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THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ
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Résumé

L’asservissement visuel, ou visual servoing (VS), fait référence aux méthodes de
commande en Robotique basées sur des données de vision par ordinateur. Il s’agit d’un
vaste domaine de recherche qui trouve des applications dans de nombreux domaines de
la robotique : spatiale, aérienne, industrielle, médicale, dans la navigation des voitures
autonomes, ou pour la réalité augmentée, entre autres [ZGHL16, AKNP14, MUS15]. Cette
thèse porte sur l’étude des cas d’échec de l’asservissement visuel référencée image, ou
Image-Based Visual Servoing (IBVS), où la loi de contrôle est définie sur les l’espace des
informations visuelles s ∈ Rk calculées directament dans l’image. Les cas d’échec découlent
de deux situations :

� Les singularités de la matrice d’interaction L gouvernant le modèle cinématique
de l’IBVS, qui peuvent conduire à une perte de contrôlabilité du système [ECR92,
MR93], et qui pesent également sur la précision des méthodes d’estimation de la
situation de la camèra [ZH06].

� L’existence de multiples équilibres stables du système, à cause de quoi la stabilité
globale des systèmes IBVS n’est pas garantie [CH06].

Ces questions et leurs effets sur les performances des contrôleurs IBVS sont bien connus
de la communauté [CH06]. ; cependant, l’étude des cas d’échec a, jusqu’à récemment, reçu
peu d’attention, à cause de la grande complexité des systèmes algébriques concernés. Les
singularités découlent des conditions de perte de rang de la matrice L, de taille (k×6), et ont
été décrites pour les cas des informations visuelles très simples : N points [MR93, PENB+21]
et 3 droites [BMC16]. D’autre part, les points d’équilibre sont les minimaux locaux d’une
fonction de l’erreur, qui est polynomiale en les variables du système, et n’ont jamais été
identifiés précisément, à notre connaissance.

Parce que les systèmes d’équations découlant de ces problèmes sont des polynomiaux
avec degrés élevés et en de plusieurs variables, et parce que nous exigeons des résultats
exacts et certifiés, nous privilégions l’utilisation de méthodes symboliques plutôt que de
méthodes numériques. Nous utilisons donc des outils de la géométrie algébrique et du
calcul formel, en particulier le calcul des bases de Gröbner [CLO13] en utilisant des
algorithmes et des logiciels de pointe [BES21].

Les deux contributions principales de cette thèse sont :

1. Une analyse complète des conditions de singularité liées à l’observation de quatre
et cinq droites. Ceci étend les résultats précédents concernant les conditions de
singularité pour d’autres informations visuelles.

2. Le calcul des configurations d’équilibre des controlleurs IBVS basés sur l’observation
de N = 4 points. Il s’agit du premier résultat concernant le calcul des minimaux
locaux de l’IBVS.

Cette thèse doctorale a été financée par le projet ANR Sesame (funding ID : ANR-18-
CE33-0011), axé sur l’étude des singularités et des propriétés de stabilité de l’asservissement
visuel.

Mots clés Asservissement visuel · Singularités · Stabilité globale · Points critiques
· Calcul formel · Bases de Gröbner



Abstract

Visual Servoing [CH06, HHC96] refers to the use of computer vision information for
robot motion control. It is a large area of research with applications in many fields of Robotics:
spatial, aerial, industrial, medical, in the autonomous navigation of vehicles, or for augmented
reality among others [ZGHL16, AKNP14, MUS15]. This PhD thesis deals with the study of
the failure cases of Image-Based Visual Servoing (IBVS), a class of vision-based controllers
where the control law is defined on the space of the visual features s ∈ Rk computed from the
image measurements. The failure cases arise from two situations:

� The singularities of the interaction matrix L that governs the kinematics of IBVS,
which can lead to a loss of controllability of the system [ECR92, MR93], and which also
impact the accuracy of pose computation methods [ZH06].

� The existence of multiple stable equilibria of the system, as a consequence of which
the global stability of IBVS systems is not guaranteed [CH06].

These issues and their effects on the performance of IBVS controllers are well-known in the
community [CH06]; however the identification of the failure cases has received little attention
until recently, due largely to the complexity of the algebraic systems involved. The singularities
arise from the conditions of rank-deficiency of the matrix L, of size (k × 6), and have been
described for the cases of very basic image features: N image points [MR93, PENB+21] and 3
straight lines [BMC16]. On the other hand, the points of equilibrium are the local minima
of a potential error function, which is polynomial on the system variables, and have never
been identified accurately, to our knowledge.

Because the systems of equations arising from these problems are polynomial, with high
degrees and in many variables, and because we require exact, certified results, we privilege the
use of symbolic methods over numerical methods. We therefore use tools from algebraic
geometry and computer algebra, in particular Gröbner bases [CLO13] computations
using state-of-the-art algorithms and software [BES21].

The two main contributions of the thesis are:

1. We performed a complete analysis of the singularity conditions in the observation of
four and five image lines. This extends previous results concerning the singularity
conditions for other image features.

2. We obtained the critical points of IBVS from the observation of N = 4 point features.
This is the first result regarding the computation of the local minima of IBVS.

This PhD thesis was funded by the French ANR project Sesame (funding ID: ANR-18-
CE33-0011), which aims to further our knowledge of the singularities and stability properties
of visual servo controllers.

Keywords Visual servoing · Singularities · Global stability · Critical points ·
Computer algebra · Gröbner bases application
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4.2.3 Change of basis for the rows of the interaction matrix . . . . . . . . . . 68

4.3 Revisiting the singularities in P3L . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Geometric interpretation of singularities in P3L . . . . . . . . . . . . . . 70

4.4 Singularities in P4L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.1 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Singularity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Singularities of P4L for example configuration . . . . . . . . . . . . . . . 80
4.4.4 Singularities in P4L with orthogonality and parallelism . . . . . . . . . 82

4.5 Singularities in P5L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Singularity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.3 Singularities of P5L for an example configuration . . . . . . . . . . . . . 87
4.5.4 Singularities in P5L with orthogonality and parallelism . . . . . . . . . 87

4.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6.1 Singularities in P4L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6.2 Singularities in P5L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Critical points of IBVS 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Motivation and problem statement . . . . . . . . . . . . . . . . . . . . . 108
5.1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Critical points of gradient controllers . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Critical points of IBVS from N points . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.2 Solving the difficult system . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.3 Exploiting the symmetries . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3.4 Coplanar points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.5 Retrieving the camera pose . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.6 Classifying the solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.1 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Conclusions and future work 138
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Perspectives for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 Singularity conditions for IBVS using image moments . . . . . . . . . . 139
6.2.2 Estimating the regions of attraction of IBVS . . . . . . . . . . . . . . . 139
6.2.3 Improving computer algebra methods . . . . . . . . . . . . . . . . . . . 140

3



A Singularities in the combination of point and line features 141
A.1 Two points and one line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 Two lines and one point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.3 Coefficients of the polynomial F2 . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4



Chapter 1

Introduction

1.1 Motivation and problem statement

The objective of this PhD thesis is to explore the failure cases of vision-based controllers in
Robotics, from a rigorous mathematical standpoint and with the use of exact computational
tools from algebraic geometry and computer algebra. The failure cases originate from two
sources: the singularities of the governing kinematic equations, and the existence of multiple
equilibrium points, which affects the global asymptotic convergence of the controller.

Vision-based control, or visual servoing (VS) [CH06, HHC96], refers to the use of feedback
data from computer vision for the closed-loop control of robotic tasks, motivated by the
interest in robots capable of interacting accurately with their environment, in the presence
of uncertainties, or even in unknown surroundings. A standard classification differentiates
between Position-Based Visual Servoing (PBVS) [WSN87], where the visual data is used
to estimate the relative camera-object configuration, via some pose determination method,
and where the control inputs are defined in the configuration space of the camera, and
Image-Based Visual Servoing (IBVS) [ECR92], in which the current pose of the camera
is not recovered, and instead the control law is defined directly in the space of the image
measurements. This thesis is focused on IBVS methods, although some of the problems we
will treat are of relevance more generally in the fields of computer vision and visual servoing.

In Image-Based Visual Servoing, we define a vector s ∈ Rk of visual features, or image
parameters, computed from the projection of 3D elements of the scene on the camera image.
The visual features can be anything from the coordinates of the projections of 3D points, to
straight lines, segments, image moments or, in general, to any object that can be digitally
segmented in an image [Cha90, Cha04]. A robot task can then be executed by specifying a
target value s⋆ and minimizing an error function e = (s− s⋆) defined as the difference between
the current and the reference value of the features.

The kinematics of visual servo schemes are governed by the equations of the interaction
model, which relates the velocities of the visual features on the camera image ṡ and the relative
camera-object velocity vc ∈ R6, through the interaction matrix L ∈ Rk×6, the Jacobian of
the features with respect to the parameters describing the pose of the camera:

ṡ = L vc.

The interaction matrix is therefore key to the design of the possible control laws. The control
is effectuated at a kinematic level, by specifying an input camera velocity proportional to
the error vector, according to a control matrix C ∈ R6×k:

vc = −λC (s− s⋆) (1.1)

with λ > 0 a scalar constant. An outer control-loop is then used in general to convert the
end-effector velocity into the required robot joint inputs. The control matrix C is typically
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based on an estimation of the interaction matrix L, which requires an approximation of some
of the parameters of the 3D features, such as the depth distribution of the points in the
scene [CH06].

The interaction matrix also plays a central role in the so-called 3D pose localisation
problem [RBPD81, HCLL89, DD95, MC02], closely related to IBVS. A classical problem
in computer vision, with applications in robot control and augmented reality among oth-
ers [MUS15], the pose localisation problem consists of determining the parameters describing
the camera location and orientation in its workspace from the correspondences of a set of 3D
features and their projections on the image.

Since the introduction of vision-based control in the 80s [Cha90], it has found an extensive
application in many fields of Robotics: industrial [ZGHL16], medical [AKNP14, LNBT00],
spatial [IOH03], aerial [BMG+09, OC11], in augmented reality [MC02, MUS15], for navi-
gation of autonomous vehicles [DSRC11], etc. The performance of these controllers has
been exhaustively demonstrated in practice. IBVS systems are generally stable, and robust
with respect to errors in the camera or the robot calibration, or to image measurement
errors [DJSW02, CH06, MC08]. However, this performance is by no means guaranteed in
general, in particular due to two main reasons:

� Singularities of the interaction matrix, which can occur due to the degeneracy of
the projections of the features on the image, or for specific configurations of the camera
relative to the observed object. When the matrix L becomes rank-deficient, the system
can become locally uncontrollable, due to a destabilizing control input [ECR92]. The
singularities of the interaction matrix are also known to impact the accuracy of pose
estimation algorithms and, in particular, they are in some cases related to changes in
the number of possible solutions of the problem [Rie14, ZH06].

� The existence of multiple local minima of the controlled system other than the desired
final configuration. The local minima are stable points of equilibrium for the camera,
where the control input becomes zero for a non-zero value of the error [CH06, PENB+21].
These points may be located anywhere in the workspace, and arbitrarily close to the
desired configuration. Then, the steady-state error may be critical for applications
with high-precision requirements, such as medical or industrial Robotics.

The existence of regions of the configuration space for which the rank of the interaction
matrix drops was an issue identified early on in the visual servoing community [ECR92, MR93].
A common strategy to avoid the singularities is to use a redundant number k of visual features
(i.e. k > 6 for a camera with six spatial degrees of freedom). However, this is not enough to
guarantee that the matrix is always of full rank. Furthermore, by using additional features,
the system becomes overconstrained, allowing the appearance of local minima [CH06]. The
problem of identifying the singularities consists of determining the relative camera-object
configurations, if any, for which the matrix L is rank-deficient. It is a computationally hard
problem, as it requires studying the vanishing conditions of the determinant, or the maximal
minors, of L, leading to a polynomial equation, or system of equations, of high degree and
with a large number of variables: those describing the spatial pose of the camera, as well as
the parameters defining the configuration of the 3D object. It is nevertheless a crucial problem
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for understanding the performance and the limitations of IBVS and of pose determination
methods.

Regarding the stability of IBVS, local asymptotic convergence towards the desired configura-
tion s⋆ is typically guaranteed in a sufficiently small region around s⋆, and if the approximations
used to compute the control matrix C are not too rough [CH06]. In order to ensure global
asymptotic stability, the matrix product LC ∈ Rk×k should be positive definite everywhere
in the configuration space. However, when using a redundant number k > 6 of features, this
product is of maximum rank 6, and positive definiteness cannot be ensured. In this case,
there may exist multiple local minima of the system, which are configurations such that the
error e ∈ kerC. An assessment of the global stability behaviour of visual servoing requires
identifying the local minima, and delimiting the regions of attraction, in the configuration
space, where the controlled system will converge to each of these points.

The study of the singularities of the interaction matrix, and of the global stability
properties, in particular the exact computation of the local minima of IBVS controllers,
constitute the core of this PhD thesis. Specifically we address the two following problems,
which are developed later in detail:

� The analysis of the singularity conditions related to the observation of image
lines.

� The computation of the critical points of IBVS from the observation of 3D
points.

Both of these problems boil down to the resolution of systems of polynomial equations
in multiple variables.

The algorithms used to solve polynomial systems of equations fall into two large categories:
numerical (e.g. Newton’s method, numerical homotopy continuation) [AY78, LW93, BT18]
and symbolic methods (e.g. multivariate resultant, triangular sets, Gröbner bases) [CKY89,
ALM99, Buc70, BW98]. While numerical methods can provide efficient approximations of
the solutions, they rely on floating point arithmetic and are thus liable to round-off errors;
furthermore, guaranteeing the convergence of the methods, or providing a certificate of their
outputs is tricky, due to the nonlinearity of the equations. On the contrary, symbolic algorithms
deal with exact representations of the mathematical objects and the algebraic sets, and
their outputs are certified. Symbolic methods are thus privileged in applications that require
exact or high-precision results, or where numerical methods fail to be reliable due to the
complexity of the equations.

In this thesis we rely extensively on the use of algebraic geometry and exact (symbolic)
computer algebra tools, in particular Gröbner bases computations [CLO13, EF17]. In
algebraic geometry, a system of polynomials is said to define a polynomial ideal, which
consists of all the algebraic combinations of the generating polynomials. The geometric
counterpart of an ideal is called an algebraic variety, consisting of the set of all the common
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(complex) roots of the polynomials in the ideal.
A Gröbner basis is a particular family of generators of a polynomial ideal, which can be

computed algorithmically, and that can be used to answer important queries about algebraic
sets. They can be used, for instance, to determine whether a polynomial is contained in a given
ideal, to eliminate variables from a set of equations, to compute the projections of algebraic
sets, or to compute a rational parametrization of the set of solutions.

The works on Gröbner bases theory start off with Bruno Buchberger’s PhD thesis in the
60s [Buc65], setting off a large area of research in computer algebra. The current state-of-the-
art algorithms for Gröbner bases computations are based on the more modern F4 [Fau99] and
F5 [Fau02] algorithms by Faugère. Efficient implementations of these algorithms for solving
systems of polynomials exist in computer algebra systems like Magma or Maple, or in libraries
such as FGb [Fau10] or msolve [BES21].

1.2 Previous works

Regarding the kinematic singularities of visual servoing, a well-known result is the singularity
conditions related to the observation of three image points [Tho66, MR93]. In this case, a
singularity occurs if the three points are aligned, or when the camera centre is contained in
the cylinder which contains the three points and is perpendicular to the plane they define, as
illustrated in Fig. 1.1. This result was recently extended in [PENB+21] to the observation of
four points. In the case of four non-coplanar points, there are always between two and six
singular configurations for the camera; if the four points lie on the same plane, a singularity
occurs if all the points and the camera share the same circle.

In another recent result [BMC16], the singularity conditions related to the observation of
three lines in space where exposed. For this problem, a singularity occurs if the camera lies
on one of two surfaces in space containing the three lines, and described respectively by a
quadratic and a cubic polynomial. We will be coming back to this result when we present the
analysis of the singularities in the observation of more than three image lines.

Figure 1.1: Singularity cylinder in the observation of three 3D points.
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Regarding the stability properties of IBVS controllers, the local stability around the global
minimum of the system was studied in [CH06] by linearizing the kinematic equations of
the controlled system. In a small neighbourhood around the desired configuration, local
asymptotic stability is guaranteed if the approximations used to design the control matrix,
such as estimations of the depth distribution of the 3D points in the camera frame, are good
enough. A small number of works have dealt with assessing the robustness of these methods
with respect to uncertainties in the approximations, but only for simple cases, such as errors
in the camera calibration model [Esp94, DJSW02], or for planar objects where the orientation
of the plane with respect to the camera frame is not known [MMR09].

To our knowledge, a study of the global stability behaviour of visual servoing, taking into
account the nonlinearity of the governing equations, has never been addressed so far; neither
has the computation of the local minima of IBVS from a given set of features. The work
presented in this thesis is intended to fill in this gap, developing a strategy to compute the
critical points of visual servoing from the observation of image points, using exact computing
methods, and presenting the first results of this kind.

1.3 Contributions

In this thesis we achieved two main objectives. The first is to compute the singularity conditions
for the interaction model when observing more than three straight lines in space, extending
the results of [BMC16] for three lines. The second is the computation of the critical points in
IBVS from four reference points, as a first step for a global stability analysis of visual servoing
methods.

1.3.1 Singularity analysis in the observation of lines

We performed a complete singularity analysis for the Perspective-4-Line (P4L) and
Perspective-5-Line (P5L) problems; that is, a study of the conditions of rank-deficiency
of the interaction matrix in the observation of four and five lines in space. It constitutes an
extension of the results of [BMC16], in which the singularities of P3L were computed. Both
in that work and in ours, the Plücker representation is used to describe 3D lines, and
their 2D projections: each line in the projective space P3 is described by six coordinates,
subject to a quadratic constraint. The representation of lines by a Plücker vector is redundant,
but complete and singularity free. A single image line can be used to control two degrees of
freedom of the camera, such that at least three lines are needed to fully constrain the system.

In [BMC16], the authors derive a new basis for the vector space spanned by the rows of
the interaction matrix for an image line, and show that this basis describes itself a system of
Plücker lines, such that a singularity of the interaction matrix is equivalent to the degeneracy
of the system of lines. They use this result to show that a singularity of P3L occurs if
the camera centre lies on either a quadratic, or a cubic surface, which depend on the
configuration of the observed lines.

In our work, we first provide a new geometric insight into the singularity conditions of P3L
exposed in [BMC16]. In fact, the quadratic surface corresponds to the complementary regulus
of the three feature lines; in other words, it is the locus of all lines which intersect the three

9



L
1

L
2

L
4

L
M

L
N

L
3

Figure 1.2: Given four spatial lines L1, . . . ,L4, there are in general two (complex) transversal
lines LN and LM , which are at the intersection of four hyperboloids.

observed lines, and which span a one-sheeted hyperboloid. This result is further exploited to
show that, in the observation of any three or more lines, a singularity will occur if the camera
centre lies on any line transversal to the observed lines (see Fig. 1.2).

In the case of P4L (and P5L), the number of features used is redundant (i.e. more than
the degrees of freedom needed to control). The interaction matrix is thus rectangular, and the
conditions for rank-deficiency are described by a system of polynomial equations arising from
its maximal minors. We use Gröbner bases computations, along with algebraic geometry
tools (theory of algebraic elimination, saturation of ideals, decomposition and intersection of
algebraic varieties) to study the ideal generated by these minors. We find that, for P4L, two
types of singularities can occur:

1. If the camera centre lies on one of the transversal lines. In general, given four lines in
space, there can be 0, 1 or 2 such lines, the solutions of a system of quadratic equations,
as illustrated in Fig. 1.2. We provide a condition, as an inequality in terms of the
parameters of the feature lines, such that this system does not have any real solutions,
and such that this type of singularity can be avoided.

2. In general there can be up to 10 additional camera poses for which the interaction matrix
loses rank, and which cannot be avoided. These are the solutions of a zero-dimensional
system of equations of higher degree.

In the case of five feature lines, we show that, for a generic configuration, there exist no
transversal lines, so there are in general no positive dimensional components of the singularity
locus and, if any, the singularities must consist of, at most, a finite number of camera positions.
Further, since a singularity of P5L must be a singularity for P4L for any subset of four out of
the five lines, we conjecture that there are no singularities at all, outside of the zero-set of some
polynomial depending on the system parameters. Our observations for specific configurations
of the five lines support this claim.
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We support our findings with results from numerical simulations that illustrate the negative
effects when performing visual servoing or pose determination near a singular configuration. We
find that the ill-conditioning of the interaction matrix results in high magnitude, destabilizing
control inputs for IBVS, and in poor, sometimes abhorrent, pose estimations. In particular we
observe that the one-dimensional components of the singularity locus, or line singularities,
have a more acute destabilizing impact, leading to divergence and errors that blow up in
magnitude, while the point singularities typically only have a local effect.

These results were published as a paper in the International Journal of Computer Vi-
sion [GFNBSED22], in collaboration with Abhilash Nayak, Sébastien Briot and Mohab Safey
El Din.

1.3.2 Computation of the critical points of IBVS from 4 points

In an effort to better understand the global stability properties of IBVS controllers, we
succeeded, for the first time to our knowledge, to compute the points of local equilibrium in
the observation of four points in space, using exact polynomial system solving methods.

We focus on the case of controllers that are gradient-like with respect to the magnitude of
the error vector V (s) = 1

2 ||s− s⋆||2; that is, control strategies such that the system evolves
always in the direction of decreasing V (s). For these systems, V (s) is a Lyapunov-like function,
and the points of equilibrium correspond to critical points of this function with respect to
the parameters describing the camera pose. We show that the critical points can be computed
as the solution of the following system of equations, where the system parameters, describing
the arrangement of the observed points and the desired final camera configuration s⋆, are
assumed fixed:

LT (s− s⋆) = 0, (1.2)

plus a set of constraints coming from the geometry of the problem. The matrix L is the usual
interaction matrix.

When usingN image points as features, the resulting polynomial system is zero-dimensional
(it has a finite number of solutions), and is tractable using state-of-the-art software for polyno-
mial system solving, even though it is very heavy computationally. We succeeded to solve this
system for the cases of N = 4 generic points, as well as for special configurations of interest,
such as four coplanar points, using msolve [BES21], albeit with computing times reaching
several weeks over 12 computer cores. An illustration is given in Fig. 1.3.

We then present two improvements of the modeling that allow us to simplify the computa-
tions significantly. One of them is based on exploiting the symmetries of the solution set
by defining a change of coordinates invariant to these symmetries and deriving a new system of
equations in the new variables by means of Gröbner bases with an elimination ordering. The
other is applicable only in the case of planar objects (all the points lying on the same plane),
and relies on applying the Jacobian criterion to reduce the multiplicity of the solutions.
The new system of polynomials obtained has the same solutions as the original system, but
the ideal it generates is of lower degree. This allows us to compute the critical points in the
case of N = 4 generic points in a matter of 2-3 days and, in the case of planar objects, in just
a few hours. We present a collection of examples of different configurations with their critical
points and describe how to retrieve the camera spatial pose corresponding to each solution in
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Figure 1.3: Critical points in the observation of a generic planar object.

the space of the system variables, and how to classify them in local minima, maxima or saddle
points.

A paper containing the results on the computation of the critical points of IBVS is under
preparation and will be submitted to a journal soon.

1.3.3 Structure of the thesis

This thesis is structured in two blocks. In the first part we present the theoretical background
necessary to introduce the problem and the methods used in our work. In Chapter 2 we
present the preliminaries from Robotics and vision-based control. Starting from a review of
rigid-body mechanics, we move onto an introduction of sensor-based control and specifically
Image-Based Visual Servoing, leading to the two problems that constitute the topic of the
thesis: the singularities of the interaction matrix and the local points of equilibrium of the
controlled system. Chapter 3 deals with the mathematical tools from algebraic geometry
and computer algebra that we will use to address these problems. We introduce polynomial
ideals, as a mathematical structure that generalizes systems of polynomial equations, and their
geometric counterparts, algebraic varieties, which are the sets defined by the common solutions
of these systems, as well as the different properties and operations that can be performed with
these objects. We then give an overview of Gröbner bases, a powerful tool from computer
algebra to solve problems with polynomial ideals. We present a summary of their properties
and applications, and a historical review of the algorithms to compute them.

The second part is devoted to the contributions of the PhD thesis on the study of IBVS
failure cases. Chapter 4 concerns the singularity analysis related to the observation of feature
lines. First, we give a new insight into the singularity conditions [BMC16] for the case of three
lines, and then we present the study of the singularities for four and five image lines, in generic
configurations as well as for lines bounds by orthogonality and parallelism constraints, which
are of interest for applications of IBVS in structured environments. A series of experimental
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simulations is presented to substantiate these results and evaluate the impact of the singularities
on visual servo control and on pose determination algorithms. We also expose the singularity
conditions related to minimal combinations of image lines and points features, which are
reported in Appendix A. The Chapter 5 is dedicated to the computation of the critical points
of IBVS from the observation of N reference points. The problem is modeled as a system of
polynomial equations in the space of the image parameters. We then present an algorithmic
improvement of this modeling, allowing to simplify the computations of the equilibrium points,
and a collection of results for different configurations of the four points using exact polynomial
based system solving methods. The results are compared to computations using real homotopy
continuation, that illustrate that numerical methods are not reliable for this problem, due to
the high nonlinearity of the equations. Finally in Chapter 6 we briefly summarize the main
results of the PhD thesis and propose some directions of research for future works.
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Chapter 2

Image-Based Visual Servoing

Abstract. In this chapter we review the fundamentals of vision-based control and introduce
the two main classes of problems that affect the performance of the classical Image-Based
Visual Servoing methods, and that constitute the main topic of this thesis: 1) the study of the
singularities of the interaction model related to the projection of the 3D features, and 2) the
identification of the local minima and the estimation of the regions of convergence. We give
an overview of the previous works concerned with the study of these issues and present some
of the open problems that are studied in this PhD thesis.

2.1 Preliminaries from Robotics

We start with a brief overview of some mathematical background and common terminology
from Robotics and Mechanical Engineering that are necessary to introduce vision-based control.
In particular we review rigid-body motions and the velocities of rigid bodies, and define the
algebraic mappings involved in the geometric and kinematic description of robots. For most
of this section, we follow the book by Park and Lynch, [LP17], which is a comprehensive
introduction to the mathematical description of robot architectures, although many other
classical references are available [SKK08, MLS17].

2.1.1 Coordinate transformations

In this work we will typically deal with objects that are free to move and rotate in the Cartesian
space. We refer to such an object as a rigid-body, and we say it has a total of six degrees of
freedom, since its configuration can be described by a set of six independent parameters.

Consider a rigid-body B moving in space. The pose of B represents its position and its
orientation relative to a particular frame of reference. Let us define a spatial frame of reference
Fo relative to the surrounding scene, and a body frame of reference Fb, instantaneously
attached to the rigid-body. Then, the pose g of B relative to Fo is described by a couple (p,R),
where p ∈ R3 is the position vector of the origin of Fb expressed in Fo, and R ∈ SO(3) is
the (3× 3) rotation matrix describing the orientation of Fb with respect to Fo. The group
of all the rotation matrices in 3D is the Special Orthogonal Group SO(3), or the group of
all orthogonal matrices (R−1 = RT ) with det(R) = 1. With these constraints, a rotation
matrix is fully determined by only three independent parameters, as it is required. There exist
multiple other representations of a spatial rotation, which we will discuss later.

Note: All the frames of reference considered here are stationary. For simplicity we will
usually refer to a “frame attached to body B”, but we will always mean a reference frame
which is instantaneously coincident with a coordinate system moving with B. This is not
particularly relevant for a geometric and kinematic characterization of rigid-body mechanics,
but should be taken carefully for a dynamics study, which we do not deal with in this work.
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Often we represent simultaneously the position and orientation of an object using a single
(4× 4) matrix, denoted a homogeneous transformation matrix.

Definition 2.1. (Homogeneous transformation matrix) The pose g = (p,R) of a
rigid-body relative to a particular coordinate system is described by a (4× 4) homogeneous
transformation matrix, defined as

M =

[
R p

01×3 1

]
. (2.1)

Definition 2.2. (Special Euclidean Group) The set of all homogeneous transformation
matrices (equivalently the set of all possible translations and rotations in 3D space), is called
the Special Euclidean Group SE(3) = R3 × SO(3), or the group of rigid-body transfor-
mations.

Using a slight abuse of notation, we will often say g = M = (p,R) ∈ SE(3) for the
different representations of a spatial pose, even if they correspond to objects with different
dimensions.

The group of rigid-body transformations SE(3) is not a vector space, but rather it is a Lie
group, in other words it is also a differentiable manifold. We will later see what the differential
of a spatial pose represents. The elements of SE(3) can in fact be used to represent several
things:

1. The spatial 3D pose of a rigid-body B relative to a frame of reference Fo.

2. A spatial transformation (a rotation plus a translation) of a 3D vector x.

3. A change of coordinate system for a vector x.

We defined the homogeneous transformation matrix (2.1) as representing the pose of the
body-frame Fb relative to Fo. In Robotics, this is typically made explicit by writing oMb, where
the subscript indicates the “target” frame and the superscript the “base” frame (see Fig. 2.1).
The same transformation matrix is used to convert a vector expressed in Fb-coordinates to
its coordinates in Fo. Let x ∈ R3 be a vector, and bx = [x1 x2 x3]

T be its coordinates in the
frame Fb. Then in the space frame we have[

ox
1

]
= oMb ·

[
bx
1

]
(2.2)

which is equivalent to
ox = R · bx+ p. (2.3)

Here, R and p could also be written oRb and
opb. Note that with this notational convention,

the subscript of a transformation matrix that pre-multiplies a vector coincides with the
superscript of that vector.

We denote the vector
[
bxT 1

]T ∈ P3 in (2.2) as the vector of homogeneous coordinates
of bx. Throughout this thesis we will indistinctly use the same name for vectors expressed
in projective (homogeneous) or affine (regular) coordinates. Abusing the notation, we will
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Figure 2.1: A homogeneous transformation matrix describes the relative pose of two reference
frames.

use ox = oMb · bx, where it should be clear from a dimensional criterion that homogeneous
coordinates are being used.

We can perform a change of reference frame in the other sense, from the spatial coordinates
to body coordinates, by inverting the homogeneous matrix: bx = bMo · ox, where bMo =
(oMb)

−1 (Fig. 2.1).

Proposition 2.1. The inverse of a homogeneous matrix M is another homogeneous matrix
M−1 ∈ SE(3) defined as

M−1 =

[
R p
0 1

]−1

=

[
RT −RTp
0 1

]
(2.4)

Hence, if (p,R) represents the pose of a frame Fb relative to Fo, then
bpo = −RTp is the

position vector of the origin of Fo, expressed in Fb, and
bRo = RT = R−1 is the rotation

matrix required to transform frame Fo into Fb.
Just like for spatial rotations, the composition of two rigid-body transformations (or two

coordinate system transformations) is performed by multiplying the corresponding homogeneous
matrices

Proposition 2.2. The product of two homogeneous matrices M1, M2 is another homogeneous
matrix M3 = M1 ·M2 ∈ SE(3).

Let Fo and Fb be two frames of reference with a relative pose given by oMb, and consider
a new frame Fd with a pose relative to Fo given by oMd. Then, the transformation between
frames Fb and Fd is described by the following product

bMd = bMo · oMd = (oMb)
−1 · oMd. (2.5)

Proposition 2.3. The multiplication of homogeneous matrices is associative: M1(M2M3) =
(M1M2)M3, but in general it is not commutative: M1M2 ̸= M2M1.
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It is worth mentioning that Propositions 2.1, 2.2, and 2.3 confirm that set SE(3) of
homogeneous transformation matrices is a group.

Note: The Special Euclidean Group SE(3) is a subset of the Euclidean Group E(3):
the set of all isometries in Euclidean space, or all the transformations in 3D that preserve
the distance between any two points. Aside from translations and rotations, these include
reflections about a plane, an axis or through a point, which preserve distances and angles,
but they change the handedness of the object. These transformations are sometimes known
as indirect isometries, to distinguish them from the direct isometries (the elements of SE(3)).
The indirect isometries form a coset of SE(3), denoted E−(3), such that E−(3) = E(3)\SE(3).
Any element of E(3) can also be represented by a vector p ∈ R3 and an orthogonal matrix
R ∈ O(3), if we drop the constraint det(R) = 1; therefore we have E(3) = R3 ×O(3).

2.1.2 Other representations of rotations

The representation of rotations using (3× 3) orthogonal matrices is redundant, since there
are 9 entries in the matrix and we need six constraints (coming from RTR = RRT = I and
det(R) = 1) to return to the three-dimensional space of rotations. Likewise, for homogeneous
matrices, we need to impose ten constraints on the space of all (4× 4) matrices to describe the
six-dimensional space SE(3). Other common parametrizations of rotations in the 3D space
include: an axis u and an angle of rotation θ, unit quaternions, or Euler angles:

� θu-vector. In the θu representation, the vector u = [ux uy uz]
T is the normalized

direction of the axis of rotation, and it is multiplied by a scalar θ which is the angle of
rotation about that axis. This is also a redundant representation, since we assign four
parameters to represent the three-dimensional space of rotations, and a constraint of the
form ||u||= 1 is required. For a fixed θu vector, the rotation matrix R representing the
same rotation can be computed using Rodrigues’ Formula [LP17]:

R = I+ (sin θ)[u] + (1− cos θ)[u]2, (2.6)

where I is the identity matrix and [u] is the usual skew-symmetric matrix associated to
u such that its product with any vector a ∈ R3 equals the cross-product [u]a = u× a:

[u] =

 0 −uz uy
uz 0 −ux
−uy ux 0

 . (2.7)

Inversely, given a rotation matrix R, the axis u can be computed as the eigenvector of
R that corresponds to an eigenvalue equal to 1 (since (R− I)u = 0), and the angle of
rotation is equal to

θ = acos

(
tr(R)− 1

2

)
(2.8)

where tr(R) is the trace of the matrix R.

� Unit quaternions. Quaternions were introduced by Hamilton in 1843 as a gener-
alization of the complex numbers, and are composed of four independent parameters
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q = (q0, q1, q2, q3); the group of all quaternions is typically denoted H. Like rotation
matrices and the θu-vectors, quaternions are a redundant parametrization for rotations.
In order to describe a rotation of angle θ about an axis u, we set q0 = cos(θ/2) and
[q1 q2 q3]

T = u · sin(θ/2). This quaternion satisfies ||q||2= q20+q21+q22+q23 = 1, thus leav-
ing three independent parameters as required. Given the quaternion q = (q0, q1, q2, q3),
the corresponding rotation matrix is

R =

q20 + q21 − q22 − q23 −2(q0q3 − q1q2) 2(q0q2 + q1q3)
2(q0q3 + q1q2) q20 − q21 + q22 − q23 −2(q0q1 − q2q3)
−2(q0q2 − q1q3) 2(q0q1 + q2q3) q20 − q21 − q22 + q23

 . (2.9)

The operations defined on H are: quaternion multiplication, inversion and composition;
the rotation of a vector x ∈ R3 by a quaternion q corresponds to its composition, in
homogeneous coordinates, with q. We refer to [Gra08] for the description of these
operations and for a comprehensive introduction to quaternions and their use in rigid-
body dynamics.

� Euler angles. The relative orientation of two frames is described by three independent
parameters that represent successive rotations around the body frame axes to transform
one frame to the other. They provide an intuitive parametrization of rotations in 3D
space, but not a complete one: three parameters are not enough to fully parametrize the
SO(3) manifold. As a consequence, there exist representation singularities: there
are some spatial orientations which cannot be described by the three angles; this is
a well-known problem of the Euler representation, known as a gimbal lock . We will
therefore avoid using Euler angles in this work, although we refer to [MLS17] for a
description of this very common parametrization.

2.1.3 Velocities of rigid bodies

Consider a rigid-body B moving relative to a fixed spatial frame Fo. As before, we define the
body-frame Fb as the frame which is instantaneously coincident with a frame that moves with
the body, and we represent its pose with respect to Fo by g = (p,R) = oMb. The motion of
B is parametrized by a linear and an angular velocity components, which must be defined
relative to a point. Unless otherwise specified, we will always consider this point as the origin
of the current frame of reference.

Let ovb and
oωb be the linear and angular velocities of B relative to Fo, expressed in the

spatial frame Fo, and let P be a point moving with the rigid-body, with spatial coordinates
oxp. The velocity of point P expressed in Fo is given by

oẋp =
oωb × oxp +

ovb (2.10)

Note that the linear velocity component ovb is not the linear velocity of the origin of Fb in
Fo-coordinates (this would be ṗ = oωb×p+ ovb), but rather it is the linear velocity of a point
attached to the rigid-body which is instantaneously coincident with the origin of the current
frame Fo.

The two vectors ovb and
oωb can be assembled into a single six-dimensional vector, denoted

a velocity twist.
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Definition 2.3. (Velocity twist) The spatial velocity of a rigid-body B is described by a
velocity twist: a six-dimensional vector composed of the linear and angular velocity
components v and ω of B, expressed about a point:

τ =

[
v
ω

]
∈ R6 (2.11)

Definition 2.4. Given a rigid-body B at a given pose, the set of all possible velocity twists it
can take generates a vector space called se(3): the Lie Algebra of SE(3). It is defined as the
tangent space to the SE(3) manifold at the origin.

We define the spatial twist of the frame Fb as the vector oτb =
[
ovT

b
oωT

b

]T ∈ se(3),
expressed relative to Fo. Similarly, we define the body twist to be the vector bτb =[
bvT

b
bωT

b

]T ∈ se(3), expressed in body-frame coordinates. The angular velocity bωb represents
the same object in R3 as oωb, but expressed relative to Fb, i.e.

bωb = RT · oωb. The linear
velocity component bvb, on the other hand, is not the same object as ovb, but rather it
represents the linear velocity of the origin of Fb, in Fb-coordinates, i.e.

bvb = RT ṗ.
In a similar way to how the skew-symmetric matrix [ω] in (2.7) is a (3 × 3) matrix

representation of an angular velocity ω ∈ R3, we can represent a velocity twist vector τ ∈ R6

by a (4× 4) matrix that we call [τ ].

Definition 2.5. (Matrix representation of a twist) The (4× 4) matrix representation [τ ]
of a velocity twist τ is

τ =

[
v
ω

]
∈ R6 ⇐⇒ [τ ] =

[
[ω] v
0 0

]
∈ se(3). (2.12)

With this representation, and using homogeneous coordinates for the vector oxp, equa-
tion (2.10) becomes

oẋp = [oτb]
oxp (2.13)

Note that (2.13) is the instantaneous velocity of a point that is rigidly attached to a body that
moves with a spatial velocity oτb with respect to the fixed frame. If we express the location of
that point relative to the body frame of reference bxp =

bMo
oxp, then obviously bẋp = 0.

We can now introduce the time-derivative of a pose represented as a homogeneous matrix.

Lemma 2.4. (Differentiation of homogeneous transformation matrices) Let oMb =
(p,R) be the current pose of a moving frame of reference Fb relative to a fixed frame Fo, and
let oτb ∈ se(3) be its spatial twist, and bτb ∈ se(3) its body twist. Then, the time derivative of
oMb is

˙oMb =

[
Ṙ ṗ
0 0

]
= [oτb]

oMb =
oMb [bτb]. (2.14)

The last two expressions in (2.14) are equivalent. Thus, given the spatial twist oτb of a
frame Fb, we obtain the derivative of the homogeneous matrix oMb by post-multiplying the
velocity twist (in its matrix representation) by oMb while, if given the body twist [bτb] instead,
we pre-multiply the twist by oMb.

Lemma 2.4 leads to the following proposition, that allows us to change the coordinate
system with respect to which a velocity twist is defined.
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Proposition 2.5. Given oτ ∈ se(3) a velocity twist expressed in Fo, we can obtain sτ
expressed in any other frame Fs as

[sτ ] = (oMs)
−1[oτ ]oMs (2.15)

and going in the other sense
[oτ ] = oMs[

sτ ](oMs)
−1 (2.16)

The expressions above can be rearranged as a matrix-vector product, to relate it to the
vector representation of the velocity twist.

Definition 2.6. (Adjoint map matrix) Let g = (p,R) be a spatial pose. The adjoint
representation of g is

Ad(g) =

[
R [p]R
0 R

]
(2.17)

With Definition 2.6, (2.16) can be expressed as

oτ = Ad(oMs)
sτ =

[
R [p]R
0 R

] [
sv
sω

]
(2.18)

and equivalently, going in the other direction we have sτ = Ad(sMo)
oτ where sMo = (oMs)

−1.

2.1.4 Some definitions from Robotics

A robot is an actuated mechanism composed of a series of (generally rigid) links connected
by joints that allow the relative motion between the different parts. Actuation of some or all
of the joints, normally by means of electric motors, is what causes the robot to move. The
end-effector is the part of the robot where the tool is attached, designed to interact with the
environment, such as the gripper at the end of a robotic arm.

When all the links of the robot are assembled in series, we refer to a serial manipulator.
This is the case of the familiar robotic arms with six-degrees of freedom such as the open chain
robot by Kuka in Fig. 2.2a, used extensively in industrial assembly chains, or of the SCARA
robot in Fig. 2.2b, which has three translational and one rotational degrees-of-freedom and is
used for pick-and-place tasks.

On the other hand, if the robot manipulator consists of two or more kinematic chains
(i.e. open chains of links connected by joints) that connect the base to the end-effector in a
closed loop, we speak of a parallel robot. Classical examples of parallel robots include
the Gough-Stewart platform or hexapod manipulator (Fig. 2.3), with six degrees-of-freedom
and widely used for high-payload applications, from testing rigs for vehicle tyres, to flight
simulators, as well as in large telescope mounts; or the DELTA robot (Fig. 2.4), one of the
most commercially successful robot designs, with only three translational degrees-of-freedom,
and with applications in food, medical, electronic and manufacturing industries.

Parallel robots have some advantages over their serial counterparts, such as large payload
capacity, high precision, rigidity and speed [Mer05]. However, they also present several
drawbacks, notably a smaller workspace, a high coupling in the kinematic relationships and
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(a) A robotic arm with six degrees-of-freedom
by Kuka. The robot tool can move and rotate
in any direction in its workspace.

(b) A SCARA robot by Omicron with four
degrees of freedom: the end-effector can move
in space in three directions and rotate about
the vertical axis.

Figure 2.2: Examples of serial or open-chain manipulators.

the presence of singularities in their operational space, which we will discuss later in relation
with the singularities characteristic to vision-based control.

In a serial robot, all the joints are actuated, while for parallel manipulators, only a subset
of them are. The joints that can be controlled are called the active joints, while the passive
joints are allowed to move freely. The configuration of the joints at each time, that is, the
posture of the robot, is described by the active joint variables q. The set of all possible values
of q defines the the configuration space Q of the robot.

We also define the workspace (or task space) W , as the set of all possible configurations
that the robot end-effector can attain. For instance, the workspace of the SCARA robot in
Fig. 2.2b, which can translate along the three axes and rotate around the vertical direction,
is W ⊆ R3 × [0, 2π]. For more general manipulators, such as the ones in Fig. 2.2a and
Fig. 2.3, that can move and rotate in 3D, the workspace is W ⊆ SE(3). For these robots, the
configuration of the end-effector is described by the relative pose of an end-effector frame Fe

and a fixed base frame of reference Fo, represented by g = oMe.
For a serial robot, the position and orientation of the end-effector is uniquely determined by

the configuration of the joints [LP17]. The mapping that gives the end-effector pose as a function
of the active joint variables q is called the Direct Geometric Model (DGM: Q 7→ W). In
order to compute the DGM of a robot, one defines a set of intermediate frames of reference
F1, F2, F3 . . . attached to the successive robot links, whose relative configuration depend on
the active variables qi of each link. Then, the pose of the end-effector can be computed as the
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(a) Diagram of a Gough-Stewart plat-
form [LP17].

(b) The YTLA/AMiBA telescope on
Mauna Loa in Hawai lies on an hexapod
mount [HAC+09].

Figure 2.3: The 6-UPS robot, Gough-Steward platform or hexapod has six legs connecting the
base to the end-effector and can move in six degrees-of-freedom through the actuation of the
middle prismatic joints. It can support high loads and perform rapid, high precision motions.

(a) Schematic of the DELTA parallel
robot [Cla90].

(b) The ABB FlexPicker DELTA robot.

Figure 2.4: The DELTA parallel robot has three translational degrees-of freedom. The robot
platform is always parallel to the base and cannot rotate about the direction normal to that
plane.
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product of homogeneous matrices

oMe(q) =
oM1(q1) · 1M2(q2) . . .

k−1Mk(qk) · kMe. (2.19)

Conversely, for parallel robots, a particular configuration of the active joints can map to
several poses of the end-effector. For parallel manipulators it is typically easier to compute
the Inverse Geometric Model (IGM: W 7→ Q), which provides the joint coordinates as a
function of the end-effector pose.

By taking the time derivative of the DGM (2.19) of a robot, we obtain the equations that
map the velocities of the active joints q̇ to the spatial velocity of the end-effector, represented
by a velocity twist ġ = τe, through the Jacobian matrix of the forward kinematics J:

τe = J(q) q̇. (2.20)

The relation (2.20) is known as the Forward Kinematic Model (FKM) of the robot.
For serial robots, singularities of the forward kinematic Jacobian correspond to configura-

tions where the end-effector loses the ability to move or rotate in one or more directions. For
instance, for a robotic arm such as the one in Fig. 2.2a, such a singularity occurs when the
robot is in the fully stretched position; in this case the end-effector is unable to move along
the direction of the arm. The singularities of the forward Jacobian J are called Type I or
kinematic singularities.

The inverse kinematic problem consists of determining the actuation velocities required
for a desired end-effector velocity, and the Inverse Kinematic Model (IKM) is defined as
follows, where the matrix Jinv is the inverse kinematic Jacobian:

q̇ = Jinv(q) τe. (2.21)

Note that if dim(q) = dim(g) and if the Jacobian matrix J is never singular, then Jinv = J−1,
both for serial or parallel manipulators, although this is in general not the case.

For open chain manipulators, computing the inverse kinematics is usually more involved
than computing the FKM, since an end-effector pose can often be reached from different
postures, and it is typically done using a generalized inverse of the Jacobian matrix. For
parallel robots, neither the Direct nor the Inverse Geometric Models are one-to-one mappings
in general; usually we derive the Inverse Kinematics from the geometric constraints of the
platform, and then we rely on numerical algorithms along with some information about the
current configuration of the platform to compute the Forward Kinematic Model.

Because parallel robots have both active and passive joints, their kinematics are not as
straight-forward as for serial ones. In particular parallel robots may present a different kind of
singularities than open chain ones, which correspond to the rank-deficiencies of the inverse
Jacobian, also known as Type II or parallel singularities [Mer05]. At a Type II singularity,
the motion of the end-effector is not fully constrained by the action of the joints. As a
consequence, it may gain an instantaneous degree-of-freedom and perform an uncontrollable
motion. In Section 2.6, we will talk more about the singularities of the inverse Jacobian
of parallel robots, and relate them to the singularities in the kinematic mappings used in
vision-based control.
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Figure 2.5: Eye-to-hand (left) / Eye-in-hand (right) configurations.

2.2 Sensor-based control

The use of exteroceptive sensors for robot control; that is, sensors that can provide information
about the external state of the robot, is motivated by the demand for adaptable robots
capable of interacting accurately with their environment. Exteroceptive sensors can be used to
measure the position and orientation of the end-effector with respect to an object, proximity
to obstacles, force, etc., in contrast with proprioceptive sensors, used to measure the internal
state of a robot (such as its joints configurations, velocities...), and can be used to improve the
accuracy of robotic tasks in the presence of uncertainties in their workspace, or to perform
navigation tasks in unknown and dynamic surroundings.

Visual Servoing (VS), or vision-based control [CH06, HHC96], refers to a variety of methods
for motion control in Robotics that use sensory feedback data from computer vision, that is,
information extracted from the image of a camera. The mathematical foundations of VS were
laid in the 80s [Cha90], and it has since found an application in a wide variety of Robotic
fields: industrial, medical, spatial, aerial, in augmented reality, or for navigation of autonomous
vehicles. Depending on the sensor integration mode, we speak of an eye-in-hand configuration,
if the camera is mounted on the robot, such that the robot’s motion induces a motion of
the camera; eye-to-hand, if the camera is fixed in the workspace, and observes the robot’s
configuration (see Fig. 2.5), or more complex arrangements, such a stereovision system with
multiple cameras observing from different viewpoints. The mathematical development for all
these set-ups is similar, but in this PhD thesis we will always consider the classical, eye-in-hand
configuration with a single camera.

In very general terms, the aim in vision-based control is to minimize an error function
e which depends on the sensor input. Let the vector m(r) contain a set of measurements
extracted from the visual sensor information (i.e. a set of image point coordinates, the
directions of lines projected on the camera plane, the centroid of an object, etc.), which are a
function of the configuration r of the camera. The image measurements are used to compute a
set of k features s(m(r), a), where a is used to represent all the information needed to compute
s that is not directly available from the camera image, such as the camera intrinsic parameters,
or a 3D model of the object. The error is defined as the difference between the vector of
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features s and a reference value s⋆, which is specified:

e = (s(m(r),a)− s⋆) . (2.22)

In order to control its motion, it is necessary to define the relation between the relative
velocities of the features ṡ and the changes in the camera position ṙ:

ṡ =
∂s

∂r
ṙ (2.23)

Definition 2.7. When the vector ṙ represents the velocity twist of the camera in space
(i.e. ṙ ∈ se(3)) with respect to the reference frame of the camera, the relation (2.23) is the
interaction model associated to the features s, and the Jacobian L = ∂s

∂r is known as the
interaction matrix [CH06].

The standard approach to minimizing the error (2.22) is to define a velocity input that is
proportional to the error according to a control matrix C [Cha90]:

ve = −λC (s− s⋆). (2.24)

More elaborate control strategies could incorporate derivative or integral terms to affect
performances such as convergence rates, oscillations or steady state errors.

In the current framework of vision-based control, we will always assume that we can define
our control inputs as a velocity command for the robot’s manipulator, and therefore we will
not delve into the robot’s Inverse Kinematic Model (IKM) describing the joint actuation inputs
required to attain this motion, and which varies from one robot to another. If the inverse
kinematic Jacobian Jinv(q) for a robot is known, the joint velocities can be computed from
the wanted end-effector velocity as q̇ = Jinv(q)ve.

2.2.1 Classification of visual servo strategies

Visual servoing schemes mainly differ in the way that the vector s is defined, and whether it
can be computed solely from the visual information extracted from the image, or it requires
additional 3D information about the system, such as the pose of the camera relative to the
scene or a blueprint of the object. According to this, a standard classification [HHC96, CH06]
differentiates between

Image-Based Visual Servoing (IBVS). The vector s is computed directly from the
camera input, and the control is effectuated in the 2D space of the image features, so it is
a control method in 2D [CH06, HHC96]. No 3D information, such as the spatial location of
the camera, is needed to compute the error function (2.22), although it plays a role in the
system dynamics through the interaction model (2.23); for instance the interaction matrix
related to image points involves the depth coordinates of the 3D points along the focal axis,
which is not available from the camera image. Many control strategies rely on this information,
which is either obtained from additional sensors [KMM+96] or estimated (heuristically, or from
partial pose estimation strategies [CH07]), in order to compute the control matrix in (2.24).
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IBVS methods are known to be quite robust and stable [DJSW02], and they present several
advantages over other strategies: a full 3D model of the object is not required, hence they are
suitable for tasks where the environment is not known, such as robot navigation in unexplored
surroundings. In addition, by controlling the robot in the space of image parameters, one
can avoid problems common to other approaches, such as features leaving the field of view of
the camera. On the other hand, IBVS methods also present some drawbacks, in particular
the potential control and stability issues that arise as a consequence of the appearance of
singularities and local minima [BCM16, PENB+21]. Furthermore, because the sensor space
where trajectories are defined is not the Euclidean space, IBVS methods lead in some cases to
unintuitive and inefficient camera motions, where the rotational and translational degrees of
freedom are highly coupled [CH06].

Position-Based Visual Servoing (PBVS). Here, the image measurements m(t) are used
to compute the relative position and orientation of the camera with respect to the fixed-frame,
and the control input is defined on the task space of the camera [WSN87, CH06], hence, it is
a type of 3D servoing. The computation of the pose relies on runtime algorithms and requires
3D information from the object that is not available from the image; such as a blueprint model.
Since the robot trajectories are defined in the Euclidean space, PBVS controllers are always
globally stable, and usually lead to more efficient trajectories in the 3D space and a nice
decoupling between the translational and rotational motions. On the contrary, PBVS methods
are very sensitive to modeling errors. Because the visual information is only used to compute
the current pose prior to defining the control input, and the feedback loop in terms of the
sensor state is removed, errors in the 3D model of the object or in the camera calibration that
affect the pose estimation step will propagate onto the final state. Hence, PBVS methods tend
to have a worse accuracy than IBVS. Additionally, because the trajectories are not defined in
the sensor space, it is a well-known problem that during PBVS the object may leave the field
of view of the camera, leading to problems in control and accuracy [TMCG02, CH06].

Hybrid modes. Some approaches try to exploit the advantages of both Image and Position-
Based Visual Servoing by integrating 2D and 3D feedback information. For instance in the
21
2DVisual Servoing method [MCB99], the authors use a combination of features extracted

from the image, and position-based features to separately control the translation and rotational
degrees of freedom of the camera, leading to a nice decoupled motion while ensuring that the
object never leaves the image frame. It offers good stability properties and produces nice
trajectories in Cartesian space, while not requiring a complete 3D model of the object; however
it does rely on real-time partial pose estimation to compute the 3D features [CM00].

IBVS methods and their failure cases are the central topic of this thesis and will be dealt
with in a lot more detail in what follows. We will hence always assume that the features s
are extracted from the camera image and are a function of the pose of the camera, and the
control strategies are defined in the space of the image parameters. Nevertheless, some of the
problems studied here, in particular the appearance of singularities of the interaction model
related to the image features, are also of importance more generally in the domain of computer
vision, in particular for pose determination. The problem of pose determination consists of
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Figure 2.6: Observation of a single point in a pin-hole camera model. The 3D point Xi =
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T projects on the image with coordinates xi =
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computing the position and orientation of the camera relative to a particular object-frame
from the information projected on the image (see Section 2.5), and is a central part for defining
strategies for Position-Based Visual Servoing, in which this information must be computed
prior to determining the control input.

2.3 Interaction model

Here we set out the equations that govern the interaction model (2.23) in the classical IBVS,
eye-in-hand control of a camera with six degree of freedom in space. The value of the image
parameters s(m, a) can be obtained from the measurements m (i.e. the raw pixel coordinates
of the image), and the additional information a is nothing but the intrinsic camera parameters:
focal length, pixel ratio, coordinates of the principal point... Typically we express s as the
projection of some some 3D features Θ(p) on the image plane of the camera, via the projective
mapping Π : R3 → R2.

s = Π(Θ(p)), (2.25)

where p represents the spatial configuration of the camera, that is, its position and orientation,
relative to a fixed world-frame.

In the following, we will use an idealized pin-hole camera model with focal length equal to 1,
and assume that the intrinsic camera parameters can be normalized. This formulation is quite
general, since any other camera model based on projective geometry (i.e. fish-eye, catadioptric
lenses) can be represented by a pin-hole model up to a continuous transformation [MR93].
Let us define the camera reference frame Fc with its origin at the focal point C and the
Z-axis aligned with the focal axis. In the pin-hole camera model, a point with coordinates
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X = [X Y Z]T in this frame is projected on the image on a 2D point x = Π(X) with
coordinates (see Fig. 2.6)

x =

[
x

y

]
=

[
X/Z

Y/Z

]
(2.26)

The coordinates (2.26) can be used as the visual features corresponding to a single feature
point s = [x y]T . Computing the interaction model (2.23) requires deriving the variation of s
induced by a motion of the camera. Differentiating (2.26) in time, we obtain

ẋ = Ẋ/Z −XŻ/Z2 = (Ẋ − xŻ)/Z

ẏ = Ẏ /Z − Y Ż/Z2 = (Ẏ − yŻ)/Z
(2.27)

An instantaneous camera velocity is represented by a velocity twist τc =
[
vT
c ωT

c

]T
, a six-

dimensional vector containing its linear and angular velocity components: v = [vx vy vz]
T and

ω = [ωx ωy ωz]
T , expressed relative to the camera frame of reference Fc. The vector τ belongs

to se(3), the vector space that is locally tangent to the space of rigid-body transformations
(see Section 2.1). Since we assume that the surrounding scene is fixed, we can regard it as
a rigid-body moving relative to a “fixed” camera frame with an instantaneous velocity twist[
−vT

c − ωT
c

]T
in the frame Fc. The velocity of the 3D point X is thus

Ẋ = −vc − ωc ×X (2.28)

The expressions (2.28) are known as the motion-field equations [LHP80]. By inserting (2.28)
in (2.27) we get

ẋ = −vx/Z + xvz/Z + xyωx − (1 + x2)ωy + yωz,

ẏ = −vy/Z + yvz/Z + (1 + y2)ωx − xyωy − xωz,
(2.29)

which can be rearranged into a matrix-vector product to arrive at the interaction model (2.23).

Proposition 2.6. Let X = [X Y Z]T be the coordinates of a 3D point in the camera frame,
and s = [x y]T be the coordinates of its projection on the image. The velocities of s are related
to a velocity twist of the camera τc by

ṡ = Lxτc, (2.30)

where Lx is the interaction matrix for the 3D point X:

Lx(s, Z) =

[
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]
. (2.31)

The matrix Lx depends not only on the image coordinates s, but also on the depth Z of
the point along the focal axis. The value of Z cannot be obtained directly from the camera
input, and rather it must be estimated through another method, or measured using a different
kind of sensor, such as a laser beam [KMM+96] or an acoustic sensor [LBS18].
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Proposition 2.7. Let s = [s1 . . . sk]
T be a vector of k visual features. The interaction matrix

L associated to the vector s is obtained by stacking the matrices Li corresponding to each
individual feature:

L =

L1
...
Lk

 ∈ Rk×6 (2.32)

For instance, the interaction matrix associated to N points is formed by concatenating the
matrices (2.31) for each point. In order to control the six degrees of freedom of the camera,
we require at least three 3D points, that is k ≥ 6. However it is known that, when using
only three image points, there are regions of the parameter space where the rank of matrix L
drops. Furthermore, there exist in general four distinct camera poses from which the image
of the three points is the same; in other words, there are four different solutions for the pose
localisation problem (see Section 2.5). Therefore, at least four points are almost always used
in practice.

The image coordinates of points are by no means the only features that can be considered
for IBVS. In his PhD thesis [Cha90], F. Chaumette derives the interaction model for many
different geometric primitives: line segments, circles, spheres, cylinders..., and his approach
can be extended for any object whose projection f(x,y) is parametrized by a set of image
coordinates (x,y). These features can be combined arbitrarily by concatenating the interaction
matrices as in (2.32). For instance, straight lines in space and their 2D counterparts can be
described by six-dimensional vectors of Plücker coordinates. We will go back extensively to
the Plücker representation of lines in Chapter 4, where we will study the singularities of L in
the observation of lines.

Another type of visual feature of interest for IBVS are image moments [Cha04], which are
widely used in image processing and pattern recognition. For an object which projects on the
image over a region Ω, the moment mij , of order (i+ j), is defined as

mij =

∫ ∫
Ω
xiyj dx dy. (2.33)

Image moments are useful as they provide a generic representation of any object that can be
segmented in an image, and can be used to derive intuitive geometric information about the
observed body, such as the centroid (the geometric centre), or its first and second moments
of area, from which the orientation of the object principal axes is obtained. The use of
image moments for visual servoing applications is of increasing interest because the feature
extraction step, that is, the computation of the moments from the raw pixel information
of the camera, is efficient and robust, and not very sensitive to possible distortions of the
image (e.g. when the object partially leaves the field of view, or when there are changes in
the lighting of the environment). Using visual features based on moments has demonstrated
a good performance in domains such as aerial [BMHC06, BMG+09, OC11] or underwater
robotics [KPD13, ZZGA21].
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2.4 Defining the velocity input

We assume that the camera can be controlled by specifying an input spatial velocity defined
by a twist vc in the reference frame of the camera. For simplicity, the desired feature values
s⋆ are assumed fixed. Then, the error evolves with the visual features as ė = ṡ = Lτc. If we
wished to approximate an exponential decoupled decrease of the error vector (ė = −λe), then
we could specify a camera velocity

vc = −λL+ (s− s⋆) (2.34)

resulting in the error evolving like

e = −λLL+ (s− s⋆) (2.35)

where the control matrix L+ is a generalized inverse of the interaction matrix L, such as the
Moore-Penrose pseudoinverse.

Definition 2.8. Let A ∈ Cm×n be a rectangular matrix with complex entries. The Moore-
Penrose pseudoinverse of A is always defined, and is another matrix A+ satisfying the
following four criteria, where (·)⋆ is the complex conjugate of a matrix

1) AA+A = A, 2) A+AA+ = A+,
3) (AA+)⋆ = AA+, 4) (A+A)⋆ = A+A.

(2.36)

If A has real entries and its columns are linearly independent (rank(A) = n), the Moore-
Penrose pseudoinverse is equal to

A+ =
(
AT A

)
AT (2.37)

Using the pseudoinverse as the control matrix satisfies that the product LL+ ⪰ 0 always,
so that the error never increases. However, in general the matrix L = L(s,Z) depends not only
on the features s, but also on some 3D parameters of the object, such as the depth distribution
Z = [Z1 . . . ZN ]T of the 3D points, that are not readily available from the camera image.
Therefore we cannot use L directly for the computation of L+, and the control law used in
practice is

vc = −λ L̂+ (s− s⋆) (2.38)

where L̂ is an approximation of the interaction matrix, and L̂+ the corresponding pseudoin-
verse.

Some strategies commonly used to compute the control matrix are [CH06, ECR92]:

1. Estimating the current interaction matrix at each iteration of the control law: L̂+ =
L+(s, Ẑ); in this case we rely on additional sensor information, or otherwise on an
algorithmic or heuristic approximation Ẑ of the depth distribution Z.

2. Evaluating the interaction matrix at the final desired configuration L̂+ = L|+s⋆ ; this choice
is a sufficiently good approximation in a vicinity of the target s⋆, with the additional
advantage that the control matrix need not be recomputed at each timestep.

3. Using a weighted average of the last two, such as L̂+ = 1
2(L

+ + L+|s⋆) which is a choice
that shows good stability and convergence properties in practice [Mal04].
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2.5 Relation to pose estimation

A problem dual to vision-based control, with many applications in augmented reality and
robotics [MUS15], is the so-called 3D localisation problem, also known as pose (or
viewpoint) determination. It consists of computing the parameters that represent the
position and the orientation of a camera, relative to a particular world or object frame, from
the correspondences between a set of 3D features and their 2D projections on the camera
image.

When the image measurements used are n image points matched with their 3D counterparts,
the problem is known as the Perspective-From-n-Points (PnP) problem, and is a classical
problem in computer vision [HCLL89]. There are analytical solutions for the cases n =
3 [RBPD81] (for P3P there are in general up to four distinct solutions) and n = 4 [HCLL89].
For n ≥ 6 non-degenerate points, the solution is always unique, but the system is overdetermined
and is typically solved using a least-squares approach. Efficient algorithms for solving the PnP
problem for an arbitrary number of points have existed for a long time [L+91, DD95, KLS14]. By
analogy with PnP, when the features used are straight lines, matched with their 2D projections,
we refer to the Perspective-From-n-Lines (PnL) problem [DRLR89, XZCK16, WXC20].
Other kind of simple geometric primitives have also been considered in the past [MC02], such
as cylindrical objects, conics, contours...

The general approach to solving the localisation problem consists of minimizing the
reprojection error

p̂ = argmin
p

n∑
i=1

(m−Π(Θ(p))) (2.39)

where p is the vector of parameters representing the pose of the observer, m is the vector
of image measurements, and Θ is the set of parameters representing the 3D features in the
camera frame, which are projected onto the image plane through the projective mapping Π.

The pose estimation algorithms can be classified in direct or iterative methods. Direct
methods, such as [L+91, LXX12] for the PnP problem, or [ZXLK12, XZCK16] for PnL,
usually rely on a linearization of the polynomial equations involved to solve the optimization
problem (2.39). Iterative approaches, such as the classical Newton descent or Levenberg-
Marquadt, try to recursively improve the estimation of the pose parameters p, and are
typically faster and more accurate than direct ones, but they rely on a sufficiently good initial
estimation of the camera pose to converge. They involve the Jacobian matrix ∂m

∂p of the image
measurements with respect to the pose parameters, sometimes denoted image Jacobian. If
the pose p is an element of SE(3), the group of rigid-body transformations, and the differential
of p is expressed in its tangent space se(3), then the image Jacobian is equivalent to the
well-known interaction matrix from IBVS [MC02].

An iterative method worth mentioning here isVirtual Visual Servoing (VVS), developed
in [MC02] for applications in augmented reality, where visual servoing is used to control the
motion of a virtual camera such that the final image matches the image measurements of the
real camera. The formulation of VVS is equivalent to that of vision-based control: the error
function to minimize is

e(p̂) = (s(p̂)− s⋆) (2.40)
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where, in this case, s⋆ is the vector of image measurements, which is assumed fixed, and
ŝ = s(p̂) are the virtual visual features, which depend on the current estimation p̂ of the
camera pose. The advantage of VVS over other pose determination algorithms is that it can
be adapted to integrate any kind of image feature, or combinations of them, for which the
interaction model (2.23) can be computed. However, VVS typically requires that the initial
guess p̂0 is not too far away from the true pose, and is susceptible to the same issues as
classical IBVS, namely, the appearance of singularities of the interaction matrix, and the
existence of multiple local minima.

In particular, it is known that the singularities of the interaction matrix may lead to losses
in the accuracy, not only for Virtual Visual Servoing, but for general pose computation methods,
even for direct algorithms that do not explicitly involve the Jacobian matrix ∂m

∂p [PENB+21,
GFNBSED22]. However, most of the existent literature is concerned with computing the
solutions of the 3D localisation, and improving the numerical accuracy and efficiency of the
algorithms, while the study of the failure cases, such as the singularities, or the existence of
multiple solutions, has received little attention [MR93]. The issues concerning the performances
of pose computation algorithms and vision-based control, and the previous research that has
been done to study them, are treated in the next section.

2.6 Issues in Visual Servoing

The performance of Image-Based Visual Servo control is hindered by two main classes
of problems:

1. The singularities of the interaction model of the 2D features, which lead to issues
in controllability and stability of IBVS [HHC96], and affect the accuracy of 3D
pose localisation algorithms [PENB+21].

2. The existence of local minima of the closed-loop system [PENB+21], as a conse-
quence of which the global asymptotic convergence of IBVS towards the desired
configuration is not guaranteed [CH06].

2.6.1 Singularities of the interaction matrix

In order to perform a visual servo task with n degrees of freedom, at least k ≥ n independent
visual features need to be considered, to construct an interaction matrix L ∈ Rk×n with
rank(L) = n. However, it is possible that, for specific configurations between the camera and
the observed object, the interaction matrix becomes locally rank-deficient. In this case, the
robot gains an uncontrollable degree of freedom and may become instantaneously unstable.
Specifically, when rank(L) < n, then ker(L) has dimension at least one; and there exists a
non-null velocity twist σ ∈ se(3) in this nullspace for which the value of the image parameters
does not change

σ ∈ ker(L) ⇔ ṡ = L σ = 0. (2.41)
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As a consequence, the velocity control input (2.38) can become infinitely high in magnitude,
leading to a loss in controllability. Furthermore, singularities of the interaction matrix are also
singularities in the kinematic maps involved in the pose determination algorithms from 3D-2D
correspondences, and can also lead to losses in the accuracy and stability of these methods. In
particular, it is known that, at a singularity, the number of solutions (the number of different
camera poses associated to the current image) of the 3D pose localisation problem may change,
as shown for P3P in [Rie14] and [ZH06].

A common strategy to avoid the appearance of singularities is to use a larger number
of image features than the degrees of freedom of the task k > n; then, the system becomes
overconstrained, and it is less likely that the interaction matrix suffers a loss of rank. However,
as additional features are considered, another issue occurs: the appearance of local minima;
that is, configurations where the camera has converged to a non-zero error; this is explored
in the following section. Furthermore, even introducing redundancies, singularities cannot
be ruled out without a rigorous mathematical analysis. It is thus crucial, for evaluating the
performances of IBVS controllers and pose computation algorithms, to identify the singularity
conditions and how to avoid them.

The study of the singularities of IBVS has been hindered by the complexity of the
algebraic systems that determine when the interaction matrix becomes rank-deficient. These
are polynomial equations in many variables and of very high degrees, that arise from the
determinant of L, if it is square, or of its maximal submatrices, if k > n. Even with the
increasing capacity of processors and with state-of-the-art software for polynomial system
solving, computing the solutions of these systems and providing a geometrical interpretation
is both a computational and theoretical challenge.

A classical result [Tho66] is the determination of the singularity conditions of the Perspective-
From-3-Points (P3P) problem; that is, the singularities in the interaction model related to
three image points. In this case, the interaction matrix becomes rank-deficient if the three
3D points are aligned, or if the camera centre lies in the cylinder that contains the three
points and is perpendicular to the plane that they define (see Fig. 2.7). This result has been
revisited several times using different approaches [MR93, Pap95, FTC11], and most recently
in [BCM16] by using a concept labeled the hidden robot.

The hidden robot was introduced in [BM13], originally as a tool to evaluate the singularities
of a class of vision-based controllers used to improve the accuracy of parallel robots, by observing
the configurations of the robot legs, and later was generalized to the study of the singularities
of larger classes of controllers, including IBVS, where it was used in [PENB+21] and [BMC16]
to compute for the first time the singularities in the P4P (Perspective-From-4-Points) and
P3L (Perspective-From-3-Lines) problems. The approach consists of constructing a virtual
parallel mechanism whose links join the camera centre to each of the 3D features, and apply
the same geometric constraints on the position of the camera.

The hidden robot is thus a visual representation of the geometric mapping between
the observation space and the Cartesian space (see Fig. 2.8), and shares the same geometric
and kinematic properties as the pose localisation problem [BM13], i.e.

1. The solutions of the Forward Geometric Model (FGM) of the hidden robot are also
solutions of the 3D localisation problem of the perspective camera.
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Figure 2.7: A singularity of the P3P problem occurs if the camera centre C lies on the cylinder
that contains the three points and is perpendicular to their plane.

2. The singularities of the inverse kinematic Jacobian matrix of the hidden robot (also
called Type II or parallel singularities) are the same as the singularities of the interaction
matrix.

As a result, the singularity conditions of the interaction matrix can be studied from the
singularities of the inverse kinematic Jacobian Jinv of the virtual robot.

It is well-known in Robotics that the rows of the inverse Jacobian of a parallel robot
represent the system of wrenches applied by each of the kinematic chains on the robot’s
platform and constraining its motion [Mer05]. In screw theory, a wrench is a six-dimensional
vector used to represent a torque and a force through a point applied to a body. At a
singularity of the inverse Jacobian, the robot gains an uncontrollable motion; that is, it is not
fully constrained by the system of wrenches acting on it. As a consequence, the singularities
are the configurations for which the system of wrenches defined by the rows of the inverse
Jacobian become degenerate. Therefore, the system of wrenches that acts on the platform of
the hidden robot constitutes a basis for the row vectors of the interaction matrix, in the sense
that their conditions of degeneracy are equivalent. The degeneracy of a system of wrenches is
a familiar topic in Robotics and Mechanical Engineering, and there exist a variety of tools
to compute them and give a geometric characterization, such as Grassmann geometry or the
Grassmann-Cayley Algebra (GCA), which provide a coordinate-free system used to describe
the incidence of certain geometric elements.

For the P3P problem, the authors of [BCM16] propose a hidden robot with a 3-UPS
architecture (Fig. 2.8); that is, a three-legged parallel robot where each kinematic chain is
formed by a universal (U) joint, followed by a prismatic (P), and a spherical (S) joint. The
three legs are attached by the U-joint to the camera centre C, and by the S-joint to each of
the observed 3D points. The underlining of the letter U indicates that the universal joint is
actuated, and the others are passive. To derive this mechanism, they show that the passive
motions allowed by each robotic leg are the same as those allowed by the geometric constraints
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(a) Observation of three points in space. From
each image point mi, the location of the 3D
point Mi is only known up to the line Li.

(b) Hidden robot model: a 3-UPS architecture
with all the active cardan (U) joints attached
to the camera centre C, and the spherical (S)
joints connected to each 3D point.

Figure 2.8: The hidden robot model is a representation of the kinematic mapping involved
in the interaction model related to a set of visual features. The figures are taken from the
analysis of the singularities of P3P in [BCM16].

of each image point on the motion of the camera, and that there exists a global diffeomorphism
between the observation features s and the active joint variables.

By examining the system of wrenches that constrain the platform of the 3-UPS robot, and
using existent results from Grassmann-Cayley Algebra [BHS06, KWCC09], they derive the
well-known singularity conditions of the P3P problem. This result was extended in [PENB+21]
to the general PnP with n > 3. For this case, the interaction matrix (or the corresponding
Jacobian matrix of the hidden robot) is not square, and the conditions of singularity are
determined by a system of equations arising from the vanishing of its maximal minors. The
authors use Gröbner bases computations (see Chapter 3.2) to show that, when using at least
four non-degenerate points, there can only be a finite number of camera configurations that
result in a singularity of the interaction matrix.

The hidden robot approach was also used in [BMC16] to compute the singularity conditions
of the P3L problem. In this case, the singularities occur when the camera centre is contained
in a region defined by the union of two surfaces, described respectively by polynomials of
degree 2 and 3, and which depend on the relative configurations of the 3D lines. We review
this particular result in Section 4.3 of this work.
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Summary

The rank-deficiencies of the interaction matrix L affect both the stability of IBVS and
the accuracy of pose determination algorithms. The singularity conditions are described
by large systems of parametric polynomial equations in many variables, computationally
very expensive to solve.
Recently, a concept labeled the hidden robot [BCM16, BMC16] was used to simplify
the equations in the Perspective-n-Points and the Perspective-n-Lines problems, by
relating the solutions to the singularities in the kinematic mapping of a virtual robot
architecture.

Previous works

� 3 image points: A singularity when the points are aligned or when the camera
lies on a cylinder containing the points [Tho66, MR93].

� n > 3 coplanar points: A singularity when all the points and the camera centre
lie in the same circle [BCM16].

� n > 3 non-coplanar points: A finite number of singular camera
locations [PENB+21].

� 3 image lines : A singularity when the camera is on a cuadric or on a cubic surface
defined by the 3D lines [BMC16].

Open problems

� n > 3 image lines. In Chapter 4 of this thesis we study the cases n = 4 and 5.

� Other 2D features (moments, combinations of different features...). In Appendix A
we analyse the singularities related to combinations of point and line features.

2.6.2 Stability analysis of IBVS

Here we review the current state of the art of the stability properties of IBVS controllers
specifically; in Section 2.7 we will review some methods, based on Lyapunov’s theory, that can
be used to assess the global stability of dynamic systems in general.

When the camera velocity input is defined proportional to the error vector e = (s−s⋆) ∈ Rk

as vc = −λ L̂+ e, the error will evolve according to the relation

de

dt
= −λLL̂+ e. (2.42)

To evaluate the stability of the system (2.42), let us consider as a candidate Lyapunov function
the half norm of the error vector L = 1

2 (e
Te). Then, differentiating L in time:

L̇ = eT ė = −λ eT LL̂+ e. (2.43)
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The global asymptotic stability of this system around the point e = 0 is guaranteed if the
following condition is ensured everywhere in the parameter space except for e = 0:

LL̂+ ≻ 0. (2.44)

If the number of visual features equals the number of degrees of freedom of the robot
task (k = 6 for a camera free to move and rotate in R3), and if the interaction matrix L

and the control matrix L̂+ are always of full-rank, then the condition (2.44) is ensured if

the approximations used to compute L̂+ are not too coarse. However, in IBVS, a redundant
number of visual features is often used in order to avoid the appearance of singularities of the
matrix L. Then, the condition (2.44) can never be ensured, since LL̂+ ∈ Rk×k is of maximum
rank 6. For this case, configurations such that e ∈ ker(L̂+) correspond to fixed points of the
system: points for which the camera velocity (2.38) is null for a non-zero error. If some of
these configurations are local minima, there exists a region of the parameter space around
each of these where the camera will converge to a stable configuration with a fixed-state error.
Such cases are often observed to occur in practice [CM00, CH06, PENB+21].

Determining a priori whether an IBVS scheme will converge to the desired configuration
or to a local minima is a hard but important problem, particularly because it is possible that
these minima are located quite near each other, and near the global minimum. If this is the
case, it may not be easy to evaluate whether the camera has converged to the correct position,
but we may be in the presence of non-negligible errors. This may be crucial for applications
with high-precision requirements, such as industrial or medical robotics.

The local stability of these controllers around the global minimum has been studied by
linearizing the equations (2.42) in ([CH06], pages 8-9). In a small neighbourhood around the
point e = 0, local asymptotic stability is in general guaranteed if the estimations involved

in L̂+ are sufficiently good. In a few works, the authors have tried precisely to quantify a
margin of how good these estimations should be, but only for some very simple cases, such
as the presence of uncertainties in the camera calibration model [Esp94, DJSW02], or for the
observation of planar objects where the orientation of the plane is estimated [MMR09].

However, the analysis of the global stability of IBVS methods remains largely an open
problem, as does the identification of the local minima of the system. A direct application
of Lyapunov’s theory to compute the regions of convergence would imply evaluating the
eigenvalues of the product LL̂+ ∈ Rk×k throughout the whole parameter space, and is outside
of our computational reach. As for the local minima, they are the solutions of large algebraic
systems of very high degrees and, to our knowledge, no one has ever been successful in
computing them, even for the simplest possible configurations, such as the observation of
image points.

In the second part of this thesis (Chapter 5), we develop a strategy and a set of tools to
answer the latter question, the computation of the points of equilibrium, and present the first
results of their kind: the computation of the local minima of IBVS from the observation of
four image points.
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Summary

IBVS methods are in general locally asymptotically stable in a region around the desired
camera pose s⋆; however due to the existence of other stable equilibria other than the
global minimum, the convergence and the global stability properties are not guaranteed.

State of the art

� Local asymptotic stability guaranteed if the approximations in L̂+ are not too
coarse [CH06].

� Robustness of IBVS with respect to camera calibration errors [Esp94, DJSW02]
or to uncertainties in the depth distribution of planar objects [MMR09].

Open problems

� Computing the local minima in the observation of image points (and other features,
i.e. image lines, moments, etc.).

� Estimating the size of the region of attraction around the global minimum s⋆.

2.7 Lyapunov Stability

In this section we introduce some basic notions from Lyapunov’s stability theory, a widely
used tool to assess the stability of non-linear dynamical systems [KB60, Sas13]. With its
origins in Aleksandr Lyapunov’s second method (or direct method) for stability analysis [Lya92],
Lyapunov’s stability theory encompasses an array of theorems, and variants that generalize
the theory to larger classes of dynamical systems [Bla99]. We summarily present here the
concepts that we make use of in this thesis, and refer to [Sas13, SL+91] for a more complete
introduction to the non-linear stability of dynamical systems.

Consider a time-invariant dynamical system (i.e. one whose governing equations do not
explicitly depend on time) with state variables x ∈ X ⊆ Rn, described by a general differential
equation of the form

ẋ(t) = f(x(t)), x0 = x(t0) (2.45)

where t ≥ 0 represents time. A point x⋆ in Rn is an equilibrium point of the system (2.45)
if f(x⋆) = 0.

Definition 2.9. Suppose that the system (2.45) has an equilibrium point at x⋆, i.e. f(x⋆) = 0.
We say that the point x⋆ is

� Locally stable if, for every ϵ > 0, there exists δ > 0 such that, if ||x0||< δ, then
||x(t)||< ϵ for all t > t0. In other words, if trajectories starting close to the equilibrium
point remain close to it.

� Locally asymptotically stable if it is stable and, futhermore, it is attractive, i.e.
limt→∞ x(t) = x⋆.
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� Globally asymptotically stable, if any trajectory starting anywhere in X converges to
x⋆, i.e. limt→∞ x(t) = x⋆ for all x0 ∈ X .

Definition 2.10. If the equilibrium point x⋆ is locally asymptotically stable in a subdomain
S ⊂ X containing x⋆, then S is said to be a region of attraction (RoA) of the system
around x⋆.

The second method of stability of Lyapunov allows evaluating the stability of an equilibrium
point without the necessity to integrate the differential equation (2.45) along the trajectories
of the system. It relies on the construction of a so-called Lyapunov function, satisfying
certain conditions.

Theorem 2.8. (Lyapunov’s Stability Theorem) Let S ⊂ X be a bounded domain containing
x⋆. If there exists a continuous differentiable function V : S 7→ R that is positive-definite on
this domain i.e. V (x) > 0 for x ∈ S, except for V (x⋆) = 0, and such that

V̇ (x) =
dV (x)

dt
≤ 0 for all x ∈ S and V̇ (x⋆) = 0, (2.46)

then the equilibrium x⋆ is locally stable, and we say that V (x) is a Lyapunov function of
the system. Further, if V̇ (x) < 0 for all S\{x⋆}, then x⋆ is asymptotically stable in the
region S.

Theorem (2.8) is equally valid if the equilibrium point x⋆ is a local minimum of the
function V (x) but V (x⋆) = Vmin > 0, since one can always define another Lyapunov function
V2(x) = V (x) − Vmin. In can also be extended to include global stability if (2.46) holds
for the whole domain X and if we require that the Lyapunov function V (x) is radially
unbounded, that is V (x)→∞ when ||x||→ ∞.

A stronger version of Lyapunov’s stability theorem is Lasalle’s invariance princi-
ple [LL61], that allows making a statement about asymptotic stability while relaxing the
requirement of positive definiteness on −V̇ (x), and is also applicable to dynamical systems
that do not admit a Lyapunov function, for instance, systems that lack a point of equilibrium
but have stable orbits. In particular, Lasalle’s principle uses the definition of a positively
invariant set.

Definition 2.11. A positively invariant set of the system (2.45) is a bounded domain
S ⊂ X such that, if x0 ∈ S, then x(t) ∈ S for all time t ≥ t0.

A dynamical system may have a positively invariant set even if it does not have any
stable equilibrium points. On the other hand, a positively invariant set may contain multiple
equilibrium points.

Theorem 2.9. (Lasalle’s Invariance Principle Theorem) Let S ⊂ X be a bounded
domain and let V : S 7→ R be a continuously differentiable positive-definite function on S
satisfying

V̇ (x) =
dV (x)

dt
≤ 0 for all x ∈ S. (2.47)
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We define the points of S where V̇ (x) vanishes as

M = S ∩ {x : V̇ (x) = 0} (2.48)

Then, all trajectories x(t) starting in S converge to the largest positively invariant set in
M.

Corollary 2.9.1. If S contains an equilibrium point x⋆, and ifM contains only x⋆, then the
equilibrium point is asymptotically stable in S.

Corollary (2.9.1) allows establishing the asymptotic stability of a point of equilibrium in a
domain S even if the derivative (2.47) is only negative semi-definite. Another useful corollary
is the following.

Corollary 2.9.2. Let V (x) be a Lyapunov function for the system around x⋆. The sub-level
sets of V (x)

Vc = {x ∈ X : V (x) ≤ c} (2.49)

for some c > 0, are positively invariant sets of the system.

Lyapunov’s stability theory can be applied to the analysis of the global stability behaviour
of IBVS methods, in particular with the aim of determining, or otherwise estimating, the
region of attraction around the global minimum.

Let us express the time-derivative of the Lyapunov function as V̇ (x) = ∇xV · f(x). Then,
Theorem (2.9) implies that, if a trajectory x(t) converges to a point, it must converge to a
critical point of V (x), satisfying ∇xV = 0. Therefore, if given a Lyapunov function V (x) for a
region S ⊆ X , and if x⋆ is the only point of equilibrium inside S for which V̇ (x⋆) = 0, then S
is a region of attraction around x⋆.

For the case of IBVS, we propose to use the potential-like function equal to the norm of the
error vector V (s) = 1

2(s− s⋆)T (s− s⋆) as a candidate Lyapunov function. If we can compute
all the critical points scrit of V (s), and determine a region S in the parameter space such that
s⋆ is the only critical point in S, then convergence towards s⋆ is guaranteed from any initial
point inside S.

Corollary (2.9.2) can be useful for obtaining an estimate of such a region S by comparing
the value of the potential V (s) at the different critical points scrit and studying the sub-level
sets of the function V (s). For instance, if we can determine a value c such that there are no
critical points with V (scrit) ≤ c other than s⋆ (for which we have V (s⋆) = 0), then the level
set (2.49) is a region of attraction around the global minimum s⋆. In this thesis, we addressed
the problem of the computation of the critical points of IBVS when using N point features
(see Section 5).
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Chapter 3

Some notions from Algebraic Geometry

3.1 Polynomial ideals and algebraic varieties

In this section we introduce the basic mathematical structures that we will use when dealing
with systems of polynomial equations: polynomial ideals and algebraic varieties, and
some fundamental definitions and properties that will be useful to us. Throughout this section
we follow the classical reference by Cox, Little and O’Shea [CLO13]. The proofs for all the
fundamental statements presented below can be found there and we will not repeat them here.

Without going into a lot more detail, we define

� A field is a set on which the addition (+) and multiplication (×) operations are defined,
and behave just like they do for the fields of real R, complex C or rational Q numbers:
they satisfy commutativity and associativity, the inverse of the addition is defined and,
for non-zero elements, so is the multiplicative inverse. Here we will use K to refer to an
arbitrary field, although in this work we will always work in one of R, C or Q.

� A ring is a set on which multiplication and addition are defined, but where not all
non-zero elements are invertible under multiplication. The set of all polynomials involving
some variables (x1, . . . , xn) and with coefficients in a field K defines the polynomial
ring K[x1, . . . , xn].

� A field K is algebraically closed if every non-constant polynomial in the univariate
polynomial ring K[x] has a root in K. For instance, the field of real numbers R is not
algebraically closed (e.g. f(x) = x2 + 1 ∈ R[x] has no real root), but the field of complex
numbers C is. We say that C is the algebraic closure of R: the smallest algebraically
closed field that contains R.

� A subset I ⊆ K[x1, . . . , xn] is an ideal if it satisfies the following properties

1. 0 ∈ I.

2. If f, g ∈ I, then f + g ∈ I.

3. If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I.

Definition 3.1. Let f1, . . . , fs ∈ K[x] be a set of polynomials in the variables x = (x1, . . . , xn)
with coefficients in K. Then, the ideal defined by f1, . . . , fs is

⟨f1, . . . , fs⟩ =

{
s∑

i=1

hifi | hi ∈ k[x1, . . . , xn]

}
. (3.1)

Definition 3.1 satisfies the properties stated above for an ideal I ⊆ K[x]. Just like vector
subspaces are generated by all the possible linear combinations of a set of vectors with linear
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coefficients, ideals are generated by all the possible algebraic combinations (with polynomial
coefficients) of their polynomial generators. Note that, if a point a ∈ Kn is a solution of
the polynomial system f1(x) = . . . fs(x) = 0, then, for any polynomial g ∈ ⟨f1, . . . , fs⟩, then
g(a) = 0. This observation shows that the ideal ⟨f1, . . . , fs⟩ is an algebraic object to study in
order to get information about the solutions of the system of equations. Note also that the
ideal generated by a constant element is the whole polynomial ring ⟨1⟩ = K[x], since any other
element of K[x] can be expressed as itself times the identity, and that the smallest possible
ideal is ⟨0⟩, which contains only the zero element. Let us summarize some of the operations
that are defined on the sets of ideals.

Proposition 3.1. Let I, J be two ideals in R = K[x]. The following operations are defined
and produce another ideal in R:

� Sum I + J = {f + g | f ∈ I, g ∈ J}.

� Product of ideals I × J = {fg | f ∈ I, g ∈ J}.

� Intersection I ∩ J .

Definition 3.2. An ideal I ⊂ K[x] is said to be radical if, for a polynomial f ∈ K[x], and
for any m ∈ Z+ a positive integer,

fm ∈ I implies f ∈ I. (3.2)

Definition 3.3. The radical of an ideal I, denoted
√
I, is the set

√
I = {f | fk ∈ I for some k ∈ Z+} (3.3)

Note that I ⊆
√
I and that

√
I is a radical ideal by definition 3.2.

Example 3.1. The ideal I = ⟨x2, y2⟩ ∈ R[x] is not radical, because x, y /∈ I, but x, y ∈
√
I.

Definition 3.4. Some other common definitions about ideals with particular properties are

� An ideal is I ⊆ R is said to be proper if I ̸= R.

� A proper ideal I ⊂ R is maximal if there is no other ideal J ⊂ R such that I ⊊ J ⊊ R.

� I ⊂ R is a prime ideal if fg ∈ I implies that either f ∈ I or g ∈ I.

In the case of univariate polynomials, every ideal I ∈ K[x] is always generated by a
single polynomial I = ⟨f⟩. Given any other basis f1, . . . , fs of I, the polynomial f can be
computed as the greatest common denominator of the generators f = gcd(f1, . . . , fs). In
the multivariate polynomial ring K[x1, . . . , xn], ideals in general are not defined by a single
polynomial, but they are always generated by a finite polynomial basis.

Theorem 3.2. (Hilbert’s Basis Theorem) Every ideal I in K[x1, . . . , xn] is finitely
generated, that is, there exist a finite set of polynomials f1, . . . , fs such that I = ⟨f1, . . . , fs⟩.
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Ideals can have many different bases: different families of polynomials that generate the
same ideal. In Section 3.2 we review a particular kind of basis for an ideal with useful
computational properties: Gröbner bases.

Having defined the basic algebraic structure arising from systems of polynomial equations,
let us move onto the description of the geometric sets defined by the solutions of such a system.

Definition 3.5. Let f1, . . . , fs in K[x1, . . . , xn] be a set of polynomials, and let F be an algebraic
closure of the field K. The algebraic variety defined by f1, . . . , fs is the set of points of Fn,
where all the polynomials fi vanish:

V(f1, . . . , fs) := {(a1, . . . , an) ∈ Fn | fi(a1, . . . , an) = 0, i = 1, . . . , s}. (3.4)

The variety V(f1, . . . , fs) is nothing but the set of solutions in Fn of the system of equations

f1(x1, . . . , xn) = 0

...

fs(x1, . . . , xn) = 0.

(3.5)

Just as we can take algebraic combinations of the polynomials (3.5) to find a different family
of equations with the same solution set, any other basis that generates the same ideal produces
the same variety.

Lemma 3.3. The variety V(f1, . . . , fs) depends only on the ideal I = ⟨f1, . . . , fs⟩, and not on
any particular basis of polynomials. The set V(I) = V(f1, . . . , fs) is the variety defined by the
ideal I.

Example 3.2. The variety defined by I = ⟨xz, yz⟩ is the union of the z-axis with the
plane defined by z = 0: V(I) = {z = 0, x = y = 0}. Another basis for the same ideal is
I = ⟨(x− y)z, (x+ y)z⟩, which generates the same variety.

A variety V(f1, . . . , fs) ⊆ Fn can be the empty set ∅, if the polynomials f1, . . . , fs in K[x]
do not have any common roots in F. If the field K is algebraically closed (i.e. K = F), then
there is a powerful result about the ideal generated by f1, . . . , fs.

Theorem 3.4. (The Weak Nullstellensatz) Let K be an algebraically closed field, and
I ∈ K[x] be a polynomial ideal. Then

V(I) = ∅ ⇔ I = K[x]. (3.6)

Given a system of polynomial equations f1 = · · · = fs = 0, one can verify if the solution
set is empty over the complex numbers C, by checking whether if 1 ∈ ⟨f1, . . . , fs⟩, in which
case ⟨f1, . . . , fs⟩ = C[x]. This is only true because C is algebraically closed; that is, every
non-constant univariate polynomial f ∈ C[x] has a root in C. For example, the polynomial
x2 + 1 has no roots over the real numbers R, so VR(x

2 + 1) = ∅, but it does over C, where
VC(x

2 + 1) = {±
√
−1}.
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Lemma 3.5. The transformation V : K[x] 7→ Fn that maps a polynomial ideal I to the
algebraic variety V(I) is inclusion-reversing, that is I ⊂ J implies V(J) ⊆ V(J), but it is
not one-to-one: Different ideals can generate the same variety.

Example 3.3. Consider ⟨x, y⟩ ⊂ ⟨x, y, z⟩ ⊆ K[x, y, z]. The corresponding varieties are
V(x, y, z) = (0, 0, 0) ⊂ V(x, y) = {x = y = 0}.

Example 3.4. The two ideals ⟨x2, y2⟩ ⊊ ⟨x, y⟩ ⊂ K[x, y] define the same algebraic variety,
namely the origin: V(x, y) = V(x2, y2) = {(0, 0)}.

We have established that a polynomial ideal I defines an algebraic variety V = V(I), which
is the set of common roots of all the polynomials in I. We will now see that a variety V also
defines itself a polynomial ideal: the set of all polynomials that vanish on V .

Definition 3.6. Let V = V(f1, . . . , fn) ∈ Kn be an algebraic variety defined by polynomials
fi ∈ K[x]. The ideal defined by the variety V is

I(V ) = {f ∈ K[x] | f(a) = 0, ∀a ∈ V } (3.7)

The mapping I : Kn 7→ K[x] is also inclusion-reversing: V ⊂W implies I(V) ⊂ I(W ),
and it is injective (one-to-one): different algebraic varieties define different ideals. Hilbert’s
Strong Nullstellensatz tells us exactly what is the ideal defined by an algebraic variety.

Theorem 3.6. (The Strong Nullstellensatz). Let K be an algebraically closed field and
I ⊆ K[x] a polynomial ideal. Then

I(V(I)) =
√
I. (3.8)

Therefore, for K algebraically closed, if the ideal I is radical (I =
√
I), it equals the ideal

generated by its variety: I = I(V(I)). There is a one-to-one correspondence between algebraic
varieties and radical ideals.

Example 3.5. Consider again the ideal I = ⟨x2, y2⟩ ⊂ K[x, y]. The variety defined by I
is the origin: V(x2, y2) = {(0, 0)}, and the corresponding ideal is I(V(I)) = ⟨x, y⟩. From
Definition (3.1), it is clear that this is equal to the radical ideal

√
I.

In the following box we summarize the fundamental relations between algebraic varieties
and the defining polynomial ideals.

45



Theorem 3.7. (The Ideal-Variety correspondence) Let K be any field. Then

� The maps

algebraic varieties
I−→ polynomial ideals

polynomial ideals
V−→ algebraic varieties

(3.9)

are inclusion reversing, i.e.

I1 ⊆ I2 ⇒ V(I1) ⊇ V(I2) and V1 ⊆ V2 ⇒ I(V1) ⊇ I(V2)

� The map I is always injective, so for every variety V :

V(I(V )) = V. (3.10)

For every ideal I the map V satisfies

V(
√
I) = V(I). (3.11)

� If K is algebraically closed, and we restrict to radical ideals, the maps (3.9)
have a one-to-one correspondence and are inverses of each other.

radical ideals
V−→
←−
I

algebraic varieties (3.12)

Next we sum up some of the operations defined on algebraic varieties and some useful
definitions.

Lemma 3.8. (Sums and Intersections of Varieties). Let I, J be two ideals in R = K[x],
and let V = V(I), W = V(J) be the varieties they define. The union and intersection of V
and W are also algebraic varieties and are defined as:

V ∩W = V(I + J),

V ∪W = V(I × J).
(3.13)

Example 3.6. Let I = ⟨x2+y2−z⟩, and J = ⟨z−4⟩. The variety V(I) defines the cylindrical
paraboloid with axis along the z coordinate axis, and V(J) is the plane z = 4. The intersection
of the two is the circle of radius 2 at plane z = 4: V(I + J) = V(x2 + y2 − 4, z − 4), while
their union is V(I × J) = V((x2 + y2 − z)(z − 4)).

The set difference V \W of two varieties V and W is in general not an algebraic variety;
that is, it cannot be described as the roots of a system of polynomials. The smallest affine
variety that contains it is the Zariski closure of V \W , which amounts to “patching up the
holes” left by removing the points of W from V , and is computed from the saturation of the
ideals defining V and W .
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Definition 3.7. The Zariski closure of a subset S ⊆ Kn, denoted S, is the smallest algebraic
variety containing the set: S ⊆ S. If V is a variety and S ⊆ V is a subset, then S is said to
be Zariski dense in V if V = S.

Definition 3.8. (Ideal Saturation) If I and J are ideals in K[x], the saturation of I over
J is defined as

I : J∞ = {f ∈ K[x] | for all g ∈ J, there is k ∈ Z+ such that fgk ∈ I} (3.14)

Lemma 3.9. (Set difference) Let K be algebraically closed and let I, J ∈ K[x] be ideals.
Then

V(I)\V(J) = V(I : J∞) (3.15)

Geometrically, taking the saturation of a I over J amounts to removing the roots of the
polynomials in J from the variety V(I). Taking the Zariski closure guarantees that the set
V(I)\V(J) is an algebraic variety. Expression (3.15) implies that, if any component of V(J)
is contained in V(I : J∞), then it is a set of strictly smaller dimension than V(I).

Example 3.7. Consider the variety V = V((x2 + y2 − z)(z − 4)) from Example 3.6. This set
is formed by the union of a cylindrical paraboloid and the plane z = 4. Removing the points
of W = V(z − 4) from V would yield the paraboloid minus the curve of intersection of the
two sets: V \W = {z = x2 + y2}\{x2 + y2 = 4, z = 4}. This is not an algebraic variety, since
there are no polynomials that vanish everywhere on this surface but not on the curve. The
corresponding ideal saturation:

⟨(x2 + y2 − z)(z − 4)⟩ : ⟨(z − 4)⟩∞ = ⟨x2 + y2 − z⟩

gives the polynomial defining the hyperboloid. Therefore V(x2 + y2 − z) = V \W .

By Lemma 3.8, the union of two algebraic varieties is another variety. This opens up the
path for expressing algebraic varieties as the union of more fundamental sets.

Definition 3.9. A variety V is said to be irreducible if, whenever it is written as the union
of two subsets V = V1 ∪ V2, it means that either V = V1 or V = V2.

Lemma 3.10. Every algebraic variety V can be decomposed as the union of its irreducible
components

V = V1 ∪ . . . ∪ Vr (3.16)

Lemma 3.11. When K is an algebraically closed field, there is a correspondence between
irreducible varieties and prime ideals

V ⊆ Kn is an irreducible variety ⇐⇒ I(V ) ⊆ K[x] is a prime ideal. (3.17)

Recall from Definition 3.4 that a prime ideal is any ideal I such that if a product of two
polynomials fg ∈ I, then either f ∈ I or g ∈ I.

A fundamental concept in the study of algebraic varieties is that of dimension. For our
purposes we will use the following definition, although there exist multiple others (see Chapter
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9 of [CLO13], and Chapters 8 and 13 of [Eis13]), some of which relate the geometric concept
to algebraic properties of the corresponding ideals.

Let V ⊆ Fn be an affine variety in the space of variables (x1, . . . , xn), with F being an
algebraically closed field, and let Hr ⊆ Fn be the coordinate subspace of dimension n − r
obtained by setting the r first variables x1, . . . , xr to zero. We define the projection map
onto the space Hr

πr : Fn 7→ Fr (3.18)

as the map that sends a point (a1, . . . an) ∈ Fn to (ar+1, . . . , an) ∈ Hr. The projection of V
onto Hr is denoted πr(V ).

Definition 3.10. (Dimension) Let V ⊆ Fn be an algebraic variety. The dimension dim(V )
of V is the largest dimension d = n − r of a coordinate subspace Hr ⊆ Fn for which the
projection of V onto Hr is Zariski dense.

The notion of dimension of an algebraic variety is analogous to the dimension of a vector
space, although more subtle. Typically it coincides with the intuition of dimension as the
minimal number of parameters needed to describe the points of a region of the set, although
this is not always the case.

The linear space Kn is obviously of dimension n. If K is algebraically closed, adding one
polynomial constraint will in general decrease the dimension by 1 (e.g. in R3 a surface defined
by one polynomial should be two-dimensional, a curve defined two polynomials should be of
dimension one...). However, more complex cases can occur. For instance, a variety may be the
union of components of different dimension.

Example 3.8. The variety V(x2 + y2 − z) defines a 2D surface in R3. When intersected with
the plane z = 4, it defines a one dimensional curve V(x2 + y2 − 4, z − 4). However the variety
V((x2 + y2 − z)y, (x2 + y2 − z)z), although defined by two equations, is the union of the 2D
surface with a one-dimensional component, the axis y = z = 0.

Lemma 3.12. Let V = V1 ∪ . . . ∪ Vr be an algebraic variety. The dimension of V is the
largest of the dimensions of its irreducible components: dimV = supi dim (Vi).

The dimension can also be understood as a local property. For almost every point p of a
variety V (except for the points contained in a strictly smaller subvariety, if any), the local
dimension of V at p, denoted dimp(V ), is equal to the dimension of the tangent space of
V at p. Without going into further detail, we will simply mention that the points where this
is not true are by definition the singular points of V .

Another useful definition is that of the degree of an algebraic variety.

Definition 3.11. (Degree of an algebraic variety) Let V ⊆ Fn be a variety of dimension
d in a space of dimension n. The degree of V is the number of points of its intersection
with d generic linear varieties (generic hyperplanes) of dimension n− 1.

For a variety V = V(f) generated by a single, square-free polynomial f ∈ K[x], the degree
of the variety is simply the degree of f . For a zero-dimensional variety, the degree is the total
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number of points of the variety. For more complex cases, the degree can be computed applying
Definition 3.11.

The intrinsically geometrical definition of the degree of a variety can be translated into the
algebraic setting to define the degree of a polynomial ideal. However the degree of an ideal is
a more subtle notion: it is defined in terms of the degree of the homogenization of the ideal,
and relies on the definition of the Krull dimension and the Hilbert Series, which we will not
delve into. We refer to [Laz21] for more information, and will limit ourselves to defining the
degree of an ideal of dimension zero in relation with the degree of its algebraic variety.

Definition 3.12. Let K be an algebraically closed field, and let I = ⟨f1, . . . , fs⟩ ⊂ K[x] be
a zero-dimensional polynomial ideal. The degree of I is the total number of solutions
of f1 = · · · = fs = 0 counted with multiplicity. If I is a radical ideal, then all the
solutions have multiplicity 1, and the degree of the ideal equals the number of common roots,
i.e. deg(I) = deg(V(I)).

Next we present the basic notions of what occurs when we eliminate a subset of all the
variables from a given set of polynomial equations.

Definition 3.13. (Elimination Ideal) Let I = ⟨f1, . . . , fs⟩ ⊆ R be an ideal in R =
K[x1, . . . , xn]. The ℓ− th elimination ideal Iℓ is the ideal of K[xℓ+1, . . . , xn] defined by

Iℓ = I ∩K[xℓ+1, . . . , xn]. (3.19)

The ideal Iℓ consists of all the algebraic combinations of the polynomial equations f1 =
· · · = fs = 0 that only involve the variables xℓ+1 to xn. Thus, computing the ℓ− th elimination
ideal for a system of polynomials amounts to eliminating the first ℓ variables from the equations.
Note that different orderings of the variables lead to different elimination ideals. The zero-th
elimination ideal is defined as I0 = I, and every other elimination ideal forms a descending
chain:

I ⊇ I1 ⊇ . . . ⊇ In−1 ⊇ In = ⟨0⟩

Elimination ideals are related to the projections of algebraic varieties on coordinate subspaces
of lower dimension.

Theorem 3.13. Let πℓ : Cn 7→ Cn−ℓ be the projection map (3.18) onto the last n−ℓ coordinates.
For an ideal I ⊆ C[x], the elimination ideal Iℓ is related to the projection πℓ(V ) of the variety
V = V(I) as follows

πℓ(V ) = V(Iℓ). (3.20)

In other words, V(Iℓ) is the Zariski closure of πℓ(V ).

In the next section, we will see that we can compute elimination ideals, and therefore
the projections of algebraic varieties, from the Gröbner basis, when using the lexicographical
monomial ordering.

To conclude, we summarize here some typical problems one faces when working with
polynomial ideals, in order of increasing difficulty. Let I = ⟨f1, . . . , fs⟩ ⊆ K[x] be an ideal.
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1. (Emptiness of the solution set) Determine if 1 ∈ I. This is equivalent to saying
that I = K, or to saying that the system f1 = · · · = fs = 0 does not have a solution over
an algebraic closure of K.

2. (Ideal membership) Given a polynomial f ∈ K[x], determine if f ∈ I.

3. (Dimension of the solution set) Compute the dimension of the solution set V(I).

4. (Compute the solutions) If dim(V(I)) = 0, count the number of points of V(I) and
isolate them (over the real or complex numbers).

3.2 Gröbner Bases

In this section we present the fundamental definitions and properties of Gröbner bases, an
essential tool in computer algebra for solving problems with polynomial ideals. Gröbner bases
can be used, for instance, to determine whether a polynomial is contained in a given ideal, to
eliminate a subset of variables from a system of equations, to compute the projection of an
algebraic set, or to obtain a rational parametrization of the solutions. We refer to the classical
reference [CLO13] for an introduction to Gröbner bases and for the proofs of the theorems
stated below.

We start by reviewing some preliminary definitions necessary to introduce the theory of
Gröbner bases in Section 3.2.1; then in Section 3.2.2 we give the definition of Gröbner bases
and some of their uses and applications. Finally in Section 3.2.3 we give an overview of the
current state-of-the-art algorithms for working with polynomial systems of equations based on
Gröbner bases.

3.2.1 Preliminaries on Gröbner bases

In the ring of univariate polynomials, the classical Euclidean algorithm solves the ideal
membership problem straight away. Any ideal I ⊆ K[x] is generated by a single polynomial
I = ⟨g⟩: the greatest-common-denominator of any set producing I. Any other polynomial
f ∈ K[x] is in the ideal if and only if it is divisible by g, which is verified if the remainder of
the Euclidean division of f by g is the zero polynomial.

The division algorithm is not directly extensible to the case of multivariate systems of
polynomials. One first issue is that the division algorithm in one variable relies on dividing
the monomials of the dividend polynomial, by the polynomial divisor, in order of descending
degree: the degree imposes an ordering on the terms of f . For monomials containing more
than one variable, the degree alone is not sufficient to define a hierarchy over the terms of K[x],
and one needs to precise some kind of ordering of the terms to perform division by multivariate
polynomials. A first ingredient to define Gröbner bases is to define a monomial ordering.

Consider the ring K[x] of polynomials in n variables x = (x1, . . . , xn). Any monomial in
the ring can be expressed as

xα1
1 · . . . · x

αn
n = xα (3.21)

where α = (α1, . . . , αn) ∈ Zn
≥0 is a vector of exponents, and the degree of the monomial is

|α|=
∑n

i=1 αi. We can define a ordering of the monomials xα in terms of an ordering of the
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elements of Zn
≥0, such that, for α,β ∈ Zn

≥0, α ≻ β implies xα ≻ xβ and viceversa. However,
not any such hierarchy is valid in order to define a multivariate division algorithm; a valid
monomial ordering is one that satisfies the following properties.

Definition 3.14. A monomial ordering on K[x1, . . . , xn], denoted “≻”, is a relation the
elements of Zn

≥0, or, equivalently, a relation on the set of monomials xα, where α ∈ Zn
≥0, that

satisfies:

� “≻” is a total and transitive ordering on Zn
≥0, i.e. for every α and β, only one of the

following is true
α ≻ β, α = β or α ≺ β, (3.22)

and for λ ∈ Zn
≥0, α ≻ β, β ≻ λ implies α ≻ λ.

� For λ ∈ Zn
≥0, if α ≻ β then α+ λ ≻ β + λ.

� Every non-empty subset of monomials in K[x] has a smallest element. The smallest
element of the ordering is always 1, corresponding to the vector α = 0.

Definition 3.15. The following are commonly used monomial orderings in K[x]. Let x =
(x1, . . . , xn) be the list of variables and α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn

≥0 be vectors of
exponents.

� Lexicographic ordering lex(x1 ≻ . . . ≻ xn): We say that α ≻lex β if the leftmost
non-zero entry of (α−β) ∈ Zn

≥0 is positive. In the lex ordering, any monomial containing
xi is always larger than any monomial in the variables x′ = (xi+1, . . . , xn).
Examples: Consider α,β ∈ Z3

≥0 and the lex(x ≻ y ≻ z) ordering,

(i) (1, 0, 0) ≻lex (0, 1, 0) ≻lex (0, 0, 1) i.e. x ≻lex y ≻lex z.

(ii) α = (1, 1, 0) ≻lex β = (0, 3, 1) i.e. xα = xy ≻lex xβ = y3z,

because (α− β) = (1,−2,−1).

(iii) α = (2, 3, 4) ≻lex β = (2, 3, 2) i.e. x2y3z4 ≻lex x2y3z2,

because (α− β) = (0, 0, 2).

� Graded reverse lexicographic ordering grevlex(x1 ≻ . . . ≻ xn): We say α ≻grevlex

β if |α|> |β|, or if |α|= |β| and the rightmost, non-zero entry of (α − β) ∈ Zn
≥0 is

negative. Monomials in the grevlex ordering are ordered by total degree. For monomials
with equal total degree, grevlex prioritizes lowest degree in the last variable(s).
Examples: Consider K[x, y, z] and α,β ∈ Z3

≥0,

(i) α = (2, 1, 1) ≻grevlex β = (3, 0, 0) i.e. x2yz ≻grevlex x3,

because |α|= 4 > |β|= 3.

(ii) α = (1, 4, 1) ≻grevlex β = (2, 1, 3) i.e. xy4z ≻grevlex x2yz3,

because (α− β) = (−1, 3,−2).
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� Elimination order: A monomial order is said to eliminate a subset of the variables
x′ ⊆ x if any monomial in the variables x\x′ is larger than any monomial containing
any variables in x′.

Different choices of monomial orderings have different consequences on the Gröbner bases
computations and on the properties of the final basis. For instance, the lexicographical ordering,
which is a particular instance of an elimination order, can be used to compute the elimination
ideal with respect to subset of the variables. We will discuss this in Section 3.2.3.

Let f =
∑

aix
αi ∈ K[x] be a polynomial in variables x = (x1, . . . , xn), with its terms

ordered following an ordering “≻”. The following are useful definitions.

Definition 3.16. Let axα be the largest term of f with a non-zero coefficient a with respect
to the monomial ordering “≻”.

� The vector exponent α is called the multidegree of f . The total degree of f is deg(f) =
|α|.

� The coefficient a is the leading coefficient of f , denoted LC(f).

� The leading monomial LM(f) of f is xα.

� The leading term LT (f) of f is axα: LT (f) = LC(f)LM(f).

Having specified an ordering “≻” for the terms in K[x], division of multivariate polynomials
can be performed just like in the classical way. However, this is not enough to solve the
ideal membership problem. Let f ∈ K[x] be a polynomial and I ⊆ K[x] an ideal generated by
polynomials (q1, . . . , qr). One could divide f by each of the qi one by one; if the remainder is
the zero polynomial, then it is clear that f ∈ I. However, in general the result of this algorithm
is not unique: it depends on the order on which the division is performed by each of the qi.

Example 3.9. Let f = x4y + x3y − x2y + 3 y − 3 ∈ R[x, y] and I = ⟨q1, q2⟩ ⊆ R[x, y], with
q1 = x3 + 3 and q2 = x2y − y + x, and consider the lex(x ≻ y) ordering. Dividing f by (q1, q2)
in that order, we obtain

f = (xy + y) · q1 − q2 − 3xy − y + x− 3

where the remainder is non-zero. However, dividing f by (q2, q1), we get

f = x2 · q2 + (y − 1) · q1

thus showing that f ∈ ⟨q1, q2⟩.

The example shows that a multipolynomial division algorithm alone is not enough to solve
the ideal membership problem. We will see in the next section that if the polynomial basis
G = (g1, . . . , gs) for the ideal I is a Gröbner basis, then the remainder of the polynomial
division of any polynomial f by G is unique, and does not depend on the order of the divisors.

Definition 3.17. A monomial ideal I ⊆ K[x] is an ideal generated by a set of monomials
of K[x]. By Dickson’s Lemma, I is generated by a finite monomial basis of K[x].
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Let I = ⟨F ⟩ ⊆ K[x] be the ideal generated by a set of polynomials F = (f1, . . . , fs).
Given a monomial ordering “≻”, we define LM(F ) = (LM(f1), . . . , LM(fs)) as the set of
leading monomials of the polynomials fi, and ⟨LM(F )⟩, the monomial ideal defined by LM(F ).
Similarly, we define LM(I) as the set of leading monomials of all the polynomials in I, and
⟨LM(I)⟩ the corresponding ideal. In general we have ⟨LM(I)⟩ ≠ ⟨LM(F )⟩, namely because
there may be polynomials, which are consequences of f1, . . . , fs, whose leading monomials
cannot be generated from the leading monomials of F . Gröbner bases are defined using this
condition.

Example 3.10. Let F = (f1, f2) be two polynomials in two variables f1 = x3 + x+ 3y and
f2 = x2y − y and let I = ⟨F ⟩ be the ideal they define, and consider the lex(x ≻ y) ordering.
The ideal defined by the leading monomials of F is ⟨LM(F )⟩ = ⟨x3, x2y⟩. Now consider

yf1 − xf2 = 2xy + 3y2.

This polynomial is in I, so LM(yf1 − xf2) = xy ∈ ⟨LM(I)⟩ by definition. However xy /∈
⟨x3, x2y⟩, so ⟨LM(I)⟩ ≠ ⟨LM(F )⟩.

3.2.2 Properties of Gröbner bases

A Gröbner basis is a particular set of generators for an ideal, which depends on a monomial
ordering that must be specified a priori, and for which the division of any polynomial by the
elements of the basis yields a unique remainder, regardless of the order of the divisors. The
formal definition of Gröbner bases is as follows.

Definition 3.18. (Gröbner basis) Given an ideal I ⊆ K[x] and a monomial ordering “≻”,
a set G≻ = (g1, . . . , gs) of polynomial generators of I (i.e. I = ⟨G≻⟩) is a Gröbner basis
(GB) for I if ⟨LM(G≻)⟩ = ⟨LM(I)⟩.

In other words, a set of polynomials generating I is a Gröbner basis if and only if the
leading term of any polynomial in I is divisible by the leading term of one of the polynomials
in the basis. In Section 3.2.3 we will present some of the algorithms used to compute a Gröbner
basis from a given set of polynomials describing I.

Lemma 3.14. Every ideal I ⊆ K[x] has a Gröbner basis. Furthermore, any Gröbner basis for
an ideal I is a set of generators of I.

In general, for a given ideal and a monomial ordering, there can be many sets of generators
that constitute a Gröbner basis. However, these are all equivalent up to certain algorithmic
reductions.

Proposition 3.15. A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G
such that LC(gi) = 1 for all g ∈ G, and for all g ∈ G, no monomial of g lies in ⟨LT (G\{g})⟩.
Given an ideal I and a monomial ordering, the reduced Gröbner basis of I is unique.
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Proposition 3.16. (Normal Form) Let I ⊆ K[x] be an ideal, and let G≻ = (g1, . . . , gs) be
a Gröbner basis for I for some monomial ordering “≻”. Then, for any f ∈ K[x], there exist a

unique polynomial f
G≻ ∈ K[x], such that f can be written

f = q1 · g1 + · · ·+ qs · gs + f
G≻

. (3.23)

for some q1, . . . , qs ∈ K[x]. The polynomial remainder f
G≻

is called the normal form of f
with respect to G≻, and is also denoted by NF (f,G,≻).

The normal form NF (f,G,≻) is nothing but the remainder of the multivariate polynomial
division of f by g1, . . . , gs. We say that reducing any polynomial f by G≻ means computing
NF (f,G,≻). When G≻ = (g1, . . . , gs) is a Gröbner basis for the ordering “≻”, Proposition 3.16
states that this remainder is unique, and does not depend on the order in which the division by
each of the polynomials gi is performed. Sometimes, Proposition 3.16 is used as the definition
of Gröbner bases, i.e. a basis G of I is a GB if and only if the remainder of the division of any
polynomial f ∈ K[x] by G is unique.

Note: The normal form will in general depend on the chosen monomial order, like
the basis G≻ does. However, if the polynomial f belongs in ⟨G≻⟩, then the normal form is

also zero for any other monomial order. To show this, consider f
G≻ ̸= 0; then, since the

division algorithm has terminated, LM(f
G≻

) /∈ ⟨LM(G≻)⟩ = ⟨I⟩, therefore f
G≻

/∈ I. This
fundamental property of Gröbner bases allows us to solve the Ideal Membership Problem.

Corollary 3.16.1. (Ideal Membership Problem) Fix a monomial ordering on K[x]. Let
G = (g1, . . . , gs) be a Gröbner basis for an ideal I ⊆ K[x]. Then, for any polynomial
f ∈ K[x], we have that f ∈ I if and only if NF (f,G) = 0.

Therefore, given an ideal I = ⟨f1, . . . , ft⟩ and another polynomial f ∈ K[x], if we compute
a Gröbner basis G for I, we can determine univocally if f = 0 is a consequence of f1 = · · · =
ft = 0, by dividing f by the elements of G.

We mentioned before that Gröbner bases with respect to some monomial orders can be
used to eliminate a subset of the variables from a system of polynomials. In particular we
have the following theorem.

Theorem 3.17. (Elimination theorem) Let I ⊆ K[x] be an ideal and let G be a Gröbner
basis for I with respect to lex(x1 ≻ . . . ≻ xn) ordering. Then, for every 1 ≤ ℓ ≤ n, the set

Gℓ = G ∩K[xℓ+1, . . . , xn] (3.24)

is a Gröbner basis for the ℓ− th elimination ideal Iℓ = I ∩K[xℓ+1, . . . , xn].

Hence, the elements of the basis G that do not involve the first ℓ variables describe the
elimination ideal in variables (xℓ+1, . . . , xn). Further, they form a Gröbner basis for this ideal.
We saw that the ℓ− th elimination ideal of I is related to the projection πℓ(V ) of its algebraic
variety V = V(I) on the coordinate subspace of its last n− ℓ coordinates, by V(Iℓ) = πℓ(V );
that is, the variety of the ideal Iℓ is the Zariski closure of the projection of V .
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In the lex(x1 ≻ . . . ≻ xn) order, every monomial containing a variable xi is larger than any
other monomial containing only variables (xi+1, . . . , xn). As a consequence the Gröbner basis
computed with this order describes not only the first elimination ideal I1 (all the polynomials
in I not involving x1), but also all the successive elimination ideals I2, I3 . . . , if they are not
empty. In an analogous way to how Gaussian elimination provides a triangularization of linear
systems of equations, Gröbner bases with respect to the lexicographical ordering provide a
triangular description of a polynomial system. If one wished instead to only eliminate a
subset x′ ⊆ x of the variables, then there are other, more efficient, elimination orderings than
the lexicographical one, as defined in Definition 3.15.

An approach to solving systems of polynomial equations consists of eliminating some of
the variables, computing the solutions of the corresponding elimination ideal Iℓ, and then
extending these solutions to solutions of the full ideal I. However, we said that the variety
of the ℓ− th elimination ideal V(Iℓ) is the Zariski closure of the projection πℓ(V(I)). This
means that πℓ(V(I)) ⊆ V(Iℓ), but that V(Iℓ) may contain points that are not in πℓ(V(I)).
A solution (al+1, . . . , an) ∈ V(Iℓ) is called a partial solution; the Extension Theorem tells
us under what conditions this solution is the projection of a point (a1, . . . , an) ∈ V(I) or,
equivalently, when this partial solution can be extended to a solution of the full ideal I.

Theorem 3.18. (The Extension Theorem) Let K be an algebraically closed field and let
I = ⟨f1, . . . , fs⟩ ⊂ K[x1, . . . , xn] be an ideal, and I1 be the first elimination ideal. Let us write
the polynomials fi, 1 ≤ i ≤ s as follows:

fi = ci(x2, . . . , xn) · xNi
1 + terms with degree < Ni in x1 (3.25)

where Ni ≥ 0 and ci ∈ K[x2, . . . , xn] is a non-zero polynomial that does not involve x1. Suppose
that a partial solution is given by (a2, . . . , an) ∈ V(I1). Then, if (a2, . . . , an) /∈ V(c1, . . . , cs),
there exists an a1 ∈ K such that (a1, . . . , an) ∈ V(I).

That is, we express each fi as a polynomial in its first variable alone, with coefficients that
are polynomials in (x2, . . . , xn). When using an elimination order that eliminates x1, the term
ci(x2, . . . , xn) · xNi

1 is the leading term of f . The points in V(I1) that are outside π1(V(I))
are precisely the points for which all the coefficients ci vanish.

Theorem 3.18 precises in which cases a partial solution from the first elimination elimination
ideal I1 extends to a full solution of I = I0. However, note that the ℓ− th elimination ideal
Iℓ for I is the first elimination ideal for the ideal Iℓ−1. Therefore the Extension Theorem
imposes a condition for extending a partial solution (aℓ+1, . . . , an) ∈ V(Iℓ) to a solution
(aℓ, . . . , an) ∈ V(Iℓ−1) in one higher dimension, and eventually to a full solution in V(I) by
going one variable at a time.

We will now highlight the particular cases of zero-dimensional ideals and their solutions.
For K an algebraically closed field, we say that I ⊆ K[x1, . . . , xn] is of dimension zero if its
variety V(I) ⊆ Kn is finite and non-empty. Such an ideal has the following property.

Lemma 3.19. Let K be an algebraically closed field and I ⊆ K[x1, . . . , xn] an ideal of
dimension zero. Then, for every xi, there exists a univariate polynomial pi ∈ K[xi] such
that pi ∈ I.
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Definition 3.19. (Shape position) Let the field K be algebraically closed. A radical, zero-
dimensional ideal I ⊆ K[x1, . . . , xn] is said to be in shape position if its reduced Gröbner
basis G = (g1, . . . , gs) with respect to lex(x1 ≻ . . . ≻ xn) has the following form:

g1 = x1 + u1(xn)

g2 = x2 + u2(xn)

...

gn−1 = xn−1 + un−1(xn)

gn = w(xn)

(3.26)

A useful proposition, known as the Shape lemma, claims that any radical, zero-dimensional
ideal can be brought into shape position by a generic linear change of variables [BMMT94].

For a system with a structure like (3.26), one can recover all the solutions by evaluating
the roots of a univariate polynomial w(xn) = 0, and then substituting the solution back in all
the other polynomials gi.

The Shape lemma, and the structure of the lex basis in Definition 3.19, presume that
the input ideal is radical. For non-radical ideals, i.e. when some solutions appear with a
multiplicity larger than 1, we can always represent a finite algebraic set using a so-called
zero-dimensional rational parametrization [BES21, Kro82].

Definition 3.20. (Zero-dimensional rational parametrization) Let f1, . . . , fs ∈ K[x1, . . . , xn]
be a system of polynomials defining an ideal I of dimension zero. A rational parametrization
of the roots of the system is a couple (P, ℓ), where ℓ is a linear form ℓ = λ1x1, . . . , λnxn, with
λi ∈ K, and P = (w,w′, v1, . . . , vn) ∈ K[t] is a set of univariate polynomials in a new variable
t, that satisfy

� The polynomial w is square-free, and w′ = dw
dt .

� deg(vi) < deg(w) for all 1 ≤ i ≤ n.

� λ1v1 + · · ·+ λnvn = tw′ mod w.

� The solution set of f1 = · · · = fs = 0 is the same as the set{(
− v1(θ)

w′(θ)
, . . . ,−vn(θ)

w′(θ)

)
| w(θ) = 0

}
(3.27)

Each solution (a1, . . . , an) of the system of polynomials f1 = · · · = fs = 0 is obtained from
the evaluation of the vector of rational functions

(
− v1

w′ , . . . ,−vn
w′

)
at each of the roots of a

univariate polynomial w(t), which is called the elimination polynomial. The roots of w(t) = 0
can be computed with arbitrary precision using root isolation algorithms [RZ04, Tsi16].

So far we have described some of the uses and properties of Gröbner bases, but not a
method to compute them. In the next section we present the original algorithm by Buchberger,
and briefly review the state-of-the-art methods and software for solving systems of polynomial
equations using GBs.
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3.2.3 Algorithms and state-of-the-art

The first algorithm to compute a Gröbner basis from a set of generators of an ideal is due
to Bruno Buchberger [Buc65, Buc70], who gave a description of such a basis and study the
fundamental results of Gröbner bases theory.

Given a basis F = (f1, . . . , fs) for an ideal I ⊆ K[x], Buchberger’s algorithm proceeds
iteratively by constructing new polynomials whose leading terms are not generated by the
leading terms of F . These new terms are called the S-polynomials and are defined as follows.
Define a monomial ordering “≻”, and let lcm(f, g) denote the least-common-multiple of
two polynomials f, g with respect to “≻”. The leading monomial LM(·) and leading term
LT (·) of a polynomial are defined as in Definition 3.16. Then, the S-polynomial of a pair
f, g ∈ K[x] is:

S(f, g) = lcm(LM(f), LM(g))

(
f

LT (f)
− g

LT (g)

)
(3.28)

The S-polynomials are specifically constructed to eliminate the leading terms of the generating
pair f and g.

Theorem 3.20. (Buchberger’s Criterion) Let I ⊆ K[x] be an ideal and fix a monomial
ordering “≻”. A basis G = (g1, . . . , gs) of I is a Gröbner basis if and only if, for every pair gi,
gj, i ̸= j, the remainder of the division of S(gi, gj) by G is zero.

Unlike Definition 3.18, Buchberger’s Criterion provides a constructive definition of a
Gröbner basis. Given a set of generators G = (g1, . . . , gs) for an ideal I and a monomial
ordering, one can compute all the S-polynomials S(gi, gj) for every pair of polynomials in G
using (3.28). Trivially, the polynomials S(gi, gj) lie in ⟨g1, . . . , gs⟩. If, for some pair gi, gj , the
reduction of S(gi, gj) on division by G is not zero, it is then added to the basis; otherwise it
is discarded. If any polynomials are added to the basis, then they need to be considered in
the construction of new S-polynomials, until Buchberger’s Criterion is met. The algorithm is
guaranteed to always finish and to produce a Gröbner basis for the ideal I.

The cost of computing a Gröbner basis can be quite high, and increases rapidly with the
number of variables and equations and with the degrees of the input polynomials; namely
because the size of the coefficients in the intermediate polynomial computations can grow
enormously, even for outputs of moderate size. In particular, Buchberger’s algorithm presents
two main drawbacks that limit its performance:

1. Many of the S-polynomials reduce to zero, providing no new information about the final
basis. These trivial reductions can amount to most of the computing time.

2. The pairs used to construct the S-polynomials are chosen freely from the elements of the
basis.

More recent results have allowed to improve on these two aspects. Several criteria [Buc79,
KB78] have been proposed to discard a priori some of the useless polynomial pairs that lead
to trivial computations. In 1999, Faugère introduced the F4 algorithm [Fau99], a variant of
Buchberger’s that reduces the Gröbner basis computations to a linear algebra problem. Instead
of selecting a polynomial pair at each step, the algorithm can carry out multiple S-polynomial
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reductions at a time by performing Gaussian elimination on a matrix, called a multiplication
matrix, constructed from the coefficients of the basis elements by indexing the columns by
the monomials of the system. Nevertheless, in practice, for large systems, F4 still produces
many zero reductions. The F4 algorithm is implemented in polynomial solving libraries such
as FGb [Fau10], msolve [BES21] or computer algebra systems like Maple and Magma.

In another algorithm from 2002, called F5 [Fau02], also by Faugère, the goal is to remove
beforehand the critical pairs that lead to zero reductions, and this is done by introducing
signatures, an element which keeps track of all the previous computations that reduce to
zero at a small computational overhead. In particular, for generic systems, no zero reductions
are performed. Many signature-based variants of the F5 algorithm have been proposed since,
a comprehensive review of which can be found in [EF17].

We mentioned before that different choices of monomial orderings affect the computation
of the Gröbner basis, as well as the final output. In particular, the grevlex ordering generally
yields bases of smallest total degree and coefficient sizes, and for most systems, it is typically
the easiest to compute. On the other hand, the lexicographical ordering provides an explicit
triangular description of the polynomial ideal, which conveys more geometrical information
about the solutions. A logical strategy to solve a polynomial system is to first compute
a grevlex basis, and then use a change of ordering algorithm, to convert that basis to
the lexicographical ordering. The FGLM algorithm [FGLM93], named after Faugère, Gianni,
Lazard and Mora, does this for zero-dimensional ideals.

Throughout this thesis, we rely particularly on implementations of the F4 algorithm, in the
Maple computer algebra system, and in the FGb [Fau10] library, when dealing with polynomial
systems of positive dimension. For systems with finitely many solutions, we use the msolve

library [BES21], which is based on an efficient F4 implementation relying on fast linear algebra
methods, on the FGLM algorithm for changing the monomial ordering, and on a dedicated
univariate real root isolation algorithm. The msolve library is currently the state-of-the-art
for the computation of the real solutions of multivariate polynomial systems.
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Summary

Given an ideal I ⊆ K[x], a Gröbner basis G = (g1, . . . , gs) is a set of generators of I
such that every polynomial f ∈ K[x] can be written as

f = h1 · g1 + . . . hs · gs + NF (f,G)

with a unique remainder NF (f,G), i.e. the Normal Form of f w.r.t. G.

Given a Gröbner basis G for an ideal I, we have f ∈ ⟨I⟩ ⇔ NF (f,G) = 0.

A Gröbner basis depends only on any set of generators of I and a monomial ordering.

Monomial orderings

� Lexicographical (lex): Provides a triangular description of the polynomial
system.

� Degree reverse lexicographical (grevlex): (Generally) yields lowest total
degree and smallest coefficient sizes.

� Elimination orderings: Used to eliminate a subset of the variables.

State of the art

� Gröbner bases computations:

– Buchberger’s algorithm [Buc65, Buc70]: Involves the computation of S-
polynomials from pairs of generators, and the reduction of the S-polynomials
by the elements of the basis.

– F4 [Fau99] Reduces the Gröbner basis computation to Gaussian elimination
on a multiplication matrix.

– F5 [Fau02, EF17]: Introduces signatures to track previous computations
and remove pairs that lead to trivial reductions.

� Change of ordering:

– FGLM [FGLM93]: Produces a Gröbner basis with lexicographic ordering
from an input grevlex basis.

� Software:

– Maple, FGb [Fau10]: Gröbner bases computations for general systems.

– msolve [BES21]: Real root computation of zero-dimensional systems.
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Contributions
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Chapter 4

Singularity analysis in the observation of
lines

Abstract. This chapter deals with Image-Based Visual Servoing and pose estimation from
the observation of four and five lines in space. Our main interest is to determine the relative
configurations of the camera and the observed lines that lead to issues in the stability of the
control scheme and losses in the accuracy of the pose computation due to singularities of the
Jacobian matrix that governs the kinematics of the problem. These conditions can be obtained
as the real solutions of a system of polynomials arising from the maximal minors of this matrix;
therefore we use tools from computational algebraic geometry, in particular Gröbner bases, to
compute the configurations that make all of its minors vanish simultaneously. By choosing a
suitable basis for the matrix, we revisit previous results for the problem in the case of three
lines to show that one of the known singularity conditions corresponds to when the camera
centre is on the surface of the hyperboloid of one sheet uniquely defined by the lines. This
result is then further exploited to prove that, for n ≥ 3 lines, a singularity will occur if there
exist one or more lines which are transversal to all of the observed lines and when the camera
lies on one such line. Therefore, this type of line singularity can be avoided if one can choose
a configuration such that no real lines intersect all the observed lines. However, in the case of
n = 4, it is shown that there can always be up to ten inevitable camera locations for which
the interaction matrix is singular. For n = 5 lines, we find that there are no singularities in
the generic case, although they may appear for specific configurations, e.g. when there is a
line transversal to all five lines. The singularities are also characterized for four and five lines
bound by orthogonality and parallelism constraints. Furthermore, a visual servoing library
is used to conduct some simulated experiments to substantiate the theoretical results. As
expected, we observe problems in control in the vicinity of a singularity as well as increased
errors in pose estimation.

The work presented in this chapter was done in collaboration with Abhilash Nayak, and
was published in the International Journal of Computer Vision [GFNBSED22].

Keywords Pose estimation · Visual servoing · Singularity · PnL

4.1 Introduction

4.1.1 Motivation and problem statement

A standard problem in computer vision, which has many applications in augmented re-
ality [MUS15] and robotics (especially in visual servoing [HHC96]) is the estimation of
the pose of a camera based on the features projected in the camera image. When the
2D image is a set of n points that are projections of their 3D counterparts on the image
plane, the problem is known as PnP (Perspective-n-Point) and has been dealt with exten-
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sively in the literature [GHTC03, HCLL89, KSS11, WH06]. Similarly, when the features
observed by the camera are n straight lines, the problem is referred to as PnL (Perspective-n-
Line) [DRLR89, XZCK16, WXC20].

In particular, the PnP and PnL problems involve computing the parameters that define
the pose of a camera (the six degrees of freedom that determine its position and orientation),
which is an element of SE(3), the Special Euclidean group, from the 3D-2D correspondences
of the n observed points or lines. By taking the time derivatives of the parameters involved in
PnP or PnL, we obtain the so-called motion-field equations [LHP80] that are crucial to visual
servoing in robotics. They involve the mapping between the time derivative of the camera pose
parameters belonging to se(3), being the Lie algebra of SE(3) (3D vector space of translational
and orientational velocities of the camera) and the relative velocities of the projected features
on the image plane, through the image Jacobian or interaction matrix [CH06, CH07, CH08].

The problem of determining the singularities of the interaction matrix is crucial, especially
for the following reasons:

� In visual servoing tasks, we face potential accuracy and controllability issues of the robot
when the camera is in the vicinity of a singularity [HHC96].

� The singularities are known to considerably worsen the pose reconstruction accu-
racy [PENB+21]. Moreover, they are are known to influence the number of solutions of
the pose localisation problem as shown by [Rie14] and [ZH06] in the case of P3P.

Determining those singularities is nevertheless a computationally (and analytically) hard
problem since it requires solving the complex algebraic systems arising due to the loss of rank
of the interaction matrix. As a result, the singularity analysis in the past has been limited
to simple image features, such as the observation of three points in space (P3P). For this
problem, a well-known result is that a singularity occurs if the three points are aligned or
if the camera lies on the cylinder that contains the three points and is perpendicular to the
plane they define [MR93]. This result and tools from algebraic geometry were recently used
by [PENB+21] to show that, in P4P, there are always two to six camera configurations where
the corresponding interaction matrix becomes rank-deficient.

In the case of PnL, most of the research has been focused on finding solutions to
P3L [DRLR89, XZCK16, WXC20] without looking at the singularity problem, to the best of
our knowledge. However, recently, the singularities in P3L were determined using a tool called
the hidden robot which was introduced in [BM13]. It proved to be efficient in determining
the singularities of vision-based controllers applied to parallel robots and broader classes of
visual servo controllers [BMR15, RBM13, BM13, BCM16, BMC16]. With this method, it is
possible to compute a change of basis for the rows of the interaction matrix, leading to a
simplified system of equations. For the problem of visual servoing using three image lines,
the hidden robot concept was used in [BMC16] to show that the singularities appear when the
camera lies on a quadric or a cubic surface.

4.1.2 Main results

In the present chapter we first provide a geometrical insight on the results in [BMC16] for
the singularities of the P3L problem. The authors show that the singularity condition can
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be expressed as the vanishing of a determinant that factors as the product of a quadratic
and a cubic polynomial. Using line geometry, we demonstrate that the surface described by
the quadratic polynomial is the hyperboloid of one sheet that is uniquely described by the
three observed lines. This hyperboloid is also the ruled surface described by the set of all lines
which are transversal to the three spatial lines. We exploit this result to obtain the following
proposition which applies to the general PnL problem for the observation of n ≥ 3 lines:

Proposition 4.1. Consider the interaction model related to the observation of n lines in space.
If there exist one or more straight lines that intersect the n feature lines, then the interaction
matrix is singular when the camera focal point lies on any such line. These lines are described
by the roots of a single polynomial (for n = 3) or a system of polynomials (for n > 3) of degree
two, each of which describes the surface of a hyperboloid of one-sheet.

We then present a complete analysis of the singularities in P4L and P5L, for which we
make use of the techniques presented in [BMC16] to obtain a new basis for the rows of the
interaction matrix that lead to a simplified system of equations. The P4L and P5L problems
are similar to the simpler P3L, but they present a significant increase in analytical and
computational complexity. While the singularities for P3L are described by the roots of a
single polynomial, for n > 3 it is a system of polynomials - the maximal minors of the matrix
that describes the new basis. We use tools from algebraic geometry and computer algebra,
namely decomposition and saturation of ideals, Gröbner bases and elimination theory (refer to
Chapter 3), to characterize the solutions of these systems. We show that, in the case of P4L,
two types of singularities can occur:

1. When the camera centre lies on a line which is transversal to the four observed lines, a
condition which stems from Proposition 4.1. In the case of four lines, the transversal
lines are described by the intersection of the four one-sheeted hyperboloids generated
by each triplet of lines. In general there can be either 0, 1, or 2 such lines in the real
space, depending on the sign of a discriminant, and the four lines are thus said to be in
an elliptic, parabolic, or hyperbolic congruence respectively. We make use of Gröbner
bases to derive a condition, as an inequality in terms of the parameters, such that these
lines are purely complex, and such that the one-dimensional singularities of the system
can be avoided.

2. In general there can also be up to 10 isolated singularity point locations for the camera,
the solutions of a zero-dimensional system of polynomials of higher degree, which can be
easily computed using Gröbner bases.

In the case of n = 5 image lines, there exist no singularities in general, except for specific
configurations, which consist of the zero-set of a system of polynomials in the space of the
parameters. We also make a special focus on the singularities of the P4L and P5L problems
when the lines are bound by orthogonality and parallelism constraints; these are configurations
which often appear in practical applications in structured environments, e.g. edge tracking,
navigation in urban areas, in corridors or any buildings, and are as a consequence commonly
used as visual features for robot control tasks.
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To support our results, we present a number of numerical simulations of robot control and
pose estimation using VISP [MSC05], a C++ library dedicated to visual-servoing applications.
The experiments confirm the singularity conditions we have described, and illustrate the
undesirable impacts these singularities have on the controllability and stability of IBVS and
on the accuracy of pose determination methods.

These results lead to a paper published in the International Journal of Computer Vi-
sion [GFNBSED22] (joint work with Abhilash Nayak, Sébastien Briot and Mohab Safey El
Din).

In the Appendix A, we also present an analysis of the singularity conditions of the interaction
matrix when the observation features are minimal combinations of points and straight lines.

Structure of the chapter. In Section 4.2 we first recall the form of the interaction matrix
related to image line features, and describe the computation of a simplified basis for its
rows. Section 4.3 revisits the singularities in the P3L [BMC16] problem and puts forth their
geometric interpretation. Sections 4.4 and 4.5 give a complete analysis of the singularities
in P4L and P5L, respectively, with a focus on the special cases where the observed lines are
bound by orthogonality and parallelism constraints. Section 4.6 presents experimental results
from simulations based on the singularities computed for P4L and P5L. Finally, Section 4.7
draws conclusions.

4.2 Row basis of the interaction matrix

In this section, we review the interaction model related to the observation of n lines in space,
and we describe the derivation of a new basis for the rows of the interaction matrix, that
results in a simplified system of equations describing the singularity conditions. This leads to
a new, geometrical interpretation of the singularity results obtained in [BMC16] for the P3L
problem, and it allows the analysis of the more general PnL problem.

4.2.1 Recalls on the interaction model related to image lines

In what follows, and without loss of generality, we will use the standard pin-hole camera model
with focal length equal to 1, and the z-axis oriented along the optical axis. However, any other
camera model based on projective geometry could be used [MR93].

The set of all possible straight lines in the three dimensional projective space P3 is a
four-dimensional manifold; in other words, a line can be defined using four independent
parameters. There are several possible representations for a line: two points in space, a point
and a direction vector, the angles formed with the reference axes and its distance from the
origin, etc. Here we will use the Plücker representation, which is complete and free of
representation singularities; that is, it maps all the points on the four dimensional manifold.
Further, the Plücker representation will be useful later for computing a new basis of the
interaction matrix.

We start by reviewing the geometric description of lines by Plücker coordinates. A 3D line
Li can be characterized in the camera frame by a six-dimensional Plücker vector [UT

i LT
i ]

T ∈ R6,

64



zc

xc

yc

C
image plane

Li

b

Pi

Ui

Li

Πi

ℓi

b

O

bpi ui

li

Figure 4.1: Perspective projection of a 3D line.

where Ui is the direction of the line, and Li is defined as the cross product Li = Xi×Ui, with
Xi =

#     »

CPi the position vector from the focal point C to any point Pi on the line. The Plücker
coordinates of a line are bound by the constraint

Ui · Li = 0 (4.1)

In some places in the literature, it is required that the vector Ui is normalized, i.e. ||Ui||= 1.
In this work we do not impose this constraint, and instead allow a degree of freedom in the
magnitude of Ui, although this does not affect any of the following results.

The line Li is projected on the image plane of the camera on a 2D line ℓi (see Fig. 4.1)
with Plücker coordinates [ui

T li
T ], where ui is the image line direction, and li = xi × ui for

any point on ℓi with position vector xi. The coordinates of Li and of its projection are related
by the perspective equations [Cha90]:

ui =

uxiuyi
uzi

 =

 Lyi/∆i

−Lxi/∆i

0

 ; li =

lxilyi
lzi

 =

Lxi/∆i

Lyi/∆i

Lzi/∆i

 (4.2)

where Li = [Lxi Lyi Lzi]
T and ∆i =

√
L2
xi + L2

yi is a depth factor. The image line ℓi is fully

determined from the three coordinates lxi, lyi and lzi, so it suffices to use li as the vector of
features for the line in the visual servo scheme.

The interaction model (2.23) for the line Li relates the velocities of the coordinates li
on the image to the spatial velocity of the camera frame. A relative camera-object velocity
is represented by a velocity twist τc, a six-dimensional vector composed of its linear and
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angular velocity components, vc and ωc, expressed in the camera reference frame:

τc =

[
vc

ωc

]
=



vx
vy
vz
ωx

ωy

ωz

 (4.3)

The camera twist is an element of se(3), the Lie algebra of SE(3), the group of rigid-body
transformations. In other words, it is a vector tangent to the manifold describing the pose of
the camera frame (see Chapter 2, Section 2.1.3).

Differentiating the vector li in (4.2) with respect to time we obtain:

dli
dt

=
1

∆3
i

 L2
yi −LxiLyi 0

−LxiLyi L2
xi 0

−LxiLzi −LyiLzi ∆2
i

 L̇i. (4.4)

Meanwhile, the variation of the 3D line coordinates Li is given by L̇i = Ẋi ×Ui +Xi × U̇i.
Using the motion-field equations (2.28) and U̇i = −ωc ×Ui, we get [Cha90, RE87]

L̇i = −vc ×Ui − ωc × Li. (4.5)

Finally, inserting (4.5) in (4.4) we can express the interaction model for the features li as

dli
dt

= Miτc, (4.6)

where Mi is the interaction matrix corresponding to a single image line [Cha90]:

Mi =

 − lxilyiUzi

∆i
− l2yiUzi

∆i

lyi(lxiUxi+lyiUyi)
∆i

−lxilyilzi −l2yilzi lyi
l2xiUzi

∆i

lxilyiUzi

∆i
− lxi(lxiUxi+lyiUyi)

∆i
l2xilzi lxilyilzi −lxi

− (Uyi+lyilziUzi)
∆i

(Uxi+lxilziUzi)
∆i

− lzi(lxiUyi−lyiUxi)
∆i

−lyi(l2zi + 1) lxi(l
2
zi + 1) 0


(4.7)

with Ui = [Uxi Uyi Uzi]
T , and with li, ∆i as defined above.

The matrix Mi has dimension (3× 6), but maximum rank 2, because the first and second
rows are related by lyiMi1 + lxiMi2 = 0. Hence, we can control at maximum two degrees of
freedom of the camera with each image line, and at least three lines are necessary to fully
constrain the system [AEH02].

When n > 1 lines are considered, the interaction matrix M(n), relating a change in the full

vector of features ṡ = [l̇T1 , . . . , l̇
T
n ]

T to the camera velocity, is obtained by stacking the three
rows of Mi corresponding to each line Li:

M(n) = [MT
1 , MT

2 , . . . ,M
T
n ]

T . (4.8)
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4.2.2 Revisiting the interaction matrix as a system of Plücker lines

In [BMC16], Briot, Martinet and Chaumette describe how to compute a new basis for the
space spanned by the rows of the interaction matrix (4.7) by interpreting them as vectors
of Plücker coordinates spanning a system of lines. They rely on a mechanical engineering
approach to construct a hidden robot (see Chapter 2, Section 2.6.1): a virtual parallel robot
architecture that shares the same geometric and kinematic properties as the observation of a
set of spatial lines, i.e.

1. The solutions of the Forward Geometric model of the hidden robot are also solutions of
the 3D localisation problem of the perspective camera.

2. The singularities of the inverse kinematic Jacobian matrix of the hidden robot are the
same as the singularities of the interaction matrix (4.7).

The rows of the inverse kinematic Jacobian of a parallel robot represent the wrenches
(a wrench is a six-dimensional vector or a screw, that represents a force and a torque) that
constrain the robot platform [Mer05]. Further, it is generally accepted that for all parallel
robots, these wrenches can actually be simplified as a system of Plücker lines if the points
at which the forces are expressed are cleverly chosen [Mer05]. At a singularity of the inverse
Jacobian (also called a Type 2 or parallel singularity), the robot gains an uncontrollable motion;
that is, it is not fully constrained by the system of wrenches acting on it. As a consequence, the
singularities are the configurations for which the system of Plücker lines defined by the rows of
the inverse Jacobian become degenerate. The authors then proceed by relying on arguments
and previous results from Grassmann-Cayley algebra to derive the degeneracy conditions for
the system of Plücker lines.

Here we use a purely algebraic argument to illustrate why the rows of the interaction
matrix can be understood as a system of Plücker lines. Let us rewrite equation (4.4) as

dli
dt

=
1

∆3

[
p1 p2 p3

]T
L̇i, (4.9)

with [
p1 p2 p3

]
=

 L2
yi −LxiLyi 0

−LxiLyi L2
xi 0

−LxiLzi −LyiLzi ∆2
i

T

. (4.10)

Let us also express the variation of Li as

L̇i =
[
[Ui]× [Li]×

]
τc, (4.11)

where [Ui]× and [Li]× are the skew-symmetric matrices associated to vectors Ui and Li. Then,
the interaction matrix (4.7) can be written as

Mi =

(p1 ×Ui)
T (p1 × Li)

T

(p2 ×Ui)
T (p2 × Li)

T

(p3 ×Ui)
T (p3 × Li)

T

 . (4.12)
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By analysing the matrix in (4.10), we point out that the first and second rows p1 and p2

are related by Lxip1 + Lyip2 = 0. Note also that pj · Li = 0 for i, j = 1, 2, 3, i.e. that the row
vectors pj , are all orthogonal to Li; and that the vector p3 is linearly independent from p1,
p2 as long as ∆i ̸= 0. Since Li is, by definition, also orthogonal to the vectors Xi and Ui, the
vectors {p1,p2,p3} span the same subspace as {Xi,Ui}, namely, the plane Πi containing the
line and the focal point C, and whose normal has direction Li.

As a consequence, the vectors Ui×pj and Li×pj in (4.12) are always mutually orthogonal
(or zero) for each j (i.e. they satisfy (4.1)) and, therefore, the rows of the interaction matrix
Mi can also be regarded as the coordinates of a system of Plücker lines. Note that the case
where Ui × pj = 0 is not a degenerate case, but instead corresponds to a projective line at
infinity; likewise Li × pj = 0 corresponds to a line passing through the origin.

4.2.3 Change of basis for the rows of the interaction matrix

We have just shown that the vectors {p1,p2,p3} in (4.4) span the same vector subspace as
{Xi,Ui}. In other words, Xi and Ui can be expressed as linear combinations of the vectors
pj . We have

Xi =

3∑
j=1

aj · pj and Ui =

3∑
j=1

bj · pj . (4.13)

for some integers aj and bj , j = 1, 2, 3. Assuming that the factor ∆i in (4.4) is non-zero, the
matrix

Hi =

[
a1 a2 a3
b1 b2 b3,

]
(4.14)

is always of rank 2, such that the product Hi ·Mi is

Hi ·Mi =

[
(Xi ×Ui)

T (Xi × Li)
T

01×3 (Ui × Li)
T

]
. (4.15)

and is also always of rank 2.
The matrix (4.15) is proportional to the basis ξi for the rows of Mi, obtained differently

in [BMC16], and which can be expressed as

ξi =

[
ξi1
ξi2

]
=

[
fTi1 (

#     »

QPi × fi1)
T

01×3 mT
i2

]
, (4.16)

where fi1 and mi2 are any two vectors colinear respectively to Li and Ui × Li:

fi1 ∝ Xi ×Ui = Li, mi2 ∝ Ui × fi1, (4.17)

while Q is any point in space. Note that, by definition, fi1 is any vector normal to the plane
Πi which contains the line and the focal point C, and mi2 is any vector orthogonal to both fi1
and the line direction Ui.

Let us remark that, in (4.16), the Plücker vector ξi1 represents a straight line passing
through the point Pi with direction fi1, while ξi2 is a line at infinity (alias an ideal line) in the
projective space, with direction mi2.
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Some observations arise from the fact that the basis ξi =
[
ξTi1 ξTi2

]T
is spanned by a system

of lines:

� Degeneracy of a system of lines is independent of the choice of point Q (appearing
in (4.16)) at which the lines are expressed [Mer05]. Nevertheless, when computing the
analytical expressions, all lines must be given in reference to the same point. Note
however that the vector fi1 is still directly dependent on the location of C.

� The conditions for degeneracy of any system of lines depend only on the relative
configuration of the lines [BMC16, KWCC09]. Specifically, they are independent of the
frame where the Plücker vectors are expressed, and therefore of the relative orientation
of the object and camera frames.

In particular the second remark will be useful to simplify the computations in the following
sections by assuming a constant zero orientation for the camera.

The new basis ξi is a valid representation so long as the depth factor ∆i =
√

L2
xi + L2

yi

appearing in (4.2) is non-zero. This excludes only 2 camera configurations: 1) when line Li is
fully contained in the plane Z = 0 of the camera frame and 2) when the focal point C lies on
the line Li; in both situations the coordinates Lxi and Lyi vanish. These are degenerate cases
for which the projection mapping in (4.2) is ill-defined, so we will not consider them in the
sections that follow.

Finally, based on the previous results, a basis ξ(n) for the full interaction matrix M(n) is
obtained by stacking the rows of (4.16) for each line i:

ξ(n) = [ξT1 ξT2 . . . ξTn ]
T ∈ R2n×6. (4.18)

For instance, a basis for the interaction matrix M(3) corresponding to P3L is given by

ξ(3) = [ξT11 ξT12 ξT21 ξT22 ξT31 ξT32]
T . The singularities of this matrix were analysed algebraically

in [BMC16]. These results are revisited in the next section from a geometric point of view,
which will then be used to analyse the singularities both algebraically and geometrically in the
observation of more than three lines.

4.3 Revisiting the singularities in P3L

4.3.1 Parametrization

As mentioned in Section 4.2, the set of lines in the three dimensional projective space P3 is a
four-dimensional manifold, so a line can be defined using four independent parameters. In the
Plücker representation of lines, only four out of the six Plücker coordinates are independent.
To compute the Plücker coordinates, we will describe each line using the position of a point
and a direction vector relative to a fixed object frame Fo : (O,xo,yo, zo), with its axes defining
an orthonormal, right-handed basis. By carefully choosing the object frame Fo, we can reduce
the number of parameters needed to define the system. The first line can be placed on the xo

axis, and the second line parallel to the plane zo = 0 and intersecting the zo axis. Any other
line can be defined using its points of intersection with any two of the three planes xo = 0,
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yo = 0 or zo = 0. So, the third line is defined using its points of intersection with the plane
xo = 0 and zo = 0. This leaves us 7 parameters to define three lines using the following two
points Mi and Ni on each line.

−−−→
OM1 = [0 0 0]T ,

−−→
ON1 = [1 0 0]T ,

−−−→
OM2 = [0 0 d1]

T ,
−−→
ON2 = [r1 r2 d1]

T ,
−−−→
OM3 = [d2 d3 0]T ,

−−→
ON3 = [0 r3 r4]

T .

(4.19)

Since the rows of the interaction matrix defined in Section 4.2.3 consist of some affine and
ideal lines, defined using the direction vector of the lines, the parametrization can be simplified

by considering the direction vector Ui =
−−→
OMi −

−−→
ONi, i = 1, 2, 3 and changing the parameters

−r1 = s1, −r2 = s2, −r4 = s4, d3 − r3 = s3 as follows:

−−−→
OM1 = [0 0 0]T , U1 = [1 0 0]T ,
−−−→
OM2 = [0 0 d1]

T , U2 = [s1 s2 0]T ,
−−−→
OM3 = [d2 d3 0]T , U3 = [d2 s3 s4]

T .

(4.20)

Next, we parametrize the position of the camera focal point C relative to Fo by the vector
o #    »

OC = [X Y Z]T , where the superscript o(·) indicates that the coordinates are expressed in
the frame Fo, and we define the camera frame Fc : {C,xc,yc, zc} centred at C, with xc,yc, zc
also an orthonormal basis. It was noted in Section 4.2.3 that the singularity conditions of the
problem are independent of the relative orientation of the object and camera frames. Hence,
for the computations we will assume that Fc can be obtained from Fo by a direct translation
by the vector o #    »

OC.
The singularity loci will be given in terms of the location of the focal point C relative to

the fixed object frame Fo, that is as a set of expressions involving variables X, Y and Z. In
practice it is sometimes more convenient to express the solutions in terms of the position of
the origin O relative to the camera frame Fc. If the relative orientation of frames Fo and Fc

is represented by a rotation matrix cRo, we can retrieve the position of the origin O in Fc by
introducing a new set of variables X ′, Y ′, Z ′ such that

c #    »

CO =

X ′

Y ′

Z ′

 = −cRo · o
#    »

OC = −cRo ·

XY
Z

 , (4.21)

In the following computations, we can assume cRo to be the identity matrix.

4.3.2 Geometric interpretation of singularities in P3L

Singularities in the observation of three lines have already been determined algebraically [BMC16].
Here we provide a geometric interpretation of those results, which will aid us in determining
the singularities in P4L and P5L. By choosing the point Q in (4.16) as the camera centre C,
we have

ξi =

[
ξi1
ξi2

]
=

[
fTi1 (Xi × fi1)

T

0(1×3) mT
i2

]
, (4.22)
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Figure 4.2: One of the singularities in P3L is when the camera centre C lies on the hyperboloid
formed by the three observed lines.

where Xi =
−−→
OPi −

−→
OC with

−→
OC = [X,Y, Z]T being the position vector of the camera centre,

and fi1 and mi2 being vectors defined as (4.17). Consequently, a basis for the rows of the
interaction matrix M(3) can be obtained under the form ξ(3) = [ξT11 ξT12 ξT21 ξT22 ξT31 ξT32]

T .
Under the assumption that the factor ∆i defined in (4.2) is not zero for any i (in other

words, that all the 3D lines project on a 2D line on the image plane), it was proven in [BMC16]
that the degeneracy of the basis ξ(3) and thus of the interaction matrix M(3) occurs if and
only if one of the following two conditions is satisfied:

G = f11 · (f21 × f31) = 0 (4.23)

or
H = m12 · (m22 ×m32) = 0, (4.24)

that is, when the three vectors fi1, i = 1, 2, 3 (respectively, mi2) defined in (4.17) are parallel
to the same plane. The product G ·H is in fact the determinant of the matrix ξ(3). In the case
of three general lines observed in space, it was shown in [BMC16] that a singularity appears
when the camera lies either on a quadric or on a cubic surface, defined respectively by (4.23)
and (4.24).

Using the parametrization (4.20), the quadratic factor (4.23) looks like:

(4.25)G = d1s2s4XY − s2 (d1s3 + d3s4)XZ − d1s1s4Y
2 + (d1s1s3 + d2s2s4)Y Z

− d1s4 (d2s2 − d3s1)Y + d2s2 (d3 − s3)Z
2 − d1d2s2 (d3 − s3)Z.

The solutions of G = 0 define a one-sheeted hyperboloid in R3, leading to the following
proposition.
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Proposition 4.2. A singularity of the interaction matrix in the observation of three lines
L1, L2 and L3 occurs when the camera centre C lies on the hyperboloid of one sheet uniquely
described by the three lines, with equation G(X,Y, Z) = 0. This hyperboloid is the ruled surface
spanned by the locus of all lines which are transversal to all L1, L2 and L3.

Proof. The quadratic factor is the determinant of the upper left (3×3) matrix of the basis ξ(3).

Let the kernel of the matrix
[
f11 f21 f31

]
be the direction vector of a line L. Since the affine

lines are represented according to (4.17), the line L must lie in a plane containing Xi and Ui,
say Πi. Consequently, L has to intersect all ui and therefore the observed three lines (see
Fig. 4.2). As a result, it belongs to the complementary regulus of a hyperboloid of one sheet
defined by the regulus of the observed lines [OSG20, Chapter 2]. L is called the transversal
line. Moreover, L must be the intersection of planes Π1, Π2 and Π3. Since C belongs to Πi for
all i, it should lie in their intersection too and hence L has to contain C.

Corollary 4.2.1. When the camera centre C lies on the hyperboloid defined by the three
observed lines, the kernel of the interaction matrix ξ(3) is an ideal line whose moment vector
is the same as the direction vector of the line passing through C and intersecting the observed
lines. As a result, we face problems in control for infinitesimal translations of the camera
along the transversal line. Furthermore, the finite lines constituting the rows of the interaction
matrix are all parallel to the same plane whose normal vector is along the transversal. Then,
the six lines ξi1 and ξi2, i = 1, 2, 3 are said to be in a singular linear line complex [PW01,
Chapter 3].

The latter remark assures that the kernel of the interaction matrix represents the Plücker
coordinates of a line. In terms of screw theory [Hun87], it is always a screw of infinite pitch.

Unfortunately, the geometric interpretation is not as straightforward when C lies on the
cubic surface H = 0 of (4.24) leading to singularities. In this case, the lines ξi1 and ξi2 belong
to a regular linear line complex [PW01, Chapter 3]. In terms of screw theory [Hun87], the
kernel is no longer a line but a screw, meaning that the controllability issues arise when the
camera performs this instantaneous screw motion. Additionally, unlike the hyperboloid, the
cubic surface is not uniquely defined by the three observed lines. This is due to a classic result
from Geometry by Arthur Cayley and George Salmon who showed in 1849 that there are 27
lines on a cubic surface (refer to [Laz14] for a proof from an algebraic geometry point of view).
Therefore, computational algebraic techniques will be employed to deal with this singularity
in the case of P4L.

4.4 Singularities in P4L

4.4.1 Parametrization

Following Section 4.3.1, the first three lines are defined according to (4.20). The fourth line
is defined using its two points of intersection P4 and N4 with the planes xo = 0 and yo = 0,
respectively:

−−→
OP4 = [0, d4, d5]

T ,
−−→
ON4 = [r5, 0, r6]

T . (4.26)
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Thus, the direction vector of the fourth line is given by U4 =
−−→
OP4 −

−−→
ON4. After replacing

−r5 and d5 − r6 by s5 and s6, respectively, we have
−−→
OP4 = [0, d4, d5]

T , U4 = [s5, d4, s6]
T . (4.27)

As mentioned in Section 4.3.1, the assumption that the relative orientation between the camera
frame Fc and the object frame Fo is zero remains valid in the following analysis.

4.4.2 Singularity analysis

From the remarks made in Section 4.2.3, a basis ξi = [ξTi1 ξTi2]
T for the rows of the interaction

matrix for each line is computed as in (4.16), with point Q taken as the camera centre C, and
with vectors fi1 and mi2 given by (4.17).

Singularities of the interaction matrix M(4) of the four lines appear when the (8×6) matrix

ξ(4) =


ξ1
ξ2
ξ3
ξ4

 =



fT11 (
#      »

QP1 × f11)
T

0 mT
12

fT21 (
#      »

QP2 × f21)
T

0 mT
22

fT31 (
#      »

QP3 × f31)
T

0 mT
32

fT41 (
#      »

QP4 × f41)
T

0 mT
42


(4.28)

formed by stacking the rows in (4.16) for all lines, becomes rank-deficient. This is the case if
and only if all the 28 maximal minors of (4.28) vanish simultaneously.

All the entries of the matrix ξ(4) are polynomials in the variables {X,Y, Z} represent-
ing the camera location, with coefficients which are polynomials in the parameters η =
{s1, s2, s3, s4, s5, s6, d1, d2, d3, d4, d5}. The maximal minors of ξ(4) then form a system of 28
polynomials, which we call pi. We denote I28 = ⟨p1, p2, . . . , p28⟩ the polynomial ideal gener-
ated by these minors. We refer to Chapter 3 for the theoretical background about polynomial
ideals necessary to follow this section.

In geometric terms, the locus of complex solutions of a system of polynomial equations
is the algebraic variety of their ideal. The (complex) solutions of all the polynomials in
I28 define a variety V(I28) ⊂ C3, which consists of all points where the matrix ξ(4) becomes
rank-deficient, and which depends on the parameters η.

To get a better insight of V(I28), we describe below how it can be split into subsets, i.e.
written as the union of the solution sets of simpler systems of polynomials.

Consider the 28 maximal submatrices of size (6× 6) of ξ(4). Up to a reordering of their
rows, they can be classified in three groups:

ξij1234 =



fTi1 (Xi × fi1)
T

fTj1 (Xj × fj1)
T

0(1×3) mT
12

0(1×3) mT
22

0(1×3) mT
32

0(1×3) mT
42

 , (4.29)
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ξijkℓmn =



fTi1 (Xi × fi1)
T

fTj1 (Xj × fj1)
T

fTk1 (Xk × fk1)
T

0(1×3) mT
ℓ2

0(1×3) mT
m2

0(1×3) mT
n2

 , (4.30)

ξ1234ℓm =



fT11 (Xi × f11)
T

fT21 (Xj × f21)
T

fT31 (Xk × f31)
T

fT41 (Xl × f41)
T

0(1×3) mT
ℓ2

0(1×3) mT
m2

 , (4.31)

where i, j, k and ℓ,m, n range every triplet of numbers in {1, 2, 3, 4}.
There are six submatrices of the type (4.29), whose rows describe the Plücker vectors

of two affine lines (lines in the affine space; in other words, lines which are not at infinity)
and four lines at infinity. Since a line at infinity is described by only three parameters (the
direction vector mi2), four such lines are always linearly dependent. Therefore the matrix
ξij1234, for any i and j, always has a rank of at most 5.

The submatrices of the second type (4.30) are block-triangular, and they are composed of
row vectors that represent three affine lines and three lines at infinity. There are

(
4
3

)
×
(
4
3

)
= 16

minors of this type. Their determinants are the products of two polynomials: det(ξijkℓmn) =
Gijk ·Hℓmn, with the following form:

Gijk = fi1 · (fj1 × fk1), Hℓmn = mℓ2 · (mm2 ×mn2). (4.32)

The cases where the subindices {i, j, k} and {ℓ,m, n} coincide correspond to the singularity
conditions (4.23) and (4.24) in P3L for each triplet of lines taken individually. Thus, it is
useful to note that, for a singularity of the four lines, a necessary, but not sufficient condition
is that each triplet of lines is in turn in a singular configuration. Let us consider all the
polynomials arising from the determinants of the matrices of type ξijkℓmn, and let us denote
I16 = ⟨G123H123, . . . , G234H234⟩ the ideal they generate. Since these polynomials are a subset
of all of the maximal minors of the (8 × 6) matrix (4.28), the ideal I16 is contained in the
larger ideal I28.

Finally, there are six submatrices ξ1234ℓm of the third category. Their determinants are of
degree 5 in the ring Q[X,Y, Z]. Let them generate an ideal K.

It follows that the union of ideals I16 and K yields I28. Dually, the intersection of their
varieties yields V(I28) (see Chapter 3 or the more complete reference [CLO13]):

I28 = I16 ∪ K ⇒ V(I28) = V(I16) ∩V(K), (4.33)

We first thoroughly analyse the ideal I16 to show how it can be further decomposed into
two sub-ideals and then incorporate the analysis of K. All the mathematical derivations
shown below can be followed in Maple file contained in the github repository jorge-gf/thesis-
archive [GF22]. Since a solution of the polynomials in I28 must also be a solution for the
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polynomials in I16, we say that the variety V(I28) is contained in V(I16):

I16 ⊆ I28 =⇒ V(I28) ⊆ V(I16), (4.34)

although V(I16) may contain points outside V(I28).
The ideal I16 can be factorized as the product of two simpler ideals:

I16 = G ×H, (4.35)

where

G =⟨G123, G124, G134, G234⟩, (4.36)

H =⟨H123, H124, H134, H234⟩. (4.37)

It implies that the variety V(I16) is the union of two smaller sets: V(I16) = V(G) ∪V(H).
That is, the polynomials in I16 vanish whenever Gijk = 0 for all i, j, k; or when Hℓmn = 0 for
all ℓ,m, n. As a consequence, we can rewrite (4.33) as

V(I28) = (V(G) ∪V(H)) ∩V(K)
= (V(G) ∩V(K)) ∪ (V(H) ∩V(K)) . (4.38)

The variety V(G) defined by the ideal in (4.36) in C[X,Y, Z] describes the intersection between
four quadratic surfaces: each one a hyperboloid of one-sheet described by three out of the four
lines. On the other hand, V(H), defined by the ideal (4.37), is the intersection of four cubic
surfaces.

We can analyse the sub-varieties on the right hand side of (4.38) separately. First, we can
check if V(K) or a component of it lies in V(G) or in V(H). For instance, if V(G) ⊂ V(K)
then the analysis is much simpler since the intersection between those varieties would just
yield V(G).

Gröbner bases, which we introduced in Chapter 3, Section 3.2, as a tool to solve computa-
tionally problems with polynomial ideals, can be used for this purpose. In particular, given a
polynomial ideal I and another polynomial in the same ring f , one can determine if f ∈ I
by computing a Gröbner basis GI = {g1, . . . , gs} for I and using a division algorithm on the
polynomial f by each of the elements of this basis. The remainder of the division is called the

normal form of f by GI , and is written f
GI , or NF (f,GI). The polynomial f is contained

in the ideal I if and only if f
GI = 0. For instance, by obtaining a Gröbner basis for the ideal

G, and computing the normal form of the polynomials that define K by this basis, we can
determine whether the ideal K is contained in G.

In what follows, we use Gröbner bases computations, and the result from Proposition 4.2, to
analyse separately each of the two components of the set (4.38): V(G)∩V(K) and V(H)∩V(K).

Analysis of the variety V(G) ∩V(K)

Let gbG = {g1, . . . , gs} be a Gröbner basis of the ideal G with respect to pure lexicographical
monomial ordering, denoted by ≻lex, with X ≻lex Y ≻lex Z ≻lex s1 ≻lex . . . ≻lex s6 ≻lex
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d1 ≻lex . . . ≻lex d5 (refer to Chapter 3, Section 3.2 for the definition of the different monomial
orderings). Here, we are assuming that our polynomials lie in the ring Q[X,Y, Z,η] of polyno-
mials in variables X,Y, Z and η with rational coefficients, where η = {d1, . . . , d5, s1, . . . , s6}.
By considering s1, . . . , d5 as variables, our Gröbner bases computations will be valid under
any specialization of the parameters.

Knowing gbG, we can compute the normal form of the polynomials pi ∈ K, i = 1, . . . , 6
to check if the varieties V(G) and V(K) share any component. It can be done using a
multivariate polynomial division algorithm (the files are included in the repository jorge-
gf/thesis-archive [GF22]), and we find that they vanish in every case: pi

⟨g1,...,gs⟩ = 0 for all
i. The consequence is that any common solution of the system g1 = · · · = gs = 0 is also a
solution of the system p1 = · · · = p6 = 0 and is therefore a singular point of the matrix ξ(4).
In terms of algebraic varieties, this can be written as

V(G) ⊆ V(K) and hence V(G) ∩V(K) = V(G). (4.39)

As a result, Equation (4.38) can be updated as

V(I28) = V(G) ∪ (V(H) ∩V(K)) , (4.40)

implying that one of the singularities in P4L is when the camera centre lies on the intersection
of the four hyperboloids given by the variety V(G).

Additionally, this result can be geometrically interpreted as follows. The basis of the
interaction matrix M(4) in this case consists of four affine lines and four ideal lines. As we
know from Section 4.3, one of the singularities in P3L is when the three affine lines belong
to a singular linear line complex (meaning that they are parallel to the same plane; see
Corollary 4.2.1). When this happens, the kernel of the interaction matrix is a line at infinity
and the camera centre lies on a line that intersects all the three observed lines. Similarly, in
the case of P4L, V(G) results in four affine lines of ξ(4) being parallel to the same plane so
that its kernel is a line at infinity. Hence, we can expect that a singularity occurs when the
camera centre lies on a line that intersects the four observed lines. In fact, this is true for
singularities in PnL for any n ≥ 3.

Theorem 4.3. Consider the observation of n lines L1, . . . ,Ln in space. If there exist one or
more lines that intersect all of L1, . . . ,Ln, then a singularity of the interaction matrix occurs
if the camera centre is on one of these lines.

Proof. Let the observed lines be L1,L2, . . . ,Ln. Given a line L on which C lies, the distance
between lines L and Li is given by

dLLi =

∥∥∥∥∥ (̂l× l̂i)
T

||̂l× l̂i||
(
−→
OC −

−−→
OPi)

∥∥∥∥∥ , (4.41)

where Pi is a point on line Li, l̂ and l̂i are unit direction vectors of lines L and Li, respectively.
L and Li intersect when

(l× li)
T (
−→
OC −

−−→
OPi) = 0, (4.42)

(li ×Xi)
T l = 0. (4.43)
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Figure 4.3: Four observed lines Li, i = 1, 2, 3, 4 in a hyperbolic congruence leading to two
singular lines LM and LN .

It follows from (4.17) that fTi1l = 0, i = 1, . . . , n. Thus, for n lines, the matrix ξ(n) in (4.18)
has a kernel which represents a line at infinity with Plücker coordinates (0, l) and hence it is
singular.

For n = 3, the locus of lines intersecting the three observed lines is a hyperboloid of one
sheet, which leads to Proposition 4.2. For n = 4, in the generic case, it is two lines and the
observed lines belong to a linear line congruence [PW01]. For n ≥ 5, there are in general no
transversal lines [PW01].

The variety of the ideal G in (4.36) consists of the intersections of the four hyperboloids
G123 = G124 = G134 = G134 = 0, which define precisely the lines transversal to L1, . . . ,L4. In
general there are two such lines, which can be real or complex.

In the real domain R[X,Y, Z], the intersection of the four hyperboloids i.e. V(G) can be an
empty set, a line or two lines. If we consider the hyperboloid defined by the first three observed
lines, assuming the fourth line does not lie entirely on the hyperboloid, it can intersect the
hyperboloid in 0, 1 or 2 points. Then, the four lines are said to be in an elliptic, a parabolic or
a hyperbolic line congruence, respectively [PW01]. A case of hyperbolic congruence is shown
in Fig. 4.3. A line passing through the point of intersection and lying on the hyperboloid
intersects all four lines. Thanks to the use of Gröbner bases, we can derive a condition such as
to enforce the four observed lines to be in an elliptic congruence, thus avoiding the appearance
of this type of line singularities.

By finding the Gröbner basis of the ideal G with respect to the monomial ordering
Y ≻lex Z ≻lex X, we obtain four polynomials, the first of which is as follows:

a2Y
2 + a1Y + a0 = 0, (4.44)
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where

a2 = d1s4 (d2s2s6 − d3s1s6 − d4d5s1 + d4s1s6 + d5s2s5) ,

a1 = (d1d2d3s2s6 − d1d2d4s2s4 − d1d2s2s3s6 + d1d3d4s1s4

+ d1d4d5s1s3 − d1d4s1s3s6 − d1d4s2s4s5 − d1d5s2s3s5

+ d2d4d5s2s4 − d2d4s2s4s6 − d3d5s2s4s5)Z,

a0 = −d4s2(d1d2d3 − d1d2s3 − d1s3s5 − d2d3d5 + d2d3s6

+ d2d5s3 − d2s3s6 − d3s4s5)Z
2.

Since the variety of G represents two real or complex lines, the quadratic element (4.44)
must factorize into two linear polynomials which represent the planes containing the two lines
that are transversal to the four observed lines (the remaining elements of the Gröbner basis
can be used to deduce the equations of the two lines that constitute V(G); see Section 4.4.3 for
an example). These planes and hence the transversals lying on them are either real or complex
depending on the sign of the discriminant of (4.44). Assuming a2 ̸= 0, the equation (4.44) has
no real solutions if the discriminant

∆ = a21 − 4a2a0 = Z2f(η) < 0, (4.45)

where f(η) is a function of the parameters η. Since Z2 ≥ 0, a necessary condition that there
are no real transversals intersecting the four observed lines can be given by an inequality solely
in terms of the parameters describing the four observed lines. This helps us to avoid the one
dimensional singularities due to V(G). This is quite useful as we will see in the next section
that the remaining singularities due to V(H) ∩V(K) are only of dimension zero, implying
that they are isolated points.

Theorem 4.4. For the Perspective-4-Line problem, a singularity occurs when C lies on
any transversal line that intersects the four observed lines. The transversals appear as the
intersection of the hyperboloids defined by four triplets of the observed lines. Moreover, by
forcing the four observed lines to be in an elliptic congruence, we can make sure that the
transversal lines are not real and therefore avoid the one dimensional singularities.

Analysis of the variety V(H) ∩V(K)

The analysis of the component V(H) ∩ V(K) is slightly more involved. The files used to
perform the computations are in jorge-gf/thesis-archive [GF22]. We obtain a Gröbner basis
gbH = {h1, . . . , ht} for the ideal H w.r.t. the ordering with X ≻lex Y ≻lex Z, and compute the
normal form of the minors pi ∈ K with respect to it. Note that we now consider polynomials
in the ring Q(η)[X,Y, Z] of polynomials in X, Y and Z alone. This time, the residues are
polynomials in X, Y and Z with coefficients that depend on the parameters:

pi
⟨h1,...,ht⟩ = fi ̸= 0 ∈ Q(η)[X,Y, Z], i = 1, . . . , 6. (4.46)

Since the residues fi do not vanish, unlike (4.39), V(H) ̸⊆ V(K). It implies that any common
solution of the system h1 = · · · = ht = 0 is not a solution of the system p1 = · · · = p6 = 0.
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However, the analysis of V(H) ∩V(K) can be simplified by noting that V(K) contains the
four observed lines and their two transversals. This is because the matrix ξ1234lm in (4.31) loses
rank if C lies on the observed four lines or their transversals. As a consequence, V(H) ∩V(K)
might contain points on the four observed lines and their two transversals. As we know from
Theorem 4.3 that they are the singularity loci corresponding to V(G), we would like to remove
them from the variety V(H) ∩V(K). We know that these six lines must lie in the union of
four hyperboloids V(G123) ∪V(G124) ∪V(G134) ∪V(G234) that appear in (4.36). Therefore,
we can remove each hyperboloid from V(H) ∩V(K) to obtain the remaining singularities. In
algebraic geometry terms, removing one variety from the other amounts to computing the set
difference of the varieties [CLO13].

The set difference of two affine varieties is generally not an affine variety but an open
subset of a variety: it cannot in general be written as solutions of a system of polynomial
equations. The smallest affine variety which contains it is called the Zariski closure of the
difference, denoted with an overline (see Section 3.1). In this case, we need to find the following
Zariski closure of the difference:

V(F) =
4⋂

i=1

(V(K) ∩V(H)) \V(Si), (4.47)

where Si is an element of {G123, G124, G134, G234}.
From the correspondence between polynomial ideals and varieties, an ideal defining V \W

where V and W are affine varieties is obtained as the saturation of an ideal I defining V
with an ideal J defining W , and is denoted by I : J∞ (see again Section 3.1). The ideal
defining (4.47) is

F =
4⋃

i=1

(H ∪K) : S∞
i , (4.48)

Due to a large number of variables leading to heavy computations, we did not succeed in
determining F in (4.48) using the above approach for generic values of the parameters. There-
fore, Section 4.4.3 shows an example where V(H) ∩V(K) is analysed for some specialization
of the parameters s1, . . . , s6, d1, . . . , d5.

Since we are dealing here with polynomial systems, we know that for almost all values of the
parameters, the specialized systems have all the same number of complex solutions [CLO13].
More precisely, there exists a polynomial B depending on the parameters, such that when
specializing the parameters outside the zero set of B, the number of complex solutions to the
system that we obtain remains invariant.

In our analysis, we have observed that, when specializing the parameters to random values
and removing those solutions lying on the lines, one always obtains 10 complex solutions. This
indicates that for generic values of the parameters (outside this zero-set of polynomial B),
there are at most 10 isolated singularities in the case of P4L. Section 4.4.3 shows one such
example where a random specialization of parameters yields 10 complex solutions of which 6
are real.

Proposition 4.5. An additional singularity condition for the P4L problem is described by the
variety (4.48). Generically, it consists of up to 10 isolated points in the configuration space of
the camera.
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4.4.3 Singularities of P4L for example configuration

The singularities in P4L are determined for lines whose Plücker coordinates are arbitrarily
chosen according to the following parameters:

s1 = 4, s2 = −5, s3 = 7, s4 = 3, s5 = −2, s6 = 13,

d1 = 2, d2 = 3, d3 = 5, d4 = 1, d5 = 7. (4.49)

Then,

G = ⟨−1765X2 − 587XY − 878XZ + 660Y 2 + 232Y Z − 122Z2 + 2606X + 216Y + 598Z

− 708, −177XY − 27XZ + 75Y 2 + 17Y Z − 8Z2 + 156Y + 6Z, −130XY + 40XZ

− 104Y 2 − 62Y Z + 10Z2 + 188Y − 20Z, −30XY + 145XZ − 24Y 2 + 11Y Z + 30Z2

+ 210Y − 60Z⟩.

The Gröbner basis gbG of G w.r.t. Z ≻lex Y ≻lex X consists of four elements {g1, g2, g3, g4}.
The first element factors (using the command evala(AFactor) in Maple) as follows:

g1 = −2166Y 2 − 1166Y Z + 50Z2

=
1

2166

(
Z(
√
448189 + 583) + 2166Y

)
(
Z(
√
448189− 583)− 2166Y

)
.

By substituting the factors into the other elements of gbG, G can be decomposed into two
subideals whose varieties correspond to the two transversal lines intersecting all the four
observed lines:

G =M∩N , where

M = ⟨Z(
√
448189 + 583) + 2166Y,

Z(329
√
448189− 587953) + 2166

√
448189

− 3822990X + 2822298⟩,
N = ⟨Z(

√
448189− 583)− 2166Y,

Z(329
√
448189 + 587953) + 2166

√
448189

+ 3822990X − 2822298⟩.

Following Section 4.4.2, it is straightforward to verify that pi
⟨g1,...,g4⟩ = 0 ∀ pi ∈ K. So, the

corresponding positive dimensional singularities are V(M) and V(N ).
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The ideals H and K are determined whereas only H is displayed here since K is too large:

H = ⟨−73960X3 − 46428Y X2 + 320426X2Z + 88867XY 2 + 163934Y XZ + 184389XZ2

+ 62940Y 3 − 356381Y 2Z − 32282Y Z2 + 27183Z3 + 210018X2 − 721747XY

− 416981XZ − 146898Y 2 − 118097Y Z − 116973Z2 + 111106X + 377082Y

+ 153504Z − 56580,−3038Y X2 + 3686X2Z − 2288XY 2 + 16544Y XZ + 3344XZ2

− 315Y 3 − 4111Y 2Z − 157Y Z2 + 663Z3 + 27166XY − 4168XZ + 2769Y 2

− 13942Y Z − 1527Z2 − 25806Y + 690Z,−650Y X2 − 3350X2Z − 195XY 2

+ 8450Y XZ − 845XZ2 + 260Y 3 + 3410Y 2Z + 390Y Z2 − 13390XY + 1630XZ

+276Y 2− 8372Y Z +15088Y, 225Y X2− 1685X2Z +705XY 2 +450Y XZ − 345XZ2

+ 420Y 3 − 1325Y 2Z − 645Y Z2 − 8056XY + 705XZ − 918Y 2 − 1527Y Z + 5658Y ⟩
(4.50)

The Gröbner basis gbH of H w.r.t. Z ≻lex Y ≻lex X contains 5 elements {h1, h2, h3, h4, h5}.
As proposed in Section 4.4.2, the normal forms can be calculated as pi

⟨h1,...,h5⟩ = fi. The
residuals fi do not vanish. Thus, the whole variety V(H) ∩V(K) is considered and it turns
out to be of dimension 0 and degree 22 with 16 real solutions (see the attached Maple file):

Table 4.1: Elements of the variety V(H) ∩V(K).

X Y Z

*1 -9.858 - 2.473 - 1.841

2 -0.720 0.0 0.0

*3 -0.320 0.010 0.220

4 -0.007 0.009 2.0

*5 0.054 0.009 1.842

6 0.328 0.0 0.0

7 0.918 0.141 - 2.082

*8 0.938 0.568 - 2.023

9 0.972 - 1.215 2.0

*10 1.011 0.794 - 0.885

11 1.016 0.371 - 1.984

12 1.218 0.390 - 0.918

13 3.231 0.0 0.0

14 3.880 7.054 0.880

*15 65.09 - 96.57 - 0.036

16 90.31 - 112.9 2.0

However, it can be verified that some of these points lie on the observed four lines or their
transversals V(M) and V(N ). Since any point incident with these lines leads to a singularity,
we are interested in singular points that do not lie on them. They can be calculated by
determining the ideal F using (4.48). The Gröbner basis gbF of F w.r.t. Z ≻lex Y ≻lex X

81



has the following nice structure (called the shape position):

gbF = {fa(Z), fb(Z) + Y, fc(Z) +X},

where fa(Z) = Σ10
i=1aiZ

i is a degree 10 univariate polynomial in Z, fb(Z) and fc(Z) are also
univariate polynomials in Z. It follows that V(F) is of degree 10. It consists of 6 real points
marked with an asterisk each in Table 4.1. Thus, the singularity loci for this example include
the four observed lines, their two transversals and 6 points.

Since the parameters were chosen randomly for this analysis, this indicates that, for values
of the parameters outside the zero set of some polynomial depending only on the parameters
(hence of measure zero), the real singular points in P4L can be up to 10.

Now that the generic case is treated, let us deal with a more specific case. Indeed, it is
often the case that the observed lines in an environment are constrained with orthogonality
and/or parallelism. This special case is considered in the next section and the singularities are
determined with the proposed approach without specializing any parameters.

4.4.4 Singularities in P4L with orthogonality and parallelism

We consider three mutually orthogonal lines L1, L2 and L3, and a fourth one L4 with direction
parallel to L1. The parametrization (4.20) and (4.27) cannot be used in this context since we
need the lines to only intersect one of the planes xo = 0, yo = 0 or zo = 0. The object frame
Fo : (O,xo,yo, zo) is fixed relative to the four lines, with its axes defining an orthonormal,
right-handed basis, and such that xo is collinear to L1 and L4; yo is collinear to L2, and zo is
collinear to L3. With this parametrization in the object frame, the direction vector Ui of the
four lines and the coordinates of points Pi belonging to each of them are given by:

−−→
OP1 = [0, 0, 0]T , U1 = [1, 0, 0]T ,
−−→
OP2 = [0, 0, d1]

T , U2 = [0, 1, 0]T ,
−−→
OP3 = [d2, d3, 0]

T , U3 = [0, 0, 1]T ,
−−→
OP4 = [0, d4, d5]

T , U4 = [1, 0, 0]T .

Following the analysis done in the preceding section, the varieties V(G) and V(H) ∩V(K)
will be analysed separately.

In this context, the ideal G in (4.36) is calculated as follows:

(4.51)G = ⟨XY (d1−d5)−XZ(d3−d4)−X(d1d4−d3d5)+Y Zd2−Y d1d2−Zd2d4+d1d2d4,

(−d3+Y ) (Y d5−Zd4) , − (−d1+Z) (Y d5−Zd4) , XY d1−XZd3+Y Zd2−Y d1d2⟩.

According to Theorem 4.3, we expect the positive dimensional singularities corresponding to
V(G) to be the transversals that intersect the four observed lines. It can be verified by finding
the Gröbner basis gbG of G w.r.t. Z ≻lex Y ≻lex X. It consists of four elements {g1, g2, g3, g4},
where the first element factors as follows:

g1 = (Z − d1) (Y d5 − Zd4) . (4.52)
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By substituting the factors into the other elements of gbG, Gv can be decomposed as the
product of two smaller ideals,M and N , whose varieties correspond to the two transversal
lines intersecting all the four observed lines:

G =M×N , where

M = ⟨Z − d1, Y − d3⟩,
N = ⟨Y d5 − Zd4, X(d1d4 − d3d5) + Y d2d5 − d1d2d4⟩. (4.53)

In the generic case of P4L, we showed that the one dimensional singularities can be avoided
by choosing the lines such that they satisfy (4.44). It is a condition on the discriminant
of the quadratic polynomial that appears as the first element of the Gröbner basis of G.
Similarly, here, the first polynomial of gbG in (4.52) is quadratic in Z and its discriminant is
(Y d5 − d1d4)

2, which is always non-negative. Hence the two transversal lines given by (4.53)
are always real and the singularity cannot be avoided when the four observed lines adhere to
the orthogonality and parallelism conditions of this section.

To analyse the remaining singularities, we need to determine the variety V(H) ∩V(K).
To do so, the ideal ⟨H,K⟩ is considered (it is too large to be displayed here) and its Gröbner
basis calculated:

gbHK = { Z (−d5 + Z) (Zd4 − d3d5) (−d1 + Z) ,

Y d5 − Zd4,

− d1d2d4 (d1d4 + d3d5 − 2 d4d5) (d1d4 − d3d5)+

(d1d4 + d3d5 − 2 d4d5) (d1d4 + d3d5) (d1d4 − d3d5)X−
d2d4

(
d1

2d4
2 − 2 d1d3d4d5 − 2 d1d4

2d5 + d3
2d5

2 − 2 d3d4d5
2
)
Z+

4 d2d4
3Z3 − 2 d2d4

2 (d1d4 + d3d5 + 2 d4d5)Z
2 }.

(4.54)

The variety of gbHK is zero dimensional with degree 4 (see the files in jorge-gf/thesis-
archive [GF22]). It implies that it is made up of 4 points in C[X,Y, Z] as shown in Fig. 4.4
whose coordinates are as follows:

C1 =

(
0,

d1d4
d5

, d1

)
; C2 =

(
(d1 − d5)d2d4

d1d4 + d3d5 − 2d4d5
, d4, d5

)
;

C3 =

(
d1d2d4

d1d4 + d3d5
, 0, 0

)
; C4 =

(
d2, d3,

d3d5
d4

)
. (4.55)

As mentioned in Section 4.4.2, some or all of these points might lie on the four observed
lines or their two singular transversals, which we know for sure belong to the singularity
loci. To acknowledge that, the saturation ideal F of (4.48) can be determined to check if
Ci ∈ V(F), because only then, Ci is a point outside any of these lines. However, the Gröbner
basis of F yields {1}. By Hilbert’s Nullstellensatz, when the Gröbner basis of an ideal is
{1}, its generators do not have a common solution [CLO13] and hence, V(F) = ∅. Thus,
Ci ̸∈ V(F) for any i = 1, 2, 3, 4 implying that these points indeed lie on the four observed lines
(L1,L2,L3,L4) or their transversals (LM ,LN ) as shown in Fig. 4.4 for some randomly chosen
parameters d1, .., d5.
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Figure 4.4: Singularities in P4L with orthogonality and parallelism constraints: Four observed
lines Li, i = 1, 2, 3, 4 and their traversals LM and LN .

Proposition 4.6. For the special case of P4L considered in this section, the only singularities
of the interaction matrix occur when C lies on one of the four observed lines or their two
transversal lines.

The results in this section remain valid under any permutation of the four observed lines and
hence the analysis is valid for the case of four lines subject to any other similar orthogonality
and parallelism constraints. In the following section we study the singularity cases when five
lines are observed.

4.5 Singularities in P5L

4.5.1 Parametrization

Let us consider the first three lines defined by the parametrization (4.20) and the fourth one
by (4.27). In the same vein, the fifth line is defined using its two points of intersections P5

and N5 with the planes yo = 0 and zo = 0, respectively:

−−→
OP5 = [d6, 0, d7]

T ,
−−→
ON5 = [r7, r8, 0]

T . (4.56)

Thus, the direction vector of the fifth line is given by U5 =
−−→
OP5 −

−−→
ON5. After changing the

variables −r8 = s8 and d6 − r7 = s7, we have

−−→
OP5 = [d6, 0, d7]

T , U5 = [s7, s8, d7]
T . (4.57)
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As mentioned in Section 4.3.1, the orientation of the camera frame Fc and of the object frame
Fo is considered the same also for the following analysis.

4.5.2 Singularity analysis

From Section 4.2.3, we know that the rows of the interaction matrix M(5) associated with the
five lines represent a system of Plücker lines and that a basis for this system of lines can be
expressed as ξ(5) = [ξT11 ξT12 . . . ξT51 ξT52]

T ∈ R10×6 with ξi1 and ξi2 given by (4.16).
Let us then consider the ideal I210 generated by the maximal minors of ξ(5), which in

this case forms a system of 210 polynomials pi in the variables X,Y, Z and the parameters
η = {s1, . . . , s8, d1, . . . , d7}: I210 = ⟨p1, . . . , p210⟩.

Following a similar analysis of Section 4.4, the 210 minors can be divided into three
categories. Of them, there are 55 that are equal to zero, because there are 55 submatrices
containing four or five ideal lines (lines at infinity). These matrices always have a rank at most
5 since only three lines at infinity can be linearly independent at a time.

The second category are the determinants of block triangular matrices, composed of row
vectors that represent three affine lines and three ideal lines. There are

(
5
3

)
×
(
5
3

)
= 100 of

them. Let these minors generate a subideal I100 ⊆ I210. The generators of I100 are of the
form pi = GijkHlmn, that are the products of the polynomials in (4.32), with the indices
{i, j, k} and {l,m, n} ranging all triplets of numbers in {1, 2, 3, 4, 5}. Therefore, this ideal is
the product of two smaller ideals: I100 = G ×H, generated by 10 polynomials each:

G = ⟨G123, . . . , G235⟩, H = ⟨H123, . . . ,H235⟩. (4.58)

The generators of G and H are too long to be given here, but G (resp. H) is generated by
polynomials of degree 2 (resp. 3) in Q[X,Y, Z], describing the singularity hyperboloids (resp.
cubic surfaces) of P3L (see Section 4.3.2).

The remaining 55 minors with degree 5 each in {X,Y, Z} constitute the last category. Let
them generate a subideal K55 ⊆ I210.

As before, we deduce that the solution set of the polynomials in I210 is contained in a
larger variety which is the union of two varieties (see (4.38)):

V(I210) = (V(G) ∩V(K55)) ∪ (V(H) ∩V(K55)) . (4.59)

Our strategy will be to use the geometrical interpretation of previous sections wherever possible
or else to use Gröbner bases computations and multivariate polynomial division to analyse
the varieties (V(G) ∩V(K55)) and (V(H) ∩V(K55)) separately. Again, all mathematical
derivations can be followed on the repository jorge-gf/thesis-archive [GF22].

Analysis of the variety V(G) ∩V(K55)

Let gbG = ⟨g1, . . . , gs⟩ be a Gröbner basis for the ideal G with respect to the aforemen-
tioned lexicographical monomial ordering. We are again treating the parameters η =
{d1, . . . , d7, s1, . . . , s8} as variables here; that is, we are considering the polynomials in the
ring Q[X,Y, Z,η]. Then, we can compute the normal form of the polynomials pi ∈ K55

85

https://github.com/jorge-gf/thesis-archive


with respect to this basis to find pi
⟨g1,...,gs⟩ for all i. We find pi = 0 for all i, implying that

(V(G) ∩V(K55)) = V(G). We already know from Theorem 4.3 that V(G) should be a line
that intersects the five observed lines. We cannot always find a line that intersects the given
five lines unless they belong to a singular linear line complex [PW01]. Thus, there must be a
condition on the parameters such that V(G) ̸= ∅. To find it, we consider a matrix with rows

consisting of the Plücker coordinates of the observed lines [Ui,
−−→
OP i ×Ui] whose moment

vectors are defined by considering the point Q in (4.16) as the origin of the object frame O:

L5 =



1 0 0 0 0 0

s1 s2 0 d1s2 −d1s1 0

d2 s3 s4 −s4d3 s4d2 d2d3 − d2s3

s5 d4 s6 d4d5 − d4s6 −s5d5 s5d4

s7 s8 d7 s8d7 d6d7 − d7s7 −s8d6


. (4.60)

A line intersects the observed five lines only if the kernel k = [k1, k2, k3, k4, k5, k6]
T of the

matrix L5 satisifies the Plücker relation k1k4 + k2k5 + k3k6 = 0. The first row of L5 imposes
k1 = 0. Eliminating ki from the remaining four equations L5k = 0 and the Plücker relation
leads to a polynomial h of degree 13 solely in terms of parameters η. If this polynomial h
is not zero, then there is no line transversal to L1, . . . ,L5, and therefore, that there are no
one-dimensional singularities.

Proposition 4.7. There are no one dimensional singularities for P5L when the five observed
lines are generic. A polynomial condition on the parameters defining the configuration of the
lines must be satisfied for a transversal to exist such that the incidence of the camera centre C
on it leads to a singularity.

The results of this section are substantiated through an example in Section 4.5.3.

Analysis of the variety V(H) ∩V(K55)

The large number of variables and polynomials made it impossible to compute a Gröbner
basis gbH = {h1, . . . , ht} for the ideal generated by H in Q[η, X, Y, Z], with the parameters
as free-variables. Hence, we cannot evaluate generically (for arbitrary parameter values) the
intersection of varieties H and K55, by reducing the minors pi ∈ K55, pi

⟨h1,...,h3⟩ = fi with
respect to such a basis. However, we know that a singularity of P5L implies a singularity of
each subset of four out the five lines. Therefore we know that the variety V(H) ∩V(K55) will
constitute at most a finite number of points.

In Appendix B, we give an analysis of the V(H) ∩V(K55) for some arbitrary values of the
parameters η. For a generic specialization (from several tests performed), we find that the
intersection of both varieties is almost always empty. This lead us to the following statement,
which still needs formal computational proof

Statement 4.1. For P5L, there exist a polynomial, in the space of the parameters describing
the configuration, such that specializing the parameters outside its zero-set, there exist no
isolated (zero-dimensional) singularities.
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4.5.3 Singularities of P5L for an example configuration

The singularities in P5L are determined for lines whose Plücker coordinates are arbitrarily
chosen as follows:

s1 = 4, s2 = −5, s3 = 7, s4 = 3, s5 = −2, s6 = 13, s7 = −11, s8 = 6,

d1 = 2, d2 = 3, d3 = 5, d4 = 1, d5 = 7, d6 = −4, d7 = 11. (4.61)

The Gröbner basis gbG of G w.r.t. Z ≻lex Y ≻lex X is ⟨1⟩. By Hilbert’s Nullstellensatz,
V(G) = ∅.

If we choose the parameters according to (4.61) except d7, which is chosen such that the
parameters satisfy h = 0 in Section 4.5.2:

d7 =
128893236

7630285
− 24

√
8508173023861

7630285
,

then, calculating the Gröbner basis leads to:

gbG = {2166Y +
(√

448189 + 583
)
Z, −2166

√
448189− 2822298

+ 3822990X +
(
−329

√
448189 + 587953

)
Z}.

It is the equation of a line intersecting the five observed lines.
The Gröbner basis gbH of H w.r.t. Z ≻lex Y ≻lex X contains 5 elements {h1, h2, h3, h4, h5}.

As proposed in Section 4.5.2, the normal forms can be calculated as pi
⟨h1,...,h3⟩ = fi, i = 1, . . . , 55.

The residues fi do not vanish. Therefore, he Gröbner basis of the ideal ⟨H,K55⟩ is calculated
and it turns out to be ⟨1⟩. Hence, for a generic choice of parameters, there are no singularities
in P5L.

Like P4L, it applies to P5L as well that, often, the observed lines in an environment are
constrained with orthogonality and/or parallelism. One of these special cases is considered
in the next section and the singularities are determined with the proposed approach without
specializing any parameters.

4.5.4 Singularities in P5L with orthogonality and parallelism

As a continuation of Section 4.4.4, let us consider a fifth line L5, which is assumed to be
collinear with axis yo. This way, we have three orthogonal lines L1, L2 and L3, a line L4
parallel to L1, and a line L5 parallel to L2. The location of lines L1 to L4 relative to frame Fo

is still given by (4.51), and we parametrize L5 by

#      »

OP5 = [d6, 0, d7]
T , U5 = [0, 1, 0]T . (4.62)

As before, if the line L5 was instead given parallel to line L3, these parametrization will still
be valid upon a redefinition of the object frame Fo and the renaming of the lines.
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Following the analysis done in the preceding section, the varieties V(G) and V(H)∩V(K55)
will be analysed separately. In this context, the ideal G in (4.58) is calculated as follows:

G = ⟨−XY d5 +XY d7 −XZd3 +XZd4 +Xd3d5 −Xd4d7 + Y Zd2 − Y Zd6 − Y d2d7 + Y d5d6
− Zd2d4 + Zd3d6 + d2d4d7 − d3d5d6, (−d5 + Z) (Xd1 −Xd7 + Zd6 − d1d6) ,

− (−d2 +X) (Xd1 −Xd7 + Zd6 − d1d6) , XY d1 −XY d5 −XZd3 +XZd4 −Xd1d4
+Xd3d5 + Y Zd2 − Y d1d2 − Zd2d4 + d1d2d4, (−d7 + Z) (Y d5 − Zd4) ,−XY d7 +XZd3
−Y Zd2+Y Zd6+Y d2d7−Zd3d6, (−d3+Y ) (Y d5−Zd4) ,−Z (Xd1−Xd7+Zd6−d1d6) ,

− (−d1 + Z) (Y d5 − Zd4) , XY d1 −XZd3 + Y Zd2 − Y d1d2⟩.
(4.63)

We expect that the one dimensional singularity corresponding to V(G) must be the
transversal that intersects the five observed lines according to Theorem 4.3. However, we know
from Section 4.5.2 that the parameters used to define the five observed lines must satisfy a
condition for this transversal line to exist. As before, we can determine it by imposing the
Plücker relation on the kernel of the matrix whose rows are the Plücker coordinates of the
observed lines [Ui,

−−→
OPi ×Ui] parametrized by (4.51) and (4.62). This condition leads to the

following polynomial in terms of the parameters that should be zero.

h(η) = d5 (d1 − d7) (d1d2d4 − d1d4d6 − d2d4d7 + d3d5d6) . (4.64)

This polynomial can also be derived by finding the Gröbner basis gbG of G in (4.63) w.r.t. the
ordering Z ≻lex Y ≻lex X ≻lex d1 ≻lex . . . ≻lex d7. It consists of ten elements of which the
first element is exactly h(η). We look for conditions when h = 0 so that V(Gv) ̸= ∅.

When the first factor of h vanishes, i.e. d5 = 0, we get the line as the variety of the
following ideal:

M1 = ⟨Z,X − d2⟩. (4.65)

When d1 − d7 = 0, we get

M2 = ⟨Z − d1, Y − d3⟩. (4.66)

Finally, when the third factor of h vanishes, we have

M3 = ⟨Y d5 − Zd4, X(d1 − d7) + Zd6 − d1d6⟩. (4.67)

Figure 4.5 shows the third case where a line V(M3) intersects all five observed lines.
To analyse the remaining singularities, we need to determine V(H) ∩V(K55). It amounts

to analysing the ideal ⟨H,K55⟩ (too large to be displayed here). Its Gröbner basis yields {1}
implying that the variety is empty and hence there are no isolated singularities in the generic
case. However, it is possible that there are special relative configurations of the five lines
for which V(H) ∩V(K55) ̸= ∅. As mentioned in Section 4.5.2, it was not possible to find
these configurations of the observed lines when they are generic, due to the computational
complexity. Nonetheless, in this context, the constraints on the observed lines reduce the
complexity and hence we are able to find the conditions on the parameters di, i = 1, . . . , 7
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Figure 4.5: Singularities in P5L with orthogonality and parallelism constraints: Five observed
lines Li, i = 1, 2, 3, 4, 5 and their traversal LM .

such that V(H)∩V(K55) ̸= ∅. To do so, V(H) is first calculated by finding the Gröbner basis
gbH of H w.r.t. the monomial order Z ≻lex Y ≻lex X. The basis gbH contains only 3 linear
terms and is of dimension 0; therefore, its variety is a point:

X =
d1d2d4 + d1d4d6 − d2d4d7 − d3d5d6

2 (d1 − d7) d4
,

Y = −d1d2d4 − d1d4d6 − d2d4d7 − d3d5d6
2d5d6

,

Z = −d1d2d4 − d1d4d6 − d2d4d7 − d3d5d6
2d4d6

. (4.68)

For this point to be a singularity, it should also belong to the variety V(H) ∩V(K55) and
hence it should absolutely lie in the variety V(K55). Substituting the values of X,Y, Z in K55

leaves 36 non-zero polynomials solely in terms of parameters d1, . . . , d7 (see the Maple file).
They constitute the conditions for V(H) ∩V(K55) ̸= ∅.

Proposition 4.8. For five lines bound by orthogonality and parallelism as in (4.62), the P5L
problem has generically no singularities. The singularities may appear as a line and/or as a
point for some special relative configurations of the five lines.

Again, the results in this section remain valid under any permutation of the five observed
lines and hence the analysis entails singularities in the case of five lines subject to any other
orthogonality and parallelism constraints.
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Table 4.2: Different cases of singularities in P4L and P5L.

Cases Subcases Singularity configurations

P3L Three skew lines

C lies on the hyperboloid of one sheet
uniquely defined by the observed lines or
on a cubic surface that contains the three
lines

P4L

Four lines in a hyperbolic
congruence

C lies on two affine lines intersecting the
four observed lines and up to 10 real points

Four lines in a parabolic
congruence

C lies on an affine line intersecting the four
observed lines and up to 10 real points

Four lines in an elliptic con-
gruence

Up to 10 real points

With orthogonality and
parallelism constraints

C lies on the two affine lines intersecting
the four observed lines

P5L

Five lines in a regular linear
line complex

No singularities

Five lines in a singular lin-
ear line complex

C lies on the line intersecting the five ob-
served lines

With orthogonality and
parallelism constraints

No singularities;
Special case: A line and/or a point

All cases corresponding to the singular configurations when observing three, four and five
lines are summarized in Table 4.2.

4.6 Simulation results

This section illustrates the impact that the exposed singularities have on the behaviour of
basic Image-Based Visual Servoing and pose determination algorithms.

From the results of Sections 4.4 and 4.5, we designed a series of simulated experiments
where a free-flying camera is controlled in visual servoing from the observation of lines. First,
we computed the singularity conditions for an example configuration of the lines. Then, we
performed a numerical simulation of visual servoing in the vicinity of singular positions, using
the visual servoing library ViSP [MSC05], to evaluate the impact that the loss of rank of the
interaction matrix has in the controllability of the camera.

Another set of tests show the result of classical algorithms for pose estimation from lines
when the camera is controlled in open-loop (the camera motion is specified beforehand) near
any of the singularities. The files used to perform the simulations are available in the github
repository jorge-gf/thesis-archive [GF22].

The results show that, at, or near a singularity of the interaction matrix, there is a
significant loss of controllability in the visual servo scheme, as well as a poorer accuracy
for the pose localisation algorithms. In particular, we observe that near point singularities,
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Table 4.3: Initial and desired positions relative to a point on the singularity line LM .

∆X ∆Y ∆Z Note

Desired 0.30 −0.30 0.30 Target end position s∗

Start 1 0.20 0.30 0 Near to singularity.

Start 2 −0.30 0.30 −0.30 Opposed to desired.

Start 3 0 0.30 0.40 Near to singularity.

Start 4 0.10 −0.60 0.10 Away from singularity.

i.e. isolated locations for the camera for which the interaction matrix is singular, this effect
is relatively local and not destabilizing. On the other hand, close to the line singularities,
we observe that the controlled system becomes highly unstable, and that the errors in the
reconstructed pose grow several orders in magnitude.

4.6.1 Singularities in P4L

Let us consider four lines L1, . . . ,L4, defined by a point and a direction (4.20), and let us
specialize the parameters arbitrarily as follows:

s1 = 4, s2 = −5, s3 = 7, s4 = 3, s5 = −2, s6 = 13,

d1 = 2, d2 = 3, d3 = 5, d4 = 1, d5 = 7. (4.69)

We obtained the singularity conditions for this configuration as described in the previous
sections. The computations are included in the Section 4.4.3. The singularities consist of
6 isolated points, deriving from Proposition (4.5), plus two lines LM , LN , transversal to
L1, . . . ,L4, that come from Theorem (4.4), and which have the following Plücker coordinates:

LM = [0.0830, 0.4989, −0.8627, 0, −0.9641, −0.5575],

LN = [0.2067, −0.03902, −0.9776, 0, −0.3509, 0.01401].
(4.70)

VS towards a desired pose near singularity line LM

We selected four initial camera positions in the proximity of a point PM with coordinates
[0.3962 − 4.337 7.50]T , which lies on the singularity line LM . From each starting point, we
attempt to control the camera towards a desired position which is always the same. The
coordinates of the start and target positions are defined relative to PM , and are shown in
Table 4.3 along with a commentary on the choice of points. The camera orientations were
chosen such that the four lines are clearly visible from all locations.

At each iteration, the controller tries to minimize an error function s(t)− s∗. The vector
of features s = [l

′T
1 , . . . , l

′T
4 ]T ∈ R12 is composed of the coordinates l′xi, l

′
yi and l′zi for each

projected line 1 ≤ i ≤ 4, while s∗ contains the values of the features at the desired position.
In order to achieve an exponential decrease of the error, the velocity input to the camera is

τc = −λM+
(4) (s(t)− s∗) , (4.71)
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where M+
(4) is the Moore-Penrose pseudoinverse of the interaction matrix (4.8) and λ is a gain

factor which was set to 0.1. For these first simulations, we assume that all the parameters
appearing in the matrix M(4) are known and hence we can always obtain a perfect estimate

of its pseudoinverse M+
(4). Note that no noise was added to the visual data, and hence all

the instabilities are due uniquely to the determinant of the interaction matrix vanishing at a
singularity.

Figure 4.6 displays the camera trajectories starting from each initial position. A normal
behaviour is achieved from Starts 1 and 3: the camera describes an almost straight line towards
the desired pose, and the magnitude of the error vector decreases exponentially (see Fig. 4.7).

Start 2 is located opposite from the desired position relative to the point PM . The camera
reaches the target point eventually, but it diverges along the singularity line as it approaches it
(see Fig. 4.6). The inverse of the condition number κ of M(4), shown in Fig. 4.7, reaches almost
zero in the vicinity of the singularity, which means that the system in (4.71) is ill-conditioned
and, as a result, the controller produces very high velocity commands causing instability.
Figure 4.8 compares the velocity input profiles for Starts 1 and 2 throughout the simulation.
The velocity inputs from Start 2 are two orders of magnitude higher than those produced in a
stable situation. Note that although the distance to the desired point increases during the
undesirable motion (Fig. 4.9), the magnitude of the error ||s − s∗|| remains approximately
constant (Fig. 4.7).

Start 4 is located slightly further away from the singularity line, and closer to the desired
position. The trajectory converges but the camera is again subjected to considerably high
velocities and does not approach the target monotonically (see Figs. 4.6 and 4.9). This
illustrates that the impact of the singularities is not limited to the trajectories that directly
cross a singular point, but instead, that there is an area of influence in the vicinity of a
singularity where the behaviour can be affected by the high condition number of the interaction
matrix.
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Figure 4.6: Visual servoing using four image lines, starting from four initial poses (coloured).
The desired end pose is in black. The black dashed line is the singularity line LM that intersects
the four observed lines.

Figure 4.7: Inverse of the condition number κ of the interaction matrix M(4) (left) and norm
of the error vector ||s− s∗|| (right).
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Start 1 Start 2

Figure 4.8: Velocity inputs τc for the camera in a stable control scheme (left), and when
crossing a singularity (right).

Figure 4.9: Distance to the target during the visual servo.
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Trajectory following across singularity line LN

With the same four lines defined by the parameters (4.69), a simple trajectory along a cubic
curve defined by r∗1(t) = [X∗

1 (t) Y
∗
1 (t) Z

∗
1 (t)]

T with

X∗
1 (t) = −s(t)3 − 1.7551, Y ∗

1 (t) = s(t) + 0.3992

Z∗
1 (t) = 0.7s(t) + 10.0.

(4.72)

for s(t) = 0.04t− 1 and 0 ≤ t ≤ 50 s, was designed to cross the singularity line LN at s(t) = 0.
A second, very similar trajectory r∗2(t) = [X∗

2 (t) Y
∗
2 (t) Z

∗
2 (t)]

T with

X∗
2 (t) = −s(t)3 − 3.2551, Y ∗

2 (t) = s(t) + 0.3992

Z∗
2 (t) = 0.7s(t) + 10.30.

(4.73)

should not cross any singular points.
Trajectory following can be performed using visual servoing by introducing a time-dependent

vector s∗(t) of desired visual features in the control law (4.71), which can be computed by
forward projection (4.2) of the 3D line coordinates in the camera frame Fc as the camera
moves along the trajectory.

As before, we assume that the parameters in the interaction matrix M(4) can be measured

such that we can obtain an estimate of its pseudoinverse M+
(4) to use in the control law (4.71).

However this time we added white Gaussian noise of standard deviation σ = 2 · 10−3 to the 3D
coordinates of the observed lines, in order to simulate the impact of errors in the measurements.
The gain factor λ was set to 1.

The camera behaviour is shown in Fig. 4.10. For trajectory r∗2 (4.73), away from the
singularity line, the camera follows the prescribed path with relative accuracy. The velocity
inputs are mild and there is a small, approximately constant tracking error of about 0.1
(Fig. 4.11), which could be reduced with a more sophisticated controller, for example by
introducing an integral term in the control law (4.71).

For the trajectory r∗1 (4.72), the camera is unable to follow the desired path accurately in
the vicinity of the singularity line. Around s(t) = 0, the velocity commands become very high
in magnitude, inducing instability, and the translation error becomes as high as 1 (Fig. 4.11).
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Figure 4.10: VS from four image lines: Trajectory described by the camera when controlling
it along a prescribed path (thin dotted line). The control becomes unstable along the
trajectory that crosses the singularity line LN (black dashed line).

Trajectory 1 Trajectory 2

Figure 4.11: Camera velocity inputs τc (top) and position error ||r(t) − r∗(t)|| (bottom)
along the trajectories. The vertical step in the bottom figure indicates where Trajectory 1
crosses the singularity line LN .
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VS around the isolated point singularities

For the configuration (4.69), there also exist 6 isolated points Pi such that a singularity occurs
when the camera is on any of them. They are the consequence of Proposition 4.5, and they
have the following coordinates (see Section 4.4.3):

P1 = [−9.858 − 2.473 − 1.841],

P2 = [0.0541 0.0092 1.8422],

P3 = [−0.3203 0.0105 0.2205],

P4 = [1.0113 0.7947 − 0.8850],

P5 = [0.9387 0.5681 − 2.0225],

P6 = [65.09 − 96.57 − 0.03639].

(4.74)

Another point P0 is chosen arbitrarily and away from any singularities:

P0 = [−8.858 − 2.473 − 1.841]. (4.75)

For each of these locations, we simulated a trajectory with the shape of a quadrifolium
centred at Pi, given by the following equations:

X∗(t) = Pix, Y ∗(t) = Piy + 0.3 cos(s) cos(2s),

Z∗(t) = Piz + 0.3 sin(s) cos(2s).
(4.76)

where Pix, Piy, Piz are the coordinates of each point, and s = 2π t/20 with 0 ≤ t ≤ 20 s, and
we applied the control law (4.71) with λ = 5. Once again, Gaussian noise of standard deviation
σ = 10−3 was added to the Plücker coordinates of the lines to simulate measurement errors.

In Fig. 4.12 we show the results for the trajectory centred at the first of these points P1.
The translation error along this trajectory is compared in Fig. 4.13 with that around P0, which
does not come near a singularity. An oscillating tracking error is present in both cases due to
the delay of the camera position relative to the desired point at a given time. However the
presence of the singularity in the first trajectory results in destabilizing velocity commands as
the camera approaches the centre of the quadrifolium (for s = π

4 + nπ
2 ), as shown in Fig. 4.13.

As a consequence, a significantly larger deviation occurs around this point.
The maximum translation errors for all the experiments (4.74), displayed in Fig. 4.14,

occur always when the camera approaches the singularity point. Meanwhile the difference
between the maximum and median errors indicate that the greatest part of the trajectory is
completed with relative accuracy.

A particularly large error occurs in the example around P2. In this case, the point of
singularity P2 is located very near both the singularity line LM (see Section 4.6.1) and one of
the observed lines L2 (we recall that the camera is at a singularity when it lies on Li because
it loses visibility of the line). When the camera approaches point P2, it diverges and is pulled
towards the unstable regions around L2 and LM , resulting in a very large translation error.
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Figure 4.12: Visual servoing along a trajectory with the shape of a quadrifolium (red)
centred at the singularity point P1. The true end camera position is drawn in black. A
large translation error occurs every time the camera approaches the singularity.

Ex. 0 Ex. 1

Figure 4.13: Velocity inputs τc (top) and translation error ||r − r∗|| (bottom) during
experiments 0 and 1. The vertical steps indicate where the trajectory in Ex. 1 traverses
the singularity point P1.
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Median

Figure 4.14: Maximum and median error along the quadrifolium trajectory for all experiments.

Pose Estimation along a quadrifolium trajectory

This section illustrates the impact that the singularities have when performing pose estimation
in their neighbourhood. Typically, pose computation algorithms can be classified in iterative
and non-iterative methods. Iterative methods are usually more efficient and accurate than the
non-iterative ones but, in contrast to them, they require the estimated pose to be initialized
and their convergence is very sensitive to a bad initialization.

For the following results we used our own implementation of the classical (non-iterative) Ro-
bust Perspective-n-Line (RPnL) algorithm [ZXLK12], that combines several classical methods
for the solution of P3L [WXCY19], as well as an improved version, the Accurate Subset-based
PnL (ASPnL) [XZCK16], regarded as one of the state-of-the-art direct solvers for pose estima-
tion from n lines, and which is available as open-source code. Both RPnL and ASPnL solve
the P3L problem for (n− 2) different triplets of lines and then select the solution that yields
the smallest reprojection error.

The previous methods are best suited for small sets of lines with no outliers (they assume
there are no feature mismatches). We consider here n = 4, the minimal number of lines for
which the pose estimation problem has a unique solution, in order to test the behaviour of
pose estimation in the vicinity of the exposed singularities. The pose computed from the
direct methods (RPnL and ASPnL) can be used as an initial estimate to be refined using a
first-order iterative solver. Here we use Virtual Visual Servoing (VVS) ([MC02]), implemented
in ViSP [MC02], which minimizes the reprojection error of the lines by performing visual
servoing on a virtual camera such that the desired image matches the image recorded by the
real camera.

We consider four lines in the same configuration used in Section 4.6.1, defined by a point
and a direction (4.20) and with the parameters fixed as in (4.69). Three experiments were
performed, based on the three points whose coordinates are shown in Table 4.4. Centred
at each of these, we simulated an open-loop trajectory, defined thereafter, along which the
pose computation methods were assessed. For Example 1 from Table 4.4 a generic point far
from any singularities was chosen as a benchmark for the efficiency of the pose estimation
algorithms. Example 2 corresponds to the point singularity P1 in (4.74) - we demonstrate
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Table 4.4: Point coordinates used for simulations of pose determination.

Example Coordinates Note

1 [5.0 2.0 3.0] Away from singularities.

2 [−9.858 − 2.473 − 1.841] Isolated point singularity.

3 [0.7809 − 2.024 3.50] On singularity line LM .

here only the behaviour of pose estimation near one of the points in (4.74) because in practice
the results are very similar around the other five isolated singularities. Finally, the point for
Example 3 lies on the singularity line LM .

In all three cases the prescribed trajectory has the shape of a quadrifolium or four-leaved
clover, defined by (4.76) - for Example 2 in Table 4.4, the pattern is rotated by 90 degrees
around the Y axis, such that the “leaves” of the quadrifolium do not lie too close to the line
LM . A constant camera orientation was chosen such that there is good visibility of the lines
at all times (with the focal axis roughly pointing towards the origin).

Since the pose computation methods should be very sensitive to numerical noise in the
proximity of a singularity, we added Gaussian noise with standard deviation σ = 10−4 to the
Plücker coordinates of the 3D lines.

Two parameters are measured from the simulations: the translation error te, defined as
the Euclidean distance between the true and estimated camera positions, and the rotation
error : the absolute value of the error angle

θe =

∣∣∣∣∣ arccos
(
1

2

[
tr

(
cRo

ĉRo)
T
)
− 1

])∣∣∣∣∣, (4.77)

where cRo and ĉRo
T
are respectively the rotation matrices representing the true and the

estimated orientation of the camera frame.
The results from RPnL and ASPnL as the camera moves along each of the trajectories

are depicted in Fig. 4.15; along with the refinement by VVS when initialized from ASPnL.
The corresponding error metrics are displayed below. Away from the singularities, all three
methods yield near perfect estimations for both position and orientation (see Fig. 4.15a).

In the second experiment (Fig. 4.15b), centred at an isolated singularity, the direct methods
become very inaccurate. A large translation error, reaching up to 0.1, occurs particularly
as the camera crosses the singularity at the centre of the pattern, but also in the vertical
direction of the clover. This is explained by the fact that both RPnL and ASPnL solve the
P3L problem for two triplets of lines (in this case L1, L2 and L3 on one hand, and L1, L2
and L4 on the other), and that for the P3L problem the singularity loci is a surface. The
refinement from VVS generally allows reducing the translation error to below 10−4, except
very near the singular point, where a persistent error of about 0.03 remains.
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In the Example 3 from Table 4.4, the direct methods and VVS all fail catastrophically to
give an acceptable estimation near the singularity (see Fig. 4.15c). As the camera approaches
the line LM , the translation error blows up by several orders of magnitude (∼ 1027). Since the
RPnL and ASPnL algorithms compute several local minima and then select the best solution
based on the reprojection error, we verified that the true solution does not lie among the local
minima that were discarded. It seems that the ill-conditioning of the interaction matrix causes
numerical issues in the direct solvers such that they are incapable of locating where along this
line the true solution lies.

Overall, these experiments demonstrate that a rank-deficiency of the interaction
matrix can significantly impact the performance of pose computation methods,
leading to a considerable loss of accuracy or, in some cases, a completely wrong solution for
camera poses near a singular location. This is true even in the case of direct solvers such as
RPnL and ASPnL which do not explicitly involve the interaction matrix.

4.6.2 Singularities in P5L

We now consider the case of five lines determined by the following parameters:

s1 = 4, s2 = −5, s3 = 7, s4 = 3, s5 = −2, s6 = 13, s7 = −11, s8 = 6,

d1 = 2, d2 = 3, d3 = 5, d4 = 1, d5 = 7, d6 = −4,

d7 =
128893236

7630285
− 24

√
8508173023861

7630285
≈ 7.7178.

For this configuration, the polynomial condition from Proposition 4.7 is satisfied, and there
is one transversal line LM that intersects all five lines (see Section 4.5.3), defined by its Plücker
coordinates:

LM = [0.0830 0.4989 − 0.8627 0 − 0.9641 − 0.5575] (4.78)

From Theorem 4.3, we know that a singularity will occur when the camera lies on this line.
Note that the lines L1, . . . ,L4 are defined identically as in Section 4.6.1, and that L5 is chosen
so as to intersect the first of the lines of singularity (4.70).

VS near the singularity line

We considered a point PM = [0.3962 − 4.337 7.50] that lies on the transversal LM and defined
four starting camera positions in its surroundings. From each of these points, we performed a
simulation of visual servoing towards a target point. The initial and desired positions are the
same as those considered in Section 4.6.1, whose coordinates relative to point PM are given
in Table 4.3. The camera velocity inputs are computed according to (4.71) with the factor
λ = 0.1. Gaussian noise of standard deviation σ = 2 · 10−3 was added to the 3D coordinates of
the lines.

In all four experiments, the magnitude of the error vector decreases exponentially (Fig. 4.18).
However, the trajectories displayed in Fig. 4.16 show very different behaviours. Starts 1 and 3
converge rapidly, with small camera velocities and displacements.

On the contrary, Starts 2 (directly opposed to desired point) and 4 (further away from the
singularity), lead to unstable motion and large deviations. The velocity input profiles for Starts
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Figure 4.16: Visual servoing from five lines starting from different positions (coloured) towards
a desired pose (black). The line LM (dashed line) that intersects all five lines is a singularity
of the interaction matrix.

Start 1 Start 2

Figure 4.17: Camera velocity inputs τc in
a stable situation (left), and when crossing
a singularity (right).

Figure 4.18: Inverse of the condition num-
ber κ of the interaction matrix M(4) (left)
and norm of the error vector ||s − s∗||
(right).

1 (stable) and 2 (unstable) are compared in Fig. 4.17. In the latter, the inputs become very
high in magnitude as the inverse of the condition number of the interaction matrix drops near
zero, when the camera crosses LM . Again we notice that there exists a region of instability
around the singularity line, particularly strong in one direction which affects the trajectory of
Start 4, where the interaction matrix becomes ill-conditioned.
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Figure 4.19: Pose computation from RPnL, ASPnL and ASPnL refined by VVS using five
image lines along a quadrifolium trajectory centred at a point on the line singularity LM . In
the proximity of the singularity the error in the estimation grows unbounded.

Pose Estimation near the singularity line

For completeness, we conclude by demonstrating the behaviour of pose estimation from the
observation of five lines near a singularity. We simulated a trajectory along a pattern with
the shape of a quadrifolium (with equations (4.76)) centred at a point with coordinates
[0.7809 − 2.024 3.50], which lies on the singularity line LM . Along this trajectory, the camera
pose was computed using the RPnL ([ZXLK12]) and ASPnL ([XZCK16]) algorithms and the
estimation was further refined using VVS ([MC02]) initialized at the pose computed by ASPnL.
We considered Gaussian noise of standard deviation σ = 10−4 on the 3D coordinates of the
observed lines.

The true pose is shown along with the estimations from the three methods in Fig. 4.19, while
the translation error te and the rotation error θe defined by (4.77), are depicted in Fig. 4.20.
The observed behaviour is very similar to the case of four lines when pose reconstruction is
performed near the singularity line: along the leaves of the quadrifolium, the direct solvers
(RPnL and ASPnL) are quite sensitive to numerical noise, which is mitigated by the refinement
through VVS. However, very near the singularity the errors blow up in magnitude and all
methods prove totally unsuccessful. For comparison, along a similar trajectory, but centred at
coordinates [0.5 4.0 1.0], far from any singularities, all methods are accurate up to 0.1 in the
estimation of position and up to 2 · 10−3 rad in orientation throughout.
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Figure 4.20: Translation (top) and rotation (bottom) errors in pose estimation from five lines
along a quadrifolium trajectory. The vertical steps indicate where the camera crosses the
singularity.

4.7 Conclusions

In this chapter, the singularities in the perspective four and five line problems were determined.
Finding these singularities is crucial since they lead to controllability issues in visual servoing of
image-lines and in large errors in pose estimation for PnL. To do so, a basis of the interaction
matrix was found such that its rows are Plücker coordinates of n affine and n ideal lines for
PnL.

First, it was recalled that the singularities in P3L are due to the vanishing of the determinant
of the (6× 6) interaction matrix which factors as a quadric and a cubic surface in terms of the
position coordinates of the optical centre of the camera. It was then proved that the quadric
surface is essentially the hyperboloid of one sheet uniquely defined by the three observed lines.

This fact was further used in the case of P4L to understand different cases such that the 28
principal minors of the (8×6) interaction matrix vanish simultaneously, leading to singularities.
One of those cases is when the camera lies on two transversals intersecting the observed four
lines. It was also shown that this one dimensional singularity could be avoided by choosing
the fourth line to not intersect the hyperboloid defined by the other three lines. Additionally,
Gröbner basis computations were used to determine that there can exist up to ten real isolated
singularities of P4L.

Furthermore, in the case of P5L, no singularities were found for a generic choice of five
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lines. Nonetheless, some conditions of the relative configurations of the five lines were shown
to yield a transversal line of singularities that intersects the five observed lines.

The same analysis was done for four and five lines that are constrained to be orthogonal or
parallel to each other to corroborate the results for the generic case. It turned out that the
singularities for P4L consist of two transversal lines, whereas for P5L, it is a unique transversal
line.

The geometric interpretation of the one dimensional singularities of P4L and P5L was
provided, by extending the result that a hyperboloid of one sheet is a singularity in the P3L
case. These one dimensional singularities appeared when the affine lines in the interaction
matrix are linearly dependent by being parallel to the same plane. In the future, we will try
to obtain the geometric interpretation of the isolated point singularities in the generic P4L
and P5L.

The results are supported with experimental simulations of Visual Servoing control of a
camera and of pose determinations algorithms from the observation of lines in the proximity
of the singularities. As expected, the ill-conditioning of the interaction matrix near a singular
point results in unstable behaviour of the control law from VS and in significant losses of
accuracy for the pose estimation methods.

In Appendix A we present a similar singularity analysis for the observation of minimal
combinations of point and line features.
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Chapter 5

Critical points of IBVS

Abstract. When performing Image-Based Visual Servoing of a camera, it is a known issue
that using a redundant set of visual features (i.e. more than the number of degrees of freedom
of the system) may lead to the appearance of local minima, that is, stable camera configurations
for which the error function is non-zero. As a consequence, the camera may converge to one
of these equilibria, instead of the desired final position, resulting in a steady state error that
can be critical for applications requiring high-precision. The challenge of determining whether
any such points exist, and computing their location, has hitherto remained an open problem,
due to the complexity of the equations involved. Further, identifying all the local minima is a
necessary step for an analysis of the global stability properties of IBVS controllers and, in
particular, for determining whether the camera will converge to the desired position from an
initial configuration in the workspace.

For many IBVS strategies, the control input velocity is defined to make the camera move in
a direction that decreases the magnitude of the error. Then, the points of equilibrium are the
critical points of a potential function representing the error norm. In this chapter we address
the problem of computing the equilibrium points of IBVS control from N reference points.
We model the problem as a system of polynomial equations arising from the gradient of the
error potential, in the variables representing the projected coordinates of the points and their
depth along the focal axis of the camera. Using msolve, a polynomial-based system solver, we
solved this system for N = 4 reference points in some different configurations. However, due
to the complexity of the equations, the computing times are exceedingly long (over several
weeks over 12 processors running in parallel). Since the local minima must be recomputed for
every configuration of the reference points and for every desired end pose of the camera, we
find that this formulation is insufficiently effective.

We then present an alternative modeling of the equations, by defining a change of variables
that exploits the symmetries of the solution set of the original system, and then performing
algebraic elimination by means of Gröbner bases with respect to an elimination ordering,
leading to a new polynomial ideal with lower degree. Additionally, we also find that, in the
case of planar markers (i.e. the reference points lying on the same plane), we can further
reduce the degree of the polynomial ideal by imposing the coplanarity condition in the space
of the state variables.

With these reformulation, we can compute the critical points in the case of 4 generic
reference points in a matter of 2-3 days, as well as in a few hours for coplanar points.

The work presented in this chapter was done in collaboration with Alessandro Colotti and
Alexandre Goldsztejn.

Keywords Visual servoing · Critical points · Global asymptotic stability ·
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5.1 Introduction

5.1.1 Motivation and problem statement

Image-Based Visual Servoing methods are known to be, at least, locally asymptotically stable
in the neighbourhood of the global minimum of the system [CH06]. However, in general, the
controlled dynamical system may have other local minima, corresponding to configurations
where the system has converged to a state with non-zero error. Further, the local minima
may be located anywhere, and particularly, arbitrarily near the actual global minimum. This
can be critical for applications with high-precision requirements, such as industrial or medical
robotics. In addition, the existence of these minima raises the question of delimiting the
regions in the configuration space where the camera can be guaranteed to converge towards
the desired position. The challenge of accurately identifying the points of equilibrium of IBVS
controllers has thus far remained unsolved, as has the broader problem of characterizing the
global stability properties of the controller and, in particular, of deciding whether the system
will converge to the desired state from an initial configuration.

In this chapter we focus on the classical IBVS control of a camera with six degrees of
freedom, with an error function (s− s⋆) defined as the difference between the vector of visual
features s ∈ Rk and the reference value of these features s⋆, and the input control velocity
proportional to the error vector as vc = −λ L̂+(s− s⋆), where L̂+ is the control matrix and
λ a gain factor. The matrix L̂+ is typically chosen as a generalized inverse (such as the
Moore-Penrose pseudo-inverse) of the interaction matrix L or of an estimation L̂ of it, if
not all of the parameters involved in L are known (refer to [CH06, HHC96] or to Chapter 2,
Section 2.4). For this input velocity, the error vector evolves as

d

dt
(s− s⋆) = −λLL̂+(s− s⋆). (5.1)

The global asymptotic stability of this system around its global minimum is guaranteed if
the following condition is ensured throughout the whole parameter space except at s = s⋆ (see
Chapter 2, Section 2.6):

LL̂+ ≻ 0. (5.2)

However, when a redundant number of visual features k > 6 is used, the condition (5.2) can
never be ensured, since LL̂+ ∈ Rk×k is of maximum rank 6. For this case, configurations such
that (s− s⋆) ∈ ker(L̂+) correspond to fixed points of the system: configurations for which the
camera velocity is null but the error is not zero.

Choices of the control matrix L̂+ for which the product LL̂+ ⪰ 0, i.e. it is at least always
positive semi-definite, satisfy that the system (5.1) always evolves in a direction that decreases
the norm of the error function. If we define the error potential as V = 1

2 ||s− s⋆||2, then dV
dt is

always non-positive, and such a system is said to be of gradient-descent type with respect to
V . This is the case for a transpose controller L̂+ = LT , which is known to be quite robust
in general, although it has poor convergence properties. It is also the case when using the
classical pseudo-inverse matrix, when all the parameters can be measured or computed from
the image: L̂+ = L+(p). Note that it is not the case, for instance, for the choice L̂+ = L+(p⋆),
where the matrix is evaluated at the desired position, a choice commonly used in practice.
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According to Lyapunov’s theory (see, for instance, [SL+91]), convergent trajectories of
a system that is gradient-like with respect to a function V will always converge towards a
critical point of V [Sas13]. The computation of the critical points is thus a first step towards
a global stability analysis of IBVS controllers, the next step being the characterization of the
regions of attraction around each of the points of equilibria, in particular the global minimum.

Recently, Alessandro Colotti and Alexandre Goldsztejn have developed a strategy to esti-
mate the regions of attraction by solving an optimization problem with polynomial constraints.
Their method relies on comparing the relative value of the error potential at the different
critical points and, as a consequence, a crucial part of it is identifying precisely all of these
points. Given that the dynamics of visual servoing are governed by systems of highly non-
linear polynomial equations, and the need of exact solutions, computer algebra is particularly
well-suited for the task.

5.1.2 Main results

This chapter deals with the computation of the critical points of IBVS from N reference
points. First, we give the equations describing the critical points of the error potential V as
the vanishing of the gradient of V . By differentiating with respect to the camera pose as an
element of SE(3), we show that the critical points of V are the camera configurations for
which the error vector is in the left kernel of the interaction matrix: LT e = 0. In the case of
N reference points, it leads to a system of six equations that are naturally parametrized in
the space of variables (s,Z), representing the coordinates of the points on the image and their
depths along the focal axis of the camera. Solving the equations in terms of these variables is
more computationally tractable than trying to solve them in terms of a parametrization of the
camera pose parameters p, although it requires that additional constraints be considered, by
imposing that the distance between each of the points does not change.

For N > 3 points, the resulting system of equations defines a finite set of solutions with com-
plex coordinates. For instance, for N = 4 generic points, we obtain a polynomial ideal of degree
3656, i.e. there are 3656 complex solutions counted with multiplicity. Using msolve [BES21],
a computer algebra based polynomial system solver, we succeeded in computing the critical
points for N = 4 points, both in generic and in particular configurations of interest, such as
planar targets. However, the computing times are exceedingly high, well over several weeks
for most cases, making it ineffective for the study of more than a few different configurations.
Nevertheless, this is, to our knowledge, the first time that these results have been obtained
using exact methods, and is therefore a noteworthy result. Alternatively, numerical methods,
such as homotopy continuation, could be used; however we show that, due to the high degrees
of the polynomials involved, methods relying on floating point arithmetic are not reliable for
this problem. In particular, homotopy often fails to capture all the solutions of the system,
thus justifying the use of more expensive methods for exact polynomial system solving.

We next present two computer algebra strategies specific to these systems that can be
applied to simplify the equations and reduce significantly the computing times. The first of
these techniques relies on exploiting the symmetries of the polynomial system by defining
a change of variables invariant to this symmetry, and applying elimination theory through
Gröbner bases. In fact, the set of solutions of the original system of equations presents point
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symmetry through the focal centre of the camera and, as a consequence, half of the solutions
are reflections of the other half. We exploit this property to derive a system with half the total
degree (e.g. 1828 for N = 4 generic points). The other technique can be applied when all the
reference points lie on the same plane. For this case, there is another kind of symmetry that
appears in the mapping from the group of Euclidean transformations to the state of the system:
with respect to the plane of the object, and as a result the solutions of the system appear
with multiplicity. Using the Jacobian criterion ([Eis13], Theorem 16.19), the multiplicity of
the solutions is reduced and, with it, the total degree of the polynomial ideal, that we can
again reduce by half.

With these computational improvements, we were able to solve a larger variety of examples
with msolve in more practical times - of the order of 2-3 days for the case of N = 4 generic,
non-coplanar points, and from a few minutes to a few hours for the case of points lying on the
same plane. We expect to be able to compute the solutions for N = 5 reference points in the
future, by taking advantage of these techniques. However the case N = 5 has so far proven
too computationally intensive, due to the amount of memory required.

For comparison, we also attempted to solve the reformulated systems of equations using
homotopy continuation, albeit with the same, meagre, success. For planar objects, applying
the Jacobian criterion technique improves the proportion of solutions captured correctly by
homotopy, but we still find examples for which many solutions are not detected. On the other
hand, when we derive a new system of polynomials by removing the symmetric solutions,
the system becomes over-constrained, and homotopy methods fail altogether to compute a
solution.

Structure of the chapter. In Section 5.2, we introduce the equations that describe the
critical points of general IBVS controllers that are of gradient-descent type with respect to
the error potential. Then, in Section 5.3, we consider the case of N reference points and
model the problem as a system of polynomial equations in the projected coordinates of the
points and their depths along the focal axis. We also present some preliminary computation
results obtained by solving this system using msolve, leading to very long computing times.
Section 5.3.3 describes how to reduce the total number of solutions that must be computed
by applying a change of variables that is invariant to the symmetries of the system, and
Section 5.3.4 focuses on the case of planar objects, and shows how the total degree of the
ideal generated by the equations can be further reduced by removing the multiplicity of the
solutions. Then in Sections 5.3.5 and 5.3.6 is explained how to retrieve the camera poses that
correspond to the critical configurations from the solutions in the space of image parameters,
and how to classify the solutions in local minima, maxima or saddle points. In Section 5.4 are
presented the computation results for several different configurations, and the improvements
in computing times obtained by applying the two techniques above. The results are compared
with the results from numerical (homotopy continuation) methods applied to these systems.
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5.2 Critical points of gradient controllers

Let us consider the classical IBVS control of a camera, where the vector of features s is
a function of the relative pose p between the camera and the target (s = s(p)), and the
reference value of the features s⋆ is fixed. Then, the error of the controlled system e = (s− s⋆)
evolves as (5.1). The camera pose p is an element of SE(3), the Lie group of rigid-body
transformations (see Chapter 2, Section 2.1).

We define the potential of the error V : SE(3)→ R as the function

V (s(p)) =
1

2
||s(p)− s⋆||2= 1

2
eTe. (5.3)

The time-derivative of V is thus

V̇ (t) = eT ė = −λeTLL̂+e (5.4)

Any choice of controller (i.e. any choice of the matrix L̂+) for which the product LL̂+ is

positive semi-definite everywhere in the configuration space, i,e, LL̂+ ⪰ 0 for all p in SE(3),
will always evolves in the direction of non-increasing V : V̇ (p(t)) ≤ 0 for all p. Then, the
controller is said to be of gradient-descent type or gradient-like with respect to the function V .
For such systems, Lyapunov’s theory dictates that all the convergent trajectories converge
towards a critical point of the function V (see Section 2.7); in other words, all the stable
points of the controlled system are critical points of the function V , and the function V is a
Lyapunov function around each of the stable points.

The critical points of V are the camera configurations p for which its gradient with respect
to the camera pose p vanishes. The set of all the critical points is denoted C:

C = {p ∈ SE(3) : ∇pV (p) = 0} . (5.5)

The pose p being an element of SE(3), it is also a differentiable manifold. The differential
of an element of SE(3) is an element of the Lie algebra se(3), which defines a vector space
locally tangent to the manifold SE(3). Differentiation with respect to SE(3) is commonplace
in Robotics (refer to [LP17], and to Chapter 2, Section 2.1), although we find it convenient to
recall it here in the derivation of the following theorem.

Theorem 5.1. For IBVS controllers that are gradient-like with respect to the error potential
V : SE(3)→ R, V (p) = 1

2 ||s(p)− s⋆||2 , the critical points of V are the solutions of

∇pV (p) ≜ LT (p) (s(p)− s⋆) = 0 (5.6)

Proof. Let the camera pose p ∈ SE(3) be represented by a (4× 4) homogeneous matrix
M = cMo as in (2.1) (following the subscripts convention, M represents the pose of the object
frame Fo relative to the camera frame Fc), and consider a change of the function V due to a
small variation in the pose given by δM:

δV =
∑
i

ei(δei), (5.7)
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where the infinitesimal error variation δei is related to δM by

δei = tr
(
eTiMδM

)
. (5.8)

Here, tr(·) is the matrix trace operator and the subscript {·}M denotes the partial derivative
with respect to the matrix M. The partial derivative of a scalar f by any matrix A ∈ Ra×b is
defined, using the standard denominator layout, as

fM =
∂f

∂A
=

fA11 fA12 . . . fA1b

...
. . .

...
fAa1 . . . fAab

 . (5.9)

The trace pairing between the matrix partial derivative and the matrix variation in (5.8)
amounts to the correct variation of the scalar function [TR17].

Additionally, the variation δM of the homogeneous matrix can be expressed as [LP17]

δM = [δΣc] M (5.10)

where δΣc is an element of se(3) representing an instantaneous velocity twist in camera
frame coordinates, and [δΣc] is its (4× 4) matrix representation according to Definition 2.5.

Substituting (5.10) in (5.8) and using the fact that s⋆ is fixed and, hence, eiM = siM, we
have

δei = tr
(
sTiM [δΣc] M

)
. (5.11)

This expression can be rearranged in terms of the components of δΣc and expressed as a
matrix-vector product:

δei = Li δΣc (5.12)

where Li ∈ R1×6 is the usual interaction matrix (5.14) for each feature si. To show that the
above is true, it suffices to expand the terms on both sides of the equality. Finally, injecting
this expression in (5.7), we obtain

δV =
∑
i

ei (Li δΣc) =
(
eTL

)
δΣc. (5.13)

The product
(
eTL

)
is thus the vector gradient of V , ∇pV . At a critical point of V , the

variation (5.13) must be zero for any direction of δΣc, therefore
(
eTL

)
must be the zero vector,

thus completing the proof.

Note The matrix M = cMo represents the position and the orientation of Fo expressed
in Fc coordinates. Accordingly, the instantaneous twist δΣc, that left-multiplies the trans-
formation matrix in (5.10), is also expressed in camera-frame coordinates: δΣ = δΣc. For a
twist δΣo expressed in world coordinates, (5.10) is equivalent to right multiplying by the twist
operator: δM = T [δΣo] (see Chapter 2 Section 2.1.3). Since the velocity vector is typically
expressed in camera frame coordinates, the form used in the derivation of the interaction
model is (5.10).
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5.3 Critical points of IBVS from N points

5.3.1 Modeling

Let us consider a reference object consisting of N points in R3. Then, a 3D point with coordi-
nates Xi = (Xi, Yi, Zi) in the frame of the camera, is projected on the image plane on coordi-
nates (xi, yi) = (Xi/Zi, Yi/Zi) (see Chapter 2, Section 2.3). We take s = (x1, y1, . . . , xN , yN )
as the vector of coordinates of the image points, and s⋆ = (x⋆1, y

⋆
1, . . . , x

⋆
N , y⋆N ) as the reference

value of the visual features. The vector Z = (Z1, . . . , Zn) contains the depth coordinates of the
points, along the focal axis of the camera. The interaction matrix, which relates the variation
of the visual features to the camera velocity twist by (2.23) is the usual for a set of points:

L(s,Z) =
[
LT
1 . . . LT

N

]T
with Li given by (2.31):

Li(si, Zi) =

[
− 1

Zi
0 xi

Zi
xi yi −(1 + x2i ) yi

0 − 1
Zi

yi
Zi

1 + y2i −xi yi −xi

]
, (5.14)

The system (5.6) that describes the fixed points of the error potential V = 1
2 ||s − s⋆||

leads to the following system of six equations, in 3N variables: s = (x1, y1, . . . , xN , yN ) and
Z = (Z1, . . . , ZN ), and depending on the parameters s⋆ = (x⋆1, y

⋆
1, . . . , x

⋆
N , y⋆N ):

N∑
i=1

xi − x⋆i
Zi

= 0

N∑
i=1

yi − y⋆i
Zi

= 0

N∑
i=1

xi (xi − x⋆i )

Zi
+

yi (yi − y⋆i )

Zi
= 0

N∑
i=1

xi yi (xi − x⋆i ) + (1 + y2i ) (yi − y⋆i ) = 0

N∑
i=1

(1 + x2i ) (xi − x⋆i ) + xi yi (yi − y⋆i ) = 0

N∑
i=1

(xi y
⋆
i − yi x

⋆
i ) = 0

(5.15)

It can be assumed that Zi ̸= 0 always for all i, since the contrary corresponds to the degenerate
cases where the projection is undefined. Therefore the system (5.15) can be made polynomial
by multiplying the first three equations by

∏
i Zi.

A possible approach for computing the critical points of the function V is to define a
parametrization for the pose of the camera p (e.g. by means of a translation vector t and
a rotation matrix R, or the components of a unit quaternion), and describe the system of
equations (5.15) in terms of this parametrization.

113



We define the mapping that assigns the value of variables (s,Z) to a particular position
and orientation of the camera frame as

Φ : p ∈ SE(3) 7→ (s,Z) ∈ R3N . (5.16)

Let the couple (t,R), with t = cto ∈ R3 and R = cRo ∈ SO(3) describe the pose p of a
reference frame attached to the object, relative to the frame of the camera, following the
convention for subscripts and superscripts (see Section 2.1). We can describe the variables
s = (x1, y1, . . . , xN , yN ) and Z = (Z1, . . . , Zn) in terms of the camera pose using

Xi =

Xi

Yi
Zi

 = R · oXi + t

xi = Xi/Zi, yi = Yi/Zi,

(5.17)

where oXi is the vector of coordinates of the point in the object frame. The equations (5.17)
describe the function Φ(p) = (s,Z).

However, substituting (5.17) in the system (5.15) yields, after properly algebraizing the
equations, a system of polynomials in very high degrees, computing the solutions of which is
outside of our computational capabilities.

Instead, a better strategy was proposed by Alessandro Colotti. We search for the solutions
of the system above directly in the space of variables (s,Z), in which the equations (5.15)
are naturally expressed. However this means there are 3N variables for 6 equations, and for
N ≥ 3 points the system is underconstrained. It is thus necessary to consider some additional
constraints in order to construct a square system.

The extra relations are obtained from the problem geometry. The distance ||Xi−Xj ||= dij
between any two points Xi and Xj must remain constant, when expressed in the space of
variables (s,Z). Since Xi = xiZi and Yi = yiZi, each constrain has the form

cij(s,Z) := (xiZi − xjZj)
2 + (yiZi − yjZj)

2 + (Zi − Zj)
2 − d2ij = 0, (5.18)

where dij is known from the object configuration. We can derive N(N−1)
2 such relations for

different pairs of points, although only 3N − 6 are enough to constrain the system. The values
of (s,Z) that satisfy (5.18) for all i and j are those compatible with the geometry of the object
or, in other words, those for which the inverse of the transformation (5.16) is defined:

∃T ∈ E(3) : Φ(T) = (s,Z) ⇔ cij(s,Z) = 0 (5.19)

Remark 1. This inverse T belongs to the group of all Euclidean transformations E(3), and
not SE(3) (see Section 2.1.1). In particular, indirect isometries of the Euclidean space,
denoted by E(3)− that is, transformations including reflections by planes, or through axes
and points, also satisfy (5.18). They do not correspond to a feasible camera configuration,
since they change the handedness of the reference frame.

Remark 1 will become particularly relevant in Section 5.3, where we investigate the
symmetries of the equations and reduce the complexity of the system by removing the spurious
solutions beforehand.
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Finally, we can remove the solutions of (5.15) that satisfy Zi = 0 for some i (since they
correspond to degenerate configurations), by enforcing a constraint of the form 1−ℓ Z1 . . . ZN =
0, where ℓ is a new variable. Alternatively, the solutions with zero Zi coordinate could be
removed later, but we find that including this constraint reduces notably the computation
time.

Theorem 5.2. Consider an IBVS control scheme from N reference points and which is
gradient-like with respect to the potential of the error V = 1

2e
Te. The critical points of V are

described by the system of equations

F(s,Z) =
(
LT (s− s⋆), c12, c13, . . . , 1− ℓ Z1 . . . ZN

)
= 0, (5.20)

which depends on the parameters s⋆ = (x⋆1, y
⋆
1, . . . , x

⋆
N , y⋆N ) and d = (d12, d13, d14, . . . ).

Lemma 5.3. The solutions of the system (5.20) are symmetric with respect to the transforma-
tion Z 7→ −Z. For every solution (s,Z) corresponding to a critical camera pose pcrit ∈ SE(3),
the point (s,−Z) is also a solution, corresponding to a reflection of the scene about the focal
point T̂ ∈ E−(3).

Proof. The function s(p) described by (5.16) has an invariance with respect to a reflection
of the scene through the focal point of the camera; that is, points with 3D coordinates −Xi

map to the same image point: Π(Xi) = Π(−Xi) = si. The solutions of the system (5.6) also
present this symmetry, since the transformation Z 7→ −Z only changes the sign of some of the
polynomials of F. Since a reflection through a point is an isometry of the Euclidean space,
distances between the points are preserved, therefore the distance constraints (5.18) remain
invariant too.

In particular, for every solution (s,Z) corresponding to a critical point, there exists a
symmetric solution (s,−Z). However the latter does not correspond to a real rigid-body
transformation p ∈ SE(3); rather to its reflection through point C, which we denote T̂. These
spurious solutions can by identified after solving the system of equations. In Section 5.3.3, we
will detail how to exploit this symmetry to our advantage, by applying a change of variables
invariant to this transformation in order to derive a simplified system, with a lower total
degree and a smaller number of solutions.

5.3.2 Solving the difficult system

Here we present some preliminary results, obtained by solving the system (5.20) directly. We
can do this only for only a handful of configurations due to the long computing times (between
15 and 41 days from our tests). Then, over the next sections, we explain how to reformulate
the system of equations to obtain a new polynomial ideal with lower degree, which allows us
to obtain a wider collection of results, which are presented in Section 5.4.

In general the equation system (5.20) is of dimension zero for N > 3 points. It can
be solved using any method for polynomial system solving: symbolic, such as approaches
based on Gröbner bases, or numerical, such as homotopy continuation. In the following
we use msolve [BES21], a software for computing the real solutions of zero-dimensional
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Table 5.1: Computation of the critical points in IBVS for N = 4 points in different con-
figurations using symbolic vs. numeric computation. In red are indicated the systems for
which homotopy fails to find the correct number of solutions. The msolve computations were
performed on 12 cores, while the Julia computations were done on a single core.

System msolve Julia (Homotopy Continuation)

#solsC #solsR Time (×12 cores) #solsC #solsR Time

1 square1 402 50 15 days 403 50 1630 s

3 square3 1016 44 24 days 1016 44 1495 s

7 rectangle3 1064 48 27 days 871 32 1950 s

13 generic1 3656 84 41 days 3537 95 2280 s

multivariate polynomial systems. msolve is based on the F4 [Fau99] algorithm for computing
Gröbner bases and on the FGLM [FGLM93] algorithm for changes of monomial ordering (we
refer to Section 3.2.3 for a review of the state-of-the-art algorithms for solving polynomial
systems), and it produces a rational parametrization of the (finite) set of solutions, as
introduced in Definition 3.20. A univariate real root isolation algorithm is then used to
compute an approximation of the solutions to arbitrary precision. For a comparison between
the performances symbolic and numerical approaches, we will later show the results obtained
using real homotopy continuation, through the package [BT18] implemented in Julia. All
the computations presented here, as well as the scripts used to perform them, will be made
available in the github repository jorge-gf/thesis-archive [GF22].

Using msolve, we were able to solve the system of equations (5.20) for the observation of
N = 4 points in a generic configuration, as well as for other configurations of practical interest,
such as four coplanar points forming a square or a rectangle, with a desired final pose which
is parallel to the plane of the object. Table 5.1 shows the number of complex (#solsC) and
real (#solsR) solutions (including the mirrored solutions) of the system of equations (5.20)
for N = 4 points in four different configurations, along with the computation times. The
computations were performed on a machine equipped with an Intel Xeon Gold 6246R CPU
(3.40GHz) and 1.5 TB RAM. The msolve computations were performed using 12 cores in
parallel. The parameters d, s⋆ for these systems are given later, in Table 5.3 of Section 5.4,
where we also present a larger sample of configurations and their solutions.

Unfortunately, the computing time for solving these systems is exceedingly high, way
over several weeks for certain configurations, depending on the sizes of the coefficients in the
polynomials. Given that the computation must be performed for every different geometry of
the object, encoded by d, and for every target pose for the camera, determined by s⋆, the
formulation used to compute the critical points by solving the system (5.20) is not effective
for real life applications. Nevertheless, it is, to our knowledge, the first time that these results
have been obtained, thanks to the use of state-of-the-art software and powerful Gröbner Bases
algorithms.

The solutions from msolve are compared in Table 5.1 with the results and timings obtained
using homotopy continuation, through the Homotopy Continuation package for Julia. Unsur-
prisingly, numerical methods are much faster than the exact ones (note also that the speed is
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also roughly independent of the coefficient sizes). This is because polynomial based computer
algebra methods suffer from the bit growth due to handling exact rational values, which is not
a problem for floating-point arithmetic. However we observe that homotopy often fails to find
the right number of complex and/or real solutions; these are the cases marked in red. On one
hand, homotopy can sometimes miss solutions if one or more points are very close together and
they are identified as being only one. On the other hand, solutions with multiplicity can be
identified as being multiple different solutions. It is also possible that complex solutions with
very small imaginary parts are interpreted as real solutions. As highlighted before, the correct
determination of all the critical points of the system is crucial for the characterization of the
regions of attraction of IBVS controllers. The method by Alessandro Colotti and Alexandre
Goldsztejn based on optimisation relies on comparing the relative value of the error potential
at all the different critical points; therefore missing a single critical point (or misidentifying a
false one) could potentially spoil the estimation of the regions of attraction. This illustrates
the limitations of numerical methods when applied to such type of highly non-linear equations,
and the need to use exact polynomial system solving methods, even at a larger computational
cost.

Over the next sections we describe two strategies to simplify the system of equations (5.20),
which allowed us to reduce the computation time significantly, and to solve a wider variety
of examples. One of these techniques relies on exploiting the symmetries of Lemma 5.3 by
defining a change of variables invariant to this symmetry, and applying algebraic elimination
theory through Gröbner bases. The other can be applied when all the reference points lie on
the same plane, and it uses the Jacobian criterion to reduce the multiplicity of the solutions
and therefore the total degree of the polynomial ideal. The results of these computations are
shown in Section 5.4.

5.3.3 Exploiting the symmetries

As mentioned above, the set of solutions of the system F(s,Z) = 0 in (5.20) presents point
symmetry through the camera centre C; in other words, they are invariant to a transformation
Z 7→ −Z. As a consequence, half of the complex solutions (with non-zero Z coordinates)
are trivial to compute if the other half are known. Furthermore, the reflected solutions are
spurious, and do not correspond to a rigid body transformation p ∈ SE(3), but to a reflection
T̂ ∈ E−(3).

In this section we detail how to exploit this property to our advantage, by deriving a new
system that does not present this symmetry, where the total degree (the total number of
solutions when counted with multiplicity) is half that of the original system, and which can be
solved in much less time. This is done by defining a new set of coordinates that are invariant
to the symmetry of the system, and deriving a set of equations in the new variables by means
of Gröbner bases and algebraic elimination theory.

Let us define the following transformation, that maps the Z coordinates to new variables

θ ∈ R
(N−1)N

2 :
Z 7→ θ =

(
θ12, θ13, . . . , θ(N−1)N

)
where θij = ZiZj . (5.21)

This change of coordinates is invariant to the symmetry described above: θ(Z) = θ(−Z).
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Therefore by projecting the solutions of the original system on the space of variables (s,θ),
each solution (s,Z) and its reflection (s,−Z) are mapped onto the same point.

From the definition of θij we trivially obtain relations between the old and new variables of
the form θij −ZiZj = 0. For every polynomial in the original system fi ∈ F(s,Z), we consider
the ideal formed by appending all these relations, along with the constraint 1− ℓ Z1 . . . ZN = 0,
where ℓ is an auxiliary variable, to enforce Zi ̸= 0 for all i:

Ii = ⟨fi, 1− ℓ Z1 . . . ZN , θ12 − Z1Z2, θ13 − Z1Z3, . . . ⟩ ⊆ Q[ℓ, s,Z,θ]. (5.22)

The ideal Ii is then projected onto the space of variables (s,θ). This is done by computing
a Gröbner Basis Gi for (5.22) with respect to an elimination order with [ℓ,Z] ≻ [s,θ].

Gi ← Ii ∩Q[s,θ] (5.23)

The set union of all the Gröbner bases obtained in this form defines the new system
of equations in variables (s,θ). However the resulting variety has a positive dimensional
component that satisfies θ = 0, and corresponds to degenerate solutions with Zi = 0 for some
i. To remove this positive dimensional component we introduce again a constraint of the form
1− ℓ θ12 . . . θ1N = 0. The new system is then

G(s,θ) = (G1, G2, . . . , Gs, 1− ℓ θ12 . . . θ1N ) (5.24)

The new system (5.24) contains more equations and variables (see the Table 5.2 in
Section 5.3.4), but half the total degree and number of solutions of the ideal generated by the
original equations F(s,Z). We observe that, using this new formulation, the computation time
is reduced by more than an order of magnitude in most cases, as will be shown in Section 5.4.

Once a solution (s,θ)crit for (5.24) has been found, it is necessary to reproject it in the
space of variables (s,Z). This is done easily by

Zi =

√
θijθik
θjk

for i, j, k not equal. (5.25)

In principle, to every solution (s,θ)crit correspond two points (s,Z) and (s,−Z), and it is
not possible to decide a priori which of the two corresponds to a rigid body transformation
pcrit ∈ SE(3) and which one is the mirrored solution, so one needs to compute both and then
classify them. However, the only solutions of interest are those with Zi > 0 for all i (hence
θij > 0 for all i and j); that is, those for which all the reference points lie in the semispace
that is in front of the camera, so a large number of solutions can be disregarded at this stage.

5.3.4 Coplanar points

In this section we report on a computational improvement that can be applied when the
observed points lie on the same plane, and which allows to divide the total degree (the total
number of solutions counted with multiplicity) of the system of equations by two, in the case
of N = 4, or by four in the case of N = 5.

118



The case of coplanar reference points merits a special focus, not only because planar images
and targets are the most commonly used markers in visual servoing applications, but also
because the equations that describe the critical points of IBVS present interesting properties
that can be exploited. In particular, the improvements shown here are motivated by an
empirical remark made during the computation of the critical points for N = 4 and N = 5
coplanar points. For these cases, the ideal generated by equations (5.20) seems to be always
non-radical; that is, there is at least one solution with a multiplicity greater than 1. Specifically,
we observe that, for N = 4, all the solutions have a multiplicity equal to 2, while for N = 5,
all solutions have multiplicity 4.

Conjecture 5.4. When the N feature points are contained in the same plane, the zero-
dimensional ideal generated by (5.20), describing the critical points of the error potential
V = 1

2e
Te, is not radical (i.e. at least one solution has a multiplicity greater than 1). On the

other hand, when the N points are all not coplanar, we observe that ideal generated by the
polynomials (5.20) is always radical.

The reason that this multiplicity appears is that planar objects present another kind of
symmetry: with respect to the plane they are contained in. As a consequence, for every
value (s,Z), there are two isometries T ∈ E(3) that satisfy (5.19): one corresponding to
a feasible camera configuration and one corresponding to its reflection about the plane of
the object. Note that this phenomenon is not the same as the invariance of the system of
equations (5.20) with respect to the transformation (s,Z) 7→ (s,−Z), which occurs for both
planar and generic objects. In Section 5.3.5 we explain how to compute the correct camera
configuration pcrit ∈ SE(3) from the solutions (s,Z)crit of the system (5.20).

Let us consider four spatial points Pi, i = 1, . . . , 4, with homogeneous coordinates Xi =
(Xi Yi Zi 1)

T in the reference frame of the camera. The determinant of the (4 × 4) matrix
which has the homogeneous coordinates of the points as its columns is six times the volume of
the tetrahedron defined by these points:

J1 =

∣∣∣∣∣∣∣∣
X1 X2 X3 X4

Y1 Y2 Y3 Y4
Z1 Z2 Z3 Z4

1 1 1 1

∣∣∣∣∣∣∣∣ = 6 · Vtetrahedron (5.26)

After substituting Xi = xiZi and Yi = yiZi, this determinant is a polynomial of degree 5
in variables (s,Z), and it vanishes if and only if the four points lie on the same plane. We
can therefore make use of this extra polynomial relation J1 = 0 for the computation of the
equilibria when the object is planar. This condition is also known as the Grassmann incidence
condition of the four points.

In the case of N = 4 points, we observe that by including the condition that J1 = 0 in our
system, we obtain an ideal which is radical: with the same number of solutions, but half the
total degree of the original system, and a reduction in the computation time of more than an
order of magnitude (see Section 5.4).

Proposition 5.5. Consider an IBVS scheme from N = 4 points. If the four points are
coplanar, they satisfy that the polynomial J1(s,Z), defined as the determinant (5.26), is zero.
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This condition can be exploited in the computation of the critical points of the function V from
the system (5.20)

An intuition on why this improvement is achieved comes from the following theorem, which
is a corollary of the Jacobian Criterion, stated in a more evolved form in ([Eis13], Theorem
16.19).

Theorem 5.6. (Jacobian Criterion): Let F = (f1, . . . , fs), fi ∈ Q[x1, . . . , xn] define a finite
number of solutions in Cn, and let Jac(F) denote the Jacobian matrix associated to F with
respect to (x1, . . . , xn). Then, if the ideal generated by F is not radical, there exist points which
cancel both F and the determinants of the minors of size (n, n) of Jac(F).

For N = 4, the Jacobian matrix Jac(F) = ∂F
∂(s,Z) is of size (12× 12), so only its determinant

J = det (Jac(F)), a polynomial of degree 30, must be considered. We observe that the
polynomial J1 in (5.26) always divides this determinant (J1|J). When the points are coplanar,
all the solutions cancel this factor, making the determinant of the Jacobian vanish. We define
the augmented system obtained by including this factor as

F1(s,Z) = [F, J1] = 0 (5.27)

The solutions of the new system F1(s,Z) still present the point symmetry with respect
to the camera centre C from Lemma 5.3, so the change of coordinates detailed there can be
applied to (5.27), allowing us to derive a system G1(s,θ) in variables θij = ZiZj , where the
degree of ideal it generates is further reduced by half. The reductions obtained in the degree
are summarized in Table 5.2.

For the case of N = 5 coplanar points we observe that all the solutions appear always
with a multiplicity of 4. The Jacobian Jac(F) has in this case dimension (15× 15), and its
determinant is a polynomial of degree 45. This time, for the 5 points to all be coplanar, there
are two polynomials J1 = det([X1 X2 X3 X4]), and J2 = det([X1 X2 X3 X5]) that must
vanish, and we find that both J1 and J2 are factors of J = det (Jac(F)), i.e. (J1 · J2) | J . We
define a new system of equations by including these two factors F12 = [F, J1, J2]. The solutions
of F12 = 0 are the same as for the original system, but the degree of the ideal it generates is
divided by four.

The same approach could be used to simplify the problem for any N > 3 coplanar points,
and even for configurations where not all the points are on the same plane, but at least four of
them are. For instance, for 5 points in a pyramidal shape, the coplanarity condition J1 = 0
can be exploited for the points that form the base.

Proposition 5.7. Consider an IBVS control scheme from N points Xi, i = 1, . . . N . If at
least four points X1, . . . ,X4 are coplanar, then the polynomial J1 = det([X1 X2 X3 X4]) = 0,
and this condition can be exploited in the computation of the critical points of V described
by (5.20).

The fact that the ideal generated by equations (5.20) is always non-radical when the object
is planar, such that multiple solutions appear, remains a conjecture. However the condition
that det([X1 X2 X3 X4]) = 0 relies only on the assumption that Pi, i = 1, . . . , 4 lie on the
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Table 5.2: The polynomial system G(s,θ) is obtained by applying the change of variables (5.21)
to remove the symmetric solutions. It contains more equations and variables than the original
system F(s,Z), but half the total degree. For the case of coplanar feature points, F1(s,Z) is
the radical system obtained by including the coplanarity constraint as in (5.27), while G1(s,θ)
is obtained by applying the coordinate transformation to the latter.

F(s,Z) G(s,θ) F1(s,Z) G1(s,θ)

#equations 13 59 14 65
N = 4 #variables 12 14 12 14

degree (#solsC) D D/2 D/2 D/4

#equations 16 377 18 389
N = 5 #variables 15 20 15 20

degree (#solsC) D D/2 D/4 D/8

same plane, such that the algorithmic improvement shown above can always be applied under
this condition, and we expect that it will always provide a similar time reduction in the
computations. On the other hand, for non-coplanar points, according to our observations, the
ideal is generically radical; that is, all solutions appear only with multiplicity 1, and therefore
we cannot hope for any such improvement.

5.3.5 Retrieving the camera pose

The problem of computing the critical points of the the IBVS controller is modeled above
as a system of equations in the space of variables (s,Z). Once a solution (s,Z)crit has been
found, using either the original (5.20) or the modified formulation (5.24), we can recover the
corresponding critical pose pcrit for the camera, paying attention to the remark above that
some of the solutions correspond to a mirrored camera frame, and classify the solutions in
local minima, maxima, or saddle points. Note that, while exact computer algebra methods
were used to obtain the solutions (s,Z)crit above, in our method we then use floating point
arithmetic to retrieve the camera pose parameters and classify the critical points.

The pose p can be represented by a (4× 4) homogeneous matrix (see Section 2.1)

T =

[
R t
0 1

]
, (5.28)

where R ∈ SO(3) and t ∈ R3 are a (3× 3) rotation matrix, and a position vector respectively.
The matrix T maps the homogeneous coordinates of a point Pi in the world frame Pi =
(Pix Piy Piz 1)T , to its camera-frame coordinates Xi = (Xi Yi Zi 1)T . For each solution
s = (x1, y1, . . . , xN , yN ) and Z = (Z1, . . . , ZN ), the vector Xi can be computed for each
solution as Xi = (xiZi yiZi Zi 1)

T .
If we consider N points P = [Pi . . . PN ], with camera frame coordinates X = [Xi . . . XN ],

we have
T P = X. (5.29)
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We can reformulate the system (5.29) as a linear system P̂T̂ = X̂, where now T̂ is a vector in
R12 containing the components of R and t:



Px1 Py1 Pz1 0 0 0 0 1 0 0
0 0 Px1 Py1 Pz1 0 0 0 1 0
0 0 0 0 Px1 Py1 Pz1 0 0 1

. . .
. . .

. . .
. . .

PxN PyN PzN 0 0 0 0 1 0 0
0 0 PxN PyN PzN 0 0 0 1 0
0 0 0 0 PxN PyN PzN 0 0 1





r11
r12
r13
r21
r22
r23
r31
r32
r33
t1
t2
t3



=



x1Z1

y1Z1

Z1
...

xNZN

yNZN

ZN


, (5.30)

In order to solve (5.30), we must distinguish the two following cases:

1. Non-coplanar points. If the N points do not lie on the same plane, then P and X are
of full-rank, since their determinants are essentially the same as (5.26) (see Section 5.3.4).
For N = 4, the system (5.30) is square, and the matrix P̂ is invertible. For N > 4, the
system is overconstrained, but it will always have a solution if the vector X̂ is compatible
with the geometry of the problem (i.e. compatible with the solutions of our problem
(s,Z)crit). It can be solved using any linear algebra method, such as Gaussian reduction.

Let us call T̂c a solution of (5.30) corresponding to a critical point (s,Z)crit. Then, in
principle, T̂c may correspond either to a feasible camera configuration (i.e. T ∈ SE(3)),
or to a pose that is reflected through the camera centre (T ∈ E−(3)). It suffices to
compute the determinant of the (4× 4) matrix T to remove the mirrored solutions. The
solutions that correspond to a true rigid-body transformation will satisfy det(T) = 1,
while the spurious solutions will have det(T) = −1, and should be removed.

2. Coplanar points. For a planar object, the matrix P̂ is no longer of full-rank, and the
system (5.30) does not have a unique solution. In this case, it is necessary to consider
the additional constraint for the transformation matrix that TTT = I. Without any
loss of generality, we can assume that the points are contained in the plane Z = 0 of
the world-frame; that is Pi = (Pxi Pyi 0 1)T for all i; then the resulting rigid-body
transformation will be defined from this frame to the camera coordinates. Next, the
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system (5.30) can be reduced to the (3N × 9) system P̂′T̂′ = X̂′:



Px1 Py1 0 0 0 0 1 0 0
0 0 Px1 Py1 0 0 0 1 0
0 0 0 0 Px1 Py1 0 0 1

. . .
. . .

. . .
. . .

PxN PyN 0 0 0 0 1 0 0
0 0 PxN PyN 0 0 0 1 0
0 0 0 0 PxN PyN 0 0 1





r11
r12
r21
r22
r31
r32
t1
t2
t3


=



x1Z1

y1Z1

Z1
...

xNZN

yNZN

ZN


, (5.31)

The system (5.31) always has a solution if the vector X̂′ is compatible with the geometry
of the problem, and can be solved using linear algebra. Let a solution of the reduced
system be

T̂′ = (r∗11, r
∗
12, r

∗
21, r

∗
22, r

∗
31, r

∗
32, t

∗
1, t

∗
2, t

∗
3). (5.32)

The remaining components of the rotation matrix can be found from the constraint
RTR = I, leading to the following three equations in (r13, r23, r33):

r∗11 r13 + r∗21 r23 + r∗31 r33 = 0,

r∗12 r13 + r∗22 r23 + r∗32 r33 = 0,

r13
2 + r23

2 + r33
2 − 1 = 0.

(5.33)

The system (5.33) always has two solutions: (r∗13, r
∗
23, r

∗
33) and (−r∗13, −r∗23, −r∗33). One

of them will satisfy det(T) = 1, and correspond to the true rigid-body transformation,
and the other will result in det(T) = −1, and correspond to a solution where the camera
frame is mirrored with respect to the plane of the object (see Section 5.3.4).

5.3.6 Classifying the solutions

Once the critical points have been computed in the space of camera configurations, we can
classify the solutions in local minima, maxima or saddle points. To do this, we must
evaluate the eigenvalues of the Hessian of the potential function V at each of these points.
There are multiple ways to do this. Here, as proposed by Alessandro Colotti, we choose to
represent the camera orientation from the components of a unit quaternion, and its position
by a three dimensional vector. Then, the problem of classifying the critical points of V can be
modeled as a constrained second-order optimization problem, with the constraint being the
unit-norm of the quaternion.

We will use the following definitions and propositions, which are stated in a more evolved
form in [NW99], Section 12. For our purposes we assume that all functions have continuous
second-order partial derivatives.

Suppose we wish to identify the local minima of a scalar function f : Rn 7→ R in variables
x ∈ Rn subject to a set of equality constraints gi(x) = 0. Let x∗ be a point satisfying

∇f(x∗) =
∑
i

λi∇gi(x∗) (5.34)
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for some scalars λi > 0. Then we say that x∗ is a critical point of f with respect to
those constraints; in other words, x∗ is a candidate for being a local minimizer of f . The
equations (5.34) are called the first-order optimality conditions.

Given the above, we define the critical cone as the set

C(x∗) =
{
w ∈ R7 | ∇gi(x∗)Tw = 0 for all i

}
(5.35)

The critical cone defines the possible directions around the point x∗ compatible with the
constraints gi(x) = 0.

Then, from Theorem 12.5 of [NW99], we can derive the following proposition, leading to
the second-order optimality conditions.

Proposition 5.8. Let H(f) denote the Hessian of the function f with respect to variables x
(i.e. the matrix of second-order partial derivatives). The point x∗ is a local minimum of the
constrained optimization problem if

wTH(f)w > 0 for all w ∈ C(x∗), (5.36)

Let us return to the case at hand. The function V = 1
2e

Te representing the error norm
can be regarded as a function defined in R7, in the components of the vectors t = [t1 t2 t3]
and q = [q0 q1 q2 q3]

T , with the variables subject to the constraint

c(q) := q20 + q21 + q22 + q23 − 1 = 0. (5.37)

To obtain the closed form of V in terms of t and q, it suffices to substitute the representation
of a rotation matrix in terms of the quaternion components (2.9) in (5.3) and (5.17).

Our candidate solutions are the points (s,Z)crit computed by solving any of the systems
proposed in (5.20), (5.24), (5.27). For every solution (s,Z), we compute the components of
the position vector t, and of the rotation matrix R as described in Section 5.3.5 by solving
the linear system (5.31) or (5.33). Then, we compute the θu representation for the camera
orientation (by an angle and an axis of rotation, see Section 2.1.2). The vector u is the
eigenvector of R corresponding to an eigenvalue equal to 1. Then, the angle is computed as

θ = acos
(
tr(R)−1

2

)
. From the θu-vector, we get the quaternion components as q0 = cos(θ/2),

and [q1 q2 q3]
T = u · sin(θ/2). We call (tc,qc) the critical points expressed in the space of the

new variables.
Let us denote the Hessian of V with respect to the variables (t,q) by H(V ), and let us

define the matrix Zc as a basis for the nullspace of the gradient of the constraint (5.37) with
respect to (t,q):

Zc = [w1, . . . ,w6] ∈ R7×6 : ∇c ·wi = 0 for all i (5.38)

with wi linearly independent.
Then, by Proposition 5.8, a point (tc,qc) is a local minimum of V if

Zc(tc,qc)
T ·H(V )(tc,qc) · Zc(tc,qc) ≻ 0. (5.39)
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In other words, if the matrix (5.39) is positive-definite.
Another interpretation of (5.39) is as follows. Since the camera pose can be described by

six independent parameters, and we are instead using seven parameters bound by a constraint,
then the matrix Zc represents a change of basis for the Hessian of V , that reduces the dimension
of H(V )(t,q) from (7 × 7) to the correct dimension (6 × 6). Then, we say that the matrix

ZT
c H(V )Zc is the reduced Hessian of V . The local minima of our problem correspond to the

values (tc,qc) for which the eigenvalues of (5.39) have all a positive real part. Note that the
computation of the eigenvalues of the matrix (5.39) is done in floating point arithmetic in our
method.

5.4 Results

5.4.1 Computations

Section 5.3 describes how to compute the critical points of IBVS from N feature points as the
real solutions of a zero-dimensional system of polynomial equations, where the parameters
are the distances between each two points d = (d12, . . . d(N−1)N ) and the target value of the
visual features s⋆ = (x⋆1, y

⋆
1, . . . , x

⋆
N , y⋆N ).

In this section, msolve was used to compute the solutions for a number of different
examples of N = 4 points, both in generic, and in structured configurations; the computing
times are compared using the different formulations detailed in Sections 5.3.1, 5.3.3 and 5.3.4.
The results are later compared with results obtained from homotopy, using the Homotopy
Continuation package for Julia. The computations are included in the repository jorge-
gf/thesis-archive [GF22].

Table 5.3 displays the results for several configurations of N = 4 points, both planar and
non-planar. We show the degree of the ideal generated by the original system of equations (5.20)
(that is, the total number of complex solutions counted with multiplicity), and the number
of different complex and real solutions. A brief description of the systems (the geometry of
the points, and the desired final pose of the camera) is given, with the values of parameters d
and s⋆, in Table 5.4. The first column of the timings in Table 5.3 refers to the original system
of equations F(s,Z) = 0, containing 12 variables and 12 equations, described in (5.20), and
contains the same results shown before in Table 5.1. The second column contains the timings
for the system G(s,θ) = 0 in (5.24), derived by reducing the symmetries of the polynomial.
The last two columns concern only the cases where the observed object is planar, and we solve
the augmented system F1 = [F, J1] = 0 from (5.27), where the coplanarity condition (5.26)
is included to remove the multiplicity of the solutions, and the system G1(s,θ) = 0, after
the change of variables. In the first of the two columns, the solutions are computed in the
space of the original variables (s,Z), and include the mirrored, non-feasible solutions. In the
second two it is in terms of variables (s,θ), and only half of the solutions are computed. The
computations were all performed on 12 cores on a machine equipped with an Intel Xeon Gold
6246R CPU (3.40GHz) and 1.5 TB RAM.

Between different configurations, the large variations in the computing times are mainly
due to the different bit-size coefficients in the systems. Overall, for generic, non-planar objects,
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we can compute the solutions in the order of 1-3 days, by using the formulation G(s,θ) = 0
from (5.24). This is an improvement of at least an order of magnitude with respect to trying
to solve the original equations (5.20). For the coplanar cases, exploiting the coplanarity
condition (5.26) and solving F1(s,Z) = 0 allows us to compute the critical points in less than
one day for all the examples, in the space of the original variables (s,Z). If the change of
variables (5.21) is applied to compute the system G1(s,Z) = 0, these times are reduced further,
to the order of a few minutes to a few hours.

Table 5.6 presents the results obtained when computing the critical points using the
Homotopy Continuation package implemented in Julia. We show the true number of real
and complex solutions of the systems, compared against the number of solutions computed
numerically.

The cells in red are cases for which homotopy fails to compute the right number of solutions.
As before, homotopy can typically miss complex solutions when more than one are closely
spaced; but it can also interpret solutions with multiplicity as different solutions, or complex
solutions with small imaginary parts can be misinterpreted as real solutions.

We find that, by solving the system F1(s,Z) in (5.27) including the coplanarity constraint,
in the cases where this is possible, homotopy tends to correctly identify more solutions than
before, although still missing a large number of them for many cases. We also tried to solve
the equations G(s,θ) = 0 from (5.24), but the homotopy package fails altogether at the
initialization of the computation. This is because the reformulated system contains many
more equations than variables. Homotopy methods are better suited for square systems (with
the same number of variables and equations), but tend to perform worse for overconstrained
systems.

We tried to compute the critical points in the case of IBVS from 5 points by exploiting
the techniques from Sections 5.3.3 and 5.3.4, both for generic and for planar configurations.
However for N = 5 the systems of equations become much more computationally difficult to
solve. In the case of N = 5 coplanar points, the degree of the resulting ideal (after all the
corresponding reductions) can be at least up to 2440, while for generic points it can be above
8600, and more variables are involved (Table 5.2). For the moment all of our attempts have
ended with the computer running out of memory; however we expect to be able to solve the
case N = 5 if we use a machine with more memory capacity.
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Table 5.3: Computation of the critical points of IBVS using N = 4 points for different
configurations using msolve. “Degree” is the total degree of the original system of equations.
“#solsC” and “#solsR” are the number of different solutions after the symmetric points are
removed. The computation times are compared for the original system of equations and the
improvements from Sections 5.3.3 and 5.3.4: the change of variables invariant to the point
symmetry, and the coplanarity constraint. All the computations were performed using 12
cores.

System Solutions∗∗ Time (×12 cores)

Description Degree∗ #solsC #solsR F(s,Z) G(s,θ) F1(s,Z) G1(s,θ)

P
la
n
a
r

1 square1 804 201 25 15 days 48.6 h 478 s 172 s

2 square2 2000 500 26 43.5 h 8278 s 582 s

3 square3 2032 508 22 24 days 52.4 h 21.2 h 10243 s

4 square4 2032 508 24 44.1 h 29.4 h 27.2 h

5 rectangle1 1560 390 26 11.2 h 3.3 h 1426 s

6 rectangle2 1560 390 44 41 h 8671 s 2167 s

7 rectangle3 2128 532 24 27 days 38.3 h 18.4 h 8035 s

8 lozenge1 1608 402 18 192.8 h 2408 s 889 s

9 genericPlanar1 2176 544 20 74.8 h 33.2 h 10 h

10 genericPlanar2 2176 544 16 76.7 h 36.1 h 12.3 h

11 genericPlanar3 2176 544 24 77.2 h 34.8 h 11.3 h

N
o
n
p
la
n
a
r 12 tetrahedron1 3608 1804 68 66 h - -

13 generic1 3656 1828 42 41 days 26 h - -

14 generic2 3656 1828 42 104.7 h - -

15 generic3 3656 1828 48 108 h - -

∗ Degree of original system F(s,Z) before any reductions.
∗∗ After removing the mirrored solutions from Lemma 5.3.
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Table 5.4: Example configurations for the critical points of IBVS with N = 4 points.

System Description Parameters

P
la
n
ar

1 square1 Parallel to image plane.
d =

[
1 2 1 1 2 1

]
s∗ =

[
− 1

2
1
2

1
2 − 1

2
1
2

1
2 − 1

2 − 1
2

]

2 square2 View from an angle
d =

[
1 2 1 1 2 1

]
s∗ =

[
− 2

3
2
3

1
3

1
3

0 0 4
5

4
5

]

3 square3 Generic orientation.
d =

[
1 2 1 1 2 1

]
s∗ =

[
19471
581794

404051
1005316 − 19471

841726 − 404051
418204

− 242923
290897 − 15581

251329
242923
420863

15581
104551

]

4 square4 View from an angle
d =

[
1 2 1 1 2 1

]
s∗ =

[
7

913
3
22 − 13

1869 − 25
147

− 53
277 − 15

713
21
121

9
343

]

5 rectangle1 Parallel to image plane.
d =

[
49

2500
37

1250
1

100
1

100
37

1250
49

2500

]
s∗ =

[
− 7

30
7
30

7
30 − 7

30
1
6

1
6 − 1

6 − 1
6

]

6 rectangle2 Parallel to image plane.
d =

[
400 6401

16
1
16

1
16

6401
16 400

]
s∗ =

[
−10 10 10 −10
1
8

1
8 − 1

8 − 1
8

]

7 rectangle3 Generic orientation.
d =

[
400 6401

16
1
16

1
16

6401
16 400

]
s∗ =

[
144
133

62
79

87
113

791
719

43
35

281
335

76
87

87
74

]

8 lozenge1 Parallel to image plane.
d =

[
5 4 5 5 16 5

]
s∗ =

[
1 0 −1 0

0 −2 0 2

]
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Table 5.5: Example configurations for the critical points of IBVS with N = 4 points - continued.

System Description Parameters

P
la
n
a
r

9 genericPlanar1 Generic orientation.
d =

[
1
64

45
4096

37
4096

157
4096

117
4096

1
1024

]
s∗ =

[
3
32

9
112

43
330

39
304

5
64

4
1533

115
3507

8
511

]

10 genericPlanar2 Generic orientation.
d =

[
1
64

53
4096

1
1024

229
4096

17
1024

49
4096

]
s∗ =

[
− 1

16 − 12
167 − 304

4255 − 21
263

− 1
32

41
568 − 37

300 − 13
658

]

11 genericPlanar3 Generic orientation.
d =

[
1
64

41
4096

113
4096

41
4096

49
4096

5
128

]
s∗ =

[
0 67

3383
10
121 − 46

531

− 3
32 − 34

157 − 57
407 − 45

187

]

N
on

p
la
n
ar

12 tetrahedron1 Generic orientation.
d =

[
1 1 1 1 1 1

]
s∗ =

[
− 27

211
58
179 − 61

154 − 17
57

− 48
71

71
1288

81
158 − 25

217

]

13 generic1 Generic points and orientation.
d =

[
1 17

32
123
128

9
32

171
128

57
128

]
s∗ =

[
9
34

1699
2550

263
510

199
446

− 443
2550 − 443

2550 − 827
2550 − 1339

2230

]

14 generic2 Generic points and orientation.
d =

[
1 1

32
69

4096
25
32

3269
4096

117
4096

]
s⋆ =

[
1
64

63
269

55
413

29
533

1
64 − 84

61 − 22
329 − 13

127

]

15 generic3 Generic points and orientation.
d =

[
1 25

4096
109
4096

3737
4096

3437
4096

81
2048

]
s⋆ =

[
− 1

16
2

6547 − 41
596

5
326

− 1
32 − 127

84 − 21
223 − 27

320

]
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Table 5.6: Results from the Homotopy Continuation (HC) package for Julia and comparison
with the true solutions. In red are indicated the systems for which Julia fails to capture the
correct number of solutions. For the overconstrained systems (5.24) obtained after the change
of variables, the homotopy methods fail at initialization.

System True∗
Original system

F(s,Z) = 0

Coplanarity condition

F1(s,Z) = 0

Symmetrized

(+ radical)

G(s,θ) = 0

#solsC #solsR #solsC #solsR Time #solsC #solsR Time

1 square1 402 50 403 50 1630 s 402 50 14499 s N/A

2 square2 1000 52 1066 49 1353 s 994 52 15316 s N/A

3 square3 1016 44 1069 43 1495 s 1016 44 15480 s N/A

4 square4 1016 48 1120 48 1772 s 1012 48 22812 s N/A

5 rectangle1 780 52 821 27 1968 s 776 48 23914 s N/A

6 rectangle2 780 88 728 65 2296 s 623 72 19391 s N/A

7 rectangle3 1064 48 1088 31 1950 s 871 32 20099 s N/A

8 lozenge1 802 36 806 36 1499 s 803 36 14314 s N/A

9 genericPlanar1 1088 40 1307 13 2191 s 1025 32 22616 s N/A

10 genericPlanar2 1088 32 1347 10 2252 s 960 16 25476 s N/A

11 genericPlanar3 1088 48 1223 15 1934 s 1066 42 24251 s N/A

12 tetrahedron1 3608 136 3608 136 1500 s - N/A

13 generic1 3656 84 3656 84 1644 s - N/A

14 generic2 3656 84 3537 95 2280 s - N/A

15 generic3 3656 96 3548 96 2162 s - N/A

∗ Number of solutions including the mirrored solutions from Lemma 5.3.
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5.4.2 Case studies

Example 1. Four points forming a square

Consider the example 1 (square1) from Table 5.4. The four points are at the corners of a
square of size 1, and the desired camera pose is located centred over the square and with the
image plane parallel to it, defined by R⋆ and t⋆:

R⋆ =

1 0 0
0 −1 0
0 0 −1

 , t⋆ =

00
1

 . (5.40)

The values of the parameters d and s⋆ are

d = [1 2 1 1 2 1] , s⋆ =

[
x⋆

y⋆

]
=

[
−1/2 1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2

]
.

For this configuration, we find, after having removed the symmetric solutions from
Lemma 5.3, a total of 201 complex solutions, of which 25 are real. However, upon studying
which of these solutions lie in front of the camera, that is, in the semi space defined by Zi > 0
for all i, we find that there is only one: the global minimum, with value

s = s⋆ =

[
−1/2 1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2

]
, Z = [ 1 1 1 1 ]

and corresponding to the desired pose (5.40).
Consider now the same object but a different target camera position, looking down at

an angle, corresponding to case 4 (square4) in the Table 5.4. The camera pose is described
(approximately) by

R⋆ =


0.54030 −0.59500 −0.59500

0.59500 0.77015 −0.22985

0.59500 −0.22985 0.77015

 and t⋆ =

 0
0

15/4

 (5.41)

In this case we compute a total of 508 complex solutions (after having removed the mirrored
solutions), of which 24 are real. By removing the solutions with Zi < 0 for some i, we are left
with only four solutions. The values of (s,Z) are given in Table 5.7.

To each of these solutions corresponds two points in the space of transformations of the
Euclidean space, the solutions of the systems (5.31) and (5.33): one is a feasible camera pose
facing the object, and the other is its reflection through the plane of the points. Therefore,
there are four equilibrium configurations for the camera. By studying the eigenvalues of (5.39),
we determine that one of them corresponds to the global minimum, one to a local minimum,
and two to saddle points. One of the saddle points is in between the two stable equilibria,
while the other is located on the other side of the square. The critical points are displayed in
Fig. 5.1.
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Figure 5.1: Critical points for example 4 (square4) from Table 5.4. One saddle point lies
between the global minimum and local minimum, while the other is further away on the other
side of the object.
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Table 5.7: Critical points for the example 4 (square4) from Table 5.4.

Sol. State vars Camera pose

1. Saddle point
s =

 −0.017369 0.16014 −0.0015384 −0.17475

−0.17073 −0.012038 0.16524 0.0046934


Z = [4.2231, 4.1476, 4.1821, 4.2573]

t =
[

−0.03989 −0.01497 4.20253
]

R =


0.73756 −0.67065 0.07897

0.67106 0.74097 0.02509

−0.07534 0.03449 0.99656



2. Local min.
s =

 −0.013019 0.15333 −0.018658 −0.15545

−0.17753 −0.026060 0.17938 0.011110


Z = [4.0238, 3.5108, 3.7354, 4.2482]

t =
[

−0.06104 −0.02215 3.87952
]

R =


0.59070 −0.60801 0.53046

0.62284 0.76153 0.17929

−0.51297 0.22449 0.82853



3. Saddle point
s =

 0.0072396 −0.022847 −0.023702 0.0063805

−0.017752 −0.018614 0.011474 0.012328


Z = [33.230, 33.222, 33.225, 33.233]

t =
[

−0.27348 −0.10433 33.22705
]

R =


−0.99956 −0.02852 0.00808

−0.02849 0.99958 0.00444

−0.00820 0.00421 −0.99996



4. Global min.
s =

 0.0076676 0.13636 −0.0069569 −0.17007

−0.19133 −0.021044 0.17356 0.026236


Z = [3.5676, 4.1626, 3.9328, 3.3378]

t =
[

−0.0 −0.00001 3.75017
]

R =


0.54028 −0.59499 −0.59505

0.59499 0.77016 −0.22986

0.59505 −0.22986 0.77012
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Example 2. Generic planar object

Let us now look at the case 11 (genericPlanar3) from Table 5.4. The four points have generic
coordinates but are contained in the same plane, and the camera final camera position has
coordinates:

R⋆ =


−0.4237 0.8458 −0.3242

−0.9027 −0.4237 0.07442

−0.07442 0.3242 0.9431

 , t⋆ =


0

− 3
32

1

 . (5.42)

The system parameters are

d =

[
1

64

41

4096

113

4096

41

4096

49

4096

5

128

]
, s⋆ =

[
0 67

3383
10
121 − 46

531
− 3

32 − 34
157 − 57

407 − 45
187

]
(5.43)

The critical points for this configuration were obtained by solving the equationsG1(s,θ) = 0
in the variables (s,θ). We find 544 complex solutions in total, of which 24 are real. We retain
only those solutions in the positive semispace (with θij > 0 for all i and j), of which there is
four, with the values shown in Table (5.8).

We then recover the camera configurations corresponding to these points by solving the
systems (5.31) and (5.33). We always find two solutions: one corresponding to a rigid-body
transformation, and one to its reflection about the plane of the object, which is discarded.
Finally, from the eigenvalues of (5.39), we conclude that the four solutions correspond to:
the global minimum, with coordinates (5.42), a local minimum and two saddle points, one of
which is located between the two stable equilibria, and the other which lies on the other side
of the object (see Fig. (5.2)).

Figure 5.2: Critical points for the configuration 11 (genericPlanar3) from Table 5.4 - Four
coplanar points in a generic configuration.
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Table 5.8: Critical points for the configuration 11 (genericPlanar3) from Table 5.4.

Sol. State vars Camera pose

1. Global min.
s =

 7.2157e− 7 0.019801 0.082645 −0.086627

−0.093752 −0.21657 −0.14004 −0.24064


Z = [1.0, 1.0026, 1.0214, 0.97453]

t =
[

0.0 −0.09375 0.99997
]

R =


0.15882 0.95337 −0.25664

−0.98708 0.15887 −0.02066

0.02108 0.25661 0.96629



2. Local min.
s =

 −0.0013218 0.018780 0.084421 −0.086093

−0.095159 −0.21791 −0.13868 −0.23928


Z = [1.0177, 0.97364, 0.98012, 0.99543]

t =
[

−0.00135 −0.09684 1.01770
]

R =


0.15704 0.95071 0.26738

−0.92260 0.23782 −0.30373

−0.35234 −0.19899 0.91447



3. Saddle point
s =

 −0.0028405 0.020797 0.084555 −0.086748

−0.095040 −0.21724 −0.14009 −0.23867


Z = [1.0271, 0.99635, 1.0111, 0.99720]

t =
[

−0.00292 −0.09761 1.02706
]

R =


0.18911 0.98036 0.05589

−0.95073 0.19704 −0.23937

−0.24568 −0.00787 0.96932



4. Saddle point
s =

 0.044238 −0.018686 0.023372 −0.034192

−0.17956 −0.16198 −0.13121 −0.21824


Z = [1.9137, 1.9182, 1.9312, 1.8970]

t =
[

0.08466 −0.34363 1.91371
]

R =


−0.96401 0.26531 0.01711

0.26340 0.94436 0.19698

0.03611 0.19440 −0.98026
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Example 3. Four generic points and and a generic target camera pose

Consider now the example 13 from Table 5.4, called generic1. For this configuration, the
four points are in a generic, non-coplanar arrangement; the desired final pose is given by

R⋆ =

1 0 0
0 −1 0
0 0 −1

 , t⋆ =
[
675
1024 − 443

1024
1275
512

]T
, (5.44)

giving the following parameters of the system

d =

[
1
17

32

123

128

9

32

171

128

57

128

]
s⋆ =

[
9
34

1699
2550

263
510

199
446

− 443
2550 − 443

2550 − 827
2550 −1339

2230

]

By solving the system G(s,θ) = 0 in (5.24), we find a total of 1828 complex solutions
(after removing the symmetric solutions), of which 42 are real. After removing the solutions
with coordinates θij = ZiZj < 0 for any i or j, we are left with only 6 points, which may
correspond either to a feasible camera pose or to a reflection about the camera centre. To
determine this, we solve the linear system (5.30) and compute the pose parameters t and R.
We find that 4 of the 6 solutions correspond to a true rigid-body transformation, while the
other 2 are indirect isometries of the Euclidean space.

Therefore, there are in total four camera configurations that correspond to a critical point
of the error potential. In Table 5.9 we give the values (s,Z)crit for these points, as well as the
camera pose parameters. By studying the eigenvalues of the matrix (5.39), we conclude that
the 4 solutions correspond to: the global minimum, a local minimum, and two saddle points,

Figure 5.3: Critical points for the example 13 (generic1) from Table 5.4. One saddle point
lies in between the global minimum and local minimum. Another lies further away on the
other side of the object.
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one of which is located between the two stable equilibria (see Fig. 5.3), and another that lies
much further away from the object.

Table 5.9: Critical points for the configuration 13 (generic1) from Table 5.4.

Sol. State vars Camera pose

1. Global min.
s =

 0.26471 0.66627 0.51569 0.44619

−0.17373 −0.17373 −0.32431 −0.60045


Z =

[
2.49030 2.49030 2.49030 2.17780

]
t =

[
0.65918 −0.43262 2.49023

]

R =


1. 0. 0.

0. −1. 0.

0. 0. −1



2. Local min.
s =

 0.25567 0.65830 0.54271 0.43529

−0.17952 −0.17008 −0.33201 −0.59192


Z = [2.5971, 1.7360, 2.0868, 2.2360]

t =
[

0.66398 −0.46624 2.59707
]

R =


0.47880 0.45139 −0.75299

0.17099 −0.88922 −0.42432

−0.86111 0.07441 −0.50294



3. Saddle point
s =

 0.25550 0.67405 0.53338 0.42841

−0.20294 −0.16313 −0.32637 −0.58494


Z = [2.8155, 2.2310, 2.4589, 2.3997]

t =
[

0.71935 −0.57138 2.81549
]

R =


0.78446 0.27176 −0.55746

0.20743 −0.96208 −0.17712

−0.58446 0.02331 −0.81109



4. Saddle point
s =

 0.49909 0.45710 0.46513 0.46655

−0.31833 −0.29412 −0.31588 −0.34511


Z = [23.429, 23.961, 23.640, 23.555]

t =
[

11.69294 −7.45794 23.42851
]

R =


−0.74075 −0.62597 0.24380

0.41088 −0.70930 −0.57277

0.53147 −0.32411 0.78262
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Chapter 6

Conclusions and future work

6.1 Conclusions

This PhD thesis dealt with the analysis of the failure cases of Image-Based Visual Servoing
methods due to the singularities of the interaction model related to the visual features, or due
to issues in the convergence of these controllers arising from the existence of multiple local
minima. The main contributions of this thesis are twofold.

First, we provided a complete singularity analysis of the Perspective-4-Line (P4L)
and Perspective-5-Line (P5L) problems, extending the previously existing results regarding
the singularities for other sets of visual features (N ≥ 3 image points, 3 lines). To do so,
we computed a new basis for the interaction matrix corresponding to an image line. The
degeneracy conditions of this basis are described by a system of polynomials arising from its
maximal minors, depending on the camera pose parameters and on the configuration of the
lines. We used algebraic geometry and algebraic elimination using Gröbner bases to
characterize the locus of singularities. We conclude that, for any number of feature lines, a
singularity occurs if there exists a line transversal to the 3D lines, and if the camera lies on
it. For P4L, there are generically 0, 1 or 2 transversal lines, depending on the sign of a
discriminant. For P5L there are in general no transversal lines, except for specific configurations.
Further, we conclude that, in P4L, there can exist up to 10 additional singular camera
poses, which are unavoidable in general.

Secondly, we obtained the points of equilibrium of IBVS controllers using four feature
points. It is, to our knowledge, the first result regarding the exact computation of the equilibria
of IBVS systems. The problem is modeled as the computation of the critical points of a
potential function equal to the norm of the error, leading to a system of polynomial equations
depending on the projected point coordinates and on their depth in the camera frame. For a
fixed configuration, and a given desired position, this system is zero-dimensional when at
least four reference points are used. Solving this system is possible for N = 4 points, but not
very effective, due to the long computing times (several weeks over 12 cores). We then propose
an improved modeling that allows reducing the computational complexity of the system based
on exploiting the symmetries in the polynomials, leading to a new ideal of lower degree. In
the case of planar objects, the system complexity can be reduced further using the Jacobian
Criterion. These improvements result in a more effective modeling for computing the local
minima of IBVS from N reference points. We succeeded to compute the solutions of this
system for N = 4 points in different configurations using msolve, a state-of-the-art software
based on Gröbner bases for polynomial system solving.

Overall, the work presented in this thesis lies at the intersection of Robotics and computer
algebra, and is an example of an application of exact techniques for polynomial system solving
to real problems in engineering. Symbolic computation methods, such as the ones used
throughout this thesis, are computationally more intensive than numerical ones; however their
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outputs are exact, which is an advantage for applications requiring high-precision and/or
certifiability of the results. Exact computer algebra methods are also useful for situations
where numerical methods are unreliable, due for instance to systems of equations with high
nonlinearities. Next, we propose some lines of future research that continue the work presented
here.

6.2 Perspectives for future work

6.2.1 Singularity conditions for IBVS using image moments

From the previous existing works [MR93, BCM16, PENB+21, BMC16] and the results pre-
sented in this thesis, published also in [GFNBSED22], the singularities of the interaction
matrix for IBVS have been characterized for the most elementary choices of visual features:
points and straight lines in space.

A relevant topic for future research would be the analysis of the singularity conditions
when using visual features computed from image moments [Cha04]. The image moments
can be obtained for any object projected on the image over a region Ω, whose contour can be
segmented digitally. Specifically, the moment mij , said to be of order (i+ j), is defined as

mij =

∫ ∫
Ω
xiyj dx dy (6.1)

where x and y are the pixel coordinates of the objects projection, integrated over the region Ω.
There is an active interest in designing IBVS features constructed from combinations of

image moments [TC04, TC05] for several reasons. Image moments are defined for objects
with any arbitrary shapes, and the feature extraction process is robust with respect to image
measurement errors, as well as to changes in the visibility of the object. Furthermore, these
features can convey some intuitive geometric information about the projected shape of the
object. For instance, the area of the projection of the object on the image is a = m00, and the
centroid (the geometric centre) has coordinates (xg, yg) with xg = m10/m00 and yg = m01/m00;
other information, such as the first and second moments of area, or the direction of the principal
axes, can also be obtained from the moments of the image. Last, but not least, practical
tests of IBVS based on visual features computed from the image moments have demonstrated
good stability and convergence properties [BMHC06, KPD13, ZZGA21], and a nice decoupling
between the translational and rotational degrees of freedom of the camera [Cha04, TC04],
which helps the efficacy of robot tasks.

6.2.2 Estimating the regions of attraction of IBVS

In this thesis, we provided, to our knowledge, the first results to this date related to the
computation of the local minima of IBVS systems. This is only a first step towards an analysis
of the global stability behaviour of this class of controllers. A natural follow-up in this direction
is to try to obtain an estimation of the region of attraction of the system around the desired
final configuration. This is one of the objectives of the ANR Sesame project, and the research
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subject of Alessandro Colotti and Alexandre Goldsztejn, with whom the work on the critical
points computation was done in collaboration.

The method they propose relies on using the potential function of the error V (p) =
1
2 ||s(p)− s⋆||2 as a candidate Lyapunov function. For control laws that are gradient-like with

respect to V (p), i.e. those for which V̇ (p) ≤ 0 for any camera configuration p, Lyapunov’s
theory says that, if a trajectory p(t) converges to a point, then it must converge towards a
point in the set

C = {p ∈ SE(3) : ∇pV (p) = 0} (6.2)

containing the critical points of V (p) (see Section 2.7).
If the desired final configuration of the camera is p⋆, and if one can determine a region

D ⊆ SE(3) around p⋆ that does not contain any other critical points of the function V (p),
then D is a region of attraction around the global minimum, and all the control trajectories
that start off from D are guaranteed to converge to the desired point [SL+91, Sas13].

Furthermore, the sub-level sets of the Lyapunov function

Vc = {p ∈ SE(3) : V (p) ≤ c}. (6.3)

are positively invariant sets. In other words, trajectories that start in one of these sets will
never leave it. In fact, each connected component of such a set Vc is a positively invariant
set [Bla99].

If all of the critical points pcrit of the potential function V (p) are known, the problem of
estimating a region of attraction can be approached as the problem of maximizing the value of
the level set c in (6.3) while guaranteeing connectivity of the domain Vc around the global
minimum. This can be modeled as a non-linear polynomial optimization problem, which can be
solved using a variety of techniques: numerical, such as sum-of-squares of polynomials [Par03,
PPW04, TPS08], as well as symbolic, such as quantifier elimination [BPR96, HED12,
LSED21].

6.2.3 Improving computer algebra methods

This PhD thesis relied heavily on the use of exact, computer algebra methods for the resolution
of polynomial systems of equations, that enabled us to solve problems that could not be solved
with numerical computation. This was done largely thanks to the existence of efficient, state-of-
the-art algorithms, such as F4 [Fau99] or FGLM [FGLM93], for Gröbner bases computations,
and to their implementations on high-performance computing libraries such as msolve [BES21],
allowing us, for instance, to run computations in parallel using multi-threading.

While illustrating the relevance of symbolic methods for real world applications, the
problems we address here evidence also their limitations. Symbolic computation is expensive,
thus limiting the sizes of the problems that are within our reach. Therefore, to conclude, we wish
to highlight the importance of research aimed to develop improved, more effective algorithms
in computer algebra, such as the ones in [BED22a, BED22b] for Gröbner bases computations
of structured ideals or ideal saturations, [BND22], for fast change of ordering of Gröbner bases,
or [LSED21, LED22, Le21], for quantifier elimination and real root classification.
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Appendix A

Singularities in the combination of point and
line features

In this Appendix we consider the use of combinations of points and lines as reference
features for pose estimation and visual servoing. We provide the full characterization of the
singularities of the interaction model related to two different configurations: two points and
one straight line, and two lines plus one point. These are minimal configurations, in the sense
that if any one feature is removed, the system becomes unconstrained. The Plücker vector
representation was used to describe lines in space. The singularity conditions are simpler to
compute and to describe than those exposed in Chapter 4 for P4L and P5L, because they are
described by a single polynomial equation. We find that, for the case of two points and one
line, the singularity conditions correspond to the camera centre lying on a quartic surface,
while for two lines and one point it is a surface of degree five. All the codes used to perform
the computations in this section are in the repository jorge-gf/thesis-archive [GF22]. Finally,
we performed some basic numerical simulations in Matlab to certify the results, by evaluating
the condition number of the interaction matrix as the camera moves along a trajectory that
passes through a singularity.

A.1 Two points and one line

Modeling. Consider a line in space L1, and two points denoted by P2 and P3. As before,
they are defined relative to a fixed object frame Fo : (xo,yo, zo) whose axis form a right-handed,
orthonormal basis. We are free to define Fo such that L1 lies along the xo axis. The line is
then determined by its direction and the point P1, which coincides with the origin:

L1 : (P1,U1) ,
o−−→OP1 = [0 0 0]T , U1 = [1 0 0]T . (A.1)

Further, the direction of axis yo can be chosen such that it intersects the point P2. This leaves
us four parameters to define the coordinates of the points in the fixed frame:

o−−→OP2 = [0 a 0]T , o−−→OP3 = [b c d]T . (A.2)

We also define a camera frame Fc : (C,xc,yc, zc), centred at the focal point C, and also
defining an orthonormal, right-handed basis. The position of C relative to the origin is given
by the coordinates [X Y Z]T , while the relative orientation of Fc and Fo is parametrized by a
rotation matrix cRo.

The set of visual features related to this configuration is s = [lx1 ly1 lz1 x2 y2 x3 y3]
T ∈ R7,

with [xi yi]
T , and li = [lxi lyi lzi]

T defined as in (2.26) and (4.2) respectively. The full
interaction matrix M ∈ R7×6 is obtained by stacking the interaction matrices corresponding
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to the two points (2.31), and the one corresponding to the line (4.7):

M =



lx1ly1Uz1

∆1

l2y1Uz1

∆1
− ly1(lx1Ux1+ly1Uy1)

∆1
lx1ly1lz1 l2y1lz1 −ly1

− l2x1Uz1

∆1
− lx1ly1Uz1

∆1

lx1(lx1Ux1+ly1Uy1)
∆1

−l2x1lz1 −lx1ly1lz1 lx1
(Uy1+ly1lz1Uz1)

∆1
− (Ux1+lx1lz1Uz1)

∆1

lz1(lx1Uy1−ly1Ux1)
∆1

ly1(l
2
z1 + 1) −lx1(l2z1 + 1) 0

− 1
Z2

0 X2

Z2
2

X2Y2

Z2
2

−(1 + X2
2

Z2
2
) Y2

Z2

0 − 1
Z2

Y2

Z2
2

1 +
Y 2
2

Z2
2

−X2Y2

Z2
2

−X2

Z2

− 1
Z3

0 X3

Z2
3

X3Y3

Z2
3

−(1 + X2
3

Z2
3
) Y3

Z3

0 − 1
Z3

Y3

Z2
3

1 +
Y 2
3

Z2
3

−X3Y3

Z2
3

−X3

Z3


.

(A.3)

The matrix (A.3) depends on the projected coordinates of the points in the camera frame and
their depths (xi, yi, Zi), i = 1, 2, and on the components of vectors cU3 = [Ux3, Uy3, Uz3]

T and
cl3 = [lx3, ly3, lz3]

T parametrizing the straight line, also expressed in Fc. We can express these
quantities in terms of the camera position [X,Y, Z]T using

c−−→CPi =
cRo ·

o−−→OPi −

XY
Z

 ,

cUi =
cRo · oUi,

cLi =
c−−→CPi × cUi.

(A.4)

For this problem, we will not assume a zero-orientation for the camera frame; we will
see that the independence of the singularity conditions with respect to the orientation of
the camera is a result which arises naturally from the computation of the determinant of M.
Instead, we will parametrize the matrix cRo by the four components of a unit-norm quaternion
q = (t, u, v, w), as in (2.9).

Singularity conditions. We search the poses of the camera, determined by (X,Y, Z)
and q = (t, u, v, w), for which the rank of the matrix M becomes smaller than 6. First,
note that the first and second rows of M, corresponding to the image line, are related by
LxiMi1 + LyiMi2 = 0. This relation can be exploited to eliminate one row and study the
determinant of a (6× 6) matrix M′. After substituting (A.4) in the expression for M′, we use
a computer algebra system like Maple to compute this determinant:

det(M′) =
(t2 + u2 + v2 + w2)9

∆1 Z3
1 Z

3
2

F (X,Y, Z). (A.5)

where Z1 and Z2 are the depths of points P1 and P2 along the focal axis, and ∆3 =
√
L2
x3 + L2

y3

is the depth factor of the image line. The term F (X,Y, Z) is a polynomial in the variables
(X,Y, Z) with coefficients that are functions of the parameters η defining the configuration of
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the object:

F = 2d(a− c)
(
Z4 − Y 4

)
+
(
2
(
d2 − (a− c)2

)
Y Z − a

(
2b2 + 3d2

)
Z + 2bdXY + 2b(a− c)XZ

+ 3ad(a− c)Y − abdX
) (

Y 2 + Z2
)

+ ad(−ac+ b2 + c2 + d2)Z2 + ac
(
(a− c)2 + b2 + d2

)
Y Z − a2d(a− c)Y 2.

(A.6)

The denominator in (A.5) vanishes in the degenerate cases where the projections of one or
more of the geometric features are undefined:

� Z1 = 0 or Z2 = 0, corresponding to the case when the plane Z = 0 of the camera frame
contains points P1 or P2, so that the projection mapping (2.26) is undefined.

� ∆3 = 0, when Lx3 = Ly3 = 0, for which (4.2) is undefined. This occurs when:

– The focal point is on the line L3, such that the line projects on a point on the
image.

– The plane Z = 0 of Fc contains the line L3; as a result the line is projected at
infinity on the image.

The variables (t, u, v, w) parametrizing the camera orientation vanish from the expres-
sion (A.5) because ||q||2= t2 + u2 + v2 + w2 = 1. Therefore the singularities of the interaction
matrix depend only on the camera position and on the relative configuration of the features,
and they occur when the camera centre C lies on the quartic surface defined by F (X,Y, Z) = 0.
This surface is shown in Fig. A.1 for an example configuration.

An illustrative example. In order to verify the exactness of the results, we perform a
numerical simulation in Matlab of a camera trajectory passing through a point of singularity.
Consider the following values for the parameters

a = 1, b = −1, c = 1, d = −3.

The singularity surface described by (A.6) is shown in Fig. A.1. We then impose a camera
motion along a trajectory parametrized by the functions

X = −5/9 + s, Y = 2 + s, Z = 1 + s, (A.7)

with s ∈ [−0.5 0.2] a linearly increasing function. The trajectory crosses the singularity surface
we computed in (A.6) at s = 0. Throughout the motion, a constant orientation is maintained,
defined by its quaternion components:

q = (
−17
32

,
1

64
,
−51
128

,
91551/2

128
). (A.8)

At each time step, the interaction matrix M is recomputed from (A.4). Fig. A.2 shows
the inverse of the condition number of the matrix κ(M), as it evolves along the trajectory.
As expected, M becomes rank-deficient when the camera is on the singularity surface, when
1/κ(M) becomes null at s = 0.
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Figure A.1: Singularity loci from the observation of two points (blue and green) and a line
(red) with parameters a = 1, b = −1, c = 1, d = −3. Note: The line is contained in the
surface.

A.2 Two lines and one point

Modeling. The two straight lines L1 and L2, and the point P3, are parametrized as follows.
We define the object frame Fo : (xo,yo, zo) such that the xo axis has the same direction as L1;
the line L2 is parallel to the plane zo = 0, and the zo axis intersects both L1, at point P1, and
L2, at point P2. The origin O is chosen at the same distance from both L2 and L3. The two
lines are determined by the two points P1 and P2, and their directions U1, U2:

L1 : (P1,U1),
o−−→OP1 = [0 0 − c/2]T , U1 = [1 0 0]T ,

L2 : (P2,U2),
o−−→OP2 = [0 0 + c/2]T , U2 = [a b 0]T ,

(A.9)

while the point P3 has coordinates

o−−→OP3 = [d e f ]T (A.10)

As before, the camera frame Fc is attached to point C with coordinates [X,Y, Z]T , and its
orientation is represented by the components of a quaternion with unit norm q = (t, u, v, w).

In this case, the vector of visual features is s = [lx1 ly1 lz1 lx2 ly2 lz2 x3 y3]
T ∈ R8, with

[xi yi]
T and li = [lxi lyi lzi]

T defined as in (2.26) and (4.2) respectively. The interaction matrix
M can be obtained by stacking the matrix corresponding to the point (2.31) and the two
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Figure A.2: Inverse of the condition number κ(M) as the camera crosses a singularity.

matrices corresponding to the lines (4.7):

M =



lx1ly1Uz1

∆1

l2y1Uz1

∆1
− ly1(lx1Ux1+ly1Uy1)

∆1
lx1ly1lz1 l2y1lz1 −ly1

− l2x1Uz1

∆1
− lx1ly1Uz1

∆1

lx1(lx1Ux1+ly1Uy1)
∆1

−l2x1lz1 −lx1ly1lz1 lx1
(Uy1+ly1lz1Uz1)

∆1
− (Ux1+lx1lz1Uz1)

∆1

lz1(lx1Uy1−ly1Ux1)
∆1

ly1(l
2
z1 + 1) −lx1(l2z1 + 1) 0

lx2ly2Uz2

∆2

l2y2Uz2

∆2
− ly2(lx2Ux2+ly2Uy2)

∆2
lx2ly2lz2 l2y2lz2 −ly2

− l2x2Uz2

∆2
− lx2ly2Uz2

∆2

lx2(lx2Ux2+ly2Uy2)
∆2

−l2x2lz2 −lx2ly2lz2 lx2
(Uy2+ly2lz2Uz2)

∆2
− (Ux2+lx2lz2Uz2)

∆2

lz2(lx2Uy2−ly2Ux2)
∆2

ly2(l
2
z2 + 1) −lx2(l2z2 + 1) 0

− 1
Z3

0 X3

Z2
3

X3Y3

Z2
3

−(1 + X2
3

Z2
3
) Y3

Z3

0 − 1
Z3

Y3

Z2
3

1 +
Y 2
3

Z2
3

−X3Y3

Z2
3

−X3

Z3


.

(A.11)

Singularity conditions. The matrix M is of size (8 × 6); however, the first and second
rows of the submatrices (4.7) that correspond to each of the image lines are linearly related by
LxiMi1 + LyiMi2 = 0. Therefore we can eliminate two rows and study the determinant of a
square matrix M′, as before. After introducing the parametrization (A.4), we compute the
determinant using Maple:

det(M′) =
(t2 + u2 + v2 + w2)12

∆1∆2 Z3
3

F2(X,Y, Z). (A.12)

The term F2(X,Y, Z) is a long polynomial (given in Appendix A.3) in the variables (X,Y, Z),
with coefficients which depend on the parameters (a, . . . , f), and which describes a surface of
degree five in R3. The denominator of (A.12) vanishes only in the degenerate cases described in
section A.1. The term (t2 + u2 + v2 +w2) is equal to 1, the norm of the quaternion. Therefore,
the singularity condition for this case is that the camera centre is contained in the surface of
degree 5 defined by F2 = 0. In Fig. A.3, this surface is shown for a specific configuration of
the features.
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Figure A.3: Two views of the singularity loci from the observation of two lines and a point
with parameters a = 1, b = 1, c = −2, d = 1, e = −1, f = 1. Note: the two lines are contained
in the surface.

An illustrative example To corroborate the results, a camera motion that passes through
a singularity point was simulated using Matlab. The parameters were fixed as

a = 1, b = 1, c = −2, d = 1, e = −1, f = 1. (A.13)

The surface of singularities is drawn in Fig. A.3. The camera motion is parametrized by the
functions

X = −1 + s, Y = −2 + s, Z = 0 + s. (A.14)

with s ∈ [−0.3 0.3] a linearly increasing function, and by a constant orientation chosen
randomly and defined by:

q = (
−73
128

,
−15
32

,
5

32
,
70551/2

128
). (A.15)

The trajectory passes through a point on the surface computed in (A.16) at s = 0. The inverse
of the condition number of M as the camera moves along the path is displayed in Fig. A.4. As
expected, the interaction matrix becomes rank-deficient at s = 0, where 1/κ(M) becomes null.

A.3 Coefficients of the polynomial F2

The polynomial F2(X,Y, Z) computed in Section A.2 looks like:

F2 = ax3yzX
3Y Z + ax3yX

3Y + ax3z2X
3Z2 + ax3zX

3Z + ax3X
3 + ax2y2zX

2Y 2Z + ax2y2X
2Y 2

+ ax2yz2X
2Y Z2 + ax2yzX

2Y Z + ax2yX
2Y + ax2z3X

2Z3 + ax2z2X
2Z2 + ax2zX

2Z

+ ax2X
2 + axy3zXY 3Z + axy3XY 3 + axy2z2XY 2Z2 + axy2ZXY 2Z + axy2XY 2

+ axyz3XY Z3 + axyz2XY Z2 + axyzXY Z + axyXY + axz4XZ4 + axz3XZ3 + axz2XZ2

+ axzXZ + axX + ay4zY
4Z + ay4Y

4 + ay3z2Y
3Z2 + ay3zY

3Z + ay3Y
3 + ay2z3Y

2Z3

+ ay2z2Y
2Z2 + ay2zY

2Z + ay2Y
2 + ayz4Y Z4 + ayz3Y Z3 + ayz2Y Z2 + ayzY Z + ayY.

(A.16)
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Figure A.4: Inverse of the condition number κ(M) as the camera crosses a singularity.

where the coefficients aijk are as follows:

ax3yz = −b3c− 2 b3f

ax3y = −1/2 b3c2 − b3cf

ax3z2 = 2 b3e

ax3z = 2 b3ce

ax3 = 1/2 b3c2e

ax2y2z = 3 ab2c+ 2 ab2f

ax2y2 = 5/2 ab2c2 + 3 ab2cf

ax2yz2 = −4 ab2e
ax2yz = −7 ab2ce+ 1/2 b3cd+ b3df

ax2y = −5/2 ab2c2e+ 1/4 b3c2d+ 1/2 b3cdf

ax2z3 = ab2c− 2 ab2f

ax2z2 = 5/4 ab2c2 − 3 ab2cf + ab2e2 + ab2f2 − b3de

ax2z = 1/2 ab2c3 − 3/2 ab2c2f + ab2ce2 + ab2cf2 − b3cde

ax2 = 1/16 ab2c4 − 1/4 ab2c3f + 1/4 ab2c2e2 + 1/4 ab2c2f2 − 1/4 b3c2de

axy3z = −2 a2bc+ b3c− 2 b3f

axy3 = −4 a2bc2 − 2 a2bcf − 1/2 b3c2 + b3cf

axy2z2 = 2 ab2d

axy2Z = 7 a2bce− 1/2 ab2cd− ab2df − 1/2 b3ce+ b3ef

axy2 = 9/2 a2bc2e− 5/4 ab2c2d− 3/2 ab2cdf + 1/4 b3c2e− 1/2 b3cef

axyz3 = −2 a2bc− 4 b3f
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axyz2 = −2 a2bc2 + 6 a2bcf + 1/2 b3c2 + 2 b3f2

axyz = −a2bc3 + 4 a2bc2f − 2 a2bce2 − 2 a2bcf2 + 2 ab2cde+ b3c2f

axy = −1/4 a2bc4 + 1/2 a2bc3f − a2bc2e2 − a2bc2f2 + ab2c2de− 1/8 b3c4 − 1/2 b3c2f2

axz4 = 2 ab2d+ 2 b3e

axz3 = −a2bce+ 3/2 ab2cd− ab2df + 1/2 b3ce− b3ef

axz2 = −1/2 a2bc2e− 1/4 ab2c2d− 1/2 ab2cdf − 3/4 b3c2e− 1/2 b3cef

axz = 1/4 a2bc3e− 3/8 ab2c3d+ 1/4 ab2c2df − 1/8 b3c3e+ 1/4 b3c2ef

ax = 1/8 a2bc4e− 1/16 ab2c4d+ 1/8 ab2c3df + 1/16 b3c4e+ 1/8 b3c3ef

ay4z = −ab2c+ 2 ab2f

ay4 = 2 a3c2 + 1/2 ab2c2 − ab2cf

ay3z2 = −2 ab2e+ 2 b3d

ay3z = −2 a2bcd+ 5/2 ab2ce− ab2ef − 2 b3cd

ay3 = −3 a3c2e+ 3/2 a2bc2d+ a2bcdf − 3/4 ab2c2e+ 1/2 ab2cef + 1/2 b3c2d

ay2z3 = −ab2c+ 2 ab2f

ay2z2 = 2 a3c2 + 3/4 ab2c2 + 3 ab2cf + ab2e2 − ab2f2 − b3de

ay2z = −4 a3c2f − 1/2 ab2c3 − 5/2 ab2c2f − ab2ce2 − ab2cf2 + b3cde

ay2 = 1/4 a3c4 + a3c2e2 + a3c2f2 − a2bc2de+ 3/16 ab2c4 + 1/4 ab2c3f + 1/4 ab2c2e2

+ 3/4 ab2c2f2 − 1/4 b3c2de

ayz4 = −2 ab2e+ 2 b3d

ayz3 = −2 a2bcd− 3/2 ab2ce+ ab2ef − 1/2 b3cd− b3df

ayz2 = a3c2e− 1/2 a2bc2d+ a2bcdf + 5/4 ab2c2e+ 1/2 ab2cef − 3/4 b3c2d+ 1/2 b3cdf

ayz = 1/2 a2bc3d+ 3/8 ab2c3e− 1/4 ab2c2ef + 1/8 b3c3d+ 1/4 b3c2df

ay = −1/4 a3c4e+ 1/8 a2bc4d− 1/4 a2bc3df − 3/16 ab2c4e− 1/8 ab2c3ef + 1/16 b3c4d

− 1/8 b3c3df
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