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Thèse préparée à DMAS Matériaux et Structures (Université Paris-Saclay, ONERA) , sous
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Mâıtre de conférences, Universidade da Coruna
Cécile MATTRAND Examinatrice
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Titre : Optimisation de stratifiés composites sous contrainte fiabiliste pour des applications
aéroélastiques
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Résumé : L’optimisation de stratifiés com-
posites sous contrainte fiabiliste a été réalisée
avec la prise en compte de l’incertitude des
orientations de plis. Ce travail propose une
nouvelle méthodologie itérative qui lie deux es-
paces d’analyse. Dans le premier espace est
gérée la conception macroscopique à faible di-
mension (en utilisant les paramètres de strat-
ification) avec des informations de gradient
pour effectuer une optimisation rapide. Dans
le deuxième espace, mésoscopique à haute
dimension, les incertitudes des variables de
conception sont modélisées et ensuite trans-
portées à l’échelle macroscopique. Avec cette
méthodologie, un problème inverse doit être
résolu à chaque itération pour pouvoir propager
l’incertitude de l’espace mésoscopique à l’espace
de conception macroscopique et calculer la
probabilité de défaillance nécessaire. Pour
cela, une quantification de l’incertitude est
nécessaire pour identifier correctement une
séquence d’empilement correspondant à la de-

scription statistique des paramètres de strati-
fication. Une base orthonormale de Fourier a
donc été développée. L’approche d’optimisation
présentée est appliquée à différents problèmes :
d’abord, l’optimisation d’une plaque composite
favorisant la rigidité de la plaque avec une con-
trainte analytique de flambage et ensuite une
optimisation aéroélastique favorisant la flexi-
bilité de la plaque tout en restant fiable vis-
à-vis du phénomène de flottement. En raison
de la nature modale de la vitesse de flotte-
ment, une stratégie combinant une classification
et un modèle de substitution classique est pro-
posée pour approximer la quantité d’intérêt et
effectuer une analyse de fiabilité rapide. Les
résultats obtenus démontrent une amélioration
de la fiabilité par rapport à la conception op-
timisée déterministe et un gain de calcul sig-
nificatif par rapport à l’approche consistant à
optimiser directement les orientations des plis
via un algorithme génétique.

Title: Reliability-based design optimization of composite laminates for aeroelastic applications
Keywords: optimization under uncertainty, composite material, multi-scale, lamination param-
eters, surrogate models, flutter
Abstract: Reliability-based design optimiza-
tion of composite laminates was performed with
uncertainty in ply orientation. This work pro-
poses a new iterative methodology that links
two analysis spaces. In the first space, the low-
dimensional macroscopic design is managed (us-
ing lamination parameters) with gradient infor-
mation to perform rapid optimization. In the
second, a high-dimensional mesoscopic scale,
uncertainties in the design variables are mod-
eled and then propagated to the macroscopic
scale. With this methodology, an inverse prob-
lem must be solved at each iteration to propa-
gate the uncertainty from the mesoscopic space
to the macroscopic design space and calculate
the required failure probability. For this pur-
pose, uncertainty quantification is necessary to
correctly identify a stacking sequence corre-
sponding to the statistical description of the

lamination parameters. To this end, a Fourier
orthonormal basis has been developed. The
optimization methodology is applied to vari-
ous problems, including instability constraint:
(i) composite plate optimization promoting the
plate stiffness with an analytic buckling con-
straint and (ii) aeroelastic tailoring promot-
ing the plate flexibility while remaining reliable
with respect to the flutter phenomenon. Due to
the modal nature of the flutter velocity, a strat-
egy combining a classifier and classic surrogate
models is proposed to approximate the quantity
of interest and perform a fast reliability analy-
sis. The results demonstrate an improvement in
the reliability compared to the deterministic op-
timized design and a significant computational
gain compared to the approach of directly opti-
mizing ply orientations via a genetic algorithm.
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clairement bénéfique pour avoir un avis extérieur et prendre plus de recul sur ses travaux. Un
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actuellement en CDD, à Yann pour tes conseils avant d’avoir fait le choix de faire une thèse, à
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INTRODUCTION

Context

One of the main challenges in the field of composite structure optimization is exploiting their

full potential. Composite materials allow tailoring the elastic properties of a structure. The

composite structural design process often results in an optimization problem where the structural

performance is maximized, or the mass is minimized within a set of constraints imposed by the

materials and general behavior of the structure.

Due to the complexity of these materials, variability in their performance arises mainly from

the variability coming from the manufacturing process, such as mechanical properties, fiber

orientation, and structural geometry, but even from loading conditions. Such uncertainties can

affect the mechanical response of a structure (Petit, 2004; Chiachio et al., 2012; Beran et al.,

2017) , and lead to a catastrophic failure.

For deterministic optimization, such uncertainties are often dealt with by simplifying hy-

potheses, such as using safety factors and considering only average or extreme values. However,

such approaches can lead to conservative and inefficient designs or optimistic designs with poor

reliability (Beck and Gomes, 2012) . To better exploit composite materials, the ambition is to

extend these strategies in a stochastic framework taking into account uncertainties in composite

materials. The research topic of optimization under uncertainty (OUU) is vast and presents

significant computational challenges in implementing efficient numerical procedures. A crucial

initial step is the formulation of the OUU problem, conditioned by the evolution of the system

from a deterministic design problem to a design under uncertain conditions.

Motivation: reliability-based design optimization un-

der design variables uncertainty

Stochastic formulations of the objective(s) and constraint(s) must be carefully described.

The two principal methodologies for OUU are Robust Design Optimization (RDO) and

Reliability-Based Design Optimization (RBDO). Uncertainties are usually taken into account

in the objective function foe RDO, thereby minimizing a mean response value and the

sensitivity to random parameters via the variance. RBDO optimizes a design by introducing

uncertainties in the constraint functions having a particular target of risk via a probability

computation. It is possible to mix both approaches (António and Hoffbauer, 2009; Doh et al.,

2018; Lobato et al., 2020) . In this work, the focus is made on RBDO. Taking into account

https://arc.aiaa.org/doi/10.2514/1.3961
https://linkinghub.elsevier.com/retrieve/pii/S1359836811004549
https://doi.org/10.1146/annurev-fluid-122414-034441
https://linkinghub.elsevier.com/retrieve/pii/S0266892011000531
https://linkinghub.elsevier.com/retrieve/pii/S0263822309000208
https://www.tandfonline.com/doi/full/10.1080/0305215X.2018.1428316
https://www.tandfonline.com/doi/full/10.1080/0305215X.2019.1577413


the uncertainty relies on repeated evaluations of the mechanical model. This optimization’s

time-consuming computation may limit the range of applications. Surrogate models have been

used in order to alleviate the computational time. For the RBDO task, surrogate models

relying, for instance, on Polynomial Chaos Expansion were considered in Suryawanshi and

Ghosh (2016); López et al. (2017) , or Kriging in Dubourg et al. (2011); Li et al. (2016) .

Rivier and Congedo (2022) proposed a Surrogate-Assisted Bounding-Box approach that

handles robustness and reliability measures for RDO or RBDO. Gaussian Process is also

exploited with an adaptative refinement strategy. Another interesting approach is the one of

Moustapha et al. (2016) , where a new quantile-based formulation is proposed, motivated by

the relatively high target failure probabilities that can be accepted in the automotive design field.

The review made by Chiachio et al. (2012) on reliability in composites sums up the works

performing reliability analyses of composite structures. On the one hand, most of the works con-

sider uncertainty on loads or strength. On the other hand, uncertainties on the geometry, such

as the thickness and the ply angle, are less present in the literature. However, Conceição António

and Hoffbauer (2017) perform a RBDO with the minimization of the mass of a simple compos-

ite structure while remaining reliable with respect to buckling instability with uncertainty on

the loads imposed. Subsequently, a sensitivity analysis was performed on the optimal structure

to study the influence of random design parameters and variables on the structural response.

This analysis revealed that the longitudinal elastic modulus and ply orientations were the most

influential parameters. Other works show the detrimental influence of the ply orientation on

buckling instability (Wang et al., 2017; Pagani and Sanchez-Majano, 2022) . The uncertainty

of ply orientations has some effect on flutter instability in the aeroelastic field.

Aeroelasticity is the study of the interaction between inertial, elastic, and aerodynamic forces

on bodies subject to a flow. The study of aeroelasticity may be extensively classified into two

categories: static aeroelasticity dealing with the static or steady-state response of an elastic

body to a fluid flow; and dynamic aeroelasticity dealing with the body vibration response. In

the latter category, phenomena like flutter or limit cycle oscillations are present. Concerning the

aeroelastic application, this work will focus on the flutter dynamic instability. Regarding the

composite material, it allows to optimize locally the stiffness of the structure in order to adapt

the overall aero-structural behavior and possibly delay instabilities. The complex interactions

between the structure and the fluid that lead to flutter are highly sensitive to uncertainties

Beran et al. (2017) . The review in Beran et al. (2017) illustrates some reasons why there is

particular interest in uncertainty quantification (UQ) in this area, and one of the most important

reasons is the classical 15% safety factor margin on the flutter airspeed, which is required for the

qualification of aircraft (Administration, 2014) . Therefore, taking into account the uncertainties

in the design process may reduce this margin in the future, leading to less conservative designs.

Scarth et al. (2014); Nitschke et al. (2019) studied the UQ of the flutter velocity considering

uncertainty on ply orientations. These works show the possible important variation in the critical

flutter velocity in some parts of the composite laminate design space. An example is shown in

Figure 1 where the probability density function (PDF) has a bimodal behavior while taking into

account ply orientation uncertainty. The deterministic quantity could respect the constraint,

but considering the uncertainty on ply angles could lead to poor reliability with respect to the

flutter. Therefore, taking into account the uncertainty on ply orientations is of interest for the

aeroelastic design process.

Scarth and Cooper (2018) investigated the minimization of the probability of the flutter

occurring on a composite plate wing with uncertain design variables, i.e., the ply orientations.

However, even if the resulting design is, in some sense, an optimized solution concerning the
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Figure 1: Example of a probability density function of a composite plate flutter velocity
with ply angle uncertainty.

onset of the flutter instability, their proposed formulation could be improved for the aircraft

design process since the aeroelastic stability has to be taken into account as a constraint instead

of an improvable objective. Moreover, a genetic algorithm is used to solve the optimization,

which can be limited to complex high-dimensional problems.

To conclude, this overview shows the interest in taking into account uncertainties on the

ply orientations, especially on mechanical instability, such as buckling or flutter phenomenon.

However, a limited number of studies take into account these uncertainties in a OUU framework

and more especially for RBDO. Recently, a strategy, solving a mono-objective optimization

taking into account the uncertainty of the ply orientations, has yielded reliable designs with

respect to the flutter phenomenon (Scarth and Cooper, 2018) . Nevertheless, the proposed

formulation could be more evolved if a more realistic application is considered.

Objectives and thesis layout

In this context, this work aims to develop a strategy for composite laminate RBDO under

uncertainty of design variables through the most realistic formulation for aeroelastic applications.

The research work is around a few axes of development: composite laminate optimization,

surrogate modeling, and reliability-based design optimization. Each chapter of the manuscript

includes one or two coupled axes of development with a state of the art review of each domain.

The primary goal was to formulate the optimization problem to perform efficiently and

the most quickly the RBDO. An outline of the existing strategies and methods for composite

structure optimization, under uncertainty or not, is introduced in Chapter 1. The idea is to

explore the possibility of quantifying the uncertainty of homogeneous parameters to perform

gradient-based optimization in the homogeneous space. Therefore, a strategy is presented in this

chapter exploiting two design spaces at different scales of the material during the optimization

process to use a gradient-based algorithm. Nevertheless, even if the formulation is presented

and explained, some steps need technical development to carry out the strategy.

http://link.springer.com/10.1007/s00158-017-1838-6


One of the steps is an inverse problem resolution to retrieve a composite layup from the

homogenized design variables. In a variability framework, the statistics of the linked variables

of each scale need to be matched. In Chapter 2, a metamodel, based on the Polynomial Chaos

Expansion family, that efficiently and quickly computes the statistics of homogenized design vari-

ables is developed. Different formulations of the inverse problem are investigated and compared

via the surrogate model developed.

Chapter 3 focuses on the reliability analysis of a multimodal response and its sensitivity.

The objective is to set up a strategy for the failure probability computation and its sensitivity

in a convenient computational time. Indeed, aeroelastic models are often expensive, so it is

necessary to use metamodeling methods for this step. Kriging is exploited in this step with a

strategy using classification to handle the discontinuity of the mechanical response coming from

the physics. Concerning the probability sensitivity, different methods are tested, and a hybrid

approach is proposed, which seems adapted to the design variables of the optimization problem.

Chapter 4 aims to validate the global strategy exploiting different scales of the material

in a variability framework and to compare the RBDO with a deterministic optimization. The

validation is made on a simple test case of a composite plate under compression load. Then

an aeroelastic optimization is performed still on a composite plate. Multiple studies on the

computational time, the initial guess, and the reliability analysis are presented.

The last chapter will present the conclusions drawn from this work and discuss its perspec-

tives.
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1.1 Introduction

In the literature, many works can be found on laminated composite structure optimization, but

fewer works take into account uncertainties on design variables, such as ply orientation. An

overview of the composite structure design methods is given in this chapter through the existing

literature. The objective of this chapter is to show the limits of the existing strategies for

composite laminate optimization under design variable uncertainty and to present the principal

steps of the new methodology of composite laminate reliability-based design optimization that

will be detailed in the remainder of the manuscript. The chapter starts with the description of

composite laminates and the hypotheses made for composite modeling. The existing approaches

for optimizing composite laminate structure in a deterministic framework are covered in Section

1.3. Then, reliability-based design optimization is introduced with a literature review applied

to composite and the introduction of the new multi-scale reliability-based design optimization

formulation is made.

1.2 Laminates stiffness modeling

1.2.1 Material basis concept

Composite laminates are a sub-class of composite materials obtained by stacking thin plies,

called lamina, made of two basic constituents: high-stiffness fibers aligned in a common direction,

bonded by a polymer matrix (Figure. 1.1c). The laminae are held together by a polymeric resin,

forming a laminate. The use of composite laminates is motivated by their high stiffness-to-mass

and strength-to-mass ratios. Moreover, composite materials introduce new degrees of freedom

in the design of structures by tailoring the stacking sequence of the laminate.

1.2.2 Mechanics of composite laminates

In this thesis, composite laminates are treated as plate elements. Analyses of composite plates

could be based on different approaches, such as the classical laminated plate theory (CLPT),

the shear deformation laminated plate theories, the traditional 3D elasticity formulations, or

the layerwise theories. All these approaches are presented in Reddy (2003) .

The classical laminated plate theory (CLPT) is considered here. This theory follows some

assumptions concerning the kinematics of the deformation and the stress state through the

thickness of the laminate. This is based on the Kirchhoff-Love plate kinematics and plane stress

assumption.

Kirchhoff-Love hypotheses hold:

1. Straight lines normal to the mid-surface remain straight after deformation.

2. Straight lines normal to the mid-surface rotate such that they remain normal to the mid-

surface after deformation.

3. Thickness does not change during deformation.

These assumptions lead to zero transverse normal strain ϵzz and zero transverse shear strains

ϵxz, ϵyz. Moreover, the plane stress assumptions lead to neglect the stress components in the

out-of-plane direction. Finally, the deformations are constant through the thickness and equal

to those of the mid plane; this is the consequence of the combination of Kirchhoff-Love and the

perfect adhesion of the layers.

https://www.taylorfrancis.com/books/mono/10.1201/b12409/mechanics-laminated-composite-plates-shells-reddy
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Figure 1.1: Different scales of the composite material.

With all these assumptions, the constitutive relations (strain-stress) for an orthotropic lam-

ina in the principal material coordinates of the lamina (Figure 1.1b) are: σ1
σ2
τ12

 =

Q11 Q12 0
Q12 Q22 0
0 0 Q66

 ϵ1
ϵ2
γ12

 , (1.1)

where ϵ1, ϵ2 and γ12 are the strain components referred to the material coordinate system,

the Qij ’s are the reduced laminate stiffness components, defined in terms of the material’s

longitudinal modulus (E1), transverse modulus (E2), shear modulus (G12) and Poisson ratio

(ν12) as:

Q11 =
E1

1− ν12ν21
, Q12 =

ν12E2

1− ν12ν21
, Q22 =

E2

1− ν12ν21
, Q66 = G12. (1.2)

In the CLPT framework, the laminate is made of orthotropic layers with their material axes

oriented with respect to the laminate coordinates. A laminate is constructed by stacking multiple

plies with a given thickness tk and orientation angle θk with respect to the laminate axes (Figure

1.1c). The constitutive equations of each layer must be transformed to the laminate coordinates

as follows: σxx
σyy
τxy

 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 ϵ◦xx + zκxx
ϵ◦yy + zκyy
γ◦xy + zκxy

 with zk−1 < z < zk, (1.3)

where zk and zk−1 are the positions of the kth skin layer (see Figure 1.2) such as zk−1− zk = tk,

ϵ◦ denote the strains at the midplane, κ the curvature, Qij ’s are the lamina stiffness components

in the laminate coordinate system of the kth layer and are given by:

Q11 = U1 + U2 cos 2θk + U3 cos 4θk,

Q12 = U4 − U3 cos 4θk,

Q22 = U1 − U2 cos 2θk + U3 cos 4θk,

Q66 = U5 + U3 cos 4θk,

Q16 = (U2 sin 2θk + 2U3 sin 4θk)/2,

Q26 = (U2 sin 2θk − 2U3 sin 4θk)/2,

(1.4)
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Figure 1.2: Schematic view of a composite laminate consisting of N laminae with orien-
tation θk, thickness tk and coordinate zk from the mid-plane.

where the Ui’s are material parameters derived from the material properties of the lamina as

follows: 
U1

U2

U3

U4

U5

 =
1

8


3 3 2 4
4 −4 0 0
1 1 −2 −4
1 1 −6 −4
1 1 −2 4




Q11

Q22

Q12

Q66

 . (1.5)

The stresses evolve continuously piecewise through the thickness of the laminate. Hence, stress

and moment resultants are expressed as the integration of laminate in-plane stresses throughout

the thickness of the laminate:

Nx =

∫ h/2

−h/2
σxdz, Ny =

∫ h/2

−h/2
σydz, Nxy =

∫ h/2

−h/2
τxydz, (1.6)

Mx =

∫ h/2

−h/2
σxzdz, My =

∫ h/2

−h/2
σyzdz, Mxy =

∫ h/2

−h/2
τxyzdz. (1.7)

Substituting layer stresses from Eq.(1.3) into the above equations, we obtain the constitutive

relations for the laminate:
Nx

Ny

Nxy

 =

A11 A12 A16

A12 A22 A26

A16 A26 A66


ϵ◦x
ϵ◦y
γ◦
xy

+

B11 B12 B16

B12 B22 B26

B16 B26 B66


κx
κy
κxy

 , (1.8)


Mx

My

Mxy

 =

B11 B12 B16

B12 B22 B26

B16 B26 B66


ϵ◦x
ϵ◦y
γ◦
xy

+

D11 D12 D16

D12 D22 D26

D16 D26 D66


κx
κy
κxy

 , (1.9)

where:

Aij =

N∑
k=1

(Qij)k (zk − zk−1) ,

Bij =
N∑
k=1

(Qij)k
(
z2k − z2k−1

)
,

Dij =

N∑
k=1

(Qij)k
(
z3k − z3k−1

)
.

(1.10)



The A and D matrices are, respectively, the membrane and bending stiffness matrices, which

relate the in-plane stress resultants to the mid-plane strains and the moment resultants to the

curvatures of the mid-plane of a laminate. The B matrix is the bending-membrane coupling

matrix that relates the in-plane stress resultants to the curvatures and the moment resultants

to the mid-plain strains of a laminate. This coupling can be beneficial for particular structural

applications.

1.2.3 Modeling using lamination parameters

The constitutive relations presented in the previous section include the design variables in the

Qij terms, which include the layer orientation angles via Eq.(1.4) and the thicknesses of the

layers. Another form of representing the A, B and D matrices is based on the use of lamination

parameters (LPs) introduced by Tsai and Hahn (1980) . Considering a laminate with a total

thickness h and identical plies, i.e., with the same material parameters and thickness, laminate

stiffness matrices can be expressed as:

A = h(Γ0 + Γ1v
A
1 + Γ2v

A
2 + Γ3v

A
3 + Γ4v

A
4 ),

B =
h2

4
(Γ1v

B
1 + Γ2v

B
2 + Γ3v

B
3 + Γ4v

B
4 ),

D =
h3

12
(Γ0 + Γ1v

D
1 + Γ2v

D
2 + Γ3v

D
3 + Γ4v

D
4 ),

(1.11)

where Γi are fully defined by material parameters of Eq.(1.5) as follows:

Γ0 =

U1 U4 0
U4 U1 0
0 0 U5

 , Γ1 =

U2 0 0
0 −U2 0
0 0 0

 , Γ2 =

 0 0 U2/2
0 0 U2/2

U2/2 U2/2 0

 ,
Γ3 =

 U3 −U3 0
−U3 U3 0
0 0 −U3

 , Γ4 =

 0 0 U3

0 0 −U3

U3 −U3 0

 .
(1.12)

The lamination parameters are defined as follows:

vA,B,D
[1,2,3,4] = H(θ) =

1∫ h/2
−h/2 z

p dz

∫ h/2

−h/2
zp [cos(2θ), sin(2θ), cos(4θ), sin(4θ)] dz, (1.13)

where p depends on which matrix is considered: p = 0 for A, p = 1 for B and p = 2 for D and

we call H the mapping of the stacking sequence to the lamination parameters. Each laminate

stiffness matrices (A, B or D) can be expressed as a linear combination of Tsai-Pagano material

parameters (Eq. 1.5) and the LPs. Then, the influence of the laminate thickness, material

parameters, and the stacking sequence is decoupled. Each tensor is represented by four different

LPs, and the stiffness response of a laminate is thus represented by up to twelve LPs.

1.2.4 Modeling using polar parameters

Polar parameters (PPs) are issued from the extension of the polar representation to the case of

fourth-order elastic tensors (Verchery, 1982) . This operation leads to the definition of six polar

components for a fourth-order tensor of the elastic type Q. These are the scalars T0 and T1, the

moduli R0 and R1, and the polar angles Φ0 and Φ1. The first four are invariants by rotation

of the reference frame, while the angular difference Φ0 − Φ1 constitutes the fifth and last polar

invariant.

https://www.taylorfrancis.com/books/mono/10.1201/9780203750148/introduction-composite-materials-stephen-tsai-thomas-hahn
https://link.springer.com/content/pdf/10.1007/978-94-009-6827-1_7.pdf


Once these parameters are defined, it is possible to write the link between the Cartesian

components Qijkl in a 1− 2 axis system and the polar components of Q:

Q1111 = T0 + 2T1 + R0 cos 4Φ0 + 4R1 cos 2Φ1,
Q1122 = − T0 + 2T1 − R0 cos 4Φ0,
Q1112 = R0 sin 4Φ0 + 2R1 sin 2Φ1,
Q2222 = T0 + 2T1 + R0 cos 4Φ0 − 4R1 cos 2Φ1,
Q2212 = − R0 sin 4Φ0 + 2R1 sin 2Φ1,
Q1212 = T0 − R0 cos 4Φ0,

(1.14)

and vice-versa:

8T0 = Q1111 − 2Q1122 + 4Q1212 + Q2222,
8T1 = Q1111 + 2Q1122 + Q2222,

8R0e
4iΦ0 = Q1111 + 4iQ1112 − 2Q1122 − 4Q1212 − 4iQ1222 + Q2222,

8R1e
2iΦ1 = Q1111 + 2iQ1112 + 2iQ1222 − Q2222.

(1.15)

The rotation transformation laws of the reference frame are greatly simplified in the polar

representation. Thus, when we change from the 1 − 2 reference frame to the x − y reference

frame rotated by an angle θ, only the polar angles Φ0 and Φ1 vary and become, respectively,

Φ0 − θ and Φ1 − θ. The relations show that the Cartesian components of a fourth-order tensor

are sums of an invariant quantity which is a function of the polar moduli T0 and T1, and of

two quantities which depend on trigonometric functions of the angle θ. Thus, it is possible to

distinguish the parameters T0 and T1, related to the isotropic part, from the quantities R0e
4iΦ0

and R1e
2iΦ1 , related to the anisotropic part of the tensor Q.

This polar representation is generic to any material with in-plane anisotropy, and is not

necessarily committed for composite materials and the CLPT. However, the polar representation

method can be applied to the membrane, bending and coupling between the membrane and

bending stiffness tensors A, D and B just as it is applied to tensor Q. The polar invariants are

then denoted as (TA
0 , T

A
1 , R

A
0 , R

A
1 , Φ

A
0 −ΦA

1 ) for the membrane behavior, (TB
0 , T

B
1 , R

B
0 , R

B
1 , Φ

B
0 −

ΦB
1 ) for the coupling behavior, and (TD

0 , T
D
1 , R

D
0 , R

D
1 , R

D
0 , Φ

D
0 − ΦD

1 ) for the bending behavior.

All polar angles are expressed in the x− y laminate reference frame.

In the case of identical plies in a laminate, the membrane, coupling, and bending components

are then expressed in terms of the polar parameters of the single base layer (T0, T1, R0, R1, Φ0, Φ1)

(Vincenti, 2002) :

TA
0 = hT0, RA

0 e
4iΦA

0 =
h

N
R0e

4iΦ0

N∑
k=1

e4iθk ,

TA
1 = hT1, RA

1 e
2iΦA

1 =
h

N
R1e

2iΦ1

N∑
k=1

e2iθk ,

(1.16)
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h
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4iΦ0

N∑
k=1

bke
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h
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N∑
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bke
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TD
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1

12

(
h

N

)3

T0

N∑
k=1

dk, RD
0 e

4iΦD
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1

12

(
h

N

)3

R0e
4iΦ0

N∑
k=1

dke
4iθk ,

TD
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1

12

(
h

N

)3

T1

N∑
k=1

dk, RD
1 e

2iΦD
1 =

1

12

(
h

N

)3

R1e
2iΦ1

N∑
k=1

dke
2iθk .

(1.18)
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In (1.17) and (1.18), the coefficients bk and dk are relative integers which represent the influence

of the plies position k on the behavior considered, respectively coupling and bending (Vincenti,

2002) . Their expression depends on the parity of the total number of layers N in the following

form:

N pair : bk = 2k − |k|
k

; dk = 12k2 − 12|k|+ 4 (1.19a)

N impair : bk = 2k , b0 = 0 ; dk = 12k2 + 1 , d0 = 0. (1.19b)

In the CLPT framework, the polar parameters are then similar to lamination parameters.

It is possible to switch from lamination parameters to polar invariants as follows:

R
(.)
0

R0

e4iϕ
(.)

= v
(.)
3 + iv

(.)
4 ,

R
(.)
1

R1

e2iϕ
(.)

= v
(.)
1 + iv

(.)
2 ,

(1.20)

where (.) denotes the behavior studied, i.e., A for membrane, D for bending or B for mem-

brane/bending coupling. For the sake of synthesis, a deeper scientific discussion about polar

parameters is not given here. The reader may refer to the book of Vannucci (2018) for a more

in-depth discussion around the polar parameters and their link with the lamination parameters.

1.2.5 Conclusion

Composite laminates have three main design variables: the number of layers, the orientation

of each layer with respect to a fixed reference frame, and the through-the-thickness order in

which the layers are placed in the laminate, which is known as the stacking sequence. These

new degrees of freedom in the composite design can change the in-plane and bending stiffness of

the laminate. The orientation of each ply in the laminate directly affects the in-plane stiffness

properties of the laminate. The bending stiffness of a laminate is affected by the stacking

sequence. Such a design problem can be formulated as an optimization aiming at improving

structural performances, e.g., stiffness, strength, bucking resistance, natural frequency, etc., or

decrease the mass.

1.3 Optimization of composite laminates

The general problem of a stacking sequence optimization with respect to an objective f and ng
constraints gi can be formulated as follows:

min
{θ,N}

f subject to: gj ⩽ 0 j = 1, . . . , ng, (1.21)

where θ = [θ1, . . . , θN ] is the stacking sequence of the laminate with N plies. The number of

plies can be a variable of the optimization in order to minimize the mass of a structure, for

example. Therefore the number of design variables may vary over the optimization process.

Moreover, some restrictions on the ply orientations may exist. As a result, the problem is

highly non-linear and non-convex.

To solve this kind of optimization problem, two types of algorithms may usually be adopted:

meta-heuristics and gradient-based methods. The former are employed to find a global optimum
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Figure 1.3: Response example of a function in both spaces.

with the capability to explore the highly non-convex domain and handle the problem’s combi-

natorial nature. The latter are selected to obtain a fast convergence to a solution, minimizing

the number of evaluations of structural analyses and handling large numbers of variables and

constraints, but can be trapped by local optima.

The fastest way to optimize a structure is to assign the same laminate to the entire structure.

This is called the constant stiffness design Ghiasi et al. (2009) . It is quite a mature formal-

ism and is well suited for structures subject to uniform loading without particular geometrical

singularities. However, it does not significantly improve the structure performances for more

complex applications compared to metallic design. To overcome this, another design family

exists where variations of thickness, ply orientations, or fiber volume fraction are applied. This

optimization formalism is called variable-stiffness design. It can provide a wider range of possi-

ble designs and improved performance useful for aeroelastic applications, for example. However,

the higher number of design variables and the manufacturability conditions for the continuity

between the zones of the structure lead to a more complex problem. General strategies have

been developed for optimizing composite laminates, depending on how the composite laminates

are parametrized. An extensive review of algorithms used for the optimization of composite

laminates is found in Ghiasi et al. (2009, 2010); Xu et al. (2018) . Strategies found in the

literature can be split into two families: direct methods and bi-level approaches.

1.3.1 Direct methods

When composite laminate optimization is parametrized in terms of the explicit characteristics of

a stacking sequence, i.e., ply thickness and ply orientations, direct methods are used to handle

the combinatorial characteristic of the problem and is formulated as shown in the Eq.(1.21).

The thickness is a discrete variable corresponding to an integer number of plies, and the ply

orientations can be discrete depending on the manufacturing aspect. Furthermore, the multi-

modal and non-convex nature of the function of interest (see Figure 1.3a) do not allow the use

of gradient-based methods. Direct search methods have the advantage of requiring no gradi-

ent information of the objective functions and the constraints. It can be advantageous since

derivative calculations are often costly or impossible to obtain. This type of problem can be

solved using metaheuristic algorithms like genetic algorithm (GA) (Conceição António, 2001;

Riche and Haftka, 1993) or simulated annealing (SA) (Erdal and Sonmez, 2005) , which are
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suited for discrete problems and are the most popular direct methods for composite laminate

optimization.

Simulated annealing mimics the annealing process in metallurgy (Kirkpatrick, 1984) . The

SA conducts a global search by permitting unfavorable solutions to be accepted with a probabil-

ity related to a parameter called ”temperature”. The temperature is initially set to a high value,

which corresponds to a higher probability of accepting a wrong move, and then, a user-defined

cooling schedule gradually reduces this value. Rao et al. (2002) conducted an optimization

of the laminate composite plate to maximize its natural frequency. The results indicated that

the SA effectively deals with design problems concerning layup optimization. However, one of

the problems in SA is the generation of a sequence of points that converges to a non-optimal

solution. Therefore, Romeijn et al. (1999) propose to increase the occurence rate of sampling

points far from the current point. To increase the convergence rate, Genovese et al. (2005)

proposed a two-level SA including a global annealing where all design variables were perturbed

simultaneously and a local annealing where only one design variable was perturbed after each

iteration of the global annealing in order to improve the trial point locally.

Simulated annealing is a good choice for the general case of optimal layup selection; how-

ever, it has some convergence issues. Genetic algorithm is more robust although it is often

computationally more time consuming (Sargent et al., 1995; Di Sciuva et al., 2003) .

A genetic algorithm is an evolutionary optimization technique using Darwin’s principle of

”survival of the fittest” to improve a population of solutions. GA tries to imitate biological

evolution, creating a random design population at first and choosing over the options with a

better fitness to continue the genetic evolution, creating a new further evolved population. The

main operations of the GA consist of selection, i.e, determining which individuals are more likely

to achieve the best results; crossover, i.e., crossing two parents to create one alternate offspring;

and mutation, i.e., creating new individuals by modifying the existing ones randomly. The pop-

ulation size of GA must be suitably large in order to find a global solution. Despite the high

computation cost, its simple coding and flexibility in handling problems with various variables

and objective functions make GA useful for problems with multimodal functions, discrete vari-

ables, and functions with costly derivatives. That is why GA has been the most popular method

used for optimizing a laminated composite (Venkataraman and Haftka, 1999) .

Callahan and Weeks (1992) , Nagendra et al. (1992) and Riche and Haftka (1993) firstly

used GA to design the stacking sequence of laminated composite structures. Since then, GA

has been applied to the design of laminated composite structures with various objectives and

constraints, such as weight (Gantovnik and Gu, 2002; Walker and Smith, 2003; Narayana Naik

et al., 2008) , buckling loads (Kogiso et al., 1994; Todoroki and Ishikawa, 2004; Abouhamze

and Shakeri, 2007) , stiffness Potgieter and Stander (1998) , deflection Walker and Smith

(2003) . Moreover, GA has been used for the design of a variety of composite structures ranging

from simple rectangular plates to complex geometries such as sandwich plates Lin and Lee

(2004) , stiffened plates Nagendra et al. (1996) , bolted composite lap joints Kradinov et al.

(2007) .

Although GA has been widely used for designing composite structures, an obvious

disadvantage is its convergence rate. Like all the population-based evolutionary algorithms,

GA requires many generations before converging to the final solution Potgieter and Stander

(1998) . A large number of computations are involved in each generation, which results in

time-consuming and expensive computations.

Other less popular heuristic methods have been used, such as tabu search (Pai et al., 2003) ,

scatter search (Rama Mohan Rao and Arvind, 2005) or particle swarm (Suresh et al., 2007) .
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In the framework of variable-stiffness design, design variables are locally defined over different

zones of a structure, and it is complex for the Finite Element Method to handle the possible

huge number of plies. Therefore, the idea is to express the composite as a homogeneous material,

and this will regularize the function of interest responses. This is achieved by using continuous

variables to linearize the structural response. This conduct to another type of optimization: the

bi-level framework.

1.3.2 Bi-level approach

The bi-level framework constitutes an efficient way of solving composite laminate structures. It

is based on the different representations of a laminate either by its stacking sequence or by its

homogeneous material properties in membrane, bending, and membrane-bending coupling. The

process consists in dividing the optimization of the stacking sequence into two distinct problems,

solved one after the other.

1.3.2.1 Problem formulation

The first level problem optimizes the homogeneous material properties and the thickness h of a

laminate with respect to the same objective and constraints of the global optimization problem

of Eq.1.21:

min
{A,B,D,h}

f subject to:


gj ⩽ 0 j = 1, . . . , ng,
{A,B,D} ∈ Dlam,
h ∈ Dthick,

(1.22)

where Dlam and Dthick are the design domains of the laminate and of its thickness. The stiffness

matrices can be parametrized by lamination parameters or polar parameters. The solution of

the optimization problem of Eq.(1.22) constitutes target material properties Ades, Bdes and

Ddes and thickness hdes for the second-level problem.

The second level problem aims at retrieving the stacking sequence that has the target material

properties and thickness obtained from the first-level problem of Eq.(1.22):

min
θ=[θ1,...,θN ]

∥[Ades,Bdes,Ddes]− [A(θ),B(θ),D(θ)]∥ subject to: N = ⌈hdes/tply⌉, (1.23)

where ⌈.⌉ denotes a rounding operation to the integer number of plies and tply the ply thickness.

The advantage of the first level formulation is that the domain of homogenized material

properties is convex, and the functions of interest (objective and constraints) are more regular

than in the ply orientations design space, in which the responses are highly non-linear and non-

convex (see Figure 1.3). Hence, the first level optimization can be solved with gradient-based

algorithms, thus limiting the computational cost. Moreover, the number of design variables is

independent of the number of plies, and that simplifies the optimization process when dealing

with thickness variations. The number of design variables can also decrease when some hypothe-

ses are made. For example, the coupling between bending and in-plane extension can be useful

for some applications, but it is commonly considered undesirable, which reduces the tensor B

to zero. In some industrial applications, the orthotropic hypothesis is made where the tension-

shear and bending-twist couplings are avoided, meaning that the coupling terms A16, A26, D16

and D26 are zeros.



This approach, however, shifts the challenge to the second level - i.e., the inverse mapping

problem from the homogenized space to the stacking sequence - which is highly multimodal

and complex. This step only requires the evaluation of the CLPT, a low computational

calculation, in order to match a stacking sequence to target stiffness properties. Hence,

it is solved mostly via meta-heuristics algorithms. This bi-level framework represents one

of the most effective methods to optimize composite laminate structures Albazzan et al. (2019) .

One difficulty in directly using tensor components is that their cartesian representation

is quite complex when the reference frame is rotated. Nevertheless, these difficulties can be

reduced with the use of the lamination parameters or the polar parameters to parametrize the

stiffness in the first-level optimization. Moreover, instead of using the component of the tensors

in Eq.(1.23), LPs or PPs could be the target for the second level problem.

Lamination parameters, introduced in Section 1.2.3 were first used by Miki and Sugiyama

(1991) to parametrize an optimization with the LPs. Yamazaki (1996) apply them in a bi-level

framework, assuming ply orientations of 0◦, ±45◦ or 90◦. Bloomfield et al. (2008) applied

the bi-level approach to minimizing the mass of a supported composite plate under different

loading conditions. At the first level, a gradient-based method is used, and then, at the second

level, a particle swarm optimization algorithm is used to determine the stacking sequence with

a possible 30° increment for ply orientation. Other notable developments are the formulation

of strength-based failure criteria directly in the first-level optimization (IJsselmuiden et al.,

2008) . Moreover, the LPs formulation has been extended to higher-order shear deformation

theories in order to handle thick laminates and sandwich structures (Balabanov et al., 2012;

Irisarri et al., 2021) .

The polar parameters, introduced in Section 1.2.4, were first used in order to find lami-

nates with particular properties without making any assumptions on the stacking sequence, such

as uncoupling or homogeneity of the membrane and bending behaviors Vannucci and Verchery

(2001) . Then Vincenti et al. (2001) add the assumptions of uncoupling and quasi-homogeneity

of the laminate elastic tensors. The PPs were also used for composite laminate optimization

with the bi-level framework (Jibawy et al., 2011; Montemurro et al., 2012b,a) . No restric-

tions are imposed on the stacking sequence during the second optimization level. The multi-scale

two-level (MS2L) optimization framework has been applied to realistic engineering problems in

a constant stiffness framework. Montemurro et al. conducted design optimization of stiffened

panels Montemurro et al. (2018) or sandwich panels Montemurro et al. (2016) with manufac-

turing constraints. This methodology is also applied to variable stiffness design Catapano et al.

(2015) .

1.3.2.2 Feasible region for the first-level optimization

The lamination and polar parameters, presented in Section 1.2.3 and Section 1.2.4, allow to

represent each of the three stiffness tensors A, B and D characterizing the plane anisotropic

behavior of an anisotropic material. However, the material properties need to be realizable

by composite laminates. The aim is now to restrict the parametrization. Indeed, the terms

of the stiffness tensors A, B and D become intrinsically related by compatibility conditions

that are complex to derive in a general case. One of the primary difficulties faced is the

development of direct relations to define the feasible region of the lamination parameters or the

polar parameters. Researchers have tackled this problem in the literature where an analytical

expression of the feasible region combining all variables is still unavailable. Therefore, the
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laminates are usually restricted to particular families of stacking sequences (mainly restricting

the search to a small set of ply orientations). Uncoupled laminates are considered, which verify

B = 0.

In the lamination parameters framework, Miki and Sugiyama (1991) determined the

feasible regions to describe both the in-plane or out-of-plane stiffnesses of an orthotropic laminate

using two in-plane or two out-of-plane lamination parameters as follow:

2
(
vA,D
1

)2
− 1− vA,D

3 ≤ 0. (1.24)

The domain Dlam with this compatibility constraint is shown in Figure 1.4a. Fukunaga and

Sekine (1992) derived the feasible regions of the four in-plane and four out-of-plane lamination

parameters separately. Next, Grenestedt and Gudmundson (1993) derived explicit expressions

between certain sets of the in-plane and out-of-plane lamination parameters. Later, Diaconu

and Sekine (2004) derived explicitly the feasible regions of lamination parameters that related

the in-plane, coupling, and out-of-plane lamination parameters to each other for 0°, ±45° or

90° plies. After that, Setoodeh et al. (2006) established a method based on successive convex

hull approximations to approximate the boundary of the general feasible region of lamination

parameters in the form of a huge number of linear inequalities that could be included explicitly

as constraints. By contrast, Bloomfield et al. (2009) presented a method to derive constraints

on the feasible region for any predefined ply angles. Even if these constraints appear as

promising, it is still an approximation. More recently, an explicit feasible region combining four

coupled lamination parameters of orthotropic laminates was finally derived by Wu et al. (2015) .

In the polar parameters framework, an alternative, adopted in most of the works using

the polar representation, is to assume that the laminates have a homogeneous membrane and

bending behaviors (Montemurro et al., 2012b; Vannucci, 2013) which verify:

A∗ = D∗, (1.25)

where A∗ =
1

h
A and D∗ =

12

h3
D are the stiffness tensors normalized by the total thickness h

of the laminate. This assumption has the advantage of further reducing the total number of

variables to parametrize the properties of the laminate to only four for either the membrane or

the bending tensors: R0, R1, ϕ0 and ϕ1. The orthotropy is also considered, and it is simply

expressed, with the polar formalism, by:

ϕ0 − ϕ1 = K
π

4
, K ∈ 0, 1. (1.26)

The parameter ϕ0 is now a function of ϕ1 hence simplifying the relations of Eq.(1.14):

R0 cos 4ϕ0 = (−1)KR0 cos 4ϕ1,

R0 sin 4ϕ0 = (−1)KR0 sin 4ϕ1.
(1.27)

For the sake of simplicity, the quantity R0k = (−1)KR0 is introduced, where the sign of the real

R0k determines the value of K (K = 0 or K = 1). This reduces the total number of design

variables to only three parameters: R0k, R1, and ϕ1, where ϕ1 is interpreted as the principal

axis of orthotropy. We can introduce the dimensionless quantities:

ρ0k =
R0k

R0

, ρ1 =
R1

R1

, (1.28)
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Figure 1.4: Feasible domains with the assumption of orthotropic laminates.

and now the compatibility constraint is expressed as:

2ρ21 − 1− ρ0k ≤ 0, (1.29)

which is similar to the lamination parameters compatibility constraint found in Eq.(1.24) with

the assumption of orthotropic laminates.

Figure 1.4b illustrates the domain in the polar parameters space, which corresponds to the right

side of the lamination parameters space. To project the polar invariant space on the left-hand

side of the lamination parameters space, it is necessary to apply a nπ
2 rotation of ϕ1 with n ∈ Z,

the set of all integers.

1.3.2.3 Conclusion

Both stiffness parametrizations are available with the LP and PP. They are quite similar when

applied to CLPT. At ONERA, the bi-level approach using lamination parameters has been ap-

plied to a buckling optimization of a composite plate (Irisarri et al., 2011) and in a variable

stiffness framework, to sandwich structures (Irisarri et al., 2021) and to the aeroelastic opti-

mization of a wing (Bordogna et al., 2020; Fabbiane et al., 2022) . This is the reason why, in

the following sections, this work will focus on a bi-level optimization strategy making use of the

lamination parameters.

1.3.3 Laminate design rules

Usually, stacking sequences must verify general design rules to obtain certain mechanical

and manufacturability properties. Moreover, in the variable stiffness framework, ensuring the

continuity between the different zones along composite structures is an important issue (Lozano

et al., 2016) that introduces additional design constraints.

Constraints issued from industrial practices are generally applied to the design of composite

laminates and are brought from experience Bailie et al. (1997); MIL-HDBK-17 (2002) . The

most common design constraints are the following:

• Symmetric laminates: sufficient (though not necessary) condition to ensure that the

coupling membrane-bending tensor vanishes.
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• Balanced laminates: it avoids tension-shear and bending-twist coupling and ensures the

orthotropy of the membrane properties but not those in bending in the general case. Fur-

ther restraining ply orientations to only 0◦,±45◦, 90◦ allows to limit bending orthotropy,

even if not strictly enforced.

• Continuity rule: it constrains the maximum number of successive layers of the same

orientation in order to avoid thick layers which favor transverse crack initiation. Generally,

no more than four of the same layers are accepted.

• Disorientation rule: it constrains the maximum orientation change between two con-

secutive plies. It reduces interlaminar shear, which can cause delamination and crack

propagation. Generally, no more than a 45◦ angle difference between two successive layers

is accepted.

• 10% rule: it corresponds to the minimum proportion of orientations plies in each of the

0◦,±45◦, 90◦ directions. This rule prevents crack propagation.

• Damage tolerance rule: it consists in placing ±45◦ plies on the outer faces of the

laminate in order to protect the more stressed layers from small impacts and scratches.

In a variable-stiffness design framework, continuity rules ensure the manufacturability of the

structure. Continuity constraints are used to force the continuity of fibers at the interfaces of

contiguous zones. In literature, the commonly used methods are blending rules and curvilinear

definitions.

When thickness varies, the orientations of the thinnest region must be included within the

stacking sequence of any contiguous thicker laminate in order to blend panels of different thick-

ness Kristinsdottir et al. (2001) . First, blending has been implemented during stacking sequence

retrieval. Van Campen and Gürdal (2009) proposed a corresponding point (CP) procedure us-

ing the constrained relation between in-plane and flexural LPs for balanced symmetric laminates

without any restriction on orientations. Adams et al. (2004) proposed to use a guide-based

approach where plies are dropped from a guide sequence. This method was extended to consider

industrial laminate design guidelines by Irisarri et al. (2014) with Stacking Sequence Tables

(SST) formulation, which allows ply drops anywhere in the sequence. Other strategies consist in

patch-based approaches proposed by Zehnder and Ermanni (2006, 2007) , which were brought

to an industrially usable strategy by Irisarri et al. (2021) . Consequently, two sets of constraints

are used in the two subsequent optimizations. This reduces the chance of retrieving the stacking

sequence design close to the optimal continuous solution. Hence, Macquart et al. (2016) pro-

posed employing lamination parameters combined with a set of blending constraints to be used

in the first-level optimization, i.e., the continuous optimization, to achieve more realistic and

manufacturable continuous designs. They applied it in aeroelastic optimization of a wing model

(Macquart et al., 2017) , and the results demonstrate that applying the blending constraints

significantly increases the chance of retrieving the stacking sequences that closely match the

lamination parameter distribution. Panettieri et al. (2019) and Picchi Scardaoni et al. (2021)

extended the derivation of these constraints to PPs.

The second type of blending condition concerns the design with variable-angle-tow plies,

i.e. where the fiber orientations vary continuously within a ply. This type of laminate is man-

ufactured by fiber placement processes and entails design rules that are reviewed by Lozano

et al. (2016) . The curvilinear definition uses a curvilinear function to model the fiber path

and the laminate thickness variation. It can decrease design variable numbers significantly and

guarantee structural continuity.
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1.4 Extension to a reliability framework

While composite laminate optimization in a deterministic framework is something that has

been studied for decades and is now mature, composite optimization under uncertainty has

comparatively only been studied recently. Reliability analysis associated with the optimal de-

sign of composite structures has been a topic of interest since the end of the 1990s (Boyer, 1997;

Conceição António, 2001; Adali et al., 2003) and reliability-based design optimization of com-

posite structures is currently an important area of research. A review of ongoing developments

on reliability analysis and RBDO applied to composite structures can be found in Chiachio et al.

(2012) .

In this section, the classical RBDO formulation is presented, followed by a state of the

art of composite lamination optimization in a RBDO framework. Then the RBDO multi-scale

formulation and the global approach proposed on this thesis are explained.

1.4.1 RBDO formulation

In general RBDO problems, both design variables and other system parameters can contain

deterministic and/or random quantities. According to that, θ is defined as the vector of design

variables, and p describes the environmental parameters. In the following, subscripts r and

d refer to random and deterministic quantities, respectively. These vectors can be written as

follows:

θ =

{
Θr

θd

}
, p =

{
P r

pd

}
, R =

{
Θr

P r

}
, d =

{
θd

pd

}
. (1.30)

Reliability analysis evaluates structural safety considering the random nature of all phenom-

ena affecting a structural system. The performance function g(R,p) characterizes the response

of the system. The design region is divided into two domains:

Failure domain: F = {R,p | g(R,d) ⩾ 0} . (1.31)

Safety domain: S = {R,p | g(R,d) < 0} . (1.32)

The boundary between failure and safety domains is the limit state surface, which generally

is a hypersurface in the n-dimensional space of random variables R. According to this, the

failure probability P is formulated as:

P (g(R,p) ⩾ 0) =

∫
· · ·
∫
F
πRdR, (1.33)

where πR is the joint probability density function of the random variables. An example in

two dimensions is shown in Figure 1.5 with both domain and the probability density function.

Except in some cases, the integral expression cannot be resolved analytically because of the

nonlinearity of πR and also due to the number of random variables that can be large. Two

approximate methods are often applied: stochastic simulations (e.g., crude Monte Carlo,

importance sampling, subset sampling) using sometimes surrogate models or moment methods

(e.g., first and second order reliability FORM/SORM) (Hasofer Abraham M. and Lind Niels

C., 1974) . Some of these methods are detailed in Chapter 3.

The RBDO formulation can be set out in different ways. The two-level approaches con-

sider the reliability constraints within the optimization loop (Nikolaidis and Burdisso, 1988; Tu

https://www.sciencedirect.com/science/article/pii/S0951832096000956
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Figure 1.5: Physical space for the basic structural reliability problem.

et al., 1999) . Mono-level approaches exist, such as Karush-Kuhn-Tucker (KKT) (Kuschel and

Rackwitz, 1997) or single loop approach (SLA) (Chen et al., 1997) where the probabilistic

constraint is approximated with deterministic values, converting the double loop into a single

loop. Finally, uncoupled approaches, such as sequential optimization and reliability assessment

(SORA) (Du and Chen, 2004) solve sequentially deterministic optimization procedures with a

reliability analysis at the end of each optimization. The result of the reliability analysis allows

to shift the constraint in the deterministic optimization. For further details on each formulation,

the reader can refer to some reviews on optimization under uncertainty (Aoues and Chateauneuf,

2010; Yao et al., 2011; Lelièvre et al., 2016; Acar et al., 2021) .

Remark 1.4.1. The two-level approach from the RBDO framework and the bi-level ap-
proach from the composite optimization framework are different and must not be confused
with one another. They can however be complementary.

Mono-level or decoupled formulation seems to perform faster RBDO than the two-level

approach (Aoues and Chateauneuf, 2010) . However, in the mono-level approaches, KKT

method shows weak stability on different test cases, and SLA could have some difficulties

with nonlinear limit state function (Aoues and Chateauneuf, 2010) . Decoupled approaches

are interesting since they are able to deal with complex structures. However, they are based

on approximation methods to compute the failure probability which can lead to inaccurate

estimation with nonlinear limit state function Aoues and Chateauneuf (2010) . In this thesis,

mechanical instabilities are considered for the reliability constraint of the RBDO. These

instabilities encourage doing the reliability analysis at each iteration, with the possibility of

having different regions of convergence between the deterministic and the reliability-based

optimization. Consequently, the two-level approach is preferred.

This approach is the most global one, where the uncertainties are controlled during the

optimization process. The formulation of the problem is written in the following:

https://linkinghub.elsevier.com/retrieve/pii/004579498890418X
https://doi.org/10.1115/1.2829499
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min
µΘr ,θd

f (µR,d) subject to:

{
hi (µR,d) ≤ 0 i = 1, ..., nd,
P (gj (R,d) ⩾ 0) ≤ Pmax

j j = 1, ..., np,
(1.34)

where f is the deterministic cost function to be minimized, µR is the vector gathering the

random variables mean values, d the deterministic parameters, µΘr the mean of random design

variables, θd the deterministic design variables, hi are the nd deterministic constraints, and P are

the np failure probabilities of the limit state functions gj , which have to be below the maximum

failure probabilities Pmax
j .

1.4.2 State of the art in composite optimization

António et al. (1996) were one of the first to apply reliability analysis in laminate composite

optimization. They considered uncertainties on transversal tensile strength, shear strength,

longitudinal and transversal modulus to keep the reliability of the laminate composite in terms

of the ultimate failure state. Reliability analysis in the optimization process is applied for various

responses such as displacement or stresses of bonded steel-concrete composite beams (Luo et al.,

2011) , buckling criteria of composite stiffened panels (Dı́az et al., 2016; López et al., 2017) ,

or aeroelastic instability (e.g., flutter) for a composite plate (Scarth and Cooper, 2018) .

Remark 1.4.2. Failure probability is related to the reliability analysis, i.e., the probability that
a constraint is not respected. It is different than the failure state of a composite layer.

António et al. (1996) approximate the failure probability with the First Order Reliability

Method (FORM) of the ultimate failure state, which is widely used due to its simplicity and

efficiency. For this kind of constraint, this method is efficient. However, for highly non-linear

limit-state functions, this type of approximation could lead to inaccurate results on the failure

probability due to its low-order approximation of the limit state function. Therefore, simulation

methods are used, such as the Monte Carlo method, importance sampling, or subset sampling.

For example, some aeroelastic responses lead to a limit-state function that is highly non-linear

and multimodal. Many techniques have been used to model uncertainty of composite structures

in aeroelasticity. The Monte Carlo method is a commonly used technique and is applied in the

work of Murugan et al. (2008) to model the aeroelastic response of a composite rotor blade

with uncertain elastic moduli and Poisson’s ratio. Indeed, the Monte Carlo method is one of

the most robust methods; however, it is disadvantageous in terms of computational time.

Due to the time-consuming computation of some mechanical models and taking into account

the uncertainty, which relies on repeated evaluations of the model, surrogate models have been

used in order to alleviate the computation time. Manan and Cooper (2009) used polynomial

chaos to model the flutter of composite plate wings with uncertain ply orientation, ply thickness,

and longitudinal and shear moduli. Dı́az et al. (2016) compare several types of surrogate models

and several reliability analysis methods for reliability-based design optimization of composite

panels with probabilistic constraints on the buckling factor of the first mode and the Tsai-Wu

first ply failure. For the most complex case, with nine random variables (including four design

variables), the choice of the multivariate adaptive regression splines (MARS) surrogate model

is made to replace the finite element analysis. This may be feasible for a small number of

total variables, but creating surrogate models for a large number of random variables can be

computationally expensive, as a large number of training points are often needed for accuracy

(Moustapha and Sudret, 2019) . Another approach is to use multiple surrogate models. For

example, Rais-Rohani and Singh (2004) compared global surrogate modeling with an approach

http://link.springer.com/10.1007/BF01270440
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using a series of local models, each focusing on a region around the current design point. It was

concluded that the local approach is more computationally efficient than the global approach.

In order to take into account the multiscale nature of composite materials, Ghasemi et al.

(2014) created a kriging metamodel for the multi-scale uncertainty propagation model of

CNT/polymer structure. Based on a similar concept, Omairey et al. (2019) used a surrogate

model to establish the relationship between micro-scale uncertainties and macro-scale material

property uncertainties, thereby reducing computational costs and improving computational ef-

ficiency. This is applied to RBDO of unidirectional fiber-reinforced polymer (FRP) composite

laminates in Omairey et al. (2021) where uncertainties are taken into account at different scales

of the composite. The optimization is solved via a metaheuristic method because there are only

four design variables to optimize.

Little work takes into account the uncertainty in ply orientation which could badly affect

some mechanical responses. For instance, Conceição António and Hoffbauer (2017) proposed a

new methodology of reliability-based design optimization using a genetic algorithm. The loads

imposed on the structure are sources of uncertainties. Subsequently, a sensitivity analysis was

performed on the optimal structure to study the influence of parameters and design variables

on the structural response. The most influential parameters were found to be the modulus

of longitudinal elasticity and the ply orientations. However, this work did not consider these

uncertainties during the RBDO. Salas and Venkataraman (2009) investigates the effect of

modeling uncertainties of various parameters, including ply orientation, on the predictability

of progressive failure in optimized composites. The study highlights the importance of

including uncertainties in the model and in design variables to achieve a robust and predictable

progressive failure response. The ply orientation uncertainty effect is studied on mechanical

instability, such as the flutter phenomenon (aeroelastic instability). Scarth et al. (2014)

shows a significant spread of the critical flutter velocity in some part of the design space,

considering the uncertainty in orientations. This work uses lamination parameters to represent

the uncertainty in ply orientation to reduce the number of random variables. A similar analysis

was conducted by Chassaing et al. (2018) , in which the polar formalism is used. Therefore,

Scarth and Cooper (2018) investigated the minimization of the probability of the flutter

instability, modeled as Gaussian processes, in a simple, composite-plate wing, with random

design variables, i.e., the ply orientations. Even if the resulting design is, in some sense, an

optimized solution with respect to the onset of the flutter instability, their proposed procedure

is far from being representative of the real aircraft design process since it is a mono-objective

optimization where the aeroelastic stability is taken into account as an objective instead of a

constraint. Moreover, a genetic algorithm was used to solve the optimization, which can be

limited to complex high-dimensional problems.

In the following, a new methodology is proposed to take into account the uncertainty of ply

orientations where the lamination parameters and orientation spaces are exploited.

1.4.3 Multi-scale RBDO strategy for composite

The goal here is to develop a strategy that could be applied to composite structures. Therefore

the bi-level approach, introduced in Section 1.3.2, is suitable for this. The uncertain design

variables that must be optimized for manufacturing and to provide reliable performance are

the ply orientations. We assume we have a good model for these uncertainties. However, is it

the case for the lamination parameters? In the following, an uncertain quantification study is

presented for these parameters in Section 1.4.3.1. This study will justify the multi-scale strategy

https://linkinghub.elsevier.com/retrieve/pii/S0927025614000263
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proposed in Section 1.4.3.2, which is inspired by the bi-level approach.

1.4.3.1 Uncertainty quantification of lamination parameters

The ply orientation errors are assumed to come from manufacturing and are considered Gaussian,

as the manufacturer is assumed to make the best effort to fulfill the request. They are expressed

as:

Θ = µΘ + σΘX, (1.35)

where µΘ are the deterministic orientations of each ply, which represent the mean of Θ, σΘ is

the known standard deviations of the ply orientations, and X is the error, which is modeled as

an independent joint Gaussian distribution πX with zero mean and unit variance.

The uncertainty analysis is done on three laminates composed of eight plies and two quasi-

trivial laminates (Vannucci and Verchery, 2001) composed of 10 plies with the same stiffness

properties. The laminates and the corresponding lamination parameters are found in Table 1.1.

The shapes of the composites anisotropy are presented in Figure 1.6 via the polar-plot of the

engineering modulus:

EA,ij(θ) =
1(

T (θ)TA−1T (θ)
)
ij

, (1.36)

where θ is the polar angle, A is the membrane tensor and T (θ) is the rotation operator. The

corresponding quantity computed for the flexion tensor D is also shown.

Firstly, the idea is to observe the impact on uncertainties in different areas of the lamina-

tion parameters design space and, secondly, the impact on two laminates that have the same

lamination parameter nominal values. In the following, we assume a variance σ2Θ of 2°.

Laminate Stacking Sequence Membrane and bending LPs

L1 [0, 45, 90,−45]s
vA = (0, 0, 0, 0)
vD = (0.47, 0.28, 0.37, 0)

L2 [45, 90,−45, 0]s
vA = (0, 0, 0, 0)
vD = (−0.28, 0.47,−0.37, 0)

L3 [02, 902]s
vA = (0, 0, 1, 0)
vD = (0.75, 0, 1, 0)

L4 [−89, 27, 84,−89, 27, 84,−89, 84, 27, 84] vA = (−0.51, 0.31, 0.57, 0.14)
vD = (−0.51, 0.31, 0.57, 0.14)

L5 [27, 83, 90, 27, 83, 90, 27, 90, 83, 90] Same as L4

Table 1.1: List of laminates for the uncertainty quantification study. The subscript s
refers to a symmetric laminate.

1.4.3.1.1 Lamination parameters domain exploration The objective of this study

is to show that depending on the stacking sequence and where it is in the LP domain, the

variability of these parameters could be highly different. Three laminates (L1, L2, and L3)

are investigated at different places of the lamination parameters domain. The analysis of the

influence of the ply angles uncertainty on the lamination parameters and the material stiffnesses

https://www.sciencedirect.com/science/article/pii/S0020768301001779?via%3Dihub
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Figure 1.6: Polar plot of the engineering modulus evolution of the laminates in Table 1.1.

is presented. The distributions are obtained using 105 samples.

The first two laminates, L1 and L2, are compared in Figure 1.7. Both laminates are quasi-

isotropic, which means that the vector vA and vD4 are zeros. Concerning the LP domain, they

are far from the feasible limit. For these five parameters, the dispersion is similar and shows

gaussian-shaped curves because the same ply orientations are used. However, dispersion is quite

different for the vD1,2,3 parameters. The variances are pretty different even if the distributions

for vD1 and vD2 tend to a Gaussian behavior. The variance in vD1 is higher for the L2 laminate.

It means that L1 laminate has less variability on the bending stiffness D11 and D22 of both

principal axes. However, it is the opposite for bending-twisting coefficients D16 and D26, which

are influenced by vD2 . The L1 laminate has more variability in this behavior. Concerning the

last parameter vD3 for both laminates, the distributions are not symmetric and do not follow a

Gaussian tendency.

In the following, the lamination parameters distributions of laminate L1 and L3 are compared

in Figure 1.8. The L3 stacking sequence is only composed of 0° and 90° orientations. Firstly,

the nominal value and the variability for vA,D
4 are the same due to the classical ply orientations

used (i.e., 0°, 90°, or ±45°) in both stacking sequences. Both vA,D
2 distributions of the L3

laminate show bell-shaped curves with slightly lower variances than the L1 laminate. For

the vA,D
1 parameters, the distributions are highly contrasting in terms of shape and variance.

Finally, the feasible domain limit is shown on vA,D
3 for the L3 laminate as the lamination

parameters cannot exceed 1.

Scatter plot of each couple of out-of-plane lamination parameters of the L1 laminate are

plotted in Figure 1.9. The correlations between each parameter are quite different. Parameters

vD1,2 seem to be uncorrelated. The couples vD1,4 and vD2,4 tend to have a gaussian correlation.

However, the rest of the couples do not seem to follow a parametric copula.

In the following, the same study is done for two laminates that have the same LPs value.
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Figure 1.7: Gaussian Kernel Density Estimations (KDEs) of lamination parameters com-
ing from laminates L1 and L2 with ply orientation uncertainty and Monte Carlo Simula-
tion using 105 samples.
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Figure 1.8: Gaussian KDEs of lamination parameters coming from laminates L1 and L3
with ply orientation uncertainty and Monte Carlo Simulation using 105 samples.



Figure 1.9: Scatter plot of each vDi,j couple of the L1 laminate.
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Figure 1.10: Gaussian KKDEs of lamination parameters coming from laminates L4 and
L5 with ply orientation uncertainty and Monte Carlo Simulation using 105 samples.



1.4.3.1.2 Identical lamination parameters with different stacking sequences
In table 1.1, L4 and L5 are two quasi-trivial laminates. This family of laminates provides exact

solutions to either uncoupling, homogeneity, or both, namely quasi-homogeneity (Vannucci

and Verchery, 2001) . We recall that uncoupling means that membrane and bending are not

linked (i.e., the B coupling tensor is zero), and homogeneity means that normalized membrane

and bending behaviors are equal (i.e., A∗ = D∗). These properties are obtained by particular

arrangements of the plies within the stacking sequence: plies that share the same orientation

are clustered into groups, and the positions of layers associated to different groups are defined

within the stack in order to satisfy the properties. The value of the orientation angle can be set

freely within each group.

Within this family of laminates, it is easier to find two different stacking sequences with the

same properties on the membrane and bending behavior. Indeed, L4 and L5 laminates have the

same A and D tensors, even though the orientations in the stacking sequence are drastically

different. The same study is performed by taking into account the ply orientation uncertainty.

The lamination parameters distributions of these two laminates are shown in Figure 1.10.

Overall the distributions are similar and have the same shape for all vA,D. However, the

variances could vary a little, as, for instance, for vD1,2,3 parameters. Therefore, two stacking

sequences with the same lamination parameters can have slightly different variability, showing

the complexity of these parameters.

With this study, we show that modeling the LPs uncertainty is complex. It is the same with

polar parameters as shown in Nitschke et al. (2019) . Therefore, it is not possible to apply a two-

level approach since the uncertainty of design variables of the first level is unknown. Nevertheless,

a new methodology is proposed to take into account the uncertainty of ply orientations within

a multi-scale RBDO formulation where the lamination parameters and orientation spaces are

exploited.

1.4.3.2 Formulation

We consider two scales of the material, the mesoscale and the macroscale. The mesoscale con-

cerns the ply scale where the material properties and the ply orientations are defined. In this

work, the design variables for composite laminate optimization are the ply orientations θ as

introduced in Section 1.3. The macroscale concerns the homogenized representation of the

composite laminate using lamination parameters v as design variables. We know a nonlinear

homogenization process mapping the mesoscale to the macroscale description of the material in

Eq.(1.13). The uncertain design variables that must be optimized for manufacturing to provide

reliable performance are the orientation variables, called Θ, modeled as in Eq.(1.35). There-

fore, the uncertainty of the ply orientations is known and modeled with a probability density

function πΘ. On the other hand, the uncertainties associated with the lamination parameters

variables are unknown and complex to model, in addition to various correlations. Therefore, the

calculation of the failure probability in the lamination parameters space is not possible. Despite

this complication, it remains more efficient to take advantage of the homogenized space where

gradient-based algorithms can accelerate the convergence of the optimization problem.

Our idea is to take an iterative approach, repeatedly moving from one scale to the other

during the optimization in order to take advantage of each scale and deal with the uncertainty

quantification upscaling. This strategy, exploiting both spaces for the calculation of the failure

probability, is illustrated in Figure 1.11.

The macroscopic space relies on a gradient algorithm for the global optimization process.

https://www.sciencedirect.com/science/article/pii/S0020768301001779?via%3Dihub
https://linkinghub.elsevier.com/retrieve/pii/S0263822318341862


g(v) > 0

v1

v2

Θ1

Θ2

Θ3

vk
vk+1Θk

Θk+1

macro spacemeso space

g(v) = 0
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Figure 1.11: The proposed sequential multi-scale RBDO approach.

The principal steps of the methodology are detailed below with a schematic flowchart in Figure

1.12:

1. The objective function and the constraints are defined in the macroscopic space. Assuming

that f , hi and Pj are known, gradient RBDO optimization is then carried out on the

mean value - see the red arrow in Figure 1.11 - to improve lamination parameters design

variables.

2. Ply orientations design variables bear some uncertainties in the mesoscopic space. This

design space is going to be used to help in evaluating the failure probability of the next

iteration since the distribution of the ply orientations is known. Therefore an inverse

problem is solved to identify the best corresponding mesoscale design - see the dashed

pink arrow in Figure 1.11. This involves a metaheuristic optimization with a genetic

algorithm.

3. Once the genetic algorithm identifies a potent set of stacking sequences, it is conceptually

straightforward to propagate the uncertainty to the lamination parameters space with

Eq.(1.13) - see the large blue arrow in Figure 1.11. Then the lamination parameters

sample is propagated to the mechanical model in order to calculate the failure probability

with the help of surrogate models.

4. Then, the gradient optimizer can propose another design point and repeat the process

until convergence is reached.

However each step exhibits some difficulties. Computational burdens will remain at each

iteration of the optimization process, such as the evaluation of the failure probability and its

gradient. Then, the inverse mapping from the continuous design variables to the discrete ones

is far from being trivial. It is a highly multimodal optimization problem where it is necessary

to use metaheuristic optimization methods. Then, depending on the mechanical model, the

reliability analysis could be time-consuming.



Gradient optimizer
Input: Objective f , deterministic and
probabilistic constraints hi and Pj

and their gradients evaluated at µv
k

Output: Next lamination
parameters point µv

k+1

Inverse problem
Input: Lamination parameters µv

k+1

Output: Recover the stacking sequence µΘ
k+1

Uncertainty quantification
Input: Sample of ply orientations Θk+1

Output: Failure probabil-
ity Pj and the gradients

Converge ?

Done

yes

no

k = k + 1

Figure 1.12: Schematic flowchart of the principal steps of the methodology.



Finally, the formulation of our multi-scale reliability-based design optimization, taking into

account design variables uncertainties, is described as follows:

min
µΘ

f
(
µv(Θ|µΘ)

)
subject to:

{
hi

(
µv(Θ|µΘ)

)
≤ 0, i = 1, . . . , nd

Pj (gj(v = H(Θ)) ⩾ 0) ≤ Pmax
j , j = 1, . . . , np

(1.37)

where:

• µΘ are the ply orientation mean values to optimize,

• hi are the deterministic nonlinear constraints emerging from the homogenization process,

• gj are the limit state functions subject to reliability analysis,

• H is the nonlinear mapping of Eq.(1.13), from the mesoscopic space to the macroscopic

space used to obtain the lamination parameters v for a given µΘ,

• Pj are the failure probabilities evaluated in the macrospace.

Remark 1.4.3. While this work uses lamination parameters for the homogenized space, note
that the same methodology could apply to polar parameters indifferently.

1.5 Conclusion

Composite structure optimization is a vast research field. In this chapter, various methods have

been overviewed in a deterministic framework. However, it is quite challenging to optimize

complex geometry under uncertainties while taking reasonable computational time. It is even

trickier when the uncertainty is taken on design variables such as the ply orientations. That

is why most of the applications concerned simpler geometries. Almost all previous work uses

the direct method with a metaheuristic algorithm to optimize the stacking sequences. Here,

a new methodology is inspired by the bi-level approach used in the deterministic framework

where a macroscopic design space is used, and then the stacking sequence is retrieved via an

inverse problem resolution. We proposed to perform this approach at each iteration of the op-

timization. This strategy is justified by the uncertainty quantification study of the lamination

parameters: modeling these macroscopic design variables is complex and forces us to use the ply

orientation design space where the uncertainty is known and modeled. Therefore, the strategy

proposed optimizes a stacking sequence under ply orientation uncertainty in a reliability frame-

work. However, the computational burden is binding. Indeed, the time to perform the inverse

problem under uncertainty and the uncertainty quantification could be significant.

Because of the design variables uncertainties in both spaces, it is important to efficiently

propagate uncertainties from the stacking sequence to the lamination parameters to solve an

inverse mapping that satisfies certain statistical constraints. Therefore, we propose to build

a surrogate mapping that is constructed to rapidly access needed statistics of the lamination

parameters for a given population of stacking sequences. This is the second step in the flowchart

in Figure 1.12, and the technical details are presented in Chapter 2. Moreover, the mechanical

constraints, subject to reliability analysis, could be expensive; therefore, a strategy is proposed

to efficiently approximate the quantity of interest using a surrogate model strategy to compute

efficiently and quickly the failure probability and its gradient. Technical details are presented

in Chapter 3.
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2.1 Introduction

The previous chapter presented the multi-scale RBDO formulation, where the idea is to jump be-

tween two scales during the optimization. An inverse problem has to be solved at each iteration

to propagate the uncertainty from the mesoscopic scale to the macroscopic scale to compute the

failure probability needed during the optimization. The proper way to do this is to match the

statistics. Instead of matching the nominal values of lamination parameters using Eq.(1.13), an

uncertainty quantification from the stacking sequence to the lamination parameters is necessary

to correctly identify an optimized stacking sequence set in terms of the statistical description of

the lamination parameters. This step must be quick and efficient. With the uncertainty taken

into account in the ply orientations at the mesoscale, it is straightforward to propagate the

uncertainty into the lamination parameters with Eq.(1.13). However, even if the formulation is

analytic, it could be costly to use simulation methods such as Monte Carlo at each iteration of

the global optimization process. In the literature, some works have been done in the composite

framework building surrogate model to propagate the microscopic properties of fibers to the

macroscopic stiffness of the composite laminate (Omairey et al., 2019) . Kriegesmann (2017)

provides a closed-form solution for the mean values, variances, and covariances of lamination

parameters. Scarth and Adhikari (2017) proposed to use lamination parameters to model ran-

dom fields, in which the ply orientation uncertainty is defined using Karhunen-Loève expansion,

and the lamination parameters are approximated using an intrusive polynomial chaos expansion.

In this chapter, we propose to build a non-intrusive surrogate model to quickly access the

needed statistics of the lamination parameters using a particular Fourier basis which gives a

closed-form solution for the mean values, variances, and covariances of lamination parame-

ters. The technical details are presented in Section 2.3 with a validation. Before that, the

optimization-based inverse problem is presented in Section 2.2 with an overview of existing for-

mulations. Once the formulations used are chosen, the contribution of the metamodel to the

inverse problem is shown in Section 2.4.

2.2 Optimization-based stacking sequence retrieval

2.2.1 Classical formulations for the deterministic case

To retrieve a stacking sequence, the objective is to minimize a cost function f measuring the

difference between the properties of the target (superscript ’des’) and those of a given stacking

sequence θ:

min
θ
f(Ades,Bdes,Ddes,A(θ),B(θ),D(θ)). (2.1)

The cost function can be formulated in different ways to represent the laminate stiffness

properties. The most common formulation is based on the lamination parameters formalism. It

is found in various stacking retrieval algorithms (Herencia et al., 2007; Macquart et al., 2016) .

The second family of formulations is based on the polar parameters (Vincenti et al., 2010;

Picchi Scardaoni et al., 2021) . These two groups have already been introduced in Section

1.3.2. A final formulation based on the stiffness tensors A, B and D has been proposed by

Irisarri et al. (2011) .

Savine (2022) proposed a benchmark study of these formulations. A method is suggested

to establish a relative comparison between the different cost functions. Indeed, the different

cost functions do not have the same scale. The results are presented for a limited study with

https://linkinghub.elsevier.com/retrieve/pii/S1359836819308765
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three different targets and five runs of optimization. However, the formulation with the stiffness

properties is privileged, but it is closely followed by the formulation using LPs.

In this study, we keep using the most common formulation with lamination parameters

expressed as:

fLP =

j∑
i=1

√
(vdesj − vj(θ))2, (2.2)

where j is the number of lamination parameters taken into account. For the most general case,

j is equal to 12. We can reformulate this cost function with the euclidean norm ∥·∥. To retrieve

a stacking sequence for a given state v in the homogeneous lamination parameters space, the

inverse problem is written as:

vdes ← v,

min
θ
∥vdes −H(θ)∥, (2.3)

where H is the mapping between the stacking sequence and the LPs - see Eq.(1.13). The

orthotropy or the decoupling hypothesis can be forced either by restricting the search of sym-

metrical or balanced stacking sequences or by forcing some target LP values:

• uncoupling is obtained by canceling vB1,...,4 = 0,

• if the orthotropy direction is aligned with the reference frame, the target vA,D
2,4 can be

forced to zero.

2.2.2 Formulations for the variability case

In the variability framework, the proper way to solve the inverse problem is to match the

statistics between the LPs target and the ply orientations. But which statistics should be taken

into account? The average is one of the first statistical indicators. Therefore, the first idea is

trying to match the mean values between the LPs of a given stacking sequence and the target

LPs. The cost function of the inverse problem optimization can be written as:

µdes
v ← µv,

min
µΘ
∥µdes

v − µH(Θ|µΘ)∥,
(2.4)

where µH(Θ|µΘ) is the mean of the random quantity of the mapping from the stacking sequence

to the lamination parameters.

The standard deviation could also be used for several reasons. With the standard devia-

tion, we could try to limit the variability of lamination parameters in presence of uncertainty.

Moreover, the use of standard deviation could limit the non-respect of some hypotheses, such

as orthotropy for example. Indeed, if you apply a ply orientation uncertainty on an orthotropic

stacking sequence, this property is not fully respected. An idea could be to minimize the standard

deviation of the vA,D
2,4 parameters in addition to the objective of Eq.(2.4). This multi-objective

can be formulated as a mono-objective cost function with partial objectives:

min
µΘ

(
∥µdes

v − µH(Θ|µΘ)∥+ ρ∥σdes
v − σH(Θ|µΘ)∥

)
, (2.5)

where σdes
v = 0 if we want to minimize the variability of each parameter and ρ is the weight

given to the second objective.



Parameters Value

Initial population size 160
Population size per generation 40
Probability of crossover 0.75
Probability of mutation 0.5

Table 2.1: Parameters of the genetic algorithm.

2.2.3 Solving the inverse problem

The inverse problem is non-convex, non-linear, and is most of the time parametrized with

discrete ply orientations. The computation of the cost function presented in Eq.(2.3) is

relatively cheap as it corresponds to analytic evaluations of the LPs with Eq.(1.13). Therefore,

this is generally solved by meta-heuristic algorithms, which can handle the complexity of

the combinatorial problem. Different meta-heuristic algorithms have been used to solve the

problem, with a majority of genetic algorithms (Wang and Sobey, 2020) . Some algorithms

have been designed especially for stacking sequences optimization. This type of algorithm is

thus privileged in the present work to retrieve a stacking sequence; and the optimizer developed

by Vicente (2019) , which followed the formulation proposed by Irisarri et al. (2014) known

as stacking sequence tables SST, is preferred. The parameters used throughout the manuscript

for the genetic algorithm are shown in Table 2.1.

However, to solve the optimization of Eq.(2.4) or Eq.(2.5), it requires a greater number of calls

to the mapping function H. The computational cost of the Monte Carlo method to compute

µH(Θ|µΘ) or σH(Θ|µΘ) for each inverse problem resolution can be particularly high. Therefore,

a surrogate model could accelerate the propagation from the ply orientation uncertainty to the

LPs to quickly access their statistics.

2.3 Statistics computation via Fourier Chaos Expan-

sion

The main concern is the selection of the technique for this particular problem. A well-known

family of surrogate models is the polynomial one, and especially, the polynomial chaos expansion

(PCE) (Xiu and Karniadakis, 2002). This is an effective tool that guarantees exponential

convergence with increasing expansion order. Moreover, once the projection is set, access to the

statistics of the parameters is direct with the expansion coefficients. Nevertheless, this method is

inaccurate for models which are highly non-linear or are of high dimensionality. Another family

is the Gaussian processes - like Kriging (Rasmussen and Williams, 2006) - which is employed

for larger experimental areas such as Bayesian optimization, approximating deterministic

function, and machine learning. It combines a regression model with a stationary Gaussian

process error model. The advantage is that it provides a stochastic error bound. However, it

is again imprecise for models which are highly non-linear or are of high dimensionality. Other

methods, such as the least-square approximation, radial basis function, or neural network-based

method, could be used as well.

This work requires the mean of the mapping H to solve the inverse problem. Depending on the

application, the variance could be used as well, which motivates the choice to use the polynomial

https://linkinghub.elsevier.com/retrieve/pii/S0263822319328636
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method, which is accurate for these statistical moments at a low cost. However, this method will

be extended to a particular basis involving trigonometric functions. This method is called Fourier

Chaos Expansion (FCE) and was briefly sketched in Millman et al. (2005) . It is analogous to

the PCE, and that is why a little overview of PCE is presented below.

2.3.1 Overview of the Polynomial Chaos Expansion

We assume that the model response is a scalar random variable Y = H(X). However, the

following derivations hold in the case of a vector-valued response. We can expand Y into a

series of polynomials:

Y (X) =

∞∑
i

ξiϕi(X), (2.6)

where ϕi are orthonormal polynomials with respect to the joint PDF fX(x):

E [ϕi(X)ϕj(X)] =< ϕi(X), ϕj(X) >

=

∫
R
ϕi(x)ϕj(x)fX(x)dx

= δij , ∀i, j ∈ N, with δ the Kronecker delta,

(2.7)

and ξi are the expansion coefficients. Thanks to the orthonormality of the approximation space,

the deterministic coefficients are obtained as projections of the function of interest onto each

member of the approximation basis:

ξi = E [Y (X)ϕi(X)] . (2.8)

Therefore, the choice of an orthonormal base and a technique to evaluate the coefficients has to be

made. With the Gaussian distribution hypothesis on random variable X, Hermite polynomials

can be used (Wiener, 1938) . Afterward, other families of orthogonal polynomials (Hermite,

Legendre, Laguerre, Jacobi,...) are regrouped in the Askey scheme (Xiu and Karniadakis, 2002)

based on underlying random variables which are not restricted to gaussian random variables.

Concerning the ξi coefficients computation, we focus on the non-intrusive techniques, which

means that the model is used as a black box. The Eq.(2.8) is written as:

ξi =

∫
R
Y (x)ϕi(x)fX(x)dx. (2.9)

Most of the time, these integrals cannot be computed analytically. Therefore numerical quadra-

ture methods can be used. There are two types of numerical quadrature: stochastic ones or

deterministic ones. One of the stochastic approaches is based on Monte Carlo, where inte-

gration points are chosen randomly. Be XX =
{
x(1),x(2), . . . ,x(N)

}
a Monte Carlo sample

and YY =
{
y(1), y(2), . . . , y(N)

}
the corresponding set of the model response. The integral is

approximated as follows:

Q = E [Y (X)ϕi(X)] =
1

N

N∑
i=1

y(i). (2.10)

The law of large numbers ensures the convergence of this quantity to the real integral. However,

the quadrature by MC method converges slowly.

Another option is the Gauss quadrature. With this technique, the quadrature points and the

corresponding weights are deterministic quantities that inherit the properties of one-dimensional

quadrature rules chosen to suit the probability measure. The quadrature points x(i) are roots
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of orthogonal polynomials with respect to the probability measure. Then, the weights of the

quadrature are defined in terms of the quadrature points and the associated orthogonal poly-

nomials. Examples can be found in Gautschi (2004). If we consider a quadrature Q based on

a number of points N along each dimension j, with (j = 1, . . . , Nd), and which integrates with

respect to the measure fX(x), it can be approximated as follows:

Qj =

N∑
i=1

w
(i)
j y(x

(i)
j ). (2.11)

The multidimensional quadrature with respect to the measure fX(x) is written as:

QNd
= Q1 ⊗ · · · ⊗QNd

, (2.12)

and the integral becomes:

QNd
=

N∑
i1=1

· · ·
N∑

i1=Nd

w
(i1)
1 . . . w

(iNd
)

Nd
y
(
x
(i1)
1 , . . . , x

(iNd
)

Nd

)
. (2.13)

Then, another way to compute the coefficients ξi is based on the least square approximation,

which is based on a random sample XX , and the corresponding set of the solution YY . The

quantity of interest is written as:

Y (X) =
∞∑
i

ξiϕi(X) + r(X). (2.14)

A least square approach consists in minimizing the residual between the observed and estimated

values r ≡ (y − ϕξ) in L2 norm and can be rewritten as an optimization problem:

min
ξ
∥y − ϕξ∥. (2.15)

The solution is obtained by computing the following relation, written in matrix form:

ξ =
(
ϕTϕ

)−1
ϕTy, (2.16)

where y is the vector of observations, ϕ is the measurement matrix with ϕij = ϕj(x
(i)) and ξ is

the vector of coefficients.

Once the coefficients ξi are computed, access to the statistics of the output Y is direct with

the expansion coefficients as follows:

µY = ξ0, Var(Y ) =

p∑
i=1

ξ2i . (2.17)

In this work, even if the random parameters are modeled with Gaussian distribution, Hermite

polynomials are not used. Another basis is constructed, which is efficient for the lamination

parameters. We propose to use the Fourier chaos expansion (FCE) because it naturally involves

trigonometric polynomials and simplifies the expansion coefficients computation, as shown in

the following.



2.3.2 Orthonormal Fourier basis construction

The development of the FCE is analogous to the standard PCE basis. Nevertheless, the

bases to be orthogonalized are not classical polynomials basis, e.g., ui =
{
1, x, x2, ...

}
; in-

stead, the development begins with the Fourier basis for trigonometric functions, that is, the

set ui = {1, sin(nx), cos(nx)}, where n = 1, ...,∞. An FCE representation was introduced in

Millman et al. (2005) to obtain the probability distribution of an airfoil pitch angle where os-

cillatory motion was involved. The orthonormal basis is numerically constructed thanks to the

Gram–Schmidt orthogonalization method. The latter has, for instance, been used in Navarro

et al. (2014) to construct arbitrary polynomial chaos and applied in aeroelasticity for the critical

flutter velocity uncertainty quantification Nitschke et al. (2019) .

In our case, we have formalized the approach to extend it to an arbitrary order of accuracy

and to random variables with different wavenumbers. Since the ply orientation uncertainty in

Eq.(1.35) is modeled with a Gaussian random variable X and scaled by a standard deviation σΘ

in radian, the trigonometric polynomials are functions of scaled random variables ψi(X̂ = σΘX).

Then, the mapping from the stacking sequence to the lamination parameters H is expanded into

a series of polynomials:

H(X) =

∞∑
i

eiψi(σΘX), (2.18)

where ψi are Fourier orthonormal polynomials which depend on the standard deviation σΘ and

ei are the expansion coefficients.

In order to orthogonalize the polynomials with respect to the distribution πX , the Gram-

Schmidt algorithm calculates the coefficients of the polynomials using the inner product to

ensure that each polynomial is orthogonal to all of its predecessors:

ψ0(X̂) = 1,

ψi(X̂) = ui(X̂)−
i−1∑
k=0

Cikψk(X̂),
(2.19)

where ui are the set of Fourier polynomials (cos(nX̂), sin(nX̂)) with n ∈ N and deterministic

quantities Cik must be computed as:

Cik =
E
[
ui(X̂)ψk(X̂)

]
E
[
ψk(X̂)ψk(X̂)

] . (2.20)

Remark 2.3.1. Expectations of useful random trigonometric functions Some useful expectations
of random trigonometric functions are presented below. Using the symbolic computation of
Mathematica, the expectation of sin(aX) and cos(aX) can be computed as follows:

E [cos(aX)] = cos(aµ)w, (2.21)

E [sin(aX)] = sin(aµ)w, (2.22)

with a ∈ R and w = exp(−0.5a2σ2). The product of the trigonometric functions cos(kx) and
sin(lx) can be expressed as:

cos(kx) sin(lx) =
1

4

(
iei(k−l)x + ie−i(k+l)x − iei(k+l)x − iei(l−k)x

)
. (2.23)
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u0 1

u1 sin(X̂)

u2 cos(X̂)

u3 sin(2X̂)

u4 cos(2X̂)

u5 sin(3X̂)

u6 cos(3X̂)

Table 2.2: Set of Fourier polynomials to be orthogonalized with X̂ = σΘX.

Since the part of interest is only on the real part, the Eq.(2.23) can be written as the Eq.(A.4),
and its expected value as the Eq.(2.25) using the Eq.(2.22) and Eq.(2.21).

cos(kx) sin(lx) = −0.5 sin((k − l)x) + 0.5 sin((k + l)x), (2.24)

E[cos(kX) sin(lX)] = −0.5 E[sin((k − l)X)] + 0.5 E[sin((k + l)X)]. (2.25)

With the same idea:

E[cos(kX) cos(lX)] = 0.5 E[cos((l − k)X)] + 0.5 E[cos((k + l)X)], (2.26)

E[sin(kX) sin(lX)] = 0.5 E[cos((l − k)X)]− 0.5 E[cos((k + l)X)]. (2.27)

Moreover, given sin2(x) = 1−cos(2x)
2 , cos2(x) = 1+cos(2x)

2 , we can write:

E
[
sin2(aX)

]
= 0.5− 0.5 E [cos(2aX)] , (2.28)

E
[
cos2(aX)

]
= 0.5 + 0.5 E [cos(2aX)] . (2.29)

In the following, the one-dimensional Fourier chaos basis is constructed with a single random

variable X following a normal distribution X ∼ πX = N (0, 2). Now the orthonormal basis can

be constructed using Eq.(2.19) and Eq.(2.20) with the set of Fourier polynomials u in Table 2.2.

Here is an example of the first polynomials construction:

The Fourier basis function ψn
0 (X) is equal to:

ψ0 = u0 = 1,

ψn
0 = 1.

(2.30)

The Fourier basis function ψn
1 (X) is computed as follows:

ψ1(X) = u1 −
E [u1ψ0]

E
[
ψ2
0

] ψ0 = sin(X̂)− E
[
sin(X̂)

]
. (2.31)

The expected value can be computed with Eq.(2.22). With a zero mean in the random variable,

the expected value of the sinus function is equal to zero. Therefore:

ψ1 = sin(X̂), (2.32)

and ψ1 can be normalized as:

ψn
1 = Z11 sin(X̂), with Z11 =

1√
E
[
sin(X̂)2

] , (2.33)
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Figure 2.1: Orthonormal Fourier basis

which can be computed with the Eq.(2.28).

The Fourier basis function ψn
2 (X) is computed as follows:

ψ2 = u2 −
E [u2ψ0]

E
[
ψ2
0

] ψ0 −
E [u2ψ1]

E
[
ψ2
1

] ψ1

= cos(X̂)− E
[
cos(X̂)

]
−

E
[
cos(X̂) sin(X̂)

]
E
[
sin(X̂)2

] ψ1

= cos(X̂)− C20 − C21ψ1.

(2.34)

The expected values can be computed with Eq.(2.21), Eq.(2.25), and Eq.(2.22). With a zero

mean in the random variable, the expected value of the product between sinus and cosinus

functions is equal to 0. Therefore:

ψ2 = cos(X̂)− C20, (2.35)

and ψ2 can be normalized as:

ψn
2 = Z21(cos(X̂)− C20), with Z21 =

1√
E
[
(cos(X̂)− C20)2

] , (2.36)

which can be computed with Eq.(2.29) and Eq.(2.21).

The generic form of the obtained orthonormal polynomials are written in Table 2.3 and shown

in Figure 2.1 between −π and π. A more details derivation of the basis is shown in Appendix

A. Once the orthonormal basis is constructed, it could be used to compute the statistics of the

lamination parameters.

2.3.3 Stochastic moments of lamination parameters

In this work, the statistics of the lamination parameters are sources of interest, especially for

the inverse problem resolution in Eq.(2.4) and Eq.(2.5). The expected values of the lamination



Basis Fourier chaos polynomials

number ψn
i (X̂ = σΘX)

0 1

1 Z11 sin(X̂)

2 Z21 cos(X̂)− Z22

3 Z31 sin(2X̂)− Z32 sin(X̂)

4 Z41 cos(2X̂)− Z42 cos(X̂)− Z43

5 Z51 sin(3X̂)− Z52 sin(2X̂)− Z53 sin(X̂)

6 Z61 cos(3X̂)− Z62 cos(2X̂)− Z63 cos(X̂)− Z64

Table 2.3: Example of generic orthonormal Fourier basis first terms.

parameters are expressed as:

E[vA] = αA
N∑
k

τAk [E (cos(2Θk)) ,E (sin(2Θk)) ,E (cos(4Θk)) ,E (sin(4Θk))],

E[vB] = αB
N∑
k

τBk [E (cos(2Θk)) ,E (sin(2Θk)) ,E (cos(4Θk)) ,E (sin(4Θk))],

E[vD] = αD
N∑
k

τDk [E (cos(2Θk)) ,E (sin(2Θk)) ,E (cos(4Θk)) ,E (sin(4Θk))],

(2.37)

with α and τ detailed in Table 2.4, N the number of plies, h the thickness of the laminate, and

zk the coordinate of the kth ply.

i αi τ ik

A
1

h
(zk − zk−1)

B
4

h2
(z2k − z2k−1)

2

D
12

h3
(z3k − z3k−1)

3

Table 2.4: Some parameterization for the lamination parameters formulation.

Now, the trigonometric functions could be approximated as Fourier polynomial functions:

cos (a (Θk(X))) ≈
p∑
i

ei,caψi(σΘk
X), sin (a (Θk(X))) ≈

p∑
i

ei,saψi(σΘk
X), (2.38)

with p the order of the expansion, where a can take the value of 2 or 4 and the subscripts ca and

sa refer to, respectively, cos(aΘ) and sin(aΘ). Using the Fourier chaos expansion, the expected

values of out-of-plane lamination parameters can be expressed as:

E[vD] = αD
N∑
k

τDk [ek0,c2(µΘk
), ek0,s2(µΘk

), ek0,c4(µΘk
), ek0,s4(µΘk

)], (2.39)



with e0,ca and e0,sa the first coefficient of Eq.(2.38) who have to be computed. E[vA] and E[vB]

are computed in the same manner. As random variables are independent, the variances are

expressed as:

Var[vD] =
(
αD
)2 N∑

k

(
τDk
)2

[Var (cos(2Θk)) ,Var (sin(2Θk)) ,Var (cos(4Θk)) ,Var (sin(4Θk))],

Var[vD] =
(
αD
)2 N∑

k

(
τDk
)2 [ p∑

i=1

eki,c2(µΘk
)2,

p∑
i=1

eki,s2(µΘk
)2,

p∑
i=1

eki,c4(µΘk
)2,

p∑
i=1

eki,s4(µΘk
)2

]
.

(2.40)

Since some lamination parameters can be strongly correlated, it is essential to consider their

correlation in probabilistic analysis. The covariance between the lamination parameters can be

computed with the product of, respectively, each coefficient. An example is shown considering

the covariance of two LP vA1 and vA2 :

Cov
(
vA1 , v

A
2

)
=
(
αA
)2 N∑

k

(
τAk
)2 p∑

i=1

ekic2(µΘk
)ekis2(µΘk

). (2.41)

In the same manner, the covariances of all combinations are generalized. To obtain a condensed

format, the subscripts f and g of the coefficients are expressed as:

f = 1⇒ ei,f = ei,c2 f = 2⇒ ei,f = ei,s2, f = 3⇒ ei,f = ei,c4 f = 4⇒ ei,f = ei,s4,

g = 1⇒ ei,g = ei,c2 g = 2⇒ ei,g = ei,s2, g = 3⇒ ei,g = ei,c4 g = 4⇒ ei,g = ei,s4,
(2.42)

and the superscript F and G refers to the stiffness matrix studied (A,B or D). Then, the

covariances are expressed as:

Cov
(
vFf , v

G
g

)
= αFαG

N∑
k

τFk τ
G
k

p∑
i=1

eki,f (µΘk
)eki,g(µΘk

). (2.43)

To compute all of these statistics, the coefficients ei need to be computed through the projection

of the function of interest on the orthonormal basis.

2.3.4 Coefficients computation

The advantage of using a Fourier basis for the lamination parameters is that a closed-form

formulation of the coefficients ei in Eqs.(2.38) is available. An example can be shown using

cos (a (Θk(X))) =
∑p

i ei,caψi(σΘk
X) with a taking the value of 2 or 4. We can write the function:

e = cos (a(µΘ + σΘX))

= c1 cos(aX̂)− s1 sin(aX̂),
(2.44)

with c1 = cos(aµΘ), s1 = sin(aµΘ) and X̂ = σΘX.

The coefficients ei,ca are obtained as projections of the function of interest (e.g., e) onto each

member of the Fourier basis. For example, the first two coefficients can be written as:

e0,ca = E[e× ϕ0] = E[e× 1]

= c1E
[
cos(aX̂)

]
− s1E

[
sin(aX̂)

]
,

(2.45)
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Figure 2.2: Relative error of the variances obtained from Fourier Chaos Expansion of
in-plane, out-of-plane, and coupling lamination parameters of a stacking sequence.

and

e1,ca = E[e× ϕ1] = E[e× C11 sin(X̂)]

= C11

(
c1E

[
cos(aX̂) sin(X̂)

]
− s1E

[
sin(aX̂) sin(X̂)

])
,

(2.46)

where the expected values are computed with the Eqs.(2.25,2.27,2.22,2.21) and Eq.(2.22). The

coefficients are obtained up to the order p, in the same manner, using the equations in Section

2.3.2.

The procedure is the same with the function sin (a (Θ(X))) =
∑p

i ei,saψi(X). Then a

database is created for every orientation µΘ needed. Once this database is created, the means

and covariances of lamination parameters of any stacking sequence are computed directly with

Eq.(2.39) and Eq.(2.40).

2.3.5 Validation of the metamodel upscaling

The Fourier Chaos Expansion approach is numerically validated by computing the statistics

associated with a simple case of lamination parameters. Increasing the size of the approximation

basis, the variances of the bending lamination parameters vD are compared to the variances

computed with a numerical quadrature applied to the first equation of Eq.(2.40). For each ply,

the variance of the trigonometric function, cos(aΘk) for example, is written as:

Var (cos(aΘk)) = E[cos(a(µΘ + σΘX))2]− E[cos(a(µΘ + σΘX))]. (2.47)
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Figure 2.3: Convergence of out-of-plane lamination parameter PDFs for a [0, 90,±45]s
laminate.

The reference expected values are expressed as:

E[cos(a(µΘ + σΘX))] =

∫ ∞

−∞
cos(a(µΘ + σΘX))fXdX, (2.48)

and can be computed with the integration sub-package of SciPy with fX the normal distri-

bution. The integration function of SciPy is able to integrate on infinite support (−∞,∞) of

functions. The metamodel is validated for a stacking sequence of 16 plies ([45°,30°,0°,-45°,90°,-
30,-15°,15°]s), and the relative error is plotted in Figure 2.2. We notice, as expected in this case,

the spectral convergence of the error to very small values for 4-term Fourier-Chaos expansion.

Additionally, scatter plots of different sets of out-of-plane lamination parameters are shown

in Figure 2.5 for the ”fourth-order” FCE of a [0, 90,±45]s laminate. They are compared with MC

simulation using the real lamination parameters equation. It is shown that FCE for lamination

parameters is accurate enough. This approach is used to estimate lamination parameters PDFs

that are compared with the Monte Carlo simulation. Gaussian KDEs for the out-of-plane

lamination parameters of a [0, 90,±45]s laminate are shown in Figure 2.3. The distributions

for each order of the FCE are plotted to study the convergence.

The PDFs of vD2,4 are approximately Gaussian, and a first-order expansion is sufficient to model

these parameters. Increasing order is most evident for vD1,3. For vD1 , a small improvement is

achieved in using a second-order expansion in comparison with a first-order expansion, whereas

for vD3 , the difference is tremendous because of the non-symmetric PDF. It seems that ”second-

order” FCE is enough. However, if we focus on the details, we observe that the ”fourth-order”
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Cost function Type Computation Method
of vD or µvD and σvD

F1 min
θ
∥vD,des − vD(θ)∥ Deterministic Analytical CLPT

F2 min
µΘ
∥µdes

vD − µvD(Θ|µΘ)∥ Stochastic Monte Carlo

F3 min
µΘ
∥µdes

vD − µ
v̂D(Θ|µΘ)

∥ Stochastic FCE

F4 min
µΘ

(
∥µdes

vD − µ
v̂D(Θ|µΘ)

∥+

ρ

√(
σ
v̂D2
(Θ|µΘ)

)2
+
(
σ
v̂D4
(Θ|µΘ)

)2) Stochastic FCE

Table 2.5: Different formulations studied of the inverse problem cost function.

Lamination Parameters

Target 1 (T1) vD,des = (0.603, 0,−0.273, 0)
Target 2 (T2) vD,des = (−0.25, 0, 0.25, 0)

Table 2.6: Values of the target lamination parameters studied.

is exactly the same as MC simulation in Figure 2.4.

2.4 Inverse problem resolution via Fourier Chaos Ex-

pansion

From now on, the Fourier Chaos Expansion can be used for the inverse problem to match the

statistics of both scale parameters. Several optimization formulations of the inverse problem will

be tested. We will focus on matching only the bending LPs vD. Firstly, the resolution of the

inverse problem in a variability framework can be compared between the use of the Monte Carlo

and the FCE for the computation of the lamination parameters mean. Then, a comparison

between the deterministic (i.e., using the nominal values) and the stochastic (i.e., using the

mean statistic) inverse problem is performed to show in which case different results are possible.

Finally, the variance could be used to limit some variability or limit the non-respect of some

hypotheses. In this case, we will try to minimize the standard deviations of vD2,4, which means

trying to enforce planar orthotropy even in the presence of uncertainty.

The formulations tested in this section are summed up in Table 2.5. The ”type” column

indicates if the uncertainty of ply orientations is taken into account or not. The computation

method refers to which method is used to compute the LPs or their statistics. The target points

studied are shown in Table 2.6.

2.4.1 Matching the mean statistics

The inverse problem is solved by matching the mean between the lamination parameters given

a stacking sequence and the target lamination parameters. The methods to compute the LPs

average are compared. Both cost functions F2 and F3 are studied, where the first uses the

Monte Carlo method to compute the mean of the LPs and the second uses FCE presented

earlier in Section 2.3.



Target nplies ∆inc
θ Cost function

formulation
Cost function
value

Computation time

T1

24

5
F1 0.0109 ≈ 1.5s
F2 0.01282 ≈ 190s
F3 0.0086 ≈ 5.6s

15
F1 0.0119 ≈ 1.4s
F2 0.01374 ≈ 173s
F3 0.0142 ≈ 5.3s

16

5
F1 0.009 ≈ 1.4s
F2 0.0131 ≈ 140s
F3 0.0111 ≈ 3.9s

15
F1 0.0217 ≈ 1.3s
F2 0.0131 ≈ 133s
F3 0.0161 ≈ 3.8s

T2

24

5
F1 0.0016 ≈ 1.5s
F2 0.0011 ≈ 190s
F3 0.0016 ≈ 5.6s

15
F1 0.0021 ≈ 1.4s
F2 0.0015 ≈ 173s
F3 0.0013 ≈ 5.3s

16

5
F1 0.0037 ≈ 1.4s
F2 0.0022 ≈ 140s
F3 0.0035 ≈ 3.9s

15
F1 0.0083 ≈ 1.3s
F2 0.0008 ≈ 133s
F3 0.0006 ≈ 3.8s

Table 2.7: Results of the inverse problem depending according to the different formulations
presented in Table 2.5.

Available orientations to be chosen from are uniformly distributed over ]− 90o : ∆inc
θ : 90o],

with ∆inc
θ the angular increment. Two angular increments are tested: 5° and 15°. Moreover, two

amounts of plies nplies are also tested (i.e., 16 and 24 plies). Since the problem is non-convex

with discrete ply orientations, the optimization is run 10 times. Then, the stacking sequence

with the lowest cost function of the 10 optimization runs is chosen as the best candidate. For

the Monte Carlo method, the size of the sample is 10000 to compute the mean of lamination

parameters following the distribution in Eq.(1.35).

The results presented in Table 2.7 show that retrieved stacking sequences are a bit different

between the use of MC and FCE. Indeed, the sample size for MC is not large enough to be

as accurate as FCE to compute the statistics. It could explain the differences in the stacking

sequences. However, the cost function has the same order of magnitude for each case. Concerning

the computational time, the interest of FCE is shown. The time presented is the average time

over the 10 optimizations made for each case. A huge difference in the computational time is

found between the use of MC or FCE. Moreover, a detailed result is presented in Figure 2.6 with

the vision of the results in the lamination parameters space and the impact on the macroscopic
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(a) Scatter plot in 2D projection.
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lution ED,11.

Figure 2.6: Detailed results of the inverse problem of Target 1 using MC (F2) and FCE
(F3) with nplies = 24 and ∆inc

θ = 15°.

response of the composite laminate with the polar plot. In Figure 2.6a, the mean of vD2 and

vD4 is closest to the target using FCE. The difference on the engineering modulus evolution in

Figure 4.12b between both results is small.

2.4.2 Comparison between deterministic and stochastic formu-
lations

The inverse problem solutions, performed in a deterministic and stochastic framework following

the formulation F1 and F3 of Table 2.5, are compared. The objective is to observe if

discrepancies appear in the macroscopic response of the stacking sequence designs using both

formulations. The genetic algorithm is run 10 times for each case.

The results are also found in Table 2.7. The cost function values for each design for the first

target know some differences. An example is shown in Figure 2.7, where the mean of the retrieve

stacking sequence coming from the formulation F3 matching the mean is closer to the target

than the one matching the nominal values. The results for the second target are quite similar

except for the case where nplies = 16 and ∆inc
θ = 15 (see Figure 2.8). However the macroscopic

response via the polar plot are quite similar with both formulations (see Figure 2.7b).

Nevertheless, it could be interesting to study the variance of these two parameters to

observe the impact on orthotropy. Therefore the variability is studied for the Target 2 with

nplies = 16 and ∆inc
θ = 15°. The variability is shown in Figure 2.9 in the 2D projection (vD1 , v

D
3 )

and (vD2 , v
D
4 ). Even if the mean and nominal values of LPs are close to the target for both

stacking sequences, the variability is quite different. The correlation between (vD1 , v
D
3 ) and

(vD2 , v
D
4 ) is at its highest for the stacking sequence coming from the F3 cost function. Moreover,

the orientation of the correlation is different between both stacking sequences in the (vD1 , v
D
3 )

plan.

Therefore, in a variability framework, it opens the question of taking into account the vari-

ance or the correlation in the inverse problem resolution. In the end, the variances of lamination

parameters could be exploited for trying to respect some hypothesis (e.g., the orthotropy) or
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Figure 2.7: Detailed results of the inverse problem of Target 1 with nplies = 16 and
∆inc

θ = 15° for the nominal formulation (F1) and the stochastic formulation using FCE
(F3).

maybe to regularize the inverse problem resolution.

2.4.3 Multi-objective formulation with variability reduction for
orthotropy

The objective is to retrieve a stacking sequence with the target T2 of Table 2.6 while taking

into account the minimization of the variance of vD2 and vD4 as in formulation F4 of Table 2.5.

We recall the cost function formulation below:

min
µΘ
∥µdes

vD − µ
v̂D(Θ|µΘ)

∥+ ρ

√(
σ
v̂D2

(Θ|µΘ)
)2

+
(
σ
v̂D4

(Θ|µΘ)
)2
. (2.49)

A choice on the value of ρ has to be made. It depends on the order of magnitude of each

objective and the weight that the user wants to give to the standard deviation minimization

objective in comparison to the mean matching objective. In this study, we will study the

influence of this parameter in optimization-based stacking sequence retrieval. Moreover, we

consider stacking sequence with 24 plies.

First, the inverse problem was solved with a ρ = 0 corresponding to the F3 formulation of

Table 2.5. The average LPs of the three best laminates are plotted in Figure 2.10a. The three

best solutions are very close to the target. However, the dispersion for each stacking sequence

can be quite different. It has already been shown in Section 1.4.3.1. For each stacking sequence,

the ply orientation uncertainty is modeled as in Eq.(1.35) and can be propagated with the

FCE. The dispersion in the (vD1 ,v
D
3 ) frame are all different (see Figure 2.10b). The second

stacking sequence shows limited variability in this projection plane, whereas, in the (vD2 ,v
D
4 )

frame, variability is at its highest.

Furthermore, the possibility to reduce ∥σvD2,4∥ during the stacking sequence retrieval, without

impacting the objective ∥µdes
vD − µ

v̂D(Θ|µΘ)
∥ is investigated. The values of the weight ρ in

the Eq.(2.49) have been gradually augmented. For each case, thirty optimizations have been
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Figure 2.8: Detailed results of the inverse problem of Target 2 with nplies = 16 and
∆inc

θ = 15° for formulation F1 and F3.

Figure 2.9: Sample in the 2D projection (vD1 , v
D
3 ) and (vD2 , v

D
4 ) coming from the ply

orientations uncertainty of the results presented in Figure 2.8.
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Figure 2.10: Three best solutions of the inverse problem with ρ = 0.

run with the GA. For each ρ, we observe on Figure 2.11 a cluster of solutions. The average

values of both objectives are plotted with a line on each axis with the corresponding color.

These results are logical with respect to the weight given to the second objective. For ρ = 0,

we have the smallest average on the objective ∥µdes
vD − µ

v̂D(Θ|µΘ)
∥ and the highest in the

second one. The opposite is found out for ρ = 25. Moreover, it appears clear that there is

a limit value for the variable ∥σvD2,4∥ at approximately 0.017. A higher value of ρ does not

further reduce the standard deviation norm of vD2,4 parameters. Therefore, any value of ρ

bigger than 25 will only contribute to possibly deteriorate the solution within the objective

on the mean target ∥µdes
vD − µ

v̂D(Θ|µΘ)
∥. This argument is reinforced when we compare with

the solutions using ρ = 10. These latest solutions reach, most of the time, the minimum

level of standard deviation norm; however, the first objective of matching the mean statistics

has a lower range than the solution using ρ = 25. Moreover, the results with ρ = 10 may

achieve lower values of the first objective than with ρ = 25. Based on these results, it ap-

pears that choosing ρ between 5 or 10 is a good compromise between both objectives of Eq.(2.49).

Now, the three best results with ρ = 0 and ρ = 25 are compared in terms of the mean objective

and the dispersion in the LPs space. The results are shown in Figure 2.12. Firstly, we observe

that the LPs average coming from the solutions with ρ = 25 the solutions are slightly off the

target. Nevertheless, even if the stacking sequences are different, the dispersions in the 2D

projection are similar for all the solutions with ρ = 25 (see Figure 2.12d). The variability of

vD2,4 parameters are effectively reduced in comparison to the solutions with ρ = 0. They seem

even less correlated. However, a correlation exists in the Figure 2.12d between vD1 and vD3 for

all the solutions. Moreover, while you reduce the variability for vD2 and vD4 parameters, it seems

to affect vD1 and vD3 .

The impact of the vD variability on the engineering modulus ED,11 is shown in Figure 2.13

via a polar plot. In addition to mean, the standard deviation is displayed. In this figure the

focus is made on the solution 2 of Figure 2.12 for both ρ. The uncertainty has, most of the time,

a bigger impact on the stacking sequence coming from the ρ = 25 solution, especially in the 90°
axis.
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2.5 Conclusion

In a variability framework, the inverse problem needs to match the statistics between the

orientations of a stacking sequence and the target lamination parameters. Therefore a non-

intrusive surrogate model has been developed to achieve this step. A Fourier Chaos Expansion

approximates the trigonometric functions found in the lamination parameters formulation.

The particular orthonormal Fourier basis constructed enables a closed-form formulation of

the deterministic coefficients of the expansion. This surrogate model has been validated

with numerical integration and Monte Carlo Simulation, showing its efficiency for the inverse

problem resolution in terms of computational time compared to the Monte Carlo method.

Moreover, different formulation types were proposed, i.e. taking into account only the mean

statistic or also the standard deviation. The presented results show that solving the inverse

problem with or without the mean statistics may lead to slightly different results in terms of

the cost function but very different variability in the lamination parameters space. Then, the

idea was to minimize as well the standard deviations of two parameters to limit the deviation

from bending orthotropy. For the case where the weight of the standard deviation is important,

the variability is similar for the best solutions: it could maybe constrain the inverse problem

optimization and regularize it. Moreover, limiting the variability on those parameters appears

to have a more significant impact on the other LPs, and maybe later on the reliability analysis,

depending on the physics and the mechanical model used. It opens up an issue on the choice

between enforcing strictly the hypotheses on which a given mechanical model is based, or

favoring a reliability analysis that is more suitable to this model, but where the aforementioned

hypotheses may not be valid in the variability framework. Therefore, depending on the laminate

composite problem and the hypotheses made, the inverse problem formulation could take into

account different statistical information. However, it is important to note that the present

study has been carried out on a very limited set of target points, and that these conclusions

may not hold when the analysis is extended to a broader set of points over the domain.

This chapter describes one step of the multi-scale reliability-based design optimization ap-

proach: given a set of lamination parameters, a stacking sequence is retrieved matching the



statistics. Thanks to this, the orientation uncertainty can be appropriately modeled and prop-

agated through the lamination parameters design space. Once a LPs sample is available, the

reliability analysis needed for the RBDO can be performed. However, the mechanical model

used in this thesis is costly, and a strategy needs to be set up to perform reliability analysis

in an acceptable computation time through another surrogate model strategy. This will be the

focus of the next chapter.
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3.1 Introduction

Considering continuous optimization processes subject to a set of constraints, the optimum

solution tends to activate at least one constraint. Therefore, it is essential to effectively quantify

the probability of a laminate having unsafe configurations when the ply orientation errors are

introduced. Such a probability is conveniently defined as follows:

P = P[g(X) ≥ 0]

P =

∫
F={x∈X | g(X)≥0}

fX(x)dx,
(3.1)

where F = {x ∈ X : g(X) ≥ 0} is the domain of failure and X is the random vector.

This chapter concerns the estimation of the failure probability in a context where the constraint g

is costly to evaluate, and the target probability is around 10−2. This means that the probability

estimation should be possible within a reasonable number of calls to the model. The quantities

of interest for the reliability analysis of this work are mechanical instabilities, such as buckling

or flutter. Their computation comes from modal analysis. Subsequently, discontinuity of their

response can occur in the design space if mode switching occurs. Jonsson et al. (2019) and

Stanford et al. (2014) show the different types of discontinuity possibly present in the design

space for the flutter phenomenon. In addition to mode switching (see Figure 3.1a), there is a

special mode that can become abruptly the critical mode between two designs: it is called the

hump mode (see Figure 3.1b). An example of constraint studied in this work is shown in Figure

3.2. In this case, both types of discontinuities are present. The response of mode 3 is a hump

mode, and the global response (i.e., the minimum value) in Figure 3.2d shows mode switching.

Since a gradient-based algorithm is preferred, the sensitivity of the failure probability is of

interest. Some methods, detailed later, allows computing the sensitivity without increasing the

number of calls to the model. To do so, a parametric PDF of the random variables is needed.

However, our random input variables are the lamination parameters. Indeed, in Chapter 1,

we observed that modeling the LPs uncertainty is not always straightforward and sometimes

impossible to model with parametric function.

Therefore the strategy proposed in this chapter has to deal with:

1. the expensive cost of the models used,

2. the possible different multi-modal behavior of the quantity of interest in the design space,

3. and the computation of the failure probability sensitivities, adapted for lamination pa-

rameters, most efficiently.

Section 3.2 introduces some techniques existing in the literature for estimating failure probability.

Section 3.3 details a surrogate model strategy dealing with discontinuity in the design space to

compute the failure probability and its sensitivity. Finally, a hybrid strategy is implemented to

compute the sensitivity of failure probability needed during the RBDO process.

3.2 Probability estimation methods

This section reviews the state-of-the-art for estimating the failure probability defined in Eq.

(3.1). Approximation methods are first reviewed, then simulation methods such as Monte Carlo

are presented. Finally, the focus is on surrogate-based methods with an active learning strategy.

https://linkinghub.elsevier.com/retrieve/pii/S0376042118301520
https://arc.aiaa.org/doi/10.2514/1.C032500
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3.2.1 Most-probable-failure-point-based techniques

The general term ’Most-Probable-Failure-Point-based techniques’, or (MPFP), refers specifically

to the first-order reliability method (FORM) and the second-order reliability method (SORM).

The following only covers FORM theoretical details. For a more comprehensive understanding

of this topic, please refer to general textbooks on the subject (Ditlevsen and Madsen, 2007;

Lemaire, 2009) .

FORM is one of the more practical approaches to approximate a failure probability. A

transformation is performed from the original space (i.e., physical space), denoted the ”x-space”,

to the so-called standard normal space. All the random components X become independent

standard Gaussian PDF. To this end, a mapping from the space of original random variables X

to the standard Gaussian space is performed:

u = T (x),

gu(u) = g(T−1(u)),
(3.2)

where T is the mapping application which varies according to the method used. Isoprobabilistc

transformation can be performed for non-normally distributed and independent random vari-

ables. In the general case, the Nataf (Nataf, 1962) and Rosenblatt (Murray Rosenblatt, 1952)

transformations are used (Lebrun and Dutfoy, 2009) . Both spaces are represented in Figure

3.3 with a limit-state function represented with a black line on the physical and standard spaces.

FORM replaces the sampling strategy by finding the point over the limit-state surface, which

is the closest to the origin of the standard space. In other words, the point corresponds to the

maximum probability of occurrence of the failure event, and it is called the most probable failure

point (MPFP). This point is found with a constrained optimization problem:

u∗ = arg min
1

2
uTu subject to : gu(u) = 0. (3.3)

Thus, one can define a new safety measure, called the Hasofer-Lind reliability index (HL-RF)

(Hasofer Abraham M. and Lind Niels C., 1974) , denoted by βHL and defined such that:

βHL = β = αTu∗, (3.4)

where α is a unit vector of the axis between the origin O of the standard normal space and the

MPFP; providing a most probable failure direction:

α =
∇gu(u∗)

∥∇gu(u∗)∥
, (3.5)

for the less usual convention where g ≥ 0. The safety measure β represents the Euclidean

distance from the MPFP to the origin O of the standard normal space (i.e, the dotted black line

in Figure 3.3b). In general, the origin of the standard normal space belongs to the safe domain;

consequently, β is positive. Assuming that the limit-state function is continuous, smooth, and

differentiable around the MPFP, the first-order Taylor series expansion is applied such that:

gu(u) ≈ gu(u∗) +∇T
u gu(u

∗) (u− u∗) (3.6)

Since gu(u
∗) = 0 by definition and combining with Eq.(3.6), the approximation of the limit state

function can be written:

http://od-website.dk/books/OD-HOM-StrucRelMeth-Ed2.3.7.pdf
https://doi.org/10.1214/aoms/1177729394
https://linkinghub.elsevier.com/retrieve/pii/S0266892009000307
https://doi.org/10.1061/JMCEA3.0001848
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gu(u) = ∥∇T
u gu(u

∗)∥
(
αTu− αTu∗) = ∥∇T

u gu(u
∗)∥
(
αTu− β

)
. (3.7)

Thus, FORM consists in approximating the failure probability by the following Equation:

PFORM =

∫
Fu={u∈R | gu(U)≥0}

fU(u)du, (3.8)

where Fu = {u ∈ R | gu(U) ≥ 0} =
{
u ∈ R | αTu− β ≥ 0

}
is the domain of failure in the

standard space. The integral is now written as follows:

PFORM = P (gu(u) ≥ 0) = P
(
−αTu ≤ −β

)
. (3.9)

Since the quantity −αTu turns out to be a standard Gaussian random vector, the failure prob-

ability can be evaluated in a closed form:

PFORM = ϕ (−β) , (3.10)

where ϕ denotes the one-dimensional standard normal cumulative density function (CDF).

This estimation is exact when the limit state surface is linear. However, the FORM

approximation may become too inaccurate when facing nonlinearity. Then an extension that

uses second-order polynomial approximation has been proposed by Breitung (1989). Indeed,

the second-order reliability method (SORM) uses the previous Taylor series expansion up to

the quadratic term and requires computing the Hessian of the limit state function. Figure 3.3b

shows an example of both approximations.

Conclusion The FORM and SORM approximation methods provide reasonably good re-

sults for engineering problems, but they assume that there is only one point of failure. If there

are multiple potential failure points, these methods may not be accurate (Der Kiureghian and

Dakessian, 1998) . To address this limitation, several multi-FORM algorithms have been pro-

posed by (Der Kiureghian and Dakessian, 1998; Dubourg, 2011) to discover the multiple failure

points. In addition, these approaches may perform poorly in the presence of a discontinuity.

Therefore our interest could be turned to simulation methods with sampling techniques.

https://linkinghub.elsevier.com/retrieve/pii/S016747309700026X
https://linkinghub.elsevier.com/retrieve/pii/S016747309700026X
http://link.springer.com/10.1007/s00158-011-0653-8


3.2.2 Sampling methods

Sampling methods do not approximate the limit state function. Instead, these approaches

generate samples from a random variable distribution that can then be used to approximate a

failure probability by calling the mechanical model. The Monte Carlo (MC) sampling method

was the first one used for uncertainty propagation in the field of nuclear and particle physics in

the 1950s Metropolis and Ulam (1949) .

Monte Carlo sampling is the most common method and one of the more robust to ap-

proximate a probability. Monte Carlo sampling generates random or pseudo-random samples

from a specified probability distribution (Gentle, 2003). It has been widely used to estimate rare

events, as evidenced by many scientific studies. For further reading on the subject, the reader

may refer to the books by Rubinstein and Kroese (2004); Zio (2013) .

Let us define the failure indicator IF defined as:

IF (x) =

{
1 if g (x) ≥ 0

0 otherwise.
(3.11)

By introducing the failure indicator in Eq. (3.1), the failure probability can be written as:

P =

∫
X
IF (x)πX(x)dx ≡ E[IF (X)], (3.12)

where πX is the probability density function of random variable X. Therefore, this quantity can

be estimated as follows:

PMC =
1

nMC

nMC∑
i=1

IF
(
X(i)

)
, (3.13)

where X =
{
X(i), i = 1, ..., nMC

}
is a sample of nMC independent copies of the random vectorX.

The value of this estimator, which is calculated as the sum of nMC independently and identically

distributed random variables, is itself a random variable. According to the central limit theorem,

the Monte Carlo estimator is unbiased and normally distributed around zero mean with a specific

variance σ2MC with nMC sufficiently large. The variance of the Monte Carlo estimator is easily

proved in Lemaire (2009) to read as follows:

σ2MC =
1

nMC
PMC(1− PMC). (3.14)

The variance in the estimation decreases with the number of samples used to calculate the failure

probability, which indicates that the uncertainty in the estimation is only due to statistical error

and can be reduced through the use of additional samples.

To evaluate the precision of a sampling run, the coefficient of variation is typically used. It is

defined as follows:

CoV =
σMC

PMC
=

√
1− PMC

nMCPMC
. (3.15)

From this relationship, we can estimate how many samples are needed to compute a given

probability of failure within some prescribed accuracy. The problem with the Monte Carlo

estimator is that the required sample size nMC can drastically increase when the probability

gets low to ensure that the probability is estimated with a given coefficient of variation. For

instance, the required sample size, for a probability of 10−2 with a 5% coefficient of variation

(CoV), is almost 40000. If 1% coefficient of variation is required, the call number is up to 106.

https://www.tandfonline.com/doi/abs/10.1080/01621459.1949.10483310
https://link.springer.com/book/10.1007/978-1-4757-4321-0
http://link.springer.com/10.1007/978-1-4471-4588-2


Despite its computational cost, the Monte Carlo method is robust with respect to probabilistic

model dimension since the convergence speed depends only on nMC and P. Moreover, this

approach converges regardless of the regularity of the function of interest g. Therefore, the

Monte Carlo method could handle discontinuity. Finally, another feature is that independent

calls to the function of interest can be parallelized to decrease the computational cost.

Other simulation techniques have been developed specifically for reducing the simulation cost

associated with a rare event probability. They are known as variance reduction techniques and

implement various strategies to produce an equally accurate estimator as Monte Carlo but with

fewer samples. Well-known examples are importance sampling, stratified sampling, splitting,

control variates, or conditional Monte Carlo. For further reading on the subject, the reader

may refer to Zuniga (2011) for a more detailed comparison. Most of them are general-purpose

algorithms, but two techniques are more commonly used in the reliability field: importance

sampling (IS) and subset sampling (SS). Giving a precise development of each technique is

beyond the scope of this thesis. However, the basic concepts are presented below.

Importance sampling aims to solve the problem associated with drawing samples in the

failure domain for rare events. IS is a method that seeks to estimate the expected value of

a function by using an auxiliary (or instrumental) distribution denoted by hX instead of the

original PDF. In other words, IS involves substituting the original distribution of the random

variable with a different distribution in order to increase the number of samples drawn from the

failure domain.

The choice of the instrumental PDF is difficult and crucial to generate samples in the

failure zone. There are non-adaptive IS techniques and adaptive strategies with parametric

and nonparametric techniques. Examples of appropriate choices can be found in Asmussen

and Glynn (2007); Chabridon (2018) . To resume, IS techniques may be more efficient in

terms of computational time than Monte Carlo. However, the major difficulty is constructing

an efficient quasi-optimal auxiliary density. Despite their drawbacks, adaptive techniques are

more effective at finding an appropriate auxiliary density compared to non-adaptive methods

(Chabridon, 2018) .

Subset sampling relies on the idea of considering the rare event as the combination of

several, more likely events, each corresponding to a subset containing the set of true failures.

Since the probability associated with each subset will be larger and thus easier to estimate,

then the probability of the overall event is readily computed as the product of conditional

probabilities, applying chain rules.

This estimator can be accurate when the thresholds are appropriately set. Another possible

issue is the computation of conditional probabilities. This step relies mostly on the Markov

Chain Monte Carlo (MCMC) algorithms (Metropolis et al., 1953; Andrieu and Andrieu,

2003) . One major advantage of SS is the ability to handle complex functions that are highly

nonlinear and may have multiple failure regions. Additionally, SS tends to perform better

than other techniques when dealing with high-dimensional input. The method presents some

drawbacks as well. In some cases, the number of samples required to achieve convergence

is larger than that required using IS techniques. Moreover, in contrast to MC and IS, the

estimation error for SS is not calculated using an analytical formula. Instead, it is estimated

using bounds provided by Au and Beck (2001) or by repetition. Then a wrong tuning of

parameters in the MCMC algorithm could lead to an inefficient algorithm. Finally, Au and Beck

(2001) proved that the SS formulation leads to a biased estimator of the failure probability.

https://www.theses.fr/2011PA077007
https://link.springer.com/book/10.1007/978-0-387-69033-9
https://theses.hal.science/tel-02087860/document
https://theses.hal.science/tel-02087860/document
http://aip.scitation.org/doi/10.1063/1.1699114
https://link.springer.com/article/10.1023/A:1020281327116
https://linkinghub.elsevier.com/retrieve/pii/S0266892001000194
https://linkinghub.elsevier.com/retrieve/pii/S0266892001000194


For any further information about subset techniques for rare event simulation, the interested

reader could refer to Morio et al. (2014) .

Conclusion

Regarding our objective introduced in Section 3.1, the simulation methods could possibly com-

pute the failure probability over a discontinuous quantity of interest. However, with the costly

mechanical model, the slow convergence and the significant simulation budget, relying MC seems

impractical. The variance reduction technique could reduce this computation time, but it is still

insufficient. It is worth mentioning that these simulation methods can be effectively used in

conjunction with surrogate models (Balesdent et al., 2013; Bourinet, 2016) .

3.2.3 Surrogate-based methods

3.2.3.1 Overview of existing methods

Before going through the specific metamodel studied in this work, a brief overview of those

previously used in reliability analysis will be provided. There has been a significant amount of

research in the field of meta-model-based reliability analysis. There are a wide variety of meta-

model-based strategies available in the literature, making it difficult to provide an exhaustive

overview of the state-of-the-art. However, several notable examples include the use of quadratic

response surfaces, as studied by (Bucher and Bourgund, 1990; Gayton et al., 2003) .

Bourinet et al. (2011); Kang et al. (2016) have resorted to support vector machines. The

radial basis function is also an option Li et al. (2018) . Additionally, sparse polynomial chaos

expansions have been shown to provide promising results in reliability analysis, as demonstrated

by (Blatman et al., 2008; Blatman and Sudret, 2010) . Another widely used family is artificial

neural networks (ANN). An exhaustive review of techniques based on ANN can be found in

Saraygord Afshari et al. (2022) .

Moreover, the use of Gaussian process (or Kriging) predictors has been explored. The

benefits of Kriging is the development of active learning algorithms for realibility analysis

(Bichon et al., 2008; Picheny et al., 2010; Echard et al., 2011; Huang et al., 2016; Lelièvre

et al., 2018; Wang et al., 2020; Razaaly and Congedo, 2020) . Recently, a metamodel,

called PC-Kriging, which merges Kriging and Polynomial chaos expansion has been proposed

by Schöbi and Sudret (2014) and has been applied to reliability analyses coupled with an

active learning algorithm (Schöbi et al., 2017) .

In the end, the choice of a surrogate model is most of the time problem-dependent. In our

case, since the input vector is the LPs and a precise distribution is not known in every part of

the design space, GP is an excellent alternative to approximate our quantity of interest in the

LP design space. In the following, some theoretical elements of Kriging are detailed.

3.2.3.2 Kriging

This paragraph describes the surrogate modeling technique used in this work. This method was

originally developed by Krige (1951) in the geostatistics framework and later formalized by

Matheron (1962) with the name of Kriging (also known as Gaussian process modeling). The

basic idea is to model some function known only at a finite number of sampling points (two

or three-dimensional space) as the realization of a Gaussian random field. Later Sacks et al.

(1989) extend the application to computer experiments where the number of inputs could be

larger than 2 or 3. In contrast to polynomial chaos expansions, Kriging provides a surrogate

https://linkinghub.elsevier.com/retrieve/pii/S1569190X14001580
https://linkinghub.elsevier.com/retrieve/pii/S0167473013000350
https://linkinghub.elsevier.com/retrieve/pii/S0951832016000387
https://linkinghub.elsevier.com/retrieve/pii/016747309090012E
https://linkinghub.elsevier.com/retrieve/pii/S0167473002000450
https://linkinghub.elsevier.com/retrieve/pii/S0167473011000555
https://linkinghub.elsevier.com/retrieve/pii/S0307904X16300464
https://linkinghub.elsevier.com/retrieve/pii/S0167473016302156
https://www.researchgate.net/publication/260145066_Adaptive_sparse_polynomial_chaos_expansions_-_application_to_structural_reliability
https://linkinghub.elsevier.com/retrieve/pii/S0266892009000666
https://linkinghub.elsevier.com/retrieve/pii/S0951832021007018
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model that does not depend on the probabilistic model for the random input vector.

In the following, it is assumed we aim at creating a surrogate model of a scalar-value model

M : x → y. The set of observations is obtained with the model over a design of experiments

gathered in the following dataset
(
(x(i), y(i)), i = 1, . . . ,m

)
. In this case, Kriging catches two

levels of variability, global and local. The model is considered to be a realization of a stochastic

process:

Y (x) = µ(x) + Z(x), (3.16)

where µ(x) is a deterministic function approximating the mean trend of the model and Z(x) is

a zero-mean stationary Gaussian process whose covariance function reads:

Cov[Z(x), Z(x′)] = σ2R(x− x′, ζ), (3.17)

where σ2 > 0 is the variance of the Gaussian process and R is the correlation function that

depends on the difference between input points x − x′ and its so-called hyperparameters

grouped in ζ.

This representation is known as a two-stage Gaussian prior model. It is characterized by its

ability to capture both large and small scale variability.

Different types of Kriging exist, determined by the nature of the deterministic part:

Simple Kriging assumes a known and constant deterministic component.

Ordinary Kriging assumes an unknown but constant deterministic value. It is usually con-

sidered as the mean value of the observations.

Universal Kriging considers the deterministic component as a linear combination of basis

functions and depends on x:

µ(x) =

p∑
j=1

βjfj(x), (3.18)

where β = {βj , j = 1, . . . , p} is a weight vector and f = {fj , j = 1, . . . , p} is a function

basis with a collection of regression functions.

For multi-dimensional case, the auto-correlation functions is written as a product of univariate

ones:

R(x− x′, ζ) =

d∏
i=1

R(xi − x′i, ζi). (3.19)

Examples of widely used auto-correlation functions are listed below (Rasmussen and Williams,

2006) . For the sake of simplicity, we consider one-dimensional cases:

• Linear:

R(x, x′, l) = max

(
0, 1− |x− x

′|
l

)
, (3.20)

where l > 0 is the so-called characteristic length-scale.

https://gaussianprocess.org/gpml/chapters/RW.pdf


• Generalized exponential:

R(x, x′, ζ) = exp

(
−
(
x− x′

l

)γ)
, for 0 < γ ≤ 2 and l > 0, (3.21)

where ζ = {l, γ}. The smoothness of the associated process is determined by the parameter

γ. The higher the value, the smoother the sample path. When γ = 2, it corresponds to

the Gaussian auto-correlation function introduced below and is the only value that leads

to a mean-square differentiable generated process.

• Squared exponential (also called Gaussian):

R(x, x′, l) = exp

(
−
(
x− x′

l

)2
)
. (3.22)

It is the most used auto-correlation function for learning problems. The generated pro-

cesses are infinitely differentiable and thus very smooth.

• Matérn:

R(x, x′, ζ) =
1

2ν−1Γ(ν)

(√
2ν
|x− x′|

l

)ν

κν

(√
2ν
|x− x′|

l

)
, (3.23)

where ζ = {l, ν}, ν ≥ 0.5 is the so-called shape parameter, Γ the Euler Gamma function

and κν the modified Bessel function of the second kind. The smoothness of the auto-

correlation is controlled by ν. An interesting feature is that the sample paths from the

Gaussian process are k-times differentiable for any positive integer k such that ν > k.

Moreover, if ν is chosen as a half-integer, as ν = k + 0.5, an analytical expression of the

auto-correlation can be derived. Finally, as ν tends to infinity, the Matérn autocorrela-

tion function tends toward the squared exponential autocorrelation function, which has

infinitely differentiable sample paths. The most practical cases correspond to ν = 3/2 and

ν = 5/2, which are respectively once and two times differentiable.

In the following, we focus on the most general case using universal Kriging and a generalized

exponential auto-correlation for the smoothest of the generated process. The first step is to

estimate the parameters β and σ of the regression model. The departure of the linear regression

from the observation is assumed to be a Gaussian random noise. Minimizing this noise means

searching the parameters so that the noise is most likely Gaussian as assumed a priori. This is

called the maximum likelihood estimates. The likelihood function is obtained by inverting the

role of the observations and the parameters in the multivariate normal probability function:

L(β, σ2|y) = 1

((2πσ2)ndetR)
1
2

exp

(
− 1

2σ2
(y − Fβ)TR−1(y − Fβ)

)
, (3.24)

where F = {fj(x(i)), i = 1, . . . ,m, j = 1, . . . , p} is the regression matrix. Maximizing Eq.(3.24)

is equivalent to minimizing its opposite logarithm:

min
β,σ
−log L(β, σ2|y). (3.25)

This leads to the following estimates of β and σ

β̂ =
(
FTR−1F

)−1
FTR−1y, (3.26)
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σ̂2 =
1

m
(y − Fβ)TR−1(y − Fβ). (3.27)

Finally, the best linear unbiased predictor of the unobserved quantity of interest y0 ≡ M(x0)

gives the mean and variance of the Gaussian random variate Ŷ0:

µŶ0
= fT0 β̂ + rT0 R

−1 (y − Fβ) , (3.28)

σ2
Ŷ0

= σ2
(
1− rT0 R−1r0 + uT

(
FTR−1F

)−1
u
)
, (3.29)

where β̂ is the maximum likelihood estimation from Eq.(3.26) and u = FTR−1r0 − f(x(0))

and r0 = R(x(0) − x(i), ζ) is the vector of cross-correlations between the point prediction x(0)

and the observations. An example is shown in Figure 3.4 with the Kriging approximation of a

1D-function and the 99% confidence interval computed with the variance σ2
Ŷ0
. Calculating the

conditional mean and variance involves the inverse of the covariance matrix of the observations.

Depending on the size of the problem, the number of points in the database, and the choice of

the correlation kernel, this matrix can be ill-conditioned and numerical difficulties may occur.

Once the family of parametric auto-correlation functions is chosen, the parameters need to be

specified, either empirically, or through the use of various techniques, such as cross-validation

or maximum likelihood. Cross-validation consists in searching for the parameters’ values

that minimize the generalization error through re-sampling. As the brute force approach

is expensive, Bompard (2011) proposes a technique of leave-one-out (LOO) to reduce the

computational cost. Maximum likelihood is the same idea as in Eq.(3.24) while highlighting

its dependency in ζ. However, it is not easy to minimize because of the poorly conditioned

auto-correlation function, for some values of ζ, and the numerous local minima.

In this manuscript, the Kriging applications are run using OpenTURNS (Baudin et al.,

2016) and scikit-learn (Pedregosa et al., 2011) .

https://hal.inria.fr/tel-00771799/
https://doi.org/10.1007/978-3-319-11259-6_64-1
https://arxiv.org/abs/1201.0490


3.2.4 Conclusion

The reliability analysis and its sensitivity are performed on instability phenomena such as

buckling or flutter. A modal analysis is achieved to study the stability of the system. Indeed,

multimodal behavior exists in the design space. Moreover, performing a simulation method,

such as Monte Carlo or Importance Sampling, on a finite element method or an aeroelastic

model demands a high computation time. Therefore a suitable strategy needs to be introduced.

Since discontinuity occurs in the design space, approximation methods, such as FORM or

SORM, could be ineffective in some parts of the design space and still computationally costly.

The most practical strategy could be based on a surrogate method coupled with Monte Carlo

simulation with a strategy handling the discontinuity. Kriging is preferred here because it is

suitable with the lack of knowledge of the LP variability in the design space. Moreover, the

Kriging is advantageous for reliability analysis, where the Kriging error can be exploited with

active learning criteria for reliability.Note however that we will not be using an active learning

criterion in this work.

3.3 Surrogate-based reliability analysis strategy to

handle discontinuity responses

An optimized design of experiment needs to be constructed on the lamination parameters space

to build an efficient surrogate model. Then, a classification strategy is applied to identify a

possible hump mode within the structural modes considered. Finally, a strategy with Kriging

surrogate model, which handles the possible switch mode, is presented. In addition, the coupling

with the classification holds both types of discontinuities simultaneously.

3.3.1 Lamination Parameters design of experiments

Firstly, a design of experiments (DoE), which is well distributed over the dimension, must be

constructed. In this study, the focus is made on the out-of-plane lamination parameters vD.

It is a four-dimension space with compatibility constraints between those four parameters.

Moreover, the orthotropic hypothesis made in the LPs average reduces the space to only two

dimensions with µvD2
= µvD4

= 0. However, with the ply orientation uncertainty, these two

parameters will not be zero and, therefore, will be considered in the surrogate models.

The strategy to construct the design of experiments focuses first on the (vD1 , v
D
3 ) projection. The

idea is to create a grid inside the 2D space respecting the orthotropic laminate compatibility

constraint (Miki and Sugiyama, 1991) between these two parameters (i.e., the red line in Figure

3.5):

2(vD1 )
2 − 1− vD3 ≤ 0. (3.30)

A regular step is chosen for the vD3 axis with 12 points. For each value of vD3 , the point in the vD1

axis are distributed between −
√

vD3 +1
2 and

√
vD3 +1

2 . However, for the vD1 axis, variable step size

is applied with 2 points for vD3 = −1 up to 12 points for vD3 = 1. The details of the distribution

number Nsub of vD1 points along the vD3 are given by:

Nsub = [2, 4, 6, 6, 8, 8, 9, 10, 10, 10, 12, 12]. (3.31)

It gives a DoE of 97 points, shown in Figure 3.5a. It is a quite dense grid and can be reduced

by decreasing the number of points in the vD3 direction and the size of Nsub.



Value
Count Percent

vD2 vD4 vD2 vD4

−0.05 29 36 29.90% 37.11%
0.00 41 37 42.27% 38.14%
0.05 27 24 27.84% 24.74%

Table 3.1: Distribution of the vD2 and vD4 values in the LP design of experiment.

Once this step is made, the values of vD2 and vD4 need to be sampled. We chose three

possible values for these parameters: -0.05, 0, or 0.05. The draw is made equiprobable for

both parameters and is allocated to the grid points in 2D (vD1 , v
D
3 ) space. However, two other

compatibility constraints exists between the four parameters:(
vD1
)2

+
(
vD2
)2 − 1 ≤ 0,

2
(
vD1
)2

(1− vD3 ) + 2
(
vD2
)2

(1 + vD3 ) +
(
vD3
)2

+
(
vD4
)2 − 4vD1 v

D
2 v

D
4 − 1 ≤ 0.

(3.32)

For each point, these constraints are checked; and it appears that some points do not respect

the constraints and are unfeasible. These unfeasible points are represented with circle points in

the 2D projections in Figure 3.5a and 3.5c. From now on, the strategy for the unfeasible points

at the frontier is to take the closest point feasible. To do so, an extensive database of feasible

LPs is created where vD2 and vD4 are equal only to -0.05, 0. or 0.05. Firstly, a 60000-size random

sample is generated over a 2-dimensional space, representing vD1 and vD3 , with a [−1, 1] range for
each dimension. Then, a draw is made equiprobable between -0.05, 0. and 0.05 for vD2 and vD4
parameters and is concatenated to the sample generated at first. From this database, we keep

only the vD that respect the compatibility functions in Eq.(3.30) and Eq.(3.32). Afterward,

the distance of vD1 and vD3 between the unfeasible points present in the 97 points DoE and the

database points are compared:

d =

√(
vD

db

1 − vD
db

1

)2
+
(
vD

u

3 − vD
db

3

)2
, (3.33)

where vD
u
are the unfeasible lamination parameters of the DoE and vD

db
are the feasible LPs

from the database generated. Each database point vD
db

minimizing the distance with vD
db

replace the old unfeasible points. The points in Figure 3.5b and Figure 3.5d respect now all

the compatibility constraints. We observe the densification of points with vD2 = 0 in Figure

3.5d. The distribution between −0.5, 0, and 0.5 values of vD2 and vD4 parameters are not equal

anymore. Table 3.1 shows the percentage of each value allocated to vD2 and vD4 parameters.

We observe an important percentage of 0 values for vD2 . However, we consider that it is well

scattered in the vD2 and vD4 directions.

3.3.2 Discontinuity issues

Now that the design of experiments is built, the surrogate model of the aeroelastic quantity of

interest shown in Figure 3.2d can be constructed. The details of the model will be explained later

in Chapter 4. However, the aeroelastic stability is studied via an eigenvalues problem to identify

the critical flutter velocity. Hence, the global critical velocity is the minimum of the computed

modes. The stability study is made between a velocity range prescribed. Therefore, a mode

can stay stable for the velocity range studied. In Figure 3.2d, the response of the critical flutter
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velocity is shown and exhibits a discontinuity in the design space where the critical velocity

switches from the second mode to the third one.

In the aeroelastic field, some work focused on this discontinuity problem. A multi-element

surrogate model strategy is used to handle sharp and sudden flutter onset for the uncertainty

quantification in limit-cycle oscillations (Chassaing et al., 2012) . The quantity of interest is

expanded on a piecewise generalized polynomial chaos basis. Since we do not have a PDF of

the lamination parameters, the Askey scheme cannot be applied in our work to choose the right

orthogonal polynomials. More recently, some clustering techniques were applied for the flutter

velocity Chassaing et al. (2018) to identify the different modal regimes. Scarth and Cooper

(2018) construct a Gaussian process for each mode; however, their model does not guarantee

that eigenvalues will be output in the same order from one sample to another. Therefore,

they sort the eigenvalues comparing the mode-shape using Modal Assurance Criterion (MAC)

Allemang (2003) and the surrogate model is now accurate to approximate the flutter velocity.

Therefore, the Kriging looks to be a good compromise to our need.

Assuming that our model gives the eigenvalues in the same order, we could build a simple

surrogate model per mode. Nevertheless, the third mode exhibits a discontinuity (see Figure

3.2c). It behaves as a hump mode that can abruptly switch its stability status within a small

perturbation of the lamination parameters, as illustrated in Figure 3.1b. This phenomenon

is well summarized in Jonsson et al. (2019); Stanford et al. (2014) , which mentions some

techniques to handle hump modes in the optimization process, as the one proposed by Stanford

et al. (2015) which enforce the real part of each eigenvalue to remain below a preset bounding

curve. Although the above approach alleviates the discontinuity issues, it abruptly increases

the number of constraints. In our procedure, we aim to minimize the number of constraints.

In the following, a strategy is proposed to handle a possible discontinuity of a hump mode

using classification and to handle possible mode switching on the global quantity of interest

using the coupling of classical surrogate models and the classification.

3.3.3 Classifier assistance to handle hump mode

The proposed strategy to deal with a possible hump mode is to train a classifier to know whether

the design point is unstable or not in the design space. With the design of experiments shown

in Figure 3.5b, the aeroelastic model is run to compute the critical flutter velocity. We wish

to assign an input parameter vD to one of C classes, C1, . . . , CC . As previously said, two

stability statuses are possible: unstable when flutter occurs or stable when instability does not

occur. Therefore we consider a binary classification problem with C = 2. Different techniques

are available such as Nearest Neighbors, Support Vector Machines, Gaussian Process, Decision

Tree, and others. In this work, a classifier is trained with Gaussian Process Classification (GPC)

to identify a boundary between both regions of stability.

In GPC, a Gaussian Process is used as a nonparametric Bayesian model for the relationship

between the input variables and the class labels. The goal is to predict the class label (i.e., the

output) for a given input based on the training data. The key idea behind GPC is to use a GP

to model the distribution over possible functions that could generate the training data. This is

done by specifying a mean function and a covariance function (also known as a kernel) already

detailed in Section 3.2.3. To predict a new input, we can use the GP to obtain a distribution

over the possible functions that could generate that input and then use this distribution to

compute the probability of each class label. However, in classification, the target values are

https://linkinghub.elsevier.com/retrieve/pii/S0022460X11007127
https://hal.science/hal-03892600/
http://link.springer.com/10.1007/s00158-017-1838-6
http://www.sandv.com/downloads/0308alle.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0376042118301520
https://arc.aiaa.org/doi/10.2514/1.C032500
https://arc.aiaa.org/doi/10.2514/6.2015-1127
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Figure 3.6: Representation of the classifier for the third mode in the 2D space (vD1 , v
D
3 )

projection with vD2 = vD4 = 0. The dashed line represents the delimitation between the
stable and unstable regions computed by the GPC.

discrete class labels, and the Gaussian likelihood is inappropriate. Therefore the resulting

posterior distribution is not automatically Gaussian. That is the main difference that the

Gaussian Process Regression presented at the end of Section 3.2.3. In Rasmussen and Williams

(2006) , two analytic approximations which both approximate the non-Gaussian joint posterior

with a Gaussian one are presented: the first is the straightforward Laplace approximation

method (C. K. I. Williams and D. Barber, 1998) , and the second is the more sophisticated

expectation propagation (EP) method (Minka, 2001) .

The gaussian process module of scikit-learn is used Pedregosa et al. (2011) . The GPC is

implemented with Algorithms 3.1, 3.2, and 5.1 from Rasmussen and Williams (2006) and uses

the Laplace approximation for the non-Gaussian posterior approximation. The GP is trained

with a linear model and a squared exponential covariance kernel.

The GPC is applied to separate the stable and unstable region of the third mode. The delim-

itation computed by the classifier approximates the boundary correctly (see Figure 3.6). This

classification presents a 97% accuracy with three hundred points tested around this boundary.

In conclusion, with a quantity of interest, such as the flutter, two stability classes are possible

in each structural mode studied. Therefore, if needed, the GPC efficiently delimitates both

regions. This will be incorporated into the procedure to perform a reliability analysis of the

instability. Before that, surrogate models are constructed to efficiently approximate the quantity

of interest.

3.3.4 Classic surrogate model to handle mode switching

Now, the idea is to create a metamodel of the quantity of interest for each mode using Gaussian

Processes. Kriging provides a surrogate model that does not depend on the probabilistic model

of the random input vector. Since the input vector are the LPs and a precise distribution is not

known in every part of the design space, GP is a good alternative to approximate our quantity

of interest in the LPs design space. Moreover, Kriging provides a value for the error made on

the interpolation, which could be useful for the reliability analysis using active learning criteria.

https://gaussianprocess.org/gpml/chapters/RW.pdf
https://ieeexplore.ieee.org/document/735807
https://tminka.github.io/papers/ep/minka-thesis.pdf
https://arxiv.org/abs/1201.0490
https://gaussianprocess.org/gpml/chapters/RW.pdf


Mode Mean model Covariance kernel

1 Quadratic Square exponential
2 Quadratic Square exponential
3 Linear Square exponential

Table 3.2: Model of the Gaussian processes of the critical flutter velocity for each mode.

Some comments on a strategy with active learning are given in the perspectives at the end of

the manuscript.

The models used for the Kriging of each mode are detailed in Table 3.2. With this strategy,

it is easy to prevent mode switching in the global response if the response of each mode is well

approximated. But the question of how to construct the surrogate model of a potential hump

mode remains. In this case, only the design points that present instability are used to build the

surrogate model. A flowchart describes the principal steps to construct the surrogate models

and the classifier in Figure 3.7.

Gaussian processes of the quantities of interest of each mode are reported in Figure 3.8 with

vD2 = vD4 = 0. Each surrogate model is validated with true versus prediction graphs in Figure

3.9. Three hundred points were used for it. The validation of the hump mode was made only

with input parameters in the unstable part (i.e., the blue part between 0.5 and 1 of Figure 3.6a).

For the third mode, we can see the difference between the gaussian process in Figure 3.8c and

the true function in Figure 3.6b.

3.3.5 Coupling classic surrogate models with the classifier to
perform reliability analysis

The surrogate model of the hump mode could lead to the wrong estimation of the critical flutter

velocity if the input parameters are in the stable region of the third mode (i.e., the green part

between 0 and 0.5 of Figure 3.6a). The global critical velocity is defined as the minimum of

the computed modes. Therefore, the classification is exploited to know which flutter surrogate

model to use. In our example, the metamodel of the third mode is only used when the design

point studied is in the unstable part thanks to the classifier (i.e., the blue part of Figure 3.6a).

The global critical velocity is compared between the real model and the kriging response in

Figure 3.10 with the associated predicted vs. actual graph in Figure 3.10c. The approximated

response coupling the classifier with the classical surrogate model leads to some error around

a little part of the discontinuity. Within the set of samples used for the validation, the flutter

velocity estimations of five design points are completely inaccurate. This comes from the

classification that do not have a 100% accuracy to delimitate the stable and unstable regions of

the third mode. Therefore, the strategy could be improved.

Now, with the surrogate models and the classifier constructed, it is possible to perform the

reliability analysis. In this work, the surrogate models are coupled with the MC method to

compute the reliability. The global critical velocity is defined as the minimum of the computed

modes. The process to compute the failure probability is presented in Figure 3.11. The input

parameters are the mean ply orientations of a stacking sequence. The uncertainty propagation

is propagated until the LPs, which are the input parameters of the classifier and surrogate

models. Then, in the presence of hump mode, the GPC and the GPR are coupled to estimate
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Figure 3.8: Gaussian processes of the flutter critical velocity for the first three modes in
the 2D design space with vD2 = vD4 = 0 with the corresponding DoE used.
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Figure 3.9: Predicted vs actual graph of each Kriging surrogate model. Three hundred
realizations were computed.
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(a) True model response.
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(b) Surrogate model response us-
ing the classifier.
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Figure 3.10: Validation of the flutter velocity Vf in the 2D design space.

the value of the critical velocity to perform, in the end, the reliability analysis.

3.3.6 Conclusion

In conclusion, building a surrogate model of instability such as flutter should handle disconti-

nuities coming from hump mode or mode switching in the design space. The strategy proposed

to couple surrogate models with a classifier shows some interest in efficiently approximating the

quantity of interest, such as flutter velocity. It can handle the two types of discontinuities. Now

the reliability analysis can be performed with MC. However, since we are in a gradient-based

framework for the RBDO, the gradients of the failure probability with respect to the LPs design

variables are needed. The surrogate model will still be exploited to compute the quantity of

interest, which leaves open the question of how to compute the local sensitivity with respect to

LPs.

3.4 Strategy for the failure probability sensitivity

computation

The challenging part of the gradient-based approach for RBDO resides in the computation of

the failure probability gradient. The sensitivity computation is not trivial since the constraints

are stochastic. Bjerager Peter and Krenk Steen (1989) developed a local derivative-based

approach based on FORM to evaluate the effect of changes in the input distribution parameters

https://doi.org/10.1061/(ASCE)0733-9399(1989)115:7(1577)
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{
1 if Ṽf < V design

0 otherwise

Figure 3.11: Flowchart to run reliability analysis with, as input parameters a stacking
sequence.



on the reliability index. This was applied in a RBDO framework in Chun (2021) for example.

However, computing sensitivities through MPFP-based techniques are not adapted to our

reliability analysis strategy.

Sampling-based techniques can be used to determine local reliability sensitivity. It is pos-

sible to derive the gradient of the failure probability with respect to a distribution parameter

with MC using the score function (Rubinstein, 1986) . This function is well summarized in

Mohamed et al. (2020) for Monte-Carlo approaches in machine learning. Wu (1994) brought

the score function approach to the structural reliability community. Nevertheless, a parametric

distribution is needed. In our case, the input parameters are LPs. We observe the impact of the

orientation uncertainty on the lamination parameters in Chapter 1, and some marginals tend to

have a Gaussian shape. In addition, the number of plies in the stacking sequence could influ-

ence the shape of the lamination parameters PDF. Indeed Kriegesmann (2017) shows that the

distribution of lamination parameters tends asymptotically to Gaussian distribution increasing

the number of plies in the stacking sequence. He believes it is reasonable to assume a normal

distribution for laminates with more than 20 plies. However, we will not necessarily use a high

number of plies. This means that SF approach cannot be employed in the general case with

LPs.

In the most general case, finite differences are an alternative when the LPs sample does not

tend to parametric distribution. Since the failure probability is a stochastic quantity, it is more

robust to use centered finite differences (CFD).

In the following, the different methods used to compute the probability sensitivity are de-

tailed.

3.4.1 Score function

The goal of the following is to explain the underlying principle of the score function (SF). The

partial derivative of the failure probability with respect to the kth distribution parameter dk
reads:

∂P
∂dk

=
∂

∂dk

∫
X
IF (x)πX(x,d)dx, (3.34)

where IF is the indicator function defined in Eq.(3.11), and πX is the probability density function

of random variable X. Assuming that the joint PDF πX is continuously differentiable with

respect to dk and that the integration domain X does not depend on dk, the partial derivative

of the failure probability recasts as follows:

∂P
∂dk

=

∫
X
IF (x)

∂πX(x,d)

∂dk
dx. (3.35)

Then, in order to compute this integral as an expectation, it is proposed to use an importance

sampling trick:

∂ P
∂dk

=

∫
X
IF (x)

∂πX(x,d)

∂dk

1

πX(x,d)
πX(x,d)dx

=

∫
X
IF (x)

∂ln πX(x,d)

∂dk
πX(x,d)dx

= E [IF (X)Kdk(X)] ,

(3.36)
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where Kdk(X) =
∂ ln πX(x,d)

∂dk
is called the score function. Thus, given a sample X ={

x(i), i = 1, . . . , nMC

}
, the MC following estimator:

∂P
∂dkMC

≡ 1

nMC

nMC∑
i=1

IF (x(i))Kdk(x
(i)), (3.37)

is unbiased and asymptotically convergent according to the central limit theorem. The

advantage is that the failure probability gradient is estimated using the same sample used for

the failure probability estimation and do not increase the computational time. However, the

estimator variance of the score approach is sensitive to the probability function (Mohamed

et al., 2020) . To improve the accuracy and decrease the variance of the score function, a

reweighting scheme proposed by Zhu et al. (2015) could be used.

3.4.2 Centered finite differences

In the most general case, when a parametric distribution is not available, the gradient of the

failure probability with respect to the distribution parameter dk may be approximated with

centered finite differences:

∂P
∂dk
≈ P (dk + c)− P (dk − c)

2c
, (3.38)

where c is the step size along the particular dimension taken in the design space. One of the

drawbacks is the number of simulations of O(2nvns) order for a distribution parameters vector

of size nv and ns the number of simulations for a probability estimation by MC.

Since the numerator of the partial derivative is estimated using Monte Carlo sampling, the

variance of its estimator is proportional to:

Var [P (dk + c)− P (dk − c)] = Var [P (dk + c)] + Var [P (dk − c)]
−2Cov [P (dk + c) ,P (dk − c)] ,

(3.39)

where P (dk + c) ((resp. P (dk − c)) denotes an unbiased Monte Carlo estimator computed from

an sample X [1] (resp. sample X [2]) of independent copies of the random vector X. The vari-

ances simply add up in the most standard case where the two terms are estimated independently.

One of the issues with this approach is the stochasticity in the failure probability. Indeed, the

noise intrinsic to each estimation of P could bias the gradient’s estimation without differentiating

the information given by the perturbation of the design or the random noise. A straightforward

way to reduce the estimator’s variance is to have a positive covariance between the two estimated

probabilities. This is why Royset and Polak (2004b,a); Taflanidis (2007) propose to use

common random numbers (CRN). This strategy essentially consists in using the same seed for

generating both samples X [1] and X [2]. Indeed, CRN introduces dependence in estimating the

two probabilities so that the covariance term in Eq.(3.39) reduces the variance of the gradient

estimation. Therefore when finite differences are evaluated, it is recommended that samples are

generated from the same seed.

The finite differences method is straightforward for computing failure probability gradients.

However, it may produce inaccurate sensitivities for a too small sample size due to the statistical

noise or because of the step size (or perturbation size). Normally if c tends to zero, the failure

http://arxiv.org/abs/1906.10652
https://linkinghub.elsevier.com/retrieve/pii/S0307904X14006404
http://link.springer.com/10.1023/B:JOTA.0000041734.06199.71
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Figure 3.12: Comparison of the failure probability gradients obtained from score function
(SF) or centered finite differences (CFD) approach. On the left figure: the yellow dashed
contour represents the fitted Gaussian law, and the blue contour is the non-parametric
law obtained from a kernel-density estimate using Gaussian kernels.

probability sensitivity tends to the real value. Nevertheless, we treat stochastic quantities. The

choice of the step size c is tough because it intrinsically depends on the coefficient of variation

of the estimated probabilities. If the CoV of the probabilities in Eq.(3.38) is pretty high, the

sensitivity will be biased for a small step size. . Therefore, the smaller the target probabilities

CoV, the smaller the step size c can be, and the more precise the sensitivity estimation will be.

Nevertheless, the choice of this step size is often arbitrary, but a compromise has to be found

between computational cost (coming from the estimation of a probability with small CoV) and

accuracy in the estimation of the gradient via CFD with a small step size.

3.4.3 Comparison of reliability sensitivity methods for a simple
limit state function

A study is made to compare the computation of failure probability gradients with the score

function approach and the centered finite differences for two different samples V1 and V2 with

different levels of Gaussianity in 2 dimensions (vD1 , v
D
3 ). The sensitivity analysis will be computed

with respect to the mean of each direction for each sample. When the score function is employed,

a gaussian distribution is modeled with the means and variances of each sample. Then, the

sensitivity is computed using Eq.(3.37). Concerning the centered finite differences, at each

perturbation made, a sample is generated with the same seed, as explained in Section 3.4.2, and

the sensitivity is then computed with Eq.(3.38) with different step size c.

All sensitivities computations were repeated twenty times with a sample size of 200000 to

compute the mean and standard deviation for each sensitivity approach. In Figure 3.12, the score

function approach is validated for a set of lamination parameters well modeled by a Gaussian

law. In this case, the sample (not represented) seems to follow a Gaussian distribution. In

Figure 3.13, the chosen sample does not follow a Gaussian trend. In this case, the Gaussian

hypothesis of the score function is misleading, and there is a huge discrepancy for the vD3
direction. More generally, we also notice that the score function approach is quite sensitive

along the vD1 direction, for both cases, with a higher standard deviation than the centered finite

differences method. This is most likely because, in this example, the limit-state function of the

constraint is parallel to the vD1 direction, and the gradient value is close to null.

In the following, when centered finite difference is used the step size c is set to 0.01.

This study shows the limits of using the SF approach if the variability does not follow the

right parametric distribution. However, in terms of computational time, it would be a pity to

overlook this method when the sample follows a Gaussian tendency, for example. Therefore, the
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Figure 3.13: Same caption as Figure 3.12 but this time, the sample clearly does not
follow a Gaussian distribution (cf. left figure). We notice that the shape places much
more weight under the unfeasible region. In this case, failure probability gradients differ
depending on the approaches.

strategy proposed is to perform a statistical test of the sample studied to know when to use the

score function or centered finite differences.

3.4.4 Hybrid strategy via statistical test

In the multi-scale RBDO framework, once the inverse problem is solved via the FCE (see Chap-

ter 2), we can generate a sample in the orientation space, which is propagated in the lamination

parameters space. With this last sample, the failure probability and its sensitivity are com-

puted. The UQ study of lamination parameters made in Chapter 1 shows that, in some cases,

a multivariate Gaussian PDF tendency can be modeled. But how to know more precisely if

the uncertainty follows a parametric distribution function in the lamination parameters space?

Statistical tests exist, such as the Lilliefors (Lilliefors, 1967) , the Anderson-Darling (Stephens,

1974) , or the Shapiro-Wilk test (Shapiro and Wilk, 1965) that are available in one dimension.

For multidimensional distribution, the tests are different. The Henze-Zirkler multivariate nor-

mality test is used in this work from the pingouin library (Vallat, 2018) available in Python.

Some works tried to compare different statistical tests, such as generalized Shapiro-Wilk, Henze-

Zirkler, multivariate skewness, multivariate kurtosis, and Royston. Except for some tests, such

as multivariate skewness and kurtosis, which present lousy performance in some cases, the re-

sults illustrate that none of the tests is universally superior (Székely and Rizzo, 2005; Alpu and

Yuksek, 2016) .

Therefore, the hybrid strategy is to use the score function whenever the statistical test

is true. With the Fourier Chaos Expansion (FCE), the mean and covariance of the LPs

sample are directly available. Then, the PDF of the lamination parameters is modeled as

πv ∼ N (µFCE
v ,σFCE

v ). In this case, the gradient is computed with respect to the LPs mean µvk
using the same sample that computes the failure probability V =

{
v(i), i = 1, ..., nMC

}
:

∂P
∂µvk

=
1

nMC

nMC∑
i=1

IF (v(i))Kµvk
(v(i)), (3.40)

In the other case, when the LPs sample does not follow a Gaussian distribution, centered finite

differences using CRN are applied as follows:

∂P
∂µvk

≈ P (µv + ϵk)− P (µv − ϵk)

2c
, (3.41)

where:

• c = 0.01 is the value of the step size,
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Figure 3.14: Hybrid strategy for failure probability sensitivity.

• k = {1, . . . , ndim},

• ndim the dimension of the LPs design space,

• ϵ is the vector of dimension size ndim with zero values,

• ϵk = ϵ+ c {δkj}, with δkj the Kronecker delta. This idea is to set the jth component of ϵ

to the step size. When the index j is equal to the kth direction studied δij = 1.

How is the sample generated at each perturbation? For a mean µv, we have a stacking

sequence associated µΘ. The idea to generate a sample for perturbed LPs µv ± ϵk is to use

the original stacking sequence µΘ to find out another close stacking sequence that matches the

perturbed LPs perfectly. To do so, a gradient optimization is solved without any rules on the

stacking sequence and with the original stacking sequence µΘ as an initial guess. Therefore

the stacking sequence µΘ,±c associated with the perturbed parameters µv + ϵk have almost

the same ply orientations than µΘ but with real values and not integers. The overall hybrid

strategy is illustrated in Figure 3.14 with the main steps. The details to compute the failure

probability sensitivity are found in Algorithm 1.



Algorithm 1 Hybrid strategy for the failure probability sensitivity computation

1: nMC = 10000, j = 0, c = 0.005
2: µΘ, σΘ ▷ µΘ and σΘ are known
3: ndim ▷ Dimension of the LP design space
4: ϵ = zeros(ndim)
5: X ∼ (0,1)
6: X =

{
µΘ + σΘx

(i), i = 1, . . . , nMC

}
7: V =

{
v = Ĥ (X )

}
▷ via FCE

8: Test := Henze-Zirkler(V ) ▷ Multivariate Normality Test
9: if Test = True then

10: µv, σv := FCE(µΘ,σΘ) ▷ Section 2.3.3
11: πv ∼ N (µv, σv)
12: for k ← 1 to ndim do
13: ∂P

∂µvk
= 1

N

∑N
i=1 IF(v(i))Kµvk

(v(i)) ▷ Score Function Eq.(3.40)

14: end for
15: else
16: for k ← 1 to ndim do
17: ϵk = ϵ+ c {δkj} ▷ j is the index of the vector ϵ
18: µΘ,−c := min∥(µv − ϵk)− v(µΘ,−c)∥ ▷ via gradient optimizer with µΘ as the

initial guest
19: µΘ,+c := min∥(µv + ϵk)− v(µΘ,+c)∥ ▷ via gradient optimizer with µΘ as the

initial guest
20: X−c =

{
µΘ,−c + σΘx

(i), i = 1, . . . , nMC

}
21: X+c =

{
µΘ,+c + σΘx

(i), i = 1, . . . , nMC

}
22: V−c =

{
v = Ĥ (X−c)

}
23: V+c =

{
v = Ĥ (X+c)

}
24: P−c =

1
nMC

∑nMC

i=1 IF
(
v
(i)
−c

)
▷ via MC

25: P+c =
1

nMC

∑nMC

i=1 IF
(
v
(i)
+c

)
▷ via MC

26: ∂P
∂µvk

= P+c−P−c

2c

27: end for
28: end if



3.5 Conclusion

The goal of this chapter was to implement a metamodeling strategy for the reliability analysis,

and its sensitivity, of a multimodal quantity of interest without having a parametric distribution

of the LP random variables in all the design space. Indeed, the quantities of interest are insta-

bilities and could know different types of discontinuities in the design space (in our case, mode

switching on the global response or hump mode on a mode response). Furthermore, the costly

mechanical models used justify the need of surrogate modeling. The surrogate-based strategy

built to approximate the quantity of interest in the design space can handle different types of

discontinuity:

• the hump mode via Gaussian Process Classification to distinguish instability and stability

zones in the design space for each mode,

• the mode switching via Gaussian Process Regression to approximate each mode with a

DoE taking design points in the instability zone only.

To perform the reliability analysis, it is possible to exploit both tools when both discontinuity

types exist. Before that, a design of experiments of bending lamination parameters in the quasi-

orthotropic space was constructed. The strategy allows building a regular design of experiments

in the LP space that is governed by geometrical constraints and without using any stacking

sequences. An aeroelastic response, used later in the RBDO process, has been approximated in

the design space with the DoE and the strategy presented. The surrogate model of the global

response has been validated. This surrogate model will be used to compute the probability

sensitivity as well. Several techniques were presented to compute the local sensitivity of failure

probability. In addition, an hybrid strategy was proposed which limits the computational time

in the case where the LPs sample tends to a Gaussian tendency. Hence, the score function or

the centered finite differences perform the local sensitivity of the failure probability coupled with

the surrogate model. To this end, we have all the tools needed to perform RBDO of composite

laminate with instability constraints.
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4.1 Introduction

The detailed procedure of RBDO under uncertainties of the design variables for a composite

laminate optimization is here applied. Firstly, the global methodology is summed up in Section

4.2. The proposed multi-scale methodology is applied in Section 4.3 to the buckling optimization

of a composite laminate with uncertainties of ply orientations. Analytical models are used in

order to validate the optimization process against a genetic algorithm. The different gains in

terms of reliability and computational time are presented. Once the complete procedure is

presented and tested on a ”simple” case, the aeroelastic optimization under uncertainty can be

performed.

4.2 Global RBDO methodology

The aim of this section is to synthesize the global process of optimization. In Chapter 1, we

motivated the choice of performing a two-level approach for the RBDO. A multi-scale strategy

was proposed to apply the RBDO to composite laminate. Therefore, the optimization process

is detailed with the tools that have been developed in Chapter 2 and Chapter 3 for the smooth

running of the optimization. In this section, we recall the multi-scale formalism proposed in

Chapter 1, which follows the two-level formulation:

min
µΘ

f
(
µv(Θ)

)
subject to:

{
hi

(
µv(Θ)

)
≤ 0, i = 1, . . . , nd,

Pj (gj(v = H(Θ)) ≥ 0) ≤ Pmax
j , j = 1, . . . , np,

(4.1)

where µΘ are the ply orientation mean values to optimize, µv are the lamination parameters

mean values, hi are deterministic nonlinear constraints (emerging from the homogenization

process), gj are limit state functions, H is the nonlinear mapping, from the stacking sequence

to the LPs, Pj are the failure probabilities.

The global reliability-based optimization methodology is presented in Figure 4.1. The initial-

ization is made with a stacking sequence µΘ in the mesoscopic space. Then the mean of lami-

nation parameters is computed with the corresponding objective, reliability, and deterministic

constraints for the first iteration. All this information is given to the gradient-based optimizer.

In this work, the Method of Moving Asymptotes (MMA) (Svanberg, 1987) is used in the lam-

ination parameter space with the non-monotonic approximation of the GCMMA (Svanberg,

2002) . With the MMA, the solution of the original problem is approached by solving a series

of convex subproblems which are constructed based on function values and their gradients at

current iteration point, and the solution of the subproblem will be used as the starting point

of the next iteration. Usually, MMA is used in topology optimization because this optimizer

can handle a huge number of constraints. In our case, we need a optimizer that stay in the LP

feasible domain in order to avoid too much error in the inverse problem resolution. With the

open-source code1, the tuning of the MMA parameters is possible and allows the optimizer to

be conservative with respect to the deterministic constraint (in our case the LP compatibility

constraint). It means that the subproblem created at each iteration tends to stay in the LP

feasible domain. The MMA parameters used in this work are presented in Table 4.1.

The inverse problem step, which retrieves the stacking sequence, is solved at each iteration

by the genetic algorithm optimizer developed by Vicente (2019) , which followed the formulation

1https://github.com/arjendeetman/GCMMA-MMA-Python

https://onlinelibrary.wiley.com/doi/10.1002/nme.1620240207
http://epubs.siam.org/doi/10.1137/S1052623499362822
https://repository.tudelft.nl/islandora/object/uuid%3A0d8644c9-099d-404c-890f-9242541414b5
https://github.com/arjendeetman/GCMMA-MMA-Python
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Table 4.1: MMA parameters used for optimization.

devised by Irisarri et al. (2014) known as Stacking Sequence Table (SST). The parameters used

for the genetic algorithm are detailed in Table 2.1. The Fourier Chaos Expansion, developed in

Chapter 2, is used to match the statistics between the stacking sequence and the LPs. Then,

a sample can be generated and propagated until the lamination parameters space. Finally, the

objective and the deterministic and probabilistic constraints are computed for the gradient

optimizer. The statistics are available via the FCE in the case when LPs variability is modeled

as Gaussian distribution, and the failure probability sensitivities are computed via the score

function approach or the centered finite differences, as explained in Section 3.4.

The procedure is iterated until convergence. The convergence criterion is defined as the

change in the LP design variables and is given by Eq.(4.2). In addition, the constraints have to

be respected.

ϵ =
∥µv

[j] − µv
[j−1]∥

µv
[j]

. (4.2)

Moreover, the maximum iteration number is set to 50 throughout the manuscript.

4.3 Application of the RBDO to the buckling of a

laminate plate

First, the methodology is applied to a test case where an analytical model of the physics is

available. This allows to use the Monte Carlo method for the reliability analysis and to compare

the methodology with an optimization that uses only a genetic algorithm in order to validate

the proposed optimization process.

We consider a simplified composite wing, represented as a flat rectangular plate. The

plate dimensions and the applied load direction are shown in Figure 4.2 and detailed in Table

4.2. The composite laminate is 2-mm-thick, which accounts for a total of 16 plies, each

stacked at a specific θi orientation with respect to the global coordinate system. Available

orientations to be chosen from are, in general, uniformly distributed over [−90o : ∆inc
θ : 90o],

where ∆inc
θ is the angular increment (e.g., 15o). We consider a symmetric and balanced laminate.

The bending stiffness is studied in this case. In classical lamination theory (Tsai and Hahn,

1980) , the macroscale constitutive equation relating applied bending moments to the curvature

of a symmetrically laminated plate may be written as:

M = Dκ, (4.3)

https://linkinghub.elsevier.com/retrieve/pii/S0263822313004376
https://www.taylorfrancis.com/books/mono/10.1201/9780203750148/introduction-composite-materials-stephen-tsai-thomas-hahn
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Parameters Value

a(m) 0.3048
b(m) 0.0762
E11(GPa) 140
E22(GPa) 10
G12(GPa) 5
ν12 0.3
ρ(kg/m3) 1600
Nx(N/mm) 100
Boundary condition Clamped at x = 0

Table 4.2: Dimensions of the plate and material properties.

with: 

D11

D22

D12

D66

D16

D26

 =
t3

12



1 vD1 vD3 0 0
1 −vD1 vD3 0 0
0 0 −vD3 1 0
0 0 −vD3 0 1
0 vD2 /2 vD4 0 0
0 vD2 /2 −vD4 0 0




U1

U2

U3

U4

U5

 , (4.4)

which comes from the CLPT introduced in Section 1.2.

4.3.1 Problem formulation

The plate is under compressive load Nx. An orthotropic hypothesis is made on the stiffness

properties of the composite, i.e. the bending-twist coupling is avoided and reduces the coupling

terms D16 and D26 to zero. Therefore, the lamination parameters µvD2
and µvD4

are set to zero

during the optimization process.

The objective is to maximize the bending stiffness D11:

D11(µv) = U1 + µvD1
U2 + µvD3

U3, (4.5)

while remaining reliable with respect to the buckling phenomenon g:

g(vD) = λcrit −min
m,n

(λ) , (4.6)

with:

λ = π2
D11

m4

a4
+ (D12 + 2D66)

m2

a2
n2

b2
+D22

n4

b4

m2

a2
Nx

,

where λcrit is the limit buckling criterion, λ is the buckling value of a orthotropic laminate, Nx

is the compressive load, a and b are the plate dimensions, D is the bending stiffness matrix, m

and n are the number of half-wavelengths in the x and y directions.

Regarding the ply orientation uncertainty, the standard deviation σΘ is set to 2°. The

formulation of the gradient RBDO problem is written in the following form:

min
µΘ
−D11

(
µvD(Θ|µΘ)

)
subject to:

{
hLP (µvD(Θ|µΘ)) ≤ 0

P
(
g(vD = H(Θ)) ⩾ 0

)
≤ Pmax , (4.7)
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Figure 4.3: Reponses of the quantity of interest of the optimization in the 2D lamination
parameters macroscopic design space.

where µΘ are the mean ply orientation design variables, vD are the macroscopic lamination

parameters with their mean µvD , hLP is the compatibility constraint defined by Miki and

Sugiyama (1991) for an orthotropic laminate, H is the mapping between ply orientations

and lamination parameters found in Eq.(1.13) and Pmax = 1% is the maximum failure

probability. The failure probability P is approximated via the Monte Carlo method with a

sample size nMC = 200000. With this sample size, we targeted a 2% coefficient of variation

in the probability estimation, which help, in addition, the right estimation of the probability

sensitivity when CFD is used.

The normalized objective D11, the constraints hLP and g are illustrated in Fig. 4.3, with the

obtained deterministic optimization solution in the lamination parameters space, represented by

a small black star.

4.3.2 Results of the RBDO

The first results were obtained with the hypothesis that the lamination parameters followed

Gaussian distributions modeled at each iteration, thanks to the accurate statistics provided by

the FCE. With this setup, the score function approach is performed for the gradient failure

probability computation at each iteration. In Fig. 4.4, the optimization path (4.4a) and the

close-up (4.4b) around the final design (cyan star) are shown with the shaded area corresponding

to the failure domain. The green points show the designs proposed by the MMA algorithm during

the iterative process, and the blue ones are the design points retrieved from the inverse problem

solutions. In the close-up, the probability density function around the final design point is

shown. The final RBDO solution is more reliable and, as expected, not at the same location as

the deterministic optimal.

The convergence of the optimization is shown in Fig. 4.4c with the objective D11 and the

probability reported through the 19 iterations. Fig. 4.4d shows the design evolution in the

lamination parameter and orientation spaces. The convergence is rather slow toward the end,

but it is consistent with the general behavior of the MMA algorithm. We notice that while the

https://arc.aiaa.org/doi/abs/10.2514/6.1991-971
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Figure 4.4: RBDO result where the probability sensitivity is computed with the score
function approach.
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Figure 4.5: Buckling PDFs for the deterministic and reliability-based optimized designs.

maximum probability constraint is not violated by the final design, the obtained value is lower

than the threshold. This is, in fact, due to the discrete nature of the ply orientations. Despite

the fact that the MMA optimizer is designed to propose a solution closer to the probability

threshold, in practice, the resolution of the inverse problem nudges the solution a bit, inducing

small deviations (cf. pink segments in Fig. 4.4b). Therefore, the final result at convergence

could remain conservative due to the nature of the application.

Additionally, the buckling PDFs corresponding to each of the RBDO and deterministic op-

timized designs are shown in Fig. 4.5 for the sake of comparison. The PDF for the deterministic

case is obtained by uncertainty quantification around the stacking sequence design found after

an inverse problem resolution. The deterministic design leads to poor reliability with a failure

probability over 0.5. Then, reliability improvement is made with the RBDO design.

4.3.2.1 Gradient probability comparaison

In the following, we test the robustness of the proposed numerical approach. In particular, we

are interested in the sensitivity of the method to the choice of different methods to evaluate the

failure probability gradients. In the optimization using only the score function for probability

gradients computation in Section 4.3.2, the Gaussian hypothesis for the lamination parameters

is made, which can lead to an error in the failure probability gradient evaluation. The idea is

to compare the optimization with different methods to compute probability sensitivity: score

function (results of Figure 4.4), centered finite difference and the hybrid approach.

Firstly, the optimization is run again with the failure probability gradients computed via

centered finite differences without assuming Gaussianity. The optimization path is different (see

Figure 4.6a), but the convergence is quite similar (see Figure 4.6c and 4.6d) at the end with

almost the same number of iterations and the same lamination parameters, as shown in Table

4.3. The variability, shown with the joint PDF in Figure 4.6b, is similar to the design variability

of the optimization made with the score function only in Figure 4.4b.

Finally, the hybrid approach detailed in Section 3.4.4 is used to know if the sample

can be approximated with a Gaussian law or not to know if the score function approach

or the finite differences are used for the gradient analysis (see Algorithm 1). With this

approach, the optimization converges with fewer iterations and almost the same design of lam-

ination parameters. In this case, the Gaussian statistical test is positive for half of the iterations.

The details of the results are shown in Table 4.3. Therefore, for this application, the Gaussian



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
v1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
v 3

k
vD  (Retrieved)
k
vD (Target)

Initial design
Design solution
Failure Domain

0.00

0.11

0.22

0.33

0.44

0.55

0.66

0.77

0.88

0.99

D
11

(a) Optimization path in the 2D LP space.

0.3 0.4 0.5 0.6 0.7 0.8
v1

0.0

0.1

0.2

0.3

0.4

0.5

v 3

k
vD  (Retrieved)
k
vD (Target)

Design solution
Link Target-Retrieved
Failure domain

0.00

0.11

0.22

0.33

0.44

0.55

0.66

0.77

0.88

0.99

D
11

(b) Zoom around the final design.

3 6 9 12 15 18
0.8

0.6

0.4

0.2

0.0

D
11

3 6 9 12 15 18
iteration

10 4

10 3

10 2

10 1

100 max

(c) Convergence of the objective f and the failure
probability P.

2 4 6 8 10 12 14 16 18 20

0.50

0.25

0.00

0.25

0.50

vD
 

vD
1

vD
3

2 4 6 8 10 12 14 16 18 20
iteration

75
60
45
30
15
0

15
30
45
60
75
90

(d) Convergence of the design variables represented
in both design spaces.

Figure 4.6: RBDO result where the probability sensitivity is computed with the centered
finite differences.

hypothesis made on LPs, to use SF for probability gradients, leads to the same results as the

optimization using CFD.

4.3.2.2 Comparison with evolutionary optimization algorithm

The proposed method has to be compared to a standard method regarding the composite lami-

nate’s RBDO. Indeed, various multi-scale approaches rely on direct methods, such as evolution-

ary algorithms, to optimize directly ply angles in the mesoscopic design space. In the following,

a genetic algorithm is used as the reference approach to solve the optimization problem in the

mesoscopic space (i.e., the ply orientation space in this case). Therefore, the macroscopic space

is not exploited and no convergence path can be identified. Hence the comparison will rely on

the final design and computational time.

Results for the here-presented multi-scale RBDO approach combined with different methods

for the failure probability sensitivity are now compared with the result obtained by the genetic

algorithm in Table 4.3. The final designs in the lamination parameters space are similar for

all optimization, but the computational times are quite different. The reference optimization

with the genetic algorithm took three times longer than the proposed method with the hybrid

approach for failure probability sensitivity. Overall, the multi-scale approach, exploiting the
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from Figure 4.7a.
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Figure 4.7: Convergence study with different initializations.

lamination parameters, is much more efficient regarding the computational time. Nevertheless,

if the macroscopic parameters (i.e., the lamination parameters in this case) cannot be modeled

with a parametric distribution (i.e., the Gaussian one), using only finite differences lead to

higher computational time. The difference in computational time between the full score function

approach and the full centered finite difference could increase with the design variable dimension.

4.3.2.3 Study of the impact of the initial design

In the following, we are interested in the sensitivity of the method to the choice of the initial

guess (to determine whether or not there is a correlation between the initial design point and

the convergence of the optimization). The study is made with the use of the score function

approach for probability sensibility. Optimizations were made with different initial points in

the design space to check the robustness of the convergence. In Figure 4.7a, the initial points

are spread over the macroscopic design space. Some of these initializations do not converge to

a reliable solution. These initializations are mainly close to the limit-state function or in the

failure domain. In Figure 4.7b, the optimization paths are shown for the case that did not

converge, i.e. for the initial point surrounded by a square in Figure 4.7a.

When the optimizer travels too deep into the failure zone, it could present some difficulties

in returning to the safety domain. In fact, in this case, the failure probability is equal to 1, and
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(b) Optimization path of the squared initial
design from Figure 4.8a.
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(c) Zoom of the optimization path .

Figure 4.8: Convergence study with different initializations with the addition of the de-
terministic constraint.

perturbing the design to compute the local sensitivity will not change the failure probability.

Hence the failure probability gradients are equal to zero, and the gradient optimizer does not

feel that the design is in the failure domain. A first solution to prevent this problem is to

do a multi-start optimization, which means running several optimizations with different initial

guesses placed mainly in the safety domain. A further approach also tested here is to add the

deterministic version of the reliability constraint in the optimization formulation in order to

regularize the optimization in the unfeasible region:

min
µΘ
−D11 (µvD (Θ)) subject to:


hLP (µvD) ≤ 0
g(µvD) ≤ 0
Pg = P

(
g(vD = H(Θ)) > 0

)
≤ Pmax

, (4.8)

The same convergence study has been done with this formulation. In Fig. 4.8a, except for

one initialization, the RBDOs converge to a reliable design. Therefore, the potential to add the

deterministic constraint in a gradient-based method is demonstrated for this case.
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Figure 4.9: Composite plate under airflow.

4.3.3 Conclusion

The strength of the RBDO approach is shown for composite laminate optimization under com-

pressive load, when the ply orientation design variables are considered uncertain. The proposed

RBDO method is validated compared to the reference composite RBDO using a genetic algo-

rithm. Regarding the computational time, the multi-scale RBDO methodology performs better

for this application. Nevertheless, a critical point concerns the initial guess. If the latter is in the

failure domain or the optimizer leads the design to the failure domain during the optimization,

it could have some drawbacks in convergence. However, we show the potential of adding the

deterministic constraint to counter this problem.

4.4 Toward an aeroelastic application

Reliability-based design optimization is applied to the aeroelastic optimization of a composite

plate. The optimization will be performed to reliability analysis of the flutter instability. The

aeroelastic model is first described, and then the RBDO strategy is applied for the aeroelastic

optimization of a composite plate subjected to airflow (see Figure 4.9). The dimension and

material properties are shown in Table 4.2. The fluid parameters are presented in Table 4.4.

4.4.1 Model description

This subsection introduces the structural model, the applied loads, and the notions of aeroelastic

dynamic instability flutter. The finite element software MSC NASTRAN (noa, 2014) was chosen

as a solver due to its wide acceptance in the aircraft industry, its capability to handle aero-

structural analysis, and to compute the required sensitivities efficiently for a large variety of

predefined design variables and responses.

4.4.1.1 Finite Element Model

The structural model is solved with the Finite Element (FE) method. The model consists of a

rectangular plate with 8 chordwise and 30 spanwise elements (see Figure 4.10a). The elements

employed for the discretization are 4-node 2D linear elements with a shell kinematic model. The

stiffness properties are defined with the stiffness bending matrix D.



Fluid Parameters Value

Density of airflow ρf (kg/m3) 1.225
Angle of attack (AoA) (°) 5
Velocity V des (m/s) 135

Table 4.4: Fluid properties.
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Figure 4.10: Mesh of the plate.

4.4.1.2 Double Lattice Model

One reason for using Nastran is the availability of aerodynamic tools that, along with the finite

element model, allow for coupled aeroelastic calculations. Depending on the Mach number,

different aerodynamic methods can be applied. The doublet lattice subsonic lifting surface theory

(DLM) (Albano and Rodden, 1969) , is chosen for our application. It belongs to the potential

theory methods, where singularities like sources, vortices, or doublets are superimposed with

the undisturbed free stream.

The aerodynamic mesh is discretized with the same number of elements as the structural one.

In the spanwise direction, the mesh refinement is smaller towards the plate tip to better describe

the distribution of forces which presents large gradients at the plate tip using the function fd
(see Figure 4.10b):

fd =
1

π
(1− 1/4) ∗ sin(π ∗ y). (4.9)

4.4.1.3 Dynamic instability

Since critical flutter velocity is studied for reliability, dynamic aeroelastic analysis is performed.

The coupling between the finite element model and the doublet lattice method is made with

the surface spline method, available in Nastran, in order to interpolate motion and forces for

the aeroelastic model.

The aeroelastic equations of motion are expressed in the classical form as:

Mq̈+ (ρVE) q̇+
(
ρV 2C+K

)
q = 0, (4.10)

where:

• M is the mass matrix ,

• K is the structural stiffness matrix,

https://doi.org/10.2514/3.5086
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Figure 4.11: Flutter diagram for the experimental case coming from Hollowell and
Dugundji (1982) obtained using the p-k method. The orange line represents the flut-
ter mode with the critical flutter velocity Vf = 28m/s given by the red arrow.

• q is the vector of the generalized displacements,

• C(k) is the aerodynamic stiffness matrix,

• E(k) is the aerodynamic damping matrix,

• k = frc
2V is the reduced frequency, where fr covers a range of frequencies between a small

one (around 10−2) and the frequencies of the modal basis studied c is the chord of the

wing and V the velocities studied.

These can be reformulated as:[
q̇
q̈

]
−
[

0 I
−M−1(ρV 2C+K) −M−1(ρV 2B)

] [
q
q̇

]
= 0, (4.11)

which is a polynomial eigenvalue problem of the general form ẋ−Qx = 0.

The matrix Q(V, k) is a function of air-speed and the reduced frequency. The eigenvalues

of this matrix may be computed to find the stability of the wing at a given air speed.

Instability occurs when the real part of one of the eigenvalues is positive. This leads to flutter

when the imaginary part is non-zero and is divergence otherwise. The aeroelastic instabil-

ity speed is found by solving Eq.(4.11) at multiple air-speed with the p-k method Hassig (1971) .

4.4.1.4 Validation

The aeroelastic model used in this thesis is validated against experimental and numerical studies

throughout the literature. Experimental data are available in Hollowell and Dugundji (1982) .

The experimental investigation was conducted on a composite cantilevered plate with different

stacking sequences. To describe the flutter phenomenon, in Figure 4.11, a set of the first three

eigenvalues is shown for a composite plate following the properties in Hollowell and Dugundji

(1982) . The instability speed is given by the lowest velocity at which the damping reaches

zero. The flutter velocities are compared in Table 4.5 between the experimental data and the

numerical model. The latest presents a good representation of the dynamic instability. Moreover,

our model was compared with the model in Stodieck et al. (2013) , which uses Nastran and p-

k method (see Figure 4.12). We assume that the model is accurate enough to perform the

aeroelastic optimization under the reliability constraint for the flutter phenomenon.

https://arc.aiaa.org/doi/10.2514/3.44311
http://arc.aiaa.org/doi/10.2514/6.1982-722
http://arc.aiaa.org/doi/10.2514/6.1982-722
https://linkinghub.elsevier.com/retrieve/pii/S0263822313003462


Stacking sequence
Flutter Velocity (m/s)

Experimental Numerical

[02, 90]s 24 23.9
[±45, 0]s > 32 45.5
[452, 0]s 28 30.3
[302, 0]s 27 28.0

Table 4.5: Flutter velocity of the experimental case in Hollowell and Dugundji (1982)
compared with our numerical model.
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Figure 4.12: Vibration frequencies and damping ratios from FEM flutter analysis using
pk-method for two different UD stacking sequences (case studied in Stodieck et al. (2013)).
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Figure 4.13: Response of the objective with the flutter failure domain in 2D space with
vD2 = vD4 = 0.

4.4.2 Results of RBDO

The RBDO approach is applied to a composite flat plate subjected to a flow (see Figure 4.9).

The dimensions, the material properties and the fluid parameters are recalled in Tables 4.2 and

4.4. The objective is to promote the flexibility of the wing by maximizing the displacement at

the tip dtip while remaining reliable with respect to the flutter constraint g. The formulation of

the latter is described in the following form:

min
µΘ
−dtip

(
µvD(Θ|µΘ)

)
subject to:

{
hLP (µvD(Θ|µΘ)) ≤ 0

P
(
g̃(vD = H(Θ)) ⩾ 0

)
≤ Pmax , (4.12)

where g̃ = Ṽf − V des is computed with the surrogate model strategy presented in Chapter 3

and Pmax = 0.01.

The objective and the failure domain are shown in the 2D projection (vD1 , v
D
3 ) with

vD2 = vD4 = 0 in Figure 4.13. The displacement at the plate tip increases to the upper right side

of the 2D design space, which represents composite laminate with only 0° plies. The color map

in this region is not represented because the displacement explodes due to the static divergence

instability that leads to higher deformation than the flutter. The limit-state function of the

flutter constraint presents a discontinuity, already presented in Chapter 3.

Firstly, in Figure 4.14a, we could observe the optimization path of an aeroelastic RBDO

using the global strategy with an initial guess taken far from the convergence region. The

approach to compute the failure probability gradients is the hybrid one. In the same manner

than for the previous application, the designs proposed by the MMA algorithm during the

iterative process are shown as green points, and blue points represent the design points retrieved

from the inverse problem solutions. The optimization goes through the boundary limit of

the lamination parameters space (Figure 4.14a). This leads to slow convergence of the MMA

because the LPs compatibility constraint is activated. Therefore, the MMA creates small

bounds for each subproblem and moves forward with a small step. The convergence of the

optimization is shown in Fig. 4.14c with the objective and the probability plotted through the

32 iterations. We notice that the failure probability is lower than the threshold, similarly to

the first application. This is, in fact, due to the discrete nature of the ply orientations. Finally,
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Figure 4.14: Result of the aeroelastic RBDO with the probability sensitivity computed
with the hybrid approach.

in Figure 4.14b, the probability density function around the final design point is shown in the

2D space, and we see the high correlation between vD1 and vD3 . This is because the design point

is close to the limit of the LPs feasible domain. This leads to a decrease in Gaussian variability

of the LPs. In this case, 33% of design points pass the Gaussian statistical test, which is 17%

lower than the previous application. Moreover, the optimization using only the score function

approach does not converge since it computes the wrong gradient values of the probability.

The critical flutter velocity PDFs corresponding to each of the RBDO and deterministic

optimized designs are shown in Figure 4.15. The PDF for the deterministic case is obtained by

uncertainty quantification around the stacking sequence design found after an inverse problem

resolution. The flutter velocity of the retrieved stacking sequence of the deterministic case is

represented as a star in Figure 4.15. This velocity does not respect the initial velocity constraint

of 135m/s. This highlights a problem of the deterministic bi-level approach: at the end of the

optimization in the homogenized space, when the inverse problem is solved to retrieve the design

of the stacking sequence, it may lead to a solution layup that does not satisfy the constraint.

With our multi-scale approach for RBDO, when the optimizer converges, we do not need

to perform an extra inverse problem since it is done at the beginning of each iteration and the
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Figure 4.16: Comparison of the designs between RBDO and deterministic optimization
with and without safety factor.

objective and constraints are evaluated according to a feasible stacking sequence.

In addition, we also impose a safety factor on the constraint for the deterministic case,

such as the classical process of aeroelastic design. The different designs are shown in the

2D space in Figure 4.16 with the associated PDFs in Figure 4.15, the associated objectives,

stacking sequences, and failure probabilities in Table 4.6. The reliable design outperforms the

deterministic design with the safety factor showing the interest in going into RBDO process.

Moreover, the variability of each design is represented in the 2D design in Figure 4.16b. The

joint PDF of both deterministic designs are similar, whereas the one of the reliable design

shows less variability but a higher correlation between vD1 and vD3 .



Type Stacking sequence µΘ Objective dtip Failure
probability

Deterministic [15,−15, 30,−30,−30,−15, 15, 30]s 0.54 0.52
Deterministic with
safety factor

[−30, 30, 15,−15, 15,−15, 45,−45]s 0.47 0

RBDO [0,−30, 30, 30,−30, 0, 30,−30]s 0.42 0.0005

Table 4.6: Results the different optimizations of the Figure 4.16.

4.5 Conclusion

In this chapter, the multi-scale approach, taking into account ply angle uncertainty, is applied to

two problems: the composite plate optimization promoting the plate stiffness while remaining

reliable to a buckling constraint and an aeroelastic optimization promoting the plate flexibility

while remaining reliable with respect to the flutter phenomenon.

The proposed RBDO method has been tested and verified, compared to the direct RBDO

using a genetic algorithm for the bucking analysis. In this first application, a computational

time comparison can be made since the constraint is an analytical model. A computational gain

is revealed, mostly when the score function approach is applied for the failure probability sen-

sitivity. Additionally, the comparison of the methods to compute the probability gradients was

performed (score function, centered finite differences, and the proposed hybrid approach). In the

first application, the results converge to similar designs. However, for the aeroelastic application,

the optimization path is close to the boundary limit of LP space, and the hybrid approach

shows its efficiency since it converges, unlike the optimization using only the score function

approach. The results shown an improvement in reliability compared to the deterministic

optimized design for both cases. Furthermore, in the aeroelastic case, the results show enhanced

performances with respect to a deterministic design where reliability is taken into account via a

safety factor. However, the zone of convergence between the two types of optimization is similar.

In the end, we show the feasibility of our approach and illustrate it in test cases. The

approach should stand out by considering a higher level of difficulty in the application case,

where a reliability analysis throughout optimization will be of interest.



CONCLUSION AND PERSPECTIVES

Conclusion

In this work, reliability-based design optimization of composite laminates was performed with

ply orientation uncertainty. The study of reliability during the optimization process focused

on instabilities such as buckling and flutter. The main challenges were treating uncertainty

on discrete design variables and dealing with the constraint response’s discontinuity. Even if

the strategy has been applied to academic test cases, the problems dealt with in this work are

already representative of the ones encountered in more complex applications.

The new multi-scale approach developed in this manuscript is capable of taking into account

the uncertainty of the ply orientations in a composite laminate RBDO framework. The benefit

of the here-presented approach is that the optimization can converge faster to a reliable design

compared to a direct method using a genetic algorithm. To achieve this, a gradient-based al-

gorithm is exploited via the use of lamination parameters as design variables. However, the

complex modeling of the uncertainties in the macroscopic lamination parameter’s space moti-

vated the process detailed in this work, inspired by the bi-level approach used in the deterministic

framework. In fact, the new iterative methodology, which combines a macroscopic design space

(with lamination parameters) and a mesoscopic design space (with ply angle), allows us to ex-

ploit the gradient information available analytically or provided by the simulation code (e.g.,

MSC Nastran). Nevertheless, one limit of this multi-scale approach concerns the inverse prob-

lem resolution step. This problem already poses difficulties in the deterministic case because of

the multi-modal feature of this combinatorial optimization problem and the non-unicity of its

solution. Moreover, since ply orientation follows some rules and can take only discrete values,

a difference could present in the macroscopic response between the target and the retrieved

stacking sequence. This error could be problematic for the convergence of our optimization. For

example, if the difference in the lamination parameter space between the targeted LPs and the

LPs of the retrieved stacking sequence is large enough to send the optimizer into the failure

domain, the optimizer may struggle to come back to the safety domain.

However, in a variability framework, the inverse problem is solved as well as in the

deterministic case, thanks to the use of Fourier Chaos Expansion metamodeling. With this

metamodel, we have a precise description of LP statistics. Moreover, the computational cost

to get the statistics is close to zero with the closed-form projection of the LP trigonometric

functions into the basis. The advantage is that a database of expansion coefficients can be

generated for each possible ply angle. The study made on the inverse problem in a variability



framework investigates on different possible formulations of the inverse problem. The variances

and covariances of LPs can be exploited depending on the application. Considering the

variances in the inverse problem may regularize the problem a bit more. In the end, the Fourier

Chaos Expansion is a powerful tool to perform a more in-depth study on the inverse problem

with ply orientation uncertainty.

The new multi-scale approach developed in this manuscript can also deal with a discontin-

uous instability constraint. The strategy proposed combining a classifier and classic surrogate

models efficiently approximates the discontinuous quantity of interest. This is helpful in the

reliability analysis of discontinuous constraint response with low computational time. However,

the application of this strategy to approximate the flutter velocity of the plate shows some errors

in the classifier. However, it is not impactful during the optimization since it is not a region of

interest. For the sake of generality, this step should be improved. Active learning criteria could

be used to enrich the classifier and the surrogate models in this critical area.

Concerning the probability sensitivity, the strategy of using a statistical test to know which

method has to be used between the score function or the centered finite differences is quite

suitable with lamination parameters since their variability cannot be modeled in all the design

space. Depending on the application, the score function approach can be exploited instead of

finite differences. For example, the study of a stacking sequence having a high number of plies

tends to have a Gaussian distribution of the LPs (Kriegesmann, 2017). Therefore, the score

function can be fully exploited, which could increase the interest in the methodology presented

in this work regarding the computational time. However, in the aeroelastic case, we observe that

we can struggle to compute the accurate probability sensitivity for the design points close to the

compatibility constraint. Indeed, most of the time, the variability does not follow a gaussian

shape, then the score function is cannot be used. Moreover, if the design point is very close

to the limit of the domain, the perturbation made with the centered finite differences leads to

inaccurate sensitivities. This is a limit of the approach if the optimizer passes through the limit

of the LP domain.

The feasibility of the whole approach was conducted on two test cases with different objec-

tives and constraints to analyze. The interest in going into the multi-scale strategy proposed in

this work is shown in terms of computational time.

In a variable stiffness framework under uncertainty, we believe that a genetic algorithm is

not suitable if design zones increase. However, this does not mean it will be straightforward

with the multi-scale approach: the increase of LPs to design could be problematic in building

the surrogate model for the reliability analysis since most of the surrogate models suffer from

the curse of dimensionality.

In the aeroelastic application, we have performed deterministic optimization with a safety

factor. The comparison shows interest in going into a reliability-based design optimization

since optimization with a safety factor seems to oversize the design or lead the design to

poor reliability, as mentioned in the introduction. With the RBDO approach, the impact of

uncertainties is known through the optimization process with the information of the failure

probability. However, in this case, the design converges in the same region that the deterministic

design. Nevertheless, we believe that increasing the complexity of the application should lead

to more distinguished designs between deterministic and reliability-based optimization.

In conclusion, this methodology handles the variability of LPs, which is quite complex. The

global methodology could be applied to RBDO of other materials with different design scales,

except the inverse problem with the FCE, which seems very specific to the LPs. But a classic



PCE could respond to the same objective for the inverse problem step.

However, better techniques could be exploited for some steps of this methodology. We detail

some possible improvements below.

Perspectives

The first possible improvement, already mentioned above, which presents some limits, is the

surrogate model for the reliability analysis. The classifier presents some errors around a high

discontinuity area in the flutter velocity application (see Figure 3.10). Most of the surrogate

techniques can not highlight this level of discontinuity. But a more deep comparison of the classi-

fication technique can be made. One promising technique that could improve our methodology

is support vector machines (SVM). SVM constructs a hyperplane that separates data points

into different classes and creates a so-called margin between the classes. This margin could be

exploited when we have a hump mode in the flutter analysis. We could avoid the optimizer going

toward this margin with a specific criterion to avoid the discontinuity region and a possible error

on the actual flutter velocity value.

Another area of improvement is to exploit better the Kriging characteristic for reliability

analysis. Some active learning criteria exploit the error given by the Kriging to enrich the

design of experiments and the Kriging. It is applied to RBDO in Moustapha et al. (2016) .

However, this work explores the whole design during the optimization with a genetic algorithm.

Therefore, the U -criterion of the active learning reliability method combining Kriging and Monte

Carlo Simulation (AK-MCS) (Echard et al., 2011) was applied to the entire design space. In

our case, the entire domain is not explored with the gradient-based algorithm used in the LP

space. Therefore the surrogate model needs to be efficient only in the limit state function where

the optimizer converges. Then, we could decrease the number of simulation calls to construct

the surrogate with this kind of criteria. A surrogate model could be first built with a small DoE

and, then, by using an AK-based criterion to enrich the surrogate model in the part of interest

during the optimization.

Moreover, we first target a threshold failure probability of 1% for simplicity. In reality,

we want to completely avoid the flutter phenomenon. In the future, a much smaller failure

probability needs to be targeted around 10−6 or 10−7. Therefore, Monte Carlo is no longer

viable. The surrogate models need to be coupled with the importance sampling or subset

sampling techniques to perform reliability analysis. Moreover, active learning criteria exist for

small failure probabilities (Lelièvre et al., 2018; Xu et al., 2020) .

In addition, we believe that considering a higher level of difficulty in the application case

will further enhance the interest in the methodology. Increasing the complexity means going

toward variable stiffness design with different design zones and the possibility of optimizing

the thicknesses of each one, such as the Figure 4.17. This kind of application may lead to

different local minimums and could further exhibit the advantage of applying our multi-scale

RBDO approach. The variable stiffness formulation problem will increase the complexity for

two points: the inverse problem resolution and the construction of the surrogate model for

the reliability analysis. Firstly, the inverse problem resolution has to handle different zones

and target thicknesses. The Stacking Sequence Table formulation already used in this work

could handle this, considering design constraints coming from the manufacturer. Secondly, the

surrogate model needs to bear the increase of dimension coming from the different design zones

(i.e., input parameters). Moreover, the constraint response will now depend on the thickness,

increasing the dimension of the surrogate model as well. If the dimension rises too much,

https://link.springer.com/article/10.1007/s00158-016-1504-4
https://linkinghub.elsevier.com/retrieve/pii/S0167473011000038
https://linkinghub.elsevier.com/retrieve/pii/S0167473017301558
https://linkinghub.elsevier.com/retrieve/pii/S0167473020300503
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another type of surrogate modeling or a technique that reduces the dimension of the problem

for instance (Constantine et al., 2014) .

Finally, the choice of the optimizer can be criticized. The MMA algorithm seems to have

a slow convergence. Still, it has been chosen because, with the tuning of parameters, the

subproblem created at each iteration tends to stay in the feasible region of the LPs (i.e., the

inverse problem resolution does not make a huge error). One possible way to reduce the number

of iterations and, therefore, the computational time is to investigate whether using another

gradient-based algorithm, such as SQP, is compatible with our methodology.

http://arxiv.org/abs/1304.2070


APPENDIX A

ORTHONORMAL FOURIER BASIS

The objective of this appendix is to better detail the derivations of the Fourier basis used for

Fourier Chaos Expansion for a Gaussian random variable.

A.1 Expectations of useful random trigonometric

functions

Some useful expected expressions of trigonometric functions are recalled below. Given that

x ∼ N (µ, σ2) and using Mathematica, the integral corresponding to the expectation of sin(aX)

and cos(aX) can be explicitly computed.

E [cos(aX)] = cos(aµ)w, (A.1)

E [sin(aX)] = sin(aµ)w, (A.2)

with a ∈ R and w = exp(−0.5a2σ2).
Since, cos(kx) =

1

2

(
eikx + e−ikx

)
and sin(lx) =

1

2

(
ie−ilx − ieilx

)
, we can write the product of

the trigonometric functions cos(kx) and sin(lx) as:

cos(kx) sin(lx) =
1

4

(
iei(k−l)x + ie−i(k+l)x − iei(k+l)x − iei(l−k)x

)
. (A.3)

Since the part of interest is only on the real part, the Eq.(A.3) can be written as the Eq.(A.5),

and its expected value as the Eq.(A.5) using the Eq.(A.2) and Eq.(A.1).

cos(kx) sin(lx) = −0.5 sin((k − l)x) + 0.5 sin((k + l)X), (A.4)

E[cos(kX) sin(lX)] = −0.5 E[sin((k − l)X)] + 0.5 E[sin((k + l)X)]. (A.5)

With the same idea:

E[cos(kX) cos(lX)] = 0.5 E[cos((l − k)X)] + 0.5 E[cos((k + l)X)], (A.6)

E[sin(kX) sin(lX)] = 0.5 E[cos((l − k)X)]− 0.5 E[cos((k + l)X)]. (A.7)

Moreover, given sin2(x) = 1−cos(2x)
2 , cos2(x) = 1+cos(2x)

2 , we can write:

E
[
sin2(aX)

]
= 0.5− 0.5 E [cos(2aX)] , (A.8)

E
[
cos2(aX)

]
= 0.5 + 0.5 E [cos(2aX)] . (A.9)



u0 1
u1 sin(X)
u2 cos(X)
u3 sin(2X)
u4 cos(2X)
u5 sin(3X)
u6 cos(3X)

Table A.1: Set of Fourier polynomials to be orthogonalized

A.2 Fourier basis construction for a Gaussian ran-

dom variable with zero mean

In the following, the one-dimensional Fourier chaos basis is constructed. A single random variable

X is considered following a normal distribution, X ∼ πX = N (0, σ2). We recall the Gram-

Schmidt algorithm that calculates the coefficients of the polynomials using the inner product to

ensure that each polynomial is orthogonal to all of its predecessors:

ψ0(X) = 1,

ψi(X) = ui(X)−
i−1∑
k=0

Cikψk(X),
(A.10)

where ui are the set of Fourier polynomials (cos(nX), sin(nX)) with n ∈ N and deterministic

quantities Cik must be computed as:

Cik =
E [ui(X)ψk(X)]

E [ψk(X)ψk(X)]
. (A.11)

Now the orthonormal basis can be constructed using Eq.(A.10) and Eq.(A.11) with the set

of Fourier polynomials in Table A.1. A zero mean in the random variable will vanish some

terms during the derivation of the basis. Here is the detailed construction of the orthonormal

basis function construction ψn
i (X):

The Fourier basis function ψn
0 (X) is equal to:

ψ0 = u0 = 1,

ψn
0 = 1.

(A.12)

The Fourier basis function ψn
1 (X) is computed as follows:

ψ1(X) = u1 −
E [u1ψ0]

E
[
ψ2
0

] ψ0 = sin(X)− E [sin(X)] . (A.13)

The expected value can be computed with Eq.(A.2). With a zero mean in the random variable,

the expected value of the sinus function is equal to zero. Therefore:

ψ1 = sin(X), (A.14)

and can be normalized as:

ψn
1 = Z11 sin(X), with Z11 =

1√
E [sin(X)2]

, (A.15)



which can be computed with the Eq.(A.8).

The Fourier basis function ψn
2 (X) is computed as follows:

ψ2 = u2 −
E [u2ψ0]

E
[
ψ2
0

] ψ0 −
E [u2ψ1]

E
[
ψ2
1

] ψ1

= cos(X)− E [cos(X)]− E [cos(X) sin(X)]

E [sin(X)2]
ψ1

= cos(X)− C20 − C21ψ1.

(A.16)

The expected values can be computed with Eq.(A.1), Eq.(A.5), and Eq.(A.2). With a zero mean

in the random variable, the expected value of the product between sinus and cosinus functions

is equal to 0. Therefore:

ψ2 = cos(X)− C20, (A.17)

and can be normalized as:

ψn
2 = Z21(cos(X)− C20), with Z21 =

1√
E [(cos(X)− C20)2]

, (A.18)

which can be computed with Eq.(A.9) and Eq.(A.1).

The Fourier basis function ψn
3 (X) is computed as follows:

ψ3 = u3 −
E [u3ψ0]

E
[
ψ2
0

] ψ0 −
E [u3ψ1]

E
[
ψ2
1

] ψ1 −
E [u3ψ2]

E
[
ψ2
2

] ψ2

= sin(2X)− E [sin(2X)]− E [sin(2X) sin(X)]

E [sin(X)2]
ψ1 −

E [sin(2X)(cos(X)− C20)]

E [(cos(X)− C20)2]
ψ2

= sin(2X)− C30 − C31ψ1 − C32ψ2.

(A.19)

C30 and C32 are equal to 0. Therefore:

ψ3 = sin(2X)− C31 sin(X), (A.20)

and can be normalized as:

ψn
3 = Z31(sin(2X)− C31 sin(X)), (A.21)

with:

ψ2
3 = C2

31 sin
2(X)− 2C31 sin(X) sin(2X) + sin2(2X)

Z31 =
1√

E
[
ψ2
3

]
E
[
ψ2
3

]
= C2

31E
[
sin2(X)

]
− 2C31E [sin(X) sin(2X)] + E

[
sin2(2X)

]
.

(A.22)

The Fourier basis function ψn
4 (X) is computed as follows:

ψ4 = u4 −
E [u4ψ0]

E
[
ψ2
0

] ψ0 −
E [u4ψ1]

E
[
ψ2
1

] ψ1 −
E [u4ψ2]

E
[
ψ2
2

] ψ2 −
E [u4ψ3]

E
[
ψ2
3

] ψ3

= cos(2X)− E [cos(2X)]− E [cos(2X) sin(X)]

E [sin(X)2]
ψ1 −

E [cos(2X)(cos(X)− C20)]

E [(cos(X)− C20)2]
ψ2

− E [cos(2X)(sin(2X)− C31 sin(X))]

E [(sin(2X)− C31 sin(X))2]
ψ3

= cos(2X)− C40 − C41ψ1 − C42ψ2 − C43ψ3.

(A.23)



C41 and C43 are equal to 0. Therefore:

ψ4 = cos(2X)− C40 − C42(cos(X)− C20)

ψ4 = cos(2X)− C42 cos(X)− C40 + C42C20︸ ︷︷ ︸
D43

, (A.24)

and can be normalized as:

ψn
4 = Z41(cos(2X)− C42 cos(X)−D43), (A.25)

with:

ψ2
4 = C2

42 cos
2(X) + 2C42D43 cos(X)− 2C42 cos(X) cos(2X)− 2D43 cos(2X)

+ cos2(2X) +D2
43

Z41 =
1√

E
[
ψ2
4

]
E
[
ψ2
4

]
= C2

42E
[
cos2(X)

]
+ 2C42D43E [cos(X)]− 2C42E [cos(X) cos(2X)]

− 2D43E [cos(2X)] + E
[
cos2(2X)

]
+D2

43.

(A.26)

The Fourier basis function ψn
5 (X) is computed as follows:

ψ5 = u5 −
E [u5ψ0]

E
[
ψ2
0

] ψ0 −
E [u5ψ1]

E
[
ψ2
1

] ψ1 −
E [u5ψ2]

E
[
ψ2
2

] ψ2 −
E [u5ψ3]

E
[
ψ2
3

] ψ3 −
E [u5ψ4]

E
[
ψ2
4

] ψ4

= sin(3X)− E [sin(3X)]− E [sin(3X) sin(X)]

E [sin(X)2]
ψ1 −

E [sin(3X)(cos(X)− C20)]

E [(cos(X)− C20)2]
ψ2

− E [sin(3X)(sin(3X)− C31 sin(X))]

E [(sin(2X)− C31 sin(X))2]
ψ3 −

E [sin(3X)(cos(2X)− C42 cos(X)−D43)]

E [(cos(2X)− C42 cos(X)−D43)2]
ψ4

= sin(3X)− C50 − C51ψ1 − C52ψ2 − C53ψ3 − C54ψ4.

(A.27)

C50, C52 and C54 are equal to 0. Therefore:

ψ5 = sin(3X)− C51 sin(X)− C53(sin(2X)− C31 sin(X))

ψ5 = sin(3X)− C53 sin(2X)− (Cproj15 − Cproj35Cproj13)︸ ︷︷ ︸
D53

sin(X), (A.28)

and can be normalized as:

ψn
5 = Z51(sin(3X)− C53 sin(2X)−D53), (A.29)

with:

ψ2
5 = C2

53 sin
2(2X) + 2C53D53 sin(X) sin(2X)− 2C35 sin(2X) sin(3X) +D2

53 sin
2(X)

− 2D53 sin(X) sin(3X) + sin2(3X)

Z51 =
1√

E
[
ψ2
5

]
E
[
ψ2
5

]
= C2

53E
[
sin2(2X)

]
+ 2C53D53E [sin(X) sin(2X)]− 2C35E [sin(2X) sin(3X)]

+D2
53E

[
sin2(X)

]
− 2D53E [sin(X) sin(3X)] + E

[
sin2(3X)

]
.

(A.30)



The Fourier basis function ψn
6 (X) is computed as follows:

ψ6 = u6 −
E [u6ψ0]

E
[
ψ2
0

] ψ0 −
E [u6ψ1]

E
[
ψ2
1

] ψ1 −
E [u6ψ2]

E
[
ψ2
2

] ψ2 −
E [u6ψ3]

E
[
ψ2
3

] ψ3 −
E [u6ψ4]

E
[
ψ2
4

] ψ4 −
E [u6ψ5]

E
[
ψ2
5

] ψ5

= cos(3X)− E [cos(3X)]− E [cos(3X) sin(X)]

E [sin(X)2]
ψ1 −

E [cos(3X)(cos(X)− C20)]

E [(cos(X)− C20)2]
ψ2

− E [cos(3X)(sin(3X)− C31 sin(X))]

E [(sin(2X)− C31 sin(X))2]
ψ3 −

E [cos(3X)(cos(2X)− C42 cos(X)−D43)]

E [(cos(2X)− C42 cos(X)−D43)2]
ψ4

− E [cos(3X)(sin(3X)− C53 sin(2X)−D53)]

E [(sin(3X)− C53 sin(2X)−D53)2]
ψ5

= cos(3X)− C60 − C61ψ1 − C62ψ2 − C63ψ3 − C64ψ4 − C65ψ5.

(A.31)

C61, C63 and C65 are equal to 0. Therefore:

ψ6 = cos(3X)− C60 − C62(cos(X)− C20)− C64(cos(2X)− C42 cos(X)−D43)

ψ6 = cos(3X)− C64 cos(2X)− (C62 − C64C42)︸ ︷︷ ︸
D63

cos(X)− C60 + C62C20 + C64D43︸ ︷︷ ︸
D64

, (A.32)

and can be normalized as:

ψn
6 = Z61(cos(3x)− C64 cos(2x)−D63 cos(x)−D64), (A.33)

with:

ψ2
6 = C2

64 cos
2(2X) + 2C64D63 cos(X) cos(2X) + 2C64D64 cos(2X)

− 2C64 cos(2X) cos(3X) +D2
63 cos

2(X) + 2D63D64 cos(X)− 2D63 cos(X) cos(3X)

+D2
64 − 2D64 cos(3X) + cos2(3X)

Z61 =
1√

E
[
ψ2
6

]
E
[
ψ2
6

]
= C2

64E
[
cos2(2X)

]
+ 2C64D63E [cos(X) cos(2X)] + 2C64D64E [cos(2X)]

− 2C64E [cos(2X) cos(3X)] +D2
63E

[
cos2(X)

]
+ 2D63D64E [cos(X)]

− 2D63E [cos(X) cos(3X)] +D2
64 − 2D64E [cos(3X)] + E

[
cos2(3X)

]
.

(A.34)

All the expected values including trigonometric functions can be computed with the formulas

in Section A.1. An example of orthonormal basis is shown in Table A.2 for a Gaussian random

variable X ∼ πX = N (0, 1).



Basis number Fourier chaos polynomials ψn
i (X)

0 1
1 1.520866623178815 sin(X)
2 2.2372529142129274 cos(X) −1.3569624860015785
3 1.8416989294907935 sin(2X) −1.2682227207889896 sin(X)
4 2.1103613976186137 cos(2X) −2.394998456392556 cos(X)

+1.167033636288187
5 1.939600268597864 sin(3X) −1.6893282147139512 sin(2X)

+0.8604687025094444 sin(X)
6 2.038695558018769 cos(3X) −2.110329605605427 cos(2X)

+1.7715068841454853 cos(X) −0.8115190461255738

Table A.2: Example of an orthonormal Fourier basis with 6 functions for a Gaussian
random variable.
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RÉSUMÉ DE SYNTHÈSE (IN FRENCH)

Contexte et objectifs

L’un des principaux défis dans le domaine de l’optimisation des structures composites est

d’exploiter leur plein potentiel. Les matériaux composites permettent d’adapter les propriétés

élastiques d’une structure. Le processus de conception des structures composites aboutit sou-

vent à un problème d’optimisation où la performance structurelle est maximisée, ou la masse est

minimisée soumise à un ensemble de contraintes imposées par les matériaux et le comportement

général de la structure.

En raison de la complexité de ces matériaux, la variabilité des performances structurales

provient principalement de la variabilité provenant du processus de fabrication, comme les pro-

priétés mécaniques du matériau, l’orientation des fibres, mais aussi des conditions de chargement.

De telles incertitudes peuvent affecter la réponse mécanique d’une structure et conduire à sa

défaillance.

Dans le cadre de l’optimisation déterministe, ces incertitudes sont souvent traitées à travers

des hypothèses simplificatrices, telles que l’utilisation de facteurs de sécurité ou la prise en

compte de valeurs moyennes ou extrêmes. Cependant, ces approches peuvent conduire à des

conceptions conservatrices et inefficaces ou à des conceptions optimistes avec une fiabilité

médiocre (Beck and Gomes, 2012). Pour mieux exploiter les matériaux composites, l’ambition

est d’étendre ces stratégies dans un cadre stochastique prenant en compte des incertitudes des

matériaux composites.

L’optimisation des structures composites est un vaste domaine de recherche. Dans un

cadre stochastique il existe plusieurs travaux prenant en compte des incertitudes sur les pro-

priétés matériaux ou les chargements. Ces travaux sont appliqués à principalement deux types

d’optimisation sous incertitudes: l’optimisation robuste (RDO) qui est généralement associée à

la prise en compte des incertitudes dans la fonction objective minimisant donc la moyenne et la

variance de la fonction objective et l’optimisation sous contrainte(s) fiabiliste(s) (RBDO) où les

incertitudes sont prises en comptes dans les contraintes visant un seuil limite sur la probabilité

de défaillance pour chaque contrainte. Il est possible de combiner les deux approches.

Néanmoins peu de travaux prennent en compte les incertitudes sur les variables de

conception, telles que l’orientation ou les épaisseurs des plis composite alors que certains

travaux montrent une certaine sensibilité des instabilités mécaniques, tels que le flambage ou le

flottement, liée à l’incertitude des orientations des plis (Scarth et al., 2014; Nitschke et al., 2019;

Pagani and Sanchez-Majano, 2022). Récemment, une stratégie, résolvant une optimisation



mono-objectif prenant en compte l’incertitude des orientations des plis, a permis d’obtenir

des conceptions fiables vis-à-vis du phénomène de flottement pour l’optimisation aéroélastique

(Scarth and Cooper, 2018). Néanmoins, la formulation proposée pourrait être plus complète si

l’on souhaite passer à une application plus réaliste.

Dans ce contexte, le travail de thèse vise à développer une stratégie pour l’optimisation

de stratifiés composites sous contrainte fiabiliste avec la prise en compte de l’incertitude des

orientations de plis pour des applications aéroélastiques. L’idée est de proposer une stratégie

qui pourrait être potentiellement appliqué à des cas aéroélastiques complexes. Le travail de

recherche s’articule autour de quelques axes de développement : l’optimisation des stratifiés

composites, la métamodélisation et l’optimisation sous contrainte fiabiliste. Chaque chapitre du

manuscrit comprend un ou deux axes de développement couplés avec un état de l’art de chaque

domaine.

Démarche

À travers le Chapitre 1, l’enjeu est de formuler le problème d’optimisation et de présenter la

méthodologie globale. Néanmoins, dans un cadre stochastique, le temps de calcul pour résoudre

l’optimisation peut être conséquent. Pour ce faire, deux stratégies de métamodélisation ont été

développées pour différentes étapes de la procédure d’optimisation afin de réduire le temps de

calcul. La première stratégie consiste à métamodéliser le passage d’échelle du matériau com-

posite, nécessaire dans la méthodologie proposée. Ceci correspond au Chapitre 2. La deuxième

stratégie, détaillée dans le Chapitre 3, permet d’effectuer une analyse de fiabilité pour un coût

de calcul limité en métamodélisant la réponse mécanique. Enfin la méthodologie globale est ap-

pliquée sur deux cas d’application: un cas favorisant la rigidité de la plaque avec une contrainte

analytique de flambage et un ensuite un cas aéroélastique favorisant la flexibilité de la structure

en restant fiable vis-à-vis du flottement aéroélastique. Un résumé des contributions de chaque

chapitre est donné par la suite.

Stratégie multi-échelle pour l’optimisation de stratifiés compos-
ites sous incertitudes des variables de design

Le premier Chapitre consiste à présenter les principales étapes de la nouvelle méthodologie

d’optimisation de stratifiés composites sous contrainte fiabiliste. Dans cette thèse, on utilise

la théorie classique des stratifiés (CLT) pour modéliser le comportement des composites. La

littérature montre qu’ils existent plusieurs familles de méthode (directe, bi-niveaux, hybride)

d’optimisation de structure composite et qu’elles sont assez matures dans le cadre déterministe.

Cependant, dans un cadre stochastique, il est très difficile d’optimiser une géométrie complexe

en présence d’incertitudes avec un temps de calcul raisonnable. C’est pourquoi la plupart

des applications visent des géométries plus simples. C’est encore plus complexe lorsque

l’incertitude porte sur des variables de conception telles que l’orientation des plis où l’utilisation

de méthodes directes via un algorithme métaheuristique est privilégiée pour optimiser les

séquences d’empilement.

Dans cette thèse, une nouvelle méthodologie est proposée, s’inspirant de l’approche bi-

niveaux utilisée dans le cadre déterministe. Dans l’approche bi-niveaux, le matériau composite

est considéré, dans un premier temps, comme un matériau homogène équivalent. La rigidité est

caractérisée par les paramètres de stratification (lamination parameters) ou les paramètres po-



laires, et l’optimisation est effectuée par un algorithme à gradient. Dans un deuxième temps, la

séquence d’empilement est reconstituée en résolvant un problème inverse fortement multimodal

avec une solution non unique via un algorithme génétique.

La volonté est d’utiliser l’espace de design homogénéisé, utilisant ici les paramètres de

stratification, afin d’exploiter les algorithmes à gradient pouvant accélérer la convergence de

l’optimisation. Pour ce faire, il serait nécessaire de modéliser l’incertitude de ces paramètres

dans un cadre fiabiliste. Cependant l’étude de la quantification d’incertitudes des paramètres

de stratification montre que la modélisation de l’incertitude de ces variables est complexe et

nous oblige à utiliser l’espace de conception des orientations de pli où l’incertitude est connue

et modélisée.

Nous avons donc proposé d’effectuer l’approche bi-niveaux à chaque itération de

l’optimisation. L’approche muli-échelle développée utilise deux espaces de conception : l’espace

homogénéisé avec les paramètres de stratification et l’espace mésoscopique avec les orientations

des plis. Le premier est utilisé pour le processus d’optimisation global afin d’utiliser un

algorithme à gradient. La fonction objective et les contraintes sont définies dans cet espace avec

l’optimiseur qui améliore le design dans l’espace macroscopique (la ligne rouge dans la Figure

4.1). Le second espace est utilisé pour évaluer la probabilité de défaillance car la dispersion

des orientations de plis est connue. Néanmoins, le passage des variables homogénéisées aux

variables mésoscopiques nécessité la résolution du problème inverse (la ligne rose en pointillé

dans la Figure 4.1) à l’aide d’un algorithme génétique. Une fois le problème inverse résolu,

il est simple de propager l’incertitude vers l’espace homogénéisé et donc vers le modèle pour

calculer la probabilité de défaillance par la méthode de Monte Carlo. Ensuite, l’optimiseur à

gradient peut proposer un autre point de design, dans l’espace homogénéisé, jusqu’à convergence.

Dans un cadre de variabilité, la résolution du problème inverse doit être appliquée aux

moments statistiques. Il est donc important de propager efficacement les incertitudes de la

séquence d’empilement aux paramètres de stratification pour afin de matcher les statistiques des

paramètres de stratification. Pour réduire le coût de calcul de cette procédure, nous proposons

donc de construire un métamodèle permettant d’accéder rapidement aux statistiques nécessaires

des paramètres de stratification sachant l’incertitude des orientations. Les détails techniques

sont présentés au Chapitre 2. De plus, les contraintes mécaniques, soumises à l’analyse de

fiabilité, pourraient être coûteuses ; par conséquent, une stratégie est proposée pour approximer

efficacement la quantité d’intérêt à l’aide d’une stratégie de modèles de substitution pour calculer

efficacement et rapidement la probabilité de défaillance et son gradient. Les détails techniques

sont présentés au Chapitre 3.

Reconstruction d’une séquence d’empilement dans un cadre
stochastique

Une quantification d’incertitudes des paramètres de stratification est nécessaire pour identifier

correctement une séquence d’empilement optimisée en termes de correspondance sur les statis-

tiques des paramètres de stratification sachant l’incertitude sur les orientations de pli. Cette

étape doit être rapide et efficace. Avec l’incertitude prise en compte dans les orientations des plis

à l’échelle mésoscopique, il est facile de propager l’incertitude dans les paramètres de stratifica-

tion en utilisant l’équation des paramètres de stratification. Cependant, même si la formulation

est analytique, il pourrait être coûteux d’utiliser des méthodes de simulation telles que Monte

Carlo à chaque itération du processus d’optimisation globale.

Dans le Chapitre 2, un métamodèle non intrusif a donc été développé pour accéder
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Figure 4.1: The proposed sequential multi-scale RBDO approach.

rapidement aux statistiques nécessaires des paramètres de stratification. La décomposition

du chaos de Fourier est développée permettant d’approximer les fonctions trigonométriques

de la formulation des paramètres de stratification. Pour ce faire, une base orthonormale de

Fourier a été construite via l’algorithme de Gram-Schmidt. La base orthonormée de Fourier,

faisant intervenir des fonctions trigonométriques, permet d’avoir une formulation analytique

des coefficients déterministes de l’expansion. Ces coefficients permettent d’avoir accès aux

statistiques des paramètres de stratification grâce à la propriété orthonormale de la base. Ce

métamodèle a été validé et ensuite testé pour la résolution du problème inverse montrant

son efficacité en termes de temps de calcul par rapport à la méthode de Monte Carlo. Pour

la comparaison des temps de calcul, la formulation du problème inverse est basée sur la

moyenne des paramètres de stratification. Néanmoins dans ce Chapitre 2, la question se

pose de prendre en compte les écarts-type dans la formulation du problème inverse. Cela

peut servir à réduire la variabilité des paramètres de stratification ou bien de limiter la

déviation de certaines hypothèses, comme l’orthotropie du matériau composite. Une étude

prenant en compte les écarts-type a été menée. Sur un ensemble très limité de points cibles,

la prise en compte des écarts-type, en plus de la moyenne, peut régulariser le problème in-

verse. Pour la suite des travaux, la formulation avec seulement la moyenne statistique est choisie.

En somme, étant donné un jeu de paramètres de stratification, une séquence d’empilement

est récupérée pour correspondre aux statistiques dans un temps de calcul négligeable. Grâce

à cela, l’incertitude de l’orientation peut être modélisée de manière appropriée puis propagée

dans l’espace de conception des paramètres de stratification. Une fois qu’un échantillon de

paramètres de stratification est disponible, l’analyse de fiabilité nécessaire pour l’optimisation

peut être effectuée. Cependant, le modèle aéroélastique utilisé dans cette thèse est coûteux, et

une stratégie doit être mise en place pour effectuer l’analyse de fiabilité dans un temps de calcul

acceptable par le biais d’une autre stratégie de modèle de substitution.



Stratégie de métamodélisation pour la fiabilité d’instabilité
mécanique

La quantité d’intérêt visée pour l’analyse de fiabilité est la vitesse critique de flottement. Le

flottement est une instabilité aéroélastique dynamique. Dans ces travaux, l’analyse aéroélastique

est faites par le couplage entre le modèle d’éléments finis, pour la structure, et la méthode des

doublets, pour l’aérodynamique. Ce couplage est réalisé avec la méthode des splines, disponible

dans Nastran, afin d’interpoler les déplacements et les forces pour le modèle aéroélastique.

Ensuite le calcul de flottement s’appuie sur une analyse modale. La réponse de la vitesse critique

de flottement peut donc connâıtre des discontinuités dans l’espace de design homogénéisé, ce

qui peut poser problème pour la construction d’un métamodèle.

Différents types de discontinuité sont possibles dans l’espace de conception pour le

phénomène de flottement. Outre le changement de mode, il existe un mode particulier qui

peut devenir soudainement le mode critique entre deux design proches : il s’agit d’un hump

mode. On pourrait penser que la vitesse critique peut être régulière si chaque mode est

étudié indépendamment et donc faciliter la construction d’un métamodèle mode par mode.

Cependant, avec ce phénomène physique lié au hump mode, des discontinuités peuvent exister

pour un mode étudié.

La volonté est de construire un métamodèle de la vitesse critique de flottement pour chaque

mode étudié. Cependant, une stratégie doit être proposée pour traiter une éventuelle disconti-

nuité d’un hump mode. Dans ces travaux, nous avons recours à des techniques de classification.

De plus, pour traiter un éventuel changement de mode sur la quantité d’intérêt globale, le cou-

plage de modèles de substitution classiques et de la classification est privilégié et présenté dans

le Chapitre 3.

La stratégie proposée pour traiter un éventuel hump mode consiste à entrainer une classi-

fication pour savoir si le point de design est instable ou non dans l’espace de design. Pour ce

faire, un plan d’expérience est construit dans l’espace de design homogénéisé, avec une certaine

stratégie décrite dans le Chapitre 3. Comme indiqué précédemment, deux états de stabilité sont

possibles : instable lorsque le flottement se produit ou stable lorsqu’il n’y a pas d’instabilité

aéroélastique. Nous considérons donc un problème de classification binaire. Dans ce travail, un

classificateur est entrâıné avec la classification par processus gaussien (GPC) pour identifier une

frontière entre les deux régions de stabilité. Cette classification présente une précision de 97%

avec trois cents points testés autour de cette frontière.

Maintenant les métamodèles de la vitesse critique de flottement peuvent être construits mode

par mode à l’aide de processus gaussiens par régression (ou aussi appelé Krigeage). Dans le cas

d’un hump mode, seuls les points de conception qui présentent une instabilité sont utilisés pour

construire le modèle de substitution. Après validation des métamodèles, il est possible de les

coupler à la classification. En effet, le métamodèle du hump mode peut conduire à une mauvaise

estimation de la vitesse critique de flottement si les paramètres d’entrée se trouvent dans la

région stable. La vitesse critique globale est définie comme le minimum des vitesses des modes

calculés. Par conséquent, la classification est exploitée pour savoir quel modèle de substitution

de flottement utiliser.

Des éléments de validation sont présentés où la vitesse critique globale est comparée entre

le vrai modèle et la réponse du couplage métamodèles et classification. La réponse de la vitesse

de flottement couplant la classification avec les modèles de substitution classiques conduit à une

certaine erreur autour d’une petite partie de la discontinuité. Parmi les 500 points de la base

de données utilisés pour la validation, les estimations de la vitesse de flottement de cinq points



sont complètement inexactes. Cela provient de l’erreur commise par la classification qui n’a pas

une précision exacte pour délimiter les régions stables et instables du hump mode. La stratégie

pourrait donc être améliorée, notamment avec l’utilisation de critère d’enrichissement actif.

Néanmoins tous les ingrédients sont maintenant disponibles pour réaliser une optimisation

aéroélastique de stratifiés composites sous contrainte fiabiliste.

Optimisation fiabiliste d’une plaque composite

Dans le Chapitre 4, l’approche multi-échelle, prenant en compte l’incertitude de l’angle des

plis, est appliquée à deux problèmes : l’optimisation d’une plaque composite favorisant la

rigidité de la plaque tout en restant fiable par rapport à une contrainte de flambage et une

optimisation aéroélastique favorisant la flexibilité de la plaque tout en restant fiable par rapport

au phénomène de flottement.

La méthode RBDO proposée a été testée et vérifiée, comparée à la méthode RBDO

directe utilisant un algorithme génétique pour l’analyse du flambage. Dans cette première

application, une comparaison du temps de calcul peut être effectuée puisque la contrainte est

un modèle analytique. Un gain de calcul est révélé. La comparaison des méthodes de calcul

des gradients de probabilité a également été effectuée (score function, différences finies centrées

et l’approche hybride proposée qui utilisent les différences finies ou la score function). Dans la

première application, les résultats convergent vers des conceptions similaires. Cependant, pour

l’application aéroélastique, le chemin d’optimisation est proche de la limite de l’espace LP, et

l’approche hybride montre son efficacité puisqu’elle converge, contrairement à l’optimisation

utilisant uniquement l’approche par score function. Les résultats montrent une amélioration

de la fiabilité par rapport à la conception optimisée déterministe dans les deux cas. De plus,

dans le cas aéroélastique, les résultats montrent des performances accrues par rapport à une

conception déterministe où la fiabilité est prise en compte par le biais d’un facteur de sécurité.

Cependant, la zone de convergence entre les deux types d’optimisation est similaire.

Conclusion et perspectives

Dans ce travail, l’optimisation de stratifiés composites sous contrainte fiabiliste a été réalisée avec

l’incertitude de l’orientation des plis. L’étude de la fiabilité au cours du processus d’optimisation

s’est concentrée sur les instabilités telles que le flambage et le flottement aéroélastique. Les

principaux défis consistaient à traiter l’incertitude sur les variables de conception discrètes et

à gérer la discontinuité des contraintes pouvant exister dans l’espace de design. Même si la

stratégie a été appliquée à des cas académiques, les problèmes traités dans ce travail sont déjà

représentatifs de ceux rencontrés dans des applications plus complexes.

La nouvelle approche multi-échelle développée dans ce manuscrit est capable de prendre en

compte l’incertitude des orientations des plis dans un cadre d’optimisation fiabiliste de stratifiés

composites. L’avantage de l’approche présentée ici est que l’optimisation peut converger plus

rapidement vers une conception fiable par rapport à une méthode directe utilisant un algorithme

génétique. Néanmoins, l’une des limites de cette approche multi-échelle concerne l’étape de

résolution du problème inverse. Ce problème pose déjà des difficultés dans le cas déterministe

en raison de la caractéristique multimodale de ce problème combinatoire et de la non-unicité de

sa solution. De plus, comme l’orientation des plis suit certaines règles et ne peut prendre que



des valeurs discrètes, une différence pourrait apparâıtre dans la réponse macroscopique entre la

cible et la séquence d’empilement récupérée. Cette erreur pourrait être problématique pour la

convergence de notre optimisation.

Concernant ce problème inverse, la construction et l’utilisation de l’expansion de Fourier pour

calculer les statistiques des paramètres de stratification est très efficace en termes de précision

et de temps de calcul. La nouvelle approche multi-échelle développée dans ce manuscrit peut

également traiter une contrainte d’instabilité discontinue. La stratégie proposée, qui combine

une classification et des modèles de substitution classiques, permet d’obtenir une approxima-

tion efficace de la quantité discontinue en question. Ceci est utile dans l’analyse de la fiabilité

de la contrainte discontinue avec un faible temps de calcul. Cependant, l’application de cette

stratégie à l’approximation de la vitesse de flottement de la plaque montre quelques erreurs

dans la classification. Cependant, cela n’a pas d’impact sur l’optimisation puisqu’il ne s’agit pas

d’une région d’intérêt. Cette étape devrait être améliorée pour un cas plus général. Des critères

d’apprentissage actif pourraient être utilisés pour enrichir le classificateur et les modèles de sub-

stitution comme la méthode AK-MCS (Echard et al., 2011). De plus, dans notre cas, l’ensemble

du domaine n’est pas exploré avec l’algorithme à gradient utilisé dans l’espace des paramètres

de stratification. Par conséquent, le modèle de substitution doit être efficace uniquement dans

la fonction d’état limite où l’optimiseur converge. Dans ce cas, nous pourrions réduire le nombre

d’appels de simulation pour construire le métamodèle avec ce type de critères.

Enfin, nous montrons la faisabilité de notre approche et l’illustrons par des cas tests.

L’approche devrait se distinguer en considérant un niveau de difficulté plus élevé dans le cas

d’application, où une analyse de fiabilité tout au long de l’optimisation sera intéressante. Dans

l’application aéroélastique, nous avons effectué une optimisation déterministe avec un facteur

de sécurité. La comparaison montre l’intérêt de passer à une optimisation fiabiliste puisque

l’optimisation avec un facteur de sécurité semble sur-dimensionner la conception comme

mentionné dans l’introduction. Avec l’approche RBDO, l’impact des incertitudes est connu

à travers le processus d’optimisation grâce aux informations sur la probabilité de défaillance.

Cependant, dans ce cas, la conception converge dans la même région que la conception

déterministe. Néanmoins, nous pensons que l’augmentation de la complexité de l’application

devrait conduire à des conceptions plus distinctes entre les conceptions déterministes et les

conceptions de l’application. Augmenter la complexité signifie aller vers une conception à

rigidité variable avec différentes zones de conception et la possibilité d’optimiser les épaisseurs

de chacune d’entre elles. Ce type d’application peut conduire à différents minimums locaux et

pourrait mettre en évidence l’avantage de l’application de notre approche RBDO multi-échelle.

Le problème de l’optimisation de la rigidité variable augmentera la complexité sur deux points

: la résolution du problème inverse et la construction du modèle de substitution pour l’analyse

de fiabilité. Tout d’abord, la résolution du problème inverse doit prendre en compte différentes

zones et épaisseurs cibles. La formulation utilisant les tables de drapage déjà utilisée dans ce

travail pourrait traiter cette question, en tenant compte des contraintes de conception imposées

par le fabricant. Deuxièmement, le modèle de substitution doit supporter l’augmentation des

dimensions provenant des différentes zones de conception (c’est-à-dire les paramètres d’entrée).

En outre, la réponse des contraintes dépendra désormais de l’épaisseur, ce qui augmentera

également la dimension du modèle de substitution. Si la dimension augmente trop, un autre

type de modèle de substitution ou une technique qui réduit la dimension du problème, par

exemple, peuvent être utilisés.
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optimisation aéroélastique favorisant la flexi-
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orthonormal basis has been developed. The
optimization methodology is applied to vari-
ous problems, including instability constraint:
(i) composite plate optimization promoting the
plate stiffness with an analytic buckling con-
straint and (ii) aeroelastic tailoring promot-
ing the plate flexibility while remaining reliable
with respect to the flutter phenomenon. Due to
the modal nature of the flutter velocity, a strat-
egy combining a classifier and classic surrogate
models is proposed to approximate the quantity
of interest and perform a fast reliability analy-
sis. The results demonstrate an improvement in
the reliability compared to the deterministic op-
timized design and a significant computational
gain compared to the approach of directly opti-
mizing ply orientations via a genetic algorithm.
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