
HAL Id: tel-04137246
https://theses.hal.science/tel-04137246

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable and accurate algorithms for computational
genomics and dna-based digital storage

Yiqing Yan

To cite this version:
Yiqing Yan. Scalable and accurate algorithms for computational genomics and dna-based digital
storage. Signal and Image processing. Sorbonne Université, 2023. English. �NNT : 2023SORUS078�.
�tel-04137246�

https://theses.hal.science/tel-04137246
https://hal.archives-ouvertes.fr

A Dissertation
In Partial Fulfilment of the Requirements for the

Degree of Doctor of Philosophy from Sorbonne University

Scalable and Accurate Algorithms for
Computational Genomics and DNA-based

Digital Storage

by

Yiqing YAN

Co-supervisor:
Raja Appuswamy
EURECOM, Sophia Antipolis, France

Thesis Director:
Paolo Papotti
EURECOM, Sophia Antipolis, France

Data Science Department
Eurecom/Sorbonne University, France

February, 2023

Acknowledgements

First of all, I would like to thank Prof. Raja Appuswamy for hosting me in his laboratory during

these three years which have been enriching my eyes and broadening my views. I really

appreciate the opportunity to participate in the adventure of OligoArchive and MoSS projects.

Thanks for his professional suggestions and kind encouragement. The rigorous academic

attitude and persistent enthusiasm for learning will continue to influence me in my career.

Later on, I would like to thank all the collaborators, specially Dr. Nimisha Chaturvedi, Dr.

Giulio Franzese, Dr. Eddy Ghabach and Eugenio Marinelli. It is really pleasant to cooperate

with them and I appreciate all their feedback. I would also like to thank Nimesh Pinnamaneni

and Sachin Chalapati, the CEO and CTO from Helixworks, for their solid support of DNA

synthesis and sequencing work. Then, an acknowledgement goes to my reviewers, Prof. Pascal

Barbry at Institute Pharmacology Moléculaire Et Cellulaire (IPMC) and Prof. Marc Antonini at

Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S). I am honoured to

have them as my reviewers and thanks a lot for all the positive advice and criticism that help

me to continue learning.

A big thank to all of my colleagues at EURECOM who made the work environment so pleasant,

and an extra special thank to those who have become my friends here in France.

Furthermore, I would also like to thank my parents and my parents-in-law for having always

supported me, especially during the hard COVID-19 period. Last but not least, I am indebted

to my husband Guiming and my son Kellen for being always staying close with me.

Sophia Antipolis, February 2023 Yiqing YAN

i

Abstract
Cost reduction and throughput improvement in sequencing technology have resulted in new

advances in applications such as precision medicine and DNA-based storage. However, the

sequenced result contains errors. To measure the similarity between the sequenced result

and reference, edit distance is preferred in practice over Hamming distance due to the indels.

The primitive edit distance calculation is quadratic complex. Therefore, sequence similarity

analysis is computationally intensive. In this thesis, we introduce two accurate and scalable

sequence similarity analysis algorithms, i) Accel-Align, a fast sequence mapper and aligner

based on the seed–embed–extend methodology, and ii) Motif-Search, an efficient structure-

aware algorithm to recover the information encoded by the composite motifs from the DNA

archive. Then, we use Accel-Align as an efficient tool to study the random access design in

DNA-based storage.

In computational genomics, sequence alignment, the process to determine the reads locations

in the reference genome, has traditionally been a computationally intensive task. Modern

sequence alignment algorithms use the seed–filter–extend (SFE) methodology and rely on

filtration heuristics to reduce the overhead of edit distance computation. However, filtering

makes assumptions about error patterns, has inherent performance–accuracy trade-offs, and

requires careful manual tuning to match the dataset. Motivated by algorithmic advances

in randomized low-distortion embedding, we introduce seed–embed–extend (SEE), a novel

methodology for developing sequence mappers and aligners. While SFE focuses on eliminat-

ing sub-optimal candidates, SEE focuses instead on identifying optimal candidates. To achieve

this, SEE transforms the read and reference strings from edit distance regime to the Hamming

regime by embedding them using a randomized algorithm, and uses Hamming distance over

the embedded set to identify optimal candidates. To show that SEE performs well in practice,

we present Accel-Align, an SEE-based short-read sequence mapper and aligner that is 2-12×
faster than the state-of-the-art aligners on commodity CPUs, without any special-purpose

hardware, while providing comparable accuracy.

In DNA-based storage, recovering the stored information is also a computationally intensive

task. In this work, we propose an efficient approximate-edit-similarity-based decoding and

consensus algorithm – Motif-Search. It is a structure-aware decoder customized for our end-

to-end DNA-based storage workflow. In this workflow, the input binary data is encoded by the

composite motifs framework to scale logical density (bits written per cycle) which results in

iii

Abstract

potential reduction of the synthesis cost. Afterwards, the oligos are synthesized by our new

enzymatic motif ligation techniques that can scale DNA synthesis in the DNA write pipeline,

and are sequenced by our assembly-free, Nanopore-based motif read out that can scale DNA

sequencing in the DNA read pipeline. Using the proposed methods, we present an end-to-end

experiment where we store the text “HelloWorld” at a logical density of 84 bits/cycle (14–42×
improvement over state-of-the-art work). Moreover, Motif-Search is able to fully recover the

data from the error-prone reads with a low sequencing coverage of 20×.

To study the random access in DNA-based storage, we use Accel-Align as an efficient tool

to determine the corresponding reference payload and primer of each read. Based on that,

we find that file-based random access can suffer from the polymerase chain reaction (PCR)

bias issue if file sizes are not uniform and improper binding can occur during PCR for the

short primers. To solve these issues, we propose the block-based random access methodology

in which each block has a uniform size. We elaborately design 24 left primers and 26 right

primers of 20-mers and select 4 from each of them respectively as the validated primers for

the trial of the TPCH database storage. It shows that the block-based design eliminates the

PCR bias and improves the proportion of the reads with correct primers. As a result, more

than 99.9% reads are correctly distributed by the decoder for each primer pair.

iv

Abrégé
La réduction des coûts et l’amélioration du débit de la technologie de séquençage ont en-

traîné de nouvelles avancées dans des applications telles que la médecine de précision et le

stockage basé sur l’ADN. Cependant, le résultat séquencé contient des erreurs. Pour mesurer

la similitude entre le résultat séquencé et la référence, la distance d’édition est préférée en

pratique à la distance de Hamming en raison des indels. Le calcul de la distance d’édition est

complexe quadratique. Par conséquent, l’analyse de similarité de séquence nécessite beau-

coup de calculs. Dans cette thèse, nous introduisons deux algorithmes d’analyse de similarité

de séquence précis et évolutifs, i) Accel-Align, un mappeur et un aligneur de séquence rapide

basé sur la méthodologie seed–embed–extend, et ii) Motif-Search, une structure-efficace algo-

rithme conscient pour récupérer les informations codées par les motifs composites à partir

de l’archive ADN. Ensuite, nous utilisons Accel-Align comme un outil efficace pour étudier la

conception d’accès aléatoire dans le stockage basé sur l’ADN.

En génomique computationnelle, l’alignement de séquences, le processus permettant de

déterminer les emplacements de lecture dans le génome de référence, a traditionnellement

été une tâche informatique intensive. Les algorithmes d’alignement de séquences modernes

utilisent la méthodologie seed–filter-extend (SFE) et s’appuient sur l’heuristique de filtrage

pour réduire la surcharge du calcul de la distance d’édition. Cependant, le filtrage fait des

hypothèses sur les modèles d’erreurs, présente des compromis performances-précision inhé-

rents et nécessite un réglage manuel minutieux pour correspondre à l’ensemble de données.

Motivés par les avancées algorithmiques dans l’intégration aléatoire à faible distorsion, nous

introduisons seed–embed–extend (SEE), une nouvelle méthodologie pour développer des

mappeurs et des aligneurs de séquences. Alors que SFE se concentre sur l’élimination des

candidats sous-optimaux, SEE se concentre plutôt sur l’identification des candidats optimaux.

Pour ce faire, SEE transforme les chaînes de lecture et de référence du régime de distance

d’édition au régime de Hamming en les intégrant à l’aide d’un algorithme randomisé, et utilise

la distance de Hamming sur l’ensemble intégré pour identifier les candidats optimaux. Pour

montrer que SEE fonctionne bien dans la pratique, nous présentons Accel-Align, un mappeur

et un aligneur de séquences à lecture courte basé sur SEE qui est 2 à 12× plus rapide que les

aligneurs de pointe sur les processeurs de base, sans tout matériel spécialisé, tout en offrant

une précision comparable.

Dans le stockage basé sur l’ADN, la récupération des informations stockées est également une

v

Abstract

tâche de calcul intensif. Dans ce projet, nous proposons un algorithme efficace de décodage

et de consensus basé sur la similarité d’édition approximative – Motif-Search. Il s’agit d’un

décodeur sensible à la structure personnalisé pour notre flux de travail de stockage basé sur

l’ADN de bout en bout. Dans ce flux de travail, les données binaires d’entrée sont codées par le

cadre de motifs composites pour mettre à l’échelle la densité logique (bits écrits par cycle), ce

qui entraîne une réduction potentielle du coût de synthèse. Ensuite, les oligos sont synthétisés

par nos nouvelles techniques de ligature de motifs enzymatiques qui peuvent faire évoluer

la synthèse d’ADN dans le pipeline d’écriture d’ADN, et sont séquencés par notre lecture

de motif sans assemblage, basée sur Nanopore, qui peut faire évoluer le séquençage d’ADN

dans le pipeline de lecture d’ADN. En utilisant les méthodes proposées, nous présentons une

expérience de bout en bout où nous stockons le texte "HelloWorld" à une densité logique de

84 bits/cycle (amélioration de 14 à 42 × par rapport à l’état de l’art) . De plus, Motif-Search est

capable de récupérer entièrement les données des lectures sujettes aux erreurs avec une faible

couverture de séquençage de 20×.

Pour étudier l’accès aléatoire dans le stockage basé sur l’ADN, nous utilisons Accel-Align

comme un outil efficace pour déterminer la charge utile de référence correspondante et

l’amorce de chaque lecture. Sur cette base, nous constatons que l’accès aléatoire basé sur

les fichiers peut souffrir du problème de biais de la réaction en chaîne par polymérase (PCR)

si les tailles de fichiers ne sont pas uniformes et qu’une liaison incorrecte peut se produire

pendant la PCR pour les amorces courtes. Pour résoudre ces problèmes, nous proposons

la méthodologie d’accès aléatoire basée sur les blocs dans laquelle chaque bloc a une taille

uniforme. Nous concevons minutieusement 24 amorces gauches et 26 amorces droites de

20-mers et sélectionnons 4 de chacune d’entre elles respectivement comme amorces validées

pour l’essai du stockage de la base de données TPCH. Il montre que la conception basée sur les

blocs élimine le biais de PCR et améliore la proportion de lectures avec des amorces correctes.

En conséquence, plus de 99,9% des lectures sont correctement distribuées par le décodeur

pour chaque paire d’amorces.

vi

Contents

Acknowledgements i

Abstract iii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Background . 1

1.2 Related Terms . 2

1.2.1 DNA . 2

1.2.2 Reads . 3

1.2.3 Sequencing Technologies . 4

1.3 Sequence Similarity Analysis in Computational Genomics 5

1.3.1 Reference . 5

1.3.2 Sequence Alignment Problem . 6

1.4 Sequence Similarity Analysis in DNA-based Storage 7

1.4.1 Overview about DNA-based Storage . 7

1.4.2 Sequence Similarity Problems in DNA-based Storage 8

1.5 Thesis Outline . 9

2 Accel-Align: a Fast Sequence Aligner 11

2.1 Introduction . 11

2.2 Indexing and Seeding . 13

2.2.1 Indexing . 13

2.2.2 Seeding . 14

2.3 Embedding . 15

2.3.1 3N -embedding . 15

2.3.2 2N -embedding . 16

2.3.3 Embedding Limitation . 16

2.3.4 Multiple Embedding . 18

vii

Contents

2.3.5 Chain Embedding . 20

2.3.6 Candidate Selection . 20

2.4 Extension and MAPQ Computation . 21

2.5 Optimizations . 21

2.6 Results . 22

2.6.1 Benchmark with simulated genomic reads 23

2.6.2 Benchmark with real genomic reads . 26

2.6.3 Benchmark with real reads from DNA-based storage 30

2.7 Discussion . 34

3 Edit Similarity-Based Decoder in DNA-based Storage 35

3.1 Introduction . 35

3.2 Methods . 37

3.2.1 Composite Motif-based Encoder . 37

3.2.2 Bridged Oligonucleotide Assembly . 38

3.2.3 Direct Oligonucleotide Sequencing . 39

3.2.4 Motif-Search Algorithm . 40

3.3 Results . 42

3.3.1 Encoding . 42

3.3.2 Bridged Assembly of Composite Motifs . 43

3.3.3 Error Characterization of Direct Nanopore Sequenced Reads 44

3.3.4 Correcting Event Misdetection with SaberSplit 46

3.3.5 Inference and Consensus with Motif-Search 47

3.3.6 Read–Write Cost Comparison . 50

3.4 Discussion . 52

4 Sequence Analysis for Random Access in DNA-based Storage 53

4.1 Introduction . 53

4.2 Multi-dimensional Data Addressing . 55

4.3 File-based Random Access for Databases . 56

4.3.1 Database Design . 56

4.3.2 PCR Bias . 57

4.3.3 Extra Data and Improper Binding . 61

4.4 Block-based Random Access for Databases . 65

4.4.1 Database Design . 65

4.4.2 Experiment with Selected Primers . 67

4.5 Discussion . 71

viii

Contents

5 Conclusion 73

5.1 Conclusion . 73

5.1.1 Accel-Align: a Fast Sequence Aligner . 73

5.1.2 Edit Similarity-Based Decoder in DNA-based Storage 74

5.1.3 Sequence Analysis for Random Access in DNA-based Storage 74

5.2 Future Work . 75

5.2.1 Accel-Align: a Fast Sequence Aligner . 75

5.2.2 Edit Similarity-Based Decoder in DNA-based Storage 76

Publications List 79

Declarations 81

Bibliography 91

ix

List of Figures

1.1 Sequencing cost per megabase - 2021 from NHGRI. 2

1.2 Single-end and paired-end reads. 4

1.3 Sequence alignment in computational genomics. 7

1.4 A template of DNA-based storage workflow. 8

2.1 An example to build index. Xi represents a 32-mer extracted from reference

genome. a,b,c,d are the keys calculated from Xi . ni represents the number of

keys smaller than the corresponding key. For example, n1 is the number of keys

smaller than a. Specifically, X1, X4 and X7 have the same key a. So there are

n1 +3 keys smaller than a +1. Thus, l1, l2 and l3 indexed with n1, n1 +1, n1 +2

in value table are the locations for X1, X4 and X7. 14

2.2 Throughput for 100bp, 150bp and 200bp pair-end simulated datasets. 25

2.3 Accuracy of 100bp, 150bp and 200bp pair-end simulated datasets. 26

2.4 Alignment-free mapping time for 100bp, 150bp and 200bp pair-end read. . . . 27

2.5 Variant calling pipeline. 27

2.6 Venn diagram of InDels variants detected by various aligners and Accel-Align (32-

mer). 29

2.7 Venn diagram of SNP variants detected by various aligners and Accel-Align (32-

mer). 29

2.8 the percent of seeding, embedding and extension over the total processing time. 30

2.9 Distribution of edit distance with BWA-MEM. 32

2.10 Distribution of edit distance with Accel-Align. 32

2.11 Histogram of coverage across oligos with BWA-MEM. 33

2.12 Histogram of coverage across oligos with Accel-Align. 33

3.1 Data writing and reading pipeline of DNA storage. 36

3.2 Composite motifs increases the logical density in DNA-based storage. A block

of binary data is encoded to a sequence comprising a set of oligos with same

address payload motifs. The composite of payload motifs from the same vertical

position represents the binary data together. 37

xi

List of Figures

3.3 Composite motifs can be generated by mixing the motifs during each synthesis

cycle. A: address motif, P: payload motif. Example: A0–[P00,P10]–[P01,P11]–

[P02,P12]. 38

3.4 Example showing consensus calling with seven inferred oligos with the same

address motif A0 . The payload motifs are decoded as P00, P01 at the first position,

P11, P12 at the second position and P20, P22 at the third position which are the

topN (N is the number of oligos in each sequence) frequent motifs in each

column position. 42

3.5 The general oligo structure design. A: address motif, P: payload motif, S: spacer,

B: bridge. 43

3.6 Bridged oligonucleotide assembly. (a) The general oligo structure design. (b) The

experimental oligo structure design. A: address motif, A’: reverse complement of

A, P: payload motif, S: spacer, B: bridge, O: overhang. 43

3.7 Distribution of read length with Guppy basecaller, Bonito basecaller and Bonito

basecaller post-processed with SaberSplit. 44

3.8 The substitution, insertion, deletion and soft-clipping rate per position of Guppy

reads. 45

3.9 Comparison of errors in previous work. 46

3.10 Number of oligos correctly reconstructed. Motif-Search fully recovers all oligos

at 20× or higher coverage. Minimap2 misses one oligo even with 34× coverage. 47

3.11 The number of true positive and false positive oligos reconstructed by Motif-

Search and Minimap2 for different sequence coverages with expanded motif sets.

i) Motif-Search reconstructs more true positive oligos than reverse alignment

even without the knowledge of reference oligos. ii) False positive rises for both

approaches when the motif set size increases. 49

3.12 The cost of DNA sequencing to read 1 megabyte data. Our work increases read

cost compared to prior work except Antowiak et al [1]. 51

4.1 PCR-based random access example. 54

4.2 Oligo structure. 55

4.3 Reads selectively retrieved with SSB database primer. 62

4.4 Reads selectively retrieved with TPCH database primer. 63

4.5 Reads selectively retrieved with SYN database primer. 63

4.6 The relationship between random access precision and size. 64

4.7 Number of specific reads for each primer pair. 67

4.8 Number of non specific reads for each primer pair. 68

xii

List of Tables
2.1 Example 1: 1 mismatch . 17

2.2 Example 2: 4 mismatches . 18

2.3 Example 3: 11 mismatches . 18

2.4 Evaluation on simulated single-end data . 23

2.5 Evaluation on simulated paired-end data . 24

2.6 Comparison of 2N -embedding and 3N -embedding 26

2.7 Evaluation on real data . 28

2.8 Comparison between BWA-MEM and Accel-Align. 31

3.1 Reaction components and volumes for P0 phosphorylation 39

3.2 Volume composition for motif annealing reaction 39

3.3 The substitution (SUB), insertion (INS) and deletion (DEL) rate of SOTA work. . 45

3.4 Statistic of the reads . 46

3.5 Processing time (in second) for real dataset with 12 CPUs 48

3.6 Sequencing cost projection . 51

4.1 File-based random access databases . 57

4.2 Population fraction change . 58

4.3 Population fraction change of each database . 60

4.4 Reads selectively retrieved per database and table primer analysis (%) 65

4.5 Primer list (24*26) . 66

4.6 Primer list . 68

4.7 Reads selectively retrieved per primer pair . 69

4.8 Primer binding analysis . 70

4.9 Reads selectively retrieved per primer pair . 71

xiii

List of Tables

xiv

Chapter 1

Introduction

1.1 Background

Sequencing is the process to determine the sequence of the nucleic acids. In 1977, British

biochemist Frederick Sanger invented the chain termination sequencing method, marking

the birth of the first generation of DNA sequencing technology [2]. Over the past few decades,

many other sequencing technologies have been developed. They provide a new way to address

biological and medical problems, such as gene expression profile analysis, chromosome

counting, epigenetic change detection, and molecular analysis.

Recent research shows that the genomics data would far exceed the growth of the data gen-

erated by the other three major generators of Big Data: astronomy, YouTube, and Twitter

in the year 2025 [3]. Sequencing is usually considered as the first and fundamental step in

genomics data analysis. Throughput and price are the two main important factors in the

area of massive genomics data analysis. Today, we can rapidly sequence millions of DNA

simultaneously. It requires less than 24 hours to sequence the whole genome of a person [4].

As tracked by National Human Genome Research Institute (NHGRI) [5], the sequencing cost

follows Moore’s Law which halves every two years as shown in Figure 1.1. For instance, the

sequencing-cost-per-genome has dropped from over a billion dollars to a mere $1000 [4] in the

past decades. Thanks to the price reduction and throughput improvement, sequencing brings

a promising future for novel applications, such as precision medicine [6] and DNA-based

digital storage [7, 8].

Although modern sequencing technologies do provide ultra-high throughput with lower cost,

they do not have correctness guarantee. Sequencing errors such as substitutions, insertions,

and deletions can lead to the difference between the sequenced object and the result. In

the meantime, the sequenced object might be biased against the original reference. Thus,

sequence analysis is an approximate string similarity analysis tolerating errors and bias. Sev-

eral metrics have been widely used to describe the similarity between sequences, such as

1

Chapter 1. Introduction

Figure 1.1: Sequencing cost per megabase - 2021 from NHGRI.

Hamming distance, edit distance (Levenshtein distance), longest common subsequence (LCS)

distance, Damerau-Levenshtein distance and Jaro distance. Edit distance is the most common

metric to measure the DNA sequence similarity. It is even expanded as a parameterizable

metric where each operation is assigned a cost in practise. However, the primary edit distance

computation is quadratic complex. Thus, the dynamic programming based algorithms, such

as Smith-Waterman algorithm [9], Needleman-Wunsch algorithm [10], are not scalable for

extremely large genomic dataset involving billions of such computations.

Therefore, it has been essential and indispensable to design accurate and scalable sequence

similarly analysis algorithms for various computational genomics and DNA-based digital

storage applications in the biological and informatics research.

1.2 Related Terms

1.2.1 DNA

DNA, or deoxyribonucleic acid, is the genetic material of most living organisms. It is a macro-

molecule composed of structural building blocks called nucleotides. There are four types of

nucleotides, namely, Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). They function

as the fundamental units of the genetic code. The quantity and order of nucleotides represent

the distinct genetic information of each organism. Although the DNA sequences differ among

different species, the DNA sequences among different individuals of the same species are

2

1.2 Related Terms

very similar. For instance, Escherichia coli has only around 4.7 million base pairs in its DNA,

while Human DNA contains about 3 billion base pairs. The previous work found that no more

than 0.5% of bases are different between any two persons. Hence, a common DNA sequence

reference would be used to represent the human DNA sequence.

Apart from the DNA existing in nature, it is also possible to synthesize artificially designed

DNA fragments through oligonucleotides (oligo) assembly. The first synthesized oligo came

out in the 1950s by Michelson and Todd [11]. Later on, phosphoramidite-based synthesis [12]

and enzymatic synthesis [13, 14, 15] have been invented. However, due to the decrease in

reaction efficiency, synthetic purity and yield with DNA chain extension, the synthesized oligo

length is limited to hundreds of bases.

Wherever the DNA sequence originates, it can be presented as a string of characters drawn

from an alphabet Σ = {A,C ,G ,T } computationally. Consequently, DNA sequence related

problems can be interpreted as string manipulation or approximate matching problems in

the Computer Science domain.

1.2.2 Reads

Sequencing technologies are capable of producing reads of hundreds of base pairs, or hun-

dreds of thousands of base pairs. However, these are still too short compared to the genome,

such as the human genome which contains 3 billion base pairs. Current sequencing technolo-

gies cannot fully sequence DNA sequences at once. So they break DNA into smaller fragments

before sequencing each fragment. The inferred sequences corresponding to the DNA frag-

ments are called reads. Due to the sequencing errors, and the bias between the fragments and

references such as the variants in genomics or the synthesis errors in DNA-based storage, the

reads are not exactly the same as the references. They might contain substitutions, insertions

and deletions.

There are two types of reads according to the sequencing modes as shown in Figure 1.2.

• Single-end reads. In single-end sequencing, the sequencer reads a fragment from only

one end to the other, generating the sequence of base pairs.

• Paired-end reads. The paired-end sequencing starts at one strand, finishes this direction

at the specified read length. Then, it starts another round of reading from the opposite

end of the fragment.

Paired-end sequencing doubles the read size compared to single-end sequencing. It improves

the capability of identifying the relative positions of various reads in the genome. It is substan-

tially more effective than single-end sequencing in resolving structural rearrangements such

3

Chapter 1. Introduction

Figure 1.2: Single-end and paired-end reads.

as gene insertions, deletions, or inversions. It also improves the assembly of repetitive regions.

However, paired-end sequencing is more expensive and time consuming. Not all experiments

require this level of precision.

1.2.3 Sequencing Technologies

DNA sequencing is the process to determine the sequence of nucleotides.

The First-generation Sequencing Technology

Walter Fiers first sequenced the DNA of a complete gene in 1972 [16]. In parallel to Fiers’

achievement, Fredrick Sanger kept working on an alternative DNA sequencing method and

developed the first DNA sequencing method called “chain termination method” in 1977 [2].

This technique is capable of generating reads of approximately 1000 bp [17] at an extremely

low sequencing error rate ranging from 0.001% to 0.01% [18]. Although Sanger’s method has

low throughput and high sequence cost, it is still used as the golden-standard nowadays due

to its high accuracy.

The Second-generation Sequencing Technology

The second-generation sequencing technology, or next-generation sequencing (NGS), is

known for its high throughput. It pioneered the introduction of sequencing-by-synthesis

which enables to capture newly added bases which carry a special marker to determine the

DNA sequence during DNA replication. It has three important features:

• High throughput. The next-generation sequencing can sequence millions of DNA

molecules in parallel.

• Short read length. When the read length increases during the sequencing process, the

4

1.3 Sequence Similarity Analysis in Computational Genomics

sequencing quality drops. The read length of the next-generation sequencing does not

exceed 500 bp.

• Low error rate. The next-generation sequencing error rate is less than 1% [19, 20].

The Third-generation Sequencing Technology

The third-generation sequencing technology was emerged from a proof-of-principle instru-

mentation concept published by Watt Webb’s group in Cornell University in 2003 [21]. Com-

pared with the previous two generations, its biggest feature is single-molecule sequencing

(SMS), which does not require PCR amplification during the sequencing process. Two SMS de-

vices have achieved commercial status, coming from Pacific Biosciences (PacBio) and Oxford

Nanopore Technologies, respectively:

• The Single Molecule Real Time (SMRT) technique from PacBio generates reads of

1000∼100,000 bp in length. The reads contain up to 20% sequencing errors, including

mostly insertions, deletions and some substitutions [22, 23]. The more recent PacBio

instruments can generate 10 kbp to 25 kbp high-fidelity (HiFi) reads at an error rate

∼1% [24].

• Oxford Nanopore Technology produces reads of hundreds of kbp with up to 15% error

rate [25].

1.3 Sequence Similarity Analysis in Computational Genomics

1.3.1 Reference

For computational genomics problems, reference is a long assembly DNA sequence used as a

standard for comparison in basic research and clinic settings. A reference genome is a database

of nucleic acid sequences. It is equivalent to one or several long strings. As an instance, the

human reference genome contains over 3 billion base pairs as 22 pairs of autosomes and 1 pair

of sex chromosome. It is regarded as 24 long strings of 3 billion characters in total. Although

one person’s genome differs from another, more than 99% bases are the same among humans.

The reference genome contains representative information of the population rather than

specific information of an individual. Hence, the reference genome can effectively reflect the

DNA information of the species.

Reference genome plays an important role in biological analysis. Since the reads generated by

next-generation sequencing are very short, they need to be ordered and assembled appropri-

ately to represent the sequenced genome before they can be used for further analysis. If the

reference genome is known, the short reads can be directly aligned to the reference genome

5

Chapter 1. Introduction

to know their actual position on the genome. Otherwise, it is a computationally expensive

problem to recover the complete DNA sequence from a large number of short reads.

1.3.2 Sequence Alignment Problem

In computational genomics, the sequence similarity problem that we work on is the sequence

alignment algorithm. Sequence alignment algorithm aims to locate the origin of each read in

the reference genome. It is defined as below.

Definition 1 Sequence alignment: Given the reference genome R and read set Q, sequence

alignment is to find out the approximate matching positions for each read q ∈ Q in the reference

genome R.

In another word, sequence alignment is a process of looking up the query q in the target

sequence R. A sketch of sequence alignment is shown in Figure 1.3. As explained in Sec.1.2.3,

the sequenced reads are hundreds to hundreds of thousand bp in length carrying 1% to 20%

substitutions, insertions and deletions depending on the sequencing technology. From the

perspective of the sequencing errors and variants, sequence alignment can be perceived as an

approximate string matching problem. Edit distance is the most common metric to measure

the sequence similarity. However, the primary edit distance computation is quadratic complex

based on the dynamic programming. To speed up, the mainstream sequence alignment algo-

rithms adopt the seed-filter-extend (SFE) strategy [26, 27] instead of the traditional dynamic

programming algorithm. The idea is to perform dynamic programming calculations only on

the regions with high likelihood, rather than on the entire long genome. It first extracts some

short substrings (seeds) from the sequenced fragments (reads), and then quickly searches

these seeds in the pre-established genome index. The positions found by the lookup are called

candidate positions. Finally, it performs dynamic programming (extension) on the regions

near these candidate positions on the genome against the sequenced fragments to determine

the final matching positions. This strategy can significantly speed up the sequence alignment

process. Many famous aligners have been implemented based on it. However, we found

that despite the fact that modern gapped read aligners (e.g. BWA-MEM [28], Bowtie2 [29]

Minimap2 [30], SNAP [31] and HISAT2 [32])) can map thousands of reads to a reference

genome per second, the sheer size of modern short-read sequencing dataset often makes

sequence alignment one of the most time consuming steps in genomic data analysis.

6

1.4 Sequence Similarity Analysis in DNA-based Storage

Figure 1.3: Sequence alignment in computational genomics.

1.4 Sequence Similarity Analysis in DNA-based Storage

1.4.1 Overview about DNA-based Storage

As reported by International Data Corporation (IDC), more than 90% of the data is generated

in recent years and the "digital universe" is forecast to grow to 163 zettabytes by 2025, which

is 10 times of that in 2016. The explosion in the rate of data generation has also led to an

explosion in the storage requirement. According to the estimation, it will require more than

1000 kg of wafer-level silicon to store all global data, while the real supply would be only 108 kg

in 2040. Thus, the traditional silicon-based storage media such as HDD and tapes can hardly

meet the requirement. DNA becomes a promising candidate for “cold” data archive thanks to

its high density, long duration and eternal relevance [33].

The first DNA-based digital storage was demonstrated in 1988 by Joe Davis [34]. They stored

35 bits of data in Escherichia coli DNA. DNA-based storage usually has four components,

namely encoding, synthesis, sequencing and decoding. A template of data writing and reading

procedures is shown in Figure 1.4.

• To write the data, the binary input data is encoded into a sequence represented by

adenine (A), guanine (G), cytosine (C) and thymine (T) based on the encoding algorithm,

such as the Goldman approach [7] and DNA Fountain [35]. Secondly, the designed

sequence is synthesized into the oligos. Due to the limit of synthesis technology, the

synthesized oligo length can be no more than a few hundreds nucleotides. Thus, data is

converted into a set of short oligos instead of a single long oligo. Finally, the synthesised

oligos are stored, for example in tube.

• To read the data, the stored oligos are extracted and sequenced by the sequencing

technologies. Then, this sequenced result that is usually error-prone, is passed into the

decoder to recover the original data. The corresponding decoding algorithms should be

elaborately designed by taking into account the characteristics of encoding, synthesis

7

Chapter 1. Introduction

and sequencing.

Figure 1.4: A template of DNA-based storage workflow.

1.4.2 Sequence Similarity Problems in DNA-based Storage

Sequence Alignment

Due to the errors introduced during synthesis and sequencing procedures, the reads may

differ from original encoded oligos. The difference could be large depending on the synthesis

and sequencing methodologies. Suppose we have the knowledge of the original encoded

oligos, we need to answer the following questions: i) what is the coverage pattern across

oligos, ii) how much is the error rate, and iii) what is the error pattern. This information can

help to optimize sequencing and synthesis protocols at the "hardware" level, and consensus

calling and decoding methods at the "software" level. Therefore, the sequence alignment

algorithm introduced in Sec.1.3 could be also applied in DNA-based storage to compare the

reads with the original encoded oligos, in order to understand the characteristics and statistics

of the errors introduced during the process of synthesis and sequencing. Compared with the

sequence alignment in genomics, there are several differences.

• Because of the synthesis limitation, the oligo could be no more than several hundred

base pairs. Therefore, the read length is close to the reference length and each oligo

could be fully sequenced at once. On the contrary, the read length in genomics data is

much shorter compared to the reference length, thus sequencing cannot be performed

at once.

• In DNA-based digital storage, we only need to find the oligo which each read maps to

while the traditional computational genomics expects to have the exact aligned position.

Thus, these algorithms could tolerate lower position-wise accuracy to achieve better

performance.

8

1.5 Thesis Outline

• It is not always necessary to report the CIGAR field for DNA-based digital storage. The

CIGAR field is a sequence representing the base lengths, and the associated operations

that are used to indicate whether each base in the read is a match/mismatch/inser-

tion/deletion. On the contrary, traditional computational genomics requires CIGAR for

downstream variant calling to indicate variants. Consequently, it is not mandatory to

implement the accurate dynamic programming extension in the DNA-based storage.

Consensus Calling and Decoding

Both synthesis and sequencing are approximate in nature and prone to errors. Hence, the se-

quenced result retrieved back from the DNA archives are noisy copies of the original sequences.

The decoding algorithm is also an approximate edit similarity based methodology.

The state-of-the-art decoders work in two stages, consensus calling and inference. During

DNA synthesis, each original encoded oligo can be synthesized with duplication. Before

sequencing, library preparation steps, like PCR, are typically used to amplify the pool of

oligos by create multiple copies of each oligo to ensure successful sequencing. As a result,

an original oligo has multiple copies of the reads eventually. Consensus calling attempts to

group similar reads and obtain the consensus to achieve higher confidence. Although the

grouped reads belong to the same original oligo, the reads are different from each other due

to the randomized errors. Measuring the similarity of the reads in the same group can then

be considered as a sequence similarity analysis problem. Prior work [36] also suggests that

the consensus calling problem can be modelled as a database edit similarity join problem.

Following the consensus calling procedure, the aggregated result is then converted back to a

binary output.

Moreover, with motif-based encoding design, the motifs could be inferred directly before the

consensus calling. In motif-based encoding design, the oligos are composed of motif blocks

which are pre-fabricated short oligonucleotide sequences. Therefore, we can approximately

align the motif libraries to the reads so as to determine each read’s motif combination.

1.5 Thesis Outline

With the development of sequencing technologies, massive reads are generated while con-

taining errors. The goal of this thesis is to build accurate and scalable sequence similarity

analysis solutions for computational genomics and DNA-based digital storage applications.

We introduce a fast and accurate sequence aligner –Accel-Align in Sec.2, and a DNA-based

storage decoder – Motif-Search in Sec.3. Then, we apply Accel-Align in the sequence analysis

to design DNA-based storage random access in Sec.4.

9

Chapter 1. Introduction

Chapter2: Accel-Align: a Fast Sequence Aligner. In this chapter, we first introduce the back-

ground of the sequence alignment algorithm and state-of-the-art techniques. In particular, we

present that previous studies have primarily concentrated on seeding-filtering-extension(SFE)

methodology which uses filtering to eliminate candidates. This chapter, instead, proposes a

new methodology seeding-embedding-extension(SEE) that uses randomized algorithms to em-

bed the reference string at each candidate location. We explain each stage in detail, particularly

the embedding stage. We illustrate 2N and 3N embedding algorithms with their limitation

caused by randomization, and propose two corresponding approaches for improvement.

Finally, experiments with both the simulated and the real genomics dataset were conducted

to explore the accuracy and performance of Accel-Align, comparing with the state-of-the-art

methods. Accel-Align is also compared to BWA-MEM in DNA-based storage experiment and it

shows the outstanding performance.

Chapter3: Edit Similarity-Based Decoder in DNA-based Storage. This chapter provides a brief

introduction about the origination of DNA-based Storage. We propose a new encoding logic

called composite motifs to scale the logical density and designs the corresponding structure-

aware decoder Motif-Search. Since errors may exist in the reads, Motif-Search does the

approximate edit similarity decoding. We present an end-to-end workflow and shows that it is

capable of fully recovering the original data with low sequence coverage 20x.

Chapter4: Sequence Analysis for Random Access in DNA-based Storage. This chapter studies the

PCR-based random access in DNA-based Storage based on the sequence alignment method

Accel-Align. It shows that PCR bias impacts the selection sensitivity of small files in a big pool.

We find that non-specific primer binding happened during PCR can lead to the silent data

corruption with short primers. As a solution, we present an elaborate primer design and a

block-wise random access where the base storage unit has a fixed size. As a result, the random

selection precision has been improved to be above 99%.

Chapter5: Conclusion. This chapter summarizes the work of the full thesis, the main contribu-

tion and the innovation of this work. At last, it also highlights the limitations of the work and

proposes the further potential research directions.

10

Chapter 2

Accel-Align: a Fast Sequence Aligner

2.1 Introduction

In the recent decades, sequence alignment has been one of the major interesting research

subjects due to its importance in genomics. Recent researches demonstrated that sequence

alignment accounts for more than 30% of the overall time of the GATK (Genome Analysis

ToolKit) best practice workflow [37, 38, 39].

The sequencing sequence alignment problem is defined as follow. Given a set of reads S

and the reference genome R, the sequencing sequence alignment is to find out the best

matching position on the reference genome R for each s ∈ S. The aligners can be classified into

ungapped or gapped depending on whether they use Hamming or edit(Levenshtein) distance

for computing mismatch between reads and the reference [40]. As modern sequencers can

produce both substitution and indel errors, gapped aligners are preferred in practice over their

ungapped counterparts.

Modern gapped read aligners, like Bowtie2, BWA-MEM, and Minimap2, can map thousands

of reads per second to the reference genome. However, as sequencing datasets continue

to grow at a rapid pace, even these state-of-the-art aligners face scalability bottlenecks due

to a crucial design aspect that is universal across all gapped read aligners–the use of edit-

distance as a string comparison metric. Computing edit distance between two sequences

is a computationally-expensive task that takes approximately quadratic time in the length

of the input sequences. Given that sub-quadratic computation of edit distance is extremely

unlikely [41], the brute force approach of trying to align a read at each position in the reference

is infeasible even for a single read due to sheer number of edit-distance computations that

would be required. Thus, all modern aligners focus on minimizing the number of such

computations using a seed-filter-extend (SFE) strategy for performing alignment [40].

SFE strategy works by first indexing the reference genome and storing the occurrence locations

11

Chapter 2. Accel-Align: a Fast Sequence Aligner

of short string sequences, which are also referred to as seeds or k-mers, typically in a hash table.

Each read is processed in three steps. First, seeds are extracted from the read and the hash

table is used to look up potential mapping locations in the reference genome. Second, filtering

techniques are used to eliminate as many candidate locations as possible to minimize the

overhead of the extension stage, during which the entire read is aligned at each of unfiltered

candidate locations using the edit-distance-based approximate string matching algorithms.

Although state-of-the-art filtering techniques provide an order of magnitude improvement

over unfiltered extension, they all suffer from two major limitations. First, all current filtering

techniques are based on elimination. Their goal is to improve performance by eliminating

some candidate locations without forwarding them to the extension stage. They cannot pro-

vide selection which is able to identify a candidate that is likely to be the actual match, or

ordering which sorts candidates in the order of likelihood. This is particularly problematic for

seed sequences that inevitably occur at hundreds or thousands of different locations in the

reference sequence due to tandem repeats, or transposon-induced duplication. For such se-

quences, filtering techniques are less effective, as they can neither identify optimal candidates,

nor eliminate candidates without significantly increasing the probability of misalignment

due to accidental elimination of a true match. The second problem with filtering is that the

thresholds and parameters used by these filtering techniques are often manually picked based

on empirical analysis, as they are dependent on the type and pattern of errors introduced by

the sequencing technology. Hence, filtering techniques are inherently non-portable heuristics

and not technology-independent design principles.

We introduce a new design principle for constructing sequence mappers and aligners, hence-

forth referred to as Seed-Embed-Extend (SEE). SEE builds on recent theoretical advances in

the design of randomized algorithms that can perform embedding from edit distance into

Hamming distance with very low distortion ([42]). These algorithms provide a one-to-one

mapping f that can be used to transform a set of strings S into another set of strings S’, such

that the worst case ratio between Hamming distance of any two strings f(x) and f(y) in S’, and

the edit distance of their equivalent strings x and y in S is very low. SEE uses seeding to identify

candidate locations similar to SFE aligners. However, instead of using filtering to eliminate

candidates, SEE uses randomized algorithms to embed the reference string at each candidate

location. SEE then uses Hamming distance between the embedded candidates and the em-

bedded read to rank the candidates based on likelihood of being an actual alignment target,

and chooses candidates with the highest rank for extension. Thus, instead of eliminating

many bad candidates, SEE focuses on quickly selecting a few good ones.

To show that SEE works well in practice, we present Accel-Align–an SEE-based short-read

sequence mapper and aligner that can provide both extension-free mapping and base-to-

base alignment with CIGAR and MAPQ. In doing so, we show that a naive implementation of

12

2.2 Indexing and Seeding

SEE will result in the embedding step becoming a computational bottleneck, and describe

several optimizations that Accel-Align uses to implement SEE-based alignment effectively.

Using experimental results from both simulated and real datasets, we show that embedding

is capable of picking locations that are likely to be the correct alignment targets with very

high accuracy. Using the SEE-approach to sequence alignment, Accel-Align is up to 9× faster

than BWA-MEM, 12× faster than Bowtie2, and 3× faster than Minimap2, while providing

comparable accuracy without using any special purpose hardware. We believe that SEE

specifically, and embedding in general, is a robust technique that opens up new optimization

opportunities not only for sequencing alignment, but also for several other computational

biology problems that rely on edit distance.

2.2 Indexing and Seeding

2.2.1 Indexing

As Accel-Align uses seeding, it requires the reference genome to be indexed before execution.

Similar to other aligners, we construct an index over the reference genome in a separate, offline

phase. The index is a hash table of key-value pairs, where the key and value are both 32-bit

unsigned integers. In order to populate the hash table, we extract k-mers from each position

of the reference genome. As the reference sequence usually contains only 4 characters, namely

A, T, C and G, we convert each character in the extracted k-mer into a two-bit equivalent

representation. Any k-mers that contain ’N’ characters are not added to the index. The k-mer

length is a configurable parameter in Accel-Align, but we set it to 32 to enable a k-mer to fit in

a single 64-bit integer. We hash the k-mer to generate the key by using a simple modulo-based

hash function that maps the 64-bit integer into one of M buckets, where M is a large prime

number that fits in a 32-bit integer. The 32-bit reference location offset from where the k-mer

was extracted is the value associated with the key.

As the hash table is repeatedly used for looking up candidates during alignment, it is important

to physically store these key–value pairs efficiently. We do this by using a chained hash table

implementation based on two flat 32-bit integer arrays. With our construction, there are

at most M different keys and N −k +1 different values, where N is the length of reference

genome. As multiple k-mers can hash to the same key, each key can correspond to multiple

position values. We gather all position values for each key, sort them individually, and store

all such sorted values together, in key order, in a single position array. We represent the keys

implicitly by an offset in a separate 4GB key array, and in each key-array entry, we store the

cumulative count of candidate positions for all keys smaller than that key. Thus, as the position

array is ordered by key, all the candidate locations indexed between the offsets K and K +1 in

position table belong to the key K . The process is illustrated in Figure 1. Thus, the entire index,

13

Chapter 2. Accel-Align: a Fast Sequence Aligner

Figure 2.1: An example to build index. Xi represents a 32-mer extracted from reference
genome. a,b,c,d are the keys calculated from Xi . ni represents the number of keys smaller
than the corresponding key. For example, n1 is the number of keys smaller than a. Specifically,
X1, X4 and X7 have the same key a. So there are n1 +3 keys smaller than a +1. Thus, l1, l2 and
l3 indexed with n1, n1 +1, n1 +2 in value table are the locations for X1, X4 and X7.

represented using the key and position arrays, is saved in a single file on disk, and loaded in

memory whenever alignment starts.

2.2.2 Seeding

During seeding phase of alignment, we extract all non-overlapping k-mers of each read. Then

for each k-mer, we compute the key, and use the key to extract the list of candidate positions.

The positions are adjusted using the offset of the k-mer into the read to get normalized

candidate positions. Then, we merge the candidate lists across k-mers to produce the final

list of normalized positions that does not have any duplicates. One way of performing this

merging is to gather all candidates in an array, sort it, and then find unique elements. However,

such an approach would take O(Nl lg Nl) time if Nl is the total number of candidates across

all k-mers.

We avoid sorting by exploiting the physical organization of our hash table index. The position

array of the hash table contains a key-ordered list of candidate positions, where each key’s

candidates are stored in sorted order. Thus, during seeding, the candidates retrieved for

each k-mer will also be in sorted order. We maintain a min-priority queue of size Nk , where

Nk = r eadleng th/k is the number of k-mers in each read, and initialize it with the first

candidate location of each k-mer. Then, we pop the minimum value from the queue and push

the next candidate from the same k-mer as the popped one into the queue. We repeat the

pop–and–push steps until the all candidates have been processed. This approach allows us to

process all candidates in O(Nl) time without sorting as long as the number of k-mers is small

enough to keep the overhead of min-priority-queue negligible, which we found to be the case

14

2.3 Embedding

for short-read alignment using an empirical evaluation.

In the case of single-end reads, we don’t apply any filtering to the merged candidate lists. Thus,

all candidates are passed to the embedding stage. For paired-end reads, however, we use a

configurable pairwise-distance threshold for identifying candidates from one read that have

a matching pair within the specified distance in the other read. All such candidate pairs are

passed to the embedding stage.

2.3 Embedding

After candidate locations are identified by seeding, Accel-Align moves to embedding, the

second stage of SEE. The goal of embedding is to transform both the candidate strings from

the reference genome, and the query string which is the read, into different strings such

that the edit distance between the original strings can be approximated using the Hamming

distance between new strings. We have implemented two randomized embedding algorithms

in Accel-Align.

2.3.1 3N -embedding

The first algorithm was proposed by [42] who showed that given two strings x, y of length

N taken from an alphabet
∑

such that dE (x, y), the edit distance between x and y , is less

than K , there exists an embedding function f :
∑N →∑3N , such that the distortion D(x, y) =

dH (f (x), f (y))/dE (x, y) lies in [1,O(K)] with at least 0.99 probability, where dH (x, y) is the

Hamming distance between the embedded strings. In other words, [42] proposed a ran-

domized algorithm that can embed strings of length N into strings of length 3N such that

Hamming distance of embedded strings is at most square of the edit distance between original

strings. Recent studies have demonstrated that this algorithm, which we henceforth refer to

as 3N-embedding (3NE), works well in practice for performing edit similarity joins for even

relatively large edit distances([43].)

Accel-Align uses 3NE for embedding both candidate strings from the reference and the read

itself. Listing 1 shows the pseudo-code for the embedding algorithm. The input string is a

DNA sequence of length N consisting of four possible characters (A,C,G,T). The output is

an embedding string of length 3N consisting of the four characters and possibly multiple

repeats of a pad character (P). In each iteration, the algorithm appends a character from the

input string, or the pad if it runs out of the input string, to the output string. Then, it uses

a random binary bit string to decide if the input index should be advanced. The net effect

of this algorithm is that some input characters appear uniquely in the output string, while

others are randomly repeated multiple times. Using the theory of simple random walks, [42]

established that the randomization in this algorithm will result in strings that differ by a small

15

Chapter 2. Accel-Align: a Fast Sequence Aligner

edit distance converging quickly to produce embedded strings that have a small Hamming

distance.

Algorithm 1 3N -embedding

Input: A string S ∈ {A,C ,G ,T }N , and a random string r ∈ {0,1}3N

Output: The embedded string S
′ ∈∑3N

1: i ← 0
2: for j = 0 → 3N −1 do
3: if i < N then
4: S

′
j ← Si

5: else
6: S

′
j ← P

7: end if
8: i ← i + r j

9: end for
10: return S

′

2.3.2 2N -embedding

An initial implementation of 3NE in Accel-Align showed us early on that despite the simplicity

of the algorithm, it was computationally intensive to embed billions of candidate locations

across millions of reads. We describe several optimizations later in Section 2.4 that reduced

the overhead of embedding, but one of the first optimizations we designed was a variant

of the embedding proposed by [42], which we refer to as 2N-Embedding (2NE). Listing 2

shows the pseudocode for 2NE which is conceptually similar to 3NE with the exception that

each character in the input string is copied to the output string at most two times. Thus,

2NE implements a mapping f :
∑N → ∑2N instead of

∑N → ∑3N . After implementing 2NE

in Accel-Align, we found that [44] had also developed it in parallel, performed a theoretical

analysis of its optimality, and used it for the edit similarity join application. As we show in

our evaluation, we found 2NE to be functionally comparable to 3NE in terms of accuracy, and

slightly better in terms of performance as it reduces the embedding time due to a reduction in

the embedded string length from 3N to 2N .

2.3.3 Embedding Limitation

However, in practice, a “bad” random bit sequence could, in some cases, lead to a large

distortion. To illustrate this, let us consider an example with two strings, “CTGACTGA” (#1)

and “CTCACTGA” (#2). The two strings have an edit distance of 1. Given below are three

different random sequences, and the embedded versions of these two strings for each random

sequence in Table 2.1, Table 2.2, Table 2.3. Although the edit distance of the original strings

is 1, the Hamming distance between embedded strings can vary dramatically and even be

16

2.3 Embedding

Algorithm 2 2N -embedding

Input: A string S ∈ {A,C ,G ,T }N , and a random string r ∈ {0,1}N

Output: The embedded string S
′ ∈∑2N

1: j ← 0
2: for i = 0 → N −1 do
3: S

′
j ← Si

4: j ++
5: if ri = 1 then
6: S

′
j+1 ← Si

7: j ++
8: end if
9: end for

10: for j = j +1 → 2N −1 do
11: S

′
j ← P

12: end for
13: return S

′

inflated to 11 as shown in example 3.

Table 2.1: Example 1: 1 mismatch

Random seq for A 1110001000101000

Random seq for C 0010111101000001

Random seq for G 0010000001110110

Random seq for T 0110000110101111

Embedded #1 CTTGACCTTGGAPPPP

Embedded #2 CTTCACCTTGGAPPPP

Similarly, mismatches or indels at the beginning of strings will also lead to higher distortion

than those at the end of a string. For instance, let us consider the string “CTGACTGC”. Com-

pared to #1, it differs only in its last character. Thus, the edit distance between them is 1. When

the two strings are embedded, the embedded strings will be be identical for the initial set of

characters except the last one. When the embedding algorithm reaches the last character,

depending on whether the random bit is 0 or 1, the embedded strings will differ by 1 or at most

2. However, if we consider “ATGACTGA”, which also has an edit distance of 1, but differs from

#1 in the first character, the Hamming distance of their embedded strings will depend entirely

on the random string. For instance, it will be embedded to “AATTGACCTTGGAAPP” using the

random string in Example 1, with a Hamming distance of 10, or “ATTGAACTTGGAPPPP” using

the random string in Example 2, with a distance of 1.

17

Chapter 2. Accel-Align: a Fast Sequence Aligner

Table 2.2: Example 2: 4 mismatches

Random seq for A 0010111101100100

Random seq for C 0111010011001100

Random seq for G 0110001101101001

Random seq for T 1100100101100000

Embedded #1 CTTGAACTTGGAPPPP

Embedded #2 CTTCCAACTGGAPPPP

Table 2.3: Example 3: 11 mismatches

Random seq for A 1001011101001111

Random seq for C 1010110111011000

Random seq for G 1001100101001100

Random seq for T 1101111101101110

Embedded #1 CCTGGAACCTTGAAPP

Embedded #2 CCTCACCTTGGAPPPP

Thus, we proposed two optimization during embedding: multiple embedding and chain

embedding.

2.3.4 Multiple Embedding

A simple strategy for dealing with distortion caused by embedding is to perform embedding

multiple times with the goal that a high distortion produced by a “bad” random string will be

overridden by a low distortion outcome from another random string. In the context of Accel-

Align, this translates into the following per read operations: (i) C ×R embedding operations

for embedding C candidate locations R times, (ii) embed the query read itself R times, and (iii)

C×R Hamming distance computations to identify the best candidate. A naive implementation

of multiple embedding will also require ((C +1)×2N ×R) bytes of memory per read, where

N is the length of read (each of the C candidates and the read itself have to be embedded R

times, with each embedding producing a string of length 2N).

During experimentation, we found that the computational and memory requirements of

multiple rounds of embedding were high. Thus, we implemented a pipelined version of

multiple embedding which works as follows. First, we embed the read R times. Then, we

process each candidate one at a time by embedding it using a random string and computing

the edit distance from the embedded read based on the same random string. After computing

18

2.3 Embedding

Algorithm 3 Embedding

Input: A reference string R ∈ {A,C ,G ,T }m , a querying read string Q ∈ {A,C ,G ,T }n , a normal-
ized candidate start position sr with |M | matches between the reference and read whose
corresponding start and end indexes are sr i ,er i and sqi ,eqi , and N times to embed

Output: The candidate’s embedded Hamming distance d
1: dmi n = M AX
2: for l = 0 ← N −1 do
3: j = 0, string Q̂, R̂
4: for k = 0 → n −1 do
5: if k ∉ [sqi ,eqi),∀i ∈ [0, |M |) then
6: Q̂ j = Q̂k

7: R̂ j = R̂sr +k

8: ++ j
9: end if

10: end for
11: string Q̂

′
, R̂

′ ← the embedded string of Q̂, R̂
12: d ← the Hamming distance between Q̂

′
and R̂

′

13: dmi n = mi n(d ,dmi n)
14: if dmi n == 0 or dmi n == 1 then
15: return dmi n

16: end if
17: end for
18: return dmi n

R Hamming distances, we only keep the minimum Hamming distance per candidate, and use

this to identify the candidate with the lowest overall minimum. We adopted this approach as

it integrates seamlessly with two lower-level optimizations already performed by Accel-Align.

First, the embedding algorithm in Accel-Align does not generate the entire embedded string

for each candidate. Rather, given a candidate location and random string, it generates one

embedded character at a time, compares it with the corresponding character in the embedded

read, updates the Hamming distance, and discards the character. This results in a CPU-cache-

efficient embedding implementation. Second, the embedding algorithm is parameterized with

a threshold so that it stops embedding as soon the threshold is exceeded. Instead of storing

the embedded distance of all candidates, Accel-Align already dynamically tracks the lowest

and second-lowest distances, and uses the latter as the threshold parameter. Our pipelined

implementation of multiple embedding exploits both these optimizations to efficiently track

the minimum embedding distance for each candidate.

We further optimize embedding by doing an early-stop for a candidate as soon as we find a

random string under which the Hamming distance is computed to be less than or equal to 1.

If the embedded Hamming distance is 0, the two embedded strings must be the same, so the

original strings are same and edit distance is 0. If the embedded Hamming distance is 1, there

19

Chapter 2. Accel-Align: a Fast Sequence Aligner

is 1 bit different in the embedded strings, same for the original strings, and the edit distance

is 1. In either case, there is no need to do an additional round of embedding with a different

random string as we have already found the minimum distance.

2.3.5 Chain Embedding

Let us consider the string x to represent a read, and string y to represent a candidate in the

reference genome. Originally, Accel-Align embedded the entire read and an entire candidate

string of length equal to the read. However, any candidate y identified by Accel-Align must

have at least one k-mer that produced an exact match between the reference and the read

which led to this candidate being identified as a potential match during seeding. If two strings

are identical, their edit distance, and hence their embedded Hamming distance, will be zero.

Thus, the embedded Hamming distance of all exact matching k-mers would already be zero.

This implies that we only need to embed the non-matching parts of the read and the reference.

We refer to such an approach as chain embedding, as it is reminiscent of the way aligners like

Minimap2 use chaining to align gaps between exact matching regions.

Chain embedding improves both performance and accuracy. It improves performance as

it reduces the length of the string that needs to be embedded. On the accuracy front, as

mentioned earlier, the distortion of the randomized embedding algorithm depends on the

edit distance value K . For any read x and a reference candidate y , let xi represents the

i-th non-matching substring in the read, yi represents the corresponding non-matching

part in the reference. These substrings are the parts that are found outside or between

exact matching k-mers. The edit distance between them dE (xi , yi) is Ki , and
∑

dE (xi , yi) =
dE (x, y) = K . Original Accel-Align embeds x and y as a whole. Thus, the overall distortion is

bounded by [K ,O(K 2)]. Our modified Accel-Align with chain embedding, in contrast, embeds

each substring separately. As each Ki is smaller than K , this should lower the distortion for

each chain embedding, thereby improving accuracy. Putting together multiple and chain

embedding techniques, Algorithm 3 shows the pseudo-code for the improved embedding

algorithm.

2.3.6 Candidate Selection

We use one of the two embedding algorithms with the multiple embedding and chain embed-

ding optimization described above to embed all candidates and the read. Then, we compute

the Hamming distance between each embedded candidate and the embedded read. We refer

to this distance as the embedding distance. While doing so, we dynamically keep track of the

top two candidates with least embedding distance and forward them to the third phase for

further extension, scoring, and mapping quality computation. This step is the most important

20

2.4 Extension and MAPQ Computation

difference between SEE and SFE techniques. While SFE focuses on heuristics for eliminating

candidates, SEE provides a way to rank candidates and directly select the most likely ones

based on Hamming distance, which a scalable metric that can be computed in linear time.

2.4 Extension and MAPQ Computation

Accel-Align can be configured to run in alignment-free mapping mode where only the iden-

tified candidate location is reported, or full-alignment mode where base-by-base extension

is performed and the CIGAR string is reported. For the mapping mode, we pick the best

candidate, which is the one with the least embedding distance, as the target. Then, we embed

the first seed of the read and the k-mers in reference genome at multiple positions around

the final candidate position, and pick the position with the least embedding distance. This is

done to take into account indels in the first few characters of a read.

For the full-alignment mode, originally Accel-Align did a global alignment between the read

and the substring of same length in the reference’s candidate position. But we found the lack of

soft clipping to adversely affect accuracy of downstream variant calling. Accel-Align extracts a

substring of length longer than read length and performs “glocal” alignment using lib-ksw [45]

on either end to support soft clipping. The matching score is set to 2, mismatching, gap-open

and gap-extension penalty are set to 8, 12, 2, to compute the alignment score and CIGAR. In

addition to the CIGAR, Accel-Align also reports a mapping quality (MAPQ) that represents

the degree of confidence in the alignment for each read. Accel-Align uses the cumulative

Hamming distance obtained from chain embedding for identifying the top two candidates. If

d1 is the least embedded Hamming distance and d2 is the second least, the MAPQ is computed

as M APQ = 60∗ (1−d1/d2)2.

2.5 Optimizations

A naive SEE implementation would perform seeding, embedding, and extension as described

so far in sequence. However, during initial experimentation Accel-Align, we found that while

embedding reduced the overhead of extension, the computational task of embedding and

Hamming distance computation added non-negligible overhead. Thus, in addition to the

2NE algorithm described in Section 2.3.2, we implemented three other optimizations, namely,

pipelining, early-stop, and prioritizing, that reduced the overhead of embedding without any

change in functionality or accuracy.

Pipelining. Instead of embedding all candidates and then computing the Hamming distance,

our first optimization is to pipeline these steps. We do this by modifying the embedding

step so that the read is embedded first. Then each candidate location is embedded one by

21

Chapter 2. Accel-Align: a Fast Sequence Aligner

one, and the embedding algorithm simply updates the embedding distance in each iteration

by comparing the output character of the candidate generated in that iteration with the

corresponding character in the embedded read. This pipelining of embedding and distance

computation provides three major benefits. First, as embedded strings are no longer generated

in their entirety, it reduces memory consumption and associated overheads of allocating and

freeing memory for storing embedded candidates. Second, it reduces the overhead caused by

a needless second loop over the embedded candidates to calculate the Hamming distance.

Third, as the output character generated by the algorithm is used immediately for distance

computation, it improves processor cache utilization.

Early-stop. Using pipelining to produce the embedding distance for each candidate enables

us to apply the second optimization based on the observation that only the top-two candidates

with the least embedding distance are selected for further extension. Thus, if we have already

encountered a candidate with a very low embedding distance, there is no point in contin-

uing the embedding process for another candidate whose distance has already exceeded

the previously observed minimum. Thus, we parameterize the embedding algorithm with

a threshold such that the algorithm stops embedding a candidate as soon its embedding

distance exceeds the threshold. Instead of storing the embedded distance of all candidates,

we dynamically track the lowest and second-lowest distances, and simply use the latter as the

threshold parameter.

Prioritizing. Our third optimization is a policy that drives pipelining and early-stop mech-

anisms. It is based on the intuition that if candidates with low embedding distance are

prioritized before others, the overall cost of embedding will be low. This is due to the fact that

the threshold will be set to a relatively low value during the early stages of embedding. As a

result, early-stop will be applied to most candidates. However, the embedding distance of can-

didates is not known to us in advance. Therefore, we use candidate counting, a technique used

by SFE aligners for count filtering ([46]), to prioritize candidates based on the assumption that

candidates with higher counts or votes are more likely to have lower embedding distance, and

more likely to be picked as the best candidate. Thus, we modify the seeding phase to associate

with each candidate location a count of the number of k-mers that produced that location

during the hash lookup. During embedding, we first embed the candidate with the highest

count followed by all other candidates. It is important to note here that we still embed all

candidates, albeit in a different order. Thus, unlike SFE aligners, we do not filter out candidates

based on k-mer counting.

2.6 Results

Accel-Align is implemented in C++ and configured to use 2NE algorithm by default as it was

found to be faster than 3NE with comparable accuracy. Accel-Align uses Intel Thread Building

22

2.6 Results

Blocks for parallelizing both index generation and alignment. In this section, we present an

evaluation of Accel-Align using both simulated and real data to compare its performance

and accuracy with respect to three state-of-the-art short-read aligners, namely, BWA-MEM

(v0.7.17; [28]), Bowtie2 (v2.3.5; [29]), and Minimap2 (v2.17; [30]). We also present an evaluation

of Accel-Align using the real DNA-based storage data to compare with BWA-MEM (v0.7.17;

[28]).

All experiments were run on a server equipped with a quad-core Intel(R) Core(TM) i5-7500

CPU clocked at 3.40GHz, and 32GB RAM. In an offline phase not reported here, we used each

aligner to pre-index the reference genome. Then, in each alignment experiment, we run the

aligner five times and gather execution statistics. As all aligners read the index from secondary

storage, the first run is typically “cold” as data is not in memory. Hence, we ignore the first run.

As we found the performance of the last four runs to be stable with all aligners, we only report

the average of last four execution times.

2.6.1 Benchmark with simulated genomic reads

For benchmarking Accel-Align, we used Mason2 [47] to generate simulated reads from the hg37

reference genome (hs37-1kg) together with an alignment file describing the exact coordinate

of each read. We used Accel-Align, BWA-MEM, Bowtie2, and Minimap2 (short-read mode) to

align the reads and measured the end-to-end wall clock time for alignment. Using the Mason2

generated alignment file as our ground truth, we also evaluated the accuracy of each aligner

in terms of the fraction of reads correctly mapped; we consider a read to be correctly mapped

if the reported alignment overlaps with the Mason-provided one by at least ten percentage of

read length.

Aligner comparison

Table 2.4 reports the performance and accuracy of the four aligners for a 10M, 100bp, single-

end simulated read dataset generated by Mason2. In terms of performance, it can be seen that

Accel-Align clearly outperforms the other aligners, as it is 8.2× faster than Bowtie2, 5.8× faster

than BWA-MEM, and 2.4× faster than Minimap2.

Table 2.4: Evaluation on simulated single-end data

BWA-MEM Bowtie2 Minimap2 Accel-align

Exec. time (HH:MM:SS) 00:06:32 00:09:19 00:02:48 00:01:08
%Correctly mapped 97.37% 97.23% 96.52% 97.15%

Table 2.5 reports the performance and accuracy for a 10M, 100bp, paired-end dataset generated

23

Chapter 2. Accel-Align: a Fast Sequence Aligner

by Mason2. Accel-Align outperforms the other aligners by an even larger margin here, as it is

14× faster than Bowtie2, 10× faster than BWA-MEM, and 3× faster than Minimap2. In terms

of accuracy, all four aligners are comparable as a majority of reads are correctly mapped in

both the single-end and paired-end datasets. BWA-MEM and Bowtie2 offer marginally better

accuracy than Minimap2 and Accel-Align. These results demonstrate that at comparable

accuracy, Accel-Align can provide an order of magnitude improvement in performance over

some state-of-the-art aligners.

Table 2.5: Evaluation on simulated paired-end data

BWA-MEM Bowtie2 Minimap2 Accel-align

Exec. time (HH:MM:SS) 00:14:12 00:19:10 00:04:53 00:01:21
%Correctly mapped 98.54% 98.51% 98.09% 98.45%

Varying read length

The computational cost of the embedding step is proportional to the read length, as each read

and at least one candidate are converted from length N into a new string of length 2N . To test

the sensitivity of performance with respect to read length, we used Mason2 to generate pair-

end datasets with 10M reads, where each dataset was configured with a read length of either

150bp or 200bp. Figure 2.2 shows the throughput, the number of reads processed per second

per thread, of the four aligners under various read lengths. Clearly, Accel-Align outperforms

the other aligners at all read lengths as it provides 8–12× improvement over Bowtie2, 6–9×
over BWA-MEM, 2.3–3× over Minimap2 across a range of read lengths. About the accuracy

shown in Figure 2.3, we found that BWA-MEM is always most accurate. Accel-Align is close to

BWA-MEM and Bowtie2 while highly outperforms Minimap2 especially when read length is

short, e.g. 100bp. It catches up the accuracy when read length increases.

Alignment-free Mapping

Both Accel-Align and Minimap2 can be configured to run in alignment-free mapping mode

where they report the position without the CIGAR string. The mapping mode completely

eliminates the overhead of edit-distance computation. Although such mapping is useful

in several applications that do not require base-by-base alignment, for example during the

error characterization study in DNA storage, we use it in this context to isolate the benefit of

embedding.

To compare Accel-Align with Minimap2 in mapping mode, we used the two aligners to perform

alignment-free mapping of the paired-end Mason2 datasets. Figure 2.4 shows the execution

time for various read lengths. Comparing Figures 2.2 and 2.4, we can make two observations.

24

2.6 Results

100 150 200
Read length (bp)

0

10

20

30

40

50

60

70
Th

ro
ug

hp
ut

 (k
)

BWA-MEM
Bowtie2
Minimap2
Accel-Align

Figure 2.2: Throughput for 100bp, 150bp and 200bp pair-end simulated datasets.

First, alignment-free mapping provides a further 6% to 42% reduction in time over base-to-

base alignment depending on the read length. Accel-Align maps 10M, 100bp, paired-end reads

in 78 seconds, thus, mapping more than 650,000 reads per second on a simple quad-core

processor without requiring any special hardware. These results demonstrate the benefit of

using embedding in sequence mapping. Second, Accel-Align is 2-3.4× faster than Minimap2

at all read lengths (Figure 2.4) with alignment-free mapping while offering slightly better

accuracy (Table 2.5). This demonstrates that our optimizations have eliminated any the

computational overheads associated with embedding, making Accel-Align a competitive

alternate to state-of-the-art sequence mappers.

Impact of embedding

To further isolate and understand the benefit of embedding in Accel-Align, we run Accel-

Align in three modes:

• No-embedding: a no-embed mode where embedding is not used, and all candidate

locations identified by seeding are directly forwarded for extension.

• 2N -embedding: the default mode using 2NE.

• 3N -embedding: using 3NE instead of 2NE.

Table 2.6 shows the performance and accuracy results for these three modes under the 10M,

150bp, Mason2 pair-end, simulated-read dataset.

25

Chapter 2. Accel-Align: a Fast Sequence Aligner

100 150 200
Read length (bp)

98.0

98.2

98.4

98.6

98.8

99.0

Co
rre

ct
ly

 m
ap

pe
d

(%
)

BWA-MEM
Bowtie2
Minimap2
Accel-Align

Figure 2.3: Accuracy of 100bp, 150bp and 200bp pair-end simulated datasets.

Table 2.6: Comparison of 2N -embedding and 3N -embedding

No-embedding 2N -embedding 3N -embedding

Exec. time (HH:MM:SS) 00:29:24 00:02:56 00:03:16
correctly mapped 98.78% 98.56% 98.54%

Comparing 2NE and 3NE cases, we can see that 2NE provides a 11% improvement in perfor-

mance with no discernible difference in accuracy. Comparing 2NE and the no embedding

cases, we see that embedding provides a 10× reduction in execution time as it is able to identify

the optimal candidate location without relying on edit distance computations at a marginal

0.2% lower accuracy.

2.6.2 Benchmark with real genomic reads

To evaluate the accuracy of Accel-Align on real data, we used the human whole-exome se-

quencing dataset NA12878 (accession No.: SRR098401). We built a pipeline similar to prior

work [48] to detect variants using GATK HaplotypeCaller (v4.1.0) [39] as illustrated in Fig-

ure.2.5. We used the four aligners to align 150M 151bp paired-end reads in NA12878 to the

hg37 reference genome. Then, we used the SureSelect Human All Exon v2 target captured kit

bed file (ELID: S0293689) for capturing variant locations, and took high confidence variant

calls (v2.19) from Genome in a Bottle (GiaB) consortium for validation.

We compare the aligners with respect to several metrics as shown in Table 2.7. The results for

Accel-Align using the default parameters is shown in the column AA-32-mer. The execution

26

2.6 Results

100 150 200
read length (bp)

0

10

20

30

40

50

60

th
ro

ug
hp

ut
 (k

)

23
14

10

65
51

22

Minimap2
Accel-Align

Figure 2.4: Alignment-free mapping time for 100bp, 150bp and 200bp pair-end read.

Figure 2.5: Variant calling pipeline.

27

Chapter 2. Accel-Align: a Fast Sequence Aligner

Table 2.7: Evaluation on real data

BWA-MEM Bowtie2 Minimap2 AA-32-mer AA-25-mer

Execution time 7:43:54 7:31:16 04:43:39 01:29:34 03:42:26
Ti/Tv 2.84 2.86 2.85 2.85 2.85
Precision 0.989 0.996 0.992 0.992 0.992
Recall 0.992 0.989 0.992 0.991 0.991
F-score 0.990 0.992 0.992 0.992 0.992
Fraction Mapped 99.40% 97.13% 99.31% 97.00% 98.02%
TP(SNP) 23521 23457 23521 23516 23518
FP(SNP) 235 79 163 176 207
FN(SNP) 165 229 165 170 168
F-score(SNP) 0.991 0.993 0.993 0.993 0.993
TP(InDels) 1223 1213 1223 1225 1223
FP(InDels) 49 30 27 31 32
FN(InDels) 35 45 35 33 35
F-score(InDels) 0.966 0.970 0.975 0.974 0.974

time reports the wall-clock time taken by various aligners for aligning 85M paired-end reads

(or 170M reads in total). Accel-Align provides a speedup of 5× over Bowtie2 and BWA-MEM,

and 3× over Minimap2, similar to the Mason2 dataset. The second metric is transition-to-

transversion ratio (Ti/Tv), which is a key metric in detecting SNVs and should fall between

2.6–3.3 for this dataset, which is the case with all aligners. The three later metrics report

precision, recall, and F-score values based on the GiaB truth set contains 23,686 SNVs and

1,258 InDels contributing to a total of 24,944 variants for the NA12878 exome. The precision,

recall, and F-score of BWA-MEM, Minimap2, Accel-Align are comparable except Bowtie2 has a

higher precision and lower recall which means that it detected less TP variants although detect

less FP variants as well. Accel-Align and Bowtie2 aligned ∼ 97% of reads while BWA-MEM

and Minimap2 aligned more than ∼ 99%. This could be the potential reason that Bowtie2

reported less variants and is one of the direction that Accel-Align is aimed to improve. We also

showed the SNP and InDels separately. Accel-Align had better accuracy to detect InDels that it

detected even 2 more TP InDels than BWA-MEM and Minimap. However, it needs to improve

the capability to detect SNP as detected 5 less TP SNP.

To better understand the difference between detected variants, we show a Venn diagram of

variants detected by various aligners in Figure 2.7 and Figure 2.6 for SNP and InDels separately.

Clearly, 97.7% of Indels and 94.2% SNP variants are captured by all aligners. We find that there

are 7 variants detected by the other three alignment tools, but not by Accel-Align. Upon further

inspection, we found this to be due to two reasons. First, although embedding identifies

the correct candidate location in most cases, there are reads for which it chooses the wrong

candidate location. We found this to be particularly problematic for reads that map with

28

2.6 Results

Figure 2.6: Venn diagram of InDels variants detected by various aligners and Accel-Align (32-
mer).

Figure 2.7: Venn diagram of SNP variants detected by various aligners and Accel-Align (32-
mer).

29

Chapter 2. Accel-Align: a Fast Sequence Aligner

a low edit distance to multiple locations in the reference. In such cases, we found that the

hamming distance of embedded candidates is not spaced apart for embedding to identify a

clear target. The second reason is the use of large k-mer length (32) in Accel-Align compared

to the read length in NA12878 (151bp) which resulted in reads with four erroneous k-mers

being unmapped. Table 2.7 shows the percent of mapped reads, and as can be seen, Accel-

Align aligns 2% fewer reads compared to BWA-MEM and Minimap2.

To understand the impact of k-mer size on overall accuracy, we modified Accel-Align to use

25-mers instead of 32-mers. Table 2.7 shows the results obtained using the 25-mer setting

under column AA-25-mer. Comparing it with AA-32-mer, we have two important observations.

First, the overall execution time increases by 146% compared to AA-32-mer case. Figure 2.8

shows a breakdown of execution time across the three stages when 25-mers or 32-mers are

used. Clearly, this increase in time can be attributed almost entirely to seeding and embedding

as 25-mers produce 4× more candidates than 32-mers. Figure 2.8 also shows the fraction of

each stage over the whole processing time. The seeding and embedding fractions are close

to each other for 25-mer and 32-mer cases. As SEE does not filter out any candidates, the

overhead of candidate normalization, counting, and duplicate elimination performed during

seeding increases, similarly for embedding. Despite this, embedding is able to identify the

candidates, avoid needless extension, and still provide 2-7× reduction in execution time over

other aligners. Second, the fraction of mapped reads increases by 1.1% by using 25-mers

instead of 32-mers. However, the overall variant detected by 25-mers not increase. In terms

of the overall F-score as shown in Table 2.7, the 25-mer case provides similar accuracy to the

32-mer case. This is because compared to BWA-MEM and Minimap2, it still mapped 1% less

reads.

25-mer 32-mer
0

10000

20000

30000

40000

50000

Se
co

nd

25-mer 32-mer
0

20

40

60

80

100

Pe
rc

en
t(%

)

seeding
embedding
extension

Figure 2.8: the percent of seeding, embedding and extension over the total processing time.

2.6.3 Benchmark with real reads from DNA-based storage

Apart from being a mapper and aligner for genomic data, Accel-Align can be used to determine

the original reference oligos of the reads sequenced from DNA-based storage. By aligning

the reads to the reference oligos, it can be used to study the error characterization, which is

30

2.6 Results

often the first and important step to understand the DNA synthesis and sequencing pattern.

To perform the comparison, we sequenced 44k oligos of 200bp and generated 43M reads

in the work [49]. Subsequently, we aligned the 43M reads to the original oligos with Accel-

Align [50, 51] and BWA-MEM (v0.7.17; [28]. The alignments were performed on a local server

equipped with a 12-core CPU Intel(R) Core(TM) i9-10920X clocked at 3.50GHz, 128GB of RAM.

Table 2.8: Comparison between BWA-MEM and Accel-Align.

BWA-MEM Accel-Align AA-align-free

Exec. time (HH:MM:SS) 00:08:11 00:05:03 00:04:16
%Mapped 99.9988% 99.9999% 99.9999%

Table 2.8 shows that Accel-Align saves 60% time than BWA-MEM, and Accel-Align alignment

free mode (introduced Sec.2.6.1) saves 20% alignment time in addition. We further break

down the Accel-Align processing time and find that 80% time is consumed by dumping the

SAM out file (27GB). Accel-Align only consumes 42 second if we skip the output writing step.

It indicates that although the alignment performance scales up with multiple threads, writing

the output to disk can be the bottleneck since it allows only one thread to write output to avoid

collision.

Table 2.8 also shows that both aligners aligned more than 99.99% reads to a reference oligo,

indicating a very high quality of the generated read set, while Accel-Align slightly aligned

0.0011% more. We also report the error distribution in Figure 2.9 and Figure 2.10 which shows

a histogram of edit distances between the reads and references. As can be seen, 96.97% reads

have edit distance less than 10, indicating that the error rate is less than 6%.

Figure 2.11 and Figure 2.12 show the coverage histogram (number of oligos that have a given

coverage). Each reference oligo is covered by at least one read, with a median coverage of

951× for both BWA-MEM and Accel-Align. We deliberately sequenced the oligos at such high

coverage to test recovery at various coverage levels.

Among all these studies, we find that Accel-Align have similar result compared with BWA-

MEM. Thus, we can adopt it later to accelerate the error characterization when we study

DNA-based storage, for example, we used it in our last work [49].

31

Chapter 2. Accel-Align: a Fast Sequence Aligner

0 10 20 30 40
Edit distance

0.0

0.5

1.0

1.5

2.0

2.5
Nb

. o
f r

ea
ds

1e7

Figure 2.9: Distribution of edit distance with BWA-MEM.

0 10 20 30 40
Edit distance

0.0

0.5

1.0

1.5

2.0

2.5

Nb
. o

f r
ea

ds

1e7

Figure 2.10: Distribution of edit distance with Accel-Align.

32

2.6 Results

0 500 1000 1500 2000 2500 3000
Coverage

0

100

200

300

400

500

600

700

Nb
. o

f o
lig

os

Figure 2.11: Histogram of coverage across oligos with BWA-MEM.

0 500 1000 1500 2000 2500 3000
Coverage

0

100

200

300

400

500

600

700

Nb
. o

f o
lig

os

Figure 2.12: Histogram of coverage across oligos with Accel-Align.

33

Chapter 2. Accel-Align: a Fast Sequence Aligner

2.7 Discussion

As sequencing technologies continue to increase read length while improving throughput and

accuracy, we believe that randomized embeddings open up new avenues for optimization that

cannot be achieved by using edit distance. We implemented Accel-Align and showed that it is

up to 3× faster than Minimap2, 9× times faster than BWA-MEM, and 12× times faster than

Bowie2, while providing comparable accuracy. Accel-Align clearly demonstrates the potential

of using embedding for short-read sequence alignment. The SEE method used by Accel-

Align is a design principle that is parameter free, applicable to any sequencing technology,

and can deal with both indels and mismatches without requiring any customization. Further,

the benefit of SEE methodology and low-distortion embedding are not limited to short-read

alignment; any computational biology problem that is limited by the overhead of edit distance

can benefit from embedding. As embedding transforms strings from edit to Hamming regime,

computational tools like Locality Sensitive Hashing can also be applied on the resulting strings.

Thus, the techniques presented in this paper have a much broader scope as they can be

used for other applications like spliced RNA-seq and bi-sulfite alignment, multiple sequence

alignment, and even sequence assembly.

34

Chapter 3

Edit Similarity-Based Decoder in

DNA-based Storage

3.1 Introduction

The growing adoption of Big Data Analytics and Artificial Intelligence has led to an explosion in

the rate of data generation and storage. A recent survey by the International Data Corporation

reports that the digital datasphere is forecast to grow to 125 zettabytes by 2025 [52] and is

anticipated to exceed silicon supply in 2040 [53]. As traditional storage media is unable to keep

pace with the rate of data growth [33], synthetic DNA has become an increasingly attractive

archival storage medium due to its high density, stability, longevity and absence of technical

obsolescence compared with electronic media [7, 35, 54, 55, 56].

In most prior work on DNA-based digital storage, DNA synthesis is based on phosphoramidite

chemistry, a DNA synthesis technology that has been optimized over several decades to per-

form highly-accurate, base-by-base synthesis of short DNA strands by making phosphodiester

bonds between nucleotides. There are three Key Performance Indicators (KPIs) that can be

used to evaluate the efficiency of DNA synthesis:

• bits written per cycle (also called logical density [57, 58]),

• bits written per oligo,

• coupling reactions per oligo.

The efficiency of writing data to DNA depends on the number of synthesis cycles (x) to grow

the strand and available repeating units (m) for addition at each cycle. The information

capacity of the oligo (N bits) can be derived as

N (bi t s) = x × l og2m (3.1)

While base-by-base synthesis methods can perform 200 or more coupling cycles(x), the

35

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

number of available subunits to add at each cycle is four (nucleotides), thereby limiting bits

per synthesis cycle to two, and the information capacity of an oligo to a few hundred bits.

While the quality, quantity, cost, and rate of DNA synthesis provided by base-by-base chemistry

is suitable for biological research, it is far from ideal for the DNA storage use case. This has

resulted in synthesis emerging as a major bottleneck in DNA storage.

In this work, we introduce the composite motifs framework to scale logical density well beyond

the limit of 2 bits per synthesis cycle. Composite motifs are inspired by recent advances in

motif-based approaches to DNA data storage [49,59] that use short oligonucleotide sequences,

also referred to as motifs, that are drawn from a fixed library as building blocks for assembling

longer oligos. Using a motif library of M motifs, one can scale logical density by storing

log2(M) data bits per synthesis cycle. The use of a fixed library of motifs similar to a typesetting

press can also simplify miniaturization and automation. The composite motif framework

builds on the benefits of motif-based DNA storage, and further improves logical density

by exploiting sequencing multiplicity inherent in DNA synthesis by encoding data using a

combination of motifs rather than individual motifs.

In this work, we show that a DNA storage system based on composite motifs can provide an

order of magnitude improvement in logical density over state-of-the-art systems by imple-

menting an end-to-end prototype system as shown in Figure 3.1. In doing so, we develop new

encoding and enzymatic motif ligation techniques that can scale DNA synthesis in the DNA

write pipeline, and assembly-free, Nanopore-based motif read out and alignment-based motif

decoding techniques that can scale DNA sequencing in the DNA read pipeline.

Figure 3.1: Data writing and reading pipeline of DNA storage.

36

3.2 Methods

3.2 Methods

3.2.1 Composite Motif-based Encoder

A composite motif is a representation of a position in an oligo sequence that uses a com-

bination of motifs drawn from a fixed motif library to encode data as shown in Fig 3.2 and

Fig 3.3. For example, assuming a library of 32 motifs, and a combination factor of four, there

are C (32,4) = 35960 possible unique combinations with which we can encode 15 (l og235960)

bits of data per composite motif. Composite motifs increase logical density by expanding the

motif library using combinations of motifs without increasing the volume of motifs. As current

synthesis platforms already use a high degree of sequence multiplicity (multiple copies of DNA

molecules are synthesized per oligo), composite motifs can also be integrated into current

platforms without any extra cost as they can exploit sequence multiplicity to scale logical

density. Higher logical density also leads to a reduction in the length of DNA required to store

the same amount of data, alleviating issues related to long oligo synthesis.

Figure 3.2: Composite motifs increases the logical density in DNA-based storage. A block of
binary data is encoded to a sequence comprising a set of oligos with same address payload
motifs. The composite of payload motifs from the same vertical position represents the binary
data together.

In order to demonstrate the feasibility of using composite motifs, we developed a DNA storage

system that uses composite motifs as building blocks. Fig 3.1 presents the read/write pipeline

of our system. On the writing side, digital data is encoded into oligos containing composite

37

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

Figure 3.3: Composite motifs can be generated by mixing the motifs during each synthesis
cycle. A: address motif, P: payload motif. Example: A0–[P00,P10]–[P01,P11]–[P02,P12].

motifs using a motif encoder. Writing a composite motif at any given position of an oligo

sequence is done by mixing multiple motifs during the synthesis procedure to synthesize

multiple DNA molecules that contain the corresponding combinations of motifs using Bridged

Oligonucleotide Assembly (BOA) (Sec.3.2.2). On the reading side, we read composite motifs

by amplification-free sequencing of multiple DNA molecules using Direct Oligonucleotide

Sequencing (DOS) (Sec.3.2.3), and then decode the data using our new motif-based consensus

caller called Motif-Search(Sec.3.2.4).

3.2.2 Bridged Oligonucleotide Assembly

Oligo with a format of A0–P0 was realised with (i) a set of 8 ssDNA oligo sequences of 24-bases

in length, representing A0; and (ii) a set of 32 ssDNA oligo sequences of 50-bases in length,

representing the common spacer motif and each P0 motif. The sequences of motifs in these

oligos were selected from 25mer DNA barcodes. A set of 8 ssDNA oligo sequences of 50-bases

in length were designed to function as (i) a bridge between A0 and P0 for ligation; and (ii) an

adenosine overhang on the 3’ end to facilitate AMX sequencing adaptor ligation.

Phosphorylation. A pool of 32 oligos, representing the common spacer motif and each P0

motif, were 5’ phosphorylated using T4 PNK at a pool concentration of 300 pmol and reaction

scale of 50 uL, as per the vendor guidelines at 37°C for 40 minutes. A denaturation step was

performed to stop the phosphorylation at 65°C for 20 minutes.

Assembly. The 8 A0 oligos and 8 Bridge oligos are pooled at equimolar concentrations and

diluted to 25 uM final pool concentration. DNA assembly reaction was carried out by taking 2

38

3.2 Methods

ul of the P0 phosphorylation mix whose component is shown in Table 3.1 and 0.5 ul of the A0

+ bridge pool and ligated using using Blunt/TA master mix as per vendor guidelines listed in

Table 3.2.

The above reaction is incubated at 95◦C for 3 minutes and gradually cooled to room tempera-

ture.

Table 3.1: Reaction components and volumes for P0 phosphorylation

Component Volume

T4 PNK Rx Buffer 5 ul
ATP (10 mM) 5 ul
T4 PNK 1 ul
NFW 36 ul
P0 (300 pmol) 3 ul

Table 3.2: Volume composition for motif annealing reaction

Component Volume

A0 & Bridge (12 pmol) 0.5 ul
P0 phosphorylation Rx 2 ul
Blunt/TA master mix

3.2.3 Direct Oligonucleotide Sequencing

A key aspect of a DNA storage system, along with DNA writing performance, is the cost of DNA

sequencing and time taken to read data from DNA molecules. Nanopore sequencing enables

single molecule sensing capabilities and has the potential to create a low-cost, high-speed

DNA storage read head. The yield of a Nanopore (ONT) flowcell is dependent on the size

of the DNA to be sequenced. Small oligos result in a higher number of unoccupied pores

over time. ONT estimates that the minimum DNA size to load in a R9.4 flowcell is 200 bases.

Thus, prior work on DNA storage with Nanopore has relied on additional sample preparation

steps for short oligos that are manual and time consuming [60]. In particular, DNA assembly

methods were used to concatenate five or more DNA storage oligos into a longer fragment,

and PCR amplification is used to sufficiently increase sequencing throughput and coverage

for decoding.

We developed a method to enable direct sequencing of composite-motif-based oligos without

amplification or second-strand synthesis. As mentioned earlier, our oligos have only two

motifs concatenated by a spacer. Thus, we designed our eight bridge oligos to double in

role as adapters that will include an adenosine overhang after annealing to address(A0) and

payload(P0) oligos (Fig 3.6). The address motifs are 5’ phosphorylated which results in all

39

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

oligos in our pool having their 5’ end analogous to end-prepared dsDNA. Thus, these oligos

can readily ligate with the AMX sequencing adapters from ONT’s ligation sequencing kit (LSK-

109). The AMX adapters were attached to the oligos in a 10 minute reaction. Sequencing was

performed on a R9.4.1 flow cell for 4 hours. Basecalling was performed with both Guppy and

Bonito basecallers. The sequencing run generated 27,198 reads with an N50 of 192bp.

Sequencing sample preparation was carried out using LSK-109 kit. AMX sequencing adaptors

were ligated by mixing 2.5 ul of the assembly mix with 5 ul AMX and 5 ul Blunt/TA mastermix

from NEB and incubated for 10 minutes. The sample was then loaded into a R9.4.1 MinIon

flowcell and sequenced for 90 minutes. Basecalling was performed on the Guppy (v4.0.15).

3.2.4 Motif-Search Algorithm

Motif-Search works in two stages, inference and consensus calling. In the inference stage, it

maps each read to an inferred oligo. During consensus calling, it uses all inferred oligos to

produce a consensus set of inferred reference oligos.

Inference

The first task performed by Motif-Search is to extract one or more oligos from each read. There

can be several oligos in one read because of the incorrect segmentation by MinKNOW during

sequencing. Recall that an oligo is a set of motifs concatenated by spacers. Motif-Search

infers oligos by first locating the spacer positions and then mapping the portions of the read

between two spacers to the reference motifs to determine the payload and address motifs.

Inference works in three steps: i) segmentation to locate spacer positions, ii) mapping to

identify reference motifs between spacers, iii) overlap check to extract only oligos that do not

overlap with each other.

Segmentation. Segmentation determines the spacer positions. Since all spacers are identical,

their candidate positions can be located by k-mer seeding. We convert A, T, C and G into a

two-bit equivalent representation and build the index of the spacer by extracting all k-mers

of length four (found to be optimal experimentally). To process each read, we extract all

4-mers in the read, lookup the index, and collect positions with an index hit. The positions are

adjusted by the offset of the k-mer to get normalized positions.

To eliminate candidate positions with low confidence, we filter out the positions having less

than spacer _l eng th/k k-mer votes. As reads are error prone, indels can cause candidate

positions that should be identical to differ slightly by a few nucleotides. This could result in

candidates receiving fewer votes and failing the filter. For instance, given a spacer "ATCG-

TAGCAGT" (#1) and a read containing "ACGTAAAGCAG" (#2), among all the 4-mers of #2, only

40

3.2 Methods

the 4-mers "CGTA" and "GCAG" find the matched 4-mers in #1, and the normalized position

will be -1 and 1 instead of 0. Hence, we merge neighboring positions and represent them

by a centroid with a combined count. Regarding the previous example, we get the centroid

position zero with two votes and it passes the vote filtering. At the end of this stage, we have

all candidate positions for all spacers in a read.

In our experiment, each oligo has only one spacer. But in the general case, each oligo can

contain multiple spacers. From the structure of the oligo, we know that each oligo with M

motifs has M−1 spacers, with each spacer being spaced apart by a distance d equal to the sum

of the motif length and spacer length. In order to accommodate synthesis and sequencing

errors, these inter-spacer gaps can be slightly more or less than the motif length depending

on indel errors. Thus, we identify all possible chains of M −1 positions which are within an

expected distance threshold from each other.

As mentioned earlier, the candidate positions in these chains are approximate, as indel errors

can result in observed starting position differing from actual starting position by a few nu-

cleotides. We rectify and refine these positions to tolerate indel errors by using randomized

embedding—a technique which has been demonstrated to be a scalable approach for mapping

reads to references in genomic sequence alignment [50]. More specifically, for each candidate

position, we extract a spacer-length portion of the read at that position and at several positions

around that position. We embed each extracted read fragment using a randomized algorithm

and compare with the embedded version of the original spacer motif using hamming distance.

We select the shifted position with least embed distance as the final candidate position. As the

number of candidate positions can be large, the use of embedding helps us to avoid expensive

edit distance computations between the read and spacer motif, and use hamming distance

between their embedded versions to rectify candidate positions.

Mapping. Given a chain of refined candidate positions, we can extract the potion of each read

between two neighboring spacers. These portions correspond to address and payload motifs.

The next step is to identify the original motif for each observed motif in the read. This can be

translated to a sequence mapping problem by considering the original motif library as the

reference and the observed motif in the read as the query. Therefore, we use the ksw-lib([61])

to select the optimal original motif with the highest mapping score for each observed motif.

After this step, we have multiple chains of mapped motifs.

Overlap check. As we consider all possible chains, some chains might overlap each other.

However, while each read can cover multiple oligos due to DOS, each nucleotide in a read

should map to only one motif/oligo. Thus, the final step in the inference stage is to identify the

optimal set of chains that do not overlap with each other. To do this, we traverse the chains to

identify overlapping sets. For each overlapping set, we pick a chain with the highest mapping

score such that no chain appears in two sets.

41

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

Consensus Calling

Each original encoded oligo can be synthesized with duplication. Library preparation steps,

like PCR, also amplify the pool of oligos by creating multiple copies of each oligo to ensure

successful sequencing. Thus, an original oligo can be covered by multiple reads. For each

read, the inference stage identifies the optimal set of non-overlapping chains. As the final

step, we apply consensus calling to group similar motif chains inferred from the inference

stage, and obtain consensus to achieve higher confidence. We know that oligos do not have

logical addresses and need an index to identify the serial information in DNA-based storage.

This index information can not only order the oligos but also be used as the group key during

the consensus calling. We do this by first clustering the inferred oligos using their address

motifs. Then, we select the most frequent motifs at each position as the final consensus motif

as shown in Fig 3.4.

Figure 3.4: Example showing consensus calling with seven inferred oligos with the same
address motif A0 . The payload motifs are decoded as P00, P01 at the first position, P11, P12 at
the second position and P20, P22 at the third position which are the topN (N is the number of
oligos in each sequence) frequent motifs in each column position.

3.3 Results

3.3.1 Encoding

In order to demonstrate the feasibility of composite motifs, we stored the text “HelloWorld”

using our composite-motif-based DNA storage system. The sequence design rules for base

motifs that are used to derive composite motifs are similar to those of DNA barcode design.

Thus, we started with DNA sequences designed in prior work [62] to select 96 25nt base motifs.

Using a combination factor of 32, we developed a composite motif set of 3×1025 composite

motifs (C (96,32)). Thus, each composite motif, and hence, each synthesis cycle, can store

84-bits of data (log2C (96,32)). As our input text is 10 bytes, it can be stored using a single DNA

sequence with one composite motif. However, in order to test precision and recall of methods

in the read pipeline, we stored the same data eight times using eight sequences. We index each

42

3.3 Results

Figure 3.5: The general oligo structure design. A: address motif, P: payload motif, S: spacer, B:
bridge.

Figure 3.6: Bridged oligonucleotide assembly. (a) The general oligo structure design. (b) The
experimental oligo structure design. A: address motif, A’: reverse complement of A, P: payload
motif, S: spacer, B: bridge, O: overhang.

sequence using eight unique 24nt address motifs that are separate from the 96 payload motifs.

3.3.2 Bridged Assembly of Composite Motifs

Each of the eight encoded sequences is then used to synthesize 32 oligos producing a total

of 256 oligos. The address motif is repeated in each molecule, while the composite motif is

expanded to generate a variant combination using 32 payload motifs. Oligos are synthesized

using template-directed ligation. This method utilises single-strand sequences, referred to

as bridge oligos, to facilitate the ligation of payload motifs to address motifs. In the general

case, an oligo would contain one or more address and payload motifs as shown in Fig 3.2.

As any motif can be ligated with any other, designing bridge oligos for each possibility is

suboptimal and not scalable. We solve this problem by using a spacer motif. When the motif

library is designed, each 25nt motif is extended on both 5’ and 3’ ends with 12nt and 13nt

nucleotides from the 3’ and 5’ ends of the spacer motif (Fig 3.5). While this increases the length

of each synthesized motif from 25nt to 50nt, it does not affect the number of motifs, and more

importantly, it makes it possible to design the bridge oligo to be complementary to a single

spacer. By doing so, the bridge oligos can hybridise to the spacer portions at the 3’ and 5’ ends

of two payload motifs while the enzyme ligates them.

For the purpose of our experiment, as we have only 2 motifs per oligo, we modified this by (i)

prepending the entire spacer sequence to the 5’ end of each payload motif, and (ii) designing

eight (instead of one) bridge oligos, each of which is complementary to both the spacer

sequence and one of the eight address sequences (Fig 3.6). By doing so, the eight bridge motifs

43

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

also double in role as adapters during sequencing. The spacer-extended 32 payload motifs,

eight address motifs, and eight bridge oligos were all synthesized base-by-base by Integrated

DNA Technologies (IDT). The oligos were synthesized by selecting, annealing and ligating

together the corresponding address–payload motif pairs. The inputs to the reaction comprise

all motif oligos, bridge oligos, enzymes and ligation buffer. These reactions proceeded to

produce ligated oligos through programmed temperature incubation and cycling, where

each bridge oligo facilitates the ligation of a specific address motif with a payload motif via

complementary annealing. We use the resulting oligo pool to test the feasibility of decoding

the identity of motifs from an enzymatically-ligated, Nanopore-basecalled readout.

3.3.3 Error Characterization of Direct Nanopore Sequenced Reads

Despite having several reads, we found that the reads were low quality. From the read length

distribution in Fig 3.7.a and Fig 3.7.b, we see that the median read length with Guppy and

Bonito is 166nt and 110nt. Thus, more than half reads are 48% longer than original oligos as

several reads were observed to contain multiple oligos in a single read. On further analysis, we

identified wrong event detection by MinKNOW to be the root cause of the problem. When

sequencing oligonucleotides on an ONT R9.4 flowcell, the movement of bases through the pore

leads to a continual change in current, known as the “squiggle”, that is recorded by MinKNOW.

MinKNOW processes the squiggle into reads in real-time, and each read is supposed to

correspond to a single strand of DNA. However, as our oligos were below 200 bases, we

observed that sequencing our oligos generated low quality reads due to incorrect segmentation

by MinKNOW which would earmark empty signals as valid reads, and created reads with

merged squiggles for more than one strand of DNA.

0 100 200 300 400 500
Length of reads/nt

0

50

100

150

200

250

300

Nu
m

be
r o

f r
ea

ds

a. Guppy

0 100 200 300
Length of reads/nt

0

50

100

150

200

250

300
b. Bonito

0 50 100 150 200
Length of reads/nt

0

1000

2000

3000

4000

5000

c. SaberSplit
Histogram of read length

Figure 3.7: Distribution of read length with Guppy basecaller, Bonito basecaller and Bonito
basecaller post-processed with SaberSplit.

Due to the presence of multiple oligos per read, we cannot directly align the reads to the

reference oligos. So we did reverse alignment to study error characteristics and coverage

distributions. We regard each read as a “reference” and build an index per read. Then, we treat

44

3.3 Results

each oligo like a “read”, and align it to each reference. Thus, for each read, we get an alignment

file that contains one record per oligo. To identify and retain only good alignments, we filter

the alignments using the following criteria: (i) MAPQ > 10 (90% alignment confidence), ii) all

alignments in a read should correspond to one orientation (no mixed forward and reverse

alignments), and iii) there should not be any overlap when multiple oligos are mapped in a

single read; only the alignment with the highest alignment score is kept if several alignments

overlap each other. With this approach, we get the set of oligos that we can identify assuming

we have full knowledge of the original oligos.

Using Minimap2 [30] for reverse alignment, we computed the substitution, insertion, deletion

and soft-clipping rate per position (Fig 3.8). As can be seen, the rate of soft clipping is very high

at the extremities (especially 3’ end)due to the very high error rate caused by BOA and DOS.

In the middle portion of the read, the rates of error types vary, with no one error type being

dominant over others. These results are in sharp contrast to error statistics published in prior

work on DNA storage [7, 8, 35, 63, 64], where substitution errors have been shown to be more

likely than indel errors, and overall error rates are at least 10× lower (Fig 3.9 and Table 3.3).

The only exception is work on photolithographic synthesis [1], where the error rates reported

were also high.

0 25 50 75
position

0.0001

0.0010

0.0100

0.1000

1.0000

er
ro

r r
at

e

Substitution
Insertion
Deletion
Soft-clipping

Figure 3.8: The substitution, insertion, deletion and soft-clipping rate per position of Guppy
reads.

Table 3.3: The substitution (SUB), insertion (INS) and deletion (DEL) rate of SOTA work.

Goldman et al. Grass et al. Erlich et Zielinski Organick et al. Antkowiak et al. This Work

SUB 0.00088 0.005850 0.003870 0.005400 0.026000 0.011411
INS 0.00036 0.000230 0.000211 0.004500 0.057000 0.007817
DEL 0.00036 0.000230 0.000211 0.001500 0.062000 0.007485

The substitution (SUB), insertion (INS) and deletion (DEL) rate of SOTA work. Data for Goldman et al. [7], Grass et
al. [8], Erlich & Zielinski [35], Organick et al. [63] and Antkowiak et al. [1] was taken from Antkowiak et al. [1].

45

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

Substitution Insertion Deletion0.0001

0.0010

0.0100

0.1000

Er
ro

r p
ro

ba
bi

lit
y

Goldman et al.
Grass et al.
Erlich & Zielinski
Organick et al.
Antkowiak et al.
This Work

Figure 3.9: Comparison of errors in previous work.

3.3.4 Correcting Event Misdetection with SaberSplit

In the real DNA storage scenario, the original reference oligos must be inferred from erroneous

reads automatically. Current read clustering and consensus callers used for this purpose

assume that a read covers only a single oligo. To be able to use them, we developed SaberSplit, a

tool that reduces the errors caused by incorrect segmentation by splicing squiggles to separate

out reads belonging to different oligos. With SaberSplit, the original reads are chopped to

102,221 shorter reads of median length 25nt as shown in Fig 3.7. Then, we tried to use state-of-

the-art clustering programs and position-wise consensus callers [65, 66] to infer the original

oligos from both raw Bonito/Guppy reads, and SaberSplit processed reads. However, due to

the high error rate, no oligos could be inferred in all cases.

To study SaberSplit further, we aligned the chopped reads to reference oligos with Minimap2.

We compared the alignment statistics for raw Guppy, Bonito and Sabersplit processed reads

in the Table 3.4. Guppy reads produced the highest number of alignments, with 102% more

reads being aligned than Bonito. This could be explained by the fact Bonito is optimized to

work better with longer reads, making it less suitable for short ones. Surprisingly, SaberSplit

performed the worst with 9.5% fewer reads than even Bonito. This showed us that splitting

reads amplifies the error rate and makes the case for a consensus caller that can directly work

with raw reads covering multiple oligos.

Table 3.4: Statistic of the reads

Nb. reads Nb. aligned reads Median read length

Guppy 27198 9960 166
Bonito 27198 4901 110

SaberSplit 102221 4434 25

46

3.3 Results

6 13 20 27 34

Coverage

225

230

235

240

245

250

255

260

265

Nb
. o

f o
lig

os

233

253
256 256 256

228

250

255 255 255

Motif Search
Minimap2

Figure 3.10: Number of oligos correctly reconstructed. Motif-Search fully recovers all oligos at
20× or higher coverage. Minimap2 misses one oligo even with 34× coverage.

3.3.5 Inference and Consensus with Motif-Search

To reconstruct the original data from noisy reads, we developed a new reconstruction algo-

rithm called Motif-Search that meets two requirements:

• guarantee successful recovery despite high error rate,

• directly work with raw, basecalled, Nanopore reads that might contain multiple oligos

per read.

Motif-Search differs from prior consensus callers that it is structure aware—while other callers

view an oligo as a random collection of nucleotides, Motif-Search exploits the fact that our

oligos are a collection of payload motifs separated by spacer motifs, with all motifs being

drawn from a predefined, finite library. A detailed description of the Motif-Search algorithm is

presented in Section 3.2.4. Here, we present our analysis results that demonstrate the ability

of Motif-Search to accurately infer original oligos.

Fig 3.10 shows the true positive (TP) count (number of inferred oligos that are in the original

set) of Motif-Search and Minimap2-based reverse alignment method at various coverage levels

(lower sequencing coverage simulated via subsampling reads). It is important to note that

47

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

Table 3.5: Processing time (in second) for real dataset with 12 CPUs

6× 13× 20× 27× 34×
Motif search exec. time 0.15 0.24 0.38 0.49 0.64
Minimap2 index time 13 27 41 55 68
Minimap2 align time 16 33 50 67 84
Reverse alignment exec. time 29 60 91 122 152

Minimap2 needs the original oligos which would not be available in the real DNA storage

use case. Thus, Minimap2 results are used as a baseline for comparison rather than a real

decoding solution. First, Motif-Search is able to fully recover all oligos at 20× coverage. Reverse

alignment misses one oligo even with 34× coverage. Second, Motif-Search reconstructs

more oligos than reverse alignment at all coverage levels. The under-performance of reverse

alignment relative to Motif-Search is because all the reads covering the missing oligo had a

very poor alignment and were filtered out.

Table 3.5 shows the execution time of Motif-Search and reverse alignment. Both support

multi-threaded operation. On a 12-core Intel(R) Core(TM) i9-10920X CPU clocked at 3.50GHz,

128GB RAM with a 1TB SATA SSD, Motif-Search is 190–250× faster than Minimap2 due to the

fact that Minimap2 needs to build an index for each read and align each oligo to each read

while Motif-Search is custom-designed for the motif-based oligo reconstruction use case.

In order to investigate false positive (FP) behavior of Motif-Search and reverse alignment,

we increase the motif library size. For a given set of address and payload motifs, we create

oligos containing all possible combinations of motifs. For instance, if the motif set size is

64(addr ess)×256(payload), we generate 16,384 possible oligos. We then use Minimap2 to

align each oligo to each read. We use the same reads as before which were sequenced from

256 original oligos. As the motif set is expanded, Motif-Search can now report an inferred oligo

which is not in the original set but from the expanded set, which would be labelled a FP.

Fig 3.11 shows the TP and FP counts for various expanded motif sets. First, note that Motif-

Search is able to reconstruct all original oligos when sequence coverage reaches 27× for all

motif set sizes. When the sequence coverage is low, Motif-Search is able to reconstruct more

true positive oligos than reverse alignment even though it is unaware of the reference oligos.

Second, as the motif set size increases, the number of FP for both approaches rise. Since the

sequences are error-prone, both approaches make errors identifying the correct references

from reads. However, the FP rate of Motif-Search is still lower than reverse alignment. While

missing TP is an issue as it can lead to data loss, extra FP is not a problem as it can easily be

discarded by using auxiliary metadata and/or error-control coding.

These results clearly demonstrate that (i) our motif-based, BOA method can successfully

48

3.3 Results

TP

FP64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f.
25

6*
10

24

f.
51

2*
20

48

h.
 1

02
4*

40
96

6 cov

N
b.

 o
f o

lig
os

64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f.
25

6*
10

24

f.
51

2*
20

48

h.
 1

02
4*

40
96

13 cov

N
b.

 o
f o

lig
os

64
32

0
32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f.
25

6*
10

24

f.
51

2*
20

48

h.
 1

02
4*

40
96

20 cov

N
b.

 o
f o

lig
os

128
96
64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f.
25

6*
10

24

f.
51

2*
20

48

h.
 1

02
4*

40
96

27 cov

N
b.

 o
f o

lig
os

160
128

96
64
32
0

32
64
96

128
160
192
224
256

a.
 8

*3
2

b.
 1

6*
64

c.
 3

2*
12

8

d.
 6

4*
25

6

e.
 1

28
*5

12

f.
25

6*
10

24

f.
51

2*
20

48

h.
 1

02
4*

40
96

34 cov

N
b.

 o
f o

lig
os

Minimap2

Motif Search

Figure 3.11: The number of true positive and false positive oligos reconstructed by Motif-
Search and Minimap2 for different sequence coverages with expanded motif sets. i) Motif-
Search reconstructs more true positive oligos than reverse alignment even without the knowl-
edge of reference oligos. ii) False positive rises for both approaches when the motif set size
increases.

49

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

encode information in DNA, and (ii) with sufficient coverage, Motif-Search is capable of

reconstructing all original oligos, and thereby ensuring successful decoding, despite errors

introduced by enzymatic BOA and DOS.

3.3.6 Read–Write Cost Comparison

The cost of storing data on DNA comes from two aspects, namely, the cost of sequencing for

reading data and the cost of synthesis for writing data. Composite motifs has the potential

to reduce the synthesis cost, thanks to the increase in logical density. For example, each

synthesis cycle encodes 84 bits (log2C (96,32)) in our composite motif experiment. A native

motif-by-motif approach, in contrast, can only encode 6 bits per cycle with the same 96 motifs,

and the traditional phosphoramidite approach can encode 2–3.37 bits per cycle depending on

whether standard or degenerate bases are used for encoding. This 14–42× increase in logical

density will lead to a proportionate reduction in synthesis cost over conventional synthesis

approaches, as fewer synthesis cycles and fewer oligos are required to encode the same digital

data. Since current motif-based synthesis techniques already use a high degree of sequence

multiplicity, composite motifs can be easily integrated by generating a variant motif mixture

pool without much added costs. The physical density of our approach is 3.36bits/nt, which is

also higher than the physical density of conventional base-by-base DNA storage solutions (2

bits/nt) and comparable to degenerate base approaches (3.37 bits/nt [57, 58]).

While our solution improves logical density and synthesis costs, it does so at the expense

of higher read costs. Fig 3.12 presents a comparison of the cost to read 1MB of data stored

in DNA of our approach and other related work [1, 7, 8, 35, 63, 67] based on the cost of DNA

sequencing (0.006$ per megabase) reported by National Human Genome Research Institute

(NHGRI) in August 2021 [5]. The detailed calculation is included in the Table 3.6. Clearly,

our work increases read cost compared to prior work except Antowiak et al. This is expected,

as these prior approaches to DNA storage are able to fully recover the data at much lower

sequencing coverages of 5× and 10× due to (i) the use of low-error rate array synthesis and

high-throughput sequencing with extensive library preparation, and (ii) the use of error-

control coding. Our current work, in contrast, focuses on (i) tolerance to errors introduced by

enzymatic ligation and direct sequencing without any library preparation , and (ii) complete

recovery without additional error correction. As synthesis is approximately 80,000 times more

expensive than sequencing [35] and the read cost continues to drop due to rapid advances in

sequencing, we believe that it is more important to focus on reducing the write cost, which is

a bottleneck today in DNA data storage.

50

3.3 Results

An
tk

ow
ia

k
et

 a
l.

Bl
aw

at
 e

t a
l.

Er
lic

h
an

d
Zi

el
in

sk
i

Go
ld

m
an

 e
t a

l.

Gr
as

s e
t a

l.

Or
ga

ni
ck

 e
t a

l.

th
is

wo
rk

0

20

40

60

80

100

120

Co
st

 fo
r r

ea
di

ng
 1

M
B

($
)

Figure 3.12: The cost of DNA sequencing to read 1 megabyte data. Our work increases read
cost compared to prior work except Antowiak et al [1].

Table 3.6: Sequencing cost projection

oligo length nb of reads data size sequence cost ($/MB)

Antkowiak et al. 60 30000000 99103bit 108
this work 74 640 80 bit 29.8

Grass et al. 159 1858027 679000 bit 21.9
Goldman et al. 183 7960000 5200000 bit 14.1

Blawat et al. 230 144475005 22MB 9.06
Erlich and Zielinski 200 750000 2.11 MB 0.43

Organick et al. 150 67241860 200MB 0.3

• The sequencing cost to read 1 Megabyte is simulated as the Equation 3.2.

r eadi ng _cost = ol i g o_leng th ∗nb_r ead s ∗ sequenci ng _cost_per _nt/stor ed_d at a_si ze (3.2)

• The oligo_length includes the length of primers.

• The sequencing_cost_per_nt takes the value 0.006$ per megabase reported by National Human Genome
Research Institute (NHGRI) in August 2021.

• Data for Goldmann et al. [7], Grass et al. [8], Erlich et al. [35] and Organick et al. [63] was taken from
Organick et al. [63].

51

Chapter 3. Edit Similarity-Based Decoder in DNA-based Storage

3.4 Discussion

In this work, we demonstrated the feasibility of using composite motifs to scale the logical

density of DNA storage by an order of magnitude. We developed synthesis (BOA) and sequenc-

ing (DOS) methods customized for writing and reading oligos that regard composite motifs as

building blocks, and showed that the error characteristics of these methods are different com-

pared to state-of-the-art techniques. We developed a new motif-based consensus calling and

oligo inference method (Motif-Search) that is able to recover all data at coverage as low as 20×.

Our future work aims to scale up the methods presented in this paper on several fronts. First,

to simplify the task of motif design, we built on an existing library of 25nt primers leading to a

physical density of 3.36bits/nt. Future work will improve this further by optimizing the motif

library. Second, we are working on reducing sequencing costs by adding error-control coding

optimized to our DNA storage channel to enable data recovery at a lower sequencing coverage.

Third, the short size of motif library, the library-preparation-free sequencing provided by DOS,

and the error-tolerant nature of Motif-Search all simplify end-to-end automation. Thus, we

are developing a fully automated DNA storage solution that can scale both oligo length and

number of oligos beyond what was presented in this work.

52

Chapter 4

Sequence Analysis for Random Access

in DNA-based Storage

4.1 Introduction

The end-to-end DNA storage workflow shown in Figure 3.1 demonstrates that the synthesized

DNA oligos have to be sequenced and decoded back into digital data in order to extract the

stored information. The prior work [7, 8, 35, 67, 68] has made an effort to sequence and decode

the entire amount of stored data. However, in many real scenarios, not total information but

only a fraction of information is expected to be read out. For example, clients request one

single table from one unique database, or extract one image from a collection. To response

these requests, it is redundant to sequence the entire amount of stored information. Also,

sequencing more reads usually leads to the extra decoding time. To decode the information

stored in the DNA-based storage, the decoder applies consensus calling to aggregate reads

originated from the same oligo together. This step is computationally intensive due to the

adoption of clustering and machine learning techniques. The redundancy introduced by

sequencing and decoding makes the DNA-based storage impractical when the amount of data

increases. Hence, random access is playing an important role to make large scale DNA-based

storage viable.

One common approach to realize random access is based on Polymerase Chain Reaction (PCR).

It is proved to be scalable enough to extract files of varying complexity and size reliably [63].

The PCR-based random access appends address sequences in each oligo such that PCR

reactions can use these addresses as primer targets to selectively amplify the desired strands

from a large pool of oligos. With this approach, the first step is to segment input data into

chunks and encode as oligos with fixed lengths appropriate for the current DNA synthesis and

sequencing platforms. Then, address sequences are appended to individual data-encoding

oligos in the storage pool. During PCR reactions, these addresses are used as primer targets and

only the desired strand are selectively amplify. Thus, by associating addresses, this approach

can be used to randomly retrieve a fraction of data from a DNA pool.

53

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

Figure 4.1 shows a PCR-based random access example which selectively retrieves the strands

started with the primer A′. Ideally, we desire to only have the strands starts with target primer

A′ in the final pool, such as the strand #1 and strand #2. Nevertheless, due to the improper

designed primers or PCR procedure, sometimes the primers can bind to the improper location

and make the copies of the wrong oligo. This phenomenon is called mispriming or improper

binding. For instance, the primer B ′ in the strand B ′−B is attached to primer A′ and it leads

to extra strands (strand #3 and strand #4) in the final pool.

Figure 4.1: PCR-based random access example.

Most studies associate the address sequences for individual file which is an uni-dimensional

one-primer-per-file approach enabling to randomly retrieve a single file from a DNA pool.

However, such uni-dimensional approach is not scalable for large DNA databases due to

several major limitations.

First, it is mandatory to take into account the biological restrictions during primer design.

Given the primer length of N , it is possible to design 4N primers theoretically. However, it is

important to take into account following aspects to ensure the specificity of random access in

large DNA databases.

• The GC content, which is the percentage of bases in a sequence that are either guanine

or cytosine. Synthesis and sequencing errors are known to be exacerbated by either an

excessive or inadequate GC content.

• Homopolymers can introduce a higher error rate during the synthesis and sequencing.

The primers with single-nucleotide repetitions should be avoid [69, 70].

• The hairpin loop, which is the DNA molecule fold back on itself if several adjacent bases

are complementary to each other. The hairpin structure should be eliminated in the

primers.

54

4.2 Multi-dimensional Data Addressing

• The primers are distinct from each other. The edit distance among the primers should

be large enough to minimize the mispriming.

These biological restrictions further limit the number of possible primers within a particular

length budget.

Second, one-primer-per-file approach is not applicable for an archive with many small files.

For instance, assuming a DNA archive with 1 million small files of size 1MB, 1 million of

distinct primers need to be designed. Given the biological limit, the primer should contain at

least 10 (l og41000,1000) nucleotides to produce 1 million distinct primers. As we mentioned

earlier, the oligo is limited to few hundred nucleotides in length due to the synthesis limitation.

When the number of nucleotides in the primer increases, the number of nucleotides remaining

available to store the payload data decreases. Massive small files lead to the increment of

primer length dominating a non-significant portion of the oligo. As a result, it impacts the

storage density.

Third, it does not allow the reuse of primers. Hence, it limits in terms of the type of access

paths that can be supported, as only one file can be randomly accessed at a time. It requires

multiple rounds of PCR with corresponding primers to retrieve a set of related files which is

costly and inefficient.

4.2 Multi-dimensional Data Addressing

To overcome the limitation of uni-dimensional data addressing, we propose a multi-dimensional

data addressing methodology inspired by prior work [71, 72, 73, 74]. In our design, a pool of

data oligos is organized in a three-dimensional hierarchy Collection – Object – Extent. For

instance, one can store a file system by mapping a directory to a collection, a file to an object,

and a chunk of a file to an extent. Similarly, a relational database can be stored by mapping a

database to a collection, a table to an object, and a column of a table to an extent.

Data is encoded to represent this hierarchy by having each oligo containing two components,

namely, a data payload and a collection of access primers as shown in the Figure 4.2. The data

payload refers to the quaternary-encoded input binary data that needs to be archived in DNA.

It is similar to previous encoding design and do not provide any random access capability. The

access primers, in contrast, are specifically added to achieve complex access paths.

Figure 4.2: Oligo structure.

55

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

Irrespective of how data is grouped in the Container–Object–Extent hierarchy, the encoding

process must ensure that different primers are used to distinguish oligos at each level of the

hierarchy. However, within any level of the hierarchy, it is possible to reuse primers. For

example, let us consider a database archival use case where we map a database to a Container,

a table to an Object, and a column to an Extent. Different databases archived together must

use different Container Target Primers (CTP). Similarly, different tables within a database must

use different Object Target Primers (OTP). But tables across databases can use the same Object

primer. Similarly, different columns within a table must use different Extent Target Primers

(ETP), but columns in different tables can reuse an Extent primer.

Given N primers, our design could encode N × (N −1)× (n −2) random accessible units while

the uni-dimensional data addressing could encode N random accessible units. This generic

hierarchy scales the random access ability and is sufficient to express several higher-level

access paths in the future. Arranging data this way enables several helpful access paths:

• All objects belonging to a collection can be retrieved using a single PCR round with the

right CTP.

• All extents from a specific object in a specific collection can also be retrieved in a single

PCR round by using the appropriate CTP–OTP pair.

• One specific extent can be retrieved using a nested PCR round by first using CTP–OTP

pair to amplify extents belonging to an object, and then using the CTP–ETP pair to

amplify a specific extent.

In this work, we want to study the effectiveness of multi-dimensional addressing. First, we

start by considering file based addressing which attach the primers per file. We show that it

suffers from mispriming and PCR bias. The data is either under or over represented after the

PCR. Then, we propose the block-based addressing for DNA-based archives to solve these

problems. The primers are elaborated designed and attached to each fixed size block. It

is shown that the mispriming and PCR bias are eliminated in the block-based addressing

experiment.

4.3 File-based Random Access for Databases

4.3.1 Database Design

In the file-based random access experiment, the primers are attached to each file. In order

to test file-based addressing, we stored three databases, namely SSB, TPCH and SYN. The

databases contain 5, 8 and 8 tables with 17 columns respectively. The resulting oligoarchive

56

4.3 File-based Random Access for Databases

has 5258 oligonucleotides of 110 bp as shown in Table 4.1. It is intentionally designed the SSB

and TPCH databases with variable table size while SYN database with uniform table size.

Table 4.1: File-based random access databases

SSB tables nb of oligos TPCH tables nb of oligos SYN tables nb of oligos

ssb-supplier 14 tpch-region 6 syn-t7 304
ssb-customer 16 tpch-part 18 syn-t5 312

ssb-part 42 tpch-orders 18 syn-t8 302
ssb-lineorder 2594 tpch-partsupp 10 syn-t3 302

ssb-date 34 tpch-nation 20 syn-t2 298
tpch-supplier 14 syn-t6 300
tpch-lineitem 34 syn-t1 298

tpch-customer 16 syn-t4 306

The oligonucleotides is structured from the concatenation of 5’-Universal Forward Primer-

Table Primer-Payload-Column Primer-Database Primer-Universal Reverse Primer-3’. The

Universal Forward Primer (UFP) and Reverse Primer (URP) are used for sequencing. Rest of

the primers are used as the address sequences to selectively amplify the desired strands. The

rest of the oligo sequence corresponds to the payload.

The longer the primers are, the less nucleotides are left in the oligo for the payload. Therefore,

we start to work with short primers to maximize the payload proportion. In our first experi-

ment, we chose primers of length 5nt derived from the Illumina adapter sequences to define

the database, table and column information. The primers are further selected to meet the two

requirements.

• GC content is between 0.4 and 0.6.

• Absence of hairpin structure. The primers should not contain complementary nor

inverse complementary sequence.

4.3.2 PCR Bias

As we mentioned earlier, both the synthesis and sequenceing steps introduce errors in DNA-

based storage. Multiple reads covering each oligo enables to infer the original oligo during

consensus calling despite errors. Suppose that PCR bias exists, especially when some informa-

tion is underrepresented, the corresponding data might be absent after decoding. This brings

recall of random access down. Hence, it is essential to study whether the selected data are

equivalently present before and after PCR amplification during the multi-dimensional data

addressing.

57

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

We begin the PCR bias study by defining the population fraction [75] as the individual oligo’s

share of the whole pool. The population fraction of a sequence i after k cycles of PCR among

n sequences, pk
i , is computed as

pk
i = N k

i∑n
j=0 N k

j

(4.1)

where N k
i represents the number of sequence i after kth PCR cycle. When k equals to 0, p0

i

is the raw population fraction representing the initial oligos’ proportion of each population.

Then, we define the population fraction change as the quotient of population fraction after

the PCR amplification divided by the raw population fraction as

ck
i = pk

i

p0
i

. (4.2)

The PCR selection is considered as unbiased when the mathematical expectation of population

fraction change for all sequences is one. That means all sequences are equivalently present

after the PCR process.

PCR Bias at Database Level

First of all, we want to study PCR bias at the database level, i.e. whether the population fraction

change uniform across databases. The Universal Forward Primer was used to pull out all the

reads. Then we used Accel-Align to map reads to oligos to determine their original database.

The number of reads extracted per database is shown in Table 4.2. We find that the population

fraction of TPCH is only 1.2% after the PCR amplification while the original population fraction

of TPCH is 2.6% over all. It indicates that TPCH database is insufficient represented after the

PCR. On the contrary, SYN database’s population fraction change is 1.3, meaning that it is 30%

excessively represented. These results illustrate that PCR is biased, some sequences become

overrepresented while some become underrepresented after the PCR amplification.

Table 4.2: Population fraction change

nb of oligos raw pop fraction nb of reads pop fraction frac change

ssb 2700 0.514 654335 0.388 0.76
tpch 136 0.026 19576 0.012 0.45

syn 2422 0.461 1013152 0.601 1.30

58

4.3 File-based Random Access for Databases

PCR Bias at Table Level

We extend the PCR bias analysis further to the table level. The UFP was used together with a

database primer to pull out a database. Then we used Accel-Align to map reads to oligos to

determine their original table. Table 4.3 shows the population fraction change per table from

three databases.

• TPCH is a small database of only 136 oligos in total. The population fraction change

is different for different tables. For example, the part, orders, supplier and customer

tables’ proportions increase 32×, 4×, 3×, 5× respectively after PCR while region, nation

and lineitem tables’ proportions decrease 40%∼60%.

• SSB is a bigger database with 20× more oligos than TPCH (2700 in total). The big

table lineorder’s fraction change is 1.01 which means it only has 1% excess. However,

population fraction change of the small tables, such as supplier and date, is only 0.01

meaning their proportion decreases 100× after PCR. This indicates that even in a bigger

database, if the data is not uniformly distributed through the tables, the small table

would also be biased.

• On the contrary, SYN is also a bigger database with 2422 oligos while the data is uniformly

distributed through tables. The mathematics expectation of population fraction change

is 1.03 which is much more close to 1 compared to TPCH’s (0.72) and SSB’s (10.86).

To conclude, we learn that the big tables with uniform size will exhibit less variation in

population fraction change. It indicates that file-based random access can suffer from PCR

bias issues if file sizes are not uniform. To overcome this problem, we introduce a block-based

random access in Sec 4.4.

59

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

Table 4.3: Population fraction change of each database

nb of oligos raw pop fraction nb of reads pop fraction frac change

tpch-region 6 0.044 38408 0.06976 0.63
tpch-part 18 0.132 2238 0.00406 32.56

tpch-orders 18 0.132 15572 0.02828 4.68
tpch-partsupp 10 0.074 38385 0.06971 1.05

tpch-nation 20 0.147 194693 0.35360 0.42
tpch-supplier 14 0.103 14995 0.02723 3.78
tpch-lineitem 34 0.250 235239 0.42724 0.59

tpch-customer 16 0.118 11072 0.02011 5.85

ssb-supplier 14 0.005 26 0.00003 0.01
ssb-customer 16 0.006 4512 0.00483 0.81

ssb-part 42 0.016 25045 0.02680 1.72
ssb-lineorder 2594 0.961 904850 0.96818 1.01

ssb-date 34 0.013 155 0.00017 0.01

syn-t7 304 0.126 168749 0.12366 1.02
syn-t5 312 0.129 182311 0.13360 0.96
syn-t8 302 0.125 198241 0.14527 0.86
syn-t3 302 0.125 113461 0.08314 1.50
syn-t2 298 0.123 172734 0.12658 0.97
syn-t6 300 0.124 176060 0.12902 0.96
syn-t1 298 0.123 167900 0.12304 1.00
syn-t4 306 0.126 185190 0.13571 0.93

60

4.3 File-based Random Access for Databases

4.3.3 Extra Data and Improper Binding

PCR-based random access is based on the primer binding such that only the desired strands

are selectively amplified. However, improper binding can lead to extra strands (strand #3 and

strand #4) in the final pool as presented in Figure 4.1. During the decoding, it is still possible

to get rid of strand #4 filtering the decoded strands by the decoded primer. However, it is

hard to get rid of strand #3 because it does have the primer A′ just with a wrong payload. It

confuses the decoder since it introduces a new strand A′−B that not existing in the original

pool. If the decoder faithfully relies on the primer, this portion of data would be decoded into

wrong database or table. Thus, the improper primer binding during PCR leads to silent data

corruption, where data from database or table is silently classified as belonging to another.

To study the quality of selected reads, it should determine the payload’s and the primer’s origin.

Since the payload part dominates the read in length, we could align a read to the designed

reference oligos with Accel-Align to determine where the payload comes from. Consequently,

the reads are classifies into three categories depending on the alignment result:

• Target payload reads. These are the reads that align to the expected reference oligos.

• Other payload reads. These are the reads that align to the other reference oligos rather

than the expected ones.

• Bad quality reads. These are the reads that could not align to any reference oligo.

To comprehend the origin of primer, we study whether the sub-sequences in the two extremi-

ties of a read are as same as the target primers. Thus, we further classify the target payload

reads and bad payload reads into three sub groups as following.

• Target primer reads. These are the reads whose primers are exactly as same as the target

primers.

• Other primer reads. These are the reads whose primers are exactly the other primers

rather than the target primers.

• No primer reads. These are the reads who do not have any primer.

Since the reads were sequenced by Illumina in paired-end mode, the two mates’ lengths are

100 bp and 60 bp without guaranteeing the coverage of two extremities. So we merge two

mates into a single longer strand through the bbmerge tool from BBMap [76] toolkit. The

merged strands’ median read length is 110 bp which is exact as same as the original oligo

design. Hence, we could do the primer classification depending on the first and last five

characters of the reads.

61

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

Error Analysis at Database Level

To begin with, we analyze the sequenced reads when we selectively retrieve data belonging to

each database using the associated database primer as shown in Figure 4.3, Figure 4.4 and

Figure 4.5. We have several findings:

• In the ideal case, we expect to have a high precision which means the data from other

databases to be absent. We find that the databases are diverse in terms of their random

access precision. Clearly, with the SYN database primer, PCR-based random access

achives 96.6% of reads with target payload and only 0.9% reads belonging to other

databases (TPCH or SYN)are retrieved. In contrast, with the TPCH primer, only 53.3%

are belong TPCH database while 32.5% reads belonging to the other databases are

retrieved.

• For the reads with target payload, 99.3%∼99.4% reads have the target primer. 0.1%∼0.2%

reads contain primers of other databases and 0.5%∼0.7% reads do not contain primer.

This is because we use exact match strategy to determine the origin of primers rather

than alignment since the primers are two short (5nt). However, the reads can contain

errors which leads to no exact match or other primer matched for the corresponding

portion of the reads. Even though, we still could find that the dominate target reads do

select by the target primer.

• For the reads with other payload, however, 48.0%, 18.8% and 72.5% reads have the

target primer surprisingly for SSB, TPCH and SYN database as shown in Figure 4.3.c,

Figure 4.4.c and Figure 4.5.c. These extra reads are selected by the target primer because

of improper binding and can lead to the extra data if the decoder faithfully relies on the

primers.

a. All reads

bad quality - 3.20 %
target payload - 92.00 %
other payload - 4.80 %

b. Reads with target payload

target primer - 99.40 %
other primer - 0.02 %
no primer - 0.50 %

c. Reads with other payload

target primer - 48.00 %
other primer - 51.00 %
no primer - 1.00 %

Figure 4.3: Reads selectively retrieved with SSB database primer.

62

4.3 File-based Random Access for Databases

a. All reads

bad quality - 14.20 %
target payload - 53.30 %
other payload - 32.50 %

b. Reads with target payload

target primer - 99.30 %
other primer - 0.01 %
no primer - 0.70 %

c. Reads with other payload

target primer - 18.80 %
other primer - 79.10 %
no primer - 2.10 %

Figure 4.4: Reads selectively retrieved with TPCH database primer.

a. All reads

bad quality - 2.50 %
target payload - 96.60 %
other payload - 0.90 %

b. Reads with target payload

target primer - 99.30 %
other primer - 0.01 %
no primer - 0.70 %

c. Reads with other payload

target primer - 72.50 %
other primer - 26.50 %
no primer - 1.00 %

Figure 4.5: Reads selectively retrieved with SYN database primer.

63

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

Error Analysis at Table Level

We repeat the same analysis at table level. For the reads selected with UFP and an unique table

primer, Table 4.4 shows the percent of each category depending on the payload’s origin and

primers’ origin.

• Again, we find that the tables have different random access precision. We plot the ran-

dom access precision over the number of oligos of each table and database in Figure 4.6.

Usually, the bigger size is the table or database, the higher precision could be achieved.

• Similar to the result at database level, with short primers of 5 nt, extra data could be

select by PCR at table level. Specifically, improper primer binding and low distance

separation between primer can lead to poor precision. It indicates that it is important to

not rely only on primers for addressing information. We suspect that higher-level type

and data checkers, such as structural information and independent stored checksum,

could help to avoid the silent data corruption. Although these invalid data could be

tracked by the database schema and type information luckily, it is not general for file

storage.

102 103

nb of oligos

0

20

40

60

80

100

th
e

re
ad

s w
ith

 ta
rg

et
 p

ay
lo

ad
 (%

)

ssb
tpch
syn

Figure 4.6: The relationship between random access precision and size.

64

4.4 Block-based Random Access for Databases

Table 4.4: Reads selectively retrieved per database and table primer analysis (%)

bad
quality

target payload
target primer

target payload
other primer

target payload
no primer

other payload
target primer

other payload
other primer

other payload
no primer

ssb 3,2 91,5 0,02 0,5 2,3 2,5 0,05
tpch 14,2 53,0 0,01 0,4 6,1 25,7 0,69

syn 2,5 96,0 0,01 0,6 0,7 0,2 0,01

ssb-supplier 12,5 0,1 0,00 0,0 19,8 65,2 2,39
ssb-customer 11,6 18,9 0,00 0,6 13,7 51,7 3,53

ssb-part 5,7 44,6 0,01 1,7 6,2 39,1 2,70
ssb-lineorder 1,9 93,9 0,02 3,7 0,2 0,3 0,03

ssb-date 3,9 0,1 0,00 0,0 76,6 16,6 2,77

tpch-region 12,0 34,2 0,00 0,4 7,1 44,5 1,86
tpch-part 30,5 2,0 0,00 0,1 8,4 55,6 3,54

tpch-orders 19,6 14,1 0,00 0,5 7,5 55,2 3,14
tpch-partsupp 9,2 21,5 0,00 0,9 9,7 55,4 3,31

tpch-nation 3,6 68,0 0,02 2,0 4,3 20,9 1,25
tpch-supplier 14,2 12,4 0,00 0,1 5,7 65,4 2,18
tpch-lineitem 6,7 76,2 0,01 0,8 2,3 13,5 0,52

tpch-customer 21,2 14,1 0,00 0,1 9,6 52,6 2,36

syn-t7 2,1 93,8 0,01 1,3 0,1 2,7 0,08
syn-t5 2,3 91,0 0,01 3,1 0,1 3,3 0,24
syn-t8 2,0 89,6 0,01 2,8 0,2 5,1 0,28
syn-t3 3,9 61,0 0,03 2,8 4,7 26,4 1,19
syn-t2 2,2 74,0 0,02 2,2 8,3 11,1 2,12
syn-t6 2,0 89,8 0,01 1,1 0,1 6,9 0,22
syn-t1 2,1 91,2 0,01 1,1 0,1 5,3 0,16
syn-t4 2,2 91,2 0,01 1,3 0,1 4,6 0,61

4.4 Block-based Random Access for Databases

4.4.1 Database Design

In Sec. 4.3, we have introduced the limitation of file-based random access with the wet

experiment. First, it demonstrates that the data corresponding to the small files suffer from

population fraction variation after the PCR. And also they are exploited to a lower precision. To

overcome the obstacle, we propose a block-based random access reminiscent to the blockwise

storage in the hard disk. In the block-based design, the basic random access unit is a block

which is an extent with fixed size in our multi-dimensional data addressing, rather than the

file with variable size. Consequently, the unique primers are attached to the oligos belonging

to each block rather than each file.

Primer Design

We start with a collection of 624 sequences as a concatenation of one 5’-primer of 20 nt, one

payload of 256 nt, and one 3’-primer of 20 nt. The rationale is to select 5’- prime and 3’-prime

20-mers as divergent as possible in order to minimize the risk of cross-amplification. The

initial primer sequences are from Organick et al [63]. It has already taken into account the

GC-content (45%-55%), the absence of long sequence-complementarities, absence of long

65

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

stretches of homopolymers, and a minimum Hamming distance of 6.

We modify them such that the most extreme tri-nucleotide, in direct contact with the payload,

are unique to each primer, in order to minimize the chance of non-specific annealing. The

similarity between two primers is also minimized, by allowing no stretch of more than 8

identical nucleotides in common between the sequences. The selected primers are listed in

the Table 4.5.

Table 4.5: Primer list (24*26)

left(5’) primer list right(3’) primer list

L0:GTCCAGGCAAAGATACAGTC R0:CAAGATTGAGGACGATTGGC
L1:TAGCCTCCAGAATGAGACAG R1:TTCAAGCCAGACCGTGTGTA
L2:CATGGACGTTCCGCAATCAT R2:GAACGGAGCGATGAGTTTGT

L3:AATGTCGAAGAAGGCCGGTT R3:ATCCCGTTCCGAAGTTTCCA
L4:TGTATTTCCTTCGCAGCACC R4:TAGAGAGCGTGGACAGACAA
L5:AGCCGACAAGTTCCAACACA R5:TCCCGATAAGTCTTGCGGAA
L6:TGTCGGAAGCCGCTTTCTAT R6:GGCAATGATTCCGTCGGTTT
L7:AGTCCAACAAGTCAATCCGC R7:GCGGTAACGTAGTGAAGGTA
L8:CTGTCCATAGCCTTGTCCTT R8:AGGTGAGTGCCGTAACGATT
L9:ACATGCCGTGCCATTGGATT R9:TCGGCAGATCGTTCCACATA

L10:AAATCCTTTGTGCCTGCCAC R10:CGGCACCGATTCGTAACAAT
L11:TACCGCATCCTTATTCGAGC R11:TGTACCATCCGTTTGACTGG
L12:AATCATGGCCTTCAGACCGT R12:CCGACCGTTAGTCTAAAGTG
L13:TGGCTCAGTTCACAATCGGT R13:TCTGGTGCAACCCAATGAGA
L14:ACCGCGCTCGAAGCATTTAA R14:AATCGAATGCTTGCTTGCCG
L15:CAAGTTACCGCCAACAACTG R15:CCAATTAGTTGGCGCTTCCT
L16:CAATGGATGCCTTGTGCGAA R16:CTAAATGACCTGCCGTGCAA
L17:AAGGCAAGTTGTTACCAGCG R17:CATGTAGGCGGAAAGTGCAA
L18:TCCTGCTTGCGTTAGATGGA R18:ACATAACAACCACCGCGAGA
L19:TTAATCGGTAACACCTGCGG R19:ACCGTGCTTCACACCGAATT
L20:AGCCTTGTGTGCATCAATCC R20:TTTCGACAAGGGTCTGGTCT
L21:GAAGAGTTTAGCCACCTGCT R21:AGAGCCGTGGCAATGTAACT
L22:TCCATTGCGTCAACCGTGAT R22:TTGTACGAAAGGTGCTCCGA
L23:TCCACGGTTCCTTGATTTCG R23:ATGGCACTTATTGGGCGACT

R24: AAGGCCAATTCGCGGTTAGT
R25: ACGCAATCGGCCTGGTATTT

Further, We expect to select the primers with high significance. To study the significance, we

do the following steps with Accel-Align:

• Align the reads to the payloads to determine the reference payload of each read.

• Conduct the substrings in the read that corresponding to the primers based on the

CIGAR value computed from first step.

66

4.4 Block-based Random Access for Databases

• Align the substrings to the left and right primers to determine the origin primers of each

read.

Thus, the reads belonging to each primer pair could be further classified into two categories:

• Specific reads. These are the reads whose primers are as same as the target primers

attached to the payloads in the reference oligos.

• Non specific reads. These are the reads whose primers are different from the target

primers attached to the payloads.

The result is shown in Figure 4.8 and Figure 4.7. It shows that the number of non specific

reads is no more than few hundred while the number of specific reads could be hundreds or

tens of hundreds. To maximize the data to be recovered, the more specific reads the better.

Thus, we select the L0, L1, L5, L9 and R1, R2, R8 and R24 as the validated primers to extend

further storage collection. As highlighted in Figure 4.7, all the cross pairs have more than

17,000 specific reads and no more than 17 non specific reads. It guarantees that more than

99.94% reads are specific in the validated primer pairs.

Figure 4.7: Number of specific reads for each primer pair.

4.4.2 Experiment with Selected Primers

The validated primer L9, L5, L0, L1 and R24, R8, R2 and R1 are renamed to L0, L1, L2, L3

and R0, R1, R2, R3 to simplify the further illustration as shown in the Table 4.6. We design

another experiment to valid the efficiency of the selected primers. We perform a proof of

concept by storing the TPCH database compressed in a single archive file of 1.2MB. The

67

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

Figure 4.8: Number of non specific reads for each primer pair.

database is encoded into 44376 oligos of 200 nt. The oligos are structured as one 5’-primer,

one payload (out of a list of 44k distinct sequences), and one 3’-primer. Thus, each unique

primer pair would be attached to 2770 oligos approximately. The 43.3 millions of reads are

sequenced through Oxford Nanopore PromethION platform to validate whether the PCR bias

and improper binding are eliminated.

Table 4.6: Primer list

left primer list right primer list

L0: ACATGCCGTGCCATTGGATT R0: AAGGCCAATTCGCGGTTAGT
L1: AGCCGACAAGTTCCAACACA R1: AGGTGAGTGCCGTAACGATT
L2: GTCCAGGCAAAGATACAGTC R2: GAACGGAGCGATGAGTTTGT
L3: TAGCCTCCAGAATGAGACAG R3: TTCAAGCCAGACCGTGTGTA

PCR Bias

First of all, we check whether some primer pairs’ oligos are over or underrepresented. We

use Accel-Align to align the reads to reference oligos to determine their origin and achieved

the copy number of each oligos. Table 4.7 shows the population fraction change per primer

pair. We find that although the population fraction change does not equal to 1, the average of

the population fraction change is 1. The standard deviation which is 0.13, has been greatly

reduced compared to the TPCH database in the file-based random access design which is 10.8.

It indicates that the oligos are more equally presented before and after PCR.

68

4.4 Block-based Random Access for Databases

Table 4.7: Reads selectively retrieved per primer pair

nb oligos raw pop fraction nb of read pop fraction frac change

L0_R0 2774 0.063 2112181 0.05 0.78
L0_R1 2770 0.062 2753811 0.06 1.02
L0_R2 2774 0.063 2710222 0.06 1.00
L0_R3 2774 0.063 3481596 0.08 1.28

L1_R0 2774 0.063 2992473 0.07 1.10
L1_R1 2770 0.062 2474146 0.06 0.91
L1_R2 2774 0.063 1954131 0.05 0.72
L1_R3 2774 0.063 2784902 0.06 1.03

L2_R0 2774 0.063 2649534 0.06 0.98
L2_R1 2774 0.063 2867796 0.07 1.06
L2_R2 2774 0.063 2560211 0.06 0.94
L2_R3 2774 0.063 2799222 0.06 1.03

L3_R0 2774 0.063 3103064 0.07 1.14
L3_R1 2774 0.063 2690192 0.06 0.99
L3_R2 2774 0.063 2487760 0.06 0.92
L3_R3 2774 0.063 2954518 0.07 1.09

Improper Binding

We analyze whether improper binding has been eliminated. To be noted, in this experiment,

the oligos are sequenced by Oxford Nanopore PromethION platform. It produces long reads

and leads to additional sub-sequences in two extremities of each read. Thus, we conduct

the primer based on CIGAR to ignore the softclipping part. The CIGAR is computed by the

alignment from a read to original oligos with Accel-Align. In the file-based random access

experiment, we determine whether the primer is as same as the target primer, or other primer,

or bad quality simply through a bit-by-bit comparison. This is because the primer is short

with only 5 nt and also because Illuminia sequencer has high accuracy. However, in this case,

the primer is longer (20nt) and Nanopore is less accurate than Illuminia. If we simply compare

the extremities to reference primers, we find that only 80%∼85% of the reads have the target

primer while some other reads do have the right primer but containing substitutions or Indels.

Hence, after we get the raw primers from the reads, we align raw primer to the reference

primers to determine the origin, to determine whether the primer pairs belong to its oligo, or

belong to another oligo, or have too bad quality. Table 4.8 shows the primer binding analysis.

We find that all sets have more than 95% reads with target primers and improper binding has

been decreased to 0.9%∼3.5%.

69

Chapter 4. Sequence Analysis for Random Access in DNA-based Storage

Table 4.8: Primer binding analysis

nb of read target primer % other primer % no primer %

L0_R0 2112181 95.53 2.88 1.59
L0_R1 2753811 97.10 1.32 1.58
L0_R2 2710222 97.02 1.36 1.61
L0_R3 3481596 96.68 1.50 1.82

L1_R0 2992473 94.91 3.46 1.62
L1_R1 2474145 96.51 1.85 1.64
L1_R2 1954131 96.26 1.98 1.77
L1_R3 2784902 95.96 2.12 1.92

L2_R0 2649534 94.43 3.43 2.14
L2_R1 2867796 95.94 1.93 2.13
L2_R2 2560211 95.82 1.93 2.25
L2_R3 2799222 95.40 2.19 2.41

L3_R0 3103064 95.51 2.46 2.03
L3_R1 2690192 97.09 0.89 2.02
L3_R2 2487760 96.90 0.94 2.16
L3_R3 2954518 96.66 1.08 2.26

Data Recovery

Although the improper binding has been eliminated, there are still 0.9%∼3.5% reads containing

non specific primers. As an end-to-end workflow, we pass the reads through our decoder to

validate whether the decoder is able to distinguish the improper binding and distribute the

reads from same primer into the same bucket. Table 4.9 shows that all primer pair sets achieve

high precision that more than 99% of reads selected do really belong to that group. We also

find that there is no significance in the primer position since the fraction of left and right target

primer are close to each other.

70

4.5 Discussion

Table 4.9: Reads selectively retrieved per primer pair

nb of reads correct aligned (%)
with left

target primer(%)
with right

left primer(%)

L0_R0 2069808 99.97 0.9998 0.9998
L0_R1 2701444 99.97 0.9998 0.9998
L0_R2 2659990 99.97 0.9998 0.9997
L0_R3 3410425 99.98 0.9999 0.9998

L1_R0 2918999 99.96 0.9997 0.9997
L1_R1 2415844 99.95 0.9997 0.9996
L1_R2 1908381 99.87 0.9988 0.9997
L1_R3 2716409 99.88 0.9989 0.9997

L2_R0 2575053 99.98 0.9998 0.9998
L2_R1 2788303 99.98 0.9999 0.9998
L2_R2 2487260 99.98 0.9999 0.9998
L2_R3 2715068 99.98 0.9998 0.9998

L3_R0 3038095 99.97 0.9998 0.9998
L3_R1 2635874 99.97 0.9998 0.9998
L3_R2 2435858 99.97 0.9998 0.9998
L3_R3 2890926 99.97 0.9998 0.9998

4.5 Discussion

In this work, we have studied the PCR-based random access based on the sequence alignment

tool Accel-Align. We expand the uni-dimensional data addressing to multi-dimensional data

addressing hierarchy Collection – Object – Extent to support large scale storage.

Initially, we design the file-based random access with the primers of 5nt. During the exper-

iment, we find that PCR bias impacts selection sensitivity of small files in a big pool. On

the other hand, extra data are existing in the final pool due to the improper binding. This

non-specific primer binding leads to silent data corruption if decoder depends on primers

faithfully.

To overcome the bottlenecks, we propose the block-based random access such that each

extent has fixed size and the small files are encoded together to avoid PCR bias. We elaborately

design 24 left primers and 26 right primers of 20-mers and select 4 out of each them as the

validated primers to test the storing of TPCH database. It shows that the new design eliminates

the PCR bias and improves the proportion of reads with correctly primers. As a validation,

more than 99.9% reads are correctly distributed by the decoder for each primer pair. As

the supplementary, we are experimenting for a larger scale of database to store the Danish

National Archive data.

71

Chapter 5

Conclusion

5.1 Conclusion

Sequence similarity analysis has been studied extensively in the literature as a fundamental

problem in bioinformatics, data integration, collaborative filtering, and natural language

processing. Given the sheer size of modern sequencing datasets, accurate and scalable edit

similarity algorithms are essential to analyze data generated by genomics and DNA-based

data storage.

5.1.1 Accel-Align: a Fast Sequence Aligner

Currently, most sequence alignment algorithms designed for the next-generation sequencing

technology use seed–filter–extension strategy to speed up the alignment process. They try to

find the candidate positions on the reference genome via a fast exact string matching lookup,

and then eliminate sub-optimal positions through a filtering to save the time-consuming

extension stage. However, filtering makes assumptions about error patterns and therefore has

inherent performance–accuracy trade offs.

In this work, we propose a new methodology named seed–embed–extend (SEE) based on

recent advances in randomized embedding. SEE transforms the read and reference strings

from edit distance regime to the Hamming regime by embedding them using a randomized

algorithm, and uses Hamming distance over the embedded set to identify optimal candidates.

Instead of focusing on eliminating sub-optimal candidates, SEE focuses instead on identifying

optimal candidates. However, we find that the initial randomized embedding might not able to

identify the true optimal candidates in the presence of some pathological random sequences.

Hence, we propose multiple embedding and chain embedding to improve further accuracy.

To show the efficiency of SEE in practice, we implemented a fast aligner and mapper – Accel-

73

Chapter 5. Conclusion

Align in C++ with multi-threading support. It is publicly available on github via https://github.

com/raja-appuswamy/accel-align-release. In our experiment, we show that Accel-Align is

2 ∼ 12 faster than state-of-the-art aligners with both simulated and real genomic datasets.

Accel-Align is also shown to be an efficient tool to determine the origin of reads such that we

can study sequencing statistics and error characterization in DNA-based storage.

5.1.2 Edit Similarity-Based Decoder in DNA-based Storage

DNA is a promising storage medium due to its high density and long endurance. The key

challenge in DNA storage today is the cost of synthesis. In this work, we propose the composite

motifs framework to scale logical density (bits written per cycle) which results in the poten-

tial reduction of synthesis cost. In doing so, we developed a new structure-aware decoding

algorithm Motif-Search based on the edit similarity analysis to recover the stored informa-

tion despite errors created by the enzymatic ligation (Bridge Oligonucleotide Assembly) and

Nanopore-based, direct oligonucleotide sequencing techniques. Using the proposed methods,

we present an end-to-end experiment where we store the text “HelloWorld” at a logical density

of 84 bits/cycle (14–42× improvement over state-of-the-art). The physical density of our

approach is 3.36bits/nt, which is also higher than the physical density of conventional base-by-

base DNA storage solutions (2 bits/nt) and comparable to degenerate base approaches (3.37

bits/nt). Finally, our decoder Motif-Search is able to fully recover stored data at a sequencing

coverage 20×.

5.1.3 Sequence Analysis for Random Access in DNA-based Storage

Random access to a portion of data plays an important role to make large scale DNA-based

storage viable. In this work, we focus on the PCR based random access. To study the precision

of random access in DNA-based storage, the first step is to determine the origin payload and

primer of the reads. Using Accel-Align, we performed a study of the characteristics of different

random access design. We showed that file-based random access can suffer from PCR bias

issues if file sizes are not uniform. Some information is over-presented while some is under-

presented after the PCR. The under-presented information can be missed after decoding. We

also showed that improper binding happens during PCR with the short primers. The extra

data caused by improper binding can lead to silent data corruption. To overcome these issues,

we proposed using a multi-dimensional addressing method using a block-based design, where

each block has a uniform size. Using a large-scale experiment, we showed that the new design

eliminates PCR bias and improves the proportion of reads with correct primers.

74

https://github.com/raja-appuswamy/accel-align-release
https://github.com/raja-appuswamy/accel-align-release

5.2 Future Work

5.2 Future Work

Aiming at the approximate edit similarity problem, this thesis studied the scalability and

accuracy of the algorithms in the domain of computational genomics and DNA data storage.

In this section, we outline several perspectives of the research that require further investigation

in the future.

5.2.1 Accel-Align: a Fast Sequence Aligner

In the area of computational genomics, we have demonstrated earlier in the thesis that low

distortion embedding is capable of transforming the distance between two strings from the

edit regime to Hamming regime to accelerate the sequence similarly measurement. We have

implemented Accel-Align as a fast and accurate sequence aligner and mapper based on SEE

methodology in practice. Nevertheless, future work can be performed in the following aspects

in order to achieve further enhancements of the algorithm.

Accuracy improvement. We found that Accel-Align provides comparable accuracy with the

simulated dataset. However, the variant calling pipeline based on NA12878 dataset with Accel-

Align can miss 5 out of 23521 in the detection of true positive SNPs compared to the pipeline

with BWA-MEM. The main reason behind this is the usage of a simple seeding method that

relies on long seeds to identify candidate locations. As a result, reads with higher error rate

might result in the seeding missing a few candidate locations. Minimizer [77], strobmer [78,79]

and learned-index [80] can be good candidates to replace our seeding module of simple k-

mers.

Performance improvement. Figure 2.8 shows the breakdown of processing time for each Accel-

Align stage. It illustrates that seed lookup is the dominant time-consuming step. One of the

approaches to mitigate this problem is to accumulate the forward and reverse seeds together

with a direction mark in one bit of the seed value during the indexing so that Accel-Align only

needs to do the look up once. Consequently, it can reduce the list of candidates to be merged

during the seeding step. We are implementing this optimization and we plan to release a new

version in the near future with improved seeding time.

Hardware-acceleration techniques exploitation. Many bioinformatic algorithms have been

improved using GPUs [81, 82, 83]. For instance, GPUs have been proved to improve the speed

of the Smith-Waterman algorithm by order of magnitude [84]. In Accel-Align, seeding stage

dominates overall execution time irrespective of the k-mer size. Fortunately, seeding is also a

prime candidate for acceleration by GPUs due to its data-parallel nature as demonstrated by a

recent microarchitectural study [85]. The embedding stage is also compatible to parallelization

on GPU. Thus, in the future, we plan to develop a parallelized version of Accel-Align which

75

Chapter 5. Conclusion

can work across CPUs and GPUs, and compare it with other GPU-based aligners such as

SOAP3 [86], SOAP3-dp [87], Arioc [88, 89] and GASAL2 [90].

Bisulfite sequencing alignment adaptation. DNA methylation plays an important role in

many biological applications. It is related to many diseases, especially cancer [91, 92, 93, 94].

The development of whole-genome methylation sequencing (WGBS) makes it possible to

measure the methylation status of the entire genome. Although we designed Accel-Align

initially for DNA sequence alignment problem, it can be adapted for bisulfite sequencing

reads as well. Bisulfite sequencing applies a bisulfite treatment to genomic DNA to convert

nonmethylated cytosines (C) to uracils(U), which can be sequenced as thymines (T) ; while

methylated cytosines (C) cannot be converted to uracils(U) and are sequenced as cytosines

(C). Hence, the index should be built with the sense strand twice, once with C converted to T

and once with G converted to A. In the future work, we plan to add bisulfite support to Accel-

Align and benchmark it with state-of-the-art aligners such as BS-Seeker2 [95], Bismark [96],

BWA-Meth [97] and BiSulfite Bolt [98].

5.2.2 Edit Similarity-Based Decoder in DNA-based Storage

In the domain of DNA-based storage, we have proposed the new encoding logic – composite

motifs to scale the logical density. We have designed the structure-aware decoder Motif-

Search based on edit similarity and we have shown that Motif-Search is able to fully recover

information even with the error-prone reads at a low coverage 20×. Nevertheless, future work

can be performed in the following aspects to improve the scalablity and reduce cost.

Error-correction code utilization. State-of-the-art research, such as Reed Solomon codes [63],

LDPC [99] and fountain codes [35], employs error correction block to improve the robustness.

The similar techniques can also be applied in composite motifs encoding to allow a lower

sequencing coverage to fully recover the information, and thus, to reduce the reading cost.

Physical density improvement. The physical density is defined as the number of bits that can

be encoded by a nucleotide. In our experiment, we built upon an existing library of 25nt motifs

to simplify the task of motif design. Thus, our composite motif approach provides a physical

density of 3.36 bits/nt (encoding 84 bits with 25nt composite motifs). The physical density can

be increased by selecting more compositions from the library. For instance, selecting 48 motifs

from a 96-motif library can encode 90 bits per composite motifs and increase the physical

density up to 3.6 bits/nt. The physical density can also be scaled up by reducing the motif

length. In our experiment, we used a motif library with 96 unique motifs. Theoretically, the

permutation of 4 nucleotides consists of 256 (44) unique motifs which is already sufficient

to design 96 motifs. Hence, we can potentially use a shorter motif to improve the physical

density.

76

5.2 Future Work

Experiment scale improvement. As a prototype, we have stored 10 bytes data with short oligos

of 74nt in this experiment. We plan to extend the oligo with multiple payload motifs and

store large scale dataset with long oligos in order to demonstrate the efficiency and scalability

brought by the composite motifs encoding schema and the Motif-Search decoding in the area

of DNA-based storage.

77

Publications List

The research carried out during the reporting period has lead to the following scientific papers:

Journal

• Yiqing Yan, Nimisha Chaturvedi and Raja Appuswamy. Accel-align: a fast sequence

mapper and aligner based on the seed–embed–extend method[J]. BMC bioinformatics,

2021, 22(1): 1-20.

• Eugenio Marinelli, Eddy Ghabach, Yiqing Yan, Thomas Bolbroe, Omer Sella, Thomas

Heinis, Raja Appuswamy. Digital Preservation with Synthetic DNA[M].Transactions

on Large-Scale Data-and Knowledge-Centered Systems LI. Springer, Berlin, Heidelberg,

2022: 119-135.

Conference and Workshop

• Yiqing Yan, Nimisha Chaturvedi and Raja Appuswamy. Accel-align: a fast sequence

mapper and aligner based on the seed–embed–extend method. 2021 RECOMB Satellite

Workshop on Massively Parallel Sequencing (RECOMB-Seq).

• Yiqing Yan, Nimisha Chaturvedi and Raja Appuswamy. Optimizing the Accuracy of

Randomized Embedding for Sequence Alignment[C]. 2022 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2022: 144-151.

• Giulio Franzese, Yiqing Yan, Giuseppe Serra, Ivan D’Onofrio, Raja Appuswamy, Pietro

Michiardi. Generative DNA: Representation Learning for DNA-based Approximate

Image Storage[C]. 2021 International Conference on Visual Communications and Image

Processing (VCIP). IEEE, 2021: 01-05.

79

Chapter 5. Conclusion

Under Review

• Yiqing Yan, Nimesh Pinnamaneni, Sachin Chalapati, Connor Crosby, Raja Appuswamy.

Scaling Logical Density of DNA storage with Enzymatically-Ligated Composite Motifs.

• Eugenio Marinelli, Yiqing Yan, Virginie Magnone, Marie-Charlotte Dumargne, Pascal

Barbry, Thomas Heinis, Raja Appuswamy. OligoArchive-DSM: Columnar Design for

Error-Tolerant DatabaseArchival using Synthetic DNA.

80

Declarations

The research was funded by the following support:

• European Union’s Horizon research and innovation programme, project OligoArchive

under Grant agreement No. 863320, from March 2020 to May 2022.

• European Union’s Horizon research and innovation programme, project Molecular

Storage System (MoSS) under Grant agreement No. 101058035, from June 2022 to

February 2023.

81

Bibliography

[1] Philipp L Antkowiak, Jory Lietard, Mohammad Zalbagi Darestani, Mark M Somoza, Wen-

delin J Stark, Reinhard Heckel, and Robert N Grass. Low cost dna data storage using

photolithographic synthesis and advanced information reconstruction and error correc-

tion. Nature communications, 11(1):1–10, 2020.

[2] Coulson AR Sanger F, Nicklen S. Dna sequencing with chain-terminating inhibitors. In

Natl. Acad. Sci. USA, volume 74, pages 5463–5467, 1977.

[3] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang Zhai, Miles J

Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and Gene E Robinson. Big

data: astronomical or genomical? PLoS biology, 13(7):e1002195, 2015.

[4] Kathryn A Phillips, Mark J Pletcher, and Uri Ladabaum. Is the “1000g enome”r eal l y1000?

understanding the full benefits and costs of genomic sequencing. Technology and health

care: official journal of the European Society for Engineering and Medicine, 23(3):373,

2015.

[5] Kris A. Wetterstrand. Dna sequencing costs: Data from the nhgri genome se-

quencing program (gsp). https://www.genome.gov/about-genomics/fact-sheets/

DNA-Sequencing-Costs-Data. Accessed: 2022-10-12.

[6] F Carrasco-Ramiro, R Peiró-Pastor, and B Aguado. Human genomics projects and preci-

sion medicine. Gene therapy, 24(9):551–561, 2017.

[7] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeProust,

Botond Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance

information storage in synthesized dna. nature, 494(7435):77–80, 2013.

[8] Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wendelin J

Stark. Robust chemical preservation of digital information on dna in silica with error-

correcting codes. Angewandte Chemie International Edition, 54(8):2552–2555, 2015.

[9] Temple F. Smith and Michael S. Waterman. Identification of common molecular subse-

quences. Journal of molecular biology, 147(1):195–197, 1981.

83

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Bibliography

[10] Saul B Needleman and Christian D Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of molecular biology,

48(3):443–453, 1970.

[11] AM Michelson and Alexander R Todd. Nucleotides part xxxii. synthesis of a dithymidine

dinucleotide containing a 3: 5-internucleotidic linkage. Journal of the Chemical Society

(Resumed), pages 2632–2638, 1955.

[12] SL Beaucage and MH Caruthers. Deoxynucleoside phosphoramidites—a new class of key

intermediates for deoxypolynucleotide synthesis. Tetrahedron letters, 22(20):1859–1862,

1981.

[13] FJ Bollum. Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus poly-

merase. Journal of Biological Chemistry, 237(6):1945–1949, 1962.

[14] Sebastian Palluk, Daniel H Arlow, Tristan De Rond, Sebastian Barthel, Justine S Kang,

Rathin Bector, Hratch M Baghdassarian, Alisa N Truong, Peter W Kim, Anup K Singh, et al.

De novo dna synthesis using polymerase-nucleotide conjugates. Nature biotechnology,

36(7):645–650, 2018.

[15] Michael A Jensen and Ronald W Davis. Template-independent enzymatic oligonucleotide

synthesis (tieos): its history, prospects, and challenges. Biochemistry, 57(12):1821–1832,

2018.

[16] W Jou, G Haegeman, M Ysebaert, and W Fiers. Nucleotide sequence of the gene coding

for the bacteriophage ms2 coat protein. Nature, 237(5350):82–88, 1972.

[17] Lin Liu, Yinhu Li, Siliang Li, Ni Hu, Yimin He, Ray Pong, Danni Lin, Lihua Lu, and

Maggie Law. Comparison of next-generation sequencing systems. J Biomed Biotechnol,

2012(251364):251364, 2012.

[18] Martin Kircher and Janet Kelso. High-throughput dna sequencing–concepts and limita-

tions. Bioessays, 32(6):524–536, 2010.

[19] Sara Goodwin, John D McPherson, and W Richard McCombie. Coming of age: ten years

of next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351,

2016.

[20] James Clarke, Hai-Chen Wu, Lakmal Jayasinghe, Alpesh Patel, Stuart Reid, and Hagan

Bayley. Continuous base identification for single-molecule nanopore dna sequencing.

Nature nanotechnology, 4(4):265–270, 2009.

[21] Michael J Levene, Jonas Korlach, Stephen W Turner, Mathieu Foquet, Harold G Craig-

head, and Watt W Webb. Zero-mode waveguides for single-molecule analysis at high

concentrations. science, 299(5607):682–686, 2003.

84

Bibliography

[22] Kevin J Travers, Chen-Shan Chin, David R Rank, John S Eid, and Stephen W Turner.

A flexible and efficient template format for circular consensus sequencing and snp

detection. Nucleic acids research, 38(15):e159–e159, 2010.

[23] John F Thompson and Patrice M Milos. The properties and applications of single-

molecule dna sequencing. Genome biology, 12(2):1–10, 2011.

[24] Aaron M Wenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J Hall, Gregory T

Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov, Nathan D Olson,

et al. Accurate circular consensus long-read sequencing improves variant detection and

assembly of a human genome. Nature biotechnology, 37(10):1155–1162, 2019.

[25] Franka J Rang, Wigard P Kloosterman, and Jeroen de Ridder. From squiggle to basepair:

computational approaches for improving nanopore sequencing read accuracy. Genome

biology, 19(1):1–11, 2018.

[26] W John Wilbur and David J Lipman. Rapid similarity searches of nucleic acid and protein

data banks. Proceedings of the National Academy of Sciences, 80(3):726–730, 1983.

[27] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.

Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[28] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem.

arXiv preprint arXiv:1303.3997, 2013.

[29] Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with bowtie 2. Nature

methods, 9(4):357, 2012.

[30] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,

34(18):3094–3100, 2018.

[31] Matei Zaharia, William J Bolosky, Kristal Curtis, Armando Fox, David Patterson, Scott

Shenker, Ion Stoica, Richard M Karp, and Taylor Sittler. Faster and more accurate se-

quence alignment with snap. arXiv preprint arXiv:1111.5572, 2011.

[32] Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L

Salzberg. Graph-based genome alignment and genotyping with hisat2 and hisat-

genotype. Nature biotechnology, 37(8):907–915, 2019.

[33] Raja Appuswamy, Kevin Le Brigand, Pascal Barbry, Marc Antonini, Olivier Madderson,

Paul Freemont, James McDonald, and Thomas Heinis. Oligoarchive: Using dna in the

dbms storage hierarchy. In CIDR, 2019.

[34] Joe Davis. Microvenus. Art Journal, 55(1):70–74, 1996.

85

Bibliography

[35] Yaniv Erlich and Dina Zielinski. Dna fountain enables a robust and efficient storage

architecture. science, 355(6328):950–954, 2017.

[36] Eugenio Marinelli Raja Appuswamy. Onejoin: Cross-architecture, scalable edit similarity

join for dna data storage using oneapi. 2021.

[37] Md Vasimuddin, Sanchit Misra, Heng Li, and Srinivas Aluru. Efficient architecture-aware

acceleration of bwa-mem for multicore systems. In 2019 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 314–324. IEEE, 2019.

[38] Md Vasimuddin, Sanchit Misra, and Srinivas Aluru. Identification of significant computa-

tional building blocks through comprehensive investigation of ngs secondary analysis

methods. bioRxiv, page 301903, 2018.

[39] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V. Garimella, Jared R. Maguire, Christo-

pher Hartl, Anthony A. Philippakis, Guillermo Del Angel, Manuel A Rivas, and Matt

Hanna. A framework for variation discovery and genotyping using next-generation dna

sequencing data. Nature genetics, 43(5):491, 2011.

[40] Stefan Canzar and Steven L. Salzberg. Short read mapping: An algorithmic tour. Proceed-

ings of the IEEE, 105(3):436–458, 2017.

[41] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-

quadratic time (unless seth is false). In Proceedings of the Forty-Seventh Annual ACM

Symposium on Theory of Computing, page 51–58, 2015.

[42] Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algorithms for

embedding and computing edit distance in the low distance regime. In Proceedings of

the forty-eighth annual ACM symposium on Theory of Computing, pages 712–725, 2016.

[43] Haoyu Zhang and Qin Zhang. Embedjoin: Efficient edit similarity joins via embeddings.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 585–594, 2017.

[44] Xiyuan Zhang, Yang Yuan, and Piotr Indyk. Neural embeddings for nearest neighbor

search under edit distance. 2019.

[45] Hajime Suzuki and Masahiro Kasahara. Introducing difference recurrence relations for

faster semi-global alignment of long sequences. BMC bioinformatics, 19(1):33–47, 2018.

[46] Yang Liao, Gordon K. Smyth, and Wei Shi. The Subread aligner: fast, accurate and scalable

read mapping by seed-and-vote. Nucleic Acids Research, 41(10), 2013.

[47] Manuel Holtgrewe. Mason: a read simulator for second generation sequencing data.

2010.

86

Bibliography

[48] Manojkumar Kumaran, Umadevi Subramanian, and Bharanidharan Devarajan. Perfor-

mance assessment of variant calling pipelines using human whole exome sequencing

and simulated data. BMC bioinformatics, 20(342), 2019.

[49] Eugenio Marinelli, Yiqing Yan, Virginie Magnone, Marie-Charlotte Dumargne, Pascal

Barbry, Thomas Heinis, and Raja Appuswamy. Oligoarchive-dsm: Columnar design for

error-tolerant database archival using synthetic dna. bioRxiv, 2022.

[50] Yiqing Yan, Nimisha Chaturvedi, and Raja Appuswamy. Accel-align: a fast sequence

mapper and aligner based on the seed–embed–extend method. BMC bioinformatics,

22(1):1–20, 2021.

[51] Yiqing Yan, Nimisha Chaturvedi, and Raja Appuswamy. Optimizing the accuracy of

randomized embedding for sequence alignment. In 2022 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), pages 144–151. IEEE, 2022.

[52] David Reinsel, John Gantz, and John Rydning. Data age 2025: The evolution of data to

life-critical. Don’t Focus on Big Data, 2, 2017.

[53] Victor Zhirnov, Reza M Zadegan, Gurtej S Sandhu, George M Church, and William L

Hughes. Nucleic acid memory. Nature materials, 15(4):366–370, 2016.

[54] James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and Karin

Strauss. A dna-based archival storage system. In Proceedings of the Twenty-First Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, pages 637–649, 2016.

[55] SM Tabatabaei Yazdi, Yongbo Yuan, Jian Ma, Huimin Zhao, and Olgica Milenkovic. A

rewritable, random-access dna-based storage system. Scientific reports, 5(1):1–10, 2015.

[56] Henry H Lee, Reza Kalhor, Naveen Goela, Jean Bolot, and George M Church. Terminator-

free template-independent enzymatic dna synthesis for digital information storage. Na-

ture communications, 10(1):1–12, 2019.

[57] Leon Anavy, Inbal Vaknin, Orna Atar, Roee Amit, and Zohar Yakhini. Data storage in

dna with fewer synthesis cycles using composite dna letters. Nature biotechnology,

37(10):1229–1236, 2019.

[58] Yeongjae Choi, Taehoon Ryu, Amos C Lee, Hansol Choi, Hansaem Lee, Jaejun Park,

Suk-Heung Song, Seojoo Kim, Hyeli Kim, Wook Park, et al. High information capacity

dna-based data storage with augmented encoding characters using degenerate bases.

Scientific reports, 9(1):1–7, 2019.

87

Bibliography

[59] Nathaniel Roquet, Swapnil P Bhatia, Sarah A Flickinger, Sean Mihm, Michael W Norswor-

thy, Devin Leake, and Hyunjun Park. Dna-based data storage via combinatorial assembly.

bioRxiv, 2021.

[60] Randolph Lopez, Yuan-Jyue Chen, Siena Dumas Ang, Sergey Yekhanin, Konstantin

Makarychev, Miklos Z Racz, Georg Seelig, Karin Strauss, and Luis Ceze. Dna assem-

bly for nanopore data storage readout. Nature communications, 10(1):1–9, 2019.

[61] Hajime Suzuki and Masahiro Kasahara. Introducing difference recurrence relations for

faster semi-global alignment of long sequences. BMC bioinformatics, 19(45), 2018.

[62] Sachin Chalapati, Conor A Crosbie, Dixita Limbachiya, and Nimesh Pinnamaneni. Direct

oligonucleotide sequencing with nanopores. Open Research Europe, 1(47):47, 2021.

[63] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin,

Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien

Nguyen, et al. Random access in large-scale dna data storage. Nature biotechnology,

36(3):242–248, 2018.

[64] Reinhard Heckel, Gediminas Mikutis, and Robert N Grass. A characterization of the dna

data storage channel. Scientific reports, 9(1):1–12, 2019.

[65] Eugenio Marinelli and Raja Appuswamy. Onejoin: Cross-architecture, scalable edit

similarity join for dna data storage using oneapi. In ADMS, 2021.

[66] Eugenio Marinelli, Eddy Ghabach, Yiqing Yan, Thomas Bolbroe, Omer Sella, Thomas

Heinis, and Raja Appuswamy. Digital Preservation with Synthetic DNA. 2022.

[67] Meinolf Blawat, Klaus Gaedke, Ingo Huetter, Xiao-Ming Chen, Brian Turczyk, Samuel

Inverso, Benjamin W Pruitt, and George M Church. Forward error correction for dna data

storage. Procedia Computer Science, 80:1011–1022, 2016.

[68] George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information

storage in dna. Science, 337(6102):1628–1628, 2012.

[69] Sander E Van der Verren, Nani Van Gerven, Wim Jonckheere, Richard Hambley, Pratik

Singh, John Kilgour, Michael Jordan, E Jayne Wallace, Lakmal Jayasinghe, and Han Re-

maut. A dual-constriction biological nanopore resolves homonucleotide sequences with

high fidelity. Nature biotechnology, 38(12):1415–1420, 2020.

[70] Thomas P Niedringhaus, Denitsa Milanova, Matthew B Kerby, Michael P Snyder, and

Annelise E Barron. Landscape of next-generation sequencing technologies. Analytical

chemistry, 83(12):4327–4341, 2011.

88

Bibliography

[71] Kyle J Tomek, Kevin Volkel, Alexander Simpson, Austin G Hass, Elaine W Indermaur,

James M Tuck, and Albert J Keung. Driving the scalability of dna-based information

storage systems. ACS synthetic biology, 8(6):1241–1248, 2019.

[72] Satoshi Kashiwamura, Masahito Yamamoto, Atsushi Kameda, Toshikazu Shiba, and

Azuma Ohuchi. Hierarchical dna memory based on nested pcr. In International Workshop

on DNA-Based Computers, pages 112–123. Springer, 2002.

[73] Billy Lau, Shubham Chandak, Sharmili Roy, Kedar Tatwawadi, Mary Wootters, Tsachy

Weissman, and Hanlee P Ji. Magnetic dna random access memory with nanopore read-

outs and exponentially-scaled combinatorial addressing. BiorXiv, 2021.

[74] Claris Winston, Lee Organick, David Ward, Luis Ceze, Karin Strauss, and Yuan-Jyue Chen.

Combinatorial pcr method for efficient, selective oligo retrieval from complex oligo pools.

ACS Synthetic Biology, 11(5):1727–1734, 2022.

[75] Yuan-Jyue Chen, Christopher N Takahashi, Lee Organick, Callista Bee, Siena Dumas Ang,

Patrick Weiss, Bill Peck, Georg Seelig, Luis Ceze, and Karin Strauss. Quantifying molecular

bias in dna data storage. Nature communications, 11(1):1–9, 2020.

[76] Brian Bushnell. Bbmap: a fast, accurate, splice-aware aligner. Technical report, Lawrence

Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2014.

[77] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.

Reducing storage requirements for biological sequence comparison. Bioinformatics,

20(18):3363–3369, 2004.

[78] Kristoffer Sahlin. Flexible seed size enables ultra-fast and accurate read alignment.

bioRxiv, pages 2021–06, 2022.

[79] Kristoffer Sahlin. Effective sequence similarity detection with strobemers. Genome

research, 31(11):2080–2094, 2021.

[80] Saurabh Kalikar, Chirag Jain, Vasimuddin Md, and Sanchit Misra. Accelerating long-read

analysis on modern cpus. bioRxiv, pages 2021–07, 2022.

[81] Xiangyuan Zhu, Kenli Li, Ahmad Salah, Lin Shi, and Keqin Li. Parallel implementation

of mafft on cuda-enabled graphics hardware. IEEE/ACM transactions on computational

biology and bioinformatics, 12(1):205–218, 2014.

[82] Alejandro Chacón, Santiago Marco-Sola, Antonio Espinosa, Paolo Ribeca, and Juan Carlos

Moure. Boosting the fm-index on the gpu: Effective techniques to mitigate random

memory access. IEEE/ACM transactions on computational biology and bioinformatics,

12(5):1048–1059, 2014.

89

Bibliography

[83] Edans Flavius de Oliveira Sandes, Guillermo Miranda, Xavier Martorell, Eduard Ayguade,

George Teodoro, and Alba Cristina Magalhaes Melo. Cudalign 4.0: Incremental specula-

tive traceback for exact chromosome-wide alignment in gpu clusters. IEEE Transactions

on Parallel and Distributed Systems, 27(10):2838–2850, 2016.

[84] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. Cudasw++ 3.0: accelerating smith-

waterman protein database search by coupling cpu and gpu simd instructions. BMC

bioinformatics, 14(1):1–10, 2013.

[85] Raja Appuswamy, Jacques Fellay, and Nimisha Chaturvedi. Sequence alignment through

the looking glass. In 2018 IEEE International Parallel and Distributed Processing Sympo-

sium Workshops (IPDPSW), 2018.

[86] Chi-Man Liu, Thomas Wong, Edward Wu, Ruibang Luo, Siu-Ming Yiu, Yingrui Li,

Bingqiang Wang, Chang Yu, Xiaowen Chu, Kaiyong Zhao, et al. Soap3: ultra-fast gpu-

based parallel alignment tool for short reads. Bioinformatics, 28(6):878–879, 2012.

[87] Ruibang Luo, Thomas Wong, Jianqiao Zhu, Chi-Man Liu, Xiaoqian Zhu, Edward Wu, Lap-

Kei Lee, Haoxiang Lin, Wenjuan Zhu, David W Cheung, et al. Soap3-dp: fast, accurate

and sensitive gpu-based short read aligner. PloS one, 8(5):e65632, 2013.

[88] Richard Wilton and Alexander S Szalay. Arioc: High-concurrency short-read alignment

on multiple gpus. PLoS computational biology, 16(11):e1008383, 2020.

[89] Richard Wilton, Tamas Budavari, Ben Langmead, Sarah J Wheelan, Steven L Salzberg,

and Alexander S Szalay. Arioc: high-throughput read alignment with gpu-accelerated

exploration of the seed-and-extend search space. PeerJ, 3:e808, 2015.

[90] Nauman Ahmed, Jonathan Lévy, Shanshan Ren, Hamid Mushtaq, Koen Bertels, and Zaid

Al-Ars. Gasal2: a gpu accelerated sequence alignment library for high-throughput ngs

data. BMC bioinformatics, 20(1):1–20, 2019.

[91] Swarnaseetha Adusumalli, Mohd Feroz Mohd Omar, Richie Soong, and Touati Benoukraf.

Methodological aspects of whole-genome bisulfite sequencing analysis. Briefings in

bioinformatics, 16(3):369–379, 2015.

[92] David Capper, David TW Jones, Martin Sill, Volker Hovestadt, Daniel Schrimpf, Do-

minik Sturm, Christian Koelsche, Felix Sahm, Lukas Chavez, David E Reuss, et al.

Dna methylation-based classification of central nervous system tumours. Nature,

555(7697):469–474, 2018.

[93] Javier Soto, Carlos Rodriguez-Antolin, Elena Vallespín, Javier de Castro Carpeño, and

Inmaculada Ibanez De Caceres. The impact of next-generation sequencing on the dna

methylation–based translational cancer research. Translational Research, 169:1–18, 2016.

90

Bibliography

[94] Rui-hua Xu, Wei Wei, Michal Krawczyk, Wenqiu Wang, Huiyan Luo, Ken Flagg, Shaohua

Yi, William Shi, Qingli Quan, Kang Li, et al. Circulating tumour dna methylation markers

for diagnosis and prognosis of hepatocellular carcinoma. Nature materials, 16(11):1155–

1161, 2017.

[95] Weilong Guo, Petko Fiziev, Weihong Yan, Shawn Cokus, Xueguang Sun, Michael Q Zhang,

Pao-Yang Chen, and Matteo Pellegrini. Bs-seeker2: a versatile aligning pipeline for

bisulfite sequencing data. BMC genomics, 14(1):1–8, 2013.

[96] Felix Krueger and Simon R Andrews. Bismark: a flexible aligner and methylation caller

for bisulfite-seq applications. bioinformatics, 27(11):1571–1572, 2011.

[97] Brent S Pedersen, Kenneth Eyring, Subhajyoti De, Ivana V Yang, and David A Schwartz.

Fast and accurate alignment of long bisulfite-seq reads. arXiv preprint arXiv:1401.1129,

2014.

[98] Colin Farrell, Michael Thompson, Anela Tosevska, Adewale Oyetunde, and Matteo Pelle-

grini. Bisulfite bolt: A bisulfite sequencing analysis platform. GigaScience, 10(5):giab033,

2021.

[99] Shubham Chandak, Kedar Tatwawadi, Billy Lau, Jay Mardia, Matthew Kubit, Joachim

Neu, Peter Griffin, Mary Wootters, Tsachy Weissman, and Hanlee Ji. Improved read/write

cost tradeoff in dna-based data storage using ldpc codes. In 2019 57th Annual Allerton

Conference on Communication, Control, and Computing (Allerton), pages 147–156. IEEE,

2019.

91

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Related Terms
	DNA
	Reads
	Sequencing Technologies

	Sequence Similarity Analysis in Computational Genomics
	Reference
	Sequence Alignment Problem

	Sequence Similarity Analysis in DNA-based Storage
	Overview about DNA-based Storage
	Sequence Similarity Problems in DNA-based Storage

	Thesis Outline

	Accel-Align: a Fast Sequence Aligner
	Introduction
	Indexing and Seeding
	Indexing
	Seeding

	Embedding
	3N-embedding
	2N-embedding
	Embedding Limitation
	Multiple Embedding
	Chain Embedding
	Candidate Selection

	Extension and MAPQ Computation
	Optimizations
	Results
	Benchmark with simulated genomic reads
	Benchmark with real genomic reads
	Benchmark with real reads from DNA-based storage

	Discussion

	Edit Similarity-Based Decoder in DNA-based Storage
	Introduction
	Methods
	Composite Motif-based Encoder
	Bridged Oligonucleotide Assembly
	Direct Oligonucleotide Sequencing
	Motif-Search Algorithm

	Results
	Encoding
	Bridged Assembly of Composite Motifs
	Error Characterization of Direct Nanopore Sequenced Reads
	Correcting Event Misdetection with SaberSplit
	Inference and Consensus with Motif-Search
	Read–Write Cost Comparison

	Discussion

	Sequence Analysis for Random Access in DNA-based Storage
	Introduction
	Multi-dimensional Data Addressing
	File-based Random Access for Databases
	Database Design
	PCR Bias
	Extra Data and Improper Binding

	Block-based Random Access for Databases
	Database Design
	Experiment with Selected Primers

	Discussion

	Conclusion
	Conclusion
	Accel-Align: a Fast Sequence Aligner
	Edit Similarity-Based Decoder in DNA-based Storage
	Sequence Analysis for Random Access in DNA-based Storage

	Future Work
	Accel-Align: a Fast Sequence Aligner
	Edit Similarity-Based Decoder in DNA-based Storage

	Publications List
	Declarations
	Bibliography

