problems in computational structural biology and many labs are working on developing new methods to predict such interactions [START_REF] Nussinov | Computing the Dynamic Supramolecular Structural Proteome[END_REF] . With respect to the early days' calculations, immense progress can be observed.

In this paragraph, the most commonly used methods for protein structure prediction that are also being used for prediction of protein complexes will be briefly described. One of the main principles on which structure prediction is based is a minimization of the free energy of the system. For example, energy embedding has been introduced by Crippen in early 1980's 37 ; this algorithm basically puts a conformation with a very low energy inside a high dimensional shape. This shape, which is a three-dimensional space, is then reduced.

After the constraints are enlarged on the structure while keeping the energy minima [START_REF] Schelstraete | Energy minimization by smoothing techniques: a survey[END_REF] . A molecular conformation can be represented in Cartesian coordinates, or using a reduced space such as dihedral angles, but it can also be described by a squared matrix with n rows and columns containing the distance between all n atoms of a molecule. Protein force fields can use this matrix and calculate interaction energetics such as electrostatics, hydrogen bonds and bond stretching, to name but a few [START_REF] Schelstraete | Energy minimization by smoothing techniques: a survey[END_REF] . Usually the protein structure prediction energy is found using Monte Carlo technique which is not that recent because it was exposed for molecular docking in 1985 by T. Noguti and N. Go [START_REF] Noguti | Efficient Monte Carlo method for simulation of fluctuating conformations of native proteins[END_REF] . Indeed, the Monte Carlo theory shows that the protein structure will have random conformations like random walk and compare the structure energy between two conformations and select the one with the lowest energy and then proceed to go into increasingly lower-energy structures (see Figure 5). But this kind of method can lead to a local minima which is not the lowest energy score conformation. Other algorithms have been created to minimize this energy like molecular dynamics (MD). This method is a computational simulation of the possible physical movements of atoms or particles given, for a fixed period, possibilities for atoms to interact with each other, becoming a simulation of a dynamic evolution. During this simulation, the energy is augmented thanks to a kinetic energy leading to more conformational spaces and many minimums. Most of the time, the forces between the atoms and their potential energies are calculated using interatomic potentials or molecular mechanics force fields. Molecular docking is a powerful tool to study the interaction between the receptor and the ligand at the molecular point of view. To estimate the position of the atoms in interaction between ligand and receptor, molecular dynamics simulations use a suitable force field. This force field allows us to determine the overall energy of the complex system [START_REF] Vivo | Role of Molecular Dynamics and Related Methods in Drug Discovery[END_REF] . A non-exhaustive list of different MD simulation software exist and have been summarized in the Table 3 [START_REF] Smith | DL_POLY: Application to molecular simulation[END_REF] DL_POLY is a general purpose molecular dynamic simulation package, which allows the study of liquids of large complexity. The code is developed using the replicated data (RD) parallelization strategy.

Membranes, proteins

Table 3. A summary of commonly used molecular dynamic (MD) simulation software (from Gurung et al., 2021) As some proteins are really big, the interface surface can be very wide and so the contact with the solvent is larger which creates long range electrostatic interactions. Thus a method to simplify space search has been created called Fast Fourier Transform (FFT). This technique is based on the calculation of the Discrete Fourier transform (DFT) which consists of the transformation of a variable of its own dimension like space into a frequency [START_REF] Heideman | Gauss and the history of the fast fourier transform[END_REF] . The FFT will convert the DFT matrix into a product of sparse (matrices composed with a lot of zero) to increase the speed of calculus 67 . Nowadays, two main families of docking algorithms have been set up:

template-based docking or ab initio docking (also call free docking) which uses the techniques described above (see Figure 6). The first one uses experimental structure knowledge available to orient the molecular docking if homologous complexes exist in public databases. This method is more and more powerful as the number of complex structures is increased each day in particular with the expansion of Cryo-EM [START_REF] Porter | What method to use for protein-protein docking?[END_REF] . Free docking only needs structure of the participants (if they don't exist they can be modeled but it will be a prediction based on prediction this reduces the overall reliability of the prediction).

To perform ab initio docking there are plenty of different methods and algorithms based on many features (see Table 4). Also along with all these methods, the docking software can be divided into two main classes: rigid and flexible-body docking. Rigid-body docking is the most frequent docking technique. Indeed, as torsion angles, bond angles and length are rigid, the calculations are less time and resources consuming. Flexible-body docking as their name suggests consists in adding flexibility inside docking. But this flexibility increases the number of degrees of freedom which results in a raise of processing but also the amount of false positive results [START_REF] Andrusier | Principles of flexible protein-protein docking[END_REF] . In a publication of Desta et al. (2020), rigid-body docking (CLUSPRO) is shown to have more positive results (5/10) than flexible-body docking but the latter's results get a better quality (found as top 1 prediction model) [START_REF] Desta | Performance and Its Limits in Rigid Body Protein-Protein Docking[END_REF] .

Software Main features Protocols

MDockPP To be able to compare those prediction software/methods an experiment modeled on CASP called CAPRI (Critical Assessment of Predicted Interactions) has been set up. This experiment takes place in Rounds and will be explained in more detail later in this manuscript. In the last Round, twenty groups of modelers, including six web servers, participated [START_REF] Lensink | Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment[END_REF] . In general, web servers are shown to have lower quality models than human groups with the exception of MDOCKPP and LZERD which obtained results on par with human groups [START_REF] Huang | MDockPP: A hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19[END_REF][START_REF] Christoffer | IDP-LZerD: Software for Modeling Disordered Protein Interactions[END_REF] . According to this CAPRI Round, the best methods are the one developed on Baker, Venclovas and Seok predictor groups (see Figure 7). Another method to be able to assess the quality of interaction prediction structure is the DockQ score which is a combination score. It combines scores also used by CAPRI called f nat , i-rms and s-rms into a score between 0 and 1 89 .

Baker's research to predict structure is based on amino acid co-evolution and multiple sequence alignment of homologous proteins used by machine learning. Their software, called RoseTTAFold, is also able to predict de novo design proteins from sequence only [START_REF] Baek | Deep learning and protein structure modeling[END_REF] . This method combined with AlphaFold showed better results than RoseTTAFold or AlphaFold alone to predict protein complexes. But as machine learning needs experimental results to train, the development of cryoelectron microscopy to obtain large assemblies at high resolution will allow better and better results.

Venclovas' lab has been using a workflow depending on the context knowledge for the CASP14-CAPRI round, varying according to the presence of templates for the interaction, partial templates or no templates at all [START_REF] Dapkūnas | Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction[END_REF] . When a template is found, comparative modeling is performed; otherwise, a template is searched by profile-profile identification. If none of this method works, DALI is performed to make queries for PDB searches [START_REF] Holm | DALI and the persistence of protein shape[END_REF] . Once a multimeric template is found by one of these methods, the complex is generated by a multichain modeling [START_REF] Sali | Comparative protein modelling by satisfaction of spatial restraints[END_REF] . The template-based docking is performed when the template is available, or if a protein has similar annotations. In that case, the chains are modeled on the template and then relaxed to remove steric clashes using the same methods as in the case of free docking [START_REF] Dapkūnas | Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction[END_REF] . For the free docking, two different docking methods have been used

depending is the complex is hetero or homomeric [START_REF] Ritchie | Protein docking using spherical polar Fourier correlations[END_REF][START_REF] Ritchie | Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry[END_REF] . All the models produced are then ranked by a proper solution called VoroMQA implemented in the VoroMQA web server [START_REF] Dapkūnas | Modeling of protein complexes in CAPRI Round 37 using template-based approach combined with model selection[END_REF][START_REF] Dapkūnas | Structural modeling of protein complexes: Current capabilities and challenges[END_REF][START_REF] Olechnovič | VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes[END_REF] .

Then, the top 100-500 models are relaxed [START_REF] Eastman | OpenMM 7: Rapid development of high performance algorithms for molecular dynamics[END_REF][100][101] .

Seok's group predicts protein interaction structure thanks to GALAXY pipelines and then adds some human insight regarding the binding site identification, template and model selection using literature and public database information (see Figure 8) 102,103 . The automated parts use GalaxyPPDock, an in-house method developed for ab initio protein-protein docking using space annealing algorithm 104 . This server is a rigid-body docking algorithm based on FFT (Fast Fourier Transform) which will produce 50 models then analyzed by GalaxyPPDock. 

Non exhaustive list of scoring algorithms with summarized features and principles

Another main protein-protein complex also appeared in the last few years which is AlphaFold v2 (AF), as described in the protein part of the introduction this method is breakthrough for protein modeling. But the last version that allows AlphaFold v2 to model complexes called AlphaFold-Multimer (AFM) is available but there is no official publication.

Nevertheless, the paper is available on BioRXiv as their code so it is possible to use AlphaFold-Multimer 118 . Since the first release, improvements have been made to avoid clashes between atoms which was the main problem. In their BiorXiv preprint, AFM showed already good results on a dataset (Recent-PDB-Multimers) before removing the clash as Table 6 shows. Recent-PDB-Multimers is a homology-reduced set of 4,433 recent protein complexes from PDB which have been then reduced to 2,603 to remove complexes with at least 40% of template similarity 118 .

They also compared AFM to other docking algorithm as ClusPro but also version created from the first version of AF known as AlphaFold-Linker, ColabFold, AlphaFold refined Cluspro and AlphaFold refined Cluspro plus AlphaFold which are also software tested and showed in BioRXiv 119 . The results are shown in Figure 9. As for AlphaFold v2, AFM adapted their methods so they can be applied on protein complexes. As complexes multiply the time and resources to calculate the models, the AF system has been trained on cropped segments of proteins which are contiguous blocks of residues up to 384 amino acids. Also, another bunch of details have been changed to fit the new problematic: changing the loss taken into account for permutation symmetry among identical chains, the multiple sequence alignment are paired into alignment to reveal inter-chain genetic information for example. AFM has been such a breakthrough that a lot of AF v2 based software have been developed such as ColabFold, OmegaFold, Uni-Fold and even a python package which uses AlphaFold-Multimer called AphaPullDown 121-123 . This shows the major evolution of the de novo protein and protein complex structure prediction thanks to this brand new method not even truly published yet.

Type of interfaces

Mean

b) Protein-peptide docking

Protein-peptide docking is also a very challenging domain whether it is to understand the mechanics really important in many cellular processes, as peptides mediate 40% of protein-protein interactions or in drug design. Indeed, peptides are promising drug candidates but it requires a good characterization of the interaction between them and the target molecules 124 . But the difficulty of experimentally resolving protein-peptide structures results in a low amount of such structures in Protein Data Bank (PDB) 125 compared to the number of protein-protein complexes available. So there is a need for effective and efficient computational algorithms, methods development to complement experimental techniques 126 . The in silico methods to produce protein-peptide models are first to find the peptide binding site then the docking. There is a complementary step according to the research purpose which is the design of inhibitory peptides. Finding peptide binding can be done through analyzing the solvent surface area but also regarding amino acid residue probes 126,127 .

The first method is used by the PeptiMap protocol. This protocol is based on experimental observation, regarding NMR experiments but also crystals, that small ligands of cariant length and polarity tend to bind on protein surface regions where other bigger ligands interact 128,129 . In their protocol, PeptideMap uses Fast Fourier Transform (FFT)-based method to map the surface of solvent to identify binding sites [130][131][132] . But the FTMap method is modified to fit for peptide-protein binding sites 127 .

The second method is the one used by the ACCLUSTER web server. It is based on the hypothesis that peptide binding sites are composed of residues that can form good chemical interaction 126 .

Another method is doing semi-rigid docking. This is the case of PepSite-Finder which considers the protein receptor as rigid and the peptide is represented by a number of different conformations 133 . These conformations are retrieved in the PepDB database with multiple protein-peptide complexes obtained at resolution of less than 2 Å 134 . The size of the peptides are between 5 and 15 amino acids long.

Globally, we can divided the protein-peptide docking into 3 main categories:

template-based docking, local docking and global docking which can been summarized as shown in Figure 10 from Ciemny et al. 2018 124 . Templated-based docking for protein-peptide is the same protocol as for protein-protein docking except that there is a lower amount of data. This method uses already resolved complexes as scaffolds to build the models. Template-based docking provides good results if the inputs are close to the templates. If no template exists between the protein and a peptide it is possible to use the known interaction interface of the protein (from a protein-protein complex for example).

Local docking uses the information provided by the user to perform the docking of the peptide in a particular interface of the receptor. This information can be obtained by experimental data or by prediction software as explained earlier. As the interaction area is provided, docking is able to be performed as flexible-body docking. The final method is called global docking and is the method of choice when no information about the complex is available. The global docking will usually perform rigid-body docking for protein and peptide.

Some software generates many peptide conformations from the peptide sequence provided.

A list of protein-peptide docking software has been retrieved in the Table 7. Nowaday, there is at least 3 main challenges regarding protein-peptide docking 124 :

-Flexibility: be able to model significant conformational changes whether it is for the receptor or the peptide itself.

-Scoring: The scoring functions developed for protein-protein docking are not as efficient for protein-peptide filtering and the need to have dedicated scoring functions is lacking.

-Integrative modeling: As peptide can be very flexible, adding some NMR data for instance could help to identify the possible conformations or even native contacts.

cryo-EM and SAXS could also help to find the shape of the complex and guide the protein-peptide docking 135 . . Today, the variety of interesting complexes such as protein-peptide interaction leads to a more open assessment with protein-protein, protein-peptide, protein-RNA, protein-DNA and large assemblies assessments [START_REF] Lensink | Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment[END_REF][140][141][142][143][144][145][146][147][148] . The CAPRI experiment is based on Rounds, where predictor groups can participate to predict complexes called targets. Since 2005, not only predictors can participate in CAPRI Rounds, but also prediction scorers with the aim to see if the selected models by the scoring algorithm are the closest to reality. These targets have been proposed by experimentalists who have resolved a complex structure and provided it to CAPRI with a non-disclosure agreement. To be able to propose a new target to CAPRI, the structure has to be experimentally resolved and not yet published in a database so there is no available data to orient the prediction. Once there is enough target for a Round, predictors and scorer groups can register to participate in the prediction or the scoring of these targets. A Round is processed as the following (and as it can be seen on Figure 29 ):

Method Server

Description

-Once the predictors have registered, the sequences of the chains are provided to predictors -Predictors provide two sets: the first one called P-set which contains 10 of the best models produced by a group according to their algorithm; the second one is the U-set which is a larger set consisting of 100 models, including the 10 best.

-The combined U-set from all participants is then proposed to the scoring groups and these groups will select the 10 best models according to their methods and become a S-set.

-Then every set is assessed according to the experimental structure

The assessment is based on different criteria (see Figure 11 ):

-ഽ nat and ഽ non-nat : which are the fraction of receptor-ligand residue contacts found in the model and the experimental structure and the fraction of contacts which have been predicted in the model and which are not present in the target structure 149 .

-I-rms, L-rms and S-rms: which are criteria to assess the quality of the predicted interface and are based on RMSD. I-rms is the rmsd at the interface backbone atoms and S-rms is the same for the interface side-chain atoms.

Models can have, then depending on these criteria, 4 different qualities from worst to best: incorrect, acceptable, medium and high quality. The criteria to define the quality are summarized in the Table 8 above: We also computed I_rms, the RMSD of the backbone atoms of the interface residues after they have been optimally

Ranking

superimposed (from Méndez et al. 2005).

Today, CAPRI is grouped to the CASP experiment and in December 2022, the CASP15-CAPRI will take place in Turkey. So for this manuscript, the results and state of the art will stop before this event. For CAPRI we denombrate 180 targets including some different interfaces between two same chains. Most of these targets are retrieved inside a new website available at this link: www.scoreset.org. As some have well-known mechanisms regarding their substrate recognition like N-GlcNAcylation with a N-X-S/T motif (where X can be any residue except a proline) others are still difficult to identify. It is the case for phosphorylation and its competitive modification the O-GlcNAcylation. If the first modification can be divided regarding the super family of kinases to identify the mechanism of substrate recognition, this is not the case of the second which has only one enzyme to add the sugar.

Phosphorylation site prediction is a well-studied problem and the high number of experimental sites and the improved knowledge coupled to machine learning algorithms tends to show good results. Nowadays, the number of phosphorylation predictions is over 40 and the latest ones show good results with a sensitivity of 47.80% and a precision for 82.70% for a specificity of 90% and a sensitivity of 33.86 and a precision of 87.13% for a specificity of 95% [START_REF] Luo | DeepPhos: prediction of protein phosphorylation sites with deep learning[END_REF] Random Forest (RF) is a well-known and well-used algorithm, with a major advantage which is that the features used to discriminate results can be explained which is not always the case with machine learning. It is in the family of tree ensembles algorithm with the Gradient Boosting Tree (GBT) also called Gradient Boosting Machine (GBM) algorithm (see Figure 12) . A decision tree is a flowchart that will divide the interest population into subgroups that differ according to a feature analyzed by the tree 151 . A good decision tree will separate the total population into subgroups which have a high similarity inside each group and a high variability between-groups.

In principle, RF builds an ensemble of decision trees called a forest and this forest will combine all the tree results to give an overview result 152 . Every tree of the ensemble is trained on a subset of the dataset and its result will be combined with all the other trees and the final answer will take the majority of the votes. The random came from the cutting of the dataset into random subsets and each one is used to train a model.

GBT is also based on trees and takes the mean of all these trees which are trained on re-weighted subsets of the data. The first trees produced errors and these errors contribute to learning more optimal trees in the next iteration 153 . RF is used as a classifier in the O-GlcNAcylation predictor called O-GlcNAcPRED-II [START_REF] Jia | O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique[END_REF] . This predictor also uses another classifier called Support Vector Machine (SVM). SVM is a regression algorithm initially created to separate two distinct groups. But it has been adapted to perform regression on multiple groups even if it is not the most adapted algorithm.

SVM algorithm is based on a graphical interpretation of data: each element of the training set will be plotted in a multidimensional graph according to its features or variables.

Then based on this plot, the algorithm will find a way to separate thanks to a dimensional hyperplane. This hyperplane will then rely on the nearest data, called support vector, and will try to optimize by enlarging the distance, called margin between the hyperplane and the dots called support vectors. Once the function is trained, the new data will be separated according to the model by the hyperplane and the confidence will be calculated by the distance of the new data with the hyperplane (see Figure 13 ). The hyperplane was first linear but the optimization of the algorithm now allows radial basis, polynomial and sigmoid function to have a better fit to the training data. This method is used to predict O-GlcNAcylation as in OGTSite, OGlcNAcScan and O-GlcNAcPRED-II [START_REF] Jia | O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique[END_REF][START_REF] Kao | A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs[END_REF]150 These associations are represented by multiple hidden layers with prespecified functions and the goal is to estimate the weights through input and outcome data to minimize the average error between the outcome and their predictions 155 . The layers are composed of formal neurons inspired from biological neurons where they retrieve information from previous neurons, make a pondered sum of the information and give it as an outcome. The number of neurons inside a layer and the number of layers will vary according to the neural network. This technique is very powerful but the amount of data to train a big neural network needs to be very important. This method is used by YinOYang [START_REF] Gupta | Prediction of glycosylation across the human proteome and the correlation to protein function[END_REF] .

In 2021, a big database called The O-GlcNac Database, retrieves every O-GlcNAcylated sites known in the litterature and has emerged with the highest number of sites making it is the biggest database currently available 156 . Each site is categorized by a score calculated according to the number of time it has been found in different publications.

This high number of data may be a solution to finally have a good prediction model for O-GlcNAcylation. The database can be found at this address: www.oglcnac.mcw.edu 157 .

II. Thesis objectives

This thesis can be divided into three main parts. All these parts are connected in different manners so they will be described chronologically. For this Round, 5 Targets have been proposed to the CAPRI community in the purpose to understand the mechanisms under the interaction with good models. But as CAPRI always assesses models with an experimentally found template and as there is none for the 5 targets, the problem was to be able to determine from all these models the best models and be able to determine the quality of a model. The objective of my work was to verify the different set of models and then find a way to determine good models without templates or at least find a way to highlight good quality models or find a way to determine if a model can be likely or not.

C. Testing adjacency overlap scoring method

In the previous section, a scoring method has been highlighted called Adjacency Overlap (AO). But the validation set for this method was quite small, so we decided to test on a new and larger benchmark, using data from the CAPRI community. This benchmark allows us to test our method on various sets and compare it to other scoring methods. If this method performs well it will allow us to conclude on the results obtained in the previous part.

D. Modeling of the interaction between OGT and beta-catenin

The crosstalk between phosphorylation and O-GlcNAcylation is well known and it has been shown to be involved in many diseases. This is the case in the Wnt pathway, involved in cell proliferation and migration, where a proto-oncoprotein protein called beta-catenin (β-catenin or CTNB1) is impacted by this competition. Indeed, β-catenin is widely expressed in many tissues. Mutations and over-regulation of this protein are associated with several forms of cancer and notably ColoRectal Cancer (CRC). β-catenin is usually phosphorylated to be degraded, but it has been shown that the β-catenin can also be O-GlcNAcylated which inhibits its proteasomal degradation and leads to the activation of the transcription of target genes. Although the interaction between CTNB1 and O-GlcNAc Transferase (OGT) is established, the molecular details of this interaction remain unknown. My objective here was to use a combination of computational techniques as molecular modeling, protein-protein and protein-peptide docking and dynamics to understand the recognition process. The understanding of the interaction at a molecular level may lead to the identification of hot spots of the interaction on both proteins. These key spots may lead to the identification of pharmacological molecules capable of inhibiting this interaction. The O-GlcNAcylation/phosphorylation are already identified on the N-terminal part of the β-catenin, in a region which has been named destruction box. This region is called like this because it allows a molecular mechanism leading to its degradation by the proteasome. This information means that this unstructured part is able to go into the catalytic pocket of the OGT. As OGT and β-catenin have both a recognition domain, respectively called TPR domain and Armadillo domain one hypothesis can be that these two interact. Also, as the TPR domain of the OGT is a super helix, another hypothesis can be the interaction of the N-terminal segment of the β-catenin inside the TPR. The last hypothesis of this interaction which is less likely to happen is that the C-terminal segment of the β-catenin (which is also unstructured) interacts with the TPR. These three hypotheses are retrieved in Figure 14.

Another hypothesis which is hard to verify is the presence of a chaperone protein to bring the two partners together. From this information, we hypothesized the possibility that a certain conformation induced by the nature of the codon impacts the O-GlcNAcylation of a serine or threonine. In parallel, results from the analyses of the specific interaction between OGT and beta-catenin described in the next section created a new hypothesis regarding the asparagine ladder inside the TPR domain of the OGT. This ladder has been shown to be important for the catalytic activity of the OGT. Indeed the mutation of the five asparagine into alanine reduces the enzyme activity (see Figure 15 [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] . We can hypothesize that the hydroxyl group of the serine and threonine modified by the addition of the GlcNAc moiety interact with the asparagine from this ladder and that these asparagines pull and push the modification site into the catalytic domain. Hypothesis is also supported by the proximity of a lot of serine and threonine in the neighborhood of the sites 160 . Another perspective highlighted with this publication is the need of chaperon proteins for the OGT to interact with its substrate. This point has been discussed with the interactome of the catalytic enzyme where we identified three chaperon proteins. 

Extracting positive and negative site from O-GlcNAcylated proteins:

The first dataset provided by Mauri et al. was in a csv format where each row is an experimentally proven O-GlcNAcylated site 160 . This file was constructed as follows: the first column is the Uniprot ID of the protein, the second the index of the positive site of the corresponding sequence and the third one is the protein sequence. From this file it was easy to retrieve the positive sites with a handmade Python script. For the negative sites, this script retrieves every serine and threonine from the protein sequence and if the amino acid does not have the same index as the O-GlcNAcylated site it was classified as a negative site.

The second dataset, from the O-GlcNAc Database (OGD), was also a csv file, but with more information as follows:

| From this file it was also possible to retrieve positive and negative as previously with the index of the O-GlcNAcylated sites and the protein sequences.

Coding sequence retrieval and codon extraction:

To extract the CoDing Sequences (CDS) of proteins of interest, the first step was to identify the good isoform sequence IDs or the canonical sequence if no isoform was specified. With these IDs, we were able to make requests to the Uniprot server and get the CDS IDs called CCDS ID for Consensus CDS. These new IDs allow us to make requests to the Ensembl server with its Rest API and get the coding nucleotide sequence 162 . From these sequences, with the site indices (positive or negative), the associated codon was retrieved.

An additional step has been set up to verify if the codon corresponds correctly to the amino acid. In total, there are ten different codons: six for serines (AGC, AGT, TCA, TCC, TCG and TCT) and four for threonine (ACA, ACC, ACG and ACT).

Flexibility and secondary structure prediction:

As in our publication at the beginning of this section, we wanted to see the flexibility and secondary structure in function of the different codons.

To predict the flexibility, we used the prediction software Dynamine (available on Bio2Byte tools), which uses a linear regression approach based on experimental Nuclear Magnetic Resonance data. These data highlight chemical shifts of residues in proteins 163 .

Dynamine only needs a protein sequence as input and will provide a file with the residue and the flexibility score. This score, called S 2 , estimated from experimental data content (NMR chemical shifts) 164 . As described in Mauri et al., this score is between 0 and 1.

Between 0 and 0.68 the residue is considered as flexible 160 . Above 0.8 it is predicted to be rigid and between these two scores there is a twilight zone considered as context dependent.

The secondary structure prediction software has been updated since the publication.

Here, the SPIDER3-Single has been used 165 !!. This software uses deep learning algorithms based on neural networks and has been trained on 11,192 protein sequences. This software can be used locally and only needs a protein sequence as input. The output is very similar to SPIDER3 used in our publication: the residue, the secondary structure, the Accessibility to Solvent Area (ASA) and the phi, psi and theta angles.

b. Results

Distribution of the codon between O-GlcNAcylated and non O-GlcNAcylated sites:

The hypothesis was that one or even several particular codons of a serine and threonine would be favored for O-GlcNAcylation. To investigate this, every codon was retrieved for positive and negative sites from two different datasets called "Mauri's dataset"

and "O-GlcNAc Database dataset". As the first one has a smaller amount of data but contains only experimentally proven sites, we decided to analyze the two datasets separately, also to see if there is a difference of distribution between O-GlcNAcylated protein and random mammal proteins. The results are summarized in Figure 16. This figure shows a very high distribution similarity of codons between the six possible codons of serine, whether it is modified or not or a random mammal protein sequence. For the distribution of threonine codons we can see also similarity between the 3 categories but a little rise of the propensity of ACC codons for O-GlcNAcylated sites from Mauri's dataset. However, this increase is to be explained by the lower number of sites and not significant. 

Flexibility of the different codons:

As no significant difference had been found for O-GlcNAcylated sites, we decided to analyze the flexibility of the site depending on these codons to see if the results differ from the ones we obtain in our article. As shown in Figure 17, the flexibility of O-GlcNacylated sites is above the non O-GlcNacylated sites which is also higher than random serine or threonine, in particular serine which are quite flexible according to this software. Threonines are more context dependent in terms of flexibility for positive sites than others where they are more rigid so this still shows a higher flexibility for O-GlcNAcylated sites. But we can see that the proportion is quite similar whether it is for positive sites or negative sites so it is still hard to discriminate O-GlcNAcylation sites from non O-GlcNAcylation sites. We can also see that a random serine or threonine is more rigid than a random serine or threonine from a protein which is modified somewhere by the OGT. This induces that the flexibility favors the protein to go into the TPR domain or at least the catalytic domain and be modified.

Regarding the proportion of the flexibility categories, there is no difference between all the various codons whether it is for threonine or for serine. According to Figure 17, serines are generally found more in flexible regions than threonines.

Figure 17. Proportion of residue for each category of flexibility according to Dynamine

The flexibility category of a residue is calculated using Dynamine. The color corresponds to the dataset as in Figure 16.

Secondary structure prediction:

Secondary structure was predicted with the SPIDER3-Single software 165 . The results (see Figure 18) show that threonine are more often found in a structured area than serines which coincide with the previous flexibility prediction showing that threonine flexibilities are more often context dependent. But in any case the two residues are more often found in random coils according to the prediction software. But compared to the negative set there is no significant difference; the only one is regarding threonines which are a more on beta sheet for the O-GlcNAcylated ones. But once again when regarding the secondary structure separately according to the specific codons no difference is noticeable. 

Accessibility calculation:

The goal here was to calculate the accessibility of the O-GlcNAcylated sites based on the models predicted by AlphaFold (v2.2.0). We used NAccess with default parameters to calculate the solvent accessibility 168 . This software calculates the accessibility of the protein surface to solvent, with output at atom, residue and protein level. In total, the accessibility of 149 O-GlcNAcylated sites was analyzed. The accessibility is provided as a surface area (Å 2 ).

b. Results

As O-GlcNAcylation is a dynamic PTM, the accessibility of a substrate site must be sufficient for a quick modification and it is with this idea in mind that we first hypothesized that the site must therefore be (solvent)-accessible. In our previous article about the O-GlcNAcylation prediction, we tried to validate this hypothesis with I-tasser which was one of the most powerful de novo protein modeling tools available as a server 169 . But the quality of the models was very low according to their confidence score so we decided to try it again with AlphaFold (v2.2.0)

First, the qualities of the 79 models can be seen in Figure 19 In this Figure 22 we can see that the accessibility varies a lot with some residues being fully accessible and some completely buried. But regarding the codons specifically we can see that the TCA codon has a higher accessibility (above 20 Å 2 ) than the others. For the models with a plddt score above 75, the TCC codons also have a high accessibility (>35Å 2 )

while for AGC the mean accessibility score decreases. As some models have a lower quality score, its depression may be due to unstructured regions. To be sure the quality does not affect the accessibility values, we analyzed the correlation between the accessibility of the residue and the plddt score of the corresponding model. We obtained a correlation score of -0.1083939 which means there is no correlation between these two variables (see Figure 20). Also, the analysis of the density regardless of the model score (Figure 21), shows us that according to our models, O-GlcNAcylated sites can be buried inside the protein but the majority of them are solvent accessible. 

O-GlcNAcylated sites

The orange curve is a density curve and the median and mean are in yellow and dark orange respectively.

The accessibility of O-GlcNAcylated sites is very heterogeneous, as some sites are really accessible, around 10% of the sites are not accessible according to the prediction models. This absence of accessibility could be explained by the possibility of co-translational activity of the OGT for protein folding. Another hypothesis would be that a positive site can be O-GlcNAcylated while being in a peptide but not when the protein is fully constructed.

The majority of the sites analyzed are at least accessible and it could be interesting to try adding a GlcNAc on the site in the structure and see if a link can really happen. 3. Do O-GlcNAcylated peptides interact with the asparagine ladder of OGT TPR?

As seen in Levine et al. (2018), the asparagine ladder of the recognition domain of the OGT called TPR is important for the O-GlcNAcylation activity [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] . This ladder may be involved in substrate recognition. In the results from the third part of this PhD manuscript, describing the special interaction between beta-catenin and OGT, we showed that the unstructured N-terminal segment of the β-catenin (known to be O-GlcNAcylated) interacts with the lumen of the TPR and more precisely between the two threonines (T40 and T41)

and asparagines from this ladder. In addition, in our team we have studied the Tau protein, which is also well known to be O-GlcNAcylated when cut into peptides. Otherwise the number of O-GlcNAcylation revealed is lower 170 . Some of the Tau peptides also have 

Dataset:

To be able to model peptides containing O-GlcNAcylation sites, we selected proteins retrieved in our previous publication with a total amount of 536 experimentally proven modified sites (the "Mauri" set) 160 . According to Figure 23, the peptide should be 51 residues long with ±25 amino acids around the O-GlcNAcylated site, the protein sequences were processed to remove sites which were too close to the beginning or end of the protein sequence. In parallel, to be able to compare results with negative data, serines and threonines not proven to be O-GlcNAcylated were also retrieved with ±25 residues at either side. But if we found a negative site to be close to an O-GlcNAcylated site (in the ±25 window) it was removed from the data to avoid unexpected interactions between the O-GlcNAcylated site. Once positive and negative peptide sequences had been extracted, they were analyzed through SPIDER3 as previously described and the percentage of coil structure was calculated for each. As we wanted to analyze only unstructured peptides, only sequences with a coil rate equal to 1 (i.e. fully coil) were selected. As a result, from the first dataset, the number of positive and negative sites decreased to 175 and 8,775 peptide sequences, respectively. The peptides in the positive data set have been classified in function of the number of positive sites inside the sequence stretch, the site itself (at the index of 26) included.

Complexes modeling:

To model the different complexes, AlphaFold (v2.2.0) was chosen. For modeling complexes DeepMind provides AlphaFold-Multimer which has not been published yet but already many results have been made available on BioRXiv as shown in the Introduction section. Briefly, AlphaFold-Multimer has been trained on experimentally resolved structures of complexes and showed good results because of the effect of co-evolution of interacting residues in a protein complex. As for the protein modeling, AlphaFold-Multimer predicts a model from five different random seeds. The number of models generated per seed was set to three, meaning the total number of models produced for an interaction was fifteen. Again we selected only the first ranked model according to the plddt score for the whole complex.

To reduce the time spent per calculation we tried different sizes of the TPR domain for the OGT by reducing the number of TPRs but we also tried different lengths for the peptide. As shown in Figure 23, we can see that the optimal number of TPR repeats is 8, as it shows the best quality score for models. 

Extraction of interactions between asparagines from the ladder and O-GlcNAcylated sites:

To investigate the interaction between residues from the asparagine ladder and our sites of interest, the PyMOL software was used with a Python script to automate the process with the cmd function from the PyMOL module 171 . The script extracted, for each asparagine from the ladder, the amino acid environment within a sphere of 5Å. Every residue was then stored in a list where we are looking for the O-GlcNAcylated or non O-GlcNAcylated site. If the site was found in one of the asparagine lists, its score was increased by one. As there are 6 different asparagines (N321, N322, N325, N356, N390, N424), a peptide can have a score between 0 and 6.

Extraction of the interaction between positive or negative site inside the OGT/peptide complex:

Another interesting material would be to know which OGT residues are interacting with the sites of interest. To that, a Python script automated the process of retrieving the types of residue that the modified serines and threonines are or are not in contact with, considering a distance between 2.5 and 5 Å. The type of residue is stored in a list where redundancy was removed. Each element of the list is then added to a dictionary to get the number of times a type of amino acid is found in contact for positive or negative data.

b) Results

Analyses of the different complexes:

The confidence score of every model according to the fact that if a serine or a threonine is in contact with at least one of the asparagine from the TPR asparagine ladder was plotted in Figure 24. We can see that models with a peptide interacting with the asparagine ladder globally have a better model score than others. As we now want to see if the quality of the site of interest improves when it interacts with asparagines, we plot the plddt score of the 26 residues of the peptides in function of whether it is interacting or not in Figure 25. We can see that the scores are higher when interacting. These results may tend to think that the interaction with asparagine ladder improves the quality of the model but here we do not know if the site if it is O-GlcNAcylated improves the confidence in the model.

The model and the site of interest scores regarding if the serine or threonine is O-GlcNAcylated or non have been plotted in Figure 26. Unfortunately, we can see in this figure that models have a slightly lower score for O-GlcNAcylated sites than negative data and this is also the case considering the residue-specific plddt score. 

Study of the the interaction between O-GlcNAcylated sites and the asparagine ladder:

In this study, we wanted to see if AlphaFold-Multimer would preferentially create an interaction between O-GlcNAcylated sites and asparagine of the asparagine ladders. In that case, it could therefore be used as a prediction tool for O-GlcNAcylation prediction of unstructured parts of proteins. But as the time of calculation is still high the number of interactions we produced with AF-Multimer is 100 (58 negatives and 42 positives). For each of these models we looked if at least one interaction had been created between the serine or threonine and the asparagine ladder of the TPR. Regarding the positive data we counted only 6 models with at least one interaction, i.e. 14.29%. We also counted 6 models for the negative set, i.e. 10.35%. Even if the results are slightly better for the O-GlcNAcylated peptides the low percentage does not allow us to think that it can be used to predict O-GlcNAcylation sites on disordered parts of proteins.

Analysis of the kind of residues that interact with positive and negative data:

As the specific interaction between the asparagine ladder and an O-GlcNAcylated site does not seem to be relevant for O-GlcNAcylation prediction, we hypothesized that the hydroxyl group of serine or threonine might engage in a specific interaction with certain types of amino acids of the OGT. For this purpose, the environment of this hydroxyl at 5 Å was analyzed thanks to PyMOL. These results have been retrieved in Table 9. We can see that, regardless of whether the site is O-GlcNAcylated or not, the hydroxyl group of the site is predicted by AlphaFold-Multimer to interact more often with asparagines, aspartic acids and lysines. 

Amino acid

O-GlcNAcylated sites with the different kinds of amino acids

In Figure 27, we represented all the best peptide models for positive and negative data in the OGT. We can see that all the peptides have the same conformation inside the TPR. We also drew the central serines and threonines. Unfortunately the sites are not central at all whether it is known to be O-GlcNAcylated or not. 

Analyses of the chaperone proteins found in the interactome :

As AlphaFold was available in our laboratory, the modeling of interaction between the OGT and the four different proteins has been done. For each possible complex a total of 

C. New discussion and conclusion

At the end of our O-GlcNAcylation article, we accused the lack of positive data against the high number of negative data to hamper the ability to predict O-GlcNAcylated sites. In addition, new hypotheses have been proposed leading to new studies such as the role of the codons in the selection of serine and threonine by the O-GlcNAclTransferase (OGT), the accessibility to the solvent and the possibility to predict O-GlcNAcylation thanks to the asparagine ladder of the TPR domain 156,159 .

The emergence of the O-GlcNAc database helps us to get more data in particular for the analysis of the potential role of the amino acid codons. But this analysis has not helped to discriminate between positive and negative sites. Even if the codons could play a role in the torsion of the protein backbone at the outside of the ribosome, the global structure of the protein should be preponderant for the substrate recognition and the catalytic activity of the OGT.

The accessibility of O-GlcNAcylated sites has been calculated again thanks to the breakthrough created by AlphaFold which shows a very good capability to predict de novo structures which was not the case when we first studied it. Even if the majority of sites are at least accessible, more than 10% are buried and therefore not accessible at all. These sites may have been modified co-translationally as O-GlcNAcylation is not always a post-translational modification. It could be interesting to go back to the source and look at the determination method. Indeed, some serines or threonines can be O-GlcNAcylated when cut into peptides meaning that they are accessible in that case but not if the full protein is folded 170 . Also if only the OGT and the two substrates are present and the O-GlcNAcylation occurs, it would mean that the site is accessible. Otherwise, the presence of other unknown participants could explain the O-GlcNAcylation. But the high amount of experiments whether by computational methods or experimentales ones make it extremely difficult to obtain answers. Furthermore the accessibility according to the different codons does not bring any information except for the TCA codon which shows only good accessibility. These results have to be handled with care as the low amount of this codon can add a bias to the results. Additional data with this codon would show a low surface accessibility and give similar results to the other codons.

The asparagine ladder of the TPR domain has been described to play an essential role in the substrate recognition [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] . Thus, the hypothesis that this ladder interacts with any O-GlcNAcylated site is relevant but the poor results we obtained here did not support that hypothesis. However, as the models confidence of the positive and negative complexes are low. The poor results can be explained by these low qualities. Although we looked at the specific interaction of the asparagine with serines and threonines, it could be interesting to go wider and look at interaction around the sites. The models predict a position of the peptide inside the TPR domain at a given time which may change with dynamics. Indeed, with time it could have been interesting to perform molecular dynamics on the peptide to see if this ladder interacts with positive sites to pull the peptide inside the catalytic domain.

Also, to win time, we decided to reduce the number of TPRs. But removing TPR repeats may lead to a loss of information. That is why we tried to get the highest model qualities with the lowest TPR repeats but the results may have a bias. As AlphaFold-Multimer is trained on available structures from the Protein Data Bank (PDB), structures of truncated OGT with a peptide are available. These structures may have led to redundant results as we can see that all the peptides are predicted with the same conformation (Figure 27). The predicted position of the different peptides could be explained by the presence of OGT structures with a peptide in this location. However, the difference of sequence composition may explain the different scores at this position.

In our study, we highlighted four proteins (CCT2, CCT3, CCT5 and HSPD1) which are all chaperone proteins. The idea that they play a role in O-GlcNAcylation is a major hypothesis and its confirmation would be a big step forward in the comprehension of the O-GlcNAcylation process. In conclusion, O-GlcNAcylation site prediction, even with more data and more powerful software, is still an unattained objective. The heterogeneity of the data coupled with the large number of O-GlcNAcylated proteins for only one enzyme support the need of chaperon proteins to bring the substrate to the O-GlcNAc Transferase.

Theory supported by the cleavage activity of the OGT. Unfortunately, at the time of writing, the ones highlighted by our article are too big to be modeled in complex with the enzyme.

To counteract the size limitation, only keeping potential interaction surfaces can be a solution. This would also increase plddt scores due to lower uncertainty of prediction in the remaining regions. But generating big complex structures could be possible in the very near future.

IV. Protein-protein interaction related to CoVid-19:

how to define new methods to assess prediction A. Introduction 173,174 . Following the quick and world-wide spread of the virus, and the high number of deaths, a worldwide effort was undertaken to understand the different mechanisms of infection and to find ways to counteract this pandemic. Early in 2020, a publication bringing together 100 authors had been deposited on bioRxiv entitled "A SARS-CoV-2 protein interaction map reveals targets for drug repurposing", later published in Nature in late July. This publication highlighted the viral proteins that could be physically associated to human proteins by affinity-purification mass spectrometry. This resulted in the identification of 332 high-confidence protein-protein interactions (Figure 28).

The aim of this research was to find druggable proteins targeted by 69 different compounds. But from this study, specific protein-protein interactions between SARS-CoV-2

and human proteins can be studied or predicted in order to have a better understanding of infection and replication methods. To this, CAPRI (Critical Assessment of PRotein Interactions) based on this PPI network, selected interesting and possibly resolvable interactions. This will be further described later in this manuscript. 

CAPRI Community a) Summarized modeling methods

The aim of PPI modeling is to predict a detailed atomic-level interaction between two or more molecules 149 . This not trivial goal has been used since the early 80's when the human genome was far away from being fully sequenced 175 . The sequencing of our genome highlighted the contrast between the low number of genes and the number of proteins and isoforms involved in different metabolisms inside a living organism. This implies the essential roles of the PPI and the need to understand those. Several methods have been developed

according to different theories, organisms or molecules. Indeed, some algorithms will be species specific or accurate for the docking of small molecules, peptides or proteins. As there is a lot of different software, it is complicated to describe all of them so the following paragraphs will describe the most commonly used methods for the different types of molecules.

Docking of proteins and small ligands is very effective in terms of medical research.

Small molecules are often used as drugs and this method is used for drug discovery or design. Indeed, the process of drug discovery is very long (between 10 and 15 years) and costs around 2.5 billion USD [START_REF] Gurung | An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19[END_REF]176,177 . The use of computer-assisted drug discovery (CADD) techniques in early-stage studies by leading pharmaceutical companies and research groups has accelerated the drug discovery and development process by minimizing costs and late-stage failure [START_REF] Gurung | An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19[END_REF]178 .

To perform Structure-Based Drug Design (SBDD), the availability of the therapeutic target structure and its catalytic pocket are the two bases 179 . Structure-Based Virtual Screening (SBVS) is one the most common methods for SBDD with molecular docking and Molecular dynamics (MD) simulations. SSBD can be sub processed in 7 steps starting with preparation of the target protein followed by the identification of the ligand binding site. Then the preparation of the compound library, molecular docking and scoring, molecular dynamic simulation, and binding free energy calculation [START_REF] Gurung | An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19[END_REF] . The target protein structure can be obtained by browsing structure databases as PDB or by experimental data or even with homology modeling based on sequence similarity. Defining a ligand binding site can be also performed according to different experimental methods such as studies by directed mutagenesis or X-ray crystallography of proteins co-crystallised with substrates or inhibitors but sometimes it is too complicated. For this purpose many software of web servers have been made available like CASTp 180 , DoGSite Scorer 181 , NSiteMatch 182 , DEPTH 183 , MSPocket 184 , MetaPocket 185 , and Q-SiteFinder 186 .

CADD is improving each year and its efficient use is a major contributor to human health. Recently, the potential of eighteen repurposed drugs in clinical development against SARS-CoV-2 M pro have been explored thanks to combined molecular docking and molecular dynamics techniques. This led to the identification of TMC-310911 and ritonavir as promising drugs for the treatment of COVID-19 187 .

Protein-protein modeling is another main subject in the analyses of interaction inside different pathways of metabolism involving the presence of different pattern proteins. This modeling can be divided into 3 categories: protein-protein docking, template based modeling and hybrid methods 188 . Each approach has its own advantages and disadvantages.

Modeling peptide-protein interactions is also a main research domain which has grown a lot recently. Indeed, some interactions are mediated through a peptide 189 . These peptides are really important in many cellular processes, mediating 40% of protein-protein interactions; they therefore constitute attractive drug candidates 126 .

The main next step once the binding site is found is the peptide docking. Like protein-small molecule and protein-protein interaction modeling, this step can be realized by different methods , algorithms and tools.

One of the most common methods is template-based prediction. As its name suggests, this method will use already resolved protein-peptide interaction structures. As the number of such structures increases in the PDB, this method will be increasingly accurate as the probability to find a similar complex is higher 190 . This method is used by the GalaxyPepDock server which is part of the GalaxyWEB server and allows to perform template-based protein-peptide modeling online 136,191 . This tool uses, after finding a template, a Galaxy energy to do some minimization. This energy combines physicochemical energy terms derived from the force field of molecular mechanics, knowledge-based energy terms derived from the statistics of the interactions between pairs of atoms in the structure database, and restraint energy terms derived from the information on interactions found in homologous complexes 190 .

On the other hand, for high-throughput modeling, the need for software which can model peptide-protein interaction without prior information is a very important aspect 192 .

b) CAPRI Rounds CAPRI (Critical Assessment for PRotein Interactions) is an experiment created on the CASP (Critical Assessment of protein Structure Prediction) model. The aim of this experiment is to be a catalyst of protein-protein docking. The chosen way is to perform blind docking.

Blind docking principle is easy and consists of proposing protein complex sequences with the stoichiometry associated. The complexes are resolved experimentally by wet laboratories and then provided to CAPRI before being published. This means that the predictors can not find a solution in existing databases. They have to perform blind docking and provide the best models according to their own knowledge. Each complex is called a "Target" and many targets are regrouped into one "Round". Targets were first protein-protein interactions but as the research field progressed new kinds of targets appeared such as protein-peptide, protein-RNA, protein-DNA, protein with small ligands. As predictors have to register to participate in a Round, the new kind of target inside a round creates new problems to resolve. That is why CAPRI is a catalyst in protein interaction modeling. But not only predictors are participating in CAPRI Rounds. Indeed, CAPRI is also a catalyst experiment for model scoring. Being able to predict models is for sure very important for biologists but the capacity to identify good models is even better. CAPRI provides the possibility for scorers to test their scoring methods on the targets. Rounds are the perfect way to test, try and train every modeling and scoring algorithm.

Rounds can be divided into different steps as shown on Figure 29. The first is to retrieve target complex structures to create a Round. Then predictors can register to participate in this round while signing a confidentiality agreement regarding the data. When the Round begins, predictors are being sent the sequences of the binding partners together with their stoichiometry. From these sequences each participant is asking to provide two sets of models. The first one, called "P-set", consists of the ten best models according to their own algorithm. The second one retrieves one hundred models (ranked or not, but including the ones from the P-set) and it is called "U-set". These two sets are then sent to the CAPRI Assessment members where they are concatenated with the other P and U-sets from the different predictor groups and randomized (shuffled). Once these two sets are completed, the Round is opened to scorer participants. The scorers will be provided the whole U-set and have to select according to their scoring functions their ten best models.

These models are collected into a "S-set".

The assessment step briefly consists of comparing every model provided for every set to the experimental solution with different assessment criteria. These criteria are f nat , f non-nat , i-rms,l-rms and s-rms and allow to rank a model between four possibilities.

Quality ranks are incorrect, acceptable, medium and high quality and they have been described in Section 1.C.b) with Table 8 while criteria are shown in Figure 11. 

Round 51: A CAPRI-COVID special round

With the CoViD-19 crisis, the researcher community gathered to find solutions to block the spreading, find drugs or at least understand the underlying mechanisms of virus replication. In this optic, CAPRI community wanted to use its knowledge and power in protein-protein interaction. From the publication of Gordon et al., four interaction complexes have been selected because of the availability of the component structure in PDB 158 . These complexes are called T182, T183, T184 and T185 and are described in the Table in the Material and Method section. In addition to these four targets, another virus-host interaction proposed during CASP14-CAPRI has been added called T181 also described in the Table [START_REF] Lensink | Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment[END_REF] . These five targets compounded the Round 51 of CAPRI. Contrary to the usual CAPRI Rounds, the solutions here were not resolved yet. The goal also differs from the other Rounds because the aim here is to be able to find good models which should be the most likely. To this, this Round was an Open Science Initiative meaning that every result was publicly available so as to be usable for other participants to have better predictions.

Also, as no solution is available at this moment, the need to find a way to select the best models is also a major step in this special CoVid-19 Round. This model selection needs a validation set to be approved.

B. Material and Methods

The targets

For this special Round, a selection of five different targets (T181 to T185) was proposed.

-Target 181 (CASP ID: H1103) is a complex between the SARS-COV-2 protein

Orf3a and the human heme oxygenase HMOX1 with a standard stoichiometry A1B1 -Target 182 is a complex between the viral protein Nsp15 and the human NUTF2. Nsp15 is known to have two main functions: endoribonuclease and interfering with dsRNA-interacting proteins. NUTF2 is a small hub protein related to nuclear import. The complex has a probable A1B2 stoichiometry.

-Target 183 is a complex between the human EXOSC8 which is a non-catalytic component of the RNA exosome complex (9 subunits) and Nsp8 is known to bind elements from this RNA exosome complex.

The probable stoichiometry of this complex is A1B1.

-Target 184 is a complex between the viral Nsp7 and human RhoA with a probable A1B1 stoichiometry. RhoA is a small GTPase that has GTP-bound and GDP-bound forms. Lots of PTM are known to occur on this protein.

-Target 185 is a big complex with 19 chains: one Nsp7 octamer, one Nsp8 octamer, one big viral protein Nsp12 and 2 chains of RNA.

Supplementary information is available on capri-docking website on a dedicated space written by us. All the information has been summarized in Table 11. 

CAPRI ID CASP ID

Analyses of interface residues a) Interface residue composition

To compare the residue composition at the interface for the different models, we transformed all models into RINs (Residue Interaction Networks). These networks establish an edge (interaction) between pair residues if their distance falls between 2.5 and 5 Å 193,194 .

RINs text files are constructed as followed: From this information, the residues at the interface are retrieved and then the number of times a residue has been predicted to be at the interface in the different models calculated thanks to a home-made Python script. A special attention has been paid when the structures are dimers to get interactions between the receptor and the ligands specifically as the dimer structure is known and so are the interactions between the two chains. From these networks three different types of information were retrieved, which are listed below from less to more detailed :

-Interface residues which are amino acids between 2.5 and 10 Å from the other chain.

-Contact residues are residues within 5 Å from the complex partner -Specific contacts are the contacts between entities that were determined using a 5 Å distance threshold.

Clashes (contacts below 2.5 Å), if any, were ignored. Only inter-chain contacts were 

c) Visualization

To easily compare residue conservation and the one predicted to be in contact, molecular visualization is a powerful tool. For each target, a PyMOL session has been set

with the two same molecules in the same orientation. For one molecule, the bfactor of the pdb files have been replaced with the conservation and the other molecule with the number of times the residue have been predicted to be in contact normalized by the number of models 171,196 .

Non-default PyMOL parameters:

-solvent radius = 2

-surface quality = 2

To avoid visual bias from overrepresented residues, we capped their number of contact at the 90th percentile Also, to visualize where the location of the interactions are, for every model, the center of mass of the different elements have been calculated. These coordinates have been set to a sphere visible.

Another visualization has been realized with barplots. On these barplots are representing the contact hits and the Rate4Site score multiplied by 100 to a better visualization. The plots have been created with Google Sheets.

Clustering

To find a consensus between all the models, we performed a clustering on all the models based on different features: interface residues (residues which are up to 10 Å from the other chain of model), contact residues (up to 5 Å) and specific contacts. As clustering is a method to see the distribution of elements according to their distances, we defined the distance (D) between two models as followed and illustrated in Figure 30: For the S-set, if two different models have a distance of 0, it is considered as redundant because it can be a model selected by two different scorers. In that case the second one is removed from the list of models. To perform the clustering, we used the R software with agnes (Agglomerative Nesting) R package to be able to cluster the solutions. Different clustering methods have been compared with the linkage criteria: Average, Single, Complete and Ward. In principle, Hierarchical clustering produces an amount of clusters starting with the number of elements and decreasing iteratively to one big cluster 197 . To set a representative number of clusters to represent every different solution, we decided to use a cut-off value. This value corresponds to the similarity inside a cluster, so a cut-off of 0.25 means that inside a cluster all models have at least 75% of similarity or a distance ⩽ 0.25 pair-wise. In this study we selected a cut-off of 0.25 after trying different ones like 0.4 and 0.6. To this, a R script has been written to get the good number of cluster (as shown in Figure 31). 

Meta-clustering

To have a better point of view of the results, we decided to perform some meta-clustering with Cytoscape using Markov clustering (MCL) based on the Jaccard index (1-Distance) between the most representative structure of each cluster (the medoid) 198,199 . This allows us to merge clusters where the clusters are close. For the validation set, this will allow us to see if the largest meta-cluster contains the best solution.

Adjacency overlap method

To see how well a model matches the consensus of all models, we calculated the adjacency overlap. For each model an adjacency matrix was constructed from the interaction network. If a specific interaction is detected between two residues in a model, this very contact is equal to 1, otherwise the value is 0. Once the matrix is set for all the models, a meta matrix is then constructed by overlapping all the matrices. Every contact is summed and then the values are normalized with the number of models. Once the metamatrix is calculated, every model is compared to this matrix to see how well this model matches the matrix. To calculate the overlap, we calculate the square root of the sum of all specific interactions multiplied by the value of this interaction in the adjacency matrix squared (M):

𝑖,𝑗 ∑(𝑚 𝑖𝑗 * 𝑀 𝑖𝑗 )²
where m is the contact matrix for one model and i, j the residues we are looking for the interaction.

Validation dataset

We selected the S-set of 4 targets from previous CAPRI Rounds where the different models have been assessed to different quality according to the CAPRI assessment criteria:

f nat and f non-nat which are the fraction of receptor-ligand residue contacts found in the model and the experimental structure and the fraction of contacts which have been predicted in the model and which are not present in the target structure 149 . In addition, to assess the quality of the predicted interface, two other quantities based on Root Mean Square Deviation (RMSD) are used: I-rms which is the rmsd at the interface backbone atoms and S-rms which is the same for the interface side-chain atoms. The different qualities are the following: incorrect, acceptable, medium and high.

The selected targets are listed below with their subjective difficulty according to the number of acceptable or above provide by their scorer sets:

-T039: considered here as a hard complex to predict -T041: considered here as an easy complex to predict -T050: considered as a medium difficulty target to predict with a A1B2 stoichiometry -T053: considered as a medium difficulty target to predict

The number of models and the quality of the different targets are summarized in the following Table 13: sensitivity and fOP the overall Precision. Basically, we looked at how many residues at the interface are found for the ligand and the receptor and how many are missing and how many are true.

Target

C. Results

Target analyses

For each target and for each component of the complex, the number of hits for interface residues, contact residues and specific contacts have been calculated on each model of the S-set. But for the following the target representations only contact residues (residues which are within 5 Å from the other partner) have been taken into account.

Target 181 (HMOX1/Orf3a):

The number of times a residue has been predicted to be at the close interface has been retrieved for the 185 models and their conservation according to Rate4Site can be seen in Figure 32. In parallel, to have a better representation of the interface area, the number of hits has been represented by color shades on the protein surfaces as the conservation. It can be seen on Figure 33. From the two barplots we can see that the residues often predicted to be in contact are not well conserved. For the viral protein, some residues with a high number of hits are more conserved. According to the surface representation we can see that indeed there is a big surface patch often predicted on the HMOX1 protein which is not well conserved. Contrary to the viral Orf3a protein which has many places predicted to be in contacts, areas which are more conserved. According to these results, we can say that the viral protein has a consensus for the binding area which is not the case for the human one. But regarding the center of mass of the different models, even if there is an area of consensus, the position of the different models seems to change a lot. For the human representation we can still see some really close dots meaning that some models are really close. 

Figure 33. Surface representation of human protein HMOX1 (A) and viral protein Orf3a (B) with coloration according to residue conservation and contact hits

Left corresponds to the residue conservation from cyan to orange and Right to the contact hits where red is for high occurrence, capped at the 90th percentile for a better visualization to blue with few occurrences. Green spheres around are the centers of mass of every partner predicted by the different models.

Target 182 (NUTF2 / Nsp15):

This target was a little bit different from the others as one of the complex components is a dimer. There is one barplot per chain for NUTF2: one called NUTF2.A eand the second called NUTF2.B. We can see on the Figure 35 that contact hits and obviously conservation of amino acids are very similar for the two different chains of NUTF2. The most conserved residues for the human protein are also well conserved. For the viral protein, the results are more heterogeneous with residues well conserved and others often mutated.

Regarding Figure 34, NUTF2 dimer surface representation shows as for T181 a big patch of ten predicted to be at the interface. This is supported by the many green spheres very close showing some consensus for the different models. The surface representation of Nsp15 shows more conservation with the highlight of two possible interaction faces even if one is more often predicted (lot of green spheres in this area).

Figure 34. Surface representation of human protein NUTF2 (A) and viral protein Nsp15 (B) with coloration according to residue conservation and contact hits

Left corresponds to the residue conservation from cyan to orange and Right to the contact hits where red is for high occurrence, capped at the 90th percentile for a better visualization to blue with few occurrences. Green spheres around are the centers of mass of every partner predicted by the different models. 

Target 183 (EXOSC8 / Nsp8):

The EXOSC8 most redundant residues at the interface are mostly conserved and very often predicted to be at the interface as Leucine 42 is found almost 400 times at the interface in 165 different models (see Figure 36 A) But this is also the case for Nsp8 where a consensus regarding the interface residue can be seen on the barplot with more than 500 occurrences for the three main residues (see Figure 36 B). While looking at the surface representation on Figure 37, we can find the big patch on the Nsp8 cavity and also a big patch on the EXOSC8 protein. But as this last one is a thin protein, the possibilities of interaction are very high explaining the disparity of the green spheres representing the different center of mass. Contact residues, here, show a consensus but if we are looking at the specific contact we can see that they differ from the different models. Regarding the Figure 38, the most predicted to be in contact residues are more conserved for the viral protein. Also these residues are well predicted to be in contact (between 400 and 500 times for the first four) and as it can be seen on Figure 39 they form an area in front of which we can see a lot of green spheres meaning the predictions are very consensual. Regarding the human protein three-dimensional representation, we can see thanks to the different centers of mass two mains area where the interaction is predicted.

This target seems to be the one with the more consensus. This target was a particular target with 17 proteins and two double stranded RNA leading to a very big complex which can not be analyzed as the four others. To this, we split the complex into binary problems: interactions between the two octamers of Nsp7 and Nsp8, but also interactions between Nsp7 and RNA, Nsp 12 and RNA. Nevertheless most of the complex structures selected by the score are very similar even if when fitted on the double stranded RNA we can see the symmetry is different. Regarding the full complex, we can assume two lines of approach for the construction of this multimeric structure. The first one, represented in Figure 40 is first a complex between the Nsp7 octamer and RNA, then consolidated with the Nsp8 octamer followed by Nsp12 at the bottom. The second story that we hypothesize is first the creation of the complex between the two Nsp7 and Nsp8 octamers which will then surround the RNA and the complex may be stabilized by the Nsp12 (see Figure 41). For each story, each step has been analyzed separately to provide specific contact information. As a lot of interacting residues are buried inside the complex, the surface representation was not informative enough explaining the cartoon representation for this target. These two figures show us how strong is the interaction inside the Nsp7/Nsp8 complexes but also their contact with the RNA. The Nsp12 which is the distant part seems to interact essentially with the RNA and a little with Nsp8. The color chart corresponds to the previous figures. For each step (from left to right) the colors of the residue hits (blue and red) are recalculated to correspond to the whole complex. The first step is Nsp7 with Nsp8, the second RNA is added and then Nsp12.

As this target is very different from the others, it has been set aside while the other targets are analyzed.

For Targets 181 to 184, the interface composition coupled to conservation did not bring any consensus and it is hard to find a good model with such information. Notably for T181 and 183 which it seems to have no consensus at all according to the different center of mass. We decided then to perform clustering on these models to see if we will be able to find a consensus for each target.

Clustering and meta-clustering

To select the hierarchical clustering, the agglomerative coefficient of the four methods have been tested and are retrieved in the Table 14. Regarding these scores, the Ward method is the one that has to be used for the following results. 14. Agglomerative coefficient of the four hierarchical clustering methods ("Average", "Single", "Complete", "Ward") applied on the fourth targets T181, T182, T183 and T184

The clustering has been first performed on validation datasets to see if this method works. Clustering has been done regarding interface residues, contact residues and specific contacts. Looking only at residues gives less accuracy and ends in one big cluster which is not helpful to discriminate good from bad models. Thus, it has been decided to only continue with specific contacts clustering.

Clustering on validation dataset:

Target 039:

Ward clustering has been performed on distances calculated on common specific contacts between the two chains. T039 was defined as difficult as no acceptable or better solution has been found in the S-set and only 4 (1 acceptable and 3 medium quality models)

have been predicted on the full U-set consisting of 1400 models. To avoid redundancy, similar models have been removed resulting in a validation set of 120 models.

In total, with a threshold of 0.25, the clustering results in 108 groups with a maximal size of 4 models coming from 4 different scorers. This means a heterogeneity of the specific contacts in the different model which can show that there is no consensus model.

Target 041:

This target is considered as an easy target with more than 60% of acceptable or better quality models. The U-set is composed of 1199 models with 22.5% of acceptable models, 11.9% medium quality and 1.8% of high quality models. The complex only consists of two different interacting chains. The Ward clustering has been processed on the 10 models of the S-set resulting in 105 clusters with a biggest cluster size of 3 obtained two times.

Target 050:

The target 050 is an interesting table as validation set because the complex is made with a AB:C stoichiometry which can be similar to Target 182 because AB can be considered as one as NUTF2. The U-set is composed of 1451 models with 7.9% of acceptable models and 3.4% of medium quality models. The S-set consists in 140 models with 25% of acceptable or better models (without any high quality models). These models have been clusterized into 113 clusters with 6 biggest clusters with a size of 3.

Target 053:

This target is similar to T050 in terms of difficulty with around 75% of incorrect models but this target has a standard stoichiometry A1B1. This target U-set is composed of 1400 models where only 9% has acceptable quality and 2.1% has medium quality. All the 130 predicted models of the S-set are gathered into 107 clusters with a maximum size of 3 for three clusters.

Finally the clustering on specific contacts regarding the validation set is too stringent to find a consensus even for "easy" targets such as T041. An interesting point is the variety of the scorer groups inside a cluster. We can see in the clustering results that the biggest clusters have models coming from different scorer groups while the predictors groups are often repeated. This means that different assessment methods lead to highlighting similar models predicted by similar methods. The discrimination by the specific contacts is too stringent and some models are isolated in a cluster while not that far from the other. From this observation we wanted to perform a meta-clustering to regroup models/clusters close from each other.

Target 039:

Meta-clustering of the 108 clusters from this Target 039 determined by Ward hierarchical clustering with Markov Clustering (MCl) results in many meta-clusters as it can be seen in Figure 42 (A). Indeed, from the 108 clusters we finally obtain 15 meta-clusters plus two singletons. An interesting thing is that the main cluster (C1) is not in the first meta-cluster. As there is no acceptable data it is difficult to say if a meta-cluster contains better results than others and if it is the biggest one but other quantities are available. These quantities are interface recall and precision and were calculated thanks to the available correct structure.

Target 041:

The meta-clustering of the 105 clusters results in a very lower number of meta-clusters contrary to T039. Indeed, we can see on Figure 42. (B) that all the models are dispatched into 4 meta-clusters plus one singleton. The first metal-cluster, which is the biggest, is mostly composed of the clusters with correct models except for 3 clusters which are incorrect. Looking at the Fscore of these clusters (or the size of the node) they are very close to be acceptable and this explains why they are near acceptable models. We can also remark that every cluster has a lot of links with the other clusters even between the metacluster meaning that all the models are very close regarding the specific contacts and a consensus should be easily findable.

Target 050:

Meta-clustering for Target 050 shows a profile similar to the one from T039

(Figure 42 (C)). Indeed, the 107 clusters are classified in 13 meta-clusters plus one singleton.

But as this target has few models which are at least acceptable, we can find them in the first and biggest metacluster. As T041, inside this meta-cluster, clusters with incorrect solutions are found. But once again, regarding the F Score the models are close to be acceptable.

Meta-clusters have many links between them but mostly between the two first and between

the first and the last metacluster with only clusters inside. This last one seems to also have better solutions than the other small meta-clusters.

Target 053:

This target shows a very particular profile with only one meta-cluster with every solution except three singletons as shown in Figure 42 (D). Inside this meta-cluster we can see good solutions which share a big link between them but it is also the case for incorrect models. Regarding the F Score we can see that very poor quality solutions are found inside this metacluster and without this information it would be difficult to separate good from bad models.

Meta-clustering seems to be a good solution to highlight good solutions in a Target according to this validation set but it is dependent on its difficulty. Indeed, the first cluster seems to contain good solutions but it does not mean that there is a good solution as it is the case for T039. We can hypothesize that a low amount of meta-clusters is synonymous to having an easy target but T050 and T039 have similar profiles while one has good solutions whether the other has no good answers inside. With these results we decided to apply clustering and meta-clustering to the CAPRI Round51 targets, hoping we will be able to highlight good results or consensus as T041. Target 181:

From the 185 models, 44 models which were redundant have been removed

resulting in a total of 141 models. The hierarchical clustering performed on these 141 models regrouped them in 120 clusters with two biggest clusters of 3 models which is very similar to results obtained with the validation set. Meta-clustering has been performed of these clusters and the results can be observed in Figure 43 (A). Results will be described and discussed after with all the CAPRI CoVID Round targets.

Target 182:

After redundancy curation, the number of models drops from 181 to 135. After hierarchical clustering, we count 120 clusters as T181 with one biggest cluster composed of 3 models from different scorers. These 120 clusters have been clustered with Markov clustering and the results are shown in Figure 43 (B). As T181, the results will be described and discussed soon.

Target 183:

Target 183 is the target with the lowest number of models (164). After curation, this number decreased to 127 models clustered in 102 groups with a biggest cluster containing 4 models selected from 4 different scorers. The meta-clustering results of this target can be seen on Figure 43 (C) and will be described and discussed after T184.

Target 184:

This target counts a total of 190 models reduced to 146 after redundancy curation. Regarding the Figure 43 in general, we can see that all CAPRI-Covid Round targets have similar profiles with a high number of meta-clusters which is a result close to T039

where no good solution is available. Regarding the links between clusters we can see that T182 and T184 have more consensus than T181 and T183 meaning that good solutions may be available in these targets but can't be found with this method. We need to define a new method to find good solutions based on consensus.

Adjacency overlap scoring

Regarding clustering and meta-clustering, we can see that models share specific contacts and these methods do not allow highlighting the models which are sharing the most of them. To be able to find the model which is the most consensus-based to every model, adjacency overlap has been performed on the validation set to see if this method can separate good from bad models and tell if a model can be correct. This method consists of retrieving every specific contact for every model to create a big pattern of interactions. Then each model is compared to this pattern and ranked. Applied to the validation set we obtain the following results:

Target 039:

The output of the adjacency overlap regarding the target gave models with a low score while the best model tends to hardly reach a score of 0.04. Regarding the distribution of all the scores and ranks of this difficult target in Figure 44, the score can be divided in three parts. The first group consists of the seven best models according to our scoring method. After retrieving these models i-rms and l-rms we can see that theur i-rms scores are between 15 and 20 which is slightly better than the other models but nothing significant.

Target 041:

This target is the easiest target of the validation set and all the good models were found in the same meta-cluster. Here, with the adjacency overlap, we can see on Figure 45 that all the good models (acceptable or better) are ranked first with a best score of 0.0875.

Regarding the distribution of the results on the graph, the different dots can be divided in three parts. The first part consists of models with a score between 0.0875 and 0.0600 which are classified as acceptable or better. But an interesting result is that the two models which have been classified as having high quality are not ranked in the first models according to our developed method. The second part consists of a majority of incorrect models except for one acceptable model. The model scores are between 0.0300 and 0.0600. According to the DockQ scores these models also have a score below the ones from the first part but 3 times superior to one from the third part. The last part is composed of incorrect models with an adjacency overlap score between 0.0200 and 0. Regarding these results it could be interesting to compare dockQ with our method to see if there is a correlation.

Target 050:

The stoichiometry of this target was particular as an AB:C one. The chains A and B are considered as one and only interactions between the C chain and the AB complex are taken into account. Regarding the result of the adjacency overlap on this target (Figure 46), we can see as for T041 good results in the first ranked with a majority of medium then acceptable models in the first part of the graph. Then the incorrect models are mixed with acceptable models in the following part. On this target we can see that medium quality models are well discriminated.

Target 053:

This target, very similar to the Target 050 regarding the percentage of acceptable or better models but different in terms of stoichiometry. Looking a the Figure 47, as for T041

we can find good quality models in the best ranked model according to the adjacency overlap scoring. These good models have a score between 0.046 and 0.060 which is lower than incorrect models from T041. Also medium quality models are in average better ranked than acceptable models. In addition the presence of 3 models considered by the CAPRI criteria as incorrect is an interesting result. Regarding these models l-rms and i-rms scores, we can see that they are close to be assessed as acceptable with scores of 11.4135 and 6.0368 for the best incorrect model and for 11.6438 and 4.7386 the second for a maximum of 10 and 5 respectively to be acceptable. According to these results, the adjacency overlap seems to work in discriminating good from bad models when there are good solutions. As the score is normalized by the size of the complex and the number of models it is possible to compare results from the different validation set targets. An interesting point should be to define a threshold from which the probability to have a good model is high. If we look at the validation set results a cut-off around 0.04 could be a good one except for T041 where some models assessed as incorrect are above this threshold. As this adjacency overlap scoring method seems to highlight good models, it has been applied on CAPRI Round 51 targets :

Target 181:

The adjacency overlap score shows a few models above the others with a curve profile similar to the one from T039 but with lower scores. These 8 models have a score between 0.023908 for the lowest and 0.025762 for the greatest which is quite low. Target 182:

This target seems to have the best results regarding the adjacency overlap scores of the models. Indeed, the best model has a score of 0.030055 which is under the cut-off previously hypothesized at 0.04. The repartition of the model according to the scorer ranks is also very heterogeneous. In Figure 49, we can see that the first five models have the same overlapping score then it decreases slowly for almost forty models to a score of 0.022. Then the score declined sharply for a few models and, after, a linear depreciation to 0.003192. The results of this target are very close to the ones of T182. We can observe on Target 184:

This target shows the best results from the CAPRI COVID Round. Indeed, some models have an adjacency overlap score higher than 0.04. Precisely, four models are above this threshold with these scores: 0.044681, 0.041289, 0.040674 and 0.040039. Then as usual, a linear decline of the model scores down to 0. The Figure 51 shows disparate scorer ranks all along. As the adjacency overlap method shows good results on the validation set, it could be interesting to mix the methods and see if both can be combined to have better results. To that we filtered the meta clustering with the adjacency overlap (see Figure 53). Regarding the easy targets (T041, T050 and T053) we can see that a lot of clusters with incorrect models have been removed but also clusters with high quality models for T041 (Figure 53.

B). The filter is interesting when only one meta cluster is available like for T053 (Figure 53.

C): most of the clusters with only incorrect models have been rejected and the majority of the remaining clusters are at least acceptable. But, the filtering on a difficult target (T039)

shows a removal of clusters reported in different meta-clusters inducing a support for no consensus. to Target 039, a difficult target without any good solutions. As the results did not highlight any consensus based on the specific contacts between chains, a method based on a whole profile determined by every model has been developed and applied. The adjacency overlap method shows very interesting results with the high ranking of good models. Indeed, when a validation set target has good models in its solution they are ranked before incorrect models. But the high quality solution (i.e. T041) are not well ranked compared to medium or acceptable models. This can be explained by the fact that there is a very low amount of high quality models and as this method is based on consensus these models are put aside because they have predicted specific contacts that other models do not have.

Residue conservation is good information to predict key areas for a protein, notably the interaction interface. But as we see in this study, viral proteins have a predicted interface with not conserved residues. This can be explained by the virus' facilities to mutate for an easier infection of different organisms. The non conserved residues could, unlike eukaryotes for example, be useful information for viral interface prediction.

Finally, according to the meta-clustering and adjacency overlap method it seems that the prediction of interactions between the viral and human proteins does not give good results. One possible reason could be that it is complicated to predict complexes between viral proteins and human ones because of their ability to quickly mutate. Another reason could stem from the prediction of interaction in the Gordon et al. study: indeed, the identification has been made through affinity-purification mass spectrometry but the specific interaction between the different components is not one hundred percent sure and the hypothesis of other proteins involved in the interaction is still present.

Regarding only the different adjacency overlap score plots for the validation set, we could put a threshold of 0.04 to discriminate good from bad models. Unfortunately, with this cut-off, none of the CAPRI special Covid Round scoring models would be considered as correct models. However, bad incorrect models can still show more or less correct interfaces which is more likely the case for the human proteins in CAPRI COVID-19 targets which is still useful information. But as effective as it seems to be, this method has only been tested on 4

different complexes and it is not sufficient to claim it as an effective new scoring method for protein-protein complexes or to define a correct threshold.

V. Validation of the adjacency overlap method:

Analyses of the CAPRI scoreset_2022

A. Introduction

Protein-protein interaction scoring methods

Being able to assess a protein-protein complex is a main research field since the improvement of protein-protein docking algorithms in the last two decades 105 .

Protein-protein complex predictions being also referred to as protein-protein docking, can be divided into two categories: template-based and de novo methods 201,202 . Even if the number of methods and algorithms has grown a lot recently and there is a need to assess the quality of the different methods. To this, predictors developed their own scoring function to propose to users their best models. CAPRI highlighted the need for improvement of scoring as it is a key aspect in protein-protein modeling 149 . These scoring methods can be divided in different categories such as physics-based potentials, interface shape, knowledge-based statistical potentials, machine learning and deep learning methods and evolutionary profiles of interface residues. These categories are often mixed, which is the case of AccuRefiner, MaSIF and GNN-DOVE 105,106,108 .

All these methods are trained on available data such as Dockground dataset 1.0 203 , a database containing many structures of complexes. This can add a bias if a particular interaction is not often found in the database. One of the most current and recent scoring methods is GNN-Dove which uses many features combined in a graph neural network. It shows on the 2014 CAPRI Score_set very good results, as did iScore developed by the Bonvin lab 109 . These two methods are based on RINs defining the interaction surface. From these graphs constructed on databases they trained their algorithms to rank a protein-protein complex. iScore also adds a physics-based potential such as Van der Waals, electrostatic and desolvation energies. These methods are trained on a set of experimentally resolved structures (Protein-protein docking benchmark version 4.0 for iScore).

In the previous part of this PhD manuscript, we have developed a new scoring method based on the knowledge of all CAPRI predictors and scorers. More precisely on their consensus answers regarding the interface. As the two methods highlight before, it is based on the specific contacts at the interface, found thanks to RINs. As it showed good results on 4 previous Targets of CAPRI, we decided to test it on a larger dataset.

Protein-protein complexes databases

The majority of experimentally resolved protein-protein structures are available on the PDB. But some databases contain specific quaternary structures. This is the case for BACKGROUND, an online resource that provides various dataset of X-ray and modeled structures. This tool consists of 5 different subsets of protein-protein complexes: bound, unbound, models, docking decoys and docking templates 204 . In total, an amount of 215 363 pairwise complexes is available of the bound-bound subset with 149 416 homo-dimers. Two benchmarks of model complexes are also availables and consist of the first one of arrays of six models for each of the proteins (from 63 complexes). These models have been constructed by template modeling 105,109 . The second one which is larger is also composed of 6 models but on 165 protein complexes.

Another database is the protein-protein docking benchmark version 4.0 205 . It consists of a set of non-redundant protein-protein complexes as a protein-protein benchmark. In total, this benchmark includes 176 cases with various difficulties (121 easy, 30 medium and 25 difficult complexes). As it is a docking benchmark, the models have to be created and then scored by a scoring method.

The CAPRI Community also provides a dataset called Score_set 149 . A first version published in 2014 provided 19,013 predicted models in total for 15 complexes (called targets). According to CAPRI assessment criteria about 11% of the models have acceptable or better quality. The CAPRI benchmark can be divided into three sets: P, U and S-set. The P-set, as described in the previous section, is the ten best models of a complex according to predictors as the U set a set of 100 models, including the ten best. From this U-set scorers were proposed to select the ten best models according to their method creating the S-Set. In addition the experimental solution is also provided so people can test their docking and/or scoring method on the different dataset. For each model many assessment measures are provided,such as model quality (according to CAPRI criteria), number of clashes, f nat and f non-nat , i-rms, l-rms, dockQ score. This set is very useful to see the improvement of docking and scoring methods and is well used as a benchmark to compare method results.

Recently, a new version of the CAPRI Score_set now called CAPRI Scoreset v2022 has been made available on the scoreset.org website (and will be published soon). This new dataset incorporates all the publicly released CAPRI targets, increasing significantly the number of models from about 20,000 (for 15 targets) to more than 170,000 models (for 96 targets) which makes it the biggest benchmark available yet for scoring methods.

B. Material and Methods

CAPRI Scoreset v2022

The new CAPRI Scoreset V2022 (which will henceforth be called scoreset) has been used in this study to test our adjacency overlap scoring method. This scoreset is composed of 170,310 docking models. These models are made from 148 interfaces coming from 96 CAPRI targets. From these interfaces, 120 have been retrieved for this benchmark. In total, 121,209 models have been analyzed. These target interfaces can be mainly divided into four different kingdoms: Archaea, Bacteria, Viruses and Eukaryotes, but some are interfaces between different kingdoms (like between eukaryotic and bacteria proteins) or artificial (coming from protein design). The repartition of the models in the different kingdoms is shown in Table 15. When a complex involves a particular stoichiometry such as A1B2 or AB:C for example, it is specified. In addition, two other sets have been created from the full set, one for homodimers and one for heterodimers. They contained 56 and 48 interfaces respectively (complexes that involve more than 2 chains have not been taken into account).

Kingdom

For each kind of set (P,U and S) the number of interfaces is different. This can be explained by the tight timing that sometimes happens in CAPRI, usually due to impending publication of the target's associated manuscript. In that case the scoring round did not take place so there is no S-set for these targets. The missing U-set targets are because they are still not assessed for the moment. For every analysis of a set the number of interfaces will be indicated in the results section.

Scoring method

The adjacency overlap method that was tested on this benchmark is the same as the one developed for the previous manuscript session. To calculate the overlap, we calculate the square root of the sum of all specific interactions (m) multiplied by the value of this interaction in the adjacency matrix squared (M):

𝑖,𝑗 ∑(𝑚 𝑖𝑗 * 𝑀 𝑖𝑗 )²
where m is the contact matrix for one model and i, j the residues we are looking for in the interaction.

To apply this method developed in C language, it takes as input a multi pdb file containing all the models for an interface, but also the number of chains, the stoichiometry of the chains with the good chain IDs. In addition, for CAPRI's targets, as the quality of every model is provided, the method can take as input a text file with the model ID and its quality.

To automate the process, a Python script has been written to look at the multi pdb file in the REMARK section, the number of the chain and their IDs to write the correct command line in a bash script. The REMARK line is the following:

"REMARK 1 NCHAIN 3 CHAIN A 305 CHAIN B 75 CHAIN C 104"
This means that there are three chains in the models: the chain A with 305 residues, the chain B with 75 residues and the chain C with 104 amino acids. The output of the script is a text log file. So, to better handle the results, the Python script adds a few lines in the bash script to only retrieve the scoring results in a .txt and a .csv file that can then be analyzed.

Efficiency of ranking method

To improve the next part comprehension, the definition and formula of statistical terms are retrieved in the following list:

-TP: True Positive (being correctly predicted as positive)

-FP: False Positive: data which has been predicted to be positive but is negative 

𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

To be able to calculate the efficiency of our method, the Receiver Operating Characteristic (ROC) curves have been plotted for every subset to see the performance regarding the sensitivity (also called True Positive Rate (TPR)) and the False Positive Rate (FPR) which is 1specificity. This curve allows us to calculate the Area Under Curve (AUC), which is a good indicator to see if the method can correctly discriminate data into two categories. In parallel, a Precision-Recall curve has been drawn to evaluate the threshold to obtain the highest precision in function of the sensitivity. To determine this threshold, the wanted precision is selected and looked at the depreciation of it while increasing the sensitivity.

C. Results

U-set

The Adjacency overlap has been run on the full U-set containing 114 interfaces. In total 121,586 models have been used to test our method. To calculate the ROC and the Precision-Recall curves, we determined that a correct model has an assessment quality of acceptable or better. These two curves can be seen in Figure 54. With an AUC of 0.935, our method seems very effective to predict good models. Here the final idea is to retrieve only the good models, meaning that the precision of the method is more important than the sensitivity. So from the precision-recall curve we can say that we wanted to select to the highest precision. According to this analysis, the highest precision is 0.8189 for a sensitivity of 0.2986577. To obtain these statistical measurements, the threshold must be 0.080531. This set can be separated according to kingdoms as explained in the Material and Method section. We decide to do the same analysis for the four main kingdoms (Archaea, Bacteria, Eukaryotes and Viruses). The results of the ROC AUC, precision, sensitivity and associated thresholds are listed in Table 16. Some of the interfaces have no kingdom information (two for the U-set). Four interfaces are complexes between two different kingdoms (here called "Cross").

Regarding these table results, we can see that our method is kingdom dependent.

The precision is very high when looking at Bacteria and Eukaryotes while very low for Archaea or crossed kingdoms. For Viruses, the precision is very high but with a very low sensitivity as it can be seen on the corresponding supplementary Figure in supplementary data. Bacteria and Eukaryotes sets have better results but also a higher number of models. We also looked at the difference of results regarding the dimer and more precisely between homo and hetero dimer. The results can be found in the following Table 17. These results show that our method performs well both on hetero or homo-dimer.

However, for homodimers the precision is higher but with a lower sensitivity.

S-Set

The S-set is one corresponding to the validation set used for the CAPRI-Covid Round but with a bigger amount of interfaces. In total, 113 interfaces have been assessed by the CAPRI assessment team for this Set for a total of 15,799 models.

This S-set is composed of fewer models than the U-set but should contain a better percentage of good quality models as shown in previous CAPRI publications 142,146,149 . As for the U-Set, our adjacency overlap method has been performed on the whole dataset and the graphical results are shown in Figure 55. The AUC of 0.880 shows a good capability for our method to distinguish good from bad models also for smaller sets. With a precision of 0.7898 and a sensitivity of 0.2612, the results on this dataset are slightly lower than expected. To obtain these statistical measurements, the threshold is set at 0.0718.

As for the U-set, the different kingdoms have been analyzed separately to see how well our method performs. All the results are summarized into Table 18. Regarding these results we can see the tendency of lower quality results is found in every kingdom except for the Viruses where there is an increase of about 0.11 point.

Again the AUC shows good results for Bacteria and Eukaryotes and poor results for Archaea and Crossed kingdoms. Regarding the difference between the homo and hetero dimer (Table 19) we can see once again a loss of quality compared to the U-Set by comparing the ROC AUC. But for hetero-dimers we notice a better quality regarding the precision and sensitivity.

P-Set

As U and S-sets gave different results, we performed our adjacency overlap method on the P-set, the set composed of the 10 best models of each predictor according to their own algorithms. This contains the highest amount of interface compared to the two other sets with a total of 148. As before, the ROC and Precision-Recall curves have been drawn and can be seen in Figure 56. The ROC AUC for this whole set is 0.908 which is higher than for S-Set but lower than U-set. The difference could be explained by the difference of the number of models. The precision is 0.7967 for a sensitivity of 0.2775. The values are for a threshold of 0.075081. These values are very close to the one of the S-set. Once again, these measures have been calculated for every kingdom and retrieved in the Table 20. 

Kingdom

P-Set

An interesting result is regarding the Viruses results for the P-set. The results show a very good precision with a higher sensitivity than usual while the ROC AUC shows lower results than other kingdoms. Then the difference between homo and hetero dimers have been analyzed and are summarized in Here again results are better for the P-set than the S-set but lower than U-set regarding the AUC. But for the precision of our method on the P-set, we can see that it is easier to retrieve good results without so many false positives, which is more important according to us.

CAPRI-Covid

According to the results of the adjacency overlap on the CAPRI Scoreset 2022, our method is able to discriminate good from bad models with a high precision but with a low sensitivity. We also were able to determine a threshold for this method according to the different kingdoms. So we decided to look back at our results to see if a model from the different T181, T182, T183 and T184 is a good model according to the adjacency overlap. To this, the results score of the best model for each target is retrieved in the 

Comparison with other scoring methods

As our method seems to have a good regression capacity regarding the AUC, it could be interesting to compare our results to the actual scoring methods as iScore and GNN-DOVE which show good results 105,109 . In Wang et al. (2021) GNN-DOVE is compared to iScore on previous CAPRI Targets. These 13 targets have been selected and we compared our ten best results obtained with the Adjacency Overlap (OA) on these to the iScore and GNN-DOVE ones. The results are gathered in Table 24. The values are in bold when the performance is higher than other scoring methods. The scoring performance for each target is reported as the number of acceptable or better models (hits), followed by the number of high (indicated with ***)

Target

or medium quality models (**). The total is reported in a similar way: first number corresponds to the number of targets in which a method found at least an acceptable or better quality model, the second corresponds to the number of targets in which at least a high quality model have been found and the third number for the medium quality.

AO is for Adjacency Overlap

These results show how successful our method is to score models. Indeed, even if the improvement is marginal target-wise, it offers an enrichment of the good models in the top 10 models compared to two very recent scoring methods. More specifically, our adjacency overlap method finds good models in the same targets as iScore but finds higher quality models or at least a higher number of models. GNN-DOVE was able to find a good model in two targets that neither one of our methods nor iScore were able to find. Our method better performs on the P-Set than the U-Set. As it is based on the global consensus, the U-set does have more incorrect model proportions than the P-set.

Our method was also tested on the S-set but the results have not been summarized

in the Table as S-set was not tested by iScore and GNN-DOVE. The total results for adjacency overlap is 8/4***/3** which is better than the U-set results. There is one less target found by the other scoring methods but a higher number of high quality models.

D. Discussion

In this study, we tested a new scoring method based on the adjacency overlap. We

were able to test it on a full new dataset, ideal for a benchmark with at least 110 different complexes with different stoichiometries. From this benchmark, three sets have been analyzed with different numbers of models. The U-set which contains up to 100 models per predictor, the P-set which is the 10 best model per predictor and the S-set, a specific set with the 10 best models of the U-set selected by scorers. Regarding the U-set, we can see that our method did not perform well for two kingdoms: Archaea and Cross-species. These two subsets have a very low amount of interfaces and models. The Archaea subset is composed of 17 from 4 different targets meaning there are a lot of interfaces for the 3 of the 4 complexes (5 interfaces for T149, T150 and T151). In total, 90.9% of the models of Archaea complexes were incorrect while 4.9% were acceptable, 3% with medium quality and 1.2% with high quality. The knowledge of Archaea protein complexes is very low compared to bacteria or eukaryotes. In PDBe, there are only about 1,300 complexes for Archaea protein interacting with other macromolecules (against 27,740 for Eukaryotes and 9,360 for Bacteria). The low amount of experimental results may have an impact on the predictive model algorithms and quality. This is similar for complexes with different kingdoms involved.

Regarding the homo and hetero-dimers, we can see a better prediction for homo-dimer than hetero-dimers despite a similar number of models. This could be explained by better interaction interface recognition.

The S-set has been then used to test our method. We hypothesized to achieve better results on this set than the previous set. Indeed, our method is based on the overall quality of the models. As previously shown in a CAPRI prediction, the S-set is the one from three available to show the best results 149 . But even if the tendencies are similar to the U-set regarding the kingdoms, there is an overall lower discrimination capacity according to the AUC (a loss of 0.05 to 0.1) except for Viruses where we can see an increase of the AUC of 0.1. This could be explained by the lower amount of models between the U and the S-set.

According to the previous results from the U and S-sets, the results should be under the one from the S-set as there is a lower number model than the U-set and the selected models are not from scorer but predictor scoring. But regarding the global AUC, we can see that our method performs better on the P-set than the S-Set. Regarding the different kingdoms, we can see that the prediction works well for all the kingdoms except for Archaea.

The poor results for this kingdom can be explained by the same reason as the U-Set. The better prediction capacity for the P-set than the S-set could come from the higher number of models in the P-set because there are more predictors than scorers which is contrasting with the previous observation. There is a need to determine the number of models for this method to be optimized.

The comparison of our scoring method to the two methods iScore and GNN-DOVE

shows better results for our method based on the P-set than the U-set. It could be explained by the fact that there is a pre-selection by the predictors which removes models which may lead to a wrong consensus. Indeed, our method is based on the overall consensus of a number of models. If the majority of models are wrong our method would not be able to retrieve the good models. Contrary to the reference scoring methods, ours is not based on training on experimental data but only uses the available models. Our method has the particularity to consider every model and so every information with the same level of importance, it therefore creates a scoring based on mixed knowledge and algorithms. But a big constraint is that our method needs a high number of models provided by different predictors. It could be used as a meta clustering, selecting a consensus model from different docking algorithm results.

The benchmark set used by iScore and GNN-DOVE is old and scored models were predicted by old algorithms. It could be interesting to compare results on more recent data that should be available with the release of the CAPRI Scoreset v20200.

Regarding the special CAPRI COVID Round, the predictor could have produced good models if we based our analysis on the Eukaryotes threshold defined on the S-set. Indeed some models have between 70 and 74% of chance to be correct according to this threshold.

But these special COVID-19 targets are interaction between human and viral proteins which are cross-kingdom and, based on the S-set cross-kingdom result, there are no good results.

Of course, our method may not be able to recognize good models for cross-kingdom but there is also the possibility that the interactions between the proteins in the target are not that binary. Indeed, some other protein may be involved in the complex. Or the prediction that an interaction exists between the proteins may be wrong. As our method shows poorer results on the S-set, it could be interesting to redo this analysis on the P-set and the U-set.

There is one CAPRI Target (T165) which involves in its interaction a viral and a human protein. But the number of correct models is very low (4 acceptable models for the U-Set, 1 for the P-set and none for the S-set). This shows the difficulty to predict interaction between eukaryotes and viral proteins. This difficulty could be explained by the higher rate of mutation for viral proteins.

In perspective, we could also determine the ideal number of models for our method to be applied with the highest confidence. An article with these results is in preparation and will be published as soon as possible.

E. Conclusion

We developed an adjacency overlap scoring method based on the overall consensus of a high number of models. This method shows better results than two reference scoring algorithms when applied to the CAPRI 2014 score_set benchmark. But as we highlight its good prediction rate for bacteria, eukaryotes and viral complexes, we also demonstrate its poor capacity to find good models for Archaea and across kingdoms. As archaea complexes

were not yet available as a benchmark it could be interesting to look at the other scoring results regarding this kingdom to compare our method to the others. This sugar will be irreversibly transformed into GlcNH 2 -6-P by the Gln:Fru-6-P AmidoTransferase. Then the metabolism of fatty acid brings the Acetyl-CoA in HBP to produce GlcNAc-6-P from the GlcNH2-6-P thanks to the GlcN-6-P N-AcetylTransferase. From this, the PGM (PhosphoGlucoMutase) transforms the product into GlcN-1-P. Finally, the GlcN-1-P is activated into the UDP-GlcNAc thanks to the UDP-N-Acetylglucosamine

Pyrophosphorylase. This UDP-GlcNAc is the first molecule recruited by the OGT, the enzyme responsible for the addition of the GlcNAc on the substrate, then the polypeptide is fixed in a bi-bi mechanism [START_REF] Lazarus | Structure of human O-GlcNAc transferase and its complex with a peptide substrate[END_REF] . The sugar addition reaction is made thanks to a nucleophilic attack from the hydroxyl group of the serine or threonine on the anomeric carbon of the sugar. This . This TPR domain known to be the substrate recognition domain also possesses an asparagine ladder. This ladder has been shown to play an important role for the catalytic activity with a loss of the OGT activity when the asparagines are mutated into alanines [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] .

OGT is also known to have a protein cleavage activity. Indeed, in 2013, Lazarus et al. . These structures have the particularity to be complexes of OGT with a peptide substrate.

Until the end of 2021 there was no full OGT structure available but with the improvement of experimental methods, notably, cryo-EM it is now longer the case 210 . But the resolution is not as high as for X-ray microscopy with a resolution of 5.32 Å.

c) The asparagine ladder

In 2018, Levine et al. showed the impact of the asparagine ladder of the TPR of the OGT by mutating them into alanines [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] . They performed a permutation test approach to determine which proteins were glycosylated by wild-type and 5N5A OGT variants. According to their results (Figure 57), 739 proteins scored as hits when comparing wild-type OGT-treated arrays to controls and from these proteins 736 had a higher signal for wild-type OGT than 5N5A. Based on these results they concluded that the asparagine ladder is used by the OGT to recognize its substrate. . This wnt pathway is the most active during the embryogenesis where its role is to facilitate the cell differentiation, polarization and migration. At the mature age of an organism, this pathway should be knocked out. But it has been shown to be activated during the development of tumors and other diseases. It also can be reactivated in organ injury and regeneration such as kidney injury 213 . The wnt pathway can be categorized as canonical, that is β-catenin dependent and as non-canonical, that is β-catenin-independent signaling pathways 212 . The β-catenin is a protein which is a transcription factor inducing the activation of T cell factor (TCF). Its activation is gene dependent and will happen when the β-catenin is translocated in the nucleus. In a normal state, the β-catenin is usually degraded by a destruction complex. This complex is composed of different kinases: glycogen synthase kinase 3β (GSK3β) and casein kinase 1 α (CK1α). These two kinases are interacting with The specific interaction between the OGT and the β-catenin is known to increase the risk of colorectal cancer (CRC). Indeed, 90% of CRC cases are an alteration of the Wnt/β-catenin. If the majority of these cases are genetic alteration of the APC, the non degradation of the β-catenin because of its O-GlcNAcylation is also implicated. As only the N-terminal segment of the β-catenin is known to be modified by the OGT, we still don't know how this specific interaction happens and filling this lack of knowledge may bring therapeutic treatments.

The beta-catenin is composed of an unstructured N-terminal segment where the D-box is found. Then there is an Armadillo domain known to be a recognition domain which is followed by an unstructured C-part.

AlphaFold-Multimer

The prediction of structural interaction between proteins and between protein and peptides is still a major research of interest. Numerous software has already been proposed to predict such complexes. As for protein structure prediction, an improvement of the results has been shown very recently with the involvement of DeepMind and their software AlphaFold-Multimer. As AlphaFold, its multimeric version is trained on a variety of experimental resolved structures. But for this new algorithm, training data is composed of protein complexes. Its score formula has also changed to fit the new kind of data. The old formula only looks at the interaction between residues of the same chain which is no longer the case. Indeed, now the inter-chain interaction is also taken into account with a rate of 0.8 and the intra-chain interaction contribution is now 0.2 118 . This highlights the quality of the protein interaction rather than the unbound protein structures. But, unfortunately, contrary to AlphaFold, the multimeric version has not been accepted for publication yet and is still on BioRxiv. But its code has been made available and already a benchmarking of complexe structures has been done 216 . The Figure 59 shows how successful AlphaFold-Multimer is.

Indeed, regarding only the top model according to its scoring AlphaFold-Multimer is about 50% of the time acceptable. Results are slightly better when regarding the top 5 of results.

ColabFold and ZDOCK were also part of this benchmark and showed similar results with few lower results for ColabFOld and very low results for ZDOCK 120,217 . When the key word "beta-catenin" is used in research for a molecule name inside the PDBe, there are 45 results. In all these results, the only resolved part of the β-catenin is its Armadillo domain. Indeed, the unstructured C and N-parts are too unstable to be crystallized. In total, there are 35 protein-protein complexes with the full Armadillo domain, a part of it or with peptide from the N-terminal segment which is phosphorylated.

Docking OGT/ β-catenin

As shown in his PhD objectives, we want to simulate the interactions between the OGT and β-catenin and this regarding the potential link between the two recognition domains (TPR and Armadillo) but also with the unstructured N-terminal segment of β-catenin and the TPR domain. In the end, we want to perform protein-protein docking but also protein-peptide docking.

To this, as AlphaFold-Mutimer shows already good results despite its unpublished article yet, it has been used for predicted both interactions. To model the interaction of the Armadillo domain and the TPR domain of the OGT, the Armadillo domain has been selected between the residues 152 and 663 included of the human β-catenin and the 1 rst and 473 rd residues of the human OGT (Uniprot IDs:P35222, O15294).

Thanks to AlphaFold-Mutimer installed on our GPU computer, we were able to produce 20 models per random seed. As there are 5 random seeds, it will generate a total amount of 100 models. The same amount of models has been calculated for the docking protein-peptide. To determine the ideal size of the peptide to have enough information without losing quality, we decided to try 3 different sizes of the peptide (50, 100 and 151 which is the maximal size of the β-catenin unstructured N-terminal segment). In parallel we tried a different number of TPR repetitions to avoid losing too much time. The goal was there to have the best p-TM score without losing too much information and keeping the asparagine ladder.

As seen in Figure 23, the ideal number of TPR to win time and have good pTM results is 8 with a peptide of 50 residue length.

To look at the interaction of the asparagine ladder highlighted in the TPR of the OGT, we selected peptide of 51 residues with experimentally provent O-GlcNAcylation sites (S23, T41, T112) and peptides without O-GlcNAcylated sites. These later have been selected on the unstructured N-terminal segment and C-terminal segment in order to be the farthest of a modified site possible. For the negative sites, S71 and S718 have been selected. For each site, several peptides have been constructed to be able to move the site from the beginning to the end of the peptide (in position 6, 16, 26, 36, 46). This, in the purpose to see if the asparagine ladder would be able to pull and push the site in the catalytic domain. To see if the asparagines interact with our site, we retrieve, with PyMOL, every residue at 5 Angstrom from the hydroxyl of each group and see if some correspond to the ones we are looking for.

The asparagine indexes we are looking at are 321, 322, 325, 356, 390 and 414. We added the 322 to the five ones from Levine et al. article as it was very close and oriented inside the TPR lumen.

In order to see if AlphaFold-Multimer was able to predict the interaction of the OGT with the unstructured N-terminal segment of the β-catenin plus the full Armadillo domain, the prediction of 100 hundred models has also be performed with the ncOGT and the 663 first β-catenin residues.

C. Results 

Docking protein/peptide

Regarding the poor previous results to interpret the interaction between the Armadillo domain and the destruction box and the OGT with 8 TPR repeats, the modeling of only one big peptide known to be O-GlcNAcylated in its center has been generated one hundred times. This time, the scores are much higher with a median of 0.6380 and a mean of 0.6248. The best model according to AFM is the fifth model of the second random seed, with a score of 0.7398. It can be seen in Figure 62. These results show a good confidence but, looking at the plddt score of residues, this high score is mostly due to the OGT modeling. Indeed, as it can see in Figure 63, the peptide plddt score is much lower but two parts seem more confident. These parts, in red in Figure 62 The OGT residues interacting with the peptide part near the serine 23 and their occurrence is recapped in the Table 25 below:

Res A C E G K N P R T V Y Count 2 1 1 1 1 2 1 1 1 1 1
Table 25. Counting of OGT residues that interact with the 3-9 peptide residues

The numbers in bold have the higher count These results do not show any favored residues except two asparagines and two alanines. The same operation has been done for the second peak and the results are in the Table 26.

Res A C D E F K N Q R S Y Count 1 2 5 1 4 2 10 1 1 5 5 
Table 26. Counting of OGT residues that interact with the 19-31 peptide residues

The number in bold has the higher count This table highlights the high number of asparagines interacting with the peptide.

Regarding the sequence, a repeated pattern can be found. This pattern illustrated in Figure 64, shows the presence of a tyrosine at 9 residues of a phenylalanine (or an aspartic acid) followed by an aspartic acid (or alanine) two residues after. These residues are then followed by a serine and an asparagine. This repeated motif which is almost identically found 5 times can be explained by the TPR repeats which are made to create a superhelix.

The important role of asparagines inside the lumen of the OGT's TPR has been put forward with Levine et al. 2018 37 . But even if some asparagines of these repeats are part of the asparagine ladder, others have not been highlighted. But as the asparagine ladder has been shown to reduce dramatically the OGT efficiency so it could be interesting to focus on this part with all the β-catenin O-GlcNAcylated sites which are serine 23, threonine 40, 41 and 112.

An interesting thing should be to superimpose the results of the three last parts 

OGT and β-catenin

In green is the OGT on which every models have been aligned, the blue corresponds to the model prediction for the Armadillo alone, the yellow is the armadillo domain with the unstructured N-terminal segment and the red part is the 51 long residue peptide with O-GlcNAcylation site. The orange part on the unstructured part corresponds to the peptide in red.

The asparagine ladder interactions

As shown, in the previous results, we saw an interaction of the O-GlcNAcylation site with many asparagine and a previous article (Levine et al. 2018) highlights the need of an asparagine ladder [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] . To see if the asparagines interact with the modified sites, we decided to model peptides with O-GlcNAcylated sites in different positions in the peptide (6,16,26,36 and 46) and non peptide with a serine non modified as negative data. The peptides are 51 residues long. To be able to see if the interaction exists, PyMOL was used to retrieve all the residues around 5 Å of the hydroxyl group of serine and threonine of interest. For the threonine 40 at the different positions, we saw interactions with different asparagines. These interactions are summarized in the Table 27. These results show a better confidence in the model with a highest score of 0.7231. We can see the number of asparagine in interaction is reduced while increasing the index of the O-GlcNAcylated site and we can see a move of the interaction from the N-terminal segment to the C-terminal segment of the TPR. This may mean that the peptide is predicted to be at more or less the same place and only the site is moving. There are no results for the position 46 because the results would be distorted because of the presence of the serine 23.

Asparagin Indexes

Position of threonine 40 Interestingly, the results for the serine 718, not known to be O-GlcNAcylated, are very similar to positive data with even more interactions. These interactions are retrieved in the Table 28. But the confidence scores of the models are still lower than the ones of threonine 40 and 41. According to these results; the peptide seems to be in different conformation. After regarding in the different complex models, there is indeed a changement of conformation: the peptide is inside the TPR with a loop at the N-terminal segment or C-terminal segment of the TPR depending on the positions. This can be explained by the low confidence score and the complex structure found in the PDB. The peptide is predicted to be here but without a clear conformation.

Asparagine indexes

Position of the serine 718 To be able to compare the differents conformations, every positive model have been analyzed and for every models the N-part of the peptide is predicted to go out of the catalytic domain, except for T112 which is predicted to be outside of the TPR where the rest of the TPR should be if complete in fuzzy conformation. For T112 in position 16, the peptide is predicted to create an interaction between alpha helices (one from the peptide) and the rest of the peptide go into the TPR domain. For the serine 23, when there is no threonine 40 and 41 the peptide is also conformed as negative data but once there are these two sites it has the same conformation as we look for threonine 40 and 41.

D. Discussion / Conclusion / Perspectives

Regarding the protein-protein modeling between full ncOGT and Armadillo domain, the complex scores are low in general, with an average of 0.26 or 0.27. Selected models have higher scores, with values of 0.43 and 0.36, but these are still low values, even when the confidence of the individual monomer structures are higher; these low scores can be explained by the little area of predicted interaction. Indeed, as AFM uses 80% of the inter-chain prediction value to create its score, the interaction area at the output of the catalytic domain of the OGT is not enough to have a high confidence score. The lower results

for the complex between the full ncOGT and the Armadillo with the unstructured N-part can be explained by the bigger size of the substrate with the same interaction area leading to a lower ratio of interaction. As shown in the two complex figures (Figure 60 and Figure 61), the unstructured part predicted to interact with the OGT contains a threonine which is an amino acid that can be O-GlcNAcylated. It could be interesting to add an UDP-GlcNAc on the histidine 498 in the catalytic pocket and see if this threonine is close to it and could be O-GlcNAcylated.

Protein-peptide docking performed on the ncOGT reduced to 8 TPRs with an O-GlcNAcylated peptide from the unstructured N-part of the beta-catenin showed better results. Indeed, the average score was around 0.63 and the best model produced a score of 0.74. The higher scores come probably by the higher interaction between the two entities. It is interessant to notice a repeated pattern inside the TPR lumen involved in the interaction with the peptide. This motif with many asparagine could have a "pull and push" purpose to bring the peptide inside the catalytic domain. It could be interesting to see, as it was done for the asparagine ladder, if some residues of this motif mutate leads to the loss of the activity. A decrease of the OGT activity could show new substrate recognition mechanisms.

But it could be very difficult to show here a specific interaction with the unstructured part of the beta-catenin as every unstructured part could interact with this repeated motif as the asparagine ladder.

Also, for these results, we reduced the complex by reducing the number of TPR repeats. To see if the results are the same with the full ncOGT, the calculations need to be redone which is actually the case as they are running on our GPU.

Regarding the concatenation of the 3 best models obtained for the interaction of the OGT and beta-catenin (Figure 65), we can see a predilection for the OGT to interact at the output of its catalytic domain and not with its TPR which is its recognition domain. This also creates a clash between two models as the peptide is predicted to go out from the OGT in the same area as it is predicted to interact with the Armadillo domain. From this model, we can hypothesize the need of a third protein to present the unstructured part of the beta-catenin to the lumen of the TPR supporting the hypothesis of chaperone proteins to help the OGT to its substrate recognition.

For the investigation of the asparagine ladder, we can see the low interaction between the asparagine 321 and 322 and the different peptides except for S718. But as one is part of the asparagine ladder highlighted by Levine et al. this results is surprising. It can be explained by the reduction of TPR repeats. The new prediction with the full ncOGT may make up for this absence of interaction. The interaction of these two asparagine with the peptide around the serine 718 can be explained by the fuzzy conformation inside the TPR which takes more place. Even if the scores are lower for this peptide the high number of interactions can make us think of an O-GlcNAcylated site which has not been experimentally proven yet.

The predicted models show a higher confidence score when the hydroxyl group of serine and threonine interacts with the asparagine ladder. In Section II, we have tried to use this information to predict O-GlcNAcylated sites. Unfortunately such interactions are not often found for O-GlcNAcylated sites. But the score has not been taken into account. Maybe a threshold coupled with this information may help predict such modified sites but without much conviction. The conformation of the peptide at the output of the OGT catalytic domain may be another line of research. Indeed, for positive data the peptides have this conformation except for T112. This last site peptide is predicted to be outside the TPR where the TPR domain should continue.

Also, it could have been interesting to test our scoring method to select models despite the AFM confidence score.

Finally, despite all the efforts in the prediction of the interaction complex between the OGT and the beta-catenin, we were not able to find any specific interaction that could have helped us prevent its formation.

VII. General conclusion

Proteins are large molecules with more or less complex structures. They play many essential roles in the living world. They are responsible for most of the actions in the cells, inducing structure, function and regulation of tissues. But these protein activities are regulated by many complex interactions. Protein-protein interactions study is a main field of research. Indeed, proteins influence different metabolic pathways via interactions with other proteins from other pathways. Understanding the mechanisms inside these numerous crosstalk may help in different actuel health issues. Some diseases have been shown to be provoked by a misregulation of proteins as a worldwide pandemic crisis can emerge as a result of protein mutations enhancing the host-pathogen interaction.

Various experimental methods were created to be able to identify, visualize or prevent protein-protein interactions. Unfortunately, experiments are consuming in terms of money and time or even not being able to characterize specific interactions.

That is why, in parallel, the number of computational methods has risen to help researchers in the identification of interactions. But these methods still are predictions with more or less a good success rate. The need to evaluate such tools with their results and to improve techniques is still a major key in research.

During this PhD thesis, the objectives were cut in different problematics.

First the need to compare already existing O-GlcNAcylation prediction sites on a benchmark. The poor results of this analysis lead to the demand to develop a new method to improve this prediction. Second, the emergence of the COVID-19 crisis leads to the need of identifying interaction to the atomic levels to encounter the virus propagation. The objective was here to develop a method to select the more likely models proposed by protein-protein three dimensional interaction predictors. Third, as with any new method, it must be tested on a sufficiently large data set and compared to other current tools. Finally, atomistic interaction between two proteins involved in the colorectal cancer needed to be elucidated.

A. Prediction of O-GlcNAcylation sites

The first objective of this part was to determine the efficiency of available prediction tools for the O-GlcNAcylation prediction. Indeed, this post-translational modification has been shown to be implicated in various diseases such as cancers, diabete and Alzheimer' disease and is estimated to modify more than 1000 other proteins. To that, a new dataset has been built to test three actual tools. But even if these tools argued a good sensitivity, we highlighted their poor capacity to predict O-GlcNAcylated while having a high rate of false positives. The need to focus on precision (or positive predictive value) rather than sensitivity has been discussed. To improve current methods to predict this post-translational modification, we added structural features of experimentally proven substrates.

Unfortunately, our results were not able to show a better prediction efficiency and demonstrate how far we are to predict such modification. In addition, we hypothesize the need of chaperone proteins to help the only enzyme capable of the UDP-GlcNAc addition to recognize its substrate.

B. Analyses of SARS-CoV-2 and human protein interactions

The worldwide COVID-19 crisis brings quick and joint efforts to stop the virus spreading. This is the case of a study of Gordon et al. where they highlighted more than 300 specific interactions between SARS-CoV-2 and human proteins. The CAPRI experiment with its worldwide community proposed prediction models for 5 of these interactions. But there was still a need to find the most likely ones. We showed the difficulty to find a consensus based on specific contacts with hierarchical clustering and meta-clustering with Markov Clustering (MCl). To counter this problem, we developed a method based on the adjacency overlap. This method shows the capacity to identify good models on a validation set of 4 resolved complexes but it was difficult to define a threshold to determine if a model produced by the CAPRI community for the COVID-19 special Round. We did point out the difficulty to model interaction between SARS-CoV-2 and human proteins and the need to validate our method on a bigger dataset with the second objective to define a threshold from which we could see if models are more likely than others.

The number of residues predicted to be at interfaces and their mutation rate have been analyzed pointing out the consensus area for the human protein interface.

C. Validation of the adjacency overlap method

In this part of the PhD, we described a brand new dataset from the CAPRI community called Scoreset already available on the scoreset.org website. This dataset is composed of several interfaces between proteins. These interfaces can be from eukaryotes, archaea, bacteria or virus proteins and can be divided into three different sets, Uploaders, Predictors and Scorers. We tested our Adjacency Overlap method on the different subsets and kingdoms. The results show the good capacity for our method to discriminate good from bad models, with better results for the Uploaders and Predictors sets and Eukaryotes, Bacteria and Virus sets. The scoring method also performed well on dimers with a better precision for the homo-dimer than hetero-dimer. Unfortunately we highlighted its poor ability to score models of Archaea complexes or complexes with proteins coming from two different kingdoms.

We were also able to define a threshold maximizing the precision (in depreciation of the sensitivity) for our method. Unfortunately, our method did not score as acceptable models from the CAPRI-COVID Round.

In a second time, we compared our method to two of the most recent scoring tools which are iScore and GNN-DOVE. To perform this comparison, the adjacency overlap has been run on a previous CAPRI benchmark also analyzed by the two scoring methods. This benchmark is composed of 13 targets. If our method was not able to highlight a higher number of good models target-wise, it shows a higher capacity to find good models inside a target.

D. Modeling of interaction between OGT and β-catenin

The β-catenin is an oncoprotein involved in the Wnt pathway which is usually phosphorylated on an area of its N-terminal segment called Destruction box (D-box). Its phosphorylation leads to its proteasomal degradation. But the cross-talk between phosphorylation and O-GlcNAcylation on this D-box and more precisely on the T41 has been demonstrated to improve the risk of colorectal cancer. Our objective here was to use modeling methods to predict the specific interface to possibly depress this interaction. The β-catenin can be divided into three main parts: the N and C-terminal segments which are unstructured and the Armadillo domain which is a recognition domain composed of a super helix. As the N-terminal part is modified, the hypothesis of this part goes into the TPR lumen while Armadillo stabilizes the complex by interaction with the outside of the TPR has been submitted.

The first objective was to predict the interaction between the TPR domain of the OGT and the Armadillo of the β-catenin, both described as recognition domains. For this purpose, AlphaFold-Multimer has been used to produce one hundred models. Unfortunately, the confidence of the models was low and the predicted interaction area between the two domains can be discussed as it is at the output of the OGT catalytic domain. In that case there is no co-evolution and even if we can find consensus on human protein it is hard task to predict the same with viral proteins. It could be interesting to evaluate the mutations which allow the virus to infect a new host to direct the interaction interface recognition.

Clustering and meta-clustering can give a good idea to see if the prediction of a complex was a hard task or not. Coupled to the adjacency overlap ranking, we can be even more precise. Unfortunately it seems that this method alone can't score models. It could be interesting to perform these clustering and meta-clustering on a bigger dataset as we did for the adjacency overlap.

At the beginning of this project AlphaFold-Multimer was not released and it was the very beginning of the colab script with a linker to produce multimer form AlphaFold. But we also compared the results of AlphaFold nowadays and the results showed for each target heterogeneous results.

Target 185 was pushed aside because of its difficulty. It could be interesting as it is only composed of viral proteins to test our method on it. Also, it could be interesting to perform the same analysis with every of the 332 interactions determined by Gordon et al.
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Adjacency overlap results will be discussed in the next part.

C. Adjacency overlap: a new scoring method?

Adjacency overlap has been tested on a big datatest with thousands of models and showed really good results which were different depending on the several subset we look at.

To be able to really compare the results according to the kingdom it could be interesting to have the same amount of data in each category. Nevertheless, the tendencies should not change and adjacency overlap should be more efficient with eukaryotes, bacteria and viruses. It could be interesting also to compare the efficiency of this method in each kingdom and their general difficulty. The difficulties of scoring other kingdoms can be explained by the lack of knowledge, the low amount of data and the reduced need to model such complexes.

IX. Other projects

A. What is the potential impact of genetic divergence of ribosomal genes between Silene nutans lineages in hybrids? An in silico approach. talked about the vision in general in many scientific disciplines, going from mathematics to law while passing through the study of the death penalty under the old regime.

I participated in the stand creation with researchers of my lab and then had a 64h contract per year to present vulgarized biological science to the students. My subject was on the use of chemicals to visualize the living and more precisely the use of fluorescence to determine the composition of complex molecules such as lignin. A short footage of 5

minutes is available at this link. Usually, a presentation was 15 minutes long with an additional 5 minutes for questions. During a session, about 4 presentations are performed.

This parallel project enhanced my pleasure for the vulgarization and the knowledge sharing with students and people out of the research universe, a pleasure I discovered during the several instances of the "Fête de la Science" I participated in.

  dirigée par le Pr. Christophe D'HULST puis par le Dr. Yann GUERARDEL, de m'avoir accueilli durant toutes ces années. Et je remercie à nouveau le Pr Yann GUERARDEL de m'avoir permis de participer aux Commissions Mixtes de la Facultés des Sciences et Techniques pour le département de Biologie. Cela m'a permis de mieux comprendre les enjeux pour la création de postes au sein de l'Université. Je souhaite remercier l'ensemble des membres de mon jury de thèse sans qui elle ne pourrait avoir lieu. Je remercie notamment le Dr. Sophie SACQUIN-MORA et le Dr. Raphaël GUEROIS qui me font l'honneur d'être la rapporteuse et le rapporteur de ce manuscrit de thèse. Je remercie également les Dr. Caroline SMET-NOCCA et Dr. Stéphanie OLIVIER -VAN STICHELEN et le Pr. Christophe BIOT d'avoir accepté d'examiner ma thèse. Je remercie également le Pr. Tony LEFEBVRE d'avoir accepté de participer à cette défense en tant que membre invité. Cela compte beaucoup pour moi. I sincerely thank my PhD supervisor Dr. Marc Ferdinand LENSINK. Thank you for your

  amis. Mes amis d'enfance Raphy, Roro et Xaviminou, qui continuent toujours de m'écouter et me supporter après plus de 27 ans maintenant. Merci à Xav et Raph d'être toujours présents malgré votre vie portugaise. Xaviminou, merci pour tous ces memes et ces partages qui m'ont bien soutenu. Reste comme tu es car tu es génial. Mon Roro, je te remercie pour tout ce que tu es, pour tes précieux conseils d'homme expérimenté en termes de thèse mais aussi pour ces games accompagnées ou non de ta douce. Reste toi aussi comme tu es, tu es formidable. En parlant d'elle, je remercie sincèrement Milou pour sa bonne humeur et ses encouragements. Merci à vous deux pour les sessions Apétarot en ligne ou Mario Kart. Vous m'avez beaucoup apporté. Je vous souhaite plein de bonheur pour le futur et notamment pour votre nouvelle aventure qu'est la maison et plein d'autres j'espère. Je remercie également mes amis de longues dates qui m'ont permis de changer de monde un soir toutes les deux semaines: Clément H, Clément M, Louis, Maël le sale breton, Maki et Philou le Filou ou devrais-je dire Sir Kamtag, Klehm, Dragar, Tazouk, Père Spasfon et Tabal, mes joueurs de JdR. Merci pour ces fou-rires et ce non avancement qui me permettent de préparer un scenar qui dure finalement une thèse! Merci particulièrement à Maki, Maël et Philippe pour notre conversation qui me soutient beaucoup. Merci aussi à tous ceux qui viennent nous voir dans notre lointaine région qu'est le Nord. Je pense notamment à Mélanie et Romain le frère, Simon et Marina, Églantine, Benramine, Julien, Tom et Justine. Merci aussi à Laura et Alex pour ces petits week-ends dans le "Sud". Merci à tous pour ces bons moments. Enfin je remercie à nouveau Guillaume, pour tous nos moments, nos chansons, nos cris, nos balades à vélo pour éviter d'en faire et l'odeur du pamplemousse. Merci sincèrement pour ces 5 ans de vrai partage de vie. Tu es et resteras le maître. Signé le dernier des Mauri (se prononce MaOri).

  Mauri T, and Lensink MF. "Comparing protein structures with RINspector in Cytoscape". EMBO2021 Course: Integrative modelling of biomolecular interactions. Izmir, Turkey (Zoom): Flash talk + Poster Mauri T, Menu-Bouaouiche L, Bardor M, Lefebvre T, Lensink MF and Brysbaert G. "O-GlcNAcylation Prediction: An Unattained Objective". JOBIM2019, Nantes, France Brysbaert G, Mauri T, and Lensink MF. "Comparing protein structures with RINspector in Cytoscape". JOBIM2018, Marseille, France.

Figure 1 :Figure 2 :

 12 Figure 1: Representation of the four levels of protein's structure

Figure 3 :Figure 4 :Figure 5 :Figure 6 :

 3456 Figure 3: The Toolbox for PTM crosstalk

Figure 7 :Figure 8 :Figure 9 :Figure 10 :Figure 11 :Figure 12 :Figure 13 :Figure 14 :

 7891011121314 Figure 7: f1 as a function of S-rms

Figure 15 :Figure 16 :Figure 17 :

 151617 Figure 15: The asparagine ladder in the TPR lumen is critical for recognition of OGT substrates

Figure 18 :Figure 19 :

 1819 Figure 18: Prediction of secondary structure between O-GlcNAcylated sites and non O-GlcNAcylated sites with SPIDER3-Single

Figure 20 :Figure 21 :Figure 22 :Figure 23 :Figure 24 :Figure 25 :Figure 26 :Figure 27 :Figure 28 :Figure 29 :Figure 30 :Figure 31 :Figure 32 :Figure 33 :Figure 34 :Figure 35 :Figure 36 :Figure 37 :Figure 38 :Figure 39 :Figure 40 :Figure 41 :Figure 42 :Figure 43 :Figure 44 :Figure 45 :Figure 46 :Figure 47 :Figure 48 :Figure 49 :Figure 50 :Figure 51 :Figure 52 :Figure 53 :

 20212223242526272829303132333435363738394041424344454647484950515253 Figure 20: Dotplot between the quality score of the models and the accessibility of their O-GlcNAcylated sites

Figure 54 :Figure 55 :Figure 56 :Figure 57 :Figure 58 :Figure 59 :Figure 60 :Figure 61 :Figure 62 :

 545556575859606162 Figure 54: ROC and Precision-Recall curves of the adjacency overlap scoring method on the U-Set

Figure 63 :Figure 64 :Figure 65 :

 636465 Figure 63: Confidence score representation of the best interaction model between the OGT and the D-box peptide

Figure 1 .

 1 Figure 1. Representation of the four levels of protein's structure (source: Wikipedia)
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 3 Figure 3. The Toolbox for PTM crosstalk

Figure 4 .

 4 Figure 4. Schematic representation of the HBP and O-GlcNAcylation/phosphorylation competition
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 5 Figure 5. Conformation searching process using the Monte Carlo techniqueThe protein structure prediction approaches usually employ the Monte Carlo technique to search the conformation with the lowest energy. An execution of conformation search will generate a path of conformations, e.g., the lines in blue and yellow.(fromWang et al. 2019 68 ) 
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 6 Figure 6. General comparison of template-based and free docking methods for an example heterodimer target
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 7 Figure 7. f1 as a function of S-rms.
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 8 Figure 8. Overall procedure for protein-oligomer structure predictionHuman prediction involved additional procedures colored in gray(From Park et al. 2020) 
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 9 Figure 9. The performance of AlphaFold-Multimer against several published baselines is shown on a dataset, consisting of 17 heterodimer targets with low training set homology AlphaFoldLinker is AlphaFold with a 21 residue linker of repeated Glycine-Glycine-Serine residues, similar to previous AlphaFold modifications. AlphaFold-Gap (ColabFold 120 ), version from 2021-08-16, is a published system that runs AlphaFold with a gap between residue indices between chains, uses MMSeqs2 for genetics, includes MSA pairing and does not include templates. ClusPro, AlphaFold refined ClusPro, and AlphaFold refined ClusPro plus AlphaFold are all systems and results based on combining the docking algorithm ClusPro with AlphaFold, results are as reported in 119 . Error bars represent a 95% confidence interval around the mean. (fromEvans et al. 2021, preprint) 
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 10 Figure 10. Typical pipelines for protein-peptide molecular docking Docking methods can be divided into three categories according to the amount of required input data: (a) template-based methods that utilize knowledge about the structure of similar complexes (templates); (b) local docking methods that require some knowledge about the binding site; and (c) global docking methods that assume no knowledge about the peptide beyond its sequence. From Ciemny et al. (2018) 124

  Conditions based on Capri computed parameters High f nat ≥ 0.5 AND (L_rms ≤ 1.0 OR I_rms ≤1.0) Medium (f nat ≥ 0.3 AND f nat ≤ 0.5) AND (L_rms ≤ 5.0 OR I_rms ≤2.0) OR f nat ≥ 0.5 AND L_rms>1.0 AND I_rms >1.0 Acceptable (f nat ≥ 0.1 AND f nat < 0.3) AND (L_rms ≤ 10.0 OR I_rms ≤4.0) OR f nat ≥ 0.3 AND L_rms>5.0 AND I_rms >2.0 Incorrect f nat <0.1 OR ( L_rms>10.0 AND I_rms >4.0)
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 11 Figure 11. Schematic illustration of the quality measures used to evaluate the predicted modelsFor each target, we computed the number of residue-residue contacts between the receptor (R) and the ligand (L), and for each of the components, the number of interface residues. See text for the definition of the interface in each case. For each model, we computed the fractions f nat of native and f non-nat of non-native contacts in the predicted interface. In addition we computed the RMSD of the backbone atoms of the ligand (L_rms), the misorientation angle L and the residual displacement dL of the ligand center of mass after the receptor in the model and experimental structures were optimally superimposed.
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 3 Modification sites: the case ofPost-Translational Modifications Post Translational Modifications (PTMs) are involved in cell cycle and have been shown to be involved in pathogenicity. The prediction of such PTMs is a key research to win time and money so many software have been developed. As prediction is a theoretical result there is a need to evaluate such prediction software. To this we can use different statistical measurements such as sensitivity (Sn), specificity (Sp), accuracy (Acc), Area Under Curve (AUC) and precision (Pr). These measurements are calculated according to four kinds of results: True Positive (TP) which are results predicted to be positive (here modified) and which are actually modify; False Positive are results predicted to be positive but are not in reality; True False (TF), results predicted to be negative (or non modified) by the algorithm and which are indeed negative; False Negative (FN) which are results predicted to be negative but are actually positive. These statistical measurements are explained just below:-Sensitivity (Sn) is the percent of positive results found by the algorithm which are actually positive: 𝑆𝑛 = 𝑇𝑃 𝑇𝑃+𝐹𝑁 -Specificity (Sp) is the percent of negative sites which are actually predicted to be negative by the algorithm: 𝑆𝑝 = 𝑇𝑁 𝑇𝑁+𝐹𝑃 -Accuracy (Acc) is the statical measurement to see how well a prediction predict both positive and negative results: 𝐴𝑐𝑐 = 𝑇𝑃+𝑇𝑁 𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 -Precision (Pr) is the characteristic of a software to correctly predict positive results without without too much false positive results: 𝑃𝑟 = 𝑇𝑃 𝑇𝑃+𝐹𝑃 Also, to be able to compare results of predictive software it can be interesting to plot the ROC and precision-recall curves. As the first one shows the rate of True Positive in function of the Rate of False Positive and allows to calculate the AUC which is a good revealer of the predictive power of a tool. The precision-recall curve shows the precision of a prediction tool in function of the accuracy also called recall. It allows one to determine the best ratio between precision and accuracy.

  . Like phosphorylation, the prediction of O-GlcNAcylation sites is also a long-time challenge with a first prediction tool in 2002, Yin-O-Yang based on the crosstalk between O-GlcNAcylation and the phosphorylation and only 40 experimentally proven O-GlcNAcylation sites. Experimentally proven sites were difficult to obtain and its number hardly increased at the beginning and the first software showed a AUC of 74.3% according to their article for OGlcNAcScan 150 , to counter the lack of data, some algorithms used training sequences with homology sequences and others used phosphorylation prediction to help thanks to the fact of the competition between these two modifications. Even with a bigger number of O-GlcNAcylated sites, the number of false positive sites is still too high to be really helpful for experimentalists. The reason for these low quality results can be explained by the diversity of the sites regarding the amino acid composition around them. Today, to counter these problems different supervised machine learning algorithms have been proposed like neural networks (NN), Support Vector Machine (SVM), Random Forest (RF) but also different kinds of data.
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 12 Figure 12. Decision trees (A) Gradient boosting machines (GBM) and (B) random forests (RF). The circles display the covariates (X variables) whose values determine each branch point, whereas the diamonds provide the tree-predicted probability of the outcome under study. (from Doupe et al. 2019)

  The second part is divided in two sub parts (B,C) A. Prediction of O-GlcNAcylated sites O-GlcNAcylation is a main Post-Translational Modification (PTM) with several challenges, whether to understand the mechanism of O-GlcNAcylation or for curative purposes in certain metabolic pathways involved in different diseases. Already available O-GlcNAcylation prediction tools produce a high number of false positives in their results and this is a big problem for biologists. All of these algorithms are based on sequences with a low amount of data. Even if the methods they are based on are different, the results remain particularly poor. These software statistical measurements are also based on different dataset, it could be interesting to create a new dataset to test them on the same data. Despite the analyses of available tool results, O-GlcNAcylation prediction is still a hard task. Thus, as O-GlcNAcylation is known to be a dynamical Post-Translational Modifications, our idea was first to see the structural aspect of O-GlcNAcylated sites to see if the sites are accessible for example. So in this first part of my PhD thesis, the objectives were to build a dataset to test current O-GlcNAcylation prediction tools and then use it to train and test a new prediction software based on sequences, structure and accessibility to improve the current methods. Some new features will be extracted from the dataset and used by different machine learning algorithms. These results have been added in this manuscript in the form of an article which has been published. Some supplemental results obtained during the PhD have been added in a second section of this main objective. B. Development of an assessment method for complexes in the context of CoViD-19 During my PhD, the world was hit by the CoronaVirus Disease-19 (CoViD-19) health crisis. As it became a pandemic, researchers joined their effort to understand the mechanisms of this virus infection, to highlight molecules to block the propagation or find a vaccine. In this optic, an ensemble of researchers highlighted 332 high confidence interactions between human and viral proteins using affinity-purification-mass spectrometry (AP-MS) on HEK-293T/17 cell line infected with the SARS-CoV-2 virus 158 . Fromthis study, the CAPRI committee selected some of the interactions based on the available structure of the partners of the interactions, giving rise to a special CoViD prediction Round.
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 14 Figure 14. Schematic representation of the three hypotheses of interaction between OGT and the TPR domain

Figure 15 .

 15 Figure 15. The asparagine ladder in the TPR lumen is critical for recognition of OGT substrates A) Fold signal above control for every protein for wild-type OGT (x-axis) and 5N5A (y-axis) based upon median normalized data. The dashed line represents equivalent activity between wild-type and 5N5A enzymes. Red circles are hits for wild-type enzyme; black circles are proteins that do not score as glycosylated. TAB1, a known poor 5N5A substrate, is high-lighted in green. B) Western blot of HeLa S3 cell extracts incubated with UDP-GlcNAc for indicated times with or without added OGT. OGT and GAPDH blots show enzyme and extract loading; CTD stains for O-GlcNAc. Molecular weight markers are indicated on the right (from Levine et al. 2018)
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 16 Figure 16. Distribution of codons of serine and threonine for O-GlcNAcylated and non O-GlcNAcylated sites regarding two datasets and random mammal protein sequences A: Serine codons; B: Threonine codons. (red columns are for positive data, blue ones for negative sites and green for random sequences)
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 18 Figure 18. Prediction of secondary structure between O-GlcNAcylated sites and non O-GlcNAcylated sites with SPIDER3-Single

  Figure 22. In this Figure22we can see that the accessibility varies a lot with some residues

Figure 19 .

 19 Figure 19. Barplot representing the quality of the different modelsThe orange curve is a density curve and the median and mean are in yellow and dark orange respectively.

Figure 20 .Figure 21 .

 2021 Figure 20. Dotplot between the quality score of the models and the accessibility of their O-GlcNAcylated sites

Figure 22 .

 22 Figure 22. Scatter plots of accessibility (Ų) depending on codon computed on models with different score thresholds The plddt score corresponds to the confidence score according to AlphaFold algorithm. ACA, ACC, ACG and ACT are threonine codons; AGT, AGC, TCA, TCC, TCG and TCT are serine codons.

  unstructured conformations and are similar to the N-terminal segment of the β-catenin. To support our hypothesis, we decided to analyze the interaction of these peptides with the TPR domain of the OGT. The modeling of Tau peptides with OGT shows similar interactions between the O-GlcNAcylated sites and the asparagine ladder. And this, each time the peptide was unstructured and had a length of 51 amino acids (±25 around the O-GlcNAcylated site). From these two observations, we wanted to see if we can use interaction modeling between unstructured peptides and OGT to predict O-GlcNAcylation. a) Material and methods

Figure 23 .

 23 Figure 23. Distribution of plddt score of complexes as function of the size of peptides and the number of TPR repeats The plddt score is the confidence score of a model given by AlphaFold-Multimer. For each configuration five models have been produced. The median corresponds to the median score for a configuration. Colors correspond to the size of the peptide: red = 50 residues long, blue=100 and green = 151 residues.

Figure 24 .Figure 25 .Figure 26 .

 242526 Figure 24. Box plot representing the different model plddt scores depending if the serine or threonine are interacting at least once with an asparagine from the asparagine ladder 0 corresponds to no interaction with asparagine from the ladder; 1 corresponds to model with at least one interaction between the serine or threonine and asparagine from the ladder

Figure 27 .

 27 Figure 27. Representation of all the peptides in complex with OGT with 8 TPRs modeled by AlphaFold-Multimer (v2.2.0) In green is represented the OGT and in blue all the different peptides. The orange residues are the serine and threonine of interest.

Figure 28 .

 28 Figure 28. SARS-CoV-2 protein-protein interaction network332 high-confidence interactions between 26 SARS-CoV-2 proteins (red diamonds) and human proteins (circles; drug targets: orange; protein complexes: yellow; proteins in the same biological process: blue). Edge colour proportional to MiST score; edge thickness proportional to spectral counts. Physical interactions among host proteins (thin black lines) were curated from CORUM, IntAct, and Reactome. An interactive protein-protein interaction map can be found at kroganlab.ucsf.edu/network-maps. ECM, extracellular matrix; ER, endoplasmic reticulum; snRNP, small nuclear ribonucleoprotein. n = 3 biologically independent samples (fromGordon et al., 2020) .

Figure 29 .

 29 Figure 29. Schematic representation of a CAPRI Round

  has been calculated thanks to the Rate4Site algorithm. It provides a score where a low result means a high conservation. This software is based on the maximum likelihood principle and maps the rate of evolution among homologous proteins onto the surface of the molecule of one of the homologous proteins with a known three-dimensional structure 195 .

Figure 30 .-

 30 Figure 30. Schematic representation of distance calculation from models through RINs

Figure 31 .

 31 Figure 31. Schematic representation of the algorithm to define the ideal number of cluster

Table 13 .

 13 Information regarding the quality of the models from the S-set of the four CAPRI previous targets chosen to validate the methodsFor each model, an F-score is available for the ligand and the receptor. It corresponds to a rate between precision and sensitivity:, where fIP is the 𝐹𝑠𝑐𝑜𝑟𝑒 = 2 * 𝑓𝐼𝑅*(1-𝑓𝑂𝑃) 𝑓𝐼𝑅+(1-𝑓𝑂𝑃) 

Figure 32 .

 32 Figure 32. Barplot of contact hits and residue conservation for human protein HMOX1 (A) and viral protein Orf3a (B) in a complex for the Target 181 Blue bars are the number of hits and red ones are Rate4Site scores multiplied by 100. The lowest the conservation score is, the highest is the conservation.

Figure 35 .

 35 Figure 35. Barplot of contact hits and residue conservation for human dimer NUTF2 (A,B) and viral protein Nsp15 (c) in a complex for the Target 182 Blue bars are the number of hits and red ones are Rate4Site scores multiplied by 100. The lowest the conservation score is, the highest is the conservation.

Figure 36 .

 36 Figure 36. Barplot of contact hits and residue conservation for human protein EXOSC8 (A) and viral protein Nsp8 (B) in a complex for the Target 183 Blue bars are the number of hits and red ones are Rate4Site scores multiplied by 100. The lowest the conservation score is, the highest is the conservation.

Figure 37 .

 37 Figure 37. Surface representation of human protein EXOSC8 (A) and viral protein Nsp8 (B) with coloration according to residue conservation and contact hitsLeft corresponds to the residue conservation from cyan to orange and Right to the contact hits where red is for high occurrence, capped at the 90th percentile for a better visualization to blue with few occurrences. Green spheres around are the centers of mass of every partner predicted by the different models

Figure 38 .

 38 Figure 38. Barplot of contact hits and residue conservation for human protein RhoA (A) and viral protein Nsp7 (B) in a complex for the Target 184 Blue bars are the number of hits and red ones are Rate4Site scores multiplied by 100. The lowest the conservation score is, the highest is the conservation.

Figure 39 .

 39 Figure 39. Surface representation of human protein RhoA (A) and viral protein Nsp7 (B) with coloration according to residue conservation and contact hits Left corresponds to the residue conservation from cyan to orange and Right to the contact hits where red is for high occurrence, capped at the 90th percentile for a better visualization to blue with few occurrences. Green spheres around are the centers of mass of every partner predicted by the different models

Figure 40 .

 40 Figure 40. Creation of the T185 complex (Story 1)The color chart corresponds to the previous figures. For each step (from left to right) the colors of the residue hits (blue and red) are recalculated to correspond to the whole complex. The first step is Nsp7 with RNA, the second Nsp8 is added and then Nsp12.

Figure 41 .

 41 Figure 41. Creation of the T185 complex (Story 2)

Figure 42 .

 42 Figure 42. Meta-clustering representation for Targets T039 (A), T041 (B), T050 (C) and T053 (D)Colors represent the quality of the best model inside a cluster. Yellow = incorrect, blue = acceptable, green= medium quality and red= high quality. The size of the nodes corresponds to the highest mean F-score inside the cluster. Links between clusters correspond to the Jaccard Index(1-Distance) 

  These 146 models have been regrouped in 115 clusters with the Ward Hierarchical clustering. This target shows good consensus with 3 biggest clusters of 4 models selected by a different scorer each time. Meta-clustering of these 115 clusters is shown in Figure 43 (D).

Figure 43 .

 43 Figure 43. Meta-clustering representation for Targets T181 (A), T182 (B), T183 (C) and T184 (D) Colors represent the number of models inside a cluster. The size of the nodes corresponds to the number of different scorers inside a cluster. Links between clusters correspond to the Jaccard Index (1-Distance).

Figure 44 .Figure 45 .Figure 46 .Figure 47 .

 44454647 Figure 44. Plot of Validation set -T039 models ranked with their adjacency overlap scores Colors corresponds the model qualities: Yellow = incorrect, blue = acceptable, green = medium quality and red = high quality

Figure 48

 48 Figure 48 also shows the scorer rank attributed to every model to see if the more confident models are well ranked by our scoring method. But the results are very heterogeneous and we can see that none of the models ranked 1 st is in the first model according to our method.

Figure 48 .

 48 Figure 48. Plot of the CAPRI COVID Round Target 181 models ranked by their adjacency overlap scores Colors corresponds the scorer ranks: Yellow = ranked 6 th -10 th , blue = ranked 4 th -5 th acceptable, green = ranked 2 nd -3 rd and red = ranked 1 st

Figure 49 .

 49 Figure 49. Plot of the CAPRI COVID Round Target 182 models ranked by their adjacency overlap scores

Figure 50 a

 50 Figure 50 a linear decrease of the adjacency overlap score from 0.027841 to 0.003194 in 180 models. One more time, no model has a score above the 0.04 cut-off and the quality of the model according to the scorers is heterogeneous.

Figure 50 .Figure 51 .Figure 52 .

 505152 Figure 50. Plot of the CAPRI COVID Round Target 183 models ranked by their adjacency overlap scores

Figure 53 .

 53 Figure 53. Meta-clustering results filtered by the top tier models according to the adjacency overlap scoring A: T039; B: T041; C:T050; D: T053. Color of clusters correspond to the best model quality inside a cluster: Yellow = incorrect, blue = acceptable, green = medium quality and red = high quality

-

  TN: True Negative: Correctly predicted as negative -FN: False Negative: Predicted as negative while being positive -Sensitivity (or Recall or True Positive Rate (TPR): It is the rate of positive data correctly predicted as positive. 𝑇𝑃𝑅 = 𝑇𝑃 𝑇𝑃+𝐹𝑁 -Specificity (or True Negative Rate (TNR)) : it is the rate of negative data correctly predicted as negative. or Positive Predictive Value (PPV)): Corresponds to the ratio of positive data correctly predicted on the total amount of data predicted as positive. Basically it gives the percentage of chance to a positive predictive data to be really positive. 𝑃𝑃𝑉 = 𝑇𝑃 𝑇𝑃+𝐹𝑃 -False Discovery Rate: Corresponds to the percent of chance to be wrong when predicting a positive result. 𝐹𝐷𝑅 = 1 -𝑃𝑃𝑉 = 𝐹𝑃 𝐹𝑃+𝑇𝑁 -Accuracy (ACC): It is the rate to be correct whether it is positive or negative.

Figure 54 .

 54 Figure 54. ROC and Precision-Recall curves of the adjacency overlap scoring method on theU-SetNaive scoring corresponds to the theoretical results if we randomly score as a positive model.

Figure 56 .

 56 Figure 56. ROC and Precision-Recall curves of the adjacency overlap scoring method on the

Table 24 .

 24 Comparison of scoring method on the CAPRI Scoring dataset

  GlcNAcylation is a dynamical post-translational modification regulated by the Hexosamine Biosynthesis Pathway (HBP). This pathway is supplied by different nutrients: monosaccharides, glycogen, glutamine, fatty acids, lipids and nucleotides. This will lead to the production of the nutrient sensor, substrate of the O-GlcNAc Transferase, called UDP-GlcNAc (UDP-N-acetylglucosamine). The glucose is transformed into Glc-6-P by the HexoKinase (HK) which is then transformed into Fru-6-P by the PhosphoGlucose Isomerase.

  leads to a β-glycosidic link. Once it is done the remaining nucleotide and the O-GlcNAcylated polypeptid are released. b) The O-GlcNAc Transferase The O-GlcNAc Transferase (OGT) is a GlycosylTransferase (GT) in GT41 family according to CAZy (Carbohydrate-Active enZymes) database 206 . It is composed of two main parts called domains: the catalytic domain and the TPR (TetratricoPeptide Repeats) domain linked by an intermediate region called linker 207 . The catalytic domain can be divided into two domains called Catalytic Domain I and Catalytic Domain II (CDI and CDII). These two sub domains are linked by a region called Intermediate Domain (Int-D). This region's function is still unknown. There are three different isoforms of OGT with a similar catalytic domain but different size of TPR domain in function of the number of TPR: the ncOGT for nuclear and cytoplasmic OGT, the sOGT for small OGT and mOGT for mitochondrial OGT. Their number of TPR is respectively 13.5, 3.5 and 9.5. The ncOGT owns a NLS sequence responsible for the interaction with the importin α5 protein. This sequence is found in the 14 th TPR of the ncOGT 208

  describe the cleavage of the Host cell factor-1 (HCF-1), a co-regulator of the human cell-cycle 209 . This cleavage is made thanks to the UDP-GlcNAc. The region where this process is called HCF-1rep1 and contains the first HCF-1PRO repeat plus N-terminal HCF-1 sequences containing several O-GlcNAc sites[START_REF] Capotosti | O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1[END_REF] . The need of a glutamate on the substrate and the UDP-GlcNAc has been proved to cleave the HCF-1.Today there are 38 experimentally resolved structures of the OGT or parts of it in the PDBe. The first structure is the OGT TPR and was published in 2004. It then took more than six years to obtain a structure of the OGT catalytic domain with the first TPR repeats. Indeed, 3 structures (PDB IDs: 3PE3, 3PE4 and 3TAX) of the OGT have been published in early 201130 

Figure 57 .

 57 Figure 57. The asparagine ladder in the TPR lumen is critical for recognition of OGT substratesFold signal above control for every protein for wild-type OGT (x-axis) and 5N5A (y-axis) based upon median normalized data. The dashed line represents equivalent activity between wild-type and 5N5A enzymes. Red circles are hits for wild-type enzyme; black circles are proteins that do not score as glycosylated. TAB1, a known poor 5N5A substrate, is high-lighted in green. FromLevine et al. (2018) [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] 

  adenomatous polyposis coli (APC) and axin. This big protein complexes phosphorylates a part of the N-terminal segment of the β-catenin called the Destruction box (D-box). Its phosphorylation will allow its recognition by an ubiquitin ligase β-transducin repeat containing protein (β-TrCp), the ubiquitination of the β-catenin will lead to the degradation of this protein by the proteasome[START_REF] Liu | Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism[END_REF] . The Figure 58 A summarizes this information. The natural degradation of the β-catenin can be countered by the competition between O-GlcNAcylation and phosphorylation 215 . The O-GlcNAcylation has been shown to modify several residues of the β-catenin D-box such as serine 23, threonine 40, threonine 41 and threonine 112. The competition between phosphorylation and O-GlcNacylation on threonine 41 avoids its phosphorylation by the kinases and blocks its degradation. The β-catenin will accumulate into the cytosol leading to its transfer into the nucleus activating the transcription of cell cycle genes thanks to the TCF activation (Figure 58 B).

Figure 58 .

 58 Figure 58. Schematic representation of the cross talk between phosphorylation and O-GlcNAcylation of the β-catenin and its impact on its degradation A: the β-catenin phosphorylation leads to its degradation into the proteasome B: the β-catenin O-GlcNAcylation on threonine 41avoid its degradation and leads to the activation of the transcription of cell cycle genes.

Figure 59 .

 59 Figure 59. Complex prediction success of AlphaFold, ColabFold, and ZDOCK for the top 1 (T1) and top 5 (T5) models considered Transient protein-protein complex structure prediction success by AlphaFold, ColabFold and ZDOCK. End-to-end modeling using AlphaFold 24 and ColabFold 29 was performed on 152 complex test cases.AlphaFold failed to generate predictions for three complexes, thus AlphaFold predictions were obtained for 149 complexes; these 149 test cases were used to calculate success rates in this figure. Docking models were also generated with ZDOCK, 33 using unbound protein structures as input. Criteria for quality are based on CAPRI's one. AlphaFold and ColabFold models were ranked by AlphaFold pTM scores, and ZDOCK models were ranked by IRAD scores.39 The percent success was calculated as the percentage of test cases with a given model accuracy from the top N models considered. Bars are colored according to the CAPRI quality classes.FromYin et al. (2022) 

1 .

 1 Docking protein/protein a) ncOGT vs Armadillo domainThe modeling of the interaction between the full OGT and the Armadillo domain was performed to see if the two recognition domains have a high predicted quality score. To this, we modeled 100 complexes. But despite the number of structures available for these two domains, the results are not that great. With an average of 0.2734 and a median score of 0.2649, the confidence is low. The best model according to AlphaFold-Multimer scoring function has a score of 0.42823 and is illustrated in Figure60. It corresponds to the fifteenth prediction of the fourth random seed. In this model, we can see that the C-terminal segment of the Armadillo domain is close to the catalytic domain of the OGT. This result can be surprising as the literature describes the unstructured N-part to be modified by the O-GlcNAcylation enzyme. But we can hypothesize that this modified part, thanks to the interaction between the TPR and the Armadillo, is in a good position to go inside the TPR domain lumen. An unstructured part at the end of the Armadillo domain seems to be oriented inside the catalytic domain of the OGT. Regarding the residue inside, an interesting amino acid can be found here: a threonine. To follow the hypothesis of the destruction box going inside the TPR, it could be interesting to model the full Armadillo domain with the additional unstructured N-terminal segment.b) ncOGT vs Armadillo domain with additional unstructured N-terminal segmentFor this experiment, we also produced 100 models to have a high chance of producing a good model. Unfortunately, the average p-TM score is 0.2639 and the median slightly lower with a value of 0.2543. The best score has a p-TM score of 0.3602. It can be seen in Figure61. Regarding the previous results we can see that the two folded parts have high confidence regarding the plddt scores but also the same interaction between the two different proteins. But contrary to our previous hypothesis, the unstructured N-part with the destruction box is predicted to be in the opposite of the OGT but with a very low score. This low score is similar to scores of unstructured parts. Despite these results we still consider our hypothesis. To this, we decided to perform the modeling of the OGT with a peptide of 50 residue long containing the D-box and see where the N and C-terminal segments of this peptide are predicted to be.

Figure 60 .

 60 Figure 60. Cartoon representation of the best interaction model between the full ncOGT and the Armadillo domain of the β-catenin Colors represent the confidence score. in cyan to orange is the confidence score of the ncOGT and blue to red represents the confidence score for the β-catenin.

Figure 61 .

 61 Figure 61. Cartoon representation of the best interaction model between the full ncOGT and the N-terminal segment and Armadillo domain of the β-catenin Colors represent the confidence score. in cyan to orange is the confidence score of the ncOGT and blue to red represents the confidence score for the β-catenin.

  (A), are O-GlcNAcylated. The first peak corresponds to the residues around the 25th β-catenin amino acid. This area counts an O-GlcNAcylated site which is the serine 23. The second peak with the highest confidence corresponds to the center of the peptide where belong the two other O-GlcNAcylated residues (threonine 40 and threonine 41). The higher scores for the two parts can be probably explained by a confidence in the interaction of these parts with the OGT. As this type of interaction is the one we are looking for we looked at the composition of the OGT at the interface with the PyMOL software at 5Å radius.

Figure 62 .

 62 Figure 62. Cartoon representation of the best interaction model between the ncOGT with 8 TPRs and an O-GlcNAcylated N-terminal segment peptide of the β-catenin Colors represent the confidence score. in cyan to orange is the confidence score of the ncOGT and blue to red represents the confidence score for the β-catenin.

Figure 63 .

 63 Figure 63. Confidence score representation of the best interaction model between the OGT and the D-box peptide A: plddt score of each residue. B: Position error expected. The two partners sequences follow each other

(Figure 65 .

 65 Figure 65. The prediction of the position of the Armadillo domain of the β-catenin is very similar from the two different predictions. The orange part on this figure represents the

Figure 64 .Figure 65 .

 6465 Figure 64. WebLogo representation of the pattern found inside the TPR of the OGT X corresponds to any residue and is not in interaction with the peptide. Figure generated by WebLogo 218

  a) Positive sitesFor the serine 23, we noticed interaction with the asparagines 390 and 424 only when the site was in position 6 and no interaction when in position 16. We did not go further in the position because of the presence of threonine 40 and 41 which changed the results. The two models have a score of 0.3128 and 0.6398 for position 6 and 16 respectively. Starting from position 16, the threonines 40 and 41 are in the peptide which change the results and can explain the increase of the confidence score despite no interaction with asparagine from the ladder.

  and threonine 40 in different position of 51 residues long peptide Regarding threonine 41, the results are different from the threonine 40 which is surprising as they are neighbors in the peptide sequence. Indeed, only interaction with asparagines 390 and 424 have been retrieved for position 6, 16 and 36. The confidence of the models are also lower with a best confidence score of 0.6879. This difference can be explained by the conformation of the peptide imposed by the interactions with the threonine 40. Finally, the threonine 112 is only predicted to interact with the asparagines 321, 322, 325 and 356 in position 16. Otherwise no interaction has been found. The confidence score for the 5 positions is lower than for the other complexes with a best score of 0.4666 (which is the model with the interactions) b) Negative sites Results for serine 72 show no interaction between its hydroxyl group and the asparagine from the ladder. The model scores are close from the one of threonine 112 for the position 6, 16, and 26 with values between 0.4435 and 0.4903. The scores are higher for positions of 36 and 46 with a score of 0.7125 for this last position. This can be explained by the presence on the peptide of the threonines 40 and 41 which are interacting with 321, 322, 325 and 356 for the first one and with asparagines 325,356 and 390 for the second one.

  The N-terminal part of the Armadillo domain was pointing towards the TPR domain so we decided to model the Armadillo domain with the N-terminal segment of the β-catenin. Unfortunately the results show a N-terminal segment going in the opposite direction. But the size of this unstructured region is sufficient to maintain our hypothesis of the destruction-box going inside the TPR.The second objective was to model the N-terminal segment with O-GlcNAcylated sites with the OGT. The results show a high number of interactions of the peptide with asparagines. From these results, supported by the study ofLevine et al. on the presence of an asparagine ladder impacting the OGT activity, we hypothesized the role of asparagine to push and pull the unstructured substrate inside the catalytic domain of the OGT. We also highlighted a residue pattern repeated inside the TPR.Unfortunately we were not able to computationally determine a specific interaction interface and this study deserves more time to obtain more results.VIII. General discussion and associated perspectives A. O-GlcNAcylation prediction: a lack of informationThe O-GlcNAcylation prediction is today an unreached objective. From the available software using protein sequences to the structural features used inMauri et al., no one provides a good precision. The heterogeneity in the positive data and its low proportion compared to the negative make this post-translational modification a very hard task without consensus. The results may be different with a larger amount of data and the creation of the O-GlcNAc Database may provide a sufficient set to improve the prediction. In my opinion, the heterogeneity of the O-GlcNAcylated sites coupled to the fact that only one enzyme is able to catalyze the sugar addiction, there are unknown mechanisms (notably with chaperone protein) which help the OGT to recognize the substrate. The TPR domain has been shown to help substrate recognition but the point is this domain helps the substrate to go into the catalytic domain rather than recognize it. Analyzing the interactome of OGT and its substrates may highlight proteins involved in this mechanism and it is a thing to keep in mind while looking for experimental sites of O-GlcNAcylation. Experiments to find OGT partners could help us to understand the underlying information and provide data useful for its prediction.B. CAPRI-COVID Round: interaction between viral and human proteinsAs shown in this results part, the prediction of interaction between human and viral proteins is a stuff task with low consensus. The low consensus may be due to the cross kingdom interactions where two different types of protein interact. As mentioned before, viruses are known to have a high mutation rate leading to the survival of the virus or interaction with new hosts. It is common for docking algorithms to predict interaction area thanks to the co-evolution of the amino acids. This information gives good results as shown in InterEvDock or more recently in AlphaFold-Multimer. Here we can hypothesize that the mutation of the viral proteins help them to interact with human proteins without these latter being mutated.

  figures and wrote the manuscript (Material and methods + results & discussion). Zoé participated in the interpretation of the results and writing of the manuscript (introduction + results & discussion).
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Table 2 Summary of PPI detection methods
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(Adapted version from

Rao et al. (2014)) 

  According toGurung et al. (2021), the most used tools are AutoDock 50 , AutoDock Vina 51 , GOLD[START_REF] Jones | Development and validation of a genetic algorithm for flexible docking[END_REF] , CDOCKER[START_REF] Wu | Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm[END_REF] , FlexX 54 , Surflex 55 , GLIDE[START_REF] Friesner | Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy[END_REF] , DOCK6 57 and SwissDock 58 .

	The different results are
	analyzed by different scoring functions. Software of molecular docking can be divided into
	two categories: flexible ligand search or flexible protein docking. First one usually uses three
	algorithms : systematic, stochastic and simulation methods. The second one uses Monte
	Carlo and molecular dynamics methods. Different software apply these different methods.

  [START_REF] Gurung | An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19[END_REF] .

	CHARMM 63	CHARMM (chemistry at HARvard molecular mechanics) is a widely	Proteins, lipids,
		used molecular simulation program that is primarily designed to	carbohydrates,
		study biological molecules such as proteins, peptides, lipids, nucleic	nucleic acids
		acids, carbohydrates, and small molecule ligands. The calculations
		are	based	on	different	energy functions (quantum
		mechanical-molecular mechanical force fields, all-atom classical
		potential energy functions) and models such as explicit solvent,
		implicit solvent, and membrane models.
	NAMD	NAMD is a high-performance biomolecular simulation program that	Proteins, lipids,
		employs the prioritized message-driven execution capabilities of the	carbohydrates,
		charm+ +/converse parallel runtime system compatible with parallel	nucleic acids
		supercomputers and workstation cluster
	Desmond	Desmond is a powerful molecular dynamic simulation program	Proteins, lipids
	(https://www.	designed by D. E. Shaw with considerable speed, accuracy, and
	schrodinger.co	scalability. It supports explicit solvent simulations with periodic
	m/products/d	boundary conditions and can be used to model explicit membrane
	esmond)	systems under various conditions.
	Tinker 64	Tinker is a molecular modeling and dynamic package written	Proteins, nucleic
		primarily in a standard Fortran 95 with OpenMP extensions. It	acids
		supports a wide variety of classical molecular simulations
		particularly biomolecular calculations and offers various force fields
		including the modern polarizable atomic multipole-based AMOEBA
		model.		
	LAMMPS	LAMMPS (large-scale atomic/molecular massively parallel simulator)	Proteins, lipids,
	(https://lamm	is a classical molecular dynamic code for materials modeling. It has	carbohydrates,
	ps.sandia.gov)	potentials for soft matter (biomolecules, polymers), solid-state	nucleic acids
		materials (metals, semiconductors), and coarse-grained or
		mesoscopic systems.	
	DL_POLY				
	Software				Key Features	Simulation system
	GROMACS 61	GROMACS (Groningen MAchine for chemical simulation) is an	Proteins, lipids,
		efficient and versatile MD program with source code that is suited	carbohydrate,
		for the simulation of biological (macro) molecules in aqueous and	nucleic acids
		membrane environments. The program can be run on single
		processors or parallel computer systems and is compatible with
		various force fields such as GROMOS, OPLS, AMBER, and ENCAD
		force fields.		
	AMBER 62	Amber is an extensively used biomolecular simulation program with	Proteins, nucleic
		an assembly of codes that are designed to work together. It is a	acids, carbohydrates
		collection of codes that are designed to work together and
		principally divided into three major step-system preparation
		(antechamber, LEaP programs), simulation (sander), and trajectory
		analysis (ptraj analysis program).

Table 4 . Non exhaustive list of docking software with summarized features and protocols

 4 

	72	-FFT	Reduced-model FFT-based
		-ITScorePP	protein docking optimized
		-Flexibility	by ITScorePP
		-Physics-based potentials	
	ATTRACT 73	-Coarse-grained	Docking using pseudo-atoms
		representation	attractivity/repulsivity then
		-Normal modes	minimization on normal

  Each point in the figure represents the best model of a predictor group for each of the 23 interfaces. Individual points are color-coded following the CAPRI model quality as follows: yellow: incorrect; blue: acceptable; green: medium; red: high.

	The results for the best predictors (Baker, Seok, and Venclovas) and servers (LZERD, MDOCKPP) are highlighted. f1 and
	S-rms are respectively a function of the recall, and precision in modeling the residue-residue contact at the binding
	interface and the root mean square deviation of sidechain atoms of residues at the binding interface. The upper left
	quadrant features the best models, with S-rms values below 3.5 Å and f1 values above 0.3, corresponding to mostly
	medium and high-quality models
	(from Lensink et al. 2021 87 )

Table 5

 5 

	below:

Table 5 .

 5 

Table 6 . Performance on the Recent-PDB-Multimers dataset, evaluated on homology-reduced chain pairs , with low training set similarity broken down into DockQ categories

 6 

			Incorrect (%) Acceptable	Medium (%)	High (%)
		DockQ		(%)		
		score				
	Homomeric	0.523	30.70	9.83	25.10	34.30
	Heteromeric	0.479	32.70	11.90	33.10	22.30

Incorrect: 0 ≤ DockQ < 0.23 ; Acceptable: 0.23 ≤ DockQ < 0.49; Medium: 0.49 ≤ DockQ < 0.80; High: 0.80 ≤ DockQ (adapted from

Evans et al. 2021 preprint) 

Table 7 . Non exhaustive list of available protein-peptide docking software and their summarized protocol

 7 First column corresponds to the software name, the second column correspond to the availability and the third column is the brief description of the protocol (Adapted fromCiemny et al. 2018 124 ) 2. Evaluation of docking predictionAs protein structure prediction can be assessed by the CASP experiment, it is also the

	PepCrawler	Local docking procedure: (i) fully flexible peptide docked
	http://bioinfo3d.cs.tau.ac.il/P	with Rapidly-exploring Random Trees algorithm, followed
	epCrawler/	by (ii) clustering-based scoring. Receptor flexibility limited
		to side-chains
	HADDOCK peptide docking	Local docking procedure: (i) generation of peptide

GalaxyPepDock 136 http://galaxy.seoklab.org/pep dock and a standalone version Template-based docking procedure: (i) search for templates based on structure and interaction similarity; (ii) model building by energy-based optimization; (iii) energy-based scoring; and (iv) refinement of final structures PepComposer http://biocomputing.it/pepco mposer/webserver Template-based docking procedure: (i) search for regions structurally similar to region of predefined binding site in database of experimentally solved monomeric proteins; (ii) retrieve continuous backbone fragments in contact with region of binding site; and (iii) design peptide sequence Rosetta FlexPepDock http://flexpepdock.furmanlab. cs.huji.ac.il and standalone version Local docking procedure: Monte Carlo-based optimization of fully flexible peptide within binding pocket. Receptor flexibility is limited to side-chains, but can be extended to full receptor. Clustering and scoring according to Rosetta energy function DynaDock Not available publicly Local docking procedure: (i) rigid-body optimization of peptide orientation within binding site, followed by (ii) refinement of fully flexible peptide receptor with Optimized Potential Molecular Dynamics procedure (using soft-core potentials for implicit receptor flexibility) flexibility is by default limited to side-chains, but can be extended to include backbone DINC 2.0 http://dinc.kavrakilab.org Local docking procedure: based on AutoDock 4 for docking long peptides, in which a peptide is divided into segments of increasing length. During docking, receptor structure remains rigid Gold Standalone version Local docking procedure: Monte-Carlo-based sampling of peptide conformations within binding pocket. Receptor flexibility either limited to side-chains or implicit (ensemble docking) pepATTRACT http://bioserv.rpbs.univ-parisdiderot.fr/services/pepATTRA CT/ Global docking procedure: (i) generation of peptide structures by threading peptide sequence onto three peptide conformations (alpha-helix, polyproline-II or extended); (ii) global rigid-body docking of peptide structures within binding pocket; (iii) scoring with ATTRACT score; followed by (iv) flexible refinement of models with iATTRACT 137 . Both peptide and interacting residues of receptor are fully flexible CABS-dock http://biocomp.chem.uw.edu. pl/CABSdock and as a standalone version Global docking procedure: (i) explicit fully flexible docking simulation; and (ii) clustering-based scoring. Receptor flexibility limited by default to small backbone fluctuations, but can be increased to include selected receptor fragments ClusPro PeptiDock https://peptidock.cluspro.org / Global docking procedure: (i) motif-based prediction of peptide conformation; (ii) PIPER 138 rigid-body docking; (iii) scoring according to structural clustering; and (iv) minimization of final structures PIPER-FlexPepDock Global docking procedure: (i) prediction of peptide http://piperfpd.furmanlab.cs. huji.ac.il conformation using Rosetta fragment picker; (ii) PIPER-based rigid-body docking 138 ; (iii) refinement using Rosetta FlexPepDock 139 and (iv) clustering and scoring according to Rosetta energy function case for protein complexes prediction. Indeed, modeled on CASP, a special experiment called CAPRI (Critical Assessment of PRedicted Interactions) was created at the beginning of this century with a first publication in 2003. It is a community wide experiment with the aim to assess the capacity of actual protein docking methods to predict protein-protein interactions 140

Table 8 . Assessment criteria condition for model quality
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(Adapted from

Méndez et al. 2005) 

Percentage of the total amount of interaction with positive sites Percentage of the total amount of interaction with negative sites

  

	Glycine	2.23%	1.79%
	Alanine	2.23%	1.79%
	Histidine	2.23%	5.90%
	Tyrosine	2.23%	4.77%
	Isoleucine	1.12%	2.39%
	Leucine	0%	2.98%
	Proline	0%	1.79%
	Glutamine	0%	1.79%
	Threonine	0%	1.79%
	Methionine	0%	0%
	Asparagine	34.45%	29.77%
	Aspartic acid	15.56%	11.31%
	Lysine	10.00%	10.78%
	Glutamic acid	7.78%	2.98%
	Phenylalanine	6.67%	5.96%
	Serine	4.45%	3.58%
	Cysteine	4.45%	3.58%
	Arginine	3.34%	0.60%
	Valine	3.34%	6.55%

Table 9 . Percentage of specific interaction between O-GlcNAcylated and non

 9 

Table 10 . Summary of the different complex scores between OGT and chaperone proteins

 10 25 models have been predicted and the different scores have been extracted and summarized in Table.As these scores are very low the investigation was stopped here but with bigger capacities of calculation it could be interesting to model the full CCT and then create the complex CCT-OGT. An another possibility is to cut the proteins into interface areas an analyze step by step the full complex

	Complex	min score	max score	average score	median score
	CCT2 -OGT	0.2381	0.2682	0.2478	0.2459
	CCT3 -OGT	0.2388	0.2685	0.2536	0.2530
	CCT5 -OGT	0.2367	0.3056	0.2545	0.2506
	HSPD1 -OGT	0.2405	0.3833	0.3040	0.3058

Table 11 . Summarized information about T181 to T185 of CAPRI Round 51

 11 the stoichiometry is wrong) it was removed. For this special Round a maximum of 30 predictor groups and 19 scorers participated. The total number of models for each category of set are described in Table12below.

			Components	Uniprot IDs	PDB templates
	T181	H1103	Orf3a / HMOX1	P0DTC3 / P09601	6XDC / 1N3U
	T182	NA	Nsp15 / NUTF2	P0DTD1 / P61970	6WLC / 1GY5
	T183	NA	Nsp8 / EXOSC8	P0DTD1 / Q96B26	2NN6 / 3UB0:D, 2AHM:G, 6XIP
	T184	NA	Nsp7 / RhoA	P0DTD1 / P61586	6XIP:C, 3UB0:C, 6M5I:A / 5C2K:A, 4LHW:E, 2J1L:A190
	T185	NA	NSP7/ NSP8/ NSP12/ RNA strands: 1,2,3,4	P0DTC1(3860-3942)/ P0DTC1(3943-4140)/	2AHM.A-D, 6YYT.C, 7D4F.C / 2AHM.E-H,
				P0DTD1(4393-5324)/ RNA : (1)CAUGCUACGCGUAG	6YYT.BD, 7D4F.BG / 6YYT.A , 7D4F.A / 6YYTP-T
				(2)CAUGCUACGCGUAG	
				(3)UGCUACGCGUAG	
				(4)CAUGCUACGCGUAG	
		2. The different sets		
		For every set, the models have been curated following the template provided by
	CAPRI. For each target, its template indicates the IDs of the chain, the protein sequences and

the stoichiometry. All information has been verified and if needed the sequences have been renumbered. If a model was submitted to the wrong Target, it was manually reattributed to the correct target. But if a model belongs to no target (if the sequence does not match for example or

Table 12 . Number of models for every CARPI Round51 targets regarding the predictors and the scorers
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As shown in previous CAPRI's works, score sets (S-set) have overall better models than P or U-sets 149 . Since our goal was to find the best model, we henceforth only focus on the S-sets.

Number of interfaces Number of models Percentage of total set

  

	Archaea	17	7,890	6.36 %
	Bacteria	49	45,908	37.00 %
	Eukaryotes	36	50,645	40.82 %
	Viruses	6	7,906	6.37 %
	Cross species	4	8,918	7.19 %
	Other	2	2,800	2.26 %
	Total	114	124,067	100 %

Table 15 . Distribution of the Scoreset 2022 Uploader models set in four kingdoms
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Table 16 . Adjacency overlap score in function of the complex kingdoms for the U-Set
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	Kingdom	Interfaces	Models	AUC	Precision	Sensitivity	Threshold
	Archaea	16	5,858	0.775	0.1256	0.624	0.0520
	Bacteria	49	45,908	0.943	0.9276	0.2536	0.0811
	Eukaryotes	36	50,645	0.880	0.9775	0.1342	0.0919
	Viruses	6	7,906	0.782	1	0.0152	0.0764
	Cross	4	8,918	0.717	0.0177	0.8429	0.0121
	"Cross" corresponds to the interface between two different kingdoms		

Table 17 . Adjacency overlap score in function of the type of the U-set dimer complexes

 17 

	Dimer type	Interfaces	Models	AUC	Precision	Sensitivity	Threshold
	Homo	51	54,987	0.953	0.9893	0.1849	0.0877
	Hetero	48	54,929	0.937	0.6565	0.3673	0.0774

Table 18 . Adjacency overlap score in function of the complex kingdoms for the S-Set
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	Kingdom	Interfaces	Models	AUC	Precision	Sensitivity	Threshold
	Archaea	7	827	0.673	0.2382	0.9785	0.0220
	Bacteria	53	7,172	0.873	0.7963	0.3613	0.1717
	Eukaryotes	40	5,762	0.834	0.9247	0.1626	0.0755
	Viruses	11	1,778	0.891	1	0.1027	0.0706
	Cross	4	650	0.670	0.0413	1	0.0136

"Cross" corresponds to the interface between two different kingdoms

Figure 55. ROC 

and Precision-Recall curves of the adjacency overlap scoring method on the S-Set

  

	Dimer type	Interfaces	Models	AUC	Precision	Sensitivity	Threshold
	Homo	55	7,933	0.877	0.8980	0.0939	0.0818
	Hetero	48	6,716	0.916	0.7447	0.4407	0.07554

Table 19 . Adjacency overlap score in function of the type of the S-set dimer complexes
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Table 20 . Adjacency overlap score in function of the complex kingdoms for the P-Set
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		Interfaces	Models	AUC	Precision	Sensitivity	Threshold
	Archaea	16	4,588	0.756	0.2006	0.8654	0.0439
	Bacteria	58	14,306	0.938	0.9231	0.2271	0.0840
	Eukaryotes	58	17,292	0.853	0.8547	0.0522	0.1112
	Viruses	6	3,273	0.840	0.9959	0.4255	0.0454
	Cross	7	1,860	0.964	0.9302	0.3008	0.0719

Table 21 :

 21 

	Dimer type	Interfaces	Models	AUC	Precision	Sensitivity	Threshold
	Homo	56	13,635	0.937	0.95118	0.1222	0.0877
	Hetero	75	21,934	0.922	0.7257	0.4018	0.0748

Table 21 . Adjacency overlap score in function of the type of the P-set dimer complexes

 21 

Table 22 . Best model scores for the different S-Sets of the CAPRI Covid Round compared to the threshold for the different kinds of kingdoms

 22 Table 22 for and compared to the different threshold obtained earlier in the S-set.

	Target ID	Best model score	Threshold -	Threshold -	Threshold -Cross
			Viruses	Eukaryotes	kingdom
	T181	0.0393	0.0706	0.0755	0.0136
	T182	0.0301	0.0706	0.0755	0.0136
	T183	0.0278	0.0706	0.0755	0.0136
	T184	0.0447	0.0706	0.0755	0.0136

Table 27 . Interaction between asparagines from the ladder

 27 

		6	16	26	36
	321				
	322				
	325	x			
	356	x	x		
	390	x	x	x	x
	424		x	x	x
	Score	0.72306	0.57208	0.65129	0.67357

Table 28 . Interaction between asparagines from the ladder and serine 718 in different position of 51 residues long peptide

 28 

		6	16	26	36	46
	321		x	x		x
	322		x	x		x
	325		x	x		x
	356		x			
	390	x			x	
	424	x				
	Score	0.5370	0.5430	0.6041	0.5603	0.6675
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As we can see on these results no models are above the defined threshold except for the Cross-kingdom one. As this latter is very low and induces a precision about 0.04, the probability that a model is actually correct is very low. Regarding the other threshold , we can say that no model has more than 92% to be correct. But it could be interesting to have the percentage of chance for each model to be correct. In this perspective, from the different Precision-Recall curves, the precision corresponding to the closest threshold result has been retrieved and all the results have been written in the Table 23. These results show us the probability for a model to be correct according to the different kingdoms. If we consider these models as interaction between viral proteins, all the good models for each target have more than half chance to be correct, even more for T181 and T184 where the best models have a probability to be a good model of 71% and 82%

Target

respectively. But if we consider them like eukaryotes interactions the results are lower with no model with at least 50% of chance to be correct which is even worse if we consider the model as cross kingdom interaction which is actually the case. A strange result is the better precision for the T182 best models compared to the others targets. Indeed, with the lowest adjacency overlap score we could naturally think it would have the lowest precision. This result can be explained with the precision-recall and ROC curves for this kingdom. The precision is very low and regarding the ROC curve, we can see first that there is more false positive than true. As there are few positive models inside this set, the values of the precision can have a quick increase and then a decrease as there are bad models.

Comparing the adjacency overlap method on the same benchmark as the already available scoring methods shows similar results target-wise but enlarges the number of good models in the top 10. It could be also interesting to compare the first 1 and 5 as in CAPRI assessment. Contrary to the two other compared methods, our tool is not based on machine learning and therefore depends on a training set. Meaning, there is no need to train our model again; it will only rely on the methods developed by predictors. This is a good point but can also be a bad one as it is depending on other knowledge.

It could be interesting to test this method in the next CAPRI Scoring Round to compare it to recent scoring methods. Scoring can also be performed by humans and could be a good evaluation to compare our method results to the human ones.

The most urgent thing to determine now is the number of models required for our method to perform well, to fix the number of different algorithms needed and also to see the impact of the diversity of the models. We showed in our results the better results of our method on the P-set than the U-set where the number of models is different suggesting that a too high number of models is not a good thing. But this result is contradicted by the lower results in the S-set composed of fewer models. We can hypothesize that the S-set is composed of more similar models than the P-set thanks to the scoring and our method, based on the overall consensus, could be not able to discriminate the good models from the all set if its majority is too similar. To have a better understanding and a more useful use of this method it could be interesting to see how it reacts in function of acceptable or better quality rate inside a set.

Regarding the better results of our method in the P-set than the U-set, we could consider our method as a meta scoring method retrieving all the information from different models and thus knowledge.

D. Modeling of the OGT and β-catenin interaction

The modeling of the interaction between the O-GlcNAcTransferase and the β-catenin is not a trivial task. Indeed, β-catenin is a protein which can be divided in three main parts but here we only focused on the N-terminal segment which is unstructured and the Armadillo domain. The hypothesis of a strong interaction between the TPR domain of the OGT and the Armadillo domain could not be validated as no model shows a strong interaction interface. The only interaction found by AlphaFold-Multimer is at the output of the catalytic domain of the OGT where the O-GlcNAcylated substrate should come out from.

This part of the OGT has been predicted to interact with alpha helices in different predictions as in the model of the peptide containing the threonine 41 of the β-catenin. It could be interesting to make an experimental directed mutagenesis to see if residues are important for the substrate stabilization whether it is for peptide or structured proteins.

We also highlighted the role of asparagine already emphasized by Levine et al. but others found a repeated motif inside the TPR [START_REF] Levine | O-GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix[END_REF] . The role of the tyrosine at the beginning of the pattern followed by asparagine could also be interesting as a candidate for directed mutagenesis to see if the OGT activity can be decreased. If not, looking at the specific interaction with β-catenin could maybe highlight a specific interaction with it and could be a way to develop an OGT/β-catenin interaction inhibitor.

B. Xperium

All along my second and third year of PhD I had the chance to participate in Xperium.