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Abstract

Data-driven learner models aim to represent and understand students’ knowledge
and other meta-cognitive characteristics to support their learning by making
predictions about their future performance. Learner modeling can be approached
using various complex system models, each providing a different perspective on
the student and the learning process. Knowledge-enhanced machine learning
techniques, such as Bayesian networks, are particularly well suited for incorpo-
rating domain knowledge into the learner model, making them a valuable tool in

student modeling.

This work explores the modeling and the potential applications of a new framework
called Embedding Prerequisite Relationships In Student Modeling (E-PRISM),
which includes a learner model based on Dynamic Bayesian Networks (DBNs). It
uses a new architecture for Bayesian networks that rely on the clause of Indepen-
dence of Causal Influences (ICI), which reduces the number of parameters in the
network and allows enhanced interpretability. The study examines the strengths
of E-PRISM, including its ability to consider the prerequisite structure between
knowledge components, its limited number of parameters, and its enhanced inter-
pretability. The study also introduces a novel approach for approximate inference
in large ICI-based Bayesian networks, as well as a performant parameter learning
algorithm in ICI-based Bayesian networks. Overall, the study demonstrates
the potential of E-PRISM as a promising tool for discovering the prerequisite
structure of domain knowledge that may be adapted to the learner with the

perspective of improving the outer-loop adaptivity.
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In this work, we use a specific notation.

The frattur font for uppercase corresponds to Knowledge Components (KCs). For instance,

X represents a KC.

The lowercase normal font is dedicated to scalars, and the uppercase normal font is dedicated

to random variables. For example, « is a scalar, and X is a random variable.

The boldness of the font indicates whether the object is in a vector. Pazx is a vector of KCs,

X a vectors of random variables, and 6 a vector of scalars.
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CHAPTER

Introduction

Education plays a central role in society as it is the foundation upon which individuals
build their futures. It equips people with the necessary knowledge and skills to succeed
personally and professionally. Furthermore, education is crucial in fostering social cohesion
and promoting social mobility. The motivation for writing a Ph.D. thesis on learner modeling
is to contribute to the development of more effective and personalized educational systems.
By leveraging learner modeling techniques, it is possible to create more understandable
models of individual learners, leading to more effective teaching strategies and providing

insights into the learning process.

1.1 On the educational context

First, we provide an overview of the educational context in which this Ph.D. thesis is situated.
This includes a discussion of the relevant research domains related to our work and the
development of Technology-Enhanced Learning (TEL) systems central to our research. In
addition, we present a quick overview of the EdTech (for Education Technologies) ecosystem
and explore the particular context of this research, which the pandemic has particularly

impacted.

1.1.1 An interdisciplinary research domain

The educational context is a highly interdisciplinary field that brings together various
disciplines, such as computer science, cognitive science, education, psychology, and more. This
interdisciplinarity allows for a comprehensive understanding of complex learning processes
and the development of effective educational technologies. The use of data in the educational
context has given rise to new research domains, such as Educational Data Mining (EDM),
Learning Analytics and Knowledge, and Artificial Intelligence in Education (AIED). EDM is
concerned with developing and applying data mining techniques to automate the discoveries
of learners and their contexts, focusing on automation and prediction [LLLB18]. At the same
time, LAK focuses on the measurement, collection, analysis, and reporting of data about
learners and their contexts for purposes of leveraging human judgment on learning and the

environments in which it occurs, with a focus on visualization [LLB18|. Additionally, the
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AIED community focuses on the design and development of agents and tutors to support and
enhance the learning process [LLB18|. Their research themes include agents and tutors, with
a focus on using artificial intelligence to improve educational experiences. These research
domains seek to address the challenges of education and learning in the digital age, with
each community bringing unique perspectives and approaches to enhance the quality and

effectiveness of educational experiences for learners.

1.1.2 TEL systems

Significant changes are happening to the way education is delivered, leading to an increased
need for and use of Technology-Enhanced Learning (TEL) systems. As a result, the EDM,
LAK, and AIED domains have also seen growth and further development. EDM models
have become more widely used as the basis for automated adaptation in TEL environments,
such as Intelligent Tutoring Systems (ITS), to support remote learning. On the other hand,
LAK models, which are designed to inform and empower educators and learners through

personalized and effective feedback, have become increasingly relevant in this context.

For instance, Cognitive Tutor, an ITS developed by Carnegie Mellon University in the 1990s
[ACKP95], was designed to teach math and science concepts to high school students and has
been used extensively in classrooms around the world. One of the key features of Cognitive
Tutor is its use of cognitive models to represent the learner’s knowledge and to adapt the
instruction to the learner’s needs. In addition to its use in classrooms, Cognitive Tutor
has also been used in research studies to investigate the effectiveness of different teaching
approaches and to develop new insights into how students learn [AMRIK06, RAKC07].
Cognitive Tutor is a notable example of an I'TS agent and illustrates the transformation of

teaching practices.

1.1.3 EdTech ecosystem

While universities and laboratories have produced the majority of ITS for research purposes,
numerous firms have developed new solutions proposed to schools, teachers, or students.
The EdTech (for Education Technologies) market size was valued at US$ 183.4 billion in
2021 [edt].

On the one hand, some non-profit companies provide ITS for free and live through donations.
For instance, Khan Academy' is a free online learning platform that offers a variety of
educational resources and tools. It was founded in 2008 by Salman Khan with the goal of
providing accessible, high-quality educational content and resources to students around the

2

world. Coursera® is an online learning platform that offers MOOCs from universities around

"https://www.khanacademy.org/

*https://wuw.coursera.org/
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the world. Coursera is a for-profit company, but it also offers a number of free courses and

provides financial aid to students who cannot afford to pay for a course or degree program.

On the other hand, various paying solutions have been developed. For example, Eedi® is an
artificial intelligence-powered online tutoring platform developed by a UK-based company
designed to support primary and secondary school students in their learning of mathematics
and English.

1.1.4 A thesis between academic and industrial interests

My Ph.D. thesis has been situated in the context of an industrial-academic collaboration that
started in January 2020. The collaboration was established between Sorbonne Université
and Kartable through a Cifre contract. Kartable® is a French company that provides online
educational resources, including interactive exercises, for primary, secondary, and higher
education students. Its platform covers a wide range of subjects, including mathematics,
physics, chemistry, biology, history, geography, and languages. Kartable also offers tools to
track student progress. The company was founded in 2013 and has since become one of the
leading providers of online education in France. However, in January 2022, Kartable could
no longer support my contract, and the collaboration ceased. Despite this setback, I have

continued my Ph.D. studies through an academic contract.

During my time at Kartable, I worked as an instructional engineer, which involved developing
educational materials for students. Specifically, I was responsible for coming up with a
set of exercises that were designed to meet the learning objectives and fit the knowledge
components description. Therefore, the instructional engineering of resources in Kartable has
been made following the decomposition of domain knowledge into knowledge components,
which will be detailed in Section 2.1.1. Kartable interactive exercises are supposed to assess

a specific Knowledge Component (KC), and this will be helpful in our experiments.

1.2 Motivations for modeling students

ITS rely on student modeling for providing functionalities such as knowledge state diagnosis
or performance prediction. Student modeling is also a crucial component of EDM and
LAK research works. It aims to represent the learner’s knowledge and other meta-cognitive
characteristics through variables and parameters. The student can be modeled directly in
the TEL system or from the ITS data afterward. We present the motivations for modeling
students as complex systems. In particular, we present the Knowledge Representation and
Reasoning (KRR) and data-driven perspectives for complex system modeling. We also

discuss how mixing these techniques may enhance the interpretability of student modeling.

Shttps://www.eedi.com/

‘https://www.kartable.fr/
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1.2.1 Modeling the learner as a complex system

A model is a simplified system representation used to explain, predict, or control the system’s
behavior. Models rely on features selected to be relevant regarding the focus on the modeled
system. Modeling students is a complex task. We indeed consider learners as dynamic
systems that can exhibit a wide range of behaviors and characteristics. Student modeling
then involves studying multiple interconnected components and the processes between each
other and the environment. To effectively model the learner, one must consider all of these
components and their interplay, which can be challenging due to their nonlinear and dynamic
nature. Student modeling can be seen as a complex system modeling, and modeling complex

systems is a challenging but incentive task.

Exact mathematical approaches to complex system modeling are difficult to establish. The
outcome of a complex system is the result of all the elements of the system and all the
interactions between them. This requires the study of both the microscopic and macroscopic
scopes of the system. The microscopic scope involves studying the local interactions of the
components, while the macroscopic scope involves considering the whole system and the
patterns that emerge from the microscopic interactions. These interactions reveal dependence
between the variables that represent the system. Consequently, the mathematical formulation

of whole complex systems often does not have analytical solutions.

“All models are wrong, but some are useful.”

— George Box

This quote reveals how the comprehension of the properties of the complex system should
guide the modeling even on intractable systems. To be relevant, a model must question
the critical elements of system knowledge. Understanding its complexity would lead to
more insightful modeling. Mathematical formulations of complex systems’ macroscopic
behavior, such as power-law statistical distributions, are often used to characterize higher-
scale or aggregate output patterns. Still, they miss modeling all the microscopic elements
representing the knowledge and their interactions. Our motivation for modeling students is
to provide a learner model that highlights some of the learner’s characteristics of interest in

the educational context.

1.2.2 The KRR perspective

Knowledge Representation and Reasoning (KRR) was one of the first perspectives for
modeling complex systems such as students [BL04]. Knowledge representation is the process
of encoding knowledge in a structured and meaningful way so that computer systems
can understand and process it. Broadly, it corresponds to modeling knowledge with the
perspective of reasoning. It has been one of the former Artificial Intelligence (AI) research
subfields [BL.04], as it emphasizes the techniques to represent information about systems to

provide the capability for computers to reason on it. Modeling knowledge and reasoning on
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it requires mobilizing mathematical, statistical, or computational techniques.

Definition 1.2.1 (Knowledge representation and reasoning). Knowledge representation and
reasoning refers to the technical problem of encoding human knowledge and reasoning into a

symbolic language that enables it to be processed by information systems.

In the context of a system, knowledge refers to the understanding and information experts
have about the system, including both explicit and implicit knowledge and their beliefs
about the system. Explicit knowledge emphasizes the facts or the information on the system
that experts can write down. Implicit knowledge relates to knowledge that experts acquire
through experience. Finally, beliefs about the system are the personal interpretation experts

may have of the system.

This decomposition gives insights into the structure of KRR models. The system’s knowledge
can be broken into components, including concepts or relationships. Its representation should
also consider whether elements of knowledge are associated with explicit knowledge, implicit
knowledge, or beliefs, as it may influence the model. For instance, uncertainty refers to
the degree to which the knowledge represented is uncertain or incomplete and is generally
integrated into the knowledge representation. It will be studied further in Section 3.1.1.
Knowledge representation is based on decomposing knowledge concepts or their attributes
into variables. By breaking down knowledge into these components, we can use various
techniques and tools, such as domain ontologies, semantic networks, or conceptual graphs,
to represent the knowledge in a structured and meaningful way. This allows for effective

reasoning and decision-making based on knowledge.

1.2.3 The data-driven machine learning perspective

The growing amount of data nowadays has brought the modeling of complex systems to new
horizons. In numerous complex systems, data entries representing the target distribution
are available [AT19]. Moreover, getting a large amount of data from a complex system may
be easier than getting human expertise. Consequently, the interest in machine learning has
massively increased these last few years, in particular, thanks to the increasing computational
power of computers and the prominence of data in everyday life [PM15]. Data-driven machine
learning allows us to explore connections between hidden system components. We lay the

definition from the Cambridge dictionary down in Definition 1.2.2.

Definition 1.2.2 (Machine learning). Machine learning is the process of computers changing
how they carry out tasks by learning from new data without a human being needing to give

instructions in the form of a program [Dic].

The goal of data-driven machine learning is for computers to learn from the data provided
to carry out certain tasks. One understands that there are plenty of approaches to machine
learning, as the definition of machine learning is wide. Performing machine learning consists

in determining the instance of a given model family that fits the best to the available data.
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We call this task “training the model” on training data. After training, processing other data
with the trained model to make predictions is possible. The type of model varies depending

on the target machine-learning task. In our case, the model is the knowledge representation.

1.2.4 Mixing KRR and machine learning approaches for student modeling

This work will highlight the interest in combining KRR and machine learning techniques for
student modeling. In particular, we shed light on the gain of interpretability implied by this

mix.

The most natural approach is to apply machine learning techniques to KRR methods.
It determines the quantitative values of the knowledge representation from data, while
KRR approaches define its qualitative structure. In a nutshell, it enhances the knowledge
representation with information gathered from data. Such models are based on a formal
mathematical and philosophical basis, relying on a KRR structure. They enhance the
symbolic reasoning of KRR with data-driven methods. The KRR structure kept in machine
learning applied to KRR provides the needed interpretability on the values learned from
data. Formal mathematical and philosophical background ensures that each learned value

relates to a tangible phenomenon described in the knowledge representation.

Definition 1.2.3 (Interpretable machine learning). Interpretable machine learning focuses
on desitgning inherently interpretable models, i.e., presented in understandable terms to a

human.

On the other hand, another point of view on the mix between knowledge representation
and machine learning is to apply an overlayer of knowledge representation to the output of
machine learning techniques. Some machine learning techniques are too opaque, implying
several issues, particularly about the confidence of humans interacting with the model
(whether they are designers or users). KRR can be used to explain the decisions taken by
these machine-learning black boxes. The overlayer provided by the inclusion of knowledge
representation in machine learning techniques offers explainability on the algorithm decisions.
A field of research called eXplainable Artificial Intelligence (xAl) has emerged from the
wish to get explainable results from black-boxes algorithms [DBHI18], which were uniquely

result-oriented in the first place.

Definition 1.2.4 (Explainable machine learning). Ezplainable machine learning tries to
provide post hoc explanations for existing black-box models, which are incomprehensible to

humans.

One of the key challenges in TEL is to develop interpretable student models that can provide
teachers and learners with valuable feedback. Specifically, interpretable student models must
rely on the modeling of concrete components of the complex system and tangible interactions
between them. Developing interpretable student models can provide insights into how

students learn, what they know, and what they don’t know. Moreover, such interpretable
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models can help teachers and learners make relevant decisions about the learning process,
which can lead to improved student learning outcomes. Therefore, we concentrate our

research on the techniques that apply machine learning to KRR methods.

1.3 Main contributions

Our work has resulted in several contributions. We introduce a framework for interpretable

student modeling and technical improvements of existing machine learning techniques.

1.3.1 Developing a framework for interpretable student models

The main goal of this thesis work is to design and evaluate a framework for student modeling
called E-PRISM, for Embedding Prerequisite Relationships In Student Modeling. The

framework is designed to be adapted to a wide range of I'TS.

E-PRISM aims to provide interpretable insights into the learning process and the prerequisite
structure between the elements of domain knowledge. It uses dynamic Bayesian networks to
represent domain and learner knowledge through an interpretable learner model. It models
students’ knowledge with dynamic knowledge states and considers the causal effect of the

prerequisite relationships between knowledge components over time.

The E-PRISM framework relies on a combination of KRR and machine learning techniques,
namely Bayesian networks with the clause of Independence of Causal Influences (ICI). ICI
models are KRR approaches that introduce additional assumptions on the modeled system
[DDO06]. We show that using ICI models implies reducing the number of model parameters

in the learner model to benefit model parameters’ interpretability.

1.3.2 Providing metrics for discovering the prerequisite KC structure

The main contribution of this paper is to propose a method for identifying prerequisite
relationships within a domain model from the study of the parameters of an interpretable
learner model. The E-PRISM framework can be used to analyze learners’ data and detect

the prerequisite structure of the domain model.

We will examine how performing parameter learning with E-PRISM can provide insights
into the learner’s learning process and the prerequisite relationships between knowledge
components. The E-PRISM framework has notably the potential to improve the learning
experience by utilizing these prerequisite relationships in the design of personalized learning
paths for students. We will also present an experimental study to illustrate the application
of our proposed method in a real-world setting. Our proposed method is evaluated using

real-world educational data, and the results are discussed in detail.

Finally, we define new metrics for assessing the causal impact of prerequisite relationships

utilizing the interpretable parameters of E-PRISM. We use the proposed model to infer the
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underlying prerequisite structure of a domain model from a dataset of real-world learner

traces.

1.3.3 Developing a new approximate inference method for ICI-based BNs

The inference problem in Bayesian Networks (BNs) is computationally challenging, especially
when the available data is extremely scarce. The E-PRISM framework exhibits convergence
issues for the inference task because it relies on Bayesian networks with ICI-model Condi-
tional Probability Distributions (CPDs) [DD06]. Nevertheless, inference is crucial for ITS
application purposes, such as knowledge state diagnosis or performance prediction. We
present a new stochastic technique for approximate inference in ICI-based BNs. Our approach
allows making inferences from scarce data avoiding the stochastic potential well induced
by the use of usual Monte-Carlo Markov chains techniques in the presence of deterministic
relationships. Our method is advantageous in applications where interpretability is key,

which is the case in education.

1.4 Outline of the manuscript

First, Chapter 2 covers how students are modeled in TEL systems and, more specifically,
in ITS. It gives an overview of the techniques for updating the learner model, particularly
the algorithms for predicting the learner’s performance and the methods that search for the

knowledge component structure of the domain model.

Chapter 3 covers Bayesian networks and their use as a model for knowledge-enhanced
machine learning. It explains how uncertainty is handled, particularly how the probability
theory can be used to reason under uncertain knowledge representation. It also provides an

extensive overview of the inference and parameter learning techniques in Bayesian networks.

Chapter 4 details the E-PRISM framework. Specifically, it encompasses its architecture and
its components. It deeply studies the learner model, defined as a new complex system model
based on Bayesian networks with ICI-model CPDs.

Chapter 5 explains the techniques employed to update the learner model of the E-PRISM
framework. After analyzing the complications of the usual inference techniques, it introduces
novel approaches for approximate inference and parameter learning of ICI-based BNs. It
details how it is applicated in the E-PRISM framework.

Finally, Chapter 6 covers the applications of the E-PRISM framework. It starts with
comparing E-PRISM with other learners’ performance prediction algorithms. Then, it
studies insights into the prerequisite structure of the domain knowledge gathered from the
learned E-PRISM parameters. It introduces new metrics to measure the existence and
strength of a prerequisite relationship from the perspective of discovering the prerequisite

structure expressed in the data.
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CHAPTER

Student modeling in ITS

Learning environments that support and enhance education and learning thanks to digital
technologies can be grouped under the umbrella term of Technology-Enhanced Learning
(TEL) environments. This chapter aims to provide a comprehensive overview of particular
TEL environments, Intelligent Tutoring Systems (ITS). ITS are computer-based educational
systems designed to assess learners’ knowledge and skills. They use artificial intelligence
and instructional engineering principles to provide personalized and adaptive instruction to

learners.

Definition 2.0.1 (Intelligent Tutoring System). An Intelligent Tutoring System (ITS)
s a computer-based system that uses artificial intelligence and educational software to
provide personalized and adaptive instruction to learners. ITS are typically based on various
components to assess a learner’s knowledge and skills, and then provide appropriate instruction

based on the learner’s needs.

ITS can be used in a variety of settings, including schools, universities, and workplace
training programs, and through a variety of platforms, such as software programs, mobile
apps, or virtual assistants. They aim to simulate the experience of working with a human
tutor, but with the added benefits of potentially being available anytime and being able to
process and analyze large amounts of data. Overall, the goal of ITS is to provide learners

with a tailored and efficient learning experience that is optimized for their individual needs.

According to Wenger, the general structure of ITS is composed of four different models, that
are, the domain, learner, pedagogical, and communication models [Wen&6]. After quickly
describing the role of each of these models, we give a closer look at learner modeling. Woolf
highlights three issues with student models in I'TS: representing student knowledge, updating
student knowledge, and improving tutor performance [Wool0]. In this chapter, we focus
on the state-of-the-art for tackling these research questions. First, we review the different
representations of student knowledge in learner modeling. Then, we present the techniques
for updating the student knowledge from data. Finally, we tackle the issue of improving
the performance of the ITS. Specifically, we focus on the search for the prerequisite KC

structure.

12
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2.1 The central role of the learner model

Learner models are a crucial component of ITS. They represent the learner’s current knowl-
edge, skills, and learning preferences, and they serve several purposes within an ITS. Learner
models are employed to adapt the instruction to the learner’s needs and track their progress

over time.

In this section, we introduce learner models in the structure of I'TS. We then provide an
overview of the techniques for updating the learner model, restricting the study to learner
models focused on modeling the learner’s knowledge. Finally, we present hybrid learner

models that mix symbolic and data-driven approaches for learner modeling.

2.1.1 Components of an ITS

In order to support learning and reasoning about students’ knowledge, an I'TS must be able
to represent and analyze the knowledge in question. Wenger describes the architecture of an
ITS as a sum of four main components: the domain, learner, pedagogical, and communication
models [Wen&6].

Domain model

The domain model is a representation of the knowledge of the domain being taught by the I'TS
[NMB10]. Tt includes the concepts, relationships, and rules that define the subject matter.
The domain model serves as a reference for the ITS to determine the appropriate instructional
content to present to the learner and to assess its progress and understanding. It consists of

expert knowledge, which can be structured and formalized using various techniques.

Definition 2.1.1 (Domain model). A domain model in an ITS is a representation of the
domain knowledge being taught by the ITS, including the concepts, relationships, and rules
that define the subject matter.

A popular depiction of domain knowledge consists of a decomposition of the knowledge
into Knowledge Components (KCs) [Pell7]. It has been introduced in the framework
Knowledge-Learning-Instruction (KLI) [KCP12].

Definition 2.1.2 (Knowledge component). A knowledge component is “an acquired unit
of cognitive function or structure that can be inferred from performance on a set of related
tasks.” [KCP12

Knowledge components are related to test items on which learners are evaluated. Koedinger et
al. describe the temporal granularity of such items as “unitary tasks” lasting a dozen seconds
[KCP12]. This temporal granularity may fluctuate, as do the names given to knowledge
components (skills, concepts, techniques, ...) [Pel20]. The relationships between different
concepts in the domain model are often represented with a hierarchy of concepts to show

how they are connected and related to one another [DF12]. Ontologies are also often used
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in education, as they provide a standardized representation of knowledge that can be used
by different educational systems and facilitate the interoperability of educational resources
[MG14, AYGA15].

We note that some authors include the domain model in the learner model [Pell7]. The
domain model was indeed supposed to be fixed and defined by experts. However, with the
increase in the amount of data on learner’s transactions, more and more approaches have
considered the influence of the learner on the domain model. Consequently, Bayesian Network
(BN) approaches for modeling the domain knowledge have arisen [CGV02, CMPAICT05,
MLPDLC10, KKSG17]. The Conditional Probability Distributions (CPDs) defining the BN
describing the domain model are generally elicited by experts or associated with a learner
model to fit the data better.

Learner model

The learner model is a representation of the learner’s knowledge, skills, and learning prefer-
ences. It may include information about the learner’s prior knowledge, learning style, and
progress through the instructional material. The learner model is continuously updated as
the learner interacts with the ITS. It is used by the ITS to adapt the instruction to the

learner’s needs and to track their progress over time.

Definition 2.1.3 (Learner model). A learner model in an ITS is a representation of a

student’s knowledge, skills, and characteristics relevant to the specific subject of the ITS.

Woolf differentiates two types of learner models, depending on their focus on learner knowl-
edge [Wool0]. We note that different authors and researchers may have different ways of
categorizing and describing learner models [DdB12, AKIB19, Pell7, CV13].

On the one hand, overlay modeling represents the learner’s knowledge as a set of annotations
or layers on top of the domain model. It considers the learner’s knowledge a set of independent
concepts or skills, with a separate score or proficiency level for each concept [CG77]. It
overlays the learner’s current state onto the domain model, representing the domain knowledge.
The overlay learner model can be updated as the learner progresses through the learning
material, allowing it to adapt to the learner’s changing knowledge and skills. It generally uses
a state-based representation to track the learner’s knowledge and learning progress [NDO0S|.
The learner model then consists of a series of states, and the transitions between states
represent the acquisition or loss of knowledge. Still, an overlay model can use a different
method of representing the learner’s knowledge, such as probabilistic representation [BMO7].
Subtypes of overlay models include stereotypes, which are pre-defined models that represent
typical learners in a particular domain [Ric79]. Stereotype models are built by overlaying
domain knowledge onto a predetermined set of characteristics associated with a particular
group of learners, such as their age, gender, or cultural background. Also, we note that

overlay models can sometimes include misconceptions on top of domain knowledge, such as
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in perturbation models [Bur82].

On the other hand, error-catalog modeling involves representing the learner’s knowledge as
a collection of past experiences or cases that can be used to guide problem-solving. Error-
catalog models aim to track and catalog the errors the learner makes during the learning
process in bug libraries. The learner model then keeps a record of the errors made, as well
as the context in which they occurred and any relevant information about the learner’s
knowledge and skills at the time [SCS00|. This information is used to identify patterns in
the learner’s errors and to provide feedback and guidance to help the learner overcome their
mistakes and improve their learning. Contrary to perturbation models, which introduce
“perturbation” to the learner’s knowledge, error-catalog learner models focus on identifying
the errors the learner makes while interacting with the learning material. Error-catalog
models may also use state-based representation, but, in this case, the states represent the

learner’s errors rather than their knowledge.

Pedagogical and communication models

The pedagogical model specifies the instructional strategies and methods used by the ITS to
present the content to the learner. It uses information from the domain model and learner
model to make decisions about tutoring strategies and actions. This decision-making process
is especially based on a diagnosis of the learner’s behaviors, current knowledge, and personal
characteristics (such as personality, motivation, learning style, and communication style).
The pedagogical model determines the sequence and pacing of the instructional material, as

well as the types of activities and feedback provided to the learner.

The communication model enables the ITS to communicate with the learner through a user
interface. It determines the layout and design of the interface, as well as the tone used to
present the content and communicate with the learner. It handles the presentation of tasks,
problems, and information to the learner. It also gathers information about her activities to

provide assistance in the form of advice or interface adaptation.

Pedagogical and communication models will not be studied further in this work. We assume
the ITS in which our work will be implemented already relies on existing pedagogical and

communication models.

2.1.2 Techniques for updating learner models

Whether overlay or error-catalog models, learner models rely on a set of variables modeling
different aspects of the learner. We detail the characteristics usually studied in learner

models and focus on the various techniques employed to update the learner model.
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Modeled learner characteristics

Learner characteristics refer to the personal attributes and characteristics of the individual
who is learning. These include knowledge state, personality, motivation, communication
style, and more [DdB12]. Gonzalez et al. differentiate the learner’s characteristics as a
function of their relationship with the domain model [GBLO6]. In contrast, Jeremié et al.
differentiate static characteristics, set before learning, and dynamic characteristics, modeled
from learner traces and changing during learning sessions |JJ(G12]. These characteristics are
taken into account when adapting instruction to the learner’s needs and tracking progress
over time. For example, if a learner has visual learning preferences, the I'TS might use more
visual aids in the instruction [CKPT06]. If a learner has a low level of motivation, the ITS
might use more incentives to keep them engaged [VP98, DA15]. The ITS can provide a more

personalized learning experience by considering learner characteristics.

The knowledge of the learner is one of the learner’s characteristics. It is the most studied
dynamic aspect of learner modeling, according to Desmarais et al. [DdB12]. The learner’s
knowledge refers to the concepts, procedures, and rules the learner has learned or is currently
learning. In overlay learner modeling, the representation of the learner’s knowledge is directly
related to the chosen modeling of the domain: the learner model must represent the learner’s
knowledge in a way that is compatible with the domain model so that the ITS can reason

about the learner’s understanding and provide appropriate instruction.

Model-tracing techniques

Model tracing involves constructing a model of the learner’s problem-solving process by
tracking their actions and inferences as they solve a problem. In a nutshell, it “traces” the
learners’ learning process as they work through various tasks. Model-tracing techniques
are based on psychological learning theories and use this knowledge to guide instruction
[CV13]. In the former model-tracing techniques, each possible action from the learner and
the resulting feedback were referenced. Cognitive tutors, the most well-known examples of
model-tracing tutors [[LAH 97| presented in Section 1.1.2, describe problem-solving as a set
of production rules: the tutor follows the learner’s reasoning by analyzing the applied rules.
Knowledge tracing can be seen as a particular case of model tracing [Wool0]. Knowledge
tracing considers the learning process from a macroscopic point of view. It can also be
based on statistical approaches: for instance, deep knowledge tracing uses neural networks

[PBH15]. Overall, model-tracing techniques are often applied to overlay learner models.

Model-tracing techniques like knowledge tracing often use probabilistic representation to
track the learner’s knowledge and learning progress [Pell7]. The learner model then consists
of a set of probabilities representing the likelihood that the learner has learned a particular
concept or skill. Techniques for building these kinds of learner models include machine
learning algorithms. In particular, cognitive diagnosis algorithms are a type of machine

learning algorithm employed in learner models to track the mastery of underlying skills that
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will be further detailed in Section 2.2.3.

Constraint-based techniques

Constraint-based modeling involves updating the learner’s knowledge with a set of constraints
that the learner must follow in order to demonstrate her understanding of the domain
knowledge [Oh194, Mit12]. This means that the learner’s progress is represented by the
satisfaction or violation of these constraints. The ITS can then adapt the instruction based
on whether or not the learner is able to follow these constraints, which can be represented in
various ways, such as using a set of logical rules [Mar99] or using a probabilistic graphical
model [MMO0]. Consequently, constraint-based modeling is a technique usually employed for
error-catalog learner models, but it can also be applied to overlay models. Still, it requires

massive efforts to be updated.

Example-tracing techniques

Example tracing involves constructing a model of the learner’s problem-solving process by
comparing their actions to a set of worked examples. They use the learner’s actions to
infer their understanding. They focus on examples and how the learner applies the domain
knowledge to solve specific problems [AMSIK09]. These techniques often involve the use
of a set of rules or procedures that determine how new examples should be processed and
integrated with the learner’s existing knowledge. They are characterized by their capacity
to store and retrieve examples and to analyze examples to identify important features and
relationships. Example-tracing models then compare new examples to stored examples to
identify similarities and differences, using them to generate explanations or predictions. While
model-tracing techniques define a learner’s problem-solving process to infer their current
knowledge [Paq22| by understanding the underlying principles that govern problem-solving,
example-tracing techniques are more concerned with using specific examples to guide the

learner through new problems.

Model-tracing and example-tracing techniques may overlap. For instance, example-tracing
techniques include machine learning algorithms, as they use many student examples to build
a model of the student’s knowledge and learning progress. These techniques typically involve
training a machine learning algorithm on a dataset of student examples and then using
this trained model to make predictions about a student’s performance on future problems
[WPBO1]. The chosen machine learning algorithm can rely on cognitive theories [ACKP95]

and, then, also be model-tracing.

2.1.3 Mixing symbolic and data-driven approaches in learner modeling

Among these techniques for updating the learner model, the majority can either be considered
from a symbolic or a data-related point of view, and they can even be mixed in hybrid

learner models.
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Symbolic and data-driven learner models

Symbolic approaches to learner models rely on explicitly defined rules to represent the
learner’s knowledge. These models are often based on cognitive theories and can be more
interpretable, but they may be less flexible and require more manual effort to design and
maintain. These rules may be based on expert knowledge or experience and may be designed
to adapt to the specific needs and characteristics of the learner. Constraint-based techniques

use, most of the time, a symbolic approach.

On the other hand, data-driven approaches use statistical techniques and machine learning
algorithms to learn models from data automatically. These models can be more flexible
and efficient but may be less interpretable and require more data to learn accurately. In
recent years, data-driven approaches, particularly machine learning algorithms, have gained
popularity due to their ability to handle large amounts of data and adapt to changes in the

learner’s knowledge over time. Example-tracing techniques are, most of the time, data-driven.

Hybrid learner models

It is worth noting that some techniques for updating learner models may incorporate elements
of both approaches [Pell7]. For example, a model-tracing technique may use a cognitive
theory as a basis and incorporate data-driven techniques to learn and update the model
[ACKP95, FVNN10].

When a learner model mobilizes symbolic and data-driven approaches, we call it a hybrid
learner model [F'VNNI10]. It is worth noting that hybrid learning models are often used
when the data available for training a data-driven model is limited or when the problem
being solved requires a high level of human expertise. In these cases, symbolic techniques
can provide a solid foundation for the model. At the same time, the data-driven system can
learn from the data to improve the accuracy of the predictions or decisions made by the

model.

Structure of hybrid learner models

The way symbolic and data-driven techniques interact with each other can vary. For example,
the output of the data-driven system may be used to adjust the rules in the model, or
symbolic techniques may be used to pre-process the input data before it is passed to the
data-driven system. Pelanek represents the main components of learner models aiming at
tracing learners’ knowledge across multiple items and over time [Pell7]. His representation,
depicted in Figure 2.1, particularly fits for portraying hybrid learner models, as it describes

them into elements that can be seen as symbolic or data-driven components of the model.

The knowledge model in Figure 2.1 corresponds to the learner model depicted in Section
2.1.1. It is related to the domain model in the manner of overlay learner models, as it

defines the current knowledge state of the learner regarding the domain model and, more
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Figure 2.1: Representation of a learner model aiming at tracing learners’ knowledge with
a long-term perspective. This representation portrays greatly hybrid learner models. The
figure is borrowed from Pelanek’s work [Pell7].

particularly, the KC description. The depicted model is then an overlay model. Peldnek

differs four procedures for updating the learner model.

On the one hand, the update and the prediction equations correspond to the techniques
employed for updating the learner model. As reported previously, these two procedures
can be symbolic or data-driven. The update equation is deeply related to the prediction
equation, as it is generally one of its components. We detail the state-of-the-art approaches

for predicting the learner’s performance in Section 2.2.

On the other hand, the parameter fitting and the KC structure search procedures are
exclusively data-driven. They result from the latest machine learning research and are not
described in Woolf’s work [Woo10]. The parameter fitting procedure is required to include
data-driven approaches in learner models, as it allows us to fit the input data. KC structure
search is surely the most computationally-costly task for hybrid learner models, and it is
the main focus of our work. We focus more particularly on the prerequisite relationships
that could exist between KCs. We detail the state-of-the-art approaches for searching the

prerequisite KC structure of the domain model in Section 2.3.
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2.2 Learners’ performance prediction

Predicting the learner’s performance can be helpful in a variety of ways, both in the
construction of learner models and in their use. It can help to identify which features or
variables are most important in predicting future performance. It can also help to tailor
instruction to the needs of individual learners, allowing for more personalized and compelling

learning experiences.

In this section, we first study the various purposes of the learners’ performance prediction. In
particular, we expose how the prediction goal may change depending on the type of learner
model. Then, we focus on two kinds of learners’ performance prediction algorithms: logistic

regression models and cognitive diagnosis algorithms.

2.2.1 Purposes of learners’ performance prediction

Learners’ performance prediction algorithms are central to learner modeling because they aim
to predict students’ performance on assessments, diagnose their strengths and weaknesses,

and track their learning progress over time.

Updating and evaluating the learner model

The straightforward role of learners’ performance prediction algorithms is updating and
evaluating learner models. These algorithms use past performance data to make predictions
about learners’ future performance on a particular task or set of tasks. These predictions can
then be used to update the learner model with new information about learners’ knowledge
and skills. Tracking the learners’ knowledge states is the main purpose of learner models.

Consequently, learners’ performance prediction algorithms are essential in learner models.

9y

Also, by comparing the predictions made by the learner model with the actual learners
performance, it is possible to determine the level of fit between the model and the real-world
data. This information can be used to refine and improve the learner model over time, as
machine learning algorithms require predictions for model learning. This point is specific to

data-driven learner models.

In addition to updating the learner model, the learners’ performance prediction algorithms
can also be used to assess the performance of learner models and compare them with each
other. One can define metrics for measuring how well the model can predict a learner’s
behavior, such as the Area Under the ROC Curve (AUC) or the Root Mean Square Error
(RMSE) — see Section 5.2.4 for further details on the available metrics. This can be used to

indicate which learner model is the most accurate or effective regarding these metrics.
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Obtaining insights into learning

The better the prediction, the fitter the parameters. Indeed, most learner models rely on a set
of parameters, which are updated at the same time as the learners’ performance prediction.
Depending on the kind of the studied learner model, these parameters can be associated
with features of interest, such as in example-tracing models, or with cognitive phenomena,
such as in model-tracing models. Consequently, for some learner models, correctly predicting
the learner’s performance means the underlying parameters give meaningful information

about the learner.

Still, the interpretability of parameters in learner models differs from one model to another.
Model-tracing learner models have been designed to provide more insightful parameters. On
the contrary, example-tracing learner models aim to be the best predictive learner model,
and the parameter interpretability of such models may not be significant. Therefore, if
they can help identify the most important features in future performance prediction, no

predominant insights may be extractable from the model structure.

Adapting the instruction

Finally, predicting the learner’s performance is one of the most valuable tasks of learner
models because it can help educators better understand students’ needs and abilities and
tailor their teaching and learning approaches accordingly. By predicting how students
are likely to perform on assessments, educators can identify areas where students may be
struggling and provide targeted interventions to help them improve. This can be particularly
useful when students struggle to keep up with the rest of the class, as it allows educators to

provide additional support and resources to help the students catch up.

Moreover, predicting student performance can also be fruitful for monitoring the effectiveness
of different teaching and learning approaches. By comparing students’ actual performance
to the predictions made by the learner model, educators can assess the effectiveness of
different teaching strategies and identify approaches that are more or less successful at

helping students learn.

2.2.2 Logistic regression algorithms

Logistic regression is a popular and widely-used method for learners’ performance prediction

in educational settings.

Principles of logistic regression

Logistic regression is a statistical method for predicting the probability of an event occurring,
given certain predictors [KDG T 02]. It is used to model a binary outcome, such as whether a
student will succeed in a test item. Indeed, logistic regression can be used to predict the

likelihood of a student correctly answering a question or completing a task based on a set of
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independent variables, such as their prior knowledge or their performance on related tasks.
Logistic regression uses a feature vector defined manually from learner traces’ data, and it

applies a logistic function to the chosen set of features.

Definition 2.2.1 (Logistic regression). Logistic regression is the task of estimating the
parameters of a logistic model, which models the probability distribution of a variable Y
as a logistic function, expressed in Equation 2.1, of a linear combination of one or more
independent variables Z. .

VzeR,0(z) = T (2.1)

Mathematically, logistic regression is a generalized linear model that uses the logistic function
to model the probability of an event occurring as a function of one or more predictor variables.
The coefficients of the predictor variables in the logistic regression model can be estimated

using maximum likelihood estimation.

Example 2.2.1 (Logistic regression). Suppose we model the probability of passing an exam
(which has binary outcomes) with a logistic regression model. It predicts the probability
of a student passing an exam based on their study habits and test-taking ability, following

Fquation 2.2
1

- 1+ eXp(—bo —bix1 — b2$2)

y (2.2)

where y is the probability of passing the exam, x1 is the variable representing study habits,
o is the variable for the test-taking ability, and by, b1, and by are the model coefficients. by,

b1, and by are estimated using maximum likelihood estimation.

Logistic regression relies on discriminative training. The only relationship of interest is
indeed the conditional probability distribution P(Y | Z). From well-designed features,
logistic regression models define the outcome as a function of the features and only study

this conditional relationship.

With binary variables, one uses one-hot encoding to convert the variables into a format
adapted to logistic regression models for predicting the probability of the target variable.
When we one-hot encode a categorical variable, a new binary column is created for each unique
category of the variable. Each row is then marked with a 1 in the column corresponding
to its category and a 0 in all other new columns. The parameters of the logistic regression
model are the coefficients associated with each column, representing the log-odds of the

outcome for the category they are associated with.

Item response theory

Item Response Theory (IRT) is a statistical framework used to model the relationship
between individuals’ ability and their responses to test items. It supposes that the answers

of the learner on test items are modeled by one or more hidden variables [HSR91|. The most
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well-known IRT model is the Rasch model, which assumes that the probability of a correct
response to a test item is a logistic function of the person’s ability and the item’s difficulty.

It is expressed with Equation 2.3.

P(Yi;=1) = 0 (a; — b)) (2.3)

The Rasch model considers the knowledge of a learner ¢ as a unique variable a;. The
probability of answering correctly is computed by comparing the learner’s knowledge «;
with ¢; supposed to represent the difficulty of the test item j. The main advantage of IRT
is that it allows for measuring abilities on a continuous scale rather than just categorizing
individuals into fixed ability groups. It is also possible to estimate the difficulty of test items
and the ability of individuals even with a small number of items. IRT models are widely

used in educational testing and psychological assessment.

In addition to the traditional unidimensional IRT, Multidimensional Item Response Theory
(MIRT) can simultaneously measure multiple abilities. These models are helpful in situations
where there are multiple knowledge components are being assessed at the same time. The

equation ruling MIRT is depicted in Equation 2.4.

P(Yi;=1) =0 (a;-d; —6;) (2.4)

MIRT supposes that the knowledge «; of the learner ¢ is a vector rather than a scalar. The
characteristic vector of the test item d; indicates the knowledge components related to the

item j, and d; is its difficulty vector [Rec09].

Other logistic regression algorithms

IRT and MIRT models are logistic regression models. They use simple features, but other
logistic regression models use engineered and more complex features. Other noticeable logistic
regression algorithms integrate new features and, therefore, new parameters. Learning Factor
Analysis (LFA) [CIKJ06] is represented by Equation 2.5.

PYij=1) =0 |0+ Z (Br + v Nik) (2.5)
keKC(5)

In LFA, the learner parameters are similar to those of IRT. a; represents the ability of the
learner ¢. [y is the bias for the KC k, and ~; is the bias for each opportunity of mastering
the KC k. N, is an attempt count feature: it is a categorical variable that represents the

number of attempts of the learner ¢ on the KC k.

Performance Factor Analysis (PFA) [PCKO09] introduces the success of the attempt as a
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feature in the model. It can be expressed with Equation 2.6.

PY;,j=1)=o0 Z Br + YeSik + Ok Fi i (2.6)
keEKC(j)

In PFA, Sy is also the bias for the KC k. ~y, (resp. dx) is the bias for each opportunity of
learning the KC k after a successful (resp. unsuccessful) attempt. S; ; and F;j represent
the number of successes and failures of the learner ¢ over test items that requires the KC k.

They are count features represented by categorical variables.

DAS3H [CPBV19] is an extension of DASH [LSPM14]. It integrates the concept of temporal

windows by computing count features about it. It is described with Equation 2.7.
P(Yiji=1)= 0(%’ = 8j + ho (tig 1, Yijni-1) > (2.7)

Such as IRT, DAS3H considers «; and §; for representing the ability of the learner i and
the difficulty of the test item j. Also, similarly to PFA, it integrates a parameter for the
bias associated with the KC k. These parameters are integrated into the function hg that

processes the temporal distribution ¢ and the outcomes of past practice y.

Finally, the Best-LR [GKS"20] algorithm is depicted in Equation 2.8.

P(Yijt=1)=0 ;=3 +¢(s:) + o(fi) + Z (B + YSik + 0 Fik) (2.8)
keKC())

Best-LR mainly consists of combined IRT and PFA features. Its parameters indeed encompass
the ability of the learner, the difficulty of the test item, the bias associated with the KC, and
the parameters associated with the counts of successes and failures on KCs. It also includes
parameters associated with a count feature of successes ¢(s;) and failures ¢(f;) uniquely

related to the learner .

2.2.3 Cognitive diagnosis algorithms

Cognitive diagnosis algorithms are other kinds of learners’ performance prediction algorithms.
They model the learner’s knowledge state to predict her answers.

About cognitive diagnosis

The cognitive diagnosis is the process of inferring the learner’s knowledge state to identify
her learning difficulties [THOG].

Definition 2.2.2 (Cognitive diagnosis algorithm). A cognitive diagnosis algorithm is a type

of algorithm that model the underlying cognitive processes or knowledge states to understand
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the learner’s transactions with an ITS.

Cognitive diagnosis algorithms can be perceived as learners’ performance prediction algo-
rithms. Still, it is important to note that learners’ performance prediction and cognitive
diagnosis algorithms are different. While both may be used to predict learner performance,
cognitive diagnosis algorithms are specifically designed to identify the underlying knowledge
or skills that a learner has or lacks. In contrast, learners’ performance prediction algorithms

may consider a wider range of variables for making their predictions.

Non-temporal Bayesian network approaches

Some cognitive diagnosis models can be represented by Bayesian Networks (BNs). BNs
will be extensively discussed in Chapter 3. They are used to compute the probability of

answering correctly by modeling the learner’s mastery of knowledge components.

Psychometric models such as Deterministic Input Noisy And (DINA) [Hae89] or Noisy Input
Deterministic And (NIDA) [JSO1] models introduce auxiliary variables to do so. DINA and
NIDA models are two types of constraint-based learner models. DINA models assume that a
learner has a set of latent ability variables that determine whether they will be able to answer
a particular problem correctly or not. They link the variable representing the correctness of
a learner’s answer on a test item with the variables representing the mastery of the required
knowledge components. DINA model considers that the success on a test item is a AND
function of the mastery of the needed knowledge components with noise. NIDA introduces
noise on the variables that represent the mastery of the prerequisite knowledge components
to compute the probability of answering correctly to a test item. The structure of the
NIDA model is a kind of Independence of Causal Influences (ICI) model which suggests that
deterministic relationships are not perfect in the real world and introduce noise sources in it
[DDO6], see Section 3.1.2 for more details on ICI models. Other deterministic functions may
also be applied to the KC mastery variables to perform cognitive diagnosis models with BNs.
For instance, Deterministic Input Noisy Or (DINO) [THO6] uses the OR function.

Other non-temporal Bayesian networks can be used to infer the learner’s knowledge. Millan
et al. and Carmona et al. use the relationships stored in their domain model [CMPdICT05,
MLPDLCI0] to infer the probability of correctly answering. Variables associated with
misconceptions and relationships with more general concepts are introduced in the network
to predict the success of the learner on a test item. Desmarais et al. also use a Bayesian
network to predict the correctness of learners’ answers [DdB12|. They consider prerequisite
relationships between test items to enhance the prediction. Moreover, they propose a set of
rules to extract these prerequisite relationships from a statistical study of the learner traces.

We will detail this perspective in Section 2.3.

In these Bayesian networks, the state of knowledge is supposed to be static: the probability

of mastery will only evolve as a function of the evidence of the learner’s answers. The
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variables representing the mastery of knowledge components are time-independent. Their
value is only updated when evidence on the Bayesian network is updated. The evidence
itself is time-independent: the learner traces are considered to give the same information

whenever they are collected.

Bayesian knowledge tracing

Knowledge tracing is a category of model-tracing learner models. It supposes the knowledge
of the learner is dynamic and evolves over time. The learner’s knowledge state is defined as

a function of time.

The most famous knowledge tracing algorithm is Bayesian Knowledge Tracing (BKT). BKT
has been introduced by Corbett and Anderson [CA94]. It relies on a hidden Markov model.
The learner’s knowledge is modeled for each knowledge component by a binary random
variable representing the learner’s mastery of that particular knowledge component. BKT
can be represented as a dynamic Bayesian network that models the learner mastery of a

knowledge component over time, as shown in Figure 2.2.
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Figure 2.2: Unrolled dynamic Bayesian network representation of BKT. In this repre-
sentation, we integrated the forget parameter f that is not considered in classic BKT. It
represents the probability for the learner to forget the mastery of the corresponding KC
between two timeslices.

It infers the probability for the learner to answer correctly, thanks to multiple parameters

attached to tangible phenomena. BKT relies on the [, s, and g parameters. The “learn”

parameter [ relates the learner’s probability of learning between two timeslices. The “slip”
parameter s is the probability of answering badly while the knowledge component is mastered.

Lastly, the “guess” parameter g describes the probability of answering correctly while the
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knowledge component is not mastered.

Several variants of BKT have been developed over the years. Each introduces new spec-
ifications for the model parameters and complexifies the structure of the latent Bayesian
network [dBCAO8, PH10, PH11, QQL"11, YKGI13, KLMI6]. For instance, Yudelson et al.
consider the “slip” and the “guess” parameters dependent on both the learner and the test
item [YIK(G13], while Pardos et al. suppose the “learn” parameter to vary depending on the
KC [PH11]. The Python package pyBKT offers an efficient and easy-to-use implementation of
the several variants of BKT [BWP21].

While BKT and its variants only care about one KC at a time, Késer et al. use a Dynamic
Bayesian Network (DBN) to model the learner knowledge and consider all the knowledge
components of the domain knowledge simultaneously [[KIXSG14]. If this work has been
categorized as a variant of BKT [SWHM22], it introduces new variables compared to BKT to
represent the learner’s mastery of every knowledge component. It also considers prerequisite
relationships at each timestep of the Bayesian network with arcs between KC mastery

variables.

Consequently, the complexity of such a Bayesian network is much higher than any variant of
BKT. The inference — i.e., the computation of the joint distribution given some evidence on
the knowledge state — of such a complex Bayesian network might not even be tractable [Pel20].
The number of parameters is dependent on the size of prerequisite relationships. Viable results
may be hard to compute in large Bayesian networks with numerous arcs, according to Pelanek
[Pel20]. For instance, training BKT+, a variant of BKT, takes several days, while training
logistic regression or classic BKT takes a few minutes [[XLM16]. Approximation techniques
can be used to tackle the tractability of the model. For example, Késer et al. approximate
the DBN with a log-linear model and use duality to learn the model [SHPU12|. Other
techniques, such as variational inference [W.J " 08] and loopy belief propagation [MW.J99],

can be employed. We refer to Chapter 3 for further details on inference techniques in BNs.

Deep knowledge tracing

Deep learning techniques have arrived into learner modeling and have recently gained
popularity [SWHNM22, Pell7]|. These techniques are based on neural networks. One of the
main advantages of deep learning techniques is that they can automatically learn and extract
features from large and complex datasets like logs of student responses to multiple-choice
questions. In consequence, deep learning models do not require human feature engineering

but need a large amount of data to be efficient [KKLM16].

Definition 2.2.3 (Neural network). A neural network is a model composed of three sets of

variables linked with each other:

o the visible set V', which describes the variables associated with inputs;
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e the hidden set H, which is potentially decomposed in several layers;
e the output set O, which describes the variables associated with outputs.

At a high range, neural networks aim to study the deep features of inputs and the structure

between them, thanks to their hidden layers.

Example 2.2.2 (Neural network). Let’s use neural networks rather than logistic regression

to introduce an example similar to the Example 2.2.

The neural network’s input layer would have three neurons, one for each input variable:
previous test scores, attendance record, and study habits. The output layer would have one
neuron that represents the final exam performance. The input layer would pass the values
of the three input variables to the hidden layer, composed of several neurons. Each neuron
would apply a non-linear transformation to the input values, allowing the network to learn
complex relationships between the input and output variables. The values from the hidden
layer would then pass to the output layer, where they would be used to predict the final exam

performance.

The network is trained using a dataset of students’ previous test scores, attendance records,
study habits, and final exam performance. The network adjusts the values of the weights
between the layers to minimize the error between the predicted and actual final exam per-
formance. Once the network is trained, it can be used to make predictions about students’

performance based on their previous test scores, attendance record, and study habits.

Deep Knowledge Tracing (DKT) [PBH'15] is a deep learning model for the knowledge
tracing task. DKT uses a neural network to learn a non-linear model of the learner’s
knowledge. This allows it to capture more complex patterns in the data and make more
accurate predictions about a learner’s performance. Numerous variants of DKT have been
developed since then, but Schmucker et al. only relate minor performance gains relative to
DKT [SWHM?22], except for Self-Attentive Knowledge Tracing (SAKT) [PK19].

DKT and its variants are considered to be cognitive diagnosis models because they aim
to infer learners’ knowledge states with the hidden layers of the network to predict their
answers. However, it is important to note that not all deep learning models for learner
modeling are cognitive diagnosis models. Some models may be designed for other purposes,
such as predicting students’ performance or engagement, and may be designed to identify

patterns in the data rather than inferring students’ knowledge state [CV13].

2.2.4 On the interpretability of learners’ performance prediction algo-

rithms

We have presented in Sections 2.2.2 and 2.2.3 several families of algorithms for predicting the
learner’s performance. Whether they are based on engineered features or modeled cognitive

phenomena, we analyze and compare the interpretability of their parameters.
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Interpretability in logistic regression models

Logistic regression models are relatively easy to appreciate. Their results can be straight-
forwardly understood, as the model estimates the effect of each predictor on the outcome.
Nevertheless, the interpretability of the parameters issued from logistic regression models
is hard to apprehend. The parameters of these algorithms are computed from a one-hot
encoder of the data. Consequently, the logistic nature of the algorithm implies multiplica-
tive interpretability of the parameters [Mol22], and logistic regression is thus only locally

interpretable.

Example 2.2.3. Let’s consider the logistic regression model in Equation 2.9.

PY =1|X)=0(Bo+5/X1+..+58.X,) (2.9)

Changing the value of a feature X; in the logistic regression model in Equation 2.9 changes

the odds for Y = 1 multiplicatively by €%, holding all other covariates constant.

Interpretability in models based on Bayesian networks

The non-temporal Bayesian networks model the knowledge of the learner with random
variables. The parameters of these models are conditional probabilities between the variables
corresponding to the modeled phenomena. They are then interpretable as they directly relate
the probability of a causal effect [MBL21, Mol22]. However, similarly to logistic regression
models, the non-temporal Bayesian networks do not consider the dynamicity of the learning

process.

On the contrary, in Bayesian Knowledge Tracing, variables represent the mastery of a given
knowledge component over time. Cognitive phenomena, such as learning and forgetting,
are directly represented in the model, and some parameters are related to them. The
interpretability of the model parameters benefits from the general interpretability of Bayesian

networks [MBL21]. They also relate to tangible conditional probabilities.

Nevertheless, using an approximation for model learning can cause some trouble with the
interpretability of the learned parameters. Késer et al. indeed note that the interpretability of
the parameters is not ensured because the learning of the model only implies the convergence
to a local optimum [KKSG17]. Also, a high number of parameters in the Bayesian network
may also result in a more difficult model interpretation, as the range of the events represented

in CPDs can become very narrow.

Interpretability in deep learning models

Finally, if deep learning models claim to outperform other learners’ performance prediction
algorithms on the predicting task, this advantage has a serious cost on the interpretability

of the model. For instance, Deep Knowledge Tracing has tens of thousands of parameters
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that are nearly impossible to interpret [[XLM16]. Also, DKT learns an ability model rather
than a skill mastery model [DL21]|. The variables encoded in the model indeed represent the

learners’ ability to answer questions rather than their KC masteries.
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2.3 Discovering the prerequisite KC structure

Some of the algorithms presented in Section 2.2 use the prerequisite structure of the domain
model for predicting the learner’s performance. Other models recover the prerequisite
relationships thanks to predictions. Retrieving the prerequisite structure of the domain
model is a challenging task in the field of Learning Analytics and Knowledge, as it provides
insights into how the different Knowledge Components (KCs) are related and how they build
upon each other. This information can be used to personalize the learning path for the

students by recommending them learning activities that match their current state of mastery.

Therefore, the search for the prerequisite structure between KCs in a student model is
a critical aspect of ITS. Several techniques have been proposed to address this problem.
We focus on the techniques for searching the prerequisite structure between knowledge

components in a domain model.

2.3.1 Defining an ordering between test items or KCs

Some models have introduced the concept of learning paths, which are suggested orderings
between test items. This has defined a mathematical framework for ordering learning objects

and, by extension, between knowledge components.

Knowledge Space Theory

The Knowledge Space Theory (KST), proposed by Doignon and Falmagne, relies on test
item structures [DEF12]. It supposes the learner’s knowledge is defined as a set of knowledge
items, and these test items can only be mastered in a constrained order. In other words, KST
defines an ordered structure among test items, called a lattice, which is a sort of prerequisite
relationship between items. Nevertheless, KST does not provide a data-driven procedure for
deriving the ordering between items or skills. It only relies on algorithms that extract the
ordered structure of items from expert domain knowledge, such as the one introduced by
Koppen et al. [[KXD90].

ALEKS is a math and science learning environment that uses KST to adapt to a student’s
knowledge [Can01] and provides individualized assessments [FRHG19]. ALEKS uses adaptive
questioning and machine learning algorithms to assess a learner’s knowledge in various

subjects, including math, science, and business.

Competence-based Knowledge Space Theory

Similarly, an extension to this theory, namely Competence-based Knowledge Space Theory
(CbKST), discusses how to integrate the domain model to KST by incorporating the cognitive
level of the “competencies” and their precedence links into the theory [HSHA0G, HAH " 13].
A competence in CbKST is similar to a knowledge component and a precedence link to a

prerequisite relationship. Thus, the competence structure or the lattice generated from the
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domain model allows for relating the learner knowledge states instead of items in KST. This

greatly improves the potential of systems to adapt.

2.3.2 Search of prerequisite KC from statistical tests

Knowledge Space Theory and its extensions provide a framework for identifying statistical
implications expected to arise in data. Statistical tests have been devised to verify the
presence of these implications and establish the underlying relationships between test items

or knowledge components.

Bayesian networks

The notion of the prerequisite relationship between knowledge components is deeply related
to causality, as depicted in Definition 4.1.1. Consequently, the trivial paradigm for studying
such relationships is the Bayesian framework, which can be used to evaluate the probability
of prerequisite structures, and that will be studied further in Chapter 3. A priori knowledge
of the domain prerequisite structure has been integrated into simple learner models, most of
the time with Bayesian Networks (BNs) [CGV02, CMPdICT05]. These techniques typically
involve experts using their domain knowledge to define the prerequisite relationships between
the KCs. Recent works employ data to retrieve the conditional probabilities that rule such
BNs [DMGOG6]. Still, they do not consider the evolution over time of learners’ knowledge

states.

Partial-Order Knowledge Structures

Desmarais et al. study various uses of the Bayesian framework to learn test item structures
and predict the learners’ performance from evidence [DMGO6|. Partial-Order Knowledge
Spaces (POKS) rely on the naive Bayes framework with additional constraints induced by
the closure under union and intersection assumed in KST. POKS show better results than
usual Bayesian network approaches and are less intensive computationally speaking, thanks
to the constraints. The approach entailed by POKS is the same as classic Bayesian networks
because it studies the causality expressed in the data to refine the structure. Thus, like classic
Bayesian networks, POKS do not consider the evolution over time of the learner’s knowledge
state and miss the chance to consider the learning and forgetting phenomena and their
incidence on the study of the prerequisite structure. Pavlik et al. have applied additional
statistical tests on covariance matrices to recreate the prerequisite KC structure from the
POKS structure learning procedure [PCWIKO08|. They do not consider the dynamicity of the

learning process either.

Statistical tests on latent variables computed from performance prediction

From now, the study of correlation or, sometimes, causality between elements of knowledge

has been realized from observable variables. We present works that first preprocessed learners’
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transactional data to define latent variables more related to knowledge components.

Chen et al. have introduced Probabilistic Association Rules Mining, a technique to discover
association rules from uncertain data on preprocessed learner transaction data [CWL15]. The
preprocessing aims to discover learners’ knowledge states so that they can apply statistical

techniques to latent variables.

Similarly, Scheines et al. considered latent variables instead of observable ones to conduct
statistical tests on the prerequisite structure [SSG14|. They assume a known @Q-matrix,
which is a tool for mapping the test items with the knowledge components. They search
for the prerequisite structure by performing a causal discovery algorithm on the correlation

matrix between latent variables, determined with a measurement model.

LiFT, introduced by Pavlik et al., proposes representing the KC structure through the
@-matrix in PFA [JCK09]. They apply statistical tests on the performance of PFA with
any possible prerequisite structure and recreate the whole structure by studying test items
pairwise. Finally, Piech et al. use Deep Knowledge Tracing outcomes to perform statistical

tests on the prerequisite KC structure [PBH ™ 15].

These statistical tests have the advantage of being easy to compute, as numerous algorithms
exist for predicting the learners’ performance and proficiency. Nevertheless, we have reported
in Section 2.2.4 the lack of interpretability of these underlying techniques, such as logistic

regression or deep learning.

2.3.3 Searching the KC structure from parameter fitting procedures

The techniques presented so far study the prerequisite KC structure from statistical tests
performed on direct outcomes. These techniques are applied to data on observable variables,
or to preprocessed data representing the predicted learners’ knowledge states. However, some
learners’ performance prediction techniques directly include the existence of the prerequisite
structure of the domain model. Parameter fitting techniques can be directly employed to

discover the prerequisite KC structure.

@-matrix fitting

Pardos et al. introduce direct Q-matrix refinement in the model parameter fitting procedure
[PD718]. They use an augmented variant of the Additive Factors Model (AFM) algorithm,
which integrates prerequisite constraints when predicting the learner’s performance. The
learned @-matrix can be seen as a representation of the prerequisite KC structure, as did
Pavlik et al. However, it remains a study of the test item structure rather than a KC

structure.
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Knowledge tracing

Finally, model-tracing learner models and, more specifically, knowledge-tracing models may
include the effect of prerequisite relationships when inferring the learner’s knowledge state.
It is notably the case in Késer et al.’s work. They integrate the causal effect of prerequisite
relationships between KCs in their Dynamic Bayesian Network (DBN) [KKSG17]. Still,
because of the lack of interpretability reported in Section 2.2.4, the parameters obtained
from training on data are not necessarily in line with the parameters of the Bayesian network.
While this approach has an explicit limitation, namely the lack of interpretability, it considers
the influence of learning and forgetting phenomena which are crucial when studying the
structure between KC masteries. Developing an interpretable procedure for discovering the
prerequisite KC structure that integrates learning and forgetting phenomena is a challenging

task that will be the focus of our work.
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2.4 Discussion

In conclusion, this chapter has aimed to provide a comprehensive overview of the ITS
components. In particular, we have provided a deep focus on learner models, which can
be of multiple types. Additionally, we have explored the different perspectives to model
students and presented rule-based and data-driven approaches to learner modeling. We have
highlighted hybrid learner models that combine both.

Furthermore, these models can be used to predict the student’s performance. We have
discussed the two main families of learners’ performance prediction algorithms: logistic
regression algorithms and cognitive diagnosis algorithms. We have highlighted the importance
of interpretability in these algorithms, and how the top-performing algorithm in terms of
performance prediction can be the least interpretable model. This has motivated our choice
to continue with Bayesian networks, which allow for better parameter interpretability than

any other machine learning technique.

Finally, we have explored the various approaches for searching the prerequisite KC structure
of the domain model. In particular, we have seen that most of these techniques rely on

statistical tests and do not assert the causality implied by prerequisite relationships.
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CHAPTER

Bayesian networks, a model for

knowledge-enhanced machine learning

In Chapter 2, we have demonstrated how learner modeling is a subject of interest, especially
in ITS. Capturing the complex interplay between the multiple variables influencing the
learner’s knowledge is key. The learner’s knowledge can be seen as a complex system, with
many interacting and interdependent components that work together. Overlaying the learner
model on top of the domain model provides an additional layer of complexity to modeling
learners’ knowledge. The learner is modeled regarding their cognitive processes and in
relation to the domain model representing the knowledge being learned. This approach
assumes that the domain model provides a structured representation of the knowledge being
learned. The learner’s understanding of the domain constantly evolves as they interact with

the learning environment.

We focused on symbolic and data-driven approaches for modeling the learner’s knowledge and
highlighted their differences. On the one hand, techniques from Knowledge Representation
and Reasoning (KRR), such as ontologies or rule-based systems, can be applied to reason
about the learner regarding the domain model. These techniques can be used to capture
the structure of the domain and to represent the relationships between different concepts
and ideas within the domain. On the other hand, data-driven machine-learning techniques,
such as logistic regression or neural networks, can also be used to model the learner without
explicitly reasoning on the domain knowledge. These techniques rely on large datasets of
examples to identify patterns and relationships that can be used to make predictions about
the learner’s transactions with the system. While these models may be less interpretable
than KRR-based models, they can be more flexible and adapt more readily to changes in the
learning environment. Nevertheless, we figured that knowledge representation techniques
could be integrated into machine learning models, combining the strengths of both approaches
by incorporating the domain knowledge as prior probabilities or constraints into the learner

model.

In this chapter, we focus on Bayesian Networks (BNs). The Bayesian network framework
enables the mix of symbolic AI and machine learning paradigms to benefit from the strengths

of both approaches. BNs will be the central tools employed in our thesis work. Therefore,
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we aim to provide a transversal comprehension of this technology. We start by studying the
techniques for representing uncertainty in domain representation with BNs. More particularly,
we present a quick overview of the probability theory, which defines metrics for measuring
uncertainty. We introduce BNs as Probabilistic Graphical Models (PGMs) that provide a
mathematical formulation of the dependencies in multi-agent systems, widely used in fields
such as natural language processing [Rat96], computer vision [Li09], and bioinformatics
[BBO1]. Then, we present how to reason on BN knowledge representation and how data can
be included in the reasoning process. We introduce the concept of inference in BNs, and we
present state-of-the-art techniques for exact and approximate inference. Finally, we provide
an overview of the BN parameter learning techniques and specify the context in which they

can be applied.
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3.1 Including uncertainty in knowledge representation with

Bayesian networks

Bayesian Networks (BNs) provide a powerful framework for including uncertainty in Knowl-
edge Representation and Reasoning (KRR). Uncertainty arises in many real-world applica-
tions, especially when the available data is incomplete or subject to noise. Probability theory
can be used to represent and reason about uncertain knowledge. Probabilistic Graphical
Models (PGMs) are a natural way to represent probability distributions over complex systems.
They provide a compact and intuitive way to represent the joint probability distribution
over a set of random variables. BNs, a kind of PGM that explicitly represent the condi-
tional dependencies between variables, are proper tools for mixing symbolic and data-driven

approaches for modeling the learner’s knowledge.

In this section, we will introduce the basics of Bayesian networks, namely uncertainty
representation with probability theory and probabilistic graphical models. We will also
discuss the use of data in PGMs to introduce BNs as knowledge-enhanced machine-learning

tools.

3.1.1 Representing the knowledge uncertainty with probability theory

Domain knowledge can be decomposed into explicit knowledge, implicit knowledge, and beliefs
[KF09]. This indicates that describing the knowledge of a system must take uncertainty into
account. Uncertainty may arise from several elements: attribute uncertainty, class uncertainty,
and structural uncertainty. Attribute and class uncertainty relates to the uncertainty on the
state of the system concepts. It could speak for the ignorance of the system components’
states or the lack of precision in the measurements. Structural uncertainty corresponds to
the uncertainty in the relationships. It may represent the effectiveness of a relationship
between concepts and potentially translate the expert beliefs on this relationship. Taking
uncertainty into account allows for representing incomplete or uncertain information, which
is often the case in real-world scenarios, especially concerning beliefs experts may express on
the system. This enables more accurate and realistic modeling of the underlying knowledge

and can lead to more robust and reliable decision-making.

Probabilities to express uncertainty

Probability theory is a tailored tool to indicate the uncertainty of the system knowledge.
It provides a mathematical framework for modeling uncertainty. It enables a precise and
quantitative representation of the degree of uncertainty, assigning probabilities to the
different states of the knowledge representation components. It offers a way to reason under

uncertainty.

Probability theory is a mathematical framework for modeling uncertain events. We introduce

some basics of probability theory to define the concept of probability distributions. Probability
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theory relies on measuring sample space and event space to define probability. A sample
space is a set of all possible outcomes of an experiment or a random process. For example, if

we flip a coin, the sample space would be {heads, tails}.

Definition 3.1.1 (Sample space). The sample space € is the set of all experiment outcomes.
Every element w € Q fully describes the state of the complex system at the end of the

experiment.

An event is a subset of the sample space. It represents a specific outcome or combination of
outcomes. For example, the event “heads” would be the subset {heads} of the sample space
{heads, tails}. The event space is the set of all possible events that can occur. In knowledge
representation, events can represent the states of different components of the knowledge
representation. Attributes, classes, and structures are depicted with events that describe
them.

Definition 3.1.2 (Event space). The event space F associated with the sample space ) is

the set whose elements A € F, also known as events, are subsets of 2, i.e. A C Q.

The probability of an event is a measure of how likely the event is to occur. It is defined as
the ratio of the number of favorable outcomes to the total number of possible outcomes and
relates to uncertainty in the state of events. We define the probability measure in Definition
3.1.3.

Definition 3.1.3 (Probability measure). The probability measure of an event space F

associated to the sample space ) is the function P : F — R such that:
e VAc F, P(A)>0
o Let be Ay, ..., Ay such that Vi # j, AiNA; =@, then P(Uicin) Ai) = 2 ieqng P(40)
e P()=1

These three properties are called the probability axioms, also known as Kolmogorov axioms
[Kol13]. They entirely define the probability measure. Other properties are verified by
the probability measure and will be defined afterward. Still, we can note that supposing
a studied system can be fully described with probabilities on the event space is a strong

hypothesis. It is sometimes not even possible to assign probabilities to events.

“There are known knowns;

These are things we know that we know.

There are known unknowns;

That is to say,

There are things that we now know we don’t know.
But there are also unknown unknowns;

There are things we do not know we don’t know.”
— Donald Rumsfeld



Chapter 3. Knowledge-enhanced ML with Bayesian networks 41

Random variables

Supposing the knowledge is represented by concepts and relationships, we might want to
define functions that give the probability measure from the state of these elements. We
introduce the concept of random variables in Definition 3.1.4 to track the state of these

concepts and to quantify the uncertainty to which they are subject.

Definition 3.1.4 (Random variable). A random variable X is a function X : Q — E, where
E is some measurable space. The value X (w) that the random variable X takes for a random

outcome w € ) is denoted x.

A random variable fully describes the probabilities associated with a set of events. For an
element of knowledge representation, one might consider the sample space as all the possible
combinations of states of its attributes. Random variables are the theoretical support for

defining the probability measure on the concepts describing the system knowledge.

Random variables may be of multiple types. In this work, we study discrete random variables,
where the measurable space E takes its values in N. More particularly, we consider binary
random variables, which are random variables where the measurable space is {0,1}", where
n is the dimension of the sample space 2. Both attribute and class uncertainty on knowledge

is expressed with random variables.

Probability distribution

Given a random variable X describing a concept of the system knowledge, the outcomes
taken by X are the elements of the sample space, and the uncertainty of concepts is quantified
through the probability of each outcome of the sample space. Because the random variables
are supposed to be discrete, the probabilities of all possible outcomes of X compose the
probability distribution of X. It is directly related to the probability mass function px. The

probability mass function px is the probability distribution of a discrete random variable X.

Definition 3.1.5 (Probability mass function). Let be X a discrete random variable. The
probability mass function of X is the function px : R — [0, 1] such that

On the other hand, knowledge structure uncertainty corresponds to uncertainty in the
relationships between concepts. These relationships between concepts express the dependence
between the random variables that represent the concepts. Events, such as random variable
outcomes, can be conditionally related. We introduce the notion of conditional probability
in Definition 3.1.6.

Definition 3.1.6 (Conditional probability). Let B be an event such that P(B) # 0. The
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conditional probability of any event A given B is defined as

P(ANB)

PA | B) = =55

(3.1)

Conditional probabilities are useful tools when studying the problem of knowledge structural
uncertainty. Indeed, the uncertainty in the relationship between two knowledge concepts
can be represented with a Conditional Probability Distribution (CPD) that regroups the
conditional probability between every possible outcome of the two random variables (see
Section 3.1.2 for more details on CPDs). When an event does not change the probability of

another, the two events are said to be independent.

Definition 3.1.7 (Independent events). Let be A and B two events. A and B are independent
events if P(A| B) = P(A) or if P(B) = 0.

Notation 3.1.1 (Independent events). A and B are independent events is denoted A 1L B.

Consequently, according to the definition of conditional probability in Definition 3.1.6, the
probability of two independent events equals the product of the probability of each event.

The equivalence is reported in Property 3.1.1.

Property 3.1.1 (Independence and conditional probability).

VA, B s.t. AL B «= P(ANB)= P(A)P(B) (3.2)

3.1.2 Probabilistic graphical models

Koller et al. present one of the main advantages of using probability theory in modeling
complex systems, compared to first-order logic approaches [[KXF09]. The range of outcomes
can be too wide to be fully considered. Probabilities allow for avoiding the annoying
exceptions and exceptional cases when their probability exhibits that they are unlikely to
happen. Probabilistic Graphical Models (PGMs) are KRR approaches that use probability

distributions to describe system knowledge.

A handful and exploitable model

The main idea of PGMs is to reduce the dimension of the probability distribution of the whole
system knowledge by designing a simplified model with probabilities. It benefits from the
dependence structure between the system elements to factorize the distribution into several
small local distributions. Then, it mobilizes mathematical, statistical, and computational

tools to compute them.

Factorization of the whole distribution is allowed by studying the dependencies between
the variables that describe the system. It is essential to figure this relation out. The set of

dependencies that rule the system directly impacts the distribution structure. Conversely,
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when factorizing is observed in this distribution, the system follows a set of independence.
PGMs represent as a graph the set of dependencies between the elements of the system
knowledge. This representation is helpful in regards to the understanding of the model,

thanks to the great readability of graphs.

Definition 3.1.8 (Probabilistic graphical model). A Probabilistic Graphical Model is a
type of mathematical model for representing and reasoning about uncertain knowledge. It
uses a graph structure to represent the relationships between random variables representing
uncertain or unknown quantities. Each node in the graph represents a random variable, and
edges between nodes represent dependencies or relationships of independence between the

variables.

PGMs are used to represent probability distributions over the variables of interest, and they
provide a powerful tool for reasoning about uncertain information. Their graph structure

allows for a compact and intuitive representation of complex probability distributions.

Principles of probabilistic graphical models

PGMs exploit the structure to describe complex probability distributions in a compact
way. They fully depict the system by defining the interactions between all its elements by
local probabilistic dependence. They introduce conditional independence to summarize the

dependencies between the random variables.

Definition 3.1.9 (Conditional independence). Let be A, B and C' three events. A and B are
conditionally independent events given C, if P(A| BNC)=P(A|C) orif P(B|C)=0.

Notation 3.1.2 (Conditional independence). The conditional independence of A and B
given C' is denoted A 1L B | C.

Such as the independence property on conditional probability, we can rewrite the definition

of conditional independence as in Property 3.1.2.

Property 3.1.2 (Conditional independence and conditional probabilities).

YA,B,C s.t. (AL B|C) < P(ANB|C)=P(A|C)P(B|C) (3.3)

The set of conditional independencies between the elements of a complex system is represented
by a graph in probabilistic graphical modeling. The graph summarizes all the local interactions
in the system. It is a graphical representation of the set of local Conditional Probability

Distributions (CPDs) translating the dependencies between the variables.

Classic conditional probability distributions

CPDs aim at describing the dependencies between the variables of a model. For each random
variable X of the PGM, we define Fpa, as the conditional probability distribution of X
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given the state pay of variables Pax. We have the following properties for Ppa, .

Definition 3.1.10 (Conditional probability distribution). Let be X a random variable
and pax the set of random wvariables such that X is dependent on Pax. The conditional
probability distribution of X given pay is the function Ppa, : R — [0,1] such that

Ppa, (x) = P(X =z | pay) (3.4)

It verifies

Va € Valx, Ppa, (z) >0

ax

ZwEValX Pan (.CL‘) =1

(3.5)

CPDs result in the factorization of the joint distribution implied by the set of conditional
independencies. Various kinds of CPDs can model these relationships between variables.
The choice among them will affect the knowledge reasoning approach. The most trivial

representation of Ppa, is the deterministic CPD, defined in Definition 3.1.11.

Definition 3.1.11 (Deterministic CPD). A CPD is deterministic if there exists a determin-
istic function f: Valpa, — Valx such that

1 ifx= a
P(z | Pay = pax) = fo = Jipx) (3.6)

0 otherwise.

Because we study binary variables in this work, only logical functions will be detailed here.
We resume the main logical functions that can be employed as the deterministic function f
in Table 3.1. Nevertheless, we must keep in mind that other deterministic functions can be
applied to other kinds of variables. For instance, algebraic functions are usually employed

for ordinal variables.

Deterministic function f
NOT f(z) =~
OR f(X) =Uzex @
AND f(x) = MNgex @

Table 3.1: Main deterministic functions used in deterministic CPDs. The NOT function
only applies to a unique variable x, while OR and AND functions can be applied to multiple
variables X.

We note that deterministic CPDs do not require numerical parameters, as the outcomes are

fully computable from f. They perfectly describe some phenomena in nature, such as the
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phenotype of a person from her genotype. Modeling the behavior of electronic circuits also
particularly fits with deterministic CPDs: machine-oriented models are easy to implement

with deterministic CPDs, as the components of these systems use deterministic functions.

However, despite these few examples, Diez et al. point out that deterministic relationships
are not very common in practice because of the uncertainty of real-world interactions
[DDO6]. Still, using deterministic variables in a PGM can reduce the complexity of a model.
Deterministic relationships may occur naturally in modeling many domains, but they are
mainly used to simplify the dependencies in a complex model [KF09]. In fact, a deterministic
CPD in a PGM implies a case of Context-Specific Independence (CSI), as the dependencies
between the variables describing the PGM depend on the context.

Definition 3.1.12 (Context-specific independence). Let X, Y, Z, C be pairwise disjoint
sets of variables. X and Y are contextually independent given Z and the context ¢ € Val(C)
if

P(X|Z,c,Y)=P(X|Z,c) whenever P(Y,Z,c) >0 (3.7)

Deterministic CPDs are examples of simple CSI, but other kinds of CPDs encode more
complex CSI. For instance, rule-based CPDs rely on explaining how the system works from
a set of hypothetical rules. Rule-based models aim to reproduce the behavior observed in

the real world with scenarios and rules.

Definition 3.1.13 (Rule-based CPD). A rule-based CPD P(X | Pay) is a set of rules R
such that:

e Each rule p € R, which is a pair (c,p) with ¢ an assignment to some subset of variables
C = Scope|p| and p € [0, 1], verifies Scope[p] C {X}UPax

e For each assignment (z,u) to {X} UPay, there is precisely one rule {(c,p) € R such

that c is compatible with (x,u). In this case, we have P(X =z | Pax = u) = p.
The rule-based CPD P(X | Pay) verifies >, P(z | u) = 1.

In practice, this approach would imply writing computer programs for context purposes.
That is, designing specific models for every complex system one wants to model and every
question one wants to answer. Intuitively, as fruitful as the result of such a model, it remains
a result with a narrow scope of applicability. One of the goals of modeling is to provide
enough generic solutions. It would require significant efforts to apply rule-based models to
other systems or research questions than the ones on which they were designed. Tabular
CPDs, also known as Conditional Probability Tables (CPTs), are tables that contain all the
information about the CPDs. More precisely, it encodes P(X | Pax) as a table. We define
tabular CPDs in Definition 3.1.14.

Definition 3.1.14 (Tabular CPD). A tabular CPD is the encoding of the conditional

probability distribution P(X | Pax) as a table that contains a nonnegative entry for each
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joint assignment to X and Pax. For each assignment pax of Pax, the tabular CPD verifies

Z P(z |Pay =pay) =1 (3.8)
zeVal(X)

ICI models

As mentioned earlier, deterministic CPDs are unrealistic but can be included in complex
distributions to reduce the number of parameters. Some models are based on the clause of
Independence of Causal Influences (ICI). ICI models suppose that there are no interactions

among the causal mechanisms by which the parents of a node affect its value [DDO6].

Definition 3.1.15 (ICI-model CPD). Let X be a random variable with k parents denoted
PaX71, ceey PaX’k.

The CPD P(X | Paxy, ..., Paxy) exhibits independence of causal influence if we can
introduce auziliary variables Z1, ..., Zj, respectively attached to Pax 1, ..., Pax ) such that
each Pax ; is conditionally independent with X giwen Z; and with other Pax ; given all
(Zk)g for j #i. Vi, the CPD of Z;s are deterministic functions f; of X;s, and the CPD of Y

is also a deterministic function of the Z;s. It can be represented as in Figure 3.1.

Figure 3.1: Representation of the ICI-model CPD of X and its parents Pax 1, ..., Pax k.

The deterministic function defining X is generally an AND or an OR function [DDO06]|. The
corresponding ICI-model CPDs are respectively called Noisy-AND and Noisy-OR. CPDs.

Number of parameters

Every CPD representation discussed above can be represented with a CPT. However,
the tabular representation requires a significant number of parameters, as the number of

parameters needed to describe a CPT depends on the number of possible outcomes of
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Payx. For binary variables, there are 2|V@(®Pax)l parameters for the CPT of X. The CPT

representation can be difficult to handle when there is a large number of parents.

Example 3.1.1 (Number of parameters in the different CPD representations). Let’s suppose
we study the Grade (G) of a student for an exam. It can take values from A to F. We suppose
two other variables are studied in this ezample: Study Habits (H) and Absenteeism (A), and

both are binary.

Using a deterministic CPD to define G from H, we can represent the relationship with a
simple table with two columns (study habits and exam performance), and two rows (good and

poor). This CPD would require only 2 parameters.

G
‘Good‘A‘
‘Poor F‘

Table 3.2: Example of a deterministic CPD for G.

A rule-based CPD representation of Table 3.2 would, for instance, include a condition on A.
Then, with a rule-based CPD, the number of parameters increases to 4, as we need to specify

the rules for good and poor study habits for each possible level of absenteeism.:

H A
Good | Low
Good | High

Poor | Low

H Q W o= Q

Poor | High

Table 3.3: Example of a rule-based CPD for G.

With a tabular CPD, the number of parameters increases dramatically. We need to specify
the probability of each outcome for every possible combination of study habits, absenteeism,

and exam performance. In this example, the tabular CPD would require 8 parameters.

The number of parameters required for a tabular CPD increases exponentially as the number
of parents increases. This can make it difficult to handle when there is a large number of
parents. In the early days, the parameters were indeed specified by experts in the modeled
system [BL04|. Defining an enormous number of parameters, which may be hard to retrieve,

is nearly an impossible task to ask.

Nevertheless, we note that the number of parameters required for a CPD does not always
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H A | G | Probability
Good | Low | A 0.8
Good | Low | B 0.2
Good | High | A 0.6
Good | High | B 0.4
Poor | Low | C 0.7
Poor | Low | F 0.3
Poor | High | C 0.5
Poor | High | F 0.5

Table 3.4: Example of a tabular CPD for G.

directly correspond to the complexity of the model and that other factors, such as the
structure of the model, also play a role. Moreover, there are other downsides to using CPTs
(e.g., the discretization problem) that will not be considered in this work, as we only consider

binary variables.

The ICI-model CPD benefits from parameter reduction of deterministic relationships. The
number of its parameters grows linearly with the number of node parents. While the number
of parameters of a tabular CPD of X for a node and its n parents would be 2", the number

of parameters of an ICI-model CPD is 2n.

3.1.3 Bayesian networks, a kind of PGM

Bayesian Networks (BNs) are a kind of Probabilistic Graphical Model (PGM). They suppose
that the distribution of the whole can be decomposed thanks to the conditional dependencies

of the system.

A graphical representation of the conditional independencies of the distribution
A Bayesian network is represented by a Direct Acyclic Graph (DAG).

Definition 3.1.16 (Direct acyclic graph). A direct acyclic graph G(V, E) is a graph composed

of a set of vertices V' connected among them by directed edges E without directed cycles.

A Bayesian network is then a directed graphical model. The structure of the DAG that
represents the Bayesian network induces the factorization of the whole distribution. It is
allowed by the set of assumptions about the dependencies between the variables that describe

the system. The structure of the DAG depends on the conditional independencies between
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the variables. Each of its edges indeed represents a conditional dependence of two variables.

Conversely, the choice of the DAG will impact the assumptions on the distribution.

In particular, if two variables are d-separated relative to a set of variables Z in a directed
graph, they are independent conditional on Z in all probability distributions such a graph
can represent. d-separation is a criterion for determining whether two variables in a directed

graphical model are independent, given the presence of certain other variables.

Definition 3.1.17 (d-separation). Given a DAG G(V, E) and a set of variables Z subset of
V', two variables X and Y in V are d-separated given Z if and only if there is no active path

between X and Y in G given Z.

An active path is a path that starts at X, ends at 'Y, and contains no collider (a node with
two incoming edges) that is not blocked by a variable in Z. If X and Y are not d-separated,

they are d-connected.
The graph structure of a DAG shows simple characteristics of d-separation.

Property 3.1.3 (d-separation in a DAG). The minimal set of nodes that d-separates a node
v eV of the DAG G(V, E) is the Markov blanket of the node in the DAG.

Definition 3.1.18 (Markov blanket in a DAG). The Markov blanket of a node in a DAG
consists of the set of nodes containing its parents, its children, and any other parents of its

children in the DAG.

To put it in a nutshell, Bayesian networks are the combination of a DAG structure with

probability theory.

Definition 3.1.19 (Bayesian network). A Bayesian network is a directed graph G(V, E)
associated to a set of n = |V| random variables (X;)ic[i,n) and CPDs (Ppa, )pinp- 1ts

probability mass function is

pX=x)= [[ P (Xi — | xpaxi) (3.9)
i€[1,n]

BNs consider one random variable and one CPD per node. They exploit the chain rule of

conditional probabilities to compute the whole distribution.

Property 3.1.4 (Chain rule). Let S,...,Si be events. The chain rule states that:

P(Sl n...N Sk) = P(Sl) X P(SQ ‘ Sl) X ... X P(Sk ’ SinN...N Skfl) (3.10)

In particular, we note that, for k£ = 2 events, the chain rule corresponds to the definition of
conditional probability. In practice, the chain rule only consists in applying the conditional

probability definition several times in a row.
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The strong assumptions on conditional independence between variables imply that the
distribution of the whole is fully known from them. Given the chain rule, the probability
mass function can be formulated as the product of conditional probability distributions. The
distribution of the whole can be fully described by local CPDs. One of the key advantages of
BNs is their capacity to decompose the joint distribution of a system into a set of tractable
conditional distributions. In large BNs, the sample space can be extensive, making the
computation of the joint distribution intractable. However, by using the structure of the BN

to factorize the distribution, the computational complexity can be significantly reduced.

Furthermore, the graphical representation of BNs provides a level of transparency that
allows human experts to easily understand and evaluate the structure and the CPDs of the
model. This transparency is crucial for constructing models that effectively capture the
underlying system and provide a clear understanding of the modeled domain. Without this
transparency, the results of the model may be difficult to interpret or may not align with

users’ expectations.

Simple examples of Bayesian networks

Let us introduce a toy example to understand how it works. The SAT Reasoning Test is a
standardized national exam in the USA used for university admission. One can introduce
a simple model to compute the student’s intelligence from her score on SAT. Let be two
binary random variables Intelligence (I) and SAT score (S). We suppose that the SAT score
depends on the student’s Intelligence and that these two variables are binary. We have the

Bayesian network represented in Figure 3.2.

o O

Figure 3.2: Bayesian network that model the SAT score (S) as a function of the student’s
intelligence (7).

The joint distribution of the random variables I and S is composed of four entries, that are
((I =0,8 = fail),(I = 0,5 = pass),(I = 1,5 = fail),(I = 1,5 = pass)). Using the Bayesian
network grants the reduction of the required information to compute the joint distribution.
Instead of considering P(I,.S), which is the distribution of the whole, the Bayesian network
in Figure 3.2 only requires prior knowledge of I and conditional probability distribution of S
given I. Root nodes in BNs are the nodes with no parents, that is to say, no incoming arcs.
They are informed by prior knowledge, while conditional probability distributions inform
other nodes. The prior knowledge in our example is P(I). The CPD is P(S|I).

BNs are, in practice, much wider than the toy example presented in Figure 3.2. Besides, we
introduce three additional random variables to represent a more complex BN: the course
Difficulty (D), Grade (G), and the quality of the recommendation Letter (L). D and L
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are also binary random variables, while G is a three-valued discrete random variable. The
Grade depends on both the course Difficulty and the student’s Intelligence. The quality of
the recommendation Letter is supposed to be uniquely dependent on the student’s Grade.
This example is widely used to present Bayesian networks and is called the Student example.
We represent the DAG of such BN in Figure 3.3. Its structure gives information on the

conditional dependencies between the variables that compose the BN.

Figure 3.3: DAG structure of the Bayesian network representing the Student example.

The Bayesian network is fully specified if the CPD of each BN node is given. We saw in
Section 3.1.2 that tabular CPDs are particularly relevant for Bayesian networks. Table 3.5
shows CPDs that could be associated with the DAG of Figure 3.3.

G
L
I | D | low | medium | high S
] G bad | good
0 0 01 0.4 0.5 I fail | pass
low | 0.8 | 0.2
0 1,005 03 | 065 0 0.2‘ 0.8
medium | 0.6 0.4
1/002 05 0.3 1 0.1‘ 0.9 .
high 0.2 | 0.8
11 01 0.4 0.5 (b) CPT of §

(c) CPT of L

(a) CPT of G

Table 3.5: Examples of CPD that could be attached to the DAG represented in Figure 3.3.

The combination of the DAG in Figure 3.3 and the set of CPTs given in Table 3.5 are
sufficient to fully define the joint distribution of the random variables D, I, G, S, and L,
and to compute any marginal probability distribution that can be extracted from it. We will

detail the task of inference in Section 3.2.
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Computational implementation of Bayesian networks

From a computational perspective, Bayesian networks are the source of many libraries in
almost every programming language. We use Python in this work. There are plenty of

packages available in Python for inference with Bayesian networks.

e pyAgrum is a Python package of Bayesian networks [DGW20]. It derives from the C
package aGrUm. It includes plenty of features, such as dynamic Bayesian networks. It

is the package we use in this work.
e pgmpy is a Python package of PGMs, that includes Bayesian networks.
e pomegranate is also a Python package of PGMs, including Bayesian networks.

There are, of course, other open-source implementations of Bayesian networks in Python.

3.1.4 Dynamic Bayesian networks

Bayesian networks consider a fixed set of variables X. However, most complex systems
cannot be modeled with variables at a fixed time, as the state of the concepts that compose
the complex system evolves over time. The complex system is then dynamic. We assume
time can be discretized into timeslices ¢. In order to represent the distributions of systems

in which the state varies over time, we introduce Dynamic Bayesian Networks (DBNs).

A compact representation for large repetitive Bayesian networks

A dynamic Bayesian network B is a dynamic graphical model that is composed of time-
dependent variables. Instead of considering time-independent random variables X, the DBN
variables are indexed with time. V¢ € [0, 77, X = {Xi(t)}. represent the same events at
different timeslices. The idea is to provide a Bayesian netwoi‘k that replicates the variables
through time. A DBN can then be seen as the concatenation of multiple duplications of
the same Bayesian network side by side that would be linked with each other. Its variables
are {Xi(t) | i € [0,N],t € [0,T]}, with N the number of nodes for a timeslice and 7" the
temporal length of the DBN. The temporal length is a parameter and will not change the

structure of the DBN, except for the number of timeslices.

Example 3.1.2. We get back to the Student example. Students have grades throughout the
scholarship. Students’ Intelligence also evolves over time. These reports mean that random

variables I and G evolve over time. They are time-dependent.

Let be t € [0, T] a discretized view of time. We suppose that every variable that composes the
Bayesian network of the Student example is indexed with time. We introduce the corresponding

dynamic Bayesian network DBNsiudent, that models the Student example.

DBNstudent i composed of the set of variables {(D*, I, S*,G*, L*) | t € [0,T]}, and its DAG

1s represented in Figure 3./
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@

Figure 3.4: DAG structure of the Dynamic Bayesian network that can represent the Student
example.

Hypotheses in DBNs

DBNs are supposed to be Markov dynamic systems, which means they follow the Markov

assumption.
Definition 3.1.20 (Markov assumption). A dynamic system modeled with the set of variables

X = {X(t)}te[[O,T]] satisfies the Markov assumption if, for allt > 0,

Vie 0,7 —1], XD 1 X | x® (3.11)

X1 is conditionally independent of all the states before X(®) given X It implies that
the state at time ¢ + 1 only depends on the state at time t if known. In simple words, the
Markov assumption assesses that the future is independent of the past given the present.

Moreover, DBNs are supposed to be stationary.

Definition 3.1.21 (Stationary Markovian system). A stationary Markovian system if
P(XED | XB)Y) is time-invariant. Then, the distribution is fully represented by the time-
independent transition model P(X' | X) such that

ve>0, PXUHD =X | XW =x) = P(X' =% | X =x) (3.12)

Because they are stationary Markov systems, DBNs can be summed up by two simple

Bayesian networks. This provides a more formal definition of DBNs.

Definition 3.1.22. A dynamic Bayesian network B = (By, B_) is a set of two Bayesian

networks By and B_,.

e By is the initial Bayesian network, it is the Bayesian network over X(©) which represents

the initial distribution over states;

e B, is a Two-Timeslices Bayesian Network (2-TBN) for a process over X, it is the
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conditional Bayesian network over X' given a subset of X that interfaces with X'.

The 2-TBN is then composed of inter-timeslice and intra-timeslice edges. Inter-timeslice
edges are the arcs between timeslices. Because of the Markovian assumption, they correspond
to the interactions between X and X'. Intra-timeslice edges are the connections between
variables in the same timeslice. They are uniquely composed of arcs between the nodes of
X’. This is a modeling constraint of DBNs.

The Definition 3.1.22 is equivalent to the description provided earlier in this section. The
former is called the unrolled description of the DBN, while the latter is called the two-time-
slice representation. The structure and CPDs of X(?) of the unrolled DBN are the same as
those for (X;), in By, and, the structure and CPDs of X®) for t > 0 are the same as those
for (X7), in B_,. We can note that the 2-TBN representation is much more compact than
the unrolled one. It is a compact representation, as there is no limit to how many Bayesian
networks the DBN framework can generate. Moreover, it expresses the template nature of

DBNs. Trajectories of different lengths can be studied from the same model.

Usual examples of DBNs

The first example of a dynamic Bayesian network that comes to mind is the Hidden Markov
Model (HMM). An HMM is composed of a single state variable S and a single observation
variable O at each timeslice . The state variable S is a latent variable, as its value
cannot be observed. As HMMs are Markov networks (PGMs with an undirected graph
structure), they can be represented by a DBN. The variables of the corresponding DBN
are {(S,O) | t € [0,T]}. Its DAG is represented in Figure 3.5. More complex structures
of HMMs, such as factorial HMM or coupled HMM, are usually used to model complex

systems.

Figure 3.5: DBN representation of a Hidden Markov Model, composed of variables
{(Si,0;) | t € [0, T]} such that S;s represent the state variables, and O;s are the observable
variables.

It is possible to consider a non-stationary DBN. However, the structure of such DBN will
not allow describing the DBN with the set (By, B_,). The benefits of such a structure for

learning would then be lost.
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3.2 Inference in Bayesian networks

Inference in Bayesian Networks (BNs) is the process of using a set of observations to make
predictions about the values of unobserved variables in the system. BNs provide a powerful
framework for reasoning about uncertain knowledge representation, and the principles of
inference in the probability theory can be applied to make predictions based on incomplete

or noisy data.

After exposing the principles of inference, we detail the state-of-the-art techniques for
inference in BNs. Exact inference techniques for BNs can compute the exact posterior
distribution over a set of variables. Still, they can be computationally expensive and may not
be feasible for large systems. Optimization-based inference techniques can be used to find the
Maximum A Posteriori (MAP) estimate of the variables, which is a computationally efficient
way to make predictions. Particle-based inference techniques, such as particle filtering,
can approximate the posterior distribution using a set of particles, which can provide a
more accurate estimate of the posterior distribution in some cases. This section introduces
these different inference techniques for Bayesian networks and discusses their strengths and

weaknesses, particularly with scarce data.

3.2.1 Reasoning on uncertain knowledge representation

The main purpose of knowledge representation is knowledge reasoning. The previous section
has introduced BNs as a framework for Knowledge Representation and Reasoning (KRR).
Now, we wonder how we can interrogate the model to answer questions on the system. These
questions can be of two natures. Deductive questions consist of interrogations on the logical
structure of relationships between concepts, and inductive questions concern interrogations

on concept states with particular evidence.

The notion of inference

Supposing we represent the state of the knowledge representation with random variables
X, evidence on the system is a set of events in the form {X; = x; | i € [1, N]}. The task of

interrogating the model to answer questions is called inference.

Definition 3.2.1 (Inference). The task of inference is the process of reaching answers to

questions on the basis of evidence and reasoning.

The notion of inference was first provided in expert systems by inference engines that
answered queries with automated logical inference thanks to the First-Order Logic (FOL)
structure of KRR [[{S89]. The task of inference has been extended to the probability theory.

We detail the tools employed to formalize inference requests with probability theory.
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Probability queries

Basic requests for knowledge reasoning are probability queries. Probability queries are
requests on the state of the system, expressed with conditional probabilities. It computes
the posterior probability distribution over the values of a set of variables, given that other

variables have known values. They are composed of two entities.
e Evidence e corresponds to the information we have on the system.

e The query variables Y correspond to the variables we want to evaluate, given the

evidence.

Definition 3.2.2 (Evidence). Ewvidence is a set of information or observations that can be

used to update or confirm the belief about a certain state.

Definition 3.2.3 (Probability query). The probability query of random variables Y C X
given E = e, with E C X \'Y is the probability P(Y | E =e).

Probability queries are the basic tools for the task of inference. When Y = X and E = &,
the probability query corresponds to the joint distribution over X. When the set of query
variables is strictly included in the non-evidence variables, i.e., Y C X \ E, the probability

query consists in computing the marginal of Y in the distribution that states E = e.

Maximum A Posteriori queries

The Maximum A Posteriori (MAP) query is a major application of inference. MAP queries
are searches for the most likely assignment to all non-evidence variables. They interrogate
the value of all the variables of the model. Sometimes, the MAP should be computed on a

restricted set of variables like the query variables for probability queries.
Definition 3.2.4 (Maximum A Posteriori query). The Maximum A Posteriori query of
random variables X given E = e, with E C X is

MAP(W | e) = P = P 1
(W | e) = arg max P(w | e) = arg max P(w, e) (3.13)

with W = X\ E.

Definition 3.2.5 (Marginal Maximum A Posteriori query). The marginal Mazimum A
Posteriori query of random variables Y C X given E = e, with E C X \'Y, is defined by
FEquation 5.14

MAP(Y | e) = arg rynea%( P(y,e) = arg mz%};ZP(y, z,€e) (3.14)

S
Y z€Z

with Z =X\ (EUY), the set of marginalized variables.



Chapter 3. Knowledge-enhanced ML with Bayesian networks 57

Insights into the complexity of inference

Because the state space of the query variables can be extensive, the inference task is
challenging in practice. Basically, the straightforward approach to inference is a brute-force
computation. For instance, the computation of the probabilistic probability query of a set of

query variables Y can be expressed as Equation 3.15.

P(Y)=> Ply)=> .. > Py, ...yn) (3.15)

yeY Yy1E€EY1 YNEYN

According to the definition of conditional probabilities, any probability query, even with
evidence, can be written with Equation 3.15. Inference implies the generation of a joint
distribution that blows up exponentially. Therefore, the task of inference is NP-hard and

probably requires exponential time in the worst case.

To tackle the intractability of the inference task, some instances of knowledge representation,
such as Probabilistic Graphical Models (PGMs), have been designed to reduce the complexity
of inference. When inference is not tractable, we can still perform approximate inference
methods. We recall the purpose of inference in Bayesian Networks (BNs). It aims at answering
the probability queries, defined in Definition 3.2.3, with subsets of the BN variables as query
and evidence variables. Bayesian inference entirely relies on the BN Conditional Probability
Distributions (CPDs). In a nutshell, it consists of computing probabilities from evidence
on known events. The particularity of inference in BN is that inference benefits from the
CPDs that describe the distribution using the chain rule and the Bayes theorem to answer

probability queries.

Definition 3.2.6 (Bayes theorem). Let A and B be two events such that P(B) # 0. The

Bayes theorem states that
P(B|A)P(A)

P(A| B) = ]‘D ) (3.16)

We can see the Bayes theorem as a Bayesian update of the information of the distribution.

PE=e|Y)P(Y)

PY[E=e) = ——Fp—

(3.17)

The prior belief on the Y distribution is considered in the right term of Equation 3.17
through P(Y). In contrast, the left term represents the posterior distribution of Y with
P(Y | E).

3.2.2 Exact inference

Exact inference is inference where the probability query is computed exactly. The compu-

tations induced by exact inference can be extremely resource-consuming. The complexity
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of these computations may vary depending on the structure of the studied Bayesian net-
work. The BN structure indeed implies the factorization of the probability distribution,
and this factorization is observed in the writing of probability queries. We only provide the
main ideas that motivate the different algorithms of exact inference and their algorithmic

implementation.

Variable elimination

Suppose a Bayesian network with a chain structure. The probability roughly propagates
through the chain thanks to the chain rule, which states a marginal probability can be
rewritten as a product — see Equation 3.10. Factorization implies factors that are recursively
included in each other. This is the main principle of the Variable Elimination (VE) algorithm.
This rewriting can also be done on tree-structured Bayesian networks and adapted to work
for DAG with a polytree structure. However, the presence of a cycle in the Bayesian network
makes impossible the exact inference with propagation. The main idea behind the VE
algorithm is to reduce the problem of exact inference in a random BN to exact inference in a

tree-structured Bayesian network. It uses factor graphs to operate this simplification.

The Hammersley—Clifford theorem shows that PGMs, such as Bayesian and Markov networks,
can be represented as factor graphs. The VE algorithm uses the factors contained in the
factor graph to iteratively marginalize out variables from the distribution. It supposes a
given ordering eliciting the order of variables for elimination. For each variable given by
the ordering, the principle of the VE algorithm is to multiply all the factors containing this
variable to marginalize it from the product factor. This marginalization leads to a new factor

employed to replace the factors containing the marginalized variable.

The VE algorithm is designed to answer marginal probability queries for which evidence E
is supposed to be empty. The computation of conditional probability queries P(Y | E = e)
can also be computed with the VE algorithm, as conditional probabilities can be rewritten

as a quotient of marginals, as reported in Equation 3.18.

P(Y|E=e) = (3.18)
That is, we can compute the conditional probability by performing variable elimination on
P(Y,E = e) and then on P(E = e). When the assignments for variables E are fixed, then

the values of factors on subsets of E are set to the ones specified by e.

Still, the VE algorithm has two major drawbacks. First, finding the optimal ordering is
NP-hard in the worst case [Co090|. Second, two different queries need two runnings of the

algorithm, even if they rely on the same set of variables [KF09].
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Sum-product message-passing and junction trees

The VE algorithm can be interpreted as the propagation of a message when the BN is tree-
structured. This is called a message-passing process. The factor computed from marginalizing
a variable would be the message summarizing all the information contained in the descendants
of this variable. Messages do not change, even when the query is changing. Computing
them over and over leads to computational waste. To tackle this issue, the sum-product

message-passing algorithm has been introduced.

The main idea of the sum-product message-passing algorithm is to store these messages, not
to compute them twice. Once all messages are computed, any marginal probability can be
computed in constant time from the product of messages from neighbor variables [Pea&8].
Still, the sum-product message-passing algorithm only works when the graph structure of
the Bayesian network is a tree. Therefore, one introduces junction trees to transform the

structure of Bayesian networks that are not tree-structured into a tree of variable clusters.

Junction trees are the source of another algorithm for exact inference in Bayesian networks.
The junction tree algorithm generalizes the message-passing approach to graph structures
more complex than tree structures. In broad terms, the junction tree algorithm consists
in the form of message-passing on the junction tree of the Bayesian network. It defines
a potential for each clique that is the product of all factors assigned to it and computes
messages from them [MJ99]. However, it has a running time that is potentially exponential
in the size of the largest cluster. Finding the optimal tree is as computationally expensive
as finding the optimal ordering in variable elimination. Overall, exact inference techniques

have strong limitations in terms of applicability.

3.2.3 Optimization-based inference

Other kinds of inference have been developed to perform inference when the exact inference
is not tractable. Among them are optimization-based inference techniques. The principle
of optimization-based inference is principally to define a target class of convenient and
tractable distributions and to search for an instance of this class that is the best fit for the
target distribution. The queries are then performed on the chosen simpler distribution. One
can also refer to variational inference methods for optimization-based inference. Koller et
al. assert that optimization-based inference can be divided into three categories [KF09].
Optimization-based inference algorithms use strong mathematical tools that are out of the

scope of this thesis. Still, we present the main methods and the ideas behind them.

Comparing exact and approximate inference techniques

To measure and compare the differences between the target distribution p and an approx-
imating distribution ¢, we use the notion of Kullback-Leibler (KL) divergence. The KL

divergence measures differences in the information contained within two distributions.
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Definition 3.2.7 (Kullback-Leibler divergence). The Kullback-Leibler divergence between
two distributions q and p with discrete support is defined as
q(z)

KL(qlp) = q(x) log 25 (3.19)

T

Loopy-Belief Propagation

We saw in Section 3.2.2 that exact inference could be performed either in a tree-structured
Bayesian network or in a Bayesian network with a non-tree structure by considering the
junction tree instead of the initial structure of the BN. However, the complexity of the
junction tree algorithm still grows exponentially in the size of the largest cluster, so it is
not possible to apply the junction tree on some too-complex Bayesian networks. Instead
of using a single pass of message-passing, the Loopy-Belief Propagation (LBP) algorithm
iterates over edges for message-passing. The LBP algorithm is a kind of optimization-based
inference algorithm that implies clique-tree message-passing schemes on non-tree structures
[MWJ99]. Rather than using the junction tree, LBP consists of a general message-passing
algorithm in a general-purpose cluster graph. The LBP algorithm ignores the cycles in the

graph, supposing the convergence will happen with enough passages.

Expectation Propagation

Another optimization-based inference method is the Expectation Propagation algorithm.
While clique-tree message passing schemes on non-tree structures rely on approximating
the structure and passing exact messages, the Expectation Propagation algorithm consists
of message propagation on clique trees with approximate messages [Min0O1]. Among the
main optimization-based inference techniques is also the mean-field inference. The purpose
of mean-field inference is to consider that the approximating distribution ¢ of the target
distribution can be factorized into a product of factors representing the target distribution
on each variable. It then becomes easier to optimize the KL divergence by coordinate descent

over the variables.

Variational approaches

The optimization-based inference techniques detailed above can be analyzed variationally.
They can indeed be described as variational optimization strategies for the energy func-
tional, the negative equivalent to the Helmholtz free energy from statistical physics [[KU0S].
Optimization-based inference aims to represent probability queries as entropy minimization
problems. Thus, other optimization-based inference techniques can be derived from classic

variational approaches [ZBIKXMI18], such as convex duality [SHPUI12].
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3.2.4 Particle-based inference

The particle-based inference is another class of approximate inference. The principle of
particle-based methods is to approximate the target probability distribution as a set of
instantiations to the network variables, called particles. The provided particles give a good
approximation of the target distribution. Indeed, the estimator of a function F on the
distribution P of a Bayesian network verifies Equation 3.20. It can be expressed as the
expectation of the function F applied to the N generated particles from P. The greater the

number of generated particles N, the better the estimator.

N
1 ; i
N Z [ © } with X@ is the i*" sample from P (3.20)

Forward sampling, rejection sampling, and importance sampling

The most straightforward particle-based method is forward sampling. Forward sampling
generates particles by following the topological order of the Bayesian network [Hen88|.
The samples generated with forward sampling are then studied according to Monte-Carlo

estimation. Algorithm 3.1 details the implementation of forward sampling.

Algorithm 3.1: Forward sampling algorithm in a Bayesian network B

Data: B

Result: x = (x1,...,2p)
1 Let Xq,..., X, ordered in a topological ordering of the variables of B
2 forie [1,n] do

3 u; < X‘Pax,
4 Sample z; from P(X; | Pay, = u;)
5 end

When the probability query concerns conditional probability, the forward sampling may not
be accurate as the marginal probability of the evidence could be very low. The forward
sampling procedure for conditional probability queries is to produce samples and reject the
ones that do not fit with the evidence state. It is called rejection sampling [Cow98]. A low
marginal probability P(e) induces large rejected particles (with N samples generated with
forward sampling, the expected number of non-rejected samples is N x P(e)). Importance
sampling tackles this issue. Importance sampling consists in sampling a new distribution
which is defined as a function of the joint distribution [SP89]. Then, it normalizes the
samples to keep the relation between the Monte-Carlo estimator of the samples and the

target distribution.
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Markov Chain Monte Carlo approaches

Markov Chain Monte-Carlo (MCMC) methods are other techniques of particle-based inference.
They consist of a Markov chain applied to assignments to all the variables in the BN [GRS95].
The convergence of MCMC methods does not depend on the smallness of P(e). In detail, the
Markov chain relies on the state of the model variables X. It defines a sequence of variables
X1, ..., X, by initializing the state of X according to a probability P(©) (X) and computing the
next state from the transition probability distribution P(x; | x;—1). Markov chain follows

the Markov assumption. The transition probability distribution does not vary with .

A converging MCMC method has a stationary distribution that equals the target probability
distribution. It first runs the Markov chain from the initial state of the system for a burning
period that it rejects. Then, it collects the samples generated by the Markov chain run for a
fixed number of steps to compute the Monte Carlo estimator. The purpose of the burning
period is to reject the generated samples that are not mixed yet. At the beginning of the
Markov chain, successive states still depend on each other. Considering them in the Monte
Carlo estimator would alter its convergence. The general formulation of MCMC is given in
Algorithm 3.2.

Algorithm 3.2: Markov Chain Monte-Carlo (MCMC)

Data: Initial state distribution P(®)(X), Markov chain transition model 7T,
Number of samples Ngamples
Result: x(©), ..., x@Vsampies)
1 Sample x(© from P(©)(X)
2 for r € [1, Nsgmpies] do
3 ‘ Sample x(" from 7 (x("~1 — X)

4 end

The most prevalent MCMC technique is the Metropolis-Hastings (MH) algorithm [CG95].
The MH algorithm is also the most versatile MCMC method. It relies on two elements:
a transition kernel that must be specified and an acceptance probability defined from the

transition kernel and the joint distribution.

However, in the context of a Bayesian network, the Gibbs sampling is more convenient, as
the state of a Bayesian network can be decomposed in multiple variables (X7, ..., X) with
known conditional probability distributions Vi € [1, N], P(X; | X_;) [Hry90]. The Gibbs
sampling algorithm iteratively updates the state of each variable thanks to sampling on
conditional probabilities [CG92]. It is detailed in Algorithm 3.3.

Gibbs sampling corresponds to the MH algorithm with a transition kernel that alternates

between the {P(x] | x_;)}, and an acceptance probability equal to one. Gibbs sampling is a
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Algorithm 3.3: Gibbs sampling algorithm in a Bayesian network B

Data: B, number of Gibbs iterations Ngipps, burn-in period M,
sampling period Pg
Result: x
1 Let Xq,...,X,, be an ordering of the variables of B.
2 Initialize x(©) randomly.

3 forr =1 to Ngjpps do

4 for j =1 tok do
5 MB < GetMarkovBlanket(X})
6 e (X7, XL XY X s
7 Sample $§~T) from P(X; | e) > with exact inference
8 end

9 x(") (xY), ...,x](:))

10 if » > M then

11 if r = 0[Ps| then

12 ‘ Add x) to x

13 end

14 end

15 end

straightforward strategy for approximate inference in Bayesian networks. We will present
more details on Gibbs sampling implementation for specific instances of Bayesian networks
in Chapter 4.

Convergence of MCMC methods

The main interest of the particle-based approximation methods compared to other approxi-
mation methods is that true posterior distribution is theoretically reachable. Unfortunately,
these particle-based methods have several drawbacks. First, their convergence is not straight-
forward. For instance, Geman and Geman have shown that Gibbs sampling from a strictly

positive distribution converges [GG&4].

Definition 3.2.8 (Strictly positive distribution). A strictly positive distribution P has values
P(z) > 0 for all x.

Property 3.2.1 (Convergence of Gibbs sampling from a strictly positive distribution). Let

be x a set of samples. If the sampled probability distribution is strictly positive, then for
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every function F such that E[F(z)] < oo, we have:
. 1
lim > F(x(t)) = E[F(x)] (3.21)

York proves that the irreducibility of the Markovian process relative to the Bayesian network
is sufficient for Equation 3.21 to be verified [Yor92]. Then, Gibbs sampling could be used to
generate samples approximating the joint distribution of the BN variables (xi)ie[l,n]a or any

marginal distributions on a subset of variables.

Definition 3.2.9 (Irreducible Markovian process). An irreducible Markovian process is a
Markovian process such that for all states x and x" such that f(x) > 0 and f(x') > 0, there
exists a strictly positive probability such that the Markovian process can reach x' from x in a

finite number of iterations of the Markov chain.

Nevertheless, tailoring MCMC methods to get a Bayesian network to these conditions may
be tricky. The Gibbs sampling convergence in reducible MCMC will be extensively discussed
in Chapter 5.

Once the issue of reducibility is solved, Markov chain approaches are guaranteed to converge
to a globally optimal solution. Still, the time it needs to converge is not a naive question.
In practice, convergence time is hard to quantify: finding a good solution in finite time is
not ensured. Koller et al. suggest a hybrid strategy to use Markov chains in practice: they
recommend using multiple chains in parallel instead of a single chain and define metrics to

evaluate their convergence [[KF09].

Particle-based approaches still provide relatively tractable approximate inference methods.
In particular, when data is scarce, exact inference techniques are not viable, and optimization-
based approaches may require too many assumptions. Then, MCMC techniques are promising

tools for inference from very limited evidence.
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3.3 Learning Bayesian networks

Bayesian networks provide a powerful framework for knowledge-enhanced machine learning,
and data is a crucial component of this framework. In order to use Bayesian networks
to make predictions about real-world systems, we can learn the structure and parameters
of the network from the data. Parameter learning in Bayesian networks is the process of
estimating the Conditional Probability Tables (CPTs) that specify the relationships between
the variables in the network. This can be done using fully-observed data, where all of the
variables in the network are observed, or using missing data, where some of the variables are

unobserved.

In this section, we introduce the basics of parameter learning in Bayesian networks and
discuss the different approaches that can be used to learn the parameters from data. This
section points out the challenges associated with the parameter learning techniques, such as
the curse of dimensionality, that will be the main issue when performing parameter learning

in our framework models.

3.3.1 Integrating data-driven techniques into knowledge representation

Probabilistic Graphical Models (PGMs) provide a framework for Knowledge Representation
and Reasoning (KRR). We saw in Section 3.1.2 that the structure of the knowledge represen-
tation must be known to address knowledge reasoning. Data-driven techniques can be used
to enhance the effectiveness and efficiency of probabilistic graphical models in a number of
ways. One approach is to use machine learning algorithms to learn the model parameters

from data.

PGMs before the rise of big data

First, the structure of a PGM was supposed to be an input to knowledge reasoning constructed
by hand. This task was given to domain experts most of the time. Nevertheless, representing
knowledge is a hard task. It encompasses the specification of both the qualitative and the
quantitative structure. For instance, for a Bayesian network, it means determining the
structure of the DAG and the values in the CPDs. Constructing the structure of a PGM
of reasonable size requires a massive effort by qualified people. Koller et al. give the order
of magnitude of a few weeks or months for the time required to determine the structure
of a large network [KKIF09]. It could be hard to interrogate these qualified people. Worse,
they could not exist, as some systems have no experts with sufficient knowledge to specify
the distribution that rules it. Also, the distribution may change over time. The effort of
designing the knowledge representation with humans is not viable if it must be reproduced

on a regular basis.
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The interests of performing machine learning on KRR techniques

However, with the major advances in data-driven machine learning, the use of knowledge
representation is questionable. We can wonder how KRR techniques are relevant, while at
the same time, data-driven machine learning can produce a structure that would answer the
same question with fewer efforts. Still, knowledge representation and reasoning methods keep
some of their benefits compared to data-driven machine learning. Brachman et al. claim
that KRR-based systems are easy to debug, modify, and explain [BLO4]. In the context of
modeling complex systems, these benefits are essential. As precise as the decisions taken
from data-driven machine learning techniques can be, most of them are black boxes, which

can be prejudicial during use.

Moreover, learning a KRR-based model would technically be quicker and require fewer data
than data-driven machine learning techniques, such as deep learning algorithms. Cozman
et al. list ten reasons why KRR may enhance data-driven machine learning [CM21] that
can be summarized in three categories. First, including the KRR techniques in data-driven
machine learning would allow the integration of biases in the learning task to fasten it (e.g.,
for the cold-start problem) or prevent unwanted behavior (such as discriminatory ones). If
biases are non-granted in artificial intelligence tasks, those included in KRR techniques are
supposed to correct biases already in the data. Second, it grants a better understanding of
the algorithm operations. Indeed, from the system designer’s point of view, it is a way to turn
artificial intelligence easy to debug. Modifications on the model are easier as the knowledge
representation (e.g., a DAG) is fully intelligible. From the system users’ point of view, it
increases the comprehension of the modeled system. Finally, because KRR techniques require
fewer data, it means that the energy consumption of knowledge-enhanced machine learning

would be lower than data-driven approaches.

The learning task for a Bayesian network

Bayesian networks can either be seen as a KRR technique or a machine learning model. The
former use of BN was representational. The parameters and the structure of the BN were
supposed to be known. However, the increased amount of data has brought BN to machine

learning to fit the available data better.

The model learning of a Bayesian network consists of two different tasks: parameter learning
and structure learning [DSA11]. On the one hand, learning parameters of a Bayesian network
consists in learning the values in the CPDs of the model, supposing that the structure is
known. On the other hand, structure learning corresponds to the search for the best structure

of the DAG on which the Bayesian network relies.

In this work, we restrict model learning to parameter learning. The structure learning task
broadly consists of an iterative version of parameters learning on multiple DAG structures.

We will see in the following that the computations induced by parameter learning can already
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be hard to compute. Including these calculations as subroutines would ineluctably lead to
an intractable process. Therefore, we suppose that the structure of the DAG is known and

that it will not change over the parameters learning task.

Quick look at deeper inclusions of knowledge in machine learning techniques

Achieving BN model learning is an important inclusion of machine learning techniques in
knowledge representation, but other techniques go even deeper. This quick overview is a
footpath into another research domain called Statistical Relational Learning (SRL). SRL
regroups algorithms that use machine learning techniques for knowledge reasoning on systems
whose knowledge is composed of a complex relational structure. We roughly decompose SRL

into two categories.

On the one hand, we present SRL approaches based on logical programs. The main model in
this category is Inductive Logic Programming (ILP). ILP consists of logic programs extracted
from a set of positive and negative examples, given an encoding of the knowledge of the system
[Mug91]. The knowledge of the system is encoded using Horn clauses. It entails the KRR
basis of ILP. The positive and negative examples in a logical database of facts and the logic
programs generated by ILP are hypotheses on the knowledge that are inductively inferred
from positive and negative examples. This is the machine learning part of this category of
programs. ILP has been extended to probability theory with Probabilistic Inductive Logic
Programming (PILP) [DRKO08|. In PILP, the three kinds of uncertainty in KRR reported
in Section 3.1.1 are considered thanks to the probability theory. Other logical-based SRLs,
such as Bayesian Logic Programs, fully describe the knowledge representation from a set of
textual relations between the model variables and are then subject to machine learning from
data.

The other approach for SRL is based on Probabilistic Relational Models (PRMs). PRMs use
first-order logic to represent knowledge thanks to PGMs |[GFK " 07]. The naive approach
to using data to enhance a PGM is to perform model learning on the PGM from the data.
However, the knowledge representation emphasized by the structure of the PGM would be
lost, as model learning would imply a new structure. The idea behind PRMs is to define a
higher-order structure with logical relations that cannot change even with model learning.
Then, PRMs are composed of constraints that summarize the knowledge representation and
that will impact model learning. For example, Relational Bayesian networks (RBNs) are
PRMs. A relational Bayesian network considers a set of relations between its variables and
represents them with a Bayesian network [JacO1]. The main purpose of RBN is that the
relations can be the same between different variables: at a high range, it defines classes of
relations that are learned together. Other SRL techniques have been developed on other
PGM than Bayesian networks, such as Markov Logic Networks, which use Markov networks
[RDO06].

Both logical and graphical-based SRL methods are designed to enhance the symbolic reasoning
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in KRR with data-driven methods. For instance, Jaeger compares Graph Neural Networks,
which are data-driven deep learning techniques, with RBNs [Jac22|. He deplores that the
interpretability of neural networks is way more difficult to apprehend for a human than that
of symbolic representations, even if computational performances of GNN are better than
RBN ones. Inclusions of KRR into data-driven machine learning techniques are promising

approaches for developing interpretable models of uncertainty-prone complex systems.

3.3.2 Parameter learning from fully-observed variables

Parameter learning is an essential task for Bayesian networks, as it is the first footpath
to bring them from KRR techniques to machine learning models. First, we focus on the
parameter learning task for the Bayesian network when the data are complete, that is to say
when all the BN variables are fully observed. The data on the model give all the information
on the BN variables. We denote D, the data on the distribution represented by the BN.

Maximum likelihood estimate

The Maximum Likelihood Estimate (MLE) is the most common approach when all variables
are observed. The MLE is a statistical estimator of the parameters: for each possible event,
the estimated probability P of the event is computed from its appearing frequency in the

database.
- - - 0L(D|O) /4
P(X; = zi|Pay, = x;) = GML,CE where H%LkE verifies 89(’) (9%%]3) =0 (3.22)
i’j’k
In Bayesian networks, the MLE of parameters {9i7j7k}ij ,, can be written as a quotient of
counts of events, as reported in Property 3.3.1.

Property 3.3.1 (Maximum likelihood estimate of the distribution in a Bayesian network).

In a Bayesian network, the maximum likelihood estimate of 0; ;. can be expressed as

W S Ny

with N; j . the count of events in the database where X; = x) and Pay, = x;.

R N
HMLE _ 1,5,k (323)

The set of counts {Ni,j,k:}(

as these counts give all the information required on the parameters of the network.

ij.k) Are also called the sufficient statistics of the Bayesian network,

Maximum A Posteriori

Another approach to parameter learning from complete datasets is Bayesian estimation.
The principle of Bayesian estimation of the network parameters comes from the Bayes
rule. It expresses the posterior distribution of parameters P(6|D) as a function of the prior

distribution of parameters P(#), related with the Bayes theorem — see Definition 3.2.6.
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P(8|D) x P(D|0)P(0) (3.24)

Because the distribution describing the dataset D is a multinomial law, we assume the prior
distribution is a Dirichlet distribution. We introduce Dirichlet coefficients «; ; for each
entry in the CPDs. The prior distribution is then:

PO) < TTTTIT 60 (3.25)
i j k

If the dataset is composed of fully-observed i.i.d. samples, then the posterior distribution is
also a Dirichlet distribution [KKXF09].

PO D) o [TTTTT 0 (3.26)
T 7 k

The parameters of the Bayesian network can be computed from the Maximum A Posteriori

(MAP) estimation of the posterior distribution described in Equation 3.26.

A . . OP(6|D) /4
P(X; = z;|Pay, = x;) = G?fﬁp where Gi\fﬁp verifies LH <0%{}f) =0 (3.27)
i’j’k
Such as the MLE approach, the MAP of 6; ;. can be written as a quotient of the counts of

events and the Dirichlet coefficients, as reported in Property 3.3.2.

Property 3.3.2 (Maximum a posteriori of the parameter distribution in a Bayesian network).

The mazimum a posteriori of 8; ;. can be expressed as

!
AMAP _ Niajak (328)

i7j7k !
2 N

with Y, j, k, N'/,j,k =N;jr+a;jr—1.

(2

The MAP approach is equivalent to the MLE approach when the Dirichlet coefficients are all
equal to one. In practice, the Dirichlet coefficients {c ;}, e can be interpreted as the prior

belief an expert can give on parameters. The MLE approach then supposes no prior belief.

3.3.3 Parameter learning from missing data

Nevertheless, in the majority of situations, some data are missing. Missing data can relate
to observable or hidden (or latent) variables. Missing data on observable variables would
mean that the state of these variables could have been specified. On the contrary, hidden

variables are never observable: data cannot be collected on these variables.

In practice, the missing data can be categorized into three different natures:
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e The probability of missingness of Missing Completly At Random (MCAR) data does
not depend on the dataset.

e The probability of missingness of Missing At Random (MAR) data does depend on
the observed part of the dataset.

e The probability of missingness of Missing Not At Random (MNAR) data does depend
on both the observed and the missing parts of the dataset.

Deletion techniques

Naturally, the available techniques for learning the parameters of a BN depend on the nature
of missing data. When missing data are MAR or MCAR, all the information required for
parameter learning is contained in the database D. The usual approach in such cases is to
return to the task of parameter learning on a complete dataset by deleting incomplete rows
of data. These deletions are called direct deletions, as we remove any entry of the database
that is not complete. Factorized deletion can also be employed. With this approach, for each
CPD, factorized deletion techniques consider every entry in the database where all variables
concerned by the CPD are observed. These techniques are said to be inference-free. They

do not require inference in the network to be performed.

However, when data are MNAR, the information contained in the database is not sufficient
to learn the parameters of the model from deletion. The MNAR property implies every
row has a missing value. The number of exploitable rows from direct or factorized deletion

techniques would be reduced to zero.

The Expectation-Maximization algorithm

When data are MNAR, the parameter learning task requires using inference techniques. The
most popular algorithm using inference to perform parameter learning is the Expectation-
Maximization (EM) algorithm. The EM algorithm was introduced by Dempster et al.
[DLR77|. It is an iterative algorithm relying on two intuitive principles to find the model
parameters that lead to a maximum likelihood. First, when the model parameters are known,
it is possible to derive the state of every variable given the state of its adjacent variables.
Conversely, when the state of every variable is known, then finding the parameters that
maximize the likelihood is easy. These two principles, respectively called E-step and M-step,
are applied successively in the EM algorithm. In the E-step, the state of the hidden BN
variables is computed from the BN parameters and the state of observed BN variables. In
the M-step, the BN parameters are computed from the distribution of all BN nodes. We
detail the implementation of the EM algorithm, which alternates between the E-step and
the M-step, in Algorithm 3.4.

We detail the principles of the EM algorithm, as it is one of the main algorithms employed
in our thesis work. Let be f the probability density associated with the dataset x = (y, z)
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Algorithm 3.4: Expectation-Maximization algorithm in Bayesian network B

Data: Initial set of parameters 8°, partially observed data D, number of EM

iterations Ngum

Result: 6

1 fort=0,.., Ngydo

2 % E-step

3 fori=1,...,N do

4 for each x;,u; € Val(X;, Pag’;i) do

5 | Mlzi,ui) 0

6 end

7 end

8 form=1,....M do

9 Run inference on <Q , 0t> with evidence D,,
10 fori=1,....N do

11 for each x;,u; € Val(X;, Pa%i) do
12 | Mlws,ui) ¢ Mlzi,wi] + Pz, u; | D)
13 end

14 end
15 end
16 % M-step

17 fori=1,...,N do

18 for each x;,u; € Val(X;, Pa%i) do

20 end
21 end
22 end

where y are data on observed variables and z are data on non-observed variables. Let be g
the probability density that describes the observed data y with o-finite measure dy. The
objective of the EM algorithm is to find optimal parameters 0 maximizing the likelihood

6 = argmaxg L(0). The likelihood in the context of missing data is defined in Equation 3.29.

L(6) = log g(4]6) = log / f(y, 218)dz (3.20)
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We introduce k(z|y,0) = f(x|0)/g(y|@), the conditional probability density of z given y
according to a o-finite measure dz. The mathematical idea behind the EM algorithm is to
replace the maximization of the likelihood function of f with the successive maximization of

conditional expectations Q(6*,80) defined in Equation 3.30.

Q6",0) = / log(f(216%))k(21y, 0)d (3.30)

At the r-th iteration of the EM algorithm, the two steps are then:

e E-step: computation of the expectation Q(8,0") where 8" are the model parameters

at iteration r of the EM algorithm.

e M-step: update of the model parameters such that 8" = arg maxg Q(0, ") thanks
to the MAP parameter distribution, defined in Equation 3.28.

These two steps are repeated until convergence. The likelihood increases between two
successive iterations of the EM algorithm: L(6" 1) > L(@") [Wu&3]. Moreover, the likelihood
will not change anymore once the convergence point of the EM algorithm is reached, as

reported in Property 3.3.3.

Property 3.3.3 (Convergence of the EM algorithm).

LOH = L(O") <= Q(0"1,0") =Q(6",0") (3.31)

Stochastic approaches of the EM algorithm

Nevertheless, the computation of the expectation ) requires the exact inference of the joint
posterior distribution. The computation of the conditional probability density k can be too
complex to handle. In such circumstances, the E-step of the EM algorithm is not tractable.
Stochastic versions of the EM algorithm have been developed to tackle the computational
cost of the joint posterior calculations during the EM procedure [CCD95]. They rely on the

sampling of the joint posterior distribution to perform the E-step.

Stochastic Expectation-Maximization (SEM) is a stochastic version of the EM algorithm
that replaces the computation of the density k(z|y,8) in the expectation Q(6,0") with the
sampling of z" of the non-observed variables according to the conditional probability density
k(z]y,@") [CD88]. Then, it updates the model parameters from the pseudo-complete samples
"= (y,2").

Wei and Tanner have proposed a Monte-Carlo approach to the EM algorithm, called the
Monte-Carlo Expectation Maximization (MCEM) algorithm [WT90]. Its implementation is

given in Algorithm 3.5.

In practice, the MCEM algorithm corresponds to the EM algorithm with a Monte-Carlo
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Algorithm 3.5: Monte-Carlo Expectation-Maximization algorithm in Bayesian

network B

Data: Initial set of parameters 8°, partially observed data D, number of EM

iterations Ngy, number of samples Ngamples

Result: 6°
1 fort=0,...,Ngy do
2 % E-step
3 fori=1,...,N do
4 for each x;,u; € Val(X;, Pag(i) do
5 ‘ Mlxi,w;] + 0
6 end
7 end
8 form=1,..,.M do
9 Initialize P(*)(X) randomly.
10 X = MOMC(PO(X), T, Noamples)
11 Add x,, to dataset Dyiomc
12 end
13 % M-step
14 fori=1,....,N do
15 for each x;,u; € Val(X;, Pag(i) do
16 fjﬁl Mﬁ[x[u‘}]
17 end
18 end
19 end

approximation of the E-step. The computation of the expectation Q(8,0") is replaced by an
empirical expectation Q,+1(0,0") that is computed from m samples of z from the conditional
probability density k(z|y,0"). Then, at each iteration r, the MCEM algorithm consists of
the following steps:

1. We generate i.i.d. samples {z"(1),...,2"(m)} from the conditional probability density
k(zly, 0")
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2. We update the approximation @Q,+1(8,0") of the expectation Q(0,60") with

Q10,67 = — > log £y, (7)10)
j=1

3. We update the model parameters with

0" = argmax Qr11(6,6")

The MCEM algorithm is central to our thesis work. The model we have developed is prone to
scarce data. Performing exact inference in this context is extremely challenging, as reported
in Chapter 5. Consequently, the MCEM algorithm sounds like the right choice for parameter

learning.
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3.4 Discussion

In conclusion, Bayesian networks provide a powerful framework for knowledge-enhanced
machine learning. They allow us to reason about uncertain knowledge representation and
make predictions based on incomplete or noisy data. By using probability theory to represent
uncertainty and by using PGMs to model the conditional dependencies between variables,
we can create compact and intuitive models that can be used to make predictions in various
real-world applications. We also highlighted BNs could be pushed further to include machine

learning in knowledge representations more deeply.

In this chapter, we introduced the basics of Bayesian networks. We have seen how they
can be employed for knowledge-enhanced machine learning applications. We focused on the
different inference and parameter learning techniques that can be used to make predictions
and estimate the model parameters from data. This chapter will serve as a useful introduction
to Bayesian networks and provide the keys for developing a knowledge-enhanced machine

learning framework for student modeling.
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CHAPTER

E-PRISM, a framework for student modeling

In this chapter, we introduce the E-PRISM framework, which stands for Embedding Prereq-
uisite Relationships In Student Modeling. E-PRISM is the core of our thesis work.

The motivation for developing E-PRISM is to provide a knowledge-enhanced machine learning
framework that mobilizes symbolic and data-driven techniques for Intelligent Tutoring
Systems (ITS). E-PRISM is designed to fit into a wide range of ITS. It aims to establish the
connection between the data from learner traces and the models that can be extracted from
the domain knowledge of experts. As a framework, it provides a structure for the elements of
student modeling corresponding to a sort of overlay description. It supports the objectives
of the I'TS it is integrated into, such as diagnosing and predicting the learners’ knowledge
states. E-PRISM is an original contribution in its ability to embed prerequisite relationships

within the learner model and exploit them for diagnosis and prediction.

Building trust and confidence in the models, especially regarding education, is essential for
enabling teachers and learners to understand better how the models make recommendations
and provide feedback. We have highlighted the interpretability gain of using Bayesian
networks for knowledge-enhanced machine learning in Chapter 3. Consequently, ICI-based
Bayesian networks, particular types of Bayesian networks, will be the basis for building the
E-PRISM learner models. We specifically focus on how this can improve the interpretability
of the models.

Moreover, one of the main contributions of the E-PRISM framework is the integration of
prerequisite relations into the learner model. By incorporating these prerequisite relations
into the student models, we show how E-PRISM can provide insights into the effective

application of domain knowledge into learners’ knowledge developed over time.

7T
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4.1 Components of the E-PRISM framework

First, we introduce the components of the E-PRISM framework. Specifically, we explain
how E-PRISM modelizes domain and learners’ knowledge in ITS. E-PRISM is inspired by
an overlay learner model that would assume the learner’s knowledge is a domain knowledge
subset. We also describe the architecture of E-PRISM, which is designed to be modular
and easy to implement in an ITS. The architecture allows for integrating a custom domain

model, enabling flexible and customizable student modeling with the E-PRISM framework.

4.1.1 A framework for modeling student in ITS

E-PRISM implements two models as an overlay learner model, in which the learner model
relates to a domain model. We present the details of the domain and learner models in
E-PRISM. Notably, we point out how it is designed to support the integration of multiple
data sources, such as student interactions with the ITS or performance on assessments. We
discuss the constraints on its structure to ensure that it aligns with the description of overlay

learner models provided in Chapter 2.

Domain model

In overlay learner modeling, the domain model is the basis for defining the learner model,
as reported in Section 2.1.1. In the E-PRISM framework, the domain model entirely relies
on the decomposition of the domain knowledge into Knowledge Components (KCs). We
suppose the modeled KCs follow the definition given by Koedinger et al. in the Knowledge-
Learning-Instruction (KLI) framework [[XCP 12|, detailed in Definition 2.1.2. This is one of
the ITS constraints implied by using the E-PRISM framework. The KCs in the E-PRISM
domain model have a monitored granularity. We assume they can be attached to minimal
tasks to assess their mastery. We will see in Section 4.1.2 that this is the source of another

assumption on the relationship between KCs and instructional resources.

The domain model of the E-PRISM framework also contains information on the relation-
ships between the KCs. We have seen in Chapter 2 that some ITS consider different KC
relationships. In the E-PRISM framework, only the prerequisite relationships are considered.

We define the deterministic prerequisite relationship in Definition 4.1.1.

Definition 4.1.1 (Deterministic prerequisite relationship). Let 2 and B be two knowledge
components. There exists a deterministic prerequisite relationship from A to B if the mastery
of B implies the mastery of A and the non-mastery of A implies the non-mastery of B. A is
said to be the parent of B, and B is said to be the child of 2 in the sense of the prerequisite

relationship.

Definition 4.1.1 describes the prerequisite relationship as a deterministic order between
knowledge components. Thus, the prerequisite relationships considered in the E-PRISM

framework can be visualized as a directed symbolic graph. The vertices would be the KCs,
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and there would be an edge for each prerequisite relationship from the prerequisite KC to
the postrequisite KC. Such a graph draws a picture of the domain knowledge similar to
the skill graph usually employed in Competence-based Knowledge Space Theory (CbKST)
[HSHAOG], which is a variant of the Knowledge Space Theory (KST) [DF12].

Notation 4.1.1 (Parents and children in the prerequisite structure). Let X be a knowledge
component. We denote Npgrents(X) (resp. Nenitgren(X)) the number of X’s parents (resp. the
number of X’s children), i.e., the number of X’s prerequisite KCs (resp. the number of X’s

postrequisite KCs).
o The set of X’s parents is denoted Pay = {Paxi|i € [1, Nparents(X)]};

e The set of X’s children is denoted €hy = {€hxi|i € [1, Nenitdren(X)]}-

Learner model

The proper learner model in overlay modeling traces the learner’s knowledge by defining
it regarding the domain model. In the E-PRISM framework, we suppose the learner’s
knowledge is a subset of the domain knowledge. Because the E-PRISM domain model
consists of KCs, we define the learner’s knowledge by assuming the learner’s mastery of
each KC is represented with a binary random variable. KCs can either be mastered or not
mastered by students. In practice, the learner’s knowledge is described with a set of mastered
KCs and a set of not-mastered KCs. For a knowledge component X, we then introduce a

binary random variable X which takes its values in {—z, +z}.

”

Notation 4.1.2 (Mastery events). For any knowledge component X, we denote “X = +x
the event “The knowledge component X is mastered” and “X = —x” the event “The knowledge

component X is not mastered”. X is the random variable associated with the mastery of the

KCXx.

As explained in Chapter 3, uncertainty must be considered when studying the learner’s
knowledge. We then measure the learner’s mastery of a particular KC X with the marginal
distribution P(X). The learner’s knowledge state is fully described by the distribution P(X)

where X is the vector of random variables associated with the mastery of every KCs.

Besides the uncertainty of the KC masteries, depicted with probability theory, we assume
there is also uncertainty in the effect of the prerequisite relationships described in the domain
model. Thus, we consider prerequisite relationships probabilistic rather than deterministic
in the E-PRISM learner model. We define the probabilistic prerequisite relationship between

two knowledge components in Definition 4.1.2.

Definition 4.1.2 (Probabilistic prerequisite relationship). Let 2 and B be two knowledge
components. Let A and B be the binary random variables attached to their mastery by a

learner. We assume the existence of the prerequisite relationship A — B. The probabilistic
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prerequisite relationship A — B can be defined with the two following inequalities:

P(B=-b|A=-a)>0 P(A=+a|B=+b) >0

We remark that the deterministic prerequisite relationship is a particular case of probabilistic
prerequisite relationship where the mentioned probabilities are P(B = —b | A = —a) = 1 and
P(A = +a | B =+b) = 1. The probabilistic description of the prerequisite relationships
gives a first glimpse of the Conditional Probability Distributions (CPDs) ruling the E-PRISM

learner model.

The main purpose of the learner model in the E-PRISM framework is to diagnose the learner’s
knowledge state, which can be derived from inference. We detail the mathematical formulation
of the E-PRISM learner model in Section 4.2, and we particularly focus on the tasks of
inference and parameter learning in Chapter 5. Overall, E-PRISM is designed to provide the
domain and learner models for I'TS but is not concerned with teaching and communication
models. E-PRISM can be integrated with existing teaching and communication models, or

new ones can be developed to work with E-PRISM.

4.1.2 A multilayered organization of E-PRISM components

The structure of the E-PRISM framework is, in practice, more complex than a decomposition
into the domain and the learner models. Indeed, the information contained in tutoring
systems goes beyond the elements described until now. E-PRISM relies on a multilayer
organization of its elements. In particular, we differentiate the resource, domain, and learner

layers. Figure 4.1 is the UML diagram representing the E-PRISM framework.

The E-PRISM framework has been developed as an open-source Python package, freely
available on GitHub'. This diagram provides a detailed overview of the main functionalities
of the package, which provides tools and resources for building student models in ITS.
E-PRISM is a Python package describing the elements of usual learner models in ITS with
pythonic objects. It offers a flexible and robust framework for building student models in

ITSs, and Python makes it easy to use and extend for researchers and developers alike.

Resource layer

First, the resource layer relates to the content of the ITS onto which E-PRISM would
be applied. This content is composed of static or interactive learning resources on which
students learn the domain concepts or practice their skills. For instance, the interactive
resources regroup the exercises a student can realize on the ITS. The ITS to which E-PRISM

is applied is supposed to rely on interactive exercises: a student can answer questions of the

"https://github.com/olivierallegre/e-prism
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Figure 4.1: UML diagram of the E-PRISM framework architecture. The framework is
decomposed into three layers that interact with each other: the resource layer, the domain
layer, and the learner layer.
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exercise, and she gets feedback from her answer. Nevertheless, these interactive resources can
be associated with static resources that aim to provide students with the required knowledge,

such as classic lectures or videos on the corresponding subjects.

The E-PRISM framework stores the characteristics related to each element of the resource
layer. It may also contain every hierarchical link between its elements, relating to the
organization of resources in the educational context. For instance, in an ITS designed to
follow the instructions from the Department of Education, the hierarchical structure would
describe the advised learning program. While the resource layer in this work will only be
composed of exercise objects, we can assume it can be augmented by relationships one can
encounter in frameworks like Knowledge Graphs [HBC"21] in the future. For example, the
hyperlinks between the resources or the similitudes between the content of the resources
could be considered. Overall, the resource layer contains the additional information induced
by the environment of the ITS in which E-PRISM would be applied.

In this work, we use a minimal resource layer as we want our results to be as general
as possible and potentially applied to numerous ITS. The resource layer is then uniquely

composed of exercises on which learner traces are collected.

Domain layer

The domain layer embraces the domain model. As reported in Section 4.1.1, the E-PRISM
framework assumes the decomposition of domain knowledge into knowledge components.
Each KC is represented in the domain layer with its proper characteristics, which are, in our

context, IDs and names.

The KCs in the domain layer are related to exercises in the resource layer. We assume that
every question is related to a unique knowledge component. Our work relies on this major
hypothesis, which becomes a constraint for the ITS to which E-PRISM is applied.

The prerequisite relationships between KCs are also stored in the domain layer. They are

represented symbolically, as the domain model is supposed to represent the ideal knowledge.

Learner layer

The learner layer encompasses the learner model attached to every student. Students are the
users of the I'TS to which the E-PRISM framework is applied. The learner layer then regroups
all the information on them. We associate learners in groups and assume the learners of the
same group share the same learner model to simplify the students’ modeling. This approach
can be interpreted as a stereotypical approach to the learner model, a sub-type of overlay
model discussed in Section 2.1.1. Each learner is associated with a unique learner model,
depending on the learner’s characteristics. Her knowledge state is also stored in the learner

layer. It represents the mastery of every KCs in the domain layer with a probability vector.
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Learner models do not only contain the parameters associated with the attached learners
but also those associated with each other layers’ element depending on learners, such as
learner-individualized exercise parameters [YKG13] or learner-individualized KC parameters
[PH11]. The learner model is attached to two private methods. These methods are the
machinery allowing to compute predictions in E-PRISM. They correspond to the machine
learning techniques employed to perform the update and prediction equations depicted in
Figure 2.1. They aim to answer two queries in the framework. First, determining the learners’
knowledge states over time from their traces on the ITS with the cognitive_diagnosis

method. Second, predicting the learners’ future performance with the predict method.

In addition, the learner layer contains the learner traces collected on the I'TS. Each trace
relates to a learner and an exercise in the resource layer. Using the predictive methods of
the learner model with the traces of a particular learner allows updating her knowledge state
from her learner traces with the update method. The E-PRISM framework can process the

data practically to perform computations.
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4.2 Detailing the implementation of the E-PRISM learner

model

Student modeling is essential for providing I'TS with personalized feedback functionalities.
Designing effective instructional interventions requires diagnosing learners’ current knowledge
states and predicting their future performance. In E-PRISM, the learner model is responsible
for updating learners’ knowledge states based on new data, such as their interactions with

the system or performance on assessments.

This section provides an in-depth look at the learner model in E-PRISM. First, we detail the
modeling of the causal effect of the KC prerequisite structure on the learners’ knowledge state
at a fixed time. We discuss the use of ICI-model Conditional Probability Distributions (CPDs)
to represent the relationships between KCs. These CPDs help modeling the prerequisite
structure of domain knowledge through highly interpretable parameters. We compare our
model with usual relationship modeling approaches to elaborate on its main benefits. Second,
we explain how these CPDs are integrated over time using Dynamic Bayesian Networks
(DBNs). DBNs enable the modeling of student knowledge’s evolution over time and provide
a comprehensive representation of student learning. Finally, we discuss the benefits and

downsides of the approach of the E-PRISM framework for learner modeling.

4.2.1 Knowledge modeling at fixed time

First, we focus on modeling the causal effect of prerequisite relationships in the E-PRISM
framework, assuming a fixed point in time. In the first place, we assume time is invariant:

we will not consider the temporal dimension of the knowledge state.

Under this assumption, we can represent knowledge states using a set of Nk¢ binary random
variables, where Nkc is the number of KCs in the domain model. Each KC X has a
corresponding variable, X, representing the learner’s mastery of X. This approach allows us
to model the mastery of each KC separately and examine the relationship between them at

a fixed point in time.

Naive Bayesian network approaches for prerequisite relationship modeling

We have seen in Chapter 3 that Bayesian Networks (BNs) are PGMs commonly used to model
complex systems. BNs rely on the probability theory and represent the set of dependencies
between the modeled variables with a directed graphical structure. Therefore, they are
widely used to represent systems exhibiting causal probabilistic relationships. The main
advantage of BNs is that they offer great readability for users. Moreover, BN parameters have
considerable interpretability as they are directly related to a tangible conditional probability
[MBL21].

The naive approach for modeling prerequisite relationships using a Bayesian network would
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be constructing a Direct Acyclic Graph (DAG) composed of a vertex for the mastery of each
KC and an edge for each prerequisite relationship between two KCs. Definition 4.1.2 defines
prerequisite relationships regarding two conditional probabilities. For a given KC X, the
random variable X is either dependent on the random variables that represent the mastery
11, Nparenss ()]0 With probability distribution P(X|Pay), or on

the random variables representing the mastery of its children Chy = (Chx ;), €11 Noniiaren (X)]°

of its parents Pay = (Pax )

with probability distribution P(X|Chy). In the BN supposed to represent the prerequisite
relationships between KCs, the choice between these two points of view expresses the chosen
causality represented by the network structure. The representation either entails the “parents

to children” or the “children to parents”’ causality.

This work assumes the “parents to children” causality, corresponding to the common approach

for prerequisite relationships. The naive Bayesian network approach for modeling prerequisite

relationships with the “parents to children” causality would have 2Vearents(X) parameters for
p b y b

each KC.

Example 4.2.1 (Naive BN with the “parents to children” causality). Let be three knowledge
components A, B, and € such that there are two prerequisite relationships A — € and B — €.
We introduce a naive Bayesian network that models A, B, and C (which are respectively
the random variables encoding the mastery of A, B, and &). The BN represents the effect
of their prerequisite relationships with arcs from parents to children. In Figure 4.2, four
parameters are needed to model the prerequisite relationships between KCs. These parameters

are the conditional probabilities of C' given the possible configurations of A and B.

A | B P(C|A, B)
0 0 a4
0 1 ao
1 0 (06}
1 1 Ay

Figure 4.2: Naive Bayesian network that would represent the mastery of KCs 2, B, and €
with prerequisite relationships 2l — € and 8 — € in the causality “parents to children”. The
table attached to it is the corresponding CPD that fully describes the variable C.

Still, we notice the possibility of rather considering the “children to parents” causality for

the prerequisite structure. The BN would then have 2Nenitaren(X) parameters for each KC.

Example 4.2.2 (Naive BN with the “children to parents” causality). We suppose the domain
model is the same as in FExample 4.2.1. The naive Bayesian network that models the mastery
of A, B, and € and the effect of their prerequisite relationships with the “children to parents”
causality is represented in Figure 4.5. The parameters associated with the prerequisite

structure are the conditional probabilities of A and B given the state of C.
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C P(A|C) C P(BIC)
0 Qac,1 0 0Bc,1
1 OaC,2 1 Ogc,2

Figure 4.3: Naive Bayesian network that would represent the mastery of KCs 2, B, and €
with prerequisite relationships 2l — € and 8 — € in the “children to parents” causality. The
tables attached to it are the CPDs that fully describe the variables A and B.

Clause of independence of causal influence to reduce the number of parameters

Whatever the chosen causality, naive Bayesian network modeling leads to a large number of
parameters when applied to a domain model containing various prerequisite relationships.
The number of parameters in the BN exponentially grows with the number of parents. This
could induce difficulties in performing tractable inference about the state of the model
variables. From a computational perspective, using classic tabular CPDs without constraints

could cause troubles when updating the learner model.

We saw in Chapter 3 that the CPDs of a Bayesian network could be constrained to reduce
the number of parameters and, consequently, enhance the tractability of the inference and
parameter learning tasks. We hypothesize that the model follows the clause of Independence
of Causal Influences (ICT) for modeling prerequisite relationships. ICI models aim at reducing

the number of parameters needed to specify CPDs [HB96] — see Section 3.1.2.

We recall the main principles of ICI-model CPDs by comparing them to the naive Bayesian
network approach for modeling prerequisite relationships. Consider a naive Bayesian classifier
between latent random variables (X;);c[1,n] and an observable variable Y with a standard

tabular CPD. This BN is represented on the left in Figure 4.4, and relies on 2V parameters
(Oéz‘)z‘e[[mN]]-

On the other hand, ICI models integrate an auxiliary variable for each “cause” variable and
define the “consequence” variable as a deterministic function of these auxiliary variables.
This approach assumes that there are no interactions among the causal mechanisms by
which the “cause” variables affect the value of the “consequence” variable. The auxiliary
variable introduced by an ICI model between a cause variable X; and a consequence variable
Y is usually denoted Zy;. The CPD of each random variable is defined as a deterministic
function of the causal influences from its parents through variables (Zy;);. The ICI-model
CPD is elicited in Definition 3.1.15. The Bayesian network with ICI-model CPDs modeling
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the naive Bayesian network dependencies is represented on the right in Figure 4.4. It relies

on 2N parameters (s;, ¢i)ic[1,N]-

with for every i e [1, n],

Xi PziX)

X4 Xn | POYIXy, ..o X))

Figure 4.4: Comparison between the naive Bayesian network classifier representing the
causal influence of the variables (X;); on Y (on the left), and the equivalent Bayesian network
based on an ICI model (on the right). The double line represents that Y is defined as a
deterministic function of the (Zy;;);.

When modeling prerequisite relationships with ICI-model CPDs, the number of parameters
in the ICI-model CPD will depend on the chosen causality. For the “parents to children”
causality, the ICI-model CPD of a variable X associated with the KC X would have
2Nparents(X) parameters. Reciprocally, for the “children to parents” causality, the ICI-model
CPD of a variable X associated with the KC X would have 2Npjidren(X) parameters. The
number of parameters of an ICI-model CPD is at most linear with the maximum number of
parents in the domain model. This highlights the interest in ICI-based Bayesian networks in

terms of interpretability.

Notation 4.2.1 (ICI-based Bayesian network). We call “ICI-based Bayesian network” every
BN for which an ICI model CPD models every variable.

4.2.2 Motivations for choosing the causality

The choice of causality when instantiating the ICI-based Bayesian networks modeling the
prerequisite relationships not only influences the number of parameters in the learner model
but also determines which deterministic function to use in the ICI-model CPD. The CPDs
in ICI models are indeed applications of a deterministic function to the auxiliary variables
representing the causal influences of parents. We have presented the main deterministic
functions used in ICI models in Table 3.1. The function to use depends on the causality

chosen to represent the prerequisite relationships between KCs.

We first present the Noisy-AND gate, an ICI-model CPD with an AND deterministic function
that models prerequisite relationships with the “parents to children” causality. Then, we
present the Noisy-OR gate, an ICI-model CPD with an OR deterministic function that
models prerequisite relationships with the “children to parents” causality. Finally, we explain

why we have opted for Noisy-AND gates.
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Noisy-AND gate

Let X be a KC attached with the random variable X representing the learner’s mastery of X.
The deterministic definition of a prerequisite relationship states that for each parent ‘Bay ; of
X, the non-mastery of Pay; implies the non-mastery of X. We have Vi, (Pax; = —pa;) =
(X = —x). The probabilistic prerequisite relationship definition adds there exists a positive
probability that this implication is not effective. This can be interpreted as a deterministic
AND function applied to the causal influence of each parent. As a result, if any parent of
X is not mastered, it is highly probable X will not be mastered as well. The mastery of X
would be modeled as an AND function of the auxiliary variables representing the causal

influence of each parent Pax ;. We call this model Noisy-AND gate.

We define the Noisy-AND gate of X as the Bayesian network Byoisy-anp(X), represented
in Figure 4.5. Byoisy-anND(X) considers variables for the mastery of X and of each of its
parents (Paxi);. It also introduces auxiliary variables which represent the noise on the
causal effect of the mastery of each parent on the mastery of X. For i € [1, Nparents(X)], Zx
is the variable associated to the event “There exists a causal effect of ‘Pax ;’s mastery on X’s
mastery.” In Byoisy-AND(X), Zx,; is the target of an arc from Pax; and the source of an arc
to X.

Figure 4.5: DAG structure of the Noisy-AND gate of X with prerequisite KCs (Pax ).
CPDs that rule the DAG structure are given in Tables 4.1a and 4.1b.

The causal effect represented by Zx ; can be inhibited or substituted [DDO06]|. It is inhibited if
the “cause” on Pax ; no longer induces the consequence on X. We denote gx ; the probability
that there is an inhibitor of the causal effect of ‘Bax ;’s mastery on X’s mastery. This causal
effect is substituted if the “cause” Pax ; is no longer required for the “consequence” X. We
denote s; the probability that there exists a substitute to the causal effect of ‘Bax ;’s mastery
on X’s mastery. The CPD of Zx ; is represented in Table 4.1a. We discuss the interpretability
of these parameters in Section 2.2.4. In the Noisy-AND gate of X, the CPD of X is an AND
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function of all variables (Zx.i)ic[1,Nparents(%)]> T€PTesented in Table 4.1b.

‘ Pax; | P(Zx; = —z | Pax,;) ‘ P(Zx; = +z | Pax,) ‘

‘ pa; I —sx; ‘ Sxi ‘

‘ +pa; qx.i ‘ 1 —gx; ‘

(a) CPD of the auxiliary node Zx ;
Vi, Zxg= 4 | POX = w | {Zxih) | P(X = +o | {Zxi}) |
0 N
o 0 | ! |
(b) CPD of X

Table 4.1: CPDs in the Noisy-AND gate of X.

Noisy-OR gate

On the other hand, Definition 4.1.1 asserts that the mastery of each child €hx ; of X implies
the mastery of X. We have Vi, (Chx; = +ch;) = (X = +x). Definition 4.1.2 introduces a
positive probability that the implication is ineffective. The CPD of a variable X, representing
the learner’s mastery of X, can be interpreted as an OR function applied to the causal
influence of each child €hx ;. If any child of X is mastered, it is highly probable that X will
be mastered as well. The CPD of X is a Noisy-OR gate.

Figure 4.6: DAG structure of the Noisy-OR gate of the knowledge component X with
prerequisite KCs (€hx i), CPDs that rule the DAG structure are given in Tables 4.2a and
4.2Db.

We define the Noisy-OR gate of X as the Bayesian network Bnoisy-or(X), represented in
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Figure 4.6. BNoisy-or(X) considers variables for the mastery of X and of each of its children
Chx,. It integrates auxiliary variables representing the causal effect of the mastery of each
child on the mastery of X. For i € [1, Nehildren(X)], Zx,; is a variable associated to the event
“There exists a causal effect of €hx ;’s mastery on X’s mastery.” In Byoisy-or(X), Zx,; is the

target of an arc from Chy; and the source of an arc to X.

In Noisy-OR gates, the causal effect represented by Zx; is not substituted [DD06]. We
denote gx ; the probability that there is an inhibitor of the causal effect of €hx; mastery on
X mastery. The CPD of Zx; is represented in Table 4.2a. The CPD of X is an OR function
of all variables (Zx ;)ic[1naaren(®)]> TePresented in Table 4.2b.

‘ Chyx; | P(Zx; = =z | Chy) ‘ P(Zx; = 4z | Chx,) ‘
o T o
‘ +ch; qx,i ‘ 1—qx, ‘
(a) CPD of the auxiliary node Zx ;
30, Zxa=+u | P(X = | {(Zeids) | P(X = +a | (Zei)s) |
0 1 | 0 |
o 0 | ! |

(b) CPD of X

Table 4.2: CPDs in the Noisy-OR gate of X.

Choosing the deterministic function

As stated in Section 4.2.1, we have chosen to consider the “parents to children” causality
rather than the “children to parents”’ causality because it sounds like the most intuitive

causality.

Nevertheless, the Noisy-AND and Noisy-OR gate CPDs are quite similar. Consequently,
each technique detailed in the following should apply to the Noisy-OR representation even if
we have decided to drop Noisy-OR gates from this study. The Noisy-OR representation is
notably implemented in the Python package of the E-PRISM framework.

Notation 4.2.2 (Auxiliary variables in the Noisy-AND gate). In the following, we denote
Z % arget, Xsource the auziliary variable between the variables representing the masteries of two
KCs Xsource and Xiarget. The auxiliary variable between the masteries of X and its i-th parent
is denoted Zx ;. The auziliary variable between the masteries of X and its i-th children is
denoted Z; x.
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4.2.3 Modeling the knowledge state dynamics

So far, we have modeled the learner’s knowledge state at a fixed time, including the causal
effect of the prerequisite structure. However, it is necessary to incorporate the time dimension
in the modeling of KC masteries to capture the dynamics of the learning process. We have
seen in Chapter 2 that many learner models already take this approach, such as Bayesian
Knowledge Tracing (BKT) and derivatives [CA94, PHI10, PHI1, YKGI13, KKSG17], or
logistic regression models [CPBV19]. To accurately capture this aspect in our model, we

assume the KC mastery variables to be time-dependent.

Notation 4.2.3 (Temporal random variable for the mastery of a knowledge component).
Let be X a knowledge component. We denote X', the binary random variable associated with

the mastery of X at the timeslice t.

In this section, we discuss how we model the continuity of the mastery of a particular KC.
We wonder how the E-PRISM learner model incorporates the causal effect of the domain
model prerequisite structure into learners’ knowledge states over time. In particular, we will
recall the implications of using Dynamic Bayesian Networks (DBNs) and detail how such a

technique can be used in our context.

Using a dynamic Bayesian network

Building upon the previous discussion on the dynamics of the learning process, we turn to the
use of Dynamic Bayesian Networks (DBNs) to model learners’ knowledge states over time.
DBNs are a powerful tool for modeling dynamic systems as they allow us to capture temporal
dependencies. It particularly fits for modeling the relationship between the knowledge state

of a learner at different points in time.

In this work, we use a stationary DBN. Thus, we assume that the learners’ knowledge states
follow the Markov assumption, meaning that the knowledge state at time ¢ only depends on
itself and the knowledge state at time ¢t — 1 — see Definition 3.1.20. Moreover, we also assume
the system is stationary, meaning that the conditional probability distribution describing

the transition between the knowledge state at time ¢ — 1 and time ¢ is time-independent.

We have defined in Definition 3.1.22 that a stationary DBN can be fully described by a set of
two Bayesian networks (By, B_,). By represents the prior knowledge state at time ¢ = 0, while
B_, models the temporal dependencies between the knowledge state at consecutive points in

time. The following details the implementation of By and B_, composing the learner model.

Initial bayesian network of the learner model

The initial Bayesian network By represents the initial knowledge state of the learner. It
comprises a Noisy-AND gate for each knowledge component in the domain model. These

Noisy-AND gates share common KC mastery variables since prerequisite relationships exist
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between the KCs. The structure of the Noisy-AND gates forms a Bayesian network, depicted
in Figure 4.7. Specifically, the network is composed of a variable for each knowledge

component, as well as the auxiliary variables (Z% i), Nparenss (%)] TOT every KC X.

Figure 4.7: DAG structure of the initial Bayesian network By centered on the variable X°
representing the mastery of a KC X at time ¢ = 0.

Transition bayesian network of the learner model

The transition Bayesian network B_, represents the transition of the learner’s knowledge state
between two successive timeslices. It reports how the knowledge state at time ¢ — 1 influences
the knowledge state at time . Similarly to By, we assume that the knowledge state at time
t is represented by a set of interrelated Noisy-AND gates for each knowledge component of
the domain model. Thus, B_, integrates the auxiliary variables (Z&ﬂ.)ie[l’ Nparents(%)] fOr €ach
KC X.

B_, also considers a variable for each knowledge component of the domain model at time
t — 1. The variable X*~! is integrated to the Noisy-AND gate of X* in the same way as the
variables Pagﬂi for i € [1, Nparents(X)], as a stakeholder that leads to X*. We introduce an
auxiliary variable Tat€ between X~ and X*. T}g represents causal effect between the mastery
of a knowledge component X on two successive timesteps (¢ — 1,¢). It is associated with the
event “There is a causal effect of the mastery of X at timestep ¢ — 1 on the mastery of X at
timestep t.” We assume that the causal effect of the mastery of X between two successive
timesteps can be inhibited or substituted. We denote fx, the probability there exists an
inhibitor of this causal effect, and [y, the probability there exists a substitute for this causal
effect. The CPD of T% is represented in Table 4.3.

XU P =t | XY | P = 4] XY |
e | 1-t I |
R S R

Table 4.3: Conditional probability table of the auxiliary node Tate that representing the
causal effect of X*~1 on X,

The CPD of X' is an AND function on variables T} and {Z% ;| i € [1, Nparents(¥X)[}. We
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represent B_, with a focus on a KC X and its parents and children in Figure 4.8.

\
. leo,s Toe, 0
. m X,Pa, s SX.Pa
IPEX.' fpax‘ q by )

Qxra,» S)(,Pah

o 7

thx Xo SChX_‘.X
QGth' scn“,x

Figure 4.8: DAG structure of the transition Bayesian network B_, centered on the variable
X! representing the mastery of a KC X at any time 0 < ¢t < T.

The transition Bayesian network B_, captures the dynamic nature of the learning process by
considering that the mastery of a knowledge component X at timestep ¢ not only depends

on the mastery of X’s parents but also on the mastery of X at previous timestep ¢ — 1.
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Unrolled representation of the learner model

The DBN of the E-PRISM learner model is fully depicted from the definition of the initial

and transition Bayesian networks. It is a compact description of the DBN.

Example 4.2.3 (Initial Bayesian network and transition Bayesian network). We get back to
Example 4.2.1, which studies the mastery of the KCs 2, B, and €. We represent the initial
and transition Bayesian networks describing the dynamic Bayesian network of the E-PRISM

learner model corresponding to this domain model in Figure 4.9.

Figure 4.9: DAG structure of the initial Bayesian network B and the transition Bayesian
network B_, representing the learner model used to infer knowledge states on the domain
model described in Example 4.2.1 in E-PRISM.

DBNs may have a compact representation, but they can still be considered a large network,
as they can be unrolled to any length. A DBN is essentially the combination of the initial
Bayesian network By and a potentially unlimited number of instances of the transition

Bayesian network B_,.

Example 4.2.4 (Unrolled representation of the learner model’s DBN). The dynamic
Bayesian network described in Example /.2.3 can be unrolled when considering a given
number of transactions from the learner. We represent the unrolled dynamic Bayesian

network of the learner model for three timesteps in Figure 4.10.
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Figure 4.10: DAG structure of the unrolled dynamic Bayesian network representing the
learner model used to infer knowledge states on the domain model described in Example
4.2.1 in E-PRISM. Three timeslices are considered in the example.

4.2.4 Benefits and downsides of the learner model

The learner model in the E-PRISM framework works with dynamic Bayesian networks. It has
several benefits, particularly concerning its parameters. First, we show that using Noisy-AND
gates to represent the evolution of the learner’s knowledge state allows a significant reduction
of the number of parameters. Additionally, we highlight that the parameters in the DBN

improve the model interpretability compared to other machine learning models.

Number of parameters and tractability of the E-PRISM learner model

On the one hand, using ICI-model CPDs drastically reduces the number of model parameters
compared to the classic Bayesian network formulation [ZVD06]. Large Bayesian networks,
specifically the dynamic ones like in Késer et al.’s work [[KIXSG17], potentially imply many
parameters. We showed in Section 4.2.1 that the number of parameters of the CPD attached
with a given knowledge component X changes from exponential dependence with the number
of X’s parents with the classic BN approach to linear dependence with the ICI-model CPDs

approach. Therefore, there is a significant decrease in the number of parameters in the DBN.

For instance, Kéaser et al. also introduce a dynamic Bayesian network to trace students’

knowledge over time. Késer et al. employ classic tabular CPDs in the network, where there
are 2Nvarents(X)+1 parameters for each KC X in the transition BN of the DBN [KKSG17].
On the contrary, the learner model in E-PRISM indeed only relies on 2(Nparents(X) + 1)
parameters for each KC X in the transition BN thanks to the auxiliary variables. Therefore,
the gap in the number of parameters increases with the number of KCs considered in the

model. The difference may skyrocket when multiple prerequisite relationships are considered.
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An enhanced interpretability of parameters

Compared to other machine learning models, the parameters of Bayesian networks are already
highly interpretable. They represent conditional probabilities on potentially well-designed
variables. The parameters of the ICI-model CPDs in the E-PRISM learner model are even
more insightful. Each parameter is only related to a pair of variables due to the clause of

independence of causal influences.

In our model, Iy and fx are the parameters associated with the pair of variables (X*~!, X?)
for t > 0. gx; and sx; are the parameters associated with the pair of variables (Pageﬂ-, X1
for ¢ > 0. The model parameters depict both the causal effect of the temporality of the
learning process and the causal effect of the prerequisite relationships between knowledge
components. We can note that there is no formal difference between the mathematical
formulation of variables Tate and de,w as well as between [y and gx s, and fx and sx;. We

differentiate them in the vocabulary to provide better readability to the model.

Indeed, these parameters can be interpreted through real phenomena associated with the
context of a KC prerequisite structure during the learning process. On the one hand, [y
and fy represent the transition of the KC mastery between time ¢t — 1 and ¢. Similarly
to BKT, fy corresponds to the probability of forgetting X between two timeslices, and [y
corresponds to the probability of learning X between two timeslices. They provide direct
measures of the learners’ learning and forgetting processes. On the other hand, gx; and
sx,; relate the effectivity of the prerequisite relationship between Pax; and X. gx; is the
probability that there exists an inhibitor of the causal effect of Paée’i on X! fort>0. It
represents the probability that the mastery of the i-th parent of X is insufficient to master X
when all other parents are mastered. sx; is the probability that there exists a substitute to
the causal effect of Page,i on X! for t > 0. It represents the probability that the mastery of
the i-th parent of X is not required to master X. gx; and sx; are sensors of the effectiveness

of the prerequisite relationship between Pax; and X for learners.

E-PRISM is based on parameters that offer comprehensive insights into the interactions
between variables. Overall, the parameters in E-PRISM show enhanced interpretability
compared to traditional Bayesian network models. Indeed, the parameters in tabular CPDs
are associated with very specific and narrow situations. Thanks to ICI-model CPDs, the
parameters in the E-PRISM learner model represent wider events. Specifically, it represents
the influence of each prerequisite relationship with a pair of parameters. This can then be

more understandable for the framework user.

Latent variables

Nevertheless, the E-PRISM learner model has a major drawback. Most learner models
consider that the variables representing the learners’ knowledge state are hidden. These

variables then relate to observable variables through new parameters. On the contrary, the
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E-PRISM framework considers the latent KC mastery variables as the observable variables.
Consequently, the E-PRISM framework may miss noise sources. For instance, contrary to
Bayesian Knowledge Tracing (BKT), the E-PRISM learner model doesn’t consider the slip
phenomenon when a learner who has mastered a KC can still miss an exercise related to
that KC, nor the guess phenomenon when a learner who has not mastered a KC can still

succeed on an exercise related to it.

Moreover, the E-PRISM learner model hinges on new latent variables, notably because
of ICI-model CPDs. For each KC X of the domain model, the auxiliary variables T% and
Vi, Zx; cannot be observed in any case. This will complexify both inference and learning
tasks in the E-PRISM learner model. We provide more details on the cause of these issues

in Chapter 5, where we introduce solutions to avoid them.
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4.3 Discussion

In this chapter, we presented Embedding Prerequisite Relationships In Student Modeling
(E-PRISM), a knowledge-enhanced machine learning framework that mobilizes symbolic
and data-driven techniques for providing Intelligent Tutoring Systems (ITS) with student
modeling techniques. The E-PRISM framework has been developed to be compatible with
the data of a wide range of I'TS. The framework has been implemented as an open-source
Python package?, which provides a set of pythonic objects modeling the main ITS elements,

such as knowledge components or learner traces.

In particular, we focused on the E-PRISM learner model. It relates to a domain model
consisting of Knowledge Components (KCs) related with each other with prerequisite
relationships. The E-PRISM learner model is inspired by overlay learner models that
consider the learner’s knowledge a subset of the domain knowledge. It defines the learner’s
knowledge state as a vector of KC mastery probabilities. It also integrates prerequisite
relationships into the model thanks to an ICI-based dynamic Bayesian network. It considers
the causal effects of the prerequisite structure of domain knowledge in addition to the
learning and forgetting phenomena. It relies on highly interpretable parameters related to

each individual causal effect.

The E-PRISM learner model is a dedicated tool for predicting learners’ performance and
diagnosing their knowledge state over time. We wonder how to update this learner model
from new data. To do so, inference techniques in complex Bayesian networks must be
employed. Because of the scarce structure of the learner model’s DBN, performing such
computations can rapidly be challenging. Chapter 5 provides a deep focus on the techniques

and algorithms for diagnosis, prediction, and model update with the E-PRISM framework.

*https://github.com/olivierallegre/e-prism
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CHAPTER

Functionalities of the E-PRISM learner model

The E-PRISM framework provides tools for modeling students regarding domain knowledge.
This chapter details how the E-PRISM learner model can diagnose and predict students’
knowledge state from their interaction with an ITS or their performance on assessments.
Inference techniques must be applied to the E-PRISM learner model to determine the

knowledge states of students over time or other usual ITS functionalities.

First, we review the application of the inference techniques for Bayesian networks detailed
in the literature reported in Chapter 3 to E-PRISM. We examine the convergence of these
techniques with the Bayesian network modeling approach used by E-PRISM. Then, we
propose a new method for approximate inference derived from Blocking Gibbs Sampling
based on a variant of the Gibbs sampling algorithm. This method allows us to perform
accurate and converging inference tasks. We explain the theoretical basis of the method by

providing examples of its application.

This chapter also sheds light on the parameter learning procedure of the E-PRISM learner
model. This work assumes the prerequisite structure is known. Still, the values of the
E-PRISM learner model parameters must be estimated to provide accurate predictions. We
introduce how our new method for approximate inference can be included in a particle-based
parameter learning procedure. Finally, we present how to perform parameter learning in the
E-PRISM learner model and highlight the convergence of the procedure with synthetic data.
Estimating the E-PRISM learner model parameters is crucial, as it provides insights into
the prerequisite structure of domain knowledge thanks to the great interpretability of the

parameters.
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5.1 Diagnosing the learner’s knowledge state over time

The E-PRISM learner model is a crucial component for deriving the knowledge state of
learners from evidence. It can provide a comprehensive understanding of the learners’
performance and knowledge states over time by integrating information from learner traces.
The E-PRISM learner model is a dedicated tool for predicting learner performance and
diagnosing their knowledge state. This section will explore the application of inference
techniques to the Dynamic Bayesian Network (DBN) of the E-PRISM learner model. Inferring
the probability distribution of the DBN variables is essential for providing diagnoses of

learners’ knowledge states.

First, we examine the queries on which these ITS functionalities rely and how they can be
translated mathematically. These queries involve the computation of posterior probabilities
of the state of students’ KC masteries given observed data. They are essential for accurate
student modeling and diagnosis with Bayesian networks. Next, we review the inference
techniques for Bayesian networks presented in Chapter 3. We highlight the intractability or
convergence issues induced by these techniques. For instance, exact inference is intractable
on the ICI-based dynamic Bayesian networks used in E-PRISM. Finally, we will introduce a
novel approach for approximate inference in Bayesian networks based on Blocking Gibbs
Sampling (BGS). BGS approximate inference can overcome some of the other inference
techniques’ limitations and provides tractable and converging predictions. This approach has
been shown to be particularly effective for ICI-based dynamic Bayesian networks, making it

a promising method for the inference tasks required in the E-PRISM framework.

5.1.1 Probability queries in E-PRISM

We recall that inference mainly consists in answering probability queries on the model. A
probability query is defined in Definition 3.2.3. They introduce query variables and evidence,
which depend on the query. The main functionalities expected in an I'TS are knowledge state
diagnosis and learner performance prediction. These two functionalities are associated with
two types of common queries, often performed on a given set of learner traces in E-PRISM.
In practice, in E-PRISM, these two queries are very similar, as there are no differences

between hidden mastery variables and observable variables.

Evidence variables

We assume the learner only answers one question at a time. Therefore, the evidence variables
of the probability queries performed on the E-PRISM learner model consist of one variable

per timeslice.

Example 5.1.1 (Evidence variables). Let 2L, B and € be knowledge components. We assume
that each KC' is associated with an exercise. Suppose that a learner has given the following

answers to the questions of an ITS: incorrect to a question requiring €, then correct to a
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question requiring A, and finally incorrect to a question requiring B. The evidence generated
from these learner traces is {C° = 0,A' =1, B* = 0}.

Diagnosis query

An ITS should diagnose the learner’s knowledge state. The first query aims to determine
the evolution of the knowledge state over time based on evidence from learner traces. We
denote x the E-PRISM learner model variables and e the evidence variables. The diagnosis

query corresponds to the computation of the probability P(x \ e | e).

Example 5.1.2 (Diagnosis query). Suppose the evidence presented in Example 5.1.1. The

diagnosis query is given in Equation 5.1.

P(y |e) = P(X?\ {C%, X1\ {41}, X%\ {B?} |C"=0,4'=1,B*=0) (5.1)

Prediction query

Second, an ITS should be able to predict the learner’s future performance. We denote 1" as
the last time the learner produced a transaction with the I'TS. The prediction probability
query corresponds to the computation of the probability P(XT*! | e), where X**! is the
learner’s knowledge state at timeslice 7'+ 1. It aims to predict the knowledge state at the

timeslice right after the last one informed by the evidence variables.

Example 5.1.3 (Prediction query). Suppose the evidence presented in Example 5.1.1. The

diagnosis query is given in Equation 5.2.

P(y|e)=PX? |C*=0,A4'=1,B*=0) (5.2)

These queries are employed in the E-PRISM framework to provide I'TS with basic function-
alities and allow more complex tasks such as model learning. For instance, the diagnosis
query is used for completing scarce data during E-PRISM parameter learning. This will be

further detailed in Section 5.2.

5.1.2 Intractibility of exact inference in E-PRISM

We elicited the probability queries that must be answered for E-PRISM to provide the main
ITS functionalities. We wonder now how exact inference can handle them. Performing exact
inference for these two types of probability queries in E-PRISM can be challenging as they
involve a large state space for the query variables. We detail the cause of such intractability

and show how the intractability is observed in practice.
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Source of intractability

The first approach to answer these probability queries is to use exact inference techniques in
the DBN of E-PRISM. Exact inference techniques in a Bayesian network have been developed
in Chapter 3. In particular, we saw exact inference is NP-hard, making it intractable when
the set of query variables is large. Computing the joint posterior of query variables indeed
consists of computing the probability related to each possible combination of the variable
states. The space dimension of the target joint posterior is 2Navery with Nquery the number

of query variables.

The exact inference techniques can be sufficient when answering prediction probability
queries, such as in Equation 5.2, because the state space of the query variables is small
enough. However, when considering the probability queries on the whole knowledge state,

such as in Equation 5.1, the size of the set of query variables can become an issue.

The structure of the E-PRISM learner model detailed in Chapter 4 intrinsically implies a
high scarcity of the data. The auxiliary variables either represent the causal effect of KCs on
each other or the causal effect of the temporal transition of knowledge mastery. They are
latent variables of the DBN and cannot be observed. Thus, the number of query variables
for querying the learner’s knowledge state over time can become enormous when the learner
has resolved many exercises. Specifically, with Ni;aces the number of learner traces, Nkcs the
number of KCs in the domain model, and Nprerequisites the number of prerequisite relationships
in the domain model, there are Nxcs + Nprerequisites — 1 + Niraces(2IVKcs + Nprerequisites — 1)

query variables.

The inference task is mobilized plenty of times in the E-PRISM framework. It must be
performed several times in E-PRISM for the framework to provide the main I'TS functionalities.
Because exact inference is NP-hard, its intractability is inevitable. At least, it cannot scale

for more complex tasks such as parameter learning.

Exact inference running time

The number of query variables is directly related to the size of the state space and depends
on Nkcs, Nprerequisites; alld Niraces. We study the computational time required to exactly
infer the evolution of the knowledge state of a learner over time to apprehend the difficulties
of exact inference in E-PRISM better. More particularly, we compute the running time
of a learner’s knowledge state diagnosis over time for a growing number of learner traces
on domain models with different sizes. From a mathematical perspective, we compute the
probability P(y | e) of the whole knowledge state y = x \ e, where x regroups the DBN

variables and e is the evidence from the learner traces.

We introduce four different domain models to understand better the dependence of the
computation complexity with both the number of KCs in the domain model and the number

of transactions taken into account for the inference task.
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e The first domain model consists of two independent KCs 2l and 5;

e The second domain model consists of two KCs 21 and B related with each other with

the prerequisite relationship 2 — B;

e The third domain model consists of three KCs 2, 98, and € such that there are the
prerequisite relationships % — € and B — ¢;

e The fourth domain model is composed of four KCs 2, B, €, and © such that 2 — D,
B —- D, and € - D.

For each domain model configuration, we instantiate an E-PRISM learner model. With
each of them, we compute the probability distribution P(y | €) with exact inference on the
E-PRISM learner model. We represent in Figure 5.1 the running time of the exact inference
computation on each domain model as a function of the number of learner transactions
considered. The calculations are performed on a single core of Apple’s M1 chip (3.2 GHz
with 16 Go RAM).
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Figure 5.1: Running time (in seconds) taken to exactly infer P(y|e), as a function of the
number of transactions taken into account in the evidence e. Each color corresponds to a
different domain model. The vertical axe is log-linear, as the running time of exact inference
is an exponential function of the number of learner transactions.

Figure 5.1 shows that the running time of exact inference exponentially grows with the
number of transactions, whatever the domain model. Because the number of query variables
directly depends on the number of transactions, this result sounds logical. We also observe
the running time of exact inference is greater on more complex domain models for the same

number of transactions. The study of the running time of the exact inference computation
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is a glimpse at the exact inference intractability. As the number of KCs and prerequisite
relationships grows, exact inference becomes quickly intractable, even for a low number of

learners’ transactions with the system.

The E-PRISM framework must be capable of performing these calculations in a scalable way
to provide the main ITS functionalities. Indeed, the computation of these query probabilities
is often included in more complex procedures, such as model learning. Therefore, exact
inference is not suitable for domain models of substantial size. Alternative inference methods

must be implemented.

5.1.3 Gibbs sampling for approximate inference in E-PRISM

Given that exact inference quickly becomes intractable, alternative methods for approximate
inference are necessary. This work explores the use of particle-based approximate inference.
Bayesian networks are ideal models for Monte-Carlo methods, as shown in Chapter 3. This
section provides a complete overview of classic Gibbs sampling in the E-PRISM learner

model.

Gibbs sampling in BNs

Gibbs sampling is an easy-to-implement and comprehensive technique to approximate the
computation of probability queries. In a nutshell, Gibbs sampling is a kind of Markov
Chain Monte-Carlo (MCMC) method, introduced by Geman and Geman [GG84|. It allows
sampling from a complex distribution that can be fully described with a set of conditional

probability distributions. Gibbs sampling is described in Algorithm 3.3.

We recall the principle of the Gibbs sampling algorithm. Let be a BN composed of random
variables x = (x1, ..., z,,). Gibbs sampling in this BN is an iterative process. First, it sets the
initial state of network variables in a random state x(©) = (xgo), ey x%o)). At each iteration k
of the Gibbs sampling, the state of the BN variables x(¥) = (mgk), ey asq(lk)) is determined from
the state x(*~1) of the BN variables at the (k — 1)-th iteration. Generally, the BN variables
are randomly or topologically ordered. Then, given a specific order, the j-th variable of the
BN at the step k of the Gibbs sampling 2k

; is sampled from the conditional probability
distribution depicted in Equation 5.3.

P(xj | x(f])) = P(xz; | xgk), ...,xyi)l,x;-i_ll), R G (5.3)
The factorization induced by BN structures makes Gibbs sampling particularly well-adapted
to BNs. The condition in the CPD in Equation 5.3 can be simplified. Vz; € x, x; only
depends on its Markov blanket, so the condition can be reduced to it. Gibbs sampling in a
Bayesian network then consists of successive samplings of the network variables from the
limited study of their Markov blankets.
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In practice, a burn-in period is integrated into the Gibbs sampling implementation. The
samples obtained from the first iterations of the Markov chain are not considered, as the chain
has not reached the target stationary distribution yet. This MCMC stationary distribution
is the distribution we want to sample from, and it can be reached only after several iterations
of the Gibbs sampling algorithm. Nevertheless, the efficient length of the burn-in period
cannot be determined beforehand [[KXF09]. Also, a sampling period is sometimes considered.
Integrating a sampling should remove the correlation of successive samples to guarantee they
are Independent and Identically Distributed (i.i.d.). The Gibbs sampling indeed assumes

i.i.d. samples to ensure the convergence of the Markov chain.

We can represent the process of Gibbs sampling by representing the state space of the whole
distribution on a 2D plane. Figure 5.2 illustrates the convergence of the Gibbs sampling
algorithm. Because the whole state space is wider than the target distribution space, it
represents the potential need for a burn-in period denoted M. The first step of Gibbs
sampling consists in reaching the target distribution space. Then, the particle can move
from the states of the target distribution. Still, reaching the target distribution space is not

sufficient for ensuring the convergence of the Gibbs sampling process, as depicted in Figure

5.2.
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Figure 5.2: Graphical representation of the Gibbs sampling algorithm if one supposes that
the state space of the distribution can be represented in a 2D plane. M is the burn-in period,
and N is the length of the Gibbs sampling. The target distribution is approximated with
N — M samples (x(M) . x(V),

Convergence of Gibbs sampling

The convergence of the Gibbs sampler entails its capacity to reach the stationary distribution.
We have seen in Section 3.2 that the Markovian process should be irreducible to ensure con-

vergence of the Gibbs sampling. In other words, there must exist a strictly positive transition



Chapter 5. Functionalities of the E-PRISM learner model 107

probability between each pair of states of the distribution. A working Gibbs sampling should
visit every state with a positive probability in the target distribution. However, the time
taken for the chain to “mix” is difficult to predict, as there is no mathematical expression for

the convergence speed.

To assert the convergence of the Gibbs sampling procedure, the sampled distribution can be
compared with the distribution computed from exact inference. The limits of this approach
for evaluating the convergence of Gibbs sampling are trivial. Suppose approximate inference
techniques are necessary to determine the distribution. In that case, exact inference is
probably too complex, making it impossible to compare the sampled distribution with the
intractable exact inference. In our case, we recall that exact inference is only tractable for a

limited number of learner traces.

Koller et al. propose another approach to determine the convergence of Gibbs sampling.
They study multiple chains aiming to sample the same distribution, and they compare them
afterward, as they should lead to similar estimators with comparable variance [KKF09]. The
resulting metrics represent the estimate of a given function f and they entirely rely on the
chosen function f. For instance, in our case, the functions f would be the indicator functions
for each combination of states. Similarly to the first technique for asserting convergence,
this technique would not be tractable for many learner traces, as the number of functions
to check would be too high. Therefore, we can only check the convergence of the Gibbs

sampling algorithm for a limited number of learner traces.

Deterministic CPDs as sources of reducibility

For each kind of variable in the DBN of the E-PRISM learner model, we detail the Markov
blanket and the values of the CPD required for updating its state during Gibbs sampling in
Appendix A. The whole CPD P(:ci|x(fi)) can be simplified for each z; € x. The condition in
the CPD can be restricted to the Markov blanket for each variable of the DBN.

Gibbs sampling in the DBN of the E-PRISM learner model does not need any complex
computation. The probability of any BN variable, given its Markov blanket, is already
stored in the CPDs ruling the network. Furthermore, there are additional constraints in the
E-PRISM learner model CPDs thanks to the deterministic functions that rule the DBN. This
results in a further simplified Gibbs sampling procedure. Nevertheless, the ICI-based CPDs
in the E-PRISM learner model also imply that the Gibbs sampling procedure is reducible.
We can spot that some transition probabilities between two positive states of the BN equal
zero in Appendix A. This doesn’t mean that Gibbs sampling does not converge, but it reveals

that its convergence is not ensured.

We study the convergence of Gibbs sampling for approximate inference in the E-PRISM
learner model. The convergence is determined from the computation of the Kullback-

Leibler (KL) divergence between the approximately-inferred and exactly-inferred probability
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distributions from evidence. We suppose the domain model of Example 4.2.1 that consists
of three KCs (2,8, €) with prerequisite relationships 2 — € and B — ¢. We define the
inference task as the computation of the probability distribution P(y | e), with e = (C° =
0, A' = 1, A%2 = 1). Each approximated inference task is performed on a single core of Apple’s
M1 chip (3.2 GHz with 16 Go of RAM).

In the first place, we suppose there is no burn-in period. We plot the convergence of the
inference task as a function of the number of Gibbs iterations in Figure 5.3. We represent box
plots of the KL divergence between probability distributions computed from approximate
and exact inference. Each box plot emphasizes the distribution of 100 runs of the Gibbs

sampling estimator, consisting of all samples generated during Gibbs sampling.
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Figure 5.3: Kullback-Leibler divergence between the approximately-inferred probability
distribution Pgipps(y|e) and the exactly inferred probability distribution Pexaci(y|e) as a
function of the number of Gibbs iterations Ngipps, for € = (C° = —¢, A = +a, A? = +a).

We can observe that the value of the KL divergence is the same, whatever the number
of Gibbs iterations. The Gibbs sampler seems to stick in a particular state of the target
distribution. The number of Gibbs sampling iterations does not affect the existence of
this potential well. Warnings about the possible non-convergence of reducible Markovian

processes seem to be fully realized.

Secondly, we study the impact of the burn-in period on the convergence of the Gibbs sampling
approximate inference. We suppose Ngiphs = 10 000. We have chosen a high number of
Gibbs iterations to increase the chances of convergence. We represent the KL divergence
between exact and approximate inference computations as a function of M, the burn-in

period, in Figure 5.4.
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Figure 5.4: Kullback-Leibler divergence between the approximately-inferred probability
distribution Pgibbs(y|e) and the exactly inferred probability distribution Peyact(yle) as a
function of the burn-in period M, for e = (C° = —=¢, A! = +a, A% = +a).

Using a burn-in period is insufficient for converging Gibbs sampling, according to Figure 5.4.
As reported by Koller [KKF09], the burn-in period cannot be determined beforehand, so we
cannot ensure that Gibbs sampling is not converging in E-PRISM for greater values of Ngibbs
and M. However, it is important to remember that the inference task is a crucial component
in larger E-PRISM processes, such as parameter learning, which repeatedly utilize it. The
chosen number of Gibbs iterations is already high in the experiment reported in Figure 5.4.

Excessive values for Ngipps and M would make these procedures intractable anyway.

The Gibbs sampling non-convergence is a major issue when using the E-PRISM learner
model. The inference task is indeed mandatory for model learning. When tweaking around
Gibbs sampling on toy examples, we observe that some sets of variables are stuck in local

equilibria, leading to not convergent Gibbs sampling.

Example 5.1.4 (Potential well in Gibbs sampling). Suppose a domain model with two
knowledge components A and B related to each other by the prerequisite relationship A — B.
We represent a part of the DBN of the E-PRISM learner model with two transactions from

the learner in Figure 5.5.

Suppose the vertices T%, Z‘lB,QI’ and B have reached the state depicted in Figure 5.5. The
Gibbs sampling is stuck in a local equilibrium state which leads to a biased sampling and a
wrong estimator of the probability distribution. Whatever the state of the other variables of
the network, the probability that T%, Z%,er and B change their state during Gibbs sampling

18 zero.
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® Evidence on the non-mastery

° X =0 in Gibbs sampling
° X = 1in Gibbs sampling

Figure 5.5: Example of a situation of a potential well during the Gibbs sampling. The
evidence is composed of e = (BY = =b, A! = —a) and the Gibbs sampling has reached the
state (T = +t, Z%ﬁ[ = 42, B! = +b), which is a local equilibrium.

The non-convergence issue of Gibbs sampling can be explained by returning to its 2D
representation. We can represent the presence of potential wells as positions where a
movement to other adjacent positions is not allowed. We provide the graphical explanation

of the non-convergence of Gibbs sampling in the presence of constraints such as deterministic

A. ‘ State-space

Target
distribution

e

Figure 5.6: Graphical representation of the Gibbs sampling non-convergence when the
target distribution is supposed to be represented in a 2D plane. In situation A, the Markovian
process does not even have the time to reach the stationary distribution before being trapped
in a potential well. In situation B, the Markovian has reached the stationary distribution
but is trapped in one of the stationary distribution states, providing an incorrect description
of the whole distribution.

functions in Figure 5.6.
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We represent two typical situations in which a potential well can occur. In situation A, the
potential well prevents the Markovian process from reaching the stationary distribution. In
situation B, the potential well is spotted once the stationary distribution is reached but

makes the approximate inference to overrepresent one of the states of the target distribution.

Importance sampling

Some strategies can be deployed to allow convergence for approximate inference on BNs
with deterministic CPDs. First, it is possible to regroup some BN variables to get back
to an irreducible Markovian process. This solution is difficult to apply in practice, as the
purpose of the E-PRISM learner model was to grant higher interpretability to the model
parameters. Otherwise, we can introduce a positive real number v > 0 such that v < 1. The
probability of illegal events, which are events with zero probability, is set to . This strategy
leads to a theoretical irreducibility of the Markovian process. Sheehan has demonstrated
that the convergence of the Gibbs sampling can be achieved with this technique if illegal
configurations, sampled states not following the network constraints, are deleted when

computing the expectation on the samples [She00].

The general approach for solving the reducibility of a Markovian process is the importance
sampling approach, presented in Chapter 3. Instead of sampling the initial probability density
f, one can sample a well-chosen probability density ¢ leading to an irreducible Markovian
process. The estimator generated from Gibbs sampling would then correspond to the one

described in Equation 5.4.

S wle(t) F () with w(z) = £(x)/g(z) (5.4)

=1

The estimator generated from Gibbs sampling from probability density ¢ is the expectation
Eqlw(z)F(x)]. We can prove that Eqfw(x)F(x)] = Ef[F(x)]. The expectation from the
samples generated from Gibbs sampling from probability density ¢ is the same as the
expectation from Gibbs sampling from probability density f. Note that the v approach is,
in practice, a special case of importance sampling, where the probability density ¢ is the one

described in Equation 5.5.

q(x) = f(lx_)’_? with e >0, e < 1 (5.5)
We now focus on how using importance sampling influences the convergence of Gibbs
sampling. We keep performing Gibbs sampling inference on the E-PRISM learner model
introduced previously. We represent the convergence of Gibbs sampling for a number of
Gibbs iterations Ngipbs = 10 000 and a burn-in period M = 9 000. We study the KL

divergence as a function of the v value employed during the sampling in Figure 5.7.
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Figure 5.7: Kullback-Leibler divergence between the approximated inferred probability
distribution Pypprox(y|€) with importance sampling and the exactly inferred probability
distribution Pexact(y|e) as a function of the gamma parameter v, for e = (C° = —¢c, A =
+a, A2 = +a).

As stated before, introducing a small positive real number to delete the possibility of zero
probability is a solution. However, we observe that the potential wells still exist, and it
is complex to prevent the sampler from being stuck in them. Because the ~ value is close
to zero, the chance of leaving the well is subject to high variance. In practice, for MCMC
inference in the E-PRISM learner model, we observe that the estimator sometimes gives
the correct distribution. Still, it often shows disproportionately represented states of the
distribution. We even observe that for high ~ values, the KL divergence increases. Because
the main goal of inference in this work is the parameter learning task, using the classic Gibbs

sampling algorithm for approximate inference in E-PRISM is not viable.

5.1.4 Blocking Gibbs sampling

Previous sections have presented the issues of the various inference techniques in the E-
PRISM learner model. In this section, we introduce a new approximate inference technique
based on Blocking Gibbs Sampling (BGS) in the context of BNs with deterministic CPDs.
This technique is designed to address the convergence issues spotted with Gibbs sampling.
BGS, first introduced by Jensen et al. [JIKKK95], involves considering blocks of variables
instead of individual variables. It speeds up the sampling convergence of the MCMC. The
bigger the blocks, the faster the convergence of sampling [AGP91]. The size of the variable
blocks chosen for Blocking Gibbs sampling is only limited by the computational capacity of

the machine used for sampling.
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Blocks of variables as irreducible elements of the Markovian process

Instead of sampling the variables of the learner model DBN one by one, we then sample
blocks of variables simultaneously. We want to benefit from the structure of the E-PRISM
learner model, in particular, the ICI-based CPDs that compose the DBN. The purpose of
this approach is not to speed up the convergence of the sampler, but it is simply to allow
convergence in a situation where it is complicated to get. Thus, we use meaningful blocks

rather than the largest possible blocks.

Each block is associated with a KC and a timeslice. Blocks are indexed with time because
of the dynamic nature of the learner model. We differentiate initial, transition, and final
blocks, depending on the corresponding timeslice. The DBN of the learner model can be
expressed as the concatenation of these blocks. We represent them in Figures 5.8a, 5.8b and
5.8c. In particular, we highlight the Markov blanket of these blocks.

The initial blocks represent the initial timeslice of the unrolled DBN of the E-PRISM learner
model. There is an initial block per KC in the domain model. Bge, the initial block related
to the KC X is composed of the variables X°, and {Zaoez}z if X has parent KCs. Its Markov
blanket is composed of variables T4, {Pa%i}i if X has parent KCs, and {ng}j if X has
child KCs.

The final blocks are blocks related to the last timeslice of the unrolled DBN. There is a final
block per KC in the domain model. We denote T, the index of the last timeslice. Bg, the
final block related to X is composed of the variables X7 Tg , and {Zx;}r if X has parent
KCs. Its Markov blanket is the set of variables X7 1, {Paggﬂ.}i if X has parent KCs, and
{Z]+}; if X has child KCs.

The transition blocks represent all the other timeslices of the unrolled DBN. For each ¢ such
that 0 <t < T, there is a transition block per KC in the domain model. ng, the transition
block related to X is composed of the variables X*, T atev and {Zx;}+ if X has parent KCs.
Its Markov blanket is the set of variables X1, T;g“, {Pagw}i if X has parent KCs, and
{Zﬁx}j if X has child KCs.

Implementation of approximate inference in the learner model with Blocking

Gibbs sampling

First, we suppose the blocks of variables to be topologically ordered. Given the structure of
the blocks, the topological order is given by the prerequisite relationships’ ordering. We denote
>, the topological order of the blocks. We can prove that V KC X,Vt,t' s.t. t <t/, B% >~ Bg.
We also have for any pair of KCs X, X', if X — X/, then V¢, B} = Bk, .
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We recall that the purpose of approximate inference is to compute the probability distribution
P(x,yl|e), where e is the evidence (e, ...er), x is the set of variables associated with the
hidden or non-observed vertices of the network, and y is the set of variables associated with

the observed vertices of the network.

Blocking Gibbs sampling consists of the same steps as classic Gibbs sampling. It iterates
Ngaibbs times over every block in the DBN in the topological order and generates a new
sample from the target distribution. The initial state of the network in the sampling process
is set up randomly. It must still verify the deterministic functions that compose the DBN.
Then, in the manner of the Gibbs sampling, the blocks are successively browsed following

the topological order.

Only the state of the Markov blanket of a variable must be known when updating its state
during the Gibbs sampling. Similarly, one must know the Markov blanket of a block to
update the state of the variables that compose it in Blocking Gibbs sampling. The states of
each variable of a block are updated simultaneously according to the state of the block’s
Markov blanket by sampling from the conditional probability P(B% | MB(BY%),e), with
MUB(BY) the Markov blanket of Bf. The computation is done with exact inference. Exact
inference can be easily performed on described blocks, as the BNs representing them and

their Markov blanket are small enough, as depicted in Figure 5.8.

We detail the implementation of Blocking Gibbs sampling for approximate inference in the
learner model in Algorithm 5.1. This novel approach can be applied to any system modeled
with a BN composed of ICI-model CPDs.

Convergence of Blocking Gibbs sampling for approximate inference

As we did previously with Gibbs sampling, we examine the convergence of Blocking Gibbs
sampling in the context of ICI-based BNs through several E-PRISM practical examples. We
focus on studying the KL divergence as a function of the number of Gibbs iterations Ngipbs
and the burn-in period M. We will see that the blocking strategy eliminates the presence of

potential wells. Consequently, importance sampling will not be necessary.

We use the same domain model from Example 4.2.1 that consists of three KCs (2, B, €)
with prerequisite relationships 2 — € and 8 — €. We examine the probability distribution
P(y | e) with e = (C° =0, A’ =1, A? = 1). We compare it to the exact inference with the
computation of the KL divergence between the approximately-inferred and exactly-inferred
distributions. The calculations are still performed on a single core of Apple’s M1 chip (3.2
GHz with 16 Go RAM).

Initially, we do not consider a burn-in period, so the estimator is based on all the samples
generated during BGS. The KL divergence between the BGS approximation and the exact
inference is plotted in Figure 5.9 as a function of the number of Gibbs iterations. Unlike Gibbs

sampling, the KL divergence decreases exponentially with the number of Gibbs iterations.
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Algorithm 5.1: Blocking Gibbs sampling in an ICI-based Bayesian Network B

Data: ICI-based Bayesian network BA with variables X1, ..., Xn, Naibbs, M
Result: x = (x(M)_ .. x(Naibbs—M))

1 By, ..., By + GetBlocksTopologicalOrder(BN)

2 (z1,...,2n) < RandomlInitialization(BN)

3 forr=1 to Ngips do

4 for j =1 tok do
5 MB < GetMarkovBlanket(5;)
b(r) b(-r) b(r—l) b(T_l)
6 e<—( 1 500,050 7 Dy )\MB
7 by) x P(B; | e) > with exact inference
8 end
9 x™ — ®, . b))
10 if r > M then
11 ‘ Add x() to x
12 end
13 end
1] T T 8
== o

Number of Gibbs iterations

Figure 5.9: KL divergence between the BGS approximately-inferred probability distribution
P,pprox(y]e) and the exactly-inferred probability distribution Pexact(y|e) as a function of the
number of Gibbs iterations Ngipps, for € = (C? = —¢, Al = +a, A% = +a).
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Additionally, we investigate the effect of the burn-in period by assuming Ngipps = 1000. The
BGS convergence is shown as a function of the burn-in period in Figure 5.10. It indicates
no significant effect on the convergence of BGS using a burn-in period. Hence, it can be
concluded that using a burn-in period is not necessary for Blocking Gibbs sampling in the

learner model.
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Figure 5.10: KL divergence between the BGS approximated inferred probability distribution
P.pprox(y]e) and the exactly inferred probability distribution Pexact(y|e) as a function of the
burn-in period M, for e = (C° = —¢, A! = +a, A% = +a).

Running time of Blocking Gibbs sampling

We now examine the running time of the approximate inference by Blocking Gibbs sampling.
We use several domain model configurations similar to those introduced in Section 5.1.2.
The computations are still performed on a single core of Apple’s M1 chip (3.2 GHz with
16 Go RAM). It is the same as the one used for computing the running time of the exact

inference technique. Thus, we can compare the results of the two experiments.
e Domain model 1: two independent KCs 2 and B;
e Domain model 2: two KCs 2l and B such that 2 — B;
e Domain model 3: three KCs 2, B, and € such that 2,8 — ¢;
e Domain model 4: four KCs 2, 9B, €, and ® such that 2,8, & — D.

We recall that the target probability query is the probability P(y|e), with y the set of query

variables and e the set of evidence variables.

First, we look at the running time as a function of the number of transactions expressed

in the evidence e. The number of Gibbs iterations for Blocking Gibbs sampling is fixed
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at Ngibbs = 1000. This value was chosen due to its good performance in the previous
experiment. The BGS running time is represented in Figure 5.11 for each domain model

configuration listed above.

70 1 —— 2 independent KCs
1KC - 1KC
—— 2KCs =» 1KC
60 —— 3KCs » 1KC

w
& g
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w
o
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20 A

10 4

2 4 6 8 10 12
Number of transactions

Figure 5.11: Representation of the computational time (in seconds) of the Blocking Gibbs
sampling approximate inference of P(y|e) as a function of the number of learner transactions
contained in e for several domain model configurations. The number of Gibbs iterations is
fixed to Ngibbs = 1000, and the burn-in period is set to M = 0.

In Figure 5.11, the running time of the approximated inference by Blocking Gibbs sampling
seems to grow linearly with the number of learner transactions for all configurations of the
domain model. The slope of the curve seems to be linearly dependent on the number of
KCs and the number of prerequisite relationships. We also observe that the running time
of exact inference is much longer than that of approximated inference from several learner
transactions in e when comparing these results with those in Figure 5.1. Nevertheless, we
still remark that the exact inference is more efficient for small numbers of transactions than
approximated inference. This can be explained by the fact that approximated inference is
fully developed in Python, while the exact inference relies on aGrUm, which is a C++-based

library.

In the second place, we focus on the second domain model configuration. We recall it
supposes two KCs 2 and B with 2l — 9. We study the influence of the number of Gibbs
iterations Ngijphs on the computational time of BGS inference in a learner model related
to this domain model. Figure 5.9 has shown Ngipbs greatly influences the accuracy of the
approximated inference. We then represent in Figure 5.12 the BGS inference running time
as a function of the number of transactions considered in e for several values of the number

of Gibbs iterations in the Blocking Gibbs sampling approximated inference.
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Figure 5.12: Representation of the computational time of the BGS approximate inference
of P(y|e) as a function of the number of learner transactions contained in e for different
values of the number of Gibbs iterations Ngipps-

In Figure 5.12, we can figure out that the running time seems linear with the number of

learner traces, no matter the number of Gibbs iterations Ngiphs. We observe that the slope

of the computational time is proportional to Naipbs-

Using Blocking Gibbs sampling for approximate inference is more applicable in practice than

using exact inference. Indeed, we must keep in mind that the inference task is an element

of larger processes, such as parameter learning. Many learners’ transactions and Gibbs

iterations would result in intractable parameter learning, as the inference task is mobilized

thousands of times.



Chapter 5. Functionalities of the E-PRISM learner model 120

5.2 Updating the E-PRISM learner model

The parameter learning procedure is a critical component of the E-PRISM learner model, as
it allows the system to update its knowledge about the learner over time based on evidence.
As explained in Chapter 3, the learning procedure for a Bayesian network can be decomposed
into two tasks: parameter learning and structure learning. Basically, structure learning
consists of an iterative process of parameter learning. Therefore, we only focus on parameter

learning in our work.

Thanks to the great interpretability of the E-PRISM parameters described in Section 4.2, the
parameter learning procedure can provide valuable insights into the prerequisite structure
of the domain knowledge. E-PRISM can provide a more comprehensive understanding of
the domain knowledge structure by analyzing the KC relationships through the values of
its interpretable parameters. It gives insights into the prerequisite structure in addition to
insights into learning and forgetting phenomena. These insights are valuable for developing

effective learning experiences and identifying areas where additional support may be needed.

In this section, we explore the parameter learning procedure for the E-PRISM learner model.
We presented the structure of the learner model in Section 4.2 and introduced a DBN
modeling learners’ knowledge over time. As explained in Section 4.2.4, DBNs with ICI-model
CPDs imply the presence of latent variables in the network. Consequently, the dataset
relating the learner traces cannot be complete, as model variables won’t be observed whatever
the context. The EM algorithm is the most common procedure for parameter learning in

the presence of non-observed variables in the learning dataset, as stated in Section 3.3.

First, we look at the principles of the EM algorithm applied to the DBN in the learner model.
We explain how the data from learner traces must be preprocessed to allow the computations
in the E and M steps. Then, we introduce stochastic approaches for parameter learning.

Finally, we analyze the results of the parameter learning algorithm on synthetic data.

5.2.1 Available data for E-PRISM parameter learning

Chapter 3 only considers classic Bayesian networks for parameter learning. However, the
E-PRISM framework relies on a Dynamic Bayesian Networks (DBNs) representing a whole
family of BNs with a similar structure. From one data entry to another, the number
of variables in a DBN can be very different, as the unrolled DBN can be of any length.
Consequently, the first step is to preprocess the data for parameter learning with DBN.

Former datasets

In our case, a learner can do as many transactions as she wants. For Ni;aces transactions
done by a learner, the dataset relating to the learner transactions will have N aces TOWS.
Each contains information on one of the N aces transactions, such as the resource on which

the transaction is collected, the associated KC, the answer correctness, and the transaction’s
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timestamp. However, these data don’t fit the structure of the DBN. The corresponding DBN
employed for inferring the learner’s knowledge state over time from these traces is composed
of Niraces timeslices. We must transform the Nipaces rows of the initial dataset into a single
entry that relates the state of the Niraces timeslices of the DBN. We detail the procedure of

the dataset transformation in the following.

Example 5.2.1 (Former dataset). Suppose a domain model is composed of the KCs X1, Xa,
and Xs. Each of them is associated with at least one exercise. We introduce a toy example
of a possible dataset obtained from learner traces of two learners on resources associated
with this domain model in Table 5.1. It comprises the following characteristics: temporality
through dataset index, learner identification, exercise identification, associated knowledge

component identification, and transaction success.

index | learner id | skill id | exercise id | correct

0 0 1 1 0

0 1 1 1
2 0 1 2 1
3 0 3 4 0
4 0 2 3 1
5 1 1 1 1
6 1 2 3 1

Table 5.1: Example of a dataset that can be extracted from learner traces. Here, it concerns
two learners: the first has done 5 transactions on 4 exercises related to 3 KCs; the second
has done 2 transactions on 2 exercises related to 2 KCs. Indexing represents temporality.

Projection onto the model variables

First, for each learner, the data from the learner traces is projected on the variables of a
dynamic Bayesian network with Ni;aces timeslices. Most of these variables are hidden. It
is the case for all the transition and prerequisite auxiliary variables, which are intrinsically
latent. It is also the case for the mastery variables of the KCs that are not assessed at each
timeslice. The data on hidden variables is missing. This results in a massively incomplete
dataset with a non-homogeneous number of columns. We call it the training extended

dataset.

Example 5.2.2 (Training extended dataset). We return to Example 5.2.1 and focus on
learner traces from the first learner. The learner model corresponding to this set of variables
has 37 variables. The corresponding data entry has only five observed variables: XV = -y,
X{ = 421, X? = +71, X3 = x5 and X5 = +xa. The other variables in the DBN are
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hidden. The corresponding entry in the training dataset projected on model variables is

represented in Table 5.2.

‘ learner | X9 ‘ X9

L0

Table 5.2: Data entry corresponding to the learner traces of the first learner in the former
dataset represented in Table 5.1. The “?” corresponds to hidden variables.

5.2.2 E-step: Completing the training extended dataset with inference

Similarly to the EM algorithm on a classic Bayesian network, the principle of the EM
algorithm in a DBN is to complete each entry of the training extended dataset with inference.
This is the E-step.

Classic EM algorithm approach

It is important to note that the whole DBN must be considered for inferring the state of
hidden network variables. If a DBN can be resumed with two Bayesian networks, the Markov
assumption that grants this simplification only holds thanks to the conditional independence
of two non-successive timeslices given the full knowledge on a timeslice between the two. In
our case, there is no timeslice with entire knowledge. Therefore, the entire DBN must be

considered to infer the hidden variables’ state correctly.

Let be a data entry x = (y, z), with y the observed variables and z the hidden variables of
the data entry. In practice, the E-step in the DBN of E-PRISM consists in computing the
CPD P(z | y,0) for each data entry x of the training extended dataset. Several approaches

can be employed for inference, as detailed in Section 5.1.

Usually, in the EM algorithm, the probabilities associated with each configuration of the
query variables y must be stored to perform the M-step. Nevertheless, we have seen that the
data collected on the DBN representing the learner model suffer from an induced high scarcity.
Consequently, the probability queries to compute at each E-step of the EM algorithm rely on
many query variables, which imply two complications. On the one hand, for each data entry,
the dimension of the state space of hidden variables is large, and this may induce memory
issues with machines used for computation. During the learning process, the inference task is
mobilized several times, and storing the distribution of hidden variables for each data entry
is irrealistic. On the other hand, the number of probabilities representing the conditional
probability distribution of interest is also very large. Before eventually storing the CPD that

allows the completion of a data entry, one must be capable of computing it.
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Stochastic approaches

We use stochastic variants of the EM algorithm, detailed in Section 3.2, to avoid storing
the whole distribution for each entry in the data. The SEM and MCEM algorithms aim to
sample the distribution rather than store it in the machine’s memory during the learning
process. Using these stochastic EM algorithm variants allows us to eliminate storing issues

induced by the classic implementation of the EM algorithm.

The SEM algorithm in E-PRISM works the same way as the EM algorithm. Still, instead of
computing and storing the joint posterior distribution for each data entry of the training
extended dataset, one draws a sample from it. In the MCEM algorithm, we estimate the joint
posterior distribution with multiple samples from it, leading to a Markov Chain Monte-Carlo

(MCMC) approximation of the distribution. Its implementation is detailed in Algorithm 3.5.

Example 5.2.3 (Completed dataset). We suppose the data entry studied in Example 5.2.2.
We assume this data entry is completed by sampling the joint posterior distribution with exact

or approximate inference. The completed dataset is then represented in Table 5.3.

‘ learner

x| x3 |28, |2 | 3| T x| x| 20 2 | T g

L o1 o

Table 5.3: Data entry of the completed dataset corresponding to the data entry reported
in Table 5.2 in the SEM algorithm.

The unique difference between the SEM and the MCEM algorithm is the number of samples
considered to approrimate the joint posterior distribution during each E-step. The MCEM
algorithm supposes an MCMC method that approximates the distribution. Instead of con-
sidering a unique sample for the distribution, n samples generated from the MCMC are
considered. We represent in Table 5./ how the data entry from the projected training dataset
shown in Table 5.2 is processed during the E-step of the MCEM algorithm, with n = 5.

learner | XY | X9 | 29, | 29, X§ .. | T X{ Ty | X3 | Z3, | Z3, TY | X3
1 0 0 0 1 0. 1|1 1 1/ 1 1 0 0
1 0o 1 0 11 111 11 111
1 0 0 0 1 0 1 0 1,1 0 1 1,0
1 0 0 0 1 0 11,1, 1 0 1 0 0
1 0o 1 0 1 0 1 1,1, 1 0 1 1.0

Table 5.4: Data entries of the completed dataset corresponding to the data entry reported
in Table 5.2 in the MCEM algorithm.
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Inference techniques for completing the dataset

We keep using exact inference to sample the joint posterior distribution in the E-step, as
it guarantees the convergence of the EM algorithm. However, the computations in exact
inference are only tractable with constraints on the dimension of the DBN. Therefore, the
KCs and transactions taken into account in the former training dataset must be limited. For
instance, with a single core of Apple’s M1 chip (3.2GHz with 16Go RAM), we saw in Section
5.1 that we can compute exact inference for data entries containing at most six transactions
on a domain model composed of three KCs in a reasonable running time. Nevertheless,
parameter learning requires inferring several complex distributions, so the limitations induced
by exact inference come even quicker. Thus, the data entries of the learning dataset should
rely on small numbers of transactions from learners to keep the exact inference usable for
parameter learning. We understand that these constraints on the task of parameter learning
are troublesome. Model learning is more efficient when there is a high quantity of provided
data. Using exact inference in parameter learning for the learner model of the E-PRISM

framework becomes a real issue.

Because exact inference is rapidly not tractable when the size of the DBN is too high,
we use approximate inference to compute the joint posterior distribution relative to each
data entry of the training extended dataset. As detailed in Section 5.1.4, Blocking Gibbs
Sampling (BGS) is a relevant technique to greatly approximate distributions in the DBN
of the E-PRISM learner model. BGS generates samples that approximate the distribution.
For each training extended dataset data entry, instead of sampling from the exact inference,
we consider the samples generated with BGS. Because we showed that the estimator of
the Blocking Gibbs sampling effectively converges to the distribution obtained from exact
inference, the MCEM algorithm should converge as well as the classical EM algorithm or
the stochastic EM algorithm.

5.2.3 M-step: Updating the model parameters from the completed dataset

After the E-step, we have a completed dataset that is composed of an entry per learner,
containing every variable of the DBN that models the knowledge state of the learner during
all its transactions. The DBN supposes the stationarity of the modeled process. This means
that the parameters of the model are time-independent. Then, we must return to a dataset
that does not consider differences between timeslices to perform the M-step. We recall the
M-step aims at computing updated parameters that optimize the model with the completed

dataset.

Decomposing the completed dataset into the initial and transition datasets

More precisely, a DBN is a set of two Bayesian networks: it then requires two datasets from
which parameters are updated. On the one hand, the dataset Dy is the dataset that resumes

the knowledge states at initial timeslice for every learner. This implies that the dataset Dy
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is composed of one row per learner in the former dataset. On the other hand, the dataset
D_, is the dataset that resumes the transition between two timeslices t — 1 and ¢ for every
t > 0. A learner that would have done Ni;aces transactions would then result in Nipaces TOWS
in the dataset D_,.

Example 5.2.4 (Initial and transition datasets). We describe the initial and transition
datasets Dy and D_, generated from Example 5.2.5. We represent in Tables 5.5 (resp. in
Table 5.0) the data entries in Dy (resp. in D_, ) induced by the data entry of the completed

dataset represented in Table 5.5.

‘ learner | X9 ‘ X3

Table 5.5: Data entry in Dy corresponding to the data entry reported in Table 5.3.

learner | X!~ | xi7t ) xEUort xt T XY Zy | 2k, TS| X4
1 0 1 0 1111 0 1 010
1 1 1 0 1111 0 1 0] 0
1 1 1 0 11 11 0 1 00
1 1 1 0 11 11 1 1 100

Table 5.6: Data entries in D_, corresponding to the data entry reported in Table 5.3.

Computing parameters from the initial and transition datasets

The M-step of the EM algorithm consists in maximizing the likelihood of the model in regard
to these two datasets. For a Bayesian network, it is simply finding the parameters that
optimize the likelihood. The BN parameters that maximize the likelihood given a complete
dataset are defined in Equation 3.28. Because E-PRISM relies on two BNs, this task must
be done twice. Dy is used to compute the parameters of By and D_, is used to compute the
parameters of B_,. We represent the updating formulas for By parameters in Table 5.7, and

those for B_, parameters in Table 5.8.

In a nutshell, in order to perform the EM algorithm in a DBN, one must keep in mind that
the E-step must be performed on the unrolled DBN, as the incompleteness of the dataset
makes the conditional independence between variables no longer truthful. However, once the
dataset is completed, the M-step is performed on datasets assuming the stationarity of the

process stated by the model parameters.
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parameter updating formula from Dy
#(X° = +z)
# (X0 = —2) U (X0 = +x))
# (28, = +2) N (Pl = +pay))
# (Paoﬁ = +pa7;)
4 <(Z§7i = +2) N (P, = ﬁpaz-))

# (PaS; = —pai)

px

qge,z' 1-

Table 5.7: Table of the updating formulas from Dy for the parameters of the BN By relative
to a knowledge component X.

parameter updating formula from D_,
l o # (Th = +t) N (X' = 7))
* e # (XTI =)
_#(Te=—1) N (X' = +2))
Ix fx= Ty C——

# ((Zgu =+z) N (Pay,; = +pai))
# <Pa§€?i = +pai>
# (24, =+2) N (Pl = —pay))

# (Pa';gji = ﬂpai)

qx,i 1-

Sx,i

Table 5.8: Table of the updating formulas from D_, for the parameters of the BN B_,
relative to a knowledge component X.

5.2.4 Study of the MCEM algorithm for parameter learning in E-PRISM

Now the theoretical background of parameter learning is elicited, we study the convergence
of the presented techniques for learning the parameters of the E-PRISM learner model from
synthetic data generated from E-PRISM itself.

First, we generate synthetic datasets with missing values from the E-PRISM framework
to evaluate the performance of parameter learning from them. We study the convergence
of the parameter learning task thanks to the Negative Log-Likelihood (NLL). The NLL is
supposed to decrease to zero as much as the learned model fits the dataset. We also measure
the effectiveness of the parameter learning task by computing the Kullback-Leibler (KL)
divergence between the learned BN distribution and the target BN distribution for different

values of the model hyperparameters.
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Generating a synthetic dataset with missing values

First, we define the E-PRISM learner model that is used for generating synthetic data. We
suppose a domain model with two KCs 2 and 9. It assumes the existence of the prerequisite

relationship 2 — B. We set up the parameters of the learner model as follows:
e KC parameters:
— “prior” parameters: pg = 0.1 and pg = 0.08
— “learn” parameters: Iy = 0.3 and I3 = 0.2
— “forget” parameters: fy = 0.01 and fs = 0.04
e Prerequisite parameters
— q parameter: gg o = 0.1
— s parameter: sg o = 0.05

These parameter values have been chosen arbitrarily. Still, they aim to correspond to credible
values. The KC parameters are chosen accordingly with plausible values [{BCA08]. The

prerequisite parameters correspond to a strong prerequisite relationship between 2 and ‘B.

We generate a complete dataset representing all DBN variables of the E-PRISM learner
model for 200 learners that would have realized 3 exercises each. Each entry in the complete
dataset consists of 13 columns. These values have been chosen because the synthetic dataset
should be used to compare exact and approximate inference tasks in parameter learning.
Thus, it must induce tractable computations for exact inference. Afterward, we extract a
dataset with missing data from the complete dataset. We suppose that only one mastery
variable is known at each timestamp and that every auxiliary variable is unknown. We

obtain a dataset composed of entries in the shape of the one in Table 5.2.

Metrics to measure the convergence of parameter learning

We learn the parameters of a newly-instantiated E-PRISM learner model from these synthetic
data. We suppose the learner model to relates to the same domain model as the one used
for generating the training dataset. The parameters of the learner model are randomly
generated. We apply two parameter learning algorithms to the synthetic data: MCEM with

exact inference and MCEM with BGS approximate inference.

First, we compare the learner model with learned parameters with training incomplete data
to measure the convergence of the parameter learning task. To do so, we study the value of
the Negative Log-Likelihood (NLL) of the training data with the learned model. The NLL
is already used in the EM algorithm as a criterion to assert convergence. The final NLL
value is obtained at the last step of the learning process and is supposed to be the minimum

value. The NLL provides a measure of convergence in the learning process. In addition, it
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can also be used to compare the performance of different parameter learning algorithms on
the same dataset. A lower NLL indicates a better fit of the model to the data, so algorithms
that produce a lower NLL are considered more accurate and effective at estimating the
model parameters. Because the EM algorithm only assures convergence to local minima,
the comparison of the NLL values can be employed to compare the performance of different
parameter learning procedures of the same algorithm on the same dataset. A lower NLL

indicates that learned model parameters better correspond to the data.

Second, we compare the learned model with the one used for generating the data. Because
the data is generated from instances of the E-PRISM learner model, we can directly compare
the DBN that generated the data with the DBN obtained from the parameter learning
procedure. We use Kullback-Leibler (KL) divergence to compare them. KL divergence is
employed to compare the convergence of different parameter learning procedures in BNs. It
measures the difference between the distribution of the estimated model parameters and the
true underlying distribution of the parameters. Suppose one parameter learning procedure
can estimate the parameters of the Bayesian network more accurately than another. In that
case, the KL divergence between the estimated and true distributions of the parameters
will be smaller for the more accurate procedure. We will study the evolution of the KL

divergence as a function of the hyperparameters of the parameter learning algorithms.

We want to demonstrate the capacity of the E-PRISM parameter learning procedure to
converge. Therefore, the parameter learning algorithm is applied to the whole synthetic
dataset. The purpose of the E-PRISM framework is to be directly used in an ITS. Therefore,
we evaluate the capacity of the learning algorithm to learn from an entire dataset that would
be produced on the ITS, and we study how the learning procedure converges to the optimal
fit of the whole data. The performance of the learning algorithm when evaluated on new
data will be studied in Chapter 6.

Hyperparameters of the learning task

The learning task relies on several hyperparameters that must be defined beforehand.
Hyperparameters are values that control the learning process itself rather than the model’s
behavior. Hyperparameters are often set by the practitioner and can significantly impact the
performance of the model. As such, it is essential to select the hyperparameters to achieve

optimal results carefully.

On the one hand, hyperparameters are intrinsically associated with the chosen parameter
learning algorithm. These hyperparameters directly depend on the underlying inference
algorithm. For instance, the MCEM algorithm with exact inference relies on the number of
samples taken into account for each data entry Ngample. In contrast, the MCEM algorithm
with BGS approximated inference depends on the number of Gibbs iterations Ngjpps and
the burn-in period M. We saw in Section 5.1.3 that the burn-in period doesn’t impact

the convergence of the inference task. Therefore it should not impact the convergence of
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parameter learning, and it will not be studied here.

On the other hand, because the family of EM algorithms only assures convergence to a
local minimum, we have decided to perform multiple parallel runs of the learning procedure
potentially. This introduces a new hyperparameter Ngy, the number of parameter learning
procedures done in parallel. It avoids being trapped in local equilibria. It may even be
mandatory to consider several procedures simultaneously, as there may be a high variance

between two similar procedures whatever the chosen algorithm for parameter learning,

Study of the inference hyperparameters

First, we focus on the inference hyperparameters, namely the number of samples Ngamples
for the MCEM learning algorithm with exact inference and the number of Gibbs iterations
Ngipbs for the MCEM learning algorithm with BGS approximated inference. We study the
effect of these hyperparameters on the learning procedure from the synthetic dataset. We
investigate the differences in the computational time taken for parameter learning. Then, we
continue analyzing the results given by the NLL and KL divergence values. We represent in
Figure 5.13 the running time of the parameter learning task from the synthetic dataset as a

function of Ngamples and Ngipbs-
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Figure 5.13: On the left: running time of the MCEM algorithm with exact inference as a
function of Ngamples: On the right: running time of the MCEM algorithm with approximate
inference task as a function of Ngjpps. Parameter learning is done from the dataset generated
on the 2 KCs learner model.

We can figure that the running time of the learning procedure with the MCEM learning
algorithm with exact inference doesn’t depend on Ngamples- Indeed, we observe that every
running time stays the same, apart from the running time when Ngymples = 1, which is
slightly longer. On the contrary, the running time of the learning procedure with the MCEM
algorithm with BGS approximated inference grows exponentially with Ngipps- This result is
entirely logical according to the results observed on E-PRISM inference. On the one hand,
MCEM with exact inference only computes the posterior distribution once, no matter the

value of Ngamples, and then it samples it Ngamples times. We guess that the exception of
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Nsamples = 1 is uniquely due to extra list manipulation in Python.

On the other hand, MCEM with approximated inference relies on the Blocking Gibbs sampling
inference, whose running time linearly grows with Ngiphs. Because MCEM mobilizes inference
for each learner entry of the dataset, the computational complexity of the parameter learning
algorithm is an exponential function of Ngjpps. We already saw in Section 5.1 that exact
inference is not tractable for large networks. Even if the MCEM algorithm with exact
inference leads to quicker results on a 2 KCs domain model, we can show that using the
MCEM algorithm with exact inference is rapidly intractable for larger domain models. On
the contrary, the MCEM algorithm with BGS approximate inference stays tractable for low

values of Naiphs, N0 matter the size of the domain model.

We now represent the NLL of the training data and the KL divergence between target and
learned distributions as functions of the value of Ngamples for the MCEM learning algorithm

with exact inference in Figure 5.14.
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Figure 5.14: On the left: NLL of the training data as a function of the value of Ngamples for
the MCEM learning algorithm with exact inference. On the right: KL divergence between
target and learned distributions as a function of the value of Ngamples for the MCEM learning
algorithm with exact inference.

We can observe in Figure 5.14 that both the NLL and the KL divergence stay the same,
whatever the value of Ngamples- The distribution from which the completed dataset is
sampled is computed exactly. It then directly gives coherent samples even if only one sample
is considered. Then, because there is a sufficient number of entries in the dataset, the
stochastically approximated distribution with exact inference sampling is close enough to

the target distribution.

We represent the NLL of the training data and the KL divergence between target and learned
distributions as functions of the value of Ngjpps for the MCEM learning algorithm with BGS

approximated inference in Figure 5.15.

Contrary to the MCEM algorithm with exact inference, we observe in Figure 5.15 that the
value of Ngiphs impacts both the NLL and the KL divergence. Indeed, we can see that

their value exponentially decreases with the value of Ngipps. As reported in Section 5.1,
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Figure 5.15: On the left: NLL of the training data as a function of the value of Ngibbs
for the MCEM learning algorithm with BGS approximated inference. On the right: KL
divergence between target and learned distributions as a function of the value of Ngjpps for
the MCEM learning algorithm with BGS approximated inference.

the higher the number of Gibbs iterations, the better the approximation of the inference
task. Consequently, multiple Gibbs iterations are required to correctly sample the target

distribution and complete the dataset with missing data.

We can extract a critical Ngipps value from which the NLL is low enough for the parameter
learning procedure to be close enough to correct parameter distribution. We denote it Ngipbs,c-
We compare the NLL value given by the MCEM algorithm with approximated inference with
the one obtained from MCEM with exact inference to determine this value. We observe that
the NLL and the KL divergence obtained with approximate inference are lower than those
obtained with exact inference from Ngipbs > 1. We also study the disintegration constant
that appears when considering the evolution of NLL and KL divergence as exponential decay.
We observe their disintegration constant looks similar. We approximate the critical value by

5 < Naibbs,c < 10. by studying the tangent of the exponential decay in Figure 5.15.

Study of the parameter learning hyperparameter

We study the influence of the parameter learning hyperparameter, namely the number of
simultaneous instances of the EM algorithm Ngy. This hyperparameter must be considered
for both the MCEM algorithm with exact inference and the MCEM algorithm with BGS
approximated inference. We suppose that the hyperparameters Neamples and Ngipbs are fixed

to the following value: Ngamples = Naibbs = 10.

We represent the KL divergence as a function of the number of EM algorithm instances in
Figure 5.16. We represent the distribution of 10 realizations of Ny simultaneous instances
of the EM algorithm with boxplots. For each of the 10 realizations, we select the best set of
learned parameters among the results of the Ny EM algorithm instances according to their
value of NLL.
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Figure 5.16: On the left: distribution of the NLL associated with the best set of parameters
among gy instances of the MCEM algorithm with exact inference. On the right: distribution
of the NLL associated with the best set of parameters among Ngy instances of the MCEM
algorithm with BGS approximated inference.

Figure 5.16 shows that the results of the parameter learning algorithm are subject to high
variance. We should consider the best result from multiple instances of the EM algorithm
rather than a unique instance to reduce the risk of considering not optimal learned parameters.
We observe the best NLL is stable when considering at least 5 simultaneous instances for the
MCEM algorithm with exact inference. Regarding the MCEM algorithm with approximated
inference, we can spot extreme values for runs with Ngy < 5. The stability of the results

also comes from 5 simultaneous instances as well.

Study of the dataset hyperparameters

Finally, we focus on the dataset hyperparameters. Dataset hyperparameters are values
that describe the specifications of the training dataset. In our case, the unique dataset
hyperparameter is the maximum number of transactions per learner. As reported in Section
5.1, we saw that the number of transactions that can be handled is a considerable limitation
of both exact and approximated inference. Inference is mobilized multiple times during
the parameter learning procedure, so we must study the effect of the number of learner
transactions on the running time of the parameter learning algorithm. We focus on the

MCEM algorithm with BGS approximate inference, and we set Ngipps = 10.

We suppose a new synthetic dataset relying on the same domain model as before. We suppose
12 transactions per learner. We iteratively consider 2 to 12 transactions per learner for the
parameter learning procedure. We suppose the other hyperparameters to be set to represent
the running time of the parameter learning procedure as a function of the number of learner

transactions per learner in Figure 5.17.

We can observe that the running time rapidly skyrockets. To keep the computation tractable
when the parameter learning task is done multiple times in a bigger procedure, we recommend

the maximum number of transactions per learner to be lower than 10 transactions, preferably
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Figure 5.17: Running time of the parameter learning task as a function of the number of
transactions taken into account in the training dataset.

even lower than 7 transactions.
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5.3 Discussion

In this chapter, we have studied the required techniques to use the E-PRISM framework
for student modeling. They provide tools to ITS for diagnosing and predicting learners’
knowledge states over time and updating the learner model. These have been implemented

in the E-PRISM Python package.

First, we have exposed the techniques for diagnosing learners’ knowledge states over time,
thanks to inference techniques in Bayesian networks. We have seen that usual inference
techniques in Bayesian networks suffer from intractability and convergence issues. Our
findings demonstrate that traditional exact inference is hindered by its rapid intractability
in the context of E-PRISM, and Gibbs sampling fails to converge due to the reducibility of
the Markovian process caused by the ICI-model CPDs. This is why we proposed a novel
approach based on Blocking Gibbs Sampling (BGS) for approximate inference in ICI-based
Bayesian networks. Our experiments showed that this approach allows for more tractable

convergence than exact inference and provides accurate results.

Then, we introduced the procedure for updating the learner model from data. Specifically,
we presented parameter learning in the E-PRISM learner model. We showed how the
interpretability of the learned parameters could provide insights into the prerequisite structure

of the domain knowledge and insights into the learning and forgetting phenomena.

These contributions provide a solid foundation for applying E-PRISM in ITS, where it can
help optimize the delivery of personalized instruction by diagnosing the learners’ knowledge
state and predicting their performance. We will study the capacity of our framework to
predict learners’ performance and compare it with other student modeling techniques in
Chapter 6. In particular, we will wonder how the learner model updating procedure can

produce insights into the prerequisite structure of the domain model.
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CHAPTER

Applications of the E-PRISM framework

We have presented the theory behind the elements of the E-PRISM framework in Chapters 4
and 5. In this chapter, the objective is to demonstrate the E-PRISM capacity to be deployed
to model the mastery state of Knowledge Components (KCs) and, therefore, to accurately
predict the learners’ performance on an Intelligent Tutoring Systems (ITS). In particular,
we examine the capacity of our model to identify prerequisite relationships between the KCs

of the domain model.

To evaluate the capacity of the model to predict mastery states and learner performance, we
apply it to datasets of learner transactions related to various learning environments. We
compare the E-PRISM learner model’s predictions to the actual learner performance on

different data sources and evaluate the accuracy of these predictions using insightful metrics.

In addition to its potential for predicting learner performance and mastery states, we examine
the potential of the E-PRISM framework for identifying the prerequisite structure of the
domain model. Rather than being determined through explicit patterns in the data, these
relationships are revealed through the learned values of the model parameters. We use the

parameter learning procedure of E-PRISM to discover KC prerequisite relationships.

Overall, the results of our analysis demonstrate the capacity of the model to accurately
predict learner performance and mastery states, as well as its potential for identifying
prerequisite relationships and providing an adaptive domain model. The following sections

describe our methodology and present the results of the evaluation carried out in detail.

136
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6.1 Study of the E-PRISM prediction performance

In this section, we describe the methodology we used to evaluate the capacity of the E-PRISM
learner model to predict the learner’s performance on an ITS. Accurate prediction of learner
performance is essential for an I'TS to adapt to individual learners’ needs and abilities and

provide personalized feedback and support.

As reported in Chapter 5, the running time of the parameter learning task for E-PRISM, in
our execution context, is very high when considering more than two KCs in the domain model.
To overcome this and provide a glimpse at comparing E-PRISM in predicting performance

with other cognitive diagnosis algorithms, we study knowledge components by pairs only.

6.1.1 Measuring the performance in predicting learner’s performance

First, we differentiate two uses of the word “performance” to understand the following better.
In this study, the performance of algorithms refers to the operational characteristics of the
algorithms, such as their accuracy and efficiency. In contrast, learners’ performance refers to
the outcomes or results of their interactions with the ITS. In our context, these outcomes

correspond to the correctness of their transactions.

State-of-the-art algorithms for learner’s performance prediction

In this study, we compare the performance of several algorithms specifically used for predicting
the learners’ answers from data. These algorithms have been presented in Section 2.2. We

have chosen to compare the following algorithms:
e Logistic regression algorithms: IRT, PFA, DAS3H, and BestLR;

e Bayesian knowledge tracing: classic BKT and an extended version (when possible),
which considers a “forget” parameter, item-dependent slip and guess parameters, and

KC-dependent learn parameters;

e E-PRISM: E-PRISM learner model trained with MCEM with exact inference (when
possible) and with MCEM with BGS approximate inference — see Section 5.2 for more
details.

We recall that these algorithms use statistical and machine learning techniques to analyze
student data and predict how students will perform on future assessments. By evaluating
the performance of these different algorithms, we can gain insight into which approaches are

the most effective at supporting personalized and adaptive instruction in ITS.

The BGS approximate inference uses the values determined in Section 5.2 to guarantee
the convergence of the parameter learning task. The number of Gibbs iterations is set to
Naibbs = 10, and the burn-in period is M = 0. The exact inference is also performed with a

number of samples Ngamples = 10 to simplify the comparison between the two approaches.
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Discussion on available metrics for learner’s performance prediction

Several metrics can be used to measure the capacity of a model to predict the learner’s
performance from learner traces on an I'TS. Among the standard metrics, we observe in the

literature that the main employed ones include the following:

e The Accuracy (ACC), which measures the percentage of correct predictions made by

the algorithm;
e The Mean Absolute Error (MAE), which measures the average prediction error;

e The Root Mean Square Error (RMSE), which measures the difference between the

predicted and actual values;

e The Area Under the ROC Curve (AUC), which measures the ability of the algorithm

to distinguish between positive and negative cases.

Pelanek differentiates “error” metrics, such as mean-error or RMSE, for which a lower value
is better, and “rewards” metrics, such as ACC and AUC, for which a higher value is better

[Pell5]. He also categorizes these metrics into three categories.

The first category of metrics consists of a probabilistic understanding of predictions and
errors. It comprises MAE, RMSE, and every likelihood-based metric. Such metrics report
the difference between probabilistic predictions and actual results. Peldnek recommends
using these metrics for predictions of learner performance. The second type of metric consists
of a qualitative understanding of the errors. It only focuses on whether the classification
prediction is correct, no matter the predicted probability value. Finally, the Receiver
Operating Characteristics (ROC) curve and the related AUC metric emphasize the third
category of metrics. These metrics compare the results obtained by the prediction tasks
relatively with each other. For instance, the AUC score equals “the probability that a
randomly selected positive observation has a higher predicted score than a randomly selected

negative observation.”

We then understand that it is crucial to consider which metric is the most relevant in context.
The specific goals and objectives of the predictive modeling task give insights into the metrics
to use. Pelanek recommends not to use MAE at all, as it is described as a misleading metric
[Pell5]. Moreover, he suggests preferring RMSE or likelihood-related metric to AUC for
model comparison [Pell5]. The AUC metric can be used in addition to either RMSE or
likelihood-related metric to provide a more interpretable understanding of the results. Pardos
and Yudelson even assert that “AUC should not be used to determine the relative goodness
of models based on prediction performance if the underlying goal is to rank models based on

knowledge estimation goodness.” [PY13]



Chapter 6. Applications of the E-PRISM framework 139

Use of cross-validation

Cross-validation is a resampling procedure used to evaluate the performance of a machine-
learning model. It is a way of evaluating the model on new data that was not used to train

it. In the context of our research work, we use holdout cross-validation.

To do so, we split the dataset into training and validation sets using the 80/20 proportion.
Parameter learning is performed on the training set, using classic 5-fold cross-validation,
the most common type of cross-validation. In k-fold cross-validation, the training dataset is
divided into k folds. The model is then trained and evaluated k times, using a different fold
as the test set each time. The training performance metric is then averaged across the k
iterations. It provides a more robust estimate of the model’s performance based on multiple

train and test splits rather than just one.

Then, it is evaluated on the validation set that has not been “seen” by the model yet.
Cross-validation aims to estimate the model’s performance on new data. One of the main
benefits of cross-validation is that it allows the model to be trained and evaluated on different
data subsets, which helps reduce the risk of overfitting. In summary, cross-validation is a
valuable technique for evaluating the performance of a machine learning model, as it helps
ensure that the model will generalize to new, unseen data and for identifying any overfitting

that may have occurred during training.

Cluster computing

Using cross-validation and more extended datasets complexifies the computations required
in this chapter. While Apple’s M1 chip was used in the computations in Chapter 5 to
perform parameter learning, we accessed clustered computing machines to perform efficient
parallel computations with the E-PRISM framework for the experiments of this chapter.
Inference and parameter learning tasks have been dispatched among the threads of the

cluster computing nodes. The nodes are described in Table 6.1.

Processors RAM memory Threads
2 x Intel Xeon X5677 144 Go 16 threads @ 3.47 GHz
2 x Intel Xeon X5690 144 Go 24 threads @ 3.47 GHz
2 x Intel Xeon E5-2690v3 192 Go 48 threads @ 2.60 GHz
2 x Intel Xeon X5570 144 Go 16 threads @ 2.93 GHz
2 x Intel Xeon E5-2650v3 256 Go 40 threads @ 2.30 GHz

Table 6.1: Specifications of the machine in the cluster.

Using clustered computing machines allowed us to parallelize the computations with more

simultaneous processes. However, the parameter learning task cannot be dispatched on
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multiple threads because the algorithm is iterative. The RAM memory attached to each
thread is the total RAM of the machine divided by the number of total threads. Available
RAM is then similar to Apple’s M1 chip. This is the limiting factor in the complexity of our

framework.

6.1.2 Predicting the learners’ performance from synthetic data

First, we study the performance of the different predicting algorithms to predict the learner’s
performance from synthetic data generated from E-PRISM. We want to compare the capacity
of E-PRISM to predict learner performance with the capacity of the other main cognitive
diagnosis algorithms when the data is well-tailored to our custom model. For each of the
studied algorithms, we look at the RMSE and AUC values obtained from training with the
5-fold cross-validation with the 80/20 proportion and the evaluation of the validation set of
the synthetic dataset.

Synthetic dataset and E-PRISM settings

The synthetic dataset is generated from E-PRISM. We suppose the domain model consists of
two knowledge components 2 and 8 related to each other with the prerequisite relationship
2 — B. We instantiate a learner model associated with this domain model. We set the

parameters to the following values:
e “prior” parameters: py = 0.1 and py = 0.08
e “learn” parameters: ly = 0.3 and Iy = 0.2
o “forget” parameters: fy = 0.01 and fs = 0.04
e ¢ parameter: gp g = 0.1
e s parameter: sg g = 0.05.

As stated in Section 5.2, these parameter values used for data generation are arbitrarily chosen,
but they correspond to plausible values for a strong prerequisite relationship [dBCA08]. We
generate a complete dataset from the learner model with 200 learners and 7 transactions per

learner. Then, we extract a dataset with missing data from the complete dataset.

One of the main objectives of the following experiments is to study the impact of the
prerequisite relationships on the learner’s performance prediction. To this end, we introduce
three E-PRISM learner models (eA). We compare the performance of eAg, eAgy 9, and
eAg_,g9, namely the E-PRISM learner models considering the possible configurations for
the prerequisite relationship (respectively @, 2 — B and B — ). We investigate if we
can notice an impact of the prerequisite relationship on the performance of the E-PRISM
learner model. We also compare the performance of eAg_.g5, which considers the correct

prerequisite structure, with the state-of-the-art learner’s performance prediction algorithms.
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Synthetic data restricted to 3 transactions per learner

We have seen in Section 5.2 that parameter learning for E-PRISM can be done in two
different ways. On the one hand, the MCEM algorithm with exact inference is rapidly
limited when considering large numbers of transactions for each learner. On the other hand,
the MCEM algorithm with approximate inference works for higher values of the number of

learner’s transactions.

As a first step, we consider the synthetic dataset restricted to 3 transactions per learner
to perform E-PRISM parameter learning with exact inference. The purpose of this tiny
dataset is to study the impact of the inference technique employed during MCEM parameter
learning in E-PRISM. For each predicting algorithm, we report in Table 6.2 the mean and
the best RMSE and AUC values obtained during cross-validated training, and the RMSE

and AUC values obtained on the validation set from the model learned on the training set.

Algorithm Mean Best Mean Best Vali- Vali-
train train train train dation dation
RMSE RMSE AUC AUC RMSE AUC
IRT 0.395 0.344 0.631 0.675 0.428 0.659
PFA 0.374 0.361 0.706 0.773 0.393 0.744
DAS3H 0.369 0.315 0.699 0.778 0.383 0.758
Best-LR 0.354 0.314 0.757 0.835 0.364 0.805
Classic BKT 0.369 0.288 0.727 0.791 0.387 0.758
Extended BKT 0.371 0.358 0.727 0.849 0.386 0.758
Exact eAg 0.349 0.319 0.782 0.839 0.390 0.727
Exact eAg_ 0.335 0.279 0.823 0.873 0.369 0.800
Exact eAg_ gy 0.372 0.309 0.681 0.775 0.395 0.764
Approx. eAgy 0.349 0.307 0.775 0.827 0.389 0.727
Approx. eAg_,m 0.336 0.278 0.820 0.866 0.374 0.791
Approx. eAg g 0.377 0.319 0.694 0.773 0.400 0.748

Table 6.2: RMSE and AUC values obtained from learner’s performance prediction algorithms
on synthetic data. The synthetic dataset consists of 3 transactions per learner, decomposed
into training and validation sets. Parameter learning is done with cross-validation on the
training set, and the algorithms’ performance is evaluated on the validation set.

Contrary to the concerns of Pelanek [Pell5], we can remark in Table 6.2 that RMSE and
AUC values are coherent with each other and lead to the same results on synthetic data.

This report encourages us to only focus on studying RMSE values.
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Concerning algorithms’ performance, we observe exact and approximate alternatives of the
E-PRISM parameter learning to give similar results. According to the E-PRISM parameter
learning procedure study with both exact and approximate inference, similar performances
are expected between exact and approximate eAs. The difference between the two probably
depends more on the variance due to the low number of EM initializations Ngy than on
the type of inference technique. We also notice in Table 6.2 that the performance of exact
and approximate eAg_.p is better than the others. They perform best among the other
eAs (validation RMSE —0.021, validation AUC +0.031 for exact inference; validation RMSE
—0.015, validation AUC +0.043 for approximate inference). Thus, the E-PRISM learner
model that relies on the prerequisite structure of the domain model described in the synthetic

dataset outperforms.

We can also observe that the logistic regression models exhibit a similar order to those
reported in the literature [Pell7, CPBV19, GKS"20, SWHM22]. Best-LR is the most
performant logistic regression algorithm, followed by DAS3H and PFA. IRT shows poor
results compared to the others (validation RMSE +0.035, validation AUC —0.085 compared
to the penultimate logistic regression algorithm regarding performance). More surprisingly,
Best-LR is a more performant prediction algorithm than E-PRISM on the E-PRISM synthetic
data. It outperforms eAgy_,5, which considers the correct prerequisite structure of the domain
model, by a little (validation RMSE —0.004, validation AUC 40.005 for exact inference).

Finally, classic BK'T has similar results with eAg. Their validation RMSE values are very
close (0.387 for classic BKT and 0.390/0.389 for exact/approximate eAg). Also, the AUC
value of classic BKT (0.743) is included in the interval between AUC values of exact (0.750)
and approximate (0.736) eAg. This result sounds entirely logical, as the DBN used in
E-PRISM when no prerequisite relationships are considered consists of parallel BKT models

(without “slip” and “guess” parameters) without any interactions between each other.

Full synthetic dataset

We now train and evaluate each learner model on the full synthetic dataset by considering
all 7 transactions per student. We have seen in Section 5.2 that the MCEM algorithm
with approximate inference remains tractable when considering datasets with a number of
transactions per learner of this order of magnitude. However, parameter learning with exact
inference MCEM is not tractable for such a number of transactions. The parameter learning
of E-PRISM is then studied with BGS approximate inference only. We represent the RMSE
and AUC values obtained from training and evaluating in Table 6.3 for the 7-transactions

synthetic dataset.

We notice that eAg .9 is the most performant predicting algorithm on the 7-transactions
synthetic data (validation RMSE —0.011, validation AUC 40.020 compared to Best-LR).
The other eAs lead to less notable performances, with eAy still being more performant

than eAg_,9. We denote a large gap of performances between eAgy g and eAg_,o (RMSE
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Algorithm Mean Best Mean Best Vali- Vali-
train train train train dation dation
RMSE RMSE AUC AUC RMSE AUC
IRT 0.462 0.450 0.688 0.729 0.484 0.649
PFA 0.384 0.371 0.845 0.870 0.409 0.814
DAS3H 0.383 0.361 0.844 0.870 0.408 0.814
Best LR 0.369 0.346 0.870 0.901 0.396 0.845
Classic BKT 0.381 0.366 0.847 0.863 0.408 0.816
Extended BKT 0.381 0.355 0.847 0.875 0.406 0.815
eAgy 0.368 0.353 0.864 0.891 0.393 0.848
eAy m 0.353 0.327 0.892 0.913 0.385 0.865
eAg g 0.402 0.394 0.830 0.845 0.422 0.803

Table 6.3: RMSE and AUC values obtained from learner’s performance prediction algorithms
on synthetic data. The full dataset consists of 7 transactions per learner, and it is decomposed
into training and test sets. Parameter learning is done with cross-validation on the training
set, and the performance evaluation is done on the test set.

—0.037, AUC 40.062 for eAgy_,s3).

As reported in Table 6.3, and in accordance with what we observed for the 3-transactions
synthetic dataset, the prediction performance of logistic regression models follows the trend
described in the literature [Pell7, CPBV19, GKS'20, SWHM22]. IRT is once again the
less predicting algorithm on E-PRISM synthetic data, with a large gap (validation RMSE
+0.062, validation AUC —0.154) with the overall penultimate algorithm which is the eA
considering the wrong prerequisite structure. Still, the best logistic regression algorithm

Best-LR performs notably great on synthetic data generated from E-PRISM.

Classic and extended BKT algorithms give similar results (validation RMSE 0.408/0.406 for
classic/extended BKT). Their performance is lower than eAy (validation RMSE +0.013).
Because the synthetic data is generated from the E-PRISM framework, neither slip nor
guess phenomena are considered. Thus, it offers an additional constraint to the E-PRISM
parameter learning that brings better results for eAs than for BKT algorithms. In addition,
the parameters chosen for generation are similar between 2( and 8. The benefits from the

extra features of extended BKT have diminished in these conditions.
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Insights from the synthetic data

We conducted experiments to evaluate the performance of several different state-of-the-art
algorithms for predicting learner performance on E-PRISM-generated synthetic datasets.
The experiments were designed to understand how the different algorithms behave on data
tailored for E-PRISM and how they handle an existing correlation between the masteries of
two KCs.

We found that the best logistic regression algorithms yield good results for predicting the
learner’s performance from these synthetic data and may even outperform E-PRISM. The
fact that other learners’ performance prediction algorithms behave correctly gives a glimpse
of the plausibility of the data generated from E-PRISM. Still, when considering enough
transactions such that prerequisite relationships exhibit real implications, E-PRISM performs
the best compared to the other studied predicting algorithms. Also, classic and extended
BKT algorithms show similar trends with E-PRISM when no prerequisite relationships are

considered, as they are equivalently structured.

Finally, the results in Table 6.3 confirm that RMSE and AUC values follow the same trend.
Then, from this point, we will uniquely consider RMSE values in the next experiments, as

they are sufficient to account for the performance of the predicting algorithms.

6.1.3 Predicting the learners’ performance from real-world data

We have studied the performance of the different learners’ performance prediction algorithms
on synthetic data. We now examine the performance of these algorithms on real-world
data. Previous experiments were typically focused on using synthetic data to evaluate the
performance of these algorithms. Still, it is important also to consider their performance
on more realistic, complex datasets. For instance, real-world data imply new phenomena,
such as slipping and guessing, described in Bayesian Knowledge Tracing (BKT). Because
the E-PRISM learner model doesn’t consider any of these, the following analysis results
will provide insight into the strengths and limitations of E-PRISM with real-world data

compared to other learners’ performance prediction algorithms.

Presentation of the studied real-world datasets

In this experiment, we use four real-world datasets to evaluate the performance of the
learner’s performance prediction algorithms. These datasets were selected because they
decompose the domain knowledge into KCs more or less similar to those expected in the
E-PRISM framework. Studying these datasets should provide valuable insights into the
behavior of the different algorithms regarding the granularity of the KC decomposition.
It should allow us to understand the strengths and limitations of these algorithms with

real-world data. We represent in Table 6.4 the characteristics of these datasets.

ASSISTments12 and ASSISTments17 are datasets issued from the ASSISTment system
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introduced by Heffernan [FHK09]. ASSISTments is an ITS developed by researchers at
Worcester Polytechnic Institute to help students learn math [HHI4]. It uses machine
learning algorithms and cognitive diagnosis methods to build a learner model and adapt the
instruction to the student’s needs and learning preferences [FFHOG|. It is the biggest publicly
available knowledge tracing data source [PBH " 15]. The granularity of the domain knowledge
decomposition differs a little from the granularity suggested in the KLI framework [KCP12],
which assumes the KCs to be unitary tasks — see Definition 2.1.2. Still, ASSISTments12
uses finer KCs than ASSISTments17, which relies on wide skills. We remark that some
transactions are not labeled, so we can wonder about the correctness of labeled learner

interactions.

The Eedi2020 dataset has been publicly released in a NeurIPS2020 challenge [WLS™21]. Tt is
issued from the Eedi system, discussed in Section 1.1.3. We use the dataset associated with
Tasks 1 & 2 of the challenge. The learner traces are collected on multiple-choice questions,
and each of these is associated with KCs. The Eedi dataset introduces KCs with four different
granularities. The finest granularity corresponds to the KLI framework. In this study, only

this granularity is studied.

Finally, the Kartable dataset has been provided by Kartable, presented in Section 1.1.4.
The data is collected from the exercises available on the Kartable! website. They also are
multiple-choice questions for the most part. The data has been restricted to the exercises
about the chapter “Quadratic Equations and Functions” studied by Premiére (11th grade)

french students. This dataset is not freely available.

Dataset ASSISTments12 | ASSISTments17 | Fedi2020 | Kartable
Number of transactions 6 116 189 934 640 165 900 | 146 339
Number of learners 46 667 1709 2000 7368
Number of KCs 199 411 280 58
Number of items 179 173 3162 22894 312
Mean number of transac- 48 439 56 6
tions per learner

Mean number of items per 900 7.69 81.8 5.4
KC

Mean % of correct answers 67.7% 37.3% 68.6% 73,6%

Table 6.4: Characteristics of the real-world datasets

Lwww.kartable.fr
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Extracting sub-datasets from the real-world datasets

Because of the E-PRISM computational constraints presented in Chapter 4, we cannot study
these real-world datasets as their whole. Consequently, we decompose the datasets into
sub-datasets. We describe the procedure for constructing and selecting the sub-datasets in

the following.

For each dataset, we consider the set of sub-datasets restricted to pairs of KCs of the original
dataset. We focus on the correlation between the masteries of two KCs. Thus, we expect
each sub-dataset to only contain the transactions from learners that have trained the two
KCs associated with the sub-dataset. Because original real-world datasets rely on large
numbers of KCs, the number of sub-datasets for each dataset is substantial. For instance,
ASSISTments12 leads to 39,505 subdatasets. For each sub-dataset, by denoting 2 and B
the knowledge components of the sub-dataset, we must study the three configurations of
the relationship between 2 and 95 to analyze it, namely @, A — B, and B — 2. This is
why we have selected a restricted number of sub-datasets. We assume the impact of the
potential prerequisite relationship between 2 and B is more noticeable with many learner
transactions with the system. Therefore, for each real-world dataset, we have selected the 6
sub-datasets with the greatest number of learner transactions, considering learners that have

practiced the two knowledge components.

The selected sub-datasets are presented in Tables 6.5, 6.6, 6.7, and 6.8. We detail the

characteristics of these datasets in Appendix B.
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Finally, we restrict each of these sub-datasets to 7 transactions per learner, as we set the
limit to perform E-PRISM parameter learning in a tractable way. The extended variant of
BKT will not be studied on real-world sub-datasets, as items must be the same between
the train and validation sets. Because of the high variety of items in these datasets, this

condition is too complicated to meet.

For each sub-datasets, we perform parameter learning on three E-PRISM learner models
(eA), each considering a prerequisite relationship configuration between the two KCs. We
perform 100 runs of the parameter learning algorithm with a single instance of EM algorithm
and Ngipbs = 20, and M = 0. We have chosen to run 100 times the parameter learning
procedure and not to consider the smoothing allowed by Ngy simultaneous EM instances

because real-world sub-datasets are larger than synthetic datasets.

As stated in Section 6.1.2, we only study the RMSE values as they are sufficient to understand

the performance of algorithms in predicting the learner’s answers.

Performance on ASSISTments12 sub-datasets

Table 6.9b shows the best RMSE values obtained during parameter learning with a 5-fold
cross-validation for each sub-dataset of ASSISTments12. Table 6.9b relates the RMSE values
computed on the validation set of each sub-dataset of ASSISTments12. We recall which
KCs are defined as KCs 2l and 3 in the header of Tables 6.9a and 6.9b. This defines which

prerequisite relationship is considered in eAgy_.g and eAgp_.y.

First, we analyze the performances of the E-PRISM learner models (eA), and we compare
them with each other. We can observe in Table 6.9a three possible behavior of the E-
PRISM framework. The sub-datasets (Addition and Subtraction Integers / Exponents) and
(Addition and Subtraction Positive Decimals / Multiplication and Division Positive Decimals) show
better performance from eAg than from the other eAs. In the sub-datasets (Addition and
Subtraction Fractions / Multiplication Fractions) and (Addition and Subtraction Integers / Addition
and Subtraction Fractions), eAq_g and eAg_,5 has respectively the best results among the
other eAs, and the eA considering the other direction for the prerequisite relationship leads
to the poorest results. On the contrary, sub-datasets (Addition and Subtraction Integers /
Multiplication and Division Integers) and (Division Fractions / Addition and Subtraction Fractions)
show that both eAs considering a prerequisite relationship outperform eAg, with one of the

possible directions being more performant than the other (eAg_,g for the two sub-datasets).

We can see in Table 6.9b that the gaps between the E-PRISM learner models (eA)s per-
formances observed on the training RMSE values decrease significantly on the validation
set. Indeed, only (Addition and Subtraction Integers / Multiplication and Division Integers) and
(Division Fractions / Addition and Subtraction Fractions) allow naming a slightly more performant
eA. We remark that these two sub-datasets were those where eAg was the least performant

eA. Also, because the RMSE values obtained during the training process are lower than
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A MDI MF ASI ASPD DF E

B ASI ASF ASF MDPD ASF ASIT
IRT 0.334 0.429 0.427 0.373 0.440 0.372
PFA 0.339 0.416 0.405 0.364 0.432 0.396
DAS3H 0.327 0.413 0.406 0.354 0.427 0.374
Best-LR 0.333 0.408 0.398 0.367 0.422 0.384
BKT 0.332 0.429 0.411 0.376 0.435 0.389
ey 0.345 0.425 0.417 0.372 0.446 0.389
eAg_s3 0.337 0.426 0.392 0.379 0.439 0.396
eAg_sy 0.327 0.420 0.419 0.374 0.434 0.401

(a) Best train RMSE values

A MDI MF ASIT ASPD DF E

B ASI ASF ASF MDPD ASF ASI
IRT 0.367 0.445 0.404 0.392 0.430 0.393
PFA 0.359 0.434 0.403 0.384 0.418 0.406
DAS3H 0.349 0.429 0.392 0.381 0.416 0.389
Best-LR 0.346 0.424 0.392 0.380 0.413 0.388
BKT 0.360 0.435 0.404 0.384 0.421 0.405
eAy 0.369 0.442 0.411 0.387 0.425 0.409
eAg_sm 0.367 0.440 0.411 0.386 0.424 0.410
eAg_sy 0.366 0.440 0.411 0.386 0.423 0.409

(b) Validation RMSE values

Table 6.9: Training and validation RMSE values obtained during the process learning
process on the sub-datasets derived from ASSISTments12. Each sub-dataset consists of
at most 7 transactions per learner, and it is decomposed into training and validation sets.
Parameter learning is done with 5-fold cross-validation on the training set, and the validation
RMSE value is computed on the validation set.

those computed on the validation set, we can assert that E-PRISM slightly overfits.

We now compare the performance of the best eA with the other predicting algorithms. First,
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in Table 6.9a, the order of logistic regression models performance reported in Section 6.1.2
slightly varies. For some sub-datasets, DAS3H leads to better training results than Best-LR.
This report is not accurate anymore when considering the validation RMSE values in Table
6.9b, where Best-LR is always the best predicting algorithm. In Table 6.9a, we also notice
that the RMSE values of E-PRISM obtained during training are approximately included
between the RMSE values of PFA and DAS3H/Best-LR. Moreover, for the sub-dataset
(Addition and Subtraction Integers / Addition and Subtraction Fractions), we even have eAg 53
being the most performant prediction algorithm. However, these results don’t replicate when
considering the RMSE values on the validation set. We can observe in Table 6.9b that the
validation RMSE values of E-PRISM are higher than those of the best logistic regression
models. Thus, E-PRISM shows a higher tendency to overfit than the other algorithms.

Performance on ASSISTments17 sub-datasets

Table 6.10b presents the training RMSE values computed from the dataset ASSISTments17,
using 5-fold cross-validation. Table 6.10b shows the RMSE values computed on the validation

sets.

First, we can notice that the computed values of RMSE are way higher than those computed
for ASSISTments12. ASSISTments17 dataset leads to the poorest prediction algorithm
performance. We compare E-PRISM learner models (eA) with each other and then with the

other predicting algorithms.

We observe in 6.10a that for each sub-dataset, eAy leads to a lower training RMSE value
than the other eAs, except for the sub-dataset (Pythagorean theorem / Probability) where
eAg s outperforms the others. On the contrary, Table 6.10b shows that the validation
RMSE gives different results. Still, we observe the same gap reduction phenomenon we saw
on ASSISTments12 data, and the differences between eA validation RMSE values are too
small to be significant for ASSISTments17.

Similarly to the results on ASSISTments12 sub-datasets, DAS3H and Best-LR are the best
logistic regression models. Which algorithm is the best between the two depends on the
pair of KCs according to training RMSE values, while it is always Best-LR according to
validation RMSE values. This suggests that DAS3H overfits more than Best-LR on the
data of both ASSISTments12 and ASSISTments17. Nevertheless, both outperform other

predicting algorithms, including every eA.

Finally, we observe in both Tables 6.10a and 6.10b that IRT outperforms PFA. Generally,
IRT shows better results compared to the other algorithms than it has shown until now. On
the contrary, PFA and BKT offer poor results regarding those observed until now. The poor
results of both PFA and BKT can be explained by the granularity of KCs described in the
ASSISTments17 dataset. IRT better handles larger concepts as knowledge components than
PFA, BKT, and E-PRISM.
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A P P P PF P PT
B ES PF EFDP ES A P
IRT 0.460 0.470 0.475 0.463 0.452 0.475
PFA 0.487 0.478 0.487 0.471 0.470 0.483
DAS3H 0.450 0.468 0.463 0.456 0.453 0.466
Best-LR 0.458 0.465 0.477 0.452 0.462 0.472
BKT 0.481 0.480 0.491 0.469 0.474 0.485
eAgy 0.482 0.478 0.485 0.469 0.468 0.490
eAg_m 0.484 0.483 0.487 0.477 0.468 0.486
eAg_9 0.483 0.484 0.488 0.475 0.468 0.489
(a) Training RMSE values
A P P P PF P PT
B ES PF EFDP ES A P
IRT 0.470 0.482 0.472 0.475 0.470 0.484
PFA 0.488 0.484 0.486 0.487 0.479 0.488
DAS3H 0.465 0.479 0.474 0.473 0.464 0.483
Best-LR 0.461 0.465 0.470 0.473 0.465 0.483
BKT 0.488 0.482 0.482 0.488 0.479 0.487
eAg 0.496 0.483 0.488 0.488 0.483 0.487
eAg_yp 0.496 0.486 0.489 0.492 0.483 0.486
eAg_q 0.495 0.482 0.487 0.490 0.482 0.492
(b) Validation RMSE values
Table 6.10: Validation RMSE values obtained during the process learning process on

the sub-datasets derived from ASSISTments17. Each sub-dataset consists of at most 7
transactions per learner, and it is decomposed into training and validation sets. Parameter
learning is done with 5-fold cross-validation on the training set, and the validation RMSE
value is computed on the validation set.

Performance on Fedi2020 sub-datasets

Table 6.11b shows the best training RMSE values obtained from a 5-fold cross-validation

learning process for each selected sub-dataset of Fedi. Table 6.11b reports the validation
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RMSE values.

A MLCM PNPF PNPF MMD MAS MMD
B FHCF FHCF MLCM VNP VNP MAS
IRT 0.448 0.437 0.465 0.408 0.417 0.418
PFA 0.451 0.445 0.464 0.399 0.413 0.407
DAS3H 0.440 0.434 0.455 0.377 0.412 0.411
Best-LR 0.430 0.442 0.464 0.399 0.398 0.418
BKT 0.444 0.442 0.466 0.413 0.410 0.415
eAg 0.449 0.455 0.460 0.409 0.396 0.414
eAg_n 0.449 0.444 0.461 0.402 0.409 0.402
eAg_9 0.450 0.450 0.470 0.399 0.403 0.408
(a) Training RMSE values
A MLCM PNPF PNPF MMD MAS MMD
B FHCF FHCF MLCM VNP VNP MAS
IRT 0.456 0.448 0.467 0.444 0.408 0.417
PFA 0.475 0.450 0.470 0.444 0.409 0.416
DAS3H 0.467 0.443 0.464 0.441 0.409 0.401
Best-LR 0.460 0.436 0.456 0.439 0.408 0.408
BKT 0.479 0.449 0.470 0.448 0.411 0.418
eAgy 0.482 0.449 0.476 0.446 0.414 0.422
eAg 3 0.478 0.448 0.470 0.443 0.418 0.423
eAm o 0.477 0.447 0.472 0.445 0.414 0.422

(b) Validation RMSE values

Table 6.11: Validation RMSE values obtained during the process learning process on the
sub-datasets derived from Fedi2020. Each sub-dataset consists of at most 7 transactions per
learner, and it is decomposed into training and validation sets. Parameter learning is done
with 5-fold cross-validation on the training set, and the validation RMSE value is computed
on the validation set.

As we deplored for ASSISTments17, the RMSE values computed on the dataset Fedi are
relatively high, as reported in Table 6.11. We can see in the training RMSE values in Table
6.11a that E-PRISM overall outperforms both IRT and BKT. eAg outclasses the other
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eAs on datasets (Factors and Highest Common Factor / Multiples and Lowest Common Multiple),
(Multiples and Lowest Common Multiple / Prime Numbers and Prime Factors), and (Volume of
Non-Prisms / Mental Addition and Subtraction). The other sub-datasets show better results for
a e/ considering the existence of a prerequisite relationship. Nevertheless, the differences
between RMSE values of the eAs are small, and they are not observed anymore on validation
RMSE values. Table 6.11b shows that the RMSE values are significantly higher than those
obtained during training. This report suggests that E-PRISM undergoes a consequential
overfit. DAS3H and Best-LR outperform again on training and validation data. Depending

on the sub-dataset, they alternate being the most performant predicting algorithm.

Performance on Kartable sub-datasets

Finally, we represent in Table 6.12b the best training RMSE values obtained from a 5-fold
cross-validation learning process for each selected sub-dataset of Kartable. The RMSE values

obtained on the validation set are reported in Table 6.12b.

According to Table 6.12a, eAy is the most performant E-PRISM model on training for every
sub-dataset but (Determine if a real number is a root of a quadratic polynomial / Find an obvious
root for a quadratic polynomial) and (Give the roots of a quadratic polynomial / Give the sign chart
of a quadratic polynomial). Nevertheless, these results do not hold on to the validation set for
which the RMSE values are, for the most part, similar between all eAs, as reported in Table
6.12b.

RMSE values from the training and validation sets show similar results for the other predicting
algorithms. Best-LR and DAS3H are the best predicting algorithms, with the former slightly
outperforming. The other logistic regression models and BKT show RMSE values close to
the E-PRISM learner models.

6.1.4 Discussion

We can elicit two conclusions from the results reported in Sections 6.1.2 and 6.1.3 about the
performance of E-PRISM. We compared the E-PRISM learner model with other learners’
performance prediction algorithms on synthetic and real-world data. We also studied the
difference in the performance of the different E-PRISM learner models (eA) to highlight the

importance of considering the correct prerequisite relationship.

Overall performance of E-PRISM models

We have reported that E-PRISM gives similar results to PFA on training and IRT on
validation sets. It follows the same trend as the other learner’s performance prediction
algorithms. In particular, we have observed the RMSE values get close to 0.5, which is the
maximal value of RMSE, on some datasets, such as Fedi and ASSISTments17. Nevertheless,
it performs well on the other datasets ASSISTments12 and Kartable. We believe these
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A CF Root Solve CF Solve OR
B Solve OR Root Chart Chart D
IRT 0.418 0.360 0.356 0.400 0.373 0.294
PFA 0.418 0.347 0.359 0.404 0.386 0.285
DAS3H 0.410 0.339 0.354 0.387 0.367 0.299
Best-LR 0.415 0.355 0.354 0.396 0.359 0.290
BKT 0.414 0.363 0.363 0.405 0.379 0.301
eAy 0.421 0.372 0.359 0.389 0.389 0.286
eAg_sn 0.424 0.359 0.366 0.407 0.376 0.296
eAg_sy 0.422 0.364 0.364 0.398 0.368 0.294
(a) Training RMSE values

A CF Root Solve CF Solve OR
B Solve OR Root Chart Chart D
IRT 0.437 0.368 0.361 0.410 0.388 0.317
PFA 0.438 0.366 0.370 0.411 0.394 0.312
DAS3H 0.429 0.361 0.358 0.405 0.385 0.309
Best-LR 0.426 0.361 0.359 0.404 0.384 0.307
BKT 0.439 0.366 0.369 0.411 0.393 0.312
eAy 0.441 0.368 0.370 0.412 0.395 0.318
eAg_sm 0.439 0.371 0.370 0.412 0.394 0.316
eAg_s9( 0.440 0.368 0.370 0.413 0.395 0.318

(b) Validation RMSE values

Table 6.12: Validation RMSE values obtained during the process learning process on the
sub-datasets derived from Kartable. Each sub-dataset consists of at most 7 transactions per
learner, and it is decomposed into training and validation sets. Parameter learning is done
with 5-fold cross-validation on the training set, and the validation RMSE value is computed

on the validation set.

differences are due to the granularity of the KC decomposition. The great performance of

IRT on datasets ASSISTments17 and Eedi compared to the other logistic regression models

acknowledges this hypothesis.
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Difference between results on synthetic and real-world datasets

We also observed a gap between the performances of E-PRISM on synthetic and real-world
data. This sounds logical as the synthetic data is tailored to fit E-PRISM models. The fact
that the E-PRISM models even outperform BKT models on synthetic data enlighted that
no slip nor guess phenomenon is represented in the synthetic data. This is the main pain
point of our model, as real-world data relate to noisy observables. These reasons explain the

big difference between the performance of E-PRISM on synthetic and real-world data.

In every real-world sub-dataset, we have observed a significant difference between the
performance of E-PRISM models on the test and the validation sets. This gap reveals
that E-PRISM tends to overfit from the training data. This report feels legit, as the non-
consideration of slip and guess phenomena inevitably implies a deeper bond between the

observed values and the mastery variables by assuming no noise in the data.

Comparison between instances of E-PRISM

Last but not least, the different instances of E-PRISM led to various results that may inform
the prerequisite structure of the latent domain model. For most sub-datasets, the best
E-PRISM learner model did not consider any prerequisite relationships between the two
KCs. Nevertheless, for some pairs of KCs, E-PRISM learner models supposing the existence

of a prerequisite relationship outperformed.

For instance, the E-PRISM learner model considering the prerequisite relationship Addition
and Subtraction Integers — Multiplication and Division Integers showed better results than the
other eAs on both test and validation sets. On the other hand, an instance often showed
tremendous results compared to the others but uniquely on the training RMSE values.
For instance, in the Kartable dataset, we observe that the most performing eAs consider
relationships like Give the sign chart of a quadratic polynomial — Give the roots of a quadratic
polynomial or Determine if a real number is a root of a quadratic polynomial — Find an obvious
root for a quadratic polynomial. These prerequisite relationships look plausible and should be

further investigated.

My metric related to the RMSE value

It may be challenging to determine the existence of a prerequisite relationship between two
KCs by only studying the values of RMSE obtained during both training and validation.
Still, studying the prerequisite relationships from a given dataset should not care about
overfitting the parameter learning, as the wanted result is the prerequisite structure of KCs
expressed in the data, more than its generalization to new data. Then, the unique value to
keep in mind when studying the prerequisite relationships with E-PRISM is the training
RMSE (or the NLL, which is directly related).

On the training data, we use the RMSE metric to identify the existence and direction of the
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prerequisite relationship. Indeed, by comparing the RMSE values obtained from the different
E-PRISM learner models, we identify which instance of E-PRISM leads to the lowest RMSE
value. We can then determine the existence and the direction of the prerequisite relationship.
Specifically, we compute M, the relative difference between the lowest RMSE value of the
considered instance and the lowest RMSE value of the instance without the prerequisite
relationship. M can be computed according to Equation 6.1 for each dataset and each
direction of the prerequisite relationship. It allows us to quickly and easily determine the

best-fit direction of the prerequisite relationship.

1 (RMSE of eAgz — RMSE of eAg_,m)
K RMSE of eAy

M (A — B) = (6.1)

where 2 and B are two KCs, and K is a normalizing constant.

M (2 — B) is a measure for the existence of the prerequisite relationship. It indicates how
better the E-PRISM model performs by considering 2 — B. M; ranges from —1 (very
unlikely there exists a relationship 2 — 9B) to 1 (very likely there exists a relationship
A — B). We can evaluate the direction of the prerequisite relationship indicated by this
metric by comparing M; (2 — 9B) and M;(B — ).



Chapter 6. Applications of the E-PRISM framework 158

6.2 Study of E-PRISM learner model parameters trained on
synthetic data

As mentioned several times, the main benefit of E-PRISM is to integrate the KC prerequisite

relationships in modeling the learner’s knowledge state. Model parameters in E-PRISM are

designed to emphasize the causal effect of the prerequisite relationships that the domain

model considers. In this section, we study the value of these parameters obtained from

the parameter learning of the E-PRISM learner model. More specifically, we analyze the

distribution of the learned parameters.

We first study the value of the learned model parameters from synthetic data to apprehend
the behavior of these parameters better. The use of synthetic data allows us to control the
prerequisite structure of the domain model and then provide important insights into the

values of learned parameters.

6.2.1 Protocol

We define two types of E-PRISM learner models (eA) in the following. First, the eA that
have been used for generating the synthetic datasets. They will not be used further. Then,

the eA used for parameter learning are introduced.

Generative sources of synthetic datasets

We suppose a domain model composed of two KCs 21 and 8. We introduce three synthetic
datasets Dno prereq.s Dstrong; and Dyeak, respectively generated from the E-PRISM models

eAg, eAstronga eAyeak-

The domain model of eAy considers no prerequisite relationships. The parameters that rule

ey are:
e prior parameters: py = 0.1 and py = 0.08
e learn parameters: Iy = 0.3 and Iy = 0.2
o forget parameters: fy = 0.01 and fu = 0.04

The domain models of eAgtrong and eAyeax consider the prerequisite relationship 20 — ‘B.
The KC parameters (prior, learn, and forget) are the same as the eAg ones. The prerequisite

parameters of eAgirong values:
e ¢ parameter: ggg = 0.1
e s parameter: sg g9 = 0.05.
The prerequisite parameters of eAyeak are:

e ¢ parameter: gp g = 0.4
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e s parameter: sg g = 0.35.

From each e/, we model 200 learners and generate the complete dataset corresponding to 7
transactions per learner. Then, we hide the values that should be hidden to correspond to

an actual E-PRISM training dataset. Each synthetic dataset is composed of 1400 entries.

E-PRISM instances for parameter learning

Onto each synthetic dataset, we consider two instances of the E-PRISM learner model. Each
eA considers either the correct or inverse direction of the prerequisite relationship between
2 and B. The eA considering the inverse direction will be denoted eA;,y.. For each, we
proceed 100 runs of the MCEM algorithm with BGS approximate inference with Ngyr = 10,
Naipbs = 20, and M = 0. For each run, we consider the full dataset as the training dataset.
The purpose here is not to evaluate the model but to compute the most fitted parameters to
the data.

6.2.2 KC parameters learned from synthetic data

Because of the high variability of parameter learning results with our settings, we choose to
represent the weighted density plot of each parameter. We weigh the value obtained for each
parameter with the normalized NLL obtained by the learned model on the whole data. We
represent in Figure 6.1 the weighted density of the learn and forget parameters computed

from the 100 runs of parameter learning.

Values of eA considering the correct direction of the prerequisite relationship

Figure 6.1 shows that the distribution of the [ and f parameters obtained from training
eAgtrong correspond to the learn and forget parameter values used for generation. Nevertheless,
we notice a slight shift of the Iy value, which should equal 0.2. The value of fy is slightly
lower than expected. Overall, the values obtained from training from a dataset exhibiting a
strong correlation between two KCs are close to the generation values. The [ values learned
from eAyeak show a more significant shift compared to generation values: Iy is higher than
the expected values, while the learned value of Iy is lower than expected. The fo value
shows a flattened density from 0 to 0.4. When there is a weak prerequisite relationship, the
learned value of the fy parameter associated with the target KC is less defined than for a
strong prerequisite relationship. We assume this means the causal effect of the source KC
mastery on the target KC 9% mastery, implied by the learned model, is too significant to

represent the actual causality contained in Dyeax-

We also observe the distributions of the Iy value on eAjny. strong and eAiny. weak (€Ainy.
respectively applied to Dstrong and Dyeak) are indeed extremely flattened with values from
0.3 to 0.9. These values are very high for representing the forget phenomenon. On the

contrary, the ly value is distributed as a narrow peak below the expected value. This result
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Figure 6.1: Distribution of the “learn” and “forget” parameters’ values for eAs trained on
Do prereq.» Dweak, and Dggrong. The values are learned with MCEM parameter learning with

BGS approximate inference.

feels logical, as the causal effect of the prerequisite relationship B — 2 (which is the causal
effect of the mastery of B on the mastery of 2) is shifted to the causal effect of the learning

of 2.

Values of eA considering the inverse direction of the prerequisite relationship

We also notice that the distribution peak of fo is closer to zero when learning eAipny. strong
than when learning on eAgrong, and the values of fy form peaks with high median values
(approximately 0.2 for values learned from Dgirong, 0.45 from Dyeax). This compensates for
the unduly causal effect of the source KC mastery on the target KC mastery considered
in the trained E-PRISM model (source and target KCs in the sense of the prerequisite



Chapter 6. Applications of the E-PRISM framework 161

relationships).

Overall, we remark that the values of the source KC learn parameter and the target KC
forget parameter of E-PRISM models that considers the correct direction of the prerequisite
relationship are always greater than those of E-PRISM models considering the wrong direction.
On the contrary, the values of the target KC learn and the source KC forget parameters of
the E-PRISM models that consider the correct direction are consistently lower than those of

models about the wrong direction.

Values from Dy, prereq.

Finally, the values obtained from learning on the dataset Dy, prereq. also show a slight increase
compared to the expected values. However, the learned values of the f parameter equal
the values used for generation. The behavior of the distribution of the learned parameter
values from Dy prereq. is quite similar to the distribution of those learned from Dgrong, except
for the value of lys. Because a prerequisite relationship is considered during learning, and
because it does not exist in the training dataset, the causal effect of 2 on 9B needs to be

compensated to correctly represent the mastery of 8.

6.2.3 Prerequisite parameters learned from synthetic data

In the second place, we study the learned values of the prerequisite parameters that should
numerically highlight the domain model’s prerequisite structure. Figure 6.2 reports the
weighted density of the ¢ and s parameters computed from the 100 runs of parameter learning.
q and s are supposed to measure the causal effect of 2 on B. The density is also weighted

by the normalized NLL obtained from learning.

Weighted Density Plot of q Weighted Density Plot of s
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Figure 6.2: Distribution of the ¢ and s parameters’ values for eAs trained on Dyg prereq.,
Dyeaks and Dgirong. The values are learned with MCEM parameter learning with BGS
approximate inference.
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We observe in Figure 6.2 a non-symmetric behavior of the ¢ and s parameters. The density
plots of ¢ from the learning on the different datasets are condensed to low values, while the

density plots of the s parameter cover the whole specter of values.

q parameter values

In detail, the ¢ value obtained from eAgtrong is close to the generation value. We observe the
same trend for the value obtained from eAyeax, even if the density plot is more flattened.
Learning on Dy, prereq. 1€ads to a ¢ value similar to the one computed with eAgirong. On
the contrary, the learned values of ¢ are extremely close to zero when the dataset relies on
a prerequisite relationship in the inverse direction than the one considered in the training
model. We return to the interpretation we provided for the ¢ parameter in Section 4.2.4
to apprehend the signification of these values better. Given a prerequisite relationship,
the ¢ parameter associated with the relationship is supposed to represent if the mastery
of the source knowledge component is insufficient for the mastery of the target knowledge
component. Training a learner model with a domain model considering the wrong direction
of the prerequisite relationship in the data would result in a very low value of the ¢ parameter.
Consequently, the ¢ values obtained from training eAjny. strong and eAjny. weak should be

close to zero.

s parameter values

We now focus on the values of the s parameter computed from training on the different
datasets. Again, the values obtained from eAggrong and eAyeax are close to the values used
for generation. The values of the s parameter computed from Dy prereq. are distributed
around 0.5, and it has the most spread distribution. Ultimately, the datasets considering
the prerequisite relationship in the inverse direction have led to learned s values greater
than 0.5. More surprisingly, the value obtained from eAj,y. strong is lower than the one from
eAiny. weak- These results on the s parameter are significant, as they depict s as a clear
metric of the prerequisite relationship. We recall that the s parameter associated with a
prerequisite relationship is supposed to express the necessity of the mastery of the source
KC for the mastery of the target KC. The values of s correspond to the generation values
when the prerequisite relationship expressed in the training dataset is the one considered
by the training model. When no correlation is expressed in the data, the value of s is close
to 0.5, meaning that the mastery of the source KC can either be necessary or not for the
mastery of the target KC. Finally, when the prerequisite relationship in the training model
is in the wrong direction with regard to the causality considered in the data, the value of s
increases to be greater than 0.5, meaning the mastery of the source KC is not necessary to
master the target KC.
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6.2.4 A promising way to define a prerequisite relationship

In this section, we have studied the distribution of the learned parameters of E-PRISM learner
models from several datasets that express different variations of a prerequisite relationship
between two knowledge components. Our results open the path for a promising solution
for measuring the existence and the strength of a prerequisite relationship between two

knowledge components from datasets about learners’ transactions.
Upon analyzing these distributions, we have made the following observations:

1. The peak value of ¢ and s in the distribution obtained from parameter learning in the
E-PRISM instances considering the correct direction of the prerequisite relationship
are approximatively accurate. This suggests that the E-PRISM framework accurately
learns the prerequisite parameters when the prerequisite relationship is in the same

direction as the one expressed in the synthetic dataset.

2. For the E-PRISM instances considering the wrong direction, the peak value of the ¢
parameter distribution is very close to zero, and the peak value of the s parameter

distribution is greater than 0.7.

3. The values of s in the distribution obtained from the instance considering the correct
direction has non-zero density for s = 0. It means that there is at least one training

execution that learns the value 0 for s.

4. We observe clear differences in prerequisite parameter values whether the direction
considered by the instance of E-PRISM is different from the one expressed in the
synthetic dataset:

e The peak value of the ¢ parameter in the distribution of the instance considering
the correct direction is greater than that obtained from the instance considering

the wrong direction.

e The peak value of the s parameter in the distribution of the instance considering the
correct direction is much lower than that obtained from the instance considering

the wrong direction.
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6.3 Study of learned parameter distribution from real-world
data

In this section, we study the parameter distribution obtained from each real-world datasets
presented in Section 6.1.3. In the following, we plot the distribution of the parameters’ value
obtained from learning on the different datasets. For representing the values obtained from
the learning of an E-PRISM instance eAgy .5, we call 2 the source KC and B the target KC.

6.3.1 KC parameters learned from real-world data

In the following, we examine the KC parameters’ density plots. KC parameters are the
[ and f parameters. Then for each sub-dataset, we represent the density plots of the
learned [ and f parameters from the two E-PRISM models, with different directions of
the prerequisite relationship between the two KCs. Through this comparison, we aim to
identify any distinctions or similarities between the learned parameter distributions and gain
insight into the underlying structure of the model and its ability to capture the relationships

between different knowledge components in different directions.

KC parameters computed from ASSISTments12 sub-datasets

We represent in Figure 6.3 the density plot of the KC parameters of E-PRISM learner models

(eA) induced by each possible configuration of prerequisite relationships.

The results indicate that the peak values of the lsource parameter range approximately from
0.42 to 0.7 for all E-PRISM models, with an average of around 0.58. Similarly, the peak
values of the liarget parameter range from 0.52 to 0.76, with an average of around 0.64. Then,
we notice that all the values of the [ parameter obtained from training represented in Figure
6.3 are greater than 0.4. We observe a similar phenomenon with all the values of the f
parameter, which are approximately lower than 0.2. The peak values of the fiource parameter
indeed range from 0.09 to 0.21, with an average of around 0.14, while the values of the fiarget
parameter range from 0.04 to 0.1, with an average of around 0.07. We also observe that
the average of the peak values of liarget is higher than lsource, While the peak values of the f

parameter are lower for the target KC than for the source KC.

KC parameters computed from ASSISTments17 sub-datasets

In Figure 6.3, we represent the density plot of the different directions of prerequisite
relationships in the ASSISTments17 sub-datasets.

We first notice in Figure 6.3 that the lgource parameter values obtained from training are evenly
distributed between 0.2 and 0.6, and ltaget parameter values are for the most contained
between 0.6 and 0.8, with exceptions for (Probability — Area), (Probability — FEquiv), and

(Probability — Pattern finding) which show lower values.
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Figure 6.3: Density plots of the learned values of the [ and f parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the ASSISTments12 sub-datasets.

We also observe that the values of fsource parameters are included from 0.2 to 0.4. We still
remark that (Area — Probability) and (Pythagore theorem — Probability) have greater values.
The frarget values are majorly lower than 0.2. Once again, sub-datasets (Probability / Area)

and (Pythagore theorem / Probability) show different values, greater than the others.

We point out the central role of the KC Probability in borderline cases. As we do not have
access to the resources associated with this KC on which ASSISTments17 data is collected,
we cannot analyze the granularity of KC defined in the datasets. Still, the name attached

with the KC Probability seems to encompass many KCs if they were defined as in Definition

2.1.2.
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Figure 6.4: Density plots of the learned values of the [ and f parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the ASSISTments17 sub-datasets.

KC parameters computed from Fedi2020 sub-datasets
We represent in Table 6.5 the [ and f density plots for sub-datasets of the Fedi2020 dataset.

For each subset of the data, we compare the peak values of the parameter distributions
spotted in Figure 6.5. Our analysis shows that the model’s performance varies across the
different subsets of data. For example, when the sub-dataset (Factors and Highest Common
Factor / Multiples and Lowest Common Multiple) is considered, the peak values of the lsource
and fsource parameters are higher for Multiples and Lowest Common Multiple — Factors and
Highest Common Factor. The E-PRISM model that considers Prime Numbers and Prime Factors
— Factors and Highest Common Factor shows higher peak values for the lsource and fsource

parameters than the one considering Factors and Highest Common Factor — Prime Numbers
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Figure 6.5: Density plots of the learned values of the [ and f parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the Fedi2020 sub-datasets.

and Prime Factors. Similarly, the relationship Multiples and Lowest Common Multiple — Prime
Numbers and Prime Factors leads to higher peak values for the fsource parameter than Prime
Numbers and Prime Factors — Multiples and Lowest Common Multiple. Other studied sub-
datasets, such as (Volume of Non-Prisms/Mental Multiplication and Division) and (Volume of
Non-Prisms/Mental Addition and Subtraction), show no significant differences in the peak values

between the two directions of the relationship between the two KCs.

We observe regularities between parameters computed from the two directions of the same
relationship. It is worth noting that, most of the time, the peak values of the fsource and

frarget Parameters are higher for one of the two directions of the relationship.
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KC parameters computed from Kartable sub-datasets

Finally, we represent in Figure 6.6 the density plot of the E-PRISM learner models (eA)

parameters induced by each possible configuration of prerequisite relationships from sub-

datasets extracted from the real-world Kartable dataset.
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Figure 6.6: Density plots of the learned values of the [ and f parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the Kartable sub-datasets.

First, we notice distinct peaks from source KC learn parameter distribution issued from eAs
considering Determine the canonical form of a quadratic polynomial — Give the roots of a quadratic
polynomaal, Determine if a real number is a root of a quadratic polynomial — Find an obvious root
for a quadratic polynomial, or Determine if a real number is a Toot of a quadratic polynomial —
Give the roots of a quadratic polynomial. Such as the relationship Calculate the discriminant of
a quadratic polynomial given in expanded form — Find an obvious root for a quadratic polynomial,

they also lead to the minimum values for the source KC forget parameter.
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We also remark target KC forget parameter has a high density at low values. For instance,
the eAs that consider Find an obvious root for a quadratic polynomial — Determine if a real number
is a root of a quadratic polynomial and the two possible directions in the sub-dataset Find an
obvious root for a quadratic polynomial / Calculate the discriminant of a quadratic polynomial given
in expanded form have their target KC forget parameter distribution that forms a peak close
to zero. On the contrary, the relationship Determine if a real number is a root of a quadratic
polynomial — Give the roots of a quadratic polynomial, which already testifies high values for

the source KC learn parameter, shows the highest target KC forget parameter values.

6.3.2 Prerequisite parameters learned from real-world data

The KC parameters have been investigated. We now study the prerequisite parameters’

density plots. The prerequisite parameters are the ¢ and s parameters. They will be
represented with density plots of their learned values from the E-PRISM learner models
considering the different directions of the prerequisite relationship between the two KCs
for each sub-dataset. As we did for KC parameters, we aim to identify any distinctions or
similarities between the learned parameter distributions and gain insight into the underlying
structure of the model. We focus on their ability to capture the relationships between

different knowledge components.

Prerequisite parameters computed from ASSISTments12 sub-datasets

We represent in Figure 6.7 the density plots of the ¢ and s parameter for prerequisite
relationships in the ASSISTments12 sub-datasets.

Weighted Density Plot of g Weighted Density Plot of s
17.5 A MD int -> AS int MD int -> AS int
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>10.0 1 AS dec -> MD dec > AS dec -> MD dec
G D frac -> AS frac @ 2.0 D frac -> AS frac
c c
& —— AS frac -> D frac & AS frac -> D frac
Exp. -> AS int 15 Exp. -> AS int
—— AS int -> Exp. : AS int -> Exp.
\
1.0 A \ y\
0.5 " N
, . . 0.0 ¥ — ; , \ \
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
q s

Figure 6.7: Density plots of the learned values of the ¢ and s parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the ASSISTments12 sub-datasets.
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As reported on synthetic data, the density plots of the ¢ parameter highly overlap. It is
difficult to draw conclusions from these results. Nevertheless, we spot that the density plot
of the relationship Addition and Subtraction Integers — Multiplication and Division Integers is
particularly close to zero compared to other plots. This has been reported for E-PRISM

models considering the wrong direction of the prerequisite relationship on synthetic data.

On the other hand, the values obtained from learning the s parameter are quite high overall,
the plots’ peaks being greater than 0.5. Still, we can notice orders between plots from the
same sub-datasets. For instance, the peak of the density plot associated with the sub-dataset
(Addition and Subtraction Integers / Addition and Subtraction Fractions) is significantly lower for
the direction Addition and Subtraction Integers — Addition and Subtraction Fractions than for

the direction Addition and Subtraction Fractions — Addition and Subtraction Integers.

Prerequisite parameters computed from ASSISTments17 sub-datasets

In Figure 6.8, we represent the density plots of the ¢ and s parameter for prerequisite
relationships in the ASSISTments17 sub-datasets.
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Figure 6.8: Density plots of the learned values of the ¢ and s parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the ASSISTments17 sub-datasets.

Contrary to ASSISTments12, the density plots of the ¢ parameter computed on ASSIST-
ments17 diverge from zero. We observe in Figure 6.8 wider gaps between the two directions
of the studied relationships than what we have seen in Figure 6.7. The density plot of the
relationship Probability — Area shows particular high values for ¢ and low values for s. This
has been reported for E-PRISM models considering the wrong direction of the prerequisite

relationship on synthetic data.

The values obtained for the s parameters are widespread from 0 to 0.8. Nevertheless, except
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Probability — Area, the other peak values obtained from learning the s parameter are greater
than 0.4. Also, all sub-datasets but (Probability / Pattern finding) have different values for the
two directions of the prerequisite relationship. The sub-dataset (Probability / Area) even shows

a large gap in the s parameter value between the two possible directions for the relationship.

Prerequisite parameters computed from Fedi2020 sub-datasets

In Figure 6.9, we represent the density plots of the ¢ and s parameters learned from
sub-datasets extracted from the Fedi2020 dataset.
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Figure 6.9: Density plots of the learned values of the ¢ and s parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the Fedi2020 sub-datasets.

The results in Figure 6.9 are similar to those in Figure 6.8 about ASSISTments17 sub-
datasets. Indeed, we observe that the ¢ values computed from Fedi2020 sub-datasets are

never too close to zero. This behavior is different from the conduct spotted in synthetic data.

However, similarly to the values computed from ASSISTments12 data, the values of s are
overall quite high, with peaks of distribution being all greater than 0.45. We even do not
observe clear and large gaps between the s parameter values computed on the two different
directions of the same relationship. If one is able to report an order between distributions, it

is not straightforward.

Prerequisite parameters computed from the Kartable sub-datasets

Finally, we represent in Figure 6.9 the ¢ and s parameter distribution density plots obtained

from learning on Kartable sub-datasets.

We first notice that the relationship Give the roots of a quadratic polynomial — Determine if a

real number is a root of a quadratic polynomial relates to a very peaky ¢ parameter distribution,
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Figure 6.10: Density plots of the learned values of the ¢ and s parameters for an E-PRISM
model considering the prerequisite relationships given in the legend. Models are trained on
the Kartable sub-datasets.

with values being close to zero. On the other hand, the same relationship exhibits large
values for the s parameter. These phenomena, already reported for some relationships in the
ASSISTments12 dataset, have been reported for E-PRISM models considering the wrong

direction of the prerequisite relationship on synthetic data.

The s values computed from Kartable sub-datasets can reach considerably large values. For
instance, the relationship Calculate the discriminant of a quadratic polynomial given in expanded
form — Find an obvious root for a quadratic polynomial has a peak near 0.9, which is significant
for a parameter to which the value should relate to a causal effect. All distribution peaks
are greater than 0.5, much higher than those spotted on synthetic data when considering

the correct direction.
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6.4 Discovering prerequisite relationships between knowledge
components from E-PRISM

One of the goals of the E-PRISM learned parameters study is to learn the prerequisite
structure of the domain model, particularly by evaluating the performance of the E-PRISM
framework in predicting the learner’s performance. To this end, we have designed a series of
experiments that compare different instances of the E-PRISM learner model under different

conditions.

We show that the performance metrics used classically to evaluate EDM algorithms are not
well adapted for interpreting the relevance of the learned parameter’s values. For this reason,
these experiments should assist in defining custom metrics allowing the correct interpretation

of the learned parameters.

6.4.1 Defining metrics to measure the existence and the strength of a

prerequisite relationship

The previous observations about the learned E-PRISM parameters on synthetic data support
the importance of considering the direction of the prerequisite relationships in the E-PRISM
framework. The chosen prerequisite direction significantly impacts the accuracy of the
parameter learning process, as reported in Section 6.1. We introduce new metrics for
estimating the existence, direction, and strength of a prerequisite relationship based on our
observations from the study of KC and prerequisite E-PRISM parameters. These metrics
are applied when using the E-PRISM framework on real-world datasets to discover the

prerequisite structure of the domain model.

Parameter distribution metric

In addition to the Mj metric, introduced in Section 6.1.4 and based on the classical RMSE
measure, we consider a custom metric My defined by rules that compare peak values of the
parameter distributions, accordingly to the observations we have made on synthetic data.
This metric is expressed in Equation 6.2. It is calculated by comparing the peak values of
each parameter value distribution for the E-PRISM learner models considering the correct
direction and the wrong direction of the prerequisite relationship. It allows us to determine
the direction of the prerequisite relationship by comparing the peak values of the parameter

distributions.

1
Mo — B) = = (n(zgﬁ% > 32 410D < 3
FL(ATT < ST AL > SR (6.2)

i ]l(qma% > q%am) +]1(SQH% < S‘B*)Q[))

where 1 is the identity function.
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M indicates the prerequisite relationship’s existence and direction. It ranges from 0 to 1.
The greater Mo (A — B), the most likely the existence of the 2 — 9B relationship.

s parameter metric

Based on the previous observations on synthetic data, we propose a second custom metric
based on the distribution of the parameter s. We have chosen s as it relates to the probability
that the prerequisite is, in practice, unnecessary, as explained in Section 4.2. This second
metric M3 is calculated by determining the proportion of learned values of s lower than 0.2

obtained in the parameter learning runs. It is defined in Equation 6.3.

iNumber of learned parameter values lower than 0.2

M3z =

6.3
K Total number of learned parameter values (6:3)

with K a normalizing constant.

This metric allows us to define the strength of the prerequisite relationship. The closer to 1

the value of M3, the stronger the prerequisite relationship between the two considered KCs.

By combining these three metrics, we should gain a deeper understanding of the interpretabil-
ity of the E-PRISM learned parameters and how they can be employed to retrieve the domain

model’s prerequisite structure (existence, direction, and strength) in E-PRISM.

6.4.2 Study of the proposed metrics

We present the values of the proposed metrics after the training runs on the real-world
sub-datasets. We propose to compare their values and extract prerequisite structures from

each dataset.

Study of the RMSE-based metric

The RMSE values obtained on the sub-datasets are presented in Appendix C to provide a
detailed analysis of the results obtained on real-world data by computing the M; metric.
We resume these results in Figure 6.11, where we present the gap between the RMSE values
obtained on the eAs considering the different directions of the prerequisite relationship.
The table indicates which direction has the best RMSE value on training data for each
sub-dataset. This allows for a quick and easy comparison of the results and provides a clear

overview of the performance of the E-PRISM framework on real-world data.

Study of the comparison of parameter distribution metric

We analyze the parameter distribution obtained from the E-PRISM learner models (eA)
trained on the real-world sub-datasets. We summarize the values of our custom metric My
computed on the parameter distributions in Figure 6.12. This allows for an easy comparison

of the distribution of parameter values obtained from the eAs, considering different directions
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Figure 6.11: M, score for every prerequisite relationship that verifies My > 0.

of the prerequisite relationship. This comparison should enable us to draw conclusions on

the prerequisite relationship’s existence, direction, and strength in real-world data.

Study of the s parameter metric

Finally, we focus on studying the s parameter distribution, which is a key indicator of the
prerequisite relationship’s existence, direction, and strength. The s parameter distribution
for each sub-dataset for both possible directions of the prerequisite relationship is analyzed
to compute Ms, based on the proportion of s parameter values lower than 0.2. These
values, summarized in Figure 6.13, serve as a quick reference for analyzing the s parameter

distribution.

6.4.3 Comparing the metrics

We now compare these metrics against each other to understand the correlation between the

masteries of KCs and the existence, direction, and strength of the prerequisite relationships
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Figure 6.12: M, score for every prerequisite relationship that verifies My > 0.

in real-world data.

Relative agreement between metrics

First, we study the relative agreement between introduced metrics for asserting the correctness
of the inferred prerequisite structure. To do so, we compute the Cohen kappa [VIKS10]
between the metric predictors. For each sub-dataset, we evaluate the reliability between

metrics on the existence and direction of the corresponding prerequisite relationship.

e For every KCs 2 and B, we define the predictors on the existence of the prerequisite
relationship 2 — B from M, My, and M3 as follows: 2 — 9B is predicted to exist
according to each metric M; if M;(2 — B) > 0.

e Similarly, the predictors for the correct direction of the prerequisite relationship from
My, Mo, and M3 are defined as follows: 21 — B is predicted to exist according to
each metric M; if M;( — B) > M;(B — A).
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Figure 6.13: M3 score for every prerequisite relationship that verifies Mg > 0.

We also introduce a predictor that combines the two conditions, and we present the results
in Table 6.13.

Existence | Direction | Ex. + Dir.

M1 My 0.133 0.325 0.111
My M3z —0.071 0.55 0.117
My | M;j 0.053 0.55 0.778

Table 6.13: Cohen kappa values obtained from measuring the agreement of metrics My,
Mo, and M3 on the existence and direction of the prerequisite relationships.

We observe that the predictors of the existence of the prerequisite relationship give different
results depending on the employed metric. The predictors for the direction of the prerequisite
relationships grossly agree with each other, especially M; with M3 and My with Maj.

Finally, when considering the two conditions in the predictor, we observe a strong agreement
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between My and M3, My and M3 then suggest the same relationships to be part of the
prerequisite structure of the domain. On the other hand, we observe a weak agreement (near

random) between M; and the other metrics.

This result suggests that RMSE, even if it can be interpreted as a first filter to determine
the existence of the prerequisite structure with My, is not sufficient to infer the prerequisite
relationships from data. Nevertheless, even if the relevance of My and M3 have been
confirmed by the results, they should be compared with the predictions of experts to assess
that the joint agreement between Mo and M3 indeed corresponds to the correct prerequisite

structure.

Inferred prerequisite relationships

Now we have studied the metrics, and how they relate to the prerequisite structure of the
domain model. We focus on the particular prerequisite relationships highlighted by our
measures. Namely, we take a further look at the relationships for which the existence of
the relationship is predicted accordingly to My and M3 metrics. We no longer consider
the criteria on M to be relevant. We represent in Table 6.14 the relationships that show
My > 0 and Mg > 0. We order the relationships by descending M3 values.

Some of the relationships enlightened in Table 6.14 are prerequisite relationships according
to common knowledge. In particular, relationships between addition KCs and multiplication
KCs are greatly represented. Nevertheless, it also suggests that Multiplication and Division
Integers is a requirement of Addition and Subtraction Integers. These relationships should

be submitted for the approval of experts in the domain.

Table 6.14 also prints the orderings Oy and Os of the relationship in descending values of
My and M3 for each inferred prerequisite relationship from the Ms and M3 predictors. We
use these ordering to determine the strength of the prerequisite relationship. Metrics Ms
and M3 both show great performance for relationships Determine if a real number is a root of
a quadratic polynomial — Give the roots of a quadratic polynomial, Give the roots of a quadratic
polynomial — Give the sign chart of a quadratic polynomial, and Addition and Subtraction Positive
Decimals — Multiplication and Division Positive Decimals. Thanks to the My and Mg metrics,
we can clearly observe that these detected prerequisite relationships are coherent with the

mathematics domain knowledge.
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Relationship My My | Oy | M3 | Os
Root — Solve | -0.190 | 0.917 | 3 | 1.00 | 1
Solve — Chart 0.538 | 1.00 1 10889 2
MMD — MAS | 0.455 | 0.250 | 13 | 0.889 @ 2

Solve — CF -0.026 | 0.250 | 13 | 0.889 | 2

ASF — DF 0.486 | 0.583 | 10 | 0.778 | 5

ASPD — MDPD | -0.255 | 1.00 1 10667 | 6
FHCF — MLCM | -0.025 | 0.833 | 5 | 0.667 6
PNPF — MLCM | -0.039 | 0.833 | 5 | 0.667 6

Root — OR 0.560 | 0.917 | 3 | 0.556 | 9

ASI — ASF 1.00 | 0.833 | 5 |0.444 | 10

ASF — MF 0.230 | 0.500 | 12 | 0.444 @ 10

MDI — ASI 0.338 1 0.833 | 5 | 0.333 | 12

FHCF — PNPF | 0.192 | 0.583 | 10 | 0.333 | 12
VNP — MMD 0.422 | 0750 | 9 | 0.222 14
D — OR -0.334 | 0.167 | 15 | 0.222 | 14

Table 6.14: Scores of the metrics M;, My, and M3 on relationships that have been
predicted as prerequisites according to the My and M3 predictors.

6.5 Discussion

In conclusion, this chapter has shown that E-PRISM can be a performant framework for
predicting the learner’s performance. These results are particularly great on synthetic data.
Still, we have remarked that state-of-the-art cognitive diagnosis algorithms on real-world data
can outperform E-PRISM. We have ended up to the conclusion that having E-PRISM not
differentiating observable and latent variables can be problematic, especially when predicting

from real-world datasets.

However, the E-PRISM learner model is based on a set of interpretable parameters that
sense the causal effect of the learning process and the structure of prerequisite relationships
in a specific domain over time. Consequently, it can be used to discover the prerequisite
structure expressed in the data. Our study demonstrates the ability of these parameters to
compute new metrics, such as My and Ms, which can infer the existence, direction, and

strength of prerequisite relationships. These new measures showed relative agreement on the
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extracted prerequisite structure that differs from measures from usual metrics such as M;.

This novel data mining approach of the domain model prerequisite structure to mathematics
datasets has indicated the existence of common knowledge prerequisite relationships. However,
further research is necessary to verify the effectiveness of these predictions by examining

each inferred relationship from an expert’s point of view.
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CHAPTER

Conclusions and perspectives

In this work, we have introduced the E-PRISM framework, for Embedding Prerequisite
Relationships In Student Modeling. We now summarize the findings of our study with
E-PRISM, which has revealed to rely on an interpretable and tractable learner model. We
have developed this framework as a tool for student modeling, and we have explored the
potential applications of E-PRISM.

This conclusion is organized into three sections, each focusing on a specific aspect of E-PRISM
and its potential impacts. First, we highlight the strengths of the E-PRISM framework,
specifically its learner model. Then, we recall how this work can be seen as a new perspective
for complex system modeling using ICI-based Bayesian Networks (BNs). Finally, we explore
the potential of E-PRISM for discovering the prerequisite structure of the domain model

and how this information could be adapted to the learner’s scale.

7.1 E-PRISM, an interpretable and tractable learner model

The main goal of this work was to design and evaluate E-PRISM, a novel framework for

student modeling. We have extensively introduced it in Chapter 4.

7.1.1 A learner model that considers the prerequisite structure

E-PRISM is based on dynamic Bayesian networks to infer the learner’s knowledge state
through knowledge tracing along the learner’s answers. It considers the prerequisite relation-
ships between Knowledge Components (KCs) over time in the network thanks to the clause
of Independence of Causal Influences (ICI). Therefore, it models both the dynamicity of
learning and the causal effect of the prerequisite relationships between knowledge components.
We showed that introducing prerequisite relationships to the model increases the performance

of E-PRISM to predict the correctness of students’ answers to the next question.

7.1.2 A constrained number of parameters

One important aspect is the constraints applied to the model that allow a reduction of the

number of parameters. These constraints come from incorporating the ICI-model Conditional

182
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Probability Distributions (CPDs) in the learner model. Using ICI-based Bayesian networks
to model the causal effects of both the learning process dynamics and the domain model
prerequisite structure has drastically reduced the number of parameters compared with
similar learner models. We may introduce additional assumptions on the model parameter
values in the future. For instance, we can imagine including forbidden values or supplementary

equalities between parameters extracted from experts’ knowledge.

7.1.3 Enhanced interpretability

The low number of parameters has enhanced the interpretability of the E-PRISM learner
model. They are attached to larger features which are more understandable. Interpretability
is indeed achieved when the length of conditions for describing the output is small. For
instance, in other kinds of interpretable machine learning models, shorter trees lead to
more interpretable decision trees, and a small number of rules implies more interpretable
rule-based estimators [MBGW21|. While other BN approaches for prerequisite relationships
use tabular CPDs to depict the prerequisite structure involving a knowledge component X,
each X’s prerequisite is attached to two parameters in the E-PRISM learner model. The

model parameters are easier to understand and interpret.

This constraint is a key characteristic that sets E-PRISM apart from other learner system
models. It makes it a promising tool for learner modeling, especially when considering
the prerequisite structure of the domain knowledge. E-PRISM parameters give insightful

easy-to-interpret information on the prerequisite structure of the domain knowledge.

7.1.4 A promising tool for discovering prerequisite relationships

The E-PRISM framework is not only a tool for providing a learner model to various ITS.
It also gives a glimpse into the prerequisite structure of the domain model depicted in the
data and opens the path for adapting it to individuals. E-PRISM parameters indeed sense
the causal effect of the learning process and the structure of prerequisite relationships in a
specific domain over time. Our study demonstrates the possibility of computing metrics,
such as My and Mj, from these parameters. We can infer the existence, direction, and
strength of prerequisite relationships from these new measures. They have proved they
are promising alternatives to usual metrics, studied through M;. Our results, applied
to the domain of mathematics, indicate the existence of common knowledge prerequisite
relationships. However, further research is necessary to verify the effectiveness of these

predictions by examining each inferred relationship from an expert’s point of view.

7.2 A new perspective for complex system modeling

Even if our work is under the educational spectrum, some of our results could be extended

to more general complex system modeling. In particular, the use of ICI-based Bayesian
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networks and the techniques we have implemented in them.

7.2.1 ICI-based Bayesian networks

We have proposed a new architecture for BNs based on the clause of independence of causal
influences. This architecture is particularly adapted when modeling complex systems with
scarce data. It reduces the number of parameters in the network and allows for better
interpretability of the model. One of the perspectives of this work would be to generalize
the kinds of complex systems that can be modeled with E-PRISM. Having an interpretable
model for various complex systems could be an exciting outlook because it would allow the
user to understand the underlying relationships between the variables and how they influence

each other, thanks to easy-to-interpret parameters.

7.2.2 A novel approach for approximate inference in ICI-based BNs

Furthermore, we have presented a new approach for approximate inference in large Bayesian
networks with deterministic relationships. This new technique addresses the convergence
issue in traditional techniques, such as Gibbs sampling, encountered with ICI-based BNs. Our
approach is based on Blocking Gibbs sampling and allows the convergence of the inference
for reducible Markov processes. We have extensively evaluated our approach through a series
of experiments. We have shown that it converges significantly better than Gibbs sampling, a
widely used method for approximate inference in BNs. We have shown that our approach can

make accurate predictions and obtain reliable results, even when data is extremely scarce.

7.2.3 A performant parameter learning algorithm in ICI-based BNs

More generally, these results imply the opportunity for parameter learning in ICI-based
BNs, which can be challenging in the context of scarce data. We have introduced the
Monte-Carlo Expectation Maximization (MCEM) algorithm mobilizing our custom Blocking
Gibbs sampling to perform the E-step. We have shown the convergence of our parameter

learning algorithm.

Because parameter learning is the foundation of structure learning for Bayesian networks,
this algorithm could be applied to perform structure learning in future work. Nevertheless,
parameter learning is computationally costly. Therefore, extensive work on optimizing
the parameter learning algorithm should be done first. In particular, using high-level
programming language instead of Python may reduce the computational limitations spotted

in this work.

7.3 Future research with the E-PRISM framework

Although this study has provided valuable insights into student modeling, and more particu-

larly on using the domain knowledge prerequisite structure, there are still many unanswered
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questions and areas that require further exploration. As such, we outline potential avenues
for future research, with the aim of building on the findings of this study and contributing

to the broader field of educational data mining.

7.3.1 Differentiating latent and observable variables

One of our work’s pain points is that we made no difference between the observable and
latent variables in the E-PRISM learner model. Usually, Bayesian network approaches for
modeling students, such as BKT, consider an observable variable related to one or multiple
latent variables. In E-PRISM, we have supposed that the KC mastery variables are directly
observed with learner’s transactions because of computational limitations. This report leads
to the first perspective for this work. Such as other Bayesian approaches for learner modeling,
the slip and guess phenomena should be integrated into the E-PRISM learner model. In
particular, it would allow E-PRISM to be less prone to overfitting. Note that the foundations
of this research perspective have already been implemented in the package attached to the
E-PRISM framework.

7.3.2 Blowing computational limitations up

We highlighted the numerous sources of computational complexity that arise from the iterative
approximate inference technique used in the E-PRISM framework. The computational
complexity of this technique depends on the number of knowledge components, learner
transactions, and Gibbs iterations. Additionally, multiple initializations are required for
parameter learning. These limitations pose significant challenges for the analysis of large
and complex educational datasets. To address these challenges, future research should
focus on implementing deeper parallelization and code optimization. We have already
begun to address the challenge of multiple initializations required for parameter learning by
implementing parallelization techniques. However, there is still room for further optimization

and refinement of these techniques to achieve even greater speed and efficiency.

By developing solutions to these computational challenges, we can advance the capacity
of E-PRISM to retrieve the prerequisite structure of the domain knowledge by performing
structure learning and, then, considering more knowledge components. This, in turn, can
help to inform the development of more effective educational interventions and improve

student learning outcomes.

7.3.3 Analyzing the results with experts

Another potential perspective for future research is to seek expert analysis of the results,
particularly because of the absence of predictors for prerequisite relationships. There are
several constraints to this approach. One major challenge is the availability of experts, as it
can be difficult to find individuals with the necessary expertise and time to devote to such

an analysis. Additionally, achieving mutual agreement among experts can be challenging,
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as it requires consistent feedback and discussion to arrive at a shared understanding of
the findings. Finally, achieving statistical significance for rigorous analysis can also be a

challenge, as it may require input from a large number of experts.

Nonetheless, despite these challenges, obtaining experts’ assessment of the outcomes could
provide valuable insights into the correctness of the extracted prerequisite structure from
the E-PRISM learner model. Moreover, this could enhance our insights into the E-PRISM
framework. By comparing the expert mutual agreement with the E-PRISM parameter values,

we can gain a more comprehensive understanding of the model’s interpretability and validity.

7.3.4 Restricting model learning to sub-populations

This work presents an approach for inferring prerequisite relationships in educational data
mining by analyzing the parameters of an interpretable learner model. Therefore, by
reducing training datasets to well-chosen sets of learners, we can imagine that the discovered
prerequisite structure would be adapted to the corresponding set of learners. We can then
propose the perspective of having the discovery of prerequisite relationships included in a
more extensive process. We could first cluster learners with well-chosen features [MEMB18]
and discover the whole prerequisite structure of domain knowledge corresponding to each
cluster thanks to multiple instances of E-PRISM parameter learning on the different restricted

datasets.
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APPENDIX

Details on the Gibbs sampling procedure

We recall that in a Bayesian network (dynamic or not), the Markov blanket of a variable x;
is composed of its parent nodes in the network, its child nodes in the network, and the other

parent nodes of its child nodes.

A.1 Initial Bayesian network

In the first place, we focus on variables that belong to the initial Bayesian network Bj. In
By, for a given KC X, there are no “transition” nodes T but only the mastery node X° and

the prerequisite nodes Z%i.

A.1.1 Mastery nodes in B,

The mastery node only depends on the prerequisite nodes relating the causal effect of its
parents on the KC X: the expression of the CPD that rules the variable X° then depends

on the prerequisite relationships involving X.

When X is not involved in any prerequisite relationship, the Markov blanket of X° is only
composed of the variable T’ 315 The CPD that rules X is then expressed in Equation A.1.

-z o)\ 7
P(X° =tz |T§) = <1 " Jlj((+x;1]zgj% : +I))> -

The resulting CPD is represented in Table A.1.

When X is a root in the prerequisite structure (i.e. if it has no prerequisite knowledge
component), the Markov blanket of XY is composed of T% and the variables between the
mastery of X and its children €hy denoted (ZZO%)Z The CPD that rule XY is then expressed
in Equation A.2.

P-a)P(T} | =) TP (20| ~a) |

P(+2)P(T} | +2) [ P (20 | +2)

P(X° =+ | Ty, (Z0%)) = [ 1+

199
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1
T.‘i

P(X% = +2|Ty)

-t

+t

(1 L A=pe)( - lx)>_1

Table A.1: CPD of the variable X° when X is not involved in any prerequisite relationship.
px is the prior probability of X, Iy is the learn probability of X and fx is the forget probability

of X.

The resulting CPD is represented in Table A.2.

T P (X0 = +alT}, (22,):)
1
(1—px) x (1 —1Ix) x ( 11 81,%) < [T 1 _Si,x>
Z; x€ZT Z; x€Z"
-t 1+
px X fx X ( I1 1—%',35) < I1 qi,x)
Zi’xez*' ZiyxEZﬁ
2
(1 —px) X lx x < IT 372,36) ( IT 1—Si,x>
Zi ;{GZ+ Zi,erﬁ
+t 1+ .
px X (1= fx) < 11 1—%',3{) < I1 %‘,36)
Zi,xEZ‘F Zi’x€zﬁ

Table A.2: CPD of the variable X° when X is a root in the prerequisite structure. Z7 is
the set of Z auxiliary variables such that (Zlox)z = +2z;, Z" is the set of Z auxiliary variables
such that (Z?3€)Z = —z;. px is the prior probability of X, [y is the learn probability of X and
fx is the forget probability of X. ¢; x and s; x are the parameters associated to the influence

of the mastery of X on Chy ;.

When X has prerequisite KCs, then X is an AND function of the auxiliary variables between

the mastery of X’s parents Pay and X denoted Z%Z.. The resulting CPD is represented in

Table A.3.
Vi, Z%i =4z | P <X0 = +ux | Ty, (Zgz)z> ‘
0 0
1 1

Table A.3: CPD of the variable X° when X has prerequisite KCs.
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This particular case is one of the specificities making the Gibbs sampling in E-PRISM even

easier than in classic tabular CPD Bayesian networks.

A.1.2 Prerequisite nodes in B,

The auxiliary variables from prerequisite relationships in the initial Bayesian network always
have the same Markov blanket. The Markov blanket of Z%L- is composed of the variables
Pa%i, X9 and for j # i, Z%j. The CPD of the variable Z%i is expressed in Equation A.3.

-1
P(=z; | Pay ;) P(X°|=zi, (23 ;);21)
P(ngi = +2 | Pagei,XO, (Zaosj)j#i) =1+ Z 036’1 0 : xéj e
’ ’ ’ P(+zi | Pay ) P(XY | +2i, (Z3 ;) j#i)
(A.3)
This expression can be simplified depending on the state of variables in the condition.

If X = -2, then P(X? | ﬂzi,(Zgj)#i) = 1 because X” is an AND function of the
variables (Z%k)k. If in addition Vj # i,Z%j = +zj, then P(X? | +2, (Z%j)j#) = P(X° |

—Z, (Z%j)j#), otherwise P(X? | +z;, (Z%j)#i) =1.

If X° = 4z, then P(X° | =2, (23 ;)j#) = 0. If in addition 3j # i,23 ; = —z;, then
P(XO | 42, (23 ))jzi) = P(XO | =2, (23 ) j#4), otherwise P(X° | +2;, (23 ;)j2i) = 1.

From the detailed cases above, one can resume the CPD in Table A.4.

X0V #4,23 ;=42 | Pa},; | P(Z3 ;= +zi| Pa%,;, X0, (23 ;) i)

0 0 0 Sx.i

0 0 1 1 —qx;

0 1 0 0

0 1 1 0

1 0 0 Sx,i

1 0 1 I —qx;

1 1 0 1

1 1 1 1

Table A.4: CPD of the variable Z%Z-.

A.2 Transition Bayesian network

We now take a look at the variables of the transition Bayesian network B_,. B_, is composed

of both mastery nodes X*, the prerequisite nodes (Z&l)z and the transition node Tate for each
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KC X and for t > 0.

A.2.1 Mastery nodes in B_,

In the manner of the mastery nodes in the initial Bayesian network, the mathematical
expression of the CPD for the mastery nodes in the transition Bayesian network can be
simplified depending on the position of the KC in the prerequisite structure of the domain

model.

X with no prerequisite KC

When X has no prerequisite KC, the Markov blanket of X' is only composed of the variables
T;t€7 T;?l, and if X is the prerequisite KC of other KCs Vj, Z]t‘ae- The CPD that rules X! is

expressed in Equation A.4.

~1
Pz | Te) P(Ty ™ | —2)P((Z] )5 | —)

P(X! = +ar | T TEH (Z2)) = | 1+ P Y (A.4)
P(+a | Ty) P(Ty™ | +2)P((Z5 2); | +2)

X' is a AND function of the variable T%, so P(+z|T% = —t) = 0 and P(+z|T% = +t) = 1.

The resulting CPD is represented in Table A.5.

L P(X! =t | TLTEN(ZEy),) |
-t | 0 |
| ! |

Table A.5: CPD of the variable X* for t > 0 when X has no prerequisite KC.

X with prerequisite KCs

On the contrary, when X has prerequisite KCs, the Markov blanket also contains the variables
(Z% ,)i- The CPD that then rules X" is expressed in Equation A.5.

P(+a | T, (Z5 ) P(TY | +2)P((ZL 2); | +a)
(A.5)

P(=z | T, (ZL ) P(TEY | —2)P((ZE )5 | —x) \
mﬁzﬁuﬁﬂﬁuﬁﬂm%@n20+ Tl T B P | P00 1 )

If T% = —t or if there exists Pa; such that Z% , = —z;, then P(+x|T%, (Z;Z)Z) = 0 because of
the deterministic AND function. Otherwise, P(+z|T%, (Z})r) = 1. The resulting CPD is
represented in Table A.6.
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Tate Vi, Zaoe,i =tz P(Xt =4z | Tatea Tateﬂa (Zgu)zv (Z;%)])
-t 0 0
-t 1 0
+t 0 0
+t 1 1

Table A.6: CPD of the variable X* for ¢ > 0 when X has prerequisite KCs.

A.2.2 Transition nodes in B_,
X with no prerequisite KC

When X has no prerequisite KCs, then the transition variable T% has only the variables X!
and X! in its Markov blanket. The CPD that then rules X! is expressed in Equation A.6.

P(~t | XY P(XE | =)\

A.
P+ | XE1)P(XT | +1) (A-6)
If Xt =0, then P(X!|+t) =0 and P(X!|-t) = 1. Otherwise, if X! =1, then P(X!|+t) =1
and P(X*|-t) = 0. The resulting CPD is represented in Table A.7.

o 0
L

Xt P(TE =+t | X1, XY ‘
! |

Table A.7: CPD of the variable Tate for ¢ > 0 when X has no prerequisite KC.

X with prerequisite KCs

When X has prerequisite KCs, then the Markov blanket of Tjte also contains the variables
Vi, Z;i. The CPD that rules X! is expressed in Equation A.7.

_ t—1 t oy
P(T =+t | X1 X0 (Z4 i) = <1+ POt | X )PXC |, (Zx“)’))> (A.7)

P+t [ XCOP(XT | +4, (Z%,):)

If Xt = -z, P(X'|—t, (Z;ﬂ)l) = 1. If in addition we have Vi, Z;ﬂ- = +2;, then P(X'|¢, (Z;ﬂ)l) =
0. If X* = 0 and 3i such that Z% ; = —z;, then P(X*|t,(Z% ;)i) = 0.
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If X' = 4z and if Vi, Z%, = +z;, then P(X'|-t,(Z%,);) = 0 and the numerator is
strictly positive. However, if X' = 42 and 3i such that Z% ; = 0, then P(X'|t, (Z%,)i) =
P(X*'=t, (Z% ,)i). The resulting CPD is represented in Table A.8.

XU Vi, Zyy =tz XU P(Tp =+t | XX (Z5,)0)
0 0 0 lx

0 0 1 1— fx

0 1 0 0

0 1 1 0

1 0 0 lx

1 0 1 1—fx

1 1 0 1

1 1 1 1

Table A.8: CPD of the variable T% for ¢ > 0 when X has prerequisite KCs. lx and fx are
the parameters associated to the causal influence of X =1 on Tjte.

A.2.3 Prerequisite nodes in B_,

Let’s now consider the prerequisite auxiliary variables in the transition Bayesian network
B_,. The auxiliary variable Z&i between PagE ; and X' all have the following variables in
their Markov blanket: Pa’;w, Xt ng and Vj # 1, Z;J. The CPD of Z;i is expressed in
Equation A.8.

2 -1
(—zi | Pag€ )P(X?| ﬁz.,Tjtej (de )ji)
P(Z%; = +zi | Pal ;. X', T4, (Z% ;) jzi) = (1 i HPX i )i

P(+zi | Pak  )P(XY | 42, Ty, (Z% ;) j£1)
(A8)

As we did for the auxiliary variables in By, we simplify Equation A.8 for particular states of

the variables in the condition.

If X! = -z, then P(X" | -z, T%, (Z;,j)j#) = 1. If in addition T% = —t or 3j # i,Z%j =
—zj, then P(X" | +2;, Ty, (Z% ;)j#) = 1, otherwise P(X"' | +2;, Ty, (Z% ;)j#i) = P(X" |
=25, Ty (Z% ;) j#i)

If X! = +z, then P(X! | ﬂzi,TfE,(Z;j)j#) = 0. If in addition T4 = -t or Jj #
i7Z&,j = TZj, then P(Xt ’ +217T§,(Z;7])]752) = P(Xt | _‘Zi,Ti, (th,])]7gl), otherwise
P(Xt | —I-Zi,T;é, (Z%])j?gz) =1.

From all of the detailed cases above, one can resume the CPD in Table A.9.
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0
0

= o O

(Vi #i0,Zk; = +2) N (Th = +1) | Pak, | P(Zh, = +2 | Pak;, X', T, (2% ));)

0 8%,

1 1 —qx;

0 0

1 0

0 Sx,i

1 I —qx,i

0 1

1 1

[u—y

Table A.9: CPD of the variable Z;Z
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Characteristics of the real-world sub-datasets

B.1 ASSISTments12

A MDI MF ASI ASPD DF E
B ASI ASF ASF | MDPD | ASF ASI
Transactions 126585 | 235334 | 198950 | 298036 | 213120 | 209697
Learners 9131 11564 | 14379 | 14538 & 10784 | 11277

Items 2276 2280 2060 5054 4617 4638

% correctness 0.76 0.77 0.73 0.70 0.68 0.68
Items per KC 1138 1140 1030 2527 2308.5 2319

Transactions per learner 10 12 7 10 12 11

Table B.1: Characteristics of the sub-datasets extracted from ASSISTments12.

B.2 ASSISTmentsl7

2A P PF | EFDP | PF A PT
B ES P P ES P P
Transactions 71269 | 78624 | 62851 | 40881 | 63258 | 62982
Learners 1561 | 1554 | 1553 | 1456 | 1555 | 1608
Items 187 256 166 161 164 148
% correctness 0.36 0.39 0.39 0.37 0.36 0.36
Items per KC 93.5 128 83 80.5 82 74
Transactions per learner 32 35.5 28 19 27 27

Table B.2: Characteristics of the sub-datasets extracted from ASSISTments17.

206
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B.3 Eedi

A MLCM | PNPF | PNPF | MMD | MAS | MMD

B FHCF | FHCF | MLCM | VNP | VNP | MAS

Transactions 4031 4269 4110 9308 | 10288 | 8696

Learners 818 795 824 1005 1030 822

Ttems 476 428 462 1416 1513 1489

% correctness 0.68 0.71 0.67 0.79 0.79 0.79

Items per KC 238 214 231 708 756.5 | 744.5

Transactions per learner 4 4 4 4 ) 5

Table B.3: Characteristics of the sub-datasets extracted from FEedi2020.

B.4 Kartable

2A CF Root | Solve CF Solve OR
B Solve OR Root | Chart | Chart D
Transactions 20487 | 18000 | 18556 | 18356 | 13419 | 11631
Learners 3190 | 2462 | 3139 | 3233 | 2284 | 1423
Items 13 18 20 12 13 10
% correctness 0.63 0.77 0.75 0.64 0.72 0.80
Items per KC 6.5 9 10 6 6.5 5
Transactions per learner 5 5 5 4 4 6

Table B.4: Characteristics of the sub-datasets extracted from Kartable.
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RMSE values computed on real-world sub-datasets

C.1 RMSE values obtained from ASSISTments12 sub-datasets

A MDI MF ASI

ASPD DF E
B ASI ASF | ASF

MDPD | ASF ASI

eAgy 0.345 | 0.425 | 0417 | 0.372 | 0.446 | 0.389

eAg e | 0.337 | 0.426 | 0.392 | 0.379 | 0.439 | 0.396

eAg_q  0.327 | 0.420 @ 0.419

0.374 | 0.434 | 0.401

Table C.1: RMSE values obtained from the training set of sub-datasets of ASSISTments12.

C.2 RMSE values obtained from Fed:2020 sub-datasets

A MLCM | PNPF | PNPF | MMD | MAS | MMD

B FHCF | FHCF | MLCM | VNP | VNP | MAS

eAg 0.449 | 0.455 | 0.460 | 0.409 | 0.396 | 0.414

eAg_m | 0.449 | 0.444 | 0.461 0.402 | 0.409 | 0.402

0.470 | 0.399 | 0.403 | 0.408

eAg_g | 0.450 | 0.450

Table C.2: RMSE values obtained from the training set of sub-datasets of Eedi2020.

C.3 RMSE values obtained from Kartable sub-datasets

208
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Table C.3:

A CF Root | Solve CF Solve OR
B Solve OR Root | Chart | Chart D
eAy 0.421  0.372 | 0.359 | 0.389 | 0.389 | 0.286
eNg_,m | 0.424 | 0.359 | 0.366 | 0.407 | 0.376 | 0.296
eAg_y | 0.422 | 0.364 | 0.364 | 0.398 | 0.368 | 0.294

RMSE values obtained from the training set of sub-datasets of Kartable.
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