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2.1

An example to build index. X i represents a 32-mer extracted from reference genome. a, b, c, d are the keys calculated from X i . n i represents the number of keys smaller than the corresponding key. For example, n 1 is the number of keys smaller than a. Specifically, X 1 , X 4 and X 7 have the same key a. So there are n 1 + 3 keys smaller than a + 1. Thus, l 1 , l 2 and l 3 indexed with n 1 , n 1 + 1, n 1 + 2 in value table are the locations for X 1 , X 4 and X 7 . . . . . . . . . . . . . . . . . . . 

Background

Sequencing is the process to determine the sequence of the nucleic acids. In 1977, British biochemist Frederick Sanger invented the chain termination sequencing method, marking the birth of the first generation of DNA sequencing technology [2]. Over the past few decades, many other sequencing technologies have been developed. They provide a new way to address biological and medical problems, such as gene expression profile analysis, chromosome counting, epigenetic change detection, and molecular analysis.

Recent research shows that the genomics data would far exceed the growth of the data generated by the other three major generators of Big Data: astronomy, YouTube, and Twitter in the year 2025 [3]. Sequencing is usually considered as the first and fundamental step in genomics data analysis. Throughput and price are the two main important factors in the area of massive genomics data analysis. Today, we can rapidly sequence millions of DNA simultaneously. It requires less than 24 hours to sequence the whole genome of a person [4].

As tracked by National Human Genome Research Institute (NHGRI) [START_REF] Wetterstrand | Dna sequencing costs: Data from the nhgri genome sequencing program[END_REF], the sequencing cost follows Moore's Law which halves every two years as shown in Figure 1.1. For instance, the sequencing-cost-per-genome has dropped from over a billion dollars to a mere $1000 [4] in the past decades. Thanks to the price reduction and throughput improvement, sequencing brings a promising future for novel applications, such as precision medicine [START_REF] Carrasco-Ramiro | Human genomics projects and precision medicine[END_REF] and DNA-based digital storage [START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF][START_REF] Robert N Grass | Robust chemical preservation of digital information on dna in silica with errorcorrecting codes[END_REF].

Although modern sequencing technologies do provide ultra-high throughput with lower cost, they do not have correctness guarantee. Sequencing errors such as substitutions, insertions, and deletions can lead to the difference between the sequenced object and the result. In the meantime, the sequenced object might be biased against the original reference. Thus, sequence analysis is an approximate string similarity analysis tolerating errors and bias. Several metrics have been widely used to describe the similarity between sequences, such as Hamming distance, edit distance (Levenshtein distance), longest common subsequence (LCS) distance, Damerau-Levenshtein distance and Jaro distance. Edit distance is the most common metric to measure the DNA sequence similarity. It is even expanded as a parameterizable metric where each operation is assigned a cost in practise. However, the primary edit distance computation is quadratic complex. Thus, the dynamic programming based algorithms, such as Smith-Waterman algorithm [START_REF] Smith | Identification of common molecular subsequences[END_REF], Needleman-Wunsch algorithm [START_REF] Saul | A general method applicable to the search for similarities in the amino acid sequence of two proteins[END_REF], are not scalable for extremely large genomic dataset involving billions of such computations.

Therefore, it has been essential and indispensable to design accurate and scalable sequence similarly analysis algorithms for various computational genomics and DNA-based digital storage applications in the biological and informatics research.

Related Terms 1.2.1 DNA

DNA, or deoxyribonucleic acid, is the genetic material of most living organisms. It is a macromolecule composed of structural building blocks called nucleotides. There are four types of nucleotides, namely, Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). They function as the fundamental units of the genetic code. The quantity and order of nucleotides represent the distinct genetic information of each organism. Although the DNA sequences differ among different species, the DNA sequences among different individuals of the same species are 1.2 Related Terms very similar. For instance, Escherichia coli has only around 4.7 million base pairs in its DNA, while Human DNA contains about 3 billion base pairs. The previous work found that no more than 0.5% of bases are different between any two persons. Hence, a common DNA sequence reference would be used to represent the human DNA sequence.

Apart from the DNA existing in nature, it is also possible to synthesize artificially designed DNA fragments through oligonucleotides (oligo) assembly. The first synthesized oligo came out in the 1950s by Michelson and Todd [START_REF] Michelson | Nucleotides part xxxii. synthesis of a dithymidine dinucleotide containing a 3: 5-internucleotidic linkage[END_REF]. Later on, phosphoramidite-based synthesis [START_REF] Sl Beaucage | Deoxynucleoside phosphoramidites-a new class of key intermediates for deoxypolynucleotide synthesis[END_REF] and enzymatic synthesis [START_REF] Fj Bollum | Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase[END_REF][START_REF] Palluk | De novo dna synthesis using polymerase-nucleotide conjugates[END_REF][START_REF] Michael | Template-independent enzymatic oligonucleotide synthesis (tieos): its history, prospects, and challenges[END_REF] have been invented. However, due to the decrease in reaction efficiency, synthetic purity and yield with DNA chain extension, the synthesized oligo length is limited to hundreds of bases.

Wherever the DNA sequence originates, it can be presented as a string of characters drawn from an alphabet Σ = {A,C ,G, T } computationally. Consequently, DNA sequence related problems can be interpreted as string manipulation or approximate matching problems in the Computer Science domain.

Reads

Sequencing technologies are capable of producing reads of hundreds of base pairs, or hundreds of thousands of base pairs. However, these are still too short compared to the genome, such as the human genome which contains 3 billion base pairs. Current sequencing technologies cannot fully sequence DNA sequences at once. So they break DNA into smaller fragments before sequencing each fragment. The inferred sequences corresponding to the DNA fragments are called reads. Due to the sequencing errors, and the bias between the fragments and references such as the variants in genomics or the synthesis errors in DNA-based storage, the reads are not exactly the same as the references. They might contain substitutions, insertions and deletions.

There are two types of reads according to the sequencing modes as shown in Figure 1.2.

• Single-end reads. In single-end sequencing, the sequencer reads a fragment from only one end to the other, generating the sequence of base pairs.

• Paired-end reads. The paired-end sequencing starts at one strand, finishes this direction at the specified read length. Then, it starts another round of reading from the opposite end of the fragment.

Paired-end sequencing doubles the read size compared to single-end sequencing. It improves the capability of identifying the relative positions of various reads in the genome. It is substantially more effective than single-end sequencing in resolving structural rearrangements such 

Sequencing Technologies

DNA sequencing is the process to determine the sequence of nucleotides.

The First-generation Sequencing Technology

Walter Fiers first sequenced the DNA of a complete gene in 1972 [START_REF] Jou | Nucleotide sequence of the gene coding for the bacteriophage ms2 coat protein[END_REF]. In parallel to Fiers' achievement, Fredrick Sanger kept working on an alternative DNA sequencing method and developed the first DNA sequencing method called "chain termination method" in 1977 [2]. This technique is capable of generating reads of approximately 1000 bp [START_REF] Liu | Comparison of next-generation sequencing systems[END_REF] at an extremely low sequencing error rate ranging from 0.001% to 0.01% [START_REF] Kircher | High-throughput dna sequencing-concepts and limitations[END_REF]. Although Sanger's method has low throughput and high sequence cost, it is still used as the golden-standard nowadays due to its high accuracy.

The Second-generation Sequencing Technology

The second-generation sequencing technology, or next-generation sequencing (NGS), is known for its high throughput. It pioneered the introduction of sequencing-by-synthesis which enables to capture newly added bases which carry a special marker to determine the DNA sequence during DNA replication. It has three important features:

• High throughput. The next-generation sequencing can sequence millions of DNA molecules in parallel.

• Short read length. When the read length increases during the sequencing process, the
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sequencing quality drops. The read length of the next-generation sequencing does not exceed 500 bp.

• Low error rate. The next-generation sequencing error rate is less than 1% [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF][START_REF] Clarke | Continuous base identification for single-molecule nanopore dna sequencing[END_REF].

The Third-generation Sequencing Technology

The third-generation sequencing technology was emerged from a proof-of-principle instrumentation concept published by Watt Webb's group in Cornell University in 2003 [START_REF] Michael J Levene | Zero-mode waveguides for single-molecule analysis at high concentrations[END_REF]. Compared with the previous two generations, its biggest feature is single-molecule sequencing (SMS), which does not require PCR amplification during the sequencing process. Two SMS devices have achieved commercial status, coming from Pacific Biosciences (PacBio) and Oxford Nanopore Technologies, respectively:

• The Single Molecule Real Time (SMRT) technique from PacBio generates reads of 1000∼100,000 bp in length. The reads contain up to 20% sequencing errors, including mostly insertions, deletions and some substitutions [START_REF] Travers | A flexible and efficient template format for circular consensus sequencing and snp detection[END_REF][START_REF] John | The properties and applications of singlemolecule dna sequencing[END_REF]. The more recent PacBio instruments can generate 10 kbp to 25 kbp high-fidelity (HiFi) reads at an error rate ∼1% [START_REF] Aaron M Wenger | Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome[END_REF].

• Oxford Nanopore Technology produces reads of hundreds of kbp with up to 15% error rate [START_REF] Franka | From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy[END_REF].

Sequence Similarity Analysis in Computational Genomics

Reference

For computational genomics problems, reference is a long assembly DNA sequence used as a standard for comparison in basic research and clinic settings. A reference genome is a database of nucleic acid sequences. It is equivalent to one or several long strings. As an instance, the human reference genome contains over 3 billion base pairs as 22 pairs of autosomes and 1 pair of sex chromosome. It is regarded as 24 long strings of 3 billion characters in total. Although one person's genome differs from another, more than 99% bases are the same among humans.

The reference genome contains representative information of the population rather than specific information of an individual. Hence, the reference genome can effectively reflect the DNA information of the species.

Reference genome plays an important role in biological analysis. Since the reads generated by next-generation sequencing are very short, they need to be ordered and assembled appropriately to represent the sequenced genome before they can be used for further analysis. If the reference genome is known, the short reads can be directly aligned to the reference genome to know their actual position on the genome. Otherwise, it is a computationally expensive problem to recover the complete DNA sequence from a large number of short reads.

Sequence Alignment Problem

In computational genomics, the sequence similarity problem that we work on is the sequence alignment algorithm. Sequence alignment algorithm aims to locate the origin of each read in the reference genome. It is defined as below.

Definition 1 Sequence alignment: Given the reference genome R and read set Q, sequence alignment is to find out the approximate matching positions for each read q ∈ Q in the reference genome R.

In another word, sequence alignment is a process of looking up the query q in the target sequence R. A sketch of sequence alignment is shown in Figure 1.3. As explained in Sec.1.2.3, the sequenced reads are hundreds to hundreds of thousand bp in length carrying 1% to 20% substitutions, insertions and deletions depending on the sequencing technology. From the perspective of the sequencing errors and variants, sequence alignment can be perceived as an approximate string matching problem. Edit distance is the most common metric to measure the sequence similarity. However, the primary edit distance computation is quadratic complex based on the dynamic programming. To speed up, the mainstream sequence alignment algorithms adopt the seed-filter-extend (SFE) strategy [START_REF] Wilbur | Rapid similarity searches of nucleic acid and protein data banks[END_REF][START_REF] Stephen F Altschul | Basic local alignment search tool[END_REF] instead of the traditional dynamic programming algorithm. The idea is to perform dynamic programming calculations only on the regions with high likelihood, rather than on the entire long genome. It first extracts some short substrings (seeds) from the sequenced fragments (reads), and then quickly searches these seeds in the pre-established genome index. The positions found by the lookup are called candidate positions. Finally, it performs dynamic programming (extension) on the regions near these candidate positions on the genome against the sequenced fragments to determine the final matching positions. This strategy can significantly speed up the sequence alignment process. Many famous aligners have been implemented based on it. However, we found that despite the fact that modern gapped read aligners (e.g. BWA-MEM [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with bwa-mem[END_REF], Bowtie2 [START_REF] Langmead | Fast gapped-read alignment with bowtie 2[END_REF] Minimap2 [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF], SNAP [START_REF] Zaharia | Faster and more accurate sequence alignment with snap[END_REF] and HISAT2 [START_REF] Kim | Graph-based genome alignment and genotyping with hisat2 and hisatgenotype[END_REF]) ) can map thousands of reads to a reference genome per second, the sheer size of modern short-read sequencing dataset often makes sequence alignment one of the most time consuming steps in genomic data analysis. As reported by International Data Corporation (IDC), more than 90% of the data is generated in recent years and the "digital universe" is forecast to grow to 163 zettabytes by 2025, which is 10 times of that in 2016. The explosion in the rate of data generation has also led to an explosion in the storage requirement. According to the estimation, it will require more than 1000 kg of wafer-level silicon to store all global data, while the real supply would be only 108 kg in 2040. Thus, the traditional silicon-based storage media such as HDD and tapes can hardly meet the requirement. DNA becomes a promising candidate for "cold" data archive thanks to its high density, long duration and eternal relevance [START_REF] Appuswamy | Oligoarchive: Using dna in the dbms storage hierarchy[END_REF].

The first DNA-based digital storage was demonstrated in 1988 by Joe Davis [START_REF] Davis | [END_REF]. They stored 35 bits of data in Escherichia coli DNA. DNA-based storage usually has four components, namely encoding, synthesis, sequencing and decoding. A template of data writing and reading procedures is shown in Figure 1.4.

• To write the data, the binary input data is encoded into a sequence represented by adenine (A), guanine (G), cytosine (C) and thymine (T) based on the encoding algorithm, such as the Goldman approach [START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF] and DNA Fountain [START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF]. Secondly, the designed sequence is synthesized into the oligos. Due to the limit of synthesis technology, the synthesized oligo length can be no more than a few hundreds nucleotides. Thus, data is converted into a set of short oligos instead of a single long oligo. Finally, the synthesised oligos are stored, for example in tube.

• To read the data, the stored oligos are extracted and sequenced by the sequencing technologies. Then, this sequenced result that is usually error-prone, is passed into the decoder to recover the original data. The corresponding decoding algorithms should be elaborately designed by taking into account the characteristics of encoding, synthesis 

Sequence Similarity Problems in DNA-based Storage

Sequence Alignment

Due to the errors introduced during synthesis and sequencing procedures, the reads may differ from original encoded oligos. The difference could be large depending on the synthesis and sequencing methodologies. Suppose we have the knowledge of the original encoded oligos, we need to answer the following questions: i) what is the coverage pattern across oligos, ii) how much is the error rate, and iii) what is the error pattern. This information can help to optimize sequencing and synthesis protocols at the "hardware" level, and consensus calling and decoding methods at the "software" level. Therefore, the sequence alignment algorithm introduced in Sec.1.3 could be also applied in DNA-based storage to compare the reads with the original encoded oligos, in order to understand the characteristics and statistics of the errors introduced during the process of synthesis and sequencing. Compared with the sequence alignment in genomics, there are several differences.

• Because of the synthesis limitation, the oligo could be no more than several hundred base pairs. Therefore, the read length is close to the reference length and each oligo could be fully sequenced at once. On the contrary, the read length in genomics data is much shorter compared to the reference length, thus sequencing cannot be performed at once.

• In DNA-based digital storage, we only need to find the oligo which each read maps to while the traditional computational genomics expects to have the exact aligned position.

Thus, these algorithms could tolerate lower position-wise accuracy to achieve better performance.

Thesis Outline

• It is not always necessary to report the CIGAR field for DNA-based digital storage. The CIGAR field is a sequence representing the base lengths, and the associated operations that are used to indicate whether each base in the read is a match/mismatch/insertion/deletion. On the contrary, traditional computational genomics requires CIGAR for downstream variant calling to indicate variants. Consequently, it is not mandatory to implement the accurate dynamic programming extension in the DNA-based storage.

Consensus Calling and Decoding

Both synthesis and sequencing are approximate in nature and prone to errors. Hence, the sequenced result retrieved back from the DNA archives are noisy copies of the original sequences.

The decoding algorithm is also an approximate edit similarity based methodology.

The state-of-the-art decoders work in two stages, consensus calling and inference. During DNA synthesis, each original encoded oligo can be synthesized with duplication. Before sequencing, library preparation steps, like PCR, are typically used to amplify the pool of oligos by create multiple copies of each oligo to ensure successful sequencing. As a result, an original oligo has multiple copies of the reads eventually. Consensus calling attempts to group similar reads and obtain the consensus to achieve higher confidence. Although the grouped reads belong to the same original oligo, the reads are different from each other due to the randomized errors. Measuring the similarity of the reads in the same group can then be considered as a sequence similarity analysis problem. Prior work [START_REF] Marinelli | Onejoin: Cross-architecture, scalable edit similarity join for dna data storage using oneapi[END_REF] also suggests that the consensus calling problem can be modelled as a database edit similarity join problem.

Following the consensus calling procedure, the aggregated result is then converted back to a binary output.

Moreover, with motif-based encoding design, the motifs could be inferred directly before the consensus calling. In motif-based encoding design, the oligos are composed of motif blocks which are pre-fabricated short oligonucleotide sequences. Therefore, we can approximately align the motif libraries to the reads so as to determine each read's motif combination.

Thesis Outline

With the development of sequencing technologies, massive reads are generated while containing errors. The goal of this thesis is to build accurate and scalable sequence similarity analysis solutions for computational genomics and DNA-based digital storage applications.

We introduce a fast and accurate sequence aligner -Accel-Align in Sec.2, and a DNA-based storage decoder -Motif-Search in Sec.3. Then, we apply Accel-Align in the sequence analysis to design DNA-based storage random access in Sec.4. ground of the sequence alignment algorithm and state-of-the-art techniques. In particular, we present that previous studies have primarily concentrated on seeding-filtering-extension(SFE) methodology which uses filtering to eliminate candidates. This chapter, instead, proposes a new methodology seeding-embedding-extension(SEE) that uses randomized algorithms to embed the reference string at each candidate location. We explain each stage in detail, particularly the embedding stage. We illustrate 2N and 3N embedding algorithms with their limitation caused by randomization, and propose two corresponding approaches for improvement.

Finally, experiments with both the simulated and the real genomics dataset were conducted to explore the accuracy and performance of Accel-Align, comparing with the state-of-the-art methods. Accel-Align is also compared to BWA-MEM in DNA-based storage experiment and it shows the outstanding performance. We find that non-specific primer binding happened during PCR can lead to the silent data corruption with short primers. As a solution, we present an elaborate primer design and a block-wise random access where the base storage unit has a fixed size. As a result, the random selection precision has been improved to be above 99%.

Chapter5: Conclusion. This chapter summarizes the work of the full thesis, the main contribution and the innovation of this work. At last, it also highlights the limitations of the work and proposes the further potential research directions.

Chapter 2

Accel-Align: a Fast Sequence Aligner

Introduction

In the recent decades, sequence alignment has been one of the major interesting research subjects due to its importance in genomics. Recent researches demonstrated that sequence alignment accounts for more than 30% of the overall time of the GATK (Genome Analysis ToolKit) best practice workflow [START_REF] Vasimuddin | Efficient architecture-aware acceleration of bwa-mem for multicore systems[END_REF][START_REF] Vasimuddin | Identification of significant computational building blocks through comprehensive investigation of ngs secondary analysis methods[END_REF][START_REF] Mark A Depristo | A framework for variation discovery and genotyping using next-generation dna sequencing data[END_REF].

The sequencing sequence alignment problem is defined as follow. Given a set of reads S and the reference genome R, the sequencing sequence alignment is to find out the best matching position on the reference genome R for each s ∈ S. The aligners can be classified into ungapped or gapped depending on whether they use Hamming or edit(Levenshtein) distance for computing mismatch between reads and the reference [START_REF] Canzar | Short read mapping: An algorithmic tour[END_REF]. As modern sequencers can produce both substitution and indel errors, gapped aligners are preferred in practice over their ungapped counterparts.

Modern gapped read aligners, like Bowtie2, BWA-MEM, and Minimap2, can map thousands of reads per second to the reference genome. However, as sequencing datasets continue to grow at a rapid pace, even these state-of-the-art aligners face scalability bottlenecks due to a crucial design aspect that is universal across all gapped read aligners-the use of editdistance as a string comparison metric. Computing edit distance between two sequences is a computationally-expensive task that takes approximately quadratic time in the length of the input sequences. Given that sub-quadratic computation of edit distance is extremely unlikely [START_REF] Backurs | Edit distance cannot be computed in strongly subquadratic time (unless seth is false)[END_REF], the brute force approach of trying to align a read at each position in the reference is infeasible even for a single read due to sheer number of edit-distance computations that would be required. Thus, all modern aligners focus on minimizing the number of such computations using a seed-filter-extend (SFE) strategy for performing alignment [START_REF] Canzar | Short read mapping: An algorithmic tour[END_REF]. SFE strategy works by first indexing the reference genome and storing the occurrence locations Chapter 2. Accel-Align: a Fast Sequence Aligner of short string sequences, which are also referred to as seeds or k-mers, typically in a hash table.

Each read is processed in three steps. First, seeds are extracted from the read and the hash table is used to look up potential mapping locations in the reference genome. Second, filtering techniques are used to eliminate as many candidate locations as possible to minimize the overhead of the extension stage, during which the entire read is aligned at each of unfiltered candidate locations using the edit-distance-based approximate string matching algorithms.

Although state-of-the-art filtering techniques provide an order of magnitude improvement over unfiltered extension, they all suffer from two major limitations. First, all current filtering techniques are based on elimination. Their goal is to improve performance by eliminating some candidate locations without forwarding them to the extension stage. They cannot provide selection which is able to identify a candidate that is likely to be the actual match, or ordering which sorts candidates in the order of likelihood. This is particularly problematic for seed sequences that inevitably occur at hundreds or thousands of different locations in the reference sequence due to tandem repeats, or transposon-induced duplication. For such sequences, filtering techniques are less effective, as they can neither identify optimal candidates, nor eliminate candidates without significantly increasing the probability of misalignment due to accidental elimination of a true match. The second problem with filtering is that the thresholds and parameters used by these filtering techniques are often manually picked based on empirical analysis, as they are dependent on the type and pattern of errors introduced by the sequencing technology. Hence, filtering techniques are inherently non-portable heuristics and not technology-independent design principles.

We introduce a new design principle for constructing sequence mappers and aligners, henceforth referred to as Seed-Embed-Extend (SEE). SEE builds on recent theoretical advances in the design of randomized algorithms that can perform embedding from edit distance into Hamming distance with very low distortion ( [START_REF] Chakraborty | Streaming algorithms for embedding and computing edit distance in the low distance regime[END_REF]). These algorithms provide a one-to-one mapping f that can be used to transform a set of strings S into another set of strings S', such that the worst case ratio between Hamming distance of any two strings f(x) and f(y) in S', and the edit distance of their equivalent strings x and y in S is very low. SEE uses seeding to identify candidate locations similar to SFE aligners. However, instead of using filtering to eliminate candidates, SEE uses randomized algorithms to embed the reference string at each candidate location. SEE then uses Hamming distance between the embedded candidates and the embedded read to rank the candidates based on likelihood of being an actual alignment target, and chooses candidates with the highest rank for extension. Thus, instead of eliminating many bad candidates, SEE focuses on quickly selecting a few good ones.

To show that SEE works well in practice, we present Accel-Align-an SEE-based short-read sequence mapper and aligner that can provide both extension-free mapping and base-tobase alignment with CIGAR and MAPQ. In doing so, we show that a naive implementation of 2.2 Indexing and Seeding SEE will result in the embedding step becoming a computational bottleneck, and describe several optimizations that Accel-Align uses to implement SEE-based alignment effectively.

Using experimental results from both simulated and real datasets, we show that embedding is capable of picking locations that are likely to be the correct alignment targets with very high accuracy. Using the SEE-approach to sequence alignment, Accel-Align is up to 9× faster than BWA-MEM, 12× faster than Bowtie2, and 3× faster than Minimap2, while providing comparable accuracy without using any special purpose hardware. We believe that SEE specifically, and embedding in general, is a robust technique that opens up new optimization opportunities not only for sequencing alignment, but also for several other computational biology problems that rely on edit distance.

Indexing and Seeding

Indexing

As Accel-Align uses seeding, it requires the reference genome to be indexed before execution.

Similar to other aligners, we construct an index over the reference genome in a separate, offline phase. The index is a hash table of key-value pairs, where the key and value are both 32-bit unsigned integers. In order to populate the hash table, we extract k-mers from each position of the reference genome. As the reference sequence usually contains only 4 characters, namely A, T, C and G, we convert each character in the extracted k-mer into a two-bit equivalent representation. Any k-mers that contain 'N' characters are not added to the index. The k-mer length is a configurable parameter in Accel-Align, but we set it to 32 to enable a k-mer to fit in a single 64-bit integer. We hash the k-mer to generate the key by using a simple modulo-based hash function that maps the 64-bit integer into one of M buckets, where M is a large prime number that fits in a 32-bit integer. The 32-bit reference location offset from where the k-mer was extracted is the value associated with the key.

As the hash table is repeatedly used for looking up candidates during alignment, it is important to physically store these key-value pairs efficiently. We do this by using a chained hash table implementation based on two flat 32-bit integer arrays. With our construction, there are at most M different keys and Nk + 1 different values, where N is the length of reference genome. As multiple k-mers can hash to the same key, each key can correspond to multiple position values. We gather all position values for each key, sort them individually, and store all such sorted values together, in key order, in a single position array. We represent the keys implicitly by an offset in a separate 4GB key array, and in each key-array entry, we store the cumulative count of candidate positions for all keys smaller than that key. Thus, as the position array is ordered by key, all the candidate locations indexed between the offsets K and K + 1 in position table belong to the key K . The process is illustrated in Figure 1. Thus, the entire index, Figure 2.1: An example to build index. X i represents a 32-mer extracted from reference genome. a, b, c, d are the keys calculated from X i . n i represents the number of keys smaller than the corresponding key. For example, n 1 is the number of keys smaller than a. Specifically, X 1 , X 4 and X 7 have the same key a. So there are n 1 + 3 keys smaller than a + 1. Thus, l 1 , l 2 and l 3 indexed with n 1 , n 1 + 1, n 1 + 2 in value table are the locations for X 1 , X 4 and X 7 .

represented using the key and position arrays, is saved in a single file on disk, and loaded in memory whenever alignment starts.

Seeding

During seeding phase of alignment, we extract all non-overlapping k-mers of each read. Then for each k-mer, we compute the key, and use the key to extract the list of candidate positions.

The positions are adjusted using the offset of the k-mer into the read to get normalized candidate positions. Then, we merge the candidate lists across k-mers to produce the final list of normalized positions that does not have any duplicates. One way of performing this merging is to gather all candidates in an array, sort it, and then find unique elements. However, such an approach would take O(N l lg N l ) time if N l is the total number of candidates across all k-mers.

We avoid sorting by exploiting the physical organization of our hash table index. The position array of the hash table contains a key-ordered list of candidate positions, where each key's candidates are stored in sorted order. Thus, during seeding, the candidates retrieved for each k-mer will also be in sorted order. We maintain a min-priority queue of size N k , where N k = r ead l eng t h/k is the number of k-mers in each read, and initialize it with the first candidate location of each k-mer. Then, we pop the minimum value from the queue and push the next candidate from the same k-mer as the popped one into the queue. We repeat the pop-and-push steps until the all candidates have been processed. This approach allows us to process all candidates in O(N l ) time without sorting as long as the number of k-mers is small enough to keep the overhead of min-priority-queue negligible, which we found to be the case for short-read alignment using an empirical evaluation.

In the case of single-end reads, we don't apply any filtering to the merged candidate lists. Thus, all candidates are passed to the embedding stage. For paired-end reads, however, we use a configurable pairwise-distance threshold for identifying candidates from one read that have a matching pair within the specified distance in the other read. All such candidate pairs are passed to the embedding stage.

Embedding

After candidate locations are identified by seeding, Accel-Align moves to embedding, the second stage of SEE. The goal of embedding is to transform both the candidate strings from the reference genome, and the query string which is the read, into different strings such that the edit distance between the original strings can be approximated using the Hamming distance between new strings. We have implemented two randomized embedding algorithms in Accel-Align.

3N -embedding

The first algorithm was proposed by [START_REF] Chakraborty | Streaming algorithms for embedding and computing edit distance in the low distance regime[END_REF] who showed that given two strings x, y of length N taken from an alphabet such that d E (x, y), the edit distance between x and y, is less than K , there exists an embedding function f

: N → 3N , such that the distortion D(x, y) = d H ( f (x), f (y))/d E (x, y) lies in [1,O(K )]
with at least 0.99 probability, where d H (x, y) is the Hamming distance between the embedded strings. In other words, [START_REF] Chakraborty | Streaming algorithms for embedding and computing edit distance in the low distance regime[END_REF] proposed a randomized algorithm that can embed strings of length N into strings of length 3N such that Hamming distance of embedded strings is at most square of the edit distance between original strings. Recent studies have demonstrated that this algorithm, which we henceforth refer to as 3N-embedding (3NE), works well in practice for performing edit similarity joins for even relatively large edit distances( [START_REF] Zhang | Embedjoin: Efficient edit similarity joins via embeddings[END_REF].) Accel-Align uses 3NE for embedding both candidate strings from the reference and the read itself. Listing 1 shows the pseudo-code for the embedding algorithm. The input string is a DNA sequence of length N consisting of four possible characters (A,C,G,T). The output is an embedding string of length 3N consisting of the four characters and possibly multiple repeats of a pad character (P). In each iteration, the algorithm appends a character from the input string, or the pad if it runs out of the input string, to the output string. Then, it uses a random binary bit string to decide if the input index should be advanced. The net effect of this algorithm is that some input characters appear uniquely in the output string, while others are randomly repeated multiple times. Using the theory of simple random walks, [START_REF] Chakraborty | Streaming algorithms for embedding and computing edit distance in the low distance regime[END_REF] established that the randomization in this algorithm will result in strings that differ by a small edit distance converging quickly to produce embedded strings that have a small Hamming distance.

Algorithm 1 3N -embedding

Input: A string S ∈ {A,C ,G, T } N , and a random string r ∈ {0, 1} 3N Output: The embedded string

S ′ ∈ 3N 1: i ← 0 2: for j = 0 → 3N -1 do 3: if i < N then 4: S ′ j ← S i 5: else 6: S ′ j ← P 7:
end if

8:
i ← i + r j 9: end for 10: return S ′

2N -embedding

An initial implementation of 3NE in Accel-Align showed us early on that despite the simplicity of the algorithm, it was computationally intensive to embed billions of candidate locations across millions of reads. We describe several optimizations later in Section 2.4 that reduced the overhead of embedding, but one of the first optimizations we designed was a variant of the embedding proposed by [START_REF] Chakraborty | Streaming algorithms for embedding and computing edit distance in the low distance regime[END_REF], which we refer to as 2N-Embedding (2NE). Listing 2 shows the pseudocode for 2NE which is conceptually similar to 3NE with the exception that each character in the input string is copied to the output string at most two times. Thus, 2NE implements a mapping f : N → 2N instead of N → 3N . After implementing 2NE in Accel-Align, we found that [START_REF] Zhang | Neural embeddings for nearest neighbor search under edit distance[END_REF] had also developed it in parallel, performed a theoretical analysis of its optimality, and used it for the edit similarity join application. As we show in our evaluation, we found 2NE to be functionally comparable to 3NE in terms of accuracy, and slightly better in terms of performance as it reduces the embedding time due to a reduction in the embedded string length from 3N to 2N .

Embedding Limitation

However, in practice, a "bad" random bit sequence could, in some cases, lead to a large distortion. To illustrate this, let us consider an example with two strings, "CTGACTGA" (#1) and "CTCACTGA" (#2). The two strings have an edit distance of 1. Given below are three different random sequences, and the embedded versions of these two strings for each random sequence in Table 2.1, Table 2.2, Table 2.3. Although the edit distance of the original strings is 1, the Hamming distance between embedded strings can vary dramatically and even be Similarly, mismatches or indels at the beginning of strings will also lead to higher distortion than those at the end of a string. For instance, let us consider the string "CTGACTGC". Compared to #1, it differs only in its last character. Thus, the edit distance between them is 1. When the two strings are embedded, the embedded strings will be be identical for the initial set of characters except the last one. When the embedding algorithm reaches the last character, depending on whether the random bit is 0 or 1, the embedded strings will differ by 1 or at most 2. However, if we consider "ATGACTGA", which also has an edit distance of 1, but differs from #1 in the first character, the Hamming distance of their embedded strings will depend entirely on the random string. For instance, it will be embedded to "AATTGACCTTGGAAPP" using the random string in Example 1, with a Hamming distance of 10, or "ATTGAACTTGGAPPPP" using the random string in Example 2, with a distance of 1.
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Multiple Embedding

A simple strategy for dealing with distortion caused by embedding is to perform embedding multiple times with the goal that a high distortion produced by a "bad" random string will be overridden by a low distortion outcome from another random string. In the context of Accel-Align, this translates into the following per read operations: (i) C × R embedding operations for embedding C candidate locations R times, (ii) embed the query read itself R times, and (iii)

C ×R Hamming distance computations to identify the best candidate. A naive implementation of multiple embedding will also require ((C + 1) × 2N × R) bytes of memory per read, where N is the length of read (each of the C candidates and the read itself have to be embedded R times, with each embedding producing a string of length 2N ).

During experimentation, we found that the computational and memory requirements of multiple rounds of embedding were high. Thus, we implemented a pipelined version of multiple embedding which works as follows. First, we embed the read R times. Then, we process each candidate one at a time by embedding it using a random string and computing the edit distance from the embedded read based on the same random string. After computing 

Input: A reference string R ∈ {A,C ,G, T } m , a querying read string Q ∈ {A,C ,G, T } n ,
d mi n = M AX 2: for l = 0 ← N -1 do 3: j = 0, string Q, R 4 
:

for k = 0 → n -1 do 5: if k ∉ [s qi , e qi ), ∀i ∈ [0, |M |) then 6: Q j = Qk 7:
R j = Rs r +k 8:

+ + j 9:
end if this to identify the candidate with the lowest overall minimum. We adopted this approach as it integrates seamlessly with two lower-level optimizations already performed by Accel-Align.

First, the embedding algorithm in Accel-Align does not generate the entire embedded string for each candidate. Rather, given a candidate location and random string, it generates one embedded character at a time, compares it with the corresponding character in the embedded read, updates the Hamming distance, and discards the character. This results in a CPU-cacheefficient embedding implementation. Second, the embedding algorithm is parameterized with a threshold so that it stops embedding as soon the threshold is exceeded. Instead of storing the embedded distance of all candidates, Accel-Align already dynamically tracks the lowest and second-lowest distances, and uses the latter as the threshold parameter. Our pipelined implementation of multiple embedding exploits both these optimizations to efficiently track the minimum embedding distance for each candidate.

We further optimize embedding by doing an early-stop for a candidate as soon as we find a random string under which the Hamming distance is computed to be less than or equal to 1.

If the embedded Hamming distance is 0, the two embedded strings must be the same, so the original strings are same and edit distance is 0. If the embedded Hamming distance is 1, there is 1 bit different in the embedded strings, same for the original strings, and the edit distance is 1. In either case, there is no need to do an additional round of embedding with a different random string as we have already found the minimum distance.

Chain Embedding

Let us consider the string x to represent a read, and string y to represent a candidate in the reference genome. Originally, Accel-Align embedded the entire read and an entire candidate string of length equal to the read. However, any candidate y identified by Accel-Align must have at least one k-mer that produced an exact match between the reference and the read which led to this candidate being identified as a potential match during seeding. If two strings are identical, their edit distance, and hence their embedded Hamming distance, will be zero.

Thus, the embedded Hamming distance of all exact matching k-mers would already be zero.

This implies that we only need to embed the non-matching parts of the read and the reference.

We refer to such an approach as chain embedding, as it is reminiscent of the way aligners like Minimap2 use chaining to align gaps between exact matching regions.

Chain embedding improves both performance and accuracy. It improves performance as it reduces the length of the string that needs to be embedded. On the accuracy front, as mentioned earlier, the distortion of the randomized embedding algorithm depends on the edit distance value K . For any read x and a reference candidate y, let x i represents the i-th non-matching substring in the read, y i represents the corresponding non-matching part in the reference. These substrings are the parts that are found outside or between exact matching k-mers. The edit distance between them d E (x i , y i ) is K i , and d E (x i , y i ) = d E (x, y) = K . Original Accel-Align embeds x and y as a whole. Thus, the overall distortion is bounded by [K ,O(K 2 )]. Our modified Accel-Align with chain embedding, in contrast, embeds each substring separately. As each K i is smaller than K , this should lower the distortion for each chain embedding, thereby improving accuracy. Putting together multiple and chain embedding techniques, Algorithm 3 shows the pseudo-code for the improved embedding algorithm.

Candidate Selection

We use one of the two embedding algorithms with the multiple embedding and chain embedding optimization described above to embed all candidates and the read. Then, we compute the Hamming distance between each embedded candidate and the embedded read. We refer to this distance as the embedding distance. While doing so, we dynamically keep track of the top two candidates with least embedding distance and forward them to the third phase for further extension, scoring, and mapping quality computation. This step is the most important

Extension and MAPQ Computation

difference between SEE and SFE techniques. While SFE focuses on heuristics for eliminating candidates, SEE provides a way to rank candidates and directly select the most likely ones based on Hamming distance, which a scalable metric that can be computed in linear time.

Extension and MAPQ Computation

Accel-Align can be configured to run in alignment-free mapping mode where only the identified candidate location is reported, or full-alignment mode where base-by-base extension is performed and the CIGAR string is reported. For the mapping mode, we pick the best candidate, which is the one with the least embedding distance, as the target. Then, we embed the first seed of the read and the k-mers in reference genome at multiple positions around the final candidate position, and pick the position with the least embedding distance. This is done to take into account indels in the first few characters of a read.

For the full-alignment mode, originally Accel-Align did a global alignment between the read and the substring of same length in the reference's candidate position. But we found the lack of soft clipping to adversely affect accuracy of downstream variant calling. Accel-Align extracts a substring of length longer than read length and performs "glocal" alignment using lib-ksw [START_REF] Suzuki | Introducing difference recurrence relations for faster semi-global alignment of long sequences[END_REF] on either end to support soft clipping. The matching score is set to 2, mismatching, gap-open and gap-extension penalty are set to 8, 12, 2, to compute the alignment score and CIGAR. In 

Optimizations

A naive SEE implementation would perform seeding, embedding, and extension as described so far in sequence. However, during initial experimentation Accel-Align, we found that while embedding reduced the overhead of extension, the computational task of embedding and Hamming distance computation added non-negligible overhead. Thus, in addition to the 2NE algorithm described in Section 2.3.2, we implemented three other optimizations, namely, pipelining, early-stop, and prioritizing, that reduced the overhead of embedding without any change in functionality or accuracy.

Pipelining. Instead of embedding all candidates and then computing the Hamming distance, our first optimization is to pipeline these steps. We do this by modifying the embedding step so that the read is embedded first. Then each candidate location is embedded one by one, and the embedding algorithm simply updates the embedding distance in each iteration by comparing the output character of the candidate generated in that iteration with the corresponding character in the embedded read. This pipelining of embedding and distance computation provides three major benefits. First, as embedded strings are no longer generated in their entirety, it reduces memory consumption and associated overheads of allocating and freeing memory for storing embedded candidates. Second, it reduces the overhead caused by a needless second loop over the embedded candidates to calculate the Hamming distance.

Third, as the output character generated by the algorithm is used immediately for distance computation, it improves processor cache utilization.

Early-stop. Using pipelining to produce the embedding distance for each candidate enables us to apply the second optimization based on the observation that only the top-two candidates with the least embedding distance are selected for further extension. Thus, if we have already encountered a candidate with a very low embedding distance, there is no point in continuing the embedding process for another candidate whose distance has already exceeded the previously observed minimum. Thus, we parameterize the embedding algorithm with a threshold such that the algorithm stops embedding a candidate as soon its embedding distance exceeds the threshold. Instead of storing the embedded distance of all candidates, we dynamically track the lowest and second-lowest distances, and simply use the latter as the threshold parameter.

Prioritizing. Our third optimization is a policy that drives pipelining and early-stop mechanisms. It is based on the intuition that if candidates with low embedding distance are prioritized before others, the overall cost of embedding will be low. This is due to the fact that the threshold will be set to a relatively low value during the early stages of embedding. As a result, early-stop will be applied to most candidates. However, the embedding distance of candidates is not known to us in advance. Therefore, we use candidate counting, a technique used by SFE aligners for count filtering ( [START_REF] Liao | The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote[END_REF]), to prioritize candidates based on the assumption that candidates with higher counts or votes are more likely to have lower embedding distance, and more likely to be picked as the best candidate. Thus, we modify the seeding phase to associate with each candidate location a count of the number of k-mers that produced that location during the hash lookup. During embedding, we first embed the candidate with the highest count followed by all other candidates. It is important to note here that we still embed all candidates, albeit in a different order. Thus, unlike SFE aligners, we do not filter out candidates based on k-mer counting.

Results

Accel-Align is implemented in C++ and configured to use 2NE algorithm by default as it was found to be faster than 3NE with comparable accuracy. Accel-Align uses Intel Thread Building
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Blocks for parallelizing both index generation and alignment. In this section, we present an evaluation of Accel-Align using both simulated and real data to compare its performance and accuracy with respect to three state-of-the-art short-read aligners, namely, BWA-MEM (v0.7.17; [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with bwa-mem[END_REF]), Bowtie2 (v2.3.5; [START_REF] Langmead | Fast gapped-read alignment with bowtie 2[END_REF]), and Minimap2 (v2.17; [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF]). We also present an evaluation of Accel-Align using the real DNA-based storage data to compare with BWA-MEM (v0.7.17; [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with bwa-mem[END_REF]).

All experiments were run on a server equipped with a quad-core Intel(R) Core(TM) i5-7500 CPU clocked at 3.40GHz, and 32GB RAM. In an offline phase not reported here, we used each aligner to pre-index the reference genome. Then, in each alignment experiment, we run the aligner five times and gather execution statistics. As all aligners read the index from secondary storage, the first run is typically "cold" as data is not in memory. Hence, we ignore the first run.

As we found the performance of the last four runs to be stable with all aligners, we only report the average of last four execution times.

Benchmark with simulated genomic reads

For benchmarking Accel-Align, we used Mason2 [START_REF] Holtgrewe | Mason: a read simulator for second generation sequencing data[END_REF] to generate simulated reads from the hg37 reference genome (hs37-1kg) together with an alignment file describing the exact coordinate of each read. We used Accel-Align, BWA-MEM, Bowtie2, and Minimap2 (short-read mode) to align the reads and measured the end-to-end wall clock time for alignment. Using the Mason2 generated alignment file as our ground truth, we also evaluated the accuracy of each aligner in terms of the fraction of reads correctly mapped; we consider a read to be correctly mapped if the reported alignment overlaps with the Mason-provided one by at least ten percentage of read length.

Aligner comparison

Table 2.4 reports the performance and accuracy of the four aligners for a 10M, 100bp, singleend simulated read dataset generated by Mason2. In terms of performance, it can be seen that Accel-Align clearly outperforms the other aligners, as it is 8.2× faster than Bowtie2, 5.8× faster than BWA-MEM, and 2.4× faster than Minimap2. 

Alignment-free Mapping

Both Accel-Align and Minimap2 can be configured to run in alignment-free mapping mode where they report the position without the CIGAR string. The mapping mode completely eliminates the overhead of edit-distance computation. Although such mapping is useful in several applications that do not require base-by-base alignment, for example during the error characterization study in DNA storage, we use it in this context to isolate the benefit of embedding.

To compare Accel-Align with Minimap2 in mapping mode, we used the two aligners to perform alignment-free mapping of the paired-end Mason2 datasets. First, alignment-free mapping provides a further 6% to 42% reduction in time over base-tobase alignment depending on the read length. Accel-Align maps 10M, 100bp, paired-end reads in 78 seconds, thus, mapping more than 650,000 reads per second on a simple quad-core processor without requiring any special hardware. These results demonstrate the benefit of using embedding in sequence mapping. Second, Accel-Align is 2-3.4× faster than Minimap2 at all read lengths (Figure 2.4) with alignment-free mapping while offering slightly better accuracy (Table 2.5). This demonstrates that our optimizations have eliminated any the computational overheads associated with embedding, making Accel-Align a competitive alternate to state-of-the-art sequence mappers.

Impact of embedding

To further isolate and understand the benefit of embedding in Accel-Align, we run Accel-Align in three modes:

• No-embedding: a no-embed mode where embedding is not used, and all candidate locations identified by seeding are directly forwarded for extension.

• 2N -embedding: the default mode using 2NE.

• 3N -embedding: using 3NE instead of 2NE. 

Benchmark with real genomic reads

To evaluate the accuracy of Accel-Align on real data, we used the human whole-exome sequencing dataset NA12878 (accession No.: SRR098401). We built a pipeline similar to prior work [START_REF] Kumaran | Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data[END_REF] to detect variants using GATK HaplotypeCaller (v4.1.0) [START_REF] Mark A Depristo | A framework for variation discovery and genotyping using next-generation dna sequencing data[END_REF] as illustrated in Figure.2.5. We used the four aligners to align 150M 151bp paired-end reads in NA12878 to the hg37 reference genome. Then, we used the SureSelect Human All Exon v2 target captured kit bed file (ELID: S0293689) for capturing variant locations, and took high confidence variant calls (v2. [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF]) from Genome in a Bottle (GiaB) consortium for validation.

We compare the aligners with respect to several metrics as shown in Table 2.7. The results for Accel-Align using the default parameters is shown in the column AA-32-mer. The execution reported less variants and is one of the direction that Accel-Align is aimed to improve. We also showed the SNP and InDels separately. Accel-Align had better accuracy to detect InDels that it detected even 2 more TP InDels than BWA-MEM and Minimap. However, it needs to improve the capability to detect SNP as detected 5 less TP SNP.

To better understand the difference between detected variants, we show a Venn diagram of variants detected by various aligners in Figure 2.7 and Figure 2.6 for SNP and InDels separately.

Clearly, 97.7% of Indels and 94.2% SNP variants are captured by all aligners. We find that there are 7 variants detected by the other three alignment tools, but not by Accel-Align. Upon further inspection, we found this to be due to two reasons. First, although embedding identifies the correct candidate location in most cases, there are reads for which it chooses the wrong candidate location. We found this to be particularly problematic for reads that map with a low edit distance to multiple locations in the reference. In such cases, we found that the hamming distance of embedded candidates is not spaced apart for embedding to identify a clear target. The second reason is the use of large k-mer length [START_REF] Kim | Graph-based genome alignment and genotyping with hisat2 and hisatgenotype[END_REF] in Accel-Align compared to the read length in NA12878 (151bp) which resulted in reads with four erroneous k-mers being unmapped. Table 2.7 shows the percent of mapped reads, and as can be seen, Accel-Align aligns 2% fewer reads compared to BWA-MEM and Minimap2.

To understand the impact of k-mer size on overall accuracy, we modified Accel-Align to use 25-mers instead of 32-mers. 

Benchmark with real reads from DNA-based storage

Apart from being a mapper and aligner for genomic data, Accel-Align can be used to determine the original reference oligos of the reads sequenced from DNA-based storage. By aligning the reads to the reference oligos, it can be used to study the error characterization, which is
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often the first and important step to understand the DNA synthesis and sequencing pattern.

To perform the comparison, we sequenced 44k oligos of 200bp and generated 43M reads in the work [START_REF] Marinelli | Oligoarchive-dsm: Columnar design for error-tolerant database archival using synthetic dna[END_REF]. Subsequently, we aligned the 43M reads to the original oligos with Accel-Align [START_REF] Yan | Accel-align: a fast sequence mapper and aligner based on the seed-embed-extend method[END_REF][START_REF] Yan | Optimizing the accuracy of randomized embedding for sequence alignment[END_REF] and BWA-MEM (v0.7.17; [START_REF] Li | Aligning sequence reads, clone sequences and assembly contigs with bwa-mem[END_REF]. The alignments were performed on a local server equipped with a 12-core CPU Intel(R) Core(TM) i9-10920X clocked at 3.50GHz, 128GB of RAM. It indicates that although the alignment performance scales up with multiple threads, writing the output to disk can be the bottleneck since it allows only one thread to write output to avoid collision.

Table 2.8 also shows that both aligners aligned more than 99.99% reads to a reference oligo, indicating a very high quality of the generated read set, while Accel-Align slightly aligned 0.0011% more. We also report the error distribution in Figure 2.9 and Figure 2.10 which shows a histogram of edit distances between the reads and references. As can be seen, 96.97% reads have edit distance less than 10, indicating that the error rate is less than 6%.

Figure 2.11 and Figure 2.12 show the coverage histogram (number of oligos that have a given coverage). Each reference oligo is covered by at least one read, with a median coverage of 951× for both BWA-MEM and Accel-Align. We deliberately sequenced the oligos at such high coverage to test recovery at various coverage levels.

Among all these studies, we find that Accel-Align have similar result compared with BWA-MEM. Thus, we can adopt it later to accelerate the error characterization when we study DNA-based storage, for example, we used it in our last work [START_REF] Marinelli | Oligoarchive-dsm: Columnar design for error-tolerant database archival using synthetic dna[END_REF]. 

Introduction

The growing adoption of Big Data Analytics and Artificial Intelligence has led to an explosion in the rate of data generation and storage. A recent survey by the International Data Corporation reports that the digital datasphere is forecast to grow to 125 zettabytes by 2025 [START_REF] Reinsel | Data age 2025: The evolution of data to life-critical[END_REF] and is anticipated to exceed silicon supply in 2040 [START_REF] Zhirnov | Nucleic acid memory[END_REF]. As traditional storage media is unable to keep pace with the rate of data growth [START_REF] Appuswamy | Oligoarchive: Using dna in the dbms storage hierarchy[END_REF], synthetic DNA has become an increasingly attractive archival storage medium due to its high density, stability, longevity and absence of technical obsolescence compared with electronic media [START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF][START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF][START_REF] Bornholt | A dna-based archival storage system[END_REF][START_REF] Sm Tabatabaei Yazdi | A rewritable, random-access dna-based storage system[END_REF][START_REF] Henry H Lee | Terminatorfree template-independent enzymatic dna synthesis for digital information storage[END_REF].

In most prior work on DNA-based digital storage, DNA synthesis is based on phosphoramidite chemistry, a DNA synthesis technology that has been optimized over several decades to perform highly-accurate, base-by-base synthesis of short DNA strands by making phosphodiester bonds between nucleotides. There are three Key Performance Indicators (KPIs) that can be used to evaluate the efficiency of DNA synthesis:

• bits written per cycle (also called logical density [START_REF] Anavy | Data storage in dna with fewer synthesis cycles using composite dna letters[END_REF][START_REF] Choi | High information capacity dna-based data storage with augmented encoding characters using degenerate bases[END_REF]),

• bits written per oligo,

• coupling reactions per oligo.

The efficiency of writing data to DNA depends on the number of synthesis cycles (x) to grow the strand and available repeating units (m) for addition at each cycle. The information capacity of the oligo (N bits) can be derived as

N (bi t s) = x × l og 2 m (3.1)
While base-by-base synthesis methods can perform 200 or more coupling cycles(x), the Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage number of available subunits to add at each cycle is four (nucleotides), thereby limiting bits per synthesis cycle to two, and the information capacity of an oligo to a few hundred bits.

While the quality, quantity, cost, and rate of DNA synthesis provided by base-by-base chemistry is suitable for biological research, it is far from ideal for the DNA storage use case. This has resulted in synthesis emerging as a major bottleneck in DNA storage.

In this work, we introduce the composite motifs framework to scale logical density well beyond the limit of 2 bits per synthesis cycle. Composite motifs are inspired by recent advances in motif-based approaches to DNA data storage [START_REF] Marinelli | Oligoarchive-dsm: Columnar design for error-tolerant database archival using synthetic dna[END_REF][START_REF] Roquet | Dna-based data storage via combinatorial assembly[END_REF] that use short oligonucleotide sequences, also referred to as motifs, that are drawn from a fixed library as building blocks for assembling longer oligos. Using a motif library of M motifs, one can scale logical density by storing l og 2 (M ) data bits per synthesis cycle. The use of a fixed library of motifs similar to a typesetting press can also simplify miniaturization and automation. The composite motif framework builds on the benefits of motif-based DNA storage, and further improves logical density by exploiting sequencing multiplicity inherent in DNA synthesis by encoding data using a combination of motifs rather than individual motifs.

In this work, we show that a DNA storage system based on composite motifs can provide an order of magnitude improvement in logical density over state-of-the-art systems by implementing an end-to-end prototype system as shown in 
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Composite Motif-based Encoder

A composite motif is a representation of a position in an oligo sequence that uses a combination of motifs drawn from a fixed motif library to encode data as shown in Fig 3. In order to demonstrate the feasibility of using composite motifs, we developed a DNA storage system that uses composite motifs as building blocks. 

Bridged Oligonucleotide Assembly

Oligo with a format of A 0 -P 0 was realised with (i) a set of 8 ssDNA oligo sequences of 24-bases in length, representing A 0 ; and (ii) a set of 32 ssDNA oligo sequences of 50-bases in length, representing the common spacer motif and each P 0 motif. The sequences of motifs in these oligos were selected from 25mer DNA barcodes. A set of 8 ssDNA oligo sequences of 50-bases in length were designed to function as (i) a bridge between A 0 and P 0 for ligation; and (ii) an adenosine overhang on the 3' end to facilitate AMX sequencing adaptor ligation.

Phosphorylation. A pool of 32 oligos, representing the common spacer motif and each P 0 motif, were 5' phosphorylated using T4 PNK at a pool concentration of 300 pmol and reaction scale of 50 uL, as per the vendor guidelines at 37°C for 40 minutes. A denaturation step was performed to stop the phosphorylation at 65°C for 20 minutes.

Assembly. The 8 A 0 oligos and 8 Bridge oligos are pooled at equimolar concentrations and diluted to 25 uM final pool concentration. DNA assembly reaction was carried out by taking 2
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ul of the P 0 phosphorylation mix whose component is shown in Table 3.1 and 0.5 ul of the A 0 + bridge pool and ligated using using Blunt/TA master mix as per vendor guidelines listed in Table 3.2.

The above reaction is incubated at 95 • C for 3 minutes and gradually cooled to room temperature. 

Direct Oligonucleotide Sequencing

A key aspect of a DNA storage system, along with DNA writing performance, is the cost of DNA sequencing and time taken to read data from DNA molecules. Nanopore sequencing enables single molecule sensing capabilities and has the potential to create a low-cost, high-speed DNA storage read head. The yield of a Nanopore (ONT) flowcell is dependent on the size of the DNA to be sequenced. Small oligos result in a higher number of unoccupied pores over time. ONT estimates that the minimum DNA size to load in a R9.4 flowcell is 200 bases. Thus, prior work on DNA storage with Nanopore has relied on additional sample preparation steps for short oligos that are manual and time consuming [START_REF] Lopez | Dna assembly for nanopore data storage readout[END_REF]. In particular, DNA assembly methods were used to concatenate five or more DNA storage oligos into a longer fragment, and PCR amplification is used to sufficiently increase sequencing throughput and coverage for decoding.

We developed a method to enable direct sequencing of composite-motif-based oligos without amplification or second-strand synthesis. As mentioned earlier, our oligos have only two motifs concatenated by a spacer. Thus, we designed our eight bridge oligos to double in role as adapters that will include an adenosine overhang after annealing to address(A 0 ) and payload(P 0 ) oligos (Fig 3.6). The address motifs are 5' phosphorylated which results in all oligos in our pool having their 5' end analogous to end-prepared dsDNA. Thus, these oligos can readily ligate with the AMX sequencing adapters from ONT's ligation sequencing kit (LSK-109). The AMX adapters were attached to the oligos in a 10 minute reaction. Sequencing was performed on a R9.4.1 flow cell for 4 hours. Basecalling was performed with both Guppy and Bonito basecallers. The sequencing run generated 27,198 reads with an N50 of 192bp.

Sequencing sample preparation was carried out using LSK-109 kit. AMX sequencing adaptors were ligated by mixing 2.5 ul of the assembly mix with 5 ul AMX and 5 ul Blunt/TA mastermix from NEB and incubated for 10 minutes. The sample was then loaded into a R9.4.1 MinIon flowcell and sequenced for 90 minutes. Basecalling was performed on the Guppy (v4.0.15).

Motif-Search Algorithm

Motif-Search works in two stages, inference and consensus calling. In the inference stage, it maps each read to an inferred oligo. During consensus calling, it uses all inferred oligos to produce a consensus set of inferred reference oligos.

Inference

The first task performed by Motif-Search is to extract one or more oligos from each read. There can be several oligos in one read because of the incorrect segmentation by MinKNOW during sequencing. Recall that an oligo is a set of motifs concatenated by spacers. Motif-Search infers oligos by first locating the spacer positions and then mapping the portions of the read between two spacers to the reference motifs to determine the payload and address motifs.

Inference works in three steps: i) segmentation to locate spacer positions, ii) mapping to identify reference motifs between spacers, iii) overlap check to extract only oligos that do not overlap with each other.

Segmentation. Segmentation determines the spacer positions. Since all spacers are identical, their candidate positions can be located by k-mer seeding. We convert A, T, C and G into a two-bit equivalent representation and build the index of the spacer by extracting all k-mers of length four (found to be optimal experimentally). To process each read, we extract all 4-mers in the read, lookup the index, and collect positions with an index hit. The positions are adjusted by the offset of the k-mer to get normalized positions.

To eliminate candidate positions with low confidence, we filter out the positions having less than spacer _l eng t h/k k-mer votes. As reads are error prone, indels can cause candidate positions that should be identical to differ slightly by a few nucleotides. This could result in candidates receiving fewer votes and failing the filter. For instance, given a spacer "ATCG-TAGCAGT" (#1) and a read containing "ACGTAAAGCAG" (#2), among all the 4-mers of #2, only
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the 4-mers "CGTA" and "GCAG" find the matched 4-mers in #1, and the normalized position will be -1 and 1 instead of 0. Hence, we merge neighboring positions and represent them by a centroid with a combined count. Regarding the previous example, we get the centroid position zero with two votes and it passes the vote filtering. At the end of this stage, we have all candidate positions for all spacers in a read.

In our experiment, each oligo has only one spacer. But in the general case, each oligo can contain multiple spacers. From the structure of the oligo, we know that each oligo with M motifs has M -1 spacers, with each spacer being spaced apart by a distance d equal to the sum of the motif length and spacer length. In order to accommodate synthesis and sequencing errors, these inter-spacer gaps can be slightly more or less than the motif length depending on indel errors. Thus, we identify all possible chains of M -1 positions which are within an expected distance threshold from each other.

As mentioned earlier, the candidate positions in these chains are approximate, as indel errors can result in observed starting position differing from actual starting position by a few nucleotides. We rectify and refine these positions to tolerate indel errors by using randomized embedding-a technique which has been demonstrated to be a scalable approach for mapping reads to references in genomic sequence alignment [START_REF] Yan | Accel-align: a fast sequence mapper and aligner based on the seed-embed-extend method[END_REF]. More specifically, for each candidate position, we extract a spacer-length portion of the read at that position and at several positions around that position. We embed each extracted read fragment using a randomized algorithm and compare with the embedded version of the original spacer motif using hamming distance.

We select the shifted position with least embed distance as the final candidate position. As the number of candidate positions can be large, the use of embedding helps us to avoid expensive edit distance computations between the read and spacer motif, and use hamming distance between their embedded versions to rectify candidate positions.

Mapping. Given a chain of refined candidate positions, we can extract the potion of each read between two neighboring spacers. These portions correspond to address and payload motifs. The next step is to identify the original motif for each observed motif in the read. This can be translated to a sequence mapping problem by considering the original motif library as the reference and the observed motif in the read as the query. Therefore, we use the ksw-lib( [START_REF] Suzuki | Introducing difference recurrence relations for faster semi-global alignment of long sequences[END_REF]) to select the optimal original motif with the highest mapping score for each observed motif.

After this step, we have multiple chains of mapped motifs.

Overlap check.

As we consider all possible chains, some chains might overlap each other. However, while each read can cover multiple oligos due to DOS, each nucleotide in a read should map to only one motif/oligo. Thus, the final step in the inference stage is to identify the optimal set of chains that do not overlap with each other. To do this, we traverse the chains to identify overlapping sets. For each overlapping set, we pick a chain with the highest mapping score such that no chain appears in two sets.

Each original encoded oligo can be synthesized with duplication. Library preparation steps, like PCR, also amplify the pool of oligos by creating multiple copies of each oligo to ensure successful sequencing. Thus, an original oligo can be covered by multiple reads. For each read, the inference stage identifies the optimal set of non-overlapping chains. As the final step, we apply consensus calling to group similar motif chains inferred from the inference stage, and obtain consensus to achieve higher confidence. We know that oligos do not have logical addresses and need an index to identify the serial information in DNA-based storage. This index information can not only order the oligos but also be used as the group key during the consensus calling. We do this by first clustering the inferred oligos using their address motifs. Then, we select the most frequent motifs at each position as the final consensus motif as shown in 

Results

Encoding

In order to demonstrate the feasibility of composite motifs, we stored the text "HelloWorld" using our composite-motif-based DNA storage system. The sequence design rules for base motifs that are used to derive composite motifs are similar to those of DNA barcode design. Thus, we started with DNA sequences designed in prior work [START_REF] Chalapati | Direct oligonucleotide sequencing with nanopores[END_REF] to select 96 25nt base motifs.

Using a combination factor of 32, we developed a composite motif set of 3 × 10 25 composite motifs (C [START_REF] Krueger | Bismark: a flexible aligner and methylation caller for bisulfite-seq applications[END_REF][START_REF] Kim | Graph-based genome alignment and genotyping with hisat2 and hisatgenotype[END_REF]). Thus, each composite motif, and hence, each synthesis cycle, can store 84-bits of data (l og 2 C (96, 32)). As our input text is 10 bytes, it can be stored using a single DNA sequence with one composite motif. However, in order to test precision and recall of methods in the read pipeline, we stored the same data eight times using eight sequences. We index each sequence using eight unique 24nt address motifs that are separate from the 96 payload motifs.

Results

Bridged Assembly of Composite Motifs

Each of the eight encoded sequences is then used to synthesize 32 oligos producing a total of 256 oligos. The address motif is repeated in each molecule, while the composite motif is expanded to generate a variant combination using 32 payload motifs. Oligos are synthesized using template-directed ligation. This method utilises single-strand sequences, referred to as bridge oligos, to facilitate the ligation of payload motifs to address motifs. In the general case, an oligo would contain one or more address and payload motifs as shown in Fig 3 .2.

As any motif can be ligated with any other, designing bridge oligos for each possibility is suboptimal and not scalable. We solve this problem by using a spacer motif. When the motif library is designed, each 25nt motif is extended on both 5' and 3' ends with 12nt and 13nt nucleotides from the 3' and 5' ends of the spacer motif (Fig 3 .5). While this increases the length of each synthesized motif from 25nt to 50nt, it does not affect the number of motifs, and more importantly, it makes it possible to design the bridge oligo to be complementary to a single spacer. By doing so, the bridge oligos can hybridise to the spacer portions at the 3' and 5' ends of two payload motifs while the enzyme ligates them.

For the purpose of our experiment, as we have only 2 motifs per oligo, we modified this by (i) prepending the entire spacer sequence to the 5' end of each payload motif, and (ii) designing eight (instead of one) bridge oligos, each of which is complementary to both the spacer sequence and one of the eight address sequences (Fig 3.6). By doing so, the eight bridge motifs Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage also double in role as adapters during sequencing. The spacer-extended 32 payload motifs, eight address motifs, and eight bridge oligos were all synthesized base-by-base by Integrated DNA Technologies (IDT). The oligos were synthesized by selecting, annealing and ligating together the corresponding address-payload motif pairs. The inputs to the reaction comprise all motif oligos, bridge oligos, enzymes and ligation buffer. These reactions proceeded to produce ligated oligos through programmed temperature incubation and cycling, where each bridge oligo facilitates the ligation of a specific address motif with a payload motif via complementary annealing. We use the resulting oligo pool to test the feasibility of decoding the identity of motifs from an enzymatically-ligated, Nanopore-basecalled readout.

Error Characterization of Direct Nanopore Sequenced Reads

Despite having several reads, we found that the reads were low quality. From the read length distribution in Fig 3 .7.a and Fig 3 .7.b, we see that the median read length with Guppy and Bonito is 166nt and 110nt. Thus, more than half reads are 48% longer than original oligos as several reads were observed to contain multiple oligos in a single read. On further analysis, we identified wrong event detection by MinKNOW to be the root cause of the problem. When sequencing oligonucleotides on an ONT R9.4 flowcell, the movement of bases through the pore leads to a continual change in current, known as the "squiggle", that is recorded by MinKNOW.

MinKNOW processes the squiggle into reads in real-time, and each read is supposed to correspond to a single strand of DNA. However, as our oligos were below 200 bases, we observed that sequencing our oligos generated low quality reads due to incorrect segmentation by MinKNOW which would earmark empty signals as valid reads, and created reads with merged squiggles for more than one strand of DNA. Due to the presence of multiple oligos per read, we cannot directly align the reads to the reference oligos. So we did reverse alignment to study error characteristics and coverage distributions. We regard each read as a "reference" and build an index per read. Then, we treat
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each oligo like a "read", and align it to each reference. Thus, for each read, we get an alignment file that contains one record per oligo. To identify and retain only good alignments, we filter the alignments using the following criteria: (i) MAPQ > 10 (90% alignment confidence), ii) all alignments in a read should correspond to one orientation (no mixed forward and reverse alignments), and iii) there should not be any overlap when multiple oligos are mapped in a single read; only the alignment with the highest alignment score is kept if several alignments overlap each other. With this approach, we get the set of oligos that we can identify assuming we have full knowledge of the original oligos.

Using Minimap2 [START_REF] Li | Minimap2: pairwise alignment for nucleotide sequences[END_REF] for reverse alignment, we computed the substitution, insertion, deletion and soft-clipping rate per position (Fig 3 .8). As can be seen, the rate of soft clipping is very high at the extremities (especially 3' end)due to the very high error rate caused by BOA and DOS.

In the middle portion of the read, the rates of error types vary, with no one error type being dominant over others. These results are in sharp contrast to error statistics published in prior work on DNA storage [START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF][START_REF] Robert N Grass | Robust chemical preservation of digital information on dna in silica with errorcorrecting codes[END_REF][START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF][START_REF] Organick | Random access in large-scale dna data storage[END_REF][START_REF] Heckel | A characterization of the dna data storage channel[END_REF], where substitution errors have been shown to be more likely than indel errors, and overall error rates are at least 10× lower (Fig 3 .9 and Table 3.3).

The only exception is work on photolithographic synthesis [1], where the error rates reported were also high. [START_REF] Organick | Random access in large-scale dna data storage[END_REF] and Antkowiak et al. [1] was taken from Antkowiak et al. [1]. 

Results

Inference and Consensus with Motif-Search

To reconstruct the original data from noisy reads, we developed a new reconstruction algorithm called Motif-Search that meets two requirements:

• guarantee successful recovery despite high error rate,

• directly work with raw, basecalled, Nanopore reads that might contain multiple oligos per read.

Motif-Search differs from prior consensus callers that it is structure aware-while other callers view an oligo as a random collection of nucleotides, Motif-Search exploits the fact that our oligos are a collection of payload motifs separated by spacer motifs, with all motifs being drawn from a predefined, finite library. A detailed description of the Motif-Search algorithm is presented in Section 3.2.4. Here, we present our analysis results that demonstrate the ability of Motif-Search to accurately infer original oligos. Minimap2 needs the original oligos which would not be available in the real DNA storage use case. Thus, Minimap2 results are used as a baseline for comparison rather than a real decoding solution. First, Motif-Search is able to fully recover all oligos at 20× coverage. Reverse alignment misses one oligo even with 34× coverage. Second, Motif-Search reconstructs more oligos than reverse alignment at all coverage levels. The under-performance of reverse alignment relative to Motif-Search is because all the reads covering the missing oligo had a very poor alignment and were filtered out.

Table 3.5 shows the execution time of Motif-Search and reverse alignment. Both support multi-threaded operation. On a 12-core Intel(R) Core(TM) i9-10920X CPU clocked at 3.50GHz, 128GB RAM with a 1TB SATA SSD, Motif-Search is 190-250× faster than Minimap2 due to the fact that Minimap2 needs to build an index for each read and align each oligo to each read while Motif-Search is custom-designed for the motif-based oligo reconstruction use case.

In order to investigate false positive (FP) behavior of Motif-Search and reverse alignment, we increase the motif library size. For a given set of address and payload motifs, we create oligos containing all possible combinations of motifs. For instance, if the motif set size is 64(ad d r ess) × 256(pa yl oad ), we generate 16,384 possible oligos. We then use Minimap2 to align each oligo to each read. We use the same reads as before which were sequenced from 256 original oligos. As the motif set is expanded, Motif-Search can now report an inferred oligo which is not in the original set but from the expanded set, which would be labelled a FP. Search is able to reconstruct all original oligos when sequence coverage reaches 27× for all motif set sizes. When the sequence coverage is low, Motif-Search is able to reconstruct more true positive oligos than reverse alignment even though it is unaware of the reference oligos.

Second, as the motif set size increases, the number of FP for both approaches rise. Since the sequences are error-prone, both approaches make errors identifying the correct references from reads. However, the FP rate of Motif-Search is still lower than reverse alignment. While missing TP is an issue as it can lead to data loss, extra FP is not a problem as it can easily be discarded by using auxiliary metadata and/or error-control coding.

These results clearly demonstrate that (i) our motif-based, BOA method can successfully encode information in DNA, and (ii) with sufficient coverage, Motif-Search is capable of reconstructing all original oligos, and thereby ensuring successful decoding, despite errors introduced by enzymatic BOA and DOS.

Results

TP

Read-Write Cost Comparison

The cost of storing data on DNA comes from two aspects, namely, the cost of sequencing for reading data and the cost of synthesis for writing data. Composite motifs has the potential to reduce the synthesis cost, thanks to the increase in logical density. For example, each synthesis cycle encodes 84 bits (l og 2 C (96, 32)) in our composite motif experiment. A native motif-by-motif approach, in contrast, can only encode 6 bits per cycle with the same 96 motifs, and the traditional phosphoramidite approach can encode 2-3.37 bits per cycle depending on whether standard or degenerate bases are used for encoding. This 14-42× increase in logical density will lead to a proportionate reduction in synthesis cost over conventional synthesis approaches, as fewer synthesis cycles and fewer oligos are required to encode the same digital data. Since current motif-based synthesis techniques already use a high degree of sequence multiplicity, composite motifs can be easily integrated by generating a variant motif mixture pool without much added costs. The physical density of our approach is 3.36bits/nt, which is also higher than the physical density of conventional base-by-base DNA storage solutions (2 bits/nt) and comparable to degenerate base approaches (3.37 bits/nt [START_REF] Anavy | Data storage in dna with fewer synthesis cycles using composite dna letters[END_REF][START_REF] Choi | High information capacity dna-based data storage with augmented encoding characters using degenerate bases[END_REF]).

While our solution improves logical density and synthesis costs, it does so at the expense of higher read costs. Fig 3 .12 presents a comparison of the cost to read 1MB of data stored in DNA of our approach and other related work [1,[START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF][START_REF] Robert N Grass | Robust chemical preservation of digital information on dna in silica with errorcorrecting codes[END_REF][START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF][START_REF] Organick | Random access in large-scale dna data storage[END_REF][START_REF] Blawat | Forward error correction for dna data storage[END_REF] based on the cost of DNA sequencing (0.006$ per megabase) reported by National Human Genome Research Institute (NHGRI) in August 2021 [START_REF] Wetterstrand | Dna sequencing costs: Data from the nhgri genome sequencing program[END_REF]. The detailed calculation is included in the Table 3 [START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF] and the read cost continues to drop due to rapid advances in sequencing, we believe that it is more important to focus on reducing the write cost, which is a bottleneck today in DNA data storage. • The oligo_length includes the length of primers.
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Antkowiak

• The sequencing_cost_per_nt takes the value 0.006$ per megabase reported by National Human Genome Research Institute (NHGRI) in August 2021.

• Data for Goldmann et al. [START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF], Grass et al. [START_REF] Robert N Grass | Robust chemical preservation of digital information on dna in silica with errorcorrecting codes[END_REF], Erlich et al. [START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF] and Organick et al. [START_REF] Organick | Random access in large-scale dna data storage[END_REF] was taken from Organick et al. [START_REF] Organick | Random access in large-scale dna data storage[END_REF].

Discussion

In this work, we demonstrated the feasibility of using composite motifs to scale the logical density of DNA storage by an order of magnitude. We developed synthesis (BOA) and sequencing (DOS) methods customized for writing and reading oligos that regard composite motifs as building blocks, and showed that the error characteristics of these methods are different compared to state-of-the-art techniques. We developed a new motif-based consensus calling and oligo inference method (Motif-Search) that is able to recover all data at coverage as low as 20×.

Our future work aims to scale up the methods presented in this paper on several fronts. First, to simplify the task of motif design, we built on an existing library of 25nt primers leading to a physical density of 3.36bits/nt. Future work will improve this further by optimizing the motif library. Second, we are working on reducing sequencing costs by adding error-control coding optimized to our DNA storage channel to enable data recovery at a lower sequencing coverage.

Third, the short size of motif library, the library-preparation-free sequencing provided by DOS, and the error-tolerant nature of Motif-Search all simplify end-to-end automation. Thus, we are developing a fully automated DNA storage solution that can scale both oligo length and number of oligos beyond what was presented in this work.

Chapter 4

Sequence Analysis for Random Access in DNA-based Storage

Introduction

The end-to-end DNA storage workflow shown in Figure 3.1 demonstrates that the synthesized DNA oligos have to be sequenced and decoded back into digital data in order to extract the stored information. The prior work [START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF][START_REF] Robert N Grass | Robust chemical preservation of digital information on dna in silica with errorcorrecting codes[END_REF][START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF][START_REF] Blawat | Forward error correction for dna data storage[END_REF][START_REF] George M Church | Next-generation digital information storage in dna[END_REF] has made an effort to sequence and decode the entire amount of stored data. However, in many real scenarios, not total information but only a fraction of information is expected to be read out. For example, clients request one single table from one unique database, or extract one image from a collection. To response these requests, it is redundant to sequence the entire amount of stored information. Also, sequencing more reads usually leads to the extra decoding time. To decode the information stored in the DNA-based storage, the decoder applies consensus calling to aggregate reads originated from the same oligo together. This step is computationally intensive due to the adoption of clustering and machine learning techniques. The redundancy introduced by sequencing and decoding makes the DNA-based storage impractical when the amount of data increases. Hence, random access is playing an important role to make large scale DNA-based storage viable.

One common approach to realize random access is based on Polymerase Chain Reaction (PCR).

It is proved to be scalable enough to extract files of varying complexity and size reliably [START_REF] Organick | Random access in large-scale dna data storage[END_REF].

The PCR-based random access appends address sequences in each oligo such that PCR reactions can use these addresses as primer targets to selectively amplify the desired strands from a large pool of oligos. With this approach, the first step is to segment input data into chunks and encode as oligos with fixed lengths appropriate for the current DNA synthesis and sequencing platforms. Then, address sequences are appended to individual data-encoding oligos in the storage pool. During PCR reactions, these addresses are used as primer targets and only the desired strand are selectively amplify. Thus, by associating addresses, this approach can be used to randomly retrieve a fraction of data from a DNA pool. Most studies associate the address sequences for individual file which is an uni-dimensional one-primer-per-file approach enabling to randomly retrieve a single file from a DNA pool.

However, such uni-dimensional approach is not scalable for large DNA databases due to several major limitations.

First, it is mandatory to take into account the biological restrictions during primer design.

Given the primer length of N , it is possible to design 4 N primers theoretically. However, it is important to take into account following aspects to ensure the specificity of random access in large DNA databases.

• The GC content, which is the percentage of bases in a sequence that are either guanine or cytosine. Synthesis and sequencing errors are known to be exacerbated by either an excessive or inadequate GC content.

• Homopolymers can introduce a higher error rate during the synthesis and sequencing.

The primers with single-nucleotide repetitions should be avoid [START_REF] Sander | A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity[END_REF][START_REF] Thomas P Niedringhaus | Landscape of next-generation sequencing technologies[END_REF].

• The hairpin loop, which is the DNA molecule fold back on itself if several adjacent bases are complementary to each other. The hairpin structure should be eliminated in the primers.

Multi-dimensional Data Addressing

• The primers are distinct from each other. The edit distance among the primers should be large enough to minimize the mispriming.

These biological restrictions further limit the number of possible primers within a particular length budget.

Second, one-primer-per-file approach is not applicable for an archive with many small files.

For instance, assuming a DNA archive with 1 million small files of size 1MB, 1 million of distinct primers need to be designed. Given the biological limit, the primer should contain at least 10 (l og 4 1000, 1000) nucleotides to produce 1 million distinct primers. As we mentioned earlier, the oligo is limited to few hundred nucleotides in length due to the synthesis limitation.

When the number of nucleotides in the primer increases, the number of nucleotides remaining available to store the payload data decreases. Massive small files lead to the increment of primer length dominating a non-significant portion of the oligo. As a result, it impacts the storage density.

Third, it does not allow the reuse of primers. Hence, it limits in terms of the type of access paths that can be supported, as only one file can be randomly accessed at a time. It requires multiple rounds of PCR with corresponding primers to retrieve a set of related files which is costly and inefficient.

Multi-dimensional Data Addressing

To overcome the limitation of uni-dimensional data addressing, we propose a multi-dimensional data addressing methodology inspired by prior work [START_REF] Kyle J Tomek | Driving the scalability of dna-based information storage systems[END_REF][START_REF] Kashiwamura | Hierarchical dna memory based on nested pcr[END_REF][START_REF] Lau | Magnetic dna random access memory with nanopore readouts and exponentially-scaled combinatorial addressing[END_REF][START_REF] Winston | Combinatorial pcr method for efficient, selective oligo retrieval from complex oligo pools[END_REF]. In our design, a pool of data oligos is organized in a three-dimensional hierarchy Collection -Object -Extent. For instance, one can store a file system by mapping a directory to a collection, a file to an object, and a chunk of a file to an extent. Similarly, a relational database can be stored by mapping a database to a collection, a table to an object, and a column of a table to an extent.

Data is encoded to represent this hierarchy by having each oligo containing two components, namely, a data payload and a collection of access primers as shown in the Figure 4.2. The data payload refers to the quaternary-encoded input binary data that needs to be archived in DNA.

It is similar to previous encoding design and do not provide any random access capability. The access primers, in contrast, are specifically added to achieve complex access paths. The oligonucleotides is structured from the concatenation of 5'-Universal Forward Primer- The longer the primers are, the less nucleotides are left in the oligo for the payload. Therefore, we start to work with short primers to maximize the payload proportion. In our first experiment, we chose primers of length 5nt derived from the Illumina adapter sequences to define the database, table and column information. The primers are further selected to meet the two requirements.

• GC content is between 0.4 and 0.6.

• Absence of hairpin structure. The primers should not contain complementary nor inverse complementary sequence.

PCR Bias

As we mentioned earlier, both the synthesis and sequenceing steps introduce errors in DNAbased storage. Multiple reads covering each oligo enables to infer the original oligo during consensus calling despite errors. Suppose that PCR bias exists, especially when some information is underrepresented, the corresponding data might be absent after decoding. This brings recall of random access down. Hence, it is essential to study whether the selected data are equivalently present before and after PCR amplification during the multi-dimensional data addressing.

We begin the PCR bias study by defining the population fraction [START_REF] Chen | Quantifying molecular bias in dna data storage[END_REF] as the individual oligo's share of the whole pool. The population fraction of a sequence i after k cycles of PCR among n sequences, p k i , is computed as

p k i = N k i n j =0 N k j (4.1)
where N k i represents the number of sequence i after kth PCR cycle. When k equals to 0, p 0 i is the raw population fraction representing the initial oligos' proportion of each population.

Then, we define the population fraction change as the quotient of population fraction after the PCR amplification divided by the raw population fraction as

c k i = p k i p 0 i . (4.2)
The PCR selection is considered as unbiased when the mathematical expectation of population fraction change for all sequences is one. That means all sequences are equivalently present after the PCR process.

PCR Bias at Database Level

First of all, we want to study PCR bias at the database level, i.e. whether the population fraction change uniform across databases. The Universal Forward Primer was used to pull out all the reads. Then we used Accel-Align to map reads to oligos to determine their original database.

The number of reads extracted per database is shown in Table 4.2. We find that the population fraction of TPCH is only 1.2% after the PCR amplification while the original population fraction of TPCH is 2.6% over all. It indicates that TPCH database is insufficient represented after the PCR. On the contrary, SYN database's population fraction change is 1.3, meaning that it is 30% excessively represented. These results illustrate that PCR is biased, some sequences become overrepresented while some become underrepresented after the PCR amplification. In Sec. 4.3, we have introduced the limitation of file-based random access with the wet experiment. First, it demonstrates that the data corresponding to the small files suffer from population fraction variation after the PCR. And also they are exploited to a lower precision. To overcome the obstacle, we propose a block-based random access reminiscent to the blockwise storage in the hard disk. In the block-based design, the basic random access unit is a block which is an extent with fixed size in our multi-dimensional data addressing, rather than the file with variable size. Consequently, the unique primers are attached to the oligos belonging to each block rather than each file.

Primer Design

We start with a collection of 624 sequences as a concatenation of one 5'-primer of 20 nt, one payload of 256 nt, and one 3'-primer of 20 nt. The rationale is to select 5'-prime and 3'-prime 20-mers as divergent as possible in order to minimize the risk of cross-amplification. The initial primer sequences are from Organick et al [START_REF] Organick | Random access in large-scale dna data storage[END_REF]. It has already taken into account the GC-content (45%-55%), the absence of long sequence-complementarities, absence of long 

PCR Bias

First of all, we check whether some primer pairs' oligos are over or underrepresented. We use Accel-Align to align the reads to reference oligos to determine their origin and achieved the copy number of each oligos. Table 4.7 shows the population fraction change per primer pair. We find that although the population fraction change does not equal to 1, the average of the population fraction change is 1. The standard deviation which is 0.13, has been greatly reduced compared to the TPCH database in the file-based random access design which is 10.8.

It indicates that the oligos are more equally presented before and after PCR. 

Improper Binding

We analyze whether improper binding has been eliminated. To be noted, in this experiment, the oligos are sequenced by Oxford Nanopore PromethION platform. It produces long reads and leads to additional sub-sequences in two extremities of each read. Thus, we conduct the primer based on CIGAR to ignore the softclipping part. The CIGAR is computed by the alignment from a read to original oligos with Accel-Align. In the file-based random access experiment, we determine whether the primer is as same as the target primer, or other primer, or bad quality simply through a bit-by-bit comparison. This is because the primer is short with only 5 nt and also because Illuminia sequencer has high accuracy. However, in this case, the primer is longer (20nt) and Nanopore is less accurate than Illuminia. If we simply compare the extremities to reference primers, we find that only 80%∼85% of the reads have the target primer while some other reads do have the right primer but containing substitutions or Indels.

Hence, after we get the raw primers from the reads, we align raw primer to the reference primers to determine the origin, to determine whether the primer pairs belong to its oligo, or belong to another oligo, or have too bad quality. Table 4.8 shows the primer binding analysis.

We find that all sets have more than 95% reads with target primers and improper binding has been decreased to 0.9%∼3.5%. 

Data Recovery

Although the improper binding has been eliminated, there are still 0.9%∼3.5% reads containing non specific primers. As an end-to-end workflow, we pass the reads through our decoder to validate whether the decoder is able to distinguish the improper binding and distribute the reads from same primer into the same bucket. Table 4.9 shows that all primer pair sets achieve high precision that more than 99% of reads selected do really belong to that group. We also find that there is no significance in the primer position since the fraction of left and right target primer are close to each other. 

Discussion

In Instead of focusing on eliminating sub-optimal candidates, SEE focuses instead on identifying optimal candidates. However, we find that the initial randomized embedding might not able to identify the true optimal candidates in the presence of some pathological random sequences.

Hence, we propose multiple embedding and chain embedding to improve further accuracy.

To show the efficiency of SEE in practice, we implemented a fast aligner and mapper -Accel-Align in C++ with multi-threading support. It is publicly available on github via https://github. com/raja-appuswamy/accel-align-release. In our experiment, we show that Accel-Align is 2 ∼ 12 faster than state-of-the-art aligners with both simulated and real genomic datasets.

Accel-Align is also shown to be an efficient tool to determine the origin of reads such that we can study sequencing statistics and error characterization in DNA-based storage. we present an end-to-end experiment where we store the text "HelloWorld" at a logical density of 84 bits/cycle (14-42× improvement over state-of-the-art). The physical density of our approach is 3.36bits/nt, which is also higher than the physical density of conventional base-bybase DNA storage solutions (2 bits/nt) and comparable to degenerate base approaches (3.37 bits/nt). Finally, our decoder Motif-Search is able to fully recover stored data at a sequencing coverage 20×.

Sequence Analysis for Random Access in DNA-based Storage

Random access to a portion of data plays an important role to make large scale DNA-based storage viable. In this work, we focus on the PCR based random access. To study the precision of random access in DNA-based storage, the first step is to determine the origin payload and primer of the reads. Using Accel-Align, we performed a study of the characteristics of different random access design. We showed that file-based random access can suffer from PCR bias issues if file sizes are not uniform. Some information is over-presented while some is underpresented after the PCR. The under-presented information can be missed after decoding. We also showed that improper binding happens during PCR with the short primers. The extra data caused by improper binding can lead to silent data corruption. To overcome these issues, we proposed using a multi-dimensional addressing method using a block-based design, where each block has a uniform size. Using a large-scale experiment, we showed that the new design eliminates PCR bias and improves the proportion of reads with correct primers.

Future Work

Aiming at the approximate edit similarity problem, this thesis studied the scalability and accuracy of the algorithms in the domain of computational genomics and DNA data storage.

In this section, we outline several perspectives of the research that require further investigation in the future.

Accel-Align: a Fast Sequence Aligner

In the area of computational genomics, we have demonstrated earlier in the thesis that low distortion embedding is capable of transforming the distance between two strings from the edit regime to Hamming regime to accelerate the sequence similarly measurement. We have implemented Accel-Align as a fast and accurate sequence aligner and mapper based on SEE methodology in practice. Nevertheless, future work can be performed in the following aspects in order to achieve further enhancements of the algorithm.

Accuracy improvement. We found that Accel-Align provides comparable accuracy with the simulated dataset. However, the variant calling pipeline based on NA12878 dataset with Accel-Align can miss 5 out of 23521 in the detection of true positive SNPs compared to the pipeline with BWA-MEM. The main reason behind this is the usage of a simple seeding method that relies on long seeds to identify candidate locations. As a result, reads with higher error rate might result in the seeding missing a few candidate locations. Minimizer [START_REF] Roberts | Reducing storage requirements for biological sequence comparison[END_REF], strobmer [START_REF] Sahlin | Flexible seed size enables ultra-fast and accurate read alignment[END_REF][START_REF] Sahlin | Effective sequence similarity detection with strobemers[END_REF] and learned-index [START_REF] Kalikar | Accelerating long-read analysis on modern cpus[END_REF] can be good candidates to replace our seeding module of simple kmers.

Performance improvement. Figure 2.8 shows the breakdown of processing time for each Accel-Align stage. It illustrates that seed lookup is the dominant time-consuming step. One of the approaches to mitigate this problem is to accumulate the forward and reverse seeds together with a direction mark in one bit of the seed value during the indexing so that Accel-Align only needs to do the look up once. Consequently, it can reduce the list of candidates to be merged during the seeding step. We are implementing this optimization and we plan to release a new version in the near future with improved seeding time.

Hardware-acceleration techniques exploitation. Many bioinformatic algorithms have been improved using GPUs [START_REF] Zhu | Parallel implementation of mafft on cuda-enabled graphics hardware[END_REF][START_REF] Chacón | Boosting the fm-index on the gpu: Effective techniques to mitigate random memory access[END_REF][START_REF] Flavius De Oliveira Sandes | Cudalign 4.0: Incremental speculative traceback for exact chromosome-wide alignment in gpu clusters[END_REF]. For instance, GPUs have been proved to improve the speed of the Smith-Waterman algorithm by order of magnitude [START_REF] Liu | Cudasw++ 3.0: accelerating smithwaterman protein database search by coupling cpu and gpu simd instructions[END_REF]. In Accel-Align, seeding stage dominates overall execution time irrespective of the k-mer size. Fortunately, seeding is also a prime candidate for acceleration by GPUs due to its data-parallel nature as demonstrated by a recent microarchitectural study [START_REF] Appuswamy | Sequence alignment through the looking glass[END_REF]. The embedding stage is also compatible to parallelization on GPU. Thus, in the future, we plan to develop a parallelized version of Accel-Align which can work across CPUs and GPUs, and compare it with other GPU-based aligners such as SOAP3 [START_REF] Liu | Soap3: ultra-fast gpubased parallel alignment tool for short reads[END_REF], SOAP3-dp [START_REF] Luo | Soap3-dp: fast, accurate and sensitive gpu-based short read aligner[END_REF], Arioc [START_REF] Wilton | Arioc: High-concurrency short-read alignment on multiple gpus[END_REF][START_REF] Wilton | Arioc: high-throughput read alignment with gpu-accelerated exploration of the seed-and-extend search space[END_REF] and GASAL2 [START_REF] Ahmed | Gasal2: a gpu accelerated sequence alignment library for high-throughput ngs data[END_REF].

Bisulfite sequencing alignment adaptation. DNA methylation plays an important role in many biological applications. It is related to many diseases, especially cancer [START_REF] Adusumalli | Methodological aspects of whole-genome bisulfite sequencing analysis[END_REF][START_REF] Capper | Dna methylation-based classification of central nervous system tumours[END_REF][START_REF] Soto | The impact of next-generation sequencing on the dna methylation-based translational cancer research[END_REF][START_REF] Xu | Circulating tumour dna methylation markers for diagnosis and prognosis of hepatocellular carcinoma[END_REF].

The development of whole-genome methylation sequencing (WGBS) makes it possible to measure the methylation status of the entire genome. Although we designed Accel-Align initially for DNA sequence alignment problem, it can be adapted for bisulfite sequencing reads as well. Bisulfite sequencing applies a bisulfite treatment to genomic DNA to convert nonmethylated cytosines (C) to uracils(U), which can be sequenced as thymines (T) ; while methylated cytosines (C) cannot be converted to uracils(U) and are sequenced as cytosines (C). Hence, the index should be built with the sense strand twice, once with C converted to T and once with G converted to A. In the future work, we plan to add bisulfite support to Accel-Align and benchmark it with state-of-the-art aligners such as BS-Seeker2 [START_REF] Guo | Bs-seeker2: a versatile aligning pipeline for bisulfite sequencing data[END_REF], Bismark [START_REF] Krueger | Bismark: a flexible aligner and methylation caller for bisulfite-seq applications[END_REF],

BWA-Meth [START_REF] Brent S Pedersen | Fast and accurate alignment of long bisulfite-seq reads[END_REF] and BiSulfite Bolt [START_REF] Farrell | Bisulfite bolt: A bisulfite sequencing analysis platform[END_REF].

Edit Similarity-Based Decoder in DNA-based Storage

In the domain of DNA-based storage, we have proposed the new encoding logic -composite motifs to scale the logical density. We have designed the structure-aware decoder Motif-Search based on edit similarity and we have shown that Motif-Search is able to fully recover information even with the error-prone reads at a low coverage 20×. Nevertheless, future work can be performed in the following aspects to improve the scalablity and reduce cost.

Error-correction code utilization. State-of-the-art research, such as Reed Solomon codes [START_REF] Organick | Random access in large-scale dna data storage[END_REF],

LDPC [START_REF] Chandak | Improved read/write cost tradeoff in dna-based data storage using ldpc codes[END_REF] and fountain codes [START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF], employs error correction block to improve the robustness.

The similar techniques can also be applied in composite motifs encoding to allow a lower sequencing coverage to fully recover the information, and thus, to reduce the reading cost.

Physical density improvement. The physical density is defined as the number of bits that can be encoded by a nucleotide. In our experiment, we built upon an existing library of 25nt motifs to simplify the task of motif design. Thus, our composite motif approach provides a physical density of 3.36 bits/nt (encoding 84 bits with 25nt composite motifs). The physical density can be increased by selecting more compositions from the library. For instance, selecting 48 motifs from a 96-motif library can encode 90 bits per composite motifs and increase the physical density up to 3.6 bits/nt. The physical density can also be scaled up by reducing the motif length. In our experiment, we used a motif library with 96 unique motifs. Theoretically, the permutation of 4 nucleotides consists of 256 (4 4 ) unique motifs which is already sufficient to design 96 motifs. Hence, we can potentially use a shorter motif to improve the physical density.

Future Work

Experiment scale improvement. As a prototype, we have stored 10 bytes data with short oligos of 74nt in this experiment. We plan to extend the oligo with multiple payload motifs and store large scale dataset with long oligos in order to demonstrate the efficiency and scalability brought by the composite motifs encoding schema and the Motif-Search decoding in the area of DNA-based storage.
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 11 Figure 1.1: Sequencing cost per megabase -2021 from NHGRI.
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 413 Figure 1.3: Sequence alignment in computational genomics.
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 14 Figure 1.4: A template of DNA-based storage workflow.

  Chapter3: Edit Similarity-Based Decoder in DNA-based Storage. This chapter provides a brief introduction about the origination of DNA-based Storage. We propose a new encoding logic called composite motifs to scale the logical density and designs the corresponding structureaware decoder Motif-Search. Since errors may exist in the reads, Motif-Search does the approximate edit similarity decoding. We present an end-to-end workflow and shows that it is capable of fully recovering the original data with low sequence coverage 20x. Chapter4: Sequence Analysis for Random Access in DNA-based Storage. This chapter studies the PCR-based random access in DNA-based Storage based on the sequence alignment method Accel-Align. It shows that PCR bias impacts the selection sensitivity of small files in a big pool.
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  addition to the CIGAR, Accel-Align also reports a mapping quality (MAPQ) that represents the degree of confidence in the alignment for each read. Accel-Align uses the cumulative Hamming distance obtained from chain embedding for identifying the top two candidates. If d 1 is the least embedded Hamming distance and d 2 is the second least, the MAPQ is computed as M APQ = 60 * (1d 1 /d 2 ) 2 .

Figure 2 .

 2 4 shows the execution time for various read lengths. Comparing Figures 2.2 and 2.4, we can make two observations.
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 26 Figure 2.6: Venn diagram of InDels variants detected by various aligners and Accel-Align (32mer).
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 27 Figure 2.7: Venn diagram of SNP variants detected by various aligners and Accel-Align (32mer).
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Figure 2 . 11 :

 211 Figure 2.11: Histogram of coverage across oligos with BWA-MEM.
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 31 In doing so, we develop new encoding and enzymatic motif ligation techniques that can scale DNA synthesis in the DNA write pipeline, and assembly-free, Nanopore-based motif read out and alignment-based motif decoding techniques that can scale DNA sequencing in the DNA read pipeline.
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 31 Figure 3.1: Data writing and reading pipeline of DNA storage.

2 andFig 3 . 3 .

 233 Fig 3.3. For example, assuming a library of 32 motifs, and a combination factor of four, there are C (32, 4) = 35960 possible unique combinations with which we can encode 15 (l og 2 35960) bits of data per composite motif. Composite motifs increase logical density by expanding the motif library using combinations of motifs without increasing the volume of motifs. As current synthesis platforms already use a high degree of sequence multiplicity (multiple copies of DNA molecules are synthesized per oligo), composite motifs can also be integrated into current platforms without any extra cost as they can exploit sequence multiplicity to scale logical density. Higher logical density also leads to a reduction in the length of DNA required to store the same amount of data, alleviating issues related to long oligo synthesis.
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 32 Figure 3.2: Composite motifs increases the logical density in DNA-based storage. A block of binary data is encoded to a sequence comprising a set of oligos with same address payload motifs. The composite of payload motifs from the same vertical position represents the binary data together.
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 33 Figure 3.3: Composite motifs can be generated by mixing the motifs during each synthesis cycle. A: address motif, P: payload motif. Example: A 0 -[P 00 , P 10 ]-[P 01 , P 11 ]-[P 02 , P 12 ].
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 34 Figure 3.4: Example showing consensus calling with seven inferred oligos with the same address motif A 0 . The payload motifs are decoded as P 00 , P 01 at the first position, P 11 , P 12 at the second position and P 20 , P 22 at the third position which are the topN (N is the number of oligos in each sequence) frequent motifs in each column position.
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 35 Figure 3.5: The general oligo structure design. A: address motif, P: payload motif, S: spacer, B: bridge.
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 36 Figure 3.6: Bridged oligonucleotide assembly. (a) The general oligo structure design. (b) The experimental oligo structure design. A: address motif, A': reverse complement of A, P: payload motif, S: spacer, B: bridge, O: overhang.
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 37 Figure 3.7: Distribution of read length with Guppy basecaller, Bonito basecaller and Bonito basecaller post-processed with SaberSplit.
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 38 Figure 3.8: The substitution, insertion, deletion and soft-clipping rate per position of Guppy reads.
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 310 Figure 3.10: Number of oligos correctly reconstructed. Motif-Search fully recovers all oligos at 20× or higher coverage. Minimap2 misses one oligo even with 34× coverage.
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 3 Fig 3.10 shows the true positive (TP) count (number of inferred oligos that are in the original set) of Motif-Search and Minimap2-based reverse alignment method at various coverage levels (lower sequencing coverage simulated via subsampling reads). It is important to note that
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 3 Fig 3.11 shows the TP and FP counts for various expanded motif sets. First, note that Motif-
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 311 Figure 3.11: The number of true positive and false positive oligos reconstructed by Motif-Search and Minimap2 for different sequence coverages with expanded motif sets. i) Motif-Search reconstructs more true positive oligos than reverse alignment even without the knowledge of reference oligos. ii) False positive rises for both approaches when the motif set size increases.
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 312 Figure 3.12: The cost of DNA sequencing to read 1 megabyte data. Our work increases read cost compared to prior work except Antowiak et al [1].
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 4 Figure 4.1 shows a PCR-based random access example which selectively retrieves the strands started with the primer A ′ . Ideally, we desire to only have the strands starts with target primer A ′ in the final pool, such as the strand #1 and strand #2. Nevertheless, due to the improper designed primers or PCR procedure, sometimes the primers can bind to the improper location and make the copies of the wrong oligo. This phenomenon is called mispriming or improper binding. For instance, the primer B ′ in the strand B ′ -B is attached to primer A ′ and it leads to extra strands (strand #3 and strand #4) in the final pool.
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 41 Figure 4.1: PCR-based random access example.
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 42 Figure 4.2: Oligo structure.
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 48 Figure 4.8: Number of non specific reads for each primer pair.

  this work, we have studied the PCR-based random access based on the sequence alignment tool Accel-Align. We expand the uni-dimensional data addressing to multi-dimensional data addressing hierarchy Collection -Object -Extent to support large scale storage.Initially, we design the file-based random access with the primers of 5nt. During the experiment, we find that PCR bias impacts selection sensitivity of small files in a big pool. On the other hand, extra data are existing in the final pool due to the improper binding. This non-specific primer binding leads to silent data corruption if decoder depends on primers faithfully.To overcome the bottlenecks, we propose the block-based random access such that each extent has fixed size and the small files are encoded together to avoid PCR bias. We elaborately design 24 left primers and 26 right primers of 20-mers and select 4 out of each them as the validated primers to test the storing of TPCH database. It shows that the new design eliminates the PCR bias and improves the proportion of reads with correctly primers. As a validation, more than 99.9% reads are correctly distributed by the decoder for each primer pair. As the supplementary, we are experimenting for a larger scale of database to store the Danish National Archive data.
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 511 Sequence similarity analysis has been studied extensively in the literature as a fundamental problem in bioinformatics, data integration, collaborative filtering, and natural language processing. Given the sheer size of modern sequencing datasets, accurate and scalable edit similarity algorithms are essential to analyze data generated by genomics and DNA-based data storage. Accel-Align: a Fast Sequence Aligner Currently, most sequence alignment algorithms designed for the next-generation sequencing technology use seed-filter-extension strategy to speed up the alignment process. They try to find the candidate positions on the reference genome via a fast exact string matching lookup, and then eliminate sub-optimal positions through a filtering to save the time-consuming extension stage. However, filtering makes assumptions about error patterns and therefore has inherent performance-accuracy trade offs. In this work, we propose a new methodology named seed-embed-extend (SEE) based on recent advances in randomized embedding. SEE transforms the read and reference strings from edit distance regime to the Hamming regime by embedding them using a randomized algorithm, and uses Hamming distance over the embedded set to identify optimal candidates.
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 12 Edit Similarity-Based Decoder in DNA-based Storage DNA is a promising storage medium due to its high density and long endurance. The key challenge in DNA storage today is the cost of synthesis. In this work, we propose the composite motifs framework to scale logical density (bits written per cycle) which results in the potential reduction of synthesis cost. In doing so, we developed a new structure-aware decoding algorithm Motif-Search based on the edit similarity analysis to recover the stored information despite errors created by the enzymatic ligation (Bridge Oligonucleotide Assembly) and Nanopore-based, direct oligonucleotide sequencing techniques. Using the proposed methods,

  

  

Table 2 .

 2 

	2: Example 2: 4 mismatches
	Random seq for A 0010111101100100
	Random seq for C 0111010011001100
	Random seq for G 0110001101101001
	Random seq for T 1100100101100000
	Embedded #1	CTTGAACTTGGAPPPP
	Embedded #2	CTTCCAACTGGAPPPP
	Table 2.3: Example 3: 11 mismatches
	Random seq for A 1001011101001111
	Random seq for C 1010110111011000
	Random seq for G 1001100101001100
	Random seq for T 1101111101101110
	Embedded #1	CCTGGAACCTTGAAPP
	Embedded #2	CCTCACCTTGGAPPPP

Thus, we proposed two optimization during embedding: multiple embedding and chain embedding.

  a normalized candidate start position s r with |M | matches between the reference and read whose corresponding start and end indexes are s r i , e r i and s qi , e qi , and N times to embed Output: The candidate's embedded Hamming distance d 1:
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 2 

		4: Evaluation on simulated single-end data	
		BWA-MEM Bowtie2 Minimap2 Accel-align
	Exec. time (HH:MM:SS) 00:06:32	00:09:19 00:02:48	00:01:08
	%Correctly mapped	97.37%	97.23%	96.52%	97.15%

Table 2 .

 2 

5 reports the performance and accuracy for a 10M, 100bp, paired-end dataset generated Chapter 2.

Accel-Align: a Fast Sequence Aligner by

  Mason2. Accel-Align outperforms the other aligners by an even larger margin here, as it is 14× faster than Bowtie2, 10× faster than BWA-MEM, and 3× faster than Minimap2. In terms of accuracy, all four aligners are comparable as a majority of reads are correctly mapped in both the single-end and paired-end datasets. BWA-MEM and Bowtie2 offer marginally better accuracy than Minimap2 and Accel-Align. These results demonstrate that at comparable accuracy, Accel-Align can provide an order of magnitude improvement in performance over some state-of-the-art aligners.

	Table 2.5: Evaluation on simulated paired-end data	
		BWA-MEM Bowtie2 Minimap2 Accel-align
	Exec. time (HH:MM:SS) 00:14:12	00:19:10 00:04:53	00:01:21
	%Correctly mapped	98.54%	98.51%	98.09%	98.45%
	Varying read length				

The computational cost of the embedding step is proportional to the read length, as each read and at least one candidate are converted from length N into a new string of length 2N . To test the sensitivity of performance with respect to read length, we used Mason2 to generate pairend datasets with 10M reads, where each dataset was configured with a read length of either 150bp or 200bp. Figure

2

.2 shows the throughput, the number of reads processed per second per thread, of the four aligners under various read lengths. Clearly, Accel-Align outperforms the other aligners at all read lengths as it provides 8-12× improvement over Bowtie2, 6-9× over BWA-MEM, 2.3-3× over Minimap2 across a range of read lengths. About the accuracy shown in Figure

2

.3, we found that BWA-MEM is always most accurate. Accel-Align is close to BWA-MEM and Bowtie2 while highly outperforms Minimap2 especially when read length is short, e.g. 100bp. It catches up the accuracy when read length increases.

Table 2 .

 2 [START_REF] Carrasco-Ramiro | Human genomics projects and precision medicine[END_REF] shows the performance and accuracy results for these three modes under the 10M, 150bp, Mason2 pair-end, simulated-read dataset.

		99.0				
	Correctly mapped (%)	98.0 98.2 98.4 98.6 98.8	100	150 Read length (bp)	200	BWA-MEM Bowtie2 Minimap2 Accel-Align
		Figure 2.3: Accuracy of 100bp, 150bp and 200bp pair-end simulated datasets.
			Table 2.6: Comparison of 2N -embedding and 3N -embedding
				No-embedding 2N -embedding 3N -embedding
		Exec. time (HH:MM:SS) 00:29:24	00:02:56	00:03:16
		correctly mapped	98.78%	98.56%	98.54%
	Comparing 2NE and 3NE cases, we can see that 2NE provides a 11% improvement in perfor-

mance with no discernible difference in accuracy. Comparing 2NE and the no embedding cases, we see that embedding provides a 10× reduction in execution time as it is able to identify the optimal candidate location without relying on edit distance computations at a marginal 0.2% lower accuracy.

Table 2 .

 2 

			7: Evaluation on real data		
		BWA-MEM Bowtie2 Minimap2 AA-32-mer AA-25-mer
	Execution time	7:43:54	7:31:16	04:43:39	01:29:34	03:42:26
	Ti/Tv	2.84	2.86	2.85	2.85	2.85
	Precision	0.989	0.996	0.992	0.992	0.992
	Recall	0.992	0.989	0.992	0.991	0.991
	F-score	0.990	0.992	0.992	0.992	0.992
	Fraction Mapped 99.40%	97.13%	99.31%	97.00%	98.02%
	TP(SNP)	23521	23457	23521	23516	23518
	FP(SNP)	235	79	163	176	207
	FN(SNP)	165	229	165	170	168
	F-score(SNP)	0.991	0.993	0.993	0.993	0.993
	TP(InDels)	1223	1213	1223	1225	1223
	FP(InDels)	49	30	27	31	32
	FN(InDels)	35	45	35	33	35
	F-score(InDels)	0.966	0.970	0.975	0.974	0.974

time reports the wall-clock time taken by various aligners for aligning 85M paired-end reads (or 170M reads in total). Accel-Align provides a speedup of 5× over Bowtie2 and BWA-MEM, and 3× over Minimap2, similar to the Mason2 dataset. The second metric is transition-totransversion ratio (Ti/Tv), which is a key metric in detecting SNVs and should fall between 2.6-3.3 for this dataset, which is the case with all aligners. The three later metrics report precision, recall, and F-score values based on the GiaB truth set contains 23,686 SNVs and 1,258 InDels contributing to a total of 24,944 variants for the NA12878 exome. The precision, recall, and F-score of BWA-MEM, Minimap2, Accel-Align are comparable except Bowtie2 has a higher precision and lower recall which means that it detected less TP variants although detect less FP variants as well. Accel-Align and Bowtie2 aligned ∼ 97% of reads while BWA-MEM and Minimap2 aligned more than ∼ 99%. This could be the potential reason that Bowtie2

Table 2

 2 .[START_REF] Goldman | Towards practical, high-capacity, low-maintenance information storage in synthesized dna[END_REF] shows the results obtained using the 25-mer setting under column AA-25-mer. Comparing it with AA-32-mer, we have two important observations. First, the overall execution time increases by 146% compared to AA-32-mer case. Figure2.8 shows a breakdown of execution time across the three stages when 25-mers or 32-mers are used. Clearly, this increase in time can be attributed almost entirely to seeding and embedding as 25-mers produce 4× more candidates than 32-mers. Figure2.8 also shows the fraction of each stage over the whole processing time. The seeding and embedding fractions are close to each other for 25-mer and 32-mer cases. As SEE does not filter out any candidates, the

overhead of candidate normalization, counting, and duplicate elimination performed during seeding increases, similarly for embedding. Despite this, embedding is able to identify the candidates, avoid needless extension, and still provide 2-7× reduction in execution time over other aligners. Second, the fraction of mapped reads increases by 1.1% by using 25-mers instead of 32-mers. However, the overall variant detected by 25-mers not increase. In terms of the overall F-score as shown in Table

2

.7, the 25-mer case provides similar accuracy to the 32-mer case. This is because compared to BWA-MEM and Minimap2, it still mapped 1% less reads.

Table 2 .

 2 

		8: Comparison between BWA-MEM and Accel-Align.
		BWA-MEM Accel-Align AA-align-free
	Exec. time (HH:MM:SS) 00:08:11	00:05:03	00:04:16
	%Mapped	99.9988%	99.9999%	99.9999%

Table 2 .

 2 

[START_REF] Robert N Grass | Robust chemical preservation of digital information on dna in silica with errorcorrecting codes[END_REF] 

shows that Accel-Align saves 60% time than BWA-MEM, and Accel-Align alignment free mode (introduced Sec.2.6.1) saves 20% alignment time in addition. We further break down the Accel-Align processing time and find that 80% time is consumed by dumping the SAM out file (27GB). Accel-Align only consumes 42 second if we skip the output writing step.

Table 3 .

 3 

	1: Reaction components and volumes for P 0 phosphorylation
	Component	Volume
	T4 PNK Rx Buffer 5 ul
	ATP (10 mM)	5 ul
	T4 PNK	1 ul
	NFW	36 ul
	P 0 (300 pmol)	3 ul
	Table 3.2: Volume composition for motif annealing reaction
	Component	Volume
	A 0 & Bridge (12 pmol)	0.5 ul
	P 0 phosphorylation Rx 2 ul
	Blunt/TA master mix	

Table 3 .

 3 3: The substitution (SUB), insertion (INS) and deletion (DEL) rate of SOTA work.

		Goldman et al. Grass et al. Erlich et Zielinski Organick et al. Antkowiak et al. This Work
	SUB	0.00088	0.005850	0.003870	0.005400	0.026000	0.011411
	INS	0.00036	0.000230	0.000211	0.004500	0.057000	0.007817
	DEL	0.00036	0.000230	0.000211	0.001500	0.062000	0.007485
	The substitution (SUB), insertion (INS) and deletion (DEL) rate of SOTA work. Data for Goldman et al. [7], Grass et
	al.						

[START_REF] Robert N Grass | Robust chemical preservation of digital information on dna in silica with errorcorrecting codes[END_REF]

, Erlich & Zielinski

[START_REF] Erlich | Dna fountain enables a robust and efficient storage architecture[END_REF]

, Organick et al.
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	5: Processing time (in second) for real dataset with 12 CPUs
		6×	13× 20× 27× 34×
	Motif search exec. time	0.15 0.24 0.38 0.49 0.64
	Minimap2 index time	13	27	41	55	68
	Minimap2 align time	16	33	50	67	84
	Reverse alignment exec. time 29	60	91	122 152

Table 3 .
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			6: Sequencing cost projection	
		oligo length nb of reads	data size	sequence cost ($/MB)
	Antkowiak et al.	60	30000000	99103bit	108
	this work	74	640	80 bit	29.8
	Grass et al.	159	1858027	679000 bit	21.9
	Goldman et al.	183	7960000	5200000 bit	14.1
	Blawat et al.	230	144475005	22MB	9.06
	Erlich and Zielinski	200	750000	2.11 MB	0.43
	Organick et al.	150	67241860	200MB	0.3
	• The sequencing cost to read 1 Megabyte is simulated as the Equation 3.2.	
	r ead i ng _cost = ol i g o_l eng t h * nb_r ead s * sequenci ng _cost _per _nt /st or ed _d at a_si ze	(3.2)

Table 4

 4 .1. It is intentionally designed the SSB and TPCH databases with variable table size while SYN database with uniform table size.

		Table 4.1: File-based random access databases	
	SSB tables nb of oligos	TPCH tables nb of oligos SYN tables nb of oligos
	ssb-supplier	14	tpch-region	6	syn-t7	304
	ssb-customer	16	tpch-part	18	syn-t5	312
	ssb-part	42	tpch-orders	18	syn-t8	302
	ssb-lineorder	2594 tpch-partsupp	10	syn-t3	302
	ssb-date	34	tpch-nation	20	syn-t2	298
			tpch-supplier	14	syn-t6	300
			tpch-lineitem	34	syn-t1	298
			tpch-customer	16	syn-t4	306

Table Primer -

 Primer Payload-Column Primer-Database Primer-Universal Reverse Primer-3'. The Universal Forward Primer (UFP) and Reverse Primer (URP) are used for sequencing. Rest of the primers are used as the address sequences to selectively amplify the desired strands. The rest of the oligo sequence corresponds to the payload.

Table 4 .

 4 

			2: Population fraction change		
		nb of oligos raw pop fraction nb of reads pop fraction frac change
	ssb	2700	0.514	654335	0.388	0.76
	tpch	136	0.026	19576	0.012	0.45
	syn	2422	0.461	1013152	0.601	1.30

Table 4 .

 4 4: Reads selectively retrieved per database and table primer analysis (%)

		bad	target payload	target payload	target payload	other payload	other payload	other payload
		quality	target primer	other primer	no primer	target primer	other primer	no primer
	ssb	3,2	91,5	0,02	0,5	2,3	2,5	0,05
	tpch	14,2	53,0	0,01	0,4	6,1	25,7	0,69
	syn	2,5	96,0	0,01	0,6	0,7	0,2	0,01
	ssb-supplier	12,5	0,1	0,00	0,0	19,8	65,2	2,39
	ssb-customer	11,6	18,9	0,00	0,6	13,7	51,7	3,53
	ssb-part	5,7	44,6	0,01	1,7	6,2	39,1	2,70
	ssb-lineorder	1,9	93,9	0,02	3,7	0,2	0,3	0,03
	ssb-date	3,9	0,1	0,00	0,0	76,6	16,6	2,77
	tpch-region	12,0	34,2	0,00	0,4	7,1	44,5	1,86
	tpch-part	30,5	2,0	0,00	0,1	8,4	55,6	3,54
	tpch-orders	19,6	14,1	0,00	0,5	7,5	55,2	3,14
	tpch-partsupp	9,2	21,5	0,00	0,9	9,7	55,4	3,31
	tpch-nation	3,6	68,0	0,02	2,0	4,3	20,9	1,25
	tpch-supplier	14,2	12,4	0,00	0,1	5,7	65,4	2,18
	tpch-lineitem	6,7	76,2	0,01	0,8	2,3	13,5	0,52
	tpch-customer	21,2	14,1	0,00	0,1	9,6	52,6	2,36
	syn-t7	2,1	93,8	0,01	1,3	0,1	2,7	0,08
	syn-t5	2,3	91,0	0,01	3,1	0,1	3,3	0,24
	syn-t8	2,0	89,6	0,01	2,8	0,2	5,1	0,28
	syn-t3	3,9	61,0	0,03	2,8	4,7	26,4	1,19
	syn-t2	2,2	74,0	0,02	2,2	8,3	11,1	2,12
	syn-t6	2,0	89,8	0,01	1,1	0,1	6,9	0,22
	syn-t1	2,1	91,2	0,01	1,1	0,1	5,3	0,16
	syn-t4	2,2	91,2	0,01	1,3	0,1	4,6	0,61
	4.4							

Block-based Random Access for Databases 4.4.1 Database Design
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	6: Primer list	
	left primer list	right primer list
	L0: ACATGCCGTGCCATTGGATT R0: AAGGCCAATTCGCGGTTAGT
	L1: AGCCGACAAGTTCCAACACA R1: AGGTGAGTGCCGTAACGATT
	L2: GTCCAGGCAAAGATACAGTC R2: GAACGGAGCGATGAGTTTGT
	L3: TAGCCTCCAGAATGAGACAG R3: TTCAAGCCAGACCGTGTGTA

Table 4 .

 4 

			7: Reads selectively retrieved per primer pair	
		nb oligos raw pop fraction nb of read pop fraction frac change
	L0_R0	2774	0.063	2112181	0.05	0.78
	L0_R1	2770	0.062	2753811	0.06	1.02
	L0_R2	2774	0.063	2710222	0.06	1.00
	L0_R3	2774	0.063	3481596	0.08	1.28
	L1_R0	2774	0.063	2992473	0.07	1.10
	L1_R1	2770	0.062	2474146	0.06	0.91
	L1_R2	2774	0.063	1954131	0.05	0.72
	L1_R3	2774	0.063	2784902	0.06	1.03
	L2_R0	2774	0.063	2649534	0.06	0.98
	L2_R1	2774	0.063	2867796	0.07	1.06
	L2_R2	2774	0.063	2560211	0.06	0.94
	L2_R3	2774	0.063	2799222	0.06	1.03
	L3_R0	2774	0.063	3103064	0.07	1.14
	L3_R1	2774	0.063	2690192	0.06	0.99
	L3_R2	2774	0.063	2487760	0.06	0.92
	L3_R3	2774	0.063	2954518	0.07	1.09

Table 4 .

 4 

			8: Primer binding analysis	
		nb of read target primer % other primer % no primer %
	L0_R0	2112181	95.53	2.88	1.59
	L0_R1	2753811	97.10	1.32	1.58
	L0_R2	2710222	97.02	1.36	1.61
	L0_R3	3481596	96.68	1.50	1.82
	L1_R0	2992473	94.91	3.46	1.62
	L1_R1	2474145	96.51	1.85	1.64
	L1_R2	1954131	96.26	1.98	1.77
	L1_R3	2784902	95.96	2.12	1.92
	L2_R0	2649534	94.43	3.43	2.14
	L2_R1	2867796	95.94	1.93	2.13
	L2_R2	2560211	95.82	1.93	2.25
	L2_R3	2799222	95.40	2.19	2.41
	L3_R0	3103064	95.51	2.46	2.03
	L3_R1	2690192	97.09	0.89	2.02
	L3_R2	2487760	96.90	0.94	2.16
	L3_R3	2954518	96.66	1.08	2.26

Table 4 .

 4 

			9: Reads selectively retrieved per primer pair
		nb of reads correct aligned (%)	with left target primer(%)	with right left primer(%)
	L0_R0	2069808	99.97	0.9998	0.9998
	L0_R1	2701444	99.97	0.9998	0.9998
	L0_R2	2659990	99.97	0.9998	0.9997
	L0_R3	3410425	99.98	0.9999	0.9998
	L1_R0	2918999	99.96	0.9997	0.9997
	L1_R1	2415844	99.95	0.9997	0.9996
	L1_R2	1908381	99.87	0.9988	0.9997
	L1_R3	2716409	99.88	0.9989	0.9997
	L2_R0	2575053	99.98	0.9998	0.9998
	L2_R1	2788303	99.98	0.9999	0.9998
	L2_R2	2487260	99.98	0.9999	0.9998
	L2_R3	2715068	99.98	0.9998	0.9998
	L3_R0	3038095	99.97	0.9998	0.9998
	L3_R1	2635874	99.97	0.9998	0.9998
	L3_R2	2435858	99.97	0.9998	0.9998
	L3_R3	2890926	99.97	0.9998	0.9998
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Discussion

As sequencing technologies continue to increase read length while improving throughput and accuracy, we believe that randomized embeddings open up new avenues for optimization that cannot be achieved by using edit distance. We implemented Accel-Align and showed that it is up to 3× faster than Minimap2, 9× times faster than BWA-MEM, and 12× times faster than Bowie2, while providing comparable accuracy. Accel-Align clearly demonstrates the potential of using embedding for short-read sequence alignment. The SEE method used by Accel-Align is a design principle that is parameter free, applicable to any sequencing technology, and can deal with both indels and mismatches without requiring any customization. Further, the benefit of SEE methodology and low-distortion embedding are not limited to short-read alignment; any computational biology problem that is limited by the overhead of edit distance can benefit from embedding. As embedding transforms strings from edit to Hamming regime, computational tools like Locality Sensitive Hashing can also be applied on the resulting strings.

Thus, the techniques presented in this paper have a much broader scope as they can be used for other applications like spliced RNA-seq and bi-sulfite alignment, multiple sequence alignment, and even sequence assembly. 

Correcting Event Misdetection with SaberSplit

In the real DNA storage scenario, the original reference oligos must be inferred from erroneous reads automatically. Current read clustering and consensus callers used for this purpose assume that a read covers only a single oligo. To be able to use them, we developed SaberSplit, a tool that reduces the errors caused by incorrect segmentation by splicing squiggles to separate out reads belonging to different oligos. With SaberSplit, the original reads are chopped to 102,221 shorter reads of median length 25nt as shown in Fig 3 .7. Then, we tried to use state-ofthe-art clustering programs and position-wise consensus callers [START_REF] Marinelli | Onejoin: Cross-architecture, scalable edit similarity join for dna data storage using oneapi[END_REF][START_REF] Marinelli | Digital Preservation with Synthetic DNA[END_REF] to infer the original oligos from both raw Bonito/Guppy reads, and SaberSplit processed reads. However, due to the high error rate, no oligos could be inferred in all cases.

To study SaberSplit further, we aligned the chopped reads to reference oligos with Minimap2.

We compared the alignment statistics for raw Guppy, Bonito and Sabersplit processed reads in the Table 3.4. Guppy reads produced the highest number of alignments, with 102% more reads being aligned than Bonito. This could be explained by the fact Bonito is optimized to work better with longer reads, making it less suitable for short ones. Surprisingly, SaberSplit performed the worst with 9.5% fewer reads than even Bonito. This showed us that splitting reads amplifies the error rate and makes the case for a consensus caller that can directly work with raw reads covering multiple oligos. Given N primers, our design could encode N × (N -1) × (n -2) random accessible units while the uni-dimensional data addressing could encode N random accessible units. This generic hierarchy scales the random access ability and is sufficient to express several higher-level access paths in the future. Arranging data this way enables several helpful access paths:

• All objects belonging to a collection can be retrieved using a single PCR round with the right CTP.

• All extents from a specific object in a specific collection can also be retrieved in a single PCR round by using the appropriate CTP-OTP pair.

• One specific extent can be retrieved using a nested PCR round by first using CTP-OTP pair to amplify extents belonging to an object, and then using the CTP-ETP pair to amplify a specific extent.

In this work, we want to study the effectiveness of multi-dimensional addressing. 

File-based Random Access for Databases

Database Design

In the file-based random access experiment, the primers are attached to each file. In order to test file-based addressing, we stored three databases, namely SSB, TPCH and SYN. The databases contain 5, 8 and 8 tables with 17 columns respectively. The resulting oligoarchive

PCR Bias at Table Level

We extend the PCR bias analysis further to the table level. The UFP was used together with a database primer to pull out a database. Then we used Accel-Align to map reads to oligos to determine their original table. Table 4.3 shows the population fraction change per table from three databases.

• TPCH is a small database of only 136 oligos in total. The population fraction change is different for different tables. For example, the part, orders, supplier and customer tables' proportions increase 32×, 4×, 3×, 5× respectively after PCR while region, nation and lineitem tables' proportions decrease 40%∼60%.

• SSB is a bigger database with 20× more oligos than TPCH (2700 in total). The big table lineorder's fraction change is 1.01 which means it only has 1% excess. However, population fraction change of the small tables, such as supplier and date, is only 0.01 meaning their proportion decreases 100× after PCR. This indicates that even in a bigger database, if the data is not uniformly distributed through the tables, the small table would also be biased.

• On the contrary, SYN is also a bigger database with 2422 oligos while the data is uniformly distributed through tables. The mathematics expectation of population fraction change is 1.03 which is much more close to 1 compared to TPCH's (0.72) and SSB's (10.86).

To conclude, we learn that the big tables with uniform size will exhibit less variation in To study the quality of selected reads, it should determine the payload's and the primer's origin.

Since the payload part dominates the read in length, we could align a read to the designed reference oligos with Accel-Align to determine where the payload comes from. Consequently, the reads are classifies into three categories depending on the alignment result:

• Target payload reads. These are the reads that align to the expected reference oligos.

• Other payload reads. These are the reads that align to the other reference oligos rather than the expected ones.

• Bad quality reads. These are the reads that could not align to any reference oligo.

To comprehend the origin of primer, we study whether the sub-sequences in the two extremities of a read are as same as the target primers. Thus, we further classify the target payload reads and bad payload reads into three sub groups as following.

• Target primer reads. These are the reads whose primers are exactly as same as the target primers.

• Other primer reads. These are the reads whose primers are exactly the other primers rather than the target primers.

• No primer reads. These are the reads who do not have any primer.

Since the reads were sequenced by Illumina in paired-end mode, the two mates' lengths are 100 bp and 60 bp without guaranteeing the coverage of two extremities. So we merge two mates into a single longer strand through the bbmerge tool from BBMap [START_REF] Bushnell | Bbmap: a fast, accurate, splice-aware aligner[END_REF] toolkit. The merged strands' median read length is 110 bp which is exact as same as the original oligo design. Hence, we could do the primer classification depending on the first and last five characters of the reads.

To begin with, we analyze the sequenced reads when we selectively retrieve data belonging to each database using the associated database primer as shown in • For the reads with target payload, 99.3%∼99.4% reads have the target primer. 0.1%∼0.2% reads contain primers of other databases and 0.5%∼0.7% reads do not contain primer.

This is because we use exact match strategy to determine the origin of primers rather than alignment since the primers are two short (5nt). However, the reads can contain errors which leads to no exact match or other primer matched for the corresponding portion of the reads. Even though, we still could find that the dominate target reads do select by the target primer.

• For the reads with other payload, however, 48.0%, 18.8% and 72.5% reads have the target primer surprisingly for SSB, TPCH and SYN database as shown in 

Error Analysis at Table Level

We repeat the same analysis at table level. For the reads selected with UFP and an unique table primer, Table 4.4 shows the percent of each category depending on the payload's origin and primers' origin.

• Again, we find that the tables have different random access precision. We plot the random access precision over the number of oligos of each table and database in Figure 4.6.

Usually, the bigger size is the table or database, the higher precision could be achieved.

• Similar to the result at database level, with short primers of 5 nt, extra data could be select by PCR at table level. Specifically, improper primer binding and low distance separation between primer can lead to poor precision. It indicates that it is important to not rely only on primers for addressing information. We suspect that higher-level type and data checkers, such as structural information and independent stored checksum, could help to avoid the silent data corruption. Although these invalid data could be tracked by the database schema and type information luckily, it is not general for file storage. We modify them such that the most extreme tri-nucleotide, in direct contact with the payload, are unique to each primer, in order to minimize the chance of non-specific annealing. The similarity between two primers is also minimized, by allowing no stretch of more than 8 identical nucleotides in common between the sequences. The selected primers are listed in the Table 4.5. Further, We expect to select the primers with high significance. To study the significance, we do the following steps with Accel-Align:

• Align the reads to the payloads to determine the reference payload of each read.

• Conduct the substrings in the read that corresponding to the primers based on the CIGAR value computed from first step. Thus, the reads belonging to each primer pair could be further classified into two categories:

• Specific reads. These are the reads whose primers are as same as the target primers attached to the payloads in the reference oligos.

• Non specific reads. These are the reads whose primers are different from the target primers attached to the payloads.

The result is shown in 

Experiment with Selected Primers

The validated primer L9, L5, L0, L1 and R24, R8, R2 and R1 are renamed to L0, L1, L2, L3 and R0, R1, R2, R3 to simplify the further illustration as shown in the Table 4.6. We design another experiment to valid the efficiency of the selected primers. We perform a proof of concept by storing the TPCH database compressed in a single archive file of 1.2MB. The
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