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Abstract

Today, stateful serverless functions are chained together through a message-based
infrastructure and store their durable state in a separate database. This separation
between storage and compute creates serious challenges that may lead to inconsis-
tency and application crashes. A unified consistency model for message passing and
shared memory is required to avoid such errors. The model should ensure that mul-
tiple pieces of data remain mutually consistent, whether data is sent using messages
or shared in a distributed memory. Based on a well-known message-based model
(actors) and a state model (transactional shared memory), we propose a unified
communication and persistence model called Transactional-Turn Causal Consistency
(TTCC). TTCC is asynchronous, preserves isolation, and ensures that the message
and memory view are mutually causally consistent.

We propose an implementation of TTCC, based on a unified version vector. Our
implementation ensures unified causal consistency for messages and shared memory
with a response time overhead of up to 4.62×, 1.40× and 4.58× for read, update
and message operation respectively.

Keywords: Causal Consistency, Actor Model, Message-Passing, Shared Memory,
Serverless
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Résumé

Les applications serverless sont construites à l’aide de frameworks asynchrones basés
sur des messages qui permettent aux utilisateurs de composer de manière abstraite
des fonctions dans le cloud. Les fonctions serverless stockent leur état dans une
base de données distribuée, telle que DynamoDB. Ce scénario architectural courant
est fragile, car les garanties de cohérence des données pour la composition de la
couche de messages et de la couche de base de données ne sont pas bien définies.
Cela peut entraîner des incohérences, des pannes et des pertes de données. Cette
séparation entre le stockage et le calcul crée de sérieux défis qui peuvent conduire à
des incohérences et à des plantages d’applications. Les approches existantes sont ad
hoc et ne garantissent pas la cohérence. En se basant sur un modèle bien connu basé
sur les messages (acteurs) et un modèle à état (mémoire partagée transactionnelle),
nous proposons un modèle de communication unifié, appelé Transactional Turn
Causal Consistency (TTCC), ou Cohérence Causal par Tour. TTCC est asynchrone et
préserve l’isolation en interne et garantit que les messages et la vue de la mémoire
sont mutuellement cohérents.

Notre évaluation montre que TTCC est une solution viable pour du serverless à
état. Notre mise en implémentation garantit une cohérence causale unifiée pour les
messages et la mémoire partagée avec un surcoût de temps de réponse allant jusqu’à
4,62×, 1,40× et 4,58× pour la lecture, la mise à jour et l’opération de message
respectivement.

Mots-clés: Cohérence Causal, Modèle Acteur, Message-Passing, Mémoire Partagée,
Serverless
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Introduction 1
Serverless computing applications are built using asynchronous message-based
frameworks, which enable users to abstractly compose functions in the cloud. Very
often, to handle business logic, applications need to store state, such as user au-
thentication, video encoding or collaborative workspaces. Today, stateful serverless
computing stores state in a distributed database such as DynamoDB (Figure 1.1).
This common architectural scenario is brittle because the data consistency guar-
antees for the composition of the message layer and of the database layer are not
well-defined. This can result in inconsistency, crashes and data loss.

Fig. 1.1.: A stateful serverless construct. Fig. 1.2.: An inconsistency leading to a crash.

Let us illustrate this with the simple example in Figure 1.2, which is a timeline
representation of Figure 1.1. Here, x and y are shared variables, initially set to
0, and replicated at all three sites. Node A updates y to 1 and notifies B with a
message m1. Node B updates x to 2 and sends a message m2 to node C requesting
to compute z = x/y. In the absence of guarantees, m2 could be delivered before y

is replicated on node C, in which case C computes z = 2/0, leading to a crash. The
issue is that the unconstrained order of message delivery and of database updates
violates causality and breaks a fundamental assumption that developers take for
granted.

Consistency is the set of rules that constrain the order in which updates (e.g. sending
a message or assigns a shared variable) become visible (to receivers or to readers).
There are many consistency models, ranging from strict serializability (linearizabil-
ity), where all updates are visible instantaneously to all processes, to the weakest
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consistency models, where updates are delivered to remote nodes in no predictable
order.

Most existing systems are designed to communicate either by message or by shared
memory, but not both. Therefore, the literature defines message-based and data-
based consistency models separately. However, serverless computing combines both
paradigms. Maintaining separate consistency guarantees is non-intuitive and can
lead to inconsistencies between message-delivery and shared-object guarantees (as
in Figure 1.2).

A unified consistency model for message passing and shared memory is required to
avoid such errors. The model should ensure that multiple pieces of data remain
mutually consistent, whether data is sent using messages or shared in a distributed
memory.

Serverless computing is asynchronous and thus incompatible with strong consistency
(e.g. linearizability or serializability) as it imposes strong synchronicity requirements.
On the other end of the spectrum, eventual consistency violates intuition, as our
previous example shows. Causal consistency is a useful intermediate model, because
it is asynchronous, and at the same time provides useful guarantees that ease
reasoning [Akk+16; Zaw+15; Llo+11].

Isolation is a constraint that prevents a process from directly altering memory of
another process. It is a useful property as it prevents deadlocks while maintaining
asynchrony.

Our TTCC model is a transactional, causally consistent, memory-message model,
that unifies message passing and shared memory in an asynchronous, and isolated
environment.

2 Chapter 1 Introduction



1.1 Overview

In Part I of this thesis, we explore the serverless computing paradigm and the
challenges that are created by its architecture. Then, we discuss the compatibility
of two communication models: message-passing and shared memory. Finally, we
present a comprehensive study of the state of the art, and what has been done in
the literature to fulfill the serverless computing requirements.

In Part II, we present our main contribution, TTCC, a transactional, causally con-
sistent model that unifies message-passing and shared memory in an asynchronous
and isolated environment. We identify requirements for compatibility between
actor-based stateful serverless framework, and shared state between actors. How-
ever, a unified memory model is challenging as independent consistency models
are not necessarily mutually consistent. To answer this challenge, TTCC takes a
hybrid approach, and provides the highest consistency guarantees compatible with
asynchrony (TCC+) for shared memory and messages, and integrates them cleanly
into a unified transactional memory model. In addition, CRDT data types ensure
convergence without rollbacks. A related challenge is the overhead of concurrency
metadata (vector clocks).

Finally, in Part III, this thesis addresses a number of design and implementation
challenges, including user API choices, user constraints and concurrency metadata
types.

1.2 Contributions

The main results of this dissertation are as follows:

• The formalization of a unified memory-message model, TTCC, which provides a
unified, transactional and causally consistent guarantees that is compatible with
stateful serverless frameworks.

• The design of a protocol, which leverages a version vector to maintain causal
consistency in a hybrid memory-message environment.

• A reference design and implementation of TTCC, and its experimental evaluation.

Our implementation ensures unified causal consistency for messages and shared
memory with a response time overhead of up to 4.62×, 1.40× and 4.58× for read,
update and message operation respectively.
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1.3 Publications

Some of the results presented in this thesis are pending publication:

• Benoît Martin, Laurent Prosperi, and Marc Shapiro. Transactional-Turn Causal
Consistency. Euro-Par 2023 - 29th International European Conference on
Parallel and Distributed Computing, Aug 2023, Cyprus.

• Benoît Martin and Marc Shapiro. Shared memory for the actor model. COMPAS
2022 - Conférence francophone d’informatique en Parallélisme, Architecture
et Système [MS22].

During my thesis, I explored other directions and collaborated on the design of a
high level approach to distributed systems’ composition, which has helped me to get
the insights on the challenges related to serverless frameworks. These efforts have
led me to contribute to the following publications:

• Laurent Prosperi, Benoît Martin and Marc Shapiro. [Anonymized]. Submitted
for publication.

• Benoît Martin, Laurent Prosperi, and Marc Shapiro. A new environment for
composable and dependable distributed computing. EuroDW 2020 - 14th
EuroSys Doctoral Workshop, Apr 2020, Heraklion / Virtual, Greece [MPS20].

1.4 Organization

This thesis is divided into three parts. The rest of this document is organized as
follows:

• Part I introduces the background of our work, formulates the problem, presents
the existing solutions, and discusses the use-case requirements. This part is
divided into four chapters:

– Chapter 1 is this introduction.

– Chapter 2 reviews serverless computing frameworks. We identify the
strengths and limits of existing frameworks. Furthermore, we define
the consistency and isolation requirements needed to improve these
frameworks.

4 Chapter 1 Introduction



– Chapter 3 presents message passing as a communication model for the
actor programming model. We conclude that isolation, asynchrony and
causal delivery are requirements of the actor model.

– Chapter 4 presents the isolation and causal delivery in a distributed
system that communicates by shared memory. We define the requirements
that are needed to guarantee clean integration into the actor model.

• Part II, we specify the design and implementation of a unified model that
ensures mutual consistency between the message and the state view.

– Chapter 5 presents our unified model. We formally describe the unifica-
tion of causal consistency for message-passing and shared memory. Then,
we present isolation and a transactional turn.

– In Chapter 6, we explore the design space of TTCC. We present three
protocols that unify message-passing and shared memory using different
consistency metadata.

– Chapter 7 presents our transaction API and our reference implementation
using the Akka actor framework.

• Part III provides an experimental evaluation.

• Finally, part IV summarizes our contribution, and present our vision for the
future requirements towards more reliable, scalable and easy to use stateful
serverless computing frameworks.

1.4 Organization 5





Part I
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Serverless Computing 2
2.1 History of Cloud Computing

The concept of cloud computing has its roots in the 1960s, when computer scientists
first began exploring the idea of providing computing resources as a utility, much
like electricity or water. However, it wasn’t until the late 1990s and early 2000s
that the technological advancements and widespread adoption of the Internet made
cloud computing a practical reality.

In the early days of cloud computing, companies such as Amazon and Google began
offering simple web-based services, such as online storage and email, to consumers.
Over time, these services expanded to include more complex offerings, such as virtual
machines and databases, that could be rented and accessed over the Internet.

In 2006, Amazon Web Services (AWS) [Ama] was officially launched, offering a suite
of cloud-based services to businesses. This marked the beginning of the widespread
adoption of cloud computing and the birth of the public cloud computing industry.
Over the next decade, major technology companies, such as Microsoft and Google,
entered the market with their own cloud computing offerings, and the industry
continued to evolve and expand.

More recently, in 2014, AWS introduced Amazon Lambda [Awsa], the first publicly
available serverless computing platforms, which allowed developers to run code
without having to manage servers. Since then, serverless computing has gained pop-
ularity and several other cloud providers have introduced similar services, including
Microsoft Azure Functions [Azuc] and Google Cloud Functions [Goo].

In recent years, the growth of serverless computing is driven by the increasing de-
mand for flexible and cost-effective solutions to build and run applications. With the
rise of microservices and the need for scalable, event-driven architectures, serverless
computing has emerged as a key enabler for modern application development.

Today, cloud computing is a multi-billion dollar industry, serving the computing
needs of businesses, governments, and individuals around the world. With its
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many benefits, which includes cost savings, scalability, and ease of use, serverless
computing has become an essential part of the modern cloud computing landscape.

2.2 Concepts

Serverless computing is a cloud computing model where the cloud provider manages
the infrastructure and automatically allocates resources as needed to execute and
scale an application’s code. Customers simply submit their source-code to the server-
less provider, who then builds, deploys and runs (i.e. instantiates) the application.
With serverless computing, the focus is on writing and deploying code, rather than
managing infrastructure, leading to lower costs, increased agility, and improved
scalability [HBS21].

Serverless functions, also known as functions-as-a-service (FaaS), are the key concept
behind serverless architectures that allow developers to run code without managing
the underlying infrastructure. When an event triggers the function, it runs in a
containerized environment that is automatically managed by the cloud provider.

Serverless computing offers several advantages over traditional server-based ap-
proaches to building and running applications:

Cost savings In a serverless model, resources such as computing power and mem-
ory are provided on-demand. The user is charged, only when the code is
executed, which leads to lower costs and better compute utilization compared
to traditional server-based approaches.

Increased agility Serverless computing allows customers to focus on writing and
deploying code, rather than managing infrastructure, which results in faster
time to market for new applications and features.

Improved scalability In a serverless architecture, the cloud provider automatically
allocates resources as needed to execute and scale an application’s code, which
leads to improved scalability.

Event-driven processing Serverless computing is well-suited for event-driven pro-
cessing, where code is executed in response to specific events or triggers,
making it a good choice for building scalable applications.

Overall, serverless computing offers businesses and developers a flexible, cost-
effective, and scalable way to build and run applications and services in the cloud.
However, serverless computing also suffers from some limitations:
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Cold start The initial execution of an application’s code can take a long time due
to the need to spin up a new instance of the function. This "cold start" issue,
results in increased response time, which can be a challenge for applications
with strict response time requirements.

Limited control over infrastructure In a serverless environment, the cloud provider
manages the infrastructure, which limits the control that developers have over
the underlying environment. This can make it more difficult to customize
the environment to meet the specific needs of an application. For instance,
customers cannot choose hardware, which may be limiting for an application
that requires a specific CPU or network topology.

Resource constraints Serverless computing platforms typically impose limits on
the resources that can be used, such as the amount of memory or the run time
of a function. These constraints can impact the performance and scalability of
an application.

Cost management While serverless computing can lead to cost savings, it can also
lead to unexpected costs if an application’s usage patterns change or if there
are spikes in resource usage. Careful cost management and monitoring are
important in a serverless environment.

Vendor lock-in Users have to choose which cloud provider they want to enroll
with, depending on the features and services that the provider has. Most cloud
providers use their own in-house serverless framework (and sometimes more
than one), which exposes an API that may not be compatible from one cloud
provider to another.

2.3 Serverless frameworks

Serverless computing functions are triggered by events. An event is an asynchronous
input to a function. An event is created when a database updates, with an incoming
API request, is scheduled or when serverless functions are chained together. A
serverless function is the application logic that a customer wants to deploy to a cloud
provider. A serverless computing frameworks is a software platform that helps a
cloud provider to build and deploy a user’s serverless functions. When a function is
triggered by an event, the serverless platform automatically creates an instance of
that function to handle the event. The instance is then destroyed when the function
has finished executing and outputs a response. An invocation is the act of triggering
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a function to run in response to an event. When a function is invoked, the serverless
platform automatically instantiates the function, and the function code is executed
within the context of that instance.

Serverless computing frameworks can be categorized into two family types, which
reflect two different approaches to building serverless applications: stateless and
stateful. Stateless serverless frameworks are designed to support functions that don’t
maintain any local state that outlasts a single invocation. Take, for example, a
serverless function that computes the sum of numbers that are given as parameters.
This function does not store state and only depends on its input parameters.

On the other hand, stateful serverless frameworks are designed to maintain local
function state and share variables between invocations. State and shared variables
may be persisted. Stateful serverless frameworks provide a variety of data storage
options, including databases and object storage.

Take for instance Netflix that leverages serverless computing for video encoding
[Net]. When a video file is placed in an object store, a serverless function is triggered
to split the video into 5 minutes parts that are encoded into 60 different streams.
Later, the final video files are re-assembled and deployed into Netflix’s content
delivery network.

A second example is serverless machine learning applications require a global shared
state that is accessible by all spawned instances. The global state is synchronized so
that the algorithm can correctly proceed to the next iteration [BP+22].

2.3.1 Stateless

Stateless serverless computing refers to the concept of using serverless functions
that only relies on its input (Figure 2.1). Take for example a serverless function
the converts a text document into a PDF file. The input to this function is the text
document and the output is a PDF document containing the input text.

Stateless function scale with ease: converting 100 files to PDF can easily be done by
invoking 100 functions in parallel, as converting 1 file does not interfere with the
result of another conversions. (Figure 2.2).

Furthermore, a stateless function is idempotent. In other words, no matter how
many times the function is run with the same input, it will always produce the same
output. This allows for the function processing to retry in case of an error, without
risking the corruption of the state (because there is no state).

12 Chapter 2 Serverless Computing



Fig. 2.1.: A stateless function processes an input and generates an output.

Fig. 2.2.: A stateless function can be invoked multiple times for parallel processing.

Overall, stateless functions allow for a cloud application to be elastic (scale up and
down) and resilient (retry in case of a failure).

However, even though stateless serverless computing is appealing for certain ap-
plications, it remains limited. Stateless serverless functions do not maintain any
state between invocations, so they cannot store data for later use. This makes it
difficult to build complex applications, as developers need to implement their own
state management, which can be time-consuming and error-prone. For example, a
website that counts the number of clicks on an item must store what the previous
value of the counter is, which is not possible using a stateless function.

2.3.2 Stateful

A stateful serverless framework maintains persistent state between invocations,
which a function can access or update. Execution of a stateful function relies on
external data (i.e. anything that is not contained within the data that is being
processed). Usually, a stateful function relies on an external service, such as a
database, to store its state (Figure 2.3).

Burckhardt et al. [Bur+21] identifies two types of stateful serverless computing
frameworks: workflow-based and actor-based.
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Fig. 2.3.: A stateful function that stores its state in an external database (DB).

Workflow-based frameworks

A serverless workflow-based framework refers to a specific type of serverless archi-
tecture, where functions are managed as a series of steps that are processed in a
specific order, typically following a predefined workflow. A workflow describes the
high-level logic of the application.

Workflow-based serverless frameworks provide support for building complex, mul-
tistep workflows, allowing developers to model complex business processes and
data processing pipelines. Workflow-based frameworks typically provide a graphical
interface for designing workflows, as well as the ability to track the progress of
workflows and ensure that all steps are executed correctly.

Workflow-based frameworks use a message-queue service to compose serverless
functions together. An orchestrator ensure that the right function is executed at the
right time, and that the output from one function is passed as the input to the next
function in the workflow, as shown in Figure 2.4.

Overall, cloud providers do not offer many configuration options over the queuing
and orchestration services, which is limiting as messages cannot be grouped (e.g.
process in batch) and timing is imposed. This loss of control forces developers to
manually orchestrate their workflow, which is difficult and prone to error. Take for
instance the following example [Sta]: a customer wants to start a workflow, but only
after having received 10 notifications from an external system. Using workflows,
there is no good way of modeling this, as there is no control over the state of the
queue. The developer has to manually store the state of the queue in a third-party
data-store, such as a database, and trigger the next function when the specified
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Fig. 2.4.: Workflow-based framework overview. Function F1 is triggered by an HTTP request
and chained, using a queuing service, to function F2. F2 is chained to F3.

counter value is reached. Moreover, how is the state of the queue synchronized, and
where is it stored?

Usually, to store state, workflows use a third-party data-store, such as a database or
an object store. However, this separation between message queues and state storage
is prone to data inconsistencies, as shown in Figure 1.2.

AWS Step Functions Step Functions [Awsc] provides a graphical interface for
designing and visualizing workflows, as well as an execution environment for
running those workflows. With Step Functions, developers can model complex
business processes, such as order processing, data processing pipelines, and long-
running transactions, as a series of steps. Each step can be a single AWS Lambda
function, an activity worker, or a task that calls another AWS service, such as
Amazon Simple Notification Service (SNS) or Amazon DynamoDB. Step Functions
automatically tracks the progress of workflows and ensures that each step is executed
correctly.

Step Functions stores state in an external database, such as DynamoDB or Amazon
Simple Storage Service (S3), and messages between functions use a queue, such as
Amazon Simple Queue Service (SQS) [Eva].

Step Functions offer limited capabilities to synchronize functions [GL+18; Jon+19].
The framework does not provide a signal for functions to coordinate, which is useful
to guarantee the order of events, or to ensure joint progress to the next stage of
computation. Furthermore, separation between state storage and function message
queuing, is prone to data inconsistencies.
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Azure Durable Functions With Durable Functions [Azub], developers can model
complex workflows as a series of functions that can run in parallel, call other Azure
services, such as Azure Storage and CosmosDB, and be orchestrated into a single
workflow. When an instance of a Durable Function is triggered, the orchestrator
creates a new execution context and stores it in Azure Storage. This execution
context includes the current state of the function instance, as well as metadata
about the function’s history and any pending actions. As the function executes, the
orchestrator updates the execution context and uses it to make decisions about what
actions to take next. Once the function has completed, the execution context is
marked as complete in Azure Storage and any output values are returned to the
caller.

Azure’s Durable Functions programming model enhances functions with critical
sections (i.e., region of the application where only one orchestrator is allowed to
call a specific function). This allows the orchestrator to read or modify multiple
function state atomically (modifications are visible instantly), which is useful for
an application that require strong consistency guarantees, such as a money transfer
between bank accounts.

However, Durable Functions use a separate message queue service to communicate
between each other and a separate data-store to persist state, which is prone to
inconsistencies. Furthermore, critical sections allow strong guarantees between
concurrent functions, but at the expanse of parallelism.

IBM Composer With IBM Composer [Ibm], developers can build workflows using
a visual interface, and they can connect to a variety of IBM Cloud services and APIs.
Function state is managed by storing data in the context object of each function,
which is persisted in a separate data-store. The context object is passed from one
function to another as the workflow progresses, allowing each function to access
and update the state as needed.

IBM Cloud Functions are composed together using an external queue service and
state is stored in a database.

Separation between state storage and inter-function communication, is prone to data
inconsistencies.

Cloudburst Cloudburst [Sre+20] is an academic serverless platform that is built
on top of Anna [Wu+18], an auto-scaling key-value store, tailored for serverless
computing. With Cloudburst, developers can deploy stateful serverless functions
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with efficient and low-latency shared state. Furthermore, direct communication
between functions is possible.

In Cloudburst, each function instance is assigned a unique identifier. These identifiers
are translated to physical addresses (i.e. IP and port) to support direct messaging.
Shared objects are stored in Anna and support causal consistency. Furthermore, with
Cloudburst, direct communication between functions is possible. When a message
is sent in a serverless function, Cloudburst establishes a TCP connection to directly
send the message. If a TCP connection cannot be established, the message is written
to a key in Anna that serves as the receiving thread’s inbox. The receiving function
explicitly calls a recv function to retrieve messages.

Cloudburst separates direct messaging from shared state, which is prone to data
inconsistencies.

Actor-based frameworks

Actor-based serverless frameworks are a type of stateful serverless computing plat-
form that are built on top of an actor programming model.

The actor model is a message-passing model that was originally introduced by Hewitt
et al. [HBS73] and later revised by Agha [Agh85]. Frameworks such as Orleans,
Cloudflare Durable Objects, Lightbend Akka Serverless or Azure Durable Entities
allow application state to be used in actors.These frameworks, however, do not offer
a unified consistent view of messages and shared objects.

The actor model is an asynchronous (i.e. without blocking) message-passing model.
An actor is an entity that runs with others concurrently. It responds to a message it
receives by making a local decision, creating other actors, and sending messages to
other actors. An actor may modify its own private state, but can only affect another
indirectly by sending a message.

An actor consists of three elements: an address, a mailbox and a behavior. An actor
has a unique, immutable address that is used to send it messages. Its inbox is usually
a First-In-First-Out (FIFO) queue of messages. Finally, its behavior (i.e. its code)
specifies its response to a message.

Actors can be used to represent individual serverless functions or groups of related
serverless functions that share a common state, as shown in Figure 2.5. Functions
that are grouped in a single actor shared a local state and are run sequentially. This
provides fine-grain control, that is integrated into the programming model, which
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Fig. 2.5.: Actor-based framework overview. Function F1 is instantiated in actor A1 and is
triggered by an HTTP request. Functions F2 and F3 are instantiated in actor A2
and share the actor’s local state. Actors communicate using direct messages.

provides shared variables that enable developers to write complex applications. For
instance, waiting for 10 documents to be available is done by using a counter in an
actor. The function is triggered when a document is available and the counter is
incremented. When the counter reaches 10, the next function is triggered.

One of the key advantages of the actor model is its ability to handle concurrency
and parallelism. Actors operate independently of each other, multiple actors can
perform their actions simultaneously without interfering with each other.

The actor model has a long history [DKVCDM16], and is widely used in many
programming languages, such as Erlang, Scala, SALSA, E, AmbientTalk and in
frameworks, such as Lightbend’s Akka, Microsoft Orleans or Apache OpenWhisk.

Akka Serverless Akka Serverless [Akkb] is a serverless computing platform that is
built on top of the Lightbend Akka actor framework [Akka]. It provides a scalable
and fault-tolerant environment for running serverless applications, and it supports
Java and Scala programming languages. Akka Serverless also provides a rich set of
libraries and tools for integrating with other cloud services and data sources, making
it easy to build and run serverless applications that are fully integrated with existing
systems.

In Akka Serverless, a function is invoked inside an actor. A function’s state is coupled
to the state of the actor on which the function is run. Akka Serverless uses Event-
Sourcing to restore an actor’s state. Event-sourcing consists in saving messages that
are sent to an actor, in order to replay those messages, in the order in which they
were sent, to restore the state of the actor. Additionally, snapshots may be used to
limit the number of saved messages.

Actors can share a global state without using a third-party database. An integrated
key-value store (KVS) is available for actors to shared mutable objects. Also, actors
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communicate using asynchronous messages, which eliminates the need for an
external queuing service. Global shared state and messaging is native to Akka
serverless.

Akka serverless does not provide atomic modification of globally shared objects,
which limits the development of certain types of applications, such as banking
operations. Furthermore, Akka serverless guarantees at-most-once message delivery
and FIFO message ordering per sender–receiver pair. In other words, a message sent
between two actors is FIFO but is not guaranteed to be delivered, as it may be lost
in transit.

Azure Durable Entities Azure Durable Entities [Azua] is a feature of Azure Durable
Functions, a workflow-based serverless computing platform provided by Microsoft
Azure. Durable Entities provide a programming model that allows developers to
define entities, which are objects that have a state and behavior. Durable Entities
support a wide range of programming languages, including C#, Java, JavaScript,
and Python, and they are implemented as functions that are executed in the Azure
Functions environment. Durable Entities are designed to be highly scalable, reliable,
and efficient, and they provide automatic and transparent state management, with
the state of each entity being stored in Azure storage.

Internally, entities encapsulate local durable state that are stored using a replay-based
model, which consists in persisting and restoring intermediate state by recording
and replaying events in a history [Bur+21]. Additionally, like actors, entities store
events in a queue (i.e. mailbox) and execute them one at a time.

Azure Durable Entities guarantees that messages sent to the same entity are delivered
in the order in which they are sent.

Cloudflare Durable Objects Cloudflare Durable Objects [Clo] are designed to be
highly scalable, reliable, and efficient, and they provide automatic and transparent
state management, with the state of each object being stored in Cloudflare’s global
network of data centers.

Similarly to actors, a Durable Object is instantiated in a runtime, called a Cloudflare
Worker. Each Durable Object has access to its own isolated storage and is automati-
cally replicated and fail-over in case of failures. A Durable Object is global unique
and uses a transactional key-value store to share objects atomically between durable
objects.
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Cloudflare Durable Objects does not guarantee transitive message delivery of mes-
sages. Furthermore, Cloudflare KV is eventually consistent [How], which means that
shared objects will eventually be available to other Durable Objects.

Actor-based serverless computing frameworks provide a way to build scalable,
concurrent, and distributed systems that are easy to reason about and manage,
making them well-suited for a wide range of use cases. However, the serverless
framework that we study lack consistency guarantees and use distinct storage for
actor state and message queuing, which can result in data inconsistencies.

2.3.3 Example of a stateful application that has consistency issues

Stateful serverless computing frameworks, whether workflow-based or actor-based,
store function state in a third-party data store. These frameworks rely on the guar-
antees provided by the underlying data-store and in the framework’s asynchronous
messaging mechanisms. This ad-hoc way of handling data can lead to potential
inconsistencies that can cause application crashes and service outage, as illustrated
in Figure 1.2.

As a more specific example, consider the file download and zip application (Figure
2.6), built by Warden [War]. This design, known as claim-check pattern [HW13], is
commonly used in serverless services, to avoid message size limitations. Unfortu-
nately, this simple cloud application does work as intended. A user may request one
hundred files to be downloaded and only retrieve ninety-seven files in the resulting
zip file. Given as an argument by the user, a list of files are packaged into a single
compressed zip file. The resulting file is visible on an online web interface and
sent by email to the user. This use-case chains together AWS Step Functions using
asynchronous messages. The first Step Function spawns an AWS Lambda function
(stateless) per file to download. The downloaded files are stored in an AWS S3
Bucket (following the recommendation by AWS for large files because of the 32 KB
message size limit [Awsb]). A reference to the S3 bucket is sent to the second Step
Function, which reads the bucket and compresses the files it contains into a single
zip file.

Unfortunately, this application does not work as intended. A user might request one
hundred files to be downloaded and retrieve only ninety-seven files in the resulting
zip file. This anomalous behavior is the result of eventual object replication in
AWS S3 buckets and eventual message delivery between AWS Step Functions. The
second Step Function might read from a S3 bucket that is not yet up-to-date. The
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Fig. 2.6.: The file download and zip serverless service deployed on AWS using Step Func-
tions, Lambda and an S3 bucket. This service handles the download, compression
and ZIP of a list of files given as an input by a user. Large objects whose reference
is sent by message.

solution reported by Warden [War], is to manually delay the compression task in
the second Step Function, by computing a MD5 hash of the files, which essentially
results in performing manual data consistency. If the file hashes match, then all files
are available and the compressing task can complete, otherwise at least one file is
missing, and the Step Function cannot proceed.

This common issue is due to the lack of guarantees between multiple data contexts,
which forces users to manually ensure that messages and shared objects remain
consistent. Unified consistency guarantees should be provided by the serverless
framework.
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2.4 Summary

Today, serverless computing is a popular abstraction for cloud computing. By using
functions-as-a-service, users no longer need to worry about deployment strategies or
infrastructure management. This is one major step in simplifying cloud computing,
but two steps back, as serverless frameworks handle state in an ad-hoc and non-
integrated way, which can lead to inconsistencies.

Stateful serverless frameworks should include guarantees to prevent data consistency
issues. However, frameworks used today do not offer these guarantees, which forces
users to manually check for inconsistencies, which is cumbersome and error-prone.

This thesis focuses on stateful serverless frameworks, as they are prone to incon-
sistencies due to separate data consistency contexts of their data store and their
messaging layer. Moreover, we focus on actor-based frameworks, as they offer better
development possibilities compared to a workflow-based framework. Table 2.1
summarizes the current state of the art concerning serverless frameworks.

Guarantees
Framework Stateful Type Message Memory

Google Cloud Functions ✗ Unspecified N/A N/A
Azure Functions ✗ Unspecified N/A N/A
AWS Lambda ✗ Unspecified N/A N/A
Apache OpenWhisk ✗ Actor N/A N/A
AWS Step Functions ✓ Workflow Eventual Store dependent
Azure Durable Functions ✓ Workflow Eventual Store dependent
IBM Compose ✓ Workflow Eventual Store dependent
Cloudburst ✓ Workflow Eventual Causal
Akka Serverless ✓ Actor Eventual Store dependent
Azure Durable Entities ✓ Actor Eventual Store dependent
Cloudflare Durable Objects ✓ Actor Eventual Store dependent
TTCC ✓ Actor Causal Causal

Tab. 2.1.: Table of serverless frameworks.
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Consistency in
Message-Passing Systems

3
In a message-passing system, such as the actor model, message ordering is the set
of rules that constrain the order in which messages are visible. Actors do not offer
guarantees for message delivery. We identify that a stronger message ordering
guarantee is necessary to ease reasoning and avoid certain transitive message
ordering issues. Furthermore, to help developers reason about their application, our
target message ordering model should be asynchronous, must not violate causality
(Figure 1.2, message m2 will be delivered after the update to y is replicated to the
bottom node), and ensure isolation between functions to cleanly integrate into an
actor-based serverless framework.

In this chapter, we introduce a formal definition of causal message ordering for
actors. Then, we explain the concept of actor isolation and why this property is
crucial for the actor model.

3.1 Abstract Model
Borrowing from Burckhardt [Bur14] and Viotti and Vukolić [VV16], we model a
system execution using a multi-graph A = (E , vis) built on a set E of events.1 Events
comprise send, receive, read and write operations.

More specifically:

Program-order PO−→ is a binary relation over E that expresses the natural execution
order of operations by a process.

Visibility vis is a binary relation over E that describes the propagation of informa-
tion through the system. It satisfies the following rules:

1 vis−→ is acyclic.

2 It is transitive: ∀e, f, g ∈ E : e
vis−→ f ∧ f

vis−→ g =⇒ e
vis−→ g

3 Program order implies visibility: PO−→⊆ vis−→
1Burckhardt also defines a total arbitration order, but it is not necessary for our purpose.

23



Fig. 3.1.: Example of causal message delivery.
Actor C receives message m1 before
message m2.

Fig. 3.2.: Example of non-causal message de-
livery. Actor C receives message m2
before message m1.

For instance, a is visible to b (i.e., a
vis−→ b) means that the effects of a are

visible to the process invoking b. Two operations are said concurrent if they
are not ordered by vis.

3.2 Causal Message Ordering

Causal message ordering is based on Lamport’s happens-before relation [Lam78],
which captures the potential causal relationships between events of multiple pro-
cesses (which can be actors). This guarantees that all causally-related operations are
visible, in a common order, and without gaps (i.e: all causally related dependencies
of an event are satisfied).

Causal message ordering is a useful model because it is asynchronous and provides
useful guarantees that ease the programmers’ reasoning. In causal message ordering,
the relationship between causally related messages is preserved. This means that
if message m1 causally precedes message m2, the receiving actor will receive m1
before m2, as illustrated on Figure 3.1. Figure 3.2 shows the non-causal delivery
of message m3, as m1, which is a causal dependency, is not yet received. If two
messages are not causally related, their order can be observed differently. Causal
message ordering allows for higher availability than strong message ordering, as it
does not require synchronization, even under network partition.

We note messages m, n (messages are assumed unique); message-related events are
send and receive, noted send(m) and recv(m) respectively. A message is causally de-
livered if and only if it satisfies the common rules 1 – 3 , as well as the following:
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4 A received message must be sent: rcv(m) ∈ E =⇒ send(m) ∈ E

5 A send precedes the corresponding receive: send(m) vis−→ rcv(m)

6 A message does not overtake another message:

send(m) vis−→ send(n) =⇒ ¬(rcv(n) PO−→ rcv(m))

Receiving m implies that m was sent Rule 5 states that m is visible when it is
received, which is after it was sent.

Message visibility order Rule 6 defines the order in which messages m and n

are made visible (delivered). If an actor sends m, and later an actor sends n,
a destination actor must observe m before n. We use negation (¬) because a
destination might receive only one of the messages.

3.3 Isolation

We define isolation as a constraint that prevents an actor from directly altering
memory of another actor. This is a useful property as it prevents data-based deadlocks
(i.e., a message-based deadlock is still possible).

An actor alternates between two states: ready to accept a message, or busy processing
a message. A turn is the processing of a single message by an actor until completion
[DKVCDM16]. An actor executes a single turn at a time, processing a single message
per turn; it runs the turn to completion without interruptions or blocking, before
waiting for the next message.

The actor model is based on the Isolated Turn Principle [DKVCDM16], which states
that once a turn has started, it will always run to completion without sharing state,
and without blocking. Thus, the actor is isolated and the processing of a turn is free
from deadlocks. The programmer can reason about the application as a sequence of
isolated, functional turns.

This intuition is captured by the Isolated Turn Principle as a combination of three
guarantees:

• Continuous message processing: An actor’s turn terminates without inter-
ruption.
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• Consecutive message processing: An actor processes messages from its
own inbox, and processes them one by one. Within one actor, turns do not
interleave.

• Isolation: An actor can only access its own memory. Actor systems usually
achieve this by disallowing shared mutable state between actors. Hence, turns
are free from low-level data races.

The Isolated Turn Principle is important because it helps to ensure correctness
despite concurrent execution. By enforcing a strict order of message processing and
isolation between actors, the actor model ensures that there are no race conditions,
or other synchronization problems, which can otherwise arise when multiple entities
attempt to access or modify shared state simultaneously.

3.4 Summary

Actors provide a natural abstraction that provides a simple and intuitive way to
represent message-driven systems as a collection of independent actors. Each
actor can represent a single unit of functionality (i.e. a serverless function) that is
responsible for processing a specific message, and actors can communicate with each
other asynchronously through message passing. Furthermore, multiple functions
that are instantiated in the same actor, share the actor’s local state, which is a useful
to store state between serverless function invocations.

Causal message ordering is a useful model as it guarantees that if one message causes
another message, messages to the receiving actor will be delivered with respect to
that causal relationship. Causal message ordering is important as it dictates the
order in which causally related messages are visible, and due to its asynchronous
nature, is compatible with serverless computing.

The Isolated Turn Principle governs the way actors interact with each other. An
actor processes a single message at a time, without interference from other actors.
When an actor receives a message, it processes that message to completion before
processing any other messages. This ensures that each actor is isolated from other
actors during message processing, and that the behavior of the system is predictable
and consistent, as an actor cannot directly change the state of another actor. Actor
isolation is important because it helps to ensure the correctness of concurrent
systems. By enforcing a strict order of message processing, the actor model ensures
that there are no race conditions or other synchronization problems that can arise
when multiple entities attempt to access or modify shared state simultaneously.
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Consistency for Shared
Memory

4
Shared memory comes in many forms: physical memory shared between threads and
processes, a distributed file system shared between nodes or a database. Consistency
refers to the behavior of shared memory across multiple nodes or processes that are
geographically dispersed. The goal is to ensure that all nodes in the system have a
consistent view of the shared memory. Achieving consistency in distributed systems
is challenging because of network latency and communication delays that can lead
to differences in the order in which objects replicate across nodes, even if they start
from the same initial state. This can result in conflicts and inconsistencies in the
shared memory.

There are many consistency models, ranging from strict serializability or linearizabil-
ity, where updates become visible instantaneously to all processes, to the weakest
consistency models, where updates are delivered to remote nodes in no predictable
order [SS18]. Each model offers different trade-offs between performance, fault-
tolerance, and consistency guarantees [Bre00; FLP85].

4.1 Causal Consistency

We borrow our shared-memory execution model from Cerone et al. [CBG15]. They
consider a database consisting of objects Obj = {x, y, . . . }. Events consist of wr(x, v),
writing version v to object x, and rd(x, v), reading v from x; a write associates a
new, unique version to the object being updated.

An execution is causally consistent for shared memory if and only if it satisfies the
common rules 1 – 3 , as well as the following:

7 A version read must be written: rd(x, v) ∈ E =⇒ wr(x, v) ∈ E

8 A write precedes the corresponding read: wr(x, v) vis−→ rd(x, v)

9 An update does not overtake another update:

wr(x, v1) vis−→ wr(x, v2) vis−→ wr(y, w) =⇒ ¬(rd(y, w) PO−→ rd(x, v1))
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Reading an object implies that the object was written Rule 8 states that an
update to object x with version v, is visible before reading x.

Object reads the latest version Rule 9 states that once an update, tagged with
version v2, is visible, then no subsequent operation can see a version prior to
v2. In other words, only the latest version of an object is visible.

Note that Burckhardt [Bur14] defines FT as a generic return type for operations in
H. We do not need to introduce FT in our model, since we only require one specific
read operation that only depends on a version.

4.2 Isolation

To maintain isolation and asynchrony, database systems employ multiversion concur-
rency control (MVCC), which uses snapshots and transactions [BG83]. MVCC works
by creating multiple versions of each data item, and assigning a unique timestamp
to each version, which allows an actor to read and write data without waiting for
a lock or blocking other processes. When a transaction reads or writes data, it
only sees the version of the data that is valid at the time the transaction started,
which ensures that different transactions do not interfere with each other. MVCC is
widely used in modern database systems to improve concurrency and performance,
and it is particularly useful in environments with high transaction rates and high
concurrency.

4.2.1 Transactions

A transaction is an isolated unit of work. To achieve isolation, it reads from a
snapshot and makes all its writes visible at once (if it commits) or discards them all
(if it aborts).

Transactions guarantee atomicity, which refers to the property that ensures that all
the operations in the transaction are treated as a single, indivisible unit of work.
In other words, if any part of a transaction fails, the entire transaction is rolled
back to its previous state, as if the transaction had never been executed. This is
known as the "all-or-nothing" principle [SS18], and it ensures that the data remains
consistent, even in the presence of concurrent access and updates by multiple users
or applications and in the presence of failures or errors.
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Formally, we define atomicity for transaction T as: ∀g, e ∈ T ∧ f ∈ T =⇒ e
vis−→

g ⇔ f
vis−→ g. Either all of T ’s effects are visible, if the transaction is committed, or

none are, if the transaction aborts or hasn’t terminated yet. This is known as the
"all-or-nothing" principle [SS18], and it ensures that the data remains consistent,
even in the presence of concurrent access and updates by multiple processes and in
the presence of failures or errors.

4.2.2 Snapshots

A snapshot is the state of the system at a given point in time. Each concurrent
transaction reason from its own snapshot. Any read of a transaction comes from the
transaction’s own writes, if any, or otherwise from its snapshot, which includes all
the transactions that precede it. Snapshots ensure that processes remain mutually
isolated, and improve concurrency of reads and updates, as each transaction can
run in parallel without affecting others. For objects x and y, the predecessor set of
a transaction T is predT (x) = {y | y vis−→ x ∧ y /∈ T}. The snapshot property can be
defined as follows for transaction T : x ∈ T ∧ y ∈ T =⇒ predT (x) = predT (y).

Writing in a transaction is staged to a buffer local to that transaction. These writes
become visible atomically when the transaction commits.

4.3 Conflict-free Programming

Traditional approaches to distributed system design are not generalizable to server-
less computing because they depend on strong synchronization between multiple
parties, such as that provided by uniform consensus. Unfortunately, such strong
synchronization primitives are impossible to realize in a scalable manner on server-
less architectures. An alternative to using such primitives is to rely on conflict-free
programming [Sha+11].

Consider a distributed data structure, replicated across n nodes to improve robust-
ness to node failures. Each node has a copy of the current value of the data structure.
When an operation is invoked on a node, a new value is calculated and all nodes
must be updated with this new value. This operation must be performed consistently
in the event of concurrent operations, node failures, and network disruptions ranging
from variable latency to message drop or partitions.
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Relying on strong synchronization primitives, one would use a solution based on a
uniform consensus algorithm such as Multi-Paxos [CGR07] or Raft [OO14]. Many
industrial systems use this solution, for example, Google’s Chubby lock service uses
Multi-Paxos. In this solution, the consensus algorithm is run on all n nodes for each
operation, which, in addition to being expensive and not scalable, does not provide
availability in the event of a major node failure or network disruption.

The alternative, proposed in the context of conflict-free programming, is based on
the observation that, in most cases, consensus is not strictly necessary to maintain
replicated data structures. Replicated data structures can be realized using a conflict-
free replicated data type (CRDT) [Sha+11]. A CRDT satisfies the mathematical
property of Strong Eventual Consistency (SEC), which ensures that replicas are
consistent as soon as they observe and execute the same set of operations.

This allows programming distributed serverless applications that do not have to ex-
plicitly worry about synchronization between actors that share a global state. Instead,
actors can concurrently read and update a shared variable, without coordination.

4.4 Summary

Causal message ordering and causal consistency for shared memory are both com-
patible with availability. On top of causality, atomic transactions and convergence
guarantees can be supported, using CRDTs, without impacting availability [Zaw+15;
Akk+16]. This improved memory model is called Transactional Causal Plus Consis-
tency (TCC+) and is compatible with actor-based serverless frameworks because of
the isolation properties of MVCC.
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Part II

Contributions





Unified Model 5
MVCC is compatible with the actor model because both, message-passing and shared
memory, are based on the principle of maintaining independent, isolated, and
concurrent operations on shared resources. In the actor model, each actor is a
self-contained unit of computation that can perform independent operations on
its private state, and it communicates with other actors by exchanging messages.
Similarly, in MVCC, each transaction operates on a consistent snapshot of the
database, which ensures that it sees a consistent and isolated view of the data,
regardless of the concurrent updates made by other transactions. MVCC allows
multiple transactions to access the same data simultaneously, without interfering
with each other, which is compatible with the independent and concurrent operation
of actors in the actor model.

Cases such as Figure 1.2 are a common architectural scheme. This design is com-
monly used in serverless services, to avoid message size limitations [Awsb]. To avoid
these issues, consistency is needed that unifies the message view and the shared
memory view.

In this chapter, we unify the definitions of consistency in message-passing (Chapter
3) with shared memory (Chapter 4). We call this model Transactional-Turn Causal
Consistency (TTCC). This unified model cleanly integrates turns with transactions.

We first describe a formal design that unifies causal consistency for message passing
and shared memory. Our unified model demonstrates how to apply the properties
of separate causal contexts into a mutually causally consistent model. Then, in a
second section, we unify the isolation property of the actor model’s message passing
with isolated snapshots used in shared memory systems.
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5.1 Design Objectives

Our requirements are to provide a mutually consistent shared object and message
passing memory model, while ensuring the strongest consistency model that is
compatible with availability and actor.

TTCC provides distributed access to shared data. A client serverless function can
read, update and send messages on an arbitrary node in the cloud, with seamless,
atomic and causal, data replication and message delivery guarantees.

In the light of what we saw in the existing work, we will here justify some protocol
choices used in our approach, which aims to solve the shortcomings observed in
some existing systems.

We now turn to a system design for satisfying the above requirements efficiently. Our
design is a unification of the definition of causal message delivery [Bur14; VV16]
and causal shared memory [CBG15]. Our design must remain compatible with
stateful serverless frameworks; specifically, data observed in a serverless function is
always isolated from other functions. It should also remain available.

The trade-off is that increasing consistency guarantees, from eventually to causal
consistency, requires extra metadata for messages and shared objects, which has a
direct performance impact on response time and throughput (described later).

TTCC ensures convergence by using CRDTs, which merge concurrent conflicting
operations deterministically [Sha+11].

5.2 Causal consistency

Causal consistency ensures that updates to shared objects and messages are observed
in the order determined by the causality of operations. Causal consistency is sepa-
rately defined for message passing in the actor model (Section 3.2) and for shared
memory (Section 4.1). Messages and shared objects are independently causally
consistent (using their own causal context) but are not causally consistent with
each other. This separation in causal context can cause inconsistencies (Figure 1.2
and 2.6). TTCC avoids such inconsistencies by considering the causal context for
messages and shared objects as a single, unified causal context.

Let us consider a joint actor/shared memory model. The actor is a sequence of turns,
where the reception of a message triggers a turn. Actors may share memory. In
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this model, events are sending and receiving messages, noted send(m) and rcv(m)
respectively, and reads and updates operations to the shared memory, noted rd(x, v)
and upd(x, v) respectively.

In the unified model, actors communicate through any mixture of message-passing
and shared-memory access. An execution is causally consistent for shared memory
and messages if and only if it satisfies the common, message-passing, and memory
rules above 1 – 9 , as well as the following interaction rules:

10 An update does not overtake a message:

send(m) vis−→ wr(x, v) =⇒ ¬(rd(m, v) PO−→ rcv(m))

11 A message does not overtake an update:

wr(x, v1) vis−→ wr(x, v2) vis−→ send(m) =⇒ ¬(rcv(m) PO−→ rd(m, v1))

These rules define visibility when messages interact with shared-memory opera-
tions.

Message visibility order Rule 10 states that if an actor writes version v to x

knowing send(m), then the receiving actor must receive m before observing
version v for key x.

Shared objects visibility order Rule 11 states that if an actor sends m while
knowing wr(x, v2), then the destination actor must no longer observe the
earlier v1 after receiving m. Indeed, upon m reception, the receiving actor
sees the send(m) causal dependencies, i.e., wr(x, v1) vis−→ wr(x, v2). Hence,
the read must return v2, the freshest visible version of x.

The system is causally consistent if: e
vis−→ f , and some actor observes both e and

f , then it observes e before observing f ; and if there exists updates x1 and x2 to
some object x, such that x1

vis−→ x2
vis−→ e for some event e, then an actor that both

observes e and reads x must observe x2.
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5.3 Isolation

For isolation, a turn processes a single received message and observes a causally
consistent snapshot. A turn is itself a sequence of transactions, in which message
sends and updates occur atomically (i.e., all if the transaction commits, or none, if it
aborts).

To preserve atomicity with causal consistency and intuitive error handling, our model
only allows the sending of the first message per destination actor per transaction.

5.3.1 Transactional turn

An actor is either ready to accept a message, or busy processing a message. A turn is
the processing of a single message by an actor until completion (Section 3.3). An
actor executes a single turn at a time, processing a single message per turn, and
it runs the turn to completion without interruptions, before waiting for the next
message. In other words, a turn cannot be interrupted by the reception of a message.
Take for example Figure 5.1, where actor A processes message m1. During the
processing of message m1, actor A may modify its local state, update a shared object
and/or send a message (m2), which would trigger a new turn for actor B.

Fig. 5.1.: Example of operations that can occur during an actor’s turn.

Each turn observes a causally-consistent snapshot, and its message sends, and its
memory updates occur atomically per turn (i.e., all if the turn commits, or none,
if it aborts). A memory update only affects the turn’s causally-consistent snapshot,
while messages are buffered until the transaction commits. On commit, updated
objects are replicated to other nodes and messages are sent to their destination actor.
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Fig. 5.2.: Reception of messages m2 and m3 breaks the atomic property of a transaction.

This mechanism ensures that an actor remains isolated as the turn’s snapshot is
isolated.

A turn’s snapshot is exposed through the use of a transaction. Multiple transactions
may occur during an actor’s turn. Each transaction commit that contains an update
operation to a shared object and/or sending a message, generates a new snapshot
version that is instantaneously visible to following transactions in the same turn.

In summary, snapshots and transactions allow for isolation and atomicity, which
makes the use of shared memory compatible with the actor model.

5.3.2 Single message per transaction

For actors, a turn corresponds to the processing of a single message. In other words,
the reception of a message triggers an actor’s turn. We first explore the scenario
where we allow the sending of multiple messages (Figure 5.2) during an actor’s
turn.

On reception of message m1, actor A sends messages m2 and m3 to actor B. Actor
B receives messages m2 followed by message m3, as messages are received in the
order in which they are sent. Each message is processed in a separate turn, which is
problematic as this breaks the expected atomic property of a transaction as messages
m2 and m3 must be visible at the same time. When message m2 is processed, object
y is visible, but message m3 is not. This does not respect our unified model, in which
message m3 is sent before update to object y (Rule ??).

To prevent the violation of the atomic property of our unified model, we explore
three possible scenarios, as illustrated in Figure 5.3. The first, in which we allow
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(a) Messages m2 and m3 are received in a list.

(b) Message m2 is silently ignored while mes-
sage m3 is delivered.

(c) Message m2 is delivered, while message
m3 explicitly provokes an error.

Fig. 5.3.: Multiple scenarios are possible when multiple message are sent to the same
destination actor. This figure explores the four possible scenarios.

sending multiple message to a single destination actor; and the second and third,
where we restrict sending multiple message to a single destination actor.

Scenario a To circumvent the violation of the atomic property of a transaction,
Figure 5.3a explores the scenario where messages m2 and m3 are both received
at the same time. This implies that messages are grouped and processed in
a single actor turn. This solution is viable but cumbersome for the developer,
as this implies that a corresponding callback function is available to receive
an ordered tuple of messages (in this case containing messages m2 and m3).
Furthermore, this increases the size of a single message which may not be
supported by certain serverless frameworks that limit the size of messages
(e.g., AWS EventBridge is limited to 256 KB per message).

Scenario b An alternative solution is to restrict the transmission of multiple mes-
sage to the same destination actor. Figure 5.3b explores the case where sending
message m2 is aborted if a message (m3) is sent in the same transaction. More
generally, only the last message to a destination actor is sent. Other mes-
sages are silently ignored, which is an undesirable action, or the transaction
throws an error and aborts, which is not very convenient, especially with long
transactions.

Scenario c Alternatively, Figure 5.3c explores the case where only the first message
(m2) is actually sent. Following messages (m3) provoke an error (i.e. throw
an exception) that can be caught and handled within the transaction’s body.

38 Chapter 5 Unified Model



This solution, while restrictive, has the advantage of being explicit (no silent
errors), atomic and leaves the business logic to the developer.

To preserve atomicity (i.e., visibility at the same time) and intuitive error handling,
our model only allows the sending of the first message per destination actor per
transaction. Multiple transactions may occur in an actor’s turn. In which case, they
are run sequentially.
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Protocol Design 6
In this section, we explore the design space for TTCC by modifying the metadata
used to encode causal dependencies and the replication mechanisms to deliver
causal messages. We explore three protocols that all use a version vector with one
entry per node to track causal dependencies for shared objects, but differ with causal
message metadata and delivery.

• Protocol 1 uses a single version vector to maintain a unified causality consistent
state between messages and shared memory.

• Protocol 2 implements message-passing on top of shared memory. The shared
memory consistency protocol is standard (based on a version vector, delaying
out-of-order updates); sending a message appends it to a FIFO queue in
memory.

• Protocol 3 uses separate metadata to mutually track causality for messages
and shared memory. This simulates the case where both message and shared
object protocols are causal but use their own independent metadata. Protocol
3 uses a version vector to track causality with shared objects, and an additional
matrix for messages.

Our protocol executes in two phases: in an actor (when a transaction is executed
and when a message is received) and in a replicator actor that is unique per node.
Replicators of different nodes communicate with each other and are responsible
for maintaining transactions, snapshots and replication. A transaction operation
(read, update, send message) runs inside an actor, and accesses an isolated snapshot
version that is managed by the local replicator. The replicator provides the latest
local, causally consistent snapshot to new transactions. A transaction originating
from the local node is immediately visible to local actors when it commits, as local
actors share the latest local snapshot. However, a transaction arriving from a remote
node is visible to local actors only after the preceding transactions have committed
locally.

The replicator maintains causally consistent snapshots, without coordination, by
maintaining a globally stable snapshot (GSS) [Akk+16], which represents a snapshot
that is known to be available on all nodes. GSS is computed on every node and tracks
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neighboring node’s version vector. When a node receives a message, we compute
GSS by finding the minimal value for each node. For example, node 1 is known to be
at version vector vv1 = [2, 5, 1], and node 2 is at version vector vv2 = [2, 3, 3]. Then,
GSS computes to [2, 3, 1]. A transaction from a remote node is visible locally only
when the GSS advances past the transaction’s snapshot version.

Causal message delivery To implement causal message delivery, TTCC delays
messages until all its causal dependencies are satisfied. Conversely, sending a
message is non-blocking. Causal dependencies are propagated by piggy-packing
metadata to messages. For instance, if an actor sends m then n, the metadata of n

indicates that n causally depends on m.

Causal shared-memory To maintain causal consistency for shared memory, TTCC
maintains multiple versions of objects and exposes them through isolated snap-
shots. Write operations are non-blocking and replication is done asynchronously.
When reading an object, TTCC materializes only the requested value for the given
object, as opposed to all objects in the snapshot, to reduce compute and memory
consumption.

Memory-message interactions TTCC unifies causal consistency for shared memory
and causal message delivery, by considering the interactions between the two mem-
ory models. Messages are delayed until causally dependent messages are delivered
(Rule 6 ) and shared-memory is up-to-date (Rule 11 ). A snapshot is causally
visible, when causally dependent snapshots are available (Rule 9 ). Visibility of
a snapshot is not delayed by causally dependent messages as the reception of a
message triggers an actor’s turn, which exposes a causally consistent snapshot.

6.1 Protocol 1: Single Version Vector

Protocol 1 uses a single version vector to track causal dependencies for shared
objects and messages. This protocol best reflects a fully unified memory-message
model, where messages and shared memory both use the same data structure to
encode their causal dependencies.

Metadata is embedded into a message, which is then used by the destination actor
to ensure causal delivery. A message may be received by the destination actor and
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delayed if the shared memory is not causal consistent with respect to the message’s
version vector.

We first describe the notation and definitions for the terms used to describe Protocol
1. Then, we present the execution of the protocol on an actor and on a replicator.

6.1.1 Notation and definitions

Table 6.1 introduces the notation followed in this section to describe the execution
of our protocols on an actor and on a replicator. We assume a singleton Replicator
R on each node. A snapshot S is a tuple composed of a version vector vvS and a
dataset dataS . The GSS is a snapshot that is known to be available on all nodes
at a given point in time. LLSS stores a set of local snapshots that are committed.
When the protocol updates GSS, snapshots from LLSS are merged into GSS using
CRDT logic. An ongoing transaction T is stored in ongoing at index T . R stores
its neighbor n’s version vector in kvv at index n. When kvv updates, the protocol
recompute GSS. lastV V stores the latest Version Vector seen by an actor.

R Local replicator actor
T Transaction
qT Queue containing messages for transaction T

S Snapshot
vvS Version vector of S

dataS Dataset of S

GSS Globally Stable Snapshot
LLSS Set of Locally Latest Stable Snapshots

ongoing[T ] Ongoing transaction is stored at index T

kvv[n] Known Version Vector for neighbor is stored at index n

m Message sent between a pair of actors
fromm Sender actor of m

vvm Version Vector of m

lastV V Last seen Version Vector
B Buffer for delayed messages

+ = CRDT merge operation
Tab. 6.1.: Notation used in the description of Protocol 1.
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6.1.2 Execution on an actor

Algorithm 1 shows the pseudocode for Protocol 1 for executing transaction T and
the reception of message m on an actor.

Algorithm 1 Execution of Protocol 1 on actor a

1: function START_TRANSACTION

2: idT ← send StartTrx to R
3: return T

4: function READ(idT , key)
5: v ← send Read(idT , key) to R
6: return v

7: function UPDATE(idT , key, v)
8: send Update(idT , key, v) to R

9: function COMMIT(T )
10: send Commit(T ) to R

11: function ABORT(T )
12: send Abort(T ) to R
13: clear qT

14: function SEND_MSG(m, to)
15: if to ∈ qT then
16: throw an exception
17: else
18: append m to qT [to]
19: function CHECK_DEPENDENCIES(m)
20: deps← vvm − fromm

21: for all d ∈ deps do
22: return lastV V [d] == d

23: function IS_DELIVERABLE(m)
24: if vvm ≤ lastV V &
25: vvm[fromm] < lastV V [fromm] &
26: CHECK_DEPENDENCIES(m) then
27: lastV V + = vvm

28: return true
29: else
30: return false
31: function DELIVER_CAUSAL_MESSAGES

32: for all m ∈ B do
33: if IS_DELIVERABLE(m) then
34: deliver m
35: remove m from B

36: function ON_MESSAGE(m)
37: if IS_DELIVERABLE(m) then
38: deliver m
39: DELIVER_CAUSAL_MESSAGES

40: else
41: B ← m

A transaction begins by sending a synchronous StartTransaction message to its
local replicator R, which contains its transaction id; we use a locally-generated UUID
[LSM05] as it is unique and does not require coordination. R responds with an
initialized transaction snapshot, which contains the latest locally available snapshot,
which is stored in LLSS. If LLSS is empty, we use vvGSS . Finally, if GSS is empty,
we use an empty version vector.

A read operation in a transaction sends a Read message that contains idT and a key

to the requested value, to R. R replies with ReadSuccess message containing the
requested value or a NotFound message if the requested key is missing.
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A write operation sends an Update message containing idT , a key and an associated
value to R. R responds with an UpdateSuccess message or an UpdateFailure

message.

A message sent in a transaction is stored in a buffer qT until the transaction is
commits or aborts. To enforce our unified memory model, we verify that only one
message is sent per a destination (Alg. 1, line 15). On commit, the actor sends a
Commit message containing the transaction id and qT to R. On abort, qT is emptied,
and no messages are sent.

When it receives a message (Alg. 1, line 36), the actor checks if m is causally
deliverable. A message is causally deliverable if the following conditions are met:

(1) vvm ≤ lastV V ; the receiving actor maintains the last seen shared memory
version vector in lastV V . If the message’s version vector is > lastV V , then
shared memory is not up-to-date. The message cannot be delivered.

(2) vvm[fromm] < lastV V [fromm]; the message’s sequence number for the
sender’s entry contained in the version vector must be < than the sequence
number contained in lastV V [fromm] for the sender’s entry. This guarantees
consecutive delivery of messages.

(3) ∀d ← vvm − vvm[fromm], d == lastV V [d]; finally, we check that causal
dependencies for the message are satisfied. d represents the dependencies for
m which is computed by selecting all entries in vvm except fromm. For all
entries in d, the value of the version vector’s entry must be equal to lastV V [d].

If m is not deliverable, it is appended to buffer B. After the delivery of m, the
protocol checks B for any other deliverable messages.

6.1.3 Execution on Replicator

Replicator R is responsible for maintaining ongoing transactions, multiple snapshot
versions (MVCC) and triggering replication to other replicators. Algorithm 2 shows
the pseudocode of the protocol for executing transaction T on R.

R locally centralizes transaction operations and manages multiple snapshot versions.
When R receives a StartTransaction for T and T /∈ ongoing, the protocol initializes
the transaction context by appending the latest snapshot in LLSS to ongoing[T ].
R replies with a message containing the latest vvLLSS , which represents the latest
locally available snapshot.
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Algorithm 2 Execution of Protocol 1 on replicator actor R.

1: function ON_START_TRX(T )
2: if ongoing[T ] does not exist then
3: ongoing[T ]← latest LLSS
4: return latest vvLLSS

5: function ON_READ(T , key)
6: value = dataGSS for key
7: value+ = dataLLSS for key
8: value+ = dataongoing[T ] for key
9: return value

10: function ON_UPDATE(T , k, v)
11: put v in ongoing[T ] at k

12: function ON_COMMIT(T, vvT )
13: commitV v ← latest vvLLSS

14: if update or message ∈ ongoing[T ] then
15: increment commitV v[self ]
16: kvv[self ]← commitV v
17: LLSS[commitV v]← ongoing[T ]
18: remove T from ongoing
19: BROADCAST(LLSS[commitV v])
20: function BROADCAST(S)
21: for all n ∈ allNodes do
22: send SnapshotUpdate(S) to n

23: function ON_SNAPSHOT_UPDATE(from, S)
24: if vvS is concurrent then
25: vvS+ = vvLLSS

26: dataS+ = dataLLSS

27: update LLSS with vvS and dataS

28: else
29: update LLSS with vvS and dataS

30: update kvv[from] with vvS

31: UPDATE_GSS
32: function UPDATE_GSS
33: for i = 1, 2, . . . , size(kvv) do
34: vvGSS ← min(kvv[i])
35: dataGSS = data from GSS
36: dataGSS+ = dataLLSS from vvLLSS until vvGSS

37: GSS ← (vvGSS , dataGSS)
38: remove merged data from LLSS
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When R receives a Read message (Alg. 2, line 5), the protocol first materializes
the requested data as snapshots only contain a partial view of the overall data
set. For transaction T , snapshots are contained in GSS, LLSS and in ongoing[T ].
The protocol requires that T ∈ ongoing. The process of materialization consists in
applying all operations from previous snapshots for a given key to form the final
value. The steps to materialize value v for key k are:

(1) First, we set the initial value of v to dataGSS for k. This value is known to be
available on all nodes. If k /∈ dataGSS , v is not set.

(2) Then, all values for k that are ≤ vvT ∈ LLSS are merged using the underlying
CRDT merge operation. The resulting value is merged into v. If, k /∈ LLSS,
there is no resulting value, and nothing is merged. LLSS corresponds to
snapshots that have been locally committed but are not yet merged into GSS.

(3) Finally, dataongoing[T ] is merged into v. This applies update operations to k

from the current transaction.

An important note to consider is that value v for key k is materialized, as described
above, for every read operation. This is inefficient and may be optimized by using a
cache (we discuss this later).

On reception of an Update message, key k and value v are stored in dataongoing[T ].
ongoing[T ] corresponds to the current ongoing transaction’s snapshot.

When R receives a Commit message (Alg. 2, line 12), the latest local commit
version vector (vvLLSS) is used as a basis to the current transaction’s commit time
stamp. If ongoing[T ] contains update operations or qT is not empty, the protocol
increments cvvT . Then, the protocol updates kvv[self ] with cvvT to maintain an
updated version vector for the current node. Finally, to terminate the commit and
make the new snapshot visible to other actors, dataT moves from ongoing into
LLSS at cvvT . Finally, the resulting snapshot is broadcast to all nodes.

On reception of an snapshot broadcast update message (Alg. 2, line 23), R checks if
vvS is concurrent with a snapshot contained in LLSS. This may be the case, as local
transactions can commit without coordination with other nodes. If vvS is concurrent,
we merge vvS and dataS with vvLLSS[vvS ] and dataLLSS[vvS ] respectively. Then, we
update LLSS with the resulting snapshot. If vvS is not concurrent, we update LLSS

with S. Finally, kvv[from] is set to vvS before updating GSS.

We update GSS by first computing the new version vector vvGSS by finding the
min value for each kvv [Akk+16]. We merge dataGSS with all dataLLSS ≤ vvGSS .
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Fig. 6.1.: Global Stable Snapshot update mechanism.

Finally, we remove snapshots from LLSS that are merged into GSS. The GSS

update mechanism is visualized in Figure 6.1.

6.2 Protocol 2: Version Vector + Shared Message
Queue

Protocol 2 uses the available causal shared memory between actors to store a unique
FIFO queue that represents an extension to an actor’s message mailbox. Each actor
has a single queue.

An actor that receives a message subscribes to its local replicator, who notifies the
actor when at least one message is available for delivery. When an actor receives
such a notification, the actor dequeues and delivers all the messages that are present
in the queue. A message is guaranteed to be causally delivered as it relies on the
underlying causally consistent shared memory. In this protocol, like in Protocol 1,
metadata usage is minimal as we only use a single version vector for causal shared
memory. However, all messages to a destination actor from a node are serialized
into the queue in shared memory. Furthermore, messages rely on the replication
protocol of the shared memory, which is triggered periodically and broadcasts the
replication messages to all nodes, even if the destination actor is not present on the
destination node.
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6.2.1 Notation and definitions

Table 6.2 introduces the notation followed in this section. We assume a singleton
replicator R on each node. A snapshot S is a tuple composed of a version vector
vvS and a dataset dataS . The GSS is a snapshot that is a view of the data store that
is known to be available on all nodes at a given point in time. LLSS stores local
snapshots that are committed but are not merged into the GSS yet. An ongoing
transaction T is stored in ongoing at index T . R stores its neighbor n’s version vector
in kvv at index n. R stores the address of subscribed actors in subs at index k.

S Snapshot
vvS Version vector of S

dataS Dataset of S

GSS Globally stable snapshot
LLSS Locally latest stable snapshot

ongoing[T ] Ongoing operations for transaction T

kvv[n] Version vector for neighbor n

m Message sent between a pair of actors
fromm Sender actor of m

B Buffer for delayed messages

R Local replicator actor
Rn Replicator actor at node n

T Transaction
subs list of all subscribed actors

subs[k] list of subscribed actors for key k

+ = CRDT merge operation
Tab. 6.2.: Notation used in the description of Protocol 2.

6.2.2 Execution on an actor

Algorithm 3 shows the pseudocode for Protocol 2 for executing transaction T on
actor a.

Algorithm 3 is very similar to Algorithm 1 for Protocol 1. Transaction start, read,
update, commit and abort operations remain the same (See Alg. 1). The key
difference stands in how a message is sent and how an actor receives a message.
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Algorithm 3 Execution of Protocol 2 on actor a

1: function ACTOR_INIT

2: send Subscribe(self) to R

3: function START_TRANSACTION

4: idT ← send StartTrx to R
5: return T

6: function READ(idT , key)
7: v ← send Read(idT , key) to R
8: return v

9: function UPDATE(idT , key, v)
10: send Update(idT , key, v) to R

11: function COMMIT(T )
12: send Commit(T ) to R

13: function ABORT(T )
14: send Abort(T ) to R
15: clear qT

16: function SEND_MSG(idT , m, to)
17: q← send Read(idT , to) to R
18: append m to q
19: send Update(idT , to, q) to R

20: function ON_Q_CHANGE(q)
21: for all m ∈ q do
22: deliver m to self

23: empty q

Protocol 2 relies on a notification mechanism that alerts an actor of a change on
a specified shared object. When actor a initializes (Alg. 3, line 1), it sends a
subscription message to changes on a shared message queue object (Alg. 3, line
2) to its local replicator. The subscription key uniquely identifies the subscribing
actor. Usually, actor frameworks identify actors using a unique actor address. Such
an identifier is suitable to use a subscription key.

Actor a now expects to receive a notification when at least one message is available
in shared memory. The notification message contains a FIFO queue (q) which
includes all causally available messages for actor a. On reception of a notification
message (Alg. 3, line 20), messages are delivered to a. Messages contained in q

are guaranteed to be causally consistent with shared objects, as q is also a shared
object.

When actor a sends a message m to a destination actor (Alg. 3, line 16), Protocol
2 performs a read and update operation. The protocol first retrieves the queue (q)
specific to the destination actor. Then, m is appended to q. Finally, the protocol sends
an Update message containing q to R. On commit, sent messages are replicated to
other nodes, which will trigger an alert to subscribed actors and messages will be
delivered.

6.2.3 Execution on Replication actor

Algorithm 4 shows the pseudocode of the protocol for executing transaction T on
R.
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Algorithm 4 Execution of Protocol 2 Replicator Actor R

1: function ON_SUBSCRIBE(k, from)
2: append from to subs[k]
3: function ON_START_TRX(T )
4: if ongoing[T ] does not exist then
5: ongoing[T ]← latest LLSS
6: return latest vvLLSS

7: function ON_READ(T , key)
8: value = dataGSS for key
9: value+ = dataLLSS for key

10: value+ = dataongoing[T ] for key
11: return value

12: function ON_UPDATE(T , k, v)
13: update ongoing[T ] for k with v

14: function ON_COMMIT(T, vvT )
15: commitV v ← latest vvLLSS

16: if update operation or message send ∈ ongoing[T ] then
17: increment commitV v[self ]
18: kvv[self ]← commitV v
19: LLSS[commitV v]← ongoing[T ]
20: remove T from ongoing
21: notify subscribers for all modified keys in T
22: BROADCAST(LLSS[commitV v])
23: function BROADCAST(S)
24: for all n ∈ allNodes do
25: send SnapshotUpdate(S) to n

26: function ON_SNAPSHOT_UPDATE(from, S)
27: if vvS is concurrent then
28: vvS+ = vvLLSS

29: dataS+ = dataLLSS

30: update LLSS with vvS and dataS

31: else
32: update LLSS with vvS and dataS

33: update kvv[from] with vvS

34: UPDATE_GSS
35: function UPDATE_GSS
36: for i = 1, 2, . . . , size(kvv) do
37: vvGSS ← min(kvv[i])
38: dataGSS = data from GSS
39: dataGSS+ = dataLLSS from vvLLSS until vvGSS

40: GSS ← (vvGSS , dataGSS)
41: remove merged data from LLSS
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Algorithm 4 is very similar to Algorithm 2 for Protocol 1. Most message callback
functions remain the same. The key difference is in how an actor requests to
subscribe to any change to a given key.

In addition to the same behaviors as in Protocol 1, R also handles actor’s subscription
to a given key k (Alg. 4, line 1). On reception of a subscription message from from,
R appends from to subs[k].

Protocol 2 notifies subscribed actors when an update occurs to a shared object. On
commit, after the transaction snapshot moves from ongoing to LLSS, R sends a
notification message is sent to all subscribed actors in subs (Alg. 4, line 21). A
notification message is sent to an actor a if, a is subscribed to key k. Protocol 2
leverages this mechanism to notify actors that messages are available for delivery.

6.3 Protocol 3: Version Vector + Matrix

Protocol 3 uses a version vector to track causal dependencies for shared objects
and an additional matrix that uses one integer per source-destination actor pair for
messages. This scenario is similar to an ad-hoc scenario where shared memory and
messages are mutually causally consistent, but their causal context is not merged
into a single causal context. This would be the case if a user wants to manually
ensure causality in two separate systems. The advantage of this method is a fully
separate mechanism for shared objects and message passing. However, additional
metadata is required, which increases with the number of communicating actor
pairs.

6.3.1 Notation and definitions

Table 6.3 introduces the notation followed in this section. We assume a singleton
Replicator R on each node. A snapshot S is a tuple composed of a version vector
vvS and a dataset dataS . The GSS is a snapshot that is a view of the data store that
is known to be available on all nodes at a given point in time. LLSS stores local
snapshots that are committed but are not merged into the GSS yet. An ongoing
transaction T is stored in ongoing at index T . R stores its neighbor n’s version vector
in kvv at index n.
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S Snapshot
vvS Version vector of S

dataS Dataset of S

GSS Globally stable snapshot
LLSS Locally latest stable snapshot

ongoing[T ] Ongoing operations for transaction T

kvv[n] Version vector for neighbor n

m Message sent between a pair of actors
fromm Sender actor of m

mseqx,y Sequence number for x, y actor pair for m

lastSeqx,y Last seen sequence number for x, y actor pair
B Buffer for delayed messages

R Local replicator actor
Rn Replicator actor at node n

T Transaction
qT FIFO queue containing messages

+ = CRDT merge operation
Tab. 6.3.: Notation used in the protocol description.

6.3.2 Execution on a causal actor

Algorithm 5 shows the pseudocode for Protocol 3 for executing transaction T on
actor a.

Algorithm 5 handles message delivery with respect to the shared memory causal
context and message causal context. Although very similar to algorithms 1 and
3 with the handling of shared memory, message metadata uses a separate data
structure and is thus treated differently.

On reception of a message (Alg. 5, line 39), both causal contexts are checked for
causal delivery. A message m is causally deliverable if all the following conditions
are met:

(1) vvm ≤ lastV V ; the receiving actor maintains a last seen shared memory
version vector in lastV V . If the message’s version vector is > lastV V , then
shared memory is not up-to-date. The message cannot be delivered and is
delayed for future delivery.
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Algorithm 5 Execution of Protocol 3 on actor a

1: function START_TRANSACTION

2: idT ← send StartTrx to R
3: return T

4: function READ(idT , key)
5: v ← send Read(idT , key) to R
6: return v

7: function UPDATE(idT , key, v)
8: send Update(idT , key, v) to R

9: function COMMIT(T )
10: send Commit(T ) to R

11: function ABORT(T )
12: send Abort(T ) to R
13: decrement seqfromm,tom

14: clear qT

15: function SEND_MSG(m, to)
16: if to ∈ qT then
17: throw an exception
18: else
19: increment seqfromm,tom

20: add seq and vvLLSS to m
21: append m to qT

22: function CHECK_DEPENDENCIES(m)
23: deps← lastSeq − fromm

24: for all d ∈ deps do
25: return dto == lastSeqself, df rom

26: function IS_DELIVERABLE(m)
27: if vvm ≤ lastV V &
28: lastSeqfromm,self == mseqfromm,self

−
1 &

29: CHECK_DEPENDENCIES(m) then
30: lastV V + = vvm

31: return true
32: else
33: return false
34: function DELIVER_CAUSAL_MESSAGES

35: for all m ∈ B do
36: if IS_DELIVERABLE(m) then
37: deliver m
38: remove m from B

39: function ON_MESSAGE(m)
40: if IS_DELIVERABLE(m) then
41: deliver m
42: DELIVER_CAUSAL_MESSAGES

43: else
44: B ← m
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(1) lastSeqfromm,self == mseqfromm,self
− 1; the receiving actor maintains the last

sequence numbers for each actor pair that the actor has received. A message
m’s sequence number is compared to the last seen sequence number, for a
sender-receiver actor pair. If m’s sequence number is consecutive, it is eligible
to be delivered.

(1) dto == lastSeqself, df rom; finally, the rest of the sequence matrix is com-
pared to the maintained last sequence matrix. If the m’s matrix elements,
excluding the sender, are equal to the last sequence for the given actor pair, m

is deliverable.

If any of the previous rules fail, delivery of message m is buffered in B for later retry.
B is iterated over for potential message delivery every time a new message arrives,
causing a potential causal context update.

When actor a sends a message m to a destination actor, the protocol first increments
seqfromm,tom (Alg. 5, line 19). This ensures that m is delivered in causal order with
respect to other messages from the sender to the receiving actor. seqfromm,tom and
vvLLSS is added to m before being appended to qT . Messages are sent on commit.

6.3.3 Execution on Replication actor

Algorithm 6 shows the pseudocode of the protocol for executing transaction T on
R.

Algorithm 6 is similar to algorithm 2 for Protocol 1. Concurrency logic is added on
an actor, when a message is sent, before reaching R. R is agnostic of message and
metadata type, thus no particular logic is necessary.

6.4 Summary

With Protocols 1, 2 and 3, we explore the design space of our unified memory model
by varying the metadata used to maintain causality. In all three protocols, we use
a version vector to track causal consistency for shared memory. Protocol 2 uses a
causal shared memory to send messages. Protocol 3 uses an additional matrix to
track causality with messages.

In all three protocols, the size of the version vector is proportional to the number of
replicator actors (m). In Protocol 3, the size of the matrix is equal to the number
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Algorithm 6 Execution of Protocol 3 on replicator actor R.

1: function ON_START_TRX(T )
2: if ongoing[T ] does not exist then
3: ongoing[T ]← latest LLSS
4: return latest vvLLSS

5: function ON_READ(T , key)
6: value = dataGSS for key
7: value+ = dataLLSS for key
8: value+ = dataongoing[T ] for key
9: return value

10: function ON_UPDATE(T , k, v)
11: update ongoing[T ] for k with v

12: function ON_COMMIT(T, vvT )
13: commitV v ← latest vvLLSS

14: if update operation or message send ∈ ongoing[T ] then
15: increment commitV v[self ]
16: kvv[self ]← commitV v
17: LLSS[commitV v]← ongoing[T ]
18: remove T from ongoing
19: BROADCAST(LLSS[commitV v])
20: function BROADCAST(S)
21: for all n ∈ allNodes do
22: send SnapshotUpdate(S) to n

23: function ON_SNAPSHOT_UPDATE(from, S)
24: if vvS is concurrent then
25: vvS+ = vvLLSS

26: dataS+ = dataLLSS

27: update LLSS with vvS and dataS

28: else
29: update LLSS with vvS and dataS

30: update kvv[from] with vvS

31: UPDATE_GSS
32: function UPDATE_GSS
33: for i = 1, 2, . . . , size(kvv) do
34: vvGSS ← min(kvv[i])
35: dataGSS = data from GSS
36: dataGSS+ = dataLLSS from vvLLSS until vvGSS

37: GSS ← (vvGSS , dataGSS)
38: remove merged data from LLSS
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of total actors in the system (n). Table 6.4 summarizes the size complexity of the
metadata used in the three protocols to track causality.

Additional Metadata Space Complexity
Protocol Metadata Shared Memory Message

1 Version Vector O(m) O(m)
2 Version Vector O(m) N/A
3 Version Vector + Matrix O(m) O(n2)

Tab. 6.4.: Summary of metadata used in Protocols 1, 2 and 3. m is the number of replicators
and n is the number of actors of the whole system.
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System API and
Implementation

7

TTCC is designed to provide a simple API for using an integrated shared memory
in an actor framework. This section presents our reference implementation and
programming interface for Protocol 1 (Section 6.1) for the Akka actor framework.
The code is open-source and available on GitHub 1.

We first introduce the Akka actor framework, which we modify to implement TTCC.
Then, we discuss on the modularity of our design. In the following section, we
introduce our transactional API that exposes a causally consistent snapshot to an
actor. Finally, we explain our implementation for causally consistent shared memory
and message delivery for Akka.

7.1 Akka Actor Framework

We implement TTCC on top of the Akka actor framework [Akka]. Akka is an modern
and open-source implementation of the actor model based on Agha’s work [Agh85].
De Koster [DKVCDM16] classifies Akka as a classic actor model, which makes it a
suitable candidate for TTCC as the Isolated Turn Principle applies (actor isolation).

Additionally, Akka serves as the base actor framework for multiple serverless frame-
works, such as Akka Serverless [Akkb] and Apache OpenWhisk [Apa]. Lastly, Akka
has a limited but working DistributedData extension [Akkc] that enables actors to
share data using eventual consistency guarantees.

An actor accesses data in the shared store through a replicator actor that provides a
key-value API and that handles data replication. The replicator is a singleton instance
per node. In other words, an Akka cluster may only have one instance of a replicator
actor per cluster node (Figure 7.1). Replicator actors know other replicators and can
communicate using message-passing. The replicator actor spreads object updates

1https://github.com/benoitmartin88/akka/tree/unified_cc_single_vv
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to its neighbors via direct replication and gossip-based dissemination. In this key-
value API, a key is a unique identifier of a CRDT data value. A CRDT supports
concurrent updates from any node without coordination and provide high read and
write availability, with low latency.

Akka’s DistributedData extension enables the sharing of data between actors, but
without any guarantees. Data will eventually be replicated to all nodes in an
unknown order. This may cause inconsistencies and errors.

Our solution consists in applying our unified memory model next to the existing Akka
DistributedData extension. This will prevent inconsistencies when using messages
and shared objects between actors.

Fig. 7.1.: Akka DistributedData extension general architecture.

7.2 Modular design

The actor model is inherently modular. Actors are isolated and communicate only
using asynchronous message-passing, making it easy to replace a functional com-
ponent if needed. Our implementation is not a replacement of the existing Akka
mechanisms for shared memory or inter-actor messages, but rather an addition
that can be used conjointly with the existing DistributedData extension. This ap-
proach has the advantage of bringing the ability to adapt an existing application
without breaking it. Our implementation is retro-compatible with an existing Akka
code-base.
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7.3 API

Our implementation exposes a causally consistent snapshot through the use of a
transactional API (Listing 7.1). Our transactional API exposes read, update and
message operations using a context object that hides all the protocol’s complexities,
which has the advantage of simplifying the user interface without limiting function-
ality. This context encapsulates a causally consistent snapshot that is set when the
transaction starts and on which transaction operations are applied.

By default, Akka supports the following replicated data-types:

• Counters: GCounter, PNCounter

• Sets: GSet, ORSet

• Maps: ORMap, ORMultiMap, LWWMap, PNCounterMap

• Registers: LWWRegister, Flag

Additional custom data types are also supported, but details are omitted.

1 val flagKey = FlagKey("my flag")
2 val counterKey = PNCounterKey("my counter")
3

4 val t = new Transaction((context) -> {
5 var flag = context.get(flagKey) // get flag value
6 flag = flag.switchOn // toggle flag
7 context.update(flagKey, flag) // update flag value
8 })
9 t.commit()

Listing 7.1: Example of ATCC transactional’s API. A CRDT Flag type is toggled inside the
scope of a transaction which is later commited.

7.4 Implementation

Our reference implementation of TTCC is in Scala and sits on top of the existing Akka
DistributedData extension. We first describe our implementation architecture for
causal shared memory before explaining causal delivery of inter-actor messages.
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Fig. 7.2.: Detail view of Akka’s Replicator actor. An extension named SnapshotManager
handles read and updates to GSS, LLSS and ongoing data structures.

7.4.1 Causal shared memory

We extend Akka’s DistributedData extension to implement algorithms 1 and 2 for
the TTCC protocol without breaking any of the native Akka implementation. Our
contribution adds a SnapshotManager class that is responsible for managing current
transactions and snapshot versions. The SnapshotManager class implements TTCC
logic from Algorithm 2 and is instantiated in the Replicator actor, which makes it
accessible to the replicator when messages are received (Figure 7.2). We use the
following data structures to best implement TTCC:

Snapshot A snapshot is a tuple composed of a version vector and a Map that
represents stored keys and CRDT values.

Global Stable Snapshot GSS is a snapshot and is updated when we update the
data structure that holds known neighbor’s version vector. A new version
vector is received when a neighboring SnapshotManager sends a replication
message.

Locally Last Stable Snapshot LLSS represents local committed transactions that
are not yet merged into GSS. LLSS is a TreeMap that stores version vectors
and a Map of committed data (keys and values). A TreeMap makes data
materialization fast (O(log(n))) as we need to find all snapshots that are
smaller or equal to a given version vector.

Current transactions We store local current ongoing transactions in a HashMap
data structure that represents the transaction’s id and snapshot.

We update the Akka’s replicator actor to include additional messages and logic to
handle transactions. Listing 7.2 show three extra message handlers: TrxPrepare,
TrxCommit and TrxAbort that correspond to a commit prepare, commit and abort
respectively. Get and update message handlers are modified to include an optional
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transaction parameter, which is used to check if the operation is part of a transaction.
This ensures retro-compatibility with existing Akka logic (eventually consistent store)
without having to create new message handlers.

1 val normalReceive: Receive = {
2 [...]
3 case TrxPrepare(tid, req) => receiveTrxPrepare(tid, req)
4 case TrxCommit(trxn, req) => receiveTrxCommit(trxn, req)
5 case TrxAbort(tid, req) => receiveTrxAbort(tid, req)
6 case Get(key, readC, req, trxn) => receiveGet(key, readC, req, trxn)
7 case u @ Update(key, writeC, req, tid) => receiveUpdate(tid, key,

u.modify, writeC, req)
8 [...]

Listing 7.2: Modifications to Akka’s Replicator actor. Additional message callback methods
are added to handle transaction prepare, commit, abort, get and update
operations.

1 def receiveTrxCommit(trxn: Trx.Context, req: Option[Any]): Unit = {
2 if (!snapshotManager.currentTransactions.contains(trxn.tid)) {
3 replyTo ! TrxCommitError(
4 "no transaction with id " + trxn.tid + ": prepare not called or

wrong transaction id",
5 req)
6 } else {
7 val increment = trxn.messages.exists(x => x._2.nonEmpty)
8 val commitVV = snapshotManager.commit(trxn.tid, increment)
9

10 snapshotManager.updateKnownVersionVectors(selfUniqueAddress,
commitVV)

11

12 triggerSnapshotGossip(
13 Some(commitVV),
14 Some(snapshotManager.currentTransactions(trxn.tid)._1._2),
15 Some(trxn.messages.toMap))
16

17 snapshotManager.clear(trxn.tid)
18

19 replyTo ! TrxCommitSuccess(req)
20 }
21 }

Listing 7.3: Replicator actor’s transaction commit callback method. The transaction commit
message is first checked for validity before a commit version vector is computed.
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Listing 7.3 shows the message handler responsible for receiving a transaction commit.
On reception of a TrxCommit message, we first check that the message contains a
transaction identifier (generated when transaction prepare is called) that is present
in the SnapshotManager’s currentTransactions data structure. A TrxCommitError
message is returned to the actor if the message’s transaction identifier is unknown,
which would signify that the transaction identifier is invalid (not from a call to
prepare) or that the transaction is aborted. If the transaction is found, we check if at
least one message is sent in the transaction (Listing 7.3, line 7). If this is the case, we
make sure that the commit version vector reflects this by incrementing the version
vector. Then, the SnapshotManager’s commit method is called (Listing 7.3, line 8).
This is when the transaction’s snapshot, referenced by the transaction identifier, is
moved into LLSS. A commit version vector is returned by the SnapshotManager
after commit. We update the entry int the map containing known version vectors
for our node, which triggers a potential GSS update (Listing 7.3, line 10). Then,
after the SnapshotManager reflects the latest change, we trigger replication (Listing
7.3, line 12) and a SnapshotGossip message is sent to every other known replicator
actors. Finally, we clear traces of the transaction before sending a TrxCommitSuccess
message back to the actor (Listing 7.3, lines 17 and 19).

7.4.2 Causal messages

We send causal messages inside a transaction using a dedicated causalTell method
for messages that require causal delivery. A message using Akka’s classic tell or
! syntax is not guaranteed to be causally delivered. A message sent using our
custom causalTell method is associated with the transaction’s causal context (i.e., its
version vector) and is causally delivered to the recipient actor. This ensures that our
implementation does not interfere with existing inter-actor messaging capabilities.

To ensure atomicity, the transaction’s updates and messages remain in a private
buffer until the transaction commits; at this point they all become visible at once.
If the transaction aborts, we delete the buffer. On commit, we send the buffered
messages and updates to the replicator actor, which then forwards the messages to
the node on which the destination actor is present.

On reception of a remote committed transaction, the replicator actor handles the
update for shared objects before forwarding causal messages to the appropriate
actor.
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1 class PongActor(var system: ActorSystem) extends CausalActor {
2 override def receive: Receive = {
3 super.receive.orElse({
4 case msg: Ping => msg.replyTo ! Pong()
5 case msg: CausalPing =>
6 new Transaction(system, self, (ctx) => {
7 ctx.causalTell(Pong(), msg.replyTo)
8 }).commit()
9 })

10 }}

Listing 7.4: Example causal actor that responds to a Ping message with a Pong message.
Both causal messages and non-causal messages are supported.

Actors that receive causal messages inherit the CausalActor class (Listing 7.4, line
1). This base class is responsible for delaying delivery of messages until the context
is causally consistent (See 6.1.2). Listing 7.4 shows the definition a PongActor that
responds to a Ping message (line 4) with a Pong message and CausalPing message
(line 5) with a causally deliverable Pong message. Both causal and non-causal
messages are supported.

A message, sent using the causalTell method, is wrapped inside a CausalMessageWrap-
per message type. This type is hidden from the user and only used by Akka to in-
tercept causal messages. When sent between distant nodes, CausalMessageWrapper
messages are serialized using Google Protocol Buffer 2.

1 def receive: Receive = {
2 case msg: CausalChange =>
3 lastSeenVersion = msg.versionVector
4 checkAndDeliverCausalMessages()
5 onCausalChange(lastSeenVersion)
6 case msg: CausalMessageWrapper =>
7 if (checkIfCausallyDeliverable(msg)) {
8 msg.messages.foreach(m => self.forward(m))
9 checkAndDeliverCausalMessages()

10 } else {
11 // buffer message and wait for causal context to be correct
12 buffer.enqueue(msg)
13 }}

Listing 7.5: Message reception in the CausalActor base class.

2https://protobuf.dev
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Listing 7.5 shows how the CausalActor base class intercepts and delays a CausalMes-
sageWrapper message. On reception of a CausalMessageWrapper m (Listing 7.5, line
6), we check if the underlying message is causally deliverable (Algorithm 1, line 23).
If m is deliverable, we forward the wrapped message to the self, as we are the base
class. After a successful delivery, we check if previously buffered message can be
delivered. If m is not causally deliverable, m is queued for later delivery.
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Part III

Experimental Evaluation





Performance Evaluation 8
Our experimental evaluation address the following questions: What is the overhead
of causal consistency? How does TTCC scale on a single node and multiple nodes?

In this chapter, we first explain our methodology and experimental setup in Section
8.1. Then, in Section 8.3 we introduce our additions to YCSB. Finally, in Section 8.4
and 8.5 we perform our evaluations.

8.1 Methodology and Experimental Setup

We implement our three protocols and a non-causal version in a transactional key-
value store (KVS) that supports messages. We conduct performance benchmarks
by using a modified Yahoo! Cloud Serving Benchmark (YCSB) [Coo+10] that
includes transactions and messages (YCSB+MT). Performance experiments are run
on multiple nodes, each equipped with two Intel Xeon E5-2690v3 clocked at 2.60
GHz with 192 GB of memory.

We run two experiments to verify the overhead of our unified causally consistency
model and the scaling capability of our reference implementation. Experience 1
tests the scaling of our three protocols on a single compute node. The result of
this experience defines the best configuration to reach the maximum throughput
and latency on a single node. These configuration parameters are then used in
experience 2 to scale our protocols on up to three compute nodes (Figure 8.1).

We introduce three new synthetic workloads that are directly inspired from the
original YCSB workloads. Each workload tests a different read/write/message
ratio.

To exclude any overhead due to marshalling and HTTP servers, we perform our
measurements inside our KVS after the HTTP request is deserialized and before the
HTTP response is returned to the client.
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Fig. 8.1.: YCSB+MT experimental setup. Three actor systems are run, each with an associ-
ated YCSB+MT instance.

8.2 Key-Value Store

To evaluate our multiple protocols, we implement a replicated Key-Value Store (KVS).
We use Akka’s HTTP extension 1 to implement to expose our KVS using a REST
interface that is accessible on each host. To best reply to users’ requests, we manage
a pool of RequestActor. Each HTTP request is associated to a RequestActor that is
responsible for the completion of the HTTP request. After the request is done, the
actor is recycled into the pool. The following paths are accessible by a REST client.

Prepare Accessible using an HTTP GET method on the following URL: http://host/prepare.
A unique transaction identifier (tid) is returned. We use this identifier to iden-
tify transaction operations.

Update We expose a transaction update operation using an HTTP PUT method at
the following URL: http://host/tid/key. The value is sent using the HTTP PUT
data field.

Read A transaction read operation is accessible using an HTTP GET method on the
following URL: http://host/tid/key.

1https://doc.akka.io/docs/akka-http/10.0
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Message A message m for transaction tid is sent to actor dest using the following
HTTP GET URL: http://host/message/tid/dest/m.

Commit A transaction commit is accessible using an HTTP GET method on the
following URL: http://host/commit/tid.

8.3 YCSB+MT

The YCSB project regroups common sets of workloads for evaluating the performance
of different key-value stores. However, it does not support transactions or messages.
We extend YCSB version 0.17.0 to include a transactional interface and messages2.

8.3.1 Transactions and messaging support

To test our reference KVS implementation, we require the support for messaging
and transactions.

Messages To support messages, we add a new database operation type. List-
ing 8.1 and 8.2 show the modifications to the DB.java and RestClient.java files
to include an additional message method. By default, this method returns a Sta-
tus.NOT_IMPLEMENTED type, as implementation to support messages is not manda-
tory. To perform our experiments, we implement the message method in the rest
binding to allow YCSB+MT to connect to our key-value store using a REST inter-
face.

1 public Status message(String tid, String dest, String msg) {
2 return Status.NOT_IMPLEMENTED;
3 }

Listing 8.1: New message method in DB.java.

Our implementation sends a message to an already spawned destination actor (dest)
that is identified by a unique identifier. By default, the message we send contains
a string value that is composed of 100 random characters. This is configurable by
setting the fieldlength and fieldlengthdistribution properties.

2Our fork is available at: https://github.com/benoitmartin88/YCSB
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1 public Status message(String tid, String dest, String msg) {
2 Map<String, ByteIterator> result = new HashMap<>();
3 final String path = urlPrefix + "message/" + tid.concat("/") + dest.

concat("/") + msg;
4 int responseCode;
5 try {
6 responseCode = httpGet(path, result);
7 } catch (Exception e) {
8 responseCode = handleExceptions(e, path, HttpMethod.GET);
9 }

10 return getStatus(responseCode);
11 }

Listing 8.2: New message method override in RestClient.java.

Transactions To support transactions, we create a new TransactionalWorkload class
that extends the abstract Workload class (Listing 8.3). We override the doTransaction
abstract method to implement transaction logic. The doTransactionPrepare method
((Listing 8.3, line 2)) sends a transaction prepare message and returns a unique
transaction identifier that we use for all subsequent operations related to this transac-
tion. We run a configurable number of operations per transaction that is configured
in the workload’s configuration file (operationsPerTransaction parameter in Listing
8.3, line 3). Then, we generate an operation (i.e., read, update and message) and
call the appropriate handler method. Finally, we commit the transaction using the
transaction identifier (Listing 8.3, line 16).

1 public boolean doTransaction(DB db, Object threadstate) {
2 String tid = doTransactionPrepare(db);
3 for(int i=0; i<operationsPerTransaction; ++i) {
4 switch (operationchooser.nextString()) {
5 case "READ":
6 doTransactionRead(db, tid);
7 break;
8 case "UPDATE":
9 doTransactionUpdate(db, tid);

10 break;
11 case "MESSAGE":
12 doTransactionMessage(db, tid);
13 break;
14 }
15 }
16 db.commit(tid);
17 return true;
18 }

Listing 8.3: doTransaction method from TransactionalWorkload.java.
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Properties file Our additions to YCSB are configurable using YCSB’s existing con-
figuration mechanism. We add the following configuration properties:

• operationspertransaction We define the number of operations (read, update,
message) that are run in a single transaction. By default, this value is set to 10
operations per transaction.

• messageproportion We set the proportion of messages that we send with
respect to operationspertransaction. For instance, if operationspertransaction is
set to the default value of 10, and messageproportion is set to 0.5 (50%), we
send 5 messages.

• messagedestinationcount This parameter scales the size of the actor pool
to whom we send messages to. By default, this value is set to 8 destination
actors.

8.3.2 Workload

We provide three new workloads that are inspired from the original YCSB workloada,
workloadb and workloadc. Each workload perform ten operations per transaction
using the ratios described in Table 8.1.

Workload Read (%) Write (%) Message (%)

A 33 33 33
B 90 5 5
C 5 90 5

Tab. 8.1.: YCSB+MT workload ratios for workloads a, b and c.
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8.4 Experiment 1

8.4.1 Overview

In this experiment, we evaluate system performance when scaling TTCC on a
single node. We increase the number of YCSB+MT client threads until performance
saturation. Considering our hardware (two Intel Xeon e5-2690v3), we increase the
number of client threads as follows: 1, 4, 8, 12 and 16.

In Akka, a message sent from one local actor to another is not serialized and deseri-
alized. This optimization applies to all operations that we run in this experiment as
we deploy the KVS on one node.

Moreover, metadata size varies depending on the protocol. Protocol 1, 2 and 3 uses
a single unified version vector, with one entry per node, to track causal consistency
for shared memory. In this experiment, the version vector will always contain only
a single entry, which represents the mapping of a string (i.e., node identifier) to a
64-bit (8 bytes) integer. The node identifier depends on an actor system name that
the user specifies. In this experiment, the version vector size is 83 bytes.

In Protocol 3, we use an additional matrix to track causality for messages. The size
of the matrix depends on the number of concurrent clients. In this experiment, we
scale up to 16 client threads. Each matrix entry maps two actor identifiers to a 64-bit
integer.

8.4.2 Results

Our results show that our baseline performs better in all workloads for read, write
and message operations.

Sending a message using shared memory is inefficient Overall, our results show
that Protocol 2 (msg in shm) (sending a message using shared memory) always
induces a large overhead compared to the other protocols, for read, write and
message operation types. We explain this by the delay due to shared memory
replication that is based on a broadcast mechanism. Effectively, each message
is broadcast to every node and is delayed until the causal context (i.e. causal
dependencies) is up-to-date.
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Data materialization is costly Protocols 1, 2 and 3 materialize the requested data
on every read operation, which causes a high response time overhead. Workload B
(90% read operations), compared to Workload C (90% write operations), shows that
read operations induces an overhead of 4.76% for Protocol 1, 6.67× for Protocol 2
and 3. Caching materialized data would greatly benefit read performance.

Asynchronous write operations Protocols 1, 2 and 3 write to an isolated snapshot,
which results in efficient response time. For all three workloads, write operation
perform similarly for Protocols 1 and 3. However, Protocol 2 always under-performs
compared to the other protocols and our baseline. We explain this by the additional
metadata that is sent to the local replicator.

Fig. 8.2.: Transactional workload A (33R/33W/33M)

Fig. 8.3.: Transactional workload B (90R/5W/5M)

Fig. 8.4.: Transactional workload C (5R/90W/5M)
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8.5 Experiment 2

8.5.1 Overview

In this experiment, we evaluate system performance when scaling TTCC on a
multiple node. We use our results from Experiment 1 to set the YCSB+MT client
threads to achieve the highest throughput on each instance. We select 16 threads
per YCSB+MT instance and increase the number of YCSB+MT instances and KVS
replicas from one to three.

Note that a message sent between JVMs is serialized using Google Protocol Buffers.

We exclude Protocol 2 from this experiment as it does not scale well on one node.
We measure the overhead of Protocol 1 and 3 by comparing them with a non-causal
baseline.

8.5.2 Results

Our results show that our baseline performs better in all workloads for read, write
and message operations. Furthermore, Protocol 2, which uses an extra matrix,
performs the worst (up to 5.6×, 5.64× and 6.56× for read, write and message
operations respectively).

Data materialization is costly As with Experiment 1, Protocols 1 and 3 materialize
the requested data on every read operation, which causes a high response time
overhead. Workload B (90% read operations), compared to Workload A and C,
where there are fewer read operations, shows a response time overhead of up to 4×
for Protocol 1 and up to 7× for Protocol 3. Caching materialized data would greatly
benefit read performance.

Asynchronous write operations As with Experiment 1, Protocols 1 and 3 write to
an isolated snapshot, which results in efficient response time. For all three workloads,
write operation perform similarly for Protocols 1 and our baseline. We explain this
by the nature of writing to an isolated snapshot, which enables concurrent writes
without synchronization.
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However, Protocol 3 always under-performs compared to the other protocols and
our baseline. We explain this by the additional metadata that is sent to the local
replicator.

Write operations impacts message delivery Write operations impacts message de-
livery, as Figure 8.6 shows. Workload C (90% writes) shows a significant increase in
message response time compared to workload A and C, where there are less write
operations.

Each transaction commit generates an additional causal dependency that a message
must wait for, which increases message delay.

Fig. 8.5.: Transactional workload A (33R/33W/33M)

Fig. 8.6.: Transactional workload B (90R/5W/5M)

Fig. 8.7.: Transactional workload C (5R/90W/5M)
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8.6 Summary

This evaluation chapter of the thesis presented an experimental evaluation for TTCC.
We introduced our experimental setup and our experimental key-value store on
which our two experiments run. Furthermore, we describe YCSB+MT, an extension
to the original YCSB workload generator on which we add support for messages and
transaction.

Our experimental evaluation shows that using a unique version vector (Protocol 1)
is beneficial compared to using a causally consistent shared memory or an additional
matrix to track causality.

In a single node setup, Protocol 1 always performs better than Protocol 2 and 3.
Furthermore, Protocol 1 performs very similarly to a non-causal baseline due to the
lack of replication and local operations.

The overhead of maintaining causality using a unique version vector ranges from
1.21× to 4.62× for read operations compared to a non-causal baseline and depend-
ing on the workload. For write operations, the overhead ranges from 1× to 1.40×;
and for message operations, the overhead ranges from 1× to 4.58× depending on
the workload.

Table 8.2 summarizes the response time overhead of Protocol 1 (our reference
protocol that uses a single version vector) compared to a non-causal baseline.

Note that, in our approach, the requested data is materialized on every read opera-
tion. An improvement idea cache materialized views to improve response time.

1 node 2 nodes 3 nodes
R W M R W M R W M

W
or

kl
oa

d A 2.98× 1.19× 4.58× 2.80× 1.14× 1.59× 2.43× 1.03× 1.72×
B 3.64× 1.25× 2.52× 4.62× 1.40× 1.00× 2.95× 1.11× 2.08×
C 1.21× 1.00× 1.21× 2.10× 1.22× 2.67× 2.94× 1.19× 2.53×

Tab. 8.2.: Table summarizing the overhead of maintaining causal consistency for Protocol 1
when scaling on 1, 2 and 3 nodes.
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Part IV

Discussion and Conclusion





Discussion 9
Many stateful serverless frameworks are based on the actor model. However, existing
frameworks separate shared state storage from message-passing, which may lead to
inconsistency and application crashes. TTCC extends the actor model to ensures
that the message and memory view are mutually causally consistent. Serverless
frameworks can benefit from TTCC to support causally consistent serverless func-
tions and prevent inconsistencies that are caused by the separation of state storage
and message-passing.

Several aspects in TTCC remain open for improvements and investigation.

Read materialization cache Currently, our reference implementation materializes
the requested data on every read operation, which causes a high response time
overhead. An possible improvement is to cache objects that are read. This
would cause a computational overhead, but could result in improved response
time.

Implement TTCC on another framework Our reference implementation extends
the Akka actor framework, which has limited shared memory performance. It
would be interesting to implement TTCC on a different framework, such as
Cloudburst (serverless) or Orleans (actor).

Additional experiments Given more time, additional experimental evaluations
would be interesting. TTCC could be compared to existing serverless cloud
frameworks. Furthermore, a complex real-life use-case would be beneficial.

Protocol 3 matrix size optimization In Protocol 3, we use a matrix to track causal
delivery of a message between two actors. The size of this matrix can be
optimized as the diagonal of this matrix is unused. Furthermore, the matrix
may be pruned for actor pairs that are not on the message’s causal path.

Dynamic function placement Collocated functions benefit from locally shared
actor state. It would be interesting to optimize function placement depending
on their interaction graph.
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Conclusion 10
Stateful serverless computing frameworks chain functions together using a message-
based infrastructure and store their durable state in a separate database. This
separation between storage and compute creates serious challenges that may lead
to inconsistency and application crashes.

This thesis first explored the paradigms and challenges that are inherent to serverless
computing. Then, we present the requirements to cleanly integrate message-passing
with shared memory.

In the second part of the thesis, we presented TTCC, a transactional, causally con-
sistent, unified model for message passing and shared memory. TTCC is compatible
with actor-based frameworks and provides an intuitive memory model that ensures
that multiple pieces of information remain mutually consistent, whether sent using
messages or shared in a distributed memory. TTCC is asynchronous, preserves
isolation, and ensures that the message and memory view are mutually causally
consistent.

Finally, we presented our experimental results. They show that Protocol 1, which
uses a single unified version vector, performs the best compared to the protocols
2 and 3. Protocol 1 performs with a 4.62× response time overhead compared
to a non-causal baseline protocol. However, we discussed that optimizations are
possible. Write operations add a 1.40× response time overhead, and causal delivery
of messages add 4.58× to the response time.
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[VV16] Paolo Viotti and Marko Vukolić. Consistency in Non-Transactional Distributed
Storage Systems. Apr. 12, 2016. arXiv: 1512.00168[cs] (cit. on pp. 23, 34).

[War] Jesse Warden. Large Step Function Data – Dealing With Eventual Consistency in
S3 – Software, Fitness, and Gaming. URL: https://jessewarden.com/2020/
09/large-step-function-data-dealing-with-eventual-consistency-
in-s3.html (visited on Feb. 17, 2023) (cit. on pp. 20, 21).

88 Bibliography

https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://aws.amazon.com/solutions/case-studies/netflix-and-aws-lambda/
https://www.infoq.com/presentations/serverless-workflows-actors/
https://www.infoq.com/presentations/serverless-workflows-actors/
https://arxiv.org/abs/1512.00168 [cs]
https://jessewarden.com/2020/09/large-step-function-data-dealing-with-eventual-consistency-in-s3.html
https://jessewarden.com/2020/09/large-step-function-data-dealing-with-eventual-consistency-in-s3.html
https://jessewarden.com/2020/09/large-step-function-data-dealing-with-eventual-consistency-in-s3.html


[Wu+18] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joseph Hellerstein. “Anna: A KVS
for Any Scale”. In: 2018 IEEE 34th International Conference on Data Engineer-
ing (ICDE). 2018 IEEE 34th International Conference on Data Engineering
(ICDE). ISSN: 2375-026X. Apr. 2018, pp. 401–412 (cit. on p. 16).

[Zaw+15] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, et al. Write Fast, Read in the
Past: Causal Consistency for Client-side Applications. report. May 20, 2015
(cit. on pp. 2, 30).

Bibliography 89





List of Figures

1.1 A stateful serverless construct. . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 An inconsistency leading to a crash. . . . . . . . . . . . . . . . . . . . . 1

2.1 A stateless function processes an input and generates an output. . . . . 13

2.2 A stateless function can be invoked multiple times for parallel processing. 13

2.3 A stateful function that stores its state in an external database (DB). . . 14

2.4 Workflow-based framework overview. Function F1 is triggered by an
HTTP request and chained, using a queuing service, to function F2. F2
is chained to F3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Actor-based framework overview. Function F1 is instantiated in actor
A1 and is triggered by an HTTP request. Functions F2 and F3 are instan-
tiated in actor A2 and share the actor’s local state. Actors communicate
using direct messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 The file download and zip serverless service deployed on AWS using
Step Functions, Lambda and an S3 bucket. This service handles the
download, compression and ZIP of a list of files given as an input by a
user. Large objects whose reference is sent by message. . . . . . . . . . 21

3.1 Example of causal message delivery. Actor C receives message m1
before message m2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Example of non-causal message delivery. Actor C receives message m2
before message m1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Example of operations that can occur during an actor’s turn. . . . . . . 36

5.2 Reception of messages m2 and m3 breaks the atomic property of a
transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Multiple scenarios are possible when multiple message are sent to the
same destination actor. This figure explores the four possible scenarios. 38

6.1 Global Stable Snapshot update mechanism. . . . . . . . . . . . . . . . 48

7.1 Akka DistributedData extension general architecture. . . . . . . . . . . 60

91



7.2 Detail view of Akka’s Replicator actor. An extension named Snapshot-
Manager handles read and updates to GSS, LLSS and ongoing data
structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.1 YCSB+MT experimental setup. Three actor systems are run, each with
an associated YCSB+MT instance. . . . . . . . . . . . . . . . . . . . . 70

8.2 Transactional workload A (33R/33W/33M) . . . . . . . . . . . . . . . 75
8.3 Transactional workload B (90R/5W/5M) . . . . . . . . . . . . . . . . . 75
8.4 Transactional workload C (5R/90W/5M) . . . . . . . . . . . . . . . . . 75
8.5 Transactional workload A (33R/33W/33M) . . . . . . . . . . . . . . . 77
8.6 Transactional workload B (90R/5W/5M) . . . . . . . . . . . . . . . . . 77
8.7 Transactional workload C (5R/90W/5M) . . . . . . . . . . . . . . . . . 77

92 List of Figures



List of Tables

2.1 Table of serverless frameworks. . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Notation used in the description of Protocol 1. . . . . . . . . . . . . . . 43
6.2 Notation used in the description of Protocol 2. . . . . . . . . . . . . . . 49
6.3 Notation used in the protocol description. . . . . . . . . . . . . . . . . 53
6.4 Summary of metadata used in Protocols 1, 2 and 3. m is the number of

replicators and n is the number of actors of the whole system. . . . . . 57

8.1 YCSB+MT workload ratios for workloads a, b and c. . . . . . . . . . . 73
8.2 Table summarizing the overhead of maintaining causal consistency for

Protocol 1 when scaling on 1, 2 and 3 nodes. . . . . . . . . . . . . . . 78

93





List of Listings

7.1 Example of ATCC transactional’s API. A CRDT Flag type is toggled inside
the scope of a transaction which is later commited. . . . . . . . . . . . 61

7.2 Modifications to Akka’s Replicator actor. Additional message callback
methods are added to handle transaction prepare, commit, abort, get
and update operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Replicator actor’s transaction commit callback method. The transaction
commit message is first checked for validity before a commit version
vector is computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 Example causal actor that responds to a Ping message with a Pong
message. Both causal messages and non-causal messages are supported. 65

7.5 Message reception in the CausalActor base class. . . . . . . . . . . . . 65

8.1 New message method in DB.java. . . . . . . . . . . . . . . . . . . . . . 71
8.2 New message method override in RestClient.java. . . . . . . . . . . . . 72
8.3 doTransaction method from TransactionalWorkload.java. . . . . . . . . 72

95





List of Listings 97


	Cover
	Remerciements
	Abstract
	Résumé
	Contents
	1 Introduction
	1.1 Overview
	1.2 Contributions
	1.3 Publications
	1.4 Organization

	I Background
	2 Serverless Computing
	2.1 History of Cloud Computing
	2.2 Concepts
	2.3 Serverless frameworks
	2.3.1 Stateless
	2.3.2 Stateful
	2.3.3 Example of a stateful application that has consistency issues

	2.4 Summary

	3 Consistency in Message-Passing Systems
	3.1 Abstract Model
	3.2 Causal Message Ordering
	3.3 Isolation
	3.4 Summary

	4 Consistency for Shared Memory
	4.1 Causal Consistency
	4.2 Isolation
	4.2.1 Transactions
	4.2.2 Snapshots

	4.3 Conflict-free Programming
	4.4 Summary


	II Contributions
	5 Unified Model
	5.1 Design Objectives
	5.2 Causal consistency
	5.3 Isolation
	5.3.1 Transactional turn
	5.3.2 Single message per transaction


	6 Protocol Design
	6.1 Protocol 1: Single Version Vector
	6.1.1 Notation and definitions
	6.1.2 Execution on an actor
	6.1.3 Execution on Replicator

	6.2 Protocol 2: Version Vector + Shared Message Queue
	6.2.1 Notation and definitions
	6.2.2 Execution on an actor
	6.2.3 Execution on Replication actor

	6.3 Protocol 3: Version Vector + Matrix
	6.3.1 Notation and definitions
	6.3.2 Execution on a causal actor
	6.3.3 Execution on Replication actor

	6.4 Summary

	7 System API and Implementation
	7.1 Akka Actor Framework
	7.2 Modular design
	7.3 API
	7.4 Implementation
	7.4.1 Causal shared memory
	7.4.2 Causal messages



	III Experimental Evaluation
	8 Performance Evaluation
	8.1 Methodology and Experimental Setup
	8.2 Key-Value Store
	8.3 YCSB+MT
	8.3.1 Transactions and messaging support
	8.3.2 Workload

	8.4 Experiment 1
	8.4.1 Overview
	8.4.2 Results

	8.5 Experiment 2
	8.5.1 Overview
	8.5.2 Results

	8.6 Summary


	IV Discussion and Conclusion
	9 Discussion
	10 Conclusion
	Bibliography


