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INTRODUCTION

Critical systems are systems whose malfunction would have a significant impact on businesses,
properties, safety or life of people. Systems qualified as critical can be found in military applica-
tions, energy production, health and transport systems for instance. The most critical systems are
usually submitted to the certification authorities, who verify compliance with the requirements set
out in the standard. Safety is a major issue for critical systems given the complexity and serious
consequences that may arise such as design errors. In order to limit these errors, the architec-
tures of these safety-critical systems are subjected to a development process using techniques for
specification as well as verification and validation (V&V). A specification is made on a program
or a system. As a way of increasing confidence in such systems, formal methods are becoming
more acceptable in industrial circles [Bowen and Stavridou, 1993]. The use of formal methods
is recommended by standards such as [CENELEC EN50128, 2011] in the railway field. Besides,
the Furopean Space Agency (ESA) has issued guidelines for software engineering standards [ESA,
1991]. This suggests that formal notations such as Z [Brien et al., 1992], VDM [Andrews, 1992],
B [Abrial, 1996] or Event-B [Abrial, 2010] should be used for specifying software requirements in
safety-critical systems.

Indeed, formal methods are techniques that allow rigorous reasoning, using mathematical
logic, on computer programs or electronic equipment, in order to demonstrate their validity with
respect to a certain specification. These methods make it possible to obtain a very strong insurance
of the bugs absence in the system, i.e. acquire high insurance evaluation levels. Besides, these meth-
ods are based on the programs semantics. However, they are generally costly in resources (human,
material and time) and currently reserved for the most critical systems. Their improvement and
the widening of their practical fields of application are the motivation of many scientific research in
computer science. Formal methods take their interest when the evidence itself should be formally
guaranteed correct. We can distinguish two main categories of tools allowing the V&V on formal
models: model checking and theorem proof. Model checking consists in checking properties by an
exhaustive and clever enumeration (according to some defined algorithms) of the reachable states.
Theorem proof consists in proving the properties of the system, given a specification, through a set
of axioms and a set of mathematical rules. There are possible mixtures between these methods.
For example: - a proof assistant could be sufficiently automated to automatically prove most of

12



13 Introduction

the utility lemmas of a program proof; - a model-checker can be applied to a model built using an
automatic theorem prover; - a preliminary abstract interpretation may limit the number of cases
to be demonstrated in a proof of theorems, etc.

Actually, formal methods can be applied at different stages of the system development process
(software, electronics, mixed), from specification to final realisation. We distinguish two categories
of formal methods, those destined for programs and those made for systems. The first category
defines the model-oriented specification methods such as VDM [Andrews, 1992], Z [Brien et al.,
1992] and B [Abrial, 1996]. The second category concerns the analysis and model-oriented formal
methods like Alloy [Jackson, 2006] and Event-B [Abrial, 2010]. Event-B is considered as one of the
foremost analysis and model-oriented formal methods [Bjrner¢ and Havelund, 2014].

Beside all the advantages in formal practices, there are communication difficulties between sev-
eral engineers. Each engineer manages a separate component and then the validation of the whole
system is done manually. Besides, there is a large number of proof theorems. Moreover, mod-
elling several independent bricks, of the same need without overall system reasoning, is difficult.
In industry, the growing complexity of systems, multidisciplinary or even interdisciplinary, leads to
technological failures and to time and cost overruns. In addition, communication difficulties can
be faced because of the lack of global vision in the engineering and management, defective techni-
cal interfaces, difficulties in bringing together professions, organisations and few multi-disciplinary
specialists.

Nowadays, face to these issues, it becomes necessary to have a set of activities allowing the
design and the development of a system. This necessity results in the apparition of a new domain
called System Engineering (SE) [ISO 15288, 2002]. It is a field of engineering that focuses on
how to manage, design and integrate complex systems over their life cycles. It is a way of think-
ing and of understanding business through a structured approach to move from the need to the
solution. One of the disciplines of system engineering is requirement engineering. Requirement
engineering is the expression of the conditions or the functionalities that a system or software must
meet [[EEE 729, 1983].

Indeed, industrial practices as well as dependability standards define systems or software de-
velopment processes that generally begin with the analysis of the overall system. This analysis is
based on the analysis of system requirements and the important properties expressed at a global
level such as safety properties. In general, independently of the formal and the industrial context,
the system/sub-system reasoning is approached mainly by the system engineering paradigm. A
transport system is made up of many sub-systems that interact together for a common and coher-
ent goal of providing passenger or goods transport. System engineering is an interdisciplinary and
comprehensive approach. It studies the system as a whole, in addition to the development of the
various subsystems. By using a structured method, it manages the complexity of the whole and
reduces the risks when integrating several subsystems. It also helps plan and monitor developments
throughout the life cycle through milestones, reviews, appraisals and integration points. The overall
approach to system engineering is summarised in the V-diagram of the life cycle, where activities
at the “system” level and at the “subsystem” level can be distinguished. This thesis is interested
in the analysis of safety-critical systems using the Event-B method for the verification of railway
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systems specifications.

Scientific and industrial contexts

In this thesis, the work is based on the railway area and particularly on the railway signalling
systems. Railway signalling is an information system intended to inform the driver of a railway
traffic. It gives him the information that is necessary for him to regulate the progress of his convoy
and to drive in complete safety. This information is given in the form of codes produced by signals
of various shapes, combinations, or colours. The information given by this means may relate to a
speed limit to be observed, a stop not provided for in the course to be performed, information on a
geographical direction which the convoy is going to take, prescriptions concerning electric traction,
etc. Signalling is one of the basic elements of railway safety. Since the beginnings of the railway,
rail signalling has generally been specific to the network of each rail company. The harmonisation
of the different signals is an important issue for the interoperability of rail networks in Europe, and
in North America where the presence of hundreds of private companies very early on imposed a
major standardisation effort. The sectioning is based on a division of the line into sections. These
sections, also called blocks, on a line between two stations are an integral part of the system. Rail-
way safety is a set of human and technical resources that make it possible to avoid rail accidents,
or to reduce the consequences of such accidents.

In this work, we start from the stage of expressing the requirements to produce formal models.
These models need to be split and need the management of the reuse of bricks imported or produced
by other partners. There is a need for decomposition mechanisms. Conventionally, a traditional
document of the functional specification type consists of a list of detailed, documented and justified
requirements concerning the different functional entities of the system. If this list is formalised in
a mathematical language, it will be possible to verify, in a systematic and instrumented manner
(i.e. using software) the consistency of these requirements with each other. As a reminder, the
methodology which makes it possible to design a formal model which makes sense, is called a formal
method: B-Method is one of these methods and it makes it possible to generate B models (this will
be more widely presented later in this document).

Mainly in the railway sector, B is arguably among the formal methods of greatest industrial
impact. It seems like a Domain Specific Language (DSL) for the railways [Butler et al., 2020].
However, our work is centred around the system modelling and behaviour analysis, so we use the
Event-B method as the extension of B-Method for system analysis. The use of Event-B becomes
a necessity in order to analyse the behaviour of the railway systems.

Problematic and Motivation of the Thesis

In the context of this thesis, our work concerns the modular architecture in Event-B. In practice,
each engineer works on a separated brick of the system. These bricks are also called sub-systems,
sub-components or sub-machines. This method of work requires the study of the partitioning of
global functions on these sub-systems and communications between them. However, the interac-
tions between the subsystems lead to problems whose formulation is delicate. These interactions
can be critical locally and/or in their entirety. Consequently, we plan to study methodologies in-
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cluding a modelling process based on the mechanisms of decomposition from a system to multiple
sub-systems.

In the literature, several approaches are proposed to address this issue. For instance, generic
instantiation [Abrial and Hallerstede, 2007], modularisation [Hoang et al., 2011], fragmentation and
distribution [Siala et al., 2016] can be found. In addition, there are the most used methods in the
litterature and industry: the shared variable decomposition [Abrial and Hallerstede, 2007], A-style,
an the shared event decomposition [Butler, 2009a], B-style. In this work, we focus on the study
and analysis of those two latter methods.

Our goal is to analyse these methods and find why there still a need in the industry. So, our
motivation is based on these challenges:

— Modularity: each system can be splitted into several sub-systems. This must be done taking
into account the system complexity. In other words, it must be possible to manage complex
and huge size models after several steps of refinement. In fact, after each step of refinement
new variables can be defined, new events can be added and the invariants may be more
complex.

Indeed, A-style is based on decomposing a system by functionality, like decomposing parallel
programs [Hoang and Abrial, 2010]. For B-style, is based on decomposing the behaviour of a
system. However, the industrial goal is to reason by sub-systems. In this case, a system can
be decomposed by functionality, by behaviour or both.

— Semantic Coherence: In both of the cited methods, there is no link between the initial machine
and sub-machines. In addition, the sub-machines are not either linked to each other. So, each
sub-machine is enriched and refined separately.

Contributions

The study of decomposition in Event-B is hardly discussed in the literature. Most research in this
context has focused on the partition of the events or the variables of a model. Our study on the
problematic of this thesis allowed us to choose on which of these approaches can be candidate for
solution of this issue. As a consequence, we choose the decomposition by shared variables and the
decomposition by shared events. Following the results of the performed analysis on these works, an
approach of decomposition is proposed regarding the industrial need. This is performed following
these steps:

1. Study and analysis of the existing approaches of decomposition in Event-B. In our work, we
focus on A-style and B-style because the other approaches are combining other languages
with the Event-B language. However, our goal is to enrich the Event-B language. So, A-style
and B-style are the ones are using only the Event-B language. This analysis leads to the
identification of some limitations regarding an industrial need.

2. Proposition of a new decomposition method for partitioning systems into sub-systems: the
Refinement Seen Split (RSS). This approach allows the decomposition of a system into mul-
tiple sub-systems and does not depend on any Event-B tool. In addition, it defines a new
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link REFSEES, that gives the possibility to connect between the sub-components and get a
visibility of each other.

3. Demonstration of the correctness of the proposed solution. In other words, we prove that the
set of all the resulting sub-machines constitutes a refinement of the splitted one.

4. Proposition of new additional needed proof obligation rules. The goal of these proof obligation
rules is to complete the correctness of the approach. These proof obligation rules are to be
integrated in the Atelier B and/or Rodin tool independently of any platform.

5. Hlustration of the Refinement Seen Split (RSS) method by its application on a concrete
signalling railway system. This case study is validated by the domain experts.

Consequently, to cater for the above challenges, the main contributions of this thesis are sum-
marised through the following points:

— Modularity: proposition of a new approach of system/sub-systems reasoning. We propose
a new method of decomposition, called Refinement Seen Split (RSS), that allows to obtain
modular systems. Furthermore, we define a partitioning strategy to follow as well as the rules
to be respected.

— Semantic Coherence : a new clause is defined, called REFSEES. It is a semantic link that
allows to keep the global semantic coherence of the system.

— Scalability: the new proposed notions are independent of the tools. They are mainly based
on the Event-B language. So, it can be implemented in different tools.

After presenting the context of this thesis, problematic, motivation and contributions, we detail
now the organisation of this manuscript.

Organisation of the Manuscript

This manuscript is structured in two parts, each containing two chapters. The first part is devoted
to the presentation of the scientific context as well as the industrial context, particularly the railway
area. Furthermore, it contains the presentation of the state of the art related to Event-B and the
decomposition mechanism of this method. The first part is illustrated by chapters 1 and 2.

Chapter 1 provides the scientific and the industrial contexts of our work. In a first step, an
overview of the different types of specification methods is presented, and formal methods, one of
the main used methods for critical systems, are introduced. Then, we focus on the adopted formal
method in this thesis, namely Event-B, which is the basis of our approach of modelling and val-
idating railway systems. In addition, we present the verification and validation phases as well as
their different techniques. In a second step, we present how formal modelling had been used in the
railway area through the last years. After that, we explain the interest of this type of modelling for
the critical systems industry and in particular for the safety railway systems. Finally, the chapter
ends with the presentation of the PRESCOM project, its problematic and the motivation behind it.
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Chapter 2 is devoted to the Event-B notations. First of all, we focus on the presentation of
the structure of an Event-B model, the syntactic definitions as well as the semantic definitions
through the presentation of proof obligation rules. Once these basic notions are defined, we move
on to one of the main mechanisms of Event-B method: refinement. An overview on the different
types of refinement in Event-B is given. Then, an explanation is given on how a refinement can be
correct regarding the refined machine. Additionally, we give a presentation of the decomposition
mechanism, and a citation of the existing works in the literature which are related to the modular
architecture in Event-B.

The second part is dedicated to the analysis of the existing works by their application on some
examples. One of these examples is a railway case study that we modelled and proved in Event-B.
Moreover, this part gives the presentation of the main contributions of this thesis. The second part
is illustrated by chapters 3 and 4.

Chapter 3 contains the full analysis of the most known and used approaches in Event-B for
the decomposition mechanism: the decomposition by shared variables and the decomposition by
shared events. In a first step, the specification of the case study, the corresponding model and the
different steps of refinement are defined. Then, we proceed with the application of the decompo-
sition methods A-style and B-style on this case study. Finally, a discussion on the results and an
analysis regarding the industrial needs are presented. This chapter ends with an overview of the
proposed solution, we present our approach based on decomposition into sub-components used in
the PRESCOM project.

Chapter 4 is devoted to the presentation of the decomposition approach Refinement Seen Split
(RSS) for modelling and validation of modular systems. We start with the definition of this ap-
proach as well as its new proposed syntax. Thereafter, the strategy for this approach use and the
rules that must be respected are detailed. Among the new aspects, we define the clause REFSEES
which allows the visibility between the sub-components after the decomposition. As one of the
main mechanisms of modelling in Event-B, the refinement link should be preserved between the
decomposed machine and the resulting sub-machines. So, a demonstration is made: the merge of
these resulting sub-machines constitutes a refinement of the initial machine even after several steps
of refinement of each sub-machine. Moreover, new proof obligation rules are introduced. These
rules are necessary for the process of decomposition. In addition, we illustrate this proposition by
its application on the same railway case study presented previously. This is done in order to show
how our contribution solves some of the industrial issues concerning the systems modularity.

This manuscript ends with a general conclusion by giving an overview of our contributions as
well as a set of short-term and long-term perspectives.
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Introduction

In the industrial sectors, critical systems are considered as important such as robotics, automotive,
railway, aeronautic. The design and development of these critical systems must take into account
several aspects such as safety, constraints, reliability, quality of service, flexibility, maintainability
and performance, for instance. The goal of this chapter is to characterise specific needs of safety
critical specification in railway systems, taking into account the legislative context and the indus-
trial practices.

In a first step, we present the existing semi-formal and formal specifications and discuss the
potential contributions of these methods. Particularly, we focus on the formal modelling and its
ability to provide proofs. As a formal method, Event-B is used in the railway sector. This is a
sufficient reason to present in detail this method and its history. In Event-B, we principally prove
the models using theorem proofs as a validation technique. But, additional techniques can be used,
such as model checking, on finite system states and are able to provide proofs. In addition, the
animation technique can also be used to run some scenarios of the system.

In a second step, we define the industrial context, in term of formal modelling, specifically
the railway sector and we detail the need of this critical systems specification with regards to the
European legislative safety standards. Then, we identify the needs and presents an analysis of the
railway state of the art and practices. In addition, we present how formal methods are used in the
safety of railway circulations.

Finally, we analyse a list of industrial and scientific projects on railways through the 20 last
years, since the apparition of formal methods in the industry. The efficiency of the tooled framework
is discussed regarding the evolution of the needs. This leads us to introduce the PRESCOM project
defining the context of this thesis.

1.1 Specification Methods

1.1.1 Main Types of Specification Methods

In system engineering, the specification is the step describing what the system must do. In other
words, it consists in defining the system requirements. Verifying a functional specification, which is
often complex, is a difficult task. The major difficulty manifests itself especially when understanding
the problem (software or system). This difficulty is reflected in particular at the stage of testing the
final system if a choice that should have been settled in the analysis phase has not been well defined.

The specification generates multiple documents which express the properties of the system in a
certain language of specification. These documents can be used for modelling, verification and/or
validation. The goal of the specification also depends on the type of the language used to detail
the specification. Three main types of specification languages exist [Ben Ayed, 2016]:

— Informal Language, also called human language, is expressed by a natural language. It is
simple and direct for communication and exchange, being the language the most easily used
and understood by humans to express the needs or the perception of a problem [Sadoun,
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2014]. However, neither its syntax nor its semantics are perfectly defined. Several formula-
tions are possible for the same idea and several meanings can result from the same idea. This
can cause understanding and interpretation problems for the experts.

— Semi-Formal Language is expressed by using a restricted syntactic language provided with
a defined semantics, such as the Unified Modeling Language (UML) [OMG, 2011]. It allows
a modelling activity to be more expressive while reducing the ambiguity of natural language.
The graphic notations of semi-formal languages represent a good vector of communication
between the collaborators of the project. They allow a structured intuitive synthetic view
of the system [Dupuy, 2000]. However, the lack of precise semantics limits the use of V&V
techniques.

— Formal Language is expressed in a restricted syntactic language with a semantics which is
defined on well-established mathematical concepts.

"A formal specification is a collection of sort, or type definitions, func-
Definition 1.1.1. | tion and behaviour definitions, together with axioms and proof obliga-
tions constraining the definitions." [Bjoner, 2019]

Formal languages have well-defined syntax and semantics, as opposed to natural languages,
which can give rise to several interpretations, and to semi-formal languages, which have a precise
syntax but whose semantics are not well defined. No difference in interpretation is envisaged
using formal languages, as it allows problems to be highlighted from the beginning. Indeed, it
allows to formally prove properties on the system from its specification. There is no need to wait
for the last modelling phase (where optimisation issues may be the focus of the designers), or the
implementation phase for comprehensive testing. In [Idani, 2006], the author compares semi-formal
methods and formal methods as in table 1.1.

In this table, the semi-formal methods give facilities to specify a system. It is easy to use and
efficient to produce results on wide types of systems. However, the syntax of the specification is less
precise and generalist. In addition, it lacks the semantic reasoning. In the context of this thesis,
we have to prove that railway circulations are protected against dangers to obtain a commissioning
authorisation for National Safety Authority. As a consequence, the use of formal methods is detailed
in this document.

1.1.2 Formal Methods

Formal methods are generally used to characterise faults, errors, inconsistencies, etc., that may
be faced during the life cycle of a system. These errors can have dramatic consequences when it
comes to a critical system (transportation, robotics, aviation, military, etc.). The sources of these
defects can be different and appear from the first phases of the cycle such as errors and mistakes of
specifications, until the last phases of realisation or production. Several faced difficulties can be the
origin of these defects: choice of architectures and the used tools, inappropriate tests, transmission
of information between several experts, the lack of a global view of the system operational safety,
etc., [Cannon et al., 2003].

Defects have a higher cost when they are detected late in the advanced phases of the develop-
ment cycle. In fact, the higher the identification rates of errors and the detection of ambiguities
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Semi-Formal Methods

Formal Methods

Formalism

Textual or graphic
(UML, SysML, etc.)

Mathematics
(Z,VDM,B, etc.)

(SEA)

Language Syntax Precise Precise
Language Semantic Quite weak Precise
S ) Proof
Validation b yntactic . Theorems demonstration
+ human expertise Model checking
Animation and test
Tools Software engineering atelier Provers

+ Animators

Application Area

Expects to be generalist

Critical and safe systems

Goal

Well-structured systems

Reliable and safe systems

Table 1.1: Semi-Formal Methods vs. Formal Methods [Idani, 2000]

and inconsistencies from the early stages of the development cycle, the more the complexity of the
system is mastered. The use of formal methods, therefore, makes it possible to prove the absence of
errors where the tests will only make it possible to highlight them. Using the power of mathemat-
ics, formal methods make it possible to rigorously specify the studied system. In this context, the
users can have great confidence in the design of their systems. This trust is particularly essential
in the rail sector where user safety is paramount. For this reason, according to the railway stan-
dard [CENELEC EN50128, 2011], the use of formal methods is highly recommended for Security
Integrity Levels: SIL 3 and SIL 4. For the specification of railway systems, the formal method B
is considered as one of the strongest approaches [Fantechi et al., 2013].

In general, the use of formal methods goes through three main phases [Bjgner, 1987):

— Establishment of needs: the informal requirements respond to the needs expressed in the
phase of the functional analysis.

— Model construction: the formal model precisely captures the informal requirements of the
first phase. This leads us to answer the following question: "Have we well modelled the
need?".

— Model verification: a model correctly maintains the invariants (the properties of the sys-
tem) or refines another more abstract model. This leads us to two important questions: "Have
we asked the right questions (properties of the system)?" and "have we fully understood the
answers to these questions (results of formal verification techniques)?".
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Based on the literature, a formal modelling system is based,in general, on two important con-
cepts:

— Abstraction which can be seen as a process of understanding a system (its functions and
properties). The abstraction is used to have a general/global vision of the system. It focuses
on the most important properties and contains the foundations of the future system in order
to master the complexity of the system.

— Refinement which is a process of enriching a model in order to increase the specifica-
tion/description of the system in terms of functions or to explain how to achieve the objective.
In other words, refinement consists in delaying the processing of certain functionalities of the
system to latter levels of refinement while keeping the initial properties of the system defined
at the level of abstraction.

In the context of the thesis, the formal method used is Fvent-B. We detail in the following some
history of the apparition and use of this method, as well as the reason behind this choice. The
choice is also justified in the section dedicated to the railway projects.

1.1.3 Adopted Formal Method: Event-B
B-Method

B-Method was designed by Jean Raymond Abrial [Abrial et al., 1991, Abrial, 1996], taking inspi-
ration from the formal methods VDM [Jones, 1990] and Z [Spivey and Abrial, 1992]. Similarly, B
is a formal model-oriented method. It has been industrially used in the METEOR project [Behm
et al., 1999]. Classical B-Method, also called B-Logiciel (B Software) [Pouzancre and Servat,
2005, Patin, 2006], is a formal method for the specification and the V&V of critical systems. It is
based on the use of set theory and first-order logic as the mathematical foundations of modelling.
It is also based on the use of mathematical proof to check the correctness and consistency of the
system regarding its specification, as well as to check the correctness and consistency between the
different levels of refinement. This method ensures correct operation of the specified software and
achieves a conform implementation of the latter with its specification. Atelier B! [Atelier B, 2018]
is the recognised industrial tool which implements method B. It is developed by Clearsy? [ClearSy,
2020).

Event-B

The classical B-Method allows formal development from specifications. It is based on the refinement
mechanism from specification to code. A few years after the appearance of the classical B-Method,
an awareness raised in the importance of reasoning about the behaviour of the system, not just
about the software. For example, the railway signalling system does not only represent the software
part, but it also groups together a set of several software and hardware subsystems. An analysis
of such systems is carried out in order to study a system or its components in order to identify
its objectives. It is a problem-solving technique that improves the system and ensures that all its
components work effectively to achieve their goal.

! Atelier B: www.atelierb.eu/
2Clearsy Systems Engineering: www.clearsy.com/
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The choice between classical B-Method and Event-B depends on the purpose of modelling the
system, i.e. an analysis of the system according to a refinement process which stops at a level of
refinement considered as necessary to analyse the behaviour of the system regarding its objectives.
Otherwise, an implementation of the studied system according to a refinement process leads to a
model described in a language close to the code and which will be considered as the last refinement
model or the implementation model.

FEvent-B is an extension of B-Method which allows the specification of reactive, sequential,
concurrent and/or distributed algorithms. Fvent-B is based on mathematical approaches: the
theory of sets and the logic of predicates. It allows an incremental construction of the system
specification. The Fvent-B model is the first concept of Event-B because it describes a system by
a set of states, a set of actions, an initial state and a transition relationship. The Fvent-B model,
as described in detail in chapter 2, is made up of a set of machines and contexts.

B vs. Event-B

Initially, B-Method is limited to the development of software systems, but a need for the incorpora-
tion of the event approach has emerged, linked to the systematic derivation of reactive distributed
systems. Models based on events have been found useful in the needs analysis, the modelling of
distributed systems, and the design of distributed and sequential programming algorithms. The
comparative study is based on the following points [Boulanger, 2012]:

— The structure of models: The structure of models in FEvent-B is different from that of
B-Method. Indeed, in Event-B, as we have already mentioned in this document, the static
part of the system is defined in a context, while the dynamic part of the system is defined in
a machine [Benaissa, 2010]. In B-Method, the two parts coexist in the same machine.

— Events vs. operations: the operations of the classical B contain preconditions which
must be true when the operation is invoked. The calling operation is then responsible for
ensuring that the preconditions of the called operation are satisfied before calling it. The
called operation can assume that its preconditions are satisfied and that it does not need to
check its preconditions. On the other hand, an event in Fvent-B has a guard instead of a
precondition. A guard is associated with each event. Several event guards can be true at the
same time, however, only one event can be triggered. The choice of which event is triggered
is not deterministic. Indeed, the call of events does not exist in Fvent-B; it is the model that
controls its behaviour by choosing in a non-deterministic way the events to trigger.

— The refinement mechanism: The refinement in Event-B is considered more general than
that of B-Method [Boulanger, 2012]. In Event-B, we can refine existing events by strength-
ening their guards, as in B-Method we can refine operations. In addition, in Fvent-B we can
introduce new events in order to observe concrete behaviours that did not exist in abstrac-
tion. On the other hand, in B-Method you have to go back to the abstract machine, define
the entire signature of the operation with its input and result parameters and then go to the
refinement step. This requires the prior analysis of all the requirements and the definition of
at least the signature of all the necessary operations for this machine and for all the successive
refinements of this machine.

Table 1.2 summarises the differences between classical B and Fvent-B.
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Classical B (B Software) Event-B (B-System)

The static part is defined in a context

St t . .
;‘;.lihzre The static part and the dynamic part and the dynamic part is defined in
coexist in the same machine. the machine.
models
Th ti be called b,
Events vs. o thereec))(lt):zallo(r)lseizrtliorfscjf Znoti,ler Events are triggered by themselves if
Operations p the guards of the event are verified.

calling machine.

Ability to add new variables, new
invariants but not new operations.
Mechanism | You have to go back to the abstract
of machine, define the entire signature
refinement of the operation with its input and
result parameters and then go to the
refinement step.

Possibility of introducing new
variables, new invariants as well as
new events which do not exist in the
abstraction.

Table 1.2: Differences between Classical B and Event-B

Event-B vs. B-System

The Event-B method is supported by the integrated development environment Rodin [Abrial et al.,
2005] which allows the editing, the validation of Event-B models, and the generation of proof
obligations and their discharge (see chapter 2).

B-System designates a variant of Fvent-B offered within the integrated development software
environment Atelier B. The B System and Event-B languages share the same semantics but differ
in their syntax. In B-System, one can use all of the classical B method syntax and clauses such
as INCLUDES and DEFINITIONS clauses in addition to some of the Event-B syntax. However,
some of the Event-B syntax is not defined in B-System:

— For the clause of the system name (SYSTEM M), the term machine is used like in classical
B (Machine M).

— There is no CONTEXT notion in B-System, both of the static part and the dynamic part can
be present in the same machine. Otherwise, they can be separated into two machines. The
SYSTEM M and the CONTEXT C in Fvent-B are defined by MACHINE M and MACHINE

C respectively in B-System.

— Since the use of Classical-B syntax is allowed in B-System, the clause SEES can be used
to see other machines defining the static part, dynamic part or both. Contrary to Fvent-B
where the clause SEES only defines contexts.

— The clause EXTENDS is not defined in B-System. So, in order to extend a static part, the
clause SEES can be used.
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Verification and Validation (V&V)

Checking and validating critical systems requires reasoning on the scenarios and the related re-
quirements for using the system. These scenarios must be modelled in a structured and intuitive
way in order to offer a representation that facilitates understanding and communication. To give
an initial and approximate illustration of the reasoning used by this method, either a proof or a
model checking is necessary on the possible states of the system. For example, the initialisation
must establishes the target properties and all subsequent developments retain these properties.
This reasoning can be used at any level of detail and repeatedly as presented in figure 1.1:

— From high-level: which is used to demonstrate that the defined functional needs are coherent
and complete and guarantee the desired fundamental properties.

— Until low-level: which is used to demonstrate that the final architecture is consistent and
complete compared to the functional needs defined at the start.

[
/"™ = System
&-"’-& E Requirements
v Event-B Model
High-level i —
igh-leve Functional | PROOF
requirements Needs
v v
Low-level Final
requirements Architecture

Figure 1.1: Formal Validation and Verification in Event-B

(i) Proof Technique

The Event-B method defines a mathematical language allowing the specification of a system,
as well as the description of the target properties. The theory associated with this method
makes it possible to know how to prove that this description of the system does indeed guar-
antee these target properties. In other words, it allows to demonstrate that an Event-B model
is correct. This is done by defining lemmas which must be proved, called Proof Obligations
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(see section 2.1.2).

The purpose of the formal proof technique is the system verification by performing lexical
analysis, syntactic analysis and type verification. The proof obligations relating to each
machine mainly concern the correction of events:

— The initialisation must establish the machine invariant: the machine invariant must be
true after applying the initialisation substitution.

— Events must preserve the invariant: the machine invariant must be true after applying
the event substitution, assuming that it was true before.

Theorem proof involves a demonstration and a formal proof usually using an automatic
demonstrator and a semi-automatic demonstrator, also called an interactive demonstrator. If
these demonstrations succeed, then the consistency of the specifications is guaranteed with
respect to the defined properties.

Indeed, the goal of the theorem prover is to construct a mathematical proof for a mathe-
matical statement in order to demonstrate that it is true. If this statement is proven by the
evidence, then the statement is true, and it is considered as a theorem. Otherwise, if evidence
is not found, it cannot be concluded that the statement is false. Actually, it could be false,
as it could be true, but any interaction or the used tool of proof do not succeed in finding the
suitable proof to demonstrate that the statement is true. Once the theorem is demonstrated,
it is applied to the entire model.

Schematically, the description of the properties and the system specification in Event-B are
both introduced in the tool which controls their syntax, generates the proof obligations and
launches the integrated automatic demonstrator.

Atelier B and Rodin have a generator of proof obligations. These proof obligations are
discharged by two types of provers:

— An automatic prover to demonstrate most of the verifiable proof obligations.

— An interactive prover with a number of interactive commands which allow to discharge
the verifiable proof obligations that the automatic prover has failed to demonstrate. This
prover also makes it possible to identify a modelling error after having interpreted one
or more attempts to an interactive proof which does not lead to a demonstration.

If the model is correct, the interactive prover is able to finalise the proof by demonstrating
all the proof obligations which are not discharged by the automatic prover. The tasks that
can be automated during the development of a project are the syntax checks of the compo-
nents, the automatic generation of proof obligations and the automatic translation of the B
implementations into the C or Ada languages.

If all the proof obligations are demonstrated, the B description of the system specification is a
valid model regarding the target properties. However, this specification must be well defined
beforehand in an informal or in a semi-formal language in order to specify and formally verify
them to guarantee the consistency and the completeness of this specification. We may have
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(ii)

to use a semi-automatic demonstrator if the automatic demonstrator fails to discharge all the
proof obligations. However, this phase can be costly in time and resources.

The Rodin platform® [Abrial et al., 2010] is an IDE for modelling in Event-B based on Eclipse
which provides effective support for abstract machines, refinement and mathematical proof.
The platform is an open source and can be extended with plugins (UML-B, B2RODIN, etc.).

Model checking

Model checking is used for the formal verification of behavioural systems modelled in relation
to the expected properties. This technique is based on the construction of a model (state
machine) generally finite which describes all the possible states, the initial state and the state
transitions. It is established by an exhaustive enumeration of the possible (or visited) states
from the initial state. Given a property of the system to be checked on a machine, the model
checking technique explores the set of reachable states by this machine in order to verify
that this property is indeed satisfied. Two cases arise: either the property is checked and
maintained by the model, or a sequence of state transitions leading to the violation of the
property is generated as a counter example as presented in figure 1.2. This shows that the
property is not maintained by the model.

Informal Studied
Requirement System

h 4

Specification Formal
Phase Specification
Verification Model
Phase Checker

Counter
Example

Figure 1.2: Process of Model Checking

Comparing model checking and proof, on the one hand, model checking is easier and faster
than proof of theorems. On the other hand, the theorem demonstrator does not necessarily
rely on finite and decidable systems, unlike the model checker. Indeed, the theorem demon-
strator is applicable in certain cases: the model checking cannot be done because of the
problem of the state space explosion or the studied system cannot be formalised as a finite
state space model.

3 Rodin: www.event-b.org/
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(iii) Animation
Animation is a fast prototyping technique of validation. It allows to visualise certain formal
scenarios of the system and thus to validate the dynamic behaviour of the system. Indeed, it
makes it possible to demonstrate, at an early stage, the absence or an undesirable behaviour
presence in the used scenarios. In absolute terms, it does not guarantee the correctness of the
system, however it increases the user’s confidence in their formal specifications. Animation is
not an alternative to formal validation and cannot replace proof. These two techniques have
an important complementary role and can be used in conjunction. Indeed, animation can
be used as a validation method providing a quick view of the model execution, in addition
to the proof for a deeper verification. It makes it possible to identify and locate possible
problems in a model. Some animation tools such as ProB* support the analysis of liveliness
properties and detect deadlock problems. ProB, proposed by [Leuschel and Butler, 2003],
allows users a step-by-step animation of the machines in Event-B which makes it possible to
see a description of the machine’s current state, the history which led the user to access this
current state, and a list of all triggerable events. There is also a ProB animation plug-in on
Rodin [Butler and Hallerstede, 2007]. This Plugin can be included and performed in Rodin.

1.2 Formal Modelling and Verification in Railway Systems

1.2.1 Railway Systems

The railway system is a guided transport system used to transport people and/or goods. It is
made up of specialised infrastructure, rolling stock and operating procedures, most often involving
humans. Rail traffic management is ensured by control and command systems, whether train, tram
or metro. These systems are used, for example, to control the speed, the distance to be respected
between two trains or even signalling for drivers. Thus, they meet several European standards
and those imposed as a worldwide standard used in the railway sector such as [ISO/TC269/SC1,
2017] for the infrastructure and [ISO/TC269/SC2, 2015] for the rolling stock. These standards
are developed by the International Organization for Standardization (ISO). Their application is
therefore required for all suppliers of railway control equipment.

The railway systems in France comply with several European standards from the European
Committee for Electrotechnical Standardisation (CENELEC'). Three specific standards were pub-
lished in the early 2000s. The [CENELEC EN50126, 2001] standard concerns systems in their
totality, the [CENELEC EN50129, 1998] standard is dedicated to electronics, and the [CEN-
ELEC EN50128, 2011] standard is dedicated to software. These European standards have estab-
lished themselves as a standard used worldwide in the railway sector. Their application is therefore
required for all suppliers of railway instrumentation and control-command equipment.

The control-command system directs the movements of rolling stock and makes it possible to
manage the control and the command of trains of several lines and includes track and board au-
tomation on the trains. It is a modular, scalable and secure control, as well as a communication
platform based on the open CENELEC standards that manages and controls the transmission of
information between the various on-board subsystems (converters, doors, heating, ventilation and

4ProB: Animator and Model Checker https://www3.hhu.de/stups/prob/index.php/Main_Page
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air conditioning, etc.), but also between the train and the track systems (rails, sensors, etc.) [Schon,
2013a].

It thus ensures efficient and reliable train operations, diagnostic-based maintenance, high-
security rail operations, as well as practical and high-quality passenger services [Pawlik, 2015].
Thanks to the secure data transmission protocol and functions of the train control and manage-
ment system, it is possible to set up secure train functions and protected communications between
equipment and subsystems.

In Europe, railway principles and standards are used to be validated at the national level by the
National Safety Agency (NSA). Historically, each country has its own requirements for managing
trains on its network. As this national specific safety process was breaking the economic devel-
opment, the European Union has introduced a new solution called the European Railway Traffic
Management System (ERTMS)® creating a common and standardised management of rail traffic
and signalling in Europe.

Actually, a proposition in [Blakstad, 2006] implies a human mastering all the connected knowl-
edge and able to make synthesis and compromise. It is an evidence that a drawback of this approach
is that it is difficult to apply with radically new technologies. Actually, it is not possible to find an
expert of railway technology mastering all the connected knowledge, like, for instance, mastering
the knowledge of railway safety, telecommunication and human factors. An alternative approach
uses a set of dedicated experts. In this case, there is a problem with domain specific semantic. Fur-
thermore, dedicated experts do not have a mental representation of the impact of their technical
choices outside of their domain of knowledge. Let us consider the following definition:

"A model is a simplification of a system built with an intended goal in
Definition 1.2.1. | mind. The model should be able to answer questions in place of the
actual system" [Bézivin and Gerbé, 2001]

Building a model means representing the real world focusing on specific aspects. It is relevant
because it provides an operational abstraction of a given knowledge, focusing on impacts on a
given structure. Finally using a dedicated model for the formally projection of a specific knowledge
regarding a given aspect is quite efficient from a conceptual point of view.

Formal methods have been widely used and implemented by manufacturers for different types of
applications (automatic metros, signalling subsystems, train applications developed with Control-
Build, for example) and at different levels (specification, design, code). The [CENELEC EN50128,
2011] standard dedicated to the realisation of software applications points to the interest of using
formal methods.

Several driverless automatic metro projects by Siemens® have been developed without a formal
method such as VAL” (Véhicule Automatique Léger-Light Automated Vehicle) of Lille, France in
1983. This project was referred as the first fully automated driverless metro of any kind in the
world [Bushell and Stonham, 1985]. Following these projects, formal methods were introduced to
carry out several national and European projects.

SEuropean Rail Traffic Management System (ERTMS): www.ertms.net
6Simens: siemens.com
Mevia: www.ilevia.fr
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1.2.2 Safety of Railway Systems

The work presented in this thesis takes place in the context of the railway industry whose safety
requirements constitute a central concern in the development process. Many railway systems do
not use software to implement critical safety functions, those whose failure can result in a catas-
trophic risk to passenger safety [Lecomte et al., 2007]. These systems must meet strong safety
requirements [CENELEC EN50126, 2001] in order to avoid the five typical scenarios/accidents:

— The Nose-to-nose Collision: also called face-to-face, is a head-on collision between two
trains running on the same track and in opposite directions (see figure 1.3a).

— The Rear-end Collision: unlike nose-to-nose, a train catches up with another train in front
of it while going in the same direction (see figure 1.3b).

— The Sideswipe Collision: occurs when a train arrives on a switch already occupied by
another train coming from another direction (see figure 1.3c).

— The Train Derail: occurs when a part of a train (car, wagon, etc.) runs off its rails. It
includes leaving the track on a curve or on a switch crossed too quickly, or the circulation on
a track with excess speed (see figure 1.3d).

— The Collision with an Obstacle: is the meeting of a train with an obstacle not strictly
railway like a rock, an animal or a non-railway vehicle such as a car at a level crossing for
example (see figure 1.3e).

Over time and technological developments, signalling and railway automation have been proved
to be major allies to improve the operation of rail networks. Beyond the security aspects, the
implementation work of signalling and associated automation constitutes an essential basis in order
to: fluidify and regulate circulation, improve the comfort of users and operating agents, and reduce
operating and maintenance costs. Railway signalling is the management of safe train movements.
It is based on dynamic behaviours to be respected by the systems. In order to achieve the spacing
of traffic, the track is cut into sections called "blocks" [Kempen, 1993, Schon, 2013b]. Each block
is then preceded by a signal indicating whether this block is free or occupied by another train.
Consequently, it makes it possible to avoid catching up of trains on the same track, guarantee the
protection of traffic in intersections, avoid derailments by speeding (in zones with limited speed or
with curves, for instance), to protect a level crossing (rail-road crossings), etc.

In France, the railway sector is regulated by European and national rules. Consequently, the
respect of the [CENELEC EN50126, 2001], [CENELEC EN50129, 1998] and [CENELEC EN50128,
2011] standards for the design of a railway system is mandatory. Railway signalling does not make
it possible to identify system failures and to dynamically check the adequacy between the specifi-
cations and the source code. Analysis of this problem leads to consider that software failures fall
into two categories: design errors, which cause the programming source code not to comply with
the software specification; and compilation errors, which cause a program not to run according to
its source code. Therefore, formal techniques appear to be an answer to the problem raised by the
digitisation of critical security functions with regard to errors in the design of software applications.
The [CENELEC EN50128, 2011] standard identifies formal methods as means to be implemented.
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(d) Train Derail

(=)

(e) Collision with an Obstacle

Figure 1.3: Representation of the Main Accidents of Trains Circulation
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In order to extract the design errors and to model the behaviour of the railway systems so that
the model obtained is safe and reliable, it is necessary to formally model these systems and reason
over it. Formal modelling requires more expertise and advanced knowledge in mathematics [Kraibi
et al., 2019a]. In what follows, we present in detail some famous projects that used formal methods
in their design and validation process.

1.2.3 Formal Modelling in the Railway Sector

Based on a feedback of 25 years using formal methods, the Autonomous Parisian Transportation
Administration RATP noticed that the use of the Proof Fxecuted over a Retroengineered Formal
model (PERF) approach [Bonvoisin and Benaissa, 2015] instead of validation tests, reduces the
overall workload by a proportion of 25% [Benaissa et al., 2016]. PERF is an approach being devel-
oped by RATP based on two main phases The first one, uses B method or Fvent-B depending on
the nature of the project. It is a Top-Down design process [Bonvoisin, 2016]. The second phase of
PERF is rather a Bottom-Up approach based on model checking, induction and abstractions. This
phase is applied at a software level, considering that the lower levelled product are software entities.

The SACEM project (Systéme d’Aide a la Conduite & I'Exploitation et a la Maintenance-
Driving Assistance, Operation and Maintenance System) is a railway automation system for the
RATP® (Régie Autonome des Transports Parisiens-Autonomous Parisian Transportation Admin-
istration) [Dollé et al., 2003]. SACEM has been put into operation in 1989. This system allows
almost optimal operations for the busiest part of the RER network (Réseau Express Régional-
Regional Express Network) [Hennebert and Guiho, 1993].

In 1998, a project was developed for the RATP by Matra Transport International (now
Siemens). It concerns line 14 of the fully automatic driverless metro in Paris. Piloting this system
required the use of safety software formally developed with the B method, including proof, allowed
to suppress the unit tests and it gave a remarkable result [Behm et al., 1999].

The application and improvement of these formal techniques for system studies is a differenti-
ating factor for the competitiveness of the experts.

In 2012, the EPSF (Etablissement Public de Sécurité Ferroviaire-Public Railway Safety FEs-
tablishment) was very receptive to proposals of the formal methods use within the framework of
the PERFECT? project (Performing Enhanced Rail Formal Engineering Constraints Traceability)
which studies the LGV-Est (Ligne a Grande Vitesse Est européenne-East European High Speed
Line) [Ben Ayed, 2016]. The main goal of this project is to develop the safety specification and
verification of French railway interlocking systems in the context of national rules and the influence
of implementing ERTMS!?.

laws on the original systems [Bon et al., 2013, Sun et al., 2014, Sun et al., 2015]. The study
proposes a methodology for consistency assessing of the following two aspects:

— The operating rules of local signalling systems and interlocking;

SRATP: www.ratp.fr

9PERFECT: a project of the National Agency of Research (ANR)

YERTMS: European Rail Traffic Management System, instructed by the European Union (EU), is the system of
standards for the management of railways signaling.
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— The additional safety requirements (like ERTMS).

This methodology allows addressing the safety assessment of new systems, the analysis of given
scenarios and the evaluation of safety requirements of system updates. In the framework of the
perfect project, modeling operating rules was presented in [Ben Ayed et al., 2014].

Following the PERFECT project results and perspectives, in 2016, IRT Railenium!! developed
the NExTRegio project (initially ERTMS Regional) for SNCF!2 (Société Nationale des Chemins
de fer Francais-French National Railway Company). An original solution was proposed for the
system security analysis including the operating rules. Also, some tools were proposed for the
validation of certain configurations, in particular the change of a component or the change of
distribution of the human/machine collaboration in order to perform a given task [Idani et al.,
2019]. The NExTRegio project focuses on the French regional line. The scientific work proposed
to provide tools for the system safety analysis including the operating rules. Different kinds of
traffic are considered: freight, passenger and mixed traffic. The variation of the need in terms of
capacity may vary from a line to another. The need integrates some regional phenomena, like pick
hours and seasonal traffic. This wide diversity in terms of needs, has to be built on an existing
infrastructure, ensuing from the history of the region: they may be oversized, overloaded, more
or less automatized and using various technologies. One of the common motivations for changing
the global technical environment for controlling the regional line is that human workers mainly
remaining in the railway stations perform a lot of controls and operations. This kind of solution
increases the cost of the global exploitation of the line and decreases possibilities of building a good
business plan. Scientifically, the preceding proposals bring out a certain number of difficulties:

— A methodology for the design of abstract architecture has to be constructed;

— An exploitation of this abstract architecture, for example by changing or refining a component,
will raise the question of compliance with the requirements materialized by system invariants.

Today, in 2020, the Autonomous Train'? is an ongoing project at the heart of the French railway
industry research and innovation strategy. To develop this project, SNCF is partnering with major
industrial players as well as the Railenium Technological Research Institute. It aims to optimize
the speed of trains and therefore better harmonized traffic. This leads to an improved punctuality,
a smoother traffic, a reduced energy consumption and a greater circulation capacity.

A dedicated task of this project focuses on the engineering needs by the means of formal
methods.

In the scope of this project, the train stores and analyses a lot of information (including continu-
ous position provided by a composed system mixing odometry, GNSS and accelerometer). Actually,
an autonomous train has many states, which may be taken into account by the control railway cen-
ter in order to manage the whole system. Moreover, in the safety analysis, the autonomous train
may provide some safety critical information from its industrial vision system to the control railway
center: detection of obstacle on the line, detection of obstacle on adjacent lines, detection of broken
rail, detection of damaged catenary system, detection of people near the track area, etc.. All these
information will trigger dedicated procedure in the control center. From a formal assessment archi-
tecture point of view, it looks non-tractable to validate a new kind of autonomous train including its

"nstitut de Recherche Technologique Ralenium: a research institute specialized in the railway field
129NCF: www.sncf.com
13 Autonomous Train: a French project of SNCF in partnership with IRT Railenium
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model into a huge model of the infrastructure. A modular process is needed, allowing to implement
locally a specification, but the associated tools and methodologies have to be introduced.

1.2.4 PRESCOM Project
Modular System Design

Designing a system in a modular way by studying each of the components, aspects or points of view
separately is a widespread industrial practice, especially in the design of guided transport control
systems. The fact remains that a number of basic requirements are expressed across the entire
system. The objective of this project is to demonstrate the system safety reasoning in a global and
automated way. The target market is the railway sector in all its components which could require
the development of safe rail systems and subsystems. The efforts made by the heavy rail sector,
which is experiencing some delays in this process of using formal methods compared to the urban
rail sector, must be continuous. This project aims to interest the French rail safety authority since
the developed tools have the potential to make it possible to demonstrate the safety of the system
in a comprehensive manner.

The aim of this thesis is to demonstrate that formal methods can contribute to the process of
examining the various safety documents, which is a necessity for obtaining a safety certificate.
In terms of targeted applications, this PRESCOM project will:

— Improve functional pre-studies;

— Improve the quality of system studies (functional description and Top-Down design to sub-
systems);

— Carry out a V&V activity of interoperability standards for signalling (ERTMS type) and
facilitate the activity of subsystem acceptance by the project manager;

— Improve the possibilities of reusing formal models for a new system;

— Improve the validation of the hypotheses that each subsystem must guarantee in order to
ensure the safety and the functionality of the system.

Description of the Project

The rail sector relies on the safety of its systems, which must be proven before any commercial oper-
ation. The PRESCOM project has the overall objective of improving the development automation
of safety systems. This is done using formal methods (B method here) by providing Proof of Global
Safety for the Modular Design of railway systems and subsystems. This project is proposed due to
the results and perspective of the NExtRegio project. Indeed, the complexity of the systems is such
that the use of formal models and formal verification allows better control (precision, allocation,
completeness, etc.) of the sub-systems expectations. The system study and modelling are therefore
important steps for the control of any modifications or realisations.

Conventionally, a traditional document of the functional specification type is made up of a list
of detailed, documented and justified requirements concerning the different functional entities of
the system. If this list is formalised in a mathematical language, it will be possible to verify in
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a systematic and instrumented manner (i.e. using software) the consistency of these requirements
with each other. From this modelling of the system in natural language, it is possible to convert
it into mathematical language in order to obtain a so-called formal model. As a reminder, the
methodology that allows to design a formal model which makes sense, is called a formal method.
B-Method is one of these methods and it makes it possible to generate B models (this will be more
widely presented later in this document). In fact, these arguments are economically strong because
the cost of anomaly detection during the installation phase is 25 times higher than that of the
specification phase. As mentioned above, the first industrial use of formal methods was carried out
on the SACEM software for the RER A of Paris [Guiho and Hennebert, 1990] followed by the Fast
East-West Metro project METEOR in 1998 for line 14 of the RATP [Behm et al., 1999].

Thanks to the use of formal methods, no software bug was discovered after the proof: neither
during integration tests, functional or on site since the line was in operation, for 20 years. This
successful deployment has opened up the use of formal methods for the development of critical
software and systems.

Principal Objectives of the Project

The research work carried out as part of the PRESCOM project is the mechanisms of decomposi-
tion and partitioning of the global system and its global functions into communicating subsystems.
The objective is seen according to three components: scientific, technical and industrial.

From a scientific point of view, the mechanisms of refinement and decomposition is studied in
this project. In a refinement-oriented approach, the abstract global system is modelled according
to a minimal architectural structure. Refinement and decomposition are then used to separate
elements of the structure.

Several mechanisms of decomposition exist in the literature: the decomposition of models and
the decomposition of atomic events.

The main idea of decomposing models is to be able to decompose a model into several sub-
models which will be more easily refined separately than globally. This decomposition facilitates
the proof phase on the modelled system, as well as the automation of this proof. The decomposi-
tion of atomic events, in turn, has the vocation of moving from an abstract atomic event towards
sub-events of fine granularity.

In order to understand the needs and model the system requirements, the structure of a system
can be seen as a set of interacting components. Two main aspects are then taken into account: syn-
chronisation between the sub-components of the system and communication via interfaces. These
aspects will consolidate the multi-component modelling architecture thanks to the decomposition
mechanisms.

From a technical point of view, the implementation of the decomposition mechanisms in the
Atelier B tool is carried out by taking inspiration from the plugins developed within the Rodin
research project. Atelier B is at the centre of the research work for this project. It should allow the
partition of models in Fvent-B. Currently, Atelier B supports classical B and Fvent-B modelling.
The main features are:

— Automatic generation of proof obligations from components in B language;
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— Evidence aid thanks to suitable proof tools: an automatic prover (allowing to automatically
search for a proof for a given theorem) and an interactive prover (allowing a user to interac-
tively build a correct proof);

— Design mechanisms: management of relationships and dependence between B components.

This latter functionality essentially includes the refinement mechanisms and the compositional
mechanisms of classical B models. However, several Fvent-B decomposition mechanisms are not yet
taken into account in the tool. The project proposes to implement these mechanisms and integrate
them in Atelier B.

From the Industrial point of view, the industry practice creates an abstract formal model
corresponding to the requirements of the global system and then decomposes this model into sub-
systems corresponding to an industrial architecture. Our application case is a rail signalling system:
it is an essential complex system to master from a safety point of view. This system is central to
the passenger safety, but it also contributes to the quality of the provided service (having an impact
on the frequency of trains and the rate of the lines use). This system is made up of subsystems
with specific characteristics, such as lateral signalling or other more modern signalling (FRTMS,
Communication-Based Train Control (CBTC) for urban). Thus, we seek through this project for a
better formalisation of railway systems and therefore a better definition of the subsystems contours
and specific requirements, inducing proof obligations, associated with each of these subsystems.

1.3 Conclusion

The critical systems modelling, such as railway systems, causes difficult problems of validation,
verification, safety and certification. The formal specification of these systems as their environment
is essential. Creating a system description of high quality is still a challenging problem in the field
of formal modelling.

This chapter aims at analysing specification needs of railway industrial systems. Characteristics
of both semi-formal and formal methods were presented, but regarding the need of proofs ensuing
from the legislative railway context, we focus on formal methods. Then the genesis of the Event-B
is presented, and its existing ecosystem is detailed. The industrial efficiency of the considered tools
is proven through the industrial history. Nevertheless, it seems that the more a train is becoming
intelligent, the more a modular tooled approach is needed.

In our thesis, we are interested in the use of Event-B formal method and its application on
the railway sector. Particularly, we focus on the use of modular architecture in order to partition
the systems and to better control them in both of the phases: the specification phase and the
Verification and Validation (VEV) phase. The next chapter details the existing potential provided
by Event-B method, as well as a state of the art concerning the refinement and the modulisation
concepts.
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Introduction

The analysis and modelling activities of railway dynamic behaviours are major tasks requiring
rigorous mechanisms. Based on mathematical foundations, formal methods can help to rigorously
carry out these activities and reduce the ambiguity of the specification of critical systems such as
railway signalling systems.

As part of the PRESCOM project, Clearsy needs an enrichment of the Event-B method [Abrial
et al., 2010, Abrial, 2010] providing appropriate techniques for system modelling based on the B
method [Abrial, 1996]. Event-B methods have been widely used in the railway field in research such
as the PERFECT" and NExTRegio projects [Ben Ayed et al., 2016, Ben Ayed et al., 2014] and in
industry sectors as in the METEOR project [Behm et al., 1999]. In the same context, CLEARSY?
has also driven railway projects using formal proofs [Sabatier, 2016].

In fact, modelling of critical systems such as railway signalling systems can lead to complex
and voluminous models. One of the Event-B techniques for this issue is refinement. Refinement
consists in detailing the design to reach a concrete level by progressive steps. However, the final
level of modelling is still difficult to manage. In order to reduce this complexity, refinement can
be completed by another technique called decomposition of atomicity [Butler, 2009a]. Model de-
composition is another technique that can reduce the complexity of large models and increase their
modularity. This technique consists in dividing a model into sub-models that can be refined sepa-
rately and more easily than the original one. Several model’s decomposition approaches have been
proposed. Some of them are supported by Rodin® [Butler and Hallerstede, 2007] plugins? [Silva
et al., 2011].

In this chapter, we define in more detailed way the Event-B method, its structure and the
mathematical rules that allow to prove a model, as well as the proof obligation rules. Since Event-
B is based on the notion of refinement, we present the different types of refinement and how the
refinement can be verified. Then, we present a state of the art of the various types of decomposition
in Event-B.

2.1 Event-B

Event-B [Abrial, 2010] is a model-oriented formal specification designed for the analysis of critical
systems. It is based on the use of set theory and first-order logic as mathematical modelling
foundations. This method is an extension of Classical B/B-Method [Abrial, 1996], for the software
modelling, with some additional characteristics, as presented in section 1.1.3.

An FEvent-B model contains the complete mathematical development of a discrete transition
system, allowing the modelling of static and dynamic aspects of a system. The static aspects
concern the data, their typing and their specific properties. In the formal specification, these data
are characterised in the form of constants or sets. On the other hand, the dynamic aspects are
expressed by a group of events describing the states evolution.

'PERFECT: http://www.agence-nationale-recherche.fr/Projet-ANR-12-VPTT-0010
2CLEARSY: https://www.clearsy.com/

3 Rodin: http://www.event-b.org/

“Modularisation: http://wiki.event-b.org/index.php/Modularisation_ Plug-in
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2.1.1 Structure of an Event-B Model

An FEvent-B model is composed of two types of components: context and machine. The context
contains the static part of a model, namely sets, constants, axioms and theorems; while the machine
holds the dynamic part of a model, i.e., the variables, invariants, theorems, variant and events.

Event-B Context

The context contains the static part of a model. It defines the sets, constants and properties
(azioms). These properties define the predicates to be respected by the constants and the sets. A
model can contain many contexts. Contexts can also extend or be extended by other contexts. In
a case where a context C; extends another context Cy, C7 can use the sets and the constants of Cj.
In addition to its own constants, sets and properties, C| defines new constants, new sets and new
properties. In general, the B/Event-B Method specification is divided into clauses where each one
defines a different information about the system. In a context, the following clauses can be found:

— CONTEXT: in this clause, the name of the context is defined, and it should be distinct from
the other components of the model.

— EXTENDS: defines the extended context if there is one, if not it can stay empty.
— SETS: defines the sets of this context.
— CONSTANTS: defines the constants of this context.

— AXIOMS: includes the axioms and theorems. It defines the properties of the constants and
sets, such as the typing properties.

For example, in table 2.1, a context Cp defines the sets s, the constants ¢ and the axioms
Ap(s,c). This context can be extended by another context C; with the sets d, the constants ¢ and
the axioms A;(d,t) as in table 2.2.

CONTEXT Co The context name

SETS s Sets of the context Cj
CONSTANTS c Constants of the context C
AXIOMS Ap(s,c) | Axioms of the context Cp

Table 2.1: Context Structure

CONTEXT C4 The context name
EXTENDS Co Extended context

SETS d Sets of the context C4
CONSTANTS t Constants of the context C
AXIOMS Ai(d,t) | Axioms of the context C}

Table 2.2: Extending Context Structure
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Event-B Machine

A machine defines the dynamic part of the model. It contains the variables and their properties
(invariants), as well as variants and events. A machine can refine another machine or not and it
can see many contexts or none. The machine clauses are defined as follows:

MACHINE: defines the name of the machine. It should be distinct from the other components
name of the model.

REFINES: in this clause, the refined machine can be added. If the machine is not a refinement
of another one, this clause is not used.

SEES: a machine can see contexts or not. In this clause, we put the name of the seen contexts.
If the machine does not need to see other contexts, this clause is not used.

VARIABLES: specifies the variables of the machine.
INVARIANTS: establishes the different properties that the machine must preserve.

VARIANT: determines the variant of the system, i.e., the system stops after a certain number
of transitions.

INITIALISATION: establishes the variables initial values.

EVENTS: describes the different events of the system, where the behaviour is presented
through the event substitutions called actions.

For example, in table 2.3, a machine My sees a context Cjy. It defines the variables v, the
invariants (v, s, ¢), the variant V' (v, s, ¢), the initialisation K (v', s,¢) and the events event;.

MACHINE My Machine name

SEES Cy SEEN context name

VARIABLES v Variables of the machine
INVARIANTS I(v,s,c) | Invariant to preserve in the machine
VARIANT V(v,s,c) | Variant

INITTALISATION | K(v',s,¢) | Initialisation

EVENTS event; events of the machine

Table 2.3: Machine Structure

Events

A machine M contains events event; which can be specified in three different ways (Figure 2.1):

Simple (BEGIN Q END): where the guard is always true so it can be observed at any time.
The variable v has a new value v’ such as the substitution v : |Q(v,v’, s, ¢) changes the state
of v to the new state v' where Q(v,v’, s, ¢) is the before-after predicate.

Guarded (WHEN G THEN Q END): which is triggered when the guard G(v) is satisfied
and where the action v : |Q(v, V', s, ¢) depends only on the state variables of the model.
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— In-deterministic (ANY p WHERE G THEN Q END): is such that v is a state variable
and p is a local variable of the event. In this specification, the event is triggered only if there
exists a value of the variable p that satisfies the guard G(p,v) such as v : |Q(p,v,v,s,¢) is
the action of the event said non-deterministic (see table 2.4).

event
event ANY
event WHEN P
BEGIN G(v) WHERE
v:]Q(v,v,5,¢) THEN G(p,v,s,c)
END v:|Qv, v, s, ¢) THEN
END v |Q(p,v,v',s,¢)
END

Figure 2.1: Different Types of Events

P Event parameter
G(p,v,s,c) Guard of the event
Q(p,v,v', s,¢c) | Before/After predicate

Table 2.4: In-deterministic Event Structure

Machine Types

There are two types of machines: an abstract machine and a refinement machine. In a first step
of the system development process, an informal specification is modelled into an abstract machine.
This machine defines the initial specification that reflects the behaviour of the system to be studied.
Then, it can be refined by a refinement machine, which, in turn, can also be refined by another
refinement machine and so on.

For example, a machine M, containing a set of variables v can be refined by another machine
My with another set of variables w. In this context, each variable in w is either refining the variables
in v or it is a new variable of M;. Besides, M; must contain an invariant J(v,w, d,t), which is the
gluing invariant describing the new variables properties stemming from the relations between the
abstract variables and the refining variables.

Similarly, the events r__event;, in M7, are either new events of this machine or they are refining
the abstract events a__event; from M. In the refinement, r__event; must define guards H;(q, w, d, t)
and substitutions w : |R;(¢q, w,w’,d,t). The refinement machine Mj can also define new events
n__eventy with the guards Ni(o,w,d,t) and the substitutions w : |Tx (0, w,w’,d,t). My SEES a
context C7 which extends Cp, as in figure 2.2.

Machines and Contexts Relationships

Machines and contexts have different relationships. A machine can be refined by another machine,
and a context can be extended by other contexts. In addition, a machine can see one or more
contexts. When a machine M sees a context C, it means that the sets and the constants of C' can
be used in M. The different types of relationships between machines and contexts are illustrated
in figure 2.3:
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REFINEMENT M, Refinement of the machine MO
REFINES My Refined machine
SEES 1 Context seen by M;

VARIABLES w New variables and/or variables refining v
INVARIANTS J(v,w,d,t) Gluing invariant to be preserved in the refinement
INITTALISATION | K, (w',d,t) Initialisation in the refinement
EVENTS r_event; Events refining a__event;
n__eventy New events
q Refining event parameter
r_event; Hi(q,w,d,t) Guard of the refining event
Ri(q,w,w’,d,t) | Before/After predicate
) New event parameter
n__eventy Ni(o,w,d,t) Guard of the new event
Ti(o,w,w’,d,t) | Before/After predicate
Table 2.5: Refinement Machine Structure
MACHINE M,
VARIABLES v
INVARIANTS I(v, s, c)
INITIALISATION v : |K,(v'; s, ¢) CONTEXT Cjy
EVENTS SEES | SETS s
a_event; CONSTANTS ¢
any p AXIOMS Ay(s,c)
when G;(p, v, s, c)
then v : |Q;(p,v, V', s,¢)
end
REFINES
EXTENDS
REFINEMENT M;
REFINES M,
VARIABLES w
INVARIANTS J(v,w,d,t)
INITTALISATION w : | K, (w',d, t)
EVENTS
r_event; CONTEXT C;
any ¢ SEES SETS d
when H;(q,w,d,t) CONSTANTS ¢
then w : |R;(q, w,w’,d,t) AXIOMS A;(d,t)
end
n__eventy
any o

when Ny (o, w,d,t)

then w : [T (0, w,w’, d,t)

end

Figure 2.2: Structure of an Event-B Model with One Refinement and One Extending Context
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— A machine can explicitly see multiple contexts (M sees Cy and C7) or any context (My does
not see any context).

— A context can explicitly extend several contexts (C5 extends C; and C2) or any context (Cp
does not extend any context).

— When a context C3 extends a context Cq, the sets and the constants of C7 can be used in Cj.

— The notion of context extension is transitive: a context Cy explicitly extends a context Cis.
Then Cy implicitly extends all extended contexts by C5 (Cy implicitly extends C7 and Cs).

— A machine implicitly sees all contexts extended by a context explicitly seen (My implicitly
sees the contexts C7 and Cy explicitly extended by Cj).

— The relations REFINES and EXTENDS must not lead to a cycle.

Mo

SEES

A

REFINES

SEES
REFINES EXTENDS EXTENDS
M > C
E,L SEES L3
REFINES EXTENDS
M3 — > Cy
SEES

Figure 2.3: Different Possible Relations Between Contexts and Machines

2.1.2 Proof Obligation Rules in Event-B

In order to ensure that a model is correct, mathematical rules should be verified, called proof
obligations. Different proof obligation rules exist. To facilitate the specification modelling, systems
are modelled in several steps. The first step of modelling is the abstraction, it does not model all the
details of the system. These details are specified and added gradually in a subsequent model which
refines the abstract model. Then, at each stage of refinement, one should ensure that the operations
of a machine preserve the invariant as the first main proof activity in B called consistency checking.
The second main proof activity is refinement checking, which is used to show that one machine is a
valid refinement of another [Leuschel and Butler, 2003]. In other words, a refinement relationship
ensures consistency between two levels of modelling and is carried out in an incremental way up to
a certain level. This level can be useful to analyse the behaviour of the system. This relationship
involves a set of invariants that must be preserved to prove the refinement correctness.
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Invariant POs

The invariant proof obligation allows to ensure the invariants preservation by each event. There
exists two main invariant proof obligation types (see table 2.6):

— Initialisation invariant PO: named INVj,;, it allows to verify if the initialisation establishes
the invariant in the abstract machine by I NV;,;;:1 and in the refinement by I NVj,;:2.

— FEvents invariant PO: allows to verify if each transition of the events preserves the invari-
ants. For the abstract machine, the invariant proof obligation concerning the abstract events

is denoted by INVj. For the refinement machine, there are two types of invariant proof
obligations: TNV, for the refining events and I N V3 for the new events.

PO description PO name | PO Formula
Preservation of the invariant }4}(8(’1}6)8 o)
I(s,c,v) by the initialisation of the | INVy,;:1 - v
abstract machine M
I(v,s,c)
Preservation of the invariant é(c(l,uf) d 1)
J(v,w,d,t) by the initialisation of | INV;,;;2 I—T T
the refinement machine M; Jo.(Ka(v,5,¢) A J(v, w,d, )
A(s, c)
Preservation of the invariant by the I(v,s,c)
events of the abstract machine M, INV1 Gi(p,v,s,c)
where v is the new state of v after Qi(p,v,v',s,¢)
the events observation H
I(v',s,¢)
A(d,t)
. I(v,s,c)
Preservation of the refinement ma-
. . . . J(,U7 w? d7 t)
chine invariant by the refining
/. INV2 Hi(q,w,d,t)
events, where w' is the new state of Ril ' d )
w after the events observation I—l 7w, W, 6
J' W', d,t)
A(d,t)
I(v,s,c)
Preservation of the refinement ma- J(v,w, d, 1)
e . INV3 Ni(o,w,d,t)
chine invariant by the new events ,
Tk(07 w,w, dv t)
',
J(v,w',d,t)

Table 2.6: Invariant Proof Obligation Rules: INV
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Feasibility POs

The feasibility proof obligation rule ensures that an event can be triggered at least one time. FIS51
verifies the feasibility of the initialization. FI1S52 allows to verify the feasibility of the abstract
events and F'1.S3 is for the feasibility of the refining events (see table 2.7):.

PO description PO name | PO Formula
Feasibility of the initialisation | FIS1 30.K (v, 5, ¢)
A(s, c)
Feasibility of the events in the I(v, s,c)
Y FIS2 Gi(p,v,s,c)
abstraction -
Elv,‘Qi(p7 v, U/a S, C)
I(v,s,c)

o1 o1 . J(’U7w7d7t>
Feasibility of the events in the FIS3 Hy(q, w,d, t)
refinement -

Jw'.Ri(q, w,w’, d,t)

Table 2.7: Feasibility Proof Obligation Rules: FIS

Event POs
Table 2.8 presents the proof obligation rules corresponding to the events:

— GRD allows to make sure that the guards in a refining event are stronger than the abstract
ones in the abstract event. This ensures that when a refining event is triggered, so is the
corresponding abstract event.

— SIM ensures that when a refining event is triggered, it does not create any contradiction with
the corresponding abstract event. Each action in an abstract event is correctly simulated in
the corresponding refinement.

Deadlock-Freedom Proof Obligation Rules

If the system reaches a state where there are no outgoing transitions, the model is considered to
be deadlocked. This proof obligation allows to verify if the system does reach a state where it is
deadlocked. Table 2.9 shows the deadlock freedom proof obligations:

— DLF1 defines the proof obligation rule for the deadlock-freedom of the abstract machine. At
least one event can be triggered.

— Two rules of deadlock-freedom proof obligations are defined for the refinement machine: the
weaker one and the stronger one.
— The weaker rule DLF2,, means that at least one of the refining events is triggered.
— The stronger rule DLF2; requires that each refining event is triggered at least one time.
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PO description PO name | PO Formula
A(s,c)
I(v,s,c)
Proof obligation of the GRD J(v,w,d,t)
refining events guards Hi(q,w,d,t)
l_
Gi(p,v,s,c)
A(s,c)
I(v,s,c¢)
. J(v,w,d,t)
reiming cvents nctions. | SN | Hilawd 1
Ri(q,w,w',d,t)
|_
Qi(p,v,v',s,¢)

Table 2.8: Event Proof Obligation Rules

— DLF3, is the weaker proof obligation to be verified in case of the existence of new events in
the refinement machine. In the refinement machine, at least one of the existing events, new
or refining ones, should be triggered.

— DLF3; is the stronger proof obligation to be verified in case of the existence of new events
in the refinement machine. It requires that each refining event is triggered at least one time.
Otherwise, at least one of the new events should be triggered.

Variant POs

In the case of introducing some new events in a refinement machine, we have to prove that they do
not diverge. In other words, the new events must not be indefinitely enabled. This proof obligation
allows to verify that a system stops after a certain number of transitions. The proof obligations of
variant are defined as follows in table 2.10:

— NAT allows to prove that the variant V(w,d,t) is a natural number assuming the axioms
A(d,t), the abstract invariant I(v,s,c), the refinement machine invariant J(v,w,d,t), and
the guards of each new event Ni(o,w,d,t).

— V AR1 verifies that the variant V' (w,d,t) is decreased. This has to be proved for each new
event with guards N (o, w, d,t) and before-after predicate Tk (o, w,w’,d, t). The same variant
should be decreased by each new event.

— FIN allows to verify that the set S(w) of the states of the variables w is finite.

— V AR2 ensures that the set S(w’) of the new states w’ of w is included in S(w).
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PO description PO name | PO Formula
Deadlock freedom of the DLF1 l{(v’ 5, )
abstract machine G (p.0,5,6) V..V Go(p,0.5.)
Weak deadlock freedom I(v,s,¢)
of the refinement ma J(v,w,d,t)
chine in case of the re- DLE2,, f1(p,v,s,c) V..V Gn(p,v,s,c)
fining events existence Hy(q,w,d, )V ..V Holq,w,d.8
Strong deadlock free- 1(v,s,¢)
J(v,w,d,t)
dom of the refinement DLF2 G )
machine in case of the s |_l p,v,s,¢C
refining events existence Hi(g,w.d.1)
Weak deadlock freedom I(v,s,c)
J(v,w,d,t)
of the refinement ma- Gl SRR, )
chine in case of the ex- | DLF3,, |_1 D, U, 8,C) V.. n(D,V, 8, ¢

istence of refining and
new events

Hi(q,w,d,t) V..V Hy(q,w,d,t)
VN1 (o,w,d,t) V..V Ny (0o,w,d,t)

Strong deadlock free-
dom of the refinement
machine in case of the
existence of refining and
new events

DLF3,

I(v,s,c¢)

J(v,w,d,t)

Gi(p,U,S,C)

l_

Hi(q,w,d,t) V N1(o,w,d,t) V..V Np,(0o,w,d,t)

Table 2.9: Deadlock Freedom Proof Obligation Rules: DLF
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PO description PO name | PO Formula

A(s,c)

A(d,t)
I(v,s,c)

NAT J(v,w,d,t)
Ni(o,w,d,t)

l_

V(w,d,t) € N
I(v,s,c)
J(v,w,d,t)
Variant proof obligation Ni(o,w,d,t)
using a natural VARL Ty (o, w,w’, d,t)
l_

V(w',d,t) < V(w,d,t)
I(v,s,c)
J(v,w,d,t)
FIN Ni(o,w,d,t)

l_

finite(S(w))
I(v)
J(v,w,d,t)
Variant proof obligation Ni(o,w,d,t)
using a finite set VAR2 Ti (0, w,w', d,t)
l_

S(w") C S(w)

Proof obligation of a de-
creasing natural

Proof obligation of a set
finiteness

Table 2.10: Variant Proof Obligation Rules: VAR
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2.2 Refinement in Event-B

2.2.1 Event-B Refinement Types

In Fvent-B, refinement is a central concept used for modelling the system incrementally from an
abstract machine on the basis of the system specification. At each stage of refinement, details of
the system are gradually added in a concrete machine that must preserve the functionality and the
properties of the refined machine. As a matter of fact, an abstract machine can be refined by only
one refinement and a refinement machine refines only one abstract machine. For that reason, we
consider the refinement in B/Event-B as "linear" in the sequel of this manuscript.

Two Event-B refinement techniques exist: horizontal refinement and vertical refinement [Abrial
et al., 1991, Bolusset and Oquendo, 2002]. The latter contains the data refinement and the events
refinement. The different refinement techniques are defined as follows:

Horizontal refinement: consists in adding the specification details in order to define progres-
sively new functionalities of the system in the refinement such as introducing new variables and new
events that make these new variables evolve. New events refine a particular event of an abstract
machine which is the empty event with skip substitution.

Vertical refinement: has as a goal the concretisation of the abstract machine by adding variables
through a data refinement [Back, 1989] and the behaviour by detailing abstract events or adding
new events by events refinement, also called algorithmic refinement [Abrial et al., 1991]. These
two types of refinement, data refinement and algorithmic refinement, are not exclusive: they can
be operated in the same stage of refinement. It is obvious that any refinement of data leads to an
algorithmic refinement. These two types of vertical refinement are detailed below:

— Data refinement: consists in defining concrete variables w in the refinement machine in order
to replace abstract variables v. Since the substitutions no longer make the same abstract
variable v space evolve, they must be rewritten (refined) with respect to the new variable w
space. In this case, a predicate J(v,w), called a gluing invariant, must be specified. This
invariant makes it possible to establish the link between the variables v and w. The gluing
invariant J(v,w) is specified in the INVARIANT clause of the refining component. Proof
obligations are generated at each refinement stage to ensure the refinement correctness (see
section 2.1.2).

In classical B-Method, refinement is based on this technique to bring the model closer to the
implementation.

— Fwvents refinement: aims to refine an abstract event by one or many events in the refinement
machine in order to make the event more concrete. It is the rewriting of an abstract substi-
tution evolving v into a less abstract substitution evolving w. A graphical approach of events
refinement has been presented in [Butler, 2009a, Dghaym et al., 2017, Dghaym et al., 2016]
called Event Refinement Structures (ERS). Its main goal is to represent explicitly the events
refinement and the behaviour sequencing [Fathabadi et al., 2011].
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Event Refinement Structures

A proposition in [Butler, 2009a] is called decomposition of event atomicity. This approach is
a structuring mechanism for refinement in Event-B. This mechanism is based on decomposing an
abstract atomic event to many sub-events, where one event refines this abstract event. Decomposing
atomic events is inspired from Jackson System Development (JSD) approach [Butler, 2009b] and it
is represented by the ERS approach (Event Refinement Structures) [Dghaym et al., 2016, Dghaym
et al., 2017]. The idea of the ERS approach is to enrich the Event-B refinement with a graphical tree
notation able to represent explicitly the events decomposition in the refinement and the behaviour
sequencing [Fathabadi et al., 2011]. Figure 2.4 presents a sub-tree. The child nodes of each
node are transformed into events in the refinement. The nodes order describes the order of events
observation (from left to right).

This method is defined as follows:

— The root of the tree represents the abstract machine (here we represent a sub-tree).

— The child nodes of each node are transformed into events in the refinement.

— The order of leaves / nodes determines the order of observation of events (from left to right).
— The dotted line indicates the addition of new events.

— The solid line indicates that an event refines the parent event. At most one child event can
refine a parent event.

— XOR indicates the triggering of one and only one event.
— In case of XOR, an event can be refined by several events.

— AND allows interleaved execution of events.

eventg

ski’p/ e Slgi/p/ 3 refines
’ eventi, ‘ ’ eve;ltlb ‘ ’ eventy.
| AND | XOR
’event/g/a‘ ’ eventoy ‘ ’ eventfgc’ ’eventgd‘ ’eventge

Figure 2.4: Example of Event Refinement Structures (ERS) Diagram

For example, let consider the machine of figure 2.5, the machine M1 on the left side refines
a machine MO which contains the abstract specification of "AbstractEvent'. The M1 machine
controls the sequence of events "Eventl" and "Event2" with guards on these events. The control
of this sequence is presented in the ERS diagram on the right side. The solid line indicates that
"Event2" refines "AbstractEvent" while the dashed line indicates that "Eventl" is a new event
that refines "skip'. In the Event-B model on the left side, 'Eventl’ has no explicit relation with
"AbstractEvent’, but the diagram indicates that the atomicity of ’AbstractEvent’ is broken into two
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sub-events in the refinement. The parameter "par" of the diagram indicates that we are modelling
several instances of AbstractEvent and sub-events. The effect of an event with the "par" parameter
is to add the value of "par" to a control variable defined with the same name as the event, that
is, "par € Eventl" means that Eventl occurred with the value "par". Using a set means that the
same event can occur multiple times with different values for "par".

machine M1 refines M0 sees CO

variables Event1 Event2
invariants
@inv1 Event1 € PAR_SET
@inv2 Event2 < Event1
@inv3 Event2 = AbstractEvent

[ Root, ab t event, is decomposed into sub events ]
event INITIALISATION then
@act1 Event1 =@
@act2 Event2 = @ [ AbstractEvent (par) ]
end
7
event Event1 any par where [ A dashed line: refines skip ] Ve A solid line: refines AbstractEvent ]
@grd1 par & Event! 7
then Z
md@acﬁ Event1 = Event1 u {par} [ Eventl {par) ] [Eventz {par) ]

event Event2 refines AbstractEvent
any par where
@grd1 par € Event1
@grd2 par & Event2
then
@act1 Event2 = Event2 u (par}
end

L The sub events are read from left to right and indicate sequential control}

Figure 2.5: Example of an Event Structure Diagram [Alkhammash et al., 2015]

2.2.2 Correctness of the Event-B Refinement

This section relies on the Abrial definition of the refinement in the Event-B book [Abrial, 2010],
but to well understand and justify this definition and the underlying relations and rules, this leads
us to explain the correctness of the Event-B refinement in another manner, in our own way. This
will be useful for our decomposition approach proposal.

In order to simplify the explanation, let consider as an example an abstract machine that gives
the maximum of a set of positive integers: GET_MAX example. The abstract machine, in the left
side of figure 2.6, contains the following elements:

— Set: a variable that is a non-empty set of positive integers (NAT). Set is initialised to the
singleton {0}.

— current__maz: a variable containing the current maximum of Set.
— add: an event that allows to add a positive integer to Set.
— get_mazx: an event that returns the maximum of Set.

At this level, we notice that only new values are added to the set. Hence, it is useless to keep
in the memory the already inserted values in the set: only the maximum is interesting. So, we
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SYSTEM REFINEMENT GET_MAX_r
GET_MAX REFINES GET_MAX
VARIABLES VARIABLES
Set, Max,
current_max current_max
INVARIANT INVARIANT
Set : FIN (NATURAL) & Max : NATURAL &
current_max : NATURAL & Max = max(Set)
set /= {} INITIALISATION
INITIALISATION Max :=
Set := {@} || current_max :=0
|| current_max := @ EVENTS
17 - » “ EVENTS add =
add = ANY
ANY nn
nn WHERE
WHERE nn : NATURAL
nn : NATURAL & nn > Max
THEN THEN
Set := Set \/ {nn} Max := nn
END; END;
get_max = get_max =
BEGIN BEGIN
current_max := max (Set) current_max := Max
END END

END

END

Figure 2.6: GET _MAX Example: Abstract Machine and its Refinement

refine this machine by deleting the variable Set and keeping only the current maximum of Set. We
present, in the right side of figure 2.6, the Event-B refinement of GET _MAX model:

— Maz: a variable keeping the maximum positive integer.

— current__maz: a variable containing the current maximum positive integer.

— add: an event that allows to add a positive integer as maximum if it is bigger than the
previous value of Maz.

— get_max: an event that returns the current maximum.

Before dealing with this example, we introduce some sets definitions that seem to be useful for

the sequel:
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— P: defines the state space, i.e. a

set of all the possible states. P
— L: set of the initial states.
— . set of reached states by the B
transition system.
— B: set of "safe" states, which pre- ,
S=ANB

serve the invariant.

— S = AN B: set of the reached
states by the transition system

preserving the invariant.
We define in table 2.11 the following sets of the abstract machine and its refinement:

Set Name Set Definition Set Formula

Set of the reached states by the tran-
S sition system preserving the invari- | S = {v|I(v)}
ant in the abstract machine

Set of the reached states by the tran-
T sition system preserving the invari- | 77 = {w|3v.(I(v) A J(v,w))}
ant in the refinement machine

Set of the initialisation states in the
abstraction

Set of the initialisation states in the
refinement

Ly = {w[N(w)}

Table 2.11: Sets Definitions

Abstract machine Back to the example, in the abstract machine, the abstract state variables
are defined as v = (Set, current_maz), the Set is defined as Set C {0,1,2} and current_max as
current_max € Set. Here, we restrict the space state of the Set and of the current_max. The
invariant I(v) is defined as Set # @. The sets introduced above are defined as follows:

- P={(9,0),(,1), (9,2), ({0}, 0), ({0}, 1), ({0}, 2), ({1}, 0), ({1}, 1), ({1}, 2), ({2}, 0),
({2}, 1), ({2}, 2), ({0, 1}, 0), ({0, 1}, 1), ({0,1}, 2), ({0, 2}, 0), ({0,2}, 1), ({0,2}, 2), ({12},
0)7 ({172}7 ]‘)7 ({172}7 2)7 ({07 172}7 O )7 ({07 172}7 1)7 ({07 ]‘72}7 2)}

— Ly = {{0}70}

— B=P-{(2,0),(2,1),(2,2)}. The set B contains all possible states minus all states breaking
the invariant.
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- 5 ={({0},0),({0,1},0), ({0,1},1), ({0, 2},0), ({0,1,2},0), ({0, 1,2}, 1), ({0, 2}, 2),
({0,1,2},2)}.

Refinement machine In the refinement, we refine the variable current__max and define a new
variable Max. So, the state variable of the refinement is defined as w = (Max, current_max) with
the gluing invariant J(v,w) : Maxr = max(Set). T is a set of the reached states by the transition
system preserving the gluing invariant in the refinement. Similarly to the abstract machine, we
define in the refinement 7" the set of the reached states by the transition system preserving the
invariant where T = {(0,0), (1,0), (1,1),(2,1),(2,0), (2,2)}, as shown in the right side of figure 2.7.

get_max get_mazx

get_mazx

get_mazx

get_max add, get_max

get_max

get_max

get_max add, get_mazx get_maz add

Figure 2.7: GET_MAX Example: Different Possible Transitions

Demonstration In [Abrial, 2010], the author defines three relations, as shown in figure 2.8:

— ae: presents all the possible abstract transitions between the states in S in the abstract
machine. In other words, ae defines the couples (v,v’) such that the invariants I(v), the
guards G(v) and the before/after predicates R(V,v') are true.

— re: defines all the possible refinement transitions between the states in T in the refinement
machine. For each couple (w,w’) in re, it exists refined variables v of the abstract ma-
chine such that the invariant I(v), the gluing invariants J(v,w), the guard H(w) and the
before/after predicates Q(w,w’) are true.

— r: is a refinement relation between the abstract machine states and the refinement states.
For each couple (w,v) the invariants I(v) and the gluing invariants J (v, w) are true, where w
are the state variables of the refinement machine and v are the state variables of the abstract
machine.
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Table 2.12 illustrates the definitions and the formulas of ae, re, the domain of ae and the domain
of re.

ae

My S S
REFINES T r
M, T re T

Figure 2.8: Relations Between an Abstract Machine and its Refinement

Abstract

— / /
transitions ae €5 < 5 ae = {v—=v[I(v) ANG(v) A R(v,v')}

Refining

— / ,
transitions | €TeT re = {w—w[(Fvd(v)AJ(v,w)) A H(w)AQ(w,w)}

Relation of

refinement rel« S ro= Aweoll(v) AJ(v,w)}

Domain of
the abstract | dom(ae) dom(ae) = {v|I(v) NG(v)}
transitions

Domain of
the refining | dom(re) dom(re) = A{w|Fv.(I(v) A J(v,w)) A\ H(w)}

transitions

Table 2.12: Definition of the Relations Between an Abstract Machine and its Refinement

Notion of external variables The state variables v are distributed into two categories: exter-
nal variables e and internal variables i. External variables e, also called observable variables [Abrial,
2010, Abrial and Hallerstede, 2007] are the state variables of an abstract machine that are refined
in a refinement machine. The external variables of a machine are formally linked to the external
variables of its refinement [Metayer et al., 2005]. The variables which are not refined are considered
as non-observable called internal variables 7. As a consequence, the sets of external variables are
defined as follows:

— E: a set of external variables states of the abstract machine.
— F: a set of external variables states of the refinement.

In GET_MAX example, current_maz is an external variable of the abstract machine, so E
is defined such as F = {0,1,2}. Set is an internal variable of the abstract machine. As a par-
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ticular case, we consider current max the external variable of the refinement so that F' = {0, 1, 2}.

Correction of refinement Abrial defines some functions in the basis of the sets F and F for
the purpose of the refinement correctness demonstration, as in figure 2.9:

— f is a function from S to FE such as f € S — E. It is a projection of the safe reached states
on the external variables states of the abstract machine.

— ¢ is a function from T to F such as g € T'— F'. It is a projection of safe reached states on
the external variables states of the refinement.

— h is a function from F to E such as

h € F — E. It is a function that links the external variables of the abstract machine with
those of its refinement. h is defined by the observer event (observe event) BEGIN w := h(v)
END, where w is the external variables of the refinement that refine the external variables v
of the abstract machine.

In GET_MAX example, h is defined as the identity function such that h(current max) =
current__max. From that and since w = h(current__max), this implies w = current__mazx.

ae

2 T
E E
| Jar
F F

s re N1

Figure 2.9: Relations Between State Variables and Observable Variables [Abrial, 2010]

After that, a property between r on the one hand and f, g and h on the other hand is defined:
(P1) Y,w.(w—ver= f(v)=h(g(w)))

In Event-B, in order to ensure that a refinement is correct it is necessary to check the conditions
in figure 2.10. C1 and C2 are the initialisation conditions, C3 concerns the events and C4 is relative
to the deadlock freedom. These conditions are as follows:

— C1: the set of the initialisations in the refinement should be included in the abstract one.

— C2: the initialising set of the refinement machine shouldn’t be empty which means that at
least one state of the refinement machine must occur.

— C3: all the transitions of the refinement should be included in those of the abstraction.
In other words, the behaviour of the refinement is at most equal to the behaviour of the
abstraction. In the refinement, we shouldn’t have a behaviour which does not exist in the
abstraction.



59 CHAPTER 2. STATE OF THE ART: MODULAR ARCHITECTURE IN EVENT-B

— C4: the domain of abstract transitions ae is included in the domain of refinement transitions
re, i.e. the set of states allowing to trigger a transition in the refinement is including the set
of states allowing to trigger a transition in the abstraction.

In the right side of figure 2.10, we add an equivalence rewriting of these conditions in function of
f, g and h functions as defined by Abrial in [Abrial, 2010].

(C1) L, CL, (C1)  g[L] € h™'[f[Ld])

(C2) L, #9 P1 (C2) L, #0o

(C3) reCae = |(C3) (¢ reg) € (hif T ae; fi07)
(C4)  domf(ae) C dom(re) (C4)  h=[f[dom(ae)]] C gldom(re)]

Figure 2.10: Conditions to Verify for the Refinement Correctness
On the basis of these conditions and the supposed property P1, we have in [Abrial, 2010]:
(P1): Yo,w.(w—ver= f(v)=h(g(w)))
Vo, w.(w —v er= g(w)— f(v) €h)
Vo, w,z.(z = glw) Nw - v eEr=z— f(v) €h)
Vo, z.(Fw.(z = g(w) ANw = v Er) =z — f(v) €h)
Vo, z.(3w.(z = g(w) ANw — v er) = Ju.(u= f(v) ANz —u € h))
Yo, 2. Fw.(v s wertAw—z2€g9)=Ju(vsuc fAru—zehl))

Yo,z (v—=>z€(rhg)=v—ze(fihh))

18 S T A A A

\r’l;ggf;h’l\

Goal 1: we intend to apply this demonstration of a classical refinement on our decomposition
by refinement approach in chapter 4: Refinement Seen Split (RSS).

In the next section, we introduce the decomposition in Event-B and we detail some existing
approaches of Event-B decomposition in the literature.

2.3 Decomposition in Event-B

An Event-B machine can have so many events and state variables that an additional refinement can
become difficult to manage. Model decomposition tackles this difficulty by providing a mechanism
to divide a large model into several sub-models. In fact, a large model can be partitioned into
smaller components after several steps of refinement. This step of partitioning can be a result of
a model complexity or simply an architectural decision [Silva and Butler, 2010]. The top-down
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Modelling style used in Event-B allows, during the refinement levels, the introduction of new
events and variables. A consequence of this style of development is an increasing complexity of the
refinement process when dealing with many events and variables. Decomposing models addresses
this difficulty by providing a mechanism to divide a large model into several sub-models. Four
descending steps are defined for the different decomposition techniques by [Hoang et al., 2011]:

1. Model the system abstractly by expressing all the main global properties of the system;

2. Refine the abstract model to adapt it to the expected structure by a given decomposition
technique;

3. Apply decomposition;
4. Develop the resulting sub-systems independently.

By following this guideline, the overall properties are captured early in the model and guar-
anteed in the final models by combining refinement and decomposition. The development of each
decomposed part is done independently of the others. Therefore, we can have different implemen-
tations for a decomposed model which is guaranteed to work with any implementation of other
decomposed models.

Many techniques for decomposing Event-B models have been proposed. These decomposition
techniques differ in that the different elements of the model are shared between the sub-components:
variables or events. In the literature, the most known approaches of decomposition in Event-B are
decomposition by shared variables and decomposition by shared events. For shared variables de-
composition, part of the state information (variables) is shared between the sub-components. For
the breakdown of shared events, a set of events is synchronised and shared by sub-components.
There are also other methods that decompose such as modularisation, instantiation, fragmentation
and distribution we present in detail these approaches in the following sub-sections.

2.3.1 Decomposition by Shared Variables
Methodology of the Decomposition by Shared Variables

Abrial proposes in [Abrial and Hallerstede, 2007] the shared variables decomposition which con-
sists in distributing events of a machine between several sub-machines. This approach proposes
to manage shared variables between several events. It is also used for decomposing parallel pro-
grams [Hoang and Abrial, 2010]. During the machine decomposition, events to be separated are
selected in each sub-machine and considered as internal events. A variable that occurs only in
the internal events is a private variable. If a variable is involved in internal events of different
sub-machines, it is defined in each of them as a shared variable that cannot be refined. External
events of a sub-machine are events that simulate the change of state of the shared variables in the
abstract machine.

Figure 2.11 illustrates the decomposition by shared variables. The machine M is defined by
four events and it is decomposed into two sub-machines Mj, and Mj, by partitioning its events.
Events event! and event2 (resp. event3 and events) are internal events to the sub-machine M,
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Mo

’ eventl ‘ ’ event2 ‘ ’ event3 ‘ ’ event4 ‘

eventl, e\PV\im&, eventd

Mla Mil1b

’ eventl ‘ ’ event2 ‘ ’e\'ent:i’ ‘ ’(:\'(\nt2’ ‘ ’ event3 ‘ ’ event4 ‘

RoAC] lclicl

Figure 2.11: Decomposition by Shared Variable

(resp. Myp). The variable vl (resp. v3) is private to My, (resp. Myp). As for v2, it is a shared
variable. Consequently, the machine Mj, (resp. Mjp) contains the external event event3’ (resp.
event2’) which simulates the state changes made by event3 (resp. event2) on v2 in M.

Correctness of the Decomposition by Shared Variables

In [Abrial, 2002, Abrial, 2009], after proceeding with the decomposition, the re-composition should
be proved without explicitly composing. All the variables of sub-machines are put together and
the external events are thrown away. We think that this is the reason behind.

Let M be the machine to decompose, P and N are the resulting sub-machines. NR and PR
are respectively the resulting machines after several steps of refinement of N and P, as shown in
the left side of figure 2.12.

S is the set of state variables in M. T and U are respectively the sets of states variables of N
and P. X and Y are respectively the sets of states variables of NR and PR as shown in the right
side of figure 2.12. M R is the theoretical re-composition of NR and PR, and Z is the corresponding
set of its state variables.

Table 2.13 defines the different transitions in each machine and their refinement relations.

[, m and n are refinement relations as defined in section 2.2.2 with r. Let also consider these
definitions as in table 2.14, predicates and lemmas as in table 2.15.

We detail the proof of lemmas [1 and [2 which are useful for the theoretical re-composition
demonstration.



CHAPTER 2. STATE OF THE ART: MODULAR ARCHITECTURE IN EVENT-B

62

M

p
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a
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er

Figure 2.12: Sets of States Variables Corresponding to Each Machine

Transitions of M e € S& 8
Projection from S to T' p € S—>»T
Projection from S to U q € S—>»U
Transitions of IV a € T&T
Transitions of P b e UsU
Refinement relation from X to T | [ e X«T
Refinement relation from Y toU | m € Y «U
Projection from Z to X v € Z—»X
Projection from Z to Y v € Z—=»Y
Recomposed transitions on MR |er € Z+Z
Refinement relation from Z to S |n € Z« S
Relation from S to Z r € S—>Z
Transitions of NR ar € X&X
Transitions of PR br € Y&VY

Table 2.13: Formal Definitions of the Different Elements

di|a 2 plhep

2 |b = g leq

d3 | er 2 (u;ar;u=b) N (v;br;vh)

d4 L (u,l,p B (v;m; q_l)

5 |7 = (mp hepl hu ) n(ge e gm o)

Table 2.14: Formal Definitions of the Relations



63

CHAPTER 2. STATE OF THE ART: MODULAR ARCHITECTURE IN EVENT-B

prl

1;a7“ - a;lil

=
pr2 | m=Lbr C b;m~!
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LuCplt
1

n
12 n

Lo Cgm™

Table 2.15: Predicates and Lemmas

Proof of lemma [1:
n_l;u

(7 Hu ) n(ggm™07)5u

Proof of lemma 12:

definition of n: n £ (u;l;p~1) N (v;m;q~1)
set theory (distributivity)
w is a total surjection: u ™' u < id

set theory: ANB C A

definition of n: n = (u;l;p~1) N (v;m; g Y)
set theory (distributivity)
u is a total surjection: v~ ';v < id

set theory: ANB C B
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The demonstration of the theoretical re-composition is tantamount to demonstrate that er is a
refinement of e:

nfl;er Cen

1

In other words, since 7, (n"!;er) and (e;n~!) are relations, it is sufficient to prove that
(1) n HerCr

and
(2) rCe;nt

Proof of (1): n=t;er Cr

n_er

definition of er.

er = (u;ar;u=t) N (v;br;v=t)
n s ((wyarsu™t) N (vsbrsot))

C set theory
(nYLusar;u™) N (n Yo b o)
lemmas
C 1: (nHu Cpslt)
12: (n"Hv Cgm)
(sl sar 5wt N (g m~ Y br 507
refinements of a and b.
C prl: (I7Yar C a1t

prl: (m~Ybr Cb;m™1)
(psa; 7wt N (gm0
definitions of a and b
= di: a £ pliep
d2: b2 ¢ e;q
(sp~ el u™) N (g g esggm v

r
Proof of (2): 7 Ce;n~! this one is well explained in [Abrial, 2009].

Example of the Application of the Shared Variable Decomposition

To illustrate how this approach works, we will apply it on an example. Let consider the Train
System case study presented in the Event-B Book, Modeling in Event-B: System and Software
Engineering. The purpose of this case study is to help the train agent controlling trains and to
have trains safely circulating in a certain network, as illustrated in figure 2.13. The case study
specification is explained in details in chapter 17 of the Event-B Book [Abrial, 2010].

In order to apply this approach, let take the machine train_ 0, as in figure 2.14 . This machine
defines the set of reserved routes, the set of reserved blocks, the association between reserved routes
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2
o
F

N

Figure 2.13: Train System Case Study

and blocks, as well as the set of the occupied block. Each occupied block is a reserved one. A set of
blocks constitutes a route. Concerning the events, this machine describes the train movement on
different blocks of the same route, the train entering to new reserved route, the route reservation
and the route freeing.

MACHINE
train_@
SEES
train_ctxo
VARIABLES
resrt
resbl
rsribl
occ
INVARIANTS

EVENTS

INITIALISATION

STATUS
ordinary
BEGIN

actl

actd
END

route_reservation

STATUS
ordinary
ANY
r
WHERE
grd1
grdz2
THEN

END

route_freeing

STATUS
ordinary
ANY
r
WHERE
grd1
THEN

END

resrt ¢ R
resbl ¢ B ]
rsrtbl € resbl — resrt
thl ¢ rtbl
€ ¢ resbl ¢
« reR = nxtir)ribl-|
+ reR = nxt(r)lrsribl
+ reR = axt(r)[rsrtbl-[{r}N0CC] € rerebl-[{r}]\0CC

rsrtbl-[{r}H] n (rsrtbl-[{r}]\OCC) = @
{r}1] ¢ rsrebl-I{r})

resrt = @

resbl

]

rsribl = o

occ

- @

r € resrt
rtbl-[{r}lnresbl = a

resrt = resrtufr}
rsrtbl = rsrtbl v (rtble{r})

resbl =

resbl u rtbl-[{r}]

r & resrtyran{rsrtbl)

resrt = resrt\{r}

FRONT_MOVE
STATUS

ordinary
ANY

r
WHERE

'_II".".

grd.

grd3

THEN

actl

END

FRONT_MOVE
STATUS
ordinary

BACK_MOVE
STATUS
ordinary

r € resrt
fstir) e resbl\0CC
rsrtbl(fstir)) = r

0CC = OCC v {fstir)}

2 &

belCC
ce0CC
bec € nxtirsrtbl(b})

0CC = OCCu{c}

bedCC

n = nxt(rsrtblib)}
bedomin) = n(b)edCC
beranin) a
n-{bjedom{rsrtbl)

-
rsrtblin-(b))=rsrtblib)

0CC = 0CCA{b}
rsribl = {b}=rsrtbl
resbl = resbly{b}

Figure 2.14: Train System Case Study: Abstract Machine

Actually, this case is studying the track network structure on one hand, and the train object
on the other hand. This constitutes a good example to apply the A-style in order to split the
behaviour of the train and the behaviour of the track.

In order to apply the A-style, the events to split are chosen.
tains the events describing the train movement :

The train sub-machine con-

FRONT MOVE;,FRONT MOVE; and
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BACK_MOVE. The other sub-machine, describing the track behaviour, contains the events
: route__reservation and route__ freeing. After that the decomposition is done.

In the train sub-machine, as in figure 2.15, there are three shared variables and one private
variable. We notice that, in addition to the three chosen events, the other events are also appearing
in this sub-component as external events. This is due to the use of shared variables.

MACHINE
train_0

SEES

Context_train_0

VARIABLES
resrt
resbl
occ
rsrtbl

INVARIANTS
typing resrt
typing reshl
typing OCC
typing rsrtb

/”.

z"'

s

VE

Do NOT REFII
DO NOT REFINE

Shared variable,
Shared variable,
Private variable

/7 Shared variable, DO NOT REFINE

resrt & P(R)
reshl = B(B)
0cc = B(B)
rsribl = PIB = R)

i

EVENTS

INITIALISATION =

STATUS

ordinary

BEGIN

actl resrt = @

act2 resbl = &

act3 rsrtbl = &

actd 0CC = @

END

route_reservation - £¥  External svent, DO NOT REFINE
STATUS

ordinary
ANY

r
WHERE

grdl r & resrt

grd2 rtbl~[{r}lnresbl = &
THEN

actl resrt = resrtu{r}

act2 rsrtbl = rsrthl u (rthle{r})
act3 resbl = resbl u rtbl~[{r}]
END

route_freeing

STATUS
ordinary
ANY
r
WHERE
grdl
THEN
actl
END

i
i

= External event, DO NOT REFINE

r € resrt\ran{rsrtbl)

resrt = resrt\{r}

Figure 2.15: Train System Case Study

FRONT_MOVE_1
STATUS

ordinary
ANY

r
WHERE

grdl

grd2

grd3
THEN

actl
END

reresrt
fstir) = resbl\DCC
rsrtbl{fst{r}) = r

0CC = 0CC v {fstir)}

FRONT_MOVE_2

STATUS
ordinary
ANY
b
c
WHERE
grdl be0CC
grd2 ce0CC
grd3 bsc & nxti{rsrtbl(b))
THEN
actl 0CC = oCCu{ck
END
BACK_MOVE =
STATUS
ordinary
ANY
b
n
WHERE
grdl be0CC
grd? n = nxt{rsrtbl({b)})}
grd3 bedom(n) =+ n(b)edCC
beran(n} »
grda n~(b)edom{rsrtbl)
=
rsrtblin~{b})=#rsrtbl(b)
THEN
actl 0CC = oCC\{b}
act? rertbl = {b}=rsrtbl
act3 resbl = resbl\{b}
END
END

: Train Sub-machine

For the other sub-machine Track, as in figure 2.16 it defines all the variables as shared, because
there is any private variable. In addition, it contains the BACK;OV E event as an external event.
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MACHINE
train_60
SEES
Context_train_o
VARIABLES
resrt V74
resbl Vs
rsrtbl Vs
INVARIANTS
typing resrt
typing resbl
typing rsrtbl
EVENTS
INITIALISATION =
STATUS
ordinary
BEGIN
actl
act2
act3
END

Shared variable, DO NOT REFINE
Shared variable, DO NOT REFINE
Shared variable, PO NOT REFINE

resrt € P(R)
resbl e P(B)
rsrtbl € P(B x R)

resrt ®
resbhl = &
rsrtbl = o

route_reservation =

STATUS

ordinary

ANY

r
WHERE

grdl r e resrt

grd2 rtbl~[{r}]lnresbl = &
THEN

actl resrt = resrtu{r}

act2 rsrtbl = rsrtbl v (rtble{r})
act3 resbl = resbl v rtbl~[{r}]
END

route_freeing =

STATUS
ordinary
ANY
r
WHERE
grdl
THEN
actl
END

BACK_MOVE
STATUS
ordinary

typing 0CC
grdl
grd2
grd3

grda

THEN
act2
act3

END

END

r € resrt\ran(rsrtbl)

resrt = resrt\{r}

= Vi External event, DO NOT REFINE

occ e P(B)
beocc
n = nxt(rsrtbl(b))
bedom(n) = n(b)eocc
beran(n) a

n~(b)edom(rsrtbl)
=

rsrtbl(n~(b))#rsrtbl(b)

rsrtbl = {b}<rsrtbl
resbl = resbly\{b}

Figure 2.16: Train System Case Study: Track Sub-machine
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2.3.2 Decomposition by Shared Events

The shared event decomposition is an evolution of event atomicity decomposition. The author
in [Butler, 2009a] proposes this method to separate the variables of a system into two different
sub-machines by decomposing a shared event. In fact, this approach allows to get sub-components
that interact in parallel through synchronised events. This approach is suitable for distributed
system development [Butler, 1997].

To process a decomposition by shared event, the authors present in [Silva et al., 2011] the
required steps to follow. First, the sub-components to generate have to be defined. After that,
the variables should be split over the sub-components. As a consequence, the rest of the model
components, such as events, invariants, contexts, etc., are partitioned on the basis of the defined
variables allocation. For the invariants, they are decomposed regarding the variables scope. These
invariants must include at least the definition of the variables typing. These are the required in-
variants in order to get a valid refinement. Additional invariants depend on the need of the user.
Also, they may be defined for further refinements or to help the sub-components reuse. Concerning
the invariants that are using the other sub-components variables, an additional refinement may be
necessary to explicitly split the variables in question. For the event decomposition, it depends on
the variables partition. Actually, the resulting events after decomposition are maintained and some
new events appear which are interfaces of the original events. These interfaces are preserving the
parts corresponding to the variables that belong to each sub-component.

As illustration, let My be the machine as in figure 2.17. Variables v! and v2 of this machine
are partitioned respectively in two sub-machines My, and My,. event2 is decomposed in the two
sub-components as two events event2’ and event2’, each event describes the change of state applied
to v1 and v2 respectively.

Mo
’ eventl ‘ ’ event2 ‘ ’ event3 ‘
vl v2
Miaq Mi1b
’ eventl ‘ ’cvonL‘_)’ ‘ ’vvcnt?" ’ event3 ‘

Figure 2.17: Decomposition by Shared Event

To decompose a machine using this method, variables to partition in each sub-component are
chosen and then the decomposition is applied. Generated machines contain the selected variables,
and shared events are defined in two different signatures for each sub-machine. These events de-
scribe the variables changes. In this approach, events are shared between sub-components and
variable sharing is not allowed which is considered as a restriction of this method. This approach
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is explained in detail, in section 3.3, with its application on the case study example, as well as the
presentation of its limitations.

2.3.3 Other Methods of Decomposition in Event-B
Instantiation

In addition to refinement and decomposition by shared variables, generic instantiation is another
proposition of Abrial in [Abrial and Hallerstede, 2007]. It is based on the reuse of the abstract
model with slight modifications by instantiating sets and constants of this model. In [Hoang
et al., 2011], the modularisation is another proposition based on defining interfaces in B-Method.
This approach promotes the use of USES clause in order to call operations. Fragmentation and
distribution approach in [Siala et al., 2016] defines a specification using DSL (Domain Specific
Language) [Van Deursen et al., 2000] to decompose a model. In the same context, [Hoang et al.,
2017] propose also a technique based on the use of a classical-B clause. This approach proposes the
use of a composition mechanism based on the use of INCLUDES clause. So, the including machine
can use variables and invariants of the included machine.

Modularisation

Modularisation is a conservative extension of the Event-B formalism proposed by [Hoang et al.,
2011]. This is a special case of shared variables decomposition [Abrial and Hallerstede, 2007].
Modularisation allows: the decomposition of the models of the system into sub-components that
can be developed easily, managing the complexity of models and the reuse of formally developed
components using the clause USES. This method is based on the definition of sub-components
called interfaces that contain variables and operations. These operations are specified by a pair of
pre/post conditions. The interface is integrated in the refinement of the abstract machine M by
the clause USES.

Fragmentation and Distribution

Another technique proposed by [Siala et al., 2016] that takes as input any Event-B model and
generates a refinement of the machine in question from a specification based on two stages: frag-
mentation and distribution. Fragmentation aims to reduce the non-determinism of calculating the
local parameters of an event. The order of the parameter calculation is described by a specifier
using a Domain Specific Language (DSL), a language whose specifications are designed to meet the
constraints of a specific application domain. Based on this specification and the abstract Event-B
model, the fragmentation stage generates an Event-B model. This automatic refinement relies on
simple rules ensuring a refinement that defines new variables, new events and refining events by
reinforcing guards and invariants.

After the fragmentation step, the distribution step takes as input an abstract model and a
distribution specification. This specification introduces the selected configuration: the names of
the sub-components. Similarly, it distributes the variables and possibly the guards on the sub-
components. The referenced variables by a guard must be located on the same sub-component.
Otherwise, poorly consistent copies of its variables will automatically be added. They are updated
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by convergent scheduled events before the event accessing the copies. Similarly, an action is per-
formed by the (supposedly unique) component on which modified variables are located. The visible
variables by an action can be remote. The values of these variables will be transmitted during
synchronisation.

2.4 Synthesis

As a formal method, Event-B allows the observation of a system events and the validation of its
properties using mathematics rules and different types of lemmas called proof obligations. For each
step of modelling, some proof obligations should be discharged. When all the proof obligations
are discharged the model is considered as correct. However, the formal method Event-B lacks the
modularity aspect in its syntax and semantic. The user does not have the flexibility to manage its
models according to each sub-component use.

In fact, several methods of decomposition and modularity exists. Some are based on the shared
variables or events and others are based on a kind of interfaces or even the use of other language in
order to enrich the approach. So, in the next chapter, we present a study and an analysis of these
existing approaches.
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Introduction

Formal modelling and verification of safety-critical systems using formal methods is very relevant
for the many reasons exposed in the first part of this manuscript, but these can be tedious without
modular design and mechanisms. Indeed, starting from the modelling and verification of the whole
system requirements specification can be time and resources consuming. The study of the different
modularisation mechanisms in the literature leads us to analyse the decomposition by shared vari-
ables and the decomposition by shared events. The associated plugins in the Rodin platform are
used to apply these approaches on some simple examples. This is presented in the first section of
this chapter. By analysing and studying the examples, we have identified some limitations of these
approaches which we cope to them in our proposed approach. In the second part of this chapter,
we detail our concrete railway case study to which the existing and the proposed approaches are
applied.

Notice that this chapter deals with “Why we propose a new approach of decomposi-
tion?” after analysing the existing decomposition approaches, whereas the next chapter deals with
“How we decompose?”.

The analysis of the existing approaches is motivated by the industrial practice who stress in
the complexity of the formal modelling verification of the whole system. They are interested in
breaking down systems to subsystems enabling the “distribution” of the requirements specification
into subsystems requirements specifications. In this work, we do not take into account preliminary
requirements engineering method before the formal modelling and verification of the subsystems
specification [Tueno Fotso, 2019]. Actually, our work is based on the formal reasoning of the system
and subsystems specifications in a straightforward way. So, we focus on ensuring that a require-
ment assigned to a subsystem is well preserved by the subsystem model. Therefore, a particular
accentuation putting forward consists on how preserving invariants in subsystems specifications so
as to preserve the whole distributed behaviours.

The main aim of the model decomposition techniques is to reduce the complexity of large mod-
els and increase their modularity. These techniques consist in dividing a model into sub-models
that can be refined separately and more easily than the original one. But they decompose the
initial model by shared variables or by shared events. The shared variables approach is suitable
for designing parallel computing programs, whereas the shared events decomposition is suitable for
developing message-passing for distributed systems [Tueno Fotso, 2019]. The question that arises
here is “What about a model decomposition of a system that requires these two purposes: parallel
computing programs and message-passing distributed systems?”. Indeed, railway systems involves
each of them: separating different railway signalling functionalities in different subsystems such as
release and integrity for the first purpose, and separating the distributed subsystems such as on-
board and track-side systems for the second one. Our goal is to propose a double-edged approach
which focuses on distributing system into subsystems by sharing variables and sharing events at
the same time if necessary. Also, this approach relies on the preservation of the syntactic/semantic
coherence from the beginning to the lower level of modelling.

In the following, the analysis of these approaches is performed on some simple examples in a
first step to identify some trivial limitations and on a railway case study in a second step. The case
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study specification and model are presented in the first section. In the second section, an analysis
of the decomposition by shared variables is made by the application of the associated plugin on a
simple example then on the case study. The same process is followed in the next section for the
decomposition by shared events: application of the B-style plugin on a simple example then on the
case study. Finally, we discuss the results and present the limitations of these approaches according
to our decomposition goal.

3.1 Modelling of a Railway Case Study

In order to analyse the existing approaches and illustrate our contribution, we choose a case study
that illustrates one of the typical dangers of trains circulations cited above in section 1.2.2: the
Rear-End Collision. It is a real case of train circulation danger but not the only one. So, we have
modelled and formally proved the case study of railway signalling systems on Atelier B! (version
4.5 beta 12) and Rodin (version 2.7) tools. This case study is a simple example that focuses on
a particular railway network requirement and it contains relevant elements to the decomposition
analysis. In addition, this example is representative of what is done in the industrial railway field
and in sub-systems traffic management such as the FEuropean Railway Traffic Management System
(ERTMS). The specification of the case study was validated by Clearsy following the industrial need.

This case study is not a full-fledged industrial railway model. Indeed, it doesn’t take into consid-
eration some components of the track-side such as points, level-crossing, entire lateral signalisation,
etc. and other components of the train-side as the train integrity, position, delays, etc. The goal
is to use this simplified case study for a first analysis and application of the various decomposition
approaches.

3.1.1 Informal Specification

The aim is to model a system which allows the trains control, in other words a system that ensures
a safe train circulation in a certain railway network. The main goal of this case study is to avoid
trains rear-end collisions as in figure 3.1.

o il e

Figure 3.1: Example of a Train Rear-End Collision

In a one-way traffic split into blocks, let consider two trains Train A and Train B moving by a
certain distance (number of steps). Train A is following Train B. The trains movements are based
on the position of the front/head and of the end/tail of each train. Each block should be occupied
at most by one train. When the front of the train enters a block, this block is turned to occupied.
When the end of the train leaves the block, this later is turned to free. So, a train enters only a
free block.

! Atelier B tool: https://www.atelierb.eu/
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3.1.2 Abstraction

In a first step of modelling, we define the trains movements based in their positions on the traffic
as shown in figure 3.2. At this level, we don’t consider the existence of the blocks. To avoid a
rear-end collision, the position of the front of Train A should not be at the same position of the
end of Train B or after it.

step Direction of circulation
) Train A / TrainB
e_t 3 47— 1 1 b1
| O O T LI N I I N O L L T U N N I |
4 \\ LA
| end_trainA ‘ ‘ front_trainA H end_trainB ‘ ‘ front_trainB ‘

Figure 3.2: Case Study: Abstract Machine Description

The abstract machine M, defines, in figure 3.3, the variables describing the trains front and
the trains end positions are respectively: front_trainA, front_trainB, end_trainA and end_trainB.

My defines the invariant that must be preserved: the position of the front of Train A must
always be following the position of the end of Train B. This is specified by this expression:
front_trainA < end_trainB.

My defines also the events that describe the trains movements by a certain number of steps, as
shown in figure 3.3:

— move_ front_ trainA: changes the position of the front of Train A without catching up the
next train. This is done through the action actl such as
front_trainA := front_trainA + step

— move_end_ trainA: changes the Train A end position taking into consideration the position
of its front.

— move_ front_ trainB: changes the Train B front position.

— move_end_ trainB: changes the position of the Train B end taking into consideration its front
positio