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INTRODUCTION

Critical systems are systems whose malfunction would have a significant impact on businesses,
properties, safety or life of people. Systems qualified as critical can be found in military applica-
tions, energy production, health and transport systems for instance. The most critical systems are
usually submitted to the certification authorities, who verify compliance with the requirements set
out in the standard. Safety is a major issue for critical systems given the complexity and serious
consequences that may arise such as design errors. In order to limit these errors, the architec-
tures of these safety-critical systems are subjected to a development process using techniques for
specification as well as verification and validation (V&V). A specification is made on a program
or a system. As a way of increasing confidence in such systems, formal methods are becoming
more acceptable in industrial circles [Bowen and Stavridou, 1993]. The use of formal methods
is recommended by standards such as [CENELEC EN50128, 2011] in the railway field. Besides,
the European Space Agency (ESA) has issued guidelines for software engineering standards [ESA,
1991]. This suggests that formal notations such as Z [Brien et al., 1992], VDM [Andrews, 1992],
B [Abrial, 1996] or Event-B [Abrial, 2010] should be used for specifying software requirements in
safety-critical systems.

Indeed, formal methods are techniques that allow rigorous reasoning, using mathematical
logic, on computer programs or electronic equipment, in order to demonstrate their validity with
respect to a certain specification. These methods make it possible to obtain a very strong insurance
of the bugs absence in the system, i.e. acquire high insurance evaluation levels. Besides, these meth-
ods are based on the programs semantics. However, they are generally costly in resources (human,
material and time) and currently reserved for the most critical systems. Their improvement and
the widening of their practical fields of application are the motivation of many scientific research in
computer science. Formal methods take their interest when the evidence itself should be formally
guaranteed correct. We can distinguish two main categories of tools allowing the V&V on formal
models: model checking and theorem proof. Model checking consists in checking properties by an
exhaustive and clever enumeration (according to some defined algorithms) of the reachable states.
Theorem proof consists in proving the properties of the system, given a specification, through a set
of axioms and a set of mathematical rules. There are possible mixtures between these methods.
For example: - a proof assistant could be sufficiently automated to automatically prove most of
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13 Introduction

the utility lemmas of a program proof; - a model-checker can be applied to a model built using an
automatic theorem prover; - a preliminary abstract interpretation may limit the number of cases
to be demonstrated in a proof of theorems, etc.

Actually, formal methods can be applied at different stages of the system development process
(software, electronics, mixed), from specification to final realisation. We distinguish two categories
of formal methods, those destined for programs and those made for systems. The first category
defines the model-oriented specification methods such as VDM [Andrews, 1992], Z [Brien et al.,
1992] and B [Abrial, 1996]. The second category concerns the analysis and model-oriented formal
methods like Alloy [Jackson, 2006] and Event-B [Abrial, 2010]. Event-B is considered as one of the
foremost analysis and model-oriented formal methods [Bjrnerφ and Havelund, 2014].

Beside all the advantages in formal practices, there are communication difficulties between sev-
eral engineers. Each engineer manages a separate component and then the validation of the whole
system is done manually. Besides, there is a large number of proof theorems. Moreover, mod-
elling several independent bricks, of the same need without overall system reasoning, is difficult.
In industry, the growing complexity of systems, multidisciplinary or even interdisciplinary, leads to
technological failures and to time and cost overruns. In addition, communication difficulties can
be faced because of the lack of global vision in the engineering and management, defective techni-
cal interfaces, difficulties in bringing together professions, organisations and few multi-disciplinary
specialists.

Nowadays, face to these issues, it becomes necessary to have a set of activities allowing the
design and the development of a system. This necessity results in the apparition of a new domain
called System Engineering (SE) [ISO 15288, 2002]. It is a field of engineering that focuses on
how to manage, design and integrate complex systems over their life cycles. It is a way of think-
ing and of understanding business through a structured approach to move from the need to the
solution. One of the disciplines of system engineering is requirement engineering. Requirement
engineering is the expression of the conditions or the functionalities that a system or software must
meet [IEEE 729, 1983].

Indeed, industrial practices as well as dependability standards define systems or software de-
velopment processes that generally begin with the analysis of the overall system. This analysis is
based on the analysis of system requirements and the important properties expressed at a global
level such as safety properties. In general, independently of the formal and the industrial context,
the system/sub-system reasoning is approached mainly by the system engineering paradigm. A
transport system is made up of many sub-systems that interact together for a common and coher-
ent goal of providing passenger or goods transport. System engineering is an interdisciplinary and
comprehensive approach. It studies the system as a whole, in addition to the development of the
various subsystems. By using a structured method, it manages the complexity of the whole and
reduces the risks when integrating several subsystems. It also helps plan and monitor developments
throughout the life cycle through milestones, reviews, appraisals and integration points. The overall
approach to system engineering is summarised in the V-diagram of the life cycle, where activities
at the “system” level and at the “subsystem” level can be distinguished. This thesis is interested
in the analysis of safety-critical systems using the Event-B method for the verification of railway
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systems specifications.

Scientific and industrial contexts

In this thesis, the work is based on the railway area and particularly on the railway signalling
systems. Railway signalling is an information system intended to inform the driver of a railway
traffic. It gives him the information that is necessary for him to regulate the progress of his convoy
and to drive in complete safety. This information is given in the form of codes produced by signals
of various shapes, combinations, or colours. The information given by this means may relate to a
speed limit to be observed, a stop not provided for in the course to be performed, information on a
geographical direction which the convoy is going to take, prescriptions concerning electric traction,
etc. Signalling is one of the basic elements of railway safety. Since the beginnings of the railway,
rail signalling has generally been specific to the network of each rail company. The harmonisation
of the different signals is an important issue for the interoperability of rail networks in Europe, and
in North America where the presence of hundreds of private companies very early on imposed a
major standardisation effort. The sectioning is based on a division of the line into sections. These
sections, also called blocks, on a line between two stations are an integral part of the system. Rail-
way safety is a set of human and technical resources that make it possible to avoid rail accidents,
or to reduce the consequences of such accidents.

In this work, we start from the stage of expressing the requirements to produce formal models.
These models need to be split and need the management of the reuse of bricks imported or produced
by other partners. There is a need for decomposition mechanisms. Conventionally, a traditional
document of the functional specification type consists of a list of detailed, documented and justified
requirements concerning the different functional entities of the system. If this list is formalised in
a mathematical language, it will be possible to verify, in a systematic and instrumented manner
(i.e. using software) the consistency of these requirements with each other. As a reminder, the
methodology which makes it possible to design a formal model which makes sense, is called a formal
method: B-Method is one of these methods and it makes it possible to generate B models (this will
be more widely presented later in this document).

Mainly in the railway sector, B is arguably among the formal methods of greatest industrial
impact. It seems like a Domain Specific Language (DSL) for the railways [Butler et al., 2020].
However, our work is centred around the system modelling and behaviour analysis, so we use the
Event-B method as the extension of B-Method for system analysis. The use of Event-B becomes
a necessity in order to analyse the behaviour of the railway systems.

Problematic and Motivation of the Thesis

In the context of this thesis, our work concerns the modular architecture in Event-B. In practice,
each engineer works on a separated brick of the system. These bricks are also called sub-systems,
sub-components or sub-machines. This method of work requires the study of the partitioning of
global functions on these sub-systems and communications between them. However, the interac-
tions between the subsystems lead to problems whose formulation is delicate. These interactions
can be critical locally and/or in their entirety. Consequently, we plan to study methodologies in-
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cluding a modelling process based on the mechanisms of decomposition from a system to multiple
sub-systems.

In the literature, several approaches are proposed to address this issue. For instance, generic
instantiation [Abrial and Hallerstede, 2007], modularisation [Hoang et al., 2011], fragmentation and
distribution [Siala et al., 2016] can be found. In addition, there are the most used methods in the
litterature and industry: the shared variable decomposition [Abrial and Hallerstede, 2007], A-style,
an the shared event decomposition [Butler, 2009a], B-style. In this work, we focus on the study
and analysis of those two latter methods.

Our goal is to analyse these methods and find why there still a need in the industry. So, our
motivation is based on these challenges:

− Modularity: each system can be splitted into several sub-systems. This must be done taking
into account the system complexity. In other words, it must be possible to manage complex
and huge size models after several steps of refinement. In fact, after each step of refinement
new variables can be defined, new events can be added and the invariants may be more
complex.
Indeed, A-style is based on decomposing a system by functionality, like decomposing parallel
programs [Hoang and Abrial, 2010]. For B-style, is based on decomposing the behaviour of a
system. However, the industrial goal is to reason by sub-systems. In this case, a system can
be decomposed by functionality, by behaviour or both.

− Semantic Coherence: In both of the cited methods, there is no link between the initial machine
and sub-machines. In addition, the sub-machines are not either linked to each other. So, each
sub-machine is enriched and refined separately.

Contributions

The study of decomposition in Event-B is hardly discussed in the literature. Most research in this
context has focused on the partition of the events or the variables of a model. Our study on the
problematic of this thesis allowed us to choose on which of these approaches can be candidate for
solution of this issue. As a consequence, we choose the decomposition by shared variables and the
decomposition by shared events. Following the results of the performed analysis on these works, an
approach of decomposition is proposed regarding the industrial need. This is performed following
these steps:

1. Study and analysis of the existing approaches of decomposition in Event-B. In our work, we
focus on A-style and B-style because the other approaches are combining other languages
with the Event-B language. However, our goal is to enrich the Event-B language. So, A-style
and B-style are the ones are using only the Event-B language. This analysis leads to the
identification of some limitations regarding an industrial need.

2. Proposition of a new decomposition method for partitioning systems into sub-systems: the
Refinement Seen Split (RSS). This approach allows the decomposition of a system into mul-
tiple sub-systems and does not depend on any Event-B tool. In addition, it defines a new
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link REFSEES, that gives the possibility to connect between the sub-components and get a
visibility of each other.

3. Demonstration of the correctness of the proposed solution. In other words, we prove that the
set of all the resulting sub-machines constitutes a refinement of the splitted one.

4. Proposition of new additional needed proof obligation rules. The goal of these proof obligation
rules is to complete the correctness of the approach. These proof obligation rules are to be
integrated in the Atelier B and/or Rodin tool independently of any platform.

5. Illustration of the Refinement Seen Split (RSS) method by its application on a concrete
signalling railway system. This case study is validated by the domain experts.

Consequently, to cater for the above challenges, the main contributions of this thesis are sum-
marised through the following points:

− Modularity: proposition of a new approach of system/sub-systems reasoning. We propose
a new method of decomposition, called Refinement Seen Split (RSS), that allows to obtain
modular systems. Furthermore, we define a partitioning strategy to follow as well as the rules
to be respected.

− Semantic Coherence : a new clause is defined, called REFSEES. It is a semantic link that
allows to keep the global semantic coherence of the system.

− Scalability: the new proposed notions are independent of the tools. They are mainly based
on the Event-B language. So, it can be implemented in different tools.

After presenting the context of this thesis, problematic, motivation and contributions, we detail
now the organisation of this manuscript.

Organisation of the Manuscript

This manuscript is structured in two parts, each containing two chapters. The first part is devoted
to the presentation of the scientific context as well as the industrial context, particularly the railway
area. Furthermore, it contains the presentation of the state of the art related to Event-B and the
decomposition mechanism of this method. The first part is illustrated by chapters 1 and 2.

Chapter 1 provides the scientific and the industrial contexts of our work. In a first step, an
overview of the different types of specification methods is presented, and formal methods, one of
the main used methods for critical systems, are introduced. Then, we focus on the adopted formal
method in this thesis, namely Event-B, which is the basis of our approach of modelling and val-
idating railway systems. In addition, we present the verification and validation phases as well as
their different techniques. In a second step, we present how formal modelling had been used in the
railway area through the last years. After that, we explain the interest of this type of modelling for
the critical systems industry and in particular for the safety railway systems. Finally, the chapter
ends with the presentation of the PRESCOM project, its problematic and the motivation behind it.
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Chapter 2 is devoted to the Event-B notations. First of all, we focus on the presentation of
the structure of an Event-B model, the syntactic definitions as well as the semantic definitions
through the presentation of proof obligation rules. Once these basic notions are defined, we move
on to one of the main mechanisms of Event-B method: refinement. An overview on the different
types of refinement in Event-B is given. Then, an explanation is given on how a refinement can be
correct regarding the refined machine. Additionally, we give a presentation of the decomposition
mechanism, and a citation of the existing works in the literature which are related to the modular
architecture in Event-B.

The second part is dedicated to the analysis of the existing works by their application on some
examples. One of these examples is a railway case study that we modelled and proved in Event-B.
Moreover, this part gives the presentation of the main contributions of this thesis. The second part
is illustrated by chapters 3 and 4.

Chapter 3 contains the full analysis of the most known and used approaches in Event-B for
the decomposition mechanism: the decomposition by shared variables and the decomposition by
shared events. In a first step, the specification of the case study, the corresponding model and the
different steps of refinement are defined. Then, we proceed with the application of the decompo-
sition methods A-style and B-style on this case study. Finally, a discussion on the results and an
analysis regarding the industrial needs are presented. This chapter ends with an overview of the
proposed solution, we present our approach based on decomposition into sub-components used in
the PRESCOM project.

Chapter 4 is devoted to the presentation of the decomposition approach Refinement Seen Split
(RSS) for modelling and validation of modular systems. We start with the definition of this ap-
proach as well as its new proposed syntax. Thereafter, the strategy for this approach use and the
rules that must be respected are detailed. Among the new aspects, we define the clause REFSEES
which allows the visibility between the sub-components after the decomposition. As one of the
main mechanisms of modelling in Event-B, the refinement link should be preserved between the
decomposed machine and the resulting sub-machines. So, a demonstration is made: the merge of
these resulting sub-machines constitutes a refinement of the initial machine even after several steps
of refinement of each sub-machine. Moreover, new proof obligation rules are introduced. These
rules are necessary for the process of decomposition. In addition, we illustrate this proposition by
its application on the same railway case study presented previously. This is done in order to show
how our contribution solves some of the industrial issues concerning the systems modularity.

This manuscript ends with a general conclusion by giving an overview of our contributions as
well as a set of short-term and long-term perspectives.
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Introduction

In the industrial sectors, critical systems are considered as important such as robotics, automotive,
railway, aeronautic. The design and development of these critical systems must take into account
several aspects such as safety, constraints, reliability, quality of service, flexibility, maintainability
and performance, for instance. The goal of this chapter is to characterise specific needs of safety
critical specification in railway systems, taking into account the legislative context and the indus-
trial practices.

In a first step, we present the existing semi-formal and formal specifications and discuss the
potential contributions of these methods. Particularly, we focus on the formal modelling and its
ability to provide proofs. As a formal method, Event-B is used in the railway sector. This is a
sufficient reason to present in detail this method and its history. In Event-B, we principally prove
the models using theorem proofs as a validation technique. But, additional techniques can be used,
such as model checking, on finite system states and are able to provide proofs. In addition, the
animation technique can also be used to run some scenarios of the system.

In a second step, we define the industrial context, in term of formal modelling, specifically
the railway sector and we detail the need of this critical systems specification with regards to the
European legislative safety standards. Then, we identify the needs and presents an analysis of the
railway state of the art and practices. In addition, we present how formal methods are used in the
safety of railway circulations.

Finally, we analyse a list of industrial and scientific projects on railways through the 20 last
years, since the apparition of formal methods in the industry. The efficiency of the tooled framework
is discussed regarding the evolution of the needs. This leads us to introduce the PRESCOM project
defining the context of this thesis.

1.1 Specification Methods

1.1.1 Main Types of Specification Methods

In system engineering, the specification is the step describing what the system must do. In other
words, it consists in defining the system requirements. Verifying a functional specification, which is
often complex, is a difficult task. The major difficulty manifests itself especially when understanding
the problem (software or system). This difficulty is reflected in particular at the stage of testing the
final system if a choice that should have been settled in the analysis phase has not been well defined.

The specification generates multiple documents which express the properties of the system in a
certain language of specification. These documents can be used for modelling, verification and/or
validation. The goal of the specification also depends on the type of the language used to detail
the specification. Three main types of specification languages exist [Ben Ayed, 2016]:

− Informal Language, also called human language, is expressed by a natural language. It is
simple and direct for communication and exchange, being the language the most easily used
and understood by humans to express the needs or the perception of a problem [Sadoun,
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2014]. However, neither its syntax nor its semantics are perfectly defined. Several formula-
tions are possible for the same idea and several meanings can result from the same idea. This
can cause understanding and interpretation problems for the experts.

− Semi-Formal Language is expressed by using a restricted syntactic language provided with
a defined semantics, such as the Unified Modeling Language (UML) [OMG, 2011]. It allows
a modelling activity to be more expressive while reducing the ambiguity of natural language.
The graphic notations of semi-formal languages represent a good vector of communication
between the collaborators of the project. They allow a structured intuitive synthetic view
of the system [Dupuy, 2000]. However, the lack of precise semantics limits the use of V&V
techniques.

− Formal Language is expressed in a restricted syntactic language with a semantics which is
defined on well-established mathematical concepts.

Definition 1.1.1.
"A formal specification is a collection of sort, or type definitions, func-
tion and behaviour definitions, together with axioms and proof obliga-
tions constraining the definitions." [Bjøner, 2019]

Formal languages have well-defined syntax and semantics, as opposed to natural languages,
which can give rise to several interpretations, and to semi-formal languages, which have a precise
syntax but whose semantics are not well defined. No difference in interpretation is envisaged
using formal languages, as it allows problems to be highlighted from the beginning. Indeed, it
allows to formally prove properties on the system from its specification. There is no need to wait
for the last modelling phase (where optimisation issues may be the focus of the designers), or the
implementation phase for comprehensive testing. In [Idani, 2006], the author compares semi-formal
methods and formal methods as in table 1.1.

In this table, the semi-formal methods give facilities to specify a system. It is easy to use and
efficient to produce results on wide types of systems. However, the syntax of the specification is less
precise and generalist. In addition, it lacks the semantic reasoning. In the context of this thesis,
we have to prove that railway circulations are protected against dangers to obtain a commissioning
authorisation for National Safety Authority. As a consequence, the use of formal methods is detailed
in this document.

1.1.2 Formal Methods

Formal methods are generally used to characterise faults, errors, inconsistencies, etc., that may
be faced during the life cycle of a system. These errors can have dramatic consequences when it
comes to a critical system (transportation, robotics, aviation, military, etc.). The sources of these
defects can be different and appear from the first phases of the cycle such as errors and mistakes of
specifications, until the last phases of realisation or production. Several faced difficulties can be the
origin of these defects: choice of architectures and the used tools, inappropriate tests, transmission
of information between several experts, the lack of a global view of the system operational safety,
etc., [Cannon et al., 2003].

Defects have a higher cost when they are detected late in the advanced phases of the develop-
ment cycle. In fact, the higher the identification rates of errors and the detection of ambiguities
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Semi-Formal Methods Formal Methods

Formalism Textual or graphic
(UML, SysML, etc.)

Mathematics
(Z ,VDM ,B, etc.)

Language Syntax Precise Precise

Language Semantic Quite weak Precise

Validation Syntactic
+ human expertise

Proof
Theorems demonstration

Model checking
Animation and test

Tools Software engineering atelier
(SEA)

Provers
+ Animators

Application Area Expects to be generalist Critical and safe systems

Goal Well-structured systems Reliable and safe systems

Table 1.1: Semi-Formal Methods vs. Formal Methods [Idani, 2006]

and inconsistencies from the early stages of the development cycle, the more the complexity of the
system is mastered. The use of formal methods, therefore, makes it possible to prove the absence of
errors where the tests will only make it possible to highlight them. Using the power of mathemat-
ics, formal methods make it possible to rigorously specify the studied system. In this context, the
users can have great confidence in the design of their systems. This trust is particularly essential
in the rail sector where user safety is paramount. For this reason, according to the railway stan-
dard [CENELEC EN50128, 2011], the use of formal methods is highly recommended for Security
Integrity Levels: SIL 3 and SIL 4. For the specification of railway systems, the formal method B
is considered as one of the strongest approaches [Fantechi et al., 2013].

In general, the use of formal methods goes through three main phases [Bjøner, 1987]:

− Establishment of needs: the informal requirements respond to the needs expressed in the
phase of the functional analysis.

− Model construction: the formal model precisely captures the informal requirements of the
first phase. This leads us to answer the following question: "Have we well modelled the
need?".

− Model verification: a model correctly maintains the invariants (the properties of the sys-
tem) or refines another more abstract model. This leads us to two important questions: "Have
we asked the right questions (properties of the system)?" and "have we fully understood the
answers to these questions (results of formal verification techniques)?".
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Based on the literature, a formal modelling system is based,in general, on two important con-
cepts:

− Abstraction which can be seen as a process of understanding a system (its functions and
properties). The abstraction is used to have a general/global vision of the system. It focuses
on the most important properties and contains the foundations of the future system in order
to master the complexity of the system.

− Refinement which is a process of enriching a model in order to increase the specifica-
tion/description of the system in terms of functions or to explain how to achieve the objective.
In other words, refinement consists in delaying the processing of certain functionalities of the
system to latter levels of refinement while keeping the initial properties of the system defined
at the level of abstraction.

In the context of the thesis, the formal method used is Event-B. We detail in the following some
history of the apparition and use of this method, as well as the reason behind this choice. The
choice is also justified in the section dedicated to the railway projects.

1.1.3 Adopted Formal Method: Event-B

B-Method

B-Method was designed by Jean Raymond Abrial [Abrial et al., 1991,Abrial, 1996], taking inspi-
ration from the formal methods VDM [Jones, 1990] and Z [Spivey and Abrial, 1992]. Similarly, B
is a formal model-oriented method. It has been industrially used in the MÉTEOR project [Behm
et al., 1999]. Classical B-Method, also called B-Logiciel (B Software) [Pouzancre and Servat,
2005,Patin, 2006], is a formal method for the specification and the V&V of critical systems. It is
based on the use of set theory and first-order logic as the mathematical foundations of modelling.
It is also based on the use of mathematical proof to check the correctness and consistency of the
system regarding its specification, as well as to check the correctness and consistency between the
different levels of refinement. This method ensures correct operation of the specified software and
achieves a conform implementation of the latter with its specification. Atelier B1 [Atelier B, 2018]
is the recognised industrial tool which implements method B. It is developed by Clearsy2 [ClearSy,
2020].

Event-B

The classical B-Method allows formal development from specifications. It is based on the refinement
mechanism from specification to code. A few years after the appearance of the classical B-Method,
an awareness raised in the importance of reasoning about the behaviour of the system, not just
about the software. For example, the railway signalling system does not only represent the software
part, but it also groups together a set of several software and hardware subsystems. An analysis
of such systems is carried out in order to study a system or its components in order to identify
its objectives. It is a problem-solving technique that improves the system and ensures that all its
components work effectively to achieve their goal.

1Atelier B: www.atelierb.eu/
2Clearsy Systems Engineering: www.clearsy.com/

http://www.atelierb.eu/
https://www.clearsy.com/
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The choice between classical B-Method and Event-B depends on the purpose of modelling the
system, i.e. an analysis of the system according to a refinement process which stops at a level of
refinement considered as necessary to analyse the behaviour of the system regarding its objectives.
Otherwise, an implementation of the studied system according to a refinement process leads to a
model described in a language close to the code and which will be considered as the last refinement
model or the implementation model.

Event-B is an extension of B-Method which allows the specification of reactive, sequential,
concurrent and/or distributed algorithms. Event-B is based on mathematical approaches: the
theory of sets and the logic of predicates. It allows an incremental construction of the system
specification. The Event-B model is the first concept of Event-B because it describes a system by
a set of states, a set of actions, an initial state and a transition relationship. The Event-B model,
as described in detail in chapter 2, is made up of a set of machines and contexts.

B vs. Event-B

Initially, B-Method is limited to the development of software systems, but a need for the incorpora-
tion of the event approach has emerged, linked to the systematic derivation of reactive distributed
systems. Models based on events have been found useful in the needs analysis, the modelling of
distributed systems, and the design of distributed and sequential programming algorithms. The
comparative study is based on the following points [Boulanger, 2012]:

− The structure of models: The structure of models in Event-B is different from that of
B-Method. Indeed, in Event-B, as we have already mentioned in this document, the static
part of the system is defined in a context, while the dynamic part of the system is defined in
a machine [Benaissa, 2010]. In B-Method, the two parts coexist in the same machine.

− Events vs. operations: the operations of the classical B contain preconditions which
must be true when the operation is invoked. The calling operation is then responsible for
ensuring that the preconditions of the called operation are satisfied before calling it. The
called operation can assume that its preconditions are satisfied and that it does not need to
check its preconditions. On the other hand, an event in Event-B has a guard instead of a
precondition. A guard is associated with each event. Several event guards can be true at the
same time, however, only one event can be triggered. The choice of which event is triggered
is not deterministic. Indeed, the call of events does not exist in Event-B; it is the model that
controls its behaviour by choosing in a non-deterministic way the events to trigger.

− The refinement mechanism: The refinement in Event-B is considered more general than
that of B-Method [Boulanger, 2012]. In Event-B, we can refine existing events by strength-
ening their guards, as in B-Method we can refine operations. In addition, in Event-B we can
introduce new events in order to observe concrete behaviours that did not exist in abstrac-
tion. On the other hand, in B-Method you have to go back to the abstract machine, define
the entire signature of the operation with its input and result parameters and then go to the
refinement step. This requires the prior analysis of all the requirements and the definition of
at least the signature of all the necessary operations for this machine and for all the successive
refinements of this machine.
Table 1.2 summarises the differences between classical B and Event-B.
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Classical B (B Software) Event-B (B-System)

Structure
of the
models

The static part and the dynamic part
coexist in the same machine.

The static part is defined in a context
and the dynamic part is defined in

the machine.

Events vs.
Operations

The operations can be called by
other external operations of another

calling machine.

Events are triggered by themselves if
the guards of the event are verified.

Mechanism
of

refinement

Ability to add new variables, new
invariants but not new operations.
You have to go back to the abstract
machine, define the entire signature
of the operation with its input and
result parameters and then go to the

refinement step.

Possibility of introducing new
variables, new invariants as well as
new events which do not exist in the

abstraction.

Table 1.2: Differences between Classical B and Event-B

Event-B vs. B-System

The Event-B method is supported by the integrated development environment Rodin [Abrial et al.,
2005] which allows the editing, the validation of Event-B models, and the generation of proof
obligations and their discharge (see chapter 2).

B-System designates a variant of Event-B offered within the integrated development software
environment Atelier B. The B System and Event-B languages share the same semantics but differ
in their syntax. In B-System, one can use all of the classical B method syntax and clauses such
as INCLUDES and DEFINITIONS clauses in addition to some of the Event-B syntax. However,
some of the Event-B syntax is not defined in B-System:

− For the clause of the system name (SYSTEM M), the term machine is used like in classical
B (Machine M).

− There is no CONTEXT notion in B-System, both of the static part and the dynamic part can
be present in the same machine. Otherwise, they can be separated into two machines. The
SYSTEM M and the CONTEXT C in Event-B are defined by MACHINE M and MACHINE
C respectively in B-System.

− Since the use of Classical-B syntax is allowed in B-System, the clause SEES can be used
to see other machines defining the static part, dynamic part or both. Contrary to Event-B
where the clause SEES only defines contexts.

− The clause EXTENDS is not defined in B-System. So, in order to extend a static part, the
clause SEES can be used.
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Verification and Validation (V&V)

Checking and validating critical systems requires reasoning on the scenarios and the related re-
quirements for using the system. These scenarios must be modelled in a structured and intuitive
way in order to offer a representation that facilitates understanding and communication. To give
an initial and approximate illustration of the reasoning used by this method, either a proof or a
model checking is necessary on the possible states of the system. For example, the initialisation
must establishes the target properties and all subsequent developments retain these properties.
This reasoning can be used at any level of detail and repeatedly as presented in figure 1.1:

− From high-level: which is used to demonstrate that the defined functional needs are coherent
and complete and guarantee the desired fundamental properties.

− Until low-level: which is used to demonstrate that the final architecture is consistent and
complete compared to the functional needs defined at the start.

System
Requirements

High-level
requirements

Functional
Needs

Low-level
requirements

Final
Architecture

Event-B Model

Final
Proved
Event-B
Model

PROOF

Figure 1.1: Formal Validation and Verification in Event-B

(i) Proof Technique
The Event-B method defines a mathematical language allowing the specification of a system,
as well as the description of the target properties. The theory associated with this method
makes it possible to know how to prove that this description of the system does indeed guar-
antee these target properties. In other words, it allows to demonstrate that an Event-B model
is correct. This is done by defining lemmas which must be proved, called Proof Obligations
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(see section 2.1.2).

The purpose of the formal proof technique is the system verification by performing lexical
analysis, syntactic analysis and type verification. The proof obligations relating to each
machine mainly concern the correction of events:

− The initialisation must establish the machine invariant: the machine invariant must be
true after applying the initialisation substitution.

− Events must preserve the invariant: the machine invariant must be true after applying
the event substitution, assuming that it was true before.

Theorem proof involves a demonstration and a formal proof usually using an automatic
demonstrator and a semi-automatic demonstrator, also called an interactive demonstrator. If
these demonstrations succeed, then the consistency of the specifications is guaranteed with
respect to the defined properties.

Indeed, the goal of the theorem prover is to construct a mathematical proof for a mathe-
matical statement in order to demonstrate that it is true. If this statement is proven by the
evidence, then the statement is true, and it is considered as a theorem. Otherwise, if evidence
is not found, it cannot be concluded that the statement is false. Actually, it could be false,
as it could be true, but any interaction or the used tool of proof do not succeed in finding the
suitable proof to demonstrate that the statement is true. Once the theorem is demonstrated,
it is applied to the entire model.

Schematically, the description of the properties and the system specification in Event-B are
both introduced in the tool which controls their syntax, generates the proof obligations and
launches the integrated automatic demonstrator.

Atelier B and Rodin have a generator of proof obligations. These proof obligations are
discharged by two types of provers:

− An automatic prover to demonstrate most of the verifiable proof obligations.
− An interactive prover with a number of interactive commands which allow to discharge

the verifiable proof obligations that the automatic prover has failed to demonstrate. This
prover also makes it possible to identify a modelling error after having interpreted one
or more attempts to an interactive proof which does not lead to a demonstration.

If the model is correct, the interactive prover is able to finalise the proof by demonstrating
all the proof obligations which are not discharged by the automatic prover. The tasks that
can be automated during the development of a project are the syntax checks of the compo-
nents, the automatic generation of proof obligations and the automatic translation of the B
implementations into the C or Ada languages.

If all the proof obligations are demonstrated, the B description of the system specification is a
valid model regarding the target properties. However, this specification must be well defined
beforehand in an informal or in a semi-formal language in order to specify and formally verify
them to guarantee the consistency and the completeness of this specification. We may have
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to use a semi-automatic demonstrator if the automatic demonstrator fails to discharge all the
proof obligations. However, this phase can be costly in time and resources.

The Rodin platform3 [Abrial et al., 2010] is an IDE for modelling in Event-B based on Eclipse
which provides effective support for abstract machines, refinement and mathematical proof.
The platform is an open source and can be extended with plugins (UML-B, B2RODIN , etc.).

(ii) Model checking

Model checking is used for the formal verification of behavioural systems modelled in relation
to the expected properties. This technique is based on the construction of a model (state
machine) generally finite which describes all the possible states, the initial state and the state
transitions. It is established by an exhaustive enumeration of the possible (or visited) states
from the initial state. Given a property of the system to be checked on a machine, the model
checking technique explores the set of reachable states by this machine in order to verify
that this property is indeed satisfied. Two cases arise: either the property is checked and
maintained by the model, or a sequence of state transitions leading to the violation of the
property is generated as a counter example as presented in figure 1.2. This shows that the
property is not maintained by the model.

Model
Checker

Event-B
Model

Formal
Specification

Specification
Phase

False
(Violated)

True
(Satisfied)

Verification
Phase

Informal
Requirement

Studied
System

Counter
Example

Error
Localization

Figure 1.2: Process of Model Checking

Comparing model checking and proof, on the one hand, model checking is easier and faster
than proof of theorems. On the other hand, the theorem demonstrator does not necessarily
rely on finite and decidable systems, unlike the model checker. Indeed, the theorem demon-
strator is applicable in certain cases: the model checking cannot be done because of the
problem of the state space explosion or the studied system cannot be formalised as a finite
state space model.

3Rodin: www.event-b.org/

http://www.event-b.org/
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(iii) Animation
Animation is a fast prototyping technique of validation. It allows to visualise certain formal
scenarios of the system and thus to validate the dynamic behaviour of the system. Indeed, it
makes it possible to demonstrate, at an early stage, the absence or an undesirable behaviour
presence in the used scenarios. In absolute terms, it does not guarantee the correctness of the
system, however it increases the user’s confidence in their formal specifications. Animation is
not an alternative to formal validation and cannot replace proof. These two techniques have
an important complementary role and can be used in conjunction. Indeed, animation can
be used as a validation method providing a quick view of the model execution, in addition
to the proof for a deeper verification. It makes it possible to identify and locate possible
problems in a model. Some animation tools such as ProB4 support the analysis of liveliness
properties and detect deadlock problems. ProB, proposed by [Leuschel and Butler, 2003],
allows users a step-by-step animation of the machines in Event-B which makes it possible to
see a description of the machine’s current state, the history which led the user to access this
current state, and a list of all triggerable events. There is also a ProB animation plug-in on
Rodin [Butler and Hallerstede, 2007]. This Plugin can be included and performed in Rodin.

1.2 Formal Modelling and Verification in Railway Systems

1.2.1 Railway Systems

The railway system is a guided transport system used to transport people and/or goods. It is
made up of specialised infrastructure, rolling stock and operating procedures, most often involving
humans. Rail traffic management is ensured by control and command systems, whether train, tram
or metro. These systems are used, for example, to control the speed, the distance to be respected
between two trains or even signalling for drivers. Thus, they meet several European standards
and those imposed as a worldwide standard used in the railway sector such as [ISO/TC269/SC1,
2017] for the infrastructure and [ISO/TC269/SC2, 2015] for the rolling stock. These standards
are developed by the International Organization for Standardization (ISO). Their application is
therefore required for all suppliers of railway control equipment.

The railway systems in France comply with several European standards from the European
Committee for Electrotechnical Standardisation (CENELEC ). Three specific standards were pub-
lished in the early 2000s. The [CENELEC EN50126, 2001] standard concerns systems in their
totality, the [CENELEC EN50129, 1998] standard is dedicated to electronics, and the [CEN-
ELEC EN50128, 2011] standard is dedicated to software. These European standards have estab-
lished themselves as a standard used worldwide in the railway sector. Their application is therefore
required for all suppliers of railway instrumentation and control-command equipment.

The control-command system directs the movements of rolling stock and makes it possible to
manage the control and the command of trains of several lines and includes track and board au-
tomation on the trains. It is a modular, scalable and secure control, as well as a communication
platform based on the open CENELEC standards that manages and controls the transmission of
information between the various on-board subsystems (converters, doors, heating, ventilation and

4ProB: Animator and Model Checker https://www3.hhu.de/stups/prob/index.php/Main_Page

https://www3.hhu.de/stups/prob/index.php/Main_Page


31 CHAPTER 1. METHODS OF SPECIFICATION IN THE RAILWAY AREA

air conditioning, etc.), but also between the train and the track systems (rails, sensors, etc.) [Schön,
2013a].

It thus ensures efficient and reliable train operations, diagnostic-based maintenance, high-
security rail operations, as well as practical and high-quality passenger services [Pawlik, 2015].
Thanks to the secure data transmission protocol and functions of the train control and manage-
ment system, it is possible to set up secure train functions and protected communications between
equipment and subsystems.

In Europe, railway principles and standards are used to be validated at the national level by the
National Safety Agency (NSA). Historically, each country has its own requirements for managing
trains on its network. As this national specific safety process was breaking the economic devel-
opment, the European Union has introduced a new solution called the European Railway Traffic
Management System (ERTMS)5 creating a common and standardised management of rail traffic
and signalling in Europe.

Actually, a proposition in [Blakstad, 2006] implies a human mastering all the connected knowl-
edge and able to make synthesis and compromise. It is an evidence that a drawback of this approach
is that it is difficult to apply with radically new technologies. Actually, it is not possible to find an
expert of railway technology mastering all the connected knowledge, like, for instance, mastering
the knowledge of railway safety, telecommunication and human factors. An alternative approach
uses a set of dedicated experts. In this case, there is a problem with domain specific semantic. Fur-
thermore, dedicated experts do not have a mental representation of the impact of their technical
choices outside of their domain of knowledge. Let us consider the following definition:

Definition 1.2.1.
"A model is a simplification of a system built with an intended goal in
mind. The model should be able to answer questions in place of the
actual system" [Bézivin and Gerbé, 2001]

Building a model means representing the real world focusing on specific aspects. It is relevant
because it provides an operational abstraction of a given knowledge, focusing on impacts on a
given structure. Finally using a dedicated model for the formally projection of a specific knowledge
regarding a given aspect is quite efficient from a conceptual point of view.

Formal methods have been widely used and implemented by manufacturers for different types of
applications (automatic metros, signalling subsystems, train applications developed with Control-
Build, for example) and at different levels (specification, design, code). The [CENELEC EN50128,
2011] standard dedicated to the realisation of software applications points to the interest of using
formal methods.

Several driverless automatic metro projects by Siemens6 have been developed without a formal
method such as VAL7 (Véhicule Automatique Léger-Light Automated Vehicle) of Lille, France in
1983. This project was referred as the first fully automated driverless metro of any kind in the
world [Bushell and Stonham, 1985]. Following these projects, formal methods were introduced to
carry out several national and European projects.

5European Rail Traffic Management System (ERTMS): www.ertms.net
6Simens: siemens.com
7Ilevia: www.ilevia.fr

http://www.ertms.net
https://new.siemens.com/global/en.html
https://www.ilevia.fr/fr/
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1.2.2 Safety of Railway Systems

The work presented in this thesis takes place in the context of the railway industry whose safety
requirements constitute a central concern in the development process. Many railway systems do
not use software to implement critical safety functions, those whose failure can result in a catas-
trophic risk to passenger safety [Lecomte et al., 2007]. These systems must meet strong safety
requirements [CENELEC EN50126, 2001] in order to avoid the five typical scenarios/accidents:

− The Nose-to-nose Collision: also called face-to-face, is a head-on collision between two
trains running on the same track and in opposite directions (see figure 1.3a).

− The Rear-end Collision: unlike nose-to-nose, a train catches up with another train in front
of it while going in the same direction (see figure 1.3b).

− The Sideswipe Collision: occurs when a train arrives on a switch already occupied by
another train coming from another direction (see figure 1.3c).

− The Train Derail: occurs when a part of a train (car, wagon, etc.) runs off its rails. It
includes leaving the track on a curve or on a switch crossed too quickly, or the circulation on
a track with excess speed (see figure 1.3d).

− The Collision with an Obstacle: is the meeting of a train with an obstacle not strictly
railway like a rock, an animal or a non-railway vehicle such as a car at a level crossing for
example (see figure 1.3e).

Over time and technological developments, signalling and railway automation have been proved
to be major allies to improve the operation of rail networks. Beyond the security aspects, the
implementation work of signalling and associated automation constitutes an essential basis in order
to: fluidify and regulate circulation, improve the comfort of users and operating agents, and reduce
operating and maintenance costs. Railway signalling is the management of safe train movements.
It is based on dynamic behaviours to be respected by the systems. In order to achieve the spacing
of traffic, the track is cut into sections called "blocks" [Kempen, 1993, Schön, 2013b]. Each block
is then preceded by a signal indicating whether this block is free or occupied by another train.
Consequently, it makes it possible to avoid catching up of trains on the same track, guarantee the
protection of traffic in intersections, avoid derailments by speeding (in zones with limited speed or
with curves, for instance), to protect a level crossing (rail-road crossings), etc.

In France, the railway sector is regulated by European and national rules. Consequently, the
respect of the [CENELEC EN50126, 2001], [CENELEC EN50129, 1998] and [CENELEC EN50128,
2011] standards for the design of a railway system is mandatory. Railway signalling does not make
it possible to identify system failures and to dynamically check the adequacy between the specifi-
cations and the source code. Analysis of this problem leads to consider that software failures fall
into two categories: design errors, which cause the programming source code not to comply with
the software specification; and compilation errors, which cause a program not to run according to
its source code. Therefore, formal techniques appear to be an answer to the problem raised by the
digitisation of critical security functions with regard to errors in the design of software applications.
The [CENELEC EN50128, 2011] standard identifies formal methods as means to be implemented.
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(a) Nose-to-nose Collision

(b) Rear-end Collision

(c) Sideswipe Collision

(d) Train Derail

(e) Collision with an Obstacle

Figure 1.3: Representation of the Main Accidents of Trains Circulation
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In order to extract the design errors and to model the behaviour of the railway systems so that
the model obtained is safe and reliable, it is necessary to formally model these systems and reason
over it. Formal modelling requires more expertise and advanced knowledge in mathematics [Kraibi
et al., 2019a]. In what follows, we present in detail some famous projects that used formal methods
in their design and validation process.

1.2.3 Formal Modelling in the Railway Sector

Based on a feedback of 25 years using formal methods, the Autonomous Parisian Transportation
Administration RATP noticed that the use of the Proof Executed over a Retroengineered Formal
model (PERF) approach [Bonvoisin and Benaissa, 2015] instead of validation tests, reduces the
overall workload by a proportion of 25% [Benaissa et al., 2016]. PERF is an approach being devel-
oped by RATP based on two main phases The first one, uses B method or Event-B depending on
the nature of the project. It is a Top-Down design process [Bonvoisin, 2016]. The second phase of
PERF is rather a Bottom-Up approach based on model checking, induction and abstractions. This
phase is applied at a software level, considering that the lower levelled product are software entities.

The SACEM project (Système d’Aide à la Conduite à l’Exploitation et à la Maintenance-
Driving Assistance, Operation and Maintenance System) is a railway automation system for the
RATP8 (Régie Autonome des Transports Parisiens-Autonomous Parisian Transportation Admin-
istration) [Dollé et al., 2003]. SACEM has been put into operation in 1989. This system allows
almost optimal operations for the busiest part of the RER network (Réseau Express Régional-
Regional Express Network) [Hennebert and Guiho, 1993].

In 1998, a project was developed for the RATP by Matra Transport International (now
Siemens). It concerns line 14 of the fully automatic driverless metro in Paris. Piloting this system
required the use of safety software formally developed with the B method, including proof, allowed
to suppress the unit tests and it gave a remarkable result [Behm et al., 1999].

The application and improvement of these formal techniques for system studies is a differenti-
ating factor for the competitiveness of the experts.

In 2012, the EPSF (Établissement Public de Sécurité Ferroviaire-Public Railway Safety Es-
tablishment) was very receptive to proposals of the formal methods use within the framework of
the PERFECT9 project (Performing Enhanced Rail Formal Engineering Constraints Traceability)
which studies the LGV-Est (Ligne à Grande Vitesse Est européenne-East European High Speed
Line) [Ben Ayed, 2016]. The main goal of this project is to develop the safety specification and
verification of French railway interlocking systems in the context of national rules and the influence
of implementing ERTMS10.

laws on the original systems [Bon et al., 2013, Sun et al., 2014, Sun et al., 2015]. The study
proposes a methodology for consistency assessing of the following two aspects:

− The operating rules of local signalling systems and interlocking;
8RATP: www.ratp.fr
9PERFECT: a project of the National Agency of Research (ANR)

10ERTMS: European Rail Traffic Management System, instructed by the European Union (EU), is the system of
standards for the management of railways signaling.

https://www.ratp.fr/
https://anr.fr/en/funded-projects-and-impact/funded-projects/project/funded/project/b2d9d3668f92a3b9fbbf7866072501ef-37f7657636/?tx_anrprojects_funded%5Bcontroller%5D=Funded&cHash=adc1c5f2aae90f80285f63e0b45c57db
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− The additional safety requirements (like ERTMS).

This methodology allows addressing the safety assessment of new systems, the analysis of given
scenarios and the evaluation of safety requirements of system updates. In the framework of the
perfect project, modeling operating rules was presented in [Ben Ayed et al., 2014].

Following the PERFECT project results and perspectives, in 2016, IRT Railenium11 developed
the NExTRegio project (initially ERTMS Regional) for SNCF12 (Société Nationale des Chemins
de fer Français-French National Railway Company). An original solution was proposed for the
system security analysis including the operating rules. Also, some tools were proposed for the
validation of certain configurations, in particular the change of a component or the change of
distribution of the human/machine collaboration in order to perform a given task [Idani et al.,
2019]. The NExTRegio project focuses on the French regional line. The scientific work proposed
to provide tools for the system safety analysis including the operating rules. Different kinds of
traffic are considered: freight, passenger and mixed traffic. The variation of the need in terms of
capacity may vary from a line to another. The need integrates some regional phenomena, like pick
hours and seasonal traffic. This wide diversity in terms of needs, has to be built on an existing
infrastructure, ensuing from the history of the region: they may be oversized, overloaded, more
or less automatized and using various technologies. One of the common motivations for changing
the global technical environment for controlling the regional line is that human workers mainly
remaining in the railway stations perform a lot of controls and operations. This kind of solution
increases the cost of the global exploitation of the line and decreases possibilities of building a good
business plan. Scientifically, the preceding proposals bring out a certain number of difficulties:

− A methodology for the design of abstract architecture has to be constructed;

− An exploitation of this abstract architecture, for example by changing or refining a component,
will raise the question of compliance with the requirements materialized by system invariants.

Today, in 2020, the Autonomous Train13 is an ongoing project at the heart of the French railway
industry research and innovation strategy. To develop this project, SNCF is partnering with major
industrial players as well as the Railenium Technological Research Institute. It aims to optimize
the speed of trains and therefore better harmonized traffic. This leads to an improved punctuality,
a smoother traffic, a reduced energy consumption and a greater circulation capacity.

A dedicated task of this project focuses on the engineering needs by the means of formal
methods.

In the scope of this project, the train stores and analyses a lot of information (including continu-
ous position provided by a composed system mixing odometry, GNSS and accelerometer). Actually,
an autonomous train has many states, which may be taken into account by the control railway cen-
ter in order to manage the whole system. Moreover, in the safety analysis, the autonomous train
may provide some safety critical information from its industrial vision system to the control railway
center: detection of obstacle on the line, detection of obstacle on adjacent lines, detection of broken
rail, detection of damaged catenary system, detection of people near the track area, etc.. All these
information will trigger dedicated procedure in the control center. From a formal assessment archi-
tecture point of view, it looks non-tractable to validate a new kind of autonomous train including its

11Institut de Recherche Technologique Ralenium: a research institute specialized in the railway field
12SNCF: www.sncf.com
13Autonomous Train: a French project of SNCF in partnership with IRT Railenium

https://railenium.eu/fr/
https://www.sncf.com/fr
https://www.sncf.com/fr/innovation-developpement/innovation-recherche/trains-autonomes-circuleront-en-2023
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model into a huge model of the infrastructure. A modular process is needed, allowing to implement
locally a specification, but the associated tools and methodologies have to be introduced.

1.2.4 PRESCOM Project

Modular System Design

Designing a system in a modular way by studying each of the components, aspects or points of view
separately is a widespread industrial practice, especially in the design of guided transport control
systems. The fact remains that a number of basic requirements are expressed across the entire
system. The objective of this project is to demonstrate the system safety reasoning in a global and
automated way. The target market is the railway sector in all its components which could require
the development of safe rail systems and subsystems. The efforts made by the heavy rail sector,
which is experiencing some delays in this process of using formal methods compared to the urban
rail sector, must be continuous. This project aims to interest the French rail safety authority since
the developed tools have the potential to make it possible to demonstrate the safety of the system
in a comprehensive manner.

The aim of this thesis is to demonstrate that formal methods can contribute to the process of
examining the various safety documents, which is a necessity for obtaining a safety certificate.

In terms of targeted applications, this PRESCOM project will:

− Improve functional pre-studies;

− Improve the quality of system studies (functional description and Top-Down design to sub-
systems);

− Carry out a V&V activity of interoperability standards for signalling (ERTMS type) and
facilitate the activity of subsystem acceptance by the project manager;

− Improve the possibilities of reusing formal models for a new system;

− Improve the validation of the hypotheses that each subsystem must guarantee in order to
ensure the safety and the functionality of the system.

Description of the Project

The rail sector relies on the safety of its systems, which must be proven before any commercial oper-
ation. The PRESCOM project has the overall objective of improving the development automation
of safety systems. This is done using formal methods (B method here) by providing Proof of Global
Safety for the Modular Design of railway systems and subsystems. This project is proposed due to
the results and perspective of the NExtRegio project. Indeed, the complexity of the systems is such
that the use of formal models and formal verification allows better control (precision, allocation,
completeness, etc.) of the sub-systems expectations. The system study and modelling are therefore
important steps for the control of any modifications or realisations.

Conventionally, a traditional document of the functional specification type is made up of a list
of detailed, documented and justified requirements concerning the different functional entities of
the system. If this list is formalised in a mathematical language, it will be possible to verify in
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a systematic and instrumented manner (i.e. using software) the consistency of these requirements
with each other. From this modelling of the system in natural language, it is possible to convert
it into mathematical language in order to obtain a so-called formal model. As a reminder, the
methodology that allows to design a formal model which makes sense, is called a formal method.
B-Method is one of these methods and it makes it possible to generate B models (this will be more
widely presented later in this document). In fact, these arguments are economically strong because
the cost of anomaly detection during the installation phase is 25 times higher than that of the
specification phase. As mentioned above, the first industrial use of formal methods was carried out
on the SACEM software for the RER A of Paris [Guiho and Hennebert, 1990] followed by the Fast
East-West Metro project MÉTEOR in 1998 for line 14 of the RATP [Behm et al., 1999].

Thanks to the use of formal methods, no software bug was discovered after the proof: neither
during integration tests, functional or on site since the line was in operation, for 20 years. This
successful deployment has opened up the use of formal methods for the development of critical
software and systems.

Principal Objectives of the Project

The research work carried out as part of the PRESCOM project is the mechanisms of decomposi-
tion and partitioning of the global system and its global functions into communicating subsystems.
The objective is seen according to three components: scientific, technical and industrial.

From a scientific point of view, the mechanisms of refinement and decomposition is studied in
this project. In a refinement-oriented approach, the abstract global system is modelled according
to a minimal architectural structure. Refinement and decomposition are then used to separate
elements of the structure.

Several mechanisms of decomposition exist in the literature: the decomposition of models and
the decomposition of atomic events.

The main idea of decomposing models is to be able to decompose a model into several sub-
models which will be more easily refined separately than globally. This decomposition facilitates
the proof phase on the modelled system, as well as the automation of this proof. The decomposi-
tion of atomic events, in turn, has the vocation of moving from an abstract atomic event towards
sub-events of fine granularity.

In order to understand the needs and model the system requirements, the structure of a system
can be seen as a set of interacting components. Two main aspects are then taken into account: syn-
chronisation between the sub-components of the system and communication via interfaces. These
aspects will consolidate the multi-component modelling architecture thanks to the decomposition
mechanisms.

From a technical point of view, the implementation of the decomposition mechanisms in the
Atelier B tool is carried out by taking inspiration from the plugins developed within the Rodin
research project. Atelier B is at the centre of the research work for this project. It should allow the
partition of models in Event-B. Currently, Atelier B supports classical B and Event-B modelling.
The main features are:

− Automatic generation of proof obligations from components in B language;
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− Evidence aid thanks to suitable proof tools: an automatic prover (allowing to automatically
search for a proof for a given theorem) and an interactive prover (allowing a user to interac-
tively build a correct proof);

− Design mechanisms: management of relationships and dependence between B components.

This latter functionality essentially includes the refinement mechanisms and the compositional
mechanisms of classical B models. However, several Event-B decomposition mechanisms are not yet
taken into account in the tool. The project proposes to implement these mechanisms and integrate
them in Atelier B.

From the Industrial point of view, the industry practice creates an abstract formal model
corresponding to the requirements of the global system and then decomposes this model into sub-
systems corresponding to an industrial architecture. Our application case is a rail signalling system:
it is an essential complex system to master from a safety point of view. This system is central to
the passenger safety, but it also contributes to the quality of the provided service (having an impact
on the frequency of trains and the rate of the lines use). This system is made up of subsystems
with specific characteristics, such as lateral signalling or other more modern signalling (ERTMS ,
Communication-Based Train Control (CBTC ) for urban). Thus, we seek through this project for a
better formalisation of railway systems and therefore a better definition of the subsystems contours
and specific requirements, inducing proof obligations, associated with each of these subsystems.

1.3 Conclusion
The critical systems modelling, such as railway systems, causes difficult problems of validation,
verification, safety and certification. The formal specification of these systems as their environment
is essential. Creating a system description of high quality is still a challenging problem in the field
of formal modelling.

This chapter aims at analysing specification needs of railway industrial systems. Characteristics
of both semi-formal and formal methods were presented, but regarding the need of proofs ensuing
from the legislative railway context, we focus on formal methods. Then the genesis of the Event-B
is presented, and its existing ecosystem is detailed. The industrial efficiency of the considered tools
is proven through the industrial history. Nevertheless, it seems that the more a train is becoming
intelligent, the more a modular tooled approach is needed.

In our thesis, we are interested in the use of Event-B formal method and its application on
the railway sector. Particularly, we focus on the use of modular architecture in order to partition
the systems and to better control them in both of the phases: the specification phase and the
Verification and Validation (V&V ) phase. The next chapter details the existing potential provided
by Event-B method, as well as a state of the art concerning the refinement and the modulisation
concepts.
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Introduction

The analysis and modelling activities of railway dynamic behaviours are major tasks requiring
rigorous mechanisms. Based on mathematical foundations, formal methods can help to rigorously
carry out these activities and reduce the ambiguity of the specification of critical systems such as
railway signalling systems.

As part of the PRESCOM project, Clearsy needs an enrichment of the Event-B method [Abrial
et al., 2010,Abrial, 2010] providing appropriate techniques for system modelling based on the B
method [Abrial, 1996]. Event-B methods have been widely used in the railway field in research such
as the PERFECT 1 and NExTRegio projects [Ben Ayed et al., 2016,Ben Ayed et al., 2014] and in
industry sectors as in the METEOR project [Behm et al., 1999]. In the same context, CLEARSY2

has also driven railway projects using formal proofs [Sabatier, 2016].
In fact, modelling of critical systems such as railway signalling systems can lead to complex

and voluminous models. One of the Event-B techniques for this issue is refinement. Refinement
consists in detailing the design to reach a concrete level by progressive steps. However, the final
level of modelling is still difficult to manage. In order to reduce this complexity, refinement can
be completed by another technique called decomposition of atomicity [Butler, 2009a]. Model de-
composition is another technique that can reduce the complexity of large models and increase their
modularity. This technique consists in dividing a model into sub-models that can be refined sepa-
rately and more easily than the original one. Several model’s decomposition approaches have been
proposed. Some of them are supported by Rodin3 [Butler and Hallerstede, 2007] plugins4 [Silva
et al., 2011].

In this chapter, we define in more detailed way the Event-B method, its structure and the
mathematical rules that allow to prove a model, as well as the proof obligation rules. Since Event-
B is based on the notion of refinement, we present the different types of refinement and how the
refinement can be verified. Then, we present a state of the art of the various types of decomposition
in Event-B.

2.1 Event-B

Event-B [Abrial, 2010] is a model-oriented formal specification designed for the analysis of critical
systems. It is based on the use of set theory and first-order logic as mathematical modelling
foundations. This method is an extension of Classical B/B-Method [Abrial, 1996], for the software
modelling, with some additional characteristics, as presented in section 1.1.3.

An Event-B model contains the complete mathematical development of a discrete transition
system, allowing the modelling of static and dynamic aspects of a system. The static aspects
concern the data, their typing and their specific properties. In the formal specification, these data
are characterised in the form of constants or sets. On the other hand, the dynamic aspects are
expressed by a group of events describing the states evolution.

1PERFECT : http://www.agence-nationale-recherche.fr/Projet-ANR-12-VPTT-0010
2CLEARSY: https://www.clearsy.com/
3Rodin: http://www.event-b.org/
4Modularisation: http://wiki.event-b.org/index.php/Modularisation_Plug-in
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2.1.1 Structure of an Event-B Model

An Event-B model is composed of two types of components: context and machine. The context
contains the static part of a model, namely sets, constants, axioms and theorems; while the machine
holds the dynamic part of a model, i.e., the variables, invariants, theorems, variant and events.

Event-B Context

The context contains the static part of a model. It defines the sets, constants and properties
(axioms). These properties define the predicates to be respected by the constants and the sets. A
model can contain many contexts. Contexts can also extend or be extended by other contexts. In
a case where a context C1 extends another context C0, C1 can use the sets and the constants of C0.
In addition to its own constants, sets and properties, C1 defines new constants, new sets and new
properties. In general, the B/Event-B Method specification is divided into clauses where each one
defines a different information about the system. In a context, the following clauses can be found:

− CONTEXT: in this clause, the name of the context is defined, and it should be distinct from
the other components of the model.

− EXTENDS: defines the extended context if there is one, if not it can stay empty.

− SETS: defines the sets of this context.

− CONSTANTS: defines the constants of this context.

− AXIOMS: includes the axioms and theorems. It defines the properties of the constants and
sets, such as the typing properties.

For example, in table 2.1, a context C0 defines the sets s, the constants c and the axioms
A0(s, c). This context can be extended by another context C1 with the sets d, the constants t and
the axioms A1(d, t) as in table 2.2.

CONTEXT C0 The context name
SETS s Sets of the context C0

CONSTANTS c Constants of the context C0

AXIOMS A0(s, c) Axioms of the context C0

Table 2.1: Context Structure

CONTEXT C1 The context name
EXTENDS C0 Extended context
SETS d Sets of the context C1

CONSTANTS t Constants of the context C1

AXIOMS A1(d, t) Axioms of the context C1

Table 2.2: Extending Context Structure
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Event-B Machine

A machine defines the dynamic part of the model. It contains the variables and their properties
(invariants), as well as variants and events. A machine can refine another machine or not and it
can see many contexts or none. The machine clauses are defined as follows:

− MACHINE: defines the name of the machine. It should be distinct from the other components
name of the model.

− REFINES: in this clause, the refined machine can be added. If the machine is not a refinement
of another one, this clause is not used.

− SEES: a machine can see contexts or not. In this clause, we put the name of the seen contexts.
If the machine does not need to see other contexts, this clause is not used.

− VARIABLES: specifies the variables of the machine.

− INVARIANTS: establishes the different properties that the machine must preserve.

− VARIANT: determines the variant of the system, i.e., the system stops after a certain number
of transitions.

− INITIALISATION: establishes the variables initial values.

− EVENTS: describes the different events of the system, where the behaviour is presented
through the event substitutions called actions.

For example, in table 2.3, a machine M0 sees a context C0. It defines the variables v, the
invariants I(v, s, c), the variant V (v, s, c), the initialisation K(v′, s, c) and the events eventi.

MACHINE M0 Machine name
SEES C0 SEEN context name
VARIABLES v Variables of the machine
INVARIANTS I(v, s, c) Invariant to preserve in the machine
VARIANT V (v, s, c) Variant
INITIALISATION K(v′, s, c) Initialisation
EVENTS eventi events of the machine

Table 2.3: Machine Structure

Events

A machine M0 contains events eventi which can be specified in three different ways (Figure 2.1):

− Simple (BEGIN Q END): where the guard is always true so it can be observed at any time.
The variable v has a new value v′ such as the substitution v : |Q(v, v′, s, c) changes the state
of v to the new state v′ where Q(v, v′, s, c) is the before-after predicate.

− Guarded (WHEN G THEN Q END): which is triggered when the guard G(v) is satisfied
and where the action v : |Q(v, v′, s, c) depends only on the state variables of the model.



43 CHAPTER 2. STATE OF THE ART: MODULAR ARCHITECTURE IN EVENT-B

− In-deterministic (ANY p WHERE G THEN Q END): is such that v is a state variable
and p is a local variable of the event. In this specification, the event is triggered only if there
exists a value of the variable p that satisfies the guard G(p, v) such as v : |Q(p, v, v′, s, c) is
the action of the event said non-deterministic (see table 2.4).

event
BEGIN
v : |Q(v, v′, s, c)

END

event
WHEN
G(v)

THEN
v : |Q(v, v′, s, c)

END

event
ANY
p

WHERE
G(p, v, s, c)

THEN
v : |Q(p, v, v′, s, c)

END

Figure 2.1: Different Types of Events

p Event parameter
G(p, v, s, c) Guard of the event
Q(p, v, v′, s, c) Before/After predicate

Table 2.4: In-deterministic Event Structure

Machine Types

There are two types of machines: an abstract machine and a refinement machine. In a first step
of the system development process, an informal specification is modelled into an abstract machine.
This machine defines the initial specification that reflects the behaviour of the system to be studied.
Then, it can be refined by a refinement machine, which, in turn, can also be refined by another
refinement machine and so on.

For example, a machine M0 containing a set of variables v can be refined by another machine
M0 with another set of variables w. In this context, each variable in w is either refining the variables
in v or it is a new variable of M1. Besides, M1 must contain an invariant J(v, w, d, t), which is the
gluing invariant describing the new variables properties stemming from the relations between the
abstract variables and the refining variables.

Similarly, the events r_eventi, in M1, are either new events of this machine or they are refining
the abstract events a_eventi fromM0. In the refinement, r_eventi must define guards Hi(q, w, d, t)
and substitutions w : |Ri(q, w,w

′, d, t). The refinement machine M1 can also define new events
n_eventk with the guards Nk(o, w, d, t) and the substitutions w : |Tk(o, w,w′, d, t). M1 SEES a
context C1 which extends C0, as in figure 2.2.

Machines and Contexts Relationships

Machines and contexts have different relationships. A machine can be refined by another machine,
and a context can be extended by other contexts. In addition, a machine can see one or more
contexts. When a machine M sees a context C, it means that the sets and the constants of C can
be used in M . The different types of relationships between machines and contexts are illustrated
in figure 2.3:
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REFINEMENT M1 Refinement of the machine M0
REFINES M0 Refined machine
SEES C1 Context seen by M1

VARIABLES w New variables and/or variables refining v
INVARIANTS J(v, w, d, t) Gluing invariant to be preserved in the refinement
INITIALISATION Kr(w

′, d, t) Initialisation in the refinement

EVENTS r_eventi Events refining a_eventi
n_eventk New events

r_eventi
q Refining event parameter
Hi(q, w, d, t) Guard of the refining event
Ri(q, w,w

′, d, t) Before/After predicate

n_eventk
o New event parameter
Nk(o, w, d, t) Guard of the new event
Tk(o, w,w

′, d, t) Before/After predicate

Table 2.5: Refinement Machine Structure

MACHINE M0
VARIABLES v
INVARIANTS I(v, s, c)
INITIALISATION v : |Ka(v

′, s, c)
EVENTS
a_eventi
any p
when Gi(p, v, s, c)
then v : |Qi(p, v, v

′, s, c)
end

CONTEXT C0
SETS s
CONSTANTS c
AXIOMS A0(s, c)

REFINEMENT M1
REFINES M0
VARIABLES w
INVARIANTS J(v, w, d, t)
INITIALISATION w : |Kr(w

′, d, t)
EVENTS
r_eventi
any q
when Hi(q, w, d, t)
then w : |Ri(q, w,w

′, d, t)
end

n_eventk
any o
when Nk(o, w, d, t)
then w : |Tk(o, w,w′, d, t)
end

CONTEXT C1
SETS d
CONSTANTS t
AXIOMS A1(d, t)

REFINES
EXTENDS

SEES

SEES

Figure 2.2: Structure of an Event-B Model with One Refinement and One Extending Context
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− A machine can explicitly see multiple contexts (M1 sees C0 and C1) or any context (M0 does
not see any context).

− A context can explicitly extend several contexts (C3 extends C1 and C2) or any context (C0

does not extend any context).

− When a context C3 extends a context C1, the sets and the constants of C1 can be used in C3.

− The notion of context extension is transitive: a context C4 explicitly extends a context C3.
Then C4 implicitly extends all extended contexts by C3 (C4 implicitly extends C1 and C2).

− A machine implicitly sees all contexts extended by a context explicitly seen (M2 implicitly
sees the contexts C1 and C2 explicitly extended by C3).

− The relations REFINES and EXTENDS must not lead to a cycle.

M0

M1

M2

M3

C0

C1 C2

C3

C4

SEES

SEES

SEES

SEES

REFINES

REFINES

REFINES

EXTENDS

EXTENDS

EXTENDS

Figure 2.3: Different Possible Relations Between Contexts and Machines

2.1.2 Proof Obligation Rules in Event-B

In order to ensure that a model is correct, mathematical rules should be verified, called proof
obligations. Different proof obligation rules exist. To facilitate the specification modelling, systems
are modelled in several steps. The first step of modelling is the abstraction, it does not model all the
details of the system. These details are specified and added gradually in a subsequent model which
refines the abstract model. Then, at each stage of refinement, one should ensure that the operations
of a machine preserve the invariant as the first main proof activity in B called consistency checking.
The second main proof activity is refinement checking, which is used to show that one machine is a
valid refinement of another [Leuschel and Butler, 2003]. In other words, a refinement relationship
ensures consistency between two levels of modelling and is carried out in an incremental way up to
a certain level. This level can be useful to analyse the behaviour of the system. This relationship
involves a set of invariants that must be preserved to prove the refinement correctness.
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Invariant POs

The invariant proof obligation allows to ensure the invariants preservation by each event. There
exists two main invariant proof obligation types (see table 2.6):

− Initialisation invariant PO: named INVinit, it allows to verify if the initialisation establishes
the invariant in the abstract machine by INVinit1 and in the refinement by INVinit2.

− Events invariant PO: allows to verify if each transition of the events preserves the invari-
ants. For the abstract machine, the invariant proof obligation concerning the abstract events
is denoted by INV1. For the refinement machine, there are two types of invariant proof
obligations: INV2 for the refining events and INV3 for the new events.

PO description PO name PO Formula

Preservation of the invariant
I(s, c, v) by the initialisation of the
abstract machine M0

INVinit1

A(s, c)
Ka(v, s, c)
`
I(v, s, c)

Preservation of the invariant
J(v, w, d, t) by the initialisation of
the refinement machine M1

INVinit2

A(d, t)
Kr(w, d, t)
`
∃v.(Ka(v, s, c) ∧ J(v, w, d, t)

Preservation of the invariant by the
events of the abstract machine M0,
where v′ is the new state of v after
the events observation

INV1

A(s, c)
I(v, s, c)
Gi(p, v, s, c)
Qi(p, v, v

′, s, c)
`
I(v′, s, c)

Preservation of the refinement ma-
chine invariant by the refining
events, where w′ is the new state of
w after the events observation

INV2

A(d, t)
I(v, s, c)
J(v, w, d, t)
Hi(q, w, d, t)
Ri(q, w,w

′, d, t)
`
J(v′, w′, d, t)

Preservation of the refinement ma-
chine invariant by the new events INV3

A(d, t)
I(v, s, c)
J(v, w, d, t)
Nk(o, w, d, t)
Tk(o, w,w

′, d, t)
`
J(v, w′, d, t)

Table 2.6: Invariant Proof Obligation Rules: INV
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Feasibility POs

The feasibility proof obligation rule ensures that an event can be triggered at least one time. FIS1
verifies the feasibility of the initialization. FIS2 allows to verify the feasibility of the abstract
events and FIS3 is for the feasibility of the refining events (see table 2.7):.

PO description PO name PO Formula

Feasibility of the initialisation FIS1 `
∃v.K(v, s, c)

Feasibility of the events in the
abstraction FIS2

A(s, c)
I(v, s, c)
Gi(p, v, s, c)
`
∃v′.Qi(p, v, v

′, s, c)

Feasibility of the events in the
refinement FIS3

I(v, s, c)
J(v, w, d, t)
Hi(q, w, d, t)
`
∃w′.Ri(q, w,w

′, d, t)

Table 2.7: Feasibility Proof Obligation Rules: FIS

Event POs

Table 2.8 presents the proof obligation rules corresponding to the events:

− GRD allows to make sure that the guards in a refining event are stronger than the abstract
ones in the abstract event. This ensures that when a refining event is triggered, so is the
corresponding abstract event.

− SIM ensures that when a refining event is triggered, it does not create any contradiction with
the corresponding abstract event. Each action in an abstract event is correctly simulated in
the corresponding refinement.

Deadlock-Freedom Proof Obligation Rules

If the system reaches a state where there are no outgoing transitions, the model is considered to
be deadlocked. This proof obligation allows to verify if the system does reach a state where it is
deadlocked. Table 2.9 shows the deadlock freedom proof obligations:

− DLF1 defines the proof obligation rule for the deadlock-freedom of the abstract machine. At
least one event can be triggered.

− Two rules of deadlock-freedom proof obligations are defined for the refinement machine: the
weaker one and the stronger one.
→ The weaker rule DLF2w means that at least one of the refining events is triggered.
→ The stronger rule DLF2s requires that each refining event is triggered at least one time.
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PO description PO name PO Formula

Proof obligation of the
refining events guards GRD

A(s, c)
I(v, s, c)
J(v, w, d, t)
Hi(q, w, d, t)
`
Gi(p, v, s, c)

Proof obligation of the
refining events actions SIM

A(s, c)
I(v, s, c)
J(v, w, d, t)
Hi(q, w, d, t)
Ri(q, w,w

′, d, t)
`
Qi(p, v, v

′, s, c)

Table 2.8: Event Proof Obligation Rules

− DLF3w is the weaker proof obligation to be verified in case of the existence of new events in
the refinement machine. In the refinement machine, at least one of the existing events, new
or refining ones, should be triggered.

− DLF3s is the stronger proof obligation to be verified in case of the existence of new events
in the refinement machine. It requires that each refining event is triggered at least one time.
Otherwise, at least one of the new events should be triggered.

Variant POs

In the case of introducing some new events in a refinement machine, we have to prove that they do
not diverge. In other words, the new events must not be indefinitely enabled. This proof obligation
allows to verify that a system stops after a certain number of transitions. The proof obligations of
variant are defined as follows in table 2.10:

− NAT allows to prove that the variant V (w, d, t) is a natural number assuming the axioms
A(d, t), the abstract invariant I(v, s, c), the refinement machine invariant J(v, w, d, t), and
the guards of each new event Nk(o, w, d, t).

− V AR1 verifies that the variant V (w, d, t) is decreased. This has to be proved for each new
event with guards Nk(o, w, d, t) and before–after predicate Tk(o, w,w′, d, t). The same variant
should be decreased by each new event.

− FIN allows to verify that the set S(w) of the states of the variables w is finite.

− V AR2 ensures that the set S(w′) of the new states w′ of w is included in S(w).
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PO description PO name PO Formula

Deadlock freedom of the
abstract machine DLF1

I(v, s, c)
`
G1(p, v, s, c) ∨ .. ∨Gn(p, v, s, c)

Weak deadlock freedom
of the refinement ma-
chine in case of the re-
fining events existence

DLF2w

I(v, s, c)
J(v, w, d, t)
G1(p, v, s, c) ∨ .. ∨Gn(p, v, s, c)
`
H1(q, w, d, t) ∨ .. ∨Hn(q, w, d, t)

Strong deadlock free-
dom of the refinement
machine in case of the
refining events existence

DLF2s

I(v, s, c)
J(v, w, d, t)
Gi(p, v, s, c)
`
Hi(q, w, d, t)

Weak deadlock freedom
of the refinement ma-
chine in case of the ex-
istence of refining and
new events

DLF3w

I(v, s, c)
J(v, w, d, t)
G1(p, v, s, c) ∨ .. ∨Gn(p, v, s, c)
`
H1(q, w, d, t) ∨ .. ∨Hn(q, w, d, t)
∨N1(o, w, d, t) ∨ .. ∨Nm(o, w, d, t)

Strong deadlock free-
dom of the refinement
machine in case of the
existence of refining and
new events

DLF3s

I(v, s, c)
J(v, w, d, t)
Gi(p, v, s, c)
`
Hi(q, w, d, t) ∨N1(o, w, d, t) ∨ .. ∨Nm(o, w, d, t)

Table 2.9: Deadlock Freedom Proof Obligation Rules: DLF
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PO description PO name PO Formula

Proof obligation of a de-
creasing natural NAT

A(s, c)
A(d, t)
I(v, s, c)
J(v, w, d, t)
Nk(o, w, d, t)
`
V (w, d, t) ∈ N

Variant proof obligation
using a natural VAR1

I(v, s, c)
J(v, w, d, t)
Nk(o, w, d, t)
Tk(o, w,w

′, d, t)
`
V (w′, d, t) < V (w, d, t)

Proof obligation of a set
finiteness FIN

I(v, s, c)
J(v, w, d, t)
Nk(o, w, d, t)
`
finite(S(w))

Variant proof obligation
using a finite set VAR2

I(v)
J(v, w, d, t)
Nk(o, w, d, t)
Tk(o, w,w

′, d, t)
`
S(w′) ⊂ S(w)

Table 2.10: Variant Proof Obligation Rules: VAR
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2.2 Refinement in Event-B

2.2.1 Event-B Refinement Types

In Event-B, refinement is a central concept used for modelling the system incrementally from an
abstract machine on the basis of the system specification. At each stage of refinement, details of
the system are gradually added in a concrete machine that must preserve the functionality and the
properties of the refined machine. As a matter of fact, an abstract machine can be refined by only
one refinement and a refinement machine refines only one abstract machine. For that reason, we
consider the refinement in B/Event-B as "linear" in the sequel of this manuscript.

Two Event-B refinement techniques exist: horizontal refinement and vertical refinement [Abrial
et al., 1991,Bolusset and Oquendo, 2002]. The latter contains the data refinement and the events
refinement. The different refinement techniques are defined as follows:

Horizontal refinement: consists in adding the specification details in order to define progres-
sively new functionalities of the system in the refinement such as introducing new variables and new
events that make these new variables evolve. New events refine a particular event of an abstract
machine which is the empty event with skip substitution.

Vertical refinement: has as a goal the concretisation of the abstract machine by adding variables
through a data refinement [Back, 1989] and the behaviour by detailing abstract events or adding
new events by events refinement, also called algorithmic refinement [Abrial et al., 1991]. These
two types of refinement, data refinement and algorithmic refinement, are not exclusive: they can
be operated in the same stage of refinement. It is obvious that any refinement of data leads to an
algorithmic refinement. These two types of vertical refinement are detailed below:

− Data refinement: consists in defining concrete variables w in the refinement machine in order
to replace abstract variables v. Since the substitutions no longer make the same abstract
variable v space evolve, they must be rewritten (refined) with respect to the new variable w
space. In this case, a predicate J(v, w), called a gluing invariant, must be specified. This
invariant makes it possible to establish the link between the variables v and w. The gluing
invariant J(v, w) is specified in the INVARIANT clause of the refining component. Proof
obligations are generated at each refinement stage to ensure the refinement correctness (see
section 2.1.2).

In classical B-Method, refinement is based on this technique to bring the model closer to the
implementation.

− Events refinement: aims to refine an abstract event by one or many events in the refinement
machine in order to make the event more concrete. It is the rewriting of an abstract substi-
tution evolving v into a less abstract substitution evolving w. A graphical approach of events
refinement has been presented in [Butler, 2009a,Dghaym et al., 2017,Dghaym et al., 2016]
called Event Refinement Structures (ERS). Its main goal is to represent explicitly the events
refinement and the behaviour sequencing [Fathabadi et al., 2011].
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Event Refinement Structures

A proposition in [Butler, 2009a] is called decomposition of event atomicity. This approach is
a structuring mechanism for refinement in Event-B. This mechanism is based on decomposing an
abstract atomic event to many sub-events, where one event refines this abstract event. Decomposing
atomic events is inspired from Jackson System Development (JSD) approach [Butler, 2009b] and it
is represented by the ERS approach (Event Refinement Structures) [Dghaym et al., 2016,Dghaym
et al., 2017]. The idea of the ERS approach is to enrich the Event-B refinement with a graphical tree
notation able to represent explicitly the events decomposition in the refinement and the behaviour
sequencing [Fathabadi et al., 2011]. Figure 2.4 presents a sub-tree. The child nodes of each
node are transformed into events in the refinement. The nodes order describes the order of events
observation (from left to right).
This method is defined as follows:

− The root of the tree represents the abstract machine (here we represent a sub-tree).

− The child nodes of each node are transformed into events in the refinement.

− The order of leaves / nodes determines the order of observation of events (from left to right).

− The dotted line indicates the addition of new events.

− The solid line indicates that an event refines the parent event. At most one child event can
refine a parent event.

− XOR indicates the triggering of one and only one event.

− In case of XOR, an event can be refined by several events.

− AND allows interleaved execution of events.

event0

event1bevent1a event1c
AND

event2a event2b

XOR

event2devent2c event2e

skip skip refines

Figure 2.4: Example of Event Refinement Structures (ERS) Diagram

For example, let consider the machine of figure 2.5, the machine M1 on the left side refines
a machine M0 which contains the abstract specification of "AbstractEvent". The M1 machine
controls the sequence of events "Event1" and "Event2" with guards on these events. The control
of this sequence is presented in the ERS diagram on the right side. The solid line indicates that
"Event2" refines "AbstractEvent" while the dashed line indicates that "Event1" is a new event
that refines "skip". In the Event-B model on the left side, ’Event1’ has no explicit relation with
’AbstractEvent’, but the diagram indicates that the atomicity of ’AbstractEvent’ is broken into two
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sub-events in the refinement. The parameter "par" of the diagram indicates that we are modelling
several instances of AbstractEvent and sub-events. The effect of an event with the "par" parameter
is to add the value of "par" to a control variable defined with the same name as the event, that
is, "par ∈ Event1" means that Event1 occurred with the value "par". Using a set means that the
same event can occur multiple times with different values for "par".

Figure 2.5: Example of an Event Structure Diagram [Alkhammash et al., 2015]

2.2.2 Correctness of the Event-B Refinement

This section relies on the Abrial definition of the refinement in the Event-B book [Abrial, 2010],
but to well understand and justify this definition and the underlying relations and rules, this leads
us to explain the correctness of the Event-B refinement in another manner, in our own way. This
will be useful for our decomposition approach proposal.

In order to simplify the explanation, let consider as an example an abstract machine that gives
the maximum of a set of positive integers: GET_MAX example. The abstract machine, in the left
side of figure 2.6, contains the following elements:

− Set: a variable that is a non-empty set of positive integers (NAT). Set is initialised to the
singleton {0}.

− current_max: a variable containing the current maximum of Set.

− add: an event that allows to add a positive integer to Set.

− get_max: an event that returns the maximum of Set.

At this level, we notice that only new values are added to the set. Hence, it is useless to keep
in the memory the already inserted values in the set: only the maximum is interesting. So, we
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Figure 2.6: GET_MAX Example: Abstract Machine and its Refinement

refine this machine by deleting the variable Set and keeping only the current maximum of Set. We
present, in the right side of figure 2.6, the Event-B refinement of GET_MAX model:

− Max: a variable keeping the maximum positive integer.

− current_max: a variable containing the current maximum positive integer.

− add: an event that allows to add a positive integer as maximum if it is bigger than the
previous value of Max.

− get_max: an event that returns the current maximum.

Before dealing with this example, we introduce some sets definitions that seem to be useful for
the sequel:
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− P: defines the state space, i.e. a
set of all the possible states.

− L: set of the initial states.

− A: set of reached states by the
transition system.

− B: set of "safe" states, which pre-
serve the invariant.

− S = A ∩ B: set of the reached
states by the transition system
preserving the invariant.

P

A

B

L

S = A ∩B

We define in table 2.11 the following sets of the abstract machine and its refinement:

Set Name Set Definition Set Formula

S
Set of the reached states by the tran-
sition system preserving the invari-
ant in the abstract machine

S = {v|I(v)}

T
Set of the reached states by the tran-
sition system preserving the invari-
ant in the refinement machine

T = {w|∃v.(I(v) ∧ J(v, w))}

La
Set of the initialisation states in the
abstraction La = {v|K(v)}

Lr
Set of the initialisation states in the
refinement Lr = {w|N(w)}

Table 2.11: Sets Definitions

Abstract machine Back to the example, in the abstract machine, the abstract state variables
are defined as v , (Set, current_max), the Set is defined as Set ⊆ {0, 1, 2} and current_max as
current_max ∈ Set. Here, we restrict the space state of the Set and of the current_max. The
invariant I(v) is defined as Set 6= ∅. The sets introduced above are defined as follows:

− P = {(∅, 0), (∅, 1), (∅, 2), ({0}, 0), ({0}, 1), ({0}, 2 ), ({1}, 0), ({1}, 1), ({1}, 2), ({2}, 0),
({2}, 1), ({2}, 2), ({0, 1}, 0), ({0, 1}, 1), ({0, 1}, 2), ({0, 2}, 0), ({0, 2}, 1), ({0, 2}, 2), ({1, 2},
0), ({1, 2}, 1), ({1, 2}, 2), ({0, 1, 2}, 0 ), ({0, 1, 2}, 1), ({0, 1, 2}, 2)}.

− La = {{0}, 0}.

− B = P - {(∅, 0), (∅, 1), (∅, 2)}. The set B contains all possible states minus all states breaking
the invariant.



CHAPTER 2. STATE OF THE ART: MODULAR ARCHITECTURE IN EVENT-B 56

− S = {({0}, 0), ({0, 1}, 0), ({0, 1}, 1), ({0, 2}, 0), ({0, 1, 2}, 0), ({0, 1, 2}, 1), ({0, 2}, 2),
({0, 1, 2}, 2)}.

Refinement machine In the refinement, we refine the variable current_max and define a new
variableMax. So, the state variable of the refinement is defined as w , (Max, current_max) with
the gluing invariant J(v, w) : Max = max(Set). T is a set of the reached states by the transition
system preserving the gluing invariant in the refinement. Similarly to the abstract machine, we
define in the refinement T the set of the reached states by the transition system preserving the
invariant where T = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 0), (2, 2)}, as shown in the right side of figure 2.7.

add get max

add
add

add

get max

add

get max

add

get max get max

addadd

add, get maxget max

{0}, 0 {0, 1}, 0 {0, 1}, 1

{0, 2}, 0 {0, 1, 2}, 0 {0, 1, 2}, 1

{0, 2}, 2 {0, 1, 2}, 2

get max

add

get max

add

add

add

get max

addget max

get max

add

add, get max

0, 0

1, 0

2, 1

2, 0

2, 2

1, 1

get max

Figure 2.7: GET_MAX Example: Different Possible Transitions

Demonstration In [Abrial, 2010], the author defines three relations, as shown in figure 2.8:

− ae: presents all the possible abstract transitions between the states in S in the abstract
machine. In other words, ae defines the couples (v, v′) such that the invariants I(v), the
guards G(v) and the before/after predicates R(V, v′) are true.

− re: defines all the possible refinement transitions between the states in T in the refinement
machine. For each couple (w,w′) in re, it exists refined variables v of the abstract ma-
chine such that the invariant I(v), the gluing invariants J(v, w), the guard H(w) and the
before/after predicates Q(w,w′) are true.

− r: is a refinement relation between the abstract machine states and the refinement states.
For each couple (w, v) the invariants I(v) and the gluing invariants J(v, w) are true, where w
are the state variables of the refinement machine and v are the state variables of the abstract
machine.
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Table 2.12 illustrates the definitions and the formulas of ae, re, the domain of ae and the domain
of re.

SM0 S

TM1 T

ae

re

r rREFINES

Figure 2.8: Relations Between an Abstract Machine and its Refinement

Abstract
transitions ae ∈ S ↔ S ae = {v 7→ v′|I(v) ∧G(v) ∧R(v, v′)}

Refining
transitions re ∈ T ↔ T re = {w 7→ w′|(∃v.I(v) ∧ J(v, w)) ∧H(w) ∧Q(w,w′)}

Relation of
refinement r ∈ T ←↔ S r = {w 7→ v|I(v) ∧ J(v, w)}

Domain of
the abstract
transitions

dom(ae) dom(ae) = {v|I(v) ∧G(v)}

Domain of
the refining
transitions

dom(re) dom(re) = {w|∃v.(I(v) ∧ J(v, w)) ∧H(w)}

Table 2.12: Definition of the Relations Between an Abstract Machine and its Refinement

Notion of external variables The state variables v are distributed into two categories: exter-
nal variables e and internal variables i. External variables e, also called observable variables [Abrial,
2010,Abrial and Hallerstede, 2007] are the state variables of an abstract machine that are refined
in a refinement machine. The external variables of a machine are formally linked to the external
variables of its refinement [Metayer et al., 2005]. The variables which are not refined are considered
as non-observable called internal variables i. As a consequence, the sets of external variables are
defined as follows:

− E: a set of external variables states of the abstract machine.

− F: a set of external variables states of the refinement.

In GET_MAX example, current_max is an external variable of the abstract machine, so E
is defined such as E = {0, 1, 2}. Set is an internal variable of the abstract machine. As a par-
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ticular case, we consider current_max the external variable of the refinement so that F = {0, 1, 2}.

Correction of refinement Abrial defines some functions in the basis of the sets E and F for
the purpose of the refinement correctness demonstration, as in figure 2.9:

− f is a function from S to E such as f ∈ S → E. It is a projection of the safe reached states
on the external variables states of the abstract machine.

− g is a function from T to F such as g ∈ T → F . It is a projection of safe reached states on
the external variables states of the refinement.

− h is a function from F to E such as

h ∈ F → E. It is a function that links the external variables of the abstract machine with
those of its refinement. h is defined by the observer event (observe event) BEGIN w := h(v)
END, where w is the external variables of the refinement that refine the external variables v
of the abstract machine.

In GET_MAX example, h is defined as the identity function such that h(current_max) =
current_max. From that and since w = h(current_max), this implies w = current_max.

S S

T T

E E

F F

ae

re

r rh h

f f

g g

Figure 2.9: Relations Between State Variables and Observable Variables [Abrial, 2010]

After that, a property between r on the one hand and f, g and h on the other hand is defined:

(P1) ∀v, w.(w 7→ v ∈ r ⇒ f(v) = h(g(w)))

In Event-B, in order to ensure that a refinement is correct it is necessary to check the conditions
in figure 2.10. C1 andC2 are the initialisation conditions, C3 concerns the events andC4 is relative
to the deadlock freedom. These conditions are as follows:

− C1: the set of the initialisations in the refinement should be included in the abstract one.

− C2: the initialising set of the refinement machine shouldn’t be empty which means that at
least one state of the refinement machine must occur.

− C3: all the transitions of the refinement should be included in those of the abstraction.
In other words, the behaviour of the refinement is at most equal to the behaviour of the
abstraction. In the refinement, we shouldn’t have a behaviour which does not exist in the
abstraction.
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− C4: the domain of abstract transitions ae is included in the domain of refinement transitions
re, i.e. the set of states allowing to trigger a transition in the refinement is including the set
of states allowing to trigger a transition in the abstraction.

In the right side of figure 2.10, we add an equivalence rewriting of these conditions in function of
f , g and h functions as defined by Abrial in [Abrial, 2010].

(C1) Lr ⊆ La

(C2) Lr 6= ∅

(C3) re ⊆ ae

(C4) dom(ae) ⊆ dom(re)

(C1) g[Lr] ⊆ h−1[f [La]]

(C2) Lr 6= ∅

(C3) (g−1; re; g) ⊆ (h; f−1; ae; f ;h−1)

(C4) h−1[f [dom(ae)]] ⊆ g[dom(re)]

P1

⇐⇒

Figure 2.10: Conditions to Verify for the Refinement Correctness

On the basis of these conditions and the supposed property P1, we have in [Abrial, 2010]:

(P1): ∀v, w.(w 7→ v ∈ r ⇒ f(v) = h(g(w)))
⇐⇒

∀v, w.(w → v ∈ r ⇒ g(w)→ f(v) ∈ h)
⇐⇒

∀v, w, z.(z = g(w) ∧ w → v ∈ r ⇒ z → f(v) ∈ h)
⇐⇒

∀v, z.(∃w.(z = g(w) ∧ w → v ∈ r)⇒ z → f(v) ∈ h)
⇐⇒

∀v, z.(∃w.(z = g(w) ∧ w → v ∈ r)⇒ ∃u.(u = f(v) ∧ z → u ∈ h))
⇐⇒

∀v, z.(∃w.(v → w ∈ r−1 ∧ w → z ∈ g)⇒ ∃u.(v → u ∈ f ∧ u→ z ∈ h−1))
⇐⇒

∀v, z.(v → z ∈ (r−1; g)⇒ v → z ∈ (f ;h−1))
⇐⇒
(P1): r−1; g ⊆ f ;h−1

Goal 1: we intend to apply this demonstration of a classical refinement on our decomposition
by refinement approach in chapter 4: Refinement Seen Split (RSS).

In the next section, we introduce the decomposition in Event-B and we detail some existing
approaches of Event-B decomposition in the literature.

2.3 Decomposition in Event-B
An Event-B machine can have so many events and state variables that an additional refinement can
become difficult to manage. Model decomposition tackles this difficulty by providing a mechanism
to divide a large model into several sub-models. In fact, a large model can be partitioned into
smaller components after several steps of refinement. This step of partitioning can be a result of
a model complexity or simply an architectural decision [Silva and Butler, 2010]. The top-down
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Modelling style used in Event-B allows, during the refinement levels, the introduction of new
events and variables. A consequence of this style of development is an increasing complexity of the
refinement process when dealing with many events and variables. Decomposing models addresses
this difficulty by providing a mechanism to divide a large model into several sub-models. Four
descending steps are defined for the different decomposition techniques by [Hoang et al., 2011]:

1. Model the system abstractly by expressing all the main global properties of the system;

2. Refine the abstract model to adapt it to the expected structure by a given decomposition
technique;

3. Apply decomposition;

4. Develop the resulting sub-systems independently.

By following this guideline, the overall properties are captured early in the model and guar-
anteed in the final models by combining refinement and decomposition. The development of each
decomposed part is done independently of the others. Therefore, we can have different implemen-
tations for a decomposed model which is guaranteed to work with any implementation of other
decomposed models.

Many techniques for decomposing Event-B models have been proposed. These decomposition
techniques differ in that the different elements of the model are shared between the sub-components:
variables or events. In the literature, the most known approaches of decomposition in Event-B are
decomposition by shared variables and decomposition by shared events. For shared variables de-
composition, part of the state information (variables) is shared between the sub-components. For
the breakdown of shared events, a set of events is synchronised and shared by sub-components.
There are also other methods that decompose such as modularisation, instantiation, fragmentation
and distribution we present in detail these approaches in the following sub-sections.

2.3.1 Decomposition by Shared Variables

Methodology of the Decomposition by Shared Variables

Abrial proposes in [Abrial and Hallerstede, 2007] the shared variables decomposition which con-
sists in distributing events of a machine between several sub-machines. This approach proposes
to manage shared variables between several events. It is also used for decomposing parallel pro-
grams [Hoang and Abrial, 2010]. During the machine decomposition, events to be separated are
selected in each sub-machine and considered as internal events. A variable that occurs only in
the internal events is a private variable. If a variable is involved in internal events of different
sub-machines, it is defined in each of them as a shared variable that cannot be refined. External
events of a sub-machine are events that simulate the change of state of the shared variables in the
abstract machine.

Figure 2.11 illustrates the decomposition by shared variables. The machine M0 is defined by
four events and it is decomposed into two sub-machines M1a and M1b by partitioning its events.
Events event1 and event2 (resp. event3 and event4 ) are internal events to the sub-machine M1a
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M0

event1 event2 event3 event4

v1 v2 v3

M1a

event1 event2 event3’

v1 v2

M1b

event2’ event3 event4

v2 v3

event1, event2 event3, event4

Figure 2.11: Decomposition by Shared Variable

(resp. M1b). The variable v1 (resp. v3 ) is private to M1a (resp. M1b). As for v2, it is a shared
variable. Consequently, the machine M1a (resp. M1b) contains the external event event3’ (resp.
event2’) which simulates the state changes made by event3 (resp. event2 ) on v2 in M0.

Correctness of the Decomposition by Shared Variables

In [Abrial, 2002,Abrial, 2009], after proceeding with the decomposition, the re-composition should
be proved without explicitly composing. All the variables of sub-machines are put together and
the external events are thrown away. We think that this is the reason behind.

Let M be the machine to decompose, P and N are the resulting sub-machines. NR and PR
are respectively the resulting machines after several steps of refinement of N and P , as shown in
the left side of figure 2.12.

S is the set of state variables in M . T and U are respectively the sets of states variables of N
and P . X and Y are respectively the sets of states variables of NR and PR as shown in the right
side of figure 2.12. MR is the theoretical re-composition of NR and PR, and Z is the corresponding
set of its state variables.

Table 2.13 defines the different transitions in each machine and their refinement relations.
l, m and n are refinement relations as defined in section 2.2.2 with r. Let also consider these

definitions as in table 2.14, predicates and lemmas as in table 2.15.
We detail the proof of lemmas l1 and l2 which are useful for the theoretical re-composition

demonstration.
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M

PN

NR PR

MR

DecomposesDecomposes

Composes

Refines Refines

S
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l mn

vu
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Figure 2.12: Sets of States Variables Corresponding to Each Machine

Transitions of M e ∈ S ↔ S

Projection from S to T p ∈ S →→ T

Projection from S to U q ∈ S →→ U

Transitions of N a ∈ T ↔ T

Transitions of P b ∈ U ↔ U

Refinement relation from X to T l ∈ X ←↔ T

Refinement relation from Y to U m ∈ Y ←↔ U

Projection from Z to X u ∈ Z →→ X

Projection from Z to Y v ∈ Z →→ Y

Recomposed transitions on MR er ∈ Z↔ Z

Refinement relation from Z to S n ∈ Z←↔ S

Relation from S to Z r ∈ S → Z

Transitions of NR ar ∈ X ↔X

Transitions of PR br ∈ Y ↔ Y

Table 2.13: Formal Definitions of the Different Elements

d1 a , p−1; e; p

d2 b , q−1; e; q

d3 er , (u; ar;u−1) ∩ (v; br; v−1)

d4 n , (u; l; p−1) ∩ (v;m; q−1)

d5 r = (p; p−1; e; p; l−1;u−1) ∩ (q; q−1; e; q;m−1; v−1)

Table 2.14: Formal Definitions of the Relations
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pr1 l−1; ar ⊆ a; l−1
pr2 m−1; br ⊆ b;m−1
l1 n−1;u ⊆ p; l−1
l2 n−1; v ⊆ q;m−1

Table 2.15: Predicates and Lemmas

Proof of lemma l1:

n−1;u

= definition of n: n , (u; l; p−1) ∩ (v;m; q−1)
((p; l−1;u−1) ∩ (q;m−1; v−1));u

⊆ set theory (distributivity)
(p; l−1;u−1;u) ∩ (q;m−1; v−1;u)

= u is a total surjection: u−1;u⇔ id
(p; l−1) ∩ (q;m−1; v−1;u)

⊆ set theory: A ∩B ⊆ A
p; l−1

Proof of lemma l2:

n−1; v

= definition of n: n , (u; l; p−1) ∩ (v;m; q−1)
((p; l−1;u−1) ∩ (q;m−1; v−1)); v

⊆ set theory (distributivity)
(p; l−1;u−1; v) ∩ (q;m−1; v−1; v)

= u is a total surjection: v−1; v ⇔ id
(p; l−1;u−1; v) ∩ (q;m−1)

⊆ set theory: A ∩B ⊆ B
q;m−1
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The demonstration of the theoretical re-composition is tantamount to demonstrate that er is a
refinement of e:

n−1; er ⊆ e;n−1

In other words, since r, (n−1; er) and (e;n−1) are relations, it is sufficient to prove that

(1) n−1; er ⊆ r

and
(2) r ⊆ e;n−1

Proof of (1): n−1; er ⊆ r

n−1; er

= definition of er.
er , (u; ar;u−1) ∩ (v; br; v−1)

n−1; ((u; ar;u−1) ∩ (v; br; v−1))
⊆ set theory

(n−1;u ; ar;u−1) ∩ (n−1; v ; br; v−1)

⊆
lemmas
l1: (n−1;u ⊆ p; l−1)
l2: (n−1; v ⊆ q;m−1)

(p;l−1; ar ;u−1) ∩ (q; m−1; br ; v−1)

⊆
refinements of a and b.
pr1: (l−1; ar ⊆ a; l−1)
pr1: (m−1; br ⊆ b;m−1)

(p;a; l−1;u−1) ∩ (q;b;m−1; v−1)

=
definitions of a and b
d1: a , p−1; e; p

d2: b , q−1; e; q
(p; p−1; e; p; l−1;u−1) ∩ (q; q−1; e; q;m−1; v−1)

=
r

Proof of (2): r ⊆ e;n−1 this one is well explained in [Abrial, 2009].

Example of the Application of the Shared Variable Decomposition

To illustrate how this approach works, we will apply it on an example. Let consider the Train
System case study presented in the Event-B Book, Modeling in Event-B: System and Software
Engineering. The purpose of this case study is to help the train agent controlling trains and to
have trains safely circulating in a certain network, as illustrated in figure 2.13. The case study
specification is explained in details in chapter 17 of the Event-B Book [Abrial, 2010].

In order to apply this approach, let take the machine train_0, as in figure 2.14 . This machine
defines the set of reserved routes, the set of reserved blocks, the association between reserved routes
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Figure 2.13: Train System Case Study

and blocks, as well as the set of the occupied block. Each occupied block is a reserved one. A set of
blocks constitutes a route. Concerning the events, this machine describes the train movement on
different blocks of the same route, the train entering to new reserved route, the route reservation
and the route freeing.

Figure 2.14: Train System Case Study: Abstract Machine

Actually, this case is studying the track network structure on one hand, and the train object
on the other hand. This constitutes a good example to apply the A-style in order to split the
behaviour of the train and the behaviour of the track.

In order to apply the A-style, the events to split are chosen. The train sub-machine con-
tains the events describing the train movement : FRONT_MOV E1, FRONT_MOV E1 and
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BACK_MOV E. The other sub-machine, describing the track behaviour, contains the events
: route_reservation and route_freeing. After that the decomposition is done.

In the train sub-machine, as in figure 2.15, there are three shared variables and one private
variable. We notice that, in addition to the three chosen events, the other events are also appearing
in this sub-component as external events. This is due to the use of shared variables.

Figure 2.15: Train System Case Study: Train Sub-machine

For the other sub-machine Track, as in figure 2.16 it defines all the variables as shared, because
there is any private variable. In addition, it contains the BACKMOV E event as an external event.
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Figure 2.16: Train System Case Study: Track Sub-machine
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2.3.2 Decomposition by Shared Events

The shared event decomposition is an evolution of event atomicity decomposition. The author
in [Butler, 2009a] proposes this method to separate the variables of a system into two different
sub-machines by decomposing a shared event. In fact, this approach allows to get sub-components
that interact in parallel through synchronised events. This approach is suitable for distributed
system development [Butler, 1997].

To process a decomposition by shared event, the authors present in [Silva et al., 2011] the
required steps to follow. First, the sub-components to generate have to be defined. After that,
the variables should be split over the sub-components. As a consequence, the rest of the model
components, such as events, invariants, contexts, etc., are partitioned on the basis of the defined
variables allocation. For the invariants, they are decomposed regarding the variables scope. These
invariants must include at least the definition of the variables typing. These are the required in-
variants in order to get a valid refinement. Additional invariants depend on the need of the user.
Also, they may be defined for further refinements or to help the sub-components reuse. Concerning
the invariants that are using the other sub-components variables, an additional refinement may be
necessary to explicitly split the variables in question. For the event decomposition, it depends on
the variables partition. Actually, the resulting events after decomposition are maintained and some
new events appear which are interfaces of the original events. These interfaces are preserving the
parts corresponding to the variables that belong to each sub-component.

As illustration, let M0 be the machine as in figure 2.17. Variables v1 and v2 of this machine
are partitioned respectively in two sub-machines M1a and M1b. event2 is decomposed in the two
sub-components as two events event2’ and event2", each event describes the change of state applied
to v1 and v2 respectively.

M0

event1 event2 event3

v1 v2

M1a

event1 event2’

v1

M1b

event2” event3

v2

v1 v2

Figure 2.17: Decomposition by Shared Event

To decompose a machine using this method, variables to partition in each sub-component are
chosen and then the decomposition is applied. Generated machines contain the selected variables,
and shared events are defined in two different signatures for each sub-machine. These events de-
scribe the variables changes. In this approach, events are shared between sub-components and
variable sharing is not allowed which is considered as a restriction of this method. This approach
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is explained in detail, in section 3.3, with its application on the case study example, as well as the
presentation of its limitations.

2.3.3 Other Methods of Decomposition in Event-B

Instantiation

In addition to refinement and decomposition by shared variables, generic instantiation is another
proposition of Abrial in [Abrial and Hallerstede, 2007]. It is based on the reuse of the abstract
model with slight modifications by instantiating sets and constants of this model. In [Hoang
et al., 2011], the modularisation is another proposition based on defining interfaces in B-Method.
This approach promotes the use of USES clause in order to call operations. Fragmentation and
distribution approach in [Siala et al., 2016] defines a specification using DSL (Domain Specific
Language) [Van Deursen et al., 2000] to decompose a model. In the same context, [Hoang et al.,
2017] propose also a technique based on the use of a classical-B clause. This approach proposes the
use of a composition mechanism based on the use of INCLUDES clause. So, the including machine
can use variables and invariants of the included machine.

Modularisation

Modularisation is a conservative extension of the Event-B formalism proposed by [Hoang et al.,
2011]. This is a special case of shared variables decomposition [Abrial and Hallerstede, 2007].
Modularisation allows: the decomposition of the models of the system into sub-components that
can be developed easily, managing the complexity of models and the reuse of formally developed
components using the clause USES. This method is based on the definition of sub-components
called interfaces that contain variables and operations. These operations are specified by a pair of
pre/post conditions. The interface is integrated in the refinement of the abstract machine M by
the clause USES.

Fragmentation and Distribution

Another technique proposed by [Siala et al., 2016] that takes as input any Event-B model and
generates a refinement of the machine in question from a specification based on two stages: frag-
mentation and distribution. Fragmentation aims to reduce the non-determinism of calculating the
local parameters of an event. The order of the parameter calculation is described by a specifier
using a Domain Specific Language (DSL), a language whose specifications are designed to meet the
constraints of a specific application domain. Based on this specification and the abstract Event-B
model, the fragmentation stage generates an Event-B model. This automatic refinement relies on
simple rules ensuring a refinement that defines new variables, new events and refining events by
reinforcing guards and invariants.

After the fragmentation step, the distribution step takes as input an abstract model and a
distribution specification. This specification introduces the selected configuration: the names of
the sub-components. Similarly, it distributes the variables and possibly the guards on the sub-
components. The referenced variables by a guard must be located on the same sub-component.
Otherwise, poorly consistent copies of its variables will automatically be added. They are updated
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by convergent scheduled events before the event accessing the copies. Similarly, an action is per-
formed by the (supposedly unique) component on which modified variables are located. The visible
variables by an action can be remote. The values of these variables will be transmitted during
synchronisation.

2.4 Synthesis
As a formal method, Event-B allows the observation of a system events and the validation of its
properties using mathematics rules and different types of lemmas called proof obligations. For each
step of modelling, some proof obligations should be discharged. When all the proof obligations
are discharged the model is considered as correct. However, the formal method Event-B lacks the
modularity aspect in its syntax and semantic. The user does not have the flexibility to manage its
models according to each sub-component use.

In fact, several methods of decomposition and modularity exists. Some are based on the shared
variables or events and others are based on a kind of interfaces or even the use of other language in
order to enrich the approach. So, in the next chapter, we present a study and an analysis of these
existing approaches.
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Introduction

Formal modelling and verification of safety-critical systems using formal methods is very relevant
for the many reasons exposed in the first part of this manuscript, but these can be tedious without
modular design and mechanisms. Indeed, starting from the modelling and verification of the whole
system requirements specification can be time and resources consuming. The study of the different
modularisation mechanisms in the literature leads us to analyse the decomposition by shared vari-
ables and the decomposition by shared events. The associated plugins in the Rodin platform are
used to apply these approaches on some simple examples. This is presented in the first section of
this chapter. By analysing and studying the examples, we have identified some limitations of these
approaches which we cope to them in our proposed approach. In the second part of this chapter,
we detail our concrete railway case study to which the existing and the proposed approaches are
applied.

Notice that this chapter deals with “Why we propose a new approach of decomposi-
tion?” after analysing the existing decomposition approaches, whereas the next chapter deals with
“How we decompose?”.

The analysis of the existing approaches is motivated by the industrial practice who stress in
the complexity of the formal modelling verification of the whole system. They are interested in
breaking down systems to subsystems enabling the “distribution” of the requirements specification
into subsystems requirements specifications. In this work, we do not take into account preliminary
requirements engineering method before the formal modelling and verification of the subsystems
specification [Tueno Fotso, 2019]. Actually, our work is based on the formal reasoning of the system
and subsystems specifications in a straightforward way. So, we focus on ensuring that a require-
ment assigned to a subsystem is well preserved by the subsystem model. Therefore, a particular
accentuation putting forward consists on how preserving invariants in subsystems specifications so
as to preserve the whole distributed behaviours.

The main aim of the model decomposition techniques is to reduce the complexity of large mod-
els and increase their modularity. These techniques consist in dividing a model into sub-models
that can be refined separately and more easily than the original one. But they decompose the
initial model by shared variables or by shared events. The shared variables approach is suitable
for designing parallel computing programs, whereas the shared events decomposition is suitable for
developing message-passing for distributed systems [Tueno Fotso, 2019]. The question that arises
here is “What about a model decomposition of a system that requires these two purposes: parallel
computing programs and message-passing distributed systems?”. Indeed, railway systems involves
each of them: separating different railway signalling functionalities in different subsystems such as
release and integrity for the first purpose, and separating the distributed subsystems such as on-
board and track-side systems for the second one. Our goal is to propose a double-edged approach
which focuses on distributing system into subsystems by sharing variables and sharing events at
the same time if necessary. Also, this approach relies on the preservation of the syntactic/semantic
coherence from the beginning to the lower level of modelling.

In the following, the analysis of these approaches is performed on some simple examples in a
first step to identify some trivial limitations and on a railway case study in a second step. The case
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study specification and model are presented in the first section. In the second section, an analysis
of the decomposition by shared variables is made by the application of the associated plugin on a
simple example then on the case study. The same process is followed in the next section for the
decomposition by shared events: application of the B-style plugin on a simple example then on the
case study. Finally, we discuss the results and present the limitations of these approaches according
to our decomposition goal.

3.1 Modelling of a Railway Case Study
In order to analyse the existing approaches and illustrate our contribution, we choose a case study
that illustrates one of the typical dangers of trains circulations cited above in section 1.2.2: the
Rear-End Collision. It is a real case of train circulation danger but not the only one. So, we have
modelled and formally proved the case study of railway signalling systems on Atelier B1 (version
4.5 beta 12) and Rodin (version 2.7) tools. This case study is a simple example that focuses on
a particular railway network requirement and it contains relevant elements to the decomposition
analysis. In addition, this example is representative of what is done in the industrial railway field
and in sub-systems traffic management such as the European Railway Traffic Management System
(ERTMS). The specification of the case study was validated by Clearsy following the industrial need.

This case study is not a full-fledged industrial railway model. Indeed, it doesn’t take into consid-
eration some components of the track-side such as points, level-crossing, entire lateral signalisation,
etc. and other components of the train-side as the train integrity, position, delays, etc. The goal
is to use this simplified case study for a first analysis and application of the various decomposition
approaches.

3.1.1 Informal Specification

The aim is to model a system which allows the trains control, in other words a system that ensures
a safe train circulation in a certain railway network. The main goal of this case study is to avoid
trains rear-end collisions as in figure 3.1.

Figure 3.1: Example of a Train Rear-End Collision

In a one-way traffic split into blocks, let consider two trains Train A and Train B moving by a
certain distance (number of steps). Train A is following Train B. The trains movements are based
on the position of the front/head and of the end/tail of each train. Each block should be occupied
at most by one train. When the front of the train enters a block, this block is turned to occupied.
When the end of the train leaves the block, this later is turned to free. So, a train enters only a
free block.

1Atelier B tool: https://www.atelierb.eu/
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3.1.2 Abstraction

In a first step of modelling, we define the trains movements based in their positions on the traffic
as shown in figure 3.2. At this level, we don’t consider the existence of the blocks. To avoid a
rear-end collision, the position of the front of Train A should not be at the same position of the
end of Train B or after it.

Figure 3.2: Case Study: Abstract Machine Description

The abstract machine M0 defines, in figure 3.3, the variables describing the trains front and
the trains end positions are respectively: front_trainA, front_trainB, end_trainA and end_trainB.

M0 defines the invariant that must be preserved: the position of the front of Train A must
always be following the position of the end of Train B. This is specified by this expression:
front_trainA < end_trainB.

M0 defines also the events that describe the trains movements by a certain number of steps, as
shown in figure 3.3:

− move_front_trainA: changes the position of the front of Train A without catching up the
next train. This is done through the action act1 such as
front_trainA := front_trainA+ step

− move_end_trainA: changes the Train A end position taking into consideration the position
of its front.

− move_front_trainB: changes the Train B front position.

− move_end_trainB: changes the position of the Train B end taking into consideration its front
position.
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MACHINE M0
VARIABLES

front_trainA // position of the front of tainA
end_trainA // position of the end of tainA
front_trainB // position of the front of tainB
end_trainB // position of the end of tainB

INVARIANTS
inv5: end_trainA < front_trainA // for each train, the position of the

train end must be lower than the position of the train front
inv6: end_trainB < front_trainB
inv7: front_trainA < end_trainB // since trainA is following trainB, the

position of trainA front must be lower than the position of trainB end
EVENTS
Event move_front_trainA 〈ordinary〉 =̂ // movement of the front of trainA

any
step

where
grd1: step ∈ N1

grd2: front_trainA+ step < end_trainB
then

act1: front_trainA := front_trainA + step // change the position of
the front of Train A to the new position.

end
END

Figure 3.3: Case Study: Excerpt of the Abstract Machine M0
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3.1.3 Refinement

In a second phase, we define a more concrete machine introducing the blocks notation and the
trains movements on the blocks. The traffic is now partitioned into several blocks as in figure 3.4.
Each block is defined by the coordinates of their front and end. The front of each block has the
same coordinate as that of the end of the next block. A block can be occupied or free. Each train
can occupy one block or more.

Figure 3.4: Case Study: Refinement Description

We define a Context C1, as in figure 3.5, to describe the static part of the refinement.

CONTEXT C1
SETS

BlockState // a bloc state can be free or occupied
SUBSYS // track or train

CONSTANTS
Block
front_block // the front limit of the block
end_block // the rear limit of the block
next_block //the function defininf the next for each bloc

...
AXIOMS

axm1: BlockState = {Free,Occupied}
...

axm7:
∀bk ·(
bk ∈ Block
⇒ end_block(bk) < front_block(bk)
) // the rear limit of a block is lower than its front limit

axm8: ∀b1, b2·(b1 ∈ Block∧b2 ∈ Block∧next_block(b1) = b2⇒front_block(b1) = end_block(b2))
// the front limit of a block is equal to the rear limit of the next block

axm9: 〈theorem〉 ran(next_block) = Block \ {0}
END

Figure 3.5: Case Study: Excerpt of the Blocks Context C1

C1 specifies the blocks and some track properties (axioms). It defines front_block, end_block
and next_block as constants since they don’t change. Two block states are possible: Free or
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Occupied, this is defined by BlockState (figure 3.5).

In the refinement machine M1, as in figure 3.6, the variables that describe the change of
the blocks states by block_state are defined. In addition, it defines new variables that allow the
identification of the occupied blocks by each train. For example, in lines 4 in figure 3.6, the variables
fst_tAblock and lst_tAblock respectively describe the first block occupied by the front of Train A
and the last block occupied by the end of Train A. In the same way are defined fst_tBblock an
lst_tBblock for Train B.

MACHINE M1
REFINES M0
SEES C1
VARIABLES

...
fst_tAblock // the block occupied by the head of trainA
lst_tAblock // the block occupied by the end of trainA
block_state // a function that gives the state of each block
next_turn // this variable allows to identify which events should be triggered: the trains events or

the track events
INVARIANTS

inv11: ∀bk ·(bk ∈ Block ∧ next_turn = TRAIN ∧ block_state(bk) = Free⇒ bk 6= lst_tBblock)
// when it is the turn of the trains movements, trainB shouldn’t be on the released blocks behind
it

EVENTS
Event TRACKevent 〈ordinary〉 =̂ // block state changes

when
grd1: next_turn = TRACK

then
act1: next_turn := TRAIN

act2: block_state := (Block × {Free}) C− ((lst_tAblock .. fst_tAblock ∪ lst_tBblock ..
fst_tBblock)× {Occupied}) // the block state is surcharged with the new states

end
END

Figure 3.6: Case Study: Excerpt of the First Refinement Machine M1

Another new variable is defined, the variable next_turn. It allows the transition from the Track
behaviour to the Train behaviour and vice versa.

A block can be occupied at most by one train, in other words the occupied block by the end of
Train B named lst_tBblock should always be in front of the occupied block by the front of Train
A named fst_tAblock as defined in the invariant: fst_tAblock < lst_tBblock.
Another useful invariant is defined in order to ensure the distance between Train A and Train B:
∀ bk.( bk:Block & next_turn = TRAIN & block_state(bk) = Free ⇒ bk 6= lst_tBblock)
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M1 defines also the events describing the trains movement in a traffic portioned into blocks. It
describes the events refining the abstract ones in M0 and other new events:

− enter_tAblock: describes the occupation of a block by the front of Train A. This event is
refining move_front_trainA of M0.

− enter_tBblock: describes the occupation of a block by the front of Train B. This event is
refining move_front_trainB of M0.

− free_tAblock: describes the behaviour of the end of Train A when it leaves the block. This
event is refining move_end_trainA of M0.

− free_tBblock: describes the behaviour of the end of Train B when it leaves the block. This
event is refining move_end_trainB of M0.

− TRACKevent: is a new event that changes the block state after the trains movement, as
shown in the excerpt of figure 3.6.

After this first step of refinement, we define a more concrete machine introducing the signals
notation and the trains movements regarding the signals states. Now, the traffic contains also
signals. Each signal is associated to a block. A signal can be red or green following the state of the
associated block. If the block is occupied, its signal is red, and if it is free its associated signal is
green.

So, we define a Context C2 to describe the static part of the second refinement. As in figure 3.7,
the context C2 specifies the signals and some of their properties (axioms).

CONTEXT C2
EXTENDS C1
SETS

SignalState // a signal can be red or green
CONSTANTS

Signal
signal_block // each signal is associated to one block
red
green

AXIOMS
axm1: SignalState = {red, green}
axm2: Signal = N
axm3: signal_block = (λbk ·bk ∈ Block|bk) // each signal is associated to one

block: signal i ⇔ block i
END

Figure 3.7: Case Study: Excerpt of the Signals Context C2
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It defines the set of SignalState which is an enumeration of red and green. It defines also the
constant signal_block that associates each block with its corresponding signal.

In the refinement machine M2, as in figure 3.8, the variable that describes the change of the
signals states by signal_state is defined. A safety property of signals is expressed through a new in-
variant. This property ensures that a signal becomes green when its associated block is free such as:
∀ bk(bk ∈ Block∧next_turn = TRAIN∧signal_state(signal_block(bk)) = green =⇒ block_state(bk) =
Free)

MACHINE M2
REFINES M1
SEES Signal
VARIABLES

signal_state // variable of the signal state
...

INVARIANTS
inv1: signal_state ∈ Signal→ SignalState

inv2:
∀bk ·(
bk ∈ Block
∧ next_turn = TRAIN

∧ signal_state(signal_block(bk)) = green

⇒ block_state(bk) = Free) // each signal can be red or green // a signal becomes green if its
corresponding block is free

EVENTS
...

Event TRACKevent 〈ordinary〉 =̂ // block and signals states changes
refines TRACKevent
when

grd1: next_turn = TRACK

then
act1: next_turn := TRAIN

act2: block_state := (Block×{Free})C−((lst_tAblock..fst_tAblock∪lst_tBblock..fst_tBblock)×
{Occupied})

act3: signal_state := (Signal × {green})C− ((signal_block(lst_tAblock) .. signal_block
(fst_tAblock) ∪ signal_block(lst_tBblock) .. signal_block(fst_tBblock)) × {red}) // signals
states changes

end
END

Figure 3.8: Case Study: Excerpt of the Second Refinement Machine M2
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So, to describe the model structure of this case study, the machineM1 is refiningM0 and seeing
the context C1, and the machine M2 is refining M1 and seeing the context C2, as in figure 3.9. The
context C2 is an extension of the context C1.

MACHINE M0

REFINEMENT M1

REFINES M0
CONTEXT Block

REFINEMENT M2

REFINES M1
CONTEXT Signal

REFINES

SEES

REFINES

SEES

EXTENDS

Figure 3.9: Structure of the Case Study Model

3.1.4 Proof and Animation of the Model

Using ProB2 [Leuschel and Butler, 2003], an animation is elaborated on the model. This animation
is done using VisB (see Annexe A.2.3). Figure 3.10 shows an example of a possible scenario of
trains movements. In a first step, each of Train A and Train B occupy distinct blocks. Then,
in step 2 Train B moves to the next block and occupies it. The blue train shadow presents the
previous train position. As a third step, while Train A is moving inside the associated block, Train
B releases the previous block. Hence, in step four Train A enters the next free block.

Figure 3.10: Example of Trains Movement Scenario

2ProB: www3.hhu.de/stups/prob/index.php/Main_Page
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3.2 Decomposition by Shared Variables

3.2.1 Application of the A-style Plugin

The shared variables decomposition consists on distributing events of a machine between several
sub-machines. This approach proposes to manage shared variables between several events. During
the machine decomposition, events to be separated are selected in each sub-machine and consid-
ered as internal events. A variable that occurs only in the internal events is a private variable. If
a variable is involved in internal events of different sub-machines, it is defined in each of them as a
shared variable that cannot be refined. External events of a sub-machine are events that simulate
the change of state of the shared variables in the abstract machine. The description of this approach
is detailed in section 2.3.1.

According to [Abrial, 2009], the shared variables decomposition is motivated by the interest of
the refinements which can be done independently after decomposition. This kind of decomposition
performs events partition that leads to a certain variables distribution. When the events partition
induces disjoint variables distribution, the decomposition is considered as trivial. However, in the
case of sharing variables between events, some difficulties in the decomposition can appear since
the splitting of the events will be conflicted with the presence of a common variable in events parti-
tioned in different sub-machines. It is a problem of synchronisation of the communication channel
which is specified through this shared variable.

As the shared variable exists in the different resulting sub-machines, it can be read by one or
multiple sub-machines and also written by one or multiple sub-machines. If only one sub-machine
writes on (change the state of) this shared variable, while this variable is read by the others, it still
possible and normal. Nevertheless, when two or more sub-machines change the state of the shared
variable, the difficulty arises because of the refinements that can be performed after decomposi-
tion. The shared variable can be data-refined using different refinement strategy and reasoning.
For this reason, Abrial considers shared variables as not data-refined variables and proposes a
partial overcome of this limitation by data-refining them in the same way in each independent sub-
machine. This can be conflicting with the initial purpose of the decomposition which is modelling
of sub-components independently. Hence the notion of external events is defined by Abrial, as we
presented in the first chapter. These external events have a partial simulation of the shared variable
which corresponds to the state changes of the non-decomposed model which modifies the shared
variable in question. These external variables cannot be refined in turn.

Besides the partition of the events and the variables distribution, one must pay attention on
how to manage invariants in this approach. Three types of invariants handling are possible:

1. Invariant involving only private variables is copied in its sub-machine;

2. Invariant involving only the shared variable is copied in the sub-machines where this variable
is shared;

3. Invariant involving a shared variable and other variables together is not copied.

The last variant of invariant handling goes against the syntactic/semantic coherence that we
want to guarantee in order to preserve of the whole behaviour of the system from the beginning
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model to the lower-level models.

In practice, this decomposition may be less relevant when the model to be decomposed contains
a large number of shared variables, especially in case of decomposing complex refinements rich with
shared variables [Silva et al., 2011]. Furthermore, there exists a restriction of this method: shared
variables and external events must be present in the resulting sub-components and cannot be re-
fined when refining these sub-components [Abrial, 2009]. For these reasons, it may be necessary to
proceed with an intermediate preparation step which consists in a manual refinement. This step can
reduce the complexity of predicates such as invariants, guards and axioms, as well as substitutions
(actions) by separating the variables assigned to different sub-components [Abrial, 2009]. The user
must explicitly separate the variables in this refinement by introducing an auxiliary parameter p.
For example, the predicate v1 = v2 becomes p = v2&v1 = p. If this manual refinement step is not
performed, the complex predicates and substitutions are automatically marked by the tool via a
message frame and then the user intervention is required to explicitly perform the separation.

Application on the case study

Our goal is to decompose the system into two sub-systems: Train and Track. The first sub-system,
Train, allows the observation of the train movement. In other words, this sub-system will describe
the evolution of the train components states such as the position of the front and the end of each
train. The second sub-system, Track, gives the observation of the track changes, such as the block
and the signals states. In other words, it gives the block state changes (free or occupied) and the
signal state changes (red or green).

These two sub-systems are going to be synchronised through the variable next_turn. In fact,
for each movement of each train, the track states are updated. So, when next_turn = train, it is
the turn of the Train sub-system. This means that a train can leave a specific block for example.
Then next_turn := (becomes equal to) track, which means that it comes the Track sub-system
turn to change the block state to free. After that, the variable next_turn changes the state to
train and so on.

To be more concrete and realistic, lets apply this approach on the modelled case study by
following this approach steps:

1. Choose the number of the sub-machines: our goal is to obtain a train behaviour in one side
and the track behaviour in the other side. So we need to obtain two sub-machines: Train and
Track.

2. After the identification of the needed behaviour in each sub-machine, the events can be par-
titioned into each sub-machine. The Train sub-machine must define all the train movements:
the events that allow the movement of the head and the tail of each train. The Track machine
defines the event that allow to modify the state of the infrastructure: blocks and signals.

3. Identify the shared variables. the shared variables can be categorised into two types: variables
that are shared for reading and those shared for writing. The first type means that a machine
X can need to have a visibility on a local variable a, of another machine Y , in its guards to
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update the state of its local variables. The second type means that the state of the variable
can be updated by both sub-machines. In this decomposition, the concerned shared variables
are those shared for writing. So, in the model of the case study, next_turn is a shared
variable between the sub-machines Train and Track.

4. Proceed with an additional step of refinement to manage the shared variable and make the
decomposition possible. Following [Abrial, 2009], we define two new variables ww and tt in a
refinement machine (see figure 3.11).

Figure 3.11: New Additional Variables to Decompose using A-style

These variables are refining next_turn by the invariants:

ww = tt⇒ next_turn = TRAIN

ww 6= tt⇒ next_turn = TRACK

In addition, all the events involving next_turn are refined taking into account the new defined
variables (see figure 3.12).

Figure 3.12: Example of an Event Refinement before the Decomposition

5. Apply the plugin by giving the number and the names of the sub-machines, as well as the
chosen events in each machine.

After the application of the plugin, we obtain two distinct machines Train and Track. Each of
them defines the chosen events. For the variables, we notice that some are mentioned by do not
refine. So the refinement after this step of decomposition becomes more complex. In addition, we
notice the apparition of some local variables in the external events. In figure 3.13, the variable
front_trainA is local in the external event move_front_trainA.
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Figure 3.13: Example of an External Event

3.2.2 Synthesis

For shared variables decomposition, event partitioning is always possible in order to generate sub-
components. However, this decomposition may be less important despite its potential: a large
number of shared variables may not be of much interest, particularly for refinements that become
more complex [Silva et al., 2011]. Due to the restriction of shared variables, it may be necessary
to proceed with preparatory steps of refinement to resolve complex predicates (invariants, guards,
axioms) or substitutions (actions) by separating the variables assigned to different sub-components.
If this step is not performed, these complex predicates/assignments are automatically marked by
the tool and the user intervention is required.

3.3 Decomposition by Shared Events

3.3.1 Application of the B-style Plugin

Let apply the decomposition by the shared event on an abstract machine M1 with two variables
v1 and v2. This machine is decomposed into two sub-machines M2a and M2b where v1 belongs
to M2a and v2 to M2b. We note here that not all actions are accepted to be decomposed and
variables partitioning is not always possible. Table 3.1 shows different types of actions that make
variables states evolve. The variables v1 and v2 are two case study variables.

Actions types of M1 M2a(v1) M2b(v2)

act1 v1 :| (v1=1) ‖ v2
:| (v2=2)

v1 :| (v1=1) v2 :| (v2=2)

act2 v1,v2 :| (v1=2 ∧
v2=v1+2)

– –

act3 v1,v2 := 1,2 v1 := 1 v2 := 2
act4 v1 := v2+1 – –
act5 v1 :: {v2,1,2} – –

Table 3.1: Application of the Shared Event Decomposition.

When applying the decomposition, an error message is displayed asking to simplify some actions:
the assignment is too complex because it refers to elements belonging to different sub-components.
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The obtained errors are shown in table 3.1 by this symbol ’–’. Predicates (invariants and guards)
and actions should not refer to variables that must be partitioned into different sub-components.
As an example, the substitution becomes such that in act2 cannot be decomposed: v1, v2 :| (v1 =
2 ∧ v2 = v1 + 2).

This problem can be solved by adding an additional refinement step before proceeding with
the decomposition. The user must explicitly separate the variables by introducing an auxiliary
parameter p, such as v1 = v2 <=> p = v2 = v1 = p).

The partition of variables is still possible for all models. We apply the event split decomposition
plugin on a machine M with two variables v1 and v2 and an event containing actions on these vari-
ables. During the decomposition, we find that the actions are not all accepted to be decomposed.
An error message is displayed asking to simplify these actions.

Now, we consider a more realistic example. It seems to be a toy example, but it is a simple
way to understand the faced difficulties for the decomposition. In this example, we represent train
movements. A train can only move if the signal is green and the next block is free. So, we have a
context that describes the static part: train or track turn (see figure 3.14).

CONTEXT C
SETS

SUBSYS
CONSTANTS

train
track

AXIOMS
axm1: SUBSY S = {train, track}

END

Figure 3.14: Context of Example 2

The dynamic part is modelled in a machine where are described the variables concerning the
signal state, the block state, the movement authorisation and train movement authorisation. Be-
sides that, a safety property is expressed by an invariant: the train must move after verifying that
the signal is green ant the block to enter in free (see figure 3.15).

Therefore, we apply the decomposition by shared events by partitioning the variables between
the Track sub-machine and the Train sub-machine.

3.3.2 Synthesis

For shared events decomposition, predicates (invariants, guards) and assignments (actions) should
not refer to elements that must be partitioned into different sub-components. If we create the sub-
component M1 with the element v1 and the sub-component M2 with the element v2 of the machine
M, then a predicate P (v1, v2) in M, will produce this error by decomposing: "The assignment is
too complex because it refers to elements belonging to different sub-components".
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MACHINE Rail
REFSEES C
VARIABLES

green
occupied
move
next_turn

INVARIANTS
inv1: green ∈ BOOL
inv2: occupied ∈ BOOL
inv3: move ∈ BOOL
inv4: move = TRUE⇒ (green = TRUE ∧ occupied = FALSE)

inv5: next_turn ∈ {train, track}
EVENTS
Initialisation

begin
act1: green := FALSE

act2: occupied := FALSE

act3: move := FALSE

act4: next_turn := train

end
Event train_move 〈ordinary〉 =̂

when
grd1: green = TRUE

grd2: occupied = FALSE

grd3: move = FALSE

grd4: next_turn = train

then
act3: move := TRUE

end
END

Figure 3.15: Machine of Example 2
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MACHINE Track
REFSEES C
VARIABLES

green
occupied

INVARIANTS
typing_green: 〈theorem〉 green ∈ BOOL
typing_occupied: 〈theorem〉 occupied ∈ BOOL
trsb_inv1: green ∈ BOOL
trsb_inv2: occupied ∈ BOOL

EVENTS
Initialisation

begin
act1: green := FALSE

act2: occupied := FALSE

end
Event train_move 〈ordinary〉 =̂

when
grd1: green = TRUE

grd2: occupied = FALSE

then
skip

end
END

Figure 3.16: First Sub-machine of Example 2
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MACHINE Train
REFSEES C
VARIABLES

move
next_turn

INVARIANTS
typing_move: 〈theorem〉 move ∈ BOOL
typing_next_turn: 〈theorem〉 next_turn ∈ SUBSY S
trsb_inv3: move ∈ BOOL
trsb_inv5: next_turn ∈ {train, track}

EVENTS
Initialisation

begin
act3: move := FALSE

act4: next_turn := train

end
Event train_move 〈ordinary〉 =̂

when
grd3: move = FALSE

grd4: next_turn = train

then
act3: move := TRUE

end
END

Figure 3.17: Second Sub-machine of Example 2
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This problem can be solved by passing an additional refinement step before decomposition. The
user must explicitly separate the elements by this refinement by introducing an auxiliary parameter
p representing the value of a variable. (Example: v1 = v2 <=> p = v2v1 = p).

As far as the errors of the action act2 are concerned, no solution is proposed. The shared events
decomposition Plugin is applied by partitioning the variables on two machines M1 and M2. This
decomposition makes it possible to identify some limitations and inconsistencies in the behaviour
of the resulting machines compared with that of the initial machine:

− The states changes of several variables in the same action is not decomposed (using the
substitution "becomes such that");

− The loss of information when guards are broken down;

− The disappearance of shared invariants;

− The generation of empty events in the sub-component;

− The need for an intermediate step of manual refinement before applying the decomposition.

3.4 Discussion and Synthesis
In fact, the choice of a decomposition method depends on the work finality:

− Shared variables decomposition can decompose models by functionality, for instance in the
railway field, an initial railway signalling model can be decomposed into three sub-components:
train integrity, block release and train communication as in figure 3.18.

Railway Signaling Model

Block
Release

Train
Integrity

Train
Communication

Figure 3.18: Example of Decomposition by Functionality

− Shared events decomposition is based on partitioning the behaviour of a system, e.g. parti-
tioning according to different types of trains movements such as movement under the national
Automatic Train Protection (ATP) system or under European Railway Traffic Management
System (ERTMS) levels as in figure 3.19.

Nonetheless, the industrial need is to reason on sub-systems, in other words, to take into ac-
count both the behaviour and the functionality. The use of shared variables decomposition or the
shared events decomposition does not address this need. Hence, after this analysis of the existing
approaches and according to our industrial needs, some limitations to these techniques are iden-
tified, among others, the loss of shared invariants preserving a major safety property. Also, after
the generation of the sub-machines by the plugin, the link between the original machine and the
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LGV-Est
Signaling model

European Railway
Traffic Management
System (ERTMS)

National Rules
(French Railway

Interlocking Systems)

Figure 3.19: Example of Behavior Partition

sub-machine is not explicit.

As we place the preservation of the syntactic/semantic coherence from the abstract machine to
the lower-level machines as a central key of the model decomposition, some conclusions are drawn
from the application of these approaches which can be considered as limitations:

− Sharing variables appearing in events substitutions as full-duplex channels [Abrial, 2009]
cannot be refined so that the decomposition requires an additional refinement step before
decomposition in order to simplify the specification and replacing a full-duplex channel by
two simple channels.

− States changes of several variables in the same action, such as becomes such that substitution,
cannot be decomposed and should be dealt with the user intervention to disjoint variables
following the shared events decomposition.

− Some invariants involving shared variables together with other variables in the case of shared
variables decomposition are not copied in any resulting sub-machine so as to lose them when
decomposing. It is also possible to lose invariants in the shared events decomposition.

These limitations, and specially the last one, give rise to a new semantic link and a new clause
which we define in the Event-B language. This link is can be considered as “alike refinement”
link which can exhibit the feasibility of the decomposition by preserving the behaviour like the
refinement semantic link, on the one hand. On the other hand, the new clause definition makes the
sub-machines interfacing possible (see figure 3.20).

Figure 3.20: Proposed Solution for Decomposition

The next chapter is dedicated to detailing our approach, the decomposition strategy and the
steps to be followed. Furthermore, it presents a demonstration of the correctness of the proposed
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approach and the new underlying proof obligations.
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Introduction

Many approaches have been proposed to deal with the Event-B decomposition issue, among others
one finds: the shared variable decomposition and the shared event decomposition. The shared
variable decomposition [Abrial and Hallerstede, 2007], A-style, consists in distributing events of a
system in several sub-systems. This approach proposes to manage shared variables between sev-
eral events in different sub-systems. It is also used for decomposing parallel programs [Hoang and
Abrial, 2010]. The shared event decomposition [Butler, 2009a], B-style, is based on the variables
partition in each sub-system. Each sub-system contains the chosen variables, and the shared events
between the resulting sub-systems are defined in two different signatures for each sub-system. In
addition to these two approaches, one finds others such as generic instantiation [Abrial and Haller-
stede, 2007], modularisation [Hoang et al., 2011], fragmentation and distribution [Siala et al., 2016].

The aim of this work is to illustrate on railway signalling systems the management of the com-
plexity of the resulting models. For this reason, we choose to proceed with the study and analysis
of A-style and B-style, because the other cited approaches imply some classical-B method [Abrial,
1996] semantics or use other languages. The analysis of A-style and B-style leads to these results:
both approaches require several steps of refinement in order to simplify the model decomposition.
For A-style, the shared variables shouldn’t be refined but copied in the sub-systems in further re-
finements. The invariants involving the shared variables are not considered in the sub-systems. As
for the shared events decomposition, the distribution of the variables is not always possible because
of complex actions involving partitioned variables in different sub-systems or complex predicates
(invariants and guards). This requires the separation of these variables by several steps of refine-
ments with mathematical proofs. The detailed description of the state of the art, the application
on a railway case study, the analysis and the identified limitations have been presented in [Kraibi
et al., 2019b].

The analysis above leads us to build a new decomposition approach that corresponds to an
industrial need. This technique is based on the partition of one system into many sub-systems.
In this chapter, we define one of the main contributions of this thesis. It is a new approach of
decomposition called Refinement Seen Split (RSS). This technique defines a new link between sub-
systems: REFSEES. Each sub-system can make reference to other sub-systems through this new
clause. In addition, we present a demonstration of the correctness of this approach by proving that
the set of the resulting sub-systems is a refinement of the initial system. Then, we introduce new
proof obligations associated to the new proposed approach. Finally, this approach is applied on
the railway case study of the Rear-end collision (see section 3.1). The resulting sub-machines of
the case study decomposition, after the application of RSS approach, are analysed by comparing
them with the A-style and B-style results, as well as regarding the industrial need.

4.1 The Proposal: Refinement Seen Split (RSS)

In this section an informal overview of the proposed approach is presented through two sections.
The first section REFSEES Clause 4.1.1 presents the REFSEES clause allowing access to a shared
state space among machines, and the second section Decomposition Strategy and Steps 4.1.2 gives
the steps to apply our proposed approach. The approach is formalised in section 4.1.3.



95 CHAPTER 4. REFINEMENT SEEN SPLIT APPROACH

4.1.1 REFSEES Clause

Regarding the need of the proposed approach, we studied the different clauses of B language
INCLUDES, IMPORTS, USES and SEES. The REFSSES clause is a similar notion to the SEES
of the classical-B with particular characteristics:

− It allows the refinement of the shared variables (in writing) and

− It can be used at any level between sub-systems.

The name of the REFSEES clause is a combination of REFERENCE and SEES which means
it allows a sub-machine to see and make reference to another sub-machine. In order to illustrate the
use of this new link among machines, figure 4.1 shows an example of the decomposition of a machine
M0 into two sub-machines M1a and M1b in a graphical way. So we add a clause REFSEES to the
machine M1a (resp. M1b), which would make reference to the variables of the machine seen M1b

(resp. M1a). So there, we have a circular dependency with this notion of REFSEES. In classical-B
there is normally no circular dependency and machines cannot see a refinement machine. Contrary
to SEES clause, REFSEES can have a refinement machine as identifier and can be used in a cyclic
way. Moreover, in the example depicted in figure 4.1 we can observe the following:

− M0 defines the variables x, y and z, the invariants I(x,y,z) and some abstract events event1,..,
eventn. An eventi contains guards Gi(x, y, z) and before/after predicates Ri(x, y, z, x

′, y′, z′).

− The resulting sub-machine M1a (resp. M1b) defines the variables x (resp. y) and z. The
variable z is considered as a shared variable. the invariants INV1a(x, z) and INV1b(y, z) are
defined in M1a and M1b respectively. The events of M0 are partitioned in M1a and M1b.
The machine M1a defines the events event1,.., eventj and the machine M1b defines the events
eventj+1,.., eventn. The variable x of the machine M1a is visible by each event eventk in
the machine M1b. The variable y of the machine M1b is visible by each event eventl in the
machine M1a.

MACHINE M0

VARIABLES x, y, z
INVARIANTS I(x, y, z)
EVENTS

eventi
when Gi(x, y, z)
then x, y, z : |Ri(x, y, z, x

′, y′, z′)

end

MACHINE M1a

REFSEES M1b

VARIABLES x, z
INVARIANTS INV1a(x, z)
EVENTS

eventl
WHEN Hl(x, y, z)
THEN x, z : |Ql(x, y, z, x

′, z′)

END

MACHINE M1b

REFSEES M1a

VARIABLES y, z
INVARIANTS INV1b(y, z)
EVENTS

eventk
WHEN Hk(y, x, z)
THEN y, z : |Qk(y, x, z, y

′, z′)

END

RSS RSS

REFSEES

REFSEES

Figure 4.1: Example of the Application of the Proposed Approach
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Table 4.1 is a visibility table of REFSEES. Sets and constants of M1a are visible by axioms,
invariants and events ofM1b. Private variables ofM1a are only visible byM1b events. As for shared
variables, they are visible and able to be modified by both the sub-machines.

M1b REFSEES M1a AXIOMS INV INITIALIZATION
/ EVENTS

Sets visible visible visible

Constants visible visible visible

Variables visible visible

Events

Table 4.1: REFSEES Visibility of M1a by M1b.

Figure 4.2 shows the general structure of the proposed approach. The decomposition can be
applied on a certain level of refinement and done by multiple horizontal refinements. As shown in
the figure a machine Mn−1 can be refined by m machines. These resulting sub-machines keep the
refinement link with the root.

M0

M1

Multiple levels
of refinement

Mn−1

Mna

M(n+1)a

Mnb Mnc

M(n+1)c1 M(n+1)c2

Multiple
sub-machines

Mnm

REFINES

RSS RSS RSS
RSS

RSS RSSREFINES

REFSEES

REFSEES

REFSEES

REFSEES

REFSEES

REFSEES

REFSEES

REFSEES

REFSEES

REFSEES

Figure 4.2: Structure of the Proposed Approach
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4.1.2 Decomposition Strategy and Steps

Let consider M , the machine to be decomposed, and M1 and M2 the resulting sub-machines using
the proposed approach. In the following, we present the strategy of decomposing the machine, their
variables and their events.

Variables

(i) Variables Distribution
When decomposing, all of the existing variables in the decomposed machine M should
appear at least in one of the sub-machines M1 or M2. In other words, the set of the
variables of M constitutes the union of the existing variables in M1 and in M2 such as:
V AR(M) = V AR(M1)∪ V AR(M2) where V AR(M) is the set of the variables of the decom-
posed machine M and V AR(M1) (resp. V AR(M2)) is the set of the variables of the resulting
sub-machine M1 (resp. M2). In each sub-machine Mi, the clause VARIABLES defines the
variables that evolve in this sub-machine, i.e. the variables that change their states through
the events: the local variables of Mi and the shared variables with the other sub-machines.

Figure 4.3 presents the case of the use of only the local variables in each sub-machine. We can
observe that the variables of the machine M are partitioned as follows: the variables a and b
are defined in the sub-machine M1, and the variables c and d are defined in the sub-machine
M2. Then each local variable can be refined by another one like the variable a of the machine
M1 (resp. c of M2) is refined by a1 in M11 (resp. c1 in M22).

The sub-machines can also contain common variables called shared variables as shown in
figure 4.4. For example, the variable y is shared in both sub-machines M11 and M22 resulting
from the decomposition of the machine M1. x is a private variable of M11 and z is a private
variable of M22.

MACHINE M
VARIABLES a, b, c, d

MACHINE M1

REFSEES M2

VARIABLES a, b

MACHINE M2

REFSEES M1

VARIABLES c, d

REFINEMENT M11

REFINES M1

VARIABLES a1, b, x
INVARIANTS inv_a1(a)

REFINEMENT M22

REFINES M2

VARIABLES c1, d, y
INVARIANTS inv_c1(c)

RSS RSS

REFSEES

REFSEES
REFINES REFINES

Figure 4.3: Decomposition Strategy of Variables: Case of private
variables decomposition and/or add of new private variables
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(ii) Definition of New Variables

When we need to define new private variables to each of the sub-machines, we can add them
after the step of decomposition while refining the sub-machines. These variables can refine
other private variables or not. For instance, in figure 4.3, the private variables x and a1 (resp.
y and c1) are defined after the decomposition in the machine M11 (resp. M22) where the
variable a1 (resp. c1) is refining the private variable a (resp. c) of the sub-machine M1 (resp.
M2). The invariants inv_a1(a) and inv_c1(c) are respectively the gluing invariants of the
new variables a1 and c1 in function of the refined variables a and c. The variable x (resp. y)
is a new variable in M11 (resp. M22).

Otherwise, if the new variables are shared between the sub-machines, we can add them before
the decomposition. This means, the machineM must be refined by another machineM1 which
defines the new needed variables. These variables will be shared in both of the resulting sub-
machines after decomposing M1. The new variables can refine some variables of M or not.
For example, in figure 4.4, the variables p and q are new defined variables where p is refining
w. After the decomposition, these variables are shared between M11 and M22. After the
decomposition, all the variables of the resulting sub-machines can be refined even the shared
ones.

MACHINE M
VARIABLES w, x, y, z

REFINEMENT M1

REFINES M
VARIABLES x, y, z, p, q
INVARIANTS inv_p(w), inv_q

MACHINE M11

REFSEES M22

VARIABLES x, y, p, q

MACHINE M22

REFSEES M11

VARIABLES y, z, p, q

RSS RSS

REFINES

REFSEES

REFSEES

Figure 4.4: Decomposition Strategy of Variables: Case of shared vari-
ables decomposition and/or add of new shared variables

Events

(i) Events Distribution

Each event of the machine M should appear at least in one of the sub-machines M1 or M2,
which means EV ENT (M) = EV ENT (M1) ∪ EV ENT (M2) where EV ENT (M) is the set
of the events of the machine M and EV ENT (M1) (resp. EV ENT (M2)) is the set of the
events of the machine M1 (resp. M2).

The sub-machine M1 (resp. M2) must contain distinct events from those of the other sub-
machine M2 (resp. M1), in other words EV ENT (M1)∩EV ENT (M2) = ∅. For example, in
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figure 4.5, after the decomposition of the machine M that defines 4 events, the machine M1

(resp. M2) contains the events event1 and event2 (resp. event3 and event4).
If we need the same event in both of the machines, this event must be refined by two events
where each one will be in a sub-machine. As example, in figure 4.6, event1 of the machine
M is refined by event1a and event1b in the machine M1, then they are partitioned. event1a
is defined in M11 and event1b is defined in M22.

While decomposing, the events are copied according to the needed events in each sub-machine.
In order to preserve the conditions that allow the events triggering and to keep the same be-
haviour as defined in the decomposed machine M , the guards should be copied as they are
defined in the decomposed machine. The actions are also copied as they are defined in the
abstract event of the decomposed machine because of the atomicity of the events. If guards
and/or actions are decomposed, the system may block, and some states cannot be reached as
in M .

MACHINE M
EVENT
event1
event2
event3
event4

MACHINE M1

REFSEES M2

EVENT
event1
event2

MACHINE M2

REFSEES M1

EVENT
event3
event4

REFINEMENT M11

REFINES M1

EVENT
event1
event2
eventa

REFINEMENT M22

REFINES M2

EVENT
event3
event4
eventb

RSS RSS

REFINES REFINES

REFSEES

REFSEES

Figure 4.5: Decomposition Strategy of Events: Case of private events
decomposition and/or add of new private events

(ii) Definition of New Events
The definition of new events can be under two forms. The first one is the definition of a
private event in one of the sub-machines M1 and/or M2. This step can be done later in the
refinement of the sub-machine M1 and/or M2. Figure 4.5 shows the definition of new private
events. eventa and eventb are new private events in the refinement ofM1 andM2 respectively.
The event eventa (resp. eventb) can be a refinement of skip or of an abstract event in M1
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(resp. M2).
The second form is the definition of a shared event between both of the sub-machines M11

and M22. In this case, the event is defined before the decomposition in a refinement machine
M1. Then this event is refined by two events in another refinement machine M ′1 that is
decomposed. For instance, , eventw is a new defined event in M1. This event is refined by
eventwa and eventwb in a refinement machineM ′1. Then, the event eventwa (resp. eventwb) is
partitionned in M11 (resp. M22). After the decomposition, all the events of the sub-machines
can be refined.

MACHINE M
EVENT
event1
event2
event3

MACHINE M1

REFINES M
EVENT
event1a ref event1
event1b ref event1
event2
event3
eventw

MACHINE M ′
1

REFINES M1

EVENT
event1a
event1b
event2
event3
eventwa ref eventw
eventwb ref eventw

MACHINE M11

REFSEES M22

EVENT
event1a
event2
eventwa

MACHINE M22

REFSEES M11

EVENT
event1b
event3
eventwb

REFINES

REFINES

RSS RSS

REFSEES

REFSEES

Figure 4.6: Decomposition Strategy of Events: Case of shared events
decomposition and/or add of new shared events
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Invariants

While decomposing, the invariants ofM should appear in each sub-machineMi, i.e. the union of the
invariants of the sub-machinesMi constitutes the invariants ofM such as INV (M) =

⋃
INV (Mi),

where INV (M) represents the invariants of M . The definition of new invariants involving shared
variables can be done in a refinement machine M1 of the machine M and then decomposing M1.
Otherwise, if these new added invariants are involving the private variables of one sub-machine,
this can be performed in the refinement of the corresponding sub-machine.

To conclude the proposal, some remarks should be noted:

− Remark 1: the state variables v of the decomposed machineM should all be present at least
inMa orMb. Some state variables can only be in one of the sub-machines. In the semantic of
Event-B [Abrial, 2002], there is a notion of external-set which allows to ignore some "internal"
variables in the refinement. We believe we can use this concept to justify this new usage of
the refinement. The proof obligation rules imply the semantic definition of refinement:

r−1a ; rea ⊆ ae; r−1a

where ra = {wa 7→ v|I(v) ∧ Ja(v, wa)}, I the invariant of M , Ja the invariant of Ma

& r−1b ; reb ⊆ ae; r−1b

where rb = {wb 7→ v|I(v) ∧ Jb(v, wb)}, I the invariant of M , Jb the invariant of Mb.

− Remark 2: the main difference with normal refinement, is the fact that the sub-machine
Ma (resp. Mb) can refer (in their events guards) to variables that can be only present in Mb

(resp. Ma).
This might be possible because we did already prove the M is correct. But we must prove
that this refinement is correct regarding the theoretical definition of the B-Method [Abrial,
1996].

− Remark 3: the resulting sub-machines Ma and Mb should correspond to a one transition
system that corresponds to the behaviour of M .

− Remark 4:
Ma and Mb transitions are interlaced and then they are not synchronised contrary to the
decomposition by shared events.
This is done by the definition of the (theoretical) re-composition of the sub-machines. Con-
sequently, we can demonstrate that this way of re-composition is a refinement of the machine
M , following what has been presented in [Abrial, 2009].

− Remark 5: in addition to the partial correctness, which consists on proving that the system
is safe i.e. preserving the safety invariants, we should ensure the complete correctness. This
later consists on ensuring the vivacity properties such as those of the variant and the deadlock
freedom. A transition should not be triggered indefinitely. So, a variant proof obligation rule
should be defined. Concerning the deadlock freedom, it allows to prove that the system does
not block [Abrial, 2010].
In case of adding new events in the sub-machines, the deadlock freedom rules, and the variant
rules should also be defined.
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4.1.3 Formalising the Approach

In Event-B, during refinement, we have the right to merge one or more events, to refine an event
and to add new events, but not delete events. The delete will cause a loss of some traces of the
initial machine. In this case, the system may block when it was not the case in the initial ma-
chine. So, the idea is to use some characteristics of the classical refinement in order to keep the
machines coherence. So, we define a new link between the decomposed machine and the resulting
sub-machines. This link allows to partition a machine into multiple sub-machines.

Let consider a machine M . This machine is modelled by the choice of its events (see Definition
4.1.1) through a binary relation ae(M) such as
ae(M) : S ↔ S, where S = State_Space(M).

Definition 4.1.1.

"Choice of events: Let M be an Event-B machine with a set
of events event1, event2, ..eventn. The “choice of events” of M ,
event_choice(M), is defined by:
event_choice(M) = event1[]event2[] .. []eventn. From an operational
point of view only one event of event_choice(M) can be trigered."

The machine M is partitioned into several sub-machines Mi, as in figure 4.7. Events of M are
partitioned, according to the "Decomposition Strategy" in section 4.1.2. Each sub-machine resulting
from the partition can make reference to other sub-machines through the REFSEES clause. S is
the state space of M . Each system Mi, resulting from the partition of a system M , shares the
state space S ofM . The set of systems resulting from the partition strategy is called "Refinement
Seen Split" or RSSplit (see Definition 4.1.2).

M

MM M

me(Mn)me(M1)

ae

me(M2)

1 n2

State Space(M) = S

State Space(RSSplit(M)) = S

ae(M) : S ↔ S

me(Mi) : S ↔ S

RSSplit

Figure 4.7: Refinement Seen Split

Definition 4.1.2.

"RSSplit: Let M be an Event-B machine. RSSplit(M) denotes the
set of Event-B machines resulting from the "Decomposition Strategy"
applied to the machine M .
RSSplit allows to partition a machine M into a set of multiple sub-
machines such as RSSplit(M) = {M1,M2, ...,Mn}."

The state space associated with a Refinement Seen Split set, RSSplit(M) = RSS, is denoted
by State_Space(RSS). Each system Mi is modelled by the choice of its events (see Definition
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4.1.1) through a binary relation me(Mi) such as me(Mi) : S ↔ S, where Mi : RSSplit(M) and
S = State_Space(RSSplit(M)).

For a machine M , RSSplit(M) models the result of the split operation defined through the
"Decomposition Strategy". In order to be able to prove the correctness of the refinement of the
machine M by a set of sub machines, we define in Definition 4.1.3 the Merge of sub-machines over
a Refinement Seen Split set RSS:

Definition 4.1.3.

"Merge of Sub-machines: Let RSS = {M1, ...Mn} be the Refinement
Seen Split of a system. The merge of sub-machines Merge(RSS) is
the system made up of the union of the sub-systems in RSS.

− The VARIABLES clause is made up of the union of variables in
each Mi.

− The INVARIANT clause is made up of the conjunction of in-
variants in each Mi.

− The EVENT clause is made up of the union of events in each
Mi."

In the basis of this definition and the definition of the Refinement Seen Split of a system M we
have:

Merge(RSSplit(M)) =M

As a consequence, we can say that Merge(RSSplit(M)) is a refinement, in the Event-B sense, of
System M .

Figure 4.8 shows theMerge of the sub-machines. The model ofMerge(RSS), for any Refinement
Seen Split set RSS having State_Space(RSS) = S, is given by a relation mm(Merge(RSS)) :
S ↔ S defined by Definition 4.1.4, where
mm(Merge(RSS)) is the choice of events of Merge(RSS) (see Definition 4.1.1).

Definition 4.1.4. mm(Merge(RSS)) = UNION(m).(m : RSS|me(m))

M

MM M

me(Mn)me(M1)

ae

me(M2)

1 n2

State Space(M) = S

State Space(RSS) = S

ae(M) : S ↔ S

Merge(RSS)

REFINES
RSSplit

me(Mi) : S ↔ S

mm(Merge(RSS)) = UNION(m).(m : RSS|me(m))mm

Figure 4.8: Merge of Mi is a Refinement of M

Each sub-machine Mi in the set RSS can be refined into another one M ′i leading to a set of
refined sub-machines RSS′, as illustrated in figure 4.9.



CHAPTER 4. REFINEMENT SEEN SPLIT APPROACH 104

M

MM M

me(Mn)me(M1)

ae

me(M2)

1 n2

State Space(M) = S

State Space(RSS) = S

ae(M) : S ↔ S

Merge(RSS)

REFINES

mm(Merge(RSS))

M ′M ′ M ′

me(M ′
n)me(M ′

1) me(M ′
2)

1 n2
State Space(RSS ′) = T

Merge(RSS ′)

brbrbr

mm(Merge(RSS ′))

REFINES
rrr

T 6= S

Figure 4.9: Refinement after Decomposition

In order to denote this link of refinement, a total bijection br among the machines of RSS′ and
RSS is defined:

br ∈ RSS′ →→ RSS

Therefore, asM ′i is the refinement ofMi, we haveM ′i = br−1(Mi). We suppose that the state space
of RSS′ is T (State_Space(RSS′) = T ) and that the refinement relation among the abstract and
concrete sub-machines is r, therefore the relation refinement is a total relation between T and S:

r ∈ T ↔ S

Actually, in this part we present the core of the thesis contribution: a new decomposition
approach (called RSS: Refinement Seen Split). This approach does not require external events in
the sub-models to simulate the evolution of the shared variable. Among its properties, the state
space of the combined model is simply the union of the state spaces of the sub-models. This is
justified with argument in the next section of the approach correctness proof. This property is
valid only at the highest level of RSS refinement where there is no data refinement or new defined
variables. As for the lower levels of RSS refinement, the state space can change such that S/ = T
with the data refinement as shown in Figure 4.9. In the following section it is proved that the
merge of refinement machines in RSS′ is a refinement of the merge of machines in RSS.

4.2 Correctness of the RSS Approach

4.2.1 Demonstration of the Proposed Approach

In this section, our goal is to demonstrate that the combination of transition system of all the
sub-machines corresponds to the transition system of the decomposed machine. So, the behaviour
due to the combination of the sub-systems preserves the behaviour of the initial system. In other
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words, our main goal is to prove that the global system Merge(RSS′) combining the resulting
sub-machines M ′i is a refinement of M . So, since the global system Merge(RSS) combining the
resulting sub-machines Mi is refining M , it is sufficient to prove that Merge(RSS′) is a refinement
of Merge(RSS).

So, we have to prove this theorem:

∀m.(m ∈ RSS′ =⇒ (r−1;me(m)) ⊆ (me(br(m)); r−1)) ` (r−1;mm(RSS′)) ⊆ (mm(RSS); r−1)

In figure 4.10, it is shown in a graphical view that each machine M ′i , such as M ′i ∈ RSS′,
is a refinement of one machine Mi, where Mi ∈ RSS and Mi = br(M ′i), as presented in the
assumption 4.1.

∀m.(m ∈ RSS′ =⇒ (r−1;me(m)) ⊆ (me(br(m)); r−1)) (4.1)

S S

T T

me(br(m))

me(m)

r r

Figure 4.10: Each Machine M ′i is a Refinement of Mi

For each machine m such as m ∈ RSS′, we can find its corresponding machine in RSS such as
br(m) ∈ RSS. Therefore, the composition of me(br(m)) with the inverse relation r−1 is included
in the union of the composition of me(n) with r−1 for n ∈ RSS:

∀m.(m ∈ RSS′ =⇒ (me(br(m)); r−1) ⊆ UNION(n).(n ∈ RSS|me(n); r−1)) (4.2)

We need the following Composition Property:

UNION(n).(n ∈ RSS|me(n); r−1) = (UNION(n).(n ∈ RSS|me(n)); r−1) (4.3)

From equation 4.3, equation 4.2 we get:

∀m.(m ∈ RSS′ =⇒ (me(br(m)); r−1) ⊆ (UNION(n).(n ∈ RSS|me(n)); r−1)) (4.4)

From the model of Merge operation in definition 4.1.4 and the equation 4.4 we derive:

∀m.(m ∈ RSS′ =⇒ (me(br(m)); r−1) ⊆ (mm(RSS); r−1)) (4.5)

Back to equation 4.1, we use equation 4.5 and transitivity of inclusion to obtain:

∀m.(m ∈ RSS′ =⇒ (r−1;me(m)) ⊆ (mm(RSS); r−1)) (4.6)
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We note that the composition of each refining machine in RSS′ with the inverse relation r−1 is
included in the union of compositions of the machines of RSS′ with the inverse relation:

∀m.(m ∈ RSS′ =⇒ (r−1;me(m)) ⊆ UNION(n).(n ∈ RSS′|(r−1;me(n))) (4.7)

Using equation 4.7, we derive the following inclusion from the equation 4.6:

UNION(m).(m ∈ RSS′|(r−1;me(m))) ⊆ (mm(RSS); r−1) (4.8)

In the next step, we need the following Composition Property:

UNION(m).(m ∈ RSS′|(r−1;me(m))) = (r−1;UNION(m).(m ∈ RSS′|me(m))) (4.9)

Using property 4.9, we obtain from the equation 4.8:

(r−1;UNION(m).(m ∈ RSS′|me(m))) ⊆ (mm(RSS); r−1) (4.10)

From the model of merge in definition 4.1.4, equation 4.10 is equivalent to:

(r−1;mm(RSS′)) ⊆ (mm(RSS); r−1) (4.11)

We have therefore performed the required demonstration: after several steps of refinement, the
theoretical composition of the resulting sub-machines is a refinement of the initial machine. This
demonstration is a major step and is essential for this thesis.

4.2.2 Definition of New Proof Obligations

Following the proposed approach, a machine M can be decomposed into several sub-machines. Let
consider the case of two resulting sub-machines M1 and M2:

− M defines the variables v, the invariants I(v) and the events: event1,...,eventN .

− The guard of each event eventi, of the machineM , is defined by Gi. So, the guards G1,...,GN

correspond to the events event1,...,eventN respectively.

− M1 defines the variables V AR(M1), the invariants INV1(V AR(M1)) and the events:
event1,...,eventj .

− The guard of each event eventk, of the machine M1, is defined by H1k. So, the guards
H11,...,H1j correspond to the events event1,...,eventj respectively.

− M2 defines the variables V AR(M2), the invariants INV2(V AR(M2)) and the events:
eventj+1,...,eventN .

− The guard of each event eventl, of the machine M2, is defined by H2l. So, the guards
H2(j+1),...,H2N correspond to the events eventj+1,...,eventN respectively.

We present in the following the definition of the new proof obligations of the proposed approach.
We define two types of rules to generate proof obligations as shown in figure 4.11:
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M

M1 M2

internal
POs

internal
POs

global POs

RSS RSS

RFS

RFS

Figure 4.11: Structure of the Proof Obligations Generation

− Local: the local rules are those allowing to prove that a sub-machine is a refinement machine.
In other words, they are the rules generating proof obligations in the classical refinement, as
defined in section 2.1.2.

− Global: the global rules are a the new rules defined due to the definition of our approach.
These rules allow to prove that the combination of the sub-machines is a correct refinement
of the decomposed machine. In the following we detail the global rules.

The correction of the sub-machines combination is done throw the REFSEES link. As men-
tioned in section 4.1.1, the REFSEES clause allows to have a visibility on the other sub-machine.
Consequently, this visibility makes it possible to generate the global proof obligations.

Deadlock Freedom: DLF

In the following, we define the deadlock freedom proof obligation rules that allow to guarantee that
the system does not block.

As presented in section 2.1.2, there are two types of DLF proof obligation rules: weak and
strong DLF. The weak DLF proof obligation, called DLF1w, guarantee that at least one of the
events in the sub-machinesM1 orM2, resulting from the decomposition ofM , can be triggered. As
for the strong DLF proof obligation, named DLF1s, it allows to ensure the trigger of each event
in the sub-machines.

In the case of the proposed decomposition approach, the proof obligation rules DLF1w and
DLF1s do not need to be defined for the RSS approach because they are hold trivially. Indeed,
after a split of the initial machine M , the guard Gi(v) where i ∈ 1..N implies the guard of an event
of M1 or M2 because the event eventi is necessarily in M1 or M2.

We define the weak and strong DLF proof obligation rules, DLF2′w and DLF2′s, in case of the
refinement of M1 and M2 by M ′1 and M ′2 respectively where:

− M ′1 defines the variables V AR(M ′1), the gluing invariants J ′1(V AR(M1), V AR(M
′
1)) and the

events event′1,...,event′j .

− The events event′1,...,event′j , of the machine M ′1, are refining respectively the events
event1,...,eventj of the machine M1.

− The guard of each event event′k, of the machine M ′1, is defined by H ′1k. So, the guards
H ′11,...,H ′1j correspond to the events event′1,...,event′j respectively.
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− M ′2 defines the variables V AR(M ′2), the gluing invariants J ′2(V AR(M2), V AR(M
′
2)) and the

events event′j+1,...,event′N .

− The events event′j+1,...,event′N , of the machine M ′2, are refining respectively the events
eventj+1,...,eventN of the machine M2.

− The guard of each event event′l, of the machine M ′2, is defined by H ′2l. So, the guards
H ′2(j+1),...,H

′
2N correspond to the events event′j+1,...,event′N respectively.

Table 4.2 defines the proof obligations for the sub-machine M1 and its refinement M ′1 in case
of the refining events existence. The same proof obligation rules are used for the sub-machine M2

and its refinement M ′2.

Weak deadlock freedom
of the refinement ma-
chine M ′1 in case of the
refining events existence

DLF2′w

INV1(V AR(M1))
J ′1(V AR(M1), V AR(M

′
1))

J ′2(V AR(M2), V AR(M
′
2))

H11(V AR(M1)) ∨ .. ∨H1j(V AR(M1))
∨H2(j+1)(V AR(M2)) ∨ .. ∨H2N (V AR(M2))

`
H ′11(V AR(M

′
1)) ∨ .. ∨H ′1j(V AR(M ′1))

∨H ′2(j+1)(V AR(M
′
2)) ∨ .. ∨H ′2N (V AR(M ′2))

Strong deadlock free-
dom of the refinement
machine M ′1 in case of
the refining events exis-
tence

DLF2s’

INV1(V AR(M1)
J ′1(V AR(M1), V AR(M

′
1))

J ′2(V AR(M2), V AR(M
′
2))

H1k(V AR(M1))
`
H ′1k(V AR(M

′
1)

Strong deadlock free-
dom of the refinement
machine M ′2 in case of
the refining events exis-
tence

DLF2s’

INV2(V AR(M2)
J ′1(V AR(M1), V AR(M

′
1))

J ′2(V AR(M2), V AR(M
′
2))

H2l(V AR(M2))
`
H ′1l(V AR(M

′
2))

Table 4.2: Deadlock Freedom Proof Obligations: DLF, in case of the Existence of Refining Events

In addition to the previous defined proof obligation rules, the deadlock freedom proof obligations
DLF3′w and DLF3′s are defined in case of the existence of new events in the refinement machines
M ′1 and M ′2, for example:

− M ′1 can define new events N_event′11,...,N_event′1n. These events contains the guards
N ′11(V AR(M

′
1)), ... ,N ′1n(V AR(M ′1)) respectively.

− M ′2 can define new events M_event′21,...,M_event′2m. These events contains the guards
M ′21(V AR(M

′
2)), ... ,M ′2m(V AR(M ′2)) respectively.

Table 4.3 defines the proof obligations for the refinement M ′1 of the sub-machine M1 in case of
the new events existence. The same proof obligation rules are used for the refinement M ′2 of the
sub-machine M2.
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Weak deadlock freedom
of the refinement ma-
chine M ′1 in case of the
existence of refining and
new events

DLF3w’

INV1(V AR(M1)
J ′1(V AR(M1), V AR(M

′
1))

J ′2(V AR(M2), V AR(M
′
2))

H11(V AR(M1)) ∨ .. ∨H1j(V AR(M1))
∨H2(j+1)(V AR(M2)) ∨ .. ∨H2N (V AR(M2))

`
H ′11(V AR(M

′
1)) ∨ .. ∨H ′1j(V AR(M ′1))

∨H ′2(j+1)(V AR(M
′
2)) ∨ .. ∨H ′2N (V AR(M ′2))

∨N ′11(V AR(M ′1)) ∨ .. ∨N ′1n(V AR(M ′1))
∨M ′21(V AR(M ′2)) ∨ .. ∨M ′2m(V AR(M ′2))

Strong deadlock free-
dom of the refinement
machine M ′1 in case of
the existence of refining
and new events

DLF3s’

INV1(V AR(M1)
J ′1(V AR(M1), V AR(M

′
1))

J ′2(V AR(M2), V AR(M
′
2))

H1k(V AR(M1))
`
H ′1k(V AR(M

′
1)) ∨N ′11(V AR(M ′1)) ∨ .. ∨N ′1n(V AR(M ′1))

∨M ′21(V AR(M ′2)) ∨ .. ∨M ′2m(V AR(M ′2))

Strong deadlock free-
dom of the refinement
machine M ′2 in case of
the existence of refining
and new events

DLF3s’

INV2(V AR(M2)
J ′1(V AR(M1), V AR(M

′
1))

J ′2(V AR(M2), V AR(M
′
2))

H2l(V AR(M2))
`
H ′1l(V AR(M

′
2)) ∨N ′11(V AR(M ′1)) ∨ .. ∨N ′1n(V AR(M ′1))

∨M ′21(V AR(M ′2)) ∨ .. ∨M ′2m(V AR(M ′2))

Table 4.3: Deadlock Freedom Proof Obligations: DLF, in case of the Existence of New Events
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Variant: VAR

Let considerM1 andM2 the sub-machines ofM , andM ′1 andM ′2 are respectively their refinements.
Since we cannot define any new event in M1 and M2, let consider, for example, eventa as a new
defined event in the refinement machine M ′1 where:

− INV1(V AR(M1)) is the invariant to preserve in M1.

− INV ′1(V AR(M1), (V AR(M
′
1)) is the gluing invariant of M ′1.

− Ha(V AR(M
′
1)) is the guard of the event eventa in the machine M ′1.

− BAa(V AR(M1), V AR(M
′
1)) is the Before/After predicate of the event eventa in M ′1.

− V1(V AR(M1)) the variant of the machine M1.

− V2(V AR(M2)) the variant of the machine M2.

So, we have RSS = {M1,M2} and RSS′ = {M ′1,M ′2}. For any machine m such as m ∈ RSS′,
we have the global variant GV ar defined as GV ar = SIGMA(m).(m : RSS′|v(m)) where v(m) is
the expression of the variant clause for any machine m in RSS′. In case of the event eventa it must
be proved G′V ar < Gvar.

So, the proof obligation using decreasing natural is V1(V AR(M ′1))+V2(V AR(M ′2)) < V1(V AR(M1))+
V2(V AR(M2)). Following the same reasoning, the proof obligation using a finite set is V1(V AR(M ′1))+
V2(V AR(M

′
2)) < V1(V AR(M1)) + V2(V AR(M2)).

Variant Proof
obligation us-
ing decreasing
natural

VAR1

INV1(V AR(M1))
INV ′1(V AR(M1), V AR(M

′
1))

Ha(V AR(M
′
1))

BAa(V AR(M1), V AR(M
′
1))

`
V1(V AR(M

′
1)) + V2(V AR(M

′
2)) < V1(V AR(M1)) + V2(V AR(M2))

Variant proof
obligation using a
finite set

VAR2

INV1(V AR(M1))
INV ′1(V AR(M1), V AR(M

′
1))

Ha(V AR(M
′
1))

BAa(V AR(M1), V AR(M
′
1))

`
(S1(V AR(M

′
1)) ∪ S2(V AR(M ′2))) ⊂ (S1(V AR(M1)) ∪ S2(V AR(M2)))

Table 4.4: Variant Proof Obligations: VAR

4.3 Application of the RSS on the Railway Case Study

Back to the model of the case study, lets apply the RSS approach on the case study. Figure 4.12
shows the structure of the application of the RSS on the case study. The goal is to decompose
the machine M2 by separating Track and Train behaviours, and their functionalities using the
decomposition RSS such as RSSplit(M2) = {Train, Track}.
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The Track machine, in figure 4.13, refsees the Train machine through the REFSEES link.
Besides, the machine Track contains the variables associated to the track like the blocks states
variable: block_state. It contains also events that make these variables evolve such as TRACKevent.

As for the Train machine, in figure 4.14, it refsees the Track machine through the REFSEES
link. It describes the train variables like front_trainA and the trains movement events
e.g. enter_tAblock.

The variable next_turn is a shared variable of Track and Train. Partitioned events keep their
guards in the sub-machines.

So, the composition of the sub-machines Trakc and Train constitutes a refinement of the
machine M2 such as Merge(Track, Train) refines M2.

MACHINE M0

REFINEMENT M1

REFINES M0
CONTEXT Block

REFINEMENT M2

REFINES M1

MACHINE Train
REFSEES Track
VARIABLES

front_trainA, front_trainB, end_trainA,
end_trainB , fst_tAblock, lst_tAblock,
fst_tBblock, lst_tBblock, next_turn
INVARIANTS Jb
EVENTS
TRAINevents

MACHINE Track
REFSEES Train
VARIABLES

block_state,
next_turn

INVARIANTS
Ja

EVENTS
TRACKevent

CONTEXT Signal

REFINES

SEES

REFINES

SEES

EXTENDS

RSS RSS

REFSEES

REFSEES

Figure 4.12: Structure of the Application of the RSS Approach on the Case Study
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MACHINE Track
REFSEES Train
SEES Signal
VARIABLES

signal_state
block_state
next_turn

INVARIANTS
inv1: signal_state ∈ Signal→ SignalState

inv2:
∀bk ·(
bk ∈ Block
∧ next_turn = TRAIN

∧ signal_state(signal_block(bk)) = green

⇒ block_state(bk) = Free)

EVENTS
Initialisation

begin
act1: ...

end
Event TRACKevent 〈ordinary〉 =̂

when
grd1: next_turn = TRACK

then
act1: next_turn := TRAIN

act2: block_state := (Block × {Free}) C− ((lst_tAblock .. fst_tAblock ∪ lst_tBblock ..
fst_tBblock)× {Occupied})

act3: signal_state := (Signal × {green})C− ((signal_block(lst_tAblock) .. signal_block
(fst_tAblock) ∪ signal_block(lst_tBblock) .. signal_block(fst_tB2block))× {red})

end
END

Figure 4.13: Excerpt of the Track Sub-machine after RSS
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MACHINE Train
REFSEES Track
SEES Signal
VARIABLES

front_trainA
front_trainB
end_trainA
end_trainB
fst_tAblock
lst_tAblock
fst_tBblock
lst_tBblock
next_turn

EVENTS
Initialisation

begin
act1: ...

end
Event Enter_tBblock 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: block_state(next_block(fst_tBblock)) = Free

grd3: front_block(fst_tBblock) < front_trainB + step

grd4: front_trainB + step < front_block(next_block(fst_tBblock))
grd5: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: front_trainB := front_trainB + step

act3: fst_tBblock := next_block(fst_tBblock)
end

END

Figure 4.14: Excerpt of the Train Sub-machine after RSS



CHAPTER 4. REFINEMENT SEEN SPLIT APPROACH 114

As we can see from this decomposition example, the shared state of a system among the sub-
machines, through the Refinement Seen Split (RSS) approach, allows a simple decomposition strat-
egy which is simpler than the main existing approaches. The proposed approach satisfies the objec-
tives of modularity as well as the syntactic and semantic coherence among the modules composing
a system that are the motivations of our work considering the industrial needs.

Indeed, one of the reasons behind the definition of a new approach of decomposition is the opti-
misation of the number of refinement steps before the application of the decomposition. Contrary
to the existing approaches of decomposition, that needs to add more refinement levels to simplify
the decomposition, the Refinement Seen Split (RSS) allows the decomposition in less number of
refinement steps. Moreover, after the decomposition, the system components (variables, invariants,
guards, actions) are kept somewhere in one of the sub-machines. Besides, the shared variables can
be refined following the decomposition strategy defined above. This is not possible in the A-style
decomposition.

In addition, the RSS approach allows a global visibility between the different sub-systems. In
other words, we reason on the global state of the system and each sub-machine is handled taking
into account the other sub-machines components (variables, invariants and events). Contrary to
A-style and B-style, the sub-machines are handled in a separated way and the behaviour of each
sub-machine is independent from the other sub-machines.

4.4 Synthesis

Several approaches have been proposed to deal with the complex system specification issue in Event-
B such as A-style and B-style. The performed analysis and study conduce to the identification of
some limitations of those approaches regarding the industrial need. So, we propose a new approach:
the Refinement Seen Split (RSS) based on decomposing a system into several sub-systems. A new
clause REFSEES is defined to link the sub-systems to each other which allows the visibility of
the state variables. This approach will ensure the preservation of invariants through the Merge
technique.

We also define the strategy to follow for the application of the new defined approach. This
strategy presents the way to decompose the state variables of the system and its events, and how
to define, in each sub-system, new invariants, new state variables and new events. In addition, we
demonstrate that the fact of combining -theoretically- the sub-systems constitutes a one refining
component of the initial system regarding the theoretical definition of the refinement in B method.
Moreover, new proof obligations are specified, through the new defined link, to ensure the behaviour
preservation in each of the resulting sub-systems. For the purpose of its scaling up, the approach
is applied to a railway signalling system case study.

To conclude, the Refinement Seen Split (RSS) approach allows to answer the industrial need that
is based on the system/sub-systems reasoning. This need is not sufficiently covered by the existing
approaches in the literature. In fact, the other approaches are based either on the partition of
specific functionalities or on the split of particular behaviours. Our proposed approach is not based
on the partitioning of only variables or only events but on both: the sub-systems behaviours and
functionalities. Actually, the defined partition in the Refinement Seen Split (RSS) approach allows,
through the decomposition strategy, to apply the decomposition in less number of refinement levels.
Also, it allows to keep all the system components: variables, invariants and events. Consequently,



115 CHAPTER 4. REFINEMENT SEEN SPLIT APPROACH

it does not lose the coherence of the system behaviour. In the case of RSS , there is no need
to any external events that allow to reason locally. In A-style, the external events are defined
to simulate the behaviour of the other sub-machine and then they are not taken into account in
the demonstration of the composition. So, the RSS approach prevents the repeated occurrence
of the same behaviour in different sub-machines, on the one hand. On the other hand, it avoids
the guards and actions split of an event containing variables of other sub-machines because of the
events atomicity. However, The fact of taking into consideration the global system to handle each
sub-machine, is at the same time a difficulty for the performance of this approach.

In our approach, contrary to shared events decomposition, predicates (invariants, guards) and
assignments (actions) can refer to elements that must be partitioned into different sub-components.
As consequence, we don’t get anymore the error "The assignment is too complex because it refers to
elements belonging to different sub-components". An other resolved issue, is the fact of proceeding
with additional refinement to avoid this error message.

This problem can be solved by passing an additional refinement step before decomposition. The
user must explicitly separate the elements by this refinement by introducing an auxiliary parameter
p representing the value of a variable. (Example: v1 = v2 <=> p = v2v1 = p).

As far as the errors of the action act2 are concerned, no solution is proposed. The shared events
decomposition Plugin is applied by partitioning the variables on two machines M1 and M2. This
decomposition makes it possible to identify some limitations and inconsistencies in the behaviour
of the resulting machines compared with that of the initial machine:

− The states changes of several variables in the same action is not decomposed (using the
substitution "becomes such that");

− The loss of information when guards are broken down;

− The disappearance of shared invariants;

− The generation of empty events in the sub-component;

− The need for an intermediate step of manual refinement before applying the decomposition.

For shared variables decomposition, event partitioning is always possible in order to generate
sub-components. However, this decomposition may be less important despite its potential: a large
number of shared variables may not be of much interest, particularly for refinements that become
more complex [Silva et al., 2011]. Due to the restriction of shared variables, it may be necessary
to proceed with preparatory steps of refinement to resolve complex predicates (invariants, guards,
axioms) or substitutions (actions) by separating the variables assigned to different sub-components.
If this step is not performed, these complex predicates/assignments are automatically marked by
the tool and the user intervention is required.
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Conclusions

The work presented in this thesis concerns the definition of a new approach for the decomposition
in Event-B method. Its objective is to propose a methodological and operational solution to decom-
pose a safety-critical system into several components with respect to the behaviour of the global
specification. This solution must allow the designer to specify all the characteristics considered as
relevant for the modelling of a system, but it must also offer the possibility of partitioning this
system over the steps of refinement.

The bibliographical study, carried out on the Event-B and the approaches of the decomposition
on the Event-B formal modelling, allowed us to identify the most cited and used techniques of mod-
ularisation in Event-B: decomposition by shared variables and decomposition by shared events. The
first one allows to partition the system functionality and the second one decomposes the behaviour
of the system. Although these approaches can split systems into multiple sub-systems, there exist
some limitations and some difficulties regarding the industrial need. For instance, the difficulty
of decomposing complex predicates and the need of several intermediate steps of refinement to
decompose can be encountered [Abrial, 2009,Kraibi et al., 2019b].

In the context of the PRESCOM project, we worked on a specific industrial context: railway
systems modelling. This application domain of safety-critical systems recognises the relevance of
the decomposition in the railway systems modelling. It identifies some needs to separate the key
features of the abstract specification system in a number of lower-level sub-systems. This separa-
tion is performed according to the intended purpose of the system modelling to get more readable
and manageable specifications.

The proposition presented in this thesis for the decomposition of safety-critical system can be
summarised by these four points:

− A decomposition method for partitioning systems into sub-systems, independently of any
Event-B tool;
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− A demonstration of the correctness of the proposed solution;

− A proposition of new additional needed proof obligations rules;

− An illustration of the Refinement Seen Split (RSS) method by its application on a concrete
signalling railway system case study validated by the domain experts.

All these points are described in detail below.

The first one concerns a decomposition method for partitioning systems. In fact, the decomposi-
tion approach that we propose in this thesis allows to partition a system into multiple sub-systems.
Our approach is based on the notion of refinement and the decomposing methods existing in the
literature. This is done following a specific strategy in order to split correctly the invariants, vari-
ables and events of the system. The strategy defines, in general, the different cases that can occur
in a model and the methodology to follow in each case. In addition, in order to keep the semantic
coherence of the system behaviour, a new clause named REFSEES is defined. This clause is a
semantic link between the sub-machines. It guarantees, to a certain sub-machine, the visibility of
the properties, variables and invariants of the other sub-machines resulting from the decomposition
of the same initial machine.

The second point tackles the correctness of the Refinement Seen Split (RSS) approach. In-
deed, the formalisation of the proposed approach of decomposition requires the insurance of its
correctness. As a consequence, we verify this correctness through a demonstration. Indeed, after
decomposing an initial machine M, the merge of the resulting sub-machines MRG constitutes a
refinement of the decomposed machine by construction. This is justified by the defined strategy to
follow. It allows to keep each element of the system somewhere in the sub-machines and the clause
REFSEES links between them. After this step of decomposition, each sub-machine can be refined
independently, and the number of refinements varies from a sub-machine to another regarding the
need. At a certain level of refinement, we demonstrate that the merge of the resulting sub-machines
MRG’ after the refinement constitutes a refinement of the first merge MRG. Consequently, we can
deduce that the set of the sub-machine MRG’ is a refinement of the initial machine M.

The third point addresses the definition of new additional proof obligation rules. Actually, the
proposition of our new method of decomposition in Event-B leads to an indispensable definition of
new proof obligations rules. Actually, we distinguish two types of proof obligations rules: local and
global. The local proof obligations rules are those defined, classically, by the Event-B language.
They are considered as internal to each sub-machine. The global proof obligations rules concern the
totality of the system. In other words, it takes into consideration the merge of the sub-machines. In
our work, we define new proof obligations rules for the global part. Despite the fact that a system
is correct, it is not guaranteed that it does not deadlock or run indefinitely while it was not the case
before. For example, a train that does not move is considered as safe, but it does not accomplish
its task: transportation of passengers or goods. In practice, since we are decomposing there is a
possibility to lose some behaviours of the decomposed system. Consequently, the deadlock freedom
and the variant proof obligations rules are defined in order to tackle this possibility.

The fourth point deals with the application of the approach on a railway case study. In order
to illustrate our contribution and compare it with the other studied methods of decomposition, we
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apply our approach on the railway case study. We notice that we can apply the Refinement Seen
Split (RSS) without any intermediate step of refinement in order to simplify the model. Besides,
there is a communication link between those sub-machines so they can exchange the visibility of
the variables states and invariants.

To summarise, refinement and decomposition are defined, in the literature, in such a way
that they can coexist in the formal modelling process in order to manage the system complexity
through multiple levels of abstraction. However, some existing approaches of decomposition do not
rely on the refinement correctness to define the decomposition and preserve the syntactic/semantic
coherence from the beginning to the lower level of modelling. In addition, the existing mechanisms
of decomposition are defined as solutions associated to a specific tool Rodin.

We believe that certain methodological aspects relating to the Event-B method that we used
such as the generation of proof obligations, the reconstruction of traces of events or the fact of
making two models merge while keeping the proofs already done on these models can be reused in
another model design in Event-B. It is independent on any existing tool.

Many methods have been proposed for the decomposition of the systems for Event-B. But there
are few complex case studies where these techniques have been applied. We believe we have made
a contribution in this direction with the decomposition of safety-critical systems.

Perspectives

The work presented in this thesis allows many research opportunities with innovative ideas that have
the potential to enrich the literature. The Refinement Seen Split (RSS) approach should be applied
in different types of projects for the purpose of its industrialisation and scaling up. The use of this
approach in other industrial sectors can also be discussed in a future work. The implementation
of the proposed decomposition technique, on the basis of the decomposition strategy, can facilitate
its application on the models, especially on the big and complex systems, as well as the generation
of their associated proof obligation rules.

Actually, in this work we provide a demonstration to justify that these proof obligations, when
they are discharged, guarantee that the composed/merged machines, resulting from the decompo-
sition using the RSS method, refine well and correctly the decomposed abstract machine. For a
better understanding of these proof obligations, it would be interesting for future works to establish
a formal demonstration and to reinforce this demonstration with the support tools of the method.
Thus, the formalisation of this approach using Event-B theories or within a proof assistant will
make it possible to obtain greater confidence in this approach.

This technique can also be automatised, in the form of plugin for instance. In addition, the
decomposition can be guided by its combination with other existing techniques in the literature.
These perspectives are described in details in the following.

A short-term perspective relates to the application of our approach of decomposition on other
case studies from other railway projects, in the Autonomous Train project for instance, or even
on specifications from different industrial areas. This allows a better understanding of the models.
Furthermore, it can help to identify some area of improvement of the RSS approach.

Moreover, another perspective concerns the implementation of the approach in Atelier B tool,
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including the new defined notions such as the clause REFSEES, as well as the integration of the
new defined proof obligations. Furthermore, after its implementation, it can be possible to au-
tomatise the decomposition. Indeed, the Event-B decomposition strategy, that we propose in this
thesis work, is proceeded manually on the models. So, it is planned to automatise the different
decomposition modelling stages in an Event-B tool like Atelier B.

In most cases, the input requirement documents, provided by clients, are not sufficient. It is
either lacking some details of the system behaviour or misunderstood by the model designers. So,
these documents should be rewritten, after analysis and understanding, into reference documents,
where everything is made clear and properly labelled for traceability. By nature, human is famil-
iarised, mostly, with documents that refers to the visual supports. Hence, the decomposition of
Event-B models can be guided by some graphical methods. Although they lack some semantics
definitions, it is a way to facilitate the design step thanks to their visual supports. These methods
can be an intermediate step and can be validated by the domain experts before the modelling of the
system and its sub-systems. For example, the model transformation from UML to Event-B have
been discussed in a previous work [Kraibi et al., 2019a]. This technique facilitates the behaviour
modelling on Event-B through some behavioural diagram on UML, for instance, it allows to model
the events sequencing.

Among the graphical methods that can be used in the future is the Combination with the
SysML-/KAOS method. In fact, SysML-KAOS is a requirement engineering approach based on
goals hierarchy [Tueno et al., 2017]. It represents the requirement document in the form of a graph.
the root is the principal requirement. The children of each node are more detailed requirements of
this node. These children can be linked with the parent by a specific link. This later determines
the sequence, conjunction or disjunction of the requirements.
In the context of our approach of decomposition, this technique can be used to easily structure and
gradually enrich the Event-B machine and its sub-machines. Actually, in parallel with our thesis
work, a formalisation of SysML/KAOS requirement through and Event-B system decomposition
have been discussed in [Tueno Fotso, 2019]. This formalisation is based on other decomposition
technique that uses the shared variable decomposition strategy and the notion of interfaces. How-
ever, the decomposition method proposed in this work face some difficulties, compared to our
approach. For example, the variables of an interface are defined as constants regarding the other
interfaces, so it is difficult to animate/model-check the formal model. This approach difficulties are
detailed in [Tueno Fotso, 2019].

Another perspective that can be considered is the Combination with the Events Refinement
Structure (ERS) Technique: ERS is an Event-B approach based on events [Butler, 2009a]. It is
also represented by a graph, but using the events of an Event-B model (see details in 2.2.1). This
method may orient the Event-B modular modelling with the help of its notions: AND, OR, dashed
link, etc.
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APPENDIX A

EVENT-B MODEL OF THE CASE STUDY:
TRAIN CONTROL SYSTEM

A.1 Abstract Machine M0: Introduction of Trains Movements
MACHINE M0
VARIABLES

front_trainA // position of the front of tainA
end_trainA // position of the end of tainA
front_trainB // position of the front of tainB
end_trainB // position of the end of tainB

INVARIANTS
inv1: front_trainA ∈ N
inv2: front_trainB ∈ N
inv3: end_trainA ∈ N
inv4: end_trainB ∈ N

// for each train, the position of the train end must be lower than the position
of the train front

inv5: end_trainA < front_trainA
inv6: end_trainB < front_trainB

// since trainA is following trainB, the position of trainA front must be lower
than the position of trainB end

inv7: front_trainA < end_trainB
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EVENTS
Initialisation

begin
act1:

front_trainA,
end_trainA,
front_trainB,
end_trainB :|
(

front_trainA′ ∈ N
∧ end_trainA′ ∈ N
∧ front_trainB′ ∈ N
∧ end_trainB′ ∈ N
∧ end_trainA′ < front_trainA′

∧ end_trainB′ < front_trainB′

∧ front_trainA′ < end_trainB′

)

end

// movement of the front of trainA
Event move_front_trainA 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: front_trainA+ step < end_trainB
then

act1: front_trainA := front_trainA+ step

end

// movement of the end of trainA
Event move_end_trainA 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
then

act1: end_trainA := end_trainA+ step

end
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// movement of the front of trainB
Event move_front_trainB 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

then
act1: front_trainB := front_trainB + step

end

// movement of the end of trainB
Event move_end_trainB 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
then

act1: end_trainB := end_trainB + step

end
END
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A.2 First Refinement: Definition of Blocks

A.2.1 Context of Blocks

CONTEXT Block
SETS

BlockState // a bloc state can be free or occupied
SUBSYS // track or train

CONSTANTS
Block
front_block // the front limit of the block
end_block // the rear limit of the block
next_block //the function defininf the next for each bloc
Free
Occupied
TRAIN
TRACK

AXIOMS
axm1: BlockState = {Free,Occupied}
axm2: SUBSY S = {TRAIN, TRACK}
axm3: Block = N // blocks are defined as Naturel
axm4: front_block ∈ Block→ N
axm5: end_block ∈ Block→ N
axm6: next_block = (λbk ·bk ∈ Block|bk + 1)

// the rear limit of a block is lower than its front limit
axm7:
∀bk ·(
bk ∈ Block
⇒ end_block(bk) < front_block(bk)
)

// the front limit of a block is equal to the rear limit of the next block
axm8:
∀b1, b2·(
b1 ∈ Block
∧ b2 ∈ Block
∧ next_block(b1) = b2

⇒ front_block(b1) = end_block(b2)
)

axm9: 〈theorem〉 ran(next_block) = Block \ {0}
END
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A.2.2 Refinement Machine: M1

MACHINE M1
REFINES M0
SEES Block
VARIABLES

front_trainA
front_trainB
end_trainA
end_trainB
fst_tAblock // the block occupied by the head of trainA
lst_tAblock // the block occupied by the end of trainA
fst_tBblock // the block occupied by the head of trainB
lst_tBblock // the block occupied by the end of trainB
block_state // a function that gives the state of each block
next_turn // this variable allows to identify which events should be triggered:

the trains events or the track events
INVARIANTS

inv1: fst_tAblock ∈ Block
inv2: lst_tAblock ∈ Block
inv3: fst_tBblock ∈ Block
inv4: lst_tBblock ∈ Block
inv5: block_state ∈ Block→BlockState

inv6: next_turn ∈ SUBSY S

// for each train, the occupied block by the end of the train must be behind
or equal to the occupied block by the front of the train

inv7: lst_tAblock <= fst_tAblock
inv8: lst_tBblock <= fst_tBblock

// since trainA is following trainB, the block occupied by trainA front must
be behind the block occupied by trainB end

inv9: fst_tAblock < lst_tBblock

// the end of trainB must be limited by the end of its last occupied block
inv10: end_block(lst_tBblock) <= end_trainB
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// when it is the turn of the trains movements, trainB shouldn’t be on the
released blocks behind it

inv11:
∀bk ·(
bk ∈ Block
∧ next_turn = TRAIN

∧ block_state(bk) = Free

⇒ bk 6= lst_tBblock)
EVENTS
Initialisation

begin
act1:

front_trainA,
front_trainB,
end_trainA,
end_trainB,
fst_tAblock,
lst_tAblock,
fst_tBblock,
lst_tBblock,
block_state,
next_turn :| (
front_trainA′ ∈ N
∧ front_trainB′ ∈ N
∧ end_trainA′ ∈ N
∧ end_trainB′ ∈ N
∧ end_trainA′ < front_trainA′

∧ end_trainB′ < front_trainB′

∧ front_trainA′ < end_trainB′

∧ block_state′ ∈ Block→BlockState

∧ fst_tAblock′ ∈ Block
∧ lst_tAblock′ ∈ Block
∧ fst_tBblock′ ∈ Block
∧ lst_tBblock′ ∈ Block
∧ next_turn′ ∈ SUBSY S
∧ lst_tAblock′ <= fst_tAblock′

∧ lst_tBblock′ <= fst_tBblock′

∧ fst_tAblock′ < lst_tBblock′

∧ end_block(lst_tBblock′) <= end_trainB′

∧ ∀bk ·(
bk ∈ Block
∧ next_turn′ = TRAIN

∧ block_state′(bk) = Free

⇒ bk 6= lst_tBblock′))
end
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////////////////////////////////////////////////////////////////////////
///////////////////////// Train Behavior ////////////////////////////////
///////////////////////////////////////////////////////////////////////

// the movement of trainA front inside a block (without occupying any new block)
Event move_front_trainA 〈ordinary〉 =̂
refines move_front_trainA

any
step

where
grd1: step ∈ N1

// the front of trainA must not overstep the front limit of the block
occupied by the head of this train

grd2: front_trainA+ step < front_block(fst_tAblock)
grd3: next_turn = TRAIN

then
act1: front_trainA := front_trainA+ step

act2: next_turn := TRACK

end

// the movement of trainA end inside a block (without freeing any block)
Event move_end_trainA 〈ordinary〉 =̂
refines move_end_trainA

any
step

where
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
// the end of trainA must not overstep the front limit of the block
occupied by the tail of this train

grd3: end_trainA+ step < front_block(lst_tAblock)
grd4: next_turn = TRAIN

then
act1: end_trainA := end_trainA+ step

act2: next_turn := TRACK

end

// block freeing by trainA
Event free_tAblock 〈ordinary〉 =̂
refines move_end_trainA

any
step

where
grd1: step ∈ N1
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grd2: end_trainA+ step < front_trainA
// the end of trainA must overstep the front limit of the block
occupied by the tail of this train

grd3: front_block(lst_tAblock) < end_trainA+ step

// the new position of trainA end must be inside the next block
grd4: end_trainA+ step < front_block(next_block(lst_tAblock))
grd5: next_block(lst_tAblock) <= fst_tAblock
grd6: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: end_trainA := end_trainA+ step

act3: lst_tAblock := next_block(lst_tAblock)
end

// block occupying by trainA
Event Enter_tAblock 〈ordinary〉 =̂
refines move_front_trainA

any
step

where
grd1: step ∈ N1

// the block in front of trainA must be free
grd2: block_state(next_block(fst_tAblock)) = Free

// the new position of trainA front must be inside the new occupied block
grd3: front_block(fst_tAblock) < front_trainA+ step

grd4: front_trainA+ step < front_block(next_block(fst_tAblock))
grd5: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: front_trainA := front_trainA+ step

act3: fst_tAblock := next_block(fst_tAblock)
end

// the movement of trainB front inside a block (without occupying any new block)
Event move_front_trainB 〈ordinary〉 =̂
refines move_front_trainB

any
step

where
grd1: step ∈ N1

// the front of trainB must not overstep the front limit of the block
occupied by the head of this train

grd2: front_trainB + step < front_block(fst_tBblock)
grd3: next_turn = TRAIN
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then
act1: front_trainB := front_trainB + step

act2: next_turn := TRACK

end

// the movement of trainB end inside a block (without freeing any block)
Event move_end_trainB 〈ordinary〉 =̂
refines move_end_trainB

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
// the end of trainB must not overstep the front limit of the block
occupied by the tail of this train

grd3: end_trainB + step < front_block(lst_tBblock)
grd4: next_turn = TRAIN

then
act1: end_trainB := end_trainB + step

act2: next_turn := TRACK

end

// block freeing by trainB
Event free_tBblock 〈ordinary〉 =̂
refines move_end_trainB

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
// the end of trainB must overstep the front limit of the block
occupied by the tail of this train

grd3: front_block(lst_tBblock) < end_trainB + step

// the new position of trainB end must be inside the next block
grd4: end_trainB + step < front_block(next_block(lst_tBblock))
grd5: next_block(lst_tBblock) <= fst_tBblock
grd6: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: end_trainB := end_trainB + step

act3: lst_tBblock := next_block(lst_tBblock)
end
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// block occupying by trainB
Event Enter_tBblock 〈ordinary〉 =̂
refines move_front_trainB

any
step

where
grd1: step ∈ N1

// the block in front of trainB must be free
grd2: block_state(next_block(fst_tBblock)) = Free

// the new position of trainB front must be inside the new occupied block
grd3: front_block(fst_tBblock) < front_trainB + step

grd4: front_trainB + step < front_block(next_block(fst_tBblock))
grd5: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: front_trainB := front_trainB + step

act3: fst_tBblock := next_block(fst_tBblock)
end

////////////////////////////////////////////////////////////////////////
//////////////////////// Track Behavior /////////////////////////////////
///////////////////////////////////////////////////////////////////////

// block state changes
Event TRACKevent 〈ordinary〉 =̂

when
grd1: next_turn = TRACK

then
act1: next_turn := TRAIN

act2: block_state := (Block × {Free}) C− ((lst_tAblock .. fst_tAblock ∪ lst_tBblock ..
fst_tBblock)× {Occupied})

end
END

A.2.3 Animation of the Refinement Machine
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ProB File for the Animation
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JSON File for the Animation
1   {
2   "svg":"Track.svg",
3   "items":[
4   
5   {
6   "repeat": ["1","2"],
7   "id":"train_polygon%0",
8   "attr":"points",
9   "value":"svg_train(real(end_train%0), real(1+front_train%0-end_train%0) , 4.0, 

1.0, 3.0)",
10   "comment":"show train position using a slanted polygon"
11   },
12   
13   {
14   "id":"track_polyline",
15   "attr":"points",
16   "value":"svg_axis(0..25 ,4.0,100.0,1.0)",
17   "comment":"show ticks for Track units"
18   },
19   {
20   "id":"ttd_polyline",
21   "attr":"points",
22   "value":"svg_axis({0} \\/ ran(%tt.(tt:0..12|1+end_block(tt))),4.0,100.0,2.0)",
23   "comment":"show ticks for TTD Limits"
24   },
25   {
26   "id":"occupied_ttd_polygon",
27   "attr":"points",
28   "value":"svg_set_polygon((end_block\\/(end_block;succ))[(0..12 <| 

block_state)~[{Occupied}]],4.0,100.0,2.0)",
29   "comment":"show occupied TTD zones"
30   },
31   {
32   "id":"cleared_ttd_polygon",
33   "attr":"points",
34   "value":"svg_set_polygon((end_block\\/(end_block;succ))[(1..12 <| 

block_state)~[{Free}]],4.0,100.0,2.0)",
35   "comment":"show free TTD zones"
36   }
37   ],
38   "events":[
39   ]
40   }
41   

Figure A.1: JSON File for the Animation
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SVG File for the Animation
1   <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2   <svg
3   xmlns="http://www.w3.org/2000/svg"
4   width="750"
5   height="300"
6   viewBox="0 5 150 65"
7   version="1.1"
8   id="svg5154">
9   

10   <polygon id = "train_polygon1"
11   points="0,0 100,0"
12   style="stroke-width: 0.3"
13   stroke="black" fill="lightgray"
14   transform="translate(10,16.8)" />
15   <polygon id = "train_polygon2"
16   points="0,0 100,0"
17   style="stroke-width: 0.3"
18   stroke="black" fill="lightgray"
19   transform="translate(10,16.8)" />
20   
21   <polygon id = "track_polyline"
22   points="0,0 1,0, 1,1 1,0 50,0 50,1 50,0 100,0"
23   style="stroke-width: 0.3"
24   stroke="black" fill="none"
25   transform="translate(10,20.5)" />
26   <polygon id = "ttd_polyline"
27   points="0,0 100,0"
28   style="stroke-width: 0.3"
29   stroke="gray" fill="none"
30   transform="translate(10,22.5)" />
31   
32   
33   <rect id = "ttd_rect"
34   style="stroke-width: 0.1"
35   width="100" height="2" x="0" y="0"
36   stroke="black" fill="none"
37   transform="translate(10,23)" />
38   <polygon id = "occupied_ttd_polygon"
39   points="0,0 0,2 10,2 10,0 70,0 70,1 90,1 90,0"
40   stroke="none" fill="red"
41   opacity="0.70"
42   style="stroke-width: 0.2"
43   transform="translate(10,23)" />
44   <polygon id = "cleared_ttd_polygon"
45   points="0,0 10,2 20,2 20,0 90,0 90,1 100,1 100,0"
46   stroke="none" fill="blue"
47   opacity="0.70"
48   style="stroke-width: 0.2"
49   transform="translate(10,23)" />
50   
51   <text text-align="left" x="5" y="41"
52   font-size ="2" fill="gray" font-family="sans-serif">
53   <tspan x="15" dy = "0.6em" id="visb_debug_messages">.TXT</tspan>
54   </text>
55   </svg>
56   

Figure A.2: SVG File for the Animation
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Animation on VisB
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A.3 Second Refinement: Definition of Signals

A.3.1 Context of Signals

CONTEXT Signal
EXTENDS Block
SETS

SignalState // a signal can be red or green
CONSTANTS

Signal
signal_block // each signal is associated to one block
red
green

AXIOMS
axm1: SignalState = {red, green}
axm2: Signal = N

// each signal is associated to one block: signal i ⇔ block i
axm3: signal_block = (λbk ·bk ∈ Block|bk)

END
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A.3.2 Refinement Machine: M2

MACHINE M2
REFINES M1
SEES Signal
VARIABLES

signal_state // variable of the signal state
front_trainA
front_trainB
end_trainA
end_trainB
fst_tAblock
lst_tAblock
fst_tBblock
lst_tBblock
block_state
next_turn

INVARIANTS
inv1: signal_state ∈ Signal→ SignalState // each signal can be red or green
inv2:
∀bk ·(
bk ∈ Block
∧ next_turn = TRAIN

∧ signal_state(signal_block(bk)) = green

⇒ block_state(bk) = Free)

EVENTS
Initialisation

begin
act1:

signal_state,
front_trainA,
front_trainB,
end_trainA,
end_trainB,
fst_tAblock,
lst_tAblock,
fst_tBblock,
lst_tBblock,
block_state,
next_turn :| (
front_trainA′ ∈ N
∧ front_trainB′ ∈ N
∧ end_trainA′ ∈ N
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∧ end_trainB′ ∈ N
∧ end_trainA′ < front_trainA′

∧ end_trainB′ < front_trainB′

∧ front_trainA′ < end_trainB′

∧ block_state′ ∈ Block → BlockState

∧ fst_tAblock′ ∈ Block
∧ lst_tAblock′ ∈ Block
∧ fst_tBblock′ ∈ Block
∧ lst_tBblock′ ∈ Block
∧ next_turn′ ∈ SUBSY S
∧ lst_tAblock′ <= fst_tAblock′

∧ lst_tBblock′ <= fst_tBblock′

∧ fst_tAblock′ < lst_tBblock′

∧ end_block(lst_tBblock′) <= end_trainB′

∧ signal_state′ ∈ Signal→ SignalState

∧ ∀bk ·(
bk ∈ Block
∧ next_turn′ = TRAIN

∧ signal_state′(signal_block(bk)) = green

⇒ block_state′(bk) = Free))

end
////////////////////////////////////////////////////////////////////////
///////////////////////// Train Behavior ////////////////////////////////
///////////////////////////////////////////////////////////////////////

Event move_front_trainA 〈ordinary〉 =̂
refines move_front_trainA

any
step

where
grd1: step ∈ N1

grd2: front_trainA+ step < front_block(fst_tAblock)
grd3: next_turn = TRAIN

then
act1: front_trainA := front_trainA+ step

act2: next_turn := TRACK

end
Event move_end_trainA 〈ordinary〉 =̂
refines move_end_trainA

any
step

where
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: end_trainA+ step < front_block(lst_tAblock)
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grd4: next_turn = TRAIN

then
act1: end_trainA := end_trainA+ step

act2: next_turn := TRACK

end
Event free_tAblock 〈ordinary〉 =̂
refines free_tAblock

any
step

where
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: front_block(lst_tAblock) < end_trainA+ step

grd4: end_trainA+ step < front_block(next_block(lst_tAblock))
grd5: next_block(lst_tAblock) <= fst_tAblock
grd6: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: end_trainA := end_trainA+ step

act3: lst_tAblock := next_block(lst_tAblock)
end

Event Enter_tAblock 〈ordinary〉 =̂
refines Enter_tAblock

any
step

where
grd1: step ∈ N1

grd2: signal_state(next_block(fst_tAblock)) = green

grd3: front_block(fst_tAblock) < front_trainA+ step

grd4: front_trainA+ step < front_block(next_block(fst_tAblock))
grd5: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: front_trainA := front_trainA+ step

act3: fst_tAblock := next_block(fst_tAblock)
end

Event move_front_trainB 〈ordinary〉 =̂
refines move_front_trainB

any
step

where
grd1: step ∈ N1

grd2: front_trainB + step < front_block(fst_tBblock)
grd3: next_turn = TRAIN
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then
act1: front_trainB := front_trainB + step

act2: next_turn := TRACK

end
Event move_end_trainB 〈ordinary〉 =̂
refines move_end_trainB

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: end_trainB + step < front_block(lst_tBblock)
grd4: next_turn = TRAIN

then
act1: end_trainB := end_trainB + step

act2: next_turn := TRACK

end
Event free_tBblock 〈ordinary〉 =̂
refines free_tBblock

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: front_block(lst_tBblock) < end_trainB + step

grd4: end_trainB + step < front_block(next_block(lst_tBblock))
grd5: next_block(lst_tBblock) <= fst_tBblock
grd6: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: end_trainB := end_trainB + step

act3: lst_tBblock := next_block(lst_tBblock)
end

Event Enter_tBblock 〈ordinary〉 =̂
refines Enter_tBblock

any
step

where
grd1: step ∈ N1

grd2: signal_state(next_block(fst_tBblock)) = green

grd3: front_block(fst_tBblock) < front_trainB + step

grd4: front_trainB + step < front_block(next_block(fst_tBblock))
grd5: next_turn = TRAIN

then
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act1: next_turn := TRACK

act2: front_trainB := front_trainB + step

act3: fst_tBblock := next_block(fst_tBblock)
end

////////////////////////////////////////////////////////////////////////
//////////////////////// Track and Signals Behavior /////////////////////////
///////////////////////////////////////////////////////////////////////

// block and signals states changes
Event TRACKevent 〈ordinary〉 =̂
refines TRACKevent

when
grd1: next_turn = TRACK

then
act1: next_turn := TRAIN

act2: block_state := (Block × {Free}) C− ((lst_tAblock .. fst_tAblock ∪ lst_tBblock ..
fst_tBblock)× {Occupied})
// signals states changes

act3: signal_state := (Signal × {green})C− ((signal_block(lst_tAblock) .. signal_block
(fst_tAblock) ∪ signal_block(lst_tBblock) .. signal_block(fst_tBblock))× {red})

end
END



APPENDIX B

DECOMPOSITION OF THE CASE STUDY
USING A-STYLE

B.1 Additional Refinement Step of the Case Study
MACHINE M3
REFINES M2
SEES Signal
VARIABLES

signal_state
front_trainA
front_trainB
end_trainA
end_trainB
fst_tAblock
lst_tAblock
fst_tBblock
lst_tBblock
block_state

// definition of two new variables
for the refinement of the shared variable next_turn

ww
tt

INVARIANTS
inv1: ww ∈ {0, 1} // variables typing
inv2: tt ∈ {0, 1} // variables typing

153
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// refinement of next_turn
inv3: ww = tt⇒ next_turn = TRAIN

inv4: ww 6= tt⇒ next_turn = TRACK

EVENTS
Initialisation

begin
act1: ww := 0

act2: tt := 1

act3:
signal_state,
front_trainA,
front_trainB,
end_trainA,
end_trainB,
fst_tAblock,
lst_tAblock,
fst_tBblock,
lst_tBblock,
block_state :| (
front_trainA′ ∈ N
∧ front_trainB′ ∈ N
∧ end_trainA′ ∈ N
∧ end_trainB′ ∈ N
∧ end_trainA′ < front_trainA′

∧ end_trainB′ < front_trainB′

∧ front_trainA′ < end_trainB′

∧ block_state′ ∈ Block→BlockState

∧ fst_tAblock′ ∈ Block
∧ lst_tAblock′ ∈ Block
∧ fst_tBblock′ ∈ Block
∧ lst_tBblock′ ∈ Block
∧ lst_tAblock′ <= fst_tAblock′

∧ lst_tBblock′ <= fst_tBblock′

∧ fst_tAblock′ < lst_tBblock′

∧ end_block(lst_tBblock′) <= end_trainB′

∧ signal_state′ ∈ Signal→ SignalState

)

end
Event move_front_trainA 〈ordinary〉 =̂
refines move_front_trainA

any
step

where
grd1: step ∈ N1

grd2: front_trainA+ step < front_block(fst_tAblock)
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grd3: ww = tt

then
act1: front_trainA := front_trainA+ step

act2: tt := 1− tt
end

Event move_end_trainA 〈ordinary〉 =̂
refines move_end_trainA

any
step

where
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: end_trainA+ step < front_block(lst_tAblock)
grd4: ww = tt

then
act1: end_trainA := end_trainA+ step

act2: tt := 1− tt
end

Event free_tAblock 〈ordinary〉 =̂
refines free_tAblock

any
step

where
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: front_block(lst_tAblock) < end_trainA+ step

grd4: end_trainA+ step < front_block(next_block(lst_tAblock))
grd5: next_block(lst_tAblock) <= fst_tAblock
grd6: ww = tt

then
act1: tt := 1− tt
act2: end_trainA := end_trainA+ step

act3: lst_tAblock := next_block(lst_tAblock)
end

Event Enter_tAblock 〈ordinary〉 =̂
refines Enter_tAblock

any
step

where
grd1: step ∈ N1

grd2: block_state(next_block(fst_tAblock)) = Free

grd3: front_block(fst_tAblock) < front_trainA+ step

grd4: front_trainA+ step < front_block(next_block(fst_tAblock))
grd5: ww = tt
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then
act1: tt := 1− tt
act2: front_trainA := front_trainA+ step

act3: fst_tAblock := next_block(fst_tAblock)
end

Event move_front_trainB 〈ordinary〉 =̂
refines move_front_trainB

any
step

where
grd1: step ∈ N1

grd2: front_trainB + step < front_block(fst_tBblock)
grd3: ww = tt

then
act1: front_trainB := front_trainB + step

act2: tt := 1− tt
end

Event move_end_trainB 〈ordinary〉 =̂
refines move_end_trainB

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: end_trainB + step < front_block(lst_tBblock)
grd4: ww = tt

then
act1: end_trainB := end_trainB + step

act2: tt := 1− tt
end

Event free_tBblock 〈ordinary〉 =̂
refines free_tBblock

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: front_block(lst_tBblock) < end_trainB + step

grd4: end_trainB + step < front_block(next_block(lst_tBblock))
grd5: next_block(lst_tBblock) <= fst_tBblock
grd6: ww = tt

then
act1: tt := 1− tt
act2: end_trainB := end_trainB + step
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act3: lst_tBblock := next_block(lst_tBblock)
end

Event Enter_tBblock 〈ordinary〉 =̂
refines Enter_tBblock

any
step

where
grd1: step ∈ N1

grd2: block_state(next_block(fst_tBblock)) = Free

grd3: front_block(fst_tBblock) < front_trainB + step

grd4: front_trainB + step < front_block(next_block(fst_tBblock))
grd5: ww = tt

then
act1: tt := 1− tt
act2: front_trainB := front_trainB + step

act3: fst_tBblock := next_block(fst_tBblock)
end

// block and signals states changes
Event TRACKevent 〈ordinary〉 =̂
refines TRACKevent

when
grd1: ww 6= tt

then
act1: ww := 1− ww
act2: block_state := (Block × {Free}) C− ((lst_tAblock .. fst_tAblock ∪ lst_tBblock ..

fst_tBblock)× {Occupied})
// signals states changes

act3: signal_state := (Signal × {green})C− ((signal_block(lst_tAblock) .. signal_block
(fst_tAblock) ∪ signal_block(lst_tBblock) .. signal_block(fst_tB2block))× {red})

end
END
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B.2 Application of the A-style Plugin

B.2.1 First Sub-system: Train

MACHINE M3_Astyle_train
SEES Signal
VARIABLES

ww Shared variable, DO NOT REFINE
tt Shared variable, DO NOT REFINE
end_trainA Private variable
front_trainA Private variable
front_trainB Private variable
end_trainB Private variable
lst_tAblock Shared variable, DO NOT REFINE
fst_tAblock Shared variable, DO NOT REFINE
lst_tBblock Shared variable, DO NOT REFINE
fst_tBblock Shared variable, DO NOT REFINE
signal_state Shared variable, DO NOT REFINE

INVARIANTS
typing_ww: 〈theorem〉 ww ∈ Z
typing_tt: 〈theorem〉 tt ∈ Z
typing_end_trainA: 〈theorem〉 end_trainA ∈ Z
typing_front_trainA: 〈theorem〉 front_trainA ∈ Z
typing_end_trainB: 〈theorem〉 end_trainB ∈ Z
typing_lst_tAblock: 〈theorem〉 lst_tAblock ∈ Z
typing_fst_tAblock: 〈theorem〉 fst_tAblock ∈ Z
typing_signal_state: 〈theorem〉 signal_state ∈ P (Z× SignalState)
typing_lst_tBblock: 〈theorem〉 lst_tBblock ∈ Z
typing_fst_tBblock: 〈theorem〉 fst_tBblock ∈ Z
typing_front_trainB: 〈theorem〉 front_trainB ∈ Z
Modele00_inv1: front_trainA ∈ N
Modele00_inv2: front_trainB ∈ N
Modele00_inv3: end_trainA ∈ N
Modele00_inv4: end_trainB ∈ N
Modele00_inv5: end_trainA < front_trainA
Modele00_inv6: end_trainB < front_trainB
Modele00_inv7: front_trainA < end_trainB
Modele00_r1_inv1: fst_tAblock ∈ Block
Modele00_r1_inv2: lst_tAblock ∈ Block
Modele00_r1_inv3: fst_tBblock ∈ Block
Modele00_r1_inv4: lst_tBblock ∈ Block
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Modele00_r1_inv7: lst_tAblock ≤ fst_tAblock
Modele00_r1_inv8: lst_tBblock ≤ fst_tBblock
Modele00_r1_inv9: fst_tAblock < lst_tBblock
Modele00_r1_inv10: end_block(lst_tBblock) ≤ end_trainB
Modele00_r22_inv1: signal_state ∈ Signal→ SignalState

M3_inv1: ww ∈ {0, 1}
M3_inv2: tt ∈ {0, 1}

EVENTS
Initialisation

begin
act1: ww := 0

act2: tt := 1

act3:
signal_state,
front_trainA,
front_trainB,
end_trainA,
end_trainB,
fst_tAblock,
lst_tAblock,
fst_tBblock,
lst_tBblock :|
(∃block_state′ ·front_trainA′ ∈ N
∧ front_trainB′ ∈ N
∧ end_trainA′ ∈ N
∧ end_trainB′ ∈ N
∧ end_trainA′ < front_trainA′

∧ end_trainB′ < front_trainB′

∧ front_trainA′ < end_trainB′

∧ block_state′ ∈ Block→BlockState

∧ fst_tAblock′ ∈ Block
∧ lst_tAblock′ ∈ Block
∧ fst_tBblock′ ∈ Block
∧ lst_tBblock′ ∈ Block
∧ lst_tAblock′ ≤ fst_tAblock′

∧ lst_tBblock′ ≤ fst_tBblock′

∧ fst_tAblock′ < lst_tBblock′

∧ end_block(lst_tBblock′) ≤ end_trainB′

∧ signal_state′ ∈ Signal→ SignalState)
end

Event move_front_trainA 〈ordinary〉 =̂
any

step
where
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grd1: step ∈ N1

grd2: front_trainA+ step < front_block(fst_tAblock)
grd3: ww = tt

then
act1: front_trainA := front_trainA+ step

act2: tt := 1− tt
end

Event move_end_trainA 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: end_trainA+ step < front_block(lst_tAblock)
grd4: ww = tt

then
act1: end_trainA := end_trainA+ step

act2: tt := 1− tt
end

Event free_tAblock 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: front_block(lst_tAblock) < end_trainA+ step

grd4: end_trainA+ step < front_block(next_block(lst_tAblock))
grd5: next_block(lst_tAblock) ≤ fst_tAblock
grd6: ww = tt

then
act1: tt := 1− tt
act2: end_trainA := end_trainA+ step

act3: lst_tAblock := next_block(lst_tAblock)
end

Event Enter_tAblock 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: signal_state(next_block(fst_tAblock)) = green

grd3: front_block(fst_tAblock) < front_trainA+ step

grd4: front_trainA+ step < front_block(next_block(fst_tAblock))
grd5: ww = tt

then
act1: tt := 1− tt
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act2: front_trainA := front_trainA+ step

act3: fst_tAblock := next_block(fst_tAblock)
end

Event move_front_trainB 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: front_trainB + step < front_block(fst_tBblock)
grd3: ww = tt

then
act1: front_trainB := front_trainB + step

act2: tt := 1− tt
end

Event move_end_trainB 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: end_trainB + step < front_block(lst_tBblock)
grd4: ww = tt

then
act1: end_trainB := end_trainB + step

act2: tt := 1− tt
end

Event free_tBblock 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: front_block(lst_tBblock) < end_trainB + step

grd4: end_trainB + step < front_block(next_block(lst_tBblock))
grd5: next_block(lst_tBblock) ≤ fst_tBblock
grd6: ww = tt

then
act1: tt := 1− tt
act2: end_trainB := end_trainB + step

act3: lst_tBblock := next_block(lst_tBblock)
end

Event Enter_tBblock 〈ordinary〉 =̂
any

step
where
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grd1: step ∈ N1

grd2: signal_state(next_block(fst_tBblock)) = green

grd3: front_block(fst_tBblock) < front_trainB + step

grd4: front_trainB + step < front_block(next_block(fst_tBblock))
grd5: ww = tt

then
act1: tt := 1− tt
act2: front_trainB := front_trainB + step

act3: fst_tBblock := next_block(fst_tBblock)
end

Event TRACKevent 〈ordinary〉 =̂
External event, DO NOT REFINE
when

grd1: ww 6= tt

then
act1: ww := 1− ww
act3: signal_state := (Signal×{green})C−((signal_block(lst_tAblock)..signal_block(fst_tAblock)∪

signal_block(lst_tBblock) .. signal_block(fst_tBblock))× {red})
end

END



163 APPENDIX B. DECOMPOSITION OF THE CASE STUDY USING A-STYLE

B.2.2 Second Sub-system: Track

MACHINE M3_Astyle_track
SEES Signal
VARIABLES

ww Shared variable, DO NOT REFINE
tt Shared variable, DO NOT REFINE
lst_tAblock Shared variable, DO NOT REFINE
fst_tAblock Shared variable, DO NOT REFINE
signal_state Shared variable, DO NOT REFINE
block_state Private variable
lst_tBblock Shared variable, DO NOT REFINE
fst_tBblock Shared variable, DO NOT REFINE

INVARIANTS
typing_ww: 〈theorem〉 ww ∈ Z
typing_tt: 〈theorem〉 tt ∈ Z
typing_lst_tAblock: 〈theorem〉 lst_tAblock ∈ Z
typing_fst_tAblock: 〈theorem〉 fst_tAblock ∈ Z
typing_signal_state: 〈theorem〉 signal_state ∈ P (Z× SignalState)
typing_block_state: 〈theorem〉 block_state ∈ P (Z×BlockState)
typing_lst_tBblock: 〈theorem〉 lst_tBblock ∈ Z
typing_fst_tBblock: 〈theorem〉 fst_tBblock ∈ Z
Modele00_r1_inv1: fst_tAblock ∈ Block
Modele00_r1_inv2: lst_tAblock ∈ Block
Modele00_r1_inv3: fst_tBblock ∈ Block
Modele00_r1_inv4: lst_tBblock ∈ Block
Modele00_r1_inv5: block_state ∈ Block→BlockState

Modele00_r1_inv7: lst_tAblock ≤ fst_tAblock
Modele00_r1_inv8: lst_tBblock ≤ fst_tBblock
Modele00_r1_inv9: fst_tAblock < lst_tBblock
WD_Modele00_r1_inv10: 〈theorem〉 lst_tBblock ∈ dom(end_block)
WD_Modele00_r1_inv10_1: 〈theorem〉 end_block ∈ Z 7→ Z
Modele00_r22_inv1: signal_state ∈ Signal→ SignalState

M3_inv1: ww ∈ {0, 1}
M3_inv2: tt ∈ {0, 1}

EVENTS
Initialisation

begin
act1: ww := 0

act2: tt := 1
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act3:
signal_state,
fst_tAblock,
lst_tAblock,
fst_tBblock,
lst_tBblock,
block_state :| (
∃front_trainA′, front_trainB′, end_trainA′, end_trainB′ ·front_trainA′ ∈ N
∧ front_trainB′ ∈ N
∧ end_trainA′ ∈ N
∧ end_trainB′ ∈ N
∧ end_trainA′ < front_trainA′

∧ end_trainB′ < front_trainB′

∧ front_trainA′ < end_trainB′

∧ block_state′ ∈ Block→BlockState

∧ fst_tAblock′ ∈ Block
∧ lst_tAblock′ ∈ Block
∧ fst_tBblock′ ∈ Block
∧ lst_tBblock′ ∈ Block
∧ lst_tAblock′ ≤ fst_tAblock′

∧ lst_tBblock′ ≤ fst_tBblock′

∧ fst_tAblock′ < lst_tBblock′

∧ end_block(lst_tBblock′) ≤ end_trainB′

∧ signal_state′ ∈ Signal→ SignalState)
end

Event move_front_trainA 〈ordinary〉 =̂
External event, DO NOT REFINE
any

step
front_trainA

where
typing_front_trainA: 〈theorem〉 front_trainA ∈ Z
grd1: step ∈ N1

grd2: front_trainA+ step < front_block(fst_tAblock)
grd3: ww = tt

then
act2: tt := 1− tt

end
Event move_end_trainA 〈ordinary〉 =̂

External event, DO NOT REFINE
any

step
end_trainA
front_trainA

where
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typing_end_trainA: 〈theorem〉 end_trainA ∈ Z
typing_front_trainA: 〈theorem〉 front_trainA ∈ Z
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: end_trainA+ step < front_block(lst_tAblock)
grd4: ww = tt

then
act2: tt := 1− tt

end
Event free_tAblock 〈ordinary〉 =̂

External event, DO NOT REFINE
any

step
end_trainA
front_trainA

where
typing_end_trainA: 〈theorem〉 end_trainA ∈ Z
typing_front_trainA: 〈theorem〉 front_trainA ∈ Z
grd1: step ∈ N1

grd2: end_trainA+ step < front_trainA
grd3: front_block(lst_tAblock) < end_trainA+ step

grd4: end_trainA+ step < front_block(next_block(lst_tAblock))
grd5: next_block(lst_tAblock) ≤ fst_tAblock
grd6: ww = tt

then
act1: tt := 1− tt
act3: lst_tAblock := next_block(lst_tAblock)

end
Event Enter_tAblock 〈ordinary〉 =̂

External event, DO NOT REFINE
any

step
front_trainA

where
typing_front_trainA: 〈theorem〉 front_trainA ∈ Z
grd1: step ∈ N1

grd2: signal_state(next_block(fst_tAblock)) = green

grd3: front_block(fst_tAblock) < front_trainA+ step

grd4: front_trainA+ step < front_block(next_block(fst_tAblock))
grd5: ww = tt

then
act1: tt := 1− tt
act3: fst_tAblock := next_block(fst_tAblock)

end
Event move_front_trainB 〈ordinary〉 =̂

External event, DO NOT REFINE
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any
step
front_trainB

where
typing_front_trainB: 〈theorem〉 front_trainB ∈ Z
grd1: step ∈ N1

grd2: front_trainB + step < front_block(fst_tBblock)
grd3: ww = tt

then
act2: tt := 1− tt

end
Event move_end_trainB 〈ordinary〉 =̂

External event, DO NOT REFINE
any

step
end_trainB
front_trainB

where
typing_end_trainB: 〈theorem〉 end_trainB ∈ Z
typing_front_trainB: 〈theorem〉 front_trainB ∈ Z
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: end_trainB + step < front_block(lst_tBblock)
grd4: ww = tt

then
act2: tt := 1− tt

end
Event free_tBblock 〈ordinary〉 =̂

External event, DO NOT REFINE
any

step
end_trainB
front_trainB

where
typing_end_trainB: 〈theorem〉 end_trainB ∈ Z
typing_front_trainB: 〈theorem〉 front_trainB ∈ Z
grd1: step ∈ N1

grd2: end_trainB + step < front_trainB
grd3: front_block(lst_tBblock) < end_trainB + step

grd4: end_trainB + step < front_block(next_block(lst_tBblock))
grd5: next_block(lst_tBblock) ≤ fst_tBblock
grd6: ww = tt

then
act1: tt := 1− tt
act3: lst_tBblock := next_block(lst_tBblock)
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end
Event Enter_tBblock 〈ordinary〉 =̂

External event, DO NOT REFINE
any

step
front_trainB

where
typing_front_trainB: 〈theorem〉 front_trainB ∈ Z
grd1: step ∈ N1

grd2: signal_state(next_block(fst_tBblock)) = green

grd3: front_block(fst_tBblock) < front_trainB + step

grd4: front_trainB + step < front_block(next_block(fst_tBblock))
grd5: ww = tt

then
act1: tt := 1− tt
act3: fst_tBblock := next_block(fst_tBblock)

end
Event TRACKevent 〈ordinary〉 =̂

when
grd1: ww 6= tt

then
act1: ww := 1− ww
act2: block_state := (Block × {Free}) C− ((lst_tAblock .. fst_tAblock ∪ lst_tBblock ..

fst_tBblock)× {Occupied})
act3: signal_state := (Signal×{green})C−((signal_block(lst_tAblock)..signal_block(fst_tAblock)∪

signal_block(lst_tBblock) .. signal_block(fst_tBblock))× {red})
end

END



APPENDIX C

DECOMPOSITION OF THE CASE STUDY
USING REFINEMENT SEES SPLIT (RSS)

C.1 First Sub-system: Train
MACHINE Train
REFSEES Track
SEES Signal
VARIABLES

front_trainA
front_trainB
end_trainA
end_trainB
fst_tAblock
lst_tAblock
fst_tBblock
lst_tBblock
next_turn

EVENTS
Initialisation

begin
act1:

front_trainA,
front_trainB,
end_trainA,
end_trainB,
fst_tAblock,
lst_tAblock,
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fst_tBblock,
lst_tBblock,
next_turn :| (
front_trainA′ ∈ N
∧ front_trainB′ ∈ N
∧ end_trainA′ ∈ N
∧ end_trainB′ ∈ N
∧ end_trainA′ < front_trainA′

∧ end_trainB′ < front_trainB′

∧ front_trainA′ < end_trainB′

∧ fst_tAblock′ ∈ Block
∧ lst_tAblock′ ∈ Block
∧ fst_tBblock′ ∈ Block
∧ lst_tBblock′ ∈ Block
∧ next_turn′ ∈ SUBSY S
lst_tAblock <= fst_tAblock
lst_tBblock <= fst_tBblock
fst_tAblock < lst_tBblock
end_block(lst_tBblock) <= end_trainB

end
Event move_front_trainA 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: front_trainA+ step < front_block(fst_tAblock)
grd3: next_turn = TRAIN

then
act1: front_trainA := front_trainA+ step

act2: next_turn := TRACK

end
Event move_end_trainA 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: end_trainA+ step < front_block(lst_tAblock)
grd3: next_turn = TRAIN

then
act1: end_trainA := end_trainA+ step

act2: next_turn := TRACK

end
Event free_tAblock 〈ordinary〉 =̂

any
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step
where

grd1: step ∈ N1

grd2: front_block(lst_tAblock) < end_trainA+ step

grd3: end_trainA+ step < front_block(next_block(lst_tAblock))
grd4: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: end_trainA := end_trainA+ step

act3: lst_tAblock := next_block(lst_tAblock)
end

Event Enter_tAblock 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: block_state(next_block(fst_tAblock)) = Free

grd3: front_block(fst_tAblock) < front_trainA+ step

grd4: front_trainA+ step < front_block(next_block(fst_tAblock))
grd5: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: front_trainA := front_trainA+ step

act3: fst_tAblock := next_block(fst_tAblock)
end

Event move_front_trainB 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: front_trainB + step < front_block(fst_tBblock)
grd3: next_turn = TRAIN

then
act1: front_trainB := front_trainB + step

act2: next_turn := TRACK

end
Event move_end_trainB 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: end_trainB + step < front_block(lst_tBblock)
grd3: next_turn = TRAIN

then
act1: end_trainB := end_trainB + step
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act2: next_turn := TRACK

end
Event free_tBblock 〈ordinary〉 =̂

any
step

where
grd1: step ∈ N1

grd2: front_block(lst_tBblock) < end_trainB + step

grd3: end_trainB + step < front_block(next_block(lst_tBblock))
grd4: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: end_trainB := end_trainB + step

act3: lst_tBblock := next_block(lst_tBblock)
end

Event Enter_tBblock 〈ordinary〉 =̂
any

step
where

grd1: step ∈ N1

grd2: block_state(next_block(fst_tBblock)) = Free

grd3: front_block(fst_tBblock) < front_trainB + step

grd4: front_trainB + step < front_block(next_block(fst_tBblock))
grd5: next_turn = TRAIN

then
act1: next_turn := TRACK

act2: front_trainB := front_trainB + step

act3: fst_tBblock := next_block(fst_tBblock)
end

END
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C.2 Second Sub-system: Track

MACHINE Track
REFSEES Train
SEES Signal
VARIABLES

signal_state
block_state
next_turn

INVARIANTS
inv1: signal_state ∈ Signal→ SignalState

inv2:
∀bk ·(
bk ∈ Block
∧ next_turn = TRAIN

∧ signal_state(signal_block(bk)) = green

⇒ block_state(bk) = Free)

EVENTS
Initialisation

begin
act1:

signal_state,
block_state,
next_turn :| (
∧ block_state′ ∈ Block→BlockState

∧ next_turn′ ∈ SUBSY S
∧ signal_state ∈ Signal→ SignalState

∀bk ·(
bk ∈ Block
∧ next_turn = TRAIN

∧ block_state(bk) = Free

⇒ bk 6= lst_tBblock)
∀bk ·(
bk ∈ Block
∧ next_turn = TRAIN

∧ signal_state(signal_block(bk)) = green

⇒ block_state(bk) = Free))

end
Event TRACKevent 〈ordinary〉 =̂

when
grd1: next_turn = TRACK

then
act1: next_turn := TRAIN
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act2: block_state := (Block × {Free}) C− ((lst_tAblock .. fst_tAblock ∪ lst_tBblock ..
fst_tBblock)× {Occupied})

act3: signal_state := (Signal × {green})C− ((signal_block(lst_tAblock) .. signal_block
(fst_tAblock) ∪ signal_block(lst_tBblock) .. signal_block(fst_tB2block))× {red})

end
END



RÉSUMÉ LONG EN FRANÇAIS

Le travail présenté dans cette thèse concerne la définition d’une nouvelle approche de la décom-
position en méthode B événementiel. Son objectif est de proposer une solution méthodologique et
opérationnelle pour décomposer un système critique pour la sécurité en plusieurs composants par
rapport au comportement de la spécification globale. Cette solution doit permettre à l’ingénieur
de préciser toutes les caractéristiques considérées comme pertinentes pour la modélisation d’un
système, mais elle doit aussi offrir la possibilité de partitionner ce système au fil des étapes de
raffinement.

L’étude bibliographique, réalisée sur le B événementiel et les approches de la décomposition
sur la modélisation formelle en B événementiel, nous a permis d’identifier les techniques de modu-
larisation les plus citées et utilisées en B événementiel : décomposition par variables partagées et
décomposition par événements partagés. Le premier permet de partitionner la fonctionnalité du
système et le second décompose le comportement du système. Bien que ces approches puissent
diviser les systèmes en plusieurs sous-systèmes, il existe certaines limites et certaines difficultés
concernant les besoins industriels. Par exemple, la difficulté de décomposer des prédicats com-
plexes et la nécessité de plusieurs étapes intermédiaires de raffinement pour décomposer peuvent
être rencontrées [Abrial, 2009,Kraibi et al., 2019b].

Dans le cadre du projet PRESCOM, nous avons travaillé sur un contexte industriel spécifique:
la modélisation des systèmes ferroviaires. Ce domaine d’application des systèmes critiques pour la
sécurité reconnaît la pertinence de la décomposition dans la modélisation des systèmes ferroviaires.
Il identifie certains besoins pour séparer les principales caractéristiques du système de spécification
abstraite dans un certain nombre de sous-systèmes de niveau inférieur. Cette séparation est effec-
tuée conformément à l’objectif prévu de la modélisation du système pour obtenir des spécifications
plus lisibles et gérables.

La proposition présentée dans cette thèse pour la décomposition d’un système critique pour la
sécurité peut être résumée par ces quatre points :

− Une méthode de décomposition pour partitionner les systèmes en sous-systèmes, indépen-
damment de tout outil Event-B ;
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− Démonstration de la correction de la solution proposée ;

− Proposition de nouvelles règles d’obligations de preuve supplémentaires nécessaires ;

− Illustration de la méthode Refinement Seen Split (RSS) par son application sur un cas concret
de signalisation ferroviaire validée par les experts du domaine.

Tous ces points sont décrits en détail ci-dessous.

Le premier concerne une méthode de décomposition pour partitionner les systèmes. En fait,
l’approche de décomposition que nous proposons dans cette thèse permet de partitionner un système
en plusieurs sous-systèmes. Notre approche est basée sur la notion de raffinement et les méthodes
de décomposition existantes dans la littérature. Ceci se fait selon une stratégie spécifique afin
de fractionner correctement les invariants, les variables et les événements du système. La stratégie
définit, en général, les différents cas qui peuvent survenir dans un modèle et la méthodologie à suivre
dans chaque cas. De plus, afin de conserver la cohérence sémantique du comportement du système,
une nouvelle clause nommée REFSEES est définie. Cette clause est un lien sémantique entre les
sous-machines. Il garantit, à une certaine sous-machine, la visibilité des propriétés, les variables et
les invariants des autres sous-machines résultantes de la décomposition de la même machine initiale.

Le deuxième point porte sur la correction de l’approche Refinement Seen Split (RSS). En effet,
la formalisation de l’approche de décomposition proposée nécessite l’assurance de sa correction. En
conséquence, nous vérifions cette exactitude par une démonstration. En effet, après décomposition
d’une machine initiale M, la fusion des sous-machines résultantes MRG constitue un raffinement
de la machine décomposée par construction. Cela se justifie par la stratégie définie à suivre. Il
permet de conserver chaque élément du système quelque part dans les sous-machines et la clause
REFSEES relie entre elles. Après cette étape de décomposition, chaque sous-machine peut être raf-
finée indépendamment, et le nombre de raffinements varie d’une sous-machine à l’autre en fonction
du besoin. À un certain niveau de raffinement, nous démontrons que la fusion des sous-machines
résultantes MRG’ après le raffinement constitue un raffinement de la première fusion MRG. Par
conséquent, nous pouvons en déduire que l’ensemble de la sous-machine MRG’ est un raffinement
de la machine initiale M.

Le troisième point concerne la définition de nouvelles règles d’obligation de preuve supplémen-
taires. En effet, la proposition de notre nouvelle méthode de décomposition en B événementiel
conduit à une définition indispensable de nouvelles règles d’obligations de preuve. En réalité, nous
distinguons deux types de règles d’obligation de preuve : locale et globale. Les règles d’obligations
de preuve locales sont celles définies, classiquement, par le langage B événementiel. Ils sont consid-
érés comme internes à chaque sous-machine. Les règles d’obligations de preuve globales concernent
l’ensemble du système. En d’autres termes, il prend en considération la fusion des sous-machines.
Dans notre travail, nous définissons de nouvelles règles d’obligation de preuve pour la partie glob-
ale. Malgré le fait qu’un système soit correct, il n’est pas garanti qu’il ne se bloque pas ou ne
s’exécute pas indéfiniment alors que ce n’était pas le cas auparavant. Par exemple, un train qui ne
bouge pas est considéré comme sûr, mais il n’accomplit pas sa tâche : le transport de passagers
ou de marchandises. En pratique, puisque nous décomposons, il y a une possibilité de perdre cer-
tains comportements du système décomposé. Par conséquent, la liberté de blocage et les règles
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d’obligations de preuve variantes sont définies afin de faire face à cette possibilité.

Le quatrième point concerne l’application de l’approche sur une étude de cas ferroviaire. Afin
d’illustrer notre contribution et de la comparer avec les autres méthodes de décomposition étudiées,
nous appliquons notre approche à l’étude de cas ferroviaire. On remarque que l’on peut appliquer
le Refinement Seen Split (RSS) sans aucune étape intermédiaire de raffinement afin de simplifier le
modèle. De plus, il existe un lien de communication entre ces sous-machines afin qu’elles puissent
échanger la visibilité des états des variables et des invariants.

Pour résumer, le raffinement et la décomposition sont définis, dans la littérature, de manière à
pouvoir coexister dans le processus de modélisation formelle afin de gérer la complexité du système
à travers de multiples niveaux d’abstraction. Cependant, certaines approches de décomposition
existantes ne reposent pas sur l’exactitude du raffinement pour définir la décomposition et préserver
la cohérence syntaxique/sémantique du début au niveau inférieur de la modélisation. De plus,
les mécanismes de décomposition existants sont définis comme des solutions associées à un outil
spécifique Rodin.

Nous pensons que certains aspects méthodologiques liés à la méthode B événementiel que nous
avons utilisée comme la génération d’obligations de preuve, la reconstruction de traces d’événements
ou le fait de faire fusionner deux modèles tout en conservant les preuves déjà effectuées sur ces
modèles peuvent être réutilisés dans un autre modèle de conception dans B événementiel. Il est
indépendant de tout outil existant.

De nombreuses méthodes ont été proposées pour la décomposition des systèmes pour le B événe-
mentiel. Mais il existe peu d’études de cas complexes où ces techniques ont été appliquées. Nous
pensons avoir apporté une contribution dans cette direction avec la décomposition des systèmes
critiques pour la sécurité.



Towards a Modular Architecture of Formal Modelling:
System/Sub-systems Decomposition in Event-B

Abstract: The activities of analysis and modelling of critical systems, such as railway systems, are large-scale tasks requiring
rigorous mechanisms. Founded on mathematical bases, formal methods can help to rigorously conduct these activities and
reduce the ambiguity of the specifics of these systems. The Event-B method is one of the most widely used and recommended
methods for system modelling. The central mechanism of Event-B system modelling is refinement. Indeed, the refinement
consists in detailing abstract specifications in order to obtain more concrete specifications. In addition, the refinement process
must be proven in order to ensure consistency and correctness of the system modelling between two levels of refinement.
Although the Event-B method has a refinement mechanism to move from an abstract level to a finer level of granularity, the
formal models for such systems are often complex and large. In addition, it is difficult to communicate around these models
between the different trades (business experts in the field, system engineers, subsystems engineers, etc.) and to manage the
different provided bricks of the system. This requires, in the majority of cases, a manual intervention ensuring the synergy
between these actors.

In order to have better communication and management, the decomposition has emerged as a technique that complements
refinement. This mechanism aims to reduce the complexity of the initial model by its partitioning into sub-models, and
consequently to facilitate formal verification activities. In the literature, the proposed decomposition approaches have some
limitations regarding the industrial needs expressed in the context of critical systems, among others, system/sub-systems
reasoning. The application of these approaches on such systems is particularly difficult and requires intermediate stages of
refinement. Indeed, these decomposition methods can lead to a loss of some properties of the system such as security properties
and/or an inconsistency of the behaviour expressed in the sub-models with that of the initial model.

On the basis of this problematic, the thesis subject is focused on the definition of a new modular approach for modelling
critical systems based on the Event-B decomposition. This approach focuses on the decomposition of a system into several
sub-systems while preserving the behaviour of the overall system. This is ensured by the definition of new semantic links as
well as new rules for the generation of the associated proof obligations. The correctness of the proposed approach is ensured
by demonstrating that the set of resulting components, after decomposition, constitutes a refinement of the initial decomposed
system. This methodology is illustrated by a concrete case study from the rail sector.

Keywords: Decomposition, Refinement, Formal Modelling, Verification and Validation, Event-B, Railway System.

Vers une Architecture Modulaire de Modélisation Formelle :
Décomposition Système/Sous-systèmes en B Événementiel

Résumé : Les activités d’analyse et de modélisation des systèmes critiques, tels que les systèmes ferroviaires, constituent
des tâches d’envergure nécessitant des mécanismes rigoureux. Fondées sur des bases mathématiques, les méthodes formelles
peuvent aider à mener rigoureusement ces activités et à réduire l’ambiguïté des spécificités de ces systèmes. La méthode B
événementiel fait partie des méthodes les plus utilisées et recommandées pour la modélisation système. Le mécanisme central
d’une modélisation système en B événementiel est le raffinement. En effet, le raffinement consiste à détailler des spécifications
abstraites afin d’obtenir des spécifications plus concrètes. En outre, le processus de raffinement doit être prouvé afin d’assurer la
cohérence et la correction de la modélisation du système entre deux niveaux de raffinement. Bien que la méthode B événementiel
dispose d’un mécanisme de raffinement permettant de passer d’un niveau abstrait à un niveau de granularité plus fine, les modèles
formels pour de tels systèmes sont souvent complexes et volumineux. En outre, il est difficile de communiquer autour de ces
modèles entre les différents corps de métier (les experts métier du domaine, les ingénieurs système, les ingénieurs sous-systèmes,
etc.) et de gérer les différentes briques du système fournies. Ceci nécessite, dans la majorité des cas, une intervention manuelle
assurant la synergie entre ces acteurs.

Dans le but d’avoir une meilleure communication et gestion, la décomposition est apparue comme technique qui complète
le raffinement. Ce mécanisme a pour but de diminuer la complexité du modèle initial en le partitionnant en sous-modèles, et de
faciliter par conséquent les activités de vérification formelle. Les approches de décomposition proposées dans la littérature ont
quelques limitations au vu des besoins industriels exprimés dans le cadre des systèmes critiques, entre autres, le raisonnement
système/sous-systèmes. L’application de ces approches sur de tels systèmes est particulièrement difficile et exige des étapes
intermédiaires de raffinement. En effet, ces méthodes de décomposition peuvent entraîner une perte de quelques propriétés du
système comme les propriétés de sécurité ou une incohérence du comportement exprimé dans les sous-modèles avec celui du
modèle initial.

Sur la base de cette problématique, le sujet de thèse est focalisé sur la définition d’une nouvelle approche modulaire de
modélisation des systèmes critiques basée sur la décomposition en B événementiel. Cette approche porte sur la décomposition
d’un système en plusieurs sous-systèmes en préservant le comportement du système global. Cela est assuré par la définition de
nouveaux liens sémantiques ainsi que de nouvelles règles pour la génération des obligations de preuve associées. La correction de
l’approche proposée est assurée en démontrant que l’ensemble des composants résultants, après la décomposition, constitue un
raffinement du système initial décomposé. Cette méthodologie est illustrée par un cas d’étude concret issu du secteur ferroviaire.

Mots clés : Décomposition, Raffinement, Modélisation Formelle, Vérification et Validation, B Événementiel, Système Ferrovi-
aire.
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