
HAL Id: tel-04137258
https://theses.hal.science/tel-04137258v1

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical temporal learning for multi-instrument and
orchestral audio synthesis

Antoine Caillon

To cite this version:
Antoine Caillon. Hierarchical temporal learning for multi-instrument and orchestral audio synthesis.
Sound [cs.SD]. Sorbonne Université, 2023. English. �NNT : 2023SORUS115�. �tel-04137258�

https://theses.hal.science/tel-04137258v1
https://hal.archives-ouvertes.fr

Thèse de doctorat de Sorbonne Université

Spécialité Informatique
ED130 - Ecole doctorale Informatique, Télécommunications et Electronique (Paris)

Sciences et Technologie de la Musique et du Son (UMR 9912)
Institut de Recherche et de Coordination Acoustique Musique

Equipe Représentations musicales.

Hierarchical temporal
learning for music neural

audio synthesis

Antoine Caillon

Supervised by Philippe Esling

Directed by Jean Bresson

Defended before the following jury:

Simon Colton, Professor (QMUL) Reviewer

Bob L. T. Sturm, Associate Professor (KTH Stockholm) Reviewer

Patrick Gallinari, Professor (Sorbonne Université) Examiner

Mark Sandler, Professor (QMUL) Examiner

Michèle Sebag, Principle Scientist (CNRS) Examiner

Jean Bresson, Senior researcher (IRCAM) Director

Philippe Esling, Associate Professor (CNRS) Supervisor

ii

Antoine Caillon: Hierarchical temporal learning for music neural audio synthesis.

caillon@ircam.fr - caillonantoine.github.io/phd support

Version: June 20, 2023

caillon@ircam.fr
https://caillonantoine.github.io/phd_support

iv

Abstract

Recent advances in deep learning have offered new ways to build models
addressing a wide variety of tasks through the optimization of a set of pa-
rameters based on minimizing a cost function. Amongst these techniques,
probabilistic generative models have yielded impressive advances in text, im-
age and sound generation. However, musical audio signal generation remains
a challenging problem. This comes from the complexity of audio signals
themselves, since a single second of raw audio spans tens of thousands of
individual samples. Modeling musical signals is even more challenging as
important information are structured across different time scales, from mi-
cro (e.g. timbre, transient, phase) to macro (e.g. genre, tempo, structure)
information. Modeling every scale at once would require large architectures,
precluding the use of resulting models in real time setups for computational
complexity reasons.

In this thesis, we study how a hierarchical approach to audio modeling can
address the musical signal modeling task, while offering different levels of
control to the user. Our main hypothesis is that extracting different rep-
resentation levels of an audio signal allows to abstract the complexity of
lower levels for each modeling stage. This would eventually allow the use
of lightweight architectures, each modeling a single audio scale. We start
by addressing raw audio modeling by proposing an audio model combin-
ing Variational Auto Encoder (VAE) and Generative Adversarial Network
(GAN), yielding high-quality 48kHz neural audio synthesis, while being 20
times faster than real time on CPU. Then, we study how autoregressive mod-
els can be used to understand the temporal behavior of the representation
yielded by this low-level audio model, using optional additional conditioning
signals such as acoustic descriptors or tempo. Finally, we propose a method
for using all the proposed models directly on audio streams, allowing their
use in realtime applications that we developed during this thesis. We con-
clude by presenting various creative collaborations led in parallel of this work
with several composers and musicians, directly integrating the current state
of the proposed technologies inside musical pieces.

Résumé

Les progrès récents en matière d’apprentissage automatique ont permis
l’émergence de nouveaux types de modèles adaptés à de nombreuses tâches,
ce grâce à l’optimisation d’un ensemble de paramètres visant à minimiser une
fonction de coût. Parmi ces techniques, les modèles génératifs probabilistes
ont permis des avancées notables dans la génération de textes, d’images
et de sons. Cependant, la génération de signaux audio musicaux reste un
défi. Cela vient de la complexité intrinsèque des signaux audio, une seule
seconde d’audio brut comprenant des dizaines de milliers d’échantillons in-
dividuels. La modélisation des signaux musicaux est plus difficile encore,
étant donné que d’importantes informations sont structurées sur différentes
échelles de temps, allant du micro (timbre, transitoires, phase) au macro
(genre, tempo, structure). La modélisation simultanée de toutes ces échelles
implique l’utilisation de larges architectures de modèles, rendant impossible
leur utilisation en temps réel en raison de la complexité de calcul.

Dans cette thèse, nous proposons une approche hiérarchique de la
modélisation du signal audio musical, permettant l’utilisation de modèles
légers tout en offrant différents niveaux de contrôle à l’utilisateur. Notre hy-
pothèse principale est que l’extraction de différents niveaux de représentation
d’un signal audio permet d’abstraire la complexité des niveaux inférieurs pour
chaque étape de modélisation. Dans un premier temps, nous proposons un
modèle audio combinant Auto Encodeur Variationnel et Réseaux Antago-
nistes Génératifs, appliqué directement sur la forme d’onde brute et permet-
tant une synthèse audio neuronale de haute qualité à 48 kHz, tout en étant 20
fois plus rapide que le temps réel sur CPU. Nous étudions ensuite l’utilisation
d’approches autoregressives pour modéliser le comportement temporel de la
représentation produite par ce modèle audio bas niveau, tout en utilisant
des signaux de conditionnement supplémentaires tels que des descripteurs
acoustiques ou le tempo. Enfin, nous proposons une méthode pour utiliser
tous les modèles proposés directement sur des flux audio, ce qui les rend
utilisables dans des applications temps réel que nous avons développées au
cours de cette thèse. Nous concluons en présentant diverses collaborations
créatives menées en parallèle de ce travail avec plusieurs compositeurs et mu-
siciens, intégrant directement l’état actuel des technologies proposées au sein
de pièces musicales.

Acknowledgments

First, I would like to express my gratitude to my supervisor Philippe Esling
for offering me the possibility to undertake this thesis, not to mention the
countless discussions we had during these three years and his support in
setting up many scientific, artistic and professional opportunities. I would
also like to deeply thank my director Jean Bresson for his precious help
and advice throughout this journey. Furthermore, I would like to thank the
MAKIMONO, ACTOR and DAFNE+ projects which funded this thesis, and
Hugues Vinet for allowing me to finish it properly.

Second, I wish to thank Simon Colton and Bob L. T. Sturm for reviewing this
manuscript, alongside Patrick Gallinari, Mark Sandler and Michèle Sebag for
examining my thesis defense. I would also like to thank the members of my
thesis committee Jesse Engel and Edouard Oyallon for their guidance and
help during the second half of this thesis.

Even though starting a PhD at the dawn of a worldwide pandemic does not
help with building strong scientific relationships, I had the chance to meet,
discuss and work with many people over the course of this thesis. Starting
with the members of my lab, I would like to thank Axel Chemla–Romeu-
Santos for his unfailing support, and for the creation of precious opportunities
of making actual music through the collaboration with Le Cirque Électrique.
Next, I would like to thank Adrien Bitton, Constance Douwes, David Genova,
Giovanni Bindi, Maxime Mantovani, Nils Demerlé, Ninon Devis and Sarah
Nabi for all the moments we shared, the successes and obstacles we went
through as a team where we started as colleagues, and ended up friends.

Additionally, I would like to thank Maxime Mantovani again, but also Alexan-
der Schubert, as they both gave a proper musical dimension to this thesis,
and at the same time helped me find purpose to this work. I would also
like to thank Neil Zeghidour, Jesse Engel and Chris Donahue for their time
and the invaluable insights and advice they shared over the course of many
discussions. Many thanks to Ben Hayes, Georg Hajdu and Espen Sommer

vii

viii

Eide for their trust as they gave me the opportunity to reach many artists
and scientists through several masterclasses, each giving new dimensions to
this work.

Finally, I would like to thank my parents Françoise and Régis, my brother
Paul, Pierre, Anäıs and Connor for their support before, during and (without
a doubt) after this thesis.

Last and foremost, I would like to address my deepest thanks to my fiancé
Adèle, who supported me during the entirety of my academic journey and
helped me get through all the different stages of excitement, happiness, anx-
iety and despair encountered along the way. While many might say that
nothing is ever certain, I know for a fact that none of this would have been
possible without her.

Contents

1 Introduction 1

2 State-of-the-art 11
2.1 Digital audio synthesis . 12

2.1.1 Fourier analysis . 13
2.1.2 Filtering . 14
2.1.3 Time-frequency representations 15
2.1.4 Multiband decomposition 16

2.2 Machine Learning . 18
2.2.1 Parameter optimization 18
2.2.2 Learning types . 21
2.2.3 Neural networks . 22
2.2.4 Scaling to deep models 26

2.3 Deep generative models . 29
2.3.1 Variational Auto-Encoders 29
2.3.2 Generative Adversarial Networks 31
2.3.3 Normalizing Flows . 33

2.4 Sequence modeling . 36
2.4.1 Transformers . 36
2.4.2 Model pretraining . 41

2.5 Audio modeling . 44
2.5.1 Waveform models . 44
2.5.2 Spectral models . 48
2.5.3 Hybrid models . 50

3 Audio representation learning 53
3.1 RAVE . 55

3.1.1 High-resolution audio modeling 55
3.1.2 Representation dimensionality estimation 57
3.1.3 Experiments . 58

ix

x CONTENTS

3.1.4 Results . 61
3.2 Alternative latent regularization 66

3.2.1 Wassertein regularization 67
3.2.2 Discrete prior . 68
3.2.3 Results . 69

4 Temporal learning 71
4.1 Continuous vs discrete latents 72
4.2 Multivariate autoregressive modeling 73

4.2.1 Discrete sequence modeling 73
4.2.2 Multivariate extension 74

4.3 Efficient multivariate parametrization 75
4.3.1 Decoupling method . 77
4.3.2 Residual method . 77
4.3.3 Shift method . 78

4.4 Network definition . 79
4.4.1 Architecture . 79
4.4.2 Embedding . 81
4.4.3 Conditioning . 82
4.4.4 Optimized inference . 84

4.5 Experiments . 84
4.6 Results . 85

5 Real-time interaction 91
5.1 Streaming models . 92

5.1.1 Cached padding . 92
5.1.2 Non-causal streaming models 93

5.2 Evaluation . 97
5.2.1 Performances . 97
5.2.2 Processing latency . 98
5.2.3 Impact of pre-training causal constraint 99
5.2.4 Fidelity . 100

5.3 Realtime interfaces . 102
5.3.1 Reactive programming using Max/MSP 103
5.3.2 Using the nn~ external 104

6 Artistic collaborations 107
6.1 Alexander Schubert: Convergence 108

6.1.1 Technical aspects . 108
6.1.2 Interface . 109
6.1.3 Program notes . 110

CONTENTS xi

6.2 Maxime Mantovani: Forme improvisée 111
6.2.1 Technical aspects . 111
6.2.2 Program notes . 112

6.3 Other pieces . 115
6.3.1 Azimuth Conjunction in Declining State 115
6.3.2 Vintage experiments 115

7 Conclusion 117

xii CONTENTS

List of Figures

1.1 Musical exploration and technological innovations 3
1.2 Different waveform scales. 5
1.3 Multi-scales modeling of an audio signal. 7

2.1 Discretization examples. 13
2.2 Difference between waveform and perception. 14
2.3 Example spectrum of a simple signal. 15
2.4 Example time-frequency representations. 16
2.5 Gradient descent with various learning rates. 19
2.6 Effect of different orders for polynomial regression. 21
2.7 Some usual activation functions. 24
2.8 An example 2-dimensional convolutional operation. 25
2.9 An example 1-dimensional strided convolutional operation. . . 25
2.10 Schematic view of a recurrent neural network. 26
2.11 Several activation functions with their derivative. 27
2.12 Diagram of a Variational Auto Encoder 30
2.13 Original and reconstructed MNIST digits. 31
2.14 Architecture of a generic GAN. 32
2.15 Progressive growing training procedure. 33
2.16 The Transformer architecture. 37
2.17 Causal attention masking. 38
2.18 Sinusoidal Positional Encoding 39
2.19 ALiBi positional encoding method 40
2.20 The BERT training framework. 42
2.21 w2vBERT architecture. 43
2.22 WaveNet architecture. 45
2.23 Parallel WaveNet architecture. 46
2.24 melGAN and hifiGAN architectures. 48
2.25 Instantaneous frequency of a spectrogram. 49
2.26 FlowSynth architecture. 50

xiii

xiv LIST OF FIGURES

2.27 DDSP architecture. 51

3.1 Overall hierarchical model proposed. 54
3.2 Overall architecture of the RAVE approach. 55
3.3 Architecture of the RAVE encoder. 58
3.4 Overview of the RAVE decoder. 59
3.5 Architecture of the RAVE decoder. 59
3.6 Influence of fidelity on reconstrution 64
3.7 Effect of encoder freezing on the latent space. 64
3.8 Example of timbre transfer using RAVE. 65
3.9 High level manipulation using RAVE 66
3.10 Analysis of the latent space from RAVE. 67
3.11 Example of a Residual Vector Quantization 69

4.1 Temporal model overall architecture. 76
4.2 Shift preprocessing trick. 78
4.3 Block diagram of the implemented WaveNet-like model. 80
4.4 Architecture of the decoupling method. 81
4.5 Architecture of the residual method. 81
4.6 Beat track estimated from a raw audio waveform. 83
4.7 Reconstruction error of two variants of RAVE. 86
4.8 Target descriptor evaluation. 88
4.9 Real-time factor of the temporal models. 89

5.1 Cached padding. 93
5.2 A zero-padded strided 1-dimensional convolution. 94
5.3 A strided convolution with post-training causal re-configuration. 95
5.4 Post-training re-alignment. 95
5.5 Parallel branches post-training re-alignment. 96
5.6 Different overlap-add windows used. 97
5.7 Computational performances of the streaming methods. 98
5.8 Fidelity of the streaming methods. 101
5.9 Frontend-Backend real-time separation. 102
5.10 Example Max/MSP patch . 104
5.11 Real-time RAVE forward using nn~ 105
5.12 Real-time RAVE encode/decode using nn~ 106
5.13 Real-time temporal model using nn~ 106

6.1 Still image from the streaming version of Convergence. 108
6.2 Graphical interface built around WaVAE. 109
6.3 Photo from a studio rehearsal. 111
6.4 Disk-based controller built by Maxime Mantovani. 112

LIST OF FIGURES xv

6.5 Visual of the vintage livestream. 115

xvi LIST OF FIGURES

List of Tables

2.1 Polynomial model prediction errors using different capacities . 21
2.2 Some usual activation functions. 23

3.1 RAVE Mean Opinion Score 61
3.2 RAVE reconstruction metrics. 62
3.3 RAVE synthesis speed. 63
3.4 RAVE regularization metrics for out-of-domain data. 65
3.5 RAVE metrics using different regularization methods. 70

4.1 Accuracy and perplexity values for the transformer model . . 87
4.2 Accuracy and perplexity values for the convolutional model . . 87
4.3 Accuracy and perplexity values for the recurrent model 87

5.1 Streaming method metrics. 100

xvii

xviii LIST OF TABLES

Acronyms

ACIDS Azimuth Conjunction in Declining State. 115

ALiBi Attention with Linear Biases. 40, 79, 80

BERT Bidirectional Encoder Representations from Transformers. 41–43

CNN Convolutional Neural Network. 24, 45, 119

CQT Constant-Q Transform. 16

DAW Digital Audio Workstation. 2, 5, 8, 102

DDSP Differentiable Digital Signal Processing. 50, 51, 91

DFT Discrete Fourier Transform. 13, 15

DSP Digital Signal Processing. 12, 102, 103

ELBO Evidence Lower BOund. 30, 31, 55, 56, 67, 69

EMA Exponential Moving Average. 68

FIR Finite Impulse Response. 15

FM Frequency Modulation. 1

GAN Generative Adversarial Network. v, 28, 29, 32–35, 62, 110

GL Griffin-Lim. 48, 49

GP Gradient Penalty. 32

GRU Gated Recurrent Unit. 26, 80, 84

xix

xx Acronyms

iDFT Inverse Discrete Fourier Transform. 14

JND Just Noticeable Difference. 62

KL Kullback-Leibler. 29, 30, 66, 67, 69, 70, 108

KS Karplus-Strong. 1

LSTM Long Short-Term Memory. 26

MLM Masked Language Modeling. 41, 42

MLP Multi-Layer Perceptron. 80

MMD Maximum Mean Discrepancy. 67, 69, 70

MPS Metal Perfomance Shader. 104

NF Normalizing Flow. 33–35, 47, 62

NLP Natural Language Processing. 36, 72, 118, 119

PQMF Pseudo Quadrature Mirror Filters. 17

RAVE Realtime Audio Variational autoEncoder. 8, 58, 67, 68, 70–73, 82,
84–86, 91, 92, 97–100, 103–106, 108, 109, 111–113, 115, 118–120

RBF Radial Basis Function. 67

RNN Recurrent Neural Network. 26, 36, 48

RoPE Rotary Positional Encoder. 40

RTF Real-Time Factor. 85, 88, 89, 97

RVQ Residual Vector Quantization. 68–70, 118

SGD Stochastic Gradient Descent. 19, 20

SNR Signal-To-Noise Ratio. 12, 13, 45

SPE Sinusoidal Positional Encoding. 39

STFT Short-Time Fourier Transform. 15, 16

SVD Singular Value Decomposition. 57

Acronyms xxi

TTS Text-To-Speech. 45, 46, 49

VAE Variational Auto Encoder. v, 29–31, 33, 34, 48, 50, 54, 63, 65, 67, 68,
86, 108, 110, 118

VQ-VAE Vector Quantized Variational Auto Encoder. 68

WN Weight Norm. 28

xxii Acronyms

If you don’t know what to
do, there is actually a chance
of doing something new. As
long as you know what you
are doing, nothing much of
interest is going to happen.

Philip Glass

Chapter 1

Introduction

On music and technology

Throughout history, the evolution of music has been closely linked to techno-
logical advances. From the invention of the first musical instrument, to the
development of electronic synthesizers and computer music, technological in-
novations have constantly opened up new possibilities for musical expression.

As an example, the piano forte and modern piano introduced in the 18th

century gradually replaced the harpsichord, paving the way towards a new
type of musical expression with an improved control over the volume level of
the instrument. In the 20th century, the development of analog synthesizers
and other electronic instruments allowed the exploration of new techniques
for musical creation and sound design, leading to the emergence of entirely
new music genres, from techno and house to movie scores and avant-garde
music.

The advent of computer-generated music in the late 20th century revolution-
ized the way music was created, as artists were no longer limited by the
constraints of physical hardware synthesizers. New synthesis methods were
invented, from Frequency Modulation (FM) to the Karplus-Strong (KS) al-
gorithm. Sample-based methods were also introduced, such as wavetable or
granular synthesis. In addition to new soundscape possibilities, the devel-
opment of tools such as Max/MSP or PureData has further expanded the
potential of computer-generated music. These programs allow musicians and
composers to create music using algorithms and other mathematical models,
allowing the creation of complex and intricate musical structures that would
be difficult or impossible to achieve using traditional musical instruments or

1

2 CHAPTER 1. INTRODUCTION

synthesizers. This has led to the creation of new sub-genres of music, such as
algorithmic composition and generative music, as well as the incorporation
of algorithmic techniques into more traditional forms of music. Thanks to
their modular nature, which allows for fast prototyping, these tools are still
opening up new avenues for musical experimentation and exploration.

It is important to consider that the relationship between technological ad-
vances and musical evolution is inherently reciprocal. If technology has
greatly influenced the development of many musical genres, there are count-
less instances in history where a particular artistic direction has driven the
research and development of new tools or interfaces for music creation. One
such example is the design of the piano-forte, which originated from the need
to add nuances to the sound of the harpsichord. Similarly, pitch correction
techniques gained popularity through their use as a musical medium in the
late 1990s, leading to a significant amount of work on improving these tools.
As shown in Figure 1.1, music genre exploration and technological innova-
tions are intertwined, constantly influencing and shaping each other towards
a shared creative goal.

Regardless of technical or artistic innovations, a central part of music creation
lies within the physical constraints of the artist itself. While the introduction
of sequencers, loopers, or Digital Audio Workstations (DAWs) allowed the
user to manipulate different streams at the same time, one might eventually
reach a maximum number of parameters it can control simultaneously. This
problem is representative of the compromise between the controllability of an
instrument and the diversity of its potential sounds. Many solutions to this
problem have been proposed over the years, from the creation of expressive
interfaces (e.g. Theremin, Touché controller, ROLI seaboard or Leap Motion)
to the simplification of control parameters towards high level concepts (e.g.
brightness or flatness).

Today, the continued exploration of new techniques for musical creation and
sound design is essential in driving the evolution of music forward and al-
lowing artists to continue to push the boundaries of what is possible. By
delving into new ways of interacting with the design process, artists can
open up new horizons in terms of musical creativity and continue the long
history of innovation in the field.

3

problem statement

improve
state

new

paradigm

musical
exploration

technological
limits

new
genre

Figure 1.1: Relationship between musical exploration and technological in-
novations. Musical genre exploration pushes the current technological limits,
steering the research and development of new tools and interfaces. Recipro-
cally, the introduction of new paradigms for musical creation is at the source
of novel genres.

Deep learning as the next musical evolution

Complex synthesis techniques often involves a trade-off between an increase
in the number of controllable parameters (e.g. large modular systems) and
a lack of intuitive interpretation for their effects. This can be especially
challenging for musicians who are not trained in the technical aspects of syn-
thesis, as they may not have a strong foundation in the underlying principles
and mechanisms of the synthesis process. This lack of understanding can
further hinder the ability of the musicians to use their intuition to create a
specific sound. While this might be less of a problem for skilled musicians
eventually able to reach a set of parameters producing the desired sound, the
time spent on this low-level task might hamper their creative flow. Unfortu-
nately, it is not clear if the trade-off between synthesis techniques complexity
and produced sounds variety can be avoided at all using classical techniques.

One of the many appeals of using machine learning for musical creation
is the paradigm shift from explicit hand-crafted models to example based
learning. Indeed, classical synthesis techniques often rely on a preconceived
understanding of a given phenomenon to build the processing chain eventu-
ally producing a sound. Whether the resulting model is based on a physical
study of an existing vibrating system or designed from scratch, it is usually

4 CHAPTER 1. INTRODUCTION

possible to interact with it through the modification of low-level parame-
ters, directly interfering with core elements of the sound synthesis system.
However, building a model encompassing all the parameters involved in the
creation of a sound results in extremely complex synthesis methods, when
such a model can be found at all.

Applied to audio signals, machine learning techniques instead propose to
learn a set of parameters associated with a function to perform classification,
transformation or generation tasks based on ground truth examples. Interact-
ing with the resulting system usually does not imply a direct transformation
of its parameters, but can be achieved through the modification or defini-
tion of higher-level concepts depending on the nature of the model. Many
existing audio related research fields benefit from using machine learning to
solve problems, from source separation [1] to transcription [2] tasks. Addi-
tional tasks have been introduced thanks to the potential of deep learning,
which is the application of machine learning techniques to complex functions
leveraging thousands to billions of parameters. Such tasks include generative
systems [3, 4] synthesizing audio based on a large scale set of examples, either
unconditionally (i.e. autonomously) or based on high-level inputs (e.g. text
description, style or lyrics).

Even though the use of deep learning techniques has improved the state-of-
art in many research fields, it does not come without a cost. Indeed, deep
learning systems are characterized by their high computational complexity
and extensive data requirements. This implies the use of powerful computa-
tional resources and large amounts of training data for effective performance.
The design and training of these methods can be challenging, and their com-
plex nature can hinder understanding or interpretation of their predictions.
Finally, the quality of the training dataset is crucial to achieve reasonable
performances. Gathering a good enough dataset for a given task can be
expensive or in some cases even impossible.

Regarding audio applications, the integration of deep learning methods for
general-purpose audio processing (i.e. transformation or generation) is far
from trivial, mainly because of the need for realtime enabled systems, able
to process audio signals based on fixed size buffers while doing it faster than
realtime. This yields several problems, as the current state-of-the-art in deep
learning applied to audio processing is mostly not streamable (i.e. they can-
not process audio streams and are limited to finite audio files where the
full signal is readily available). In addition to this, most existing techniques
for high-quality audio synthesis and processing are significantly slower than
realtime. Furthermore, the integration of deep learning methods inside regu-

5

lar DAWs is relatively unexplored, leaving artists with offline command line
utilities as the main interaction with state-of-the-art techniques. Overall,
processing high-quality audio signals with deep learning methods remains
challenging for many reasons, most of them issued from the structural com-
plexity of audio signals themselves.

Nonetheless, the potential of deep learning for musical creativity, and even
art in general is huge. Recent advances in data-driven generative modeling
have yielded impressive results in terms of generation quality, control and
diversity for various tasks including text, image, sound and video synthesis.

Temporal scales of musical audio signals

Digital audio signals are complex to analyze or synthesize, as they are in-
formation streams containing thousands of individual samples per second.
Usual low-fidelity signals are composed of 8000 samples per second, which
is at least 5 times less than audio signals considered as ”high quality”. Fur-
thermore, audio signals are structured according to multiple scales, where
different levels of information are scattered across the signal. Building a
proper understanding of the behavior of an audio signal thus requires to
process all scales at once, which is a particularly complex problem.

(a) 20 milliseconds (b) 100 milliseconds (c) 3 seconds

Figure 1.2: Different waveform scales.

At the lowest level of representation, audio signals can be thought of as the
concatenation of a few individual audio samples (e.g. 5ms to 20ms, see Fig-
ure 1.2(a)), whose temporal organization and amplitude correlate with fine
details of the signal, such as its pitch, timbre, and other spectral character-
istics. Studying the organization of multiple groups of those samples can
lead to the understanding of higher-level features about the signal such as
phonemes for speech applications (e.g. 20ms to 100ms, see Figure 1.2(b)).
Considering higher-level scales yield features that depend on the type of ana-
lyzed signal. Continuing with the speech example, modeling the relationship
between phonemes gives access to information about words and sentences.

6 CHAPTER 1. INTRODUCTION

Going even higher level might result in insights about the overall context
from which the previous sentences, words, pitches and timbres are extracted.

7

Accurately modeling musical audio signals thus requires considering all scales
simultaneously, as low-level features such as pitch and timbre are just as
crucial as the context from which they originate.

A multi-scales approach to audio modeling

Regarding the analysis and synthesis of musical audio signals, our main hy-
pothesis is that a suited method for modeling multi-scales signals lies in
the design of a hierarchical approach, addressing each scale separately. In
contrast with the use of a single system processing all scales at once, such
a multi-scales system would be beneficial for several reasons. Being able
to access multiple levels of predictions would help with the interpretability
of predictions, while granting the user more control over the generation as
shown in Figure 1.3.

high-level
model

mid-level
model

low-level
model

low-level
objective

mid-level
objective

high-level
objective

interaction

interaction

interaction

prediction

Figure 1.3: Multi-scales modeling of an audio signal. Different scales of
audio are fed to several models with separate objectives. The optimization
of all models is performed individually (red arrows), however models are
combined in order to produce a prediction encompassing all scales (gray
arrows). Interacting with the intermediate states of this combined model
gives the user a multi-scales control over the generation.

Furthermore, we believe that a system composed of several sub-models tai-
lored to process a single audio scale may help with reducing the computa-
tional complexity of the overall model. This is fundamental to obtain models
usable in real-time, which is one of the main targets of this thesis.

8 CHAPTER 1. INTRODUCTION

Outline

In this thesis, we propose a deep learning framework for modeling musical
audio signals using a hierarchical approach. Since all of our contributions
leverage many tools from the machine learning field, we start by introduc-
ing important concepts about machine learning model definition and op-
timization in Chapter 2, alongside relevant works from the deep learning
literature. This includes general purpose modeling techniques in addition to
audio-oriented methods to analyze and synthesize musical signals.

Then, we present our work on representation learning applied to audio sig-
nals in Chapter 3, intended as the first building block of our hierarchical
approach. Indeed, representation learning models aim at extracting salient
features about an input dataset. Therefore, it can be used to provide a
compact and higher-level representation of an audio signal that can be later
used by a higher-level model. Therefore, we propose the Realtime Audio
Variational autoEncoder (RAVE) model, which in essence is a representation
learning model analyzing and synthesizing high-quality raw audio waveforms.
With the full hierarchical objective in mind, we introduce several techniques
to reach perceptually high-quality synthesis, while enforcing the model to
learn the most compact representation possible. As we eventually target the
use of the resulting techniques in real-time, we optimize the architecture of
the model to make it 20 to 80 times faster than real-time without leveraging
expensive hardware accelerators.

In Chapter 4, we address the task of learning the temporal behavior of the
previously learned compact representation. We frame the problem as an
autoregressive task, where our proposed system is optimized to predict the
probability distribution of a single latent time-step given the previous ones.
We study the performances of several architecture types, and propose the use
of different probabilistic graphical models to reach the best accuracies while
staying faster than real-time during generation. A comparison with previous
works shows that our methods outperform all baselines in terms of accuracy
while being faster during both training and generation.

In order to make our work compatible with real-time processing, we intro-
duce in Chapter 5 several techniques to convert a pretrained deep learning
model into a streaming model, effectively allowing it to process live audio
streams. We adapt this method to our RAVE model, and show that the re-
sulting streaming model behaves exactly as the original, while gaining access
to buffer-based processing. We additionally introduce a set of applications
designed to interface pretrained streaming models with regular DAW, such

9

as Max/MSP and PureData.

Designing artistically relevant tools can be complex without the insights from
actual artists. Therefore, we collaborate with several professional artists
to identify the most important features that models and interfaces should
integrate. We present in Chapter 6 the result of these collaborations, both
in terms of artistic outcome and scientific insights. Finally, we conclude this
thesis in Chapter 7 by reflecting on the different methods proposed, alongside
potential future developments.

We strongly encourage the reader to visit our supporting webpage1 while
reading to get additional information, audio and video examples and inter-
active demonstrations of our work.

1See caillonantoine.github.io/phd support

https://caillonantoine.github.io/phd_support/

10 CHAPTER 1. INTRODUCTION

As individuals, each of us
is extremely isolated, while
all linked by a prototypical
memory.

Haruki Murakami

Chapter 2

State-of-the-art

In this chapter, we present the main concepts and ideas needed to understand
the remainder of this thesis. First, we present fundamental notions in Dig-
ital Signal Processing (DSP), spectral analysis and filtering in Section 2.1.
Then, we introduce the theory of machine learning and model optimization
in Section 2.2. This allows us to present the current state-of-the-art in deep
generative modeling in Section 2.3, sequence modeling in Section 2.4 and
details about deep audio modeling in Section 2.5.

11

12 CHAPTER 2. STATE-OF-THE-ART

2.1 Digital audio synthesis

Digital audio signals represent continuous electric voltages originally pro-
duced by various transducers (e.g. microphones, sensors). Over the past
decades, audio signals have started to be artificially crafted, or synthesized
using electronic circuits emulating oscillations of the air pressure. While
many types of synthesizer exist, most of them are built around a simple
model of sound production, usually describing high level features about the
target signal as well as ad-hoc control parameters over it. As an example,
additive synthesizers model audio signals as a sum of sinusoidal components
whose individual amplitudes can be modified to shape perceptual attributes
of the sound. In contrast, subtractive synthesizers use an initial broadband
excitation signal transformed using a set of filters. Compared to subtrac-
tive synthesizers, hardware additive synthesizers are less common due to the
need to integrate individual oscillators for each harmonic in the final sound,
quickly increasing the final cost of the machine.

The birth of computer-based synthesizers have lifted these constraints, al-
lowing to build synthesis systems with an arbitrary number of oscillators
with no additional cost. Hence, new algorithms for sound synthesis also
appeared, such as frequency modulation and granular synthesis. Processing
audio signals using a computer is called Digital Signal Processing (DSP),
which operates on discretized audio signals. The discretization process aims
at transforming amplitude- and time-continuous signals into discrete ampli-
tude and time arrays. Important parameters involved during the discretiza-
tion are the sampling rate and resolution (bit depth). The sampling rate
defines the number of voltage measures needed to discretize one second of
audio, and is measured in Hertz (Hz). The resolution defines how many bits
are allocated to approximate the continuous value of each voltage measure.
We show in Figure 2.1 an example of a continuous signal being discretized
with different discretization parameters.

Choosing the right values for both parameters is crucial to obtain a faithful
discrete version of the original signal. According to the Nyquist criterion, the
sampling rate must be at least two times higher than the maximum frequency
present in the signal. If this requirement is not met, the resulting signal will
show signs of aliasing, which produces spurious distortions frequencies, hence,
degrading the overall quality of the signal. The resolution has a direct impact
on the Signal-To-Noise Ratio (SNR) of the discretization process, defined as

SNRdB = 20 log10(2
n), (2.1)

2.1. DIGITAL AUDIO SYNTHESIS 13

continuous
error
discrete

(a) 50Hz, 3bits

continuous
error
discrete

(b) 67Hz, 7bits

Figure 2.1: Example of the discretization of a continuous sinusoid using
different sampling rates and resolution values. Increasing the sampling rate
and resolution helps reducing the discretization error.

where n is the number of bits used during the discretization. A higher SNR
means a larger dynamic range for the discretized signal, which is important
for high-fidelity audio. Overall, the discretization process of a continuous
audio signal requires both a high sampling-rate and a high resolution in
order to obtain a faithful discrete signal. While modern Analog to Digital
Converters (ADCs) are perfectly capable of discretizing audio signals without
any perceptual difference with their continuous counterpart, this comes at
the cost of a large number of individual audio samples per second. As an
example, 20 seconds of reasonably high-quality audio sampled at 44.1kHz
(i.e. the most common sampling rate for digital audio) produce a vector
composed of nearly a million audio samples.

2.1.1 Fourier analysis

As discussed previously, a straightforward representation for audio signals is
the raw waveform. However, this representation does not accurately reflect
the way sounds are perceived. Indeed, signals with extremely similar percep-
tual attributes can be represented with largely different waveforms, as shown
in Figure 2.2.

A more perceptually-relevant representation for audio signals can be obtained
through the use of the Fourier transform. This can be used to compute
the spectrum of an audio signal, yielding information about the frequencies
present in the signal, alongside the phase for each frequency. In particular,
for discrete signals, we use the Discrete Fourier Transform (DFT) defined as

14 CHAPTER 2. STATE-OF-THE-ART

(a) (b) (c)

Figure 2.2: Three audio signals presenting large differences in terms of raw
waveform distance but sounding nearly identical.

X[k] =
N∑

n=1

x[n].e−2jπkn/N , (2.2)

where X[k] is the Fourier transform of signal x for the reduced frequency
ν = k

N
and N is the total number of audio samples in x. This yields complex

numbers, where the second half of the spectrum of a real signal is the complex
conjugate of the first half. This implies that any spectrum of a real signal
can be cropped up to the first k + 1 values without loss of information. The
Fourier transform being an invertible operation, we can retrieve the original
signal from its spectrum by using the Inverse Discrete Fourier Transform
(iDFT), defined as

x[n] =
1

N

∑

k

X[k].e2jπkn/N . (2.3)

We show in Figure 2.3 the spectrum of an audio signal obtained by summing
three sinusoids with different frequencies. There are six spectral peaks in the
amplitude spectrum shown in Figure 2.3(b), corresponding to the frequen-
cies of the three sinusoids, duplicated in the second half of the spectrum.
Differences between the phases of each sinusoid can be seen in Figure 2.3(c),
where the second half of the phase of the spectrum is indeed a conjugated
symmetry of the first half.

2.1.2 Filtering

While the Fourier transform already allows for a finer analysis of spectral
information, it can be further used for filtering purposes by applying mod-
ifications to the yielded spectrum. A simple way of modifying the spectral
content of an audio signal is to multiply the amplitude of the spectrum with

2.1. DIGITAL AUDIO SYNTHESIS 15

0 25 50 75 100
Samples

0

1

Am
pl

itu
de

(a) Raw waveform

0 2 4 6
Frequency (rad)

0

100

Am
pl

itu
de

(b) Amplitude of DFT

0 2 4 6
Frequency (rad)

2.5

0.0

2.5

Ph
as

e

(c) Phase of DFT

Figure 2.3: Spectrum of a real audio signal composed of three sinusoids with
different frequencies. The second half of the phase is the conjugated mirror
of the first half.

a given mask. This filtering method is called the window method, and can
be used to define a Finite Impulse Response (FIR) filter. Filtering an input
signal x with a binary mask H can thus be achieved using both forward and
inverse DFT, following

y = iDFT (DFT(x)×H) . (2.4)

Thanks to the convolution theorem, we know that this operation is equivalent
to the following convolution in the time domain

y = x ∗ h, h := iDFT(H), (2.5)

where the convolution ∗ between two discrete arrays x and h is defined as

(x ∗ h)[n] =
∑

k

x[n− k]h[k]. (2.6)

2.1.3 Time-frequency representations

While computing the DFT of an audio signal allows to understand its overall
spectral content, grasping the temporal behavior of signal becomes impossi-
ble, as the time axis is averaged during the transform. A combination of both
frequency and temporal information can be obtained by stacking spectrums
computed on overlapping windows of signal. The resulting matrix is called
a Short-Time Fourier Transform (STFT) or spectrogram. Spectrograms are

16 CHAPTER 2. STATE-OF-THE-ART

inherently redundant due to the overlapping signal windows. However, they
are often used for analysis as they contain both spectral and temporal infor-
mation in a single compact representation. An example of the STFT of an
audio signal is available in Figure 2.4(b).

(a) Raw waveform (b) STFT (c) Mel-STFT (d) CQT

Figure 2.4: Several representations for the same input audio signal. All
spectrograms are plotted in log-scaled amplitude for visualization purposes.

An interesting modification of the STFT is to map its frequencies to a Mel
scale [5], which more closely matches how humans perceive differences in
pitch. The mapping between Mel frequencies m and regular frequencies f is
obtained by computing

m = 2595 log10

(
1 +

f

700

)
. (2.7)

An example Mel-scale spectrogram is shown in Figure 2.4(c). Another sim-
ilar transform is the Constant-Q Transform (CQT). This transform has the
particularity to be shift-invariant: a pitch shift of the audio signal results in
a vertical translation of the CQT.

2.1.4 Multiband decomposition

Understanding both the spectral and temporal behavior of audio signals can
be used for signal compression purposes. Indeed, such representations are
useful to identify parts of the spectrum with low energy where fewer bits of
information are needed for perceptually similar results. This is important
for audio codecs such as mp3 or opus, and for efficient transmission of audio
signals. While spectrograms may seem like a good candidate representation
for such tasks, the redundancy introduced by the overlapping signal windows
imply an increase in the dimensionality of the original signal. A more suited
class of transforms are multiband decompositions.

The goal of a multiband decomposition is to represent an audio signal sam-
pled at a given sampling rate (e.g. 48kHz) as a combination of several down-

2.1. DIGITAL AUDIO SYNTHESIS 17

sampled signals (e.g. 3kHz), where each sub-signal covers a particular range
of frequencies. Indeed, such decompositions do not introduce additional in-
formation, but rather transform a signal vector of length N into a matrix
with shape N/K ×N , where K is the number of bands. Pseudo Quadrature
Mirror Filters (PQMF) [6] allow a near perfect analysis-synthesis transform,
based on the modulation of a prototype low-pass filter h with cutoff frequency

fc =
sampling rate

2K
, (2.8)

carefully designed to avoid aliasing in the reconstructed signal. Thus, the
filter for band k is defined as

hk[n] = h[n] cos
(π

4K
(2k + 1)(2n−N + 1)

)
+ Φk, (2.9)

Φk = (−1)k
π

4
(2.10)

In practice, it is impossible to create a perfect prototype filter (i.e. perfectly
rejected bands), but we can instead design a filter that allows the cancella-
tion of aliasing between neighboring sub-bands, using methods such as the
optimization of a non-linear objective function as described by [7], or us-
ing a simple Kaiser window whose parameters are optimized [8]. Since the
filter-bank is an orthogonal basis of the signal due to the cosine modulations
implied during its creation, the re-synthesis process can be performed by
reapplying a temporally flipped version of the filter-bank to the sub-bands.

18 CHAPTER 2. STATE-OF-THE-ART

2.2 Machine Learning

Machine learning can be defined as the set of techniques involving the op-
timization of a parameterized function, by minimizing a given cost function
based on ground truth examples. The applications of machine learning are
numerous, spanning from simple classification and regression tasks to com-
plex prediction and generation problems. Formally, we consider a parametric
function fθ defined as

fθ : RM × RD → RN

x, θ 7→ ŷ, (2.11)

where D is the number of parameters. For simplicity, we define all the
variables in R, but extension to other sets are possible (e.g. natural or
complex). Learning is achieved through the minimization of a cost function
L, also called loss, yielding a scalar given x, ŷ, θ and fθ. This cost function
should reflect how well the function fθ is approximating a target ground-
truth function f , usually unknown and accessible exclusively through the
observation of paired ground truth examples (x,y) ∈ X × Y . Thus, by
minimizing L we are implicitly reducing the distance between fθ and f ,
eventually reaching a theoretical optimal solution where

fθ̂(x) ≈ f(x) ∀ x ∈ RM ,

θ̂ = argmin
θ
L(x,y, θ, fθ) ∀ (x,y) ∈ X × Y . (2.12)

A machine learning problem is therefore defined as the combination of a
ground truth, a parametrized function and a set of parameters optimized
to minimize the cost function. The nature of the function as well as the
loss and the ground truth play an important part when addressing a specific
task, and is the subject of a lot of research to reach higher accuracies and
lower computation complexity. We call the combination of the parametrized
function with its parameters a model.

2.2.1 Parameter optimization

Optimizing a set of parameters to minimize a given cost function can be
achieved through different methods, including the selection process of ge-
netic algorithms, the maximization of rewards for reinforcement learning, or

2.2. MACHINE LEARNING 19

using gradient descent. In the context of this thesis, we focus exclusively on
optimization through gradient descent, even though reinforcement learning
might show great potential for musical creativity.

Gradient descent is an iterative algorithm designed to find a local minimum
of a differentiable function given an initial starting point [9]. It works by
taking small steps in the opposite direction of the gradient of the function
evaluated at the current point until a local minimum is reached. In our case,
we seek to minimize the cost function L, which can be obtained by iteratively
updating the parameters θ such that

θ ← θ − α
∑

x,y∈X

1

|X |∇θL(x,y, θ, fθ), (2.13)

where α is a non-negative hyperparameter called learning rate. The choice
of the learning rate value is fundamental to make the optimization process
converge, as too small values yield slow convergence, while too large values
might result in divergence. We show in Figure 2.5 how different values for α
can lead to dramatically different outcomes for the optimization procedure.

x0

x10

(a) α = 0.01

x0

x10

(b) α = 0.1

x0

x10

(c) α = 1.01

Figure 2.5: Gradient descent applied to the function f(x) = x2, with different
learning rates α. Choosing a too small value for α makes the optimization
slow, while a too large value makes the optimization diverge.

In practice, both the large amount of data and the high complexity of models
prevent the use of the update described in Equation (2.13). Instead, mod-
ern machine learning methods leverage an update rule based on Stochastic
Gradient Descent (SGD). SGD optimizes the parameters using batches of
examples randomly sampled from the dataset instead of using all samples
from it at each iteration, yielding the following update rule

20 CHAPTER 2. STATE-OF-THE-ART

θ ← θ − α∇θL(x,y, θ, fθ), (x,y) ∼ X × Y . (2.14)

Using SGD instead of regular gradient descent has empirically proven to be
useful to avoid getting stuck in suboptimal minima, at the cost of introducing
instabilities during optimization. The popular Adam optimization procedure
[10] includes an adaptive momentum to the update rule, most of the time
yielding better and faster convergence.

Another important hyperparameter is the capacity of the model. This ca-
pacity is directly linked to its expressive power, defining an implicit upper
bound on the complexity of the ground truth function f that the model can
fit. Complex tasks usually require a particularly suited function fθ or a large
capacity. It is important to note that while sub-parametrization of a model
is detrimental to its performance, over-parametrizing it might yield general-
ization issues. To examplify this, we consider a simple polynomial regression
task on the following ground truth function

f : [0, 2π]→ R
x 7→ sin(x) + z, z ∼ N (0, 1/4), (2.15)

which is a full period of a sinusoid perturbed by a Gaussian noise. The
training dataset is built by sampling 30 uniformly spaced points between 0
and 2π. We consider a polynomial model consisting in K parameters with
the following parametrized function fθ

fθ : R× RK → R

x, θ 7→
K∑

k=0

xkθk. (2.16)

The model is optimized using the least-square method. As we can see in the
predictions in Figure 2.6, it is clear that an over-parametrization of the model
helps the convergence on training examples, while missing the underlying
structure of the dataset. However, real-life problems often involve complex
tasks with high-dimensional data. Therefore, identifying the correct capacity
of a model is usually not a trivial endeavor.

2.2. MACHINE LEARNING 21

(a) Under-fit (k = 2) (b) Over-fit (k = 16) (c) Correct order (k = 4)

Figure 2.6: Effect of different orders for polynomial regression. Data points
are represented with the black dots, while the corresponding polynomial ap-
proximation is drawn as a red line.

A method to help identify this overfitting regime lies in cross-validation,
where the input dataset is split into several subsets. The training set is
used in order to perform gradient descent on the parameters of the model.
The validation set is used during training to evaluate the performances of
the model on unseen data. An optional test set can be created and hidden
from the researcher or developer to avoid biases in the choice of hyperpa-
rameters, implicitly optimizing a specific validation set. In the context of
our polynomial example, we create a validation set by redrawing the noise
in Equation (2.15) in order to get new data points. We evaluate the predic-
tion error of the model by measuring the average L1 distance between the
prediction and data points, and report the results in Table 2.1.

Capacity Train set Validation set

k = 2 0.453 0.435

k = 4 0.233 0.200

k = 16 0.106 0.278

Table 2.1: Polynomial model prediction errors using different capacities

It is clear that using the over-parametrized model yields the best training
error, but missing the global structure of the data makes it unable to properly
generalize to unseen data.

2.2.2 Learning types

The learning tasks addressed along this thesis belong to one of four different
learning regimes. Those regimes depend on both the nature of the dataset
and the type of the target task.

22 CHAPTER 2. STATE-OF-THE-ART

Supervised learning

Supervised learning is the most common learning regime. It is defined as
a problem where we have ground truth pairs (x,y) ∼ X × Y , where x is
an input example (e.g. text, image, sound or video) and y is the output of
the unknown target function f : x → y for which we build and optimize an
approximation fθ. The tasks belonging to the supervised regime are usually
classification or regression.

Unsupervised learning

In contrast with supervised learning, the goal of unsupervised learning is
to find patterns or structures dictating the behavior of a set of unlabeled
examples x ∼ X . Typical tasks that fall into this category are clustering,
representation learning and generative modeling.

Semi-supervised learning

Semi-supervised learning lies at the intersection between unsupervised and
supervised learning, where we have access to a dataset X composed of both
labeled and unlabeled examples. The task of the model is therefore to build
an understanding of the distribution behind the examples x, while using the
available pairs (x,y) to infer pseudo-labels for the unlabeled examples. The
usual tasks for semi-supervised learning are classification and regression.

Self-supervised learning

The last learning regime is self-supervised learning. This can be seen as the
combination between the data availability of unsupervised learning and the
task definition of supervised learning. The idea is to exploit structures inside
unlabeled examples x to address classification tasks. Contrastive learning is
an example of self-supervised learning, where a high-level representation of a
dataset is built by proposing a given pretext task, which allows classification
of positive-negative pairs even without labeled data.

2.2.3 Neural networks

With increasingly complex problems comes the need for larger models, with
a number of parameters varying between a few hundreds to several billions.
While polynomial models are suited to scalar regression tasks, classification
and generation problems need specialized parametrized functions able to fit

2.2. MACHINE LEARNING 23

a broader range of ground truth functions. One such class of specialized
function is the fully-connected layer.

Fully-connected layers

Fully-connected layers are one of the seminal building blocks of deep learning
systems. They are defined as an affine transform mapping an input vector
x ∈ RDx to an output vector y ∈ RDy using a weight matrix W ∈ RDy×Dx ,
a bias vector b ∈ RDy and a non-linear activation function σ, following

y = σ (Wx + b) . (2.17)

Both the values of the weights and biases are optimized during training, while
the activation function usually remains unchanged. Thanks to the non-linear
behavior of this activation function, we can increase the computational com-
plexity of the model by stacking linear layers together [11]. Not using any
activation function would render this stacking useless, as any linear combi-
nation of affine transforms can be achieved using a single affine transform.
We define in Table 2.2 and Figure 2.7 several of the most used activation
functions that can be found in the literature.

Name Function

Sigmoid f : x→ 1/(1 + e−x)
Tanh f : x→ (e2x − 1)/(e2x + 1)

ReLU f : x→ max(0, x)
Leaky ReLU f : x, λ→ max(λx, x)
SiLU f : x→ x/(1 + e−x)

Table 2.2: Some usual activation functions.

As the complexity of the network increases with the number of stacked layers,
naively computing the gradient of the parameters θ with relation to the loss L
becomes tedious. This comes from the fact that any given layer i in a stack of
N layers has its gradients with respect to the loss impacted by the following
layers. A simpler way of computing those gradients can be achieved through
the chain rule and back-propagation. We consider a model composed of
stacked linear layers fl, l ∈ {1, ..., L} with corresponding weights wl

j,i ∈ R
and biases bli ∈ R, and a cost function L. Each function fl is applied to the

24 CHAPTER 2. STATE-OF-THE-ART

-4 0 4

0

3 leaky relu (0.2)
leaky relu (0.1)
relu

(a) Rectifier variations

5 0 5

-1

0

1

sigmoid
tanh

(b) Bounded activations

Figure 2.7: Some usual activation functions.

previous hidden layer hl−1 and yields another hidden layer hl. We can obtain
the derivative of the loss with respect to individual parameters using

∂L
∂wl

j,i

=
∂L
∂hl

.
∂hl

∂wl
j,i

, (2.18)

where the first term in the right-hand side of Equation (2.18) can be re-
cursively decomposed into products of partial derivatives following the same
scheme. In practice, derivatives for the parameters of such models are effi-
ciently computed using back-propagation.

Convolutional layers

One of the downsides of using simple linear layers is their inability to process
data with variable size, such as temporal sequences or images. Convolutional
Neural Network (CNN) [12] address this problem by computing the cross-
correlation between a kernel and the input data, as shown in Figure 2.8. This
allows the use of variable-size input data, and has proven to be particularly
efficient at detecting structured patterns.

Formally, we consider an input tensor x with shape [Cin ×D1 × . . .×Dn],
where Cin is the number of channels, and n > 1 is all additional dimen-
sions. Such inputs can be transformed by a n-dimensional convolutional
layer parametrized with a weight ω of shape [Cout × Cin ×K1 × . . .×Kn],
Cout being the number of output channels, and Ki the size of the kernel
for the input dimension i. The output tensor y is the result of the cross

2.2. MACHINE LEARNING 25

+

+

input kernel output

Figure 2.8: A 2-dimensional convolutional operation with a kernel of size
3 × 3. Parts of the input tensor are multiplied element-wise by the kernel
and summed to produce a single element in the output. The operation is
repeated for each patch in the input according to a given stride.

correlation between x and ω, following

y[co, i1, . . . , in] =

Ci−1∑

ci=0

K1−1∑

k1=0

. . .
Kn−1∑

kn=0

ω[co, ci, k1, . . . , kn]×

x[ci, i1 + k1, . . . , in + kn]. (2.19)

Usual values of n are 1 for sequences (e.g audio, text), 2 for images (width and
height), and 3 for videos (width, height, time). Kernels are usually far smaller
than the input, as the convolution operation is computationally demanding.
Indeed, a n-dimensional convolution with kernel size ki = k and input size
t has a complexity of O(knt). While the use of the convolution theorem
would decrease the computational complexity of the operation using Fourier
transforms, most convolution implementations leverage parallel processing
abilities of modern accelerators to compute it directly.

(a) Strided convolution with stride 2 (b) Dilated convolution with dilation 2

Figure 2.9: 1-dimensional convolution with stride (a) or dilation (b).

Using a stride s > 1 can be used to reduce the size of the input, as shown
in Figure 2.9(a). This is often used to gather information around a given
point, and yield higher level features about the input [12]. The authors of [3]
propose the use of dilated kernels (also called à-trous convolution), allowing to

26 CHAPTER 2. STATE-OF-THE-ART

increase the effective size of the kernel without introducing new parameters,
as shown in Figure 2.9(b).

Recurrent layers

Another kind of layer able to process variable-length inputs are Recurrent
Neural Network (RNN). Several variants of those recurrent layers exist, in-
cluding Long Short-Term Memory (LSTM) [13] or Gated Recurrent Unit
(GRU) [14], but all follow the same overall approach, as depicted in Fig-
ure 2.10.

RNN

xt

yt

ht-1 RNN

xt+1

yt+1

ht ht+1

Figure 2.10: Schematic view of a recurrent neural network. Each time step
is processed using a recurrent state computed from the previous time steps.

We consider an input sequence x with shape T ×D, where T is the length of
the sequence and D is the dimensionality of individual time steps. Recurrent
layers are applied sequentially to each time-step xt, and yields an output yt

together with a recurrent state ht that is fed to the recurrent layer during
the processing of the next time step. This recurrent state mechanism allows
to progressively build a temporal context that is used to transform a given
time step. It is therefore particularly well suited to autoregressive tasks and
sequence processing.

2.2.4 Scaling to deep models

Since their broad adoption by the research community, deep learning models
tend to increase in size and complexity in order to maximize performance.
However, increasing the number of layers comes at a cost. The gradients
coming from the loss computation get increasingly smaller as they get prop-
agated through the successive activation functions. This problem is called
vanishing gradient [15], and is known to hamper convergence dramatically
[16]. Creating deeper models might also result in over-parametrization, as

2.2. MACHINE LEARNING 27

described in Section 2.2.1, potentially making the model overfit on the train-
ing dataset. To address these problems, many regularization techniques and
architectural designs have been proposed to build very deep models.

Normalization

While the non-linear behavior of activation functions is desirable, looking
at their first and second derivative can give information about the values
yielding a null gradient or areas of the function that are acting purely linearly.
In Figure 2.11, we plot three activation functions with their respective fist and
second derivatives. Outside of the range [−5, 5], the gradients returned by
the sigmoid function are close to 0, preventing any learning for the previous
layers. Areas with null gradient are called saturating areas, and are to be
avoided at all cost. Leaky ReLU have been introduced to avoid the saturating
area of the original ReLU activation for negative values, by introducing a
parametrizable slope. However, if the input values are either strictly positive
or negative, this function behaves linearly, which renders stacking useless.
Forcing input values to fit in effective activation area is therefore important
for proper convergence and is usually addressed using normalization layers.

5 0 5
0

1

(a) Sigmoid

2.5 0.0 2.5
0

2

4

(b) ReLU

2.5 0.0 2.5

0

3

(c) Leaky ReLU

Figure 2.11: Several activation functions with their derivative. The activation
functions (resp. first and second derivatives) are colored in blue (resp. red
and yellow). A black dot indicates that the derivative of the function cannot
be computed.

There are multiple types of normalization layers, but here we focus on three
of the most used ones. Batch [16], Layer [17] and Instance [18] normalization
follow the same approach, where the mean and variance of the input tensor
are computed and used for normalization purposes, following

y =
x− µ(x)

σ(x)
. α + β (2.20)

28 CHAPTER 2. STATE-OF-THE-ART

where α, β are optional learnable parameters. The method for computing
the mean and variance changes with the type of normalization used. Batch
computes input statistics averaging over batch and spatial dimensions. In
contrast, Layer averages over channels and spatial dimensions, while In-
stance averages only over spatial dimensions. Batch normalization addition-
ally learns α, β, whereas others use α = 1, β = 0.

Using such normalization layers is now widespread, as they yield faster and
more stable convergence at the cost of a small computational overhead.
However, there are situations where layers themselves need normalization,
whether we use Linear, Recurrent or Convolutional layers. One of those
model normalization techniques is called Weight Norm (WN) [19], and pro-
poses a reparametrization of the weight W as

W′ =
α

∥W∥W, (2.21)

where α is a learnable scalar. This method allows the decoupling between
the magnitude of the weight and its direction, allowing faster training and
better convergence. The computation overhead of this technique is relatively
small, and can be completely removed during inference by computing the full
weight matrix W′ only once. While WN helps with the convergence speed
of the model, its usage does not restrict the amplitude of the weight at all.
For some applications, it can be needed to apply an amplitude restriction on
the weight. Spectral Normalization [20] is a method leveraging the spectral
norm of a matrix σ(.) to normalize the weight, following

W′ =
W

σ(W)
. (2.22)

This ensures that the layer has a Lipschitz constant of 1, which is needed for
invertible residual layers [21] or to help stabilize GAN training [20].

Dropout

Dropout [22] is used to prevent models to overfit. It works by randomly
dropping values inside outputs of the layers across the network, effectively
ensuring that the model does not get overconfident over a particular feature
of the dataset, but rather consider an ensemble of co-activating features to
make a prediction. Dropout has been successfully used in many architectures,
and is notably a crucial part of the Transformer [23] architecture.

2.3. DEEP GENERATIVE MODELS 29

2.3 Deep generative models

Early works on machine learning algorithms mainly focused on classification
tasks. However, thanks to recent advances in regularization, architecture
design and training methods, deep learning approaches have started to be
used for generative purposes. This shift allowed to perform text, image, audio
or video synthesis using a data-driven approach as an addition to already
existing hand-crafted techniques.

Generative models are usually defined using a probabilistic formulation of
machine learning. Given individual examples x taken from a finite dataset X
representing an underlying probability distribution p(x), generative models
aim at producing an approximate distribution pθ(x) ≈ p(x) with learnable
parameters θ. One of the main appeals of building such an approximate
distribution is the possibility to sample novel examples from it.

A semi-supervised approach to generative modeling can also be used to define
controls over the generation process. We consider a dataset X composed of
pairs of examples (x, c), where c contains additional information about x
(e.g. labels, descriptors). Learning a conditional model can be achieved by
finding an adequate approximate distribution pθ(x|c) ∼ p(x|c). Sometimes,
such an additional source of information is not available, and we would like to
learn a joint variable z containing salient information about the example x.
This definition of the problem belongs to the unsupervised learning regime.
Those variables z are called latent variables, and give rise to a class of models
called latent models. Variational Auto Encoder (VAE) [24] and GAN [25] are
examples of latent models that we describe in detail in Section 2.3.1 and
2.3.2.

2.3.1 Variational Auto-Encoders

VAE are latent models as they consider the existence of a latent variable
z containing high-level features about a data example x. However, learn-
ing the complete model approximating p(x, z) is usually intractable given
the complexity of real-world data. Therefore, VAEs introduce an inference
model qθ(z|x), trained to approximate the real posterior distribution p(z|x)
by minimizing the Kullback-Leibler (KL) divergence

ϕ∗ = argmin
ϕ

DKL[qϕ(z|x)∥p(z|x)]

= argmin
ϕ

−
∫

z

qϕ(z|x) log
p(z|x)

qϕ(z|x)
dz. (2.23)

30 CHAPTER 2. STATE-OF-THE-ART

Since we do not have access to the true posterior p(x|z), an approximate
distribution pθ(x|z) is introduced, and the KL divergence in Equation (2.23)
is rearranged into

0 ≤ DKL[qϕ(z|x)∥pθ(z|x)] = −
∫

z

qϕ(z|x) log
pθ(z|x)

qϕ(z|x)
dz

≤ −
∫

z

qϕ(z|x) log
pθ(x|z).pθ(z)

qϕ(z|x).pθ(x)
dz

≤ −
∫

z

qϕ(z|x) log pθ(x|z)dz−
∫

z

qϕ(z|x) log
pθ(z)

qϕ(z|x)
dz + log pθ(x)

log pθ(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x)∥pθ(z)], (2.24)

which essentially gives us a tractable lower bound on the log likelihood of
pθ(x) given an approximate posterior model qϕ(z|x), an approximate distri-
bution pθ(x|z) and a prior pθ(z). The prior is usually a simple distribution,
most of the time set to an isotropic Gaussian N (0, 1). A visual depiction of
the full system is proposed in Figure 2.12.

encoder provides the mean and variance of a Gaussian that we could sample to obtain the
latent configuration. However, as we intend to train our VAE through gradient descent,
this sampling operation would render the whole network non-differentiable. This can be
avoided by relying on the reparameterization trick proposed by [16], which makes the
VAE differentiable. The main idea is to perform the sampling operation outside of the
network definition, to ensure that it remains trainable. If we define x ∼ N (µ,Σ) and
standardize it so that x̄ ∼ N (0, 1), then we can revert the standardization by simply
computing x = µ+ Σ

1
2 x̄. Therefore, we can perform the overall sampling operation, by

first sampling from a standard normal distribution with ε ∼ N (0, 1) and then convert it
to the desired Gaussian with a specific mean and variance z = µ(x)+Σ

1
2 (x)ε. This allows

to perform the sampling process outside of the network (eg. without any dependency to
the network parameters). This means that the sampling will not be taken into account
for the gradient computation.

Encode Decode

q�(z | x)
<latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit><latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit><latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit><latexit sha1_base64="Zuxkv1bxiVjfk3oVqFQpldXwY6o=">AAAC6XicjVHLSsNAFD2N7/qKunQTrELdlEQEuyy4calgVTBSknTaDs3LZCLW0B9w507c+gNu9UfEP9C/8M6Ygg9EJyQ599x7zsyd68Y+T4VpvpS0sfGJyanpmfLs3PzCor60fJRGWeKxphf5UXLiOinzeciaggufncQJcwLXZ8duf1fmjy9YkvIoPBSDmJ0FTjfkHe45gqiWvn7eyu24x4dVO3BEz+3kV0PDDnjbGMWXw82WXjFrplrGT2AVoIJi7Uf6M2y0EcFDhgAMIQRhHw5Sek5hwURM3Bly4hJCXOUZhiiTNqMqRhUOsX36dik6LdiQYumZKrVHu/j0JqQ0sEGaiOoSwnI3Q+Uz5SzZ37xz5SnPNqC/W3gFxAr0iP1LN6r8r072ItBBXfXAqadYMbI7r3DJ1K3IkxufuhLkEBMncZvyCWFPKUf3bChNqnqXd+uo/KuqlKyMvaI2w5s8JQ3Y+j7On+Boq2aZNetgu9KoF6OexirWUKV57qCBPeyjSd7XeMAjnrS+dqPdancfpVqp0Kzgy9Lu3wFgh56U</latexit>

p✓(x | z)
<latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit><latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit><latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit><latexit sha1_base64="5ZBg6ocXQzPHkFd2fsFRuhCGUTY=">AAAC6XicjVHLSsNAFD2Nr/quunQTrELdlEQEXRbcuKxgH9BKmaRTOzQvkomopT/gzp249Qfc6o+If6B/4Z0xBbWITkhy7rn3nJk714k8kUjLes0ZU9Mzs3P5+YXFpeWV1cLaej0J09jlNTf0wrjpsIR7IuA1KaTHm1HMme94vOEMjlS+ccHjRITBqbyK+JnPzgPREy6TRHUK21GnLftcslLbZ7Lv9IaXI7Pti645jq9Hu51C0SpbepmTwM5AEdmqhoUXtNFFCBcpfHAEkIQ9MCT0tGDDQkTcGYbExYSEznOMsEDalKo4VTBiB/Q9p6iVsQHFyjPRapd28eiNSWlihzQh1cWE1W6mzqfaWbG/eQ+1pzrbFf2dzMsnVqJP7F+6ceV/daoXiR4OdQ+Ceoo0o7pzM5dU34o6ufmlK0kOEXEKdykfE3a1cnzPptYkund1t0zn33SlYlXsZrUp3tUpacD2z3FOgvpe2bbK9sl+sXKYjTqPTWyhRPM8QAXHqKJG3jd4xBOejYFxa9wZ95+lRi7TbODbMh4+AAainnA=</latexit>

x
<latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit><latexit sha1_base64="rQfg3lTmF5JrkDIpa8LGUIBzY+M=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFlw484K9oFVJInTdmheTCZiqXXrD7jV3xL/QP/CO+MU1CI6IcmZc+85M/dePw15Jh3ntWDNzM7NLxQXS0vLK6tr5fWNZpbkImCNIAkT0fa9jIU8Zg3JZcjaqWBe5Ies5Q+OVLx1w0TGk/hMDlN2GXm9mHd54Emizi8iT/b97uh2fFWuOFVHL3sauAZUYFY9Kb/gAtdIECBHBIYYknAIDxk9HbhwkBJ3iRFxghDXcYYxSqTNKYtRhkfsgL492nUMG9NeeWZaHdApIb2ClDZ2SJNQniCsTrN1PNfOiv3Ne6Q91d2G9PeNV0SsRJ/Yv3STzP/qVC0SXRzqGjjVlGpGVRcYl1x3Rd3c/lKVJIeUOIWvKS4IB1o56bOtNZmuXfXW0/E3nalYtQ9Mbo53dUsasPtznNOguVd1nap7ul+p1cyoi9jCNnZpngeo4Rh1NMg7xiOe8GydWLl1Z91/ploFo9nEt2U9fADHk5Ob</latexit>

x̃
<latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit><latexit sha1_base64="MznLeNBWvHLdK0cw0Hl8OthuwJg=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLgxmUF+5C2lCSdtkPzIplISyjuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrTltaXlldy68XNja3tneKu6VGHCSRw+pO4AZRy7Zi5nKf1QUXLmuFEbM822VNe3wu480bFsU88K/ENGRdzxr6fMAdSxDVK5Y6grt9lnY8S4zsQTqZzXrFslEx1NIXgZmBMrJVC4ov6KCPAA4SeGDwIQi7sBDT04YJAyFxXaTERYS4ijPMUCBtQlmMMixix/Qd0q6dsT7tpWes1A6d4tIbkVLHIWkCyosIy9N0FU+Us2R/806Vp7zblP525uURKzAi9i/dPPO/OlmLwABnqgZONYWKkdU5mUuiuiJvrn+pSpBDSJzEfYpHhB2lnPdZV5pY1S57a6n4m8qUrNw7WW6Cd3lLGrD5c5yLoHFcMY2KeXlSrlazUeexjwMc0TxPUcUFaqiT9wSPeMKzdq3danfa/Weqlss0e/i2tIcPyKmXgg==</latexit>

Input

Latent space

Output…
…

…
…

…
…

…
…

…
…

…
…

µ
� x
�

<latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8=">AAAC3HicjVG5TsNAEH0xVwiXgYKCxiJCCk1kJ4RAh0RDCRI5JBIi22zCKr5krxEoSkeHaPkBWvgexB/AXzC7OBIUCNayPfPmvdk5nMjjiTDNt5w2NT0zO5efLywsLi2v6KtrzSRMY5c13NAL47ZjJ8zjAWsILjzWjmJm+47HWs7wSMZb1yxOeBiciduIdX17EPA+d21BUE/f6Phpx+GDUse3xZXTH92MpbvT04tm2VTHMMu16p5Vr5FRP6hWajXDykJFZOck1F/RwSVCuEjhgyGAINuDjYSec1gwERHWxYiwmCyu4gxjFEibEosRwyZ0SN8BeecZGpAvcyZK7dItHr0xKQ1skyYkXky2vM1Q8VRlluhvuUcqp6ztlv5OlssnVOCK0L90E+Z/dbIXgT72VQ+ceooUIrtzsyypmoqs3PjWlaAMEWHSvqR4TLarlJM5G0qTqN7lbG0Vf1dMiUrfzbgpPmSVtODJFo3fjWalbJll63S3eLifrTqPTWyhRPus4xDHOEFD1f+EZ7xoF9qddq89fFG1XKZZx4+jPX4CMPiZKw==</latexit><latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8=">AAAC3HicjVG5TsNAEH0xVwiXgYKCxiJCCk1kJ4RAh0RDCRI5JBIi22zCKr5krxEoSkeHaPkBWvgexB/AXzC7OBIUCNayPfPmvdk5nMjjiTDNt5w2NT0zO5efLywsLi2v6KtrzSRMY5c13NAL47ZjJ8zjAWsILjzWjmJm+47HWs7wSMZb1yxOeBiciduIdX17EPA+d21BUE/f6Phpx+GDUse3xZXTH92MpbvT04tm2VTHMMu16p5Vr5FRP6hWajXDykJFZOck1F/RwSVCuEjhgyGAINuDjYSec1gwERHWxYiwmCyu4gxjFEibEosRwyZ0SN8BeecZGpAvcyZK7dItHr0xKQ1skyYkXky2vM1Q8VRlluhvuUcqp6ztlv5OlssnVOCK0L90E+Z/dbIXgT72VQ+ceooUIrtzsyypmoqs3PjWlaAMEWHSvqR4TLarlJM5G0qTqN7lbG0Vf1dMiUrfzbgpPmSVtODJFo3fjWalbJll63S3eLifrTqPTWyhRPus4xDHOEFD1f+EZ7xoF9qddq89fFG1XKZZx4+jPX4CMPiZKw==</latexit><latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8=">AAAC3HicjVG5TsNAEH0xVwiXgYKCxiJCCk1kJ4RAh0RDCRI5JBIi22zCKr5krxEoSkeHaPkBWvgexB/AXzC7OBIUCNayPfPmvdk5nMjjiTDNt5w2NT0zO5efLywsLi2v6KtrzSRMY5c13NAL47ZjJ8zjAWsILjzWjmJm+47HWs7wSMZb1yxOeBiciduIdX17EPA+d21BUE/f6Phpx+GDUse3xZXTH92MpbvT04tm2VTHMMu16p5Vr5FRP6hWajXDykJFZOck1F/RwSVCuEjhgyGAINuDjYSec1gwERHWxYiwmCyu4gxjFEibEosRwyZ0SN8BeecZGpAvcyZK7dItHr0xKQ1skyYkXky2vM1Q8VRlluhvuUcqp6ztlv5OlssnVOCK0L90E+Z/dbIXgT72VQ+ceooUIrtzsyypmoqs3PjWlaAMEWHSvqR4TLarlJM5G0qTqN7lbG0Vf1dMiUrfzbgpPmSVtODJFo3fjWalbJll63S3eLifrTqPTWyhRPus4xDHOEFD1f+EZ7xoF9qddq89fFG1XKZZx4+jPX4CMPiZKw==</latexit><latexit sha1_base64="j5tWunesIsBMaRLiIHTwonnxLH8=">AAAC3HicjVG5TsNAEH0xVwiXgYKCxiJCCk1kJ4RAh0RDCRI5JBIi22zCKr5krxEoSkeHaPkBWvgexB/AXzC7OBIUCNayPfPmvdk5nMjjiTDNt5w2NT0zO5efLywsLi2v6KtrzSRMY5c13NAL47ZjJ8zjAWsILjzWjmJm+47HWs7wSMZb1yxOeBiciduIdX17EPA+d21BUE/f6Phpx+GDUse3xZXTH92MpbvT04tm2VTHMMu16p5Vr5FRP6hWajXDykJFZOck1F/RwSVCuEjhgyGAINuDjYSec1gwERHWxYiwmCyu4gxjFEibEosRwyZ0SN8BeecZGpAvcyZK7dItHr0xKQ1skyYkXky2vM1Q8VRlluhvuUcqp6ztlv5OlssnVOCK0L90E+Z/dbIXgT72VQ+ceooUIrtzsyypmoqs3PjWlaAMEWHSvqR4TLarlJM5G0qTqN7lbG0Vf1dMiUrfzbgpPmSVtODJFo3fjWalbJll63S3eLifrTqPTWyhRPus4xDHOEFD1f+EZ7xoF9qddq89fFG1XKZZx4+jPX4CMPiZKw==</latexit>

⌃
� x
�

<latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA=">AAAC33icjVHLSsNAFD2Nr/quutNNsAi6KUlptd0V3LisaFWwIpM4bYfmRTIRSym4cydu/QG3+jfiH+hfeGdMQReiE5Kce+49Z+bOdSJPJNKy3nLGxOTU9Ex+dm5+YXFpubCyepKEaezylht6YXzmsIR7IuAtKaTHz6KYM9/x+KnT31f502seJyIMjuUg4hc+6waiI1wmibosrLePRNdnbUd0t9s+kz2nM7wZqXDnslC0SrWKXa3WTatkV3br9T0FyvVdu2baJUuvIrLVDAuvaOMKIVyk8MERQBL2wJDQcw4bFiLiLjAkLiYkdJ5jhDnSplTFqYIR26dvl6LzjA0oVp6JVru0i0dvTEoTW6QJqS4mrHYzdT7Vzor9zXuoPdXZBvR3Mi+fWIkesX/pxpX/1aleJDqo6R4E9RRpRnXnZi6pvhV1cvNbV5IcIuIUvqJ8TNjVyvE9m1qT6N7V3TKdf9eVilWxm9Wm+FCnpAGPp2j+Dk7KJZumflgpNmrZqPPYwCa2aZ57aOAATbTI+xZPeMaLwYw74954+Co1cplmDT+W8fgJlumafQ==</latexit><latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA=">AAAC33icjVHLSsNAFD2Nr/quutNNsAi6KUlptd0V3LisaFWwIpM4bYfmRTIRSym4cydu/QG3+jfiH+hfeGdMQReiE5Kce+49Z+bOdSJPJNKy3nLGxOTU9Ex+dm5+YXFpubCyepKEaezylht6YXzmsIR7IuAtKaTHz6KYM9/x+KnT31f502seJyIMjuUg4hc+6waiI1wmibosrLePRNdnbUd0t9s+kz2nM7wZqXDnslC0SrWKXa3WTatkV3br9T0FyvVdu2baJUuvIrLVDAuvaOMKIVyk8MERQBL2wJDQcw4bFiLiLjAkLiYkdJ5jhDnSplTFqYIR26dvl6LzjA0oVp6JVru0i0dvTEoTW6QJqS4mrHYzdT7Vzor9zXuoPdXZBvR3Mi+fWIkesX/pxpX/1aleJDqo6R4E9RRpRnXnZi6pvhV1cvNbV5IcIuIUvqJ8TNjVyvE9m1qT6N7V3TKdf9eVilWxm9Wm+FCnpAGPp2j+Dk7KJZumflgpNmrZqPPYwCa2aZ57aOAATbTI+xZPeMaLwYw74954+Co1cplmDT+W8fgJlumafQ==</latexit><latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA=">AAAC33icjVHLSsNAFD2Nr/quutNNsAi6KUlptd0V3LisaFWwIpM4bYfmRTIRSym4cydu/QG3+jfiH+hfeGdMQReiE5Kce+49Z+bOdSJPJNKy3nLGxOTU9Ex+dm5+YXFpubCyepKEaezylht6YXzmsIR7IuAtKaTHz6KYM9/x+KnT31f502seJyIMjuUg4hc+6waiI1wmibosrLePRNdnbUd0t9s+kz2nM7wZqXDnslC0SrWKXa3WTatkV3br9T0FyvVdu2baJUuvIrLVDAuvaOMKIVyk8MERQBL2wJDQcw4bFiLiLjAkLiYkdJ5jhDnSplTFqYIR26dvl6LzjA0oVp6JVru0i0dvTEoTW6QJqS4mrHYzdT7Vzor9zXuoPdXZBvR3Mi+fWIkesX/pxpX/1aleJDqo6R4E9RRpRnXnZi6pvhV1cvNbV5IcIuIUvqJ8TNjVyvE9m1qT6N7V3TKdf9eVilWxm9Wm+FCnpAGPp2j+Dk7KJZumflgpNmrZqPPYwCa2aZ57aOAATbTI+xZPeMaLwYw74954+Co1cplmDT+W8fgJlumafQ==</latexit><latexit sha1_base64="TDFz8zB+naaXmUIeMNEL8SN/TuA=">AAAC33icjVHLSsNAFD2Nr/quutNNsAi6KUlptd0V3LisaFWwIpM4bYfmRTIRSym4cydu/QG3+jfiH+hfeGdMQReiE5Kce+49Z+bOdSJPJNKy3nLGxOTU9Ex+dm5+YXFpubCyepKEaezylht6YXzmsIR7IuAtKaTHz6KYM9/x+KnT31f502seJyIMjuUg4hc+6waiI1wmibosrLePRNdnbUd0t9s+kz2nM7wZqXDnslC0SrWKXa3WTatkV3br9T0FyvVdu2baJUuvIrLVDAuvaOMKIVyk8MERQBL2wJDQcw4bFiLiLjAkLiYkdJ5jhDnSplTFqYIR26dvl6LzjA0oVp6JVru0i0dvTEoTW6QJqS4mrHYzdT7Vzor9zXuoPdXZBvR3Mi+fWIkesX/pxpX/1aleJDqo6R4E9RRpRnXnZi6pvhV1cvNbV5IcIuIUvqJ8TNjVyvE9m1qT6N7V3TKdf9eVilWxm9Wm+FCnpAGPp2j+Dk7KJZumflgpNmrZqPPYwCa2aZ57aOAATbTI+xZPeMaLwYw74954+Co1cplmDT+W8fgJlumafQ==</latexit>

z ⇠ N
�
µ(x),⌃(x)

�
<latexit sha1_base64="WDmyPgHHgwsUz/CghJL/BVlpyRA=">AAADCnicjVHLSsRAECzj+73q0UtwEVaQJRFFjwsieBJFVwUjMhln18G8SCaiLvsH/ok3b+LVH/Ak6g/oX9gzZsEHohOSdFdX1UxP+0kgM+U4T11Wd09vX//A4NDwyOjYeGlicjeL85SLOo+DON33WSYCGYm6kioQ+0kqWOgHYs8/XdX1vTORZjKOdtRFIg5D1oxkQ3KmCDoqrXkhUyd+o3XZ9jIZmoyzoLXR9nzZrHhhXukwzttz8962bIbsM6Rpc0elslN1zLJ/Bm4RlFGszbj0CA/HiMGRI4RABEVxAIaMngO4cJAQdogWYSlF0tQF2hgibU4sQQxG6Cl9m5QdFGhEufbMjJrTLgG9KSltzJImJl5Ksd7NNvXcOGv0N++W8dRnu6C/X3iFhCqcEPqXrsP8r073otDAiulBUk+JQXR3vHDJza3ok9ufulLkkBCm42OqpxRzo+zcs200meld3y0z9VfD1KjOecHN8aZPSQN2v4/zZ7C7UHWdqru1WK4tFaMewDRmUKF5LqOGdWyiTt7XeMAzXqwr68a6te4+qFZXoZnCl2XdvwPl9qx0</latexit><latexit sha1_base64="WDmyPgHHgwsUz/CghJL/BVlpyRA=">AAADCnicjVHLSsRAECzj+73q0UtwEVaQJRFFjwsieBJFVwUjMhln18G8SCaiLvsH/ok3b+LVH/Ak6g/oX9gzZsEHohOSdFdX1UxP+0kgM+U4T11Wd09vX//A4NDwyOjYeGlicjeL85SLOo+DON33WSYCGYm6kioQ+0kqWOgHYs8/XdX1vTORZjKOdtRFIg5D1oxkQ3KmCDoqrXkhUyd+o3XZ9jIZmoyzoLXR9nzZrHhhXukwzttz8962bIbsM6Rpc0elslN1zLJ/Bm4RlFGszbj0CA/HiMGRI4RABEVxAIaMngO4cJAQdogWYSlF0tQF2hgibU4sQQxG6Cl9m5QdFGhEufbMjJrTLgG9KSltzJImJl5Ksd7NNvXcOGv0N++W8dRnu6C/X3iFhCqcEPqXrsP8r073otDAiulBUk+JQXR3vHDJza3ok9ufulLkkBCm42OqpxRzo+zcs200meld3y0z9VfD1KjOecHN8aZPSQN2v4/zZ7C7UHWdqru1WK4tFaMewDRmUKF5LqOGdWyiTt7XeMAzXqwr68a6te4+qFZXoZnCl2XdvwPl9qx0</latexit><latexit sha1_base64="WDmyPgHHgwsUz/CghJL/BVlpyRA=">AAADCnicjVHLSsRAECzj+73q0UtwEVaQJRFFjwsieBJFVwUjMhln18G8SCaiLvsH/ok3b+LVH/Ak6g/oX9gzZsEHohOSdFdX1UxP+0kgM+U4T11Wd09vX//A4NDwyOjYeGlicjeL85SLOo+DON33WSYCGYm6kioQ+0kqWOgHYs8/XdX1vTORZjKOdtRFIg5D1oxkQ3KmCDoqrXkhUyd+o3XZ9jIZmoyzoLXR9nzZrHhhXukwzttz8962bIbsM6Rpc0elslN1zLJ/Bm4RlFGszbj0CA/HiMGRI4RABEVxAIaMngO4cJAQdogWYSlF0tQF2hgibU4sQQxG6Cl9m5QdFGhEufbMjJrTLgG9KSltzJImJl5Ksd7NNvXcOGv0N++W8dRnu6C/X3iFhCqcEPqXrsP8r073otDAiulBUk+JQXR3vHDJza3ok9ufulLkkBCm42OqpxRzo+zcs200meld3y0z9VfD1KjOecHN8aZPSQN2v4/zZ7C7UHWdqru1WK4tFaMewDRmUKF5LqOGdWyiTt7XeMAzXqwr68a6te4+qFZXoZnCl2XdvwPl9qx0</latexit><latexit sha1_base64="WDmyPgHHgwsUz/CghJL/BVlpyRA=">AAADCnicjVHLSsRAECzj+73q0UtwEVaQJRFFjwsieBJFVwUjMhln18G8SCaiLvsH/ok3b+LVH/Ak6g/oX9gzZsEHohOSdFdX1UxP+0kgM+U4T11Wd09vX//A4NDwyOjYeGlicjeL85SLOo+DON33WSYCGYm6kioQ+0kqWOgHYs8/XdX1vTORZjKOdtRFIg5D1oxkQ3KmCDoqrXkhUyd+o3XZ9jIZmoyzoLXR9nzZrHhhXukwzttz8962bIbsM6Rpc0elslN1zLJ/Bm4RlFGszbj0CA/HiMGRI4RABEVxAIaMngO4cJAQdogWYSlF0tQF2hgibU4sQQxG6Cl9m5QdFGhEufbMjJrTLgG9KSltzJImJl5Ksd7NNvXcOGv0N++W8dRnu6C/X3iFhCqcEPqXrsP8r073otDAiulBUk+JQXR3vHDJza3ok9ufulLkkBCm42OqpxRzo+zcs200meld3y0z9VfD1KjOecHN8aZPSQN2v4/zZ7C7UHWdqru1WK4tFaMewDRmUKF5LqOGdWyiTt7XeMAzXqwr68a6te4+qFZXoZnCl2XdvwPl9qx0</latexit>

Sampling

Figure 2.4: Representation of a basic structure of a Variational Auto-Encoder. The
encoder outputs µ and σ the parameters of the distibution qφ(x|z)

2.2.5 Wasserstein Auto-Encoder (WAE)

As discussed earlier, the optimization objective defined in the VAE (Equation 2.11) relies
on the KL divergence DKL, in order to encourage each individual latent code q(z|x) to
match the prior distribution pz. However, it has been shown that the use of the KL
divergence may lead to several issues, such as the phenomenon of posterior collapse
[26]. In contrast, the Wasserstein Auto-Encoder (WAE) [23] defines its objective on the
continuous mixture qz = Epx

[
q(z|x)

]
, by relying on a given divergence Dz(qz, pz), that

do not restrict the latent model to a Gaussian prior. Similarily to the VAE, the WAE
also relies on a cost function C between x and the output g(x) = z of a deterministic
decoder. Hence we can define the objective function of the WAE as

LWAE := inf
q(z|x)∈Q

ExEq(z|x)
[
C(x, g(z))

]
+ λ ·Dz(qz, pz) (2.15)

with λ a regularization weight hyper-parameter. These regularized auto-encoders are
powerful unsupervised learning models, rather lightweight and fast to train, while being
effective on small datasets (as few as hundreds of training examples).

20

Figure 2.12: Diagram of a Variational Auto Encoder

This lower bound is called the Evidence Lower BOund (ELBO) [24], and is
used as a training loss for VAEs, where we can identify a reconstruction term
and a regularization term

Lϕ,θ(x) = −Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

+ β ×DKL[qϕ(z|x)∥p(z)]︸ ︷︷ ︸
regularization term

. (2.25)

Overall, the ELBO minimizes the reconstruction error of the model through
the likelihood of the data given a latent log pθ(x|z), while regularizing the

2.3. DEEP GENERATIVE MODELS 31

posterior distribution qϕ(z|x) to match a predefined prior p(z). Both poste-
rior distributions qϕ and pθ are parametrized by neural networks respectively
called encoder and decoder.

The reconstruction and regularization terms in the ELBO are in essence
conflicting, as the former is maximizing the mutual information between
the input x and the latent z, while the latter enforces the independence
between both variables. Therefore, the authors of [26] propose to weight
the regularization term with a parameter β to control the trade-off between
accurate reconstruction and strong latent regularization. They show that
increasing β > 1 leads to less entangled latent dimensions, to the detriment
of the reconstruction quality.

Nonetheless, VAE are known to produce blurry results due to this conflict
between reconstruction and regularization. Removing the regularization term
helps with producing finer details at the cost of a loss of information about
the resulting aggregated latent distribution. This prevents sampling from
the model, and restricts its uses to simple reconstructions.

Figure 2.13: Reconstruction of MNIST digits [27] using a VAE. The recon-
structions are similar to the inputs, while being generally blurry.

2.3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [25] are a class of deep generative
models implicitly modeling the data distribution p(x) through the use of two
separate sub-models G and D, respectively called generator and discrimina-
tor, as shown in Figure 2.14. The core idea behind GANs is the adversarial
training procedure introduced in [25], where both sub-models are optimized
to minimize conflicting losses, defined as

Ldis = −Ex [logD(x)]− Ex [log(1−D(G(z)))]

Lgen = Ex [log(1−D(G(z)))] . (2.26)

32 CHAPTER 2. STATE-OF-THE-ART

The goal of the discriminator is to correctly classify real from generated
samples, while the generator is optimized to make its generations classified
as real. This framework has proven to outperform VAEs in terms of high-
detail output generation, and has been extensively studied to provide more
stable training dynamics with higher generation resolution. However, the
lack of an encoder model prevents the inference of a latent representation
given a data point.

generator

discriminator real / fake

Figure 2.14: A block diagram of a generic GAN. A noise input is used to
produce a generation, that is discriminated as real or fake against a true
sample from the dataset by a discriminator.

A major issue with GANs is the instability occurring during training. In-
deed, if the discriminator outperforms the generator too quickly, it might be
impossible for the generator to compete and even start producing adequate
generations. This is especially true for saturating GAN loss definitions, such
as the one presented in Equation (2.26). Alternative formulations address
this problem, including the hinge GAN [28]

Ldis = Ex[max(0, 1−D(x))] + Ez[max(0, 1 + D(G(z)))]

Lgen = −Ex[D(G(z))], (2.27)

or the Wassertein GAN [29] proposing the use of a Lipschitz contractive
discriminator combined with the simpler loss

Ldis = Ez[D(G(z))]− Ex[D(x)]. (2.28)

In practice, the contractive constraint is approximated through the clipping
of the weights of the model between [−c, c], with c = 0.01. An alternative
method to ensure this constraint is the use of Gradient Penalty (GP), as
proposed in [30].

2.3. DEEP GENERATIVE MODELS 33

Another failure case for GAN is mode collapse, happening when the generator
focuses on a specific mode of the data distribution instead of covering its
entirety. This can be mitigated through the use of regularization techniques
[20] or by feeding the discriminator with additional mini-batch statistics as
proposed in [31]. Training GANs is notoriously difficult, mainly because the
training losses are continuously learned and, thus, can be hard to interpret.

A progressive method for adversarial generation of high-resolution images
is introduced in [32]. Instead of defining a fixed model directly generating
and discriminating high-resolution images, the authors introduce a growing
architecture, initially trained with few layers on a low-resolution task, and
progressively augmented with additional layers for higher resolutions. This
method is the first to generate million pixel images, as shown in Figure 2.15,
at the cost of producing alignment artifacts as demonstrated in [33].

Figure 2.15: Progressive growing training method for high-resolution images
adversarial generation. Figure taken from [32]

2.3.3 Normalizing Flows

Compared to VAEs or GANs, Normalizing Flows (NFs) are a class of gener-
ative models trained using the exact likelihood of the data under the model.
NFs are diffeomorphisms f defining a deterministic mapping between data
points x ∼ X and latent variables z whose distribution is a usually a simple
isotropic Gaussian N (0, 1). In contrast to VAEs, NFs are diffeomorphisms,
implying that latent variables z and input data x must have the same di-
mensionality. Therefore, we can derive the likelihood of x using the following
change of variable theorem, such that

34 CHAPTER 2. STATE-OF-THE-ART

z = f(x)

p(x) = p(z)

∣∣∣∣det
df

dx

∣∣∣∣ . (2.29)

Since diffeomorphisms are composable, we can build complex transformations
by composing multiple instances of simpler transforms without compromising
invertibility nor differentiability. Therefore, the function f can be designed
as a chain of parametrized diffeomorphisms fk

θ : zk → zk+1, with z0 = x and
parameters θ optimized to minimize the following log-likelihood

Lθ(f,x,y) := − log px(x) = − log pz(zK)−
∑

k

∣∣∣∣det
dfk
dzk

∣∣∣∣ . (2.30)

The advantages of using NFs are numerous. For example, in contrast to VAEs
and GANs, we have access to the exact likelihood of the data under the model,
which makes the evolution of the training more stable and interpretable.
Additionally, the invertible nature of NFs yields an exact inference method
to retrieve z from x, which is not the case for the approximate posterior
introduced by VAEs.

However, the computation of the Jacobian determinant in Equation (2.30) is
far from trivial, and can be computationally intensive, precluding an efficient
training of the model. Therefore, building a computationally efficient Nor-
malizing Flow (NF) requires finding functions fk whose Jacobian is easy to
compute. Proposed approaches include the use of affine coupling functions
[34, 35], splitting the flow input x into two separate inputs xa,xb and finally
yielding the following transform

ya = xa

yb = xb ⊙ αθ(xa) + βθ(xa), (2.31)

where α, β are functions parametrized by θ. The output of f is defined as
the concatenation of ya,yb. Since the resulting Jacobian is a lower trian-
gular matrix, its log-determinant is the sum of the values in αθ(xa). The
computation of the Jacobian determinant for the coupling layer operation
does not require the computation of the Jacobians for αθ or βθ, enabling

2.3. DEEP GENERATIVE MODELS 35

the use of arbitrarily complex functions modeled by deep neural networks.
Furthermore, the inverse operation can be computed using the same method
as the forward propagation, making this approach efficient for both sampling
and inference simultaneously.

Another efficient parametrization can be found in the form of Residual Flows
[21], where each flow f is defined as

f : x→ g(x) + x, (2.32)

where g is a contractive function. While the resulting function f is not
usually analytically invertible, the inverse of an output y can be iteratively
computed, by using

xi+1 = y − g(xi)

x0 = y. (2.33)

The contractive constraint on function g is enforced using spectral normaliza-
tion [20]. The authors propose an unbiased estimator for the log-determinant
of the Jacobian, as computing the exact Jacobian is untractable. To com-
pensate for the relatively poor expressive power of contractive functions, the
full model is composed of 100 stacked flows.

While choosing simple transforms for flows is crucial for the efficiency of the
training, this also harms the expressive power of the model. As a result,
NFs have more parameters than GANs for similar results, and are generally
slower to train due to the lack of dimensionality reduction.

36 CHAPTER 2. STATE-OF-THE-ART

2.4 Sequence modeling

2.4.1 Transformers

The understanding and modeling of temporal behaviors from a stream of
information, whether it is text characters, audio samples or abstract tokens
belongs to the sequence modeling field. While the RNNs presented in Sec-
tion 2.2.3 are naturally suited to this task, their use of a fixed-size recurrent
state restricts the potential extent of the temporal context needed to make a
prediction. For long sequences, this might result in forgetting distant infor-
mation, harming the performances of the model.

A key model addressing this problem is the Transformer [23]. While initially
built for Natural Language Processing (NLP) tasks such as machine trans-
lation or question answering, Transformers are now used to address various
task, from audio modeling [4] to image generation [36]. These models are
mostly build around the concept of attention mechanisms combined with
linear layers and normalization, as depicted in Figure 2.16.

The original Transformer model [23] is able to process pairs of sequences,
called inputs and targets. The input sequence is processed by the encoder
and yields a context fed to the decoder, trained to predict the target sequence
autoregressively. While many iterations of this model have been proposed,
they all share the same core components that we describe here.

Multi-Head Scaled Attention

The main idea behind attention mechanisms is to help the model focus on
certain elements or combination of elements in a sequence when making pre-
dictions, rather than considering the entire sentence as a whole. In the NLP
literature, attention is a function of three sequences Q ∈ RTq×D,K ∈ RTkv×D

and V ∈ RTkv×D, respectively called queries, keys and values. Intuitively,
queries are compared with keys to identify relevant pairs of elements in both
sequences, which are used to define a distribution over the values. The scaled
attention proposed in [23] implements this mechanism using

Attention(Q,K,V) = softmax

(
QKT

√
D

)

︸ ︷︷ ︸
attention matrix

. V, (2.34)

where the softmax function is computed over the last dimension of the at-
tention matrix. The query Q can be thought of as the main input of the
layer, as the output shares the same shape (i.e. lives in RTq×D). The matrix

2.4. SEQUENCE MODELING 37

Figure 2.16: The Transformer architecture. Figure taken from [23]

38 CHAPTER 2. STATE-OF-THE-ART

product between Q and KT yields a non-normalized attention matrix with
shape Tq × Tkv. Once normalized by the softmax layer, the attention matrix
can be seen as the concatenation of Tq vectors each describing a categorical
distribution over the values V, exposing the position of tokens inside V that
are important with relation to the context given by Q and K. The output
of the layer is the matrix product between the attention matrix and V.

Depending on the type of attention considered, further processing of the
attention matrix can be needed. Cross-attention is obtained by computing
K,V from a different sequence than that of Q. This is particularly useful in
the context of an encoding-decoding model, where we might want to make
the queries of the decoder attend to the output of the encoder. In this
case, the attention matrix is left unchanged. In addition to cross-attention,
autoregressive models rely on self-attention in order to attend to their own
past predictions. The causality of self-attention is ensured by masking the
attention matrix, thus avoiding the introduction of future dependencies. This
is achieved by using a triangular matrix as shown in Figure 2.17.

q1k1

q2k1

q3k1

q4k1

q1k2

q2k2

q3k2

q4k2

q1k3

q2k3

q3k3

q4k3

q1k4

q2k4

q3k4

q4k4

0

0

0

0

0

0

0

0

0 0

-inf -inf -inf

-inf-inf

-inf+

Figure 2.17: Masking attention with a binary mask to ensure the causality
of the model.

A multi-head attention layer performs the exact same computation, but repli-
cated over multiple subsets of the input tensors. In practice, the T ×D input
tensors Q,K and V are split into H × T × D/H tensors, where H is the
number of heads. The previously introduced attention operation is applied
over the resulting tensors, and the heads are gathered using an additional
linear layer. The use of multi-head attention allows the model to focus on
different temporal scales and feature types, and has proven to be beneficial
to the overall accuracy of the resulting model.

While this attention mechanism is responsible for the impressive perfor-
mances of transformer models, it is computationally expensive as both mem-
ory and complexity have a quadratic growth with the length of the sequence
n. This implies large memory requirements preventing the vanilla model to
be extended to arbitrary lengths. Alternative attention mechanisms have

2.4. SEQUENCE MODELING 39

been proposed to alleviate this issue, such as sparse attention [37], mixed-
length attention [38] or linear approximations [39]. However, none of those
methods alone is sufficient to properly learn positional information between
tokens, as they all focus on finding similarities between tokens, regardless
of their position in the sequence. Injecting such positional information is
therefore crucial, and is implemented using positional encoding.

Positional Encoding

While there are now many ways to implement positional encoding, they all
address the same task of biasing input tokens to include positional or tempo-
ral information. The first method was introduced alongside the Transformer
model [23], and is called Sinusoidal Positional Encoding (SPE). SPE embeds
the index n of a token into a D-dimensional vector defined as

SPE[n](i) =

{
sin(ωkn) if i = 2k
cos(ωkn) if i = 2k + 1

ωk =
1

100002k/d
, (2.35)

which is added to the input of the model. This method allows to encode differ-
ent time scales for each dimension, from small variations in early dimensions
to large changes in late dimensions. We show in Figure 2.18 the output of
the encoding defined in Equation (2.35) with D = 64 and n ∈ [0, 128].

0 10 20 30 40 50 60
Dimension number

0

20

40

60

80

100

120

To
ke

n
in

de
x

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Figure 2.18: Output of SPE for a sequence composed of 128 tokens and a
model of dimension 64.

This method encodes the absolute position of tokens. This is a problem for
generalizing these models to longer sequences where token indices are po-

40 CHAPTER 2. STATE-OF-THE-ART

tentially larger than anything seen during training. Alternative positional
encoding techniques use relative encoding. Instead of using the absolute po-
sition i of a token, relative encoding methods rather consider the distance be-
tween tokens i−j. Such methods include Rotary Positional Encoder (RoPE)
[40] and Attention with Linear Biases (ALiBi) [41], and allow the generaliza-
tion of the model to unseen length. RoPE proposes a multiplicative approach
to positional encoding, in contrast with earlier additive methods. They pro-
pose a pairwise rotation matrix, defined as

Rd
Θ,n =

cosnθ1 − sinnθ1 . . . 0 0
sinnθ1 cosnθ1 . . . 0 0

...
...

. . .
...

...
0 0 . . . cosnθd/2 cosnθd/2
0 0 . . . cosnθd/2 cosnθd/2

, (2.36)

that is used to rotate queries according to their sequence position, such that

RoPE(qn, n) = Rd
Θ,nqn. (2.37)

Their method is significantly simpler to implement than previous relative
positional encoding approaches such as the one proposed in [42]. As an
alternative to RoPE, ALiBi proposes a simple linear bias to encode relative
positional information, as shown in Figure 2.19.

q1 k1

q2 k1 q2 k2

q3 k1 q3 k2 q3 k3

q4 k1 q4 k2 q4 k3 q4 k4

q5 k1 q5 k2 q5 k3 q5 k4 q5 k5

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

+ m

Figure 2.19: Biases applied to the attention matrix by ALiBi to encode
relative positional information. The factor m is a positive value called slope,
which varies with relation to the index of the head. Figure taken from [41].

2.4. SEQUENCE MODELING 41

The linear biases are weighted according to the values of a slope, defined as

mk = 2(−8/H)k , (2.38)

where H > 8 is the number of heads, and k ∈ [1, H] is the head index. They
show that their method effectively encodes relative information about tokens,
while allowing to extrapolate on larger sequences during inference.

2.4.2 Model pretraining

Tasks involving sequence modeling are often composed of discrete tokens.
Whether the dataset is inherently discrete (e.g. binary images or digital
audio) or needs to be tokenized (e.g. text or pseudo-continuous representa-
tions), we consider sequences x of length T , with individual values xt ∈ [0, V],
where V is the vocabulary size.

Prior to being fed to a model, discrete tokens are often embedded. In its
simplest form, embedding a token is achieved using of a codebook C with
shape V×D, composed of V individual D-dimensional vectors. The codebook
is used as a lookup table to transform a T -dimensional discrete sequence into
a T ×D continuous tensor. During training, the codebook may be trained to
better reflect similarities between tokens. The use of pretrained embeddings
such as word2vec [43] allows to embed semantically similar tokens close to
each other in the embedding space (e.g. cat and kitten should be closer to
each other in the embedded space than cat and car). This is beneficial to
both training speed and model generalization.

However, there are cases where identical tokens have a deeply different mean-
ing depending on the context (e.g. ”he is running a marathon” has a different
use of the word ”running” than ”he is running a company”). In those cases,
the use of a more complex embedding technique can be beneficial. The Bidi-
rectional Encoder Representations from Transformers (BERT) model is ad-
dressing this exact task, allowing to produce different embeddings for discrete
tokens given their context through the use of masked language modeling.

Bidirectional Encoder Representations from Transformers (BERT)

BERT is trained using Masked Language Modeling (MLM) to provide high
level contextual information based on textual sequences. The main idea
behind MLM is to randomly mask inputs in a discrete sequence, and train a
model to predict those masked tokens given the unmasked context. As shown

42 CHAPTER 2. STATE-OF-THE-ART

in Figure 2.20, this allows the model to build a high-level representation of
tokens with relation to their current context. As there are no ground-truth
labels, MLM is a self-supervised learning task.

Transformer model

inputs

predictions

Figure 2.20: The BERT training framework. An input sequence is randomly
masked (the masked elements are depicted in red) and fed to a transformer
whose task is to predict the masked tokens given the unmasked context.

Once BERT has converged on a specific dataset, it can be used as a pretrained
model for a supervised learning task, usually targeting classification. This
can be done by discarding the n last layers of the model, and use the hidden
representation of the sequence as the input of an additional classifier. Thanks
to the high level embedding yielded by the pretrained model, the added
classifier can be relatively simple, yet the overall system produce state-of-
the-art performances in terms of accuracy [44, 45].

The prediction of the masked tokens performed during pretraining is learned
through the minimization of the cross-entropy between the categorical pre-
diction yielded by the model and the one-hot vector representation of the
masked token. While particularly efficient at producing high-level represen-
tations for discrete sequences, the formulation proposed in the original article
does not allow an analogous task for continuous values. This is the case of
audio signals, for which the w2v-BERT model [46] proposes a way to adapt
the BERT approach to self-supervised speech representation learning.

w2v-BERT

The w2v-BERT model leverages the pretraining techniques from BERT and
applies it to audio signal contextual information extraction. One of the main
differences with the BERT approach is the lack of discrete tokens, preventing
the definition of a categorical cross-entropy to optimize the model. Therefore,
the w2v-BERT model jointly learns a quantization layer yielding discrete
targets given a continuous input. The discrete representation is then used as
target for the regular MLM loss. To avoid learning a degenerate quantizer

2.4. SEQUENCE MODELING 43

(i.e. yielding a single discrete value for all signals), a contrastive loss is added
to the model, as shown in Figure 2.21.

Input Features

Quantization

Convolutional
Subsampling

Linear

Conformer Blocks

Conformer Blocks

Conformer Blocks

Conformer Blocks

Masking

Target
Context Vectors Discretized ids

Contrastive Loss

MLM Loss

Context Vectors

Context Vectors

Encoded Features

MLM Stack

Contrastive
Stack

Feature Encoder

Figure 2.21: The w2vBERT architecture. The model is trained to opti-
mize two losses: a contrastive loss building a quantized representation and a
masked language modeling loss, similar to BERT. Figure taken from [46]

Similarly to the BERT model, the last layers of the trained w2v-BERT model
can be either fine-tuned or replaced in a supervised learning setup, yielding
state-of-the-art results in speech recognition [46].

44 CHAPTER 2. STATE-OF-THE-ART

2.5 Audio modeling

Deep generative models have shown great success at synthesizing images with
models capturing both high- and low-level features of a dataset [31, 32, 47].
However, the extension of such models to audio modeling is far from trivial.
Approaches addressing this task leverage different representations of audio
signals, including the raw waveform (Section 2.5.1), spectral representations
(Section 2.5.2) or leveraging classical synthesis techniques (Section 2.5.3).

2.5.1 Waveform models

While directly modeling the raw waveform using deep generative models
might look like the most straightforward approach, it is a rather daunting
task. As presented in Section 2.1.1, two audio signals with very different
waveforms can be perceptually identical, which renders loss computing ar-
duous. Indeed, penalizing a model for not producing a particular waveform
can be detrimental to the high-level task of generating a perceptually-similar
sound. Several approaches have addressed raw waveform modeling using
different formulations and methods that we present here.

Autoregressive approaches

One of the first approaches to raw waveform is autoregressive modeling. In
fact, phase alignment issues can be addressed by decomposing the probability
of a given signal x ∈ RT as a product of conditional probabilities following

p(x) =
T−1∏

t=0

p(xt|x<t), (2.39)

where xt is the value of the waveform at time step t, whereas x<t contains
all previous audio samples. Sampling from the resulting distribution p can
be achieved autoregressively by producing one audio sample at a time. This
is how both WaveNet [3] and SampleRNN [48] are parametrized. In par-
ticular, the authors of WaveNet propose an 8-bit quantization of the µ-law
transformed waveform defined as

f(x) = sng(x)
ln(1 + µ|x|)

ln(1 + µ)
. (2.40)

2.5. AUDIO MODELING 45

Using the µ-law transform is known to increase the SNR of an audio signal
going through a lossy quantization. This results in an audio waveform xq ∈
[0, 256]T sampled at 16kHz, which is modeled by WaveNet using a T × 256
categorical distribution. In practice, WaveNet is a strictly causal CNN taking
as input xq and producing an output l called logits. Logits are non-normalized
scores that can be normalized using a softmax function. The model is then
optimized using the cross entropy between the resulting distribution and the
ground-truth samples.

Figure 2.22: The WaveNet architecture. During sampling, each audio sample
is produced sequentially. Figure taken from [3]

At the time of its release, WaveNet was the state-of-the-art in terms of audio
quality and naturalness. The text-conditioned WaveNet yielded a state-of-
the-art Text-To-Speech (TTS) system outperforming by a large margin pre-
vious approaches. However, the autoregressive sampling procedure enforced
by the causal nature of the model results in extensive training and sampling
time1, as well as the need for large datasets.

Teacher-student model

As the long sampling time implied by autoregressive approaches precludes
their application to real-world use-cases, several works have studied the use

1Open source re-implementation of the model reported an average of 40 minutes of
computation per second of generated audio.

46 CHAPTER 2. STATE-OF-THE-ART

of Normalizing Flow (NF) to accelerate the generation process. Parallel
WaveNet [49] proposes the use of probability distribution distillation to train
an Inverse Autoregressive Flow [50]. In practice, their approach is composed
of two models based on the WaveNet [3] architecture. The first model, called
teacher, is an autoregressive WaveNet using a mixture of logistics as a replace-
ment for the categorical distribution, trained following the method described
in the original article. The second model, called student, follows the same
architecture but is trained using distillation. In practice, the student model
takes noise as input which is processed in parallel to yield a prediction. The
student model is trained to maximize the likelihood of its generations under
the pretrained teacher model. This approach is proposed in the context of
TTS, where a conditioning signal c is given to both models.

Once trained, the resulting student shows a perceptual quality similar to
the teacher, while being several orders of magnitude faster for sampling.
One problem of this approach is the complexity of the training process that
is highly unstable and, thus, hard to replicate. The Clarinet [51] model
proposes a simpler distribution parametrization for the teacher using a single
Gaussian instead of the mixture of logistics. This results in a more stable
training procedure, but still involves the training of two separate models.

WaveNet Teacher

WaveNet Student P (xi|z<i)

P (xi|x<i)

zi

Generated Samples

Student Output

Teacher Output

Input noise

Linguistic features

Linguistic features

xi = g(zi|z<i)

Figure 2.23: The Parallel WaveNet architecture. A pretrained teacher is
used to distill knowledge about audio into a student. Figure taken from [49]

2.5. AUDIO MODELING 47

Flow approaches

Following the success of NF models for image modeling, the authors of Wave-
Glow [52] and WaveFlow [53] propose a method for replacing the teacher
student distillation method by a single model trained using maximum log-
likelihood. They both use an architecture inspired from WaveNet and im-
plement the invertible mappings using respectively Coupling Flows [35] and
Masked Autoregressive Flows [54].

The resulting models show very strong performances in terms of perceptual
audio quality and generation speed, but their use of NF implies a large num-
ber of parameters to compensate for the limited expressivity of such invertible
mappings, as well as a long training time. However, the training stability is
greatly improved compared to the previous distillation approach.

Adversarial training

In order to address the computational complexity involved by NF, recent
works leverage adversarial training to synthesize high quality audio signals.
Both the melGAN [28] and hifiGAN [55] models use a feed-forward archi-
tecture upscaling a mel-scale spectrogram into the corresponding raw audio
waveform. Both approaches use the Hinge GAN formulation to train the
generator and the a set of several discriminators, defined as

Ldis = max(0, 1−D(xreal)) + max(0, 1 + D(yfake))

Lgen = −D(yfake). (2.41)

The melGAN model proposes the use of a feature matching loss between
the feature maps of the discriminator for the target and generated audio
signals. This can be seen as a learned perceptual metric ensuring that the
generations match the target signals perceptually [28]. In addition to this
loss, the hifiGAN model uses a multiscale spectral distance [56] to further
regularize the generator.

Both approaches use discriminators processing audio at different scales. The
multi-scale discriminator introduced by melGAN operates on progressively
down-sampled version of the audio signals, effectively processing different
scales of the waveform. The multi-period discriminator added by hifiGAN
reshapes the waveform from shape T to shape k×T/k, with k ∈ {2, 3, 5, 7, 11}
prior to being classified. This allows the model to focus on windows of signals

48 CHAPTER 2. STATE-OF-THE-ART

with varying period, eventually allowing the resulting model to match the
quality of the previously presented autoregressive approaches.

input waveform mel-spectrogram
encoder generator

discriminator

output waveform

real/fake

Figure 2.24: The melGAN [28] and hifiGAN [55] architectures. Both models
upscale an input mel-scale spectrogram into an audio waveform. Several
discriminators are applied to both the ground truth audio and the prediction
to increase the perceived audio quality.

2.5.2 Spectral models

One of the main challenges of waveform models is to properly handle the
phase of the audio signal. While some waveform approaches rely purely on
pretrained models [49, 52] or adversarial training [28], most leverage spectral
losses to stabilize the training or help with convergence [51, 55, 57]. In this
section, we present how deep audio modeling can be performed using spectral
representations as the base training signal.

Amplitude spectrograms

A natural decomposition of a complex spectrogram is obtained through the
computation of its amplitude and complex phase. This allows the definition
of simple losses on the spectral content of the signal without considering
phase alignment problems. The approach proposed in [58] is a VAE trained
on amplitude spectrograms. The phase is not taken into consideration dur-
ing training, thus the raw signal is estimated using the Griffin-Lim (GL)
algorithm [59]. Compared to waveform models, their approach allows fast
training on a smaller dataset. However, their use of the iterative GL algo-
rithm for phase estimation yields audio examples with a poor audio quality.

The application of large autoregressive models to spectrogram modeling is
proposed in the MelNet model [60]. This approach uses several RNN models

2.5. AUDIO MODELING 49

to autoregressively predict mel-scale spectrograms using a multi-scale hier-
archical approach. Using text-conditioning, they obtain a competitive TTS
system in terms of prosody and temporal coherency. However, their approach
is still limited by the use of GL, resulting in low-quality audio predictions.

Complex spectrograms

As relying on phase estimation algorithms is a bottleneck for audio quality,
models like GANSynth [61] propose an approach to generate both the ampli-
tude and phase of spectrograms. Considering the chaotic nature of the phase
component, they do not generate it directly but rather produce a prediction
for the instantaneous frequencies of the spectrogram, defined as the temporal
derivative of the unrolled phase, as shown in Figure 2.25.

(a) Amplitude (b) Phase (c) Unrolled phase

(d) Instantaneous frequency

Figure 2.25: Comparison of several phase spectrogram representations. The
original phase has a chaotic behavior, while the derivative of the unrolled
phase has some structure.

The architecture of GANSynth is inspired by progressiveGAN [32], more
specifically the progressive growing training method allowing a more stable
training. Overall, their approach outperforms previous phase estimation al-
gorithms, but their use of the derivative of the unrolled phase discards its
initial value. Therefore, audio signals where a precise phase alignment is
needed (e.g. percussive sounds) are not correctly reconstructed.

50 CHAPTER 2. STATE-OF-THE-ART

2.5.3 Hybrid models

Whether the audio representation used is raw or spectral, the need to prop-
erly model the phase is crucial to synthesize high-quality audio signals. A
third class of audio generative models address this problem by modeling the
parameters of classical synthesizers instead of using audio signals directly.
The FlowSynth model [62] combines a VAE and Normalizing Flows (NFs)
to produce a mapping between the perceptual latent distribution learned by
the VAE and the parameter space of the synthesizer used, as shown in Fig-
ure 2.26. This allows to abstract the complexity of synthesizer parameters
through the exploration of a perceptual space. Interestingly, the model can
be used to infer synthesizer parameters given an input sound. Hence, fur-
ther modification of the synthesized signal can be achieved through a manual
tweaking of the synthesizer.

zencoder decoder

p synthesizer

Figure 2.26: FlowSynth architecture. The perceptual distribution learned by
the VAE is mapped to the synthesizer parameter space using NFs.

The approach proposed by FlowSynth leverages the synthesizer as a black-
box whose outputs are conditioned on a set of parameters. Therefore, the
exact relationship between the synthesizer parameters and the output signals
are never exploited during training. The authors of Differentiable Digital Sig-
nal Processing (DDSP) [56] propose to instead integrate classical synthesizer
blocks directly inside the computational graph of the model. By using dif-
ferentiable operators, they allow the learning of the synthesizer parameters
through losses in the audio domain, while abstracting the complexity of audio
modeling. In practice, the DDSP model is composed of a harmonic synthe-
sizer, a noise synthesizer, and a reverb module, as shown in Figure 2.27.

The DDSP model is conditioned on the pitch and loudness of the input signal,
as well as an optional context vector yielded by an encoder. In order to train

2.5. AUDIO MODELING 51

Figure 2.27: The DDSP [56] architecture. Pitch and loudness are extracted
from an input audio signal, and are used to drive a harmonic plus noise
synthesizer. Figure taken from [56]

the model, they propose a distance called Multi Scale Spectral Distance, which
is defined as

S(x,y) =
∑

n∈N

∥STFTn(x)− STFTn(y)∥F
∥STFTn(x)∥F

+

log (∥STFTn(x)− STFTn(y)∥1) , (2.42)

where ∥.∥F is the Frobenius norm, and N = {64, 128, 256, 512, 1024, 2048}.
The resulting model is lightweight and can be trained on a small dataset (e.g.
the length of the dataset used in the experiments is approximately 15mn).

Overall, both FlowSynth and DDSP are relatively lightweight and can pro-
duce high quality sounds by avoiding modeling the audio directly. However,
in contrast with previous waveform or spectral methods, both models are
constrained by the synthesizer used during training, and thus cannot gener-
alize to arbitrary types of signal.

52 CHAPTER 2. STATE-OF-THE-ART

We are to admit no more
causes of natural things than
such as are both true and
sufficient to explain their
appearances.

Isaac Newton

Chapter 3

Audio representation learning

As described in the previous chapter, modeling high-quality audio signal is a
complex task for many reasons, from the complexity of raw waveforms them-
selves to the numerous audio scales involved in their creation (e.g. timbre
features to musical genre or speaker identity). Using large models to pro-
cess all scales at once is possible, as previously achieved by models such as
WaveNet [3] or SampleRNN [48]. However, this straightforward approach
has issues. Compromises on the audio quality are made to allow a proper
convergence of the model, implying the use of low sampling rates and reso-
lutions. Furthermore, the computational complexity of the resulting system
makes the autoregressive sampling method prohibitively slow, resulting in
hours of computation for seconds of generation.

The approach proposed in JukeBox [4] involves a hierarchical modeling of the
raw waveform using audio auto-encoders with variable temporal compression
ratio. To maintain a reasonably high audio quality, they use small temporal
compression factors (i.e. 8x, 32x and 128x) producing a latent representation
of the raw waveform later modeled by a Transformer model [23]. They rely on
three separate transformer models to autoregressively predicts latents from
each auto-encoder, conditioned on the previous level. As the small compres-
sion ratio of the autoencoders yield large sequences, the authors report an
average of 9 hours of computation for a single minute of generation. While
the performances of the model are impressive, the computational complexity
of the generation process prevents any creative use of the model.

Therefore, a key feature of our proposal is to produce a compact learned rep-
resentation, with a latent sampling rate low enough to ease the downstream
temporal modeling task. We hypothesize that a better balance between the

53

54 CHAPTER 3. AUDIO REPRESENTATION LEARNING

complexity of the audio model and the temporal model is crucial to reach a
generative model both high quality and fast enough to allow interaction with
the user. A counter-example of this balance is the huge difference in com-
plexity between the audio model (∼ 2M parameters) and temporal model
(∼ 5B parameters) of JukeBox. We depict in Figure 3.1 a block-diagram of
our overall approach.

encoder decoder
z1

z2

z3

z4

[z1, z2, z3, z4]

prior

z5 ?

autoregressive
generation

loop

Figure 3.1: Overall hierarchical model proposed. Instead of directly learning
the temporal behavior of an audio signal, we propose to use representation
learning to produce a high level compact representation zt. The temporal
model (or prior) then learns the behavior of the audio signal based on the
latent trajectories.

We address the problems stated above by introducing the Realtime Audio
Variational autoEncoder (RAVE) model, a VAE built specifically for fast
and high-quality audio synthesis. We introduce in Section 3.1 a specific two-
stage training procedure where the model is first trained as a regular VAE
for representation learning, then fine-tuned with an adversarial generation
objective in order to achieve high-quality audio synthesis. We combine a
multi-band decomposition of the raw waveform alongside classical synthesis
blocks inspired by [56], allowing to achieve high-quality audio synthesis with
sampling rates going up to 48kHz without a major increase in computational
complexity. Our model is designed to have a high temporal compression ratio,
that we render even further efficient by introducing a method to split the
latent space between informative and uninformative parts using a singular
value decomposition.

3.1. RAVE 55

3.1 RAVE

Ideally, the representation learned by a variational autoencoder should con-
tain high-level attributes of the dataset. However, two perceptually similar
audio signals may contain subtle phase variations that produce dramati-
cally different waveforms. Hence, estimating the reconstruction term in the
ELBO (see equation (2.25)) using the raw waveform penalizes the model if
those subtle variations are not included in the learned representation. This
might both hamper the learning process and include in the latent space those
low-level variations about audio signal that are not relevant perceptually. To
address this problem, we split the training process in two stages, namely
representation learning and adversarial fine-tuning.

Encoder DecoderPQMF
analysis

PQMF
synthesisLatents

Encoder DecoderPQMF
analysis

PQMF
synthesisLatents

Discriminator

Spectral
Distance

Stage 1

input output

Stage 2

Representation Learning

Adversarial fine-tuning

Figure 3.2: Overall architecture of the proposed approach. Blocks in blue
are optimized, while blocks in grey are fixed or frozen operations.

3.1.1 High-resolution audio modeling

Learning a high-quality model is challenging as the temporal complexity
of an audio signal makes it hard to be both globally coherent and locally
detailed. Therefore, we leverage two techniques to achieve high-quality mod-
eling, namely a two-stage training scheme and a multiband decomposition of
the raw waveform.

Two-stage representation learning

The first stage of our procedure aims to perform representation learning. We
leverage the multiscale spectral distance S(·, ·) proposed by [56] in order to
compare real and synthesized waveforms, such that

56 CHAPTER 3. AUDIO REPRESENTATION LEARNING

S(x,y) =
∑

n∈N

∥STFTn(x)− STFTn(y)∥F
∥STFTn(x)∥F

+

log (∥STFTn(x)− STFTn(y)∥1 + 1) , (3.1)

where N is a set of scales, STFTn is the amplitude of the Short-Term Fourier
Transform with window size n and hop size n/4, and ∥ · ∥F , ∥ · ∥1 are respec-
tively the Frobenius norm and L1 norm. Using an amplitude spectrum-based
distance does not penalize the model for inaccurately reconstructed phase,
but encompasses important perceptual features about the signal. We train
the encoder and decoder with the following loss derived from the ELBO

Lvae(x) = Ex̂∼p(x|z)[S(x, x̂)] + β ×DKL[qϕ(z|x)∥p(z)], (3.2)

We start by training the model solely with Lvae, and once this loss converges,
we switch to the next training phase.

The second training stage aims at improving the synthesized audio qual-
ity and naturalness. When the reconstruction loss stabilizes, we freeze the
encoder and only train the decoder using an adversarial objective.

GANs are implicit generative models allowing to sample from a complex
distribution by transforming a simpler one, called the base distribution. Here,
we use the learned latent space in the first stage as the base distribution, and
train the decoder to produce synthesized signals similar to the real ones by
relying on a discriminator D. We use the hinge loss version of the GAN
objective, defined as

Ldis(x, z) = max(0, 1−D(x))+

Ex̂∼p(x|z)[max(0, 1 + D(x̂))],

Lgen(z) = −Ex̂∼p(x|z)[D(x̂)]. (3.3)

In order to ensure that the synthesized signal x̂ does not diverge too much
from the ground truth x, we keep minimizing the spectral distance defined
in Equation (5.4), but also add the feature matching loss LFM proposed by
[28]. Altogether, this yields the following objective for the decoder

Ltotal(x, z) = Lgen(z) + Ex̂∼p(x|z)[S(x, x̂) + LFM(x, x̂)]. (3.4)

3.1. RAVE 57

3.1.2 Representation dimensionality estimation

The loss proposed in Equation (3.2) contains two terms, a reconstruction
and regularisation term. Those two terms are somewhat conflicting, since
the reconstruction term maximises the mutual information between the la-
tent representation and the data distribution, while the regularisation term
guides the posterior distribution towards independence with the data (po-
tentially causing posterior collapse). In practice, the pressure applied by the
regularisation term to the encoder during training encourages it to learn a
compact representation, where informative latents have the highest KL di-
vergence from the prior, while uninformative latents have a KL divergence
close to 0 [26].

Here, we address the task of identifying the most informative parts of the
latent space in order to restrict the dimensionality of the learned represen-
tation to the strict minimum required to reconstruct a signal. To do so, we
adapt the method for range and null space estimation to this problem. Let
Z ∈ Rb×d be a matrix composed of b samples z ∈ Rd, where z ∼ qϕ(z|x). Us-
ing a Singular Value Decomposition (SVD) directly on Z to solve the problem
of finding informative parts of the latent space would not be relevant given
the high variance present in the collapsed parts of Z. In order to adapt this to
our problem, we first remove the variance from Z, by considering the matrix
Z′ ∈ Rb×d that verifies

Z′
i = argmax

z
qϕ(z|x), (3.5)

Hence, dimensions of the posterior distribution qϕ(z|x) that have collapsed
to the prior p(z) will result in a constant value in Z′, that we set to 0 by
removing the average of Z′ across the first dimension. The only dimensions
of Z′ with non-zero values are therefore correlated with the input, which
constitute the informative part of the latent space. Applying an SVD on this
centered matrix, we can obtain the matrix Σ containing the singular values
of Z′, by computing

Z′ = UΣVT, (3.6)

The rank r of Z′ is equal to the number of non-zero singular values in Σ.
Given the high variation that exists in real-world data, it is unlikely that the
vanishing singular values of Z′ are equal to 0. Therefore, instead of tracking
the exact rank r of Z′, we define a fidelity parameter f ∈ [0, 1], with the
associated rank rf defined as the smallest integer verifying

58 CHAPTER 3. AUDIO REPRESENTATION LEARNING

∑
i≤rf

Σii∑
i Σii

≥ f. (3.7)

Given the fidelity value f , and a latent representation z ∼ qϕ(z|x), we reduce
the dimensionality of z by projecting it on the basis defined by VT and keep
only the rf first dimensions. We obtain a low-rank representation zf , whose
dimensionality depends on both the dataset and f . Before providing zf to
the decoder, we concatenate it with noise sampled from the prior distribu-
tion, and project it back on its original basis using V. We demonstrate in
Section 3.1.4 the influence of f on the reconstruction.

3.1.3 Experiments

Encoder

We define our encoder as the combination of a multiband decomposition
followed by a simple convolutional neural network, transforming the raw
waveform into a 128-dimensional latent representation. In practice, the en-
coder of RAVE is a convolutional neural network with leaky ReLU activation
and batch normalization (see Figure 3.3). For all of our experiments we use
N = 4, with hidden sizes [64, 128, 256, 512] and strides [4, 4, 4, 2]. The full
latent space has 128 dimensions.

Conv1d BatchNorm1d Leaky
ReLU

x N

audio in multiband
decomposition

Conv1d

Conv1d softplus

mean

variance

Figure 3.3: Architecture of the encoder used in the RAVE model.

Decoder

Our decoder is a modified version of the generator proposed by [28]. We
show in Figure 3.4 and 3.5 details about the architecture of the decoder.
We use the same alternation of upsampling layers and residual networks,
but instead of directly outputting the raw waveform we feed the last hidden
layer to three sub-networks. The first sub-network (waveform) synthesizes
a multiband audio signal (with tanh activation), which is multiplied by the
output of the second sub-network (loudness), generating a single amplitude

3.1. RAVE 59

envelope (with sigmoid activation) for all bands. The last sub-network is
a noise synthesizer as proposed in [56], and produces a multi-band filtered
noise signal that is added to the previous signal before being re-composed
into a single-band signal using the PQMF bank.

We found that using an explicit amplitude envelope helps reducing artifacts
in the silent parts of the signal, while the noise synthesizer slightly increases
the reconstruction naturalness of noisy signals (see Section 3.1.4 and 3.1.4).

waveform
conv

loudness
conv

noise
synthesizer

upsampling
layer

residual
stack

latent
representation

x N

x + audio out

Figure 3.4: Overview of the proposed decoder. The latent representation
is upsampled using alternating upsampling layers and residual stack. The
result is processed by three sub-networks, respectively producing waveform,
loudness envelope and filtered noise signals.

Conv
Transpose1d

leaky
ReLU

(a) Upsampling layer

leaky
ReLU +Conv1d

x 2

x 3

(b) Residual stack

Conv1d leaky
ReLU

x N

filter

white noise

filtered noise out

(c) Noise synthesizer

Figure 3.5: Detailed architecture of the decoder blocks used in RAVE.

60 CHAPTER 3. AUDIO REPRESENTATION LEARNING

Discriminator

We use the same discriminator as in [28], which is a strided convolutional
network applied on different scales of the audio signal to prevent artifacts.
We also use the same feature matching loss as in the original paper.

Training

We follow the training procedure proposed in Section 3.1, and train RAVE
for 3M steps, specifically 1.5M steps for each stage, summing to a total
of approximately 4 days on a single Titan V GPU. Spectral distances are
computed both before and after the multi-band decomposition, and we use
a cyclic annealing schedule for the regularization term in Equation 3.2, as
proposed in [63]. We use the ADAM optimizer [10] with a learning rate of
10−4, β = (0.5, 0.9), and batch size of 8. Audio samples are 1.5s long sampled
at 48kHz, and we use dequantization, random crop and allpass filters with
random coefficients as our data augmentation strategy. We experiments with
a various number of bands in the multiband decomposition, and eventually
settle on K = 16.

Baselines

We evaluate RAVE in the context of unsupervised representation learning.
We compare it against two state-of-the-art models: an unsupervised NSynth
[64] and the autoencoder from SING [65] for both 16kHz and 48kHz modeling.
We use the official 16kHz implementations for both baselines, and increase
their capacity and receptive field when modeling 48kHz audio signals. We
down-sample RAVE generations from 48kHz to 16kHz for a fair comparison
with the 16kHz baselines.

Ablations

In order to evaluate the impact on synthesis quality of our 2-stage training
strategy as well as modifications applied to the decoder, we train two variants
of the RAVE model, one without adversarial fine-tuning, the other without
noise synthesizer. We evaluate those variants together with the full RAVE
and the baselines both for the perceptual test (see Section 3.1.4) and recon-
struction error (see Section 3.1.4). We also demonstrate the importance of
freezing the encoder during the second stage of training in Section 3.1.4.

3.1. RAVE 61

Datasets

We use two internal datasets composed of respectively 30 hours of various
strings recordings and 10 hours of darbouka recordings, both sampled at
48kHz. We employ a 90/10 train/test split. In addition, we use the Voice
Conversion ToolKit (vctk) [66] dataset, using the same sampling rate and
train/test split.

3.1.4 Results

Synthesis quality

We compare the synthesis quality of different models reconstructing audio
samples from the darbouka dataset. During the qualitative experiment, par-
ticipants were asked to rate audio samples on a scale of 1 (bad) to 5 (perfect).
The test consisted in 12 trials, each presenting an audio sample from the dar-
bouka test set alongside its reconstruction by all models. Participants were
given either exclusively 16kHz or 48kHz samples during the entire test. A
total of 44 participants took the test. We show in Table 3.1 that RAVE has
a higher Mean Opinion Score (MOS) than the baselines while maintaining a
significantly lower number of parameters. The ablation study of the adver-
sarial fine-tuning shows how important this stage is in achieving high quality
audio synthesis, especially for 48kHz signals

Model 16kHz 48kHz #Params (16/48)

Ground truth 4.31 4.42 -

NSynth 2.36 2.69 64.7M / 103M
SING 2.68 2.92 80.8M / 101M

RAVE w/o adv 2.23 1.94 18.1M
RAVE w/o noise 3.77 3.97 17.2M
RAVE 3.96 4.03 18.1M

Table 3.1: Reconstruction quality (Mean Opinion Score)

As we can see, RAVE outperforms both NSynth and SING in terms of audio
quality while having at least 5 times less parameters. The adversarial stage is
responsible for a large increase in the assessed audio quality, demonstrating
its crucial importance for obtaining high-quality audio generation. On the
other hand, the addition of the noise synthesizer has a more subtle effect,
but still increases the overall quality of RAVE synthesized signals. There is
still a gap in the evaluation between the ground truth and the other models.
This might come from the difficulty of modeling the variety of room acoustics

62 CHAPTER 3. AUDIO REPRESENTATION LEARNING

conditions present in the original dataset (as discussed in [56]), sometimes
making it obvious that the evaluated samples are synthesized.

Reconstruction error

We evaluate the reconstruction error for all models using two metrics: the
perceptually relevant Just Noticeable Difference (JND) score proposed in
[67] and a L2 distance using amplitude mel-scale spectrograms. We report
all results in Table 3.2.

Model JND Spectral

NSynth 2.51 9.54
SING 2.21 7.47

RAVE w/o adv 2.06 2.92
RAVE w/o noise 1.90 3.35
RAVE 1.54 3.26

Table 3.2: Reconstruction error (lower is better)

NSynth has the highest reconstruction error of all models, which is to be
expected given that it has not been trained to minimize any kind of distance
between its input and output. SING on the other hand is trained using
a spectral distance, but is still outperformed by every variants of RAVE
for both metrics. Removing the adversarial fine-tuning yields the RAVE
model with the smallest spectral distance, but the highest JND score, which
is to be expected since it has been trained using only a spectral distance.
Enabling adversarial fine-tuning and adding the noise synthesizer increases
the spectral distance, but lowers the JND score, demonstrating how input
and reconstructed signals are perceptually closer to each other when using
the full RAVE model.

Synthesis speed

Several approaches using NF [52] or GAN [28] can achieve faster than realtime
synthesis, but only by relying on GPUs. Other approaches make strong
assumptions about the signal in order to simplify the generation process
[56, 68], allowing real-time synthesis on CPU by restricting the range of
audio signals that can be modeled. In Table 3.3, we evaluate the synthesis
speed of all models on both CPU and GPU. Synthesis speed is calculated as
the average number of audio samples generated per second for 100 trials.

3.1. RAVE 63

Model CPU GPU

NSynth 18Hz 57Hz
SING 304kHz 9.8MHz

RAVE w/o multiband 38kHz 3.7MHz
RAVE 985kHz 11.7MHz

Table 3.3: Comparison of the synthesis speed for several models

Being the only model relying on autoregressive synthesis, NSynth is also the
slowest, peaking at 57Hz during generation. As expected, the parallel nature
of SING and RAVE makes them several orders of magnitude faster than
NSynth. The addition of the multiband decomposition speeds up RAVE by
a factor of 25, allowing our model to outperform SING on both CPU and
GPU. Overall, we obtain audio synthesis at 48kHz with a 20× faster than
realtime factor on CPU, and up to 240× on GPU.

Balancing compactness and fidelity

Having a compact learned representation has several benefits, since it is easier
to analyse, manipulate and understand. However, it usually comes at the
expense of trading off the reconstruction quality. Instead of determining
the latent space dimensionality prior to the training, we rely on the fidelity
parameter f to estimate it post-training and accordingly crop the learned
representation, as explained in Section 3.1.2.

In Figure 3.6, we compute the relationship between f and the estimated
number of dimensions rf for both the strings and vctk datasets. We depict
the influence of f on the reconstruction quality by measuring the spectral
distance (see Equation 5.4) between sample and reconstruction

By setting f = 0.99, the dimensionality of the learned representation drops
from 128 to just 24 on the strings dataset and 16 on the vctk dataset. The
downsampling factor of the encoder is 2048, resulting in a latent represen-
tation sampled at ∼ 23Hz. Further decreasing f results in a higher spectral
distance as shown in Figure 3.6 (right), but significantly reduces the learned
representation size. As the fidelity parameter decreases, reconstructed sam-
ples get less accurate, loosing parts of their attributes such as phonemes or
speaker identity.

Compared to previous approaches combining VAE and GANs, there are no
adversarial losses involved when training the encoder. We demonstrate in

64 CHAPTER 3. AUDIO REPRESENTATION LEARNING

0.0 0.2 0.4 0.6 0.8 1.0
fidelity

100

101

di
m

en
sio

n
nu

m
be

r
strings
vctk

0.0 0.2 0.4 0.6 0.8 1.0
fidelity

0.7

0.8

0.9

1.0

1.1

sp
ec

tra
l d

ist
an

ce

strings
vctk

Figure 3.6: Estimated latent space dimensionality according to the fidelity
parameter and its corresponding influence on the reconstruction quality.

Figure 3.7 how training the encoder to minimize the feature matching loss as
proposed by [69] during the second stage results in a dramatically increased
estimated latent space dimensionality, which goes against our objective of
building a compact and perceptually relevant representation.

0.0 0.5 1.0 1.5 2.0
Iteration number 1e6

0

20

40

60

La
te
nt
 d
im

en
sio

na
lit
y f=0.80

f=0.90
f=0.95
f=0.99

(a) Frozen encoder

0.0 0.5 1.0 1.5 2.0
Iteration number 1e6

0

20

40

60

La
te
nt
 d
im

en
sio

na
lit
y f=0.80
f=0.90
f=0.95
f=0.99

(b) Trained encoder

Figure 3.7: Comparison of the estimated latent space dimensionality for
two trainings of RAVE on the Strings dataset with and without freezing the
encoder during the adversarial fine tuning stage (starting at 1.106 iterations).

Timbre transfer

We demonstrate that RAVE can be used to perform domain transfer even
if it has not been specifically trained to address this particular task. We
perform domain transfer by simply providing to a pretrained RAVE model
audio samples coming from outside of its original training distribution (e.g.

3.1. RAVE 65

violin samples are reconstructed with a model trained on speech).

(a) Transfer from strings to vctk (b) Transfer from vctk to strings

Figure 3.8: Example of timbre transfer using RAVE.

High-level attributes such as the overall loudness and the fundamental fre-
quency of the harmonic components are kept after performing domain trans-
fer. Other audio attributes such as formants are absent in the examples
coming from the strings dataset, and are added by the model in the speech-
transfered version.

However, there are no guarantees that the encoder will encode signals from
an out-of-domain distribution into a latent representation that matches the
prior. We empirically evaluate the KL divergence of two trained RAVE
models for in and out-of-domain data distributions, and report the results in
Table 3.4.

RAVE strings RAVE VCTK

data from strings 0.11± 0.09 0.16± 0.11
data from VCTK 0.24± 0.37 0.09± 0.02

Table 3.4: KL divergence from the prior for in and out-of-domain data

Unsurprisingly, the smallest KL divergences are observed when encoding
data sampled from the training distribution, while encoded out-of-domain
signals roughly double the KL divergence. Stronger transfer abilities may
be achieved by integrating a domain adaptation technique such as the one
proposed by [70] or [71].

Latent manipulation

One of the main advantages of using VAEs compared to other generative
frameworks is that one can alter the reconstruction of a sample manipu-
lating its latent representation, effectively transforming high-level attributes
of the data. We demonstrate in Figure 3.9 how biasing a single dimension
from the representation learned with RAVE leads to impactful changes in

66 CHAPTER 3. AUDIO REPRESENTATION LEARNING

the reconstructed sound. In this particular example, there is a strong corre-
lation between the first two dimensions of the latent representation and the
amplitude and spectral centroid of the signal.

0 1 2 3 4 5
Time (s)

80

70

60

50

40

30

20

Am
pl

itu
de

 (d
BF

S)

input
rec 1
rec 2

0 1 2 3 4 5
Time (s)

1000
2000
3000
4000
5000
6000
7000
8000

Ce
nt

ro
id

 (H
z)

input
rec 1
rec 2

Figure 3.9: Amplitude and spectral centroid of two reconstructions of an
input drum sample with altered latent representations. Rec 1 (resp. 2) has
its first (resp. second) latent dimension set to a ramp linearly increasing
from -2 to 2 over time.

Latent component collapse

The regularization term in Equation 3.2 applies a pressure on the encoder
to produce a posterior distribution that is close to the prior and, therefore,
not correlated with the input data. Since this objective is contrary to the
reconstruction objective, it has been empirically shown by [26] that some
latents are more informative than others, as it can be seen in Figure 3.10 in
the case of RAVE.

For both datasets, most of the latents have a low KL divergence (lower than
0.01), and only a few (respectively 16 and 9 for the strings and VCTK
datasets) have a KL divergence higher than 0.1, which is consistent with
the dimensionality estimated by the method proposed in Section 3.1.2 for a
fidelity parameter f = 0.95.

3.2 Alternative latent regularization

In this section, we study alternatives to the KL divergence in Equation (2.25)
as a regularization term, using approaches inspired from Wassertein AEs [72]
and Vector Quantized Variational Auto Encoders (VQ-VAEs) [73].

3.2. ALTERNATIVE LATENT REGULARIZATION 67

0 25 50 75 100 125
latent component number

10−2

10−1

100

di
ve

rg
en

ce
 fr
om

 p
rio

r

(a) Strings dataset

0 25 50 75 100 125
latent component number

10−3

10−2

10−1

100

di
ve

rg
en

ce
 fr
om

 p
rio

r
(b) VCTK dataset

Figure 3.10: Mean Kullback-Leibler divergence for each latent component
between the posterior distribution qϕ(z|x) estimated over the test set of the
strings and VCTK datasets and the prior distribution.

3.2.1 Wassertein regularization

The use of the ELBO puts a lot of pressure on the representation learned by
a VAE. This is mainly due to the regularization being applied between two
distributions of different natures: the estimated posterior qϕ(z|x) and prior
p(z). This may eventually be the cause of posterior collapse, which is the
extreme case where qϕ(z|x) = qϕ(z) = p(z).

An alternative regularization technique introduced in [72] evaluates the diver-
gence between the aggregated posterior

∫
x
qϕ(z|x) and the prior distribution,

effectively lifting the independence constraint imposed by the ELBO. They
propose the use of the Maximum Mean Discrepancy (MMD) between the
posterior and a normal distribution as a regularization strategy. Formally,
the MMD between two distributions qϕ, p is defined as

MMD2(qϕ, p) = Ep[k(x,x)]Eqϕ [k(y,y)]− Ep,qϕ [k(x,y)] (3.8)

where k is a positive definite reproducible kernel. We use the Radial Basis
Function (RBF) kernel as defined in [72].

We adapt RAVE to include this regularization technique. In practice, we use
a deterministic encoder and compute the MMD between an encoded batch
of examples and noise sampled from a normal distribution of the same size.
We decrease the latent size down to the number of informative dimensions
estimated for a RAVE regularized with a KL divergence and trained on the
same dataset.

68 CHAPTER 3. AUDIO REPRESENTATION LEARNING

3.2.2 Discrete prior

Using a categorical or discrete prior over the representation learned by a VAE
is introduced in [73]. Their Vector Quantized Variational Auto Encoder (VQ-
VAE) shows impressive compression abilities, combining benefits of having an
indexed representation with an arbitrary large latent space. They introduce
a quantization layer associated with a codebook C composed of V individual
D-dimensional vectors. Their encoder yields a continuous D-dimensional
vector zc, quantized to its discrete counterpart zq by selecting the closest
vector in C. As this operation is not differentiable, the quantization layer
is ignored during the backpropagation of the gradients. A popular method
to optimize the codebook during training is achieved through Exponential
Moving Average (EMA) of each of its elements to the closest continuous
vector of an encoded batch. If at some point during training an element of
the codebook has not been used for a given number of training iterations, it
is re-initialized as a random vector from the encoded batch.

Residual Vector Quantization (RVQ) is introduced in [74] as a way to in-
crease the complexity of the discrete representation without increasing the
number of entries in a given codebook. They instead introduce a number
Q of quantizers Vq, each one of them quantizing the discretization error of
the previous layer. Formally, given a continuous latent vector z, the q vector
quantized latent representations zq representations are defined as

z0 = V0(z)

zq = Vq

(
z−

q−1∑

k=0

zk

)
. (3.9)

We show in Figure 3.11 the differences between regular Vector Quantization
(Q = 1) and RVQ (Q > 1).

We implement RVQ and add it to RAVE as an alternative to the previous
continuous priors. We propose to use a number of quantizers Q equal to the
number of informative latent dimensions estimated for a continuous training
on the same dataset. While the size of the discrete latent space is significantly
larger (D = 512), the indexed representation is a discrete tensor with shape
Q×T , which motivates us to take Q = rf (see Section 3.1.2). As proposed in
[74], we use quantizer dropout, randomly sampling the number of quantizers
Q during training.

3.2. ALTERNATIVE LATENT REGULARIZATION 69

2 1 0 1 2 3 4
3

2

1

0

1

2

3

4
z
q
zq

(a) Q = 1

2 1 0 1 2 3 4
3

2

1

0

1

2

3

4
z
q 0
q 1
q 2
zq

(b) Q = 3

Figure 3.11: Vector Quantization takes a continuous vector z and yields the
element of its codebook C closest to z. Residual Vector Quantization (RVQ)
repeats the operation on the discretization error, refining at each step the
quantization of z.

3.2.3 Results

We evaluate the performances of all three regularization techniques (i.e.
ELBO, MMD and RVQ) according to metrics reflecting both reconstruc-
tion performances and divergence from the prior. We evaluate the recon-
struction abilities of all models using the spectral distance defined in Equa-
tion (2.42). Regarding the evaluation of the regularization, we estimate the
KL divergence between an approximation qν(z) of the aggregated posterior
distribution

∫
x
qϕ(z|x) and the prior distribution p(z). Given that the nature

of the considered distributions are different (continuous versus categorical),
we define different approximations of the aggregated posterior distribution
depending on whether z is continuous or discrete.

Continuous prior. We use a mixture of Gaussian as a model for
∫
x
qϕ(z|x)

with 48 independent components. We use the resulting model to draw ran-
dom samples used for a Monte-Carlo estimation of the KL divergence between
qν(z) and p(z), following

DKL [qϕ(z)∥p(z)] ≈ DKL [qν(z)∥p(z)] = Ez∼qν(z)

[
log

qν(z)

p(z)

]
. (3.10)

Discrete prior. An estimation qϕ(z) of the aggregated posterior distribu-
tion can be computed from the codebook usage statistics over the dataset.

70 CHAPTER 3. AUDIO REPRESENTATION LEARNING

We therefore obtain Q independent explicit categorical distributions. Given
that we consider a uniform prior distribution p(z) = U(0, N), we can compute
its KL divergence with the aggregated posterior distribution following

DKL [qϕ(z)∥p(z)] ≈ DKL [qν(z)∥p(z)] = logN −H(qν), (3.11)

where H(qν) is the entropy of qν .

We train all models up to convergence on the VCTK dataset [75]. Both
the reconstruction and regularization evaluations are performed using the
validation set, and we report the results in Table 3.5.

Regularization Reconstruction (↓) Regularization (↓)
KL 1.22 0.78
MMD 0.71 2.67

RVQ 0.87 1.89

Table 3.5: Evaluation of reconstruction and regularization metrics for three
RAVE models with different regularization methods.

Unsurprisingly, the RAVE trained with the KL regularization yields the high-
est reconstruction error of all variants, as it is the only training objective
with fundamentally conflicting terms. Using the MMD as the regularization
strategy yields the lowest reconstruction score, yet the aggregated posterior
distribution shows the largest differences with the prior distribution. The
discrete RAVE variant has reconstruction scores that are close to the MMD
model, while matching its categorical prior more closely.

Choosing the regularization method for a given training depends on the target
usage of the model. Applications where reconstruction accuracy is important
should rely on either RVQ or MMD, while the KL method is a better fit for
generative tasks.

In the strict formulation of
the law of causality—if we
know the present, we can
calculate the future—it is not
the conclusion that is wrong
but the premise.

Werner Heisenberg

Chapter 4

Temporal learning

Variational Auto Encoders (VAEs) can be used to extract high-level features
about a high-dimensional input dataset, resulting in a simpler representation
easing both the analysis and manipulation of data [24]. When the model is
built in such a way that the latent representation associated with an exam-
ple is a single vector in RD, generating new examples using the model can
be achieved by sampling from the prior distribution p(z) and decoding the
resulting latent vector z. However, fully convolutional models such as RAVE
[76] instead encode audio signals into trajectories living in RT×D, where T
(resp. D) is the number (resp. dimensionality) of individual latent time
steps. While sampling from the prior distribution is still feasible, there are
no guarantees that the resulting samples will preserve any temporal structure
between time steps. A way to address this problem is to learn a second model
q̂ν responsible for estimating the temporal behavior of variables sampled from
the following aggregated prior distribution

q̂ν(z) ∼ qϕ(z) := Ex∼X [qϕ(z|x)] . (4.1)

The resulting model q̂ν(z) is called a prior model. Learning prior models
give rise to a large number of applications, such as unconditional generation,
continuation, outlier detection, conditional exploration, and many others. In
this chapter, we study how approaches from the natural language processing
literature can be applied to address this task. In Section 4.1 we study the
use of different RAVE variants as a base model. We present the challenges of
modeling and sampling from a multivariate temporal distribution, and briefly
recall the current methods addressing this task in Section 4.2. In Section 4.3,

71

72 CHAPTER 4. TEMPORAL LEARNING

we propose three methods improving the theoretical computational efficiency
of prior models on multivariate sequences. We implement in Section 4.4 three
types of neural networks (i.e. recurrent, convolutional and transformer), and
test different conditioning methods and computational optimization tech-
niques. We finally present our experimental setup in Section 4.5 and the
corresponding results in Section 4.6.

4.1 Continuous vs discrete latents

In this chapter, we rely extensively on the previously presented RAVE model
(see Section 3.1) to extract a compact representation from a given audio
dataset. While RAVE initially provides a continuous latent representation
based on an input audio signal, we have shown in Section 3.2.2 that it can
be adapted to yield a discrete representation. This is particularly useful
when considering the NLP literature, where a given sequence is defined as
a one-dimensional integer-valued tensor. As an alternative to directly using
a discrete representation, previous work [3] successfully applied categorical
models on continuous variables through the use of an intermediate discretiza-
tion stage. However, discretizing a continuous variable inevitably comes at
the expense of a loss of precision, or quantization error. Quantization us-
ing a non-linear spacing of quantized bins can be useful to decrease those
errors by allocating more quantization bins where the continuous variable is
denser. Given a continuous random variable x ∼ p(x) ∈ R, such a non-linear
quantization can be obtained using its cumulative distribution function

Fx(y) = p(x ≤ y). (4.2)

Applying Fx to x gives a mapping from R to [0, 1] where the resulting variable
y is uniformly distributed. An optimal discretization of x can therefore be
obtained through a linear discretization of the transformed variable y. The
authors of [3] do not use this method but instead use a µ-law encoding, since
it is a long-standing standard in audio telecommunication designed to reduce
quantization errors for low bit-rate digital audio signals.

We study the use of two different discretization schemes for RAVE. The first
one uses the standard RAVE regularization method (i.e. two-stage training,
isotropic Gaussian prior), and discretizes the representation post-training us-
ing the previously presented method. We use the cumulative density function
of the prior distribution p(z) = N (0, 1), defined as

4.2. MULTIVARIATE AUTOREGRESSIVE MODELING 73

Fx(y) =
1√
2π

∫ y

−∞
e−y2/2 dy, (4.3)

and discretize each dimension of the latent vector individually. The number
of discretization bins Q is left as a hyperparameter. The second discretization
scheme is the one described in Section 3.2.2, where RAVE is trained with
a uniform categorical prior over Q quantizers. We use quantizer dropout
as in [74], allowing to learn a representation with variable bit rates. In the
end, both discretization schemes result in the encoder yielding discrete latent
trajectories z such as

z ∈ [0, V)T×Q , (4.4)

where V is the number of potential discretization indices, also called vocab-
ulary size, T is the number of time steps, and Q is the number of discrete
dimensions. In the case of the continuous RAVE, Q is defined as the reduced
latent space size given a fidelity parameter f , which is correlated with the
number of useful dimensions. For the discrete variant of RAVE, Q is the
number of residual quantizers, which is left as a hyperparameter.

One interesting property of both representations is the hierarchy implied
between the Q different dimensions. The use of PCA for the continuous
representation and variable bit rate for the discrete one organizes the latent
representation in such a way that dimensions are sorted from most to least
important. This enables us to perform sequence modeling experiments with
a variable number of latent dimensions without retraining RAVE.

4.2 Multivariate autoregressive modeling

4.2.1 Discrete sequence modeling

One of the reasons why autoregressive sequence modeling is mostly applied
to discrete sequences comes from the possibility to explicitly compute the
categorical distribution for a given time step. Continuous random variables
are by nature able to take an infinite number of different values. Thus, build-
ing a suited parametrized distribution implies a trade-off between expressive
power and computational complexity. Complex methods can be used in such
cases [77, 47], but are usually coming at the expense of a long training time.

Oppositely, modeling discrete sequences can be achieved through the explicit
computation of the probability distribution for each discrete value given some

74 CHAPTER 4. TEMPORAL LEARNING

context. In order to evaluate the likelihood of a sequence composed of T
tokens z ∈ [0, V)T given a context extraction function c, a model f should
output logits defined as

l := f ◦ c (z) ∈ RT×V , (4.5)

transformed into a probability distribution using a softmax function over
the last dimension. The nature of the context function c defines how the
model predicts the sequence and can range from masked prediction tasks
[44] to autoregressive modeling [3]. The model can then be trained using a
cross-entropy loss, defined as

L(f, z) = −
∑

t,v

log softmax(lt,v)× zot,v, (4.6)

where zo ∈ {0, 1}T×V is a one-hot tensor with a one at the indices given
by z, and zeros everywhere else. Optimizing this loss over a sufficiently
large dataset results in the model correctly approximating the categorical
distribution of z, thus allowing to perform density estimation and sampling.
The categorical nature of the yielded distribution allows an easy computation
of metrics such as accuracy and perplexity, which are useful to understand
the uncertainty or performance of a model given a specific example.

In this chapter, we consider an autoregressive context extraction function c,
resulting in the model being trained to approximate the conditional distri-
bution p(zt|z<t).

4.2.2 Multivariate extension

The modeling method presented in the previous section has been extensively
tested and used for both research and production purposes for tasks like
natural language processing or time series forecasting [23]. However, its
extension to the modeling of multivariate time series such as the one described
in Equation (4.4) remains challenging. This is due to the fact that computing
the joint distribution between the Q quantizers results in a prediction living in
RV1×...×VQ for each time step. While this is feasible for a multivariate sequence
with few parallel dimensions (e.g. Q ≤ 3), scaling both the vocabulary
size V and the sequence depth Q would result in a prediction that could

4.3. EFFICIENT MULTIVARIATE PARAMETRIZATION 75

hardly fit in any current computer memory. For example, predicting the
likelihood of a sequence of length T = 256 with V = 1024 and Q = 4 would
require one full petabyte (1,000,000 GB) of memory to be stored, without
even considering batch of examples nor the cost of backpropagating errors
through this prediction.

Previous works have addressed this problem for audio generation using two
methods. The JukeBox model [4] uses a representation learning model with a
small temporal compression ratio, yielding long univariate discrete sequences
allowing to leverage classical univariate temporal approaches, at the cost of
an extremely long sampling mechanism. The recent AudioLM model [78]
improves the generation speed by using a representation learning model with
a high compression ratio, producing a multivariate sequence such as the
one described in Equation (4.4). Prior to modeling the resulting multivari-
ate sequence, they flatten it into a [0, V)(TQ) univariate sequence that is Q
times longer than the original multivariate one. This increase in temporal
dimensionality makes the temporal learning task harder, hence they split the
modeling process into two separate stages, the first one modeling the q < Q
first dimensions, the second one modeling the others.

While both methods are able to produce convincing new sequences through
unconditional generation or general audio signal continuation, the high tem-
poral complexity of the base sequences implies the use of very large models,
resulting in a Real-Time Factor (RTF) far larger than 1 even using expen-
sive accelerators. This precludes the use of those models on consumer grade
computers, especially for realtime applications.

4.3 Efficient multivariate parametrization

The performances of the JukeBox [4] and AudioLM [78] models show that a
sweet spot for efficient sequence modeling lies in the use of a highly compress-
ing representation learning model combined with a temporal model applied
directly on multivariate sequences. In this section, we propose three methods
to get as close as possible to this sweet spot by leveraging a temporal model
and several optional depth-wise models. As shown in Figure 4.1, both kinds
of model (i.e. temporal or depth-wise) are causal, the former over time-steps,
the latter over dimensions. The outputs of the temporal model are fed to the
Q depth-wise models in order to produce a prediction.

We propose three different ways of connecting the temporal and depth-wise
models, named decoupling, residual and shift that we evaluate against the

76 CHAPTER 4. TEMPORAL LEARNING

qth out

...

...

q-1

...

depth-wise model q

1

q

...

...

temporal model

T-3 T-2 T-1 T

1

q-1

q

Q

Figure 4.1: Block diagram of our method applied to a sequence with Q
quantizers. Dimension q of time-step T is predicted by the qth depth-wise
model, taking as input the q − 1 previous dimensions and the qth output of
the temporal model applied on all previous time-steps t < T .

4.3. EFFICIENT MULTIVARIATE PARAMETRIZATION 77

flattened baseline proposed in AudioLM [78].

4.3.1 Decoupling method

The first method is called decoupling, as the prediction of the model is the
combination of three separate distributions: a temporal distribution pt, a
depth-wise distribution pq and a prior distribution pp. Formally, we propose
to parametrize the autoregressive distribution of the multivariate sequence
as

p(z) = α
∏

q,t

pt(z
q
t |z<t)pq(z

q
t |z<q

t)

pp(z
q
t)

, (4.7)

where α is a normalizing factor. Note that we suppose that z<q
t is condition-

ally independent from z<t given zqt . Distributions pt and pq are parametrized
with neural networks, while the prior distribution pp is statistically estimated
over the training dataset. Dividing the product of models by pp is needed to
account for both pt and pq implicitly modeling the prior distribution over the
codebooks. Thanks to the double auto-regression over time steps and quan-
tizers, this method has the same probabilistic graphical model as AudioLM
[78] or JukeBox (with Q = 1) [4]. However, we empirically show that the
model needed to parametrize the depth-wise distribution pq can be dramati-
cally simpler than the one used for the temporal distribution pt. This allows
the use of longer sequences during training, while keeping a smaller memory
footprint. During generation, the depth-wise model adds a negligible over-
head as the sampling time is largely dominated by the temporal model (more
details in Section 4.5).

4.3.2 Residual method

A natural modification to the previously proposed decoupling method is to
use the depth-wise model as an extension of the temporal model. The base
principle is the same, but instead of performing two separate predictions (i.e.
pt and pq), we use the temporal model to predict a context based only on
past samples z<t that is used by the depth-wise model to autoregressively
predict the individual dimensions, resulting in the following parametrization

p(z) =
∏

q,t

p(zqt |z<q
t , z<t). (4.8)

78 CHAPTER 4. TEMPORAL LEARNING

Given that a single prediction is now yielded by the model, computing the
prior distribution pp is not required anymore. Similarly to the decoupling
method, we use a large temporal model and a lightweight depth-wise model.
We show in Figure 4.4 and 4.5 the differences between the decoupling and
residual methods. We call this method residual as its implementation can be
seen as a residual network [79] with Q skip connections providing predictions
for all quantizers.

4.3.3 Shift method

Another way of introducing depth-wise dependencies while predicting indi-
vidual dimensions in parallel can be obtained through the shift method. This
method only uses a temporal model, and leverages a shifting sequence prepro-
cessing trick to introduce an approximation to the full distribution described
in Equations (4.7, 4.8).

z1,1 z1,2 z1,3

z2,1 z2,2 z2,3

...

zT,1 zT,2 zT,3

z1,1

z1,2

z1,3

z2,1

z2,2

zT,1

zT,2

zT,3

z3,1

zT-1,2

zT-1,3

zT-2,3

...

0 0

0

0

0 0

Figure 4.2: Shift preprocessing trick. Given a sequence z ∈ [0, V)T×Q with
in this case Q = 3, we apply the shift transform by delaying dimension i by
i time-steps. We use padding to obtain the final [0, V)(T+Q−1)×Q sequence.

This shift trick is achieved by introducing a delay to each dimension of the
sequence. More specifically, dimension i ∈ [0, Q) is delayed by i time steps
(see Figure 4.2 for a visual depiction of the transform). The model is therefore
trained to approximate the following distribution

4.4. NETWORK DEFINITION 79

p(z) ≈
∏

q,t

p(zqt |z0<t+q, z
1
<t+q−1, . . . , z

Q
<t+q−Q). (4.9)

It is important to note that contrary to Equations (4.7, 4.8), Equation (4.9)
is different from the probabilistic graphical model used by JukeBox [4] or
AudioLM [78], which in some cases might not be good enough to produce
coherent sequences during sampling. However, we empirically show that the
hierarchical nature of the sequence produced by RAVE are compatible with
such an approximation (see Section 4.6 for more details.).

4.4 Network definition

In this section, we implement several architectures parametrizing the dif-
ferent distributions presented in the previous section. Various architectures
have been proposed in the sequence modeling literature to parametrize au-
toregressive models, most of those being categorized as either convolutional
[3], recurrent [80], or attention-based [78]. We implement one model from
each category, namely a WaveNet convolutional model [3], a Gated Recurrent
Unit (GRU) [14] and a Transformer [23] model with ALiBi attention [41].

4.4.1 Architecture

All model configurations are composed of a temporal sub-model and optional
depth-wise sub-models. In this section, we present implementation details
for all sub-models.

Temporal model architecture

We start by adapting the WaveNet architecture [3] to the multivariate se-
quence prediction task. WaveNet is a fully convolutional architecture lever-
aging dilated convolutions to expand its receptive field. Every convolutional
layer in WaveNet is using causal padding, preventing the model from see-
ing into the future during training which would make the problem trivial.
Our implementation uses 12 stacked residual layers with dimension D = 512
and kernel size K = 3. When computing the loss, we crop both the target
and prediction by an amount of time-steps equal to the receptive field of the
model. This prevents training the model on padding positions. We show in
Figure 4.3 a block diagram of our implementation of the model.

80 CHAPTER 4. TEMPORAL LEARNING

dilated
conv

σ tx

dropout

skip
linear

res
linear

+

rectified
linear

rectified
linear

input embeddings model output

Figure 4.3: Block diagram of the implemented WaveNet-like model. We use
sigmoid σ and hyperbolic tangent t activations.

We then study the use of a multi-layer recurrent model for this task. In
practice, we implement a GRU with 12 stacked layers and hidden dimension
D = 512. We use a dropout rate of 0.1.

Finally, we implement a decoder-only Transformer [23] with a pre-norm con-
figuration [81]. We use the multi-head ALiBi [41] relative positional encoding
scheme with H = 8 heads. The full model is composed of 12 stacked trans-
former layers with dimension D = 512, and use a dropout rate of 0.1.

While having very different architectures, all models share a roughly equiv-
alent number of parameters (≈ 40M).

Depth-wise model architecture

As stated in Section 4.3, we propose the use of a lightweight architecture to
model the depth-wise dependencies of the sequence. In practice, all exper-
iments involving a depth-wise model use a Multi-Layer Perceptron (MLP)
with 3 layers, no dropout, and SELU activation (see Table 2.2) for each level
of quantization. This implies at most Q separate MLPs trained to predict
the distribution of each individual dimension.

When using the decoupling method, the prediction for the first quantizer is
entirely defined by the temporal model. The remaining quantizer distribu-
tions are predicted using all three models (pt, pq, pp), as described in Equa-

4.4. NETWORK DEFINITION 81

tion (4.7). We show in Figure 4.4 how sub-models are arranged together to
provide the final prediction.

temporal
model

depth-wise
model 1

z<t prediction 1

prediction 2 zt
1

depth-wise
model 2prediction 3 zt

1, zt
2

Figure 4.4: Architecture of the decoupling method. The temporal model pt
produces a prediction for each quantizer, while depth-wise models pq provide
a prediction for quantizers q > 1 given the previous ground truth targets.

The residual method produces a single prediction for each individual quan-
tizer, using Q depth-wise models taking as input the context c produced by
the temporal model, and the previous ground truth targets (during training)
or the previous predictions (during inference), as shown in Figure 4.5.

temporal
model

z<t

depth-wise
model 3zt

1, zt
2, zt

3

depth-wise
model 2

depth-wise
model 1

zt
1, zt

2

prediction 1

prediction 2

prediction 3

Figure 4.5: Architecture of the residual method. The temporal model pt
produces a context fed to all depth-wise models for which quantizer q > 1
are additionally conditioned on the previous ground truth targets.

In contrast with previous methods, the flattened and shifted methods discard
the depth-wise models and only use the temporal model for prediction.

4.4.2 Embedding

The first layer of a deep learning model applied to discrete sequences is
generally an embedder, transforming a discrete sequence z ∈ [0, V)T×Q into a

82 CHAPTER 4. TEMPORAL LEARNING

continuous tensor x ∈ RT×D with D being the dimensionality of the model,
left as a hyperparameter. Most of the time, embedding a discrete sequence
is achieved by using a potentially trainable look-up-table called codebook of
shape V ×D. We implement two variants of the embedding layer.

Learnable codebook

The first embedding layer we implement is a randomly-initialized codebook
living in RQ×V×D, which can be interpreted as Q different codebooks of shape
V ×D, one for each dimension of the sequence. We embed each individual
dimension of the sequence using the corresponding codebook, resulting in a
T ×Q×D tensor. We draw inspiration from Product Quantization [46] and
experiment with three aggregation methods to combine the different embed-
ded vectors. The first two methods are simple sums over the Q dimensions,
with the second method using a learnable vector to perform a weighted sum.
The last method reshapes the embedding into a T ×QD tensor before being
projected by a linear mapping A ∈ RQD×D into the final T ×D embedding.

Pretrained codebook

It has been shown that using a good initial codebook dramatically helps the
convergence of the downstream model [46], as two different tokens with sim-
ilar encoded features should be close to each other in the embedded space.
Given that both the continuous and discrete RAVE produce Q-dimensional
discrete vectors that are computed from a D-dimensional continuous vec-
tor, we experiment with using directly the continuous vectors as a form of
embedding. More specifically, we retrieve the continuous vectors for each
token in the multivariate sequence, yielding a tensor living in RT×Q×Z , with
Z being the dimension of the pretrained embedding. We combine the gath-
ering modes previously presented with a final linear projection yielding an
embedding in RT×D.

4.4.3 Conditioning

Autoregressive models are by nature able to generate sequences based solely
on their own previous generations. However, the resulting generative system
is not controllable. While this may be a desirable behavior, most creative
applications require a way to control or at least steer the generation using
explicit parameters. To achieve such a goal, we experiment with learning
conditional models. In practice, we augment our sequence dataset with time-
aligned acoustic descriptors that we feed to the temporal models alongside

4.4. NETWORK DEFINITION 83

the discrete sequences. We show in Section 4.6 how this helps with controlling
the generation process by modifying the values of the descriptors.

Acoustic descriptors

We choose to conduct experiments based on two different acoustic descrip-
tors, namely the spectral centroid of the raw waveform and an estimated beat
track. The centroid is perceptually related to the timbre of a signal, and we
use the following equation to compute it

centroid(x)[n] =
sr

nfft

∑

k

|STFT(x)[k, n]| , (4.10)

where sr is the sampling rate of the audio signal, nfft is the number of samples
used during the computation of the Fourier transform. We also implement
loudness and spectral flatness, but leave their use as conditioning signals for
future work. In addition to the centroid, we study the use of a beat track as
a conditioning signal. Beat tracks represent the positions in an audio signal
where human listeners identify a beat, and thus might be tempted to mark
it with their feet. We use the implementation of the algorithm proposed in
[82] available in the librosa python library [83]. The resulting beat track is
a vector with zero everywhere except at the positions identified as beats, as
shown in Figure 4.6.

audio
beat track

Figure 4.6: Beat track estimated from an audio waveform using librosa [83].

Model conditioning

Both the centroid and beat track of an audio signal are 1-dimensional se-
quences temporally aligned with the audio waveform. However, the centroid

84 CHAPTER 4. TEMPORAL LEARNING

is an inherently continuous descriptor whose values are contained in [0, sr/2)
while the beat track is a binary sequence. Therefore, we propose conditioning
methods suited to both descriptors, taking into consideration their contin-
uous or discrete nature. We normalize the centroid so that its maximum
value never exceeds 10000, and embed it into a D-dimensional tensor us-
ing the Sinusoidal Positional Encoding (SPE) embedding layer presented in
equation (2.35). Given the discrete nature of the beat track, we use a regular
D-dimensional embedding layer with a vocabulary size V = 2. All condition-
ing embeddings are summed to the embedded RAVE latent sequence prior
to being fed to the temporal model.

4.4.4 Optimized inference

As we are targeting a real-time use of our prior models, we implement variant-
specific optimizations of the generation loop to prevent unnecessary compu-
tation. We leverage the cached convolution mechanism that we propose in
Chapter 5 to avoid any redundant computation when using the convolutional
model. Similarly, we cache the recurrent state of the GRU model to avoid
recomputing the full temporal context at each time-step. Regarding the
transformer model, we cache keys and values inside all multi-head attention
layers, allowing to compute the attention operation with a linear memory
and computation complexity during inference.

Overall, all the variants of our model are faster than realtime. We report
computation efficiency benchmarks results in Section 4.6.

4.5 Experiments

Our experimental setup targets the evaluation of all the variants introduced
in Sections 4.3 and 4.4.1. In addition, we evaluate the effect of conditioning
signals on all configurations using the descriptors proposed in Section 4.4.3.
Therefore, we evaluate combinations of 3 architectures (Convolutional, Re-
current and Transformer), 4 parametrizations (flattened, decoupling, resid-
ual, shifted) and 2 conditioning (unconditional, Beat + Centroid) setups.

We build a dataset of ≈ 730 hours of royalty-free techno music scraped from
internet. The dataset is split into two train and test subsets composed of
respectively 90% and 10% of all the examples. We train two variants of the
RAVE model, a continuous RAVE with post-training discretization following
the method proposed in Section 4.1, and a discrete RAVE with Q = 16
quantizers. We evaluate the reconstruction error of both models with relation

4.6. RESULTS 85

to the number of discrete dimensions Q on the test set using the spectral
audio distance defined in Equation (2.42). The results of this experiment
are reported in Figure 4.7, and allow the selection of both the RAVE model
variant and quantizer truncation level used for the next experiments.

We train all the prior model variants using the Adam optimizer [10] with
a learning rate ramping from 10−6 to 5 × 10−4 over the first 30k iterations,
and then exponentially decayed. All models are optimized until convergence
(i.e. when the validation cross-entropy stops decreasing for 10 consecutive
epochs). We use sequences composed of 256 tokens, which approximately
represent 6 seconds of audio at 44.1kHz, with a batch size of 128.

We are interested in evaluating the impact of our multivariate distribution
parametrizations compared to the flattened baseline used in AudioLM [78].
Therefore, we evaluate both the accuracy and perplexity of all model config-
urations on the test set. We compute the accuracy as the number of correct
model predictions divided by the number of total predictions, averaged over
time-steps and quantizers. The perplexity of the model is defined as the
exponential of the entropy of its normalized prediction, also averaged over
time-steps and quantizers. We report the results in Tables 4.1, 4.2 and 4.3.

In order to evaluate the influence of the conditioning on the generation pro-
cess, we compare the centroid computed from a conditional generation with
its target centroid, and show the results for several generations in Figure 4.8.

Finally, we evaluate the computational efficiency of all configurations by
computing the Real-Time Factor (RTF) for both feed-forward generation
and autoregressive inference.

4.6 Results

We evaluate the reconstruction error of both RAVE variants on the validation
set and report the results for a number of discrete dimension Q varying from
1 to 16 in Figure 4.7.

As expected, the reconstruction error decreases with the augmentation of Q
for both models. However, the discrete RAVE model has an overall lower
reconstruction error than its continuous counterpart, which stabilizes around
Q = 8. Therefore, we continue the experiments using the discrete RAVE only,
with a fixed number of quantizers Q set to 8.

Regarding the discrete sequences embedding strategy (see Section 4.4.2), ini-
tial experiments have shown that using a learnable randomly initialized code-

86 CHAPTER 4. TEMPORAL LEARNING

2 4 6 8 10 12 14 16
Q truncation

1

2

3

4

5
Re

co
ns

tru
ct

io
n

er
ro

r vae
discrete

Figure 4.7: Reconstruction error of two variants of RAVE (original VAE and
discrete) for various quantizer truncation levels. Shaded areas represent the
standard deviation of the error for a given truncation level.

book helps with the convergence of the model. Therefore, all the following
experiments are performed using this embedding method.

We train all variants of the temporal model on the dataset discretized by
the previously selected RAVE model, and report the accuracies and perplex-
ities of the transformer, convolutional and recurrent variants respectively in
Table 4.1, 4.2 and 4.3.

In average, the transformer variants yield the highest (resp. lowest) accu-
racies (resp. perplexities), closely followed by the recurrent variants. The
convolutional variants are far behind in terms of performances. Some config-
urations (i.e. shifted convolutional, conditioned shifted and flattened recur-
rent) resulted in systematic divergence of the model. We choose to remove
their metrics from the results.

The distribution parametrization method has a large impact on the perfor-
mances of the system. Both the transformer and recurrent approach yield
their highest accuracies with the residual method, closely followed by the
decoupling method. Flattening the sequences as performed in AudioLM [78]
yields lower accuracies than both the residual and decoupling methods, yet
outperforms the shifted method in most cases.

In almost all cases, the conditioning of the models on the audio descriptors
helped with reaching higher performances. However, the gain in accuracy is
overall relatively small, suggesting that the conditioning signal might not be
strong enough, or should be fed to the network differently (e.g. using FiLM
layers [84], or using cross-attention with an encoder-decoder model [23]).

4.6. RESULTS 87

mode conditioned accuracy (%) perplexity

residual ✓ 22.81 31.52
residual ✗ 22.55 32.23
decoupling ✗ 21.20 35.69
decoupling ✓ 20.84 36.45
flattened ✓ 17.54 44.96
flattened ✗ 17.00 46.52
shifted ✓ 15.69 53.36
shifted ✗ 15.21 54.58

Table 4.1: Accuracy and perplexity values for the transformer temporal
model, sorted by decreasing accuracy.

mode conditioned accuracy (%) perplexity

decoupling ✓ 9.31 83.14
decoupling ✗ 8.97 78.24
residual ✓ 6.88 98.84
residual ✗ 6.42 102.34
flattened ✓ 1.05 418.79
flattened ✗ 1.01 371.83
shifted ✓ - -
shifted ✗ - -

Table 4.2: Accuracy and perplexity values for the convolutional temporal
model, sorted by decreasing accuracy.

mode conditioned accuracy (%) perplexity

residual ✓ 19.77 36.95
residual ✗ 19.56 37.07
decoupling ✗ 18.90 42.12
decoupling ✓ 18.09 44.78
shifted ✗ 13.68 64.23
flattened ✗ 12.80 67.86
flattened ✓ - -
shifted ✓ - -

Table 4.3: Accuracy and perplexity values for the recurrent temporal model,
sorted by decreasing accuracy.

88 CHAPTER 4. TEMPORAL LEARNING

Nonetheless, we evaluate the effect of the conditioning signal by computing
a centroid estimation on the results of 10 conditional generations using the
conditional residual transformer configuration. Then, we compare it to the
ground truth conditioning signal. We show in Figure 4.8 the results of this
comparison on two different examples from the validation set. Despite its

0 1 2 3 4 5 6

3000

3200

(a) Sample A

0 1 2 3 4 5 6

2600

2800

3000

(b) Sample B

Figure 4.8: Target centroids (red) compared to the centroids computed from
the results of 10 conditional generations (blue). The model used is a condi-
tional residual transformer. The black dot indicates a switch from teacher
forcing mode to autoregressive mode.

small impact on model accuracy, this comparison shows that our conditioning
method effectively makes our temporal model controllable. This is important
for many use cases, as the nature of the conditioning signal itself can be
defined based on the end application type (e.g. speaker identity or emotion
for speech models, tempo, chords or centroid for music models).

Regarding the computational complexity of the resulting models, we compute
the RTF of every variant, excepting the conditional ones. This is due to
the fact that the conditioning mechanism adds a negligible computational
overhead to each model, and would unnecessarily complexify the reading of
the results. The resulting RTFs are reported in Table 4.9.

All of our proposed methods are faster than realtime in both autoregressive
and teacher forcing mode. However, in autoregressive mode, the baseline
flattened method is 1.5× slower than real-time for the most lightweight model
possible, and up to 4× slower than real-time when using the convolutional
model. In teacher forcing mode, all methods including the baseline are faster
than real-time. Overall, given a specific architecture type, our three methods
are faster than the flattening baseline. In addition to this, both the residual
and decoupling models are yielding higher accuracies than the baseline, at a
fraction of its computational cost during prediction.

4.6. RESULTS 89

residual decoupling shifted flattened

10x faster

Real-time limit

10x slower Conv
Recurrent
Transformer

(a) Autoregressive

residual decoupling shifted flattened

100x faster

10x faster
Conv
Recurrent
Transformer

(b) Teacher forcing

Figure 4.9: RTF for variants in autoregressive (a) or teacher forcing (b).

90 CHAPTER 4. TEMPORAL LEARNING

Improvisation is an immediate
stream of consciousness, a
compositional form where you
cannot erase mistakes, but
instead should make them
work after the fact.

William Basinski

Chapter 5

Real-time interaction

Neural audio signal processing has set a new state of art in many fields, such
as audio source separation [85], text-to-speech [51], timbre transfer [56] and
unconditional generation [4]. Recent works on neural audio synthesis such
as DDSP [56], melGAN [28] or RAVE [76] allows to perform deep audio
synthesis faster than real-time. Those methods pave the way towards the
integration of neural synthesis inside real-time audio applications.

Amongst these, models based on recurrent layers (DDSP [56] or RNNoise
[86]) are built to process time series sequentially. Therefore, they are nat-
urally fit to process live audio streams by caching their recurrent state in-
between DSP calls. However, this is not the case for models based on con-
volutional networks [12] since their reliance on padding causes audible phase
discontinuities between consecutive audio buffers (e.g clicks), which prevents
their use for real-time audio applications. A simple solution to address this
problem would be to rely on the overlap-add method, where we process large
overlapping audio buffers and cross-fade them to smooth out phase disconti-
nuities. While this method is straightforwardly compatible with any genera-
tive model, processing overlapping buffers leads to redundant computations
and degraded quality during transition phases. In addition, this method re-
quires caching buffers that are large enough to fill the receptive field of the
model in order to avoid edge effects. This results in a high latency between
the input and output of the model during inference. A more specific solution
have been proposed through the idea of streaming models [87, 74] that use
causal convolutional layers. These layers replace padding during inference
with a cached internal or external state. Although this mechanism allows
the use of convolutional models on live audio streams, it usually degrades
the model accuracy due to the aforementioned causal constraint.

91

92 CHAPTER 5. REAL-TIME INTERACTION

In this chapter, we propose a method to make non-causal convolutional neural
networks streamable without impacting the audio quality nor introducing
computational redundancies. We achieve this by making the model causal
after training1, leveraging additional internal delays in order to preserve the
original computational graph of the model. Hence, our method can be applied
over models that were already trained in a non-causal way. As an application
case, we use our method to make our RAVE model (see Chapter 3) streamable
in real-time. However, our approach can be applied straightforwardly to any
convolution-based model. We compare our method with several overlap-add
alternatives using both quantitative and qualitative metrics. We demonstrate
that our method outperforms all other baselines in inference speed, while
behaving exactly like the original model in terms of audio quality. Finally, we
develop several applications leveraging our method to provide regular digital
audio workstations with real-time neural audio processing abilities. All of
our experiments, methods and source code are packaged as an open-source
Python library available online2.

5.1 Streaming models

Processing audio buffers one after the other using a convolutional neural net-
work is not trivial. Indeed, the use of padding in each layer of the model
creates discontinuities in the data when processing two consecutive buffers
sequentially. In the context of neural audio synthesis, and more specifically
raw waveform modelling, this causes audible phase discontinuities that are
not acceptable for real-time audio applications. To address this problem, Ry-
bakov et al. [87] proposed to rely on causal Convolutional Neural Networks
(CNN) altogether with a cached padding mechanism.

5.1.1 Cached padding

Cached padding is implemented by retaining the end of one tensor and using
it to left-pad the following one, as shown in Figure 5.1. This allows to main-
tain continuity between the computation of two consecutive audio buffers.
It is meant to be used as a replacement for left-padding during inference,
retaining the original padding increase in dimensionality without creating
discontinuities in-between buffers. Although this method provides a solution
for the use of CNN in real-time audio generation, it is constrained by the

1We refer to this as post-training causal reconfiguration in opposition to training a
causal model, i.e. that uses pre-training causal configuration.

2https://acids-ircam.github.io/cached_conv

https://acids-ircam.github.io/cached_conv

5.1. STREAMING MODELS 93

cachepad L+R x0 x1 x2 x3

y-1 y0 y1 y2

x4

y3

x5 x6 x7 x8

y4 y5 y6 y7

x9

y8

x3 x4

input buffer 1 input buffer 2

output buffer 1 output buffer 2

Figure 5.1: Convolution applied on two split buffers using cached padding.
Input and output buffers (x,y) respectively live in RM×T and RN×T . The
last P frames from input buffer 1 are cached and concatenated with the
input buffer 2 (with P being the original amount of zero-padding) in order
to prevent discontinuities between buffers.

strict necessity of using only causal convolutions, which are not widespread.
As most CNN in the literature do not satisfy this assumption, it is uncertain
if this method can be widely applied to previous architectures or pre-trained
models. Finally, it has been shown that a causal constraint makes the learn-
ing process more complex [87], which can impact the final audio quality

5.1.2 Non-causal streaming models

The streaming models obtained from the method described in Section 5.1.1
can readily process live audio streams. However, this requires models that
use only causal convolutions, which is not the case for most models proposed
in the literature. Indeed, training a model causally can lead to a loss of
accuracy or audio quality [87].

Here, we introduce our method that allows to make non-causal models
streamable. Our proposal is constructed around the idea of performing a
post-training causal reconfiguration of the model. This allows to consider
convolutional networks trained using any type of padding (potentially non-
causal) and turn them into streamable models. One idea to do so would be
to extend the cached padding mechanism to right-padding. However, this
is not possible by nature, as we are processing live audio streams where the
next buffer is not known yet.

Therefore, we propose to reconfigure the model as causal after training.
This can be achieved by transforming right-padding into an additional left-
padding. While this reconfiguration allows the use of a cached padding mech-
anism, making the model causal after training alters its computational graph.

94 CHAPTER 5. REAL-TIME INTERACTION

Hence, this might produce unpredictable results if the model includes strided
convolutions or has a computational graph with parallel branches (e.g resid-
ual connections [79]). In those cases, we propose the introduction of addi-
tional delays to restore the original behavior of the model. In the following,
we detail how we address each of these architectures, in order for our method
to be applicable to any type of network.

Aligning strided convolutions

Strided convolutions are often used as a way to reduce the temporal or spatial
dimensionality of an input tensor. This is done by skipping some steps in
the application of the convoluted kernel, as depicted in Figure 5.2.

x0 x1 x2 pad R

y0 y2

x3

Figure 5.2: A simplified view of a strided convolution using zero-padding
during training.

Transforming right-padding to left-padding shifts the input tensor to the right
(i.e adds a lag to the input tensor). This has no consequence for convolutions
with stride 1 or transposed convolutions as it only delays the output tensor.
However, this lag may have an impact on convolutions with a stride greater
than one, where a lag of n samples on the input tensor results in a fractional
lag of n/s in the output tensor. We show in Figure 5.3 how this fractional
lag results changes the behavior of the layer whenever n is not a multiple of
s. Therefore, we introduce an additional delay to the input in order to make
its overall lag a multiple of the stride, as shown in Figure 5.4.

In the case of a complex convolutional network, it is necessary to keep track
of the overall cumulative lag for an input tensor after each convolutional
layer. Considering that a convolutional layer with stride S and right-pad
length R processes an input tensor with cumulative delay Dc, we need to set
the additional delay Da to

Da = S − (R + Dc mod S) mod S, (5.1)

5.1. STREAMING MODELS 95

x0 x1 x2pad R

y-1 y1

x3
cache

Figure 5.3: A strided convolution with post-training causal re-configuration.
Due to the input lag, the output of the layer is not the same as during training
(see Figure 5.2 for the regular output).

x0 x1 x2pad R

y-2 y0

x3
cache

add

Figure 5.4: An additional delay (add) is applied to the input tensor in order
to recover the original behavior of the layer.

where the cumulative delay Dc is set to 0 at the beginning of the graph, and
is updated at each layer according to

Dc ←
Dc + R + Da

S
. (5.2)

Aligning parallel branches

When designing neural networks, it has been shown that using residual or
skip connections facilitate the training of deeper models [79, 3, 88]. Those
connections are responsible for the creation of parallel branches in the com-
putational graph of the model, which are later aggregated (e.g. summed or
concatenated) in order to produce an output. However, the delays introduced
by a post-training causal re-configuration of the model might result in a rel-
ative misalignment between the outputs of each parallel branch. Therefore,
models implementing parallel branches must introduce additional delays in
order to recover a proper alignment between the different branches, as shown
in Figure 5.5. In this case, we set the additional delays Ai to

Ai = max
j

Dj −Di, (5.3)

96 CHAPTER 5. REAL-TIME INTERACTION

in out

delay
A1

delay
A2

Branch 1
cumulative delay D1

delay
A3

Branch 2
cumulative delay D2

Branch 3
cumulative delay D3

Figure 5.5: Aligning parallel branches using additional delays.

where Di is the cumulative delay of the ith branch.

Overlap-add baseline

For comparison purposes, we use a simple yet effective baseline method to
process live audio streams with non-causal convolutional neural networks.
We implement the overlap-add method by first collecting an audio buffer
large enough to account for the receptive field of the model. Then, we apply
the unmodified convolutional neural network on this buffer and window the
output signal using the Hann window

w[n] = sin
(πn
N

)2
,

where N is the buffer size.

Finally, we add the resulting tensor to the previous output with a temporal
offset of N/2. This implements the overlap-add method with a 50% over-
lapping factor. We compare this method to another having a 25% overlap-
ping ratio, implemented by scaling w accordingly, as depicted in Figure 5.6.
This reduces the computational redundancy of the method and consequently
makes it process audio faster. However, using a smaller overlapping window
results in harsher transitions between buffers. Hence, we also consider the
extreme case of a 0% overlapping factor, where the model is applied on non-
overlapping buffers. This last configuration can be seen as an ablation of our
method where cached padding and causal constraints are removed.

5.2. EVALUATION 97

(a) 50% overlap (b) 25% overlap (c) 0% overlap

Figure 5.6: Windows used by the three overlap-add baseline variants.

5.2 Evaluation

In order to evaluate our method, we apply it on the RAVE model [76] by
replacing the convolutions in the regular model with cached convolutions3.
No other changes have been made to the model. As we are evaluating our
method on an audio synthesis task, we are interested in its computational ef-
ficiency compared to baselines, which we cover in Section 5.2.1. We evaluate
the impact of using causal convolutions on the synthesized audio in Sec-
tion 5.2.2 and 5.2.3. Finally, we verify in Section 5.2.4 that our method does
not change the behavior of the model by comparing audio signals synthesized
by a non-causal RAVE both in regular and streaming mode.

5.2.1 Performances

In this section, we evaluate the performances of our proposed streaming
method when applied to a non-causal RAVE model compared to different
variants of the overlap-add method. Here, we use randomly-initialized models
as their parameters values do not affect their computational complexity. We
keep the default hyperparameters of the original article.

In order to evaluate the inference speed, we rely on the RTF defined as
the ratio between processing time and audio duration when performing an
encode-decode pass on an audio signal. A RTF below 1 indicates that the
algorithm processes data faster than real-time. We also evaluate the amount
of memory required during inference on live audio streams, by analyzing the
Random Access Memory (RAM) usage4. We estimate both memory usage
and RTF of the reconstruction process using the various methods applied to
60s long random (white noise) audio signals with varying buffer sizes. We
rely on white noise as here the audio output is not relevant to compute the
speed of different methods. All results are averaged over 10 trials in order to
account for measurement errors.

3We release the code for cached convolutions here https://acids-ircam.github.io/
cached_conv/

4We use the mprof Python package for memory usage estimation.

https://acids-ircam.github.io/cached_conv/
https://acids-ircam.github.io/cached_conv/

98 CHAPTER 5. REAL-TIME INTERACTION

We show in Figure 5.7(a) how our proposed streaming and different overlap-
add methods all have a similar memory usage. The only difference comes
from a constant 180kiB of additional RAM needed to store the cached padding
of the streaming method.

0.1 1.0 10.0
Buffer size (s)

100

200

300

400

M
em

or
y

us
ag

e
(M

iB
)

stream
ola

(a) Memory usage

0.1 1.0 10.0
Buffer size (s)

0.05

0.10

0.15

0.20

0.25

Re
al

-ti
m

e
fa

ct
or

stream
ola 0%
ola 25%
ola 50%

(b) Realtime factor

Figure 5.7: Memory usage and real-time factor for the streaming and overlap-
add methods on a regular RAVE model with varying buffer size. Memory
usage is identical for all overlap-add methods. Dotted lines indicate that the
model is applied on buffers smaller than its receptive field.

In terms of processing speed, as we can see in Figure 5.7(b), the overlap
method with a 0% overlap ratio is the fastest, while also being the less
accurate (see Section 5.2.4). Although increasing the overlap ratio to 25%
or 50% can reduce the corresponding artifacts, it also makes the overlap
method increasingly slower than the streaming method. This is due to the
computational redundancies involved in this method.

5.2.2 Processing latency

Introducing delays in the computational graph of a model has an impact on
its processing latency. Causal models have the lowest latency, as they only
rely on past audio samples when generating an output. Oppositely, non-
causal models also leverage future audio samples which, in the context of
live audio processing, are not available yet. We call the area of the receptive
field of the model leveraging future samples its future receptive field. While
our method allows the use of non-causal models on live audio streams, it
also implies a processing latency equivalent to the duration of the future
receptive field. In the case of the RAVE model, this latency adds up to

5.2. EVALUATION 99

∼ 600ms compared to only ∼ 50ms when using RAVE trained with a causal
constraint.

5.2.3 Impact of pre-training causal constraint

As discussed in Section 5.1.1, enforcing a causal constraint on the model prior
to its training can complexify the modelling task. We evaluate the impact of
this constraint on the RAVE model with the following internal datasets:

Darbuka. It has been shown that modelling percussive sounds using a
causal model can be difficult [89]. Therefore, we rely on a dataset composed of
various solo darbuka performances sampled at 44.1kHz, with a total duration
of approximately 3 hours.

Strings. This dataset contains approximately 30 hours of various strings
recordings sampled at 44.1kHz that were scraped from different real-life solo
violin performances. Compared to the darbuka, it is composed of harmonic
signals with smoother attacks.

Speech. The speech dataset is composed of approximately 8 hours of
recordings sampled at 44.1kHz. All recordings are produced by a single
speaker in a consistent acoustic environment.

All datasets are split into 90%-10% train and validation sets. We use all the
augmentation strategies proposed in the original article [76]. We train two
variants of the RAVE model for each dataset (pre-training and post-training
causal re-configuration). All models are trained for 2M iterations. In order
to measure the reconstruction error of audio samples from the validation set
as input for a pretrained RAVE model, we use the following spectral distance

Ls(x,y) = ∥ log(S(x) + ϵ)− log(S(y) + ϵ)∥2, (5.4)

where S(x) is an amplitude Short-Term Fourier Transform with a window of
size 2048 and an overlap ratio of 75%. We set ϵ = 1 as proposed by Défossez
et al. [65]. We report the means and standard deviations of the resulting
spectral distances in Table 5.1.

Using the pre-training causal configuration results in a small but consistent
loss of accuracy as compared to the regular training of models across all
datasets. This confirms that using causal networks in the context of neural
audio synthesis complexifies the learning process. We hypothesize that this
loss of precision is due to the fact that anticipating a transition or articulation
in the sound is made more difficult when the model cannot look ahead.

100 CHAPTER 5. REAL-TIME INTERACTION

pre-training post-training

Darbuka 0.228± 0.028 0.178± 0.038
Strings 0.055± 0.012 0.054± 0.011
Speech 0.155± 0.005 0.138± 0.005

Table 5.1: Reconstruction errors for pre-training and post-training causal
reconfiguration across different datasets.

5.2.4 Fidelity

In contrast to our proposed streaming method, the overlap-add approach only
yields an approximation of the original model. Hence, we aim to estimate the
quality of this approximation by comparing signals coming from the overlap-
add method with signals processed offline by a non-causal model. In addition
to the spectral distance defined in Section 5.2.3, we use the following metric

Lw(x,y) = ∥x− y∥2, (5.5)

where Lw is the Euclidean distance between two raw waveforms. While
the spectral distance is useful to assess how perceptually similar two audio
signals are regardless of their phase, the waveform Euclidean distance is
highly phase-dependent, and reflects a sample-wise dissimilarity between the
raw waveforms. Combined, those two metrics give us insights about how
similar signals are both from a perceptual and sample-wise point of view.

We disable the noise synthesizer and set the encoder variance to 0 in order
to make the model behave predictably. This is necessary as any randomness
involved in the generation process would bias the fidelity measure.

We compare the overlap-add methods with several overlapping ratios (0%,
25% and 50%), and also include our streaming method to ensure that it is an
exact reproduction of the offline method. We compensate the latency present
in the synthesized outputs for all methods prior to their evaluation. We use
the three pre-trained non-causal RAVE models described in Section 5.2.3
and compute an average of both the spectral and Euclidean distances over
all corresponding validation sets. We report the results for all methods with
varying buffer sizes in Figure 5.8.

As we can see, all variants of overlap-add methods have a decreasing spectral
and Euclidean distances to the offline method as the buffer size increases.
However, those distances never become null even for buffer sizes larger than
8s, stressing out the artifacts introduced by such methods. Oppositely, our
streaming method is exactly identical to the offline method, regardless of the
buffer sizes. This confirms that the cached padding and post-training causal

5.2. EVALUATION 101

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Buffer size (s)

0
10 3

10 2

10 1

Sp
ec

tra
l d

ist
an

ce

stream
ola 0%
ola 25%
ola 50%

(a) Spectral distance

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Buffer size (s)

0
10 4

10 3

10 2

Eu
cli

de
an

 d
ist

an
ce

stream
ola 0%
ola 25%
ola 50%

(b) Euclidean distance

Figure 5.8: Spectral and Euclidean distances between different overlap-add
processing methods (ola) and the offline processing method as a function of
the buffer size. Dotted lines indicate that the model is applied on buffers
smaller than its receptive field.

reconfiguration of the model allow its use on live audio streams without
altering the quality of the output.

102 CHAPTER 5. REAL-TIME INTERACTION

5.3 Realtime interfaces

The main deep learning framework used during this thesis is PyTorch [90],
a Python library for both the design and accelerated training of deep neu-
ral networks. While the development of Python scripts for real-time audio
processing is possible through the use of dedicated libraries, their integration
inside existing DAW is tedious and, thus, not widespread. Therefore, we
leverage the LibTorch library allowing to import pretrained PyTorch model
and use them inside a C++ runtime.

Exporting a PyTorch model into a format compatible with LibTorch can be
achieved through either scripting or tracing. Since the latter involves the
export of a static computational graph, we systematically choose the former
method as the cached padding operation described in Section 5.1.1 requires
the modification of in-memory buffers in-between DSP calls. Once the model
is scripted, it is saved as a torchscript model, which is a self-contained file
including the computational graph of the model alongside its pretrained pa-
rameters. Models exported for realtime usage must be streamable to avoid
inconsistencies or artifacts during inference.

In order to enable the use of torchscript models on realtime audio streams, we
develop a processing backend and several DAW specific frontends as shown
in Figure 5.9.

C++

model
definition

configuration
file

pretrained
weights

computational
graph scripting

Backend

TorchScript
pretrained

model

methods
attributes
information

Pd frontend
dsp calls
buffer handling

Max frontend
dsp calls
buffer handling
attribute setters

VST frontend
dsp calls
buffer handling
midi interface

Audio
Interface

Python

Figure 5.9: Block diagram depiction of our approach to realtime inference
with pretrained PyTorch models.

The purpose of the backend is to translate standard DSP calls into model
calls. For example, we consider an audio buffer containing N float samples
supposed to be processed by the forward method of the model. To perform

5.3. REALTIME INTERFACES 103

this operation, the backend converts the buffer into a LibTorch tensor which
is casted to a type compatible with the model (usually float32), performs
check on the dimensionality of the tensor and finally calls the forward method
of the model on the tensor. The backend then returns the output of the model
converted to a standard C++ float table. Depending on the frontend used,
the backend can also dynamically configure the model, by modifying some
of its attributes. This is done in a separate thread to avoid interfering with
the audio processing.

We develop several frontends to allow the use of our backend inside sev-
eral applications. Our main application is called nn~, standing for neu-
ral network combined with tilde which is a standard for Max/MSP and
PureData externals indicating audio signal related objects. The nn~ ex-
ternal is intended to provide a model-agnostic interface to both Max/MSP
and PureData, allowing fast interaction prototyping with streaming models.
Its features, behavior and use are completely defined by the model being
used. Therefore, we present in the following sections a basic presentation of
Max/MSP concepts alongside several use cases of nn~ being used in combi-
nation with RAVE and temporal models. The nn~ external is available at
github.com/acids-ircam/nn tilde.

5.3.1 Reactive programming using Max/MSP

Max/MSP is a visual programming language and graphical user interface
used for music and audio processing. It is commonly used by musicians,
sound designers, and researchers working with audio, and it is known for its
flexibility and ability to create complex and dynamic systems. In Max/MSP,
programs are created by connecting together different modules, or objects, us-
ing patch cords. These objects can represent a wide range of functions, from
simple mathematical operations to more complex audio processing units. In-
stantiating such objects can be achieved by calling the name of a specific
function and defining a number of additional arguments (e.g. in Figure 5.10,
an oscillator is created by calling the object cycle and specifying its fre-
quency as an argument). Max/MSP is often used in combination with other
software, such as software synthesizers, to create dynamic and interactive
audio environments.

We choose to develop Max/MSP and PureData externals as their arbitrary
number of inlets and outlets allows the use of models with various number of
inputs and outputs. Furthermore, the compatibility of PureData with em-
bedded systems (e.g. Raspberry Pi) paves the way towards easy deployment
of deep learning based DSP units inside hardware synthesizers.

https://github.com/acids-ircam/nn_tilde

104 CHAPTER 5. REAL-TIME INTERACTION

Figure 5.10: Example of a Max/MSP patch applying a linear gain on an input
(adc), then modulating it with a low frequency oscillator (cycle) before being
played back (dac).

5.3.2 Using the nn~ external

In this Section, we present use cases of nn~ using Max/MSP. However, most
features showcased here are compatible with the PureData version. At the
time of writing this document, only CPU and CUDA computing are available.
Other computing backends might be supported in the future, such as Metal
Perfomance Shader (MPS) or Vulkan.

Timbre transfer

We start by presenting the use of RAVE with nn~ in the context of the
timbre transfer task (see Section 3.1.4). As a reminder, timbre transfer can
be achieved by using RAVE to reconstruct out of domain audio signals,
i.e. different from what the model has been previously trained on. Using
nn~, this can be set up by instantiating an nn~ object with the path of a
pretrained RAVE model (in Figure 5.11, the path is ’rave’). The second
argument is the method to call, defaulting to forward. The availability of
different methods depends on the kind of model being imported. In the case
of RAVE, the forward method is the combination of encoding an audio signal
and reconstructing it.

Using the resulting object on a live audio stream can be achieved by con-
necting an audio source to the object first inlet and an audio output to its
first outlet. The size of the internal buffer can be set using a third positional

5.3. REALTIME INTERFACES 105

audio input

reconstruction

 nn~ rave forward

Figure 5.11: An instance of nn~ loading a pretrained RAVE model (here
called with the argument rave) with its forward method. The first inlet is the
audio input of the model, while the first outlet is the reconstruction of the
input by the model.

argument, allowing a trade-off between latency and computational require-
ments.

Latent exploration

A given pretrained model may have multiple available methods, for exam-
ple calling different sub-models or addressing a different task. We give the
possibility to the user to select a specific method to use when importing a
pretrained model to nn~. We show in Figure 5.12 how this can be used to
either encode or decode signals using RAVE.

Sometimes, the sampling rate of a particular model is not the audio rate
used by Max. This is the case for the latent representation yielded by the
RAVE encoder, which is approximately 20Hz. Such low sampling rate signals
are therefore upsampled to the audio rate by nn~ using nearest neighbor
interpolation. Similarly, the input to the decoder is decimated to the correct
rate before being fed to the model. The different sampling rates for each
method can be defined during the model export, using a Python library
included in the nn~ project.

Unconditional generation and continuation

A final example use case of nn~ is its application to unconditional generation,
as described in Chapter 4. In this context, we combine both the encoder and
decoder of a pretrained RAVE model alongside a prior model trained to
approximate the aggregate posterior distribution of the encoder.

The Q inlets of nn~ with the prior model correspond to the Q different
discrete dimensions yielded by the encoder model, and can be used to build
a temporal context using the ground truth latent representation. The last two
outlets of the object outputs accuracy and perplexity metrics of the model

106 CHAPTER 5. REAL-TIME INTERACTION

audio input

latent dimension 1
latent dimension 2

 nn~ rave encode

(a) RAVE encoder

latent dimension 1
latent dimension 2

reconstruction

 nn~ rave decode

(b) RAVE decoder

Figure 5.12: Instances of nn~ loading a pretrained RAVE model with both
encode and decode methods. The latent dimensions are upsampled to the
audio rate using nearest neighbor interpolation.

given the ground truth input as shown in Figure 5.13. When the attribute
listen of the model is set to True, the first Q outputs of nn~ replicate its
Q inputs. The model is being used in a teacher forcing setup.

teacher forcing input

prediction

 nn~ prior

accuracy
perplexity

Attributes

listen: bool
temperature: float

Figure 5.13: An instance of nn~ loading a pretrained temporal model with
its default forward method. Depending on the inference mode (i.e. listen
being set to True of False), the last two outlets output information about
both the accuracy (listen mode only) and perplexity of the model.

Setting the attribute listen to False modifies the behavior of the model,
which switches to autoregressive prediction. When using this mode, inputs
are ignored, and the model autoregressively predicts the temporal evolution
of the latent representation. Switching to this mode while feeding a ground
truth latent representation to the model allows to perform latent continu-
ation, while using the prior model in headless mode (i.e. without encoder
attached) results in unconditional generation. The temperature attribute
can be set to define the sampling temperature used in the generation loop.

There’s something to be said
about all music being some
translation of our languaging,
our way of communicating.
It’s a language. This is a new
language.

Suzanne Ciani

Chapter 6

Artistic collaborations

Building tools in order to aid music creation is a complex task that requires
both artistic and technical knowledge. During this thesis, we collaborate
with professional artists in order to build and refine our research around
the idea of creating production-ready models and tools. In this chapter, we
present two collaborations conducted during this thesis, and describe artistic
and research challenges that we had to overcome. Additionally, we present
two creations proposed during this thesis that leverage the entirety of the
techniques proposed in Chapters 3 to 5.

107

108 CHAPTER 6. ARTISTIC COLLABORATIONS

6.1 Alexander Schubert: Convergence

Figure 6.1: Still image from the streaming version of Convergence.

6.1.1 Technical aspects

Convergence is the result of a one-year-long scientific and artistic collabora-
tion with the composer Alexander Schubert. It features an early version of
the RAVE model called WaVAE. This model is the combination of a VAE
trained on mel-scale spectrograms and a MelGAN model [28] inverting the
spectrograms into sound. The latent representation yielded by the encoder
is regularized using its KL divergence with a normal distribution. We use
a small regularization factor β = 0.001 as a way to address the poor recon-
struction abilities of the vanilla VAE model. This comes at the expense of
degraded sampling performances.

In addition to the KL divergence, we further regularize the latent represen-
tation using the approach proposed in Fader Networks [70]. This approach
involves conditioning the decoder of a VAE on labels present in the dataset,
allowing the control of the generation process by manipulating those labels.
They introduce an adversarial training strategy to minimize the mutual in-
formation between the labels and the latent representation using a latent
discriminator, therefore allowing their independent control. We adapt their
approach to condition WaVAE on continuous descriptors, more specifically
using an estimation of the loudness of the signal. We use the method de-
scribed in Section 4.1 to discretize the loudness, and use the latent discrim-
inator to remove any information about it from the latent space. During
generation, the resulting model can effectively be controlled through an ex-
plicit loudness parameter. However, this feature is absent from RAVE since
this conditioning strategy tends to make the latent representation degenerate

6.1. ALEXANDER SCHUBERT: CONVERGENCE 109

Figure 6.2: Graphical interface built around WaVAE, allowing high level yet
offline interactions with pretrained models.

(i.e. the decoder relies exclusively on the conditioning signal to reconstruct
the input).

6.1.2 Interface

While the WaVAE model served as a test-bed for the streaming method
proposed in Chapter 5, its use on realtime streams was not available yet
at the time of the collaboration. We therefore developed a graphical inter-
face around the model to provide a more intuitive approach to neural audio
synthesis, as shown in Figure 6.2. The implementation of the interactors
present in the interface was made in close collaboration with the composer.
This was a critical aspect in the development of the model, gradually in-
tegrating features (e.g. the loudness conditioning mechanism) during the
creation process.

The limitations of both the WaVAE model and the graphical interface even-
tually led to the development of RAVE and nn~, later used by the com-
poser for his piece ANIMATM. Nonetheless, Convergence was awarded with
a Golden Nica in Digital Musics & Sound Art during the 2021 edition of the
Ars Electronica Festival.

110 CHAPTER 6. ARTISTIC COLLABORATIONS

6.1.3 Program notes

Convergence uses the concept of Artificial Intelligence to learn
features of human musicians and then recreate new entities based
on these recordings. In the piece the players interact with their
generated counter-parts. They see theirselves transform and re-
shape. The technology used is centered around VAE and GANs.
Metaphorically they demonstrate a world that is constructed and
parametric. The friction between machine perception and human
world perception is the starting point for questions that address
the fluidity of the self and the restrictions of perception. Human
world and self models are parametric systems that make abstract
assumptions and classifications of our surroundings. These pro-
cesses happen party subconscious and unreflected. They give us
the impression of an absolute truth or reality, as the constructed
concepts, identities and beliefs are persuasive and internal. That
these constructive models are fluid and subject to change is ex-
amined through the use of AI in this context. Auto-Encoders
allow a formalization of the input data - in this case faces, bodies
and voices. The deep learning yields a low-dimensional - abstract
or high-level - description of the input. Opposed to our black
box human mind the high level parameters in the algorithm are
accessible and can be edited and transformed.

In this sense the AI systems allows to warp the representa-
tion of the human performers and thus stressing the fluidity of
the modeling: A different person, character trait, evaluation or
gender is far less substantially disparate as the subject would an-
ticipate. The transformation of the parameters posses the charac-
ter of (social, societal, clinical or biological) mind-altering states.
The AI system is used to enable this altering with the aim to ques-
tion the robustness and immobility of identity and world models.
It tries to expose the internal constructiveness and in this sense
works as a mirroring device. It recreates partial aspects of our
perception and classification and through its alteration offers the
viewer to draw a parallel to our own mental world building pro-
cesses.

Alexander Schubert

6.2. MAXIME MANTOVANI: FORME IMPROVISÉE 111

6.2 Maxime Mantovani: Forme improvisée

Figure 6.3: From left to right, Victor Auffray, Maxime Mantovani and Henri-
Charles Caget during a rehearsal session around nn~ and RAVE.

6.2.1 Technical aspects

A second artistic and scientific collaboration was conducted with the com-
poser Maxime Mantovani during his artistic residency in our research labo-
ratory. The main target for this collaboration was the study of the real-time
interaction between artists and pretrained deep learning audio models. This
residency started during the development of both RAVE and nn~, allowing
the composer to use early versions of both projects as a base material for his
work. Building RAVE while having concrete production expectations guided
its development toward high-quality audio synthesis (using 48kHz signals
instead of 24kHz), dynamic range fidelity (introduction of the loudness enve-
lope generator in Section 3.1.3) and development of a causal variant yielding
lower processing latency (see Section 5.1.1). The work of the composer on
the creation of the darbuka dataset yielded precious insights about the base
audio material needed to produce a usable RAVE model.

This project was also the perfect opportunity to test nn~ in a production
environment. The feedback of the composer in between rehearsals helped
with stabilizing the external and initiated the implementation of important
features that a research environment failed to highlight (model bypassing,
dynamic internal buffers, optional GPU computation).

An additional research axis included a control surface built by the composer
(see Figure 6.4 for an early prototype of the controller), and was explored dur-

112 CHAPTER 6. ARTISTIC COLLABORATIONS

ing this collaboration. The objective was the learning of a mapping between
latent trajectories yielded by RAVE and signals produced by the controller
as a way to drive the generative process through intuitive gestures. The
complexity of the task prevented its proper addressing during the time of the
collaboration, and the control surface was used in a learning-free context.

Figure 6.4: Disk-based controller built by Maxime Mantovani, early proto-
type of the final interface developed during the piece.

6.2.2 Program notes

As part of my art-research residency at IRCAM, 2021-2022, fo-
cusing on Artificial Intelligence systems and electronic instrument
building, I invited Victor Auffray (tubist) and Henri-Charles Caget
(percussionist) to participate in improvisations in order to con-
front these technologies with the reality of musical instantaneity,
the point of encounter and the genesis of the improvisation pro-
posed as a residency restitution. The presence of these new sound
objects proposed by AI, and in particular by the RAVE model,
allows for the creation of music that modifies our perceptions of
electronic space, transforming it into a creative organism or an
autonomous propositional force. Without falling into anthropo-
morphism that would shift the focus elsewhere, the generative
model based on deep neural networks learning is a fantastic tool

6.2. MAXIME MANTOVANI: FORME IMPROVISÉE 113

that proposes surprising and touching musical solutions in terms
of expressiveness.

Our rehearsal work mainly consisted of testing different timbre
transfers and interconnections between my interfaces, the various
models, and the musicians. We were thus able to identify and
control nn~ reaction based on the sounds that were proposed as
input. Clément Cannone, a musicologist at IRCAM specializing
in the field of improvisation, defined this as a morphological trans-
fer. Thanks to my controllers, I quickly have access to all modes
of interconnection between input sources and the latent spaces
of RAVE. The morphological transfer is then multiple: from mu-
sicians to latent space, from recorded musicians to a granular
engine to latent space, from musicians to latent space to record-
ing on the granular engine and then from AI to AI. I can quickly
achieve ”mises en abyme”. The latency is remarkably short and
dependent on Max’s vector size, but it is still noticeable. To
avoid the systematicity that this would impose, all these ”mises
en abyme” and interconnections of morphological transfer make
us forget this state of question/answer, and we find ourselves in
a situation of sound creation, construction of the musical space,
observation of the playground and constant renewal of musical
proposal. AI becomes a force of musical proposal. As interpret-
ing musicians, the RAVE generative model succeeds in surprising
us, and it becomes very pleasant to indulge in its imitation game.
These systems are surprisingly expressive. I note the crucial im-
portance of creating a very clean and precise dataset. The dataset
is fundamental for the quality of the sound results afterwards.
This is a problem that has been known since the beginning of
recordings. The quality of the recording is essential to maintain
the sound quality throughout all the transformations we subject
them to. This project aims to connect the expressive vectors of
instrumental performance, electronic-acoustic instrument build-
ing, and timbre transfer systems to create a more dynamic and
impactful musical experience.

One’s thoughts automatically turn to the creation of a ghost,
an altered digital twin. A parallel sound world opens up. We are
no longer at the level of offline work, no longer the stammering of
the machine or the chattering that smooths listening over time.
We are at the level of interconnected real-time. This allows to link
reality and fiction into a surreal sonic space while we play music
conceived on the spot. Augmented and interconnected space as

114 CHAPTER 6. ARTISTIC COLLABORATIONS

a medium — an Alter-Reality. In learning models, there is cur-
rently no notion of musical form; the machine generates, listens,
and ”simply” repeats. What remains after the fascination of dis-
covery? How can we make it take into account what came before
and propose what will come next? A learning model of musical
form coupled with the generative model would be an incredible
tool in an improvised form with a musician.

Maxime Mantovani

The artificial intelligence, responds instantly to the instru-
mental gesture and questions the performer in real-time, which is
quite innovative in terms of acoustic playing sensations. It takes
the expressiveness of each performer into a new dimension. With
AI, we are, in all modesty, witnessing the beginnings of tomor-
row’s writing. It is time to start creating an organology of AI.

Henri-Charles Caget

6.3. OTHER PIECES 115

6.3 Other pieces

Figure 6.5: Visual of the vintage livestream.

6.3.1 Azimuth Conjunction in Declining State

Azimuth Conjunction in Declining State (ACIDS) is a 24mn long randomly
generated piece1 leveraging RAVE (see Section 3), an unconditional shifted
convolutional prior (see Section 4.4.1) and the nn~ external (see Section 5.3).
It uses the violin training featured in RAVE [76]. The sampling temperature
is oscillating between 2 and 0.4 at a rate of 0.01Hz with random restarts.

The piece has been featured in the 2022 edition of the MUSAiC festival.

6.3.2 Vintage experiments

We conduct a set of musical experiments around the idea of using RAVE,
a temporal model and nn~ on musical material from the past century. We
leverage a large-scale dataset composed of digitized 70RPM disks from the
archive.org website that we de-noise using the method described in [91]. The
first experiment involved the live monitoring of the training of both a RAVE
model and an unconditional shifted convolutional temporal model through a
1-week long livestream. We use a Max patch inspired from the one used for
ACIDS, and reload new checkpoints of all models every hour. The livestream
started using nearly untrained models, reaching a relative convergence at the
end of the stream one week later. We show in Figure 6.5 a visual taken from
the livestream.

Another experiment on the subject was led in collaboration with Axel Chemla–
Romeu-Santos under the form of a 20mn long live piece called We get what

1The ACIDS piece is available at this address: youtu.be/XXqQyeXZpl0

https://archive.org
https://youtu.be/XXqQyeXZpl0

116 CHAPTER 6. ARTISTIC COLLABORATIONS

we leave behind. This piece is a real-time AI triptych on oblivion, hauntology,
real and false memories and artificial reveries. It was performed live in the
Cirque Electrique in Paris, and involved the use of models trained on the pre-
vious dataset in addition to music from all around the world. It also involved
the use of past technologies such as tape recorders on which the output of
the generative models were continuously recorded and played back.

Chapter 7

Conclusion

Musical audio signals are complex to understand, as lots of different infor-
mation scales are scattered around tens of thousands of individual samples.
This makes the analysis and synthesis of such signals with deep learning
approaches challenging. Early works introduce the use of large autoregres-
sive models to properly model all scales at once, from fine-grained details
to higher-level structure and style features. However, the computational
complexity of those models result in expensive training procedures and pro-
hibitively long sampling times. In this thesis, we study the use of hierarchical
models to address the problem of music neural audio synthesis. The core idea
behind hierarchical approaches is to model each scale of a data example sep-
arately, usually using individual sub-models trained on different modalities
of this example. This allows to tailor each sub-model to a specific learning
task, which eventually results in a smaller and more efficient system. There-
fore, we split our approach into two main modules. The first one involves
the creation of a representation learning model that extracts a high-level and
compact representation of a complex audio dataset. This compact represen-
tation is then used as the base signal for our second approach, trained to learn
its temporal evolution, either unconditionally or based on external acoustic
descriptors. Finally, we introduce a set of techniques and applications to
make both previous methods compatible with real-time processing, through
the use of Digital Audio Workstations (DAWs) such as Max/MSP or Pure-
Data. All our methods and applications have been designed in collaboration
with professional artists as a way to maintain focus on their usability in the
context of creative applications. These collaborations resulted in a series
of musical pieces integrating our methods in both an offline and real-time
processing context.

117

118 CHAPTER 7. CONCLUSION

Audio representation learning. First, we introduced the Realtime Au-
dio Variational autoEncoder (RAVE) model, a multipurpose audio repre-
sentation learning model analyzing and synthesizing high-quality raw audio
signals 20 to 80 times faster than real-time on CPU. We combine two different
classes of generative models, namely Variational Auto Encoders (VAEs) and
Generative Adversarial Networks (GANs) through the use of a novel 2-stage
training mechanism. Our method learns a high-level and compact represen-
tation extracted from the raw audio signal, while using adversarial training
strategies to produce high-quality sounding synthesized sounds. To further
compress the learned representation, we propose a post-training analysis of
the latent space to identify informative and non-informative dimensions, and
derive from this analysis a fidelity parameter. This parameter can be used to
control the trade-off between reconstruction fidelity and representation com-
pactness. From an application standpoint, RAVE can be used to perform
timbre transfer and high-level feature manipulation. In addition to the usual
VAE formulation, we experiment with different latent regularization strate-
gies, including a Wasserstein regularization introduced in [72] and Residual
Vector Quantization (RVQ) as proposed in [74]. Overall, these different regu-
larization methods yield RAVE models with different application cases, with
both the original and Wasserstein variants being suited to timbre transfer
and high-level manipulation of an existing input audio signal, while we use
the RVQ variant as the first building block of our higher-level hierarchical
model.

Temporal learning. Our next proposal addresses the temporal learning
of the representation yielded by RAVE with the RVQ regularization given a
specific dataset. We draw inspiration from the recent advances in the Nat-
ural Language Processing (NLP) literature, which have provided impressive
results in terms of temporal coherency. In contrast with the original VAE for-
mulation which encodes a data point into a single multivariate latent point,
the encoder we define in the RAVE model yields a sequence of multivariate
latent points, that we call latent trajectory. Unfortunately, most of the ap-
proaches proposed in the NLP literature involve univariate sequences. The
current method used to address multivariate sequence modeling tasks in-
volves flattening the sequence. In practice, this implies interleaving all the
dimensions of the original multivariate sequence into a longer univariate se-
quence. This method is computationally inefficient as it is introducing an
artificial temporal complexity, implying longer training times. Furthermore,
in the case of autoregressive generative models, synthesis time is inevitably
multiplied by the number of dimensions, which can be a problem for real-

119

time applications. Therefore, we introduce several extensions to the usual
NLP methods to the multivariate sequence distribution estimation task. In
practice, we introduce three methods called decoupling, residual and shift
which are all able to process multivariate sequences without the aforemen-
tioned flattening preprocessing stage. We show that both the residual and
decoupling methods yield higher prediction scores, while being significantly
faster to train and to use in a generation setup. In terms of computational
efficiency, all our methods are faster than real-time, which is not the case
for the flattening baseline. Overall, combining the prediction of our autore-
gressive temporal model with the decoder from a pretrained RAVE model
can be used for autonomous music creation, audio continuation, or descriptor
conditioned generation.

Real-time inference and artistic collaborations. While some kinds of
deep learning model (e.g. recurrent models) are naturally fit to the streaming
task (i.e. process live audio streams instead of audio files), we have shown
that this is not the case by default for non-causal Convolutional Neural Net-
works (CNNs). As many recent advances in audio modeling leverage CNNs
at the core of their architecture, we propose a set of techniques enabling
their use in a streaming setup. In contrast with previous methods relying on
causal convolutions during training to obtain streamable models, we propose
a post-training causal re-configuration of the model to allow any kind of CNN
based model to operate on audio streams.

Additionally, we introduce the nn~ external, which provides an interface be-
tween the PyTorch deep learning library and both Max/MSP and PureData.
Combining nn~ with a pretrained model (e.g. RAVE or any model compliant
with the nn~ API), we allow artists to perform deep learning based audio
processing and synthesis in real-time, without leaving their usual creative
framework. Applying those techniques on the RAVE model, we effectively
propose the first convolutional-based deep learning generative model inte-
grated in a real-time environment.

We benefit from several collaborations with professional artists to define and
improve all our proposed methods and tools. This allowed the introduction
of high-quality audio constraints (i.e. high sampling rate, low latency), and
helped stabilize the nn~ external, which is particularly important for its com-
patibility with a production setup. Overall, the combination of the RAVE
model with our real-time applications has been used in several artistic pieces
around the world.

120 CHAPTER 7. CONCLUSION

Future works. Firstly, an interesting development to the hierarchical ap-
proach proposed in this thesis can be found in the use of the semantic repre-
sentation introduced in [78] through the use of a self-supervised representa-
tion learning model (see Section 2.4.2). Indeed, such a high-level representa-
tion used in the context of a generative model yields impressive applications
in terms of audio continuations, while reaching an unprecedented temporal
coherency during generation. However, the nature of the information en-
coded in the semantic tokens is difficult to interpret, and even harder to
interact with. Therefore, performing an explorative study of this kind of
representation to better understand its content might be helpful to design
more efficient generative strategies, and avoid redundancies in the different
levels of generation.

Secondly, even though the representations extracted by RAVE are signif-
icantly more compact than their corresponding audio signals, the yielded
trajectories are still living in a latent space whose dimensionality ranges in
practice from 4 to 32 dimensions. This high dimensionality makes it hard to
build an intuition of the implicit structure learned by the model, and thus
might hamper the controllability of the resulting system. Since reducing the
number of latent dimensions will inevitably decrease the reconstruction abil-
ities of the model, an alternative solution to this problem might come from
the studying of adapted visualization and control methods. More specifically,
using the distribution yielded by a temporal model on the latent trajectories
of a RAVE model in conjunction with methods inspired from entropy coding
might help build a dynamically adapting representation of smaller dimen-
sionality. Indeed, the use of the predictions made by the temporal model
would enable the identification of factors of variation that are most likely to
occur, drastically simplifying the overall control space of the model.

Lastly, recent advances in Reinforcement Learning offers an alternative frame-
work to the methods presented in this thesis, as they rely on a non-
differentiated reward function to learn high-level tasks. This could enable
the integration of human evaluation in the training loop, increasing the level
of customization an artist can have over a model.

Bibliography

[1] Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Francis Bach.
Demucs: Deep Extractor for Music Sources with extra unlabeled data
remixed. 9 2019.

[2] Josh Gardner, Ian Simon, Ethan Manilow, Curtis Hawthorne, and Jesse
Engel. MT3: Multi-Task Multitrack Music Transcription. 11 2021.

[3] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Ko-
ray Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. 9
2016.

[4] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec
Radford, and Ilya Sutskever. Jukebox: A Generative Model for Music.
arXiv, 4 2020.

[5] S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for the Mea-
surement of the Psychological Magnitude Pitch. The Journal of the
Acoustical Society of America, 8(3):185, 6 2005.

[6] Truong Q. Nguyen. Near-Perfect-Reconstruction Pseudo-QMF Banks.
IEEE Transactions on Signal Processing, 42(1):65–76, 1994.

[7] M. Rossi, Jin-Yun Zhang, and W. Steenaart. A new algorithm for de-
signing prototype filters for M-band Pseudo QMF banks, 1996.

[8] Yuan Pei Lin and P. P. Vaidyanathan. A kaiser window approach for
the design of prototype filters of cosine modulated filterbanks. IEEE
Signal Processing Letters, 5(6):132–134, 1998.

[9] Haskell B Curry and frankord Arsenal. The method of steepest descent
for non-linear minimization problems. Quarterly of Applied Mathemat-
ics, 2(3):258–261, 1944.

121

122 BIBLIOGRAPHY

[10] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochas-
tic optimization. In 3rd International Conference on Learning Repre-
sentations, ICLR 2015 - Conference Track Proceedings. International
Conference on Learning Representations, ICLR, 2015.

[11] HornikK., StinchcombeM., and WhiteH. Multilayer feedforward net-
works are universal approximators. Neural Networks, 7 1989.

[12] Yann Lecun and Yoshua Bengio. Convolutional networks for images,
speech, and time-series. In Michael Arbib, editor, The handbook of brain
theory and neural networks. MIT Press, 1995.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8), 1997.

[14] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and
Yoshua Bengio. On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. 9 2014.

[15] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning Long-
Term Dependencies with Gradient Descent is Difficult. IEEE Transac-
tions on Neural Networks, 5(2):157–166, 1994.

[16] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 32nd
International Conference on Machine Learning, ICML 2015, 1:448–456,
2 2015.

[17] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Nor-
malization. 7 2016.

[18] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Nor-
malization: The Missing Ingredient for Fast Stylization. 7 2016.

[19] Tim Salimans and Diederik P. Kingma. Weight Normalization: A Simple
Reparameterization to Accelerate Training of Deep Neural Networks.
Advances in Neural Information Processing Systems, pages 901–909, 2
2016.

[20] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi
Yoshida. Spectral Normalization for Generative Adversarial Networks.
6th International Conference on Learning Representations, ICLR 2018
- Conference Track Proceedings, 2 2018.

BIBLIOGRAPHY 123

[21] Ricky T.Q. Chen, Jens Behrmann, David Duvenaud, and Jörn Henrik
Jacobsen. Residual Flows for Invertible Generative Modeling. Advances
in Neural Information Processing Systems, 32, 6 2019.

[22] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neu-
ral Networks from Overfitting. Journal of Machine Learning Research,
15(56):1929–1958, 2014.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
volume 2017-December, pages 5999–6009. Neural information processing
systems foundation, 6 2017.

[24] Diederik P. Kingma and Max Welling. Auto-encoding variational
bayes. In 2nd International Conference on Learning Representations,
ICLR 2014 - Conference Track Proceedings. International Conference
on Learning Representations, ICLR, 12 2014.

[25] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative Adversarial Networks. Communications of the ACM, 63(11):139–
144, 6 2014.

[26] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier
Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerch-
ner. beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework, 11 2016.

[27] Yann LeCun and Corinna Cortes. The mnist database of handwritten
digits. 2005.

[28] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin,
Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio,
and Aaron Courville. MelGAN: Generative Adversarial Networks for
Conditional Waveform Synthesis. arXiv, 10 2019.

[29] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
GAN. arXiv, 1 2017.

[30] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron Courville. Improved Training of Wasserstein GANs. Advances
in Neural Information Processing Systems, 2017-December:5768–5778, 3
2017.

124 BIBLIOGRAPHY

[31] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator
Architecture for Generative Adversarial Networks. 12 2018.

[32] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation, 10 2017.

[33] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. Analyzing and Improving the Image Quality of
StyleGAN. 12 2019.

[34] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density es-
timation using Real NVP. 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track Proceedings, 5 2016.

[35] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with
Invertible 1x1 Convolutions. Advances in Neural Information Processing
Systems, 2018-December:10215–10224, 7 2018.

[36] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan
Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang,
Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin Li,
Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling Autoregressive
Models for Content-Rich Text-to-Image Generation. 6 2022.

[37] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating
Long Sequences with Sparse Transformers. 4 2019.

[38] Curtis Hawthorne, Andrew Jaegle, Cătălina Cangea, Sebastian
Borgeaud, Charlie Nash, Mateusz Malinowski, Sander Dieleman, Oriol
Vinyals, Matthew Botvinick, Ian Simon, Hannah Sheahan, Neil Zeghi-
dour, Jean-Baptiste Alayrac, João Carreira, and Jesse Engel. General-
purpose, long-context autoregressive modeling with Perceiver AR. 2
2022.

[39] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou
Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, and Adrian
Weller. Rethinking Attention with Performers. 9 2020.

[40] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and
Yunfeng Liu. RoFormer: Enhanced Transformer with Rotary Position
Embedding. 4 2021.

[41] Ofir Press, Noah A. Smith, and Mike Lewis. Train Short, Test Long:
Attention with Linear Biases Enables Input Length Extrapolation. 8
2021.

BIBLIOGRAPHY 125

[42] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam
Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D.
Hoffman, Monica Dinculescu, and Douglas Eck. Music Transformer. 9
2018.

[43] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
Estimation of Word Representations in Vector Space. 1 2013.

[44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 10 2018.

[45] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli.
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Rep-
resentations. Advances in Neural Information Processing Systems, 2020-
December, 6 2020.

[46] Yu An Chung, Yu Zhang, Wei Han, Chung Cheng Chiu, James Qin,
Ruoming Pang, and Yonghui Wu. W2v-BERT: Combining Contrastive
Learning and Masked Language Modeling for Self-Supervised Speech
Pre-Training. 2021 IEEE Automatic Speech Recognition and Under-
standing Workshop, ASRU 2021 - Proceedings, pages 244–250, 8 2021.

[47] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Prob-
abilistic Models. arXiv, 6 2020.

[48] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar,
Shubham Jain, Jose Sotelo, Aaron Courville, and Yoshua Bengio. Sam-
plernn: An unconditional end-to-end neural audio generation model. In
5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings. International Conference on Learning
Representations, ICLR, 2017.

[49] Aaron Van Den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan,
Oriol Vinyals, Koray Kavukcuoglu, George Van Den Driessche, Edward
Lockhart, Luis C Cobo, Florian Stimberg, Norman Casagrande, Do-
minik Grewe, Seb Noury, Sander Dieleman, Erich Elsen, Nal Kalch-
brenner, Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan Belov,
and Demis Hassabis. Parallel WaveNet: Fast High-Fidelity Speech Syn-
thesis. Technical report, 7 2018.

[50] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya
Sutskever, and Max Welling. Improving Variational Inference with In-
verse Autoregressive Flow. 6 2016.

126 BIBLIOGRAPHY

[51] Wei Ping, Kainan Peng, and Jitong Chen. ClariNet: Parallel Wave
Generation in End-to-End Text-to-Speech. Technical report, 9 2018.

[52] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A Flow-
based Generative Network for Speech Synthesis. In ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing -
Proceedings, volume 2019-May, pages 3617–3621. Institute of Electrical
and Electronics Engineers Inc., 5 2019.

[53] Wei Ping, Kainan Peng, Kexin Zhao, and Zhao Song. WaveFlow: A
Compact Flow-based Model for Raw Audio. Technical report, 11 2020.

[54] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Au-
toregressive Flow for Density Estimation. 5 2017.

[55] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. HiFi-GAN: Generative
Adversarial Networks for Efficient and High Fidelity Speech Synthesis.
Advances in Neural Information Processing Systems, 2020-December, 10
2020.

[56] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts.
DDSP: Differentiable Digital Signal Processing. Technical report, 9
2019.

[57] Ryuichi Yamamoto, Eunwoo Song, and Jae Min Kim. Parallel Wave-
gan: A Fast Waveform Generation Model Based on Generative Adver-
sarial Networks with Multi-Resolution Spectrogram. In ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing -
Proceedings, volume 2020-May, pages 6199–6203. Institute of Electrical
and Electronics Engineers Inc., 5 2020.

[58] Philippe Esling, Axel Chemla-Romeu-Santos, and Adrien Bitton. Gener-
ative timbre spaces: regularizing variational auto-encoders with percep-
tual metrics. DAFx 2018 - Proceedings: 21st International Conference
on Digital Audio Effects, pages 369–376, 5 2018.

[59] Daniel W. Griffin and Jae S. Lim. Signal Estimation from Modi-
fied Short-Time Fourier Transform. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 32(2):236–243, 1984.

[60] Sean Vasquez and Mike Lewis. MelNet: A Generative Model for Audio
in the Frequency Domain. arXiv, 6 2019.

[61] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani,
Chris Donahue, and Adam Roberts. GANSynth: Adversarial Neural
Audio Synthesis. arXiv, 2 2019.

BIBLIOGRAPHY 127

[62] Philippe Esling, Naotake Masuda, Adrien Bardet, Romeo Despres, and
Axel Chemla-Romeu-Santos. Universal audio synthesizer control with
normalizing flows. 7 2019.

[63] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz,
and Lawrence Carin. Cyclical Annealing Schedule: A Simple Approach
to Mitigating KL Vanishing. NAACL HLT 2019 - 2019 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies - Proceedings of the Conference,
1:240–250, 3 2019.

[64] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Moham-
mad Norouzi, Douglas Eck, and Karen Simonyan. Neural Audio Syn-
thesis of Musical Notes with WaveNet Autoencoders, 7 2017.

[65] Alexandre Défossez, Neil Zeghidour, Nicolas Usunier, Léon Bottou, and
Francis Bach. SING: Symbol-to-Instrument Neural Generator. Advances
in Neural Information Processing Systems, 2018-December:9041–9051,
10 2018.

[66] Takuhiro Kaneko and Hirokazu Kameoka. Cyclegan-VC: Non-parallel
voice conversion using cycle-consistent adversarial networks. In Euro-
pean Signal Processing Conference, volume 2018-September, pages 2100–
2104. European Signal Processing Conference, EUSIPCO, 11 2018.

[67] Pranay Manocha, Adam Finkelstein, Richard Zhang, Nicholas J. Bryan,
Gautham J. Mysore, and Zeyu Jin. A Differentiable Perceptual Audio
Metric Learned from Just Noticeable Differences. Proceedings of the
Annual Conference of the International Speech Communication Associ-
ation, INTERSPEECH, 2020-October:2852–2856, 1 2020.

[68] Xin Wang, Shinji Takaki, and Junichi Yamagishi. Neural source-
filter waveform models for statistical parametric speech synthesis.
IEEE/ACM Transactions on Audio Speech and Language Processing,
28:402–415, 4 2019.

[69] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
and Ole Winther. Autoencoding beyond pixels using a learned similar-
ity metric. 33rd International Conference on Machine Learning, ICML
2016, 4:2341–2349, 12 2015.

[70] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes,
Ludovic Denoyer, and Marc’aurelio Ranzato. Fader Networks: Manip-
ulating Images by Sliding Attributes. Advances in Neural Information
Processing Systems, 2017-December:5968–5977, 6 2017.

128 BIBLIOGRAPHY

[71] Noam Mor, Lior Wolf, Adam Polyak, and Yaniv Taigman. A Universal
Music Translation Network. arXiv, 5 2018.

[72] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard
Schölkopf. Wasserstein Auto-Encoders. 6th International Conference
on Learning Representations, ICLR 2018 - Conference Track Proceed-
ings, 11 2017.

[73] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural
Discrete Representation Learning. Advances in Neural Information Pro-
cessing Systems, 2017-December:6307–6316, 11 2017.

[74] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and
Marco Tagliasacchi. SoundStream: An End-to-End Neural Audio
Codec. IEEE/ACM Transactions on Audio Speech and Language Pro-
cessing, 30:495–507, 7 2021.

[75] Junichi Yamagishi, Christophe Veaux, and Kirsten MacDonald. CSTR
VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning
Toolkit, 2019.

[76] Antoine Caillon and Philippe Esling. RAVE: A variational autoencoder
for fast and high-quality neural audio synthesis. 11 2021.

[77] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference
with Normalizing Flows. 32nd International Conference on Machine
Learning, ICML 2015, 2:1530–1538, 5 2015.

[78] Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov,
Olivier Pietquin, Matt Sharifi, Olivier Teboul, David Grangier, Marco
Tagliasacchi, and Neil Zeghidour. AudioLM: a Language Modeling Ap-
proach to Audio Generation. 9 2022.

[79] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2016-
December:770–778, 12 2015.

[80] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman
Casagrande, Edward Lockhart, Florian Stimberg, Aaron van den Oord,
Sander Dieleman, and Koray Kavukcuoglu. Efficient Neural Audio Syn-
thesis. 35th International Conference on Machine Learning, ICML 2018,
6:3775–3784, 2 2018.

[81] Anmol Gulati, James Qin, Chung Cheng Chiu, Niki Parmar, Yu Zhang,
Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and

BIBLIOGRAPHY 129

Ruoming Pang. Conformer: Convolution-augmented Transformer for
Speech Recognition. Proceedings of the Annual Conference of the In-
ternational Speech Communication Association, INTERSPEECH, 2020-
October:5036–5040, 5 2020.

[82] Daniel P. W. Ellis. Beat Tracking by Dynamic Programming. Journal
of New Music Research, 36(1):51–60, 3 2007.

[83] Brian Mcfee, Colin Raffel, Dawen Liang, Daniel P W Ellis, Matt
Mcvicar, Eric Battenberg, and Oriol Nieto. librosa: Audio and Mu-
sic Signal Analysis in Python. PROC. OF THE 14th PYTHON IN
SCIENCE CONF, 2015.

[84] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and
Aaron Courville. FiLM: Visual reasoning with a general conditioning
layer. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,
pages 3942–3951. AAAI press, 9 2018.

[85] Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-U-Net: A
Multi-Scale Neural Network for End-to-End Audio Source Separation.
Proceedings of the 19th International Society for Music Information Re-
trieval Conference, ISMIR 2018, pages 334–340, 6 2018.

[86] Jean-Marc Valin. RNNoise , 2017.

[87] Oleg Rybakov, Natasha Kononenko, Niranjan Subrahmanya, Mirko
Visontai, and Stella Laurenzo. Streaming keyword spotting on mo-
bile devices. Proceedings of the Annual Conference of the Inter-
national Speech Communication Association, INTERSPEECH, 2020-
October:2277–2281, 5 2020.

[88] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume 9351, pages 234–
241. Springer Verlag, 2015.

[89] Sicong Huang, Qiyang Li, Cem Anil, Xuchan Bao, Sageev Oore, and
Roger B. Grosse. TimbreTron: A WaveNet(CycleGAN(CQT(Audio)))
Pipeline for Musical Timbre Transfer. 7th International Conference on
Learning Representations, ICLR 2019, (2), 11 2018.

[90] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach

130 BIBLIOGRAPHY

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. Advances in
Neural Information Processing Systems, 32, 12 2019.

[91] Eloi Moliner and Vesa Välimäki. A Two-Stage U-Net for High-Fidelity
Denoising of Historical Recordings. 2 2022.

	Introduction
	State-of-the-art
	Digital audio synthesis
	Fourier analysis
	Filtering
	Time-frequency representations
	Multiband decomposition

	Machine Learning
	Parameter optimization
	Learning types
	Neural networks
	Scaling to deep models

	Deep generative models
	Variational Auto-Encoders
	Generative Adversarial Networks
	Normalizing Flows

	Sequence modeling
	Transformers
	Model pretraining

	Audio modeling
	Waveform models
	Spectral models
	Hybrid models

	Audio representation learning
	RAVE
	High-resolution audio modeling
	Representation dimensionality estimation
	Experiments
	Results

	Alternative latent regularization
	Wassertein regularization
	Discrete prior
	Results

	Temporal learning
	Continuous vs discrete latents
	Multivariate autoregressive modeling
	Discrete sequence modeling
	Multivariate extension

	Efficient multivariate parametrization
	Decoupling method
	Residual method
	Shift method

	Network definition
	Architecture
	Embedding
	Conditioning
	Optimized inference

	Experiments
	Results

	Real-time interaction
	Streaming models
	Cached padding
	Non-causal streaming models

	Evaluation
	Performances
	Processing latency
	Impact of pre-training causal constraint
	Fidelity

	Realtime interfaces
	Reactive programming using Max/MSP
	Using the nn˷ external

	Artistic collaborations
	Alexander Schubert: Convergence
	Technical aspects
	Interface
	Program notes

	Maxime Mantovani: Forme improvisée
	Technical aspects
	Program notes

	Other pieces
	Azimuth Conjunction in Declining State
	Vintage experiments

	Conclusion

