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Deep Learning and Neuroscience: a match made in heaven?

Abstract
Deep Learning, as a field has tried to build networks that can perform intelli-

gent tasks that previously only humans could perform. While doing this, the field
sets an ambitious goal of creating a conscious machine, often symbolized by it’s
other name – Artificial Intelligence (AI). Up until now, it has been quite successful
in making networks good at a few tasks such as classification, captioning, trans-
lation, etc. But still, there remains a lot more desired in these networks. Their
sensitivity to very tiny perturbations in the input examples—called adversarial
perturbations—has baffled the field since almost a decade. Similarly, the gener-
alization ability of the networks to other tasks and categories is another problem
that is actively under investigation.

At the same time, Neuroscience has aimed to understand the most profound
network known to us—the human brain. For this quest, it has often relied on
using substitute models, mathematical or biological, which are easier to experi-
ment with and understand. But so far, Neuroscience has lacked an apt model to
ask questions that go beyond neuronal cytoarchitectures and synapses; especially
those regarding the structure of abstract representations in the brain. Investi-
gating a question like How a human learns or even represents a concept such as
Death and links it to Fear and Sadness? has remained challenging even using
other primates such as macaque monkey.

The current thesis argues that these two fields, which have historically always
been relevant for each other, can even now help each other in these regards. To
illustrate this, the thesis first proposes recurrent dynamics for machine learning
models using concepts from neuroscience, specifically a popular neurocomputa-
tional theory called predictive coding, and implements them into deep neural
networks. It demonstrates that the resulting recurrent networks are more robust
to various types of noise, natural and adversarial, when compared to their feedfor-
ward counterparts. Importantly, it reports that this robustness is achieved by the
ability of the predictive coding dynamics to help the networks project the noisy
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representations towards their clean versions that are learned during training—a
property labeled as projection towards the manifold.

Second, going in the reverse direction, it uses neural networks for the ben-
efit of neuroscience. First it compares various networks trained with different
objectives—uni- or multimodality, robustness, or dataset sizes—in their ability to
explain brain activity measured using functional Magnetic Resonance Imaging, or
fMRI. The thesis then reports the uncanny ability of multimodal networks, i.e.,
networks trained with datasets spanning various modalities, to explain the activ-
ity of hippocampus—a region known to possess modality invariant concept cells.
Later, it uses a region agnostic approach of systematically looking at smaller por-
tions of voxels in the brain. Using such a searchlight-based approach, it reports
that compared to other models, multimodal networks explained the fMRI activity
better throughout the visual cortex, while also explaining the regions surrounding
superior temporal sulcus.

Thus, overall in this overarching ambition of bridging the gap between the two
fields, an aspiration also harboured by an emerging community of NeuroAI, the
current thesis attempts to provide additional reasons as to why the two could be
a match made in heaven.
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Abstract en Français
Deep Learning, en tant que domaine, a essayé de construire des réseaux capa-

bles d’effectuer des tâches intelligentes que seuls les humains pouvaient aupara-
vant effectuer. Ce faisant, l’objectif fixé est ambitieux puisqu’il s’agit de créer une
machine consciente, communément appelée intelligence artificielle (IA). Jusqu’à
présent, le Deep Learning est efficace pour une série de tâches telles que la clas-
sification, le sous-titrage, la traduction, etc. Mais il reste encore beaucoup plus à
souhaiter de ces réseaux. Leur sensibilité à de très petites perturbations dans les
inputs — appelées perturbations adversaires — a déconcerté le domaine depuis
près d’une décennie. De même, la capacité de généralisation des réseaux à d’autres
tâches et catégories est une limite activement étudiée.

En parallèle, les neurosciences ont cherché à comprendre le réseau le plus
complexe que nous connaissions : le cerveau humain. Dans cette quête, les neu-
rosciences se sont souvent appuyées sur l’utilisation de modèles de substitution,
mathématiques ou biologiques, plus faciles à expérimenter et à comprendre. Mais
jusqu’ici, les neurosciences manquaient d’un modèle apte à poser des questions al-
lant au-delà des cytoarchitectures neuronales et des synapses ; en particulier ceux
concernant la structure des représentations abstraites dans le cerveau. Enquêter
sur une question comme - Comment un humain apprend ou même représente un
concept tel que la mort et le relie à la peur et à la tristesse? est resté difficile
même en utilisant d’autres primates tels que le singe macaque.

Ce travail de thèse soutient que ces deux domaines– le Deep Learning et les
neurosciences– qui ont historiquement toujours été pertinents l’un pour l’autre,
peuvent même maintenant s’entraider. Pour illustrer cela, cette thèse propose
d’abord d’utiliser les dynamiques récurrentes, un concept issu des neurosciences,
au profit des modèles de machine learning. En particulier, le predictive coding, une
théorie neuro-computationnelle populaire, est implémentée dans des deep neural
networks. Il démontre que les réseaux récurrents résultants sont plus robustes à
divers types de bruit, naturels et adversaires, par rapport à leurs homologues à
anticipation. Il est important de noter que cette robustesse est obtenue grâce à
la capacité de la dynamique de predictive coding à aider les réseaux à projeter
les représentations bruitées vers leurs versions propres qui sont apprises pendant
l’entraînement - une propriété appelée “projection vers la courbe” .

Deuxièmement, en sens inverse, nous utilisons les réseaux de neurones au profit
des neurosciences. Tout d’abord, nous comparons divers réseaux formés avec dif-
férents objectifs — uni ou multimodalité, robustesse ou tailles d’ensembles de
données — dans leur capacité à expliquer l’activité cérébrale mesurée à l’aide de
l’imagerie par résonance magnétique fonctionnelle, ou IRMf. La thèse rapporte
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ensuite l’étrange capacité des réseaux multimodaux, c’est-à-dire des réseaux en-
traînés avec des ensembles de données couvrant diverses modalités, à expliquer
l’activité de l’hippocampe — une région connue pour posséder des concept cells
invariantes de modalité. Plus tard, nous utilisons une approche indépendante de
la région consistant à examiner systématiquement de plus petites portions de vox-
els dans le cerveau. En utilisant une telle approche basée sur un “searchlight”,
nous rapportons que par rapport à d’autres modèles, les réseaux multimodaux
expliquaient mieux l’activité IRMf dans tout le cortex visuel, tout en expliquant
également les régions entourant le sillon temporal supérieur.

Ainsi, dans l’ensemble, dans cette ambition globale de combler le fossé entre les
deux domaines, une aspiration également nourrie par une communauté émergente
de l’équipe NeuroAI, cette thèse tente de fournir des raisons supplémentaires pour
lesquelles les deux domaines pourraient être un couple complémentaire parfait.
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Listing of figures

1.1 Papers published in NeurIPS conference until 1990 and until
2021: The figure visualizes the fields of papers published in the
NeurIPS, a very popular conference in machine learning. Each dot
represents an individual paper and the color represents the year
in which it was published. The rectangles depict the field of the
papers. The papers published in Neuroscience are highlighted by
a red rectangle and those with classical neural networks with a
purple rectangle. The divergence in the interests of the machine
learning community is apparent from the contributions made in
past few decades. (Adapted from neuripsav.vizhub.ai and best
viewed in a digital format) . . . . . . . . . . . . . . . . . . . . . . 17

1.2 General methodology used to build encoding and decoding mod-
els : The figure illustrates the methodology used to build encoding
and decoding models. (1) Generally, after collecting the data, it is
split into training and validation sets. Later, an encoding model
is learned on the training split such that it can predict brain activ-
ity (voxel activity in case of fMRI data). (2 and 3) This encoding
model typically learns a feature space that can linearly map onto
the voxel activity space. (4) The linear mapping learned can also
be inversed to obtain a decoding model that can predict the stimu-
lus features (and sometimes the stimulus itself) from a given brain
activity pattern (Figure from Naselaris et al. 2010). . . . . . . . . 23
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1.3 Representational Similarity Analysis: To perform Representational
Similarity Analysis, one first calculates a Representational Dissim-
ilarity Matrix (RDM) using pairwise distances between the differ-
ent model features (or brain activity patterns). A similar RDM
is constructed for another model of interest after which a similar-
ity measure, generally correlation, is calculated between the two
RDMs (figure adapted from Devillers et al. 51). . . . . . . . . . . 26

1.4 Feedforward receptive fields of neurons in a predictive coding
network after training (representative subset) on natural images.
Basis vectors in the model, which can be considered as classical
receptive fields of higher-level units, exhibit tuning to components
of optic flow such as translation and expansion (Figure from Jehee
et al. 106) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 The neural responses elicited due to an expectation of a stimulus
are specific to the features of the stimulus : (A) Experimental
setup used by Kok et al. 121 . The trials started with an auditory
cue that predicted the orientation of the subsequent stimulus (grat-
ing of 45 degrees or 135 degrees). On 75% of the trials, subjects
were shown two gratings, first with the expected orientation based
on the sound cue, followed by the second grating that was tilted
clockwise or anticlockwise by a few degrees (with respect to the
first). The subjects later performed a discrimination task where
they judged this direction of rotation. (B) In 25% of trials, after
the sound cue, no gratings was presented. The participants were
asked to just fixate in the center (C) Throughout the experiment,
two sound cues were used that hinted at the orientation of the
grating (with 100% accuracy). (D) BOLD signals in V1. The time
courses are locked to the (expected) onset of visual stimuli. (E)
The plot shows the BOLD signal amplitude evoked by 45 degree
and 135 degree gratings (in stimulus and omission condition), sep-
arately for voxels that preferred the particular grating orientation.
The activity observed when the stimulus was omitted represents
the prior expectations of the grating orientation. (Figure adapted
from Kok et al. 121) . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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2.1 General overview of our predictive coding strategy as implemented
in a feedforward hierarchical network with generative feedback con-
nections. The architecture (roughly similar to stacked auto-encoders)
consists of N encoding layers en and N decoding layers dn. Wm,n de-
notes the connection weights from layer m to layer n, with Wf and
Wb for feedforward and feedback connections, respectively. The
reconstruction errors at each layer are denoted by εn. The feedfor-
ward connections (green arrows) are trained for image classification
(in a supervised fashion), while the feedback weights (red arrows)
are optimized for a prediction (i.e. reconstruction) objective (un-
supervised). Predictive coding minimizes the reconstruction errors
in each layer by updating activations in the next layer accordingly
(black arrows). Self-connections (memory) are represented by blue
arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Performance under Gaussian noise and projection towards the
learned manifold. (a) Improvement in recognition accuracy with
reference to the feedforward baseline under various levels of Gaus-
sian noise. Both networks demonstrate significant accuracy im-
provement across timesteps under noisy conditions, while maintain-
ing a performance close to the feedforward level for clean images.
(b) Normalized MSE distance between the image reconstruction
(d0) and the clean image (e0). Irrespective of the noise level, image
reconstruction consistently gets closer to the clean image across
timesteps in both models. (c) Examples of clean and noisy input
images together with their final reconstruction by the model (the
row order from top to bottom is: original image, PVGG16 recon-
struction, PEfficientNetB0 reconstruction; noisy image, PVGG16
reconstruction, PEfficientNetB0 reconstruction). For best viewing,
we recommend zooming in on the electronic version. (d) Normal-
ized correlation distance between representation of clean and noisy
images for each encoder (ei) across timesteps. The values are nor-
malized with respect to the feedforward baseline (timestep 0). In
both models and all encoders, the noisy representations tend to
move toward the clean copies. . . . . . . . . . . . . . . . . . . . . 57
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2.3 Benchmarking robustness to ImageNet-C. (a) Normalized corrup-
tion errors (CE) of PVGG16 and PEfficientNetB0 under four types
of additive noise corruptions. The values are normalized with re-
spect to the feedforward baseline. Both networks show consistent
reductions in the errors across timesteps. (b) Normalized mean
Corruption Error (mCE) scores for PVGG16 and PEfficientNetB0
on all the 19 corruptions available in the ImageNet-C dataset,
when optimized hyperparameters are used (as described in the
Appendix A.7). The values are normalized with respect to the
feedforward baseline. In both the panels, error bars represent the
standard deviation of the bootstrapped estimate of the mean value. 60

2.4 Benchmarking robustness to adversarial attacks. Plots show the
success rate of targeted adversarial attacks against DPCNs across
timesteps. The values are baseline-corrected, relative to the success
rate at timestep 0 (feedforward baseline). Both networks demon-
strate improved robustness to different types and/or levels of per-
turbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1 Noise ceilings after selecting subsets of voxels from each region
The panels show the noise ceilings (i.e., inter-subject correlation)
calculated after selecting different numbers of voxels from each re-
gion of interest. The noise ceilings were computed using either
voxels with the highest beta values (blue) or via a random sam-
pling of voxels (orange). The gray regions denote the standard
error of mean. For certain ROIs (visual region, fusiform), most
voxels are informative about the visual stimulus, and the two se-
lection methods yield similar results. For other ROIs (hippocam-
pus, parahippocampus), the noise ceiling depends on the selection
method, implying that some voxels (with the highest betas) are
more informative than others (randomly selected). The hippocam-
pus shows an improved noise ceiling when 30 voxels with the highest
beta values are selected, with additional voxels degrading the signal. 78
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3.2 Multimodal models better explain fMRI response patterns in the
hippocampus: Panel A shows the correlation values obtained with
different models across selected regions of interest (ROI). Only 30
voxels were selected from each ROI. The values are normalized with
the noise-ceilings to facilitate comparisons across regions. Panel
B shows the correlation values after aggregating them over mut-
limodal (green), visual (red) and language (blue) models. Statisti-
cal significance is calculated by using Welch’s t-test and is denoted
by an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Partial correlations between model RDMs and brain RDMs (with
the ResNet RDM as a control variable) : Each column depicts
four slices, the first two columns for uni- and the last four for
multi-modal networks. The color scale represents partial correla-
tion values. Multimodal networks show higher similarity to brain
representations in the LOC and fusiform regions compared to their
unimodal counterparts, thus explaining more unique variance in
the brain data. They also explain variance in regions around STS,
an effect unseen in the visual models. . . . . . . . . . . . . . . . . 89

A.1 PCN: Panel (a) shows the reconstruction errors of the model over
timesteps. It does not decrease over timesteps, as would be ex-
pected in a predictive coding system. Panel (b) depicts the ac-
curacy of the model on the CIFAR100 test dataset. The model
performs at chance level at early timesteps and then becomes bet-
ter in the last few timesteps. . . . . . . . . . . . . . . . . . . . . . 115

A.2 PVGG16 (optimised) Corruption Error (CE) scores for all distor-
tions: The panel shows the CE scores calculated on the distorted
images provided in the ImageNet-C dataset. The values are nor-
malized with the CE score obtained for the feedforward VGG. The
error bars denote the standard deviation of the means obtained
from bootstrapping (resampling multiple binary populations across
all severities.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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A.3 PEfficientNetB0 (optimised) Corruption Error (CE) scores for
all distortions: The panel shows the CE scores calculated on the
distorted images provided in the ImageNet-C dataset. The values
are normalized with the CE score obtained for the feedforward
EfficientNetB0. The error bars denote the standard deviation of the
means obtained from bootstrapping (resampling multiple binary
populations across all severities.) . . . . . . . . . . . . . . . . . . 126

A.4 The mCE scores of the optimized networks (as shown in Figure
3) normalized using the score of the AlexNet network. Instead
of normalizing using the score for the feedforward version of our
recurrent network, to facilitate comparison with other works, we
here normalize the scores using the score obtained for AlexNet
network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.5 The Relative mCE scores of the optimized networks (as shown in
Figure 3) normalized using the score of the AlexNet network. As
suggested by92, we use Relative mCE score which accounts for the
changing baseline accuracy on the clean images over timesteps. . . 127

A.6 mCE scores of a predified version of an already robust PEfficient-
NetB0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.7 L∞BIM attacks on PVGG16 network . . . . . . . . . . . . . . . 129
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A.9 L2RPGD attacks on PEfficientNetB0 network . . . . . . . . . . . 129
A.10 L∞ HopSkipJump attacks on PEfficientNetB0 . . . . . . . . . . . 130
A.11 Adversarial Attacks with respect to epsilons. Here we show the

number of successful attacks on 1000 (100 for HopSkipJump) im-
ages. Increasing the size of the epsilon leads to increase in the suc-
cess rate of the attack as expected. As predictive coding timesteps
increase, the curves shift slightly to the right, meaning that a
slightly larger perturbation is required to fool the network. This
robustness is more easily seen on Figure 2.4, where ε values are
sampled near each curve’s inflection point. . . . . . . . . . . . . 130

A.12 Correlation distances for representations obtained on noisy im-
ages: Here we show the absolute correlation distances obtained
between clean and noisy representations as shown in Figure 2d in
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B.1 This schematic shows the methodology used for the analysis. In a
first step, the fMRI data corresponding to the test images shown
to the participants are processed. Next, from all the voxels in a
selected region of interest, a subset of voxels with the highest relia-
bility in the fMRI signal (as determined by an independent analysis
on the noise ceiling) is chosen. Using pairwise distances on these
brain features, an RDM (representational dissimilarity matrix) is
constructed. In parallel, the same test images are passed through
different models, and their features are obtained. These features
are used to construct RDMs for each model. Finally, the similarity
between each model RDM and the brain RDM is computed using
different correlation measures. . . . . . . . . . . . . . . . . . . . . 134

B.2 Non-normalized RSA values between model and brain RDMs.
The brain RDMs are calculated based on selecting 30 voxels from
each ROI, as in the main analysis. The gray bands show the upper
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Chapter 1

Introduction

Humans have always been curious about our intelligence and consciousness.

Since ancient times we have wondered about their origins, often even resorting to

answers in physical or metaphysical elements. In terms of the biological actuality,

ancient thinkers debated whether it was the brain or the heart that was the

primary source of our intelligence. Most famous (or infamous) of all, Aristotle

argued that “the seat and source of sensation is the region of the heart”8,79 while

the brain acted as a “coolant” that counterbalanced the hot heart. Interestingly,

he made these arguments to contrast the “fallacious” idea of his predecessors, such

as Alcmaeon and Hippocrates, who believed that the brain was the primary organ

responsible for our intelligence79.

Indeed, any modern day researcher would at best frown at this ludicrous idea

of the brain being a glorified refrigerator. The advent of better technology, along

with clinical and anatomical findings have since long settled that debate. But

still, how the brain achieves its functionality remains an open question, a holy
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grail for the fields of neuroscience, psychology, philosophy, and the new field of

Artificial Intelligence (AI). Advances until now have established that the brain

is an intricate network of neurons—units which communicate among each other

using various charged ions and/or molecules. And numerous researchers from all

the varying fields have dedicated significant amounts of their careers trying to

understand this network at various levels—from the level of an individual neuron

to their assemblies.

And partly due to the complexity of the human brain, many of these efforts

have been driven by a very simple approach—of using a simpler system that, at

least to some extent, can faithfully represent the human brain. Depending on the

questions asked, these so-called “model organisms” can range from either a 1mm

nematode, such as Caenorhabditis elegans, with only 302 neurons to organisms

such as monkeys and gorillas that have billions of neurons and portray behaviours

and social structures as complex as humans. Apart from the complexity, this

has also helped us avoid, at least partially, the ethical and logistical issues often

encountered in clinical studies with humans. This simple approach of analogical

reasoning has been quite successful in advancing our understanding of the brain,

especially when the model organism is a very good proxy for the particular aspect

under investigation.

But still, directly investigating human intelligence and its various aspects has

always eluded us, mostly because we never had a suitable model organism for

that. Indeed, no one would argue against the inutility of C. elegans to mean-

ingfully study the human intelligence. But even if one settles on a more intel-
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ligent, obviously conscious animal, say a monkey, can we be sure of its utility?

A very stereotypical example often used in natural language processing is that

of “QUEEN - WOMAN + MAN = KING”. When asked about the validity of

this operation, a human would almost instinctively jump and say “of course yes”.

Here, are we sure if a monkey agrees with this statement which involves a linear

operation on complex abstract concepts encompassing sexuality, social hierarchy,

etc.? Does it even understand what a KING or a QUEEN is? And say given

the complex social structures in primates, it indeed possesses an understanding

of a “QUEEN”, can one be sure that it understands it the same way a human

would? And going beyond, what about more abstract concepts such as SONDER

or SCHADENFREUDE? And if we agree that no reasonable person can assume

this to be trivially true, then one must concede the limited utility of even our

evolutionary ancestors to study our own intelligence and consciousness.

And this is where the current advances in the field of artificial intelligence, es-

pecially Artificial Neural Networks (or ANNs), come in. These artificial networks

were initially inspired by the brain; a fact that is apparent in the names of the

units of these networks (neurons) and their feedforward connections as observed

in the brain. Over the past few decades, these ANNs have become exception-

ally good at performing tasks that previously only a human could do: classifying

various images in different categories, generating long verbose essays or even an

artistic image using just a simple text prompt, driving cars while identifying road

signs and pedestrians, etc.87,180,179,182,192,241 Performing these tasks implies learn-

ing of representations of these complex and abstract concepts. More importantly,
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when tested with “QUEEN - WOMAN + MAN = ?”, these networks gave the

answer “KING”77,232 demonstrating their ability to perform linear operations akin

to humans! Thus, for neuroscience, they make a strong case for being a perfect

candidate for fulfilling its lack of an apt model to study higher level cognition.

At the same time, though quite good, these ANNs themselves are not com-

pletely free of problems. For example, they are known to generalize poorly outside

their training data, even on datapoints that are minutely perturbed. For computer

vision applications, these perturbations can be simple natural noises like snow or

fog or expensively hard-mined to be so small that they are undetectable to the hu-

man eye—called adversarial perturbations214,92. After the early characterization

of this problem almost a decade ago, the Machine Learning (or ML) community is

still trying to understand this sensitivity of ANNs and improve their robustness.

But of course, the brain is many times more robust to such perturbations. Any

pet owner can easily identify their pet dog behind the backyard tree, covered in

mud on a heavy rainy day. Thus, like early engineers who looked at birds to get the

idea for wings for planes, what if current ML engineers looked at the brain to see

what made it is so robust to input stimuli? And, theoretical and computational

neuroscience have various candidate mechanisms that could be feasible in the

brain. What if these are employed in the modern day ANNs? Will that help in

improving their robustness? Maybe the current field of Deep Learning (or DL),

which benefited from some inspiration a few decades ago, can learn a little more

from the brain.

The current thesis lies in this context. It recognises that there is a gap between
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these two very relevant fields; Neuroscience requires a more apt model to mean-

ingfully progress on its quest to understand the brain, while Machine learning

warrants directions to improve itself further and could heavily profit by looking

at the best machine that is at its disposal—the human brain. The thesis argues

that the two can benefit from a stronger communication between them.

The thesis tries to advocate for this by illustrating two approaches. In the first

approach, it uses ideas from neuroscience to make brain-inspired neural networks

and then study their properties. Such an approach helps both the fields. It helps

neuroscience by corroborating ideas among their other alternatives, while elucidat-

ing the emerging properties resulting due to the theory. Simultaneously, it helps

machine learning by providing mechanistic principles that it could use to build

better networks. Specifically, in Chapter 2 we propose and implement recurrent

dynamics inspired from “predictive coding”, a popular theory in neuroscience, in

ANNs and show that they render further robustness to networks via a mechanism

known as projection towards the manifold.

On the other hand, the second approach exploits the aforementioned observa-

tion that current ANNs can learn representations of complex concepts and thus

uses them to gain insights into the representational structure of the brain. More

specifically, in Chapters 3 and 4, we compare the representational spaces of var-

ious ANNs to that of the brain obtained using functional Magnetic Resonance

Imaging (or fMRI) data, and then try to distinguish factors that stand out in

these comparisons. Insights from such experiments can be useful for not only in-

ferring the role of specific regions in the brain, but also for building networks that
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are more functionally similar to the brain in the future. Later in Chapter 5, the

thesis concludes by discussing the merits and demerits of these approaches and

comparisons in general.

But first, let us discuss the two approaches and the work relevant to the thesis

in more detail.

1.1 Neuroscience and Deep Learning: a tale of two fields

Indeed, a claim such as bridging the gap between two fields implicitly assumes

the existence of one in the first place. Though its existence can be hardly refuted

today, a brief look at older works tells us that historically this gap has not been so

trivially apparent. The two fields worked hand-in-hand, often taking ideas from

one for the other.

1.1.1 Neuroscience and Networks

By 1900, the findings from Cajal and subsequent researchers had helped sat-

isfactorily disband the reticular theory, which considered the brain as one con-

tinuous network, and instead establish “neurons” as one of the fundamental con-

stituent of the brain. This discovery led the research into understanding these

neurons in the brain—their density, types, firing patterns, etc. The cytoarchitec-

tural findings, their localization in the brain, along with behavioral (and lesion)

studies on patients, hinted at the modular nature of the brain. On the other hand,

electrophysiological data, for example from patch clamp experiments, paved the

way for mathematical models of the firing patterns of neurons94,65.
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Indeed, an understanding of the network is incomplete without investigating

the connections between its units. Investigations into these connections between

neurons, so-called synapses, led to our understanding of their formation, potenti-

ation and depression20. From a mathematical perspective, these findings helped

the formation of “learning rules” such as Hebb’s rule, BCM thoery, Oja’s rule, etc.

that modeled the formation and adaptation of synapses between neurons88,19.

The localization of the different neuron types in the brain had already hinted

at its modular nature. Subsequent findings only helped solidify this idea. As a

modular network, the brain also has a lot of connections interconnecting different

modules. Neuroanatomical studies revealed that the different modules in the brain

are connected in a hierarchical fashion with two∗ broad types of connections—

feedforward connections that connected lower regions (in the hierarchy) to the

higher regions, and feedback connections that started from higher regions to the

lower regions63,145,154.

As could be expected, this was followed by proposals of hierarchical networks

comprising of both feedforward and feedback connections with different roles and

functions. Theories such as Adaptive Resonance Theory (ART)28, HyperBF174,

re-entrant signaling theory56 etc. used feedforward and feedback connections to

pass different information between the lower and the higher areas in the hierarchy

fulfilling different objectives. In Section 1.4 we will look at one such particular

use of feedforward and feedback connections.

Meanwhile, taking inspiration from these architectural principles, the field of
∗There are also lateral connections that connect neurons within the same module. But they

are omitted here for simplicity given the scope of the work.
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Machine Learning was building more mathematically abstract (and better!) net-

works for various complex (human-like) tasks such as computer vision. Networks

like the Hopfield network96, Helmholtz machine47 are some classic examples of

early ANNs that highlight this inspiration. This is very elegantly highlighted in

the very first few lines of the abstract of John Hopfield’s 1982 paper that proposed

the Hopfield network96, considered as one of the early recurrent ANN:

Computational properties of use to biological organisms or to the

construction of computers can emerge as collective properties of sys-

tems having a large number of simple equivalent components (or neu-

rons)....A model of such a system is given, based on the aspects of

neurobiology but readily adapted to integrated circuits.

1.1.2 The divergence between the two fields

To the surprise of everyone, the mathematical principles—propagation of the

gradients in the backward direction (or backpropagation191) in particular—that

were developed in this proto-Deep learning era turned out be really effective.

Thus when the era of advanced computers brought with them the ability to

perform faster and faster computations, it led to a sudden increase in the per-

formances of these networks. More importantly, this exponential boom in the

available computational resources allowed for two key things – (i) creation of huge

datasets that can be stored and worked with, and (ii) the ability to test various

architectures, biologically plausible or not for learning on these datasets. These

factors, especially the latter, gradually transformed the goal of building networks
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until 1990 until 2021

Figure 1.1: Papers published in NeurIPS conference until 1990 and until 2021: The fig-
ure visualizes the fields of papers published in the NeurIPS, a very popular conference in machine
learning. Each dot represents an individual paper and the color represents the year in which it was
published. The rectangles depict the field of the papers. The papers published in Neuroscience
are highlighted by a red rectangle and those with classical neural networks with a purple rectangle.
The divergence in the interests of the machine learning community is apparent from the contri-
butions made in past few decades. (Adapted from neuripsav.vizhub.ai and best viewed in a
digital format)

into an engineering problem. How can we get a network learn things better? with

larger and broader layers? with more layers? with different connections? with

more data? etc.

And with success, the field grew but pivoted away from neuroscience in due

course of time. This rather unfortunate turn can be very well visualized on

https://neuripsav.vizhub.ai. The site shows the contributions of papers from

each field in NeurIPS – a popular conference in the field of modern day Deep Learn-

ing. Figure 1.1 contrasts the papers accepted at the conference based on its field.

The decrease in the relative contribution of the papers, and thus ideas, from neu-

roscience elucidates the divergence in the ideas pursued by the machine learning
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community.

1.2 Using Neuroscience for Deep Learning

But I would like to submit that present day Machine Learning can still learn

a lot from neuroscience; after all the brain is still the best network in business!

And we have a precedence for this. Besides the architectural inspiration of

feedforward connections, the deep learning community has used other ideas such

as attention and hallucinations, at least functionally, to improve the performance

of neural networks246,130. Transformers are some of the state-of-the-art networks

that rely on attention mechanism inspired from the brain229.

Similarly, another popular concept from neuroscience—reinforcement learning—

initially inspired various reward based learning objectives in Machine Learning.

These learning paradigms are quite successful in building well-performing net-

works, which often beat humans in games such as Chess, Go, Dota, Starcraft200,17,230.

Indeed, as can also be seen in the Figure 1.1, Reinforcement Learning has evolved

into its own field right now, often gathering most of the crowd at NeurIPS poster

sessions.

And though one can argue that deep learning has cracked the code for per-

forming really well on vision or semantic tasks individually, it still has a long way

to go. For example, one front where it still struggles is making networks that

can combine and/or generalize to tasks across modalities and datasets. There do

exist methods for multimodal integration, that often combine audio, semantic and

video modalities, but the results are still not as would be expected and there still
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remains a lot to be improved51,222.

Thus, efforts are being made to take further inspiration from neuroscience.

Global workspace theory, is a neuroscience theory of perception that posits that

information from all the modalities is combined at one common location in the

brain9,10. Thus, architectures implementing versions of this theory using modern-

day ANNs have been proposed227. Even attention, as it implemented in trans-

formers, heavily inspires from so-called bottom-up attention. But, neuroscience

posits/recognizes the existence of other type of attention—top-down attention—

which can be implemented at a global level. Indeed, VanRullen & Alamia 226

have tried implementing such a global attention system into current deep neural

networks.

As mentioned earlier, ANNs are easily fooled if one adds a tiny perturbation

to the input examples. This sensitivity to small perturbations, called adversarial

perturbations, is especially troublesome given their increasing use for tasks in

the wider population. Given that the brain is instead a robust network, ideas

from neuroscience have been used to counter this sensitivity of the ANNs and

improve their robustness142,158,45. For example, taking a page from neuroscience,

Nayebi & Ganguli 158 used neurons with saturating values to build robust networks.

Similarly based on the visual cortex, Dapello et al. 45 added gabor filters in their

ANNs and observed improved robustness to a variety of corruptions. As a more

interesting approach, studies have directly trained the ANNs on brain data and

have observed that they were more robust132. Investigations into these networks

led to the discovery of guiding principles that could help in building more robust
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networks in the future133.

Out of these ideas from neuroscience, one idea in particular is recently gaining

a lot more traction—that of recurrence. As mentioned earlier, biological brains

possess a high amount of feedback connections but are not so commonly seen in the

modern day typical ANNs63,154. Various studies have tried reconciling this archi-

tectural difference and investigate the role of feedback connections in information

processing. A seeming consensus is emerging that the recurrent connections help

the neural networks when the inputs are either degraded with noise237,157, with

occlusion62,206, or for efficiently learning long range dependencies138. Indeed, the

work discussed in Chapter 2 also implements recurrent dynamics in ANNs; that

prefer the feedback connections in the presence of noise4.

1.3 Using Deep Learning for Neuroscience

Just as the evolution of networks has benefited from neuroscience, neuroscience

also has benefited from the networks. Until now, the early networks were built

to be used as a testbed for various hypotheses, predominantly in theoretical neu-

roscience. But as pointed out earlier, the current ANNs, with their ability to

perform complex tasks at human-level, have opened up the possibility of directly

studying the representations in the human brain.

1.3.1 Establishing the model organism

But before that, there lies an important step of establishing sufficient equiva-

lence between an ANN and the brain; after all it’s always smarter to ensure that a
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given map is accurate before using it to cross the world. Such an equivalence can

be built at various levels. Given the impressive performance of ANNs on various

tasks, it is easy to start establishing an equivalence at a behavioral level. Indeed,

studies have analyzed the similarities between the performances of ANNs and hu-

mans under various conditions74,72,206,118,175,58. Most of these typically focus on

ways in which ANNs learn their tasks; more importantly under which situations

do they fail. Thus, though very important for neuroscience, their appeal generally

lies more for the Machine Learning community.

For the Neuroscience community, a more appealing aspect lies in establishing

an equivalence at a representational level—after all it is interested in understand-

ing how representations of complex concepts are encoded in the brain, not the

ANNs. To accomplish this, current methods rely heavily on two broad techniques:

Neural encoding and decoding, and Representational Similarity Analysis.

1.3.1.1 Neural Encoding and Decoding

One way to directly analyze the neural code in the brain is to learn a mapping

from this code to a more interpretable, understandable space which can be used

for directly performing tasks, such as classification.

Though not the first, one of the prominent studies that performed such an

analysis was from Cox & Savoy 41 . Using linear and polynomial support vector

machines, they were able to classify the fMRI data measured on subjects viewing

images from ten different categories. Later, Kay et al. 111 learned a linear regres-

sion from features extracted from images (in the training dataset) to accurately
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predict activities of voxels in an fMRI experiment. These regression weights were

later able to accurately identify the underlying image from a test dataset by just

using its voxel activity.

Encoding methods allow explaining the variance in the activity of the voxels,

and as a result can also help in elucidating information about the stimuli encoded

in specific voxels. For example, to analyze the same data from Kay et al. 111 ,

Naselaris et al. 155 built two different models—one based on phase-invariant Ga-

bor wavelets (also called as Gabor wavelet model), and other based on category

label for each natural scene (semantic model). They found that though both

the models predicted the voxel activities well, the underlying population of voxels

was different; while the Gabor wavelet model worked best on voxels from the early

visual areas, the semantic model worked best for higher visual areas.

Encoding models typically learn a linear mapping between the image features

and the brain space (see Figure 1.2). This assumption of linearity between these

two spaces is generally used as it allows for greater interpretability. For example,

even though the underlying neural code is nonlinear, the intuitiveness of oper-

ations like QUEEN - WOMAN + MAN = KING or FACE = EYES + NOSE

+ EARS illustrates the linear way in which humans think about these concepts.

Thus, one reasonably expects that any mapping learned (between these two non-

linear spaces), should at least allow us to manipulate these concepts in a linear

fashion. Indeed, this assumption is further strengthened by the empirical success

of various methods using linear mappings41,111,187,109,228. Here, one should be care-

ful to note that this is just an engineering expectation, and previous studies have
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Figure 1.2: General methodology used to build encoding and decoding models : The fig-
ure illustrates the methodology used to build encoding and decoding models. (1) Generally, after
collecting the data, it is split into training and validation sets. Later, an encoding model is learned
on the training split such that it can predict brain activity (voxel activity in case of fMRI data). (2
and 3) This encoding model typically learns a feature space that can linearly map onto the voxel
activity space. (4) The linear mapping learned can also be inversed to obtain a decoding model
that can predict the stimulus features (and sometimes the stimulus itself) from a given brain activ-
ity pattern (Figure from Naselaris et al. 2010).

used nonlinear mappings to learn mappings onto the brain activity space41,46,85.

As one can expect, the ability to learn a linear mapping between the brain

and model space will thus depend on the structure of the model space—a place

where current mathematically pliable ANNs can shine. This has prompted various

researchers to use the latent spaces of different ANNs to encode the brain data.
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For example, in 2015, using various ANNs Horikawa & Kamitani 97 were able to

identify images from over 50 categories from the popular ImageNet dataset48.

Neural decoding instead, as an approach aims to do the opposite : to directly

use brain activity and predict what stimulus could possibly have caused such a

pattern (see Figure 1.2.4). A first example of such a decoding was attempted by

Thirion et al. 220 where they tried to reconstruct the stimuli viewed by subjects in

an fMRI machine. While their stimuli were simple gabor patches, the complexity

of the stimuli was very soon scaled up by Miyawaki et al. 151 where they instead

used contrast patches with various patterns.

Even ANNs, especially those trained with generative objectives, are used for

this task. For example, VanRullen & Reddy 228 used a combination of state-of-the-

art networks at that time – variational autoencoders (VAE) and Generative Ad-

versarial Networks (GAN) – and showed their ability to reconstruct faces viewed

during the fMRI experiment. Moreover, they were able to perform simple linear

operations in the VAE latent space and visualize the effects in the reconstructions.

Various other studies later improved on the methods, often faithfully reconstruct-

ing lower level details in the reconstructions70,15. Mozafari et al. 152 on the other

hand were able to reconstruct images that captured the semantic attributes of the

stimuli. These methods were later improved by Ozcelik et al. 169 who were success-

ful in capturing both lower and higher level details by using Instance-Conditioned

GANs30.

While encoding and decoding models help infer the information encoded in var-

ious representational spaces, they still involve an indirect comparison between two
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latent spaces by learning a linear regression between them. These methods are also

hampered by the dimensionalities of the two spaces, which is often countered using

some form of regularization. Thus, an alternative method to directly compare the

representational spaces by measuring some form of similarity between them would

be desirable. This is where Representational Similarity Analysis (RSA) comes in.

1.3.1.2 Representational Similarity Analysis

Representational Similarity Analysis, allows one to directly compare different

representation spaces125. Intuitively, it supposes that if in two different represen-

tational spaces, the relative distances between the inter-category representations

are similar, then the representational spaces can be considered similar to each

other.

Mathematically, RSA starts by calculating the pair-wise distances (correlation,

cosine or euclidean) between representations of different categories and construct-

ing a Representational Distance Matrix (or an RDM) for a particular representa-

tion space (see Figure 1.3). It then compares this RDM with the RDM of another

representational space by measuring the correlation (generally rank correlation)

between them. Since the entries in an RDM only represent a measure of distance

between the representations with a single scalar quantity, RSA can be used to

compare representational spaces of different dimensionalities. Thus, one can com-

pare not only a brain and a latent space of a neural network, but also two different

neural networks, at varying depths. One can also compare representations from

a human and a primate, as was done for the first inception of RSA126.
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Figure 1.3: Representational Similarity Analysis: To perform Representational Similarity Anal-
ysis, one first calculates a Representational Dissimilarity Matrix (RDM) using pairwise distances
between the different model features (or brain activity patterns). A similar RDM is constructed
for another model of interest after which a similarity measure, generally correlation, is calculated
between the two RDMs (figure adapted from Devillers et al. 51).

Often studies combine these methods to assess the abilities of an ANN to

explain the brain data. One such early study was from Yamins et al. 243 who

showed that ANNs that were trained to be good at the final task such as object

recognition were able to explain the brain data exceptionally well. Since then,

other studies have only corroborated this findings across other animals such as

primates and rodents.27,112,25,26,242,156,31

The different layers in the neural networks learn different levels of represen-

tations, often getting more and more abstract with depth. Studies have tried

successfully testing if this hierarchy in the representations is also mapped and

matched onto the brain data.81,82,97

To further improve the utility of the model, various researchers have argued for

building networks that act as good models for the brain189. This can be achieved

by either investigating the impacts of (i) architectural changes such as convolu-

tions versus transformers223 or recurrence vs feedforward181, (ii) objective func-

tion based changes such as supervised versus unsupervised114,uni- versus multi-
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modality167 etc. To systematize the search for such networks, proposals have also

emerged for benchmarks such as Brain Score198, the Algonauts Challenge38, Brain

Hierarchy Score160. Already, such benchmarks in turn, have inspired building of

better ANNs for future research129.

Chapters 3 and 4 present similar attempts to uncover factors that affect the

ability of neural networks to explain the brain data. But before that, let us

look at two particular topics in more detail—the theory of predictive coding in

neuroscience and concept cells as they are found in neuroscience (and recently

even in ANNs).

1.4 Predictive Coding

As discussed earlier, the modular and hierarchical nature of the network al-

lowed classification of the connections into three categories—feedforward, feedback

and lateral. Of these, the feedforward connections received a major portion of the

attention, particularly in the ML community after the success story of the ANNs.

But given their widespread nature and abundance in the brain, theories have long

tried understanding the role of the feedback connections50,28,174,63.

Around the 1980s, one idea in particular had started gaining some traction

– of feedback connections relaying predictions about the representations to the

lower layers174,28. Stemming from his work on template and pattern matching,

Mumford 154 hypothesized that a feedback connection can be used to relay a rep-

resentative template of the activity at the lower layer (that is, a prediction) as

expected by the corresponding higher layer. Such a communication will also allow
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the higher layers to communicate with the lower layers in the latter’s representa-

tion space.

In 1999, Rao and Ballard183 used this idea to propose Predictive Coding to

explain changes in the response pattern of neurons in the visual cortex when a

stimulus is presented outside of their classical receptive fields, also known as extra-

classical receptive field effects. The contemporary approach was to use feedforward

connections to relay information regarding the representations. In contrast, the

Rao and Ballard architecture instead used feedback connections from the higher

layers to relay this information about the representations to the lower level, while

using the feedforward connections to relay the errors made in the predictions (or

residual errors) to the higher layers. The whole network, along with its weights

(during learning) and activations (during inference) aimed at optimizing the over-

all residuals error across its layers (and time).

The Rao and Ballard predictive coding model had a very strong appeal from

an information theoretic perspective; it allowed the feedforward connections to

only relay information that was not already explained by the higher layers, thus

leading to an efficient coding strategy with reduced redundancy in the transmitted

signal. Indeed, a similar strategy of delta compression already existed as a solution

for signal transmission in engineering164,86, and is still used to store programming

codes on websites such as Github. Funnily enough, in 1982, Srinivasan et al. 210

and colleagues had already proposed a theory based on a similar principle (and

name) to explain the role of inhibitory connections in the retina.

The predictive coding principle has found its utility in explaining various as-
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pects of the brain. For example, in the retina, the retinal ganglion cells exhibit

a phenomenon known as surround suppression, whereby the firing rate of a cell

decreases when one enlarges the stimulus beyond its classical receptive fields101.

From a predictive coding perspective, this can be accounted for by postulating

that during natural vision the cells always encounter large stimuli encompassing

regions beyond their receptive fields. Hence in natural conditions, the predictions

from the higher layers are quite good and thereby result in ample inhibition. But

presenting a stimulus only in the center of a receptive field is an unnatural sce-

nario, and results in inaccurate predictions, increasing the residual error and thus

response of the cell. More interestingly, when Rao & Ballard 183 trained a predic-

tive coding network on natural images, it exhibited several interesting neurons.

The neurons in the early layers showed orientation tuning, while neurons in the

higher layers learned complex features as observed in visual cortex. The neurons

in the network also demonstrated surround suppression.

The removal of correct predictions received from higher layers helps in explain-

ing away the variance in the response, and thus allows a layer to just transmit the

unexplained variance further via the feedforward connections. This results in a

decorrelation of the transmitted signal, and in the case of retina is in the spatial

domain100. Similar arguments have been used to extend the principle to the tem-

poral domain to explain the response and tuning properties of cells in the lateral

geniculate nucleus (LGN), an immediate higher-order region of the retina44,54,105.

Predictive coding has been also used to explain other aspects of visual pro-

cessing. To explain motion processing, Jehee et al. 106 showed that a modified
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Figure 1.4: Feedforward receptive fields of neurons in a predictive coding network after
training (representative subset) on natural images. Basis vectors in the model, which can be con-
sidered as classical receptive fields of higher-level units, exhibit tuning to components of optic flow
such as translation and expansion (Figure from Jehee et al. 106)

predictive coding model can learn neurons with tuning properties (to optic flow)

similar to that of the neurons in the medial superior temporal (MST) regions (see

Figure 1.4). Hohwy et al. 95 also used predictive coding to explain binocular ri-

valry, a phenomenon where when each eye is presented with different stimuli, the

subjective perception alternates between the two stimuli.

Predictive coding has also been useful beyond the visual system. It has been

used to explain the auditory system202, as it also deals with a lot of temporally
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correlated input. Similarly, it is also used to model the hippocampus146,35, ventral

midbrain and striatum161. For example, recently Chen et al. 35 proposed a tem-

poral predictive coding inspired network, called PredRAE, for the hippocampus.

Their network possessed neurons acting similar to place cells in the hippocam-

pus163, while also showing other hippocampus-like behaviors such as memory relay

and prediction.

Going beyond specific regions, predictive coding has also been used to ex-

plain complex cognitive phenomenon. For example, Spratling 207 demonstrated

that tweaking the predictive coding dynamics can reconcile them with those of

biased competition (another theory that used feedback connections to modulate

responses) and can also explain attention209. The latter task was earlier attempted

by Rao & Ballard 184 while modeling human eye movements. More significantly,

predictive coding was used to account for complex cognitive phenomena such as

perception, decision-making, etc. when Friston 66 combined it with his free-energy

principle.

Alamia & VanRullen 5 implemented a predictive coding network with neural

communication delays and observed oscillatory behaviour in the network. More

interestingly, when biologically plausible values were used for the communication

delays, the oscillations observed occurred at biologically plausible frequencies of

around 10 Hertz, characteristic of alpha oscillations.

The fact that higher layers send information to, and thus modulate, lower

layers has prompted the use of predictive coding for explaining another cognitive

phenomenon – perceptual illusions (and bi- and multi-stable perceptions)234. Even
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later ANN implementations of predictive coding, including the one presented in

Chapter 2, demonstrated an ability to perceive perceptual illusions140,171. The

information from the higher layers could also be valuable in case of noisy environ-

ments. Thus, predictive coding networks have been used to explain robustness in

recognition of occluded objects, or as Chapter 2 will illustrate in noisy conditions.

1.4.1 Biological evidence for predictive coding

Though the appeal of a unifying theory that explains various phenomena is

quite high, the biggest hurdle, the Achilles’ heel for predictive coding has been

its empirical foundation. As noted earlier, one observes a remarkable consistency

in feedback and feedforward connections in the cortex, an observation that has

prompted many to wonder whether there is a universal computation that is fol-

lowed throughout the cortex. Such expectations have found an easy amalgama-

tion with the predictive coding principle. For example, Bastos et al. 14 proposed

a “canonical microcircuit” that is repeated throughout the cortex and that im-

plements predictive coding computations. Based on experimental evidence, they

also hypothesized the various neurobiological analogues in the laminar structure

of the cortex that can be involved in such computations, a task that was further

refined by others199.

But, despite various efforts, finding satisfactory evidence in support of the the-

ory has remained quite difficult. The difficulties in finding satisfactory evidence

arise due to multiple reasons. For example, a predictive coding network makes

certain assumptions about the brain. First, it assumes an inverted signal trans-
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mission where it is the feedback connections that carry information regarding the

representations while the feedforward connections carry the corrections for those

predictions. It also assumes that these two distinct types of neuronal popula-

tions with antagonistic behaviour—one encoding the predictions and the other

the errors in them—inhabit the same region of the cortical hierarchy. This makes

attributing the increase in activity of a certain region in the brain challenging,

especially when the techniques used span a large patch in the brain (See Walsh

et al. 233 for a detailed review).

For example, Summerfield et al. 212 repeatedly showed images of human faces to

subjects while performing fMRI and measured their blood oxygen level dependent

(BOLD) responses in the fusiform face area (FFA). They observed a consistent

decrease in the response of the FFA when an expected stimulus was repeatedly

shown; a trend that was reversed when the participants were instead shown an

unexpected stimulus. This modulation of activity in presence of a repeated stim-

ulus, known as repetition suppression, can be easily inferred from a predictive

coding perspective – a repeated stimuli is predictable, thus the prediction error,

and consequently the response in the FFA is reduced. As soon as an unexpected

face is observed, the prediction error (thus the response) goes up. But the study

encountered the same questions as discussed earlier. Attributing a response in a

big region such as FFA to just prediction errors was quite controversial. Most

important of all, the same results can be explained by accounting for the abil-

ity of the neurons to adapt in the presence of a repeated stimulus, called neural

adaptation. Such a hypothesis doesn’t require any reference to predictive coding
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and is observed in other places in the brain231,213,203. Though the above example

of one of the popular studies in neuroscience is quite old by now, subsequent ef-

forts to devise better paradigms have still failed to find conclusive support for the

existence of predictive coding231,203.

Here, it should be noted that not all is lost for the proponents of the theory.

Little to no doubt exists in the literature that perception is affected by cognitive

and attentional state, effects which are very likely to be of a top-down nature29,40.

Kok et al. 121 showed that when an expected stimuli is omitted, it elicits an in-

creased response in the visual cortex. This response is specific to the features

of the expected stimuli, hinting that they could potentially be predictions from

the higher layers (see Figure 1.5). Ekman et al. 57 used 7T fMRI (ultra high

field) to measure the BOLD activity in participants observing moving dots on

the screen. They reported that only flashing the starting sequence triggered an

activity wave in the V1 that resembled the full stimulus sequence, indicating the

possibility of (temporal) predictions of the moving dot. Or to explain bistable

perception, Weilnhammer et al. 234 used a simple predictive coding based model

to simulate and fit fMRI data collected while the participants were observing ro-

tating Lissajous figures. They found that their modelled prediction errors showed

a good match in higher regions such the inferior frontal gyrus and in the insula.

Preliminary evidence also shows some support for the existence of the canonical

microcircuit. Muckli et al. 153 presented occluded images to participants in a

similar 7T fMRI machine. They observed that only the superficial layers in V1

were activated by the occluded part of the image. These superficial cortical layers
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D E

Figure 1.5: The neural responses elicited due to an expectation of a stimulus are spe-
cific to the features of the stimulus : (A) Experimental setup used by Kok et al. 121 . The trials
started with an auditory cue that predicted the orientation of the subsequent stimulus (grating
of 45 degrees or 135 degrees). On 75% of the trials, subjects were shown two gratings, first with
the expected orientation based on the sound cue, followed by the second grating that was tilted
clockwise or anticlockwise by a few degrees (with respect to the first). The subjects later per-
formed a discrimination task where they judged this direction of rotation. (B) In 25% of trials,
after the sound cue, no gratings was presented. The participants were asked to just fixate in the
center (C) Throughout the experiment, two sound cues were used that hinted at the orientation
of the grating (with 100% accuracy). (D) BOLD signals in V1. The time courses are locked to
the (expected) onset of visual stimuli. (E) The plot shows the BOLD signal amplitude evoked by
45 degree and 135 degree gratings (in stimulus and omission condition), separately for voxels that
preferred the particular grating orientation. The activity observed when the stimulus was omitted
represents the prior expectations of the grating orientation. (Figure adapted from Kok et al. 121)
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in V1 are known to possess many feedback connections, possibly from higher

regions such as V2-V7, and thus support the possibility of this activity being a

signature of predictions inline with the assumptions made earlier by Mumford and

Bastos et al.

Overall, for now the verdict on the biological plausibility of predictive coding

is still out and the question remains one of the biggest hurdles for the proponents

of the theory.

1.4.2 Predictive coding in the era of deep learning

Despite its shaky empirical support, predictive coding as a principle has also

found a place in the modern era of deep learning. Many studies have tried to im-

plement predictive coding inspired principles into ANNs—at times even diverging

from the traditional Rao and Ballard architecture—to leverage the efficiency of

ML tools such as convolutions, backpropagation, etc.

In the Deep Learning era, one of the first attempts to implement predictive

coding dynamics was made by Chalasani & Principe 32 where their simple model

dynamically changed the priors using predictive coding based updates. Later, Lot-

ter et al. 139 et al proposed an LSTM based model that performed predictive coding

updates while learning video sequences. Their network, called PredNet, not only

possessed neurons with response properties very similar to the neurons of macaque

visual cortex but also showed gestalt behaviours such as illusory contours140.

Both Chalasani & Principe 32 and Lotter et al. 139 trained their networks on

generative objective functions. Such unsupervised training can lead to represen-
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tations that are not ideal for a discrimination task such as object recognition.

Thus Spratling 208 and Wen et al. 235 proposed a predictive coding based network

that was more attuned for object recognition. Spratling 208 worked with a small,

shallow network, and incorporated multiplicative error inline with his previously

proposed PC/BC (predictive coding/biased competition) model, whereas Wen

et al. 235 worked with large-scale deep networks. A detailed discussion on them is

made in Section A.5.

Boutin et al. 21 combined the principles of predictive coding and sparse coding.

Their network even possessed neurons with receptive fields akin to those in the

primate visual cortex. Their model was able to reconstruct robustly in the pres-

ence of small perturbations in the input images. Dora et al. 55 and Brucklacher

et al. 23 also designed deep models that were inspired from predictive coding and

adhered to simple Hebbian learning rule. Their networks also showed properties

like invariant object representations.

Another way in which predictive coding has inspired ideas in ML is that of

contrastive predictive coding166—an unsupervised objective that tries to reduce

prediction errors in the latent space.

Overall, this is a small field within Machine Learning that aims to combine

and scale predictive coding with more powerful Machine learning tools.
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1.4.2.1 Predictive coding, variational inference and normalizing

flows

Starting from its first iteration in 1999, predictive coding was always discussed

as a dynamical model in terms of information theory. Friston instead reformulated

the predictive coding theory as a variational Bayesian approach while combining

it with his free energy principle66,67. He demonstrated that the energy function

minimized in the Rao and Ballard model can be interpreted as a variational free

energy and can be minimized through variational inference.

Variational techniques are a broad set of techniques that aim to learn an often

intractable problem by optimizing an approximate tractable alternative. Origi-

nally stemming from statistical mechanics in physics64, they are extensively de-

veloped and used in Machine learning119,108, under the commonly known name of

variational autoencoders (or VAEs). Thus, Boutin et al. 22 tried implementing pre-

dictive coding iterations more explicitly in VAEs and reported that their network,

called iterative-VAE (or iVAE), was more robust against distributional shifts in

the data.

As mentioned earlier in the context of retina, the decorrelation (or normaliza-

tion) observed in the neural response across hierarchies can be explained using

the predictive coding theory100,210. Thus recently, Marino 144 extended the princi-

ple of predictive coding to normalizing flows—a machine learning approach where

successive invertible functions are learned that, in the end, approximate a normal

distribution120,188.
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1.4.2.2 Predictive coding as an alternative to backpropagation

Predictive coding has found another important utility in the deep learning

era—as a potential biological alternative for backpropagation. Backpropagation,

in machine learning is the learning rule used to train ANNs. It assumes a differen-

tiable function around the parameter values and applies the (reverse) chain rule

to calculate the parameter updates. Thus, as a weight update rule, it assumes

that the information about the global loss function is present at a particular level

in the system. But such transfer of non-local information throughout the network

adds additional constraints to the network architecture and seem to be a strong

assumption for the brain42. Thus, various biologically plausible learning rules

have been proposed to address this problem of backpropagation16,1,134,131.

In 2017, Whittington & Bogacz 236 demonstrated that a predictive coding net-

work with simple Hebbian learning rule, and thus which relies solely on local

information, can approximate the weight updates from backpropagation. Ini-

tially tested on simple multilayer perceptrons (MLPs), studies have now extended

this ability of (modified) predictive coding networks to efficiently learn complex

modern-day networks150,194,149,205. Though quite new, this is one active and inter-

esting avenue that predictive coding enthusiasts should keep an eye on.

Now, let’s have a brief look at concept cells, as they are found in neuroscience,

and machine learning. This will be relevant for the work done in Chapter 2.
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1.5 Concept Cells

The establishment of the brain as an intricate network of interlinked neurons,

raised other important questions related to the nature of the representations. How

does it process the stimulus it observes? If that information is stored somewhere,

what is its nature? Is it sparse, where each individual neuron encodes for specific

concepts? Or is it distributed, where a representation is spread across multiple

neurons?

One particular hypothesis, prominent in the mid 1900s11,123 was that it is per-

haps an individual neuron that stores such information. This hypothesis was hotly

debated in the field for a couple of decades. Jerome Lettvin, a professor at MIT,

famously mocked this idea during one of his lectures while mentioning a fictional

story in which a doctor treated a character with a troubled relationship with his

mother. The doctor removed the cells from the patient’s brain that represented

the mother; an operation whose success led him on a search for grandmother

cells80,13,12—a term that later became popularly used to dismiss the possibility of

such cells.

Further insights into this debate came when Quiroga and colleagues were per-

forming some intracranial recordings. Generally, patients with epileptic seizures

are implanted with intracranial electrodes to locate the source of the epileptiform

activity; the typical approach being to identify and remove that particular trou-

blesome region. While performing such recordings in the medial temporal region,

they found neurons in the brain that selectively fired for stimuli belonging to a spe-
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cific concepts—i.e. concept cells!178 These cells showed selective activity whenever

the subject was shown any stimulus related to a specific concept. For example,

they discovered a neuron that fired specifically for the actress Halle Berry, includ-

ing her image, her sketch, her written text, and even an image of catwoman, a role

she played in the movie. Later efforts also discovered concept cells that responded

while performing visual imagery and internal recall of the concepts124,75.

The discovery of these so-called concept cells once again fueled the age-old

debate. But, various researchers argued that the grandmother cell interpretation

is an extreme one, and an intermediate interpretation of a sparse network, without

the “a neuron per concept” interpretation is quite possible177.

More importantly, questions emerged on the functional purpose of these con-

cept cells in the medial temporal lobe (MTL). After all, object related information

which can lead to rapid recognition, is already detectable in the upstream region

of IT cortex113,186. While the hippocampus, one of the medial temporal regions,

has been linked to function of memory formation43. The current leading hypoth-

esis is that these modality invariant concept cells are used in the MTL to encode

the concepts into new memories via associative learning186. Such a mechanism

can explain their delayed responses, their abstract encoding and is inline with the

studies where MTL damage showed difficulties in memory formation93.

Concept cells in ANNs : Multimodal neural networks are studied in Ma-

chine Learning for a variety of purposes. Apart from initial attempts to make

networks good at one-shot or few-shot tasks, the current methods allow training

on a huge corpus of dataset from the internet49,179,180. The use of another modal-
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ity, language for example, often allows to counterbalance the effect of the noise in

the dataset. And these models are known to learn good representations179,51,18.

Studying concept cells using ANNs is generally tough since, at least as of now,

ANNs don’t explain the activity in regions apart from the ventral visual stream

that well240. But when Goh et al. 77 discovered the presence of concept cells

in CLIP—a multimodal network trained on data from more than one modality

(visual and semantic)—it suddenly raised an important question. Is this ANN

model now a better, more apt model for the hippocampus? It is this question

that is addressed in the Chapter 3.

1.6 Outline of the Thesis:

The current thesis argues that the two fields of Neuroscience and Deep Learn-

ing are still very relevant for each other, and neuroscientists should actively look at

the developments Deep Learning, and Machine Learning scientists should keep an

eye out at what Neuroscience is doing. To support its argument, in the following

Chapters it provides two illustrations of how one can benefit from the other.

In Chapter 2, it proposes recurrent dynamics that are inspired from the Predic-

tive coding theory. These dynamics, which are well-suited for Machine Learning

models, also induce interesting properties in the networks, in particular robust-

ness against a variety of corruptions. The Chapter then goes beyond and looks

under the hood to uncover the mechanisms by which predictive coding renders

such robustness.

In Chapter 3, we will use Machine learning for the benefit of neuroscience. Cells
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similar to concept cells were discovered in a multimodal network called CLIP77.

The Chapter reports that CLIP, and multimodal networks in general, are much

better models of hippocampus representations—a region known to possess concept

cells in humans. Chapter 4 extends this approach to the whole brain by instead

performing a searchlight analysis across the brain. It looks at the ability of various

uni- and multi-modal networks to explain the activity throughout the brain. Apart

from correlation-based analysis, as is typically performed in RSA, it also looks at

partial correlations, removing the correlation explained by a control visual model

(ResNet50).

Chapter 5 will start by first discussing the works reported in Chapters 2, 3,

and 4 in a broader setting. Then it will discuss the implications of this coupling be-

tween these two fields, its untapped potential, and the limitations that researchers

should be aware of.
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Chapter 2

Predify: Augmenting deep neural net-

works with brain-inspired predictive

coding dynamics

In this Chapter we will propose and implement recurrent dynamics inspired

from predictive coding for modern day ANNs. We will then test the performance of

the resulting bio-inspired networks against various types of natural and adversarial

noises. Insights obtained will help ML to incorporate better biases in future

networks.

To further increase their utility to the ML community, an easy-to-use open-

source package (along with the weights of all the networks) are made available.
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2.1 Prologue to the main article :

Every project has a story. The scientific story is itself published in the form

of an article and, rightfully so, gets the most attention. Instead, I will use this

section to discuss the other, human aspect of the project here. This will also help

clarify the contributions made in this essentially collaborative work. The aim of

implementing predictive coding into modern day CNNs was Rufin’s. Rufin and I

started working on finalizing the equation, testing it on a small autoencoder model,

characterizing and testing properties such as projection towards the manifold,

robustness to natural and adversarial noise, etc. Benjamin Ador tried scaling

the implementation to VGG16, a work which later Milad Mozafari brought to

fruition. Milad also later generalized the implementation as a python package

– later came to be known as predify – which helped us test various other state-

of-the-art networks. Callum Biggs O’May, instead, took a different approach;

he started testing a previously published implementation of predictive coding

and highlighted the differences between that and ours. His suggestions not only

helped us improve the final equation but were also valuable for our understanding.

Andrea Alamia, since the start of the project asked all the relevant questions. His

questions and experiments, apart from being compiled as a separate article on

its own, played a crucial role in our understanding of the recurrent dynamics. A

previous version of this work was presented at Shared Visual Representations in

Human and Machine Intelligence (SVRHM), a NeurIPS 2020 workshop. Currently,

the work is published in the proceedings of NeurIPS 2021 conference.
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2.2 Main article :

2.2.1 Abstract

Deep neural networks excel at image classification, but their performance is

far less robust to input perturbations than human perception. In this work we

explore whether this shortcoming may be partly addressed by incorporating brain-

inspired recurrent dynamics in deep convolutional networks. We take inspiration

from a popular framework in neuroscience: “predictive coding”. At each layer

of the hierarchical model, generative feedback “predicts” (i.e., reconstructs) the

pattern of activity in the previous layer. The reconstruction errors are used to

iteratively update the network’s representations across timesteps, and to optimize

the network’s feedback weights over the natural image dataset–a form of unsu-

pervised training. We show that implementing this strategy into two popular

networks, VGG16 and EfficientNetB0, improves their robustness against various

corruptions and adversarial attacks. We hypothesize that other feedforward net-

works could similarly benefit from the proposed framework. To promote research

in this direction, we provide an open-sourced PyTorch-based package called Pred-

ify, which can be used to implement and investigate the impacts of the predictive

coding dynamics in any convolutional neural network.

2.2.2 Introduction

Deep convolutional neural networks (DCNNs), initially inspired by the pri-

mate visual cortex architecture, have taken big strides in solving computer vision
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tasks in the last decade. State-of-the-art networks can learn to classify images

with high accuracy from huge labeled datasets127,201,87,98,3,215. This rapid progress

and the resulting interest in these techniques have also highlighted their vari-

ous shortcomings. Most widely studied is the sensitivity of neural networks, not

only to perturbations specifically designed to fool them (so-called “adversarial ex-

amples”) but also to regular noises typically observed in natural scenes214,92,159.

These shortcomings indicate that there is still room for improvement in current

techniques.

One possible way to improve the robustness of artificial neural networks could

be to take further inspiration from the brain. In particular, one major aspect of the

cerebral cortex that is missing from standard feedforward DCNNs is the presence

of feedback connections. Recent studies have stressed the importance of feedback

connections in the brain116,110, and have shown how artificial neural networks can

take advantage of such feedback for various tasks such as object recognition with

occlusion62, or panoptic segmentation137. Feedback connections convey contextual

information about the state of the higher layers down to the lower layers of the

hierarchy; in this way, they can constrain lower layers to represent inputs in

meaningful ways. In theory, this could make neural representations more robust

to image degradation237. Merely including feedback in the pattern of connections,

however, may not always be sufficient; rather, it should be combined with proper

mechanistic principles.

To that end, we explore the potential of recurrent dynamics for augmenting

deep neural networks with brain-inspired predictive coding (supported by am-
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ple neuroscience evidence14,100,90,2,233). We build large-scale hierarchical networks

with both feedforward and feedback connections that can be trained using error

backpropagation. Several prior studies have explored this interesting avenue of

research32,139,235,21, but with important differences with our approach (see Sec-

tion 2.2.4). We demonstrate that our proposed method adds desirable properties

to feedforward DCNNs, especially when viewed from the perspective of robustness.

Our contributions can be summarized as follows:

• We propose a novel strategy for effectively incorporating recurrent feedback

connections based on the neuroscientific principle of predictive coding.

• We implement this strategy in two pre-trained feedforward architectures

with unsupervised training of the feedback weights, and show that this im-

proves their robustness against different types of natural and adversarial

noise.

• We suggest and verify that an emergent property of the network is to itera-

tively shift noisy representations towards the corresponding clean representations—

a form of “projection towards the learned manifold” as implemented in cer-

tain adversarial defense methods.

• To facilitate research aimed at using such neuroscientific principles in ma-

chine learning, we provide a Python package called Predify that can easily

implement the proposed predictive coding dynamics in any convolutional

neural network with a few lines of code.
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Figure 2.1: General overview of our predictive coding strategy as implemented in a feedfor-
ward hierarchical network with generative feedback connections. The architecture (roughly similar
to stacked auto-encoders) consists of N encoding layers en and N decoding layers dn. Wm,n de-
notes the connection weights from layer m to layer n, with Wf and Wb for feedforward and feed-
back connections, respectively. The reconstruction errors at each layer are denoted by εn. The
feedforward connections (green arrows) are trained for image classification (in a supervised fash-
ion), while the feedback weights (red arrows) are optimized for a prediction (i.e. reconstruction)
objective (unsupervised). Predictive coding minimizes the reconstruction errors in each layer by
updating activations in the next layer accordingly (black arrows). Self-connections (memory) are
represented by blue arrows.

2.2.3 Our Approach

2.2.3.1 The proposed predictive coding dynamics

Predictive coding, as introduced by Rao & Ballard 183 , is a neurocomputational

theory positing that the brain maintains an internal model of the world, which it

uses to actively predict the observed stimulus. Within a hierarchical architecture,

each higher layer attempts to predict the activity of the layer immediately below,

and the errors made in this prediction are then utilized to correct the higher-layer

activity.

To establish our notation, let us consider a hierarchical feedforward network
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equipped with generative feedback connections, as represented in Figure 2.1. The

network contains N encoding layers en (n ∈ N) and N corresponding decoding

layers dn−1. The feedforward weights connecting layer n− 1 to layer n are denoted

by Wf
n−1,n, and the feedback weights from layer n + 1 to n by Wb

n+1,n. For a

given input image, we first initiate the activations of all encoding layers with

a feedforward pass. Then, over successive recurrent iterations (referred to as

timesteps t), both the decoding and encoding layer representations are updated

using the following equations (also refer to Pseudocode 1):

dn(t) = Wb
n+1,nen+1(t) (2.1)

en(t + 1) = βnW
f
n−1,nen−1(t + 1) + λndn(t) + (1 − βn − λn)en(t) − αn∇εn−1(t), (2.2)

where βn, λn (0 ≤ βn + λn ≤ 1), and αn act as layer-dependent balancing co-

efficients for the feedforward, feedback, and error-correction terms, respectively.

εn−1(t) denotes the reconstruction error at layer n − 1 and is defined as the mean

squared error (MSE) between the representation en−1(t) and the predicted recon-

struction dn−1(t) at that particular timestep. Layer e0 is defined as the input image

and remains constant over timesteps. All the weights Wf
n−1,n and Wb

n+1,n are fixed

during these iterations.

Each of the four terms in Equation 2.2 contributes different signals, reflected

by different arrow colors in Figure 2.1: (i) the feedforward term (green arrows;
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controlled by parameter β) provides information about the (constant) input and

changing representations in the lower layers, (ii) the feedback correction term

(red arrows; parameter λ), as proposed in183,89, guides activations towards their

representations from the higher levels, thereby reducing the reconstruction errors

over time, (iii) the memory term (blue arrows) acts as a time constant to retain

the current representation over successive timesteps, and (iv) the feedforward

error correction term (black arrows; controlled by parameter α) corrects represen-

tations in each layer such that their generative feedback can better match the

preceding layer. For this error correction term, we directly use the error gradient

∇εn−1 = [∂εn−1
∂e0n

, ..., ∂εn−1
∂ekn

] to take full advantage of modern machine learning capabili-

ties (where k is the number of elements in en). While the direct computation of this

error gradient is biologically implausible, it has been noted before that it is math-

ematically equivalent to propagating error residuals up through the (transposed)

feedback connection weights (Wb)T, as often done in other predictive coding imple-

Pseudocode 1 Predictive Coding Iterations
1: Input image: e0
2: for n = 1 to N do
3: en ← Conv(en−1)
4: dn−1 ← deConv(en)
5: εn−1 ← ||dn−1 − en−1||22
6: end for
7: for t = 1 to T do
8: for n = 1 to N do
9: ff← βn · Conv(en−1)

10: fb← 0
11: if n < N then
12: fb← λn · dn
13: end if
14: en ← ff + fb + (1− βn − λn) · en − αn · ∇εn−1
15: dn−1 ← deConv(en)
16: εn−1 ← ||dn−1 − en−1||22
17: end for
18: end for
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mentations235,183. Together, the feedforward and feedback error correction terms

fulfill the objective of predictive coding as laid out by Rao and Ballard183. We

discuss the similarities and differences between our equations and those proposed

in the original Rao and Ballard implementation in the Appendix A.6.

While it is certainly possible to train such an architecture in an end-to-end

fashion, by combining a classification objective for the feedforward weights Wf

with an unsupervised predictive coding objective (see Section 2.2.3.2) for the feed-

back weights Wb, we believe that the benefits of our proposed scheme are best

demonstrated by focusing on the added value of the feedback pathway onto a

pre-existing state-of-the-art feedforward network. Consequently, we implement

the proposed strategy with two existing feedforward DCNN architectures as back-

bones: VGG16 and EfficientNetB0, both trained on ImageNet. We show that

predictive coding confers higher robustness to these networks.

2.2.3.2 Model architectures and training

We select VGG16 and EfficientNetB0, two different pre-trained feedforward

networks on ImageNet, and augment them with the proposed predictive coding

dynamics. The resulting models are called PVGG16 and PEfficientNetB0, respec-

tively. The networks’ “bodies” (without the classification head) are split into a

cascade of N sub-modules, where each plays the role of an en in equation (2.2). We

then add deconvolutions as feedback layers dn−1 connecting each en to en−1, with

kernel sizes accounting for the increased receptive fields of the neurons in en or

upsampling layers to match the size of the predictions and their targets (see Ap-
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pendix A.2). We then train the parameters of the feedback deconvolution layers

with an unsupervised reconstruction objective (with all feedforward parameters

frozen). We minimize the reconstruction errors just after the first forward pass,

and after a single deconvolution step (i.e. no error correction or predictive coding

recurrent dynamics are involved at this stage):

L =
N−1∑

n=0
∥ en − dn ∥2

2, (2.3)

where en is the output of the nth encoder after the first forward pass and dn is

the estimated reconstruction of en via feedback/deconvolution (from en+1).

For both the networks, after training the feedback deconvolution layers, we

freeze all of the weights, and set the values of hyperparameters to βn = 0.8, λn =

0.1, and αn = 0.01 for all the encoders/decoders in Equation (2.2). We also explore

various strategies for further tuning hyperparameters to improve the results (see

Appendix A.7 for the chosen hyperparameter values).

2.2.3.3 Predify

To facilitate and automate the process of adding the proposed predictive cod-

ing dynamics to existing deep neural networks, we have developed an open-source

Python package called Predify. The package is developed based on PyTorch173 and

provides a flexible object oriented framework to convert any PyTorch-compatible

network into a predictive network. While an advanced user may find it easy to

integrate Predify in their project manually, a simple text-based user interface (in
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TOML∗ format) is also provided to automate the steps. For the sake of improved

performance and flexibility, Predify generates the code of the predictive network

rather than the Python object. Given the original network and a configuration file

(e.g. 'config.toml') that indicates the intended source and target layers for the

predictive feedback, three lines of code are enough to construct the corresponding

predictive network:

from predify import predify

net = # load PyTorch network

predify(net,'./config.toml') # config file indicates the layers that

# will act as outputs of encoders.

The Appendix A.1 provides further details on the package, along with a sample

config file and certain default behaviours. Predify is an ongoing project available

on GitHub† under GNU General Public License v3.0. Scripts for creating PVGG16

and PEfficientNetB0 from their feedforward instances and reproducing the results

presented in this paper, as well as the pre-trained weights are also available on

another GitHub repository‡.

2.2.4 Related work

There is a long tradition of drawing inspiration from neuroscience knowledge

to improve machine learning performance. Some studies suggest using sparse cod-

ing, a concept closely related to predictive coding100,165,162,33,170, for image denois-
∗https://toml.io/en/
†https://github.com/miladmozafari/predify
‡https://github.com/bhavinc/predify2021
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ing141 and robust deep learning211,117, while other studies focus on implementing

feedback and horizontal recurrent pathways to tackle challenges beyond the core

object recognition137,237,89,206,138,69,128,129,181.

Here, we focus specifically on those studies that tried implementing predictive

coding mechanisms in machine learning models32,139,235,21. Out of these, our im-

plementation is most similar to the Predictive Coding Networks (PCNs) of Wen

et al. 235 . These hierarchical networks were designed with a similar goal in mind:

improving object recognition with predictive coding dynamics. However, their

network (including the feedback connection weights) is solely optimized with a

classification objective. As a result, their network does not learn to uniformly re-

duce reconstruction errors over timesteps, as the predictive coding theory would

mandate. We also found that their network performs relatively poorly until the

final timestep (see corresponding Figure A.1 in the Appendix A.5), which does

not seem biologically plausible: biological systems typically cannot afford to wait

until the last iteration before detecting a prey or a predator. In the proposed

method, we incorporate the feedforward drive into a similar PC dynamics and

train the feedback weights in an unsupervised way using a reconstruction loss. We

then show that these modifications help resolve PCNs’ issues. We discuss these

PCNs235 further in the Appendix A.5, together with our own detailed exploration

of their network’s behavior.

Other approaches to predictive coding for object recognition include Boutin

et al.21, who used a PCN with an additional sparsity constraint. The authors

showed that their framework can give rise to receptive fields which resemble those
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of neurons in areas V1 and V2 of the primate brain. They also demonstrated

the robustness of the system to noisy inputs, but only in the context of recon-

struction. Unlike ours, they did not show that their network can perform (robust)

classification, and they did not extend their approach to deep neural networks.

Spratling208 also described PCNs designed for object recognition, and demon-

strated that their network could effectively recognise digits and faces, and locate

cars within images. Their update equations differed from ours in a number of ways:

they used divisive/multiplicative error correction (rather than additive), and a

form of biased competition to make the neurons “compete” in their explanatory

power. The weights of the network were not trained by error backpropagation,

making it difficult to scale it to address modern machine learning problems. Con-

versely, our proposed network architecture and PC dynamics are fully compatible

with error backpropagation, making them a suitable option for large-scale prob-

lems. Indeed, the tasks on which they tested their network are simpler than ours,

and the datasets are much smaller.

Huang et al.99 also aimed to extend the principle of predictive coding by incor-

porating feedback connections such that the network maximizes “self consistency”

between the input image features, latent variables and label distribution. The

iterative dynamics they proposed, though different from ours, improved the ro-

bustness of neural networks against gradient-based adversarial attacks on datasets

such as Fashion-MNIST and CIFAR10.
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Figure 2.2: Performance under Gaussian noise and projection towards the learned man-
ifold. (a) Improvement in recognition accuracy with reference to the feedforward baseline under
various levels of Gaussian noise. Both networks demonstrate significant accuracy improvement
across timesteps under noisy conditions, while maintaining a performance close to the feedforward
level for clean images. (b) Normalized MSE distance between the image reconstruction (d0) and
the clean image (e0). Irrespective of the noise level, image reconstruction consistently gets closer
to the clean image across timesteps in both models. (c) Examples of clean and noisy input im-
ages together with their final reconstruction by the model (the row order from top to bottom is:
original image, PVGG16 reconstruction, PEfficientNetB0 reconstruction; noisy image, PVGG16 re-
construction, PEfficientNetB0 reconstruction). For best viewing, we recommend zooming in on the
electronic version. (d) Normalized correlation distance between representation of clean and noisy
images for each encoder (ei) across timesteps. The values are normalized with respect to the feed-
forward baseline (timestep 0). In both models and all encoders, the noisy representations tend to
move toward the clean copies.
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2.2.5 Results

Here we contrast the behavior of feedforward networks with their predictive

coding augmentations. When considered at timestep 0 (i.e., after a single feedfor-

ward and feedback pass through the model), the deep predictive coding networks

(DPCNs) and their accuracy are—by construction—exactly identical to their stan-

dard pretrained feedforward versions. Over successive timesteps, however, the

influence of feedback and predictive coding iterations becomes visible. Here, we

investigate for both DPCNs (PVGG16 and PEfficientNetB0): (i) how the PC

dynamics update the networks’ representations across timesteps, and in which

direction relative to the learned manifold; (ii) how the networks benefit from PC

under noisy conditions, or against adversarial attacks.

2.2.5.1 Performance under Gaussian noise

To understand the evolution of representations and the behavior of the pro-

posed DPCNs, we first investigate their performance under the influence of differ-

ent levels of Gaussian noise. To this end, we inject additive Gaussian noise to the

ImageNet validation set, and monitor the models’ performance across timesteps.

In Figure 2.2a we provide the classification accuracy on these noisy images

and absolute values in the Table A.4. We observed that both models progressively

improve their recognition accuracy relative to their feedforward baseline (timestep

0) over successive iterations while imposing only a minor performance reduction

on clean images. In other words, the networks are able to discard some of the

noise by leveraging the predictive coding dynamics over timesteps.
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2.2.5.2 Projection towards the learned manifold

In order to quantify DPCNs’ denoising ability, we evaluate the quality of image

reconstructions generated by each network using the mean squared error (MSE)

between the clean image and its reconstruction generated by the first decoder.

For each DPCN, we normalize these distances, by dividing them by the value

obtained for the corresponding feedforward network (at t=0). We provide the

absolute values in the Table A.5. As Figures 2.2b-c illustrate, the reconstructions

become progressively cleaner over timesteps. It should be noted that the feedback

connections were trained only to reconstruct clean images; therefore, this denoising

property is an emerging feature of the PC dynamics.

Next, we test whether the higher layers of the proposed DPCNs also manifest

this denoising property. Hence, we pass clean and noisy versions of all images

from the ImageNet validation set through the networks, and measure the average

correlation distance between the clean and noisy representations of each encoder

at each timestep. As done above, these correlation distances are then normalized

with the distance measured at timestep 0 (i.e., relative to the standard feedforward

network). For both the networks, the correlation distances decrease consistently

over timesteps across all layers (see Figure 2.2d). This implies that predictive

coding iterations help the networks to steer the noisy representations closer to the

representations elicited by the corresponding (unseen) clean image.

This is an important property for robustness. When compared to clean images,

noisy images can result in different representations at higher layers239 and con-

sequently, produce significant classification errors. Various defenses have aimed
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Figure 2.3: Benchmarking robustness to ImageNet-C. (a) Normalized corruption errors (CE)
of PVGG16 and PEfficientNetB0 under four types of additive noise corruptions. The values are
normalized with respect to the feedforward baseline. Both networks show consistent reductions in
the errors across timesteps. (b) Normalized mean Corruption Error (mCE) scores for PVGG16 and
PEfficientNetB0 on all the 19 corruptions available in the ImageNet-C dataset, when optimized
hyperparameters are used (as described in the Appendix A.7). The values are normalized with
respect to the feedforward baseline. In both the panels, error bars represent the standard deviation
of the bootstrapped estimate of the mean value.

to protect neural networks from perturbations and adversarial attacks by con-

straining the images to the “original data manifold”. Accordingly, studies have

used generative models such as GANs195,107,147,104 or PixelCNNs 204 to constrain

the input to the data manifold. Similarly, multiple efforts have been made to

clean the representations in higher layers and keep them closer to the learned

latent space239,218,168,190. Here, we demonstrate that feedback predictive coding

iterations can achieve a similar goal by iteratively projecting noisy representations

towards the manifolds learned during training, both in pixel (Figure 2.2b-c) and

representation spaces (Figure 2.2d).
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2.2.5.3 Benchmarking robustness to ImageNet-C

Given the promising results with additive Gaussian noise (Figure 2.2), we ex-

tend the noise variety and quantify the classification accuracy of the networks un-

der different types of perturbations. We use ImageNet-C, a benchmarking dataset

for noise robustness provided by Hendrycks & Dietterich 92 , including 19 types of

image corruptions across 5 severity levels each. To begin with, we evaluate DPCNs

with pre-defined hyperparameter values (as provided in subsection 2.2.3.2). We

observe that they improve the Corruption Error (CE) scores over timesteps for

several of the additive-noise corruptions: Gaussian noise, shot noise, impulse noise

or speckle noise (see Figure 2.3), but fail to improve the overall mean Corruption

Error, or mCE score (the recommended score for this benchmark92).

Thus, instead of using pre-defined hyperparameter values, we fine-tune them

using two different methods (see Appendix A.7), and repeat the above experiment.

As shown in Figure 2.3b, when the hyperparameters are more appropriately tuned

for the task, the PC dynamics can increase noise robustness more generally across

noise types, resulting in improvements of the mean Corruption Error (mCE) score.

The CE plots for individual perturbations along with other recommended metrics

(values normalized with AlexNet scores, Relative mCE scores) are provided in the

Appendix A.8.

Furthermore, in the Appendix A.9, we demonstrate that we can replicate these

observations with a version of PEfficientNetB0 provided by Xie et al. 238 that is

robust to corruptions in the ImageNet-C dataset. We show that the recurrent

dynamics we propose still help in further improving the mCE score of this already
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robust network.

2.2.5.4 Benchmarking robustness to adversarial attacks

Finally, we evaluate the robustness of the networks across timesteps against

adversarial attacks. The proposed DPCNs are recurrent models, meaning that

their layer representations change on every timestep, and consequently, so do the

classification boundaries in the last layer, leading to different accuracy and gener-

alization errors across time (as seen above). To mitigate this effect and properly

assess the changes in robustness due to the PC dynamics, for each network we

start by selecting 1000 images from the ImageNet validation dataset such that

they are correctly classified across all timesteps. Also, we only perform targeted

attacks so that for each image, the same attack target is given for all timesteps.

Using the Foolbox library185, we conduct targeted Basic_Iterative_Method at-

tacks (BIM, with L∞ norm)78 for both networks; although it would prove compu-

tationally prohibitive to systematically explore all standard types of adversarial

attacks, we also evaluated random Projected Gradient Descent attacks (RPGD,

with L2 norm)143, and non-gradient-based HopSkipJump attacks34 on a subset of

100 images, specifically for PEfficientNetB0. Across various levels of allowed im-

age perturbations (denoted as εs), the predictive coding iterations tend to decrease

the success rate of the attacks across timesteps, for both networks and attacks (see

Figure 2.4). That is, DPCNs are more robust against these adversarial attacks

than their feedforward counterparts.

62



Timesteps Timesteps

S
u
c
c
e
s
s
 R

a
te

 o
f 
A
tt

a
c
k

(b
a
s
e
li
n
e
-c

o
rr

e
c
te

d
)

PVGG16 PEfficientNetB0

L∞ BIM 

1.0 1.0

0.99 0.9

Ɛ=0.01Ɛ=0.004

Ɛ=0.001 Ɛ=0.003 Ɛ=0.005

00 4 8

1.0

0.9

Ɛ=0.7

Ɛ=0.9 Ɛ=1.0

Ɛ=0.8

L2 RPGD 

PEfficientNetB0

0 4
Timesteps

PEfficientNetB0

1.0

0.93

Ɛ=0.05

Ɛ=0.1

Ɛ=0.3

Timesteps

L∞ HopSkipJump

0 4

Figure 2.4: Benchmarking robustness to adversarial attacks. Plots show the success rate of
targeted adversarial attacks against DPCNs across timesteps. The values are baseline-corrected,
relative to the success rate at timestep 0 (feedforward baseline). Both networks demonstrate im-
proved robustness to different types and/or levels of perturbations.

2.2.6 Discussion and Conclusion

In this work, we explore the use of unsupervised recurrent predictive coding

(PC) dynamics, based on neuroscientific principles, to augment modern deep neu-

ral networks. The resulting models have an initial feedforward sweep, compatible

with visual processing in human and macaque brains110,221,103,224. Following this

feedforward sweep, consecutive layers iteratively exchange information regarding

predictions and prediction errors, aiming to converge towards a stable explana-

tion of the input. This dynamic system is inspired by, and reminiscent of, the

“canonical microcircuit” (a central component of cortical structure14) that relies

on feedback signaling between hierarchically adjacent layers to update its activity.

Overall, the augmented networks are closer to the architecture of biological visual

systems, while gaining some desirable functional properties. For example, in172,

we also demonstrated that the proposed dynamics help the networks perceive

illusory contours in a similar way to humans.
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Here, we implemented these PC dynamics in two state-of-the-art DCNs, VGG16

and EfficientNetB0, and showed that they helped to improve the robustness of

the networks against various corruptions (e.g. ImageNet-C). We demonstrated

that this behavior, at least partly, stems from PC’s ability to project both the

corrupted image reconstructions and neural representations towards their clean

counterparts.

We also tested the impact of our network augmentations against adversarial

attacks; here again, we showed that PC helps to improve the robustness of the

networks. So far, the most promising strategy for achieving robustness has been

adversarial training, whereby adversarial datapoints are added to the training

dataset. While efficient, this strategy was also shown to be strongly limited197,245.

Apart from factors like the choice of the norms used for training, or the high com-

putation requirements, it is ultimately performed with a supervised loss function

that can alter the decision boundaries in undesirable ways245,217. Most impor-

tantly, adversarial training shares very little, if any, resemblance to the way the

brain achieves robustness. Instead, here we start from biological principles and

show that they can lead to improved adversarial robustness. It is worth mention-

ing that both our networks achieved robustness totally via unsupervised training

of the feedback connections (while of course, the backbone feed-forward networks

that we used were pretrained in a supervised manner). We avoided using costly

adversarial training, or tuning our hyperparameters specifically for classification

under each attack. This likely explains why the models, while improving in ro-

bustness compared to their feedforward versions, remain far from state-of-the-art
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adversarial defenses. On the other hand, we believe that addition of these meth-

ods (adversarial training, hyperparameter tuning) to the training paradigm, in

future work, could further improve the networks’ adversarial robustness.

For the present experiments, we made a choice of using different objectives for

training the feedforward and feedback weights: pre-trained feedforward weights

optimized for classification, feedback weights trained with a reconstruction objec-

tive (computed after a single time-step). On the one hand, we note that it is

perfectly feasible to train a similar predictive coding architecture with a single

objective (classification, reconstruction, or otherwise) for both feedforward and

feedback weights172,4. On the other hand, our choice has several advantages. First,

using a feedforward backbone pretrained for classification allowed us to demon-

strate the effect of our dynamics on pre-existing state-of-the-art neural networks.

Some authors have tried training both feedforward and feedback connections to-

gether for classification235 at the final timestep for relatively smaller networks,

but as we discussed in our explorations in the Appendix A.5, we found that the

resulting network ended up classifying correctly at the last timestep, with very

poor performance during early timesteps. This problem could be addressed by

training over time-averaged metrics, such as the average cross-entropy loss for N

timesteps. Nonetheless, training the feedback weights for reconstruction instead

of classification has the additional advantage that it can be done entirely without

supervision. We chose to train the feedback weights for a single time-step, because

training with recurrence over multiple timesteps would have required unrolling the

network over time. Hence, training a large network like PVGG16 for say 5 or 10
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timesteps would incur significant computational challenges. Furthermore, our use

of a one-step reconstruction objective allowed us to train the feedback weights inde-

pendently of the various hyperparameters of our predictive coding dynamics (β, λ,

and α), which only influence the model behavior after the second timestep. Train-

ing these weights using recurrence would have required to (i) either fix the values

of these hyperparameters beforehand, leading to constraints of expensive hyperpa-

rameter explorations; (ii) or directly train these hyperparameters as parameters

of the model, probably with additional constraints to prevent the network from

reaching trivial values (e.g., if all hyperparameters but the feedforward term β

converge to zero, the network performs identically to a feedforward one). Finally,

from a neuroscience perspective, whether and how the brain combines discrimina-

tive and generative representations has been an open question addressed by many

researchers, e.g. Al-Tahan & Mohsenzadeh 3 , DiCarlo et al. 53 , and Huffman &

Stark 102 . Our approach of a discriminative (classification-trained) feedforward

coupled with generative (reconstruction-trained) feedback could be considered an-

other attempt in this direction.

We speculate that the proposed PC dynamics could help improve robustness

in most feedforward neural architectures. To facilitate further explorations in

this direction, we provided a Python package, called Predify, which allows users

to implement recurrent PC dynamics in any feedforward DCN, with only a few

lines of code. Predify automates the network building, and thus simplifies exper-

iments. On the other hand, there is as yet no established method or criteria to

automate the process of identifying the appropriate number of encoding layers,
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their source and target layers in the DCN hierarchy, and the corresponding hy-

perparameter values. This remains an open research question, and a requirement

for manual explorations and tuning from Predify users. For instance, our own ex-

plorations with augmenting ResNets through Predify proved difficult, and failed

in some situations but succeeded in others. More specifically, as developed in

Alamia et al. 4 using Predify, ResNet augmentations always achieved noise robust-

ness when the hyperparameter values (controlling the feedforward, feedback, and

memory terms) could be tuned separately for each noise type; but we found it

challenging to identify a single set of hyperparameters that could generalize to all

noise types. Nonetheless, we are hopeful that the package will prove useful to the

community. The code is structured such that users can readily adapt it to test

their hypotheses. In particular, it should allow both proponents and opponents

of the predictive coding theory to investigate its effects on any DCN.

Overall, this work contributes to the general case for continuing to draw in-

spiration from biological visual systems in computer vision, both at the level of

model architecture and dynamics. We believe that our user-friendly Python pack-

age Predify can open new opportunities, even for neuroscience researchers with

little background in machine learning, to investigate bio-inspired hypotheses in

deep computational models, and thus bridge the gap between the two communi-

ties.

67



2.2.7 Broader Impacts

The research discussed above proposes novel ways of using brain-inspired dy-

namics in current machine learning models. Specifically, it demonstrates a neuro-

inspired method for improving the robustness of machine learning models. Given

that such models are employed by the general public, and are simultaneously

shown to be heavily vulnerable, research efforts to increase (even marginally) or

to understand their robustness against mal-intentioned adversaries has high soci-

etal relevance.

Importantly, the research also aims to bridge techniques between two different

fields–neuroscience and machine learning, which can potentially open new avenues

for studying the human brain. For example, it could help better understand the

unexplained neural activities in patients, to improve their living conditions, and

in the best case, in the treatment of their conditions. While this may also be

associated with inherent risks (related to privacy or otherwise), there are clear

potential benefits to society.

The likelihood of sentient AI arising from this line of research is estimated to

be rather low.
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2.3 Epilogue to the main article:

In this Chapter, we first implemented bio-inspired recurrent dynamics into

Artificial Neural Networks. The resulting networks were then demonstrated to be

robust against a variety of perturbations – natural and adversarial. Thus, in-line

with the aim of first approach, the Chapter provides one illustration as to how

inspiration from biological systems can help modern networks, demonstrating the

utility of an overlap in one direction (from Neuroscience to AI).

The subsequent Chapters take the reverse approach of using Machine Learning

for Neuroscience.
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Chapter 3

Multimodal neural networks better

explain multivoxel patterns

in the hippocampus

In-line with the second approach of using Machine Learning models to un-

derstand Neuroscience, in this Chapter, we will aim to use ANNs to understand

the representations in the human brain activity. The current Chapter focuses on

one particular anatomically define region—the hippocampus—mostly due to the

nature of the question it asks. It then tries to uncover how various constraints

during training affect the ability of the representations (of ANNs) to explain the

activity in the human hippocampus. Such insights will help neuroscience to build

better networks in the future that are more apt for investigating the brain.
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3.1 Prologue to the main article :

Given our interest in multimodal networks, the CLIP model from OpenAI

was already discussed quite heavily in the lab. I had also tried using it in my

searchlight analysis (discussed in Chapter 4) to understand which parts of the

brain were explained better/differently than purely visual models. Thus when

OpenAI released their paper reporting concept cells in the CLIP, it raised a very

simple question – Can CLIP now explain the activity of the hippocampus better?

I worked on this question with the help of Leila and Rufin. Milad provided all the

beta values (voxel activities) of the subjects in the publicly available fMRI dataset

from Kamitani’s lab, and helped in solving my innumerous fMRI questions. This

paper was first accepted at Shared Visual Representations in Human and Machine

Intelligence (SVRHM, a NeurIPS workshop) as an oral presentation, where it

was also awarded the “Creative Directions in AI” award. Currently, the work is

published in the journal Neural Networks.

3.2 Main article :

3.2.1 Abstract

The human hippocampus possesses “concept cells”, neurons that fire when

presented with stimuli belonging to a specific concept, regardless of the modality.

Recently, similar concept cells were discovered in a multimodal network called

CLIP179. Here, we ask whether CLIP can explain the fMRI activity of the hu-

man hippocampus better than a purely visual (or linguistic) model. We extend
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our analysis to a range of publicly available uni- and multi-modal models. We

demonstrate that “multimodality” stands out as a key component when assessing

the ability of a network to explain the multivoxel activity in the hippocampus.

3.2.2 Introduction

Deep neural networks, or DNNs—a hallmark of the recent breakthroughs in

machine learning—can solve complex tasks going beyond computer vision to tasks

requiring semantic knowledge and understanding, features characteristic of human

intelligence (e.g., story completions, context-based question answering, code gen-

eration etc.,). This feat has been made possible by both the ability of DNNs to

learn expressive representational spaces that enable them to carry out these com-

plex tasks, as well as by the development of improved optimization algorithms

required to train them.

Importantly for the neuroscience community, DNNs also provide a potential

model for understanding the human brain. Their mathematical pliability com-

bined with their unprecedented expressivity has opened up novel avenues to in-

vestigate the human brain. Efforts are being made to understand the similarities

and differences between these two systems due to their architectures, dynamics,

behavioral patterns, and representational structures243,81,39,114.

At the same time, DNNs themselves are getting better and better on more

human-like tasks. Recently, Radford et al. 179 proposed a model that could si-

multaneously learn visual and linguistic information from a huge dataset using a

constrastive loss function. Importantly, this multimodal model, known as CLIP
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(Contrastive Language-Image Pre-training), was found to possess neurons in its

last layer that encoded specific concepts77. These artificial neurons are reminis-

cent of ‘concept cells’ in the human medial temporal lobe (MTL)178,186, biological

neurons that appear to represent the meaning of a given stimulus or concept in

a manner that is invariant to how that stimulus is actually experienced by the

observer. For example, a single neuron in the human hippocampus showed incred-

ible specificity in its response to the actress Halle Berry. This neuron responded

to different images of the actress, including to photographs in which she was dis-

guised as Catwoman (her starring role in a movie by the same name). The same

neuron also responded to a semantic representation of the concept, i.e. to the

letter string “HALLE BERRY”. Other studies have since shown that “concept

cells’’ are also activated when stimulus information is provided in other sensory

modalities, for example when the name of the person is spoken out loud176.

The discovery of concept cells in artificial networks raises a natural question

— Can a multimodal model like CLIP explain the activity of brain regions known

to possess concept cells better than a purely visual model? In this work we inves-

tigate this question by using publicly available fMRI data97, and asking if CLIP

can explain the activity of the hippocampus region better than a comparable feed-

forward visual model, i.e., ResNet. Because fMRI data does not provide us with

the spatial resolution to identify individual concept cells, we address this question

at the level of multi-dimensional representation spaces rather than at the level of

individual neurons. We also extend our analysis to a variety of models from the lit-

erature, trained with unimodal or multimodal objectives. Using Representational
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Similarity Analysis (RSA)125, we report that multimodal networks consistently

rank higher than their unimodal counterparts in their ability to explain fMRI

activity in the hippocampus∗.

3.2.3 Methods

3.2.3.1 RSA

Representational Similarity Analysis (RSA) 125 compares representations across

different high-dimensional spaces (e.g., brain multi-voxel spaces, model latent

spaces, etc.). A first step in RSA consists of constructing Representational Dis-

similarity Matrices (RDMs) in each space. RDMs are two-dimensional matrices,

in which each element measures the pairwise distance between two stimulus condi-

tions. In this work, we use the Pearson correlation distance (defined as 1 - correla-

tion) to construct the RDMs, and subsequently compare them with the Pearson’s

r correlation coefficient. Results with other choices of metrics are shown in the

Appendix B.

3.2.3.2 fMRI data

For our investigations, we use publicly available data from Horikawa & Kami-

tani 97 . This dataset consists of fMRI data collected on five healthy participants

viewing images from a subset of categories available in ImageNet. Participants

performed a one-back test in the scanner in which they had to press a button when

the same image was repeated on two consecutive presentations. The data were
∗Code to reproduce our results is available at: https://github.com/bhavinc/mutlimodal-concepts
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collected on 1200 training images that were presented once, and 50 test images

presented 35 times each. For our experiments, we restrict ourselves to the sub-

set of test images since the higher number of repetitions provides a more robust

estimate of the multi-voxel representation of each image.

We preprocessed the raw data with a standard pipeline using SPM1268: slice-

time correction, realignment, and coregistration to the T1W anatomical images.

We performed a GLM using regressors for each image (the onset and duration),

along with regressors for ‘fixation’ and ‘one-back’. For each subject, the beta coef-

ficients obtained from the GLM were transformed into a common MNI305 space

using FreeSurfer† to allow analysis across subjects. We defined four regions of

interest (ROIs) using the Desikan-Killiany atlas for both the left and right hemi-

spheres: a visual ROI comprising the lateraloccipital and pericalcarine regions,

a fusiform ROI, a hippocampal ROI and a parahippocampal ROI. fMRI RDMs

were built using the beta values in each ROI for each subject. Since 50 image

conditions were compared, each RDM was 50x50 in squareform.

3.2.3.3 Models

We include a variety of models in our analysis to facilitate interpretation and

discovery of underlying trends in different classes of models. All the included

models are publicly available, and possess a ResNet50 backbone to minimize ar-

chitectural differences.

For CLIP, we used the visual CLIP-RN50 backbone (called CLIP hereafter),
†http://surfer.nmr.mgh.harvard.edu
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which was jointly trained along with a linguistic head (called CLIP-L hereafter)

on a contrastive learning task on 400M image-caption pairs179. Additionally we

also considered visual features from TSM6, another multimodal model that is

trained with a contrastive objective on the HowTo100M dataset148, in a task that

comprises three modalities (video, text, and audio). The impact of contrastive

learning objectives on the features of these models can be compared to VirTex

and ICMLM, multimodal networks trained with different objectives. For Virtex,

the visual backbone is trained on an image captioning task49, while for ICMLM,

the visual features are trained on a text-unmasking task196. Both VirTex and

ICMLM are trained on MS-COCO135, a much smaller dataset compared to those

used for CLIP or TSM.

To tease apart the effect of multimodal training, we also included visual-only

models in our comparisons. Since dataset size has been suggested to affect the qual-

ity of representations learned by a network, we considered two visual-only models

trained on different datasets. We used the standard ResNet50 model (the control

visual model) trained on ImageNet-1K, as well as BiT-M, a ResNet50 backbone

trained on the significantly larger ImageNet-21K dataset122. We also included

adversarially robust models (AR-L2, AR-L4, AR-L8) from59 in our comparisons.

These models are trained to be robust to minute perturbations to the input images

by explicitly incorporating such perturbed (adversarial) images214 in the training

dataset. These models have been observed to possess more human-like features193,

making them particularly relevant to our analysis.

Unlike human observers who rely on shapes, standard ImageNet models are
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strongly biased by the texture of images73. Therefore, Geirhos et al. 73 designed

a stylized version of ImageNet to train models that have a stronger bias towards

shape than texture. To assess whether representations optimized for human-like

biases are better at explaining brain activity in MTL regions, we included three

StylizedImageNet models in our comparisons: (i) a model pretrained on only

StylizedImageNet (SIN) images, (ii) a model trained on SIN images and ImageNet

combined (SIN-IN), and (iii) the SIN-IN model further fine-tuned on ImageNet

(SIN-IN+FIN).

Finally, apart from visual and multimodal models, we also included language

models: GPT-2180, BERT52, as well as CLIP-L. Although these models are not

trained to process visual data, they provide an important basis for comparison

along with visual and multimodal networks.

For multimodal and visual backbones, we used the test images shown to the

human participants and obtained their feature representations from the final av-

erage pooling layer. For language models, for each image, we encoded the text

‘a photo of {ImageNet label of the image}’ to obtain the latent representations.

These latent representations were then used to obtain the RDMs of shape 50x50.

3.2.3.4 Voxel Selection from anatomical ROIs based on Noise ceil-

ings

We start by evaluating the signal of the selected beta coefficients. In each ROI,

we calculated the noise-ceiling, defined as the average inter-subject correlation be-

tween RDMs. The noise ceiling provides an estimate of the reliability of the fMRI
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Figure 3.1: Noise ceilings after selecting subsets of voxels from each region The panels
show the noise ceilings (i.e., inter-subject correlation) calculated after selecting different num-
bers of voxels from each region of interest. The noise ceilings were computed using either voxels
with the highest beta values (blue) or via a random sampling of voxels (orange). The gray re-
gions denote the standard error of mean. For certain ROIs (visual region, fusiform), most voxels
are informative about the visual stimulus, and the two selection methods yield similar results. For
other ROIs (hippocampus, parahippocampus), the noise ceiling depends on the selection method,
implying that some voxels (with the highest betas) are more informative than others (randomly
selected). The hippocampus shows an improved noise ceiling when 30 voxels with the highest beta
values are selected, with additional voxels degrading the signal.

signal in a given ROI across subjects. Due to the visual nature of the task, the

more visual regions (visual ROI, fusiform and parahippocampus) unsurprisingly

showed higher values for the noise-ceiling (between 0.2 and 0.6). In contrast, the

noise ceiling in the hippocampus was relatively low, and not significantly differ-

ent from zero (−0.012 ± 0.012). This could be due, in part, to the fact that the

fMRI signal in the hippocampus is generally less reliable. However, single neu-

ron recordings in the hippocampus have revealed that only a small proportion

of cells (≈15% of recorded cells) is responsive to visual stimuli, and even fewer

(≈5%) qualify as “concept cells”. In fact, the hippocampus is well-known for its
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implication in non-visual tasks, e.g. spatial navigation or memory retrieval and

consolidation. If only a small subset of voxels respond to visual stimuli, it stands

to reason that a noise ceiling computed across all voxels would not capture any

meaningful visual information.

To circumvent this issue, we defined a quantifiable criterion to select a lim-

ited number of voxels from each ROI. Specifically, we selected the N voxels with

the highest beta value (for any of the 50 stimuli), and calculated the noise ceil-

ing based on this voxel selection. We varied N systematically. As a control, we

used random selections of N voxels. As Figure 3.1 shows, the noise ceiling in the

more visual regions (visual region, fusiform, parahippocampus) increased rapidly

and then stabilized after the inclusion of ≈20% of the total voxels. This was

true, even when the voxels were randomly selected, indicating that most voxels

in these regions carry information about visual stimuli. In the hippocampus how-

ever, the noise ceiling was virtually zero when based on random voxel selections:

most hippocampal voxels do not appear to encode visual information. Nonethe-

less, when selecting the N most-activated voxels, the noise ceiling peaked at ≈30

voxels, before sharply dropping down to random levels. This is consistent with

our hypothesis that although a relatively small number of hippocampal voxels are

reliably activated by visual inputs, the signal in these voxels (as measured by the

noise ceiling) is reliably above chance. For the main RSA analysis, we thus con-

sidered only these top-30 hippocampus voxels. Note that this selection criterion

only ensures that the considered brain responses are meaningful, but does not bias

the outcome of the RSA with neural network models (i.e., there is no danger of
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Figure 3.2: Multimodal models better explain fMRI response patterns in the hippocam-
pus: Panel A shows the correlation values obtained with different models across selected regions
of interest (ROI). Only 30 voxels were selected from each ROI. The values are normalized with the
noise-ceilings to facilitate comparisons across regions. Panel B shows the correlation values after
aggregating them over mutlimodal (green), visual (red) and language (blue) models. Statistical
significance is calculated by using Welch’s t-test and is denoted by an asterisk.

circular reasoning). For the other ROIs, we also considered the top-30 voxels for

a fair comparison; yet we also report a different selection procedure (based on a

fixed beta threshold) in the Appendix B.

3.2.4 Results

To investigate whether CLIP explains multivoxel activity patterns in MTL

regions better, we computed RSA between the brain RDMs and each model RDM.

The noise ceiling places an upper limit on brain-model comparisons because it is

an estimate of inter-subject variability. Thus, we normalized the RSA values by

the noise-ceiling to allow for comparisons across models and across regions. The
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normalized RSA values for each model in each ROI are shown in Figure 3.2A,

and averaged across groups of models in Figure 3.2B. (The corresponding non-

normalized values are shown in the Appendix B.)

RSA values for the majority of models and brain regions were positive. How-

ever, comparisons between individual models (e.g., CLIP vs. ResNet in hippocam-

pus) were not significant (Wilcoxon signed-rank test, p<0.05), possibly because of

the small number of fMRI participants. Thus, we grouped the models according

to their modalities (for example, BERT, GPT2, and CLIP-L as the language mod-

els) to ask whether one class outperformed the others in explaining brain activity

in each ROI. In the hippocampus, in line with our main hypothesis, multimodal

models significantly better explained activity patterns compared to both visual

and linguistic models (Welch’s t-test, p < 0.05. Figure 3.2B). In fact, the multi-

modal networks reached the noise ceiling in the hippocampus, meaning that they

could explain all of the explainable variance in brain responses–this result did not

happen for any other model group in any other ROI. A similar trend was observed

in other regions (even reaching statistical significance in the fusiform ROI), but

the RSA values were lower and more variable compared to the hippocampus. Fi-

nally, the visual and vision-language models performed systematically better than

the linguistic models–as expected since all stimuli were visual.

Above we performed RSA using a subset of 30 voxels that showed the highest

beta values in each ROI. While this threshold is reasonable in the hippocampus

based on our noise-ceiling calculations (Fig. 3.1), visual regions did have a larger

number of voxels with reliable beta values. Thus, in a control analysis, in each ROI
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we selected the N voxels that had beta values greater than a common threshold

(determined so as to yield 30 hippocampal voxels). Figure B.3 in the appendix

shows that including a larger number of voxels had little impact on the main

results shown in Figure 3.2. Finally, in the Appendix B, we confirmed that the

trends observed in Figure 3.2 are robust to the choice of distance metrics by using

other metrics commonly used for fMRI data.

3.2.5 Discussion

We applied RSA to study the ability of different neural network models –

multi- or uni-modal – to explain the fMRI activity patterns in various brain re-

gions. Based on recent findings77, our hypothesis was that CLIP (and similar

multimodal networks) would be specifically adept at explaining brain activity in

the hippocampus–where ‘concept cells’ are found. This hypothesis was supported

by the data: the multimodal nature of a model was a key component in explaining

the activity in the human hippocampus—a trend that proved robust to different

methods of voxel selection and distance metrics.

Recently, Xu & Vaziri-Pashkam 240 casted doubt on the utility of DNNs for

explaining representations in higher brain regions—questioning their use for build-

ing more brain-like models. Our findings provide a potential way forward to ad-

dress this limitation: building models that explain higher regions in the brain

might require using datasets spanning different modalities. This can be further

combined with bio-plausible architectural changes to the DNNs. For example, it

would be interesting to investigate the effects of training a bio-inspired recurrent
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neural network36 using multimodal objectives. Combining these architecture- and

objective-based approaches could potentially have synergistic effects in learning

human-like representations.

3.2.6 Acknowledgements

RV is funded by ANR grant OSCI-DEEP (ANR-19-NEUC-0004). LR and

RV are both funded by an ANITI (Artificial and Natural Intelligence Toulouse

Institute) Research Chair (ANR grant ANR-19-PI3A-0004), as well as ANR grant

AI-REPS (ANR-18-CE37-0007-01).

3.3 Epilogue to the main article:

In this work, we looked at the ability of different networks to explain the hip-

pocampus activity. The work highlights the effect of different training paradigms

on the representations of the ANNs and provides a potential way to improve them

in the future. It also aligns well with the known understanding of the modality

invariant responses of the hippocampus.

The work hints at inductive biases that can lead to better models of the brain

activity in the future. Indeed, they might also aid Machine Learning to build

better networks.
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Chapter 4

Do multimodal neural networks

better explain human visual represen-

tations than vision-only networks?

4.1 Prologue :

The work in this Chapter can be considered a superset of that in Chapter 3,

and lies in the same spirit of using ANN models to better explain brain activity.

We go from a single region (such as hippocampus) to the whole brain and perform

a searchlight analysis. Similarly, in addition to the correlations, we also look at

the partial correlations to isolate the effect (on the explained variance) due to

each individual factor.

This work started before the previously mentioned project on hippocampus.

The aim of this approach was to be region agnostic and analyze the factors that

affect the representations. My initial ambition was to use CCA-based analysis on
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the fMRI data, which partially stemmed from other projects that I was working

on. After discussion with Rufin, we realized that partial correlations was a much

more easier approach which Milad already possessed an implementation of. I

started the project with the code and the preprocessed fMRI data provided by

Milad (on the same publicly available dataset used in Chapter 3). Throughout the

process, Leila and Rufin helped in analysing and making sense of the humongous

number of partial correlation and correlation plots. The work documented below

was submitted and presented at Cognitive Computational Neuroscience (CCN)

conference in 2022.

4.2 Abstract

Multiple studies have used the representations learned by modern Artificial

Neural Networks (ANNs) to explain the activity of the human brain. Efforts up

until now have looked at the differences in explainability due to different archi-

tectures (such as recurrence vs feedforward or convolution-based vs transformer-

based) or different objective functions (supervised vs unsupervised). Here, using

multiple uni- and multimodal networks from the literature, we look at another

key factor – the modality of the training inputs. Moreover, instead of looking at

specific regions of interest or restricting our analysis to the visual ventral stream,

we perform correlation- and partial correlation-based searchlight analyses to look

at the whole brain. We report that multimodal networks are more similar than

their visual counterparts to human fMRI activity in visual regions, and also stand

out in their unique ability to explain higher order regions around the superior
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temporal sulcus (STS).

4.3 Introduction

The remarkable ability of ANNs to learn good representations of complex con-

cepts has led various researchers to hypothesize that they can be used to explore

representational spaces of the human brain. Studies have tried finding design prin-

ciples, based on either architecture or objective functions, that can aid in making

more brain-like networks – further improving their utility for neuroscience.

Extending on these approaches, in this work we ask if the uni- or multi-

modality of the training data is an important factor for explaining human brain

activity. Indeed, previous studies have shown that multimodal networks are bet-

ter at explaining specific regions using representational similarity analysis (RSA)

or voxel-based encodings37,167. But many of these efforts were limited to specific

regions of interest, potentially missing other relevant regions. Here, we overcome

this limitation by using a searchlight based analysis on whole brain fMRI data.

Additionally, instead of simply assessing whether multimodality better explains

brain activity, we use partial correlations to tease apart the contribution of other

baseline factors such as network architecture.

Specifically, using various publicly available multimodal and unimodal net-

works, we perform correlation- and partial correlation-based searchlight analyses

on fMRI activity over the whole brain. We observe that visual features trained in

conjunction with matched language inputs, i.e., multimodal features, are better

at explaining the visual cortex compared to features trained only with images.
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Table 4.1: Models used in this work

Model Training Objective Dataset

U
ni

m
od

al ResNet5087 classification ImageNet48

Adversarially Robust (AR) models60 adversarial training ImageNet + adversarial images
SIN models73 biased towards shape StylizedImageNet + ImageNet

M
ul

tim
od

al CLIP179 contrastive loss approx. 400M from internet
ICMLM (-attfc and -tfm)196 masked captioning MS-COCO135

VirTex49 bicaptioning MS-COCO135

More surprsingly, they also explain areas around the superior temporal sulcus –

regions known to be involved in higher order tasks such as audio-visual integration,

motion, face perception and theory of mind91.

4.4 Materials and Methods

fMRI dataset : We used a publicly available fMRI dataset97 to perform our

analysis. We preprocessed the raw fMRI data of five subjects and obtained voxel

activitation values. We then transformed these values into a common MNI305

space for inter-subject analysis.

For the current work, we restricted ourselves to the test data which contains

50 images shown 35 times each (see97 for more details).

Models : We used various publicly available networks from the literature (see

Table 4.1 for a summary). All models had a ResNet50 backbone, thereby minimiz-

ing any architectural differences. The 50 test images were passed through each

model to obtain their feature vectors (output of the last residual block). Then, us-

ing pairwise correlation distance on these feature vectors, a 50x50 representational
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dissimilarity matrix (RDM) was constructed.

Searchlight analysis : For each participant, we selected a sphere with a radius

of five voxels and used their activation values to calculate an RDM. To perform

Representation-Similarity Analysis (RSA), a rank correlation coefficient was then

calculated between the brain RDM within the searchlight and the model RDM.

Additionally, we also calculated partial correlations between these two RDMs,

using the standard ResNet50 RDM as the control variable. The searchlight was

moved along the brain volume, and RSA was performed within each searchlight.

4.5 Results and Discussion

Using a searchlight approach and RSA, we observed that both multimodal

and visual networks explained large parts of the visual cortex (data not shown).

Though there were some differences in their localization, almost all networks

showed high correlation values in lateraloccipital, lingual, and fusiform regions,

with an apparent continuum: ResNet50 < SIN < AR < multimodal.

The partial correlation based searchlight allowed us to isolate the effect of each

factor – multimodality, adversarial robustness (AR models), or shape-bias (SIN

models) – from the common effects captured in the ResNet50 baseline model. We

found a few interesting observations. First, compared to the ResNet baseline, both

regularization methods used for the visual models (adversarial robustness for all

AR models, shape-bias for SININ) made representations more similar to human

visual cortex – an effect that was more noticeable for AR models (Figure 4.1, two

leftmost columns).
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Figure 4.1: Partial correlations between model RDMs and brain RDMs (with the ResNet
RDM as a control variable) : Each column depicts four slices, the first two columns for uni- and
the last four for multi-modal networks. The color scale represents partial correlation values. Mul-
timodal networks show higher similarity to brain representations in the LOC and fusiform regions
compared to their unimodal counterparts, thus explaining more unique variance in the brain data.
They also explain variance in regions around STS, an effect unseen in the visual models.

This observation was even more striking for all the multimodal networks (CLIP,

ICMLMs, and to some extent VirTex) which stood out in these partial correlation

brain maps. They explained unique variance in larger parts of the visual cortex,

hinting that language-supervised training might be a better form of regularization

for learning visual features. More interestingly, the multimodal networks uniquely

explained the regions surrounding the right STS (bankssts and inferiorparietal,

according to the Deskian-Killiany Atlas; see Figure 4.1, four rightmost columns)–
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something unseen for the visual networks.

Overall, in this work, we extend the set of techniques used to study the simi-

larity between the brain and ANN representations. Using partial correlations, we

also isolate the impact of multimodal training for explaining visual cortex and

higher order regions such as STS. We believe future work that looks at other

factors using such region-agnostic methods would provide further insights into

the nature of brain representations, and the requirements for building brain-like

networks.
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4.7 Epilogue to the article:

In this Chapter, we looked at the effect of various factors such as robustness,

shape bias, unimodality, multimodality, etc. while explaining the different regions

in the brain. Two aspects highlight the novelty of the work — (i) the extension of

the RSA technique to include partial correlations and region-agnostic searchlight,

and (ii) the empirical findings on the unique ability of the multimodal networks

to explain the brain activity. The data further corroborates the insights obtained
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from Chapter 3, and hints that building multimodal networks will help us explain

the activity in various regions in the brain. Efforts like these will help us go farther

in our aim to build better models for neuroscience.
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...I believe that the success of deep learning at

emulating biological perception is a game-changer

that our field cannot ignore. It would be like light-

ing a fire by hitting stones, with a flamethrower

lying on our side...

– Rufin VanRullen 225

Chapter 5

Conclusions

The current thesis attempts at first highlighting, and then advocating for

bridging the gap between two seemingly distinct fields that study networks—

Neuroscience and Machine Learning. It does this by first demonstrating the utility

of ideas from Neuroscience for Machine Learning, and then using and finding suit-

able ML models for making progress to understand brain activity.

Indeed, an increased overlap between two fields with inherently different objec-

tives possesses numerous limitations of both technological and theoretical nature.

But before discussing those, let’s look at the work done in the Chapters a little

more closely.

5.1 Extended discussion on Chapter 2

The work showcased in Chapter 2 aimed to implement predictive coding dy-

namics into Machine learning networks and test if that makes the networks robust.

One of the big advantage of the work was that it allowed us to build relatively

more bio-inspired networks where we were able to investigate the implications of
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a neurocomputational theory more closely.

As mentioned earlier, the advent of Deep Learning has put a lot of emphasis

on building networks that are trained in an ‘end-to-end’ fashion, most of which

are typical feedforward networks. Such a pursuit has also come at a cost of the bi-

ological plausibility of such networks. And biological plausibility is an important

factor when it comes to building networks suitable for understanding the brain.

Since, in the end, how biologically plausible a network is will directly affect how

applicable it is to study a real-world biological brain. In this regard, Chapter 2

addressed this concern at two levels. First at an architectural level, it augmented

the feedforward ANNs with feedback connections to make them architecturally

more similar to the brains. Second, the work also adapted the networks to incor-

porate bio-inspired dynamics into the neural networks. Based on the principles

of a neuroscience theory known as predictive coding, the dynamics iteratively

changed the activations in the hierarchical network with an aim to reduce the

overall prediction error in the networks.

Generally, implementing predictive coding in large scale hierarchical architec-

tures has remained challenging, especially when paired with (as is typically done)

Hebbian based learning rules. In this regards, the work in Chapter 2 makes some

important modifications. First, it leverages powerful ML libraries performing out-

of-the-box automatic differentiation. This explicit design-choice is also reflected

in the error-correction term of the dynamics where the operation is not resolved

into a transposed convolution of the feedforward weights but rather performed

using the libraries. While this choice of auto-differentiation reduces the strict
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biological veridicality of the networks, it allows for learning (or retaining) expres-

sive representations that are useful for tasks such as classification. The proposed

dynamics also cast the different streams of inputs to a layer into a simple linear op-

eration modulated by tunable coefficients. These coefficients can be either treated

as hyperparameters as they are done in this work, or as parameters that can be

trained for different tasks. For example, Alamia et al. 4 took the latter approach

and trained these coefficients for different types of noises and investigated the fi-

nal values obtained by the networks. They found that, with increasing amount of

noise in the dataset, the networks (increasingly) relied on higher feedback informa-

tion. Thus, the reformulation of the dynamics allowed for an explicit exploration

of the impacts of top-down and bottom-up information. Also, to make the dynam-

ics easily available for the wider community, Chapter 2 provides an open-source

package which is simple enough to be used by engineers and neuroscientists alike.

Already a few labs have implemented the dynamics and found the package useful.

They have not only successfully reproduced the results shown in Chapter 2, fur-

ther increasing the confidence on them, but also further explored the impact of

predictive coding as a theory.

Most importantly, apart from just implementing the dynamics into a neural

network and testing its effect on the network’s classification performance, Chap-

ter 2 goes beyond and digs deeper with an aim to uncover the underlying phe-

nomenon. It hints at the interplay between feedforward and feedback informa-

tion which allows the networks to project the representations obtained on noisy

images towards their clean counterparts. This property, dubbed as “projection
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towards the learned data manifold”, is proposed to be very important for robust

systems195,104. For example, currently, to guard the networks against adversarial

examples, a prominent method that is employed is that of adversarial training,

wherein one generates these adversarial images and adds them directly into the

training dataset214,78. This technique, though quite successful, has a few limita-

tions. First, it is very computationally expensive, as it involves the generation

and training of adversarial examples within a particular training loop. Second,

it is quite sensitive to the parameters chosen to generate these examples. For

example, attributes like the norm and the size of the perturbations become impor-

tant hyperparameters for performing the adversarial training. Studies have also

argued that the current implementations of adversarial training, which typically

involve an optimization of a supervised loss function leads to some undesired ef-

fects. Hence, various unsupervised alternatives have been proposed in the past

few years245,217. But more importantly, especially as neuroscientists, the whole

principle seems quite unsatisfactory; because we know that the brain does not per-

form adversarial training! Rather, adversarial training seems like a hack wherein

we put the perturbations in the training dataset. This almost sounds like putting

the exam questions in class notes so that the students don’t fail.

Thus, one can argue that adversarial training doesn’t solve the underlying prob-

lem. Hence, various groups have advocated for an alternative mechanism where

we use some understanding of the training manifold to project the input points.

For example, Samangouei et al. 195 , one of the early proponents of this approach,

used a GAN to select only those points that are closer to the ones seen by the
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discriminator during training. This approach has been further echoed by various

other works104,107,195,204. What is more interesting is that the predictive coding

dynamics proposed in Chapter 2 seem to do something very similar. They pro-

jected both—the noisy representations and reconstructions—towards their clean

counterparts. This could also hint at one potential explanation as to how the

brain might be achieving such robustness to noisy stimuli.

This principle of projection towards the learned data manifold can also be

extended to explain the perception of illusions in humans. As mentioned earlier,

Pang et al. 171 used the dynamics proposed in Chapter 2 and demonstrated that

upon incorporation into ANNs, the dynamics rendered the ability to perceive

illusory contours in Kanizsa squares to the artificial neural networks.

Efforts like these that aim at understanding the impact of feedback connections

and predictive coding are indeed very important. While Chapter 2 makes some

progress, a lot remains to be understood as to how top-down information affects

the representations. Another interesting approach in this direction was taken by

Lindsay et al. 136 where they augmented their ANNs with recurrent connections of

three different types — (i) those trained directly for denoising, (ii) those that per-

formed surround suppression, and (iii) those that implemented predictive coding

dynamics proposed in Chapter 2. They investigated the effects of these different

types of recurrent information on the representations of the networks, and found

some interesting differences between them. Such efforts are crucial to further our

understanding as to how these two streams of information affect each other.

Predictive coding in particular, seems to have a promising future. In the past
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few years, it has found new connections to popular Machine Learning concepts

such as backpropagation, normalizing flows, etc. These provide interesting topics

for future research. As a purely personal opinion, its use as a biologically plausible

alternative to backpropagation seems to hold the highest promise. As discussed

earlier, critics of backpropagation have always raised concerns over its biological

implausibility. The fact that now predictive coding weight updates can approxi-

mate the weights updates from backpropagation, at least under certain conditions,

makes it a lot more appealing for both the communities.

One must also note that the Chapter 2 still possesses a multitude of limitations.

For example, from a neuroscience perspective, it still fails to provide a conclusive

evidence for the existence of predictive coding in the brain. Similarly, while it

makes progress in deploying bio-plausible mechanisms into ANNs, it still relies on

the use of biologically unlikely automatic differentiation and falls short of building

a completely biological network. Even for Deep Learning, when considered solely

from the lens of robustness, the proposed dynamics don’t help in building fancy

state-of-the-art robust networks. It is still much easier to build a more robust

network by directly training it on the exact or similar noise types. The work

also makes a unique choice of starting with discriminative supervised features and

learning unsupervised generative features on top. While this choice was mostly

motivated by empirical success, other potentially better choices for optimizing

the weights, or the coefficients, need to be explored. Future work should focus on

addressing many of such limitations.
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5.2 Extended discussion on Chapters 3 and 4

In Chapters 3 and 4, the thesis uses ML models to understand the representa-

tions in the brain. Here, the motivation was to figure out how the explanation of

the brain representations is affected by the different training paradigms. Chapter

3 looks at a specific anatomical region to ask a specific question that was raised

after the discovery of concept cells in a multimodal ANN. Chapter 4 instead gen-

eralizes this approach and instead looks at a selected group of voxels throughout

the brain.

The chapters provide ways to improve the models for studying human repre-

sentations. For example, one common concern that is raised while using ANNs to

study brain representations is that they still can’t provide good representations

useful for studying the higher order regions in the brain240, implying that the

models that we have are still not suitable for the whole brain and need a little

more refining. Thus, pursuits like these that help in identifying and constructing

better ANN representations will be very worthwhile for neuroscience. Of course,

by elucidating ways in which the factors affect the representational spaces, they

will also help in pruning training paradigms for Deep Learning, especially for

applications where it aims to build human-interactable ANNs.

Among various factors, Chapters 3 and 4 particularly focus on multimodal-

ity. Multimodal objectives are typically used in AI to learn networks that can

generalize to other categories, which the networks have either never seen before

(called zero-shot learning) or seen only a couple of times (called few-shot learn-
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ing), by leveraging the semantic knowledge. This generally also allows to build

huge datasets by scraping internet websites for images and their captions, and

are known to improve the performance of ANNs179. Generally, language super-

vision is expected to constrain the representations learned in a more natural or

human-like way77,18,179 (but see Devillers et al. 51 , Thrush et al. 222 for contradic-

tory evidence and limitations of current techniques). This makes them a strong

candidate for explaining the representations in the brain—another network that

relies heavily on language supervision and is also known to be modality invariant.

Indeed, the current efforts only focus on two modalities, but future efforts should

look at networks with multiple modalities, such as audio, video and textual data.

Such efforts, if successful, can provide better representations, useful for both, AI

and Neuroscience.

The Chapters 3 and 4 are also limited in various ways. The work relies on

a low amount of fMRI data. Also, the networks used are just single instances

trained with one random initialization. Thus, making any strong claims with high

statistical power becomes particularly challenging. Future work should indeed

focus on addressing these limitations by using better/larger datasets (such as

Natural Scenes Dataset (NSD)7) and more instances of networks trained with

similar strategies.
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5.3 Closing thoughts

5.3.1 Why should the two meet each other?

A strengthened communication between these two fields will help each in its

own quest. Neuroscience can heavily benefit from an easily pliable mathematical

model that is expressive enough to understand the brain representations. Such a

model will allow it to study the human brains at a representational level, filling

an important gap in its understanding.

The ability to understand the brain at a representational level will already open

a variety of avenues where interesting questions can be investigated. Answering

questions such as: Do Alzheimer’s patients lose memory representations? And

if yes, are these losses related to specific memory types or concepts? In which

regions? Or what about subjects with synesthesia? Are their representations for

numbers or colors structured differently? Again, if yes, in which regions of the

brain? On a more clinical side, do the brain representations (say in motor cortex)

in patients using prosthetic devices alter over time? If yes, then how? suddenly

become in the realm of technological possibility. Already the empirical success of

using ANNs for studying the brain representations in fMRI data, which is limited

in its spatial and temporal resolution, has hinted us about the smooth nature of

neural code (at least until the ventral stream) in the brain83.

Indeed, up until now Neuroscience is still establishing the equivalence between

the ANNs and the brains at a functional level. A complete understanding of the

brain will require its understanding even at a mechanistic level (the last level

100



of the three Marr’s levels). For this, we need more accurate implementations of

brain-like networks and ANNs, which can be easily tinkered to add appropriate

amount of detail, can be of use here as well (for one such use of ANNs see Tanaka

et al. 216).

For Machine Learning, these insights from neuroscience, functional or mech-

anistic, will be very useful and can act as guiding principles. Functionally, even

now, Machine Learning relies on humans as oracles for various definitions. From

what constitutes a conscious AI, or what constitutes an adversarial example or

even a shortcut learning rule71, all definitions that rely on humans in some way.

Thus any progress in understanding the human cognition will be directly relevant

for improving the ANNs.

Mechanistically, machine learning can make use of the vast amount of ideas

from theoretical neuroscience. The field has a number of possible ideas ranging

from predictive coding, as Chapter 2 illustrated, to others such as sparse cod-

ing and spiking neurons which it can take inspiration from. For example, spiking

neural networks can be very energy-efficient compared to their floating point coun-

terparts219. Thus, various groups are aiming to build spiking neural networks that

can be used on energy efficient neuromorphic hardware115,24,244. Even the insights

from Chapter 3 and 4, where multimodal networks were able to explain brain

representations, can be useful for building future Machine Learning networks that

learn better representations. This understanding of human representations will

be particularly relevant for ANNs that will find their applications directly deal-

ing with humans either in an augmented and/or virtual reality setting. People
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have also trained the ANNs directly on brain data and found that it improves

the robustness of the networks. Investigations into these ANNs revealed biases in

the feature spaces learned by the networks132,133. Machine Learning networks can

now actively implement these principles to build future robust networks.

Thus, the two fields have a great deal to learn from each other and can come

further together in a potentially synergistic fashion.

A word of caution for Neuroscience :

Though the advantages of using the ANNs as a proxy for the brain are innu-

merous, Neuroscience should tread carefully while drawing inferences from them,

at least for now.

Since long, Neuroscience has used different metaphors to understand the brain—

sometimes equating it to a combination of various aqueducts, or a complex ma-

chine such as a tractor, to recently even a computer. Indeed, the brain is none of

those. Thus, though the utility of such metaphors might seem to be quite high,

various people have warned caution for the use of a new metaphor of the brain—as

an ANN or even a mere information processing unit61,76.

More importantly, on a practical note, there are still a lot of differences be-

tween the way brains and ANNs function. Firstly, their architectures are com-

pletely different. Brains possess neurons and synapses that are richly complex,

show spiking behavior, and are temporal in nature. Moreover, the neurons are

affected by a plethora of chemical (neuromodulators) signals apart from their

synaptic signaling. These complexities are completely missing in their artificial
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cousins which are instantaneous and have floating point activation values. Sec-

ond, their also seems very little evidence for the possibility of backpropagation in

the brain. Of course, how many of these details are important for modeling the

brain, and how many are unnecessary is an open question (which probably will be

answered only empirically), but one should be careful before equating these two

networks. Thus, even if one succeeds in establishing the ANNs as a functional

model for the brain at a behavioral or neural activity level, one must be careful in

realizing that a more implementational level understanding still eludes us. And

an implementational level understanding remains the hole grail for Neuroscience.

Guest & Martin 84 provide a comprehensive analysis of the pitfalls that the pro-

ponents of ANNs (for studying the brain) often fall into and caution against the

prevalent logical fallacies in the literature.

5.3.1.0.1 The ethical limitations No discussion of using AI for the brain

and vice versa can be complete without acknowledging the potential harm. While

the use of AI and neuroscience will help in building better prosthetic devices that

can be no little than a boon for clinical patients, they also have a potential of

being misused by nefarious players. Similarly, given that the current ANNs can

possess various biases often carried from the datasets, the fields should be careful

of designing and drawing inferences from future clinical tests that combine the

two. More importantly, given the high rate of deployment of these ML systems,

and their possible far reaching effects, the margin for errors, even unintentional,

can be quite low. Thus, the two fields should carefully move forward, and while

doing so actively aid public awareness and political regulations to deal with the
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upcoming challenges.

5.4 Final Summary

To summarize, the current thesis argues that the two fields of Neuroscience and

Machine Learning are very relevant to each other. Both want to understand and

use some form of networks—biological or artificial—to either build better models

of the brain or artificial sentient agents. The two fields can join their forces,

potentially synergistically, to tackle the questions in their pursuits. Neuroscience

can use the high expressive power and mathematical pliability of the ANNs to

study the complex representations in the brain, and Machine Learning can utilize

the principles from Neuroscience to make better neural networks.

The thesis supports this by providing demonstrations of two approaches. In

Chapter 2, it implements recurrent dynamics inspired from neuroscience to make

robust neural networks, and in Chapters 3 and 4 it uses ANN representations to ex-

plain the fMRI activity of the brains. Both the approaches provide novel insights

that have implications for the two fields. Predictive coding networks are able

to project noisy representations towards clean ones using feedback connections—

a principle that Machine Learning can use to build better ANNs in the future.

The insight also provides potential ways the brain might be achieving robustness,

thus opening avenues for future experiments in neuroscience. Similarly, the repre-

sentations learned by multimodal networks were better suited for explaining the

representations in the brain (obtained using fMRI data). For ML, this provides

principles to learn better representations in the future, whereas for Neuroscience,

104



the work provides ways to make or choose better models to investigate the brain

data.

While arguing for it, the thesis also warns against the potential limitations—

technological, theoretical, and ethical—of their intersection. Recently, a new field

of NeuroAI is emerging with a similar goal of promoting further discussion between

Neuroscience and Artificial Intelligence. The thesis aligns itself with this broad

goal, and partakes in it by providing two illustrations as to how the two fields

can benefit each other, with an aim to answer and hopefully remove the question

mark at the end of its title.
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Appendix A

Appendix for Chapter 2

A.1 Getting Started with Predify

Both VGG16 and EfficientNetB0 are converted to predictive coding networks

PVGG16 and PEfficientNetB0, using the Predify package. The fastest and easiest

way to convert a feedforward network into its predictive coding version is to use

Predify’s text-based interface which supports configuration files in TOML format.

The current version of Predify assumes that there is no gap between the en-

coders. Therefore, in the minimal case, one only needs to provide a list of sub-

module names in the target feedforward network. Then, Predify takes care of the

rest by converting each of them into an encoder and assigning default decoders.

More precisely, let x and y denote the input and output of a layer (or complex sub-

module, potentially including multiple layers) that is selected to be an encoder

(en). If x and y respectively have the size (cin, hin,win) and (cout, hout,wout); then, the

default decoder’s structure that predicts this encoder (dn+1) is a 2D upscaling op-

eration by the factor of (hin/hout,win/wout) followed by a transposed convolutional
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layer with cout channels and 3×3 window size. The values of hyperparameters will

be set to βn = 0.3, λn = 0.3, and αn = 0.01

In Predify, each encoder (en) and the decoder that uses its output to predict the

activity of the encoder below (dn−1) is called a PCoder. To verify the functionality

of Predify’s default settings, we applied it for PEfficientNetB0 used in this work.

Here is the corresponding minimal configuration file:

name = "PEfficientNetB0"

input_size = [3,224,224]

gradient_scaling = true

shared_hyperparameters = false

[[pcoders]]

module = "act1"

[[pcoders]]

module = "blocks[0]"

[[pcoders]]

module = "blocks[1]"

[[pcoders]]

module = "blocks[2]"

[[pcoders]]

module = "blocks[3]"

[[pcoders]]

module = "blocks[4]"

[[pcoders]]

module = "blocks[5]"

[[pcoders]]
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module = "blocks[6]"

One can easily override the default setting by providing all the details for a

PCoder. Here is the configuration corresponding to the PVGG16 used in this

work:

imports = [

"from torch.nn import Sequential , ReLU, ConvTranspose2d",

]

name = "PVGG16"

input_size = [3, 224, 224]

gradient_scaling = true

shared_hyperparameters = false

[[pcoders]]

module = "features[3]"

predictor = "ConvTranspose2d(64, 3, kernel_size=(5, 5), stride=(1, 1)

, padding=(2, 2))"

hyperparameters = {feedforward=0.2, feedback=0.05, pc=0.02}

[[pcoders]]

module = "features[8]"

predictor = "Sequential(ConvTranspose2d(128, 64, kernel_size=(10, 10)

, stride=(2, 2), padding=(4, 4)), ReLU(inplace=True))"

hyperparameters = {feedforward=0.4, feedback=0.1, pc=0.05}

[[pcoders]]
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module = "features[15]"

predictor = "Sequential(ConvTranspose2d(256, 128, kernel_size=(14,

14), stride=(2, 2), padding=(6, 6)), ReLU(inplace=True))"

hyperparameters = {feedforward=0.4, feedback=0.1, pc=0.008}

[[pcoders]]

module = "features[22]"

predictor = "Sequential(ConvTranspose2d(512, 256, kernel_size=(14,

14), stride=(2, 2), padding=(6, 6)), ReLU(inplace=True))"

hyperparameters = {feedforward=0.5, feedback=0.1, pc=0.0024}

[[pcoders]]

module = "features[29]"

predictor = "Sequential(ConvTranspose2d(512, 512, kernel_size=(14,

14), stride=(2, 2), padding=(6, 6)), ReLU(inplace=True))"

hyperparameters = {feedforward=0.6, feedback=0.0, pc=0.006}

The network configuration files (in TOML format) are available to download

on GitHub∗.

A.2 Network Architectures

VGG16 consists of five convolution blocks and a classification head. Each

convolution block contains two or three convolution+ReLU layers with a max-

pooling layer on top. For each en in PVGG16, we selected the max-pooling layer in

block n−1 and all the convolution layers in block n of VGG16 (for n ∈ {1, 2, 3, 4, 5})
∗https://github.com/bhavinc/predify2021
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as the sub-module that provides the feedforward drive. Afterwards, to predict the

activity of each en, a deconvolution layer dn is added which takes the en+1 as the

input. Here, deconvolution kernel sizes are set by taking the increasing receptive

field sizes into account.

In the case of PEfficientNetB0, we used PyTorch implementation of Efficient-

NetB0 provided in https://github.com/rwightman/pytorch-image-models. This

implementation of EfficientNetB0 consists of eight blocks of layers (considering

the first convolution and batch normalization layers as a separate block). Similar

to PVGG16, we convert each of these blocks into an encoder (en) and add decon-

volution layers accordingly. This time we set the kernel size of all deconvolution

layers to 3x3 and use upsampling layers to compensate the shrinkage of layer size

through the feedforward pathway (i.e. Predify’s default setting).

Table A.1 summarizes PVGG16’s architecture. Moreover, the hyperparameter

values are provided in Tables A.2 and A.3.
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Table A.1: Architectures of ens and dns for PVGG16 and PEfficientNetB0. Conv (channel, size,
stride), MaxPool (size, stride), Deconv (channel, size, stride), Upsample (scale_factor), BN is
BatchNorm, [ ]+ is ReLU, and [ ]∗ is SiLU. EfficientBlock corresponds to each block in PyTorch
implementation of EfficientNetB0.

PVGG16 PEfficientNetB0

Input Size: 3x224x224 Input Size: 3x224x224

en dn−1 en dn−1

PCoder1

[
Conv (64, 3, 1)

]

+
[
Conv (64, 3, 1)

]

+

Deconv (3, 5, 1) [BN (Conv (32, 3, 2))]∗
Upsample (2)

Deconv (3, 3, 1)

PCoder2

MaxPool (2, 2)
[
Conv (128, 3, 1)

]

+
[
Conv (128, 3, 1)

]

+

[
Deconv (64, 10, 2)

]

+
EfficientBlock0 Deconv (32, 3, 1)

PCoder3

MaxPool (2, 2)
[
Conv (256, 3, 1)

]

+
[
Conv (256, 3, 1)

]

+
[
Conv (256, 3, 1)

]

+

[
Deconv (128, 14, 2)

]

+
EfficientBlock1

Upsample (2)

Deconv (16, 3, 1)

PCoder4

MaxPool (2, 2)
[
Conv (512, 3, 1)

]

+
[
Conv (512, 3, 1)

]

+
[
Conv (512, 3, 1)

]

+

[
Deconv (256, 14, 2)

]

+
EfficientBlock2

Upsample (2)

Deconv (24, 3, 1)

PCoder5

MaxPool (2, 2)
[
Conv (512, 3, 1)

]

+
[
Conv (512, 3, 1)

]

+
[
Conv (512, 3, 1)

]

+

[
Deconv (512, 14, 2)

]

+
EfficientBlock3

Upsample (2)

Deconv (40, 3, 1)

PCoder6 - - EfficientBlock4 Deconv (80, 3, 1)

PCoder7 - - EfficientBlock5
Upsample (2)

Deconv (112, 3, 1)

PCoder8 - - EfficientBlock6 Deconv (192, 3, 1)

A.3 Execution Time

Since we used a variable number of GPUs for the different experiments, an

exact execution time is hard to pinpoint. Briefly, depending on the number of
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timesteps, analysing mCE scores and adversarial attacks on PEfficientNetB0 took

around 15-20 hours on an NVIDIA TitanV gpu. These numbers were about three

to four times higher for experiments on PVGG16. For both the networks, training

the feedback weights on the ImageNet dataset generally finished before 5 epochs,

which took approximately 7-8 hours for a single GPU.

A.4 Gradient Scaling

In our dynamics, the error (εn−1) is defined as a scalar quantity whose gradient

is taken with respect to the activation of the higher layer (en). That is,

∇εn−1 =











∂εn−1
∂e1n
...

∂εn−1
∂eLn











(A.1)

where L denotes the number of elements in en. The partial derivative with

respect to ejn can then be written as,

∂εn−1
∂ejn

=
1
K

K∑

i

∂(ein−1 − din−1)2

∂ejn
(A.2)

(A.3)

where K is the number of elements in en−1 ( = channels x width x height).

Equation A.2 highlights how the dimensionality of the prediction (equivalently
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the error term) affects the gradients, scaling them down by a factor K.

This can be easily seen by supposing that the gradients with respect to ejn are

i.i.d normally distributed around 0 with standard deviation σ,

∂(ein−1 − din−1)2

∂ejn
∼ N (0, σ2) (A.4)

K∑

i

∂(ein−1 − din−1)2

∂ejn
∼ N (0,Kσ2) (A.5)

Thus,

∂εn−1
∂ejn

=
1
K

K∑

i

∂(ein−1 − din−1)2

∂ejn
∼ N (0,

σ2

K
) (A.6)

This scaling is further troublesome in DCNs, where most gradients are zero

since they are not part of the receptive field of the element ejn. Hence assuming

that there are only C elements (kernel*channels) that are part of the receptive

field of ejn,

K∑

i

∂(ein−1 − din−1)2

∂ejn
=

C∑

i

∂(ein−1 − din−1)2

∂ejn
∼ N (0,Cσ2) (A.7)

Hence,
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∂εn−1
∂ejn

=
1
K

C∑

i

∂(ein−1 − din−1)2

∂ejn
∼ N (0,

Cσ2

K2 ) (A.8)

We use Equation A.8 to, at least partly, counteract this effect due to the

dimensionality of the prediction errors. We multiply the gradient by a factor of
√

K2/C to scale them in a way that is more comparable across layers, and thus

apply a more meaningful step size for correcting the errors.

A.5 Prior work: PCNs

To better understand the model proposed by Wen et al.235 and its differences

to ours, we conducted several experiments using the code that they provided, and

report here our most compelling observations. A first striking shortcoming was

that the accuracy of their feedforward baseline was far from optimal. Using their

code, with relatively minor tweaks to the learning rate schedule, we were able to

bring it up from 60% to 70% – just a few percentage points below their recurrent

network. We expect that this could be further improved with a more extensive and

systematic hyperparameter search. In other words, their training hyperparameters

appeared to have been optimised for their predictive coding network, but not –

or not as much – for their feedforward baseline. We further found that a minor

change to the architecture - using group normalisation layers after each ReLU –

leads to a feedforward network which performs on par with the recurrent network,

with a mean over 6 runs of 72% and best of 73%. Adding the same layers to the

114



0 6
Timesteps

100

101

102

103

104

M
ea

n 
sq

ua
re

d 
di

st
an

ce

(a) Reconstruction error over
timesteps

0 6

Timesteps

1.2

72.4

A
c
c
u
ra
c
y

PCN

feedforward

(b) Accuracy over timesteps
on CIFAR100 testset

Figure A.1: PCN: Panel (a) shows the reconstruction errors of the model over timesteps. It does
not decrease over timesteps, as would be expected in a predictive coding system. Panel (b) depicts
the accuracy of the model on the CIFAR100 test dataset. The model performs at chance level at
early timesteps and then becomes better in the last few timesteps.

recurrent network did not lead to a corresponding improvement in accuracy.

We also found that the network had poor accuracy (underperforming the op-

timized feedforward baseline) until the final timestep, as can been seen in Figure

A.1b. This can be clarified by a closer reading of Figure 3 of their paper: the

reported improvements over cycles from 60% at timestep 0 to more than 70% at

timestep 6 are for seven distinct networks, each evaluated only at the timestep

they were trained for. So in fact, in their model the predictive coding updates

do not gradually improve on an already reasonably guess. This is clearly not

biologically plausible: visual processing would be virtually useless if the correct

interpretation of a scene only crystallised after a number of “timesteps”. By the

time a person has identified an object that object is likely to have disappeared or,

in a worst case scenario, eaten them. We also experimented with feeding the clas-

sification error at each timestep into an aggregate loss function, but this lead to a

network which, while performing well, essentially did not improve over timesteps.
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Figure A.1a shows that the network does not uniformly minimise reconstruc-

tion errors over time for all layers, and thus is not performing correct predictive

coding updates. In fact the total reconstruction error (across all layers) increases

exponentially over timesteps. There are a number of possible explanations for

this. Firstly, in the case of the network with untied weights, the authors choose

to make a strong assumption in the update equations (seen as the equivalence of

their Equations 5 and 6): that the feedback weights can be assumed to be the

transpose of the feedforward weights, i.e. Wb = (Wf)T. They thus propagate

the feedforward error through the feedforward weights. However, it might be

that the network learns feedback weights which essentially invert the feedforward

transformation as assumed, but this is not guaranteed, and nor is it explicitly

motivated through the classification loss function. Indeed, because the network

is not motivated to learn a representation at earlier timesteps which produces a

good prediction, it does not necessarily need to learn the inverse transformation:

it can instead learn some other transformation which, when applied with the up-

date equations, leads the network to end up in the right place. That being said,

this assumption is valid for the network with tied weights, and this network also

does not uniformly reduce reconstruction error over timesteps. Possibly, the pres-

ence of ReLU non-linearities means that the forward convolution may still not be

perfectly invertible by a transposed convolution. Finally, in line with this unex-

pected increase of reconstruction errors over time, we have also failed to extract

good image reconstructions from the network as seen in Figure 5 of their paper,

although in private communication the authors indicated that this was possible
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with some other form of normalisation.

In short, while the ideas put forward in235 share similarities with our own,

their exact implementation did not support the claims of the authors, and the

question of whether predictive coding can benefit deep neural networks remained

an open one. We hope that our approach detailed in the present study can help

resolve this question.
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A.6 Comparing with Rao and Ballard

This section aims to start from the equations initially provided in Rao and

Ballard183 and compare them to ours. The parallels drawn will help to highlight

the similarities and the differences between both the approaches.

Rao and Ballard consider a two-layer system, and start with the assumption

that the brain possesses a set of internal causes, denoted as r (in matrix notation),

that it uses to predict the visual stimulus, for example an input image I, such that

I ≈ f(Ur) (A.9)

where f(.) is some nonlinear activation function. This r can be equalled to

encoding layer e1 in our equations, with I being the input image e0 or its recon-

struction d0. U here, represents the top-down weight matrix (equivalent to Wb
1,0)

that helps to make a prediction about the input image. That is,

I ≈ f(Ur) ≡ e0 ≈ d0 = Wb
1,0e1 (A.10)

In this two-layer hierarchical architecture, r itself is predicted by the higher

layer r
h using the weight matrix Uh, equivalent to how e1 is predicted by e2 using

Wb
2,1 in our model. This prediction denoted as r

td in Rao and Ballard’s original

implementation can be equalled to d1 in our equations.

r
td = f(Uh

r
h) ≡ d1 = Wb

2,1e2 (A.11)
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The errors made in making the predictions are defined, like ours, as the mean

squared distance,

ε0 = (I − f(Ur))T(I − f(Ur)) (A.12)

ε1 = (r − r
td)T(r − r

td) (A.13)

Please note that differentiating the prediction error ε0 with respect to r (similar

to taking the gradient of εn−1 with respect to en as done in our error-correction

term) gives us,

∇0 = −2UT ∂f
∂Ur

T

(I − fUr) (A.14)

= −kUT(I − f(Ur)) (A.15)

which will be useful later.

As per the predictive coding theory, the brain tries both to learn parameters (U

and Uh) over a dataset of natural inputs, and tries to modify its neural activations

(r and r
h) over time given a particular input, in such a way as to minimize the

total error E, defined as:

E = a · (I − f(Ur))T(I − f(Ur))
︸ ︷︷ ︸

ε0

+b · (r − r
td)T(r − r

td)
︸ ︷︷ ︸

ε1

(A.16)
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Here a and b act as constants that weigh the errors in this two-level hierar-

chichal network. Equation A.16 is reflected as Equation 4 on Page 86 of the

original paper183. The original implementation also contains terms that account

for the prior probability distributions of r and U; these terms can be equated to

regularization terms, and thus we omit them for the sake of simplicity.

Equation A.16 represents the overall error, calculated as sum of the mean

squared errors across the hierarchy of the network. It should be noted that we use

this same objective function (−E) to train the feedback weights of our networks.

As stated above, the predictive coding dynamics aim to modify neural repre-

sentations r so as to minimize the error E, i.e., differentiating the above equation:

dr

dt
= −

∂E
∂r

= a · UT ∂fT

∂Ur
(I − f(Ur)) + b · (rtd − r) (A.17)

Barring a regularization term, the above equation is equivalent to Equation 7

on page 86 of183. One can see that the first term in the RHS of equation A.17

can be substituted with our error-correction term ∇ε0 (see Eq. A.15). Hence,

Equation A.17 after simultaneously expanding the LHS becomes,

r(t + dt) − r(t)
dt

= −a1 · ∇εr(t) + b · (rtd(t) − r(t)) (A.18)

We use subscript r for ε to emphasize that this error can be calculated at any

level/stage r represents in a multi-layer hierarchical system, and is not restricted

to just the first layer of the hierarchy. Similarly, the time resolution dt can be

equated to 1 timestep (of arbitrary duration) for simulations. Hence, rearranging
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the equation further,

r(t + 1) = b · r
td(t)

︸ ︷︷ ︸

feedback

+ (1 − b)r(t)
︸ ︷︷ ︸

memory

− a1∇εr(t)
︸ ︷︷ ︸

error−correction

(A.19)

In the above equation, the first term corresponds to our feedback term, the

second term corresponds to our memory term and the last term corresponds to

our feedforward error-correction term. That is, exchanging constants to match

our notation:

r(t + 1) = feedforward
︸ ︷︷ ︸

feedforward

+ λ · r
td(t)

︸ ︷︷ ︸

feedback

+ (1 − λ)r(t)
︸ ︷︷ ︸

memory

− a1∇εr(t)
︸ ︷︷ ︸

error−correction

(A.20)

This can be directly compared to our main Equation 2.2.

Equation A.20 also highlights the fact that our approach has an extra feed-

forward term that is not present in the original Rao and Ballard proposal. We

believe that such a modification allows for rethinking the role of error-correction

in network dynamics; where error-correction constituted the predominant mode

of feed-forward communication in the Rao and Ballard implementation, it plays

a more supporting role in our implementation, iteratively correcting the errors

made by the feedforward convolutional layers. We empirically found that the

feedforward term helped to improve the stability of the training. Interestingly, a

common criticism of predictive coding lies in its inability to explain the dominance

of feedforward brain activity compared to prediction error signals90,2. We believe

that our proposed implementation allows for a flexible modulation of these two
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terms, and thus systematic investigation of these factors–as done in 4.

From a practical perspective, we expect that our framework can be readily

used by both proponents and opponents of the predictive coding theory. Setting

the feedforward term β equal to zero produces a pure predictive coding network

as proposed in Rao and Ballard183. Alternatively, one can set the error-correction

term α equal to zero to study a bidirectional network with feedback and feedfor-

ward drives, in the style of Heeger89. The framework has been implemented such

that the basic update rule (as class Pcoder in the package) is easily adaptable,

allowing one to try other complex interactions between these terms; for example,

one could easily include multiplicative interactions between feedback and feedfor-

ward terms to emulate forms of biased competition (see208,207).
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A.7 Tuning hyperparameters

In addition to the fixed set of hyperparameters used in our initial experiments

(Figures 2.2, 2.3a and 2.4), we also experimented with optimizing our hyperpa-

rameters. To tune the hyperparameters for the models, we applied two different

strategies for both the models–tuning hyperparameters for the whole network vs

tuning hyperparameters for each pcoder separately. After a few initial explo-

rations on clean images, we discovered that the hyperparameters dictate where

the network dynamics converge, and consequently its performance for noisy sit-

uations. This effect is characterized and investigated thoroughly in4. Thus, in

this study, we decide to use gaussian noise of standard deviation 0.5 to tune the

hyperparameters and test it on all other types of noises from the ImageNet-C

dataset.

For PVGG16, we start by fixing the value of alpha for each layer to zero and

only search for βn’s and λn’s. We calculate the average cross-entropy loss for 4

timesteps on 2000 images and use it as a metric for choosing the hyperparameters.

The hyperparameters chosen are as follows :

Table A.2: Values of the Hyperparameters

n βn λn αn

1 0.2 0.05 0.01

2 0.4 0.10 0.01

3 0.4 0.10 0.01

4 0.5 0.10 0.01

5 0.6 0.00 0.01
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For PEfficientNetB0, we take a different approach. Instead of the whole net-

work, we start by finetuning each pcoder using the same metric (average crossen-

tropy for 4 timesteps) on 4050 images. We then combine all hyperparameters

found for each pcoder. The hyperparameters chosen are as follows :

Table A.3: Values of the Hyperparameters

n βn λn αn
1 0.77 0.08 0.01
2 0.76 0.11 0.01
3 0.83 0.03 0.01
4 0.94 0.01 0.01
5 0.73 0.25 0.01
6 0.81 0.01 0.01
7 0.85 0.10 0.01
8 1.0 0.00 0.01

We then, calculate the mCE scores using all the 19 noises for both the networks.

The CE scores for each noise are shown below :
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Figure A.2: PVGG16 (optimised) Corruption Error (CE) scores for all distortions: The
panel shows the CE scores calculated on the distorted images provided in the ImageNet-C dataset.
The values are normalized with the CE score obtained for the feedforward VGG. The error bars
denote the standard deviation of the means obtained from bootstrapping (resampling multiple
binary populations across all severities.)
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Figure A.3: PEfficientNetB0 (optimised) Corruption Error (CE) scores for all distortions:
The panel shows the CE scores calculated on the distorted images provided in the ImageNet-C
dataset. The values are normalized with the CE score obtained for the feedforward EfficientNetB0.
The error bars denote the standard deviation of the means obtained from bootstrapping (resam-
pling multiple binary populations across all severities.)
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A.8 mCE scores of the optimized networks using AlexNet as a

baseline
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Figure A.4: The mCE scores of the optimized networks (as shown in Figure 3) normalized using
the score of the AlexNet network. Instead of normalizing using the score for the feedforward ver-
sion of our recurrent network, to facilitate comparison with other works, we here normalize the
scores using the score obtained for AlexNet network.
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Figure A.5: The Relative mCE scores of the optimized networks (as shown in Figure 3) normal-
ized using the score of the AlexNet network. As suggested by92, we use Relative mCE score which
accounts for the changing baseline accuracy on the clean images over timesteps.

A.9 mCE scores of a predified robust network

We also incorporated our recurrent dynamics in an already robust PEfficient-

Net network. As a simple approach, we just used the hyperparameters (α, β and
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λ) that were optimized for the non-robust version of PEfficientNEtB0 (on 0.25

gaussian noise) and measured its robustness against the corruptions in ImageNet-

C dataset. We observed that the proposed predictive coding dynamics further

helped in improving the robustness of this already robust network.
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Figure A.6: mCE scores of a predified version of an already robust PEfficientNetB0
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A.10 Original data for Adversarial Attacks

We provide here the non-baseline corrected versions of the data presented for

adversarial attacks in Figure 4. The panels below show the success rate of the

targeted attacks across timesteps calculated on 1000 images. The perturbations

allowed (ε) and the type of attack are denoted at the top.
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Figure A.7: L∞BIM attacks on PVGG16 network
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Figure A.8: L∞BIM attacks on PEfficientNetB0 network
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Figure A.9: L2RPGD attacks on PEfficientNetB0 network
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Figure A.11: Adversarial Attacks with respect to epsilons. Here we show the number of success-
ful attacks on 1000 (100 for HopSkipJump) images. Increasing the size of the epsilon leads to
increase in the success rate of the attack as expected. As predictive coding timesteps increase, the
curves shift slightly to the right, meaning that a slightly larger perturbation is required to fool the
network. This robustness is more easily seen on Figure 2.4, where ε values are sampled near each
curve’s inflection point.
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A.11 Absolute values of the plots shown in the main text

Noise Level PVGG16 PEfficientNetB0
Accuracy at t=0 Accuracy at t=15 Accuracy at t=0 Accuracy at t=15

σ = 0.00 71.63 71.47 77.29 75.35
σ = 0.50 35.61 38.59 57.66 56.24
σ = 0.75 16.69 18.46 37.11 41.05
σ = 1.00 5.59 7.05 17.03 23.59

Table A.4: Accuracy on gaussian noise-corrupted images. Here we show the accuracy obtained on
images corrupted using gaussian noise (at t=0) as shown in figure 2a. All the values are calculated
on the corrupted versions of the ImageNet validation dataset.

Noise Level PVGG16 PEfficientNetB0
MSE at t=0 MSE at t=15 MSE at t=0 MSE at t=15

σ = 0.00 0.224 0.220 0.186 0.184
σ = 0.25 0.342 0.324 0.223 0.222
σ = 0.50 0.518 0.485 0.303 0.302
σ = 0.75 0.705 0.660 0.394 0.392
σ = 1.00 0.898 0.842 0.486 0.482
σ = 2.00 1.689 1.587 0.848 0.834

Table A.5: MSE distances for reconstructions on noisy images. Here we show the MSE distances
obtained between the noisy images corrupted using gaussian noises and the reconstructions made
by the models as shown in Figure 2b.
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in Figure 2d in the main text.
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Appendix B

Appendix for Chapter 3
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B.1 The complete schematic

Figure B.1: This schematic shows the methodology used for the analysis. In a first step, the fMRI
data corresponding to the test images shown to the participants are processed. Next, from all the
voxels in a selected region of interest, a subset of voxels with the highest reliability in the fMRI
signal (as determined by an independent analysis on the noise ceiling) is chosen. Using pairwise
distances on these brain features, an RDM (representational dissimilarity matrix) is constructed. In
parallel, the same test images are passed through different models, and their features are obtained.
These features are used to construct RDMs for each model. Finally, the similarity between each
model RDM and the brain RDM is computed using different correlation measures.
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B.2 Additional details on the models used in the analysis

Model Objective Dataset

M
ut

lim
od

al CLIP constrastive loss approx. 400M images from Internet
Virtex bicaptioning MS-COCO
ICMLMs (-attfc and -tfm) masked captioning MS-COCO
TSMResNet trimodal contrastive objective HowTo100M

V
isu

al

ResNet crossentropy ImageNet
BiT-M crossentropy ImageNet21K
AR models adversarial robustness ImageNet + adversarial images
SIN models crossentropy on shape-biased images ImageNet + StylizedImageNet

La
ng

ua
ge GPT2 unsupervised langugae modeling WebText

BERT bidirectional masked language modeling BookCorpus and English Wikipedia
CLIP-L constrastive loss approx. 400 M images

Table B.1: Further details of the networks used in this work.
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B.3 Licenses of the assets used

Asset License

FreeSurfer https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
SPM12 GNU GPL

fMRI data CC0
CLIP MIT
VirTex MIT
TSM Apache-2.0

ICMLM N/A
BiT-M Apache-2.0
ResNet MIT

AR models MIT
SIN models https://github.com/rgeirhos/texture-vs-shape/blob/master/DATASET_LICENSE

GPT2 MIT
BERT Apache-2.0

Table B.2: Available Licences of the assets used in the study. Links to the appropriate webpages
are provided for special licenses.
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B.4 Raw data shown in Figure 2

Model visual region fusiform hippocampus parahippocampus
CLIP 0.065 ± 0.049 0.172 ± 0.047 0.139 ± 0.024 0.091 ± 0.040
VirTex 0.086 ± 0.051 0.173 ± 0.048 0.129 ± 0.023 0.177 ± 0.030
ICMLM-attfc 0.108 ± 0.044 0.205 ± 0.035 0.125 ± 0.030 0.140 ± 0.030
ICMLM-tfm 0.117 ± 0.046 0.237 ± 0.034 0.140 ± 0.053 0.176 ± 0.046
TSMResNet50-visual 0.154 ± 0.044 0.211 ± 0.037 0.125 ± 0.042 0.160 ± 0.050
BiT-M 0.004 ± 0.018 0.109 ± 0.030 0.116 ± 0.021 0.076 ± 0.004
ResNet50 0.068 ± 0.031 0.156 ± 0.039 0.078 ± 0.036 0.121 ± 0.022
AR-Linf8 0.122 ± 0.032 0.173 ± 0.033 0.072 ± 0.031 0.102 ± 0.018
AR-Linf4 0.106 ± 0.030 0.175 ± 0.033 0.084 ± 0.032 0.118 ± 0.021
AR-L2 0.128 ± 0.033 0.190 ± 0.036 0.088 ± 0.035 0.123 ± 0.020
SIN 0.086 ± 0.032 0.147 ± 0.033 0.085 ± 0.017 0.072 ± 0.016
SIN-IN 0.070 ± 0.021 0.160 ± 0.037 0.079 ± 0.031 0.119 ± 0.021
SIN-IN+FIN 0.066 ± 0.016 0.135 ± 0.033 0.075 ± 0.025 0.080 ± 0.014
BERT 0.000 ± 0.006 0.074 ± 0.018 0.053 ± 0.026 -0.009 ± 0.023
GPT2 0.106 ± 0.022 0.094 ± 0.034 0.043 ± 0.011 0.123 ± 0.013
CLIP-L 0.006 ± 0.023 0.068 ± 0.075 0.069 ± 0.052 0.055 ± 0.016

Table B.3: Raw data shown in Figure 2

0.0

hippocampus

CLIP

VirTex

ICMLM-attfc

ICMLM-tfm

TSM-visual

BiT-M

ResNet50

AR-Linf8

AR-Linf4

AR-L2

SIN

SIN-IN

SIN-IN+FIN

BERT

GPT2

CLIP-L

0.0

visual

0.0

fusiform

0.0

parahippocampus

C
o
rr
e
la
ti
o
n

0.2

0.3
0.25 0.4

Figure B.2: Non-normalized RSA values between model and brain RDMs. The brain RDMs
are calculated based on selecting 30 voxels from each ROI, as in the main analysis. The gray
bands show the upper and lower bounds of the noise-ceilings calculated by adding and subtract-
ing the s.e.m. values respectively.
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B.5 Voxel-selection based on a fixed beta-value threshold.

In the main analysis, we selected 30 voxels in each ROI based on the noise-

ceiling analysis in the hippocampus. In other words, in each ROI we selected the

30 voxels with the highest beta values.

As a control method, instead of restricting the number of voxels to 30, we used

the value of the 30th voxel from hippocampus as a threshold for other ROIs. The

number of voxels found in each ROI for each participant is depicted in Table B.4

and the RSA values in Figure B.3. We observed that this alternate criterion did

not affect the overall trend in our results.
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Figure B.3: Non-normalized RSA values after using the beta value of the 30th voxel from hip-
pocampus as a threshold for other ROIs for each participant.
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
visual 530 831 343 707 592

fusiform 532 376 217 368 508
hippocampus 30 30 30 30 30

parahippocampus 122 67 85 111 167

Table B.4: Number of voxels found in each region after thresholding

Model visual region fusiform hippocampus parahippocampus
CLIP 0.026 ± 0.026 0.223 ± 0.022 0.139 ± 0.024 0.140 ± 0.045
VirTex 0.017 ± 0.025 0.226 ± 0.028 0.129 ± 0.023 0.166 ± 0.041
ICMLM-attfc 0.076 ± 0.025 0.270 ± 0.016 0.125 ± 0.030 0.165 ± 0.039
ICMLM-tfm 0.112 ± 0.023 0.292 ± 0.014 0.140 ± 0.053 0.216 ± 0.057
TSMResNet50-visual 0.194 ± 0.013 0.261 ± 0.029 0.125 ± 0.042 0.200 ± 0.047
BiT-M -0.011 ± 0.020 0.129 ± 0.012 0.116 ± 0.021 0.118 ± 0.013
ResNet AvgPool 0.095 ± 0.015 0.201 ± 0.020 0.078 ± 0.036 0.151 ± 0.032
AR-Linf8 0.135 ± 0.017 0.240 ± 0.013 0.072 ± 0.031 0.142 ± 0.020
AR-Linf4 0.120 ± 0.016 0.237 ± 0.011 0.084 ± 0.032 0.154 ± 0.029
AR-L2 0.149 ± 0.017 0.260 ± 0.011 0.088 ± 0.035 0.162 ± 0.024
SIN 0.095 ± 0.016 0.210 ± 0.016 0.085 ± 0.017 0.106 ± 0.015
SIN-IN 0.090 ± 0.014 0.205 ± 0.016 0.079 ± 0.031 0.147 ± 0.028
SIN-IN+FIN 0.066 ± 0.014 0.167 ± 0.017 0.075 ± 0.025 0.109 ± 0.024
BERT -0.020 ± 0.020 0.090 ± 0.009 0.053 ± 0.026 0.011 ± 0.004
GPT2 0.072 ± 0.011 0.086 ± 0.027 0.043 ± 0.011 0.117 ± 0.017
CLIP-L -0.064 ± 0.024 0.101 ± 0.055 0.069 ± 0.052 0.092 ± 0.035

Table B.5: Exact values corresponding to the data shown in Figure B.3
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B.6 RSA computed using different metrics

We verified the robustness of our results by using other metrics to compute

the RDMs and RSA (Figures B.4–B.6).
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Figure B.4: The RDMs were calculated using the Pearson correlation distance, and the Spearman
rank correlation was used to compute the RSA.
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Figure B.5: The RDMs were calculated using the Cosine distance, and the Spearman rank correla-
tion was used to compute the RSA.
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Figure B.6: The RDMs were calculated using the Cosine distance, and the Pearson correlation
was used to compute the RSA.

B.7 Broader Impacts

The research discussed above analyzes the ability of neural networks to ex-

plain human brain activity. Specifically, it demonstrates that multimodal neural

networks are better than visual or linguistic models in explaining the activity in

the hippocampus during visual tasks.

Importantly, this research provides potential insights for designing better bio-

plausible networks, which could elucidate underlying mechanisms in biological

brains. At the same time, we are aware of the possibilities for the nefarious use

of such systems, and urge all researchers to consider their implications.
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