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Abstract

With their proliferation in industry and daily life, robots are now increasingly required

to interact with each other. This thesis deals with the problem of coordination be-

tween robots in a context where they have to learn their control policy autonomously.

These policies are optimized with machine learning algorithms that take advantage

of a reward function to increase performance incrementally. The structure of this

function will significantly influence the learning dynamics and, then, the possible

behaviours of the agents.

We first study systems where agents individually receive a local reward adapted to their

actions and must converge towards an optimal collective behaviour. We introduce a

distributed evolutionary learning algorithm called Horizontal Information Transfert

(HIT) that tackles this particular issue. Agents interact on-line in their environment

and must learn their control policy with an embedded evolutionary algorithm and a

parameter exchange system. It has the advantage of coping with the limited compu-

tation and communication capabilities of low-cost robots, which are often used in

swarm robotics. We analyze this algorithm’s characteristics and learning dynamics on

a foraging task.

We then study systems where the reward is given globally to the entire team. Therefore,

this evaluation does not necessarily represent each agent’s performance, and it can

be challenging to calculate an individual contribution. We introduce a centralized

cooperative co-evolutionary algorithm (CCEA) that modulates the number of agents’

policies modification to find a compromise between evaluation quality and execu-

tion speed. This modulation also helps in completing tasks where improving team

performance requires multiple agents to update in a synchronized manner. We use

a multi-robot resource selection problem and a simulated multi-rover exploration

problem to provide experimental validations of the proposed algorithms.
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Résumé

Avec leur prolifération dans l’industrie et la vie quotidienne, les robots sont désormais

de plus en plus amenés à interagir entre eux. Cette thèse traite du problème de la

coordination entre robots dans un contexte où ils doivent apprendre leur politique de

contrôle de manière autonome. Ces politiques sont optimisées avec des algorithmes

d’apprentissage automatique qui tirent parti d’une fonction de récompense pour

augmenter progressivement les performances. La structure de cette fonction va in-

fluencer significativement la dynamique d’apprentissage et donc les comportements

possibles des agents.

Nous étudions d’abord les systèmes où les agents reçoivent individuellement une

récompense locale adaptée à leurs actions et doivent converger vers un comportement

collectif optimal. Nous introduisons un algorithme d’apprentissage évolutif distribué

appelé Horizontal Information Transfer (HIT) qui s’attaque à ce problème particulier.

Les agents interagissent en ligne dans leur environnement et doivent apprendre leur

politique de contrôle avec un algorithme évolutif embarqué et un système d’échange

de paramètres. Il a l’avantage de faire face aux capacités de calcul et de communication

limitées des robots à faible coût, qui sont souvent utilisés dans la robotique en essaim.

Nous analysons les caractéristiques et la dynamique d’apprentissage de cet algorithme

sur une tâche de recherche de nourriture.

Nous étudions ensuite des systèmes où la récompense est donnée globalement à toute

l’équipe. Ainsi, cette évaluation ne représente pas nécessairement la performance de

chaque agent et il peut être difficile de calculer une contribution individuelle. Nous

introduisons un algorithme co-évolutif coopératif centralisé (CCEA) qui module le

nombre de modifications des politiques des agents pour trouver un compromis entre

la qualité de l’évaluation et la vitesse d’exécution. Cette modulation aide également à

effectuer des tâches où l’amélioration des performances de l’équipe nécessite la mise

iii



Chapter 0

à jour de plusieurs agents de manière synchronisée. Nous utilisons un problème de

sélection de ressources multi-robot et un problème d’exploration multi-rover simulé

pour fournir des validations expérimentales des algorithmes proposés.
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1 Introduction

Individual and group learning dynamics in evolutionary collective robotics.

The natural world is full of examples of self-organizing behaviors. One such example

is the phenomenon of synchronous flashing exhibited by fireflies in mangrove forests

that occurs without central coordination or external cues. Many collective behaviors

observed in the animal kingdom involve more than just synchronization. For instance,

ants and bees are known for dividing labor within their colonies, or more complex

animals such as hyenas are able to cooperate in hunting. These illustrate the incredible

ability of nature to produce self-organizing behaviors at all levels of complexity.

This has inspired engineers and scientists to design autonomous robots. Thus, many

so-called multi-robot systems have been created to assist humans in different tasks

such as logistics, surveillance, agriculture, etc. This large span of applications has led

to a great variety of systems. The robot teams can be composed of three individuals

or thousands in a swarm. They can all be identical, or each can have well-defined

capabilities and roles. They can have adversarial individual goals or conversely, have

aligned objectives and cooperate.Chapter 2 of this thesis gives an overview of these

systems.

In particular, within the field of collective robotics, swarm robotics has recently drawn

a lot of attention. This subfield focuses on the design and investigation of simple

robotic systems that operate in large groups. These systems exhibit emergent be-

haviour, displaying remarkable resilience and adaptability through the use of simple

individual rules.
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Chapter 1 Introduction

Yet, fine-tuning and deploying these behaviours by hand can be challenging. Machine

learning methods can be used to overcome this difficulty, but they also have their

own limitations. In Chapter 3, we emphasize the large span of multi-robot systems

and their impacts on the learning schemes. We especially focus on robots’ goals,

information flows and optimization algorithms.

Each agent goal is described by an objective function that must be optimized to

maximize performance. Using machine learning shifts the problem from designing

optimal behaviour to designing an effective objective function. If this function is

aligned with the system’s global objective, the agents’ behaviour can ultimately be

beneficial to the system. Sometimes, the objective function evaluate the behaviours

of the whole team and is not a good representation of one individual contribution. For

example, free riders could benefit from the performance of their teammates without

contributing to the task. To avoid this kind of detrimental outcome, we can allow the

robot to estimate more precisely its contribution to the collective. Numerous methods

have been proposed to extract one’s contribution or decompose an objective function

for more tailored assessments.

Another critical factor in the design of algorithms is the information flows between

agents. Agents can learn more efficiently and benefit from all experiences and explo-

rations when they can share information on a communication network. Centralizing

the information also allows methods to mitigate learning stability and calculate better

individual contributions.

Goals and information flow will then condition the type of optimization algorithm

we can expect to use. Indeed, recent years have led to great developments in deep

reinforcement learning algorithms. However, they usually require a large amount of

information flow during the learning phase, which may not be available in practice.

On the other hand, more lightweight methods exist in the realm of evolutionary

algorithms. This algorithm class takes inspiration from the natural evolution of living

organisms to optimize the behaviour of robots.

This thesis aims to design and analyze multi-robot evolutionary algorithms with

two different goals definition and information flow setups. We explore the following

questions:

• how to deploy and optimize a swarm of robots in an unknown environment?
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• how to estimate the marginal contribution and stabilize learning in a setup

where robots interact in an episodic manner and replay is costly?

More specifically, the first setup concerns robots deployed in their environment, ready

to solve a given task. They can share messages and have individual goals. A class of

optimization algorithms inspired by the evolution of living organisms is being used to

optimize the behaviour of robots. In particular, the process of horizontal gene transfer,

where an organism can integrate genetic material from another organism that is not

its ancestor, is being studied. This mechanism is commonly found in bacteria and is

being used as the basis for a new online optimization algorithm, introduced in Chapter

4. The challenge it addresses is coping with low-cost robots’ limited computation and

communication capabilities. In order to do so, the algorithm decouples computation

and communication. It ensures the learning of efficient control policies even when

only a limited amount of information can be exchanged between neighbouring robots.

But learning after the deployment of the robots in the environment can be difficult. A

simplification is generally to learn by episode, that is, by repeating the same task in

a loop to sample some experience while trying to improve between attempts. This

context allows for centralizing information between agents and synchronizes their

learning.

In Chapter 5 and 6, we introduce a new cooperative co-evolutionary algorithm to

teach a team of robots to spread on a set of resources or some points of interest. We

assume that only the performance at the team level can be accessed. In this situation,

the reward signal expressing the agents’ goal is a poor representation of their individual

performances. In order to accurately capture the contribution of agents and stabilize

the learning process, we propose to modulate the number of agents, which is updated

in-between team evaluations. This allows finding a compromise between accurately

estimating the marginal contribution of agents while maintaining the possibility of

modifying multiple agents simultaneously. The latter is critical in cases where the task

requires coordination between agents.
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2 Multi-Robots Systems

Robots are more and more present to assist humans in their daily life and industrial

work. Economists are speaking of the fourth industrial revolution (4IR) of robotic

and automation technologies (Schwab, 2017). Machines are of great use in assisting

humans with complex and repetitive tasks.

Given this increase, robots can no longer act in isolation. Instead, they are necessarily

brought to interact with each other physically in their environment or by message

via communication channels. The study of multi-robot systems started in the 80s in

many different settings and environments. They are now used in real-world situations

in warehouses and are planned to be used in many other cases.

The goal of this chapter is to discuss the what, why and how of multi-robots systems.

It first details a taxonomy of multi-robot systems by classifying them on how they

interact. It then describes the types of behaviours that robots are led to perform and

the real-life application they could help achieve. Moreover, it presents different design

methods to create performing teams.

2.1 Multi-Robot Systems

The development of the human species owes much to its ability to cooperate (Hamil-

ton, 1963, 1964; Pennisi, 2005). Indeed, many problems can benefit from the col-

laboration of several agents and do not have to be solved sequentially. This idea of

modularization (Arkin et al., 1998) is noticeable, for instance, in many construction

processes where many parts and elements can be built independently and then assem-
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bled together. Thanks to this division of labour, one can expect overall performance

to be better than the sum of individual performances. Using several robots can also

be helpful to guarantee robustness and redundancy in a team to avoid depending on

the good functioning of a single robot.

When several robots are brought to interact together, we speak of a multi-robot system

(MRS). It can range from a simple group of sensors acquiring and processing data to

a set of very complex moving robots. In this thesis, we are interested in the former:

each autonomous unit has its own set of sensors and actuators and interacts explicitly

or implicitly to perform a given task. While the goal is the same for everyone, several

different robotic platforms can be used in the same team, in which case, we speak of

a heterogeneous team. On the contrary, when all robots are identical, we speak of a

homogeneous team.

We also define a large team of homogeneous relatively simple robots as a swarm. Beni,

2004 specifies that the size of a swarm should be neither so large that it is necessary to

use statistical averages to analyze it nor so small that it should be treated as a few-body

problem. Swarm robotic is based on the principle of superadditivity (Parker, 2008),

where the whole result (collective behaviour) is better than a simple sum of all its parts

(the agents’ behaviours).

Many classifications have been proposed over the years to sort MRS. Previous re-

views have classified MRS by their level of autonomy (Rizk et al., 2019), the type of

interaction between the robots and the environment (Farinelli et al., 2004), the rela-

tionship between the robots’ goals (Parker, 2007), or the applications and associated

behaviours (Brambilla et al., 2013; Murray, 2007). In this section, we detail the different

architectures of interactions between robots. The following section then highlights

the behaviours and tasks that robots must solve before describing how they apply to

actual applications.

Figure 2.1 represents some typical relationships between robots. Robots can ignore

each other or be aware of others’ presence. They can communicate with each other

symmetrically or hierarchically. They also can interact via a centralized authority to

coordinate their behaviours with global information out of their reach.

• Un-aware robots: When robots are not aware of the presence of others, coopera-

tion can emerge in a goal-oriented way. In this case, we usually refer to collective
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Figure 2.1: Simplified representation of different multi-robotics setups. (a) Unaware
robots can only sense their teammate’s impact by observing their environmental
effects. (b) aware robots use their sensors to monitor others’ actions directly. (c)
networked robots can share information through more or less long-distance com-
munication channels. (d) in hierarchical systems, some robots have control over the
action of others through a communication channel. (e) in centralized systems, robots
share information with a central authority that makes global decisions for them.

robotics. Robots may be able to observe the impact of others through their ef-

fects on the environment. For example, in a foraging task where all robots must

carry items around, one can sense the impact of a teammate by observing how

the items to be picked up are redistributed. This type of implicit communication

through the world is often called stigmergy (Grasse, 1959; Kube and Bonabeau,

2000). It has the advantage of not depending on costly communication channels

and protocols.

• Aware robots without communication: in this case robots reason about the

actions and intentions of their teammates without relying on a direct communi-

cation canal. They can use sensors to directly observe their actions (Huber and

Durfee, 1995) and plan accordingly.

• Networked robots: Explicit communication between robots can be used to

share information, synchronize actions and negotiate to influence the decision-

making of other nearby robots. There are many ways in which robots or agents

can communicate with each other, but issues of frequency, bandwidth, message

collision, and locality of communication come into play.

• Centralized system: MRS can also be characterized by the presence of a central-

ized software that coordinates other robots. The controller aggregates data from

the whole team and can make informed decisions, impossible to make at the

local level. But it may make the system vulnerable to a single point of failure.

Communicating all information to a central location at a frequency suitable for

real-time control can also be challenging.
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• Hierarchical system: Different levels of hierarchy can also modulate the level of

distributions of sensing and decision-making. For example, some robots can

act as leader nodes and asymmetrically share decisions and information with

other teammates.

• Human-robot interaction: Multi-robot systems can also benefit from interaction

with human operators who guide the team’s decision making between robots

(Cummings, 2004; Kolling et al., 2013). This allows autonomy to be delegated to

a human with a more global view of the task, its state of completion, and the

trade-offs to be made.

Each of these architectures has its limitations, advantages, and disadvantages. Choos-

ing one will mainly depend on the available robotic platforms, communication tech-

nologies and the desired behaviour. The following section describes the types of

collective behaviours used in multi-robot systems.

2.1.1 Collective behaviours

The completion of a task by a team of robots usually involves certain steps. Depending

on the architecture of the multi-robot system in place, these steps can be explicitly or

implicitly solved by assembling identified building blocks called collective behaviours.

Brambilla et al., 2013 classify these collective behaviours into four categories: col-

lective decision-making, spatial-organization, navigation and any other collective

behaviours.

Collective decision-making

Collective decision-making behaviours are any form of decision construction requiring

information or preferences of multiple robots. It can be to reach an agreement on a

variable when forming a consensus, or to form a specialization for each robot when

assigning tasks.

We speak of consensus formation (Olfati-Saber et al., 2007) when the robots form a

consensus on continuous or discrete variables. Continuous consensus achievement

has been extensively studied in the context of flocking, where robots must agree on

a certain motion direction (Olfati-Saber, 2006). Continuous consensus can also be

used to perform collective perception (Valentini, Brambilla, et al., 2016), collective
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Figure 2.2: Classification of collective decision-making reproduced from Valentini
et al., 2017

mapping (Aragues et al., 2012) or distributed signal processing and is widely used for

sensor networks.

For discrete consensus formation, a team of robots must agree on a specific option in

a set of choices. For example, a team of robots may have a predefined set of strategies

and must agree on which strategy to execute (Bowling et al., 2004; Kok, Vlassis, et al.,

2003). Valentini et al., 2017 have coined the consensus on N possible choice as the

best-of-n problem and many decision-making methods have been proposed in the

swarm community, using urn models, voter models or majority rule. Blockchain

technology also offers a promising method for decentralized decision-making for

strongly heterogeneous systems (Castelló Ferrer, 2018).

Figure 2.3 describes a typical collective specialization workflow (Rizk et al., 2019) used

by teams of robots. To solve a complex task, teams of robots can divide it into smaller,

simpler tasks, and can leverage their own skills to solve them. These are the multi-

robot task decomposition, coalition formation and task allocation problem (MRTA).

Task decomposition is usually the first step of decision making for team of robot. The

feasibility of such a decomposition is very specific to the application domain and the

robot team that has to solve it (for example, Chen et al., 2010 in the soccer domain).

When the problem has been decomposed, it is a matter of dividing the robots into

groups and assigning them a task for which they will be responsible. These are the

problem of Multi-robot coalition formation (MRCF) and Multi-robot task allocation

(MRTA) (Gerkey and Matarić, 2004).

There exists a large set of techniques for addressing multi-robot task allocation prob-
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Figure 2.3: Typical collective specialization workflow of a multi-robot system. The first
steps of task decomposition, coalition formation, and task allocation are regularly per-
formed by a central authority, that is either a central computer or a human. Planning
and control are usually done independently by each robots.

lems (MRTA) (Khamis et al., 2015), for example, using auction in market-based ap-

proaches (Zlot and Stentz, 2006). Decentralized task allocation can be performed

using a consensus-based auction algorithm (CBAA) (Choi et al., 2009). It works by

alternating phases of auctions and consensus until convergence. To tackle the possi-

ble physical proximity of tasks, the consensus-based bundle algorithm (CBBA) allows

grouping assignments into bundles for bidding. Furthermore, the consensus-based

grouping algorithm (CBGA) (S. Hunt et al., 2014) allows the grouping of robots for

tasks that would require heterogeneous robots collaboration.

Collective spatial-organization

Spatial organizations are behaviours that focus on how to organize and distribute

robots and objects in space. They concern aggregation (Garnier et al., 2005; Schmickl

and Hamann, 2011; Soysal and Şahin, 2006; Trianni et al., 2003), chain formation

(Nouyan et al., 2008) or, more generally, pattern formation (Rubenstein et al., 2014).

These behaviours are powerful building blocks that allow easier message exchanges

or prepare for a more complex task. For example, Guerrero-Bonilla et al., 2017 showed

that formation creation could enable resilience, consensus achievement and coopera-

tion even in the presence of malicious or malfunctioning robots.
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Figure 2.4: Illustrations of some multi-robot cooperative behaviours. (a) pattern for-
mation involve robots assembling themselves to build a predefined shape (Rubenstein
et al., 2014). (b) Flocking concern any team of robot that moves in a direction and
where all robot adapt their velocity based on their neighbours. (c) Object transporta-
tion is used when a team of robot must move objects too heavy for an individual.

Robots spatial organization can also be inspired by nature, particularly by reaction-

diffusion systems studied in developmental biology. This is the concept of mor-

phogenesis. Using it, Slavkov et al., 2018 have demonstrated good performance of

self-assembling with hundred robots.

We can finally think of the self-assembly of robots for construction processes or to

guarantee more stability during navigation (Groß and Dorigo, 2008). In reconfigurable

modular robotics, the idea is pushed forward by designing autonomous robot modules

that can physically connect into a larger ensemble. This allows the robot ensemble to

have self-repairing capabilities, and individual robot-modules can share energy and

establish communication buses.

Collective navigation

Navigation behaviours are the coordinated movement of a team of robots in the

environment.

This can be a simple coordinated motion in arbitrary form like flocking or a move-

ment in formation (Olfati-Saber, 2006). Such methods, inspired by physics, allow the

exploration of hard-to-access forest-like environments (Soria et al., 2021).

11



Chapter 2 Multi-Robots Systems

Collective navigation can also concern more goal-oriented motion where robots must

navigate the environment to explore it (Juliá et al., 2012). In collective mapping,

multi-robot teams must create an environment map. The exploration can be seen as

task allocation problems where robots must allocate themselves to the boundaries of

unexplored portions of the environment (Bautin et al., 2012; Yamauchi, 1997, 1998).

If robots need to collect information along the way, we speak of multi-robot informa-

tive path planning (Meliou et al., 2007; Singh et al., 2009). Its goal is to compute a path

for each robot that would maximize the accuracy of the measurement estimate under

constraints (e.g. small battery life). For example, if the robots move in a space-time

field, there are usually correlations between closest points (Krause et al., 2008), which

makes some measures more or less useful, and can lead to efficient path planning.

We can also consider robot patrolling in an environment by visiting some points of

interest as regularly as possible (Glad et al., 2008).

Some robots can also carry objects and may need coordination to move objects too

heavy for an individual (Groβ and Dorigo, 2008). Collective object transportation can

be achieved through stigmergy: the action of a robot in collective transport modifies

the stimuli perceived by other robots and, in turn, produces changes in their actions

(Bonabeau et al., 1999). Different approaches rely on leader-follower principles, where

a leader plans the trajectory and controls motion while the remaining robots coordi-

nate to support the leader’s movement (Teh et al., 2020; Wang and Schwager, 2016a,

2016b). Finally, in more centralized settings, an external supervisor can observe the

collective motion and sends appropriate control actions to the robots to guide the

object toward a target direction (Shahrokhi and Becker, 2016). Recently, collaborative

drone transportation has also shown promising results (Horyna et al., 2021; Mellinger

et al., 2013; Tagliabue et al., 2019).

Summary

These building blocks can then be composed to solve more complex tasks. In the

next section, we briefly describe real-world applications of multi-robots and swarm

systems that use these collective behaviours to assist humans in various tasks.
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2.1.2 Applications

This section reviews several real-world applications where teams of robots can be

helpful. Some multi-robot systems are already deployed and used in the industry, no-

tably for warehouse management and environmental monitoring. In the near future,

fleets of robots could more intensivelly be used for fire-sensitive forest monitoring,

precision agriculture, or automated delivery of goods. More prospective applications

concern the cheap and fast construction of buildings in case of emergency or disaster.

Currently, applications are still limited to usage in a safe, controlled environment. But

future deployments in uncontrolled environments are promising.

This section reviews a number of these industrial applications and the research ap-

proaches around these issues. It highlights the degree of centralization or decentral-

ization and the collective behaviours building block used in the various problems and

solutions.

Logistics

Currently, the leading industrial application for multi-robots is warehouse manage-

ment. In non-automated warehouses, human workers have to move to retrieve orders

from shelves. But it is a tedious work that can involve health risks when transporting

goods. Nowadays, multiple automation techniques have been proposed to allow more

efficient storage and retrieval of goods (Boysen et al., 2019).

Robotic Mobile Fulfillment Systems (RMFS) uses robots to move shelves to the workers

in an optimal manner. The company Kiva Systems, now known as Amazon robotics,

has developed a robot that slips into a row of shelves (see Figure 2.5.b), lifts them and

brings them the worker (Mountz et al., 2008). Figure 2.5.a represents a warehouse

arranged by the Geek+™ company to optimize their customer delivery.

Figure 2.6 represents a typical simple warehouse with a robotic mobile fulfillment

system. All of these systems work similarly. Hundred of mobile robots carry selves

from a storage area to a picking station for human operators. In these configurations,

robots are often called automated guided vehicle (AGV) as they are kept constrained

to guided lines (either visually or using radio waves, magnets or laser). This allows

humans to retrieve stored items without moving around the storage area, increasing
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Figure 2.5: Exemple of robots used in warehouses for RMFS. (a) Warehouse using the
Geek+™ solution and (b) Kiva robot carrying an inventory pod (source)

productivity and reducing accidents.

Figure 2.6: Warehouse with multi-robot logistic. Robots must spread themselves
between the shelves. They independently plan their trajectories to get the pods and
bring them to the human stations. Figure reproduced from Wurman et al., 2008.

The warehouse is ideal for applications with many robots because the controlled envi-

ronment has no unexpected events, and stable communications can be guaranteed. A

global planner can therefore organize and coordinate all robots (Wurman et al., 2008).

Many optimization problems are involved in such a system (Enright and Wurman,

2011). In particular, the collective behaviour of task allocation is solved by a central-

ized job manager. This centralization will take customer orders and assign them to

robots, which will have to bring them to a station to be picked up by a human worker.

It is a question of keeping the operators busy to maximize productivity while limiting

the number of robots to limit costs. Path planning to the order’s storage and collision
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avoidance are handled by each robot individually and requires local coordination

with neighbours.

After the warehouse, the goods have to be brought to the individual and shops. With

the emergence of autonomous vehicles, this task is about to be automated. The prob-

lem of distributing tasks on a fleet of vehicles is the well-known travelling salesperson

problem (TSP). Drone delivery to individuals has shown some promising results for

transporting small parcels, food, and medical supplies (Benarbia and Kyamakya,

2021; Kwak et al., 2022; Rosser Jr et al., 2018). With warehouse management, these

technologies can impact how we store goods and distribute them.

Monitoring

Many monitoring applications today make use of sensor networks (Kandris et al.,

2020). Wireless sensor nodes are a group of spatially distributed sensor nodes con-

nected by wireless communication (Akyildiz et al., 2002). However, sometimes, sen-

sors cannot be left in place, or the object of analysis is too dangerous to place them

initially. Robots are then particularly suitable for monitoring hazardous and hard-to-

access locations.

Indeed, robots have been used to monitor animals in their habitats (a group of birds in

Cliff et al., 2015, and fishes in Tokekar et al., 2013) and for scientific data measurement

(wind in Neumann et al., 2012, soil in Tokekar et al., 2016 and water temperature in

Duarte et al., 2016). More dangerous situations can include monitoring accident areas

(Maza et al., 2011), hazardous materials (e.g. bacteria in Silva et al., 2012, chemical

source in Ferri et al., 2011), high voltage line (Uzakov et al., 2020) or controlling fire

sensitive areas (Roldán-Gómez et al., 2021).

Motoring large areas usually involve spatial organization behaviours and coordinated

and informative path planning to spread on large areas and maximize the amount

and quality of data collected by robots.

Space monitoring has also been used by the European Space Agency with Cluster II, a

group of four satellites that collects data on the impact of solar activity on the Earth’s

magnetosphere (C. P. Escoubet, 2000; C. Escoubet et al., 1997). The four satellites fly

in a tetrahedron formation and are thus able to measure data in 3D (Dow et al., 2004).

They must regularly perform joint manoeuvres to comply with requests from the Joint
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Science Operations Centre cluster.

Agriculture

The agricultural sector had reached a significant turning point. It is one of the sectors

that emit the most greenhouse gases (Hannah Ritchie and Rosado, 2020) and will

be the hardest impacted by climate change. Over the years, many approaches have

been proposed to produce food while limiting its impact on climate, land use and

biodiversity.

The use of robots could be a solution to some of these problems. Precision agriculture

(Bechar and Vigneault, 2016; Cheein and Carelli, 2013; García-Pérez et al., 2008; C.

Zhang et al., 2016) allows farmers to use data science to make informed and accurate

decisions on every plot of land. In particular, multi-robot systems can be used to

collect data automatically and apply solutions in the field.

Multi-robot precision agriculture usually involves a heterogeneous team of unmanned

aerial vehicles (UAVs) that inspect terrains and assess affected areas and unmanned

ground vehicles (UGVs) that use this collected information to efficiently and accu-

rately perform crop treatments. Depending on the proposed solutions, the degree of

centralization can vary. In many cases, these systems require human intervention,

and a lot of research is being done on the development of robot-machine interface

platforms.

Figure 2.7: Fleet of drone flying above a field to gather data and detect the distribution
of crops such as in Lottes et al., 2017

More precisely, UAVs plan trajectories to ensure good measurement coverage while

limiting the amount of energy used for travel. The challenge of multi-robot infor-

mation gathering is, therefore, to plan complex trips and carry out measurements

such as crop ripening stage, soil humidity, fertilizer levels, the presence of pets, weeds
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and weather damage. For example, figure 2.7 illustrates a typical crop distribution

detection performed in Lottes et al., 2017. Communication about this data must also

be secured to prevent strategic data leakage (Dutta et al., 2021).

After this data collection, UGVs use this information to allocate tasks between the

different robots and perform the required action such as planting seeds and applying

pesticides. Most harvesting operations require dealing with natural objects, such as

fruits and leaves, that have high variability in shape, texture, colour, size, orientation

and position. Therefore, creating a reliable robotics platform is still challenging, and

many researchers and companies are tackling the problem.

Search and rescue

Beyond monitoring, multi-robot can also intervene in search and rescue (SAR) op-

erations (Grayson, 2014; Grogan et al., 2018; Hayat et al., 2016; Queralta et al., 2020;

Shakhatreh et al., 2019). These are very popular problems and have benefited from

many international collaborations (Cubber et al., 2017; De Greeff et al., 2018; Kruijff

et al., 2014; Ollero et al., 2005) and competitions (Kitano et al., 1999).

Multi-robot systems can cover more ground and search more effectively than a single

robot. They can work together to search a larger area, and can divide the search

area into smaller sections to make the search more efficient. Additionally, having

multiple robots can provide redundancy, so if one robot becomes damaged or fails,

the other robots can continue the search. This can be particularly useful in difficult or

hazardous environments, where a single robot might be unable to operate effectively.

Robots can also be used by firefighters to help extinguish large fires (Naghsh et al.,

2008; Roldán-Gómez et al., 2021).

Multi-robots for SAR are typically semi-autonomous systems with varying amounts of

human supervision (Kolling et al., 2013). For example, the human can intervene to

allocate tasks and mission to robots (Maza et al., 2011). We speak of shared autonomy

when robots autonomously control the majority of their degrees of freedom, while

a control interface allows for a human operator to control a reduced number of

parameters defining the global behaviour of the system (Marion et al., 2017). For

example, to control the path shape of the robot team using a reduced amount of

freedom and provide real-time feedback on the performance (Masone et al., 2014).
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Health care

Many public health issues are understaffed or present a safety risk to the worker.

Multi-robots systems can be used to assist with task such as dispensing medication

and transporting medical equipment. This could help to improve the efficiency and

effectiveness of health care delivery (Ackerman, 2011; Rosser Jr et al., 2018).

In the fight against infectious diseases, teams of robots are a promising technology for

many tasks of spraying, disinfecting, cleaning, treating, detecting high body tempera-

ture/masking. Alsamhi and Lee, 2020 propose for that a framework of collaboration

between all robots of a strongly heterogeneous team and use blockchain technology

as a consensus method for robot coordination.

Another understaffed health issue is caring for people with reduced mobility and

elderly people. Due to the increase in longevity and the decrease in the birth rate, it is

becoming more and more challenging to meet the need for healthcare personnel to

support elderly people living at home or in nursing homes. Barber et al., 2022 proposes

using a heterogeneous team of robots to assist elderly people living alone. This team

comprises a monitoring robot that measures their well-being and a manipulator robot

that can help them in their daily tasks. In addition to these two robots, the system

benefits from the help of a set of low-cost external sensors, a medical monitoring

bracelet and an Android application that form an automated home environment

(AAL).

Construction

In nature, animals have shown incredible construction abilities to build nests, protec-

tion barriers or traps (Hansell, 2007). The diversity of these constructions comes from

the diversity of the groups of animals that build them, their methods of collaboration

and the size of their teams. Inspired by the animal kingdom, construction could also

be performed by a multi-robot system. Indeed, there is a strong demand for safe,

durable, and affordable housing.

Collective robotic construction (CRC) (Petersen et al., 2019) could be one answer. It

involves multiple robots coordinating to build a structure more extensive than a

single robot. The robot teams will vary widely depending on the materials used for

construction. These can be divided into two categories: discrete materials such as
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bricks, spacers or sandbags, and continuous materials such as concrete, foam and

various types of fibre.

Thus, the degree of centralization will significantly impact the performance and

simplicity of the perception and decision-making problems. We can sort the different

approaches according to their use of centralized, hybrid, or decentralized perception

and decision-making. The centralized approach is the most common as it allows

external monitoring of construction progress and dispatching individuals to assembly

sites. For example, Augugliaro et al., 2014 uses four drones to assemble a 6-m-tall tower

composed of 1500 foam modules. A central controller performs the path planning.

The decentralized approach extends the concept of stigmergy by allowing robots to

store information in the environment for their teammates. (Wawerla et al., 2002;

Werfel and Nagpal, 2006). In between, hybrid approaches often involve a central

controller that maintains information about the global structure and the positions

of the robots. This controller may specify assembly locations (Yun and Rus, 2007) or

regions (Yun et al., 2011), and communicate this information to the collective group

of robots.

Just like animals, robot teams need feedback on their construction and must therefore

overcome the problem of their local perception. It is also a matter of dividing the

tasks and having a cooperation mechanism that allows for building a stable structure.

Unfortunately, robotic platforms allowing such features do not exist yet, but many

teams are working on different methods.

Art and entertainment

Swarm robotics has the potential to be used in a variety of applications in art and

entertainment.

One of the most impressive artistic applications of the use of multi-robot systems

is drone shows (Waibel et al., 2017). Swarm of aerial robots are used as part of a

live performance, such as a dance or music show and are programmed to move in

ways that create interesting visual or auditory effects (Alonso-Mora et al., 2012). In

these performances, drones navigate autonomously, piloting themselves following

choreographed and pre-programmed motions while supervised by a human operator.

Swarm robots can also be used to create interactive installations, such as sculptures,
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exhibits or toys that respond to the presence and movements of humans (glowbots).

For example, a swarm of robots could be arranged in a specific pattern, and as vis-

itors approach, the robots could change their behaviours, movement or LEDs in

response (Alhafnawi et al., 2020). It questions the perception of the swarm as a whole

behavioural entity (Dietz et al., 2017) and the establishment of a possible affective

relationship with it (Santos and Egerstedt, 2021). Teams of robots have been used for

interactive painting on a canvas (Santos et al., 2020).

Robocup

On the research side, robot soccer has been identified as a benchmark for multi-robot

research. To stimulate research, the RoboCup (Kitano, Asada, Kuniyoshi, Noda, and

Osawa, 1997; Kitano, Asada, Kuniyoshi, Noda, Osawa, and Matsubara, 1997) has

proposed a highly competitive multi-robot soccer tournament. In all the leagues of

the event, the robotic platform is fixed, and the players must program the control

systems of each robot and the team strategy. In the middle size league, all robots

have their sensor on board, and they must deal with uncertainty and reconstruct

global information about the environment. On the other hand, the small size league,

a top view camera, gives global information to all robots, and coordination can be

centralized. As individual performances are well known, the differences in level

between the teams are now usually based on the ability to coordinate.

Summary

With all these applications, multi-robot systems are very diverse. Table 2.1 summarizes

their characteristics. The team composition details the type of robots used to solve

the task. The architecture column highlights the type of communication between

robots and a possible centralization. Finally, the collective behaviour column shows

the types of behaviour to be performed and composed to solve the task.

As robots begin to be deployed in the real world, there is a need to ensure that their

use is safe and benefits the common good (Veruggio et al., 2016). E. R. Hunt and

Hauert, 2020 propose a checklist of questions to ask before taking robots out of the lab

or warehouse. In particular, it is about asking questions about the ethical alignment

of the application. Applications must be used for social good and comply with all

relevant laws and regulations for the domain(s) of deployment. Many international
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Application Team

composition

Information flow Collective

behaviours

warehouse
management

homogeneous
(ugv)

centralized task allocation

monitoring homogeneous centralized and
networked

area coverage,
formation control

agriculture heterogeneous
(ugv, uav)

human-robot,
hybrid

path planning and
task assignment

search and rescue homogeneous
(uav)

human-robot
interaction and
networked

task allocation,
area coverage,
formation control
and pattern
formation

elderly care heterogeneous networked task allocation
health heterogeneous centralized consensus

formation
construction homogeneous centralized,

hierarchical or
networked

self-assembly,
cluster formation
and collective
transport

drone shows homogeneous centralized self-assembly,
collective
transport

Table 2.1: Summary of real-life multi-robot applications. The team composition col-
umn is the type of robots used to address the task. The architecture column highlights
the type of communication between robots and a possible centralization. The col-
lective behaviour column shows the type of behaviours performed and composed to
solve the task

actors are committed to preventing or limiting the military use of autonomous robots

(Asaro, 2012), such as the Stop Killer Robots movement (Gubrud, 2014).

Current applications still only concern well-controlled environments, such as a ware-

house. However, safety still needs to be significantly improved (Evans, 2020). Deploy-

ment in an uncontrolled environment requires essential safety procedures not to hurt

humans and human activities. Users must be able to interact with the team of robots

to prevent physical harm caused by the individuals and their behaviours. Given the

environmental constraints, it is also essential to consider the costs and benefits of

these technologies and the social and economic paths they may imply.
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2.1.3 Design approaches

All of these applications have quite diverse robot and communication configurations.

This plurality has favoured the emergence of numerous approaches for designing

and analyzing these multi-agent systems (Shoham and Leyton-Brown, 2008a). So far

we have presented a general overview of the properties and choices that come with

designing a MRS. Namely, we discussed the what and why of multi-robot systems. In

this section, we focus on the how.

We distinguish between the so-called manual approaches, which rely on the designer’s

ingenuity to create an adequate behaviour for each robot, and the automatic meth-

ods, which will allow the robots to adapt their behaviour through their repeated

interactions with the environment.

Manual design methods

Real-world applications mainly use manual design because safety requires predictable

and straightforward behaviours. Over the years, many approaches have been created

to program robots and organize their collaboration (Parker et al., 2016; Siciliano

et al., 2008). This section highlights three design approaches: reactive approaches,

behaviour-based approaches and deliberative approaches.

• Reactive approaches:

The simplest robots do not plan for future actions and are only reactive to their

sensory inputs (Braitenberg, 1984; Brooks, 1986). The architecture of reactive

systems is not based on reasoning or planning but rather on a direct connection

between sensors and effectors. This is inspired by the biological concept of

stimulus-response. Reactive systems are usually made up of a programmed set

of rules that, when given sensory inputs, produce the desired output actions.

This allows reactive systems to compute very quickly and be useful in situations

where quick reactions are necessary. However, because these systems do not

keep a representation of the world or store information, they are limited in their

ability to deal with uncertainty and novel situations.

In the multi-robot case, reactive systems often rely on the concept of emergence,

where complex behaviours arise from the collective behaviour of agents with

simple individual capacities. This means designing reactive distributed systems
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is a bottom-up process involving iteratively crafting individual behaviours and

observing the collective results.

A popular method of reactive robotics is inspired by physics and considers each

robot as a particle. The robots interact with each other thanks to social potential

fields (Reif and Wang, 1999) and are attracted by the goal that exerts an attractive

force on them. This framework is very useful for creating pattern formation

behaviour (Spears et al., 2004), collective exploration or coordinated flocking

movements for disaster relief (Reynaud and Guérin-Lassous, 2016).

• Behaviour-based approaches:

After the development of reactive approaches, behaviour-based approaches

(Arkin et al., 1998) were proposed in an effort to improve upon their ability

to respond to changing environments. This was mostly popularized by the

subsumption architecture proposed by Brooks, 1986. In behaviour-based archi-

tectures, the robot control is constituted of several basic behaviours, which are

organized in separate modules. The most common method used to describe

robots behaviours manually is probabilistic finite state machine (PFSM) (Minsky,

1967). By allowing interaction of influence with each other in these finite state

machines, very complex behaviours can be achieved. These types of design

are easy to set up and allows complex behaviours of task allocation (Valentini,

Ferrante, Hamann, et al., 2016b), aggregation (Schmickl and Hamann, 2011) and

chain formation (Nouyan et al., 2008). The global system can also be modelled

as a Petri Net that generalize state machine for concurrent execution (Costelha

and Lima, 2012; McCarragher, 1993; Peterson, 1977).

In the ALLIANCE (Parker, 1998) framework, the robots have a set of high-level

behaviours and can influence their teammate on the choice of behaviours by

influencing a motivation level.

Matarić, 1995 proposed the Nerd Herd, a group of 20 identical robots that were

only able to detect obstacles and other robots. Each robot had a set of pre-

programmed behaviours, such as obstacle avoidance, homing, aggregation,

dispersion, following, and safe wandering. By combining these behaviours, the

system was able to achieve higher levels of functionality. For example, the robots

were able to engage in collective foraging by using a temporal combination

operator to switch between avoidance, dispersion, following, homing, and

wandering.

• Deliberative approaches:
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This approach, also known as the Sense-Model-Plan-Act architecture (Albus,

1991; Iocchi et al., 2000; Matarić, 1998), has been a classical approach in robotics

(Nilsson et al., 1984) and AI for representing high reasoning capacities. It is based

on the idea that sensory information is processed using the robot’s internal

knowledge in order to plan and determine the next action, and as such relies

on an internal representation of the world. However, this approach can be

computationally expensive and lacks real-time reactivity.

In the case of multi-robot systems, an additional level of global control known

as social deliberative approach (Iocchi et al., 2000) can be defined. In a social

deliberative multi-robot system, a global strategy is planned to allow the system

as a whole to respond to changes in the environment (e.g. task re-allocation).

For example, in Werger and Matarić, 2000, the robots were individually behavior-

based, but group-level deliberation was achieved through an architecture called

Broadcast of Local Eligibility. Each robot could evaluate its ability to perform

a given task and then broadcast that value. The robot with the highest value

would then claim the task, allowing for efficient task assignment in the system.

Automatic design methods

However, the dynamic nature of the environment and the tasks that the robots have

to address require robustness and adaptability. Also, manually programming robots

independently to perform grouped tasks is not necessarily intuitive from the designer’s

point of view, who typically uses a code-and-fix approach (Brambilla, Pinciroli, et

al., 2012). In this context, using automatic design methods is critical for multi-robot

systems and can help to reduce the effort of the developers in designing a policy than

achieve a particular collective behaviour.

The learning method and its temporality will largely depend on the available hardware.

As seen previously, multi-robot systems can range from simple opposition of small

teams in games like soccer to a whole crowd of independent robots or a swarm of

robots with limited communication and computation capabilities. On the basis of

these characteristics, many methods can be borrowed from the field of multi-agent

learning (MAL).

Machine learning has allowed a significant development of adaptive methods. How-

ever, learning in multi-agent systems went back a long time and started the emergence
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of game theory. As a result, many parallel and complementary approaches have been

developed to allow and analyze the adaptation of agents to their tasks, environment

and peers. According to Tuyls and Stone, 2017, multi-agent learning is defined as one

or more of the autonomous entities improving automatically through experience. It

regroups three classes :

• Individual learning, when a single agent learn in interaction with multiple

non-learning agents

• Population learning, when multiple agents learn together in interaction

• Protocol learning, when only the system of interaction between agents is learned

(Parkes, 2004). None of the agents can modify their behaviours, but the designer

can control the mechanism of their interaction. For example, an auction house

cannot modify the bidder’s behaviour but may adapt the bidding rules (e.g.

English auction, Vickrey auction, Dutch auction, etc.).

The next chapter will dive deep into the individual and population learning that are

extensively used for optimizing multi-robot systems.
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This chapter introduces how multi-robot systems can improve over time by learning

efficient behaviours. It emphasizes three aspects of the learning scheme’s diversity.

First, how do robots have their goals defined, and how will it impact the resulting

behaviours and learning ability. Second, what is the impact of the multi-robot ar-

chitecture (decentralized, centralized, networked) and the information available for

learning. Finally, how the learning algorithms use the goals and the architectures to

improve the robot’s behaviours.

3.1 Formal learning setting

Mobile robots are usually made of micro-controllers or complex computer systems

that sense their environment with sensors and interact with it through actuators

(Siegwart et al., 2011). The hardware is usually fixed and cannot be changed after

deployment. What can be changed is the software that controls it. This software

periodically reads sensor information that we will be called observation, and then

must control the actuators by computing action parameters. Robots can therefore

be considered as agents (Russell, 2010), and form the sense-act loop with the envi-

ronment. Robots may also be able to communicate with other robots by sending

messages. Figure 3.1 represents the different interactions between agents and their

environment.

Most multi-agent systems where agents interact with an environment can be put in

the formal setting of Partially Observable Stochastic Games or Partially Observable
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Figure 3.1: Interaction loop between the agents, their environment and teammates.
The N agents each receive an observation o = (o(1), . . . ,o(N )) from the environment.
When a task and a goal is defined, especially in the context of Markov Decision Pro-
cesses, they can also receive a reward scalar r = (r (1), . . . ,r (N )). According to this
information, the agents choose an action a = (a(1), . . . , a(N )) to act on the environ-
ment.

Markov Games (Littman, 1994; Shapley, 1953a).

At each iteration t , the environment is described by a Markovian state st . It means

that the state st encodes all the information necessary to determine the next state

st+1 of the environment. But the agents do not have access to this complete state.

Instead, they receive an observation signal ot corresponding to their input sensors’

reading. This observation can very well represent the entire state of the environment

or, on the contrary, be very sparse. According to this observation, they independently

choose an action at to execute for the next step. Once all the actions are chosen, the

environment model will use the current state and all agents’ actions to compute the

next state according to a transition function. And so on.

Formally, Partially Observable Stochastic Games (POSG) are defined as follows:

Definition 1 (Partially Observable Stochastic Games). A Partially Observable Stochas-

tic Game is a tuple (N ,S,O, A,R ,P ), where:

• N is the set of agents indexed 1, . . . ,n,

• S is the set of states of the game,

• O = {O(i )}i=1,...,n are the sets of observations for each agents i ,

• A = {A(i )}i=1,...,n are the sets of actions for each agents i ,

• r = {r (i ) : S £ A !R}i=1,...,n are the immediate reward functions,
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• T : S£A£S ! [0,1] is the stochastic transition function such that 8s 2 S, 8a 2 A,
P

s02S T (s, a, s0) = 1

The transition function T gives the probability that all agents’ actions a in state s at

time step t will lead to state s0 at step t +1:

P (st+1 = s0|a t = a, st = s) = T (s, a, s0) (3.1)

In this manuscript, spaces, functions, vectors corresponding to several agents are

noted in bold symbol. The superscript (i ) specifies the agent i . The superscript (°i ) is

used to specify all agents except i .

Figure 3.2 represents a graphical model of a POSG between two states st°1 and st . It

highlights the relations between the different random variables of state, observation

and action of an agent i and teammates °i .

Figure 3.2: Graphical description of a Partially Observable Stochastic Game or Decen-
tralized Partially Observable Markov Decision Process. Agents i gets an observation
from the state, and append it on their action-observation history. This AOH is used by
the policies to compute each agent actions. These action will then condition the next
state, and so on. (°i ) indexation represents all other agents except i . Figure adapted
from Q. Zhang et al., 2021.

POSGs are the most general models for agents interacting with an environment.

However, taking inspiration from single agents Markov Decision Process (MDP) or
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Partially Observable Markov Decision Process (POMDP) (Sutton and Barto, 2018),

many models have been proposed over the years using some simplifying assumptions.

For example, Multi-agent MDP extends MDP by assuming that all agents have the

complete state observation and action space is jointly shared among all (Boutilier,

1996; Shoham and Leyton-Brown, 2008a). On the other hand, interactive POMDP

(I-POMDP) (Gmytrasiewicz and Doshi, 2004) extend state space with behavioural

models of others, and agents maintain beliefs over their models. In addition, many

more models have been proposed depending on agents’ knowledge of the system

state and ability to communicate (Beynier et al., 2013).

Among them, a very popular model is the Decentralized Partially Observable Markov

Decision Process (Dec-POMDP), which simplifies POSG by using a single reward

function shared by all agents. Unfortunately, just like POSG, they are provably in-

tractable (NEXP-complete, Bernstein et al., 2002), making them difficult to use when

the number of agents is expected to be large.

Table 3.1, reproduced from Rizk et al., 2019, details some of the models by ranking their

requirements in terms of scalability, heterogeneity and communication. Scalability is

the ability of the model to manage a large number of agents without being computa-

tionally intractable. Heterogeneity is the capacity of the model to manage different

agents. Furthermore, communication corresponds to the degree of communication

required among agents.

Model Scalability Heterogeneity Communication

Swarm Intelligence High Low Low
Multi-agent MDP Medium Medium Medium
Decentralized POMDP Medium Medium High
Interactive POMDP Low Medium High
POSG Low High Medium

Table 3.1: Comparison of different Markov based decision-making models

Agents and policies The agents interact with the environment and, at each time

step t , receive some observation o(i )
t 2O(i ) and choose some action a(i )

t 2 A(i ). The list

of these actions and observations along a trajectory can be compiled in an action-

observation history (AOH) τ(i )
t 2 T = (O(i ) £ A(i ))§.
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To choose an action depending on this history, agents use a deterministic or stochastic

policy distribution π(i ).

• A deterministic policy function returns, at each iteration t , the action a(i )
t based

on the observation o(i )
t or action-observation history τ(i )

t ;

• A stochastic policy distribution is a distribution on possible actions a(i )
t condi-

tioned on o(i )
t or τ(i )

t .

These policy functions can take many forms. Recently, machine learning has revo-

lutionized the optimization of single-agent systems, using deep neural networks as

policy functions. Neural networks are functions composed of many interconnected

artificial neurons, or nodes, which are organized into layers. They are used as function

approximators and include many parameters or weights that can be adjusted during

a learning process. Hence, we note θ(i ) the parameters of the neural network used by

the policy π(i )
θ

of the agent i .

Figure 3.3: Deterministic policy represented as a neural networks. It outputs an action
vector at depending on its observation input ot and current parameters θ.

Evaluation We call any sampling or aggregation of sampling of the instantaneous

reward function r (i )
t using the policy π(i )

θ
, an evaluation F (π(i )

θ
) of the policy of agent i .

For example, such an evaluation can be the cumulative sum of instantaneous rewards

during an episode, often called return function. To take into account the stochastic

aspect of the environment and the agents’ policies, the evaluation is, in reality, based

on an estimate of the expected return, Eπ(i ) [
PT°1

t=0 r (i )
t ], where r (i )

t is the reward received

by agent i at time step t , and T is the duration of the evaluation. Other types of returns

can be used, like the infinite-horizon discounted return that discard rewards to tackle

infinite horizon T , or less usually the maximum reward of an episode (Gottipati et al.,

2020).

In multi-agent systems, the optimal policy of an agent depends on the policy of the

other agents, thus introducing a game-theoretical aspect. We call the best response
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policy the best policy of agent i by fixing the policy of the other agents °i . If none of

the agents can change their policy without lowering its quality (as evaluated by the

evaluation function), then the policies are in Nash equilibrium (i.e. all agents mutually

play best response policies).

3.1.1 Conceptual challenges

The framework of POSG is very general and provides little information on the agents’

constraints and the environment. However, the agents’ sensori-motor capacities and

the environment fundamentally impact the behaviour we expect from a single agent

and the whole team. For example, during interactions, the spaces of observations

and actions can restrain or favour the emergence of cooperation between agents.

Moreover, during the optimization procedures, the reward function and its structure

will fundamentally impact the policy obtained and the equilibrium reached by the

team.

Local and global information

The amount of information shared between the agents, how it is shared and when it is

shared will distinguish the possible learning algorithms and cooperation outcomes.

As we have seen, the task that the agents are brought to solve is globally described in

POSGs by a state st . But the agents only have access to an observation o(i )
t =O(i )(st )

of it. This observation function will greatly impact the task and cooperative learning

because it conditions the agents’ perception.

In particular, the agents can sometimes observe global data that can be used as a

reference and condition the coordination. For example, a synchronization signal

can lead groups of agents as a conductor leads his musicians, or the traffic lights

coordinate the departure of vehicles in intersections. These observations allow for

indirect coordination without interactions.

Global or team-scale information can also be collected through message exchange.

Communication allows sharing of information between agents. Depending on the

bandwidth and network density, teams of agents can compute global information

through distributed data measurement.
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Credit assignment

Among this information is the reward of each agent, which has a very special place

in the optimization process since it will be used as or by the loss function of the

optimization. Its structure will then have a significant impact on the equilibrium

reached and the behaviours that can be expected from the optimized agents. The

question of credit assignment between agents in a team is tackled on Section 3.2.

Apart from the difficulty of sharing a specific reward, the problem of credit assignment

can also come from the task description itself. We speak of a hard exploration problem

when the rewards are very sparse (Andrychowicz et al., 2017), rare (Ecoffet et al., 2022)

or deceptive (Lehman and Stanley, 2011). More precisely, a sparse reward signal is one

that is infrequently encountered by the agent. This can make it more difficult for the

agent to learn effectively because it receives less feedback about its actions. Deceptive

reward, on the other hand, misleads the agent or leads it to make suboptimal decisions.

For example, in a labyrinth task, if the reward is the distance from the agent to the

exit, this might encourage the agent to go directly in the direction of the exit without

taking the necessary detours to solve the labyrinth. Standard optimization methods

usually perform poorly in such scenarios (Amodei et al., 2016; Bellemare et al., 2016),

since random exploration is rarely efficient to discover successful states and obtain

meaningful feedback.

Equilibrium and social optimum

Depending on the agent evaluation function characteristics, different equilibrium

can be reached (Roughgarden, 2010). However, being in an equilibrium does not

necessarily mean being in the best configuration for the team overall. Consider a

prisoner’s dilemma, Nash equilibrium situations do not give the best payoff from a

utilitarian point of view. It risk to converge to mediocre stable states.

We wish to reach the social optimum, which is the point where social welfare (for

example, the sum of individual assessments) is maximum. This point may not be an

equilibrium, in which case, it would be non-stable.

We can use metrics to characterize games in terms of their equilibria and optima

(Roughgarden, 2010). The price of anarchy is the ratio between the worst equilibrium
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and the optimal centralized solution.

PoA =
Worst outcome of an equilibria

Optimal outcome
(3.2)

If PoA is close to 1, all equilibria are good approximations of an optimal outcome and

selfish behaviour are benign in these games. But a game with multiple equilibria may

have a high price of anarchy even if only one of its equilibria is highly inefficient.

On the other hand the price of stability is the ratio between the best outcome of an

equilibria and of the optimal outcome: (Schulz and Stier Moses, 2002)

PoS =
Best outcome of an equilibria

Optimal outcome
(3.3)

A higher price of stability indicates a greater cost or effort required to maintain a stable

equilibrium, and therefore a less stable game.

Other game theory concepts have been used over the years to describe and analyze

strategy and equilibrium dynamics (i.e. whether and how equilibrium can be reached).

Among these concepts is evolutionary game theory (Gintis et al., 2000). It aims at

understanding how populations evolve over time in response to various strategies and

environmental conditions. In evolutionary game theory, strategies are often modelled

as biological traits that can be inherited from one generation to the next, and the

success of a particular strategy is determined by its ability to reproduce and survive in

a given environment. Evolutionary game theory refines the static Nash equilibrium

concept with the notion of evolutionarily stable strategies (ESS). A strategy is an ESS if

it is immune to invasion by mutant strategies, given that the mutants initially occupy

only a tiny fraction of the population. These concepts have been extensively used to

analyze the learning dynamic of multi-agent systems (Bloembergen et al., 2015).

Summary

When confronted with a new task and environment, it is essential to analyze these

characteristics:

• How does the local sensing reflect the global state?

• Which information is shared between subsets of agents?

• How are agents rewarded during learning?
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• And what equilibrium can be reached, depending on these characteristics?

Answering these questions allows for highlighting the differences in the agents’ tasks

and is critical for performance comparisons between the optimization methods that

solve them.

3.2 The problem of rewarding agents

The concept of providing a purpose to artificial agents is closely tied to the definition

of the reward signal. In standard reinforcement learning, fulfilling the purpose of

the agent should coincide with maximizing this reward signal. This is known as the

reward hypothesis:

"[. . .] all of what we mean by goals and purposes can be well thought of

as the maximization of the expected value of the cumulative sum of a

received scalar signal (called reward)" (Sutton and Barto, 2018)

We generally speak of r (i )
t = r (i )(st , a t ) as the instantaneous reward function of agent i

at time t , the function of the POSG that returns a real value for each state-actions pair.

This function can be aggregated on a trajectory to form the return function:

R(i )(τ) =
T
X

t=0
r (i )

t (3.4)

where T is the finite horizon of the trajectory. In case of an infinite trajectory horizon,

the concept of discounting is introduced to ensure the convergence of the infinite

series. A γ 2 [0,1) is used for discounted return and value the rewards that are closer in

time more than the farther ones:

R(i )(τ) =
1
X

t=0
γt r (i )

t (3.5)

From these functions, one can want to compute the expected return of agent i follow-

ing agents policies π, F (π) = E
τªπ

[R(τ)]. This expectation is central to the optimization

process and is often used as a loss or fitness function to be maximized.

One can also define the on-policy value function, V π(s), which gives the expected
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return if the system start in state s and all agents act according to their policies π:

V π(s) = E
τªπ

[R(τ)|s0 = s] (3.6)

And the on-policy action-value function, Qπ(s, a), which gives the expected return if

the system start in state s, agents take an arbitrary action a, and then forever after act

according to policies π:

Qπ(s, a) = E
τªπ

[R(τ)|s0 = s, a0 = a] (3.7)

In all of these functions, it is their structures and dependencies on other agents that

define which game is played, and the behaviours we can expect from agents (Agogino

and Tumer, 2008)

3.2.1 Reward structure

We distinguish several types of games according to this reward function. On each side

of the spectrum we distinguish purely competitive games from purely cooperative

games. In the first case, the sum of the agents’ rewards is zero, which implies that if an

agent wishes to increase its own reward, it necessarily does so at the expense of the

others. On the contrary, in purely cooperative games, each agent receives the same

reward, which therefore represents the team’s performance. Increasing its own reward,

for an agent, means increasing the team’s reward. Between these two extremes, we

find general sum games. In these situations, interactions between agents can result in

cooperative or competitive behaviour.

Figure 3.4: Spectrum collaboration of the reward function that condition the type of
game that is played by the agents.
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Pure competitive interests

Purely competitive games are usually modelled as zero-sum games. For the instanta-

neous reward, this translates into the following equation:

X

i

r (i )(st , a(1)
t , . . . , a(i )

t , . . . , a(n)
t ) = 0 (3.8)

This means that if an agent manages to increase its individual reward, it is necessarily

at the expense of others. In particular, when there are only two agents, the reward for

one is the opposite of its opponent.

This framework has the advantage of feeding itself with complexity. When opponents

find new strategies, it is necessary to find a new method to become better. Thus,

even when starting with poor quality policies, agents will incrementally improve and

exploit the weaknesses of their opponents, who will, in turn, correct these weaknesses

to perform better, and so on. It is called exogenous auto-curricula in the terminology

of Leibo et al., 2019.

Many of the most renowned achievements of multi-agent learning research have fo-

cused on pure-conflict games such as backgammon (Tesauro, 1994), chess (Campbell

et al., 2002), go (Silver et al., 2016), two-player poker (N. Brown and Sandholm, 2019;

Moravčík et al., 2017), StarCraft (Vinyals et al., 2019) and Stratego (Perolat et al., 2022).

Pure cooperative interest

In purely cooperative games, all agents receive the same reward:

8i , r (i )(st , a(1)
t , . . . , a(i )

t , . . . , a(n)
t ) = r (st , a(1)

t , . . . , a(i )
t , . . . , a(n)

t ) (3.9)

One can place in this category, games where a team of agents must complete a given

task and each agent receives a reward describing the team’s performance, rather than

their individual performance.

In contrast to the competitive case, cooperation tends to have a deleterious effect

on learning. Indeed, finding a good answer to the policy of the other team members
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will tend to discourage them from exploring. The team will then tend to over-fit and

generalize poorly.

Mixed motivations

Between these two extremes, no restrictions are imposed on the reward functions and

their inter-agent relationship, and the reward is said to be mixed. This general-sum

case represents the vast majority of games in the realm of 2£2 matrix games (Robinson

and Goforth, 2005). It is also the most general situation when agents are autonomous

and goal-oriented. Each agent’s rewards may conflict or be correlated and benefit

from collaboration. Therefore, it is particularly in this context that the concepts of

Nash equilibrium or evolutionary stable strategy (ESS) are important to characterize

the interactions between agents.

In robotics, and particularly in the context of swarm robotics, agents are individually

rewarded according to locally measured characteristics. Each agent typically has a

self-assessment mechanism that estimates its performance. But this may induce

local competition even is the reward scheme is designed with global welfare in mind

(Bredeche et al., 2018).

Parallels can be found between the reward signal and resources in an environment.

We can thus speak of excludable rewards to designate rewards withdrawn from the

agent pool when one of them retrieves it. For example, in a situation where agents

are tasked with gathering objects and are rewarded for each object they collect, global

welfare is achieved when the agents distribute evenly across the objects. However,

there may be local competition between individual agents, even if their overall goals

are aligned.

3.2.2 Credit assignment and marginal contribution

Global reward does not scale well to difficult problems because the learners do not

have sufficient feedback tailored to their specific actions. The same is true when the

number of agent increases. It is hard to distinguish whose action allowed to get a

reward. In cases where the reward signals are mixed or global, the designer wants them

to promote social welfare while allowing learning for each individual. A compromise

must therefore be found between these two problems:
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• A global reward signal that promotes social welfare is not necessarily a good

learning signal, especially when there are many agents. The marginal contri-

bution must be extracted from it. In addition, the action of agents may require

very close coupling to receive a reward.

• An individual reward signal will encourage competitive behaviour and may not

result in a social equilibrium.

For example, let’s imagine a one-team soccer task, i.e., a team of agents must coor-

dinate to push a ball into a goal using only local sensor information. The team is

rewarded with 1 if it scores, 0 otherwise. But this signal is very poor in information

for agent learning. Especially in the extreme case where only one agent of the team

is responsible for the performance, the learning algorithm will tend to reward and

reinforce the other agents independently of their participation. The team risks falling

into a local learning minimum and the overall performance will be difficult to increase.

On the contrary, if we reward only the agent who scores the goal, we potentially avoid

opportunistic apathetic behaviour, but the agents are now competing to score the

goal and avoid that others score.

Figure 3.5: In this example, the three agents must push a ball into a goal to get a reward.
On the left, a global reward rewards the team if the ball reaches its destination. This
may allow the apathetic agent 3 to be rewarded without contributing to the task. On
the right, an individual reward rewards each agent if it has contributed to pushing the
ball. In this situation, competitive behaviour appears if an agent decides to prevent
another agent from moving the ball to take credit for the goal.

It is therefore essential to find methods or methodologies to exploit all the informa-

tion at our disposal to reward the agents of a team as faithfully as possible and to

avoid the pitfalls of local minima. These methods can modify the reward signal rt ,

marginalize the action-value function or directly alter the expected return F . The fol-

lowing paragraphs highlight some of the attempts to specify an individual evaluation

in multi-agent systems, independently of their respective optimization algorithms.
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Marginalization

The global idea of marginalization is to integrate out or remove a variable from a

function. In other words, it is a way of taking a function of multiple variables and

expressing it as a function of one or more of those variables, with the other variables

marginalized or integrated out. This idea can be applied to a global evaluation that

would depend on all team agents. The first approach is then to marginalize-out the

effect of other agents on the evaluation to extract the so-called marginal contribution.

The Difference Reward (Agogino and Tumer, 2004a) is a translation in term of reward

shaping (Ng et al., 1999) of the Wonderful Life Utility (D. Wolpert et al., 2000). The goal

is to extract the true contribution of the agent by subtracting a counterfactual reward

as if the agent performed a default action, to the gained reward.

d (i )(s, a) = r (s, a)° r
≥

s(°i )
[ c(i )

s , a
(°i )

[ c(i )
a

¥

(3.10)

Here s is the global state, a is the joint action of all agents and r (s, a) is the global

reward associated with them. r
≥

s(°i ) [ c(i )
s , a

(°i ) [ c(i )
a

¥

is the global reward when agent

i uses a default action c(i ) instead of the action returned by its policy, and s(°i ) [c(i )
s is

the state without i . d (i ) is then the advantage of using the policy instead of a default

action for the agent. This allows extracting marginal contributions that perform better

for learning as it is more sensitive to the individual agent’s action. It is also aligned to

the global system performance, as the increase of difference reward by changing an

action a(°i ) on a given state s, is equal to the increase of global reward:

∂d (i )

∂a(i )
(s, a) =

∂r

∂a(i )
(s, a) (3.11)

But it requires two evaluations of the global reward function, which is not usually

possible in practice. Colby et al., 2016 propose to learn an approximation r̃ of the

global reward to evaluate the second part of the equation:

d̃ (i )(s, a) = r (s, a)° r̃ (c(i )
s ,c(i )

a ) (3.12)

d̃ (i ) is then the difference between the global reward function and the approximated

reward function if agent i took a default action.
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Also, as the number of agents increases, the amount of information each must pro-

cess increases, reducing the effectiveness of the difference rewards. To address this

shortcoming, it is possible to use a hierarchical organization to reduce the amount

of information exchanged between agents (HolmesParker et al., 2016). Here, agents

are divided into smaller teams and coordinate to optimize that sub-team’s goal. Then,

a control agent is assigned to each sub-team and must coordinate to optimize the

global goal.

The effectiveness of this method has been demonstrated in various domains, includ-

ing air traffic control (Cruciol et al., 2013), rover navigation (Agogino and Tumer, 2008;

Knudson and Tumer, 2010), satellite coordination (Agogino et al., 2012a), distributed

sensor networks (HolmesParker et al., 2013; Turner, 2006), communication system op-

timization (Agogino et al., 2012b) and for the coordination of robots swarm (Douchan

et al., 2019).

Difference reward has, more recently, inspired methods for the evaluation of counter-

factual action-value functions, such as in counterfactual multi-agent policy gradient

(COMA) (Foerster, Farquhar, et al., 2017). It marginalizes agents’ individual actions by

applying a counterfactual baseline function that uses a centralized critic.

Sometimes the calculation of the marginal contribution is not sufficient to represent

everyone’s contributions. For example, consider a game where the team N gets an

evaluation of F (N ) = 1, and all the agents are required for this success. The marginal

contribution of each agent i is therefore F (N )°F (N \{i }) = 1, which does not represent

the involvement of each agent in the task.

The Shapley value (Shapley, 1953b) allows to calculate this contribution in a fair way

by averaging the counterfactual marginal contribution on all possible coalitions. If

we denote F the evaluation function of a coalition, the Shapley value ϕF of agent i is

given by:

ϕF (i ) =
1

n

X

SµN \{i }

√

n °1

|S|

!°1

(F (S [ {i })°F (S)) (3.13)

The sum is performed on all subset S of the whole team N not containing agent i .

For the above example, all sub-team smaller than the full coalition have a null evalua-

tion (8S 6= N = {1, . . . ,n},F (S) = 0, and F ({1, . . . , i , . . . ,n}) = 1). The computation of the
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Shapley value thus reduce to:

ϕF (i ) =
1

n
(3.14)

Each of the n agents receives an equal share of the evaluation that corresponds well to

their contribution.

The Shapley value has the following properties:

• efficiency: the sum of the values of each agent is equal to the global payoff;

• symmetry: two substitutable agents have the same value;

• linearity: if the task can be divided in multiple tasks, the Shapley value of the

whole is the Shapley value of the sum;

• null agent: a player that contributes nothing have a null Shapley value

Although more accurate, this contribution estimate is computationally expensive,

especially as it grows factorially as the number of agents increases. Several methods

have been proposed to approximate this calculation, giving up some properties. For

example, L-Shapley and C-Shapley (Chen et al., 2018) only consider local interactions

on a graph of agents, which breaks the efficiency properties. Others have used a

priori knowledge to simplify the computation but break the axiom of symmetry (Frye

et al., 2020; Heskes et al., 2020). The use of the Shapley value with computational

approximation has been experimented by Li et al., 2021 on a StarCraft multi-agent

reinforcement learning task.

Decomposition

Another approach is to decompose the global reward by a learned, task-specific,

value decomposition function. We place ourselves in the setup where the system is

evaluated by a joint action-value function Q(τ, a) that must be decomposed into

marginal action-value functions to allow the agents to learn. The simplest method is

to assume that the joint action-value function is the sum of the marginal action-value

function of each agent (Sunehag et al., 2018).

Q(τ(1), . . . ,τ(n), a(1), . . . , a(n)) =
n
X

i=1
Q(i )(τ(i ), a(i )) (3.15)

It is also possible to use, for example, a neural network to map a joint value function

to individual value functions as used in the QMIX methods (Rashid et al., 2020; Rashid
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et al., 2018). The method frees itself from the additivity constraint but requires mono-

tonicity on the relation between the joint action-value function and the individual

action-value function so that the argmax of each agent is the global argmax.

argmax
a

Q(τ, a) =

0

B

B

@

argmaxa(1) Q(1)
°

τ(1), a(1)
¢

...

argmaxa(n) Q(n)
°

τ(n), a(n)
¢

1

C

C

A

(3.16)

Furthermore, the QTRAN algorithm discards these assumptions of additivity and

monotonicity in the factorization and allows any non-linear combination of value

functions (Son et al., 2019).

However, these methods may suffer from a lack of interpretability, and the architecture

of the decomposition function limits the possible decomposition.

Cooperation signalling

In some cases, it is necessary to have cooperative behaviours to obtain a reward. We

can then use signals to indicate to the agents which behaviours will allow them to

obtain a reward, even though they have not yet learned to cooperate together. d++

(Rahmattalabi et al., 2016) is another reward shaping strategy that provide incentives

for agents to perform action whose reward may depend a lot on others’ actions. We

say in this case that the agent’s actions require a high degree of coupling. For example,

in a task where m agents may need to take simultaneously several photos of the same

point of interest to gain a reward, d++ will reward one agent for taking one picture

even if no other agent is present. If agent i adds n agents for the state-action pair a,

the d (i ),m
++ (a) reward is given by:

d (i ),m
++ (a) =

r
°

a+

°

[i=1,...,m
¢

i
¢

° r (a)

m
(3.17)

This will allow the agent to be rewarded even if all conditions are not fulfilled and

provide stepping stone rewards to learn an effective behaviour faster than without this

help.

In our point of interest photography case, if three agents are required to take a picture,

only one agent is currently in a proper position, and taking a picture gives a reward of
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1, the d (i ),2
++ reward that adds m = 2 agents will gives 1/2. d (i ),m

++ is usually computed

across multiple m values to get the most reward that requires adding the less virtual

agents. Here d (i ),1
++ = 0, d (i ),2

++ = 1/2, d (i ),3
++ = 1/3, . . ., which justifies the choice of

m = 2.

Peer feedback

Even in the case where the reward is not global, reward attribution can be imprecise.

For example, suppose a reward is measured locally at time t . In that case, an agent

may have prevented a teammate from obtaining a reward or, on the contrary, may

have contributed to its obtaining without benefiting from it. Evaluating one’s own

contribution in a group can then be based on the evaluation given by teammates. This

is called peer feedback. For example, in the case of networked agents, one can share

an estimate of their impact on their neighbours’ rewards. They can then evaluate

the losses or gains they may have made on other agents and modify their rewards

accordingly (Hostallero et al., 2020; Jaques et al., 2018).

3.3 Learning architectures

Now that we have described the different ways of receiving rewards, it remains to

study how to obtain more efficient policies. As seen previously, multi-robot systems

are very diverse. For example, the composition of teams, their communication and

computational capabilities, and the presence of a hierarchy or a central authority will

influence the type of architecture possible for policy learning. This section describes

some of these architectures.

Generally speaking, the goal is to optimize a policy function, either deterministic

π(i ) : O(i ) ! A(i ), or stochastic π(i )(a(i )|o(i )), for each agents. We need distinguish two

stages:

• the learning phase, where policies are updated,

• the execution phase, where the agents fix and use their policies to interact

with the environment and each others. It allows gathering data and reward for

updating policies in the learning phase.

The two stages can take place at different times or intertwine with each other.
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In this section, we explore the differences in the information structure of the opti-

mization method (K. Zhang et al., 2019). In Chapter 2, we described the different

interaction structures between agents, from decentralization to total centralization.

These differences in structure also have an impact on policy learning. And notably,

which entity has access to which information for the learning phase and execution

phase? The answer to this question is crucial and will largely constrain the type of

algorithm used for optimization and the structure of the policy.

Tan, 1993 studied the differences between learning agents that share information

during learning and ones that do not. From his experiments, he found three essential

guidelines: (1) additional sensations from another agent are beneficial if they can

be used efficiently, (2) sharing learned policies or episodes is beneficial at the cost

of communication, and (3) for joint tasks, agents engaging in partnership can out-

perform independent agents.

A learning algorithm is centralized when information flows through a single central

node. The most extreme case of centralization is when a central policy chooses a

vector of joint actions to be distributed over all agents. The so-called centralized

training centralized execution (CTCE) paradigm allows using standard single agents

optimization techniques. However, the term multi-agent system is debatable in this

case since the intelligence is concentrated in a single agent. In every other case,

the agents are decentralized, at least during their interactions with others and the

environment. They also may use communication channels to share information

locally or reach a consensus. We distinguish three commonly used information flow

structures for learning and executing multi-agent systems:

• Decentralized learning;

• Networked learning;

• Centralized learning, decentralized execution

3.3.1 Decentralized learning

In general, a central controller for execution and learning does not exist. Each agent is

independent and embodied in its environment. Formally, each agent i as only access

to its own observation o(i ), actions a(i ) and reward function r (i ) during the learning

phase and execution phase. Figure 3.6.a represents the iterations between the agents
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Figure 3.6: (a) Decentralized agents interacting with an environment. (b) Agents inter-
acting with an environment and using communication channel during learning and
execution. (c) Agents interacting with an environment and using a central authority
for learning

and the environment.

All agents still interact with each other through the environment. And obtaining a

reward signal may also depend locally on the actions of other agents. A coupling of

behaviours can therefore be achieved through the optimization process and coopera-

tion can emerge in a goal-oriented fashion. The great advantage of this structure is

that it does not suffer from the curse of dimensionality when the number of agents

increases because each agent only manages its own observation and action.

Learning without explicit information sharing is often called independent learning

(Claus and Boutilier, 1998; Tan, 1993). Each agent ignores the multi-agents aspect of

the systems and learns an independent policy function. This leads to great instability

because the environment appears non-stationary from the point of view of any agents

as they independently update their policies, violating Markov assumptions required

for convergence (Laurent et al., 2011).

When the task is stochastic, agents need to distinguish between different sources of

variation in the observed rewards. It can be due to the noise in the environment or to

the behaviours of the other agents (Matignon et al., 2012).
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In particular, important variation can be caused by the exploration of other agents.

In single agent reinforcement learning, exploration-exploitation trade-off requires to

balance between the exploitation of the agent’s current knowledge and the exploration

of new actions to improve that knowledge. But in the multi-agent case, exploration of

an agent can destabilize the learned policies of other independent learners (Matignon

et al., 2010). This is the alter-exploration problem.

This also can leads to shadowed equilibria, where local observability and non-stationarity

cause locally optimal actions to become globally sub-optimal (Fulda and Ventura,

2007; Panait and Tuyls, 2007).

3.3.2 Networked learning

To address the convergence problem of independent learners in decentralized systems,

we can allow the agents to transmit information through communication channels.

However, it is important to distinguish between several types of communication:

• The communication used by an optimization process and whose syntax and

semantics are defined by the system designer. It is used to improve the perfor-

mance of a policy by modifying its parameters.

• The communication used by agents to inform or motivate behaviour. Its syntax

and semantics can be fixed or learned. It is used by the policy as an input.

Agent networks have been extensively studied in the context of agent consensus

building. Consensus means reaching an agreement on specific interest quantities that

depend on the state of all agents (Olfati-Saber et al., 2007). A consensus algorithm

is an interaction rule specifying how to exchange information on a communication

network. It can be considered as a form of learning since agents are forced to adapt

some of their parameters to a situation. For example, we can think of consensus

formation or social rules in human crowds (e.g. right or left avoidance to avoid a

collision in Moussaïd et al., 2011). This convention building is thus a form of social

learning.

For example, let’s have a network of N agents that must reach a decentralized agree-

ment, or consensus, on a particular issue. The agents can only communicate with

their neighbours, as defined by the set N (i ) for each agent i . To reach this consensus,
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(a) non-biased consensus example in flocking

(a) biased consensus example in flocking

Figure 3.7: Results of two flocking experiments. In both case, agents are randomly
initialized on a 100£ 100 arena with random orientation. They move at constant
velocity. In (a), at each time steps they share their orientation with their neighbours
and update theirs according to equation 3.18. In (b), each agent assess its orientation
parameter θ with an objective function higher for value close to π/4. The agents then
filter message of agents that have lower assessment than them.

the agents use a discrete-time update rule given by:

θ(i )
t+1 =

1

1+|N (i )|
(θ(i )

t +
X

j2N (i )

θ
( j )
t ) (3.18)

where θ(i )
t represents the value of the consensus variable for agent i at time t . Under

this update rule, if the network topology is fixed, it can be shown that the values of θ(i )
t

will converge to the average of the initial values θ(i )
0 for all agents as t tends toward

infinity. However, in many scenarios, such as flocking, the topology of the network

may vary with time and state. In these cases, it may not be possible to guarantee

convergence to a global average value. But still, each encounter will drive the team
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toward an agreement. Figure 3.7.a represents the result of such scenario.

One way to introduce a global goal in such scenarios is to bias the agents’ learning

using a defined objective function. Each agent will only accept updates from its

neighbours if it has a better evaluation according to the objective function. For

example, if the objective is to have a heading close to π/4, then the agents will tend to

align their heading to this value when they encounter a better neighbour. This will

help bias the agents toward a common goal, even when the network topology changes.

Figure 3.7.b represents the result of such scenario. This concept is the foundation of

the embodied evolution algorithms (Bredeche et al., 2018) described in Section 3.5.1.

3.3.3 Centralized learning, decentralized execution

Even if agent policy execution is decentralized, learning can greatly benefit from

additional information to converge faster towards the social optimum. In particular,

many algorithms benefit from centralized policy learning.

Formally, during the execution phase, each agent i as only access to its own observa-

tion o(i ), actions a(i ) and reward function r (i ). But during the learning phase, a central

controller can aggregate the agents’ data to compute and store additional information.

This learning scheme comes from work done for planning on Decentralized Partially

Observable Markov Decision Process (DEC-POMDP) or Partially Observable Markov

Games (POMG) (Kraemer and Banerjee, 2016; Oliehoek et al., 2008), and has become

very popular in recent work on Multi-Agent Reinforcement Learning (see Section

3.4.1).

This configuration is particularly suitable when the environment is simulated or when

a central controller with high bandwidth communication channels is available. Figure

3.6.c represents the interactions between the agents, the environment, and a central

controller. The controller can range from a simple reward assignment method to a full

critics in the Actor-Critics framework (Foerster, Farquhar, et al., 2017; Perolat et al.,

2018; Sunehag et al., 2018) and compute lots of centralized information.

One can also imagine cases where agents could communicate periodically with a

centralized system via communication channels. This raises the question of how much

information to transmit to the central controller and its relevance. The Cooperative
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Co-Evolutionary Algorithms (CCEA) (Ma et al., 2019; Potter and De Jong, 1994a) are

particularly suitable when not much information can be exchanged between agents.

The degree of centralization is, in this case, represented by the importance of the

interactions that the evolutionary algorithms will have between them to submit new

parameters to be evaluated. For example, there is little centralization if the agents

independently submit new parameters at each new evaluation. On the other hand,

if the different agents coordinate, for example, to precisely evaluate each agent, the

impact of centralization is more significant.

3.4 Policy optimization algorithms

On top of these different information flow architectures, multiple policy optimization

methods can be used (Tuyls and Stone, 2017). The goal for each agent is to maxi-

mize the probability of rewarding trajectories. If we note F the expectation of gain

associated with the parameters θ of the policy πθ, we have:

F (θ) =
Z

τ
P (τ |πθ)R(τ) = E

τªπθ

[R(τ)] (3.19)

Here, P (τ |πθ) is the probability of the trajectory τ following the policy πθ, and R(τ) is

the return or cumulated reward along the trajectory, as described in equation 3.4.

Then, the optimal policy is the one that maximize this function

π§

θ = argmax
θ

F (θ) (3.20)

There exists many algorithms to solve these problems. Recently, reinforcement learn-

ing methods and their multi-agent variant (MARL) have significantly gained popularity.

But many other optimization methods based on evolutionary algorithms offer good

performances for systems with limited computation and communication capabilities.

3.4.1 Multi-agent reinforcement learning

The reinforcement learning framework is the most commonly used for policy optimiza-

tion in interaction with Markov processes (Sutton and Barto, 2018). RL algorithms are

first differentiated by their use of a model of the environment. Models allow agents to
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plan ahead and predict what could happen after their actions. But such information is

usually not accessible or hard to learn, especially in the multi-agent setting (Q. Zhang

et al., 2021). A field of research focuses on modelling opponents for example using

fictitious play (G. W. Brown, 1951) or rational learning (Kalai and Lehrer, 1993). But

in this manuscript, we will focus solely on model-free algorithms as they allow more

simple yet effective algorithms. In the realm of model-free RL, two global approaches

are used: Q-learning and policy gradient.

Q-learning

The goal of Q-learning is to iteratively find an approximation of the on-policy action-

value function (Mnih et al., 2015; Watkins, 1989). The action selection is then per-

formed by a greedy policy that chooses the action that maximizes the found action-

value function for a given state.

Q-learning can be applied to the multi-agent setting but several problems arise,

among which:

• it requires full-observability of the state and agent’s actions, which is rarely the

case in the multi-robot or swarm settings,

• the environment appears non-stationary from the view of any agents as they

independently update their policies, violating Markov assumptions required for

convergence (Laurent et al., 2011)

Tan, 1993 was the first to use Q-learning in a multi-agent configuration and intro-

duce the Independent Q-learning (IQL). This framework considers all agents to be

independent, and the other agent’s actions are treated as part of the environment.

Each learns its own action-value function that conditions only on its observation and

its own action. This approach has been successfully applied to deep reinforcement

learning on a two-player pong task (Tampuu et al., 2017). But it still suffers from

the non-stability issue, and independent Q-learners may fail to distinguish between

exploration by teammates and stochasticity in the environment (Claus and Boutilier,

1998).

In Tesauro, 2003, each agent’s state space is augmented with an estimate of the other

agents’ policies allowing the Q-function to be made stationary. Foerster, Nardelli,

et al., 2017 enable the use of an experience replay memory which is core for deep
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Q-learning methods.

Policy gradient

Another class of reinforcement learning algorithms is policy gradient methods. At

each iteration of the learning phase, the agent parameters take a step in the direction

of the gradient loss function rθF (θ):

θt+1 = θt +αrθF (θ) (3.21)

where α is the learning rate. Using the action-value function previously defined, this

gradient can be written as follow (Sutton et al., 1999):

rθF (θ) = Esªpπ,aªπθ

£

rθ logπθ(a | s)Qπ(s, a)
§

(3.22)

Here, Qπ(s, a) is unknown and needs to be approximated. This approximation is called

a critic and leads to a variety of actor-critic algorithms (Sutton and Barto, 2018). Many

researchers have used centralized learning and decentralized execution architecture

to tackle this problem. For example, the multi-agent deep deterministic policy gradient

algorithm (MADDPG) (Lowe et al., 2017) computes an individual critique for each

agent using all agents’ observations and actions. Since then, many methods have been

proposed to compute this action-value function, including the use of decomposition

function in VDN (Sunehag et al., 2018) and QMIX Rashid et al., 2020; Rashid et al.,

2018 or counterfactual estimation (Foerster, Farquhar, et al., 2017).

But policy gradient methods are known to have high variance gradient estimates. This

is especially true in the multi-agent case, where the probability of taking a gradient

step in the right direction can decrease exponentially with the number of agents (Lowe

et al., 2017).

3.4.2 Direct policy search

Instead of using value estimation and computing a costly gradient, many algorithms

simply search for an optimal policy directly over its parameter space. This requires

much less information transfer between the agent and a central authority and much
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less granularity in the reward function (Kober et al., 2013). One of these, evolutionary

algorithms, are general-purpose optimization algorithms loosely inspired by natural

evolution (Eiben, Smith, et al., 2003). They have a long history of being used for multi-

agent systems and robotic applications (Baldassarre et al., 2003; Nolfi and Floreano,

2000; Trianni, 2008).

Namely, evolutionary algorithms use the concepts of selection and variation to explore

the complex space of candidate solutions to design a policy. The main idea is to create

a set of candidate solutions and make them converge toward more efficient solutions.

The set of solutions is called a population. Each of the candidates in the population

will be evaluated on their ability to solve the desired task. This evaluation is called a

fitness function and can take many forms. In the case of this thesis, it is generally the

cumulative reward accumulated during an evaluation period T . Thus:

F (θ(i )) = E

τªπ(i )
θ

h

R(i )(τ)
i

(3.23)

Based on this assessment, some candidates will be selected to become the next gen-

eration of parents. Parents will thus be used as a basis to generate a set of offspring

through mutation and crossover operations. The crossover operator takes two or more

candidates and produces a new one.

θ(1,2)
= CROSSOVER(θ(1),θ(2))

The mutation operator takes one candidate and produces a new one.

θ(1)0
= MUTATION(θ(1))

These two functions can take many forms depending on the structure of θ and the

specificity of the algorithms in use.

The set of offspring is, in turn, evaluated, and the next generation is then selected

from the union of all parents and offspring. It is the survivor selection. Finally, the

survivors are used as a base population for the following algorithm loop. Figure 3.8

summarizes the whole evolutionary algorithm procedure.

This procedure will thus optimize a population of candidates, allowing to keep di-

versity in the solutions envisaged and therefore gain in robustness. When tackling
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Figure 3.8: Principle of an evolutionary algorithm

multiple agents, the use of an evolutionary algorithm asks the question of the team

composition (homogeneous or heterogeneous) and level of selection (individual or

team-wise) (Waibel et al., 2009). The optimal combination depends on the amount of

cooperation required by the task.

3.5 Evolutionary algorithms

This generic procedure of evolutionary algorithms can be adapted to many configura-

tions. In this thesis, we will use in particular two very different classes of evolutionary

algorithms, embodied evolution (EE) and cooperative co-evolutionary algorithm

(CCEA). This section briefly describes how they work.

3.5.1 Embodied evolution

Embodied evolution (Bredeche et al., 2018; Watson et al., 2002) (EE) is a framework of

online networked learning method for designing collective behaviours in swarm-like

collectives using an evolutionary algorithm scheme. Each robot has an embedded

optimizer that must optimize a policy to maximize a reward function that is locally

defined in each robot. The principle of embodied evolution is recalled in Figure 3.9.

At initialization, each individual is initialized with its own random parameter set,

called active parameters. They are then used by the policy to determine the actions to

be taken by the robotic agent. Thanks to this policy, the robot can have a sense-act
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Figure 3.9: In embodied evolution, agent are on-line learning neural network parame-
ters by exchanging message through a communication network managing them with
an evolutionary algorithm.

loop commonly used in robotics. As it moves through its environment, it evaluates its

quality through the reward function and, therefore, how well its behaviour is aligned

with the task to be performed. When two robots meet, they exchange their active

parameters and their assessment of their policies. This operation is called mating.

The choice of a partner may be purely based on environmental contingencies, but

other considerations may play a role, such as performance or similarity. Each robot

then stores the shared information in a parameter reservoir for future use. The robots

will then execute an evolutionary algorithm on all the parameters harvested during

their life cycle. Thus, a new set of parameters is created or selected based on all the

information locally collected by the robot. Then the reservoir is cleared for future

collection.

3.5.2 Cooperative Co-Evolutionary Algorithms

On the other side of the spectrum, teams of robots can also be optimized via a cen-

tralized evolutionary algorithm. Cooperative Co-Evolutionary Algorithms, first in-

troduced by Potter and De Jong, 1994a, are popular evolutionary algorithms for op-

timizing multi-agent systems. In contrast to traditional evolutionary algorithms,

which evolve a single population of solutions, cooperative co-evolutionary algorithms

evolve multiple populations of solutions simultaneously. These populations are called

subpopulations, and are evolved cooperatively, in the sense that the fitness of each

solution in a subpopulation depends on the solutions in the other subpopulations.
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The main initial idea of these methods is to decompose an original problem into a

set of lower dimensional and tractable sub-problems that can be solved individually

using an evolutionary algorithm. For example, we may want to maximize a fitness

function F that depends on parameters θ:

θ
§
= argmax

θ

F (θ) (3.24)

We can decompose θ into a set of (θ(1), . . . ,θ(n)). Then the problem is fully separable, if

we have:

argmax
θ(1),...,θ(n)

F (θ) =

√

argmax
θ(1)

F
°

θ(1), . . .
¢

, . . . ,argmax
θ(n)

F
°

. . . ,θ(n)¢
!

(3.25)

We can apply this methods to a multi-agent problem, where each agent i deals

with its own policy parameters θ(i ) and the team must maximize a fitness function

F (θ(1), . . . ,θ(n)).

Figure 3.10: Diagram of a typical CCEA algorithms.

Figure 3.10 describes the general functioning of a CCEA algorithm. For each agent,

the optimization is done through an independent evolutionary algorithm. They all

maintain k version of their parameters θ(i ). From these k parents, they derive k new

θ(i ) called children. Each agent has, therefore 2k version of their parameters. Then, all
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agents submit one version and receive an evaluation of the version. This loops until

all 2k are evaluated at least once. Depending on these evaluations, they each select

the k parameters that performed best. The whole process then loops until a stopping

criterion is met.

3.6 Thesis objectives

As we have seen in previous sections, the diversity of MRS induces many agent goal

definitions, information flow between agents and, thus, optimization algorithms.

Figure 3.11 distinguishes two axes to represent the information flow:

• between the agents and a centralized authority (x-axis);

• between each other through a communication network (y-axis).

Figure 3.11: Representation of the amount of information shared between agents
and a central authority.The decentralized learning architecture and the centralized
learning architecture, decentralized execution as described above, are marked in grey
in this diagram for localization purpose.

The flow of information is not uncorrelated to the agent goal definition. For example,

a centralized system is easily associated with a team-wise global evaluation in the

cooperative case. On the contrary, when the system is decentralized or networked, the

evaluation is usually measured locally, leading to mixed or competitive evaluations.

The objective of this thesis is to explore the individual and group learning dynamics
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in evolutionary collective robotics. We explore two distinct collective robotics setups

regarding the reward system, information flow and learning algorithm. Their common

denominators are to involve an evolutionary optimization loop and modulate the

amount of information shared between agents during the learning process.

In Chapter 4 we propose a novel evolutionary algorithm from the class of Embodied

Evolution (Bredeche et al., 2018; Watson et al., 2002) for a networked team of agents

that must learn from a local evaluation during their lifetime. As represented in Figure

3.11, the algorithm can be used on various network densities and modulate of the

amount of information transferred between agents.

In Chapters 5 and 6, we will focus on the class of Cooperative Co-Evolutionnary

Algorithm (CCEA) that use a centralization for episodic learning agents that receive a

global team-wise evaluation. As represented in Figure 3.11, the algorithm we propose

will modulate the amount of information and learning synchronization between

agents and a centralized authority.
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4 Networked Agent Lifetime Evolution

in Swarm Robotics with Limited Com-

munication Bandwidth

This chapter is adapted from:

• Fontbonne, Nicolas, Olivier Dauchot, and Nicolas Bredeche. "Distributed on-

line learning in swarm robotics with limited communication bandwidth." 2020

IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020.

• Bredeche, Nicolas, and Nicolas Fontbonne. "Social learning in swarm robotics."

Philosophical Transactions of the Royal Society B 377.1843 (2022): 20200309.

4.1 Introduction

Swarm robotics is a sub-domain of collective robotics. This field is characterized

by the use of a generally large number of robots with limited communication and

computation capabilities, and an objective defined at the level of the whole swarm (e.g.

exploring the environment, searching for resources, collectively transporting heavy

objects). The challenge is to design the rules of microscopic interactions between

the robots in order to achieve a relevant swarm organization at the macroscopic

level (Bayindir, 2016; Beni, 2005; Brambilla, Ferrante, et al., 2012; Hamann, 2018).

There are several bio-inspired methods to address this problem of distributed pro-

gramming, which can be grouped into two main classes: manual programming and

automatic design methods. In the first case, the aim is to explicitly reproduce at a

more or less abstract level behaviours observed in nature, but whose macroscopic
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result is sometimes difficult to foresee in advance.

In the second case, the use of evolutionary optimization algorithms makes it possible

to automate the design of individual behaviours according to a global objective func-

tion (Trianni et al., 2008). Indeed, since the structure of the environment is not known

in advance, writing the objective function makes it possible to specify the general

objective of the task (e.g. maximizing the number of objects picked up for a foraging

task), without giving any precision on the structure of the strategy to be deployed.

This is a well-known problem framework in evolutionary robotics: the structures of

the research space and the fitness landscape have a tenuous relationship, for which

stochastic optimization methods are a good fit.

However, an important assumption that underlies manual or automatic design meth-

ods is that behavioural rules are obtained in the laboratory, and then deployed in a

real-world situation as is without any further tuning. In other words, the environment

and the nature of the task are considered stationary between the conditions known at

the time of design and the conditions actually encountered afterwards.

In this chapter, we are interested in a different class of problem. We consider that the

environment in which the robots will be deployed is not known in advance. Provided

a general objective, that can be written down as an objective function defined at the

level of the individual (e.g. given a foraging task, each robot should try to get the

largest number of items), we implement a networked on-line learning algorithm to

allow the swarm of robots to progressively acquire the necessary skills to perform the

target task. The behaviours learned depend on the nature of the task, but also on the

particularities of the environment. For example, picking up objects in a foraging task

requires different strategies depending on whether the objects are grouped together

in a specific area or distributed in the environment.

The class of evolutionary algorithms that addresses this problem is known as either

embodied evolution or social learning. Whether biological or cultural evolution is

considered, both methods can be seen as instances of designing algorithms inspired

by evolutionary dynamics for swarm robotics. These methods stand as on-line net-

worked learning that takes into account interactions between hardware limited robots

distributed over a possibly large space with local communication. On the one hand,

these evolutionary dynamics methods are similar to the classical evolutionary robotics

approach as the goal is to optimize a black-box objective function whose analytical
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form is not known. On the other hand, they differ in that the problem of the transi-

tion to reality is simply non-existent in evolutionary dynamics methods: the actual

learning starts at the time of operational deployment of the robots, and not before it.

In other words, the goal is to design robust on-line learning algorithms as much as

robust solutions.

To date, several evolutionary dynamics algorithms have been validated on real robots,

addressing various scientific and practical issues. However, the number of robots

is often in the order of ten(s) due to the hardware and CPU requirements of such

robots to implement learning algorithms (e.g. 20 e-Puck robots in Bredeche et al.,

2012, 6 Thymio-2 robot with a Raspberry board in Heinerman et al., 2016). This is in

stark contrast with other works in swarm robotics that do not implement learning

capabilities, where the number robots is often counted by the hundreds (Slavkov et al.,

2018; Valentini, Ferrante, Hamann, et al., 2016a)- and even up to slightly more than

one thousand robots (Michael Rubenstein and Nagpal, 2014). The challenge remains

open as to implementing on-line networked learning on such a large swam of robots.

In this chapter, we propose a new networked on-line learning algorithm inspired by

evolutionary dynamics. The originality of this algorithm is to minimize the require-

ments in terms of memory and communication cost, in order to be deployed on a

swarm of very low cost robots with limited computing and communication capabil-

ities (e.g. a Kilobot robot). The proposed algorithm is based on the horizontal gene

transfer mechanism observed in bacteria: when two robots interact, a part of the

control parameters is transferred to the robot’s memory and communication system.

Thus, the amount of information transferred can take into account time and band-

width limitations, regardless of the number of control parameters governing decision

making.

Though similar ideas have been explored in evolutionary computation (Harvey, 2009),

it has never been employed in the context of networked on-line learning, where the

possibility of modulating the amount of information transmitted between robots

makes it possible to take into account hardware and environmental constraints. Obvi-

ously, the price to pay for such an algorithm is a reduced convergence speed. But it

also makes it possible to adjust the amount of information exchanged to account from

practical limitations at hand. Indeed, the quality of the communication bandwidth

depends both on technical characteristics and environmental contingencies (number
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of packet collisions that increase with the number of robots, disturbances due to

materials used in the environment, etc.).

The rest of the chapter is organized as follow : Section 2 presents the algorithm and

evolutionary operators. Section 3 describes the experimental setup. Section 4 presents

results on a classic foraging task, first by comparing the proposed algorithm with a

state-of-the-art counterpart, and second, by performing a sensitivity analysis of the

various hyper-parameters of the algorithm. We then present an extension of the

algorithm to automatically adapt to the available communication bandwidth.

4.2 Algorithm

Both embodied evolution (Bredeche et al., 2018; Watson et al., 2002) and social learn-

ing (Heinerman et al., 2015) implement an evolutionary algorithm scheme, adapted to

perform networked on-line learning as illustrated in Figure 4.1. Each robot optimizes

a policy to maximize a fitness, F , that is locally defined in each robot.

Figure 4.1: Principle of embodied evolution algorithms. The robotic agent sends and
receives parameters of a policy function, and uses a evolutionary algorithm to improve
it own active parameters.

Robots follow a sense-act loop commonly used in robotics for reactive agents. Each

robot i runs a deterministic policy πθi
. At initialization, a robot is initialized with a

random control parameter set θi , referred to as active parameters. These parameters

are then used by the policy to determine the actions to be taken by the agent in

reaction to its observations.

The typical algorithm goes as follow : as a robot moves through its environment, the
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quality of its behaviour is assessed using a fitness function which depends on the user-

defined task to be achieved (e.g. number of items gathered for a foraging task, which is

also sometimes referred to as fitness value, reward, performance or utility). When two

robots are within communication range, they exchange their active parameters and

the (current) assessment of their policies. This operation is called mating. The choice

of accepting a partner may be purely based on the environmental contingencies but

other consideration may play a role such as performance or similarity. Mating does

not automatically imply a change in the active parameters of one agent, but incoming

data is generally stored for later use in a reservoir.

The renewal of a robot’s active parameters typically occurs after some predefined

amount of time. At this point, the robot will use information stored in the reservoir to

update its current active parameter set, which imply constructing a new candidate set

of parameters from the reservoir using typical selection and variation evolutionary

operators (Bredeche and Montanier, 2010; Fernandez Pérez et al., 2014; Hart et al.,

2015; Heinerman et al., 2015; Prieto et al., 2009).

4.2.1 Horizontal Information Transfer

All embodied evolutionary algorithm to date assume that the whole set of active

parameters (and current fitness) can be sent as a single communication packet. This is

generally true where the bandwidth is virtually infinite (as in simulation) or where it is

order of magnitude larger than the size of messages to be sent (as with Linux-running

robots using WIFI exchanging a few hundreds neural network weights) (Bredeche

et al., 2018). Using hardware-limited robots such as Kilobots (Rubenstein et al., 2012)

then raises the question of limiting the number of control parameters to stay within

the limits of the communication bandwidth, which can be due to either technical

limitations or environmental contingencies. For example, Kilobots not only use slow

IR communication (a few octets per seconds), but also are limited when the number

of Kilobots close-by increases due packet collisions.

In order to decouple communication and computation constraints, we introduce

the HIT algorithm. HIT stands for Horizontal Information Transfer, and can be seen

as an instance of either embodied evolution or social learning algorithms. It uses

evolutionary operators in a networked on-line fashion, and manages communication

between robots by exchanging a part, rather than all, of the robot’s control parameters.
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By exchanging only partial information, we expect two benefits:

• the possible recombination of behavioural skills (i.e. efficient subsets of the

policy parameters) obtained by separate robots, which would not be possible in

a winner-take-all approach. This will be shown is Section 4.4.2;

• the decoupling of the number of control parameters that can be used for control

and sent to other robots. In other words, it makes it possible to exploit the

computation and memory capabilities of the robot, without being limited by its

communication capability. This will be shown is Section 4.4.3.

In addition, HIT differs from other similar algorithms as it does not require a reservoir

to store incoming information. Upon receiving control parameters and current fitness

from a nearby robot, a robot will immediately integrate the new parameter values (i.e.

overwriting the current corresponding values) if its interlocutor’s fitness is better.

Figure 4.2: Communication or mating between the agents. Each robot has a matu-
ration period of time T where communication with neighbours is turned off. A new
maturation period is initiated after each modification of the active parameters. During
this period, the robot only evaluates its policy

Algorithm 1 describes HIT as implemented in each robot. It includes both evolutionary

learning and decision-making. It can be decomposed in two cycles:

• lines 4-7, sense-act cycle: The agent retrieves information from the environment

via its sensors using the sense() function. It retrieves an observation vector o

and a reward scalar r . The reward is stored in a queue, here R f [.], of size T for

later use. As for the observation vector, it is used by the deterministic policy

πθ to compute the action vector a. Finally, the act() function is responsible for

transmitting the commands to the actuators.

• lines 9-15, evolutionary cycle: After an evaluation period of fixed size T , the agent

can enter the evolutionary cycle. It broadcasts a random subset of its control

parameter set to its neighbours with an evaluation of its quality (i.e. the fitness).
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The subset size is controlled by the transfer rate α. When it receives a new

message (indicated by the new_messag e variable), if the received parameters

have a better fitness, then it replaces its own control parameters by the sender’s

selected parameters (function TRANSFER). Then it applies a Gaussian mutation

of variance σ on all its parameter set (function MUTATION).

These two cycles are also clearly represented of Figure 4.3.

Algorithm 1: The HIT algorithm (Horizontal Information Transfer)
Data:

α : transfer rate 2 [0,1],
T : evaluation time,
π : Policy function,
θ : Random uniform initialisation of policy parameters, dim(θ) = m,
R[T ] : Empty reward buffer of size T ,
r : Null reward scalar,
a : Null action vector,
o : Null observation vector

1 begin

2 t = 0
3 while True do

4 o,r = sense()
5 R[t mod T ] = r

6 a =π(o|θ)
7 act(a)
8 if t > T then

9 F =
PT°1

k=0 R[k]
10 Create the Idx array by drawing randomly αm integers in range [0,m°1]

without replacement
11 broadcast(θ[Idx], Idx, F )
12 if new_messag e then

13 θ = TRANSFER(θ, F , Idxmessage, θmessage, Fmessage)
14 θ = MUTATION(θ)
15 t = 0
16 end

17 end

18 t = t +1
19 end

20 end

In the following, we provide more details on the selection and variation operators.
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Figure 4.3: Diagram of the HIT algorithm. The red box represents the sense-act cycle,
where the robot interacts with the environment with actions a to receive observations
o and rewards r . The green box represents the learning cycle which consists in sending
and receiving subsets of parameters when the robot is mature. The robots being
deployed in the environment, the two cycles take place simultaneously.

4.2.2 Evaluation and Selection

The assessment of individuals depends mainly on the quality of the policy but can

be very noisy due to non-stationary stochastic variabilities in the environment and

behaviour of other agents. Depending on the definition of the fitness function and the

distribution of the rewards in the environment, some individuals may find themselves

naturally favoured by chance and thus spread misguided policies.

HIT uses a sliding time window of size T to assess the robot’s performance. The

window size depends on the task and the environment at hand, and must be set so

that sufficient information is gathered to provide a relevant estimate of the quality

of current policy. In order to compare policies in a fair manner, robots can only

exchange information after the sliding window has been completely filled. We call

this maturation period, which duration corresponds to the time required for a full

self-evaluation, i.e. the evaluation time T .

Figure 4.2 illustrates the dynamics of the algorithm. Whenever two robots meet, the

worst-scoring robot replace part of its control parameter with those of the best-scoring

robot. Then, the updated robot resets its fitness and enters a maturation period during

which communication is disabled.
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At each step, the agent receives a reward Rt . We call fitness Ft , the cumulated reward

obtained by the agent during T steps (sliding window). The evaluation time T , the

fitness Ft and reward Rt at step t are linked by the relation:

Ft =

T°1
X

k=0

Rt°k (4.1)

While a longer evaluation time should allow for more accurate assessment of a given

policy’s quality, there is of course a cost in terms of convergence speed.

4.2.3 Transfer operator

HIT introduces a transfer operator with rate α 2 [0,1] that defines the amount of

information that will be transferred during communication between two robots. As

an example, a transfer rate of α= 0.5 means that half of the control parameters will be

randomly selected to be sent. From one interaction to another, a different subset of

parameters can be selected for sending, and two interacting robots will send the same

quantity of possibly different parameters.

There can be different methods to randomly pick the parameters to be sent. A basic

method, which we use afterwards, is to send n parameters stored in 32-bit float, along

with an additional n bytes to send the indexes of these parameters. However, several

strategies can be used to compress or limit the quantity of information without com-

promising overall optimization. It can also possible to send a segment of parameters

whose offset changes randomly in-between each new message.

Algorithm 2 details the transfer mechanism during the mating operation. Unlike

other embodied evolution algorithms, HIT does not store incoming information in a

reservoir. Whenever the fitness of the sender is greater or equals to the fitness of the

receiver, the received parameter are directly used to overwrite the corresponding local

parameter.
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Algorithm 2: Transfer function

Data:

θ: active parameters,

G : current evaluation,

Idxmessage: received parameter indexes,

θmessage: received parameters,

Fmessage: received evaluation

1 begin

2 if Fmessage >G then

3 for i 2 Idxmessage do

4 θ[i ] = θmessage[i ]

5 end

6 end

7 end

4.2.4 Mutation operator

HIT implements a classic Gaussian mutation operator. It applies a perturbation

centred on the current parameter value, with a variance σ. It is defined as follow, for

the m parameters:

θ[i ] √N (θ[i ],σ) 8i 2 [1,m]

Mutation allows to introduce and maintain some level of diversity during the explo-

ration of the parameters space. While it may not be useful in the first steps of evolution,

it eventually maintains some level of diversity for exploring the parameters space as

using the transfer operator can only leverage what is already present in the initial

population.

4.3 Experimental setup

4.3.1 Task and Environment

In order to study the dynamics of HIT, we devise a foraging task, similar to tasks solved

by many species of insect collectives. It is also a good abstraction of a search and
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retrieve robotic task, where an unknown environment must be explored to retrieve

specific objects or resources.

The goal here is for each robot to collect as many items as possible. Both robots and

items are initially randomly placed in the arena. Whenever a robot picks up an object

at iteration t , it gets a reward of rt = 1, and a new item appears at a random location

in the arena to maintain a constant number of resources.

4.3.2 Simulation environment

We used the Roborobo3 simulator (Bredeche et al., 2013), which is a pseudo-realistic,

light and fast multi-agent simulation environment developed in C++. It provides a

pseudo-realistic physics robotic model similar to the seminal Khepera2 and e-Puck

2-wheeled mobile robots while still ensuring fast enough simulation to allow for

extensive experimental work involving hundreds of robots.

Robots, objects and the environment are physically represented by bitmap images,

which allows roborobo3 to manage collisions at the pixel level, though location, per-

ception and displacement are handled in the continuous domain.

Robots have a size of 5px£5px . They move in an environment of 1400px£800px that

is uniformly filled with objects.

4.3.3 Robot Model

Robots are subject to a kinematic model, as described in Figure 4.5. It is, therefore,

a question of controlling a velocity vector. Thus, the robots have a 2-dimensional

action space A where the two dimensions represent speed (a0 2 [°1,1] for [backward,

forward]) and angular speed (a1 2 [°1,1] for [clockwise, anti-clockwise]).

Their observation space O is composed of 16 range sensors that get information about

the surrounding of the agent. They are ray-casting sensors that have a maximum range

of three times the robot length (15px). For each of these sensors, four information are

extracted: the distance to contact if an object is detected, and three other Boolean

information for each sensor to explicit the type of information (object, wall or agent).

Thus, we obtain an observation vector of dim(O) = 64 dimensions.
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robots

objects

zoom

roborobo3  

visualization

Figure 4.4: Arena used for the experiments. It features 150 robots (small blue dots) with
16 short-range sensors and 100 items (green dots). Items disappear when caught, to
reappear at a new random location. Robots are never relocated, and the HIT algorithm
runs as a networked on-line fashion.

Figure 4.5: Robot model with 16 sensors, a velocity v , a maximal speed vmax, an
angular speed ω and a maximal angular speed ωmax. The control variables are then a0

and a1.

The robot’s policy maps observations o 2O to actions a 2 A. For that purpose, we use

a multi-layered Perceptron (MLP) as the main policy structure. Figure 4.6 details the

full topology between inputs and outputs, and the number of parameters.

This architecture imposes a large number of free control parameters that need to be

optimized. In the present case, this means 1074 parameters.
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Figure 4.6: Architecture of the policy function. Each sensor gives information about
the distance to obstacle and the type of object detected, if any. The architecture
represented here is a multi-layered Perceptron, used for the experiments. It has 64
dimensions as input, a hidden layer of 16 dimensions plus a bias term for each layer.
The action dimension is 2. The total number of parameters is 1074.

4.4 Result

In this section, we conduct an experimental study of the HIT algorithm. Values for all

experimental parameters can be found in Table 4.1, including environmental, neural

network controller and HIT parameters. The rectangular arena used is represented in

Figure 4.4, with 150 robots and 100 items.

4.4.1 Qualitative and Quantitative Evaluation

We analyse the dynamics of HIT while solving the foraging task for a well chosen

set of meta-parameters (See next section for an extensive analysis of the α and σ

meta-parameters). To analyse the results, we define two notions:

• the final fitness: to assert the quality of a particular algorithm, we measure the

fitness after convergence;

• the characteristic time: to evaluate the speed of convergence, we measure the
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Parameter Value
Environment parameters

Population size 150
Number of objects 100
Arena size 1400px£800px
Robot size 5px£5px
Sensor length 15px
Maximum velocity vmax 2 px/steps
Maximum angular velocity ωmax 30 degrees/steps
Controller: multi-layered Perceptron

Initialisation range [°400,400]
Sensory inputs 64
Hidden layer 1
Hidden size 16
Control outputs 2
Total number of parameters 1074
Controller: simple Perceptron (only Sec. 4.4.2)

Initialisation range [°400,400]
Sensory inputs 163
Control outputs 2
Total number of parameters 328
HIT parameters

Evaluation time T 400
Transfer rate α varying
Mutation size σ varying

Table 4.1: Parameters

time at which the average fitness is half the final fitness. This is approximately

the position of the inflexion point of the data sequence that plots the median

fitness. This was chosen a posteriori as in all the experiments we conducted, we

always observed a sigmoid-like increase of the fitness when switching from the

initial low fitness values to the final fitness values.

Figure 4.7 compiles the results obtained with 128 replicates of the HIT algorithm, with

α = 0.8,σ = 0.001,T = 400. Starting with low values, the fitness increases between

40000 and 100000 steps (characteristic time ª70000), and then converges to a stable

value (final fitness of ª2.4).

It should also be noted that the variance after convergence is rather small, advocating

for the robustness of the algorithm. This is actually confirmed by comparing HIT
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Figure 4.7: Results with HIT, α= 0.8,σ= 0.001,T = 400. The parameters used for these
simulation are described on Table 4.1. The Y-axis represents the distribution of the
average fitness among all 150 agents, over all runs. Results are compiled from 128
independent simulation runs.

with a canonical state-of-the-art embodied evolution algorithm, which we refer to as

VanillaEE (Fernandez Pérez et al., 2014; Hart et al., 2015; Montanier et al., 2016).

Figure 4.8 shows the results in term of characteristic times and final fitness of two

variants of the HIT algorithm (HIT(α= 0.3), which is expected converge slower, and

HIT(α = 0.8), as shown before) and of the best-shot of VanillaEE we could find (i.e.

σ= 0.001 mutation rate, elitist selection). To account for the implementation differ-

ence between HIT and VanillaEEI, we re-evaluate the final fitness by extracting the

control parameters from the last generation, and then running these with the learning

algorithm deactivated. All claims are backed using Mann-Whitney U Test.

Firstly, the final fitness is roughly similar for both HIT variants, which is expected.

Both display also an advantage over the VanillaEE control algorithm. Secondly, the

characteristic time shows, as expected, that HIT(α= 0.3) provides the slowest conver-

gence speed. HIT(α = 0.8) and VanillaEE converge faster, which is actually true on

average. However, VanillaEE displays a higher variance both in terms of convergence

speed and final fitness when compared to HIT(α= 0.8).

Actual behaviours for a typical run are shown in Figure 4.9. At the very beginning,

IThe original implementation of VanillaEE is synchronous, meaning that all robots update their
policy at the same time, which HIT does not do.
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Figure 4.8: Comparison between HIT and VanillaEE all with σ= 10°3. The box plots
are computed with 80 independent runs. The characteristic time measures the step at
which the average fitness reaches half its final value. The final fitness is the average
fitness after saturation.

robots fail to either meet with one another or to capture objects other than by chance

(Figure 4.9-(a)). At the end of learning, robots wander around, covering large areas and

following non linear trajectories (Figure 4.9-(b)). Trajectories from typical behavioural

strategies are illustrated in Figures 4.9-(c-d). Each figure displays the trajectory of one

robot and shows its interaction with other robots and objects (e.g. the robot turns

toward a detected object). These two figures illustrate the result of both the implicit

exogenous selection pressure (robots meet with one another as it favours diffusion

of behavioural strategies) and the explicit endogenous selection pressure (robots are

drawn to items as it increases their total reward).

This change in behaviour is also captured by looking at the evolution of the amount

of communication during the course of evolution. For a typical run of HIT(α =

0.8), Figures 4.11 and 4.10 respectively show the evolution of fitness and number

of messages exchanged through time. Comparing the two figures reveals that the

increase in communication between robots actually precedes the increase of fitness

values, and remains stable throughout the experiment, even before the final fitness

value is reached.

4.4.2 Tradeoff between Speed and Accuracy

Both the transfer rate α and the mutation size σ can have an impact on learning

speed and quality. In this section, we provide an extensive analysis of these two
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(a)

(b)

(c) (d)

Figure 4.9: (a): initial trajectories of 150 robots in the first time steps of learning (0°400
time steps, items are not displayed). (b): trajectories of 150 robots at the end of the
simulation (13600°14000 time steps). (c) and (d)): two examples of robot trajectories
produced after learning, for an arbitrary selected focal robot (small black circle) and
its trajectory during the last 100 time steps (black or red line - red denotes time steps
where the focal robot shared information with a nearby robot). The figures also show
other robots (small grey dots) and items (large green dots - lighter green denotes an
item that has been captured by a robot during the 100 time steps).
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Figure 4.10: Evolution of the frequency of messages for one experiment, α= 0.8,σ=

10°3,T = 400. We count the number of messages sent in a constant interval of 400
iterations and report this value as a function of the step number

meta-parameters. We measure the characteristic time and the final fitness the policies

obtained by the HIT algorithm, for a large combination of α and σ values.

We explore α values from 0.2 to 1.0 with a step size of 0.1, and σ from 10°8 to 10°2,

and 0. This represents a total of 18432 independent runs (9£8 combinations, 256

replicates per combination)II. In order to minimise to computational cost, we use

Perceptron with no hidden layer, but with additional sensory inputs that do not bring

useful information.

Results are shown in Figures 4.12 (final fitness) and 4.13 (characteristic time). We

can observe that the average fitness plateaus for mutation rates with σ< 10°2 and a

transfer rate with α ∑ 0.9. Large mutation rate of σ > 0.01 as well as the maximum

value for transfer rate α= 1 are both destructive, whatever the other meta-parameter

value. Regarding mutation, it is expected that a too large mutation rate can disrupt

selection, and injects noise rather diversity that can be exploited. As for transfer rate,

setting α= 1 limits convergence to full control parameter sets present in the initial

population only, as it is does not allow to benefit from recombination.

Aside from these extremes, HIT is revealed to be remarkably robust in terms of the

final fitness that is reached. The transfer rate appears as the main parameter to

modulate the convergence speed, with mutation being either destructive in the worst

case σ∏ 10°2, or of limited interest. In terms of efficiency of policies, the algorithm is

rather robust with respect to its meta-parameter values, as long as extreme values are

IIExperiments took 12 days using an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
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Figure 4.11: Evolution of the average fitness among 150 agents for one experiment
of foraging 100 objects, α= 0.8,σ= 10°3,T = 400. At every encounter, the best agent
share eighty percent of it randomly chosen parameters to the other agent. The worst
receives these parameters and use them to improve it own policy. This process can
only happen after both agents have spend at least 400 steps to evaluate themselves.
During the maturation period, the fitness before modification of the best is reported
for the averaging. No mutations are used here.

avoided (α> 0.9 and σ∏ 10°2).

Final fitness value
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Figure 4.12: Final value of the average fitness for various mutation size and trans-
fer rate. This value is the average of all fitness on the last 100 measurements (one
measurement per 400 iterations). 256 independent simulation run have been used.
Lighter colour means better saturation value.

77



Chapter 4 Networked Agent Lifetime Evolution

Characteristic time
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Figure 4.13: Characteristic time for various mutation size and transfer rate. The
characteristic time is the step at which the average fitness reach half of it final value.
256 independent simulations run have been used. Lighter colour means shorter
convergence time.

4.4.3 Learning the Transfer Rate

As stated at the beginning of this chapter, our aim is to provide an algorithm that can

cope with limited communication capabilities. However, it is hardly possible to know

in advance what are the limits. Technical specifications provide a good start, but the

impact of robots density on packet collisions or perturbations from other sources

makes it difficult to set an appropriate transfer rate beforehand.

Here, we study the HIT algorithm in a pseudo-realistic context where communication

is artificially limited. In this experimental setting, all messages larger than m £0.6£

dim(parameter), are lost. The optimal transfer rate is therefore αopt = 0.6, but is

unknown before deploymentIII.

Resilience to communication failure is addressed by implementing a straight-forward

learning method for the transfer rate. The transfer rate value is incorporated in the

parameter set of each robot, and initially set to a random value α 2 [0,1]. It is then

tuned by selection pressure.

IIIWe also tested for α= 0.3 with identical results (not shown here).
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We performed 64 experiments, setting a mutation rate to σ= 0.001 only for the pa-

rameter α and T = 400 (as earlier). For all experiments, the whole robot swarm

systematically converged to an α value close to the optimal transfer rate as shown on

Figure 4.14 (left).
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Figure 4.14: Left: distribution on 64 independents runs of the average transfer rate α

after 5£105 iterations, with αopt = 0.6. Center and Right: learning the transfer rate α

in a canonical run. Center: each line represent the trajectory of the α value for one
specific agent. Right: average fitness for the population until convergence.

This is illustrated in Figure 4.14 (center), which represents the distribution of all α

from the 150 robots across time steps for a typical run. As expected, α values are

initially uniformly distributed between 0 and 1, and then quickly converge to a value

close to αopt .

Robots carrying α values which are too large with respect to the communication

constraints simply cannot spread, and can only survive as long as it takes to encounter

a robot with better fitness and capable of transmitting its own parameters. On the

other hand, robots with small values of α can spread, but may do so at a smaller

frequency than robots with relevant α values. This can be viewed as a lexicographic

selection: the better performing robot will always fare better, and will diffuse faster if

its α value makes the best of the environment at hand.

From a practical viewpoint, and extrapolating also from results in the previous section,

it means that learning the transfer rate is always a good idea as long as it is limited to

be strictly inferior to 1.

79



Chapter 4 Networked Agent Lifetime Evolution

4.5 Conclusion

In this chapter, we introduced a new algorithm called Horizontal Information Transfer,

which is at the crossroad of embodied evolution and social learning. We showed that

this algorithm is competitive with the state of the art, but is also able to deal with

limited communication capabilities that are often met with low-cost robots used in

swarm robotics.

The obvious next step is to run full experiments with a swarm of low-cost robots. The

implementation on robots (Kilobots) of the HIT algorithm has been performed and

confirms the feasibility of the method to optimize robots after deployment (Mirhos-

seini et al., 2022; Zion et al., 2021).
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5 Centralized Cooperative Co-Evolution

with Adaptive Team Composition for

a Resource Selection Problem

This chapter is adapted from:

• Fontbonne, Nicolas, Nicolas Maudet, and Nicolas Bredeche. "Cooperative Co-

evolution and Adaptive Team Composition for a Multi-rover Resource Alloca-

tion Problem." European Conference on Genetic Programming (Part of EvoStar).

Springer, Cham, 2022.

5.1 Introduction

When multiple individuals get together to solve a task, it is sometimes difficult to

identify who is actually contributing, and who is not. This is especially problematic

when the benefits are equally shared among individuals, including with free-riders

who invest a minimal amount of effort. Nature abounds from such examples and

various strategies evolved to mitigate the detrimental cost of free-riding, such as

partner choice or reputation (Noë and Hammerstein, 1994; West et al., 2007).

The problem of identifying the marginal contribution of individuals has also been

studied extensively in cooperative game theory (Shoham and Leyton-Brown, 2008b).

However, exact methods such as computing the Shapley value (Shapley, 1953b) re-

quire strong assumptions (e.g. ability to replay coalitions) and unrealistic computation

time, which have led to a flourishing research into the design of approximate meth-

ods (Tumer et al., 2002; D. H. Wolpert and Tumer, 2001, 2008). The basic idea of such
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methods is to identify the individual’s contribution by computing the difference be-

tween the group performance with and without this very individual (e.g. by removing

it or by replacing it with an individual with a default strategy).

In this research, we are interested in ad hoc autonomous agent teams where agents

must act together without pre-coordination (Stone et al., 2010), which implies that

the environment is non-stationary as all agents learn in parallel. This requires using

methods that can only alter individuals’ strategy, with neither a default strategy being

known nor the possibility to remove temporarily one particular individual.

Such problem settings have been explored in evolutionary computation for multiagent

systems, and notably with Cooperative Co-Evolutionary Algorithms (CCEA) which

were first introduced in (Potter and De Jong, 1994b, 2000) and largely explored since

then (see Ma et al., 2019 for a review of variants and applications). In particular, CCEA

have been explored in setups involving multiple robotic agents in tasks such as explo-

ration and foraging (Gomes et al., 2017) and environment monitoring (Rahmattalabi

et al., 2016; Rockefeller et al., 2020; Zerbel and Tumer, 2020).

In this chapter, we address the problem of isolating team members so as to identify

their contribution within the collective. On the one hand, one could allow only a

single agent to learn at a given time, making it possible to measure its contribution

accurately as other agents’ strategies would remain stationary. On the other hand,

several (or all) of the agents’ policies could be iterated at the same time, possibly

speeding up learning thanks to parallelization.

Balancing between providing accurate estimation of an individual contribution and

parallelization of learning actually depends on the context at hand. When rewards

are sparse and depend on a single individual’s behavioural innovation, it is preferable

to bootstrap learning with large-scale exploration. However, whenever team perfor-

mance increases it is more efficient to turn towards a more conservative search so

as to retain previous improvements. Finally, one less obvious situation arises when

the synergy between individuals is required to improve performance, for example

when two robots are required to open a door, none of which would gain any benefit

by acting alone.

The rest of the chapter is organized as follows. Section 5.2 presents the problem of

team composition in CCEA. Section 5.3 presents two CCEA algorithms that enable
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to tune the number of learning agents within one learning step. The two algorithms

differ with respect to how the balance between contribution estimation accuracy and

learning parallelization is set: fixed, or self-adaptive. Section 5.4 presents the problem

used for evaluation, which is a modified version of the famous Bar El Farol prob-

lem (Arthur, 1994) formulated as a multi-robot resource allocation problem where

coordination is required (i.e. several resources must be harvested and harvesting is

extremely beneficial if the optimal fixed number of robots is met). Results are pre-

sented in Section 5.5 for both the ad hoc version of and the self-adaptive versions of

the algorithm.

5.2 Cooperative coevolution and team composition

In its most simple setup, cooperative co-evolutionary algorithms (CCEA) rely on a

collection of independent evolutionary algorithms, with each dedicated to optimizing

the policy of one particular agent of the team (De Jong, 2016; Eiben and Smith, 2003).

Each independent algorithm works to improve the performance of one agent’s control

parameters using an assessment of the team performance.

Each algorithm maintains a population of parameter sets, which define candidate

policies for the agent this algorithm is in charge of. At each generation, performance

assessment is computed for various teams. Then, each instance of the CCEA tries to

improve its agent’s performance by using classic evolutionary operators of selection,

mutation and recombination.

The problem faced by CCEA is thus a black-box optimization problem, with the

additional twist that evaluation is for the whole team, and optimization is performed

at the individual level, thus implying a weak link between team evaluation and the

actual individual behaviour. Defining θ as the vector containing the parameters

provided by each algorithm of the CCEA, F as the fitness function used to assess team

performance and f the fitness value, we have:

F : team parameters θ °! fitness value f

Figure 5.1 illustrates the learning loop of a simple multi-agent black-box optimization

procedure for cooperative co-evolution. A given algorithm in charge of a particular
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agent i will provide policy parameters θi for this agent to be evaluated in a team. These

parameters will be evaluated alongside parameters provided by the other agents. The

team is then evaluated and a fitness value is returned.

Figure 5.1: The learning loop of interaction. All agents submit their own parameters
independently for evaluation. They are evaluated at the same time on the environment
or task. This returns the fitness f of the whole team. Finally this feedback is used by
all agents to update their parameters submission for next iteration.

After an evaluation, each agent has to evaluate if the new set of parameters proposed

θi has contributed to the team fitness in a negative, positive or neutral manner. It is

necessary to extract from the fitness f = F (θ), the part which depends only on the

parameters of the agent i , F i (θi ).

From an agent’s viewpoint, an increase in team performance may be due to others,

and may even shadow a decrease in the very contribution the agent performs. In

order to mitigate the intrinsically noisy fitness evaluation due to team heterogeneity

(team composition changes over time), multiple evaluations of the same set of policy

parameters will be performed for a given agent, so that different versions of θi can be

ranked and further selected to create new candidate policies for the next generation.

However, obtaining an exact assessment of one individual’s contribution to the team

remains elusive unless all other individuals follow static policies. Considering teams

formed of n team agents, with each agent’s evolutionary algorithm maintaining a

population of p candidate policies, complexity would be O (pn) at each generation.

In order to provide results in a reasonable time, CCEA generally relies on a partial

evaluation of agents’ policy contribution, by evaluating a subset of all possible team

compositions at each iteration. Though such implementation breaks down complexity,

CCEA algorithms have been shown to have a tendency to prematurely converge

to stable states because of a deceptive fitness landscape created by the choice of

collaborators for evaluation (Funes and Pujals, 2005; Panait, 2010). Several methods
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have been proposed to address these issues, including novelty-based rewards to

escape local minima (Gomes et al., 2017) or automatically merging populations when

agents’ behaviours are similar to address scalability issues (Gomes et al., 2018, 2019).

However, the contribution of one specific agent remains approximated rather than

precisely measured.

5.3 Cooperative Co-Evolutionary Algorithms with Lim-

ited Team Composition Update

In the simplest case, the global fitness F (θ) is the sum of each agent’s individual fitness

F i (θi ) for the current team:

F (θ) =
X

i2agents
F i (θi )

With θi the policy parameters for agent i , and θ = (θ0, . . . ,θi , . . . ,θN°1), i.e. the team

policy parameters composed of the policies of N agents.

Whenever a single agent updates its policy parameters, the variation in overall fit-

ness F (θt+1)°F (θt ) will be equal to the variation in the fitness due to the change in

behaviour of the agent concerned δF i . This can be written as:

F (θt+1)°F (θt ) = F°i (θ°i
t+1)+F i (θi

t+1)°F°i (θ°i
t )°F i (θi

t )

= F i (θi
t+1)°F i (θi

t )

= δF i

(5.1)

With F°i (θ°i ) the performance of all individuals minus the agent i , assuming θ°i is

stationary between t and t +1. Though an exact value for the contribution of agent

i remains unavailable, δF i gives a proxy which provides sufficient information to

measure both the direction and amplitude of the change due to agent i ’s new policy.

Assuming agents are independent, the above equation holds true and can be used as

long as only one agent’s policy is changed at a time. However, this assumption incurs

two important limitations:
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• The computational cost of iterating over a single agent’s strategy at a time is high

(see previous section), and there is a trade-off between the quality of one agent’s

contribution estimation and the expected gain at the level of the team (e.g.

whenever a single robot is needed to significantly improve team performance,

trying with all robots is relevant);

• The task may require coupling between the agents’ behaviour, and any team

fitness improvements may require that several agents change their policy pa-

rameters simultaneously (e.g. moving a heavy object can only be done with two

robots). If not, an algorithm can get stuck on a local minimum if we assume

independence between agents and change only one agent at a time.

In order to address these issues and still retain the benefit of accurate estimation

of the agents’ contribution, we propose a CCEA algorithm where it is possible to

modulate the number of agents that are updated in-between team evaluations. We

use a collection of (1+1)-GA algorithm where each (1+1)-GA algorithm i provides the

policy parameters θi for its corresponding agent i , and the whole team is evaluated

using all agents with their policy parameters, i.e. θ = (θ0, . . . ,θN°1).

Algorithm 3: CC-(1+1)-GAkfixed

Introducing k mutants per iteration

1 k √ number of team members to be updated;
2 N √ total number of agents;
3 θparent √ parameters initialisation;
4 fparent √ F (θparent);
5 for gen < nb max generation do

6 ID √ randomly sample k agents;
7 θI D

child √ mutate(θI D
parent);

8 fchild √ F (θI D
child,θ°I D

parent);

9 if fchild ∏ fparent then

10 θI D
parent √ θI D

child;

11 fparent √ fchild;
12 end

13 end

Algorithm 3 details the complete CCEA, which runs multiple instance of (1+1)-GA in

parallel, which we will refer to as the CC-(1+1)-GAkfixed algorithm from now on. Each

(1+1)-GA algorithm maintains a population of two individuals (Beyer and Schwefel,

2002), a parent θi
parent and a child θi

child. Both are candidate policy parameters for
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agent i . The parent is replaced when the child fares better, and a new child is created

by applying mutation on the new parent. Whenever a child fails to outperform its

parent, it is replaced by a new child mutated from the current parent. The mutation

operator depends on the problem (e.g. Gaussian mutation, bit-flip, uniform draw).

At each new iteration, k agents are drawn and randomly changed in the team, with

0 < k ∑ N . The k parameter is used to tune the amount of renewal k/N for the team

composition in-between iterations of the CCEA algorithm. The k new team members

are kept only if they provide an increase in the team fitness. Therefore, the challenge

is to find the most efficient size k of the number of team agents to be modified at each

CCEA steps. So far, k is fixed beforehand by the user, and may benefits from prior

knowledge on the task regarding possible required coupling between agents, in terms

of number of agents to change simultaneously to reach the global optimum in terms

of team efficiency.

However, such prior knowledge may not be available and a relevant value of k not only

depends on the problem (e.g. some problems may require coupling between agents,

others may not), but also on the current state of the optimization (e.g. broad initial

search steps vs. refined tuning near the optimal solution). In order to address this, we

propose the CC-(1+1)-GAkadaptive , where the k parameter is learned during the course of

evolution (see Algorithm 4). We propose to choose the number of team members to be

updated by using the adversarial bandit learning algorithm EXP3 (Exponential-weight

algorithm for Exploration and Exploitation (Auer et al., 2002)) that tracks the success

rate of various possible values for k so far, which means both exploiting the current

best value and exploring alternate values. The goal of the adaptation mechanism is

to converge to the best possible value for k for the context at hand, i.e. the value that

leads to the largest increase of fitness, whether through rare but important increases

or through small but frequent increases.

As described in Algorithm 4, we define a set of J possible values for k (k0, ...,k J°1),

each associated with a weight W (k j ) monitoring the success rate of a particular k j .

Lines 10-13 of the algorithm detail which k j is selected for a particular iteration. We

compute the probability distribution of each k j which depends on the weight W (k j )

and the parameter γ of the algorithm. γ! 1 favours exploration (i.e. the choice of

k j will be almost uniform). On the contrary, γ! 0 favours exploitation, taken into

account the importance of the weights W (k j ). The fitness gain is normalized between
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[0,1] (Line 20) and then used to update the weight W (k j ) (Line 21).

Algorithm 4: CC-(1+1)-GAkadaptive

Replacing a varying number of team agents per iteration

1 K √ table of possible number of team members to update simultaneously ;
2 W √ table of weights for each k;
3 P √ table of probability for each k;
4 k √ number of team members to be updated ;
5 N √ total number of agents;
6 θparent √ parameters initialization;
7 γ√ real 2 [0,1], parameter for the EXP3 algorithm ;
8 fparent √ F (θparent);
9 for gen < nb max generation do

10 for j = 1, . . . , J do

11 P [ j ] √ (1°γ) W [ j ]
PJ

i=1 W [i ]
+

γ
J

12 end

13 k j √ random draw in K [] with probabilities P [];
14 ID √ randomly sample k agents;
15 θI D

child √ mutate(θI D
parent);

16 fchild √ F (θI D
child,θ°I D

parent);

17 if fchild ∏ fparent then

18 θI D
parent √ θI D

child;

19 fparent √ fchild;

20 R √ tanh( fchild
fparent

);

21 W [ j ] √W [ j ]exp( γR

P [ j ]J
);

22 end

23 end

The whole algorithm loop is also represented in Figure 5.2. In this example, five agents

are learning. The current k is 2, meaning that, for this generation, two agents are

mutated, giving birth to two children, and are evaluated with the others parents.

5.4 The Multi-Rover Resource Selection Problem

We define a problem that is a variation of the well-known El Farol bar problem (Arthur,

1994; D. H. Wolpert and Tumer, 2008) where each individual must choose a day to go

to the bar among M possible choices with the criterion of not being too numerous

each days. In our setup, we consider the problem where N independent robots must
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Figure 5.2: Diagram of the different steps of the CC-(1+1)-GAkadaptive algorithm.

spread over M resources, and where each resource has an optimal capacity c in terms

of number of robots necessary to optimally harvest it. This is illustrated in Figure 5.3,
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which provides an example where each robot chooses a resource.

Figure 5.3: The N = 60 robots are represented here as little rovers that each must
choose between M = 7 resources. Here the selected agent chooses resource 5. When
all robots have made their choices, the satisfaction for each resources are computed
and summed to obtain the fitness f of the team.

Team performance f is obtained by adding each resource’s satisfaction φc . For each

resource, its satisfaction φc depends on the number of robots r who chose it. This

satisfaction is described by the following equation:

φc (r ) =

(

Mr exp(°r
c

) if r = c

r exp(°r
c

) else.
(5.2)

where r represents the amount of robots on the resource, M the total number of

resources, and c controls the optimal number of robots required for the resource.

Figure 5.4: Satisfaction function with c = 10 of a given resource, depending on the
number of robots that picked it

The satisfaction function diverges from the original formulation of the El Farol Bar

problem as the best team performance always implies that the number of robots

per resource must be optimal (exactly c robots per resource), even if it implies some
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resources are left aside or only partially filled. The satisfaction boost for the r = c case

ensures that filling a maximum number of resources with the c robots is the optimal

strategy. An example of such function with c = 10 is plotted on figure 5.4.

The fitness of a team is then the sum of the satisfaction for all resources:

f =
X

m2[0,M°1]
φc (r m)

Where r m is the number of robots at resource m. The robots must coordinate to

optimally fill a maximum number of resources.

To increase the value of this function, it is then necessary to move individuals from

crowded resources to resources with fewer robots, up to the extent that resources with

the exact number of robots are favoured.

The number of robots N , the number of resources M , and the optimal number of

robots per resource c can be modified to change the structure of the problem. In the

next section, different instances of this problem are used to study various properties

of the algorithms we proposed in the previous section. In particular, it is possible to

set up the problem so that either single or multiple changes in the team composition

may always yield too few or too many permutations in the team distribution over

resources for team performance to increase.

5.5 Results

5.5.1 Experimental setting

We use the Multi-Rover Resource Selection problem, with different number of re-

sources M , number of agents N , and optimal number of robots per resource c. The

three setups used are:

• Setup 1 with N = 120, M = 300, and c = 30. There are many resources, each re-

quiring a large number of robots. The maximum performance could be reached

by a team of exactly M £ c = 300£30 = 9000 agents. Given the limited num-

ber of agents, they must spread over a few of the resources (N /c = 120/30 = 4

resources) so that the team reaches optimal performance;
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• Setup 2 with N = 900, M = 300, and c = 3. The number of robots involved

makes it possible to reach the optimal team performance value for this setup

(N = M £ c) if all agents are uniformly spread over the resources;

• Setup 3 with N = 60, M = 7, and c = 10. There exists several configurations of

pairing agents and resources which are local optima and cannot be escaped

by updating only one agent in the team. Figure 5.5 gives an example of a sub-

optimal configuration for which using k = 1 is detrimental. When the algorithm

gets into such a configuration, all possible updates of a unique agent will de-

crease the team fitness. Escaping such a local optimum requires either exploring

new configurations at the cost of a (hopefully temporary) decrease in team per-

formance (see Gomes et al., 2017 for example using novelty search in CCEA,

which is out-of-scope of the current chapter) or modifying several agents at the

same time (which is possible with k > 1).

In the following, we use both the CC-(1+1)-GAkfixed algorithm with either k = 1, 10 or

30, and the CC-(1+1)-GAkadaptive algorithm (using EXP3) for learning the value of k in

{1,10,30}. All experiments are replicated 32 times. Mean and standard deviation for

all algorithm variants are traced. Evaluations is used on the x-axis to provide a fair

comparison in terms of computational effort.

Figure 5.5: The resource selection problem has local minimums that can’t be escaped
by mutating only one agent. In this example, 60 agents must spread on 7 resources by
being 10 on 6 of them. In the state where 4 resources are selected by 10 agents, 2 are
selected by 7, and 1 by 6, modifying the selection of one agent can only decrease the
fitness of the system.
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5.5.2 Fixed vs. Adaptive Methods for Team Composition Update
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Figure 5.6: Performance of the CC-(1+1)-GAkfixed algorithm with either k = 1, k = 10
and k = 30, as well as CC-(1+1)-GAkadaptive with k 2 {1,10,30}. Performance f is plotted
as mean (solid lines) and standard deviation for the three setups considered with
respect to the number of fitness evaluations. Curves are plotted on a x-log scale.
There are 32 replications for each algorithm and for each experiment.

Starting with the three variants of the CC-(1+1)-GAkfixed algorithm, we can observe

different learning dynamics depending both on the value of k and the setup at hand.

In the first setup (Fig. 5.6(a)), we observe a clear benefit for using k = 10 and k =

30 during the first iterations. But this initial gain in performance does not allow it

to converge faster when using k = 1. In particular, a value of k = 30 is extremely

deleterious for the convergence as it fails to reach the optimum value within the

allocated evaluation budget. This tendency is even more visible in the second setup

(Fig. 5.6(b)). Using larger values for k provides a slight advantage at the beginning but

is quickly lost for both k = 10 and k = 30.

The outcome is rather different in the third setup (Fig. 5.6(c)) as using k > 1 allows to

reach better performances and prevent the algorithm to get stuck on a local optimum.

Indeed, the algorithm becomes stalled when using k = 1, the structure of the problem

making it impossible to improve team performance without considering coupled

synergies when updating team members.

Figures 5.6(a) and (b) show that the CC-(1+1)-GAkadaptive algorithm follows the curves

of the best performing algorithms using a fixed value of k. Figure 5.6(c) also shows
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that the adaptive algorithm is able to adapt to a situation where the CC-(1+1)-GAkfixed

algorithm would fail because of its fixed k value (here, using k = 1 withholds con-

vergence to an optimal team composition). Overall, dynamically modulating the

number of policies updated in the team composition always results in performance

curves closely matching the best out of the algorithmic variants using a fixed value

of k. This remains true even when the best variant with a fixed k value is outper-

formed by another variant with a different value of k, which confirms the relevance

of the adaptive algorithm to act as an anytime learning algorithm. In other words,

the CC-(1+1)-GAkadaptive algorithm presents the best choice when the problem and the

evaluation budget are not known.

5.5.3 Dynamics of Adapting the Number of Team Agents to Update

We analyze how the CC-(1+1)-GAkadaptive algorithm is changing the value of k through-

out evolution for the three setups at hand. Figure 5.7 represents the median value of k

over the 32 repetitions for each of the three experimental setups. We observe that the

algorithm switches between the different values for k, and follows different dynamics

depending on the setup.

In the first setup, the method slightly favours k = 1 and k = 10 after a few iterations

of exploration. This bias is consistent with the performances observed for k fixed,

where the k = 30 version is less efficient (see Fig. 5.6). In the second setup, the value of

k decreases during the learning process to stabilize at k = 1, allowing for some fine-

tuning of team composition. The third setup displays somewhat different dynamics

(a) setup 1 (b) setup 2 (c) setup 3
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Figure 5.7: Median value of k over the 32 repetitions for the first (left), second (middle)
and third setups (right). Curves are plotted on a x-log scale.
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for the value of k, quickly switching from one value to the other. The difference in

performance between the different group sizes is not large enough to make a clear-cut

choice, and the method chooses k uniformly at each step without impacting the

performances.

5.5.4 Sensitivity of meta-parameters

As described in Algorithm 4, CC-(1+1)-GAkadaptive uses two meta-parameters, which

are:

• K = (k0, ...,k J°1), the set of possible values for k;

• the egalitarianism factor γ that determines at each step whether k should be

chosen at random (uniform sampling), or selected with respect to the weights of

the k values, obtained from the cumulative fitness gain for each particular value

of k. The value of γ balances between exploitation and exploration, and the

EXP3 algorithm for multi-armed bandit problems has been extensively studied

elsewhere (Auer et al., 2002; Sutton and Barto, 2018);

In the previous section, these meta-parameters were fixed as follow: the set of possible

k was limited to {1,10,30}, the egalitarianism factor γ was set to 0.1.

Figure 5.8 shows the sensitivity of the algorithm with respect to the different meta-

parameters. From top to bottom, the sensitivity to γ and the set of possible k. The

general conclusion from this study is that the algorithm is robust and remains a

relevant choice for anytime learning. Learning curves remain close to what has been

shown previously, with some exceptions for extreme values. In particular, we can

observe that:

• γ does not have a significant impact on the algorithm, provided that it is not too

small nor too high to efficiently modulate the exploration and exploitation of k’s

• the algorithm is somewhat also sensitive to the cardinal of the set of possible

values for k. When there are too many possibilities to explore, the evaluation

of each choice takes more time and is, therefore, less accurate if the context

changes too fast. The effect of this exploration can especially be observed for

the second setup where the algorithm is less accurate when the value for k can

be chosen among 30 possible values (k 2 [1,30]).
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Figure 5.8: Sensitivity of the algorithm to meta-parameters. Each column represents
one of the different experimental setups. On the rows, one of the meta-parameter is
fixed and the other one is varying. On the top, the set of k are fixed but γ varies. At the
bottom, γ is fixed but the set of k varies.

5.6 Conclusion

In this chapter, we presented a cooperative co-evolutionary algorithm (CCEA) that im-

plements a collection of (1+1)-GA algorithms, each endowed with the task to optimize

the policy parameters of a specific agent while performance is assessed at the level of

the team. Our algorithm acts on team composition by continuously updating a limited

number of team agents, depending on the task at hand and the level of completion.

Therefore, the main contribution of this chapter is to describe an algorithm with a

self-adapting team composition update mechanism used throughout learning.

We showed that modulating through time the number of new policies added to the

current team makes it possible to provide efficient anytime learning, without requiring

a priori knowledge on the problem to be solved. Moreover, we show that the algorithm

can deal with problems where coupling between agents during learning is mandatory

to improve team performance.
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Experimental validation was conducted using a variant of the El Farol Bar problem,

a famous problem in collective decision making, which was modified to capture a

multi-agent resource selection problem. Our algorithm is indeed also relevant for

multi-robotic setups, which have been recently studied using various CCEA algo-

rithms (Gomes et al., 2017, 2018, 2019; Rahmattalabi et al., 2016; Rockefeller et al.,

2020; Zerbel and Tumer, 2020). The next chapter will tackle such setups.
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6 Centralized Cooperative Co-Evolution

with Adaptive Team Composition for

Pseudo-Realistic Multi-Rover Spatial

Distribution Task

6.1 Introduction

The previous chapter introduced a cooperative co-evolution algorithm that modulates

the number of agents exploring at each generation. However, the application domain

was a simplified setup where agents had only one action to choose at each round. In

this chapter, we analyze the performance of an extension of this algorithm on a more

classical domain where the agents have to learn a complete deterministic policy that

maps each observation to a continuous action domain.

Using more complex policies raises the question of the genetic composition of the

team. Genetic composition refers to the relationship between the control policy

parameters of the agents. We can thus have:

• Homogeneous team: all agents use the same control parameters, which means

they would behave similarly under similar conditions. This can also be referred

to as the clonal approach;

• Heterogeneous team: all agents use different control parameter values, which

means that one agent is encoded by a unique set of control parameter values.

Homogeneous teams have been found to be scalable (Baray, 1997; Trianni and Dorigo,
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2006), fast to evaluate (Luke et al., 1997), and still able to specialize (Bryant and

Miikkulainen, 2003). While heterogeneous teams allow more flexibility in terms of

role specialization (Baldassarre et al., 2003; Bernard et al., 2016; Bongard and Paul,

2000; Quinn et al., 2002).

More recent results refine these findings. Ferrante et al., 2015 showed that role spe-

cialization could be learned even within homogeneous teams as robots can adapt

their roles depending on the environment. However, in some extreme cases requiring

specialization, such as when leader/follower roles are required, heterogeneous teams

are mandatory to get a stable organization between agents (Bernard et al., 2016).

Moreover, the multi-robots aspect of a genetically homogeneous system can be de-

bated. In this case, all agents are clones, and the learning process consists of optimiz-

ing a single policy that is replicated on all agents. One could argue that this leads to a

single agent system whose body is composed of multiple physically independent parts.

On the contrary, using heterogeneous teams leads to more complicated optimization

problems but allows the autonomy of each agent, which may lead to a more robust

policy (Stone et al., 2010).

As emphasized by Waibel et al., 2009, the notion of genetic team composition is also

related to the level of selection performed during the evolutionary algorithm. The two

possible levels of selection are:

• Individual selection: each robot interact with a team but gets an individual

evaluation. Control parameter values of the robots with the highest scores are

more likely to be selected to build a new population of candidate solutions,

whether they were initially part of the same team or not.

• Team selection: performance is evaluated for the whole team. No distinction is

made between the participating agents, whether they are similar or not. Regard-

less of their individual contribution to the team’s performance, all agents that

were part of the best teams are more likely to participate in the construction of

a new population of candidate solutions.

Figure 6.1 represents the four evolutionary conditions, combining the genetic compo-

sition of the team and level of selection.

Team selection guarantees agents will collaborate as they are selected only if they
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Figure 6.1: Four different evolutionary scenario. The population, represented by a
large oval, is made up of several teams, represented by medium ovals. Each team is
composed of several robots, represented by small circles, which are evaluated together.
The genetic composition of the teams can be either homogeneous, with all the robots
having the same genome and shown with identical shading, or heterogeneous, with
the robots having different genomes and shown with different shading. The level of
selection can either be at the team level, where entire teams are selected, or at the
individual level, where individuals are selected independently of their team affiliation.
Figure is reproduced from Waibel et al., 2009.

allow the whole team to obtain a better evaluation. However, this can be problematic

in the case of heterogeneous team evolution. For example, by not taking into account

the individual contributions of each agent, this method can encourage free riders.

These agents benefit from the performance of their teammates to be selected, and

this can be detrimental to the optimization process. This is especially true for large

teams where the dilution of responsibility hides individual impacts.

On the other hand, individual selection allows for a more tailored evaluation for

each agent. They are selected only if their performance is beneficial. This allows for

more stability in the learning process as the selection is specifically tailored to one’s

individual performance.

In the case of a heterogeneous population, global fitness or team-level selection is

rarely treated. However, these concern many problems that require the specialization

of agents (i.e. they cannot have identical behaviours). They include construction tasks
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(Nitschke, 2012), foraging of multiple objects (Tarapore et al., 2006), or herding (Potter

et al., 2001). These problems are tackled by cooperative co-evolution algorithms

(CCEA)(Potter and De Jong, 1994a). As described in 3.5.2, cooperative co-evolutionary

algorithms evolve multiple populations of solutions simultaneously. These popula-

tions are called sub-populations, and are evolved cooperatively, in the sense that the

fitness of each solution in a sub-population depends on the other sub-populations.

6.1.1 Related work

Independent learners suffer from the alter-exploration problem where agents fail to

consider the exploration of their teammates that concurrently learn and update their

policies. Sharing information on a network or through a centralized authority allows

for mitigating this problem. Multiple solutions have been proposed. HolmesParker

et al., 2014 introduce a reward structure to remove teammates’ exploration noise from

each agent’s reward signal. It allows agents to explore without taking explicit actions.

Instead, they calculate a counterfactual reward for an action they did not take, using

a model of the system’s reward function and the CLEAN shaping structure. The first

way to do this is to compare the evaluation if we replace the current action by a new

exploratory counterfactual action a0

i
:

c1i (a) = r
≥

aai√a0
i

¥

° r (a) (6.1)

We thus find the opposite of the difference reward, which consisted in comparing

the reward of the current action to a default counterfactual. By combining these two

approaches, we obtain the second version of CLEAN reward. It consists in comparing

an exploratory action a0

i
to a default action a00

i
:

c2i (a) = r
≥

aai√a0
i

¥

° r
≥

aai√a00
i

¥

(6.2)

This calculation is used to update the agent’s policy, and other agents see only the

non-exploratory action. This means that exploration does not add noise to the system

and promotes coordination among agents.

Similarly, Chung et al., 2018 propose a method to limit the number of agents that

are learning across each epoch. Agent updates their policy with a probability that

depends on its predicted impact.

102



CCEA on a Pseudo-Realistic Multi-Rover Spatial Distribution Task Chapter 6

6.2 Algorithm

In this new experimental setup, the optimization object is a multilayer neural network

(see Figure 6.4). It is thus a question of modifying the weights of the network, repre-

sented by a vector θ. The class of evolutionary algorithms that handles this kind of

problem is usually named Evolutionary Strategies (ES). We introduce the CC-1+1-ES

algorithm as an extension of CC-1+1-GA described in Section 5.3.

The main algorithm is recalled in Figure 6.2. k agents are randomly selected and

mutated to produce children. These children are evaluated with the parents of the non-

mutated agents. If the fitness of the team is better, the children are kept. Otherwise,

the originals are kept.

In the adaptive case, the group size k is modified at each generation using the EXP-3

algorithm. This method allows choosing among a set of possible choices for k, ac-

cording to the performance gains they allowed. It uses a parameter γ, which allows

modulating the exploration or the exploitation. A γ closer to 0 indicates more ex-

ploitation of the best-performing group size k, while a γ closer to 1 will allow more

exploration and the group size k will be drawn almost uniformly.

The mutation operator used in these experiments differs from the previous chapter.

It chooses, with probability p, a Gaussian mutation operator on all parameters of

an agent and, with probability 1°p, a uniform mutation operator of a subset of its

parameters. The Gaussian mutation operator applies a perturbation centred on the

current parameter value, with a variance σ:

θ√N (θ,σ)

And the uniform mutation operator on range R of a subset Vm of m randomly selected

parameters is defined as:

θ[i ] √U (R) 8i 2Vm

Gaussian mutations allow for small variations around the current solution and thus

allow for small adjustments in behaviour. Uniform mutations, on the other hand,

lead to more radical modifications of the policy and allow a wider exploration of the

parameter space.
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Figure 6.2: Diagram of the CC-1+1-ES algorithm. The top red part represents the
choice of k for the kadaptive version of the algorithm.

6.3 Experimental setup

6.3.1 Task and Environment

To study the dynamics of the algorithm in a new environment, we devise a rover explo-

ration task inspired by Agogino and Tumer, 2004b (and further research, for example,

in Dixit and Tumer, 2022; Dixit et al., 2019; Zerbel and Tumer, 2020). It is a good

abstraction of a search and retrieves robotic task, where an unknown environment

must be explored to retrieve specific objects or resources. The goal here is for a team of

rovers to reach some points of interest (POI) that would give the most rewards. In our

experiments, the rovers start in a small aggregate and must move in the environment

sensing their teammates and points of interest.

More specifically, four robotic agents are placed in the center of an area with some
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random variation of coordinates and orientation. These are detailed in Table 6.1 and

represented by small coloured squares in Figure 6.3.

x area y area orientation
agent 1 [0,0.5] [0,0.5] [0, π2 ]
agent 2 [°0.5,0] [0,0.5] [π2 ,π]
agent 3 [°0.5,0] [°0.5,0] [π, 3π

4 ]
agent 4 [0,0.5] [°0.5,0] [ 3π

4 ,2π]

Table 6.1: Initialization of rovers. The segments represent the range of possible initial-
ization of the coordinate of position x, y and orientation. Each independent repetition
of the algorithm uniformly samples in these ranges.

Ten POI are placed in a circle around them. The agents have T steps to reach the POI,

allowing their team to get a reward. POI deliver some rewards if the n agents that visit

it are in their radius of observation = 2 and respect some conditions:

• solo-POI: r = 1 if n ∏ 1;

• duo-POI: r = 3 if n ∏ 2.

The global return R of the team is then the sum of all rewards delivered by the POI:

R =
X

POI
r (6.3)

Using these two types of POI, we devise two different setups, which are represented in

Figure 6.3 and characterized as follows:

• Setup 1: 10 solo-POI are organized in a circle around the center of the arena. In

this setup, to maximize the score, each agent must move to a different POI than

the other agents. Since the number of POI is larger than the number of agents,

this task requires a very low level of coordination between agents.

• Setup 2: 8 solo-POI and 2 duo-POI are organized in a circle around the center

of the arena. 2 duo-POI are aligned on the horizontal axis. This setup requires

a coupling of the agents’ behaviour to obtain the best score. As in setup 1,

the team can obtain rewards by spreading over the solo-POI. But this does not

allow to get the best score (i.e. R = 6) as it requires that the four agents divide

themselves into two teams of two to get the rewards of two duo-POI. Therefore,

this task requires a higher level of coordination between agents.
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Figure 6.3: The two setups explored in this study. Setup 1 has 10 solo-POI organized in
a circle around the center. We refer to this setup as the 10 solo-POI setup. Setup 2 has
the same circular configuration, but the POI on the horizontal axis are duo-POI. We
refer to this setup as the 8 solo 2 duo-POI setup. In both figures, the small coloured
square in the middle represents the initialization area of the agents described in Table
6.1. Blue represents the initialization area of agent 1; orange represents agent 2; green
represents agent 3; and red represents agent 4.

6.3.2 Robot model

Agents in the experiment represent robots subject to a kinematic model. This section

describes their action space A, observation space O and the architecture of the policy

π that maps the two.

Concerning the action space, it is a question of controlling a velocity vector. Thus,

the agents have a 2-dimensional action space A where the two dimensions represent

speed (a0 2 [0,1] for [stop, maximum speed]) and angular speed (a1 2 [°1,1] for

[clockwise, anti-clockwise]).

Their observation space O is composed of :

• 3 sensors per POI that get information about their distance, angle and type;

• 2 sensors per rover that get information about their distance and angle.

Thus, for our setups with 10 POI and 4 rovers, we obtain an observation vector of

dim(O) = 38 dimensions.
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The agent’s policy π maps observations o 2O to actions a 2 A. For that purpose, we

use a neural network as the main policy structure. Figure 6.4 details the full topology

between inputs and outputs, and the number of parameters.

Figure 6.4: Architecture of the policy function. Each sensor gives information about
the distance to obstacle and the type of object detected, if any. The architecture
represented here is a multi-layered neural networks, used for the experiments. It has
38 dimensions as input, a hidden layer of 16 dimensions plus a bias term for each
layer. The action dimension is 2. The total number of parameters is 658.

This architecture imposes a large number of free control parameters θ that need to be

optimized. In the present case, this means di m(θ) = 658 parameters.

6.4 Results

This section describes the results of applying the CC-1+1-ES algorithm to the different

setups described above. The environment is stochastic, as the same policy parameters

can lead to different trajectories and evaluation outcomes due to the random variation

in initial conditions. Therefore, we want to estimate the fitness or expected return

F (θ) of the team parameters θ.

F (θ) = E
τªπθ

[R(τ)] (6.4)
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Here, by construction of the task, the return of a trajectory R(τ) is the sum of the

rewards given by the POIs of Equation 6.3.

During all the following experiments, we note the evaluation f to be an estimation of

F (θ) by sampling the experiment multiple times on different initial conditions. More

precisely, each evaluation f represents the average return of the trajectories from

sixteen different initial conditions that are kept constant from one generation to the

next. Using as many different repetitions for evaluation ensures that agents learn

policies that generalize behaviour regardless of initial conditions.

In all experiments, we use the environment, controller and algorithm parameters

detailed in Table 6.2.

Parameter Value
POI parameters

Number of POI 10
Radius 2
Distance from center 13
Agents parameters

Number of agents 4
Sensor maximum distance 30px
Maximum velocity vmax 1 px/steps
Maximum angular velocity ωmax 60 degrees/steps
Number of steps per episode T 15
Controller

Initialization range [°2,2]
Sensory inputs 38
Hidden layer 1
Hidden size 16
Control outputs 2
Total number of parameters 658
Algorithm parameters

Number of repetition for evaluation f 16
Gaussian mutation probability p 0.2
Gaussian mutation size σ 0.1
Uniform mutation volume Vm 25%
Uniform mutation range R [°2,2]

Table 6.2: Common parameters of all experiments

We start by exploring with three variants of the CC-(1+1)-ESkfixed algorithm with k = 1,2

and 4, and we observe different learning dynamics depending both on the value of k
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and the setup at hand. We then analyze the performances of CC-(1+1)-ESkadaptive on

the same setups.

6.4.1 Setup 1: no coupling required

We first consider setup 1 described in Figure 6.3. Here, all the points of interest give a

reward of r = 1 if an agent is in their observation diameter at the end of the experiment.

This setup is built to observe the performance of the algorithm in a task that does not

require behaviour coupling. To achieve the maximum team evaluation (R = 4), the

agents must spread out on different points of interest.

In this setup, agents are not required to coordinate to reach the same point of interest.

It is not known, a priori, which value of k should allow the fastest convergence. Using

k = 1 is less destructive, and agents are selected only if they individually allow a

better performance. But k > 1 is more exploratory, and modifying several agents

simultaneously can accelerate learning.

0 2000 4000 6000 8000 10000

number of evaluation

0

2

4

f

Setup 1 median evaluation with k = 1,2 and 4

k = 1 k = 2 k = 4

0 5000 10000

number of evaluation

0

2

4

f

k = 1

0 5000 10000

number of evaluation

k = 2

0 50000 100000

number of evaluation
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Figure 6.5: Return R for experiments with 10 solo-POI with CC-1+1-ESkfixed, and
k = 1,2 and 4. On each figure, the curve represents the median on 16 independent
replications, and the shaded area of the bottom figures is the interquartile range.

Figure 6.5 shows the evaluation f for group sizes of k = 1,2 and 4. The three lower fig-

ures represent the medians and interquartile ranges over 16 independent experiments.
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The top figure compares the medians of the different group sizes k of the algorithm.

All versions of the fixed k algorithm could reach optimal performance. When consid-

ering convergence speed, the value of k = 1 was found to be the fastest, followed by

k = 2, and finally, k = 4, which was significantly slower. Specifically, k = 1 was found to

be twice as fast as k = 2, while k = 4 took longer to converge, as shown in the bottom

right corner of Figure 6.5. However, despite its slower convergence, k = 4 was still able

to reach optimal performance.

The larger values of k experience degradation in performance due to concurrent

exploration by multiple agents. This tends to add noise during the learning process

since the evaluation variation will depend on the modification of several agents.

Thus, bad policies for one agent can be selected as long as the overall modification

is favourable. And conversely, good modifications could be missed if the teammates

didn’t follow up. These are similar to the inter-agent exploration noise highlighted

by Chung et al., 2018; HolmesParker et al., 2014. Furthermore, in this setup, no

behavioural coupling is required, and the agents can essentially act independently.

6.4.2 Setup 2: joint strategies

Setup 2, on the other hand, has been created to require the coupling of behaviours

between agents to achieve the best evaluation. As in setup 1, agents can get rewards by

splitting up into solo-POIs. But this will not give the best score obtainable by the team.

To get it, they have to coordinate and go to the two duo-POIs in groups of two. The

objective of this setup is, therefore, to observe how the need for behaviour coupling

will impact the performance of the algorithm.

Figure 6.6 shows the evaluation f for group sizes of k = 1,2 and 4. The three lower

figures represent the medians and interquartile ranges over 16 independent experi-

ments. The top figure allows for a comparison of the medians of the different group

sizes k of the algorithm.

In setup 2, we observe that the three versions of the algorithm CC-1+1-ESkfixed quickly

reach an evaluation threshold. This evaluation corresponds to a situation where the 4

agents are on solo-POI, as in setup 1. We find the same performances as before, that is

to say, k = 1 allows faster improvement than k = 2, itself faster than k = 4.
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Figure 6.6: Return R for experiments with 8 solo-POI and 2 duo-POI, with CC-1+1-
ESkfixed, and k = 1,2 and 4. On each figure, the curve represents the median on 16
independent replications, and the shaded area of the bottom figures is the interquar-
tile range.

To increase evaluation, agents need to move in pairs on duo-POIs. Figure 6.7 repre-

sents the learning curves of sixteen independent runs for k = 1,2 and 4. The bold

vertical dotted lines represent the number of generations from which half of the runs

have reached an evaluation of 5. This time, using k = 2 increases the score most

efficiently, and half of the runs reach a score of 5 twice as fast as using k = 1. These

evaluation thresholds are not yet reached with k = 4. Only a few runs get the optimal

value where agents reach the two duo-POI. But since it happens, we can make the as-

sumption that with an arbitrarily large number of generations, all runs will eventually

converge to the optimal value.

This superiority of k = 2 can be explained by the necessity of a joint modification

in order to increase the score. As two agents must simultaneously move from their

individual solo-POI to a shared duo-POI, the probability of this happening is greater

when the behaviour of several agents is directly modified simultaneously. But this

also means that it is surprising that the method with k = 1 reaches scores requiring

the coupling of agents.

Moreover, Figure 6.7 allows us to see that some runs obtain the optimal evaluation
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Figure 6.7: Learning curves of the sixteen independent replication of the method for
k = 1,2 and 4. The vertical dotted lines represent the number of evaluations required
for respectively 1/4 (thin), 1/2 (bold) and 3/4 (thin) of the run to reach a score f ∏ 5.
Half of the experiments reach a score of f = 5 in 80264 evaluations using k = 2, and
164580 evaluations are required for the same outcome using k = 1.

using k = 2 and k = 1. The next section shows how the modification of one agent

allows the change of trajectory of several and, thus, that the learning of coordinated

behaviour is possible even using k = 1.

6.4.3 Behavioural transition

Modifying a single agent at each generation (k = 1) still allows for joint trajectory

modification. This can be a surprise because changing the parameters of an agent

should only change its behaviour. But as the agents can perceive each other, they

react to the trajectory of their teammates. There is a coupling of behaviours by

construction of the sensory inputs. Thus, the value of k does not necessarily prevent

the simultaneous modification of multiple agent trajectories.

In this section, we analyze the dependency between the agents’ behaviours to bet-

ter understand how a coordinated behaviour can emerge through the sequential

modification of a single agent at a time.

Figure 6.8 shows examples of trajectory on a run using k = 1 at two specific time

of learning. On the left are represented the trajectory of the agents having found a

solution to obtain a score of f = 5. On the right are represented the trajectory of the

agents after obtaining the optimal score f = 6.
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To better understand agents’ dependence on each other, we can immobilize their

teammates and then compare their trajectories with and without the other agents.

The middle graphs of Figure 6.8 represent the trajectories of each agent when their

teammates are inactive. Modification of trajectories is often minimal and just end-of-

path adjustments, which can be justified by their observation dependence on each

other. Most agents have independent behaviours.

However, the case of agent 2 is interesting. Its trajectory has largely deviated in the

absence of its teammates. In particular, after obtaining the maximum score (on the

right), agent 2 has trajectories that stay in the center of the zone, where the other

agents are immobilized. When they are all active (top right figure), agent 2 sees his

trajectory unfold to follow agent 3 on the left POI. Its follower behaviour allowed the

team to increase its score by modifying only one agent at a time.

6.4.4 Adaptive methods experiments

In this section, we compare the performance of CC-1+1-ESkadaptive , which automatically

adjusts the group size k at each generation using the EXP-3 algorithm.

Figure 6.9 shows the median on sixteen independent runs of the evaluation f of the

adaptive methods.

On setup 1, while adaptive methods are able to approach the performance of k = 1

in certain cases, they can’t fully achieve their benefits due to the exploration cost

associated with varying the group size k. It still reaches the best possible score faster

than k = 2 and k = 4. Similarly, on setup 2, adaptive methods allow for closely following

the best possible k choice.

Using the adaptive methods allows achieving results similar to the best choice of k,

but doesn’t require any a priori on its value.

6.5 Conclusion

In this chapter, we adapted the CC-1+1-ES algorithms to a classic multi-robot setup. In

these tasks, agents must distribute themselves on points of interest distributed around

them. Some of these points of interest require agent coordination to deliver rewards.
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Figure 6.8: Trajectories of agents at evaluation 388889 and 444444 for a selected
k = 1 run. The different traces represent the trajectories generated from the sixteen
initial conditions used for evaluation of the policies. The top-row figures shows the
trajectories of the fours agent acting simultaneously. The middle-row shows the
trajectories of each agent when their teammate actions are nullified. The bottom plot
is score evolution of the run whose parameters are extracted.
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Figure 6.9: Median of return R on 16 independent replications for setups with 10
solo-POI (left) and 8 solo-POI and 2 duo-POI (right) using CC-1+1-ESkadaptive with
various γ. Lower opacity of the CC-1+1-ESkfixed with k = 1,2 and 4 are plotted as
references.

This task is, therefore, an example of an environment where it is useful to jointly

modify agents, allowing them to discover coordination behaviours. However, joint

modification causes noise in the evaluation of the agents, who have to distinguish

between their individual contributions and their teammates.

The results presented in this chapter showed that the number of agents modified

at each generation by CC-1+1-ES, allowing the best performances, is well related

to the degree of coordination of the task. Since the agents can observe each other,

behavioural coupling can emerge even by sequentially changing only one agent at a

time. However, we still observe that a task requiring the coupling of behaviours largely

benefits from the joint modification of the policies of several agents.

Finally, without any a priori knowledge of the degree of coordination required, it is

still possible to adapt the number of modified agents automatically using the EXP-3

algorithm and obtain good performances.
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7.1 Summary

Chapter 2 discussed the different types of multi-robot systems, where robots are

designed to work together to perform tasks. They differ in the way robots interact

with each other through communication networks, a central authority and a possible

human control. These architectures will depend on the applications, physical, tech-

nological, and cost constraints. We have highlighted some of the current applications

of multi-robot systems such as warehouse management, surveillance, agriculture

or drone shows. These applications require cooperation and collective decision be-

haviours that researchers and engineers are trying to implement. We can think in

particular of collective decision-making, consensus, task allocation, or collective

movement and positioning. Multiple methods have been used over the years to im-

plement those. Most current applications rely on manual programming as they offer

more predictable behaviour and are easier to deploy on many robots. But the need

for adaptability to a changing environment and the intuition for design behaviour

can be challenging. Therefore, pushed by significant advances in machine learn-

ing algorithms, many new methods have been proposed to optimize multi-robots

behaviours.

Chapter 3 presented a framework for the optimization of multiple robots, which

are described as agents interacting with an environment. The robots use a policy

function that must be optimized, but there are difficulties in handling the reward

used for optimization in the multi-agent setting. One notable difficulty is the social

welfare versus credit assignment dilemma, where there may be a conflict between the
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accuracy of an individual learning signal of the agents and the system’s overall goals.

The possible trade-offs in this dilemma are limited by the possible information sharing

between agents. If no information transit between agents, the possible mitigation is

limited, but if agents are able to share information through a communication network

of a central authority, more techniques of reward marginalization or decomposition

can be deployed. Therefore, the reward and information exchange architecture both

impact the policy optimization algorithm. Model-free methods can be decomposed

into classes, including reinforcement learning algorithms and direct policy search

with evolutionary algorithms. This thesis focused on the latter as they allow more

lightweight methods relevant to robotic learning. Using this framework, we studied

two very different problems on the collective robotic learning spectrum.

In Chapter 4, we studied the dynamics of a team of networked learning agents using

embodied evolution algorithms. Agents are deployed in their environment, where they

can interact with each other and share information through a temporal network that

depends on agents’ communication radius. In order to improve their performance, we

introduce an algorithm called Horizontal Information Transfer. This algorithm allows

agents to estimate their own performance on the fly and share policy parameters

using a transfer operator. We tested this algorithm on a simulated foraging task and

showed that it allows the agents to reach good performance levels. However, there is a

trade-off between the speed at which the agents can learn and the accuracy of their

performance. This trade-off is similar to the exploration vs exploitation trade-off that

is commonly encountered in machine learning. Furthermore, the meta parameters

of the algorithm can be learned on the fly, allowing the agents to adapt to their

environment and improve their performance even further.

Chapter 5 tackled another coordination problem. We study the situation where

agents are able to interact with their environment through episodes and can share

information and synchronize between these interactions. Importantly, the agents

are rewarded at the team level rather than at the individual level. To address this

optimization problem, we introduce a cooperative co-evolutionary algorithm called

CC-1+1-GA. This algorithm uses an evolutionary optimization procedure in a frame-

work that resembles a hill-climbing algorithm. It gradually improves individual robots

by estimating the collective gains provided by new individual behaviours. The number

of agents modified at each generation is shown to influence the learning dynamics,

and we propose a method for computing an optimal group size online using the EXP3
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algorithm. We then test our CC-1+1-GA algorithm on a variation of the El-Farol Bar

problem, which highlights the differences in learning dynamics and the advantages of

using different group sizes. Overall, the results of this chapter show the effectiveness of

the CC-1+1-GA algorithm in addressing the problem of coordination. It is possible to

provide efficient anytime learning by modulating the number of modified agents over

time using the EXP-3 algorithm. This approach does not require any prior knowledge

about the problem to be solved, and can be effective in situations where coupling

between agents during learning is necessary to improve team performance.

Moreover, we detail the application of the latter algorithm to a more realistic robotic

rover task. In these experiments, the agents must physically distribute themselves on

points of interest with a control policy. Obtaining a reward is thus not only conditioned

by the coordination between agents but also by their own behaviour and trajectories.

It is difficult to distinguish whether a score variation comes from one’s own behaviour

or from the exploration of other agents. It is, therefore, critical to proceed cautiously

by modifying only one agent at each generation. But this is problematic when the

problem requires coupling of the agents’ behaviour. In our rover experiment, for

example, some points of interest require the coordination of two agents to reward the

team. It is, therefore, necessary to modify several agents simultaneously. Chapter 6

shows hows the CC-1+1-ES extends Chapter 5 algorithms and handles these issues

of agent exploration noise and coupling. It shows how the best group size parameter

reflects the amount of coupling required to solve a task. And the adaptive version of

the algorithms allows for easy group size fine-tuning.

7.2 Discussion and perspectives

The results described in this manuscript could lead to many further studies, some of

which are described hereafter.

An obvious limitation of these studies concerns the use of robotic simulations. While

our findings are primarily theoretical and are not tied to a specific robot model, we

are aware of the open issue of transferability to real-world robots (i.e. the reality gap).

Implementation on real robots (Kilobots) of the HIT algorithm has been done by

members of the team and confirms the feasibility of the method to optimize robots

after deployment (Mirhosseini et al., 2022; Zion et al., 2021). Implementations on real
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robots of the CC-1+1-GA algorithms remain to be done.

7.2.1 Perspective on social learning for swarm robotics

Our experiments on lifetime learning focused on an object foraging task where objects

were uniformly distributed in the environment. To solve the task, each individual had

to spread out in the arena, which allowed them to better transmit their parameters.

This created a positive feedback loop that reinforced the best parameters in the

population. However, what happens when the task does not encourage parameter

transmission, or when the robot density is low? The deterministic loss of messages

may also be questioned. How robust is it to a transfer rate which would be noisy,

i.e. for each message, the likelihood of the message being lost is drawn, instead of

assuming that all messages larger than a certain threshold are lost?

These questions have been explored in a recent study, as detailed in Mirhosseini et al.,

2022. For example, It may be very interesting to explore the parallel use of individual

learning to compensate for the possible lack of encounter with other agents.

The credit assignment of agents could also be questioned. In our foraging experiment,

individual assessment is performed using a sliding window on the last obtained re-

wards. This allowed an adaptation of all agents in case the environment is changing.

However, this assessment is very noisy, and performing policies can eventually be dis-

carded due to bad luck. More precise rewarding schemes can be achieved using peer

evaluation and asking neighbours about one’s potential impact on their assessment.

For example, when two agents compete for an object, they could exchange penalties

for agents that would have taken an object in front of them or share its benefits.

Finally, the method we propose allows for finding consensus on control parameters

that work well for the swarm. But sometimes, such consensus is not desirable, and

we may want to derive specialization among agents. The solution to this issue lies in

the transfer operator and its selection mechanism. That is to say, from which agents

and how shared parameters can be integrated into the current active parameters. For

example, a simple heterogeneous team could be achieved through a clear type defini-

tion, where agents can share parameters only if they have the same type. However,

this would require an a priori knowledge on the required distribution of each type.
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7.2.2 Perspective on cooperative co-evolution for multi-robot sys-

tems

In Chapter 6, our experiments have only been done on systems that are relatively far

from real robotics, especially in terms of their observations of the world. In particular,

the rover experiment admits the use of distance and angle sensors with objects rarely

accessible via sensors in the real world. Robots generally use cameras or lidar to

locate themselves in space. Other experiments should be conducted to estimate the

performance of our methods on more robotic systems.

Concerning the co-evolutionary algorithm, our methods use a simple hill-climbing

algorithm for each individual. It allows for reducing the possible context agents and

helps the learning stability. However, it drastically reduces the exploration capabilities

of the algorithm. More complex evolutionary algorithms could be used, such as

Natural Evolution Strategies (NES). Instead of relying on a sample population of

parameters, this class of algorithm maintain a probability distribution of parameters

and sample agent from it.

Figure 7.1 is a representation of such algorithms. The overall evaluation depends on

all agents. In the figure, the sampling of the parameters presented is independent

of the teammates. But future research could also integrate into these algorithms an

evaluation of the correlation between the different agent parameters in order to adapt

the contextual agents to the exploration of an agent.

7.2.3 Merging the two problems

One could also consider merging the two problems tackled in this thesis using a single

online optimization method. For example, consider a homogeneous team of agents

that have evolved to solve a task. To test new strategies, we introduce mutations in

the population. Using a very low mutation rate, we can hope that only one agent in

the swarm is different and thus measure more precisely the effect of the change on its

behaviour and neighbours.

Then a beneficial mutation will tend to propagate well in the population, allowing

agents to obtain better rewards. The evaluation of the quality of a mutation is also

linked to its ability to propagate in the swarm. Several agents can introduce mutations
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Figure 7.1: Diagram of a general CCEA algorithm centred around message exchange
between agents and a cooperation module that interfaces with the evaluation envi-
ronment. This highlights the generalization of the algorithm to individual methods
centred on NES
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to avoid waiting for the propagation or complete disappearance of a mutation. But,

this will obstruct their evaluation by the swarm because the mutants will compete

with several other agent policies.

We thus find a dilemma similar to the number of mutated agents between each genera-

tion of our algorithms CC-1+1-GA and CC-1+1-ES. These could allow for more reliable

increases in the swarm’s performances. Analyses could also allow us to understand

better the dynamics of the link between evaluation and propagation in temporal

network algorithms.
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Matarić, M. J. (1995). Issues and approaches in the design of collective autonomous

agents. Robotics and autonomous systems, 16(2-4), 321–331.
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