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Abstract 

 

Phytoplankton play a key role in the regulation of many biogeochemical cycles. It is 

responsible for half of the world's primary production, contributing to the marine food 

chain and regulating carbon fluxes between the ocean and the atmosphere. These 

processes vary with both phytoplankton biomass and community composition. It is 

therefore a critical challenge to monitor phytoplankton biomass and community 

composition on a global scale. The BioGeoChemical-Argo (BGC-Argo) program aims to 

monitor and understand key biogeochemical processes on a global scale by developing an 

array of profiled Argo floats equipped with an array of biogeochemical sensors. The floats 

measure in-situ fluorescence, an indicator of chlorophyll-a concentration, used as a proxy 

of phytoplankton biomass. However, this measurement has been shown to be highly 

variable on a global scale. Moreover, it remains a challenge to estimate phytoplankton 

community composition from BGC-Argo floats. Some methods have been previously 

published but are either restricted to specific oceanic region or provide a limited 

information. Thus, there is a crucial need to i) better assess phytoplankton biomass from 

BGC-Argo float and ii) develop methods to estimate phytoplankton community 

composition. 

First, this thesis presents the role of the phytoplankton community in the variability of the 

in-situ fluorescence response. A database of fluorescence and chlorophyll-a concentration 

measurements was studied to demonstrate the key role of phytoplankton community 

composition on the relationship between fluorescence and chlorophyll-a concentration at 

different spatial and temporal scales. It revealed a significant impact of the phytoplankton 

community composition on the in-situ fluorescence signal, with an impact of the size 

structure of the community but also of the presence of non-photosynthetic pigments. 

Then, we developed two different methods to evaluate the phytoplankton community 

composition. The first one is based on the use of multispectral fluorescence, to estimate a 

taxonomic index of phytoplankton composition. We collected laboratory and field data to 

better understand the fluorescence response at different wavelengths as a function of 

phytoplankton community composition. Ultimately we propose a method that allows 

predictions of four different phytoplankton community composition clusters from 

multispectral fluorescence. The second method uses a combination of optical and 

hydrographic measurements to estimate the concentration of four different plankton 

groups in organic carbon and total particulate organic carbon concentration. This method 

has been validated on three different dataset covering contrasted trophic environments.  

These two methods allowed us to highlight the possibility of estimating the composition of 

the phytoplankton community from the BGC-Argo profiling floats. 

  



14 

 

Résumé 

 

Le phytoplancton joue un rôle clé dans la régulation de nombreux cycles biogéochimiques. Il est 

responsable de la moitié de la production primaire mondiale, contribue à la chaîne alimentaire 

marine et régule les flux de carbone entre l'océan et l'atmosphère. Ces processus varient en 

fonction de la biomasse phytoplanctonique et de la composition de la communauté. La 

surveillance de la biomasse phytoplanctonique et de la composition des communautés à l'échelle 

mondiale constitue donc un défi majeur. Le programme BioGeoChemical-Argo (BGC-Argo) vise à 

surveiller et à comprendre les processus biogéochimiques clés à l'échelle mondiale en développant 

une série de flotteurs Argo profilés équipés d'un ensemble de capteurs biogéochimiques. Les 

flotteurs mesurent la fluorescence in-situ, un indicateur de la concentration en chlorophylle-a, 

utilisé comme indicateur de la biomasse du phytoplancton. Cependant, il a été démontré que cette 

mesure est très variable à l'échelle mondiale. En outre, l'estimation de la composition de la 

communauté phytoplanctonique à partir des flotteurs BGC-Argo reste un défi. Certaines méthodes 

ont déjà été publiées, mais elles sont soit limitées à une région océanique spécifique, soit ne 

fournissent qu'une information limitée. Il existe donc un besoin crucial de i) mieux évaluer la 

biomasse phytoplanctonique des flotteurs BGC-Argo et ii) de développer des méthodes pour 

estimer la composition de la communauté phytoplanctonique. 

Tout d'abord, cette thèse présente le rôle de la communauté phytoplanctonique dans la variabilité 

de la réponse de fluorescence in-situ. Une base de données de mesures de fluorescence et de 

concentration en chlorophylle-a a été étudiée pour démontrer le rôle clé de la composition de la 

communauté phytoplanctonique sur la relation entre la fluorescence et la concentration en 

chlorophylle-a à différentes échelles spatiales et temporelles. Elle a révélé un impact significatif de 

la composition de la communauté phytoplanctonique sur le signal de fluorescence in-situ, avec un 

impact de la structure de taille de la communauté mais aussi de la présence de pigments non-

photosynthétiques. Ensuite, nous avons développé deux méthodes différentes pour évaluer la 

composition de la communauté phytoplanctonique. La première est basée sur l'utilisation de la 

fluorescence multispectrale, pour estimer un indice taxonomique de la composition du 

phytoplancton. Nous avons collecté des données en laboratoire et sur le terrain pour mieux 

comprendre la réponse de la fluorescence à différentes longueurs d'onde en fonction de la 

composition de la communauté phytoplanctonique. Finalement, nous proposons une méthode qui 

permet de prédire quatre groupes différents de composition de la communauté 

phytoplanctonique à partir de la fluorescence multispectrale. La deuxième méthode utilise une 

combinaison de mesures optiques et hydrographiques pour estimer la concentration de quatre 

groupes différents de plancton en carbone organique et la concentration totale de carbone 

organique particulaire. Cette méthode a été validée sur trois jeux de données différents couvrant 

des environnements trophiques contrastés.  Ces deux méthodes nous ont permis de mettre en 

évidence la possibilité d'estimer la composition de la communauté phytoplanctonique à partir des 

flotteurs profileurs BGC-Argo. 
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Table of abbreviations 

Abbreviations Significance Units 

a Absorption m-2 

a*  Specific absorption m-2  (mg Chla)-1 

bbp Particulate backscattering m-1 

cp Particulate attenuation m-1 

Chla Chlorophyll-a  

[Chla] Chlorophyll-a 

concentration 

mg m-3 

fmicro The fraction of Chlorophyll-

a concentration attributed 

to microphytoplankton 

% 

fnano The fraction of Chlorophyll-

a concentration attributed 

to nanophytoplankton 

% 

fpico The fraction  of 

Chlorophyll-a 

concentration attributed to 

picophytoplankton 

% 

F Raw fluorescence signal Digital Counts 

FChla or [Chla]Fluo Chlorophyll-a 

concentration estimated 

from in-situ fluorescence 

mg m-3 

F440 Raw fluorescence signal 

from 440 nm excitation 

Digital Counts 

F470 Raw fluorescence signal 

from 470 nm excitation 

Digital Counts 
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F532 Raw fluorescence signal 

from 532 nm excitation 

Digital Counts 

zeu Euphotic depth m 
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I Introduction 

 I.1. A world ocean in a context of global changes 

 

 Since the industrial revolution, the climate and ecosystems are modified on a 

global scale by anthropogenic activities. The emission of greenhouse gases resulting from 

the combustion of fossil fuels have modified the radiative equilibrium of the Earth system 

leading to a global warming of the atmosphere (Trenberth et al., 2014). As a result, the 

mean temperature between 2013 and 2022 is 1.14°C (+/- 0.12°C) higher than the mean 

temperature between 1850 and 1900 (Bindoff et al., 2019).  In oceanography, this warming 

and anthropogenic forcing are of a major concern because of their multiple 

consequences. The combination of these two factors have been shown to induce global 

warming, acidification and deoxygenation of the ocean (Bindoff et al., 2013). All of these 

consequences impact the functioning of marine ecosystems and biogeochemical cycles 

(e.g. Doney et al., 2009; Hoegh-Guldberg and Bruno, 2010; Finzi et al., 2011; Harada, 2016). 

 The carbon biogeochemical cycle is of a particular interest because of its major role 

in the regulation of the Earth’s climate. The ocean plays a key role in the carbon cycle due 

to its size and interactions with the atmosphere (Broecker and Peng, 1974; DeVries, 2022). 

The total amount of carbon stored in the ocean is regulated not only by the solubility of 

CO2 in cold waters followed by subduction to the deep ocean, but also by the marine 

biosphere and the process of photosynthesis that induce the so-called biological carbon 

pump (e.g. BCP, Sigman and Boyle, 2000; Berner and Kothavala, 2001). The BCP is initiated 

in the surface waters through net primary production (NPP) by phytoplankton organisms 

(Falkowski et al., 1998; Field et al., 1998; Boyd et al., 2019). Autotrophs organisms 

contribute to reduce DIC concentration in surface waters by the conversion of DIC in 

organic carbon (Ito and Follows, 2005). A part of this organic carbon is then exported to 

deeper water masses. 

 

 I.2. Biogeochemical significance of phytoplankton 
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Phytoplankton are unicellular phototrophs or mixotrophs organisms. They live in the 

upper layer of the water column, where the photosynthetic active radiation (PAR), i.e. 

irradiance within the spectral domain from 400 to 700 nm, is sufficient to sustain 

photosynthesis. This process allows phytoplankton to use the energy of solar radiation to 

transform dissolved CO2 and nutrients into organic carbon in the form of sugar. This 

production of organic matter from dissolved CO2 is the first step of the trophic food web 

and is thus called primary production. Phytoplankton are ubiquitous in all marine and 

freshwater environments and contribute ~50% of the world's (ocean + land) primary 

production (Field et al., 1998). They are the keystone of the BCP; their role is essential in 

the oceanic carbon cycle and, thus, in the regulation of the Earth's climate. 

A fraction of the organic carbon produced by photosynthesis is exported to the deep 

water masses, while the other fraction is transferred to mixotrophic and heterotrophic 

organisms of the marine food web (Berglund et al., 2007; Herndl and Reinthaler, 2013). 

The mechanisms by which biogenic carbon is exported towards the deep ocean range 

from sedimentation of organic particles (gravitational pump), to physical mixing (mixed 

layer pump) and vertical migrations of organisms between the euphotic and the 

mesopelagic zones (Siegel et al., 2016; Boyd et al., 2019). This carbon flux toward deep 

ocean is attenuated by variable microbial remineralization through the whole water 

column (Herndl and Reinthaler, 2013). 

The rate of carbon export through the BCP is then constrained by the NPP and by these 

exports mechanisms. While phytoplankton biomass is the first parameter that regulates 

the intensity of primary production in the environment, the composition of the 

phytoplankton communities also significantly influences the NPP (e.g. Cermeño et al., 

2005; Uitz et al., 2008). Phytoplankton community composition plays also a determining 

role in the pathways towards which carbon is directed (Michaels and Silver, 1988; Cushing, 

1989; Finkel, 2007) and, thus, in the carbon export mechanisms (Buesseler et al., 1998; 

Guidi et al., 2009; Briggs et al., 2011). Phytoplankton size has been shown as a particularly 

important aspect of community structure in the regulation of the carbon cycle in the 

ocean (Michaels and Silver, 1988; Hilligsøe et al., 2011). Phytoplankton organisms are 

typically sorted into three distinct size classes; microphytoplankton (>200 µm), 
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nanophytoplankton (between 2 and 20 µm) and picophytoplankton (<2 µm). In this 

context, understanding and assessing the dynamics of phytoplankton biomass and 

community composition on the global scale is an essential need to better understand and 

predict the carbon cycle. 

 

 I.3. Seasonal variability in phytoplankton biomass and community 

composition 

 

Phytoplankton biomass and community structure vary depending on environmental 

conditions, following nutrient availability and light intensity. In the case of a typical 

seasonal dynamics, those two parameters follow an seasonal pattern that can, on 

average, be described as follows (Marty et al., 2002). In winter, the water column is mixed 

due to physical forcing, which results in a replenishment of the ocean upper layer with 

nutrients, but also to a decrease in the average light intensity received by phytoplankton 

cells in the mixed layer (Figure 1-1). The phytoplankton biomass is relatively low and 

dominated by nano- and picophytoplankton. In the spring, warmer weather allows an 

increase in solar radiative energy. The concurrent presence of nutrients due to winter 

mixing and increase in solar energy leads to a phytoplankton bloom (Sverdrup, 1953; 

Fischer et al., 2014) typically dominated by large diatoms and associated with a strong 

increase in primary production. But the warmer weather also induces a rise of the mixed 

layer depth which results in a nutrient limitation. This, combined with an increase of 

grazing pressure from zooplankton, induces a decay of phytoplankton biomass along all 

the summer season. In such low-nutrients high-light conditions, the phytoplankton 

assemblage is usually dominated by small organisms, prokaryotes in particular (Marty et 

al., 2002). Finally, in fall, the mixed layer depth deepens, sometimes leading to a second 

bloom, yet of moderate amplitude.  
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Figure 1-1 : Seasonal dynamic of the mixed layer depth associated to the nutrient availability and its consequence 

on the phytoplankton succession in seasonal regions. Illustration by Thomas Boniface (REFINE project; https://erc-

refine.eu/). 

 

This contrast between high biomass waters dominated by nano- and microphytoplankton 

and low biomass waters dominated by small phytoplankton can also be observed on a 

global spatial scale (Figure 1 -2). Indeed, we observe that phytoplankton biomass is higher 

in near-coastal areas where upwelling of nutrient-rich deep waters favour primary 

production, as well as at high latitudes where meteorological conditions favour convective 

mixing and, thus, the supply of nutrients from deep waters (Dale et al., 1999; Lacour et al., 

2017). In contrast, low latitude environments, with warm conditions and strong incident 

solar irradiance, are characterized by shallow mixed layers and strong stratification that 

usually prevent nutrient injection from the deep layer to the upper ocean. In such 

conditions low phytoplankton biomass dominated by picophytoplankton prevails (Raven, 

1998; Agawin et al., 2000). Such a strong variability in the phytoplankton biomass and 

community structure over a broad range of temporal and spatial scales induces equally 

large variability in phytoplankton-dependent processes, the carbon cycle in particular. 

Therefore, it appears crucial to develop a capability to assess phytoplankton biomass and 

community composition on the global and seasonal scales. This still represents a critical 

challenge in oceanography. 
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 Figure 1 -2 : Global maps of (a) percentage of picoplankton, (b) percentage of nanoplankton, and (c) percentage of 

microplankton, estimated for the period of winter 2010–2011 (averaged over day 355, 2010 to day 79, 2011), by the 

method described in the text. Error budgets (as described in the text) expressed in percentages, in estimating the 

fractional contributions of (d) picoplankton, (e) nanoplankton, and (f) microplankton to total chlorophyll using the 

method presented here. Pixels with missing data are white. From Roy et al. (2013) 

I.4. Determining phytoplankton biomass and composition, state of the art 

and challenges 

 

Observing phytoplankton has always been a complex task. Although small and not 

observable to the naked eye, phytoplankton organisms have a size that spans three 
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different classes from picophytoplankton (< 2 µm) to nanophytoplankton (2 to 20 µm) and 

microphytoplankton (20 to 200 µm), which represents nine order of magnitudes of 

volume (Figure 1.3, Finkel et al., 2010). This often leads to the need for combining several 

methods to observe the entire phytoplankton assemblage, rather than just a fraction.  

 

Figure 1 -3 : A comparison of the size range (maximum linear dimension) of phytoplankton relative to macroscopic 

objects. (Adapted from Finkel et al., 2010) 

We can differentiate several methods for assessing phytoplankton biomass and/or 

community composition in two different categories; i) methods based on discrete 

seawater sampling and subsequent laboratory analysis; and ii) methods based on 

automatic in-situ high frequency observations. 

 

I.4.1 Discrete measurements 

 

Microscopy 

Historically, the observation of phytoplankton cells has been done using an optical 

microscope. The most widely used technique for enumerating phytoplankton cells is 

inverted microscopy, where an inverted microscope enables to look at the bottom of a 

sedimented water sample (Utermöhl, 1958). This technique allows to identify, at best, 

species (sometimes the genus), estimate the abundance and measure the size of the cells 

ranging from tens of micrometres to millimetres. More recently, electron microscopes 

have made it possible to accurately observe smaller phytoplankton cells at higher 
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magnification, thus increasing the possibility of accurate taxonomic identification (Booth, 

1993a). However, these methods remain very expensive and time consuming, and require 

a high level of expertise, which makes it difficult to implement them routinely for a large 

number of samples. 

Flow cytometry 

In order to complete the observation of the lower end of the phytoplankton size spectrum, 

flow cytometry is commonly used (Chisholm et al., 1988). In a flow cytometer, the 

phytoplankton cells individually pass through a stream of water and in front of a laser 

beam. The optical properties provide information about the size and structure of the cells 

(Dubelaar and Jonker, 2000). This method enables to identify phytoplankton taxa and 

estimate cellular abundance of small phytoplankton ranging from 0.3 to 20 µm. The 

technic has evolved and different types of flow cytometry methods are used to answer 

different observations needs. We can notable think of submersible flow cytometer (Sosik 

et al., 2003; Thyssen et al., 2014) or flow cytometer combined with imaging systems (Sosik 

and Olson, 2007). Unlike microscopy, this method allows rapid analysis of samples in 

batches, but provides information biased towards small phytoplankton taxa. 

HPLC pigment analysis 

In order to observe the phytoplankton community as a whole, other methods have been 

developed, such as pigment analysis. The different phytoplankton taxa are characterized 

by their pigment assemblage. The pigments present in a seawater sample can be 

separated, identified and quantified by High Performance Liquid Chromatography (HPLC). 

Chlorophyll-a (Chla) is ubiquitous among all phytoplankton taxa, excepted for 

Prochlorococcus which has divinyl Chlorophyll-a (DVChla). Hence the total Chla, 

determined as the sum between Chla and DVChla, can be used as a proxy of the total 

phytoplankton biomass. In contrast, several accessory pigments are biomarker of certain 

phytoplankton taxa and, thus, may be used to determine the community structure 

(Claustre, 1994; Jeffrey et al., 1997; Roy et al., 2011). Nevertheless, the chemotaxonomic 

biomarker approach is not without weaknesses. While a few pigments can unambiguously 

be assigned to a single phytoplankton taxon, other pigments can be shared between 

different taxa and each taxon contains different accessory pigments (Table 1.1). An 
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approach to mitigate this bias is to select pigments that predominantly covary with 

biomass at the global scale, and weight their contribution to biomass by an empirically 

determined factor (Mackey et al., 1996; Vidussi et al., 2001; Uitz et al., 2006). 

 

Table 1.1 : Major pigments used for classification of phytoplankton groups. The most commonly used pigment algal-

class associations are in bold. 

Pigments Taxonomic significance 

Zeaxanthin Cyanobacteria, Chlorophytes, Chrysophytes, 

Dinoflagellates 

Divinyl-chlorophyll-b Prochlorophytes 

Chlorophyll-b Chlorophytes, Prasinophytes 

19’hexanoyloxyfucoxanthin Prymnesiophytes, Chrysophytes, Dinoflagellates 

19’butanoyloxyfucoxanthin Pelagophytes, Prymnesiophytes 

Alloxanthin Cryptophytes 

Fucoxanthin Diatoms, Prymnesiophytes, Chrysophytes, Dinoflagellates 

Peridinin Dinoflagellates 

 

In addition to being comprehensive (it covers the full spectrum of the phytoplankton 

assemblage) and quantitative, the pigment-based approach to observing phytoplankton 

communities is less time consuming and more practical than traditional microscopic 

analysis, and can therefore be applied to a large number of seawater samples. However, 

it only provides a proxy of the phytoplankton biomass as the pigment to carbon ratio (or 

the intracellular pigment content) varies with the physiological status of the 

phytoplankton cells and/or with environmental conditions. Moreover, the pigment-based 

approach requires to sample seawater and cannot provide continuous measurements of 

phytoplankton biomass or community composition.  

 

I.4.2. High frequency measurements 
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As discussed above, phytoplankton community structure varies in time and space. Thus, 

in order to monitor the dynamics of the many biogeochemical processes that depend on 

phytoplankton, it has been necessary to develop methods that allow a holistic view of 

phytoplankton dynamics. For this purpose, non-intrusive methods that allow high 

frequency observations of the biomass and composition of phytoplankton communities 

have been developed.  

 

Fluorescence 

The most commonly used technic to estimate phytoplankton biomass at high frequency 

consists of quantifying chlorophyll-a concentration based on in vivo fluorescence. 

Fluorescence is the emission of energy, in the form of photons, by a molecule that returns 

from a single excited state to its ground state. The first use of fluorescence as a tool to 

assess Chla in oceanography has been described by Lorenzen (1966). Chla absorbs light 

in the blue and red part of the visible light spectrum. This energy can be dissipated for 

charge separation (photosynthesis), as heat or fluorescence (Huot and Babin, 2010). The 

source of excitation energy can be either solar light in the case of satellite sensors, or an 

actinic light of a calibrated wavelength (usually between 430 and 470 nm) in the case of 

in-situ sensors. The light which is reemitted by fluorescence is redshifted at 685 nm. The 

fluorescence intensity depends on the excitation energy wavelength, the light absorption 

coefficient and the quantum yield of fluorescence (i.e. the fraction of absorbed light 

energy that will ultimately be reemitted as fluorescence) of the Chla. It can be formulated 

as follows:  

𝐹 = [𝐶ℎ𝑙𝑎] 𝑎∗(λ) 𝜙 𝐸(λ) (1.1) 

where the fluorescence signal, F (mol quanta), is function of the spectral Chla-specific 

absorption coefficient of phytoplankton at a wavelength λ, a*(λ) (m2 (mg Chla)-1); the 

quantum yield of fluorescence, Φ (relative unit); and the light energy emitted by the 

fluorometer at the considered wavelength, E(λ) (mol quanta m-2) (Cosgrove and 

Borowitzka, 2010). While F is defined as a quantity of energy (i.e. mol quanta), the output 

of the fluorometer is expressed in digital counts or in relative fluorescence units (RFU). As 

Chla is ubiquitous among all phytoplankton organisms we can use the fluorescence 
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intensity as a proxy of the Chla concentration. The transformation of the electric signal 

received by the sensors to a Chla concentration value can be expressed as follows:  

[𝐶ℎ𝑙𝑎]𝑓𝑙𝑢𝑜 = (𝐹 − 𝐷𝑎𝑟𝑘 𝑠𝑖𝑔𝑛𝑎𝑙) ∗ 𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑙𝑜𝑝𝑒 (1.2) 

with “Dark signal” as the number of fluorescence relative units in the dark and “Calibration 

slope” as the factory determined coefficient that permits to convert the number of counts 

into [Chla]fluo (mg m-3 count-1). The Calibration slope is derived from a calibration 

performed by the manufacturer, based on a series of measurements of [Chla]fluo for a 

range of concentrations of a monospecific culture. However, the relation between Chla 

and biomass is not straightforward and varies depending on several factor such as 

photoacclimation, physiological state or taxonomic belonging. 

The advantage of in-situ fluorescence goes beyond the estimation of Chla concentration 

and might provide information about the phytoplankton community composition. More 

recently, the use of in-situ multispectral fluorescence to estimate phytoplankton 

community structure has emerged (Proctor and Roesler, 2010; Thibodeau et al., 2014). 

This method relies on the specific absorption properties of biomarker pigments that occur 

in the phytoplankton community. The principle of multispectral fluorescence is to excite 

different parts of the visible light spectrum, characteristic of key accessory pigments, 

biomarker of phytoplankton taxa, allowing the identification of phytoplankton community 

composition. Although the results of recent studies are promising, this method remains 

experimental and requires further investigation before it can be safely deployed on a 

large scale. 

Optical measurements 

Optical measurements of ocean inherent optical properties (IOPs) to retrieve information 

on particulate composition and assemblage is another opportunity to assess 

phytoplankton biomass and community structure. Specifically, the measurements of 

particulate backscattering (bbp) and particulate attenuation (cp) have been studied to 

estimate particulate concentration and composition in the ocean (Bricaud and Morel, 

1986; Babin et al., 2003; Huot et al., 2007). These measurements have the advantage of 

not depending on Chla and therefore not fluctuating with the physiological state of the 

phytoplankton community. However bbp and cp alone don’t provide phytoplankton specific 
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information, because they reflect the whole particulate assemblage, including 

zooplankton, detritus, bacteria or mineral particles. The interpretation must then be done 

in term of particulate organic carbon (POC) (Stramski et al., 1999; Gardner et al., 2006; 

Cetinić et al., 2012) which encompass phytoplankton biomass but also bacteria and other 

organic particles. However, the analysis of IOPs in parallel with in-situ fluorescence 

measurements provide an interesting possibility of assessing phytoplankton biomass 

(Behrenfeld and Boss, 2006; Westberry et al., 2010; Graff et al., 2015) . 

A major advantage of fluorescence and optical properties is that they can be easily 

measured by miniaturized sensors implemented onto in-situ autonomous platforms. 

These platforms have filled a critical observational gap in oceanography by providing data 

in areas where navigation is not possible because of remoteness or rough meteorological 

conditions, and by greatly increasing the global coverage of oceanographic 

measurements. Although there are many types of autonomous platforms, we here focus 

on BioGeoChemical Argo profiling floats, which are dedicated to the observation of 

biogeochemical cycles in the global ocean. 

I.5. Satellite observation of the phytoplankton community composition 

In the last two decades numerous algorithms have been developed to retrieve 

phytoplankton community composition from space (Bracher et al., 2017). They rely on 

different optical properties resulting from the variety of pigment composition and cell 

structure to detect the presence of specific phytoplankton groups (e.g., Le Quéré et al., 

2005). It allowed a great improvement in our understanding of the phytoplankton 

community composition dynamics on the global scale, and the field of application of such 

methods is still very wide. However, the satellite detection is still restricted to the surface 

of the ocean and does not provide a satisfying vertical resolution. To address such issue, 

different in-situ autonomous platform appear as an opportunity to complement satellite 

observations (Figure 1.4). In this thesis work, we will focus on the BioGeoChemical Argo 

program. 
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Figure 1-4 : The different oceanographic observation platforms. (Chai et al., 2020) 

I.6. BioGeoChemical Argo profiling floats 

 

The BioGeoChemical-Argo (BGC-Argo) program relies on a fleet of profiling floats 

deployed in the global open ocean  (Biogeochemical-Argo Planning Group, 2016). BGC-

Argo floats are equipped with a suite of miniaturized sensors that allow to measure the 

hydrological, optical and biogeochemical properties of the ocean (Claustre et al., 2020). 

Once deployed, the float performs vertical profiles from 0 to 2000 m depth following a 

programmed cycle. The float starts its descent to 2000 m depth where it drifts for a 

defined period of time (usually ~10 days), and then returns to the surface while acquiring 

measurements. The data are then transmitted by satellites during the short time the float 

is at the surface. BGC-Argo floats allow the observation of ocean properties throughout 

the water column and on a quasi-global scale, which make them a unique tool for 

biogeochemical studies.  
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Figure 1 -5 : Example of a 10 days cycle of a BGC-Argo float. Illustration from Claustre et al. (2020). 

 

The acquisition of information related to phytoplankton communities by BGC-Argo floats 

is currently limited to estimating the Chla concentration from fluorescence, a proxy for 

algal biomass, and the particulate backscattering and attenuation coefficients, both 

indicators of POC. Different studies have provided methods to go beyond the biomass 

information and characterize the structure of phytoplankton communities (e.g. Briggs et 

al., 2013; Sauzède et al., 2015; Rembauville et al., 2017; Terrats et al., 2020) but they 

remain limited either in their regions of application, in the information provided, or in 

their dependence on satellite measurements. Considering the key role of phytoplankton 

in global biogeochemical cycles, particularly the carbon cycle, it is critical not only to 

improve the estimation of phytoplankton biomass based on BGC-Argo floats, but also to 

develop methods that yield information on community composition.  
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I.7. Research objectives and work plan 

The objective of this thesis work are twofold: (1) to improve our understanding of the 

variability in the fluorescence-to-chlorophyll a ratio in order to better constrain the 

estimation of Chla concentration from BGC-Argo floats; and (ii) to develop novel 

approaches to estimate both the biomass and composition of phytoplankton 

communities in view of applications to BGC-Argo floats. 

As discussed above, the estimation of phytoplankton biomass from BGC-Argo floats 

essentially relies on the assessment of the Chla concentration based on in-situ 

fluorescence measurements. However, it has been shown that the ratio between the 

fluorescence signal and the Chla concentration varies on the global and regional scales 

depending (Roesler et al., 2017; Schallenberg et al., 2022). The first goal of the present 

work is thus to investigate the sources of variability in the relationship between in-situ 

fluorescence and Chla concentration on regional and seasonal scales. We especially focus 

this analysis on the influence of phytoplankton community composition on the in-situ 

fluorescence signal. This work has been published as a research article in the journal 

Frontiers in Marine Science.  

Petit, F., Uitz, J., Schmechtig, C., Dimier, C., Ras, J., Poteau, A., et al. (2022). Influence of the phytoplankton 

community composition on the in situ fluorescence signal: Implication for an improved estimation of the 

chlorophyll-a concentration from BioGeoChemical-Argo profiling floats. Frontiers in Marine Science 9 

https://doi.org/10.3389/fmars.2022.959131 

The second objective of this work is to evaluate the possibility of using in-situ multispectral 

fluorescence to estimate the composition of phytoplankton communities for future 

applications to BGC-Argo floats. We based our work on the use of a multispectral 

fluorometer, that emits exciting light at three different wavelengths, and attempt to 

retrieve information on phytoplankton community (taxonomic) composition based on the 

fluorescence response. This approach relies on the hypothesis that the fluorescence 

response to light excitation in the three different channels varies depending on light 

absorption by the various accessory pigments used as biomarkers of taxonomic groups. 

This work combined laboratory and field work to evaluate the sensor response to 

phytoplankton monospecific cultures and in-situ natural communities.  
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Finally, we investigate the possibility to extend the method proposed by Rembauville et 

al. (2017) for the Southern Ocean to other open ocean regions characterized by different 

biogeochemical regimes and phytoplankton assemblages. This method enables to 

retrieve the relative (%) contrbution to the C of four different plankton groups based on 

optical measurements as acquired by BGC-Argo floats. For this purpose we used a larger 

dataset that comprises data of three different cruises located in the northwestern and the 

eastern Mediterranean sea and the Southern Ocean. Ultimately, we improved the method 

of Rembauville by introducing a method to predict POC concentration from standard BGC-

Argo floats measurements. Thus the new proposed method enables to retrieve 

quantiative information on plankton community composition expressed in terms of POC 

concentrations. 

This thesis is organized in six chapters. The first two chapters are dedicated to present 

the introduction and an overview of the data and methodological aspects, respectively. 

Chapters 3 to 5 present the research work. Finally the last chapter discusses conclusions 

and perspectives. 

Although not yet published, Chapters 4 and 5 were written in the format of a scientific 

article and can be read independently to the rest of the manuscript. This also explains 

some redundancy in the introduction and methodological sections. 
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II Data and methods 

 

This thesis heavily relies on data analysis and the development and evaluation of machine 

learning models. The first objective is achieved by analyzing a database of concurrent in-

situ fluorescence and Chla concentration measurements. The two other parts of this PhD 

work focus primarily on the development and evaluation of machine learning models. The 

challenge behind the development of a machine learning method is to gather concurrent 

data of the explained variables, called “targets”, and the explanatory variables, called 

“descriptors”. In order to evaluate the performances of machine learning models applied 

to BGC-Argo sensor measurements for estimating phytoplankton community 

composition, we built dedicated database. For this purpose we designed and 

implemented two different sampling protocols. The general philosophy of the sampling 

protocol is presented in the following sections and further detailed in the corresponding 

chapters.  

II.1. Fluorescence and HPLC database 

 

The first research objective aims to investigate the regional, seasonal and vertical 

variability in the relationship between the in-situ fluorescence signal and the Chla 

concentration in the global open ocean. We thus gathered a dataset of concomitant 

measurements of in-situ fluorescence and HPLC-determined Chla concentration. For this 

purpose, we used the first fluorescence profiles acquired by BGC-Argo floats during their 

time series in various open ocean regions and HPLC Chla vertical profiles obtained from 

shipborne seawater sampling coinciding in space and time with the float deployments. A 

volume of 2.7 L of seawater is collected and filtered through GF/F filters. The filters are 

then stored in liquid nitrogen for laboratory analysis at the SAPIGH analytical service at 

IMEV following the protocol of Ras et al. (2008). The resulting database covers different 

contrasted bioregions considered to be representative of the variability encountered in 

the global ocean. 



34 

 

In order to account for the seasonal dimension, we also consider data from a fix 

observation station in the Northwestern Mediterranean Sea. The BOUSSOLE (BOUée pour 

l’acquiSition d’une Série Optique à Long termE) project collects monthly vertical profiles 

of in-situ fluorescence concomitantly to discrete seawater samples. 

In this thesis, we specifically investigate the presence of seven diagnostic pigments (DP) 

identified among the full suite of accessory pigments as biomarkers of major 

phytoplankton taxa, further grouped into three size classes (Claustre, 1994; Vidussi et al., 

2001). The seven DP are presented in Table 3.2 along with their abbreviations which, for 

the sake of simplicity, will be used hereafter. The DP-based method allows the estimation 

of the relative contribution to the Chla concentration of three phytoplankton size classes: 

micro- (>20 μm), nano- (2-20 μm) and picophytoplankton (<2 μm) following equations 

given in Uitz et. al (2006) : 

𝑓𝑚𝑖𝑐𝑟𝑜 =  
1.41[𝐹𝑢𝑐𝑜] + 1.41[𝑃𝑒𝑟𝑖]

∑ 𝐷𝑃𝑤
 

(1.3) 

𝑓𝑛𝑎𝑛𝑜 =  
1.27[19′ − 𝐻𝐹] + 0.6[𝐴𝑙𝑙𝑜] + 0.35[19′ − 𝐵𝐹]

∑ 𝐷𝑃𝑤
 

(1.4) 

𝑓𝑝𝑖𝑐𝑜 =  
0.86[𝑍𝑒𝑎] + 1.01[𝑇𝑐ℎ𝑙𝑏]

∑ 𝐷𝑃𝑤
 

(1.5) 

where ∑ 𝐷𝑃𝑤 is the weighted sum of the concentrations of the seven diagnostic pigments 

computed as:  

∑ 𝐷𝑃𝑤 = 1.41 [𝐹𝑢𝑐𝑜] + 1.41 [𝑃𝑒𝑟𝑖] + 1.27 [19′ − 𝐻𝐹] + 0.6 [𝐴𝑙𝑙𝑜] + 0.35 [19′ − 𝐵𝐹]

+ 0.86 [𝑍𝑒𝑎] + 1.01 [𝑇𝑐ℎ𝑙𝑏] 

(1.6) 

with 𝑓𝑚𝑖𝑐𝑟𝑜, 𝑓𝑛𝑎𝑛𝑜 and 𝑓𝑝𝑖𝑐𝑜 the respective contribution to the total algal biomass of the 

micro-, nano- and picophytoplankton classes. We note that, because it relies on biomarker 

pigment concentrations, this approach yields an average, synthetic estimate of both the 

taxonomic and size composition of the phytoplankton communities. Although we 

recognize that it has limits because some phytoplankton taxa may occasionally span 

several size classes and some DP may be found in several taxa, this approach has been 
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shown to provide reliable, quantitative information for use on large spatial and temporal 

scales (e.g. Bricaud, 2004; Uitz et al., 2006; Brewin et al., 2014). 

 

II.2. Laboratory fluorescence measurements 

 

Our second research objective investigates the possible use of a multispectral 

fluorometer as a tool to assess phytoplankton community taxonomic composition. The 

first step of this work is to understand the response of the fluorometer to distinct 

phytoplankton taxa. To this end, we selected ten phytoplankton strains representative of 

major phytoplankton taxa found in temperate open ocean regions and used the 

multispectral fluorometer to evaluate their response in different conditions of 

concentrations (dilutions). The fluorescence response of each strain was measured on a 

dilution series in order to obtain a linear regression model between the fluorescence 

response and the Chla concentration of the strain culture. The slope of the regression 

model is defined as the Chla biomass calibration value, i.e. the fluorescence response 

increase per units of Chla concentration. Finally we could analyse the variability of the 

multispectral fluorescence values between different taxa to estimate the possibility to use 

the multispectrale fluorometer to estimate in-situ taxonomic information on the 

phytoplankton community. 

 

II.3. Field work 

 

A key objective of this thesis work is to design and evaluate the performance of two 

different models to retrieve information on phytoplankton community composition. The 

first one (Section IV) is based on multispectral fluorescence while the second (Section V) 

relies on optical coefficient measurements. In order to collect the data needed to develop 

these models, we carried out monthly sampling at sea for one year at the BOUSSOLE site, 

in the Northwestern Mediterranean Sea. The sampling protocol was designed to collect 
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concomitant measurements of multispectral fluorescence, optical coefficients and 

phytoplankton community compositon. A CTD-rosette device equipped with a package of 

dedicated sensors was deployed in order to acquire the fluorescence and optical data 

concomitantly to seawater samples. For each CTD cast, we measured vertical profiles of 

fluorescence in response to the three different excitation channels and of the particulate 

backscattering (bbp) and attenuation (cp) coefficients. Concomitantly seawater samples 

were collected at 10 different depths for laboratory analysis of HPLC pigments, POC and 

taxonomic determination (microscopy and flow cytometry). 

The Northwestern Mediterranean Sea: A case study 

The developed sampling protocol was implemented at the long-term fixed station 

BOUSSOLE (BOUée pour l’acquiSition d’une Série Optique à Long termE) located in the 

Ligurian (Northwestern Mediterranean) Sea at 7°54′E, 43°22′N (Antoine et al., 2008). This 

site is particularly relevant to this study which aims to develop methods for applications 

the global scale. Indeed, the Northwestern Mediterranean is characterized by a marked 

seasonality (Marty et al., 2002) where phytoplankton communities encountered 

throughout the year represent, to some extent, the diversity that can be observed on the 

global scale. The summer is characterized by stratified waters with a shallow mixed layer, 

leading to oligotrophic communities dominated by picophytoplankton such as 

Synechococcus or Prochlorococcus. Other seasons are characterized by a deeper mixed 

layer. In spring, the increase of sun light associated with nutrient-replenished upper layer 

resulting from a deep winter mixed layer depth (MLD) leads to the emergence of a 

seasonal bloom progressively consuming the surface nutrients and eventually leading to 

the formation of a deep chlorophyll maximum (DCM) (e.g. Lavigne et al., 2015; Barbieux 

et al., 2019). 

Assessment of the phytoplankton community composition  

The phytoplankton community composition was assessed in two different ways, first 

based on pigment composition, second based on combined flow cytometry and inverted 

microscopy cell identification and enumeration. First, the pigment-based method consists 

of HPLC analysis of seawater samples at nine depths  (5, 10, 20, 30, 40, 50, 60, 70, and 80 



37 

 

meters). We used the diagnostic pigment approach to investigate the phytoplankton 

community structure. 

The second approach to characterize the phytoplankton community is based on a 

measurement of the carbon content of planktonic groups. Microphytoplankton 

organisms were counted and measured by optical microscopy. 500mL of seawater were 

sampled and fixed with a lugol solution. The samples were then sedimented in a Utermöhl 

chamber and analyzed by microscopy (Karlson and al, 2010). The bacteria, pico- and 

nanophytoplankton abundances were determined by flow cytometry analysis. A volume 

of 1.5 mL of seawater was sampled, fixed with 0.2 mL of glutaraldehyde (0.5% final 

concentration), flash-frozen in liquid nitrogen, and stored at −80°C until analysis in the 

laboratory. As this approach is more time consuming than HPLC analysis, we performed 

these analyses at three depths (i.e. 5 m, DCM and below the DCM). The specific depths 

were selected on board by looking at the shape of the in-situ fluorescence profile. In the 

end, this fieldwork allowed the creation of a database gathering information on the 

taxonomic and pigment composition of the phytoplankton community associated with 

corresponding bbp and cp coefficients and multispectral fluorescence signal.  
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III.1. Introduction 

 

The ongoing global changes result in significant changes of oceanic 

biogeochemical cycles (Bindoff et al., 2019). The drivers of these modifications have to be 

better characterized and understood, a prerequisite for the predictive modeling of the 

evolution of the ocean biogeochemistry and its feedback to climate. As phytoplankton 

play a critical role in oceanic biogeochemical cycles (Falkowski, 1994), mapping their 

biomass at appropriate spatial and temporal scales appears essential. However, the wide 

spatial distribution and variable cell sizes (Chisholm, 1992; Roy et al., 2013) of 

phytoplankton communities make a global assessment of their biomass challenging. 

Several techniques are used that cover distinct ranges of the size spectrum of 

phytoplankton organisms, from flow cytometry analysis (Dubelaar and Jonker, 2000) to 

microscopic observation (Booth, 1993b; Karlson et al., 2010), or High Performance Liquid 

Chromatography (HPLC) pigment analysis (Jeffrey et al., 1997). Nevertheless, these 

techniques rely on discrete sampling, which restricts the spatial and temporal coverages 

of the observations. Satellite-based methods permit to estimate phytoplankton biomass 

on a global scale but are limited to the ocean surface layer (i.e. the light first penetration 

depth) and hence do not encompass the vertical distribution of phytoplankton within the 

whole water column.  

 

Initially introduced to oceanography in 1966 (Lorenzen, 1966), in-situ fluorescence 

relies on the fluorescence property of the chlorophyll-a (Chla) molecule. A fluorometer 

emits blue light exciting the chlorophyll-a (Chla) molecule and detects the red shifted light 

that is subsequently reemitted in the environment; the increase in the fluorescence signal 

is then interpreted as an increase in Chla concentration. Thanks to the possibility to equip 

with fluorometers autonomous in-situ platforms (profiling floats, gliders), in-situ 

fluorescence has become the most widely used technique to assess the phytoplankton 

biomass at large space and time scales with a fine vertical resolution. In particular, the 

BioGeoChemical-Argo (BGC-Argo) program aims to monitor and understand key 

biogeochemical processes on the global scale by developing a network of profiling Argo 
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floats equipped with a suite of biogeochemical sensors (Roemmich et al 2019; Claustre et 

al., 2020). BGC-Argo floats are all equipped with an ECO-series Chla fluorometer (SeaBird 

Electronics), providing time series of vertical profiles of Chla concentration for a broad 

range of oceanic regimes, resulting in a powerful dataset for investigating the distribution 

and dynamics of the phytoplankton biomass. Nevertheless, a recent study by Roesler et 

al. (2017) pointed to the large regional (natural) variability in the relationship between 

fluorescence and reference Chla concentration measurements, in addition to a global 

overestimation bias of the Chla concentration by fluorometers of the ECO-series. These 

results stress out the necessity to better understand the sources of variability in the 

fluorescence-to-Chla concentration relationship, with an aim to improve the calibration of 

fluorescence into Chla equivalent for all types of in-situ platforms, BGC-Argo profiling 

floats in particular. 

 

The variability in the ratio between the fluorescence signal and the Chla 

concentration has been shown to depend not only on the physiological state of 

phytoplankton cells (Behrenfeld et al., 2009; Escoffier et al., 2015; Schuback et al., 2021; 

Gorbunov and Falkowski, 2022), but also on the accessory pigment composition that 

varies with the phytoplankton taxonomic composition (Johnsen and Sakshaug, 2007; 

Proctor and Roesler, 2010; Roy et al., 2011). Two main factors influence the fluorescence 

process; the amount of (blue) light absorbed by cells which depends on both the intensity 

of the light emitted by the sensor and the absorption capacity of the cells (Bricaud et al., 

1995, 2004; Roy et al., 2013), and the efficiency of the cells in reemitting part of the 

absorbed blue light as red light, an efficiency known as the fluorescence quantum yield 

(Alpine and Cloern, 1985; Olaizola and Yamamoto, 1994; Falkowski and Kolber, 1995).  

Despite a significant variability in phytoplankton communities and environmental 

conditions encountered by the BGC-Argo floats and their attached fluorometers, an 

identical standard calibration equation is used to convert the electric signal associated to 

red light emission into Chla concentration (Bittig et al., 2019).  

While phytoplankton communities and, hence, pigment composition (e.g. Claustre, 

1994; Mackey et al., 1996; Jeffrey et al., 1997; Zapata et al., 2004; Ras et al., 2008) vary 
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tremendously at the global scale, the effect of such variations on the estimation of Chla 

concentration based on in-situ fluorescence measurements is still poorly understood and 

quantified. This knowledge is however crucial to better assess phytoplankton biomass in 

the world ocean and, thus, to improve our understanding of biogeochemical cycles.  

 

In this study, we examine the role of phytoplankton community structure in driving 

the fluorescence signal through its effects on the phytoplankton absorption coefficient 

and fluorescence quantum yield. To this end, we analyze data of BGC-Argo in-situ 

chlorophyll fluorescence, HPLC pigment concentrations, and phytoplankton absorption 

spectra, from various regions of the global open ocean. To investigate further the effect 

of seasonal succession and vertical distribution of phytoplankton communities on the 

fluorescence signal, we also consider a time series of in-situ fluorescence, HPLC pigments 

and phytoplankton absorption spectra acquired in the North Western Mediterranean 

(Ligurian) Sea. This region is characterized by a strong seasonality and contrasted 

oceanographic and biogeochemical conditions (Marty et al., 2002; Lavigne et al., 2015; 

Mayot et al., 2017) which will possibly permit to generalize the regional results to other 

temperate areas. Ultimately, we discuss possibilities to improve the calibration of the in 

vivo fluorescence signal to Chla concentrations by taking into account information on the 

phytoplankton community composition.  

 

III.2. Data and Methods  

 

III.2.1. Fluorescence principle 

 

The determination of the Chla concentration, [Chla] (mg m-3); using an in-situ 

fluorometer is based on the fluorescence principle expressed as follows: 
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 F = [Chla] a* (λ) Φ E(λ) (1) 

 

where the fluorescence signal, F (mol quanta), depends on the spectral Chla-specific 

absorption coefficient of phytoplankton at a wavelength λ, a*(λ) (m2 (mg Chla)-1); the 

quantum yield of fluorescence, Φ (relative unit); and the light energy emitted by the 

fluorometer at the considered wavelength, E(λ) (mol.quanta m-2) (Cosgrove and 

Borowitzka, 2010). While F is defined as a quantity of energy (i.e. mol quanta), the output 

of the fluorometer is expressed in digital counts or in relative fluorescence units (RFU).  

 

BGC-Argo floats are equipped with a Seabird Electronics SBE (previously WET Labs) 

ECO-series fluorometer. This sensor emits exciting energy on a range of wavelength going 

from 454 to 480 nm with a peak at 470 nm (Schmechtig et al., 2018). We note that this 

wavelength does not coincide with the in vivo Chla absorption peak in the blue region of 

the spectrum (Bricaud et al., 2004), but rather excites accessory pigments that transfer 

the energy to the reaction centers (RC) of the photosynthetic apparatus. The energy 

reemitted by phytoplankton cells is measured at a nominal wavelength of 690 nm and 

expressed as counts that correspond to F. This signal is then converted into Chla 

concentration ([Chla]fluo) following Equation (2): 

 

 [Chla]fluo = (F - Dark signal) Calibration slope (2) 

 

with “Dark signal” the number of fluorescence relative units in the dark and “Calibration 

slope” the factory determined coefficient that permits to convert the number of counts 

into [Chla]fluo (mg.m-3 count-1). The Calibration slope is derived from a calibration 

performed by the manufacturer, based on a series of measurements of [Chla]fluo for a 

range of concentrations of a monospecific culture of the diatom Contricriba weissfglogii 

(also known as Thalassiosira weissflogii)in controlled conditions (SBE ECO Chlorophyll 

Fluorometer Characterization sheet). 
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The bias in the estimate of [Chla]fluo is quantified in reference to [Chla] determined 

from HPLC analysis ([Chla]HPLC), assuming that [Chla]HPLC is equal to [Chla] in Equation (1). 

As in Roesler et al. (2017), the bias introduced in the conversion of F into [Chla]fluo is 

assessed through the coefficient of a linear regression between concurrent 

measurements of [Chla]fluo and [Chla]HPLC, and is referred to as the “slope factor”. 

Combining and rearranging Equations (1) and (2), the slope factor (dimensionless) can be 

defined as follows: 

 

Slope factor = ((a*(λ) Φ E) - Dark Signal) Calibration slope  (3) 

 

with two constant values, E and Calibration slope, and two variable quantities, a*(λ) and 

Φ. The only two parameters that can explain the variability of the slope factor are 

therefore a*(λ) and Φ. 

 

In order to grasp the variability of these important quantities, we analyzed 

different datasets that are presented in the next sections. The combination of this 

different datasets allows to investigate their spatial variability on the global scale as well 

as their seasonality and depth variability.  

  

III.2.2. Global scale databases 

 

In order to examine the sources of spatial variability of the fluorescence signal on the 

global scale, we analyze the “Glo-Argo” database. This database comprises concurrent 

measurements of [Chla]fluo, [Chla]HPLC, and concentrations of accessory pigments, along 

with indirect determinations of the a*(470), which is the phytoplankton absorption 

coefficient at 470 nm, the excitation wavelength of the ECO fluorometers mounted on the 

BGC-Argo floats. The [Chla]fluo data arise from BGC-Argo float fluorescence 

measurements, and the HPLC-determined [Chla]HPLC and accessory pigments 
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concentrations from discrete seawater samples collected simultaneously to the BGC-Argo 

float deployments. The phytoplankton absorption coefficient was generally not measured 

at float deployment and was thus derived from [Chla]HPLC using the empirical relationship 

of Bricaud et al. (1995). This relationship is based on a global scale database of contrasted 

environment and has proven robust for application to large scale dataset and does not 

show substantial regional varibility – see Figure 3.1 in Bricaud et al. (1995). 

 

Overall, the Glo-Argo dataset includes in-situ measurements associated with 46 

BGC-Argo floats deployed in 8 oceanic provinces defined by Longhurst (2006), also called 

“bioregions”. We will further refer to these bioregions by the following abbreviations 

(codes): ANTA, Antarctic Province; ARCH, Archipelagic Deep Basin Province; ARCT, Atlantic 

arctic Province; BPLR, Boreal Polar Province; EMED, Eastern Mediterranean Sea; SANT, 

Subantarctic Province; SPSG, South Pacific Subtropical Gyre Province; and WMED, Western 

Mediterranean Sea. They range from polar to subtropical biomes and are thus 

representative of most of the environmental conditions observed in the global ocean 

(Table 3.1). From the entire BGC-Argo fleet, we selected the floats that have been deployed 

with concomitant high-resolution vertical sampling for HPLC analysis. The float data were 

extracted from the official Coriolis database (ftp://ftp.ifremer.fr/ifremer/argo). The first 

measurement profile of each float has been matched with its associated HPLC profile at 

deployment. A maximum delay of 24h between the float fluorescence profile and the 

seawater sampling was set as a condition for the matchup the final matchups have a time 

lag of 9 h ± 6 h (mean ± standard deviation). 

 

All of the BGC-Argo floats are equipped with identical SBE ECO Puck Triplet 

fluorometers, to which the same standard calibration procedure is applied (Schmechtig 

et al., 2018). This ensures that the observed variability in the fluorescence signal can be 

attributed to natural variability rather than to inter-sensor variability. The [Chla]fluo is 

calculated from F, expressed as counts, a relative unit, following the manufacturer 

calibration coefficient (cf. Equation 2). The data are corrected for non-photochemical 

quenching (NPQ) following the method of Xing et al. (2012). In brief, this method 
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extrapolates the deep fluorescence value toward surface. It has been validated using data 

from contrasted conditions in the Southern Ocean and Mediterranean Sea and been 

successfully used in various open oceans (Barbieux et al., 2018; Mignot et al., 2018; 

Taillandier et al., 2018). The [Chla]fluo values greater than four times the Cook distance of 

the regression between [Chla]fluo and [Chla]HPLC in each bioregion are identified as outliers 

and removed. Roesler et al. (2017) recommends a factor of 2 to be applied to the BGC-

Argo [Chla]fluo data so as to account for the mean overestimation of [Chla] by the ECO-

series fluorometers on the global scale. Nevertheless, the correction factor of 2 is not 

applied here as our goal is to compare regional values of the slope factor computed for 

the Glo-Argo database with those of Roesler et al. (2017). Finally, the euphotic depth (Zeu) 

was calculated from the [Chla]FLUO vertical profile adjusted with [Chla]HPLC following Morel 

and Maritorena (2001), which allows to compute Zeu for all vertical profiles, including the 

13 night profiles; the data below Zeu were discarded. The final dataset comprises 335 

samples distributed over 46 different profiles in 8 oceanic bioregions (Table 3.1). 

 

Our global-scale investigation is completed by the analysis of the “Glo-aphy” 

dataset, which comprises concurrent HPLC pigment determinations and on-filter 

measurements of the phytoplankton absorption spectrum for seawater samples collected 

over 13 cruises from 1990 to 2016, most of them being part of the databases presented 

in Bricaud et al. (1995, 2004, 2010). This dataset includes 3340 in-situ data spanning 14 

different bioregions that cover contrasted ocean environments from polar to subtropical 

biomes and, thus, may be considered as representative of the global open ocean. As for 

the Glo-Argo dataset, Zeu was computed following Morel and Maritorena (2001) and the 

data located below Zeu were discarded. 
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Table 3.1. Summary of the three different datasets used in the present study, the name of the sampled bioregions 

with the correspond abbreviations, the available measurements and the number of samples in each dataset. The 

bioregions correspond to the oceanic provinces defined by Longhurst (2007). 

Name of the dataset Bioregions (code) Available measurements 
Number of 

samples 

Glo-Argo Antarctic (ANTA) 

Archipelagic Deep Basins (ARCH) 

Atlantic Arctic (ARCT) 

Boreal Polar (BPLR) 

Eastern Mediterranean (EMED) 

Subantarctic (SANT) 

S. Pacific Subtropical (SPSG) 

Western Mediterranean (WMED) 

• Fluorescence (SBE 

ECO-series; 454 - 480-

nm excitation channel) 

• HPLC pigments 

• Chla-based absorption  

 

335 

Glo-aphy Antarctic (ANTA) 

Indian S. Subtropical Gyre (ISSG) 

Mediterranean (MEDI) 

N. Atlantic Drift (NADR) 

N. Atlantic Subtropical Gyre (NASE) 

N. Atlantic Tropical Gyre (NATR) 

Pacific Equatorial Divergence (PEQD) 

Subantarctic (SANT) 

S. Pacific Subtropical (SPSG) 

S. Subtropical  Convergence (SSTC) 

W. Pacific Warm Pool (WARM) 

• HPLC pigments 

• On-filter absorption 

3340 

Med-Bouss Mediterranean (MED) • Fluorescence (Chelsea 

Mini Aquatracka; 378 - 

483-nm excitation 

channel) 

• HPLC pigments 

• On-filter absorption 

 

843 
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III.2.3. North Western Mediterranean Sea fluorescence database 

 

In order to understand the seasonal and vertical variability of the fluorescence signal, we 

completed our analysis using the “Med-Bouss” database, a time series acquired at the 

long-term fixed station BOUSSOLE (BOUée pour l'acquiSition d'une Série Optique à Long 

termE) located in the Ligurian (Northwestern Mediterranean) Sea at 7°54′E, 43°22′N 

(Antoine et al., 2008). Seawater sampling was carried out at the BOUSSOLE station every 

month from 2013 to 2015, at seven discrete depths (5, 10, 20, 30, 40, 50 and 60 m) using 

a CTD-rosette system equipped with 12-L Niskin bottles (Golbol et al., 2000). A Chelsea 

Aquatracka III fluorometer was mounted on a CTD-rosette device and acquired 

fluorescence profiles concomitantly with seawater sampling. The Aquatracka fluorometer 

has an excitation waveband ranging from 378 to 483 nm with a peak at 430 nm, and an 

emission waveband ranging from 670 to 700 centered on 685 nm. The fluorometer 

calibration did not change over the whole time series. The fluorescence output is 

expressed as RFU. The total dataset comprises 843 samples for which are available 

concurrent data of [Chla]fluo, [Chla]HPLC, HPLC-determined accessory pigments, and on-

filter phytoplankton absorption spectra. 

 

III.2.4. Phytoplankton absorption 

 

For both the Glo-aphy and Med-Bouss databases, the spectral phytoplankton 

absorption coefficient, aph(λ) (m-1), was measured following the same analytical protocol 

and using the same filters as those used afterwards for HPLC analyses (Bricaud et al. 1995, 

2004 and 2010). In brief, absorption measurements were performed with a Perkin Elmer 

850 spectrophotometer, equipped with a 150 mm diameter integrating sphere, using a 

blank filter as reference. Spectra were shifted to zero in the near infrared by subtracting 

the average optical density between 750 and 800 nm (Röttgers and Gehnke, 2012). Optical 

densities were then corrected for the amplification effect (Bricaud and Stramski, 1990) 

and converted into particulate absorption (in m-1) (Allali et al., 1997). The contribution of 

phytoplankton to the particulate absorption was then determined following the numerical 
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decomposition of Bricaud et al. (2010). In this study we focus on the specific absorption 

wavelength of 470 nm, which corresponds to the excitation wavelength of the SBE ECO-

series fluorometer mounted on the BGC-Argo floats. We recall that phytoplankton 

absorption was not systematically available for the Glo-Argo dataset and that aph was 

derived from [Chla]HPLC following the general relationship of Bricaud et al. (1995) 

regardless of the bioregion. 

 

III.2.5. Phytoplankton pigments and community composition 

 

For the global (Glo-Argo and Glo-aphy) and Mediterranean (Med-Bouss) datasets, 

the Chla concentration and the composition of phytoplankton communities are estimated 

using HPLC pigment measurements. In brief, seawater from discrete sampling is filtered 

onto glass fiber filters (GF/F Whatman 25 mm), that are stored in liquid nitrogen during 

cruises then transferred at −80°C in the laboratory until further analysis at the SAPIGH 

HPLC analytical facility at the Institut de la Mer de Villefranche (IMEV). Phytoplankton 

pigments are extracted from the cells by sonication in 100% methanol, clarified by 

filtration (GF/F Whatman 0.7 µm), and finally separated and quantified by HPLC. More 

details about the HPLC analytical protocol may be found in Ras et al. (2008). The 

concentration of total chlorophyll-a (TChla) is defined as the sum of Chla, divinyl-

chlorophyll-a and chlorophyllid-a concentrations. In this thesis, we will refer to [Tchla] as 

[Chla]. We specifically investigate the distribution of seven diagnostic pigments (DP) 

identified, among the full suite of accessory pigments, as biomarkers of major 

phytoplankton taxa, further grouped into three size classes (Claustre, 1994; Vidussi et al., 

2001). The seven DP are presented in Table 3.2 along with their abbreviations which, for 

the sake of simplicity, will be used hereafter. 

 

The DP-based method allows the estimation of the relative contribution to the 

[Chla] of three phytoplankton size classes : micro- (>20 m), nano- (2-20 m) and pico-

phytoplankton (<2 m) following equations given in Uitz et al. (2006). We note that, 



49 

 

because it relies on biomarker pigment concentrations, this approach yields an average, 

synthetic estimate of both the taxonomic and size composition of the phytoplankton 

communities. Although we recognize that it has limits because some phytoplankton taxa 

may occasionally span several size classes and some DP may be found in several taxa, this 

approach has been shown to provide reliable, quantitative information for use on large 

spatial and temporal scales (e.g. Bricaud et al., 2004; Uitz et al., 2006; Brewin et al., 2014).  
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Table 3.2. Major biomarker pigments used in this study with their abbreviation, taxonomic significance and 

associated size class (Vidussi et al. 2001). Pico stands for picophytoplankton (0.2-2 µm), nano for nanophytoplankton 

(2-20 µm) and Micro for microphytoplankton (20-200 µm). 

 

Diagnostic Pigments Abbreviations Taxonomic significance Size class 

Zeaxanthin Zea Cyanobacteria Pico 

Chlorophyll b+Divinyl-chlorophyll b Tchlb Green Flagellates and Prochlorophytes Pico 

19’hexanoyloxyfucoxanthin 19’-HF Prymnesiophytes Nano 

19’butanoyloxyfucoxanthin 19’-BF Pelagophytes Nano 

Alloxanthin Allo Cryptophytes Nano 

Fucoxanthin Fuco Diatoms Micro 

Peridinin Peri Dinoflagellates Micro 
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III.2.6. Data analysis 

 

We determined the three variables of interest, i.e. slope factor, Chla-specific 

absorption at 470 nm (a*(470)) and quantum yield of fluorescence (Ф), using a type I linear 

regression model applied at the regional scale for the Glo-Argo and Glo-aphy datasets and 

at the seasonal and vertical scale for the Med-Bouss dataset. 

The slope factor is computed as a regression of type I between [Chla]fluo and 

[Chla]HPLC. A type I regression is selected in regard of the robustness of the HPLC 

estimation of [Chla], considered as the reference (Claustre et al., 2004). The intercept is 

set to 0 because, after subtraction of the dark signal, an absence of Chla in the 

environment should be associated with a null fluorescence signal. Thus, the intercept 

correspond the dark calibration, which improves the robustness of the statistics. 

 The Chla specific absorption coefficient of phytoplankton at 470 nm, a*(470), is 

calculated as the coefficient of the regression between the phytoplanktonic absorption at 

470 nm, aph(470) (m-1), and [Chla]HPLC (mg m-3). The retrieved a*(470) coefficient is then 

expressed in m-2 mg Chla-1.  

The fluorescence quantum yield, Ф, is calculated as the coefficient of the 

regression between F and aph(λ) (m-1), λ being the wavelength of the excitation peak of 

the considered fluorometer. For the Glo-Argo dataset, F is expressed as counts and λ  

equals 470 nm; and for Med-Bouss dataset, F is expressed as RFU and λ equals 430 nm. 

The obtained  Ф is then expressed either as counts.m-1 or RFU.m-1 for the Glo-Argo or 

Med-Bouss dataset, respectively. It represents the raw output value of the fluorometer 

subsequently to light absorption by phytoplankton cells.  

 Each regression is performed on the bioregion scale for the Glo-Argo and Glo-

aphy dataset.  For the Med-Bouss dataset, we merged the data acquired during the three 

consecutive years in order to optimize the number of data per regression and thus the 

robustness of the statistics. Statistics from the regressions are provided in the 

supplementary material.  
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A principal component analysis (PCA), performed with the FactoMineR package 

version 2.4 (Lê et al., 2008), is used to investigate the succession of phytoplankton 

community at the Mediterranean Sea site (Med-Bouss dataset). All analyses were 

performed with the R software, version 4.1.2. 

 

III.3. Results  

 

III.3.1. Global variability of the slope factor 

 

In order to investigate the influence of phytoplankton community composition on 

the estimation of [Chla]fluo, concomitant measurements of [Chla]fluo from BGC-Argo floats 

and [Chla]HPLC are merged into a global-scale dataset (Glo-Argo). This dataset covers 

contrasted bioregions from high to low latitudes (Figure 3.1a; Table 3.1). Thus, the 

variability of the slope factor in this dataset may be considered as representative of its 

variability on the global scale. The mean value of the slope factor is 2.2, which indicates 

that the SBE ECO fluorometer overestimates [Chla] on the global scale by a factor 2.2. 

Additionally, the slope factor shows different values depending on the bioregions (Figure 

3.1b). There is a large variability between high and low latitude environments, with a 

maximum value of 2.8 observed in the Boreal Polar Province (BPLR) in the North Atlantic 

Ocean, and a minimum value of 1.1 in the Archipelagic Deep Basin Province (ARCH) in the 

subtropical Pacific Ocean. In the Mediterranean Sea, the slope factor ranges from 1.7 to 

1.9 in the eastern (EMED) and western (WMED) basins, respectively. Our results are 

consistent with those of Roesler et al. (2017), who reported a mean global value of 2, and 

a regional variability characterized by higher values in polar regions and lower values in 

subtropical regions. 

 

We now consider the distribution of the slope factor on a ternary diagram 

representing the pigment-based composition of phytoplankton communities in the Glo-
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Argo dataset (Figure 3.2). The data follow a gradient from microphytoplankton-dominated 

communities typical of polar and sub-polar regions, to picophytoplankton-dominated 

communities in the subtropical regions. In between, there are mixed and 

nanophytoplankton-dominated communities associated with the temperate waters of the 

Mediterranean Sea. The regression between the values of the slope factor and the Chla 

relative contribution of the three phytoplankton size classes is displayed as the 

background of the ternary diagram. It shows a clear pattern where the communities 

dominated by larger phytoplankton groups are associated with high values of the slope 

factor. Thus, our analysis indicates that the observed regional patterns of the slope factor 

(Figure 3.1 and Roesler et al., 2017) are consistent with the patterns associated with the 

composition of the phytoplankton communities (Figure 3.2). This suggests that the 

regional variability in the slope factor may in fact be influenced by phytoplankton 

community composition. 
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Figure 3.1: (A) Geographic location of the sampling stations in the Glo-Argo database and (B) mean value of the slope 

factor, defined as the coefficient of the regression between [Chla]Fluo and [Chla]HPLC, for each bioregion of the Glo-

Argo database (ANTA, Antarctic Province; ARCH, Archipelagic Deep Basin Province; ARCT, Atlantic arctic Province; 

BPLR, Boreal Polar Province; EMED, Eastern Mediterranean Sea; SANT, Subantarctic Province; SPSG, South Pacific 

Subtropical Gyre Province; WMED, Western Mediterranean Sea). 
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Figure 3.2: Ternary diagram of the pigment-based relative contribution to the Chla concentration of three 

phytoplankton size classes (micro-, nano, and picophytoplankton) in the global Glo-Argo dataset. The color of the 

background indicates the value of the [Chla]fluo / [Chla]HPLC ratio  extrapolated with a linear regression model. The 

color of the datapoints indicates the corresponding bioregions (ANTA, Antarctic Province; ARCH, Archipelagic Deep 

Basin Province; ARCT, Atlantic arctic Province; BPLR, Boreal Polar Province; EMED, Eastern Mediterranean Sea; SANT, 

Subantarctic Province; SPSG, South Pacific Subtropical Gyre Province; WMED, Western Mediterranean Sea). 
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In order to understand the mechanisms underpinning the correlation between the 

slope factor and phytoplankton community composition, we examine the variability of the 

two main photophysiological properties influencing the fluorescence signal, i.e. the Chla-

specific absorption coefficient and the fluorescence quantum yield. 

 

 

III.3.2. Variability of the phytoplankton absorption coefficient 

 

The influence of the phytoplankton community composition on the phytoplankton 

Chla-specific absorption coefficient is first investigated using the Glo-aphy dataset. 

Similarly to the Glo-Argo database, Glo-aphy encompasses a wide variety of oceanic 

regimes, including polar, temperate and subtropical bioregions (Figure 3.3a; Table 3.1). 

The value of a*(470) follows a regional distribution (Figure 3.3b) and ranges from 0.024 to 

0.071 m2 (mg Chla)-1, with a magnitude of variation of 2.95. On the one hand, the North 

Atlantic Subtropical gyre (NASE) and North Atlantic Drift (NADR) bioregions display the 

highest a*(470) coefficient of the dataset with values of ~0.07 m² (mg Chla)-1. These 

bioregions are characterized by oligotrophic waters, dominated by picophytoplankton 

with large concentrations of zeaxanthin. On the other hand, polar bioregions like SANT 

and ANTA, dominated by larger cells, show the lowest a*(470) values of ~0.02 m2 (mg 

Chla)-1. 

 

In addition to the global-scale analysis, the vertical and seasonal variability of 

a*(470) induced by changes in the phytoplankton communities is investigated using the 

Mediterranean (Med-Bouss) dataset. This dataset covers three successive annual cycles 

and seven different depths, and presents contrasted environmental conditions due to the 

pronounced seasonality of this bioregion (Marty et al., 2002; Durrieu de Madron et al., 

2011) with [Chla]HPLC  values ranging from ~0.03 to 2.50 mg m-3. In the next paragraphs, 

we first describe the seasonal and vertical distribution of phytoplankton communities 
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based on a Principle Component Analysis (PCA) and then present the distribution of the 

a*(470) coefficient. 

 

A PCA projection of the pigment data from the Med-Bouss dataset is performed to 

visualize the distribution of the different phytoplankton communities over the seasonal 

cycle and the vertical dimension (Figure 3.4). On the first principal component (PC1), we 

observe a discrimination of the different sampling depths, indicating that PC1 represents 

the vertical distribution of the 

 

 

 

 

 

Figure 3.3: Distribution of the Chla-specific absorption coefficient at 470 nm, a*(470) (m2(mg Chla)-1), calculated 

from a linear regression between aph(470) and the Chla concentration for each bioregion of the global Glo-aphy 

dataset (see Table 3.1 for code significance). The error bars indicate the 95% confidence limits. 
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phytoplankton communities. On the second principal component (PC2), we 

observe a seasonal discrimination, spring and winter in the lower part of the axis and 

summer and fall in the upper part. Indeed, summer is characterized by stratified waters 

with a shallow mixed layer, whereas other seasons are characterized by a deeper mixed 

layer. In spring, the increase of sun light associated with nutrient-replenished upper layer 

resulting from a deep winter mixed layer depth (MLD) leads to the emergence of a 

seasonal bloom, progressively consuming the surface nutrients and eventually leading to 

the formation of a deep chlorophyll maximum (DCM) (Lavigne et al., 2015; Barbieux et al., 

2019b). In summer and fall, surface waters are typically dominated by zeaxanthin, 

indicative of the presence of pico-prokaryotes (Sammartino et al., 2015; Trombetta et al., 

2020) whereas the concentration of 19’-BF and 19’-HF increase in deeper waters, 

indicating an enhanced contribution of nanophytoplankton cells such as 

Prymnesiophytes and Chrysophytes (Bustillos-Guzmán et al., 1995) to the phytoplankton 

assemblage at depth. In winter, we observe an increased concentration of fucoxanthin, 

mostly indicative of the presence of diatoms (generally microphytoplankton). Those 

observations are consistent with the phytoplankton succession described by Marty et al. 

(2002), which gives us good confidence that the PCA representation efficiently grasps the 

vertical as well as seasonal variations of phytoplankton communities.  

In the Med-Bouss dataset, the a*(470) coefficient ranges from 0.017 to 0.068 m2 

(mg Chla)-1 (Figure 3.5), which is coherent with observations on the global scale in 

comparable regimes (Figure 3.3). It shows a relatively low vertical variability in winter and 

fall, when the water column is mixed (e.g. D’Ortenzio et al., 2005), with values comprised 

between 0.03 and 0.04 m2 (mg Chla)-1 in winter, and 0.04 to 0.05 m2 (mg Chla)-1 in fall 

(Figure 3.5). The a*(470) coefficient reaches a maximum of 0.07 m2 (mg Chla)-1 in summer 

at surface, in picophytoplankton dominated communities, and slowly decreases from fall 

to winter when phytoplankton communities are dominated by larger cells. Lower values 

are observed in winter and below 20 m in spring and summer where it decreases to less 

than 0.04 m2 (mg Chla)-1. This is consistent with our observations on the global-scale (Glo-
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aphy) database where higher values of a*(470) are encountered in picophytoplankton-

dominated communities. 

 

In order to determine the influence of phytoplankton pigments and, thereby, 

community composition on phytoplankton absorption, we consider the distribution of 

a*(470) in the orthogonal projection of PC1 and PC2 of the pigment based PCA (Figure 

3.5). We observe, in particular, that the increase in a*(470) in the surface layer during the 

summer season coincides with the occurrence of picophytoplankton-dominated 

communities, with high concentrations of zeaxanthin. The highest values of a*(470) (>0.04 

m2 (mg Chla)-1) are exclusively observed in such communities, while moderate to low 

values of a*(470) are distributed amongst nano- and micro-phytoplankton-dominated 

communities with no clear pattern in terms of pigments composition. 
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Figure 3.4: Orthogonal projection of the two first principal components of the PCA analysis of the concentrations of 

the seven diagnostic pigments in the Northwestern Mediterranean Med-Bouss database, between 5 and 60 m depth 

over 3 years (2013–2015). The color of each point represents the sampling depth as indicated. The relative 

contribution to the Chla concentration of each of the three phytoplankton size classes and the seasons are 

superimposed as supplementary variables onto the PCA projection space. 
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Figure 3.5: Orthogonal projection of the two first principal components of the PCA analysis of the concentrations of 

the seven diagnostic pigments in Northwestern Mediterranean Med-Bouss dataset, between 5 and 60 m depth over 

3 years (2013–2015). The color of each point represents the Chla-specific absorption coefficient at 470 nm, a*(470), 

which did not serve in the construction of the projection. The relative contribution to Chla of each of the three 

phytoplankton size classes and the seasons are superimposed as supplementary variables onto the PCA projection 

space. 
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Our results indicate a significant variability of the a*(470) coefficient, not only on 

the global scale among the considered bioregions (Figure 3.3b), but also within a given 

bioregion, vertically within the water column as well as seasonally (Figures 3.5-3.6).  

Importantly, the global-scale variability in the a*(470) coefficient (Figure 3.3) does not 

follow the same trend as the slope factor (Figure 3.1), which shows higher values in high 

latitude regions and lower values in low latitude regions. Therefore, the a*(470) coefficient 

is unlikely to be the only driver of the variability of the ratio between F and [Chla], i.e. the 

slope factor. This led us to examine the scales of variability of the fluorescence quantum 

yield. 

 

III.3.3 Variability of the fluorescence quantum yield 

 

We investigate the role of the second potential driver of the slope factor, the 

quantum yield of fluorescence, using the Med-Bouss and Glo-Argo datasets.  In the 

Mediterranean dataset, the fluorescence quantum yield appears to vary between 5 and 

12 RFU.m-1 depending on the season and depth (Figure 3.7). The maximum values are 

observed near the DCM in spring (12 RFU.m-1) and at depth in winter (10 RFU.m-1), whereas 

the minimum values are observed below 20 m in summer (~5 RFU.m-1). The summer 

season is characterized by a relatively low vertical variability. In contrast, a strong vertical 

pattern is found in spring, when the fluorescence quantum yield shows significantly 

higher values at 30-40 m than at surface (5 m). We also note that the fluorescence 

quantum yield shows larger values in spring than in summer. In fall, the standard 

deviation at most depths is larger than the vertical and seasonal variability.  

 

On a global scale, the regional variations determined from the Glo-Argo dataset 

for the fluorescence quantum yield are presented in Figure 3.8. The fluorescence 

quantum yield varies between 6800 counts.m-1 and 13900 counts.m-1 for the subtropical 

ARCH and polar BPLR bioregions, respectively. The maximum values are found in high 
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latitude regions in contrast to subtropical regions characterized by lower values of the 

fluorescence quantum yield. Temperate regions have a similar value of Φ as subtropical 

regions with around 1000 counts m-1.  
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Figure 3.6: Vertical distribution of the phytoplankton chlorophyll-specific absorption coefficient at 470 nm, a*(470) 

in m2 (mg Chla)-1, for each season and sampling depth of the Med-Bouss dataset.  
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Figure 3.7: Vertical distribution of the quantum yield of fluorescence, Φ (RFU m-1), for the Med-Bouss dataset for 

each season and each sampling depth.  
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For comparison purposes, we present a summary of the regional distribution of 

slope factor (Figure 3.8a, same as Figure 3.1b), the Chla-specific absorption coefficient 

(Figure 3.8b) and fluorescence quantum yield (Figure 3.8c) based on the analysis of the 

Glo-Argo database. On the one hand, some regions located in the subtropical biome 

(SPSG and ARCH) show a high value of the a*(470) coefficient, yet a relatively low value of 

Ф. This suggests that, in such systems, the absorbed light energy is not dissipated as 

fluorescence, which would result in a decrease of the F-to-[Chla] ratio and, thus, of the 

slope factor (close to 1 in the case of ARCH). On the other hand, high-latitude regions 

(SANT and ARCT) show moderate to low and moderate to high values of a*(470) and Ф, 

respectively, suggesting that the little energy that is received by phytoplankton cells is 

mostly reemitted as fluorescence, which leads to an increase in the F-to-[Chla] ratio and 

high values of the slope factor (~3).  
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Figure 3.8: (A) Distribution of the slope factor, defined as the coefficient of the regression between [Chla]Fluo and 

[Chla]HPLC, (B) Chla-specific absorption coefficient at 470 nm, a*(470) (m2(mg Chla)-1), and (C) fluorescence 

quantum yield, Φ (counts m-1), for the eight bioregions of the Glo-Argo dataset (ANTA, Antarctic Province; ARCH, 

Archipelagic Deep Basin Province; ARCT, Atlantic arctic Province; BPLR, Boreal Polar Province; EMED, Eastern 

Mediterranean Sea; SANT, Subantarctic Province; SPSG, South Pacific Subtropical Gyre Province; WMED, Western 

Mediterranean Sea). The error bars indicate 95% confidence limits. 
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III.4. Discussion 

 

The estimation of [Chla] based on in-situ fluorometers relies on the correlation 

between F and [Chla]. This correlation has been shown to be significantly variable at the 

global scale between different regions of the open ocean (Roesler et al., 2017). We studied 

here the role of the composition of phytoplankton communities on this variability through 

its influence on the Chla-specific absorption coefficient and fluorescence quantum yield. 

 

As expected from numerous previous studies (e.g. Bricaud et al., 2004; Brewin et 

al., 2011; Uitz et al., 2015), we observe maximum values of a*(470) in surface oligotrophic 

waters, i.e. in seasonally or permanently stratified open ocean conditions where 

picophytoplankton generally dominate the phytoplankton communities (Figure 3.2). The 

shape of the phytoplankton absorption spectrum is known to be mainly influenced by the 

package effect occurring in phytoplankton cells and the accessory pigment composition 

(Greg Mitchell and Kiefer, 1988; Bricaud et al., 1995, 1999; Cleveland, 1995). 

Picophytoplankton-dominated communities are characterized by a limited package effect 

because of a small average cell size, and large concentrations of non-photosynthetic 

carotenoids such as zeaxanthin, both of which lead to enhanced values of a*(λ) in the blue 

spectral region (Allali et al., 1997; Ciotti et al., 2002; Bricaud et al., 2004; Uitz et al., 2008). 

In such systems, the effect of photoacclimation combines with that of community 

composition and influences the vertical distribution of the a*(470) coefficient (e.g. Bricaud 

et al., 2004; Uitz et al., 2008; 2015). First, acclimation to low light levels leads to lower a* 

values at depth due to an increase in the degree of pigment packaging associated with 

enhanced intracellular Chla content. Second, the zeaxanthin-to-Chla ratio is known to 

increase in high light regime (Six et al., 2004; Dubinsky and Stambler, 2009), resulting in 

larger a* values at surface. 

Moreover, zeaxanthin is thought to be involved in photoprotection mechanisms  

(Demmig-Adams, 1990). This pigment enhances the energy dissipation through heat, 

hence diminishing the photosynthetic quantum yield (Bidigare et al., 1989; Olaizola and 
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Yamamoto, 1994) and the fluorescence quantum yield (Kiefer and Reynolds, 1992). This is 

consistent with our observation that bioregions with high concentrations of zeaxanthin, 

such as SPSG and ARCH, are also associated with relatively low values of the fluorescence 

quantum yield (Figure 3.8). The effect of the decrease in the fluorescence quantum yield 

due to zeaxanthin appears to be greater than that of the increase in a*(470), resulting in 

a lower slope factor in picophytoplankton-dominated communities.  

 

In the Mediterranean Sea in summer, the surface waters show high values of the 

Chla-specific absorption coefficient associated with a dominant contribution of 

picophytoplankton to the algal community and large concentrations of zeaxanthin. Yet 

they do not present a significantly lower fluorescence quantum yield (Figure 3.7), 

compared to the other depths and seasons, as could be expected from our results based 

on the global dataset (Figure 3.8). This result may be explained by the optical 

specifications of the Chelsea Aquatracka III fluorometer used during the BOUSSOLE 

cruises. Indeed, this fluorometer has an excitation wavelength of 430 nm that does not 

coincide with the absorption peak of zeaxanthin, unlike the ECO fluorometers mounted 

on the BGC-Argo floats that have an excitation wavelength of 470 nm. The Chelsea 

Aquatracka III fluorometer excites a region of the phytoplankton absorption spectrum 

closer to the absorption peak of Chla in solution compared to the spectral region targeted 

by the ECO-series fluorometer. Thus, the influence of zeaxanthin on the fluorescence 

response is diminished. Our results, therefore, suggest that using a fluorometer with an 

excitation wavelength of 430 nm may reduce the effect of zeaxanthin on the fluorescence 

quantum yield and, thereby, the influence of the phytoplankton community composition 

on the slope factor and subsequent [Chla] retrieval. 

 

The fluorescence quantum yield has been reported to be dependent on the 

physiological state of phytoplankton cells (Falkowski and Kolber, 1995; Behrenfeld et al., 

2009). In this study, we found a significant influence of phytoplankton community 

composition. Consistent trends are observed between the datasets from the 

Northwestern Mediterranean Sea and global ocean. In particular, higher values of Ф are 
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found in communities characterized by a dominance of large phytoplankton cells and high 

[Chla], as is the case in the Northwestern Mediterranean Sea in spring or in high latitude 

bioregions. In contrast, lower Ф values are found in oligotrophic regions, which we 

attribute to the presence of photoprotective pigments, specifically zeaxanthin. 

 

Explaining the high values of Ф in the high latitude regions remains a challenge. In 

the Southern Ocean, iron limitation plays an important role in the modulation of the 

fluorescence signal (Schallenberg, 2022). Southern Ocean phytoplankton communities 

often cope with iron and light colimitation (e.g. Boyd et al., 2000). In such conditions, they 

adapt their photosynthetic apparatus by increasing the size of the light-harvesting 

antenna in the photosynthetic unit, rather than by increasing the number of reaction 

centers, which would be iron-consuming (Strzepek et al., 2012, 2019; Schallenberg et al., 

2020). An increase in the size of the antenna leads to a modification of the light transfer 

efficiency of the photosynthetic unit (Strzepek et al., 2012; Schallenberg et al., 2020), with 

a probable influence on the F-to-[Chla] ratio. Nevertheless, in this study, we observe high 

values of Ф in three different polar regions (SANT, ARCT, BPLR; Figure 3.8), not only in the 

Southern Ocean but also in the Arctic Ocean. This suggests that the large Ф values do not 

necessarily solely result from regional environmental conditions, such as iron depletion 

that is more specific to the Southern Ocean and may lead to atypical photophysiological 

properties (Behrenfeld et al., 2009). The large Ф values may also result from a common 

factor in these polar regions, such as a predominance of large phytoplankton cells (Figure 

3.2). Due to the relatively small size of the Glo-Argo dataset, we could not investigate the 

temporal dynamics of the F-to-[Chla] ratio in relation to iron depletion or input events, 

which would help to disentangle the likely combined effects of iron and community 

composition on the fluorescence quantum yield.  

 

In addition, the limited size of the Glo-Argo dataset hinders our ability to account 

for the seasonal and/or vertical variability of a*(470) and Ф in each bioregion that may 

lead to discrepancies between bioregions from the same biome. For instance, the SPSG 

bioregion presents a relatively high Ф despite belonging to the subtropical biome. The 
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SPSG bioregion is characterized by a relatively large diversity of phytoplankton community 

size structure, being dominated by picophytoplankton or nanophytoplankton (Figure 3.2). 

This diversity may lead to unexpectedly high values of Ф, compared to the other 

subtropical region. This result is consistent with our conclusion that, beyond the 

physiological state of phytoplankton cells, the fluorescence quantum yield may be largely 

influenced by the composition of phytoplankton communities. 

 

The present study establishes a correlation between the phytoplankton 

community composition and the two major drivers of the in-vivo fluorescence process, 

a*(λ) and Ф. The effects of those two parameters are integrated in the slope factor index, 

which reflects the variability of the F-to-[Chla] ratio. Thus, the [Chla]Fluo estimation shows 

spatial, seasonal and vertical variability that reflects changes in phytoplankton community 

composition. Therefore, we suggest that integrating indicators of the phytoplankton 

community composition into the conversion of F into [Chla]Fluo would contribute to 

improving the estimation of [Chla]fluo.  

 

 

III.4. Conclusion and perspectives  

 

In-situ fluorescence used in combination with autonomous platforms, such as BGC-

Argo profiling floats, provides a powerful means for obtaining a global assessment of the 

Chla concentration, a major proxy of the phytoplankton biomass (e.g. Lombard et al., 

2019; Claustre et al., 2020). However, the natural variability in the phytoplankton 

fluorescence response may considerably impede the estimation of the Chla concentration 

and, hence, needs to be apprehended (e.g. Proctor and Roesler 2010; Roesler et al., 2017). 

The present study aims to better understand the influence of phytoplankton community 

composition on the natural variability of the in-situ fluorescence signal. In this end, we 

analyzed concurrent measurements of fluorescence, pigment concentrations determined 

by HPLC, and phytoplankton absorption spectra from various open ocean regions, and 
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addressed the global variability in addition to the seasonal and vertical variability within a 

given region. Our results suggest a significant influence of phytoplankton community 

composition on the fluorescence signal, resulting from different photophysiological 

properties, i.e. the absorption coefficient and the fluorescence quantum yield, between 

phytoplankton groups. 

 

Our results indicate that accounting for the composition of phytoplankton 

communities may help to better constrain the estimation of the Chla concentration based 

on in-situ fluorescence measurements. Hence, we suggest that incorporating an index of 

phytoplankton community composition into the conversion of F into [Chla]fluo may be a 

relatively simple, effective way to improve the quantification of the Chla concentration 

based on BGC-Argo float observations. Different methods have been introduced to derive 

information on the taxonomic or size structure of phytoplankton communities from BGC-

Argo float measurements. In particular, Briggs et al. (2013) proposed a method to infer 

the mean size of the particle pool from high frequency time series of the particulate 

backscattering coefficient. Sauzède et al. (2015) developed a neural network-based 

approach to retrieve the Chla concentration attributed to three distinct phytoplankton 

size classes from the shape of the fluorescence profile. More recently, Rembauville et al. 

(2017) introduced a method that retrieves the relative contribution to the stock of 

particulate organic carbon of three phytoplankton size classes. While the methods of 

Sauzède et al. (2015) or Rembauville et al. (2017) provide comprehensive information on 

the community size structure from machine learning, some methods rely on the 

particulate backscattering-to-Chla ratio and can be used to estimate a simple optical index 

of the phytoplankton community composition (Cetinić et al., 2015; Lacour et al., 2017). 

Therefore, the global scale analysis of the covariance between such optical index of the 

community composition, a*(470) and Ф could allow to optimize the conversion of F into 

[Chla]fluo for application to BGC-Argo float fluorometers. Today, the challenge is to collect 

and merge the appropriate dataset. It should be large enough to cover different 

contrasted oceanic systems encompassing a continuum of phytoplankton community 

taxonomic and size structure and generate statistically robust results. The resulting 



73 

 

relationship could allow the emergence of a real time correction of the [Chla]Fluo. 

Ultimately, the correction factor would reflect phytoplankton community composition 

variability and thus, would vary on the regional and seasonal scale. Thus, we strongly 

support Bittig et al. (2019) recommendation to collect seawater samples to perform 

phytoplankton HPLC pigments and spectral absorption analyses at BGC-Argo float 

deployment. 

 

Our study shows that non-photosynthetic pigments may play an important role in 

the reduction of the ratio between fluorescence and Chla concentration in the surface 

layer of stratified oligotrophic waters. The current 470 nm excitation wavelength of the 

ECO-series fluorometer equipping BGC-Argo floats does not coincide with the spectral 

band of the Chla absorption maximum. The use of a fluorometer with an excitation closer 

to 430 nm would ensure to target the Chla in vivo absorption peak and, hence, likely 

reduce the influence of accessory pigments on the fluorescence signal (Bricaud et al., 

2004; Proctor and Roesler, 2010). We recommend to investigate such possibility in the 

future, by deploying in the field a fluorometer with two excitation channels, one at 470 

nm and one closer to 430 nm. This should be done in association with HPLC pigment 

measurements in order to compare the variability of the slope factors obtained from the 

two different excitation channels.  

 

Eventually, taking into account the composition of phytoplankton communities for 

the retrieval of the Chla concentration from current in-situ fluorometers, or using new 

multi-channel sensors implemented on observation platforms, BGC-Argo floats in 

particular, will lead to substantially more robust estimates of the phytoplankton biomass 

on a broad range of spatial and temporal scales. Such quantitative information is critical 

to understand and model biogeochemical cycles in the global ocean. In a context of 

climate change, there is an urgent need to improve biogeochemical models whose 

initialization and validation will, in the future, rely more and more on BGC-Argo float 

observations, as this global observation system develops (Cossarini et al., 2019; Claustre 

et al., 2020). 
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III.5) Supplementary material 

Table S1 : Statistics of the linear regression model applied to the data of each bioregion of the Glo-Argo dataset in 

order to estimate the regional values of the slope factor, a*(470) (m-2 mg Chla-1) and Ф (counts.m-1). 

 

 

 

 

  

Code 

Slope Factor a*(470) Ф 

Slope 
Factor 

Std. 
Error 

p. 
value 

Adj. 
R² a*(470) 

Std. 
Error p.value 

Adj. 
R² Ф 

Std. 
Error 

p. 
value 

Adj. 
R² 

ANTA 2.7 0.075 <0.001 0.98 0.06 0.0007 <0.001 1 586 142 <0.001 0.34 

ARCH 1.11 0.207 <0.001 0.78 0.05 0.0024 <0.001 0.98 1484 244 <0.001 0.82 

ARCT 1.93 0.213 <0.001 0.52 0.04 0.0005 <0.001 0.99 1331 305 <0.001 0.19 

BPLR 2.82 0.22 <0.001 0.84 0.03 0.0009 <0.001 0.98 3265 899 <0.001 0.29 

EMED 1.73 0.106 <0.001 0.91 0.05 0.0018 <0.001 0.96 1060 185 <0.001 0.54 

SANT 2.3 0.17 <0.001 0.66 0.03 0.0006 <0.001 0.97 2455 522 <0.001 0.2 

SPSG 2.3 0.326 <0.001 0.86 0.07 0.0046 <0.001 0.96 852 189 <0.001 0.71 

WMED 1.94 0.11 <0.001 0.82 0.04 0.001 <0.001 0.96 1136 268 <0.001 0.22 
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Table S2 : Statistics of the linear regression model applied to each bioregion of the Glo-aphy dataset in order to 

estimate the regional values of a*(470) (m-2 mg Chla-1). 

 

Code a*(470) std. Error p.value Adj. R² 

PEQD 0.06 0.001 <0.001 0.95 

WARM 0.06 0.004 <0.001 0.97 

SPSG 0.05 0.001 <0.001 0.93 

ISSG 0.05 0.002 <0.001 0.97 

NATR 0.04 0.002 <0.001 0.92 

NADR 0.07 0.0008 <0.001 0.98 

NASE 0.07 0.0004 <0.001 0.97 

SSTC 0.05 0.0007 <0.001 0.99 

MEDI 0.04 0.0004 <0.001 0.92 

ANTA 0.04 0.001 <0.001 0.96 

SANT 0.02 0.002 <0.001 0.98 
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Table S3 : Statistics of the linear regression model applied to each depth (in m) and seasons of the Bouss-Med dataset 

to estimates the values of a*(470) (m-2 mg Chla-1)  and Ф (RFU.m-1). 

 

Depth Season 

a*(470) Ф 

a*(470) Std. Error p.value Adj. R² Ф Std. Error p.value Adj. R² 

5 Winter 0.01 0.002 <0.001 0.8 12.94 2.7 <0.001 0.6 

5 Spring 0.01 0.001 <0.001 0.94 14.76 0.9 <0.001 0.91 

5 Summer 0.03 0.004 <0.001 0.52 12.68 2.5 <0.001 0.41 

5 Fall 0.03 0.004 <0.001 0.7 18.28 6.6 <0.001 0.23 

10 Winter 0.01 0.001 <0.001 0.89 17.15 2.3 <0.001 0.76 

10 Spring 0.01 0.001 <0.001 0.93 20.30 1.2 <0.001 0.92 

10 Summer 0.03 0.004 <0.001 0.61 15.34 2.6 <0.001 0.49 

10 Fall 0.02 0.005 <0.001 0.55 15.65 6.9 <0.001 0.2 

20 Winter 0.01 0.002 <0.001 0.84 16.32 3.1 <0.001 0.62 

20 Spring 0.01 0.001 <0.001 0.76 27.27 3.3 <0.001 0.71 

20 Summer 0.02 0.002 <0.001 0.71 9.41 2.5 <0.001 0.54 

20 Fall 0.03 0.005 <0.001 0.6 6.64 6.5 <0.001 0.43 

30 Winter 0.01 0.002 <0.001 0.68 22.75 4.1 <0.001 0.28 

30 Spring 0.01 0.001 <0.001 0.57 35.99 6.3 <0.001 0.8 

30 Summer 0.01 0.001 <0.001 0.55 14.93 3.4 <0.001 0.84 

30 Fall 0.03 0.005 <0.001 0.6 10.83 3.1 <0.001 0.35 

40 Winter 0.01 0.002 <0.001 0.59 29.23 4.6 <0.001 0.52 

40 Spring 0.00 0.001 <0.001 0.7 0.80 9.1 <0.001 0.15 

40 Summer 0.00 0.001 <0.001 0.76 4.76 4.5 <0.001 0.92 

40 Fall 0.02 0.003 <0.001 0.46 18.21 3.6 <0.001 0.75 

50 Winter 0.01 0.003 <0.001 0.78 19.19 5.1 <0.001 0.43 

50 Spring 0.01 0.001 <0.001 0.96 17.25 3.6 <0.001 0.31 

50 Summer 0.01 0.001 <0.001 0.8 14.54 3.3 <0.001 0.83 

50 Fall 0.02 0.004 <0.001 0.7 12.64 7.9 <0.001 0.92 

60 Winter 0.01 0.002 <0.001 0.82 29.84 4.2 <0.001 0.74 

60 Spring 0.01 0.001 <0.001 0.74 18.40 4.7 <0.001 0.69 

60 Summer 0.02 0.001 <0.001 0.71 13.38 2.4 <0.001 0.77 

60 Fall 0.01 0.005 <0.001 0.66 28.89 14.1 <0.001 0.62 
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IV.1. Introduction 

  

Phytoplankton plays a key role in the global biogeochemical cycles (Field et al., 1998). In 

the current context of climate change, it is therefore crucial to monitor phytoplankton 

dynamics on the global scale. The emergence of new observation tools such as 

Biogeochemical Argo (BGC-Argo) profiling floats opens the possibility to embark sensors 

to collect continuous vertical profiles of optical and biogeochemical variables on a quasi-

global scale (Claustre et al., 2020). Among those, fluorescence enables to estimate the 

chlorophyll-a concentration ([Chla]), a widely used proxy for phytoplankton biomass. 

However, the composition of phytoplankton communities is known to be a critical 

determinant of the carbon cycle, since some processes can largely vary between 

phytoplankton size classes and/or phylogenetic groups, such as the CO2 assimimation 

through photosynthesis (Cermeño et al., 2005; Uitz et al., 2008), trophic interactions 

(Cushing, 1989; Finkel, 2007) and carbon transfer dynamics to the deep ocean (Buesseler 

et al., 1998; Guidi et al., 2009; Henson et al., 2012; Bonnet et al., 2023). In spite of this key 

role, the composition of phytoplankton communities cannot be measured directly from 

BGC-Argo floats. Only a few methods have been proposed so far to overcome this lack 

and go beyond the mere estimation of the Chla biomass from BGC-Argo floats. Sauzède 

et al. (2015) developed a neural network based on the shape of in-situ fluorescence 

profiles to retrieve the relative contribution to the [Chla] of the three phytoplankton size 

classes (pico-, nano- and microphytoplankton). Rembauville et al. (2017) developed a 

regional scale approach to estimate the particulate organic carbon stock of these three 

size classes from a combination of optical measurements and hydrographic parameters. 

Cetinic et al. (2015) proposed a simple index using [Chla] and particulate backscattering 

coefficient to determine changes in phytoplankton community composition. Similarly, 

Terrats et al. (2020) used the ratio between in-situ fluorescence and particulate 

backscattering coefficient to detect coccolithophore blooms from BGC-Argo floats. Yet, 

while those methods provide useful information about the phytoplankton community 
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composition, neither of them can be used to retrieve information on their taxonomic 

composition at the global scale, as possible using BGC-Argo floats.  

An alternative to these approaches is to use multispectral fluorescence to retrieve 

information about the relative pigment composition, from which major taxa can be 

discriminated. Multispectral fluorescence consists in measuring in-situ fluorescence signal 

from different excitation wavelengths, corresponding to the absorption peaks of 

accessory pigments used as biomarkers of specific taxa in the phytoplankton community 

(e.g. Bricaud et al., 2004; Uitz et al., 2006; Brewin et al., 2014). A combination of three 

wavebands centred around 435, 470 and 532 nm was previously investigated in coastal 

and freshwater environments, providing promising results and paving the way for its use 

in open ocean waters (Proctor and Roesler, 2010; Thibodeau et al., 2014).  

The present study aims at assessing the potential of in-situ multispectral fluorescence 

as a proxy of the marine phytoplankton taxonomic community composition, as this could 

enable oceanographers to retrieve this key parameter from BGC-Argo floats which are 

deployed at many sites in the open ocean. Our working hypothesis was that the pigment 

composition of phytoplankton communities from different sites or seasons differs 

sufficiently to induce a significant variability of the fluorescence response between the 

three excitation wavelengths of the multispectral fluorometer, so that this variability can 

be used to define a classification method from the fluorometer output. To test this 

hypothesis, we combined laboratory and field work to investigate the possibility to 

retrieve taxonomic information from multispectral fluorescence (MSF). First, we selected 

ten different phytoplankton strains that correspond to the typical diversity observed 

during the seasonal succession of the North Western (NW) Mediterranean Sea, where the 

field measurements were conducted. We measured the fluorescence response of each 

strain in controlled conditions and tested the multispectral fluorometer sensitivity to the 

variations in the phytoplankton taxa. Second, we collected concomitant measurements of 

MSF and pigment concentrations to test the possibility of phytoplankton community 

composition discrimination from MSF during a time series of one year in the NW 

Mediterranean Sea. The NW Mediterranean Sea was chosen as a study site because of its 

marked seasonality, with spring blooms followed by summer oligotrophic periods and 
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winter mesotrophic periods (D’Ortenzio et al., 2005; Lavigne et al., 2015). Thus, we assume 

that the various contrasted environments encountered seasonally in the NW 

Mediterranean Sea is representative of the variability of trophic conditions encountered 

in the global open ocean. Based on those observations, we designed a classification 

method to assess the different phytoplankton communities based on a year of 

observations of phytoplankton community composition and multispectral fluorescence 

values in combination with bio-optical sensors similar to those fitted to standard BGC-

Argo floats. Ultimately, we provide recommendations for the use of multispectral 

fluorescence to discriminate the taxonomic composition of the phytoplankton community 

from BGC-Argo profiling floats. 

 

IV.2. Materials & Methods 

 

IV.2.1. Laboratory work 

 

 IV.2.1.1. Phytoplankton strains and growth conditions 

 

Ten strains were selected for the laboratory experiment and provided by the Roscoff 

Culture Collection (RCC; https://roscoff-culture-collection.org/). They are representative of 

the taxonomic diversity of the major components of eukaryotic and prokaryotic 

phytoplankton communities in open ocean waters, such as the Mediterranean Sea. The 

selection includes three diatoms belonging to different size classes, one pelagophyte, one 

dinoflagellate and five picocyanobacteria:  (three Synechococcus and two Prochlorococcus; 

Table 4.1). All strains were grown under the same controlled conditions at a constant 

temperature of 21°C and 50 μE m-2 s-1 of continuous white light, in K+Si (Keller et al., 1987) 

or PCR-S11 medium (Rippka et al., 2000) for eukaryotes and prokaryotes, respectively. As 

fluorescence is significantly influenced by the physiology of phytoplankton cells, it is 

essential to use cultures in good physiological status, as assessed by a high fluorescence 

yield (Fv/FM) value using a PhytoPAM-II fluorometer (Walz, Effeltrich, Germany). The Fv/FM 
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parameter was calculated as (FM − F0)/FM, where F0 is the dark-adapted minimal 

fluorescence and FM the maximal fluorescence, associated with the closing of 

photosynthetic reaction centers. FM was measured after exposure to a saturating light and 

addition of 100 µM of the photosystem II inhibitor 3′-(3,4-dichlorophenyl)-1′,1′-dimethyl 

urea (DCMU; Parkhill et al., 2001), The Fv/FM parameter was measured concomitantly to 

cell counts using a Guava EasyCyte flow cytometer (Luminex Corporation, USA) all over 

the growth of each phytoplankton culture. The MSF protocol (see section 2.1.2) was 

performed on each culture in the late exponential growth phase, just prior to the drop of 

the Fv/FM index. The MSF protocol was repeated three times for each strain (biological 

triplicates).  

 

 IV.2.1.2) Multispectral fluorescence measurements 

 

 

MSF was measured for different [Chla]. After a dark acclimation for 2 h, each culture was 

diluted in different volumes of fresh medium to produce a dilution series ranging from 

0.1 to 10 mg Chla m-3. Fluorescence measurements were performed as soon as possible 

after the dilution to avoid any physiological stress of the diluted culture using a ECO 3X1M 

(SeaBird electronics, USA), with three channels corresponding to the following excitation 

wavebands: 435, 470 and 532 nm.  The 3X1M sensor outputs were recorded with the 

TeraTerm software. Each experimental culture was diluted in a 1L beaker that was then 

placed under constant slow steering. The multispectral fluorometer was placed at the 

center of the beaker and immersed by 5 mm. Control measurements were performed in 

fresh medium to ensure strains MSF measurements were not subjected to optical 

interferences from the beaker edge scattering. For each culture and each dilution, we 

measured the fluorescence response during three series of one minute of continuous 

acquisition, each separated by two minutes of darkness.  

 



82 

 

IV.2.2. Time series acquisition in the field 

 

The same multispectral fluorometer was deployed at sea every month from December 

2020 to October 2021, at the BOUSSOLE station, a long-term monitoring site located at 

7°54′E, 43°22′N in the Ligurian current, NW Mediterranean Sea (Antoine et al., 2008). On 

each monthly cruise, a CTD-rosette device equipped with a dedicated optical package was 

used to perform casts from the surface down to 400 m depth. The optical package 

includes our multispectral fluorometer, a standard ECO-series FLBBCD (SeaBird) 

fluorometer, a backscatter meter as well as a C-Rover transmissiometer (Seabird). The 

ECO FLBBCD measured in-situ fluorescence, with an excitation peak at 470 nm and 

emission detection at 695 nm, and particulate backscattering (bbp) at 700 nm. The C-Rover 

transmissometer measured beam attenuation, from what the particulate attenuation (cp) 

is derived by removing the attenuation of the dissolved fraction. Both sensors have been 

mounted on several BGC-Argo floats for different biogeochemical applications 

(Rembauville et al., 2017; Barbieux et al., 2022). Concomitantly, seawater was sampled at 

10 discrete depths for pigment identification and quantification by High Performance 

Liquid Chromatography (HPLC).   
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Table 4.1 : Name, taxonomy, pigment composition as detected by HPLC and size class of the ten strains used in the 

laboratory protocol. 

Pico stands for picophytoplankton (0.2-2 µm), Nano for nanophytoplankton (2-20 µm) and Micro for 

microphytoplankton (20-200 µm); HL stands for high-light adapted; LL stands for low-light adapted. 

 

Species name Class RCC strain 

number  

Other name HPLC 

measured 

pigments 

Size class 

Conticribra 

(Thalassiosira) 

weissflogii 

Mediophyceae 

(diatom) 

RCC76 CCMP1336 

 

Fuco, Chl C1 + 

c2, Diad, Diat,  

Micro 

Chaetoceros 

diadema 

Mediophyceae 

(diatom) 

RCC1717 RA080513-06 

 

Fuco, Diad, 

Chl c1 + c2 

Micro 

Pelagomonas 

calceolata 

Pelagophyceae 

 

RCC100 CCMP1214 Chl c3, Chl c1 

+c2, But, Fuco, 

Diad, Diat  

Nano 

Scrippsiella sp. Dinophyceae 

 

RCC3006 VFAC24-3 Chl c1 + c2, 

Peri, Diad  

Nano 

Minidiscus sp. Mediophyceae 

(diatom) 

RCC4213 MACUMBA-

SC18 

Chl c1 + c2, 

Fuco, Diad, 

Diat 

Nano 

Prochlorococcus 

marinus (LL) 

Cyanophyceae RCC156 SS120-04/95 Zea, Dv Chlb, 

Dv Chla 

Pico 

Prochlorococcus 

marinus (HL) 

Cyanophyceae - PCC9511 Zea, Dv Chl b, 

Dv Chl a 

Pico 

Synechococcus sp.  Cyanophyceae RCC2319 MINOS11 Zea Pico 

Synechococcus sp. Cyanophyceae RCC2374 A15-62 Zea Pico 

Synechococcus sp. Cyanophyceae RCC2379 BOUM118 Zea Pico 

Prochlorococcus 

(High light) 

Cyanophyceae - PCC9511 Zea, Dv Chl b, 

Dv Chl a 

Pico 
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IV.2.3. Processing of fluorescence and optical measurements 

 

The output of the fluorometer was expressed as digital counts (DC). For the culture 

measurements, a blank was performed on each dilution series by measuring the response 

of the culture medium alone. This value was then subtracted from the raw output of the 

sensor. The three consecutive series of acquisition of each dilution were then averaged. 

The dilutions series allowed us to define a Chla biomass calibration value, expressed as 

DC (mg m-3)-1, for each of the three excitation wavelengths and for the ten selected strains. 

This calibration value is the regression coefficient of a linear regression performed 

between the fluorescence response expressed in DC and the Chla biomass in mg m-3 for 

the entire dilution range and for each replicate of a given phytoplankton strain.  

For the in-situ field time series, the factory-determined dark value was validated in the 

lab with black tape on the sensor and was subtracted from the raw DC, following the BGC-

Argo data management recommendations (Schmechtig et al., 2018a). The optical 

backscattering coefficient was acquired during the downcast of the rosette used for water 

sampling. The angular scattering coefficients β was measured every second at a central 

angle of 124° and at a wavelength of 700 nm. The β coefficient was converted into the 

particulate angular scattering coefficient βp by removing the contribution of pure 

seawater, which in turn depends on temperature and salinity. Then, βp was converted 

into bbp following the guidelines to convert raw signal to bbp  and applying a χ factor equal 

to 1.076 (Schmechtig et al., 2018b).  

For fluorescence, Cp and bbp outliers were detected and removed using a threshold of 

1.5  simple moving average (Δ depth = 3 m). Each profile was then smoothed using a 

simple moving average (Δ depth = 3 m).  

 

IV.2.4. Phytoplankton pigments  

 

For both the BOUSSOLE in-situ and laboratory samples, [Chla] measurements and 

composition of phytoplankton communities were made using HPLC. In brief, 2.7L of 
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seawater from discrete sampling was filtered onto glass fiber filters (GF/F Whatman 25 

mm), stored in liquid nitrogen during cruises, then transferred at −80°C in the laboratory 

until further analysis at the SAPIGH HPLC analytical facility of the ‘Institut de la Mer de 

Villefranche’ (IMEV; https://lov.imev-mer.fr/web/facilities/sapigh/). Phytoplankton 

pigments were extracted from the cells by sonication in 100% methanol, clarified by 

filtration (GF/F Whatman 0.7 µm), and finally separated and quantified by HPLC. More 

details about the HPLC analytical protocol may be found in Ras et al. (2008). The total 

[Chla] was defined as the sum of Chla, divinyl-chlorophyll-a and chlorophyllid-a 

concentrations.  

As concerns the in-situ data, we specifically investigated the distribution of seven 

diagnostic pigments (DP) identified as biomarkers of major phytoplankton taxa, which 

were further grouped into three phytoplankton size classes : micro- (>20µm), nano- (2-

20µm) and picophytoplankton (<2µm; Claustre, 1994; Vidussi et al., 2001). Following 

equations given in Uitz et al. (2006), the DP-based method allowed the estimation of the 

relative contribution to the [Chla] of these three size classes. Because it relies on 

biomarker pigment concentrations, this approach yields an average, synthetic estimate of 

both the taxonomic and size composition of the phytoplankton communities. Although it 

has limits because some phytoplankton taxa may occasionally span over several size 

classes and some DP may be found in several taxa, this approach has been shown to 

provide reliable, quantitative information for use on large spatial and temporal scales (e.g. 

Vidussi et al., 2001; Bricaud, 2004; Uitz et al., 2006; Brewin et al., 2014). 

 

IV.2.5. Statistical analyses 

 

 IV.2.5.1) Clustering of phytoplankton pigment data 

 

The in-situ HPLC data were clustered in order to define phytoplankton communities that 

are meant to be discriminated by a classification method. A suite of pigment 

concentrations, combining DP and pigment observed on the selected strains (i.e., 
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peridinin; 19'-butanoyloxyfucoxanthin; fucoxanthin; 19'-hexanoyloxyfucoxanthin; 

diadinoxanthin; alloxanthin; zeaxanthin; divinyl-chlorophyll b; chlorophyll b and divinyl-

chlorophyll a) were used as descriptors of a correspondence analysis (CA). The first two 

dimensions of the CA were used as numerical estimation of the pigment composition 

resemblance of each sample. A clustering was then applied onto the first 2 dimensions of 

the CA, using a Hierarchical Ascending Classification (HAC). The method allows one to 

define clusters based on the relative pigment composition of the community, not on the 

absolute concentration value of each pigment. The resulting cluster dendrogram was cut 

at a height of 20, leading to three clusters. As there is a strong difference in the pigment 

composition of prokaryotic picophytoplankton and micro-/nanophytoplankton 

communities, the same method was applied after excluding picophytoplankton-

dominated samples to better assess the variability of micro-/nanophytoplankton 

dominated communities. The cluster excluding picophytoplankton was then divided into 

two different clusters. In the end, four different phytoplankton communities were 

defined. 

 

 

 

IV.2.5.2) Classification of phytoplankton groups 

 

The classification of the in-situ phytoplankton communities derived from the MSF and 

optical measurements was performed with a Histogram Gradient Boosting algorithm. This 

type of machine learning model is particularly well suited for tabular data, comprising 

samples (rows) with the same set of features (columns) and with a low number of 

observations (Chen and Guestrin, 2016; Shwartz-Ziv and Armon, 2022). The imbalance in 

the number of samples per cluster was counterbalanced by a Synthetic Minority 

Oversampling Technique (SMOTE) (Chawla et al., 2002). Each cluster was oversampled in 

order to get as many observations as in the largest cluster. In the end, each cluster was 

represented by 32 samples. As the dataset consists of a time series of a single year of 
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phytoplankton community succession, the phytoplankton biomass was strongly 

correlated to phytoplankton community composition. In order to avoid overfitting due to 

the strong correlation between the different measured variables (i.e. F440, F470, F532, bbp, Cp) 

and phytoplankton biomass, we used different ratios. F440 and F532 were divided by F470 

and the three fluorescence signals were divided by bbp and Cp. The refractive index, 

representative of particulate composition and calculated as bbp/Cp, was also used 

(Twardowski et al., 2001; Boss et al., 2004). The hyperparameters of the model, i.e. the 

parameters influencing the learning process, were defined using a cross validation grid 

search. In brief, the model has a learning rate of 0.05, a number of 400 estimators and a 

maximum depth of 8. The influence of the different descriptors was inspected through 

the mean impurity index, which reflects the importance of each descriptor in the 

succession of the decision trees. The model was validated with 20 cross validations, using 

a stratified shuffle split method with a test size of 20%, which allows one to obtain the 

same proportion of the four clusters in each learning and testing dataset with a random 

sampling. The classification results can be categorized in four different categories: True 

Positive (TP) corresponding to the accurate prediction of the presence of a class, True 

Negative (TN) to the accurate prediction of the absence of a class, False positive (FP) to 

the wrong prediction of the presence of a class and False negative (FN) to the wrong 

prediction of the absence of a class. The performance of the classification method was 

assessed through two different parameters, precision and recall, defined as follows: 

Precision = TP/TP+FP (1) 

Recall = TP/TP+FN (2) 

The precision can be interpreted as the percentage of accurate prediction of the model, 

while the recall can be interpreted as the percentage of samples that have been correctly 

predicted by the model. Ultimately, the performance of the HGB classification model was 

tested regarding four different sensor combinations in view of potential future 

applications to BGC-Argo profiling floats.  
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IV.3. Results and discussion 

  

IV.3.1. Qualification of the MSF using laboratory phytoplankton cultures 

 

Once the calibrated fluorescence at each excitation wavelength was quantified for each 

strain, the two fluorescence ratios were computed, Fchl(440):Fchl(470) and Fchl(532):Fchl(470).  

These ratios vary by a factor of 5 depending on the strain (Figure 4.1). Synechococcus 

strains consistently showed a high FChl532/FChl440 and FChl470/FChl440 ratios around 1 and 

3, respectively. The other studied taxa have substantially lower FChl532/FChl440 and 

FChl470/FChl440 ratios. Prochlorococcus has the lowest FChl532/FChl440 and FChl470/FChl440 

ratios of all taxa, with values of 0.02 and 1, respectively. Diatoms show similar 

FChl470/FChl440 values to Prochlorococcus with higher FChl532/FChl440 reaching 0.14. The 

pelagophyte and dinoflagellate strains exhibited the highest FChl470/FChl440 ratio of all 

tested eukaryotic taxa with a mean value of 1.35. The pelagophyte distinguished itself 

from the dinoflagellate by its lower FChl532/FChl440 ratio (0.08 vs. 0.18). 

Higher values of FChl532/FChl440 for the Synechococcus taxon may be explained by a higher 

fluorescence response to the 532 nm excitation channel, induced by the presence of 

phycoerythrin, a phycobiliprotein systematically found in open ocean Synechococcus (Six 

et al., 2007; Grébert et al. 2018). More generally, phycobiliproteins extend the absorption 

properties of cyanobacteria to the green/red part of the visible light spectrum with regard 

to Chla (Frank and Cogdell, 2012; Holtrop et al., 2021). The difference in the FChl470/FChl440 

ratio values between pelagophytes and diatoms may be explained by a difference in the 

carotenoid compositions.  

The intra-taxa variance of the two ratios being lower than the inter-taxa variance, the MSF 

at 440, 470 and 532 nm appears to be sensitive enough to discriminate the four different 

taxa in controlled laboratory conditions. Thus, we hypothesized that it can provide 

information on the taxonomic composition of phytoplankton communities in the field, at 

least when in-situ phytoplankton community pigment composition is similar to the one 

tested in the laboratory. To validate this assumption, we evaluated the possibility to 
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discriminate different phytoplankton groups in the NW Mediterranean Sea based on in-

situ MSF and additional optical measurements. 

 

IV.3.2. Phytoplankton communities in the Northwestern Mediterranean Sea 

 

Vertical profiles of MSF, bbp and Cp were acquired simultaneously with seawater pigment 

analyses at the BOUSSOLE site once a month for one year. This site is characterized by a 

strong seasonality that leads to the presence of contrasted phytoplankton communities 

throughout the year (marty et al., 2002). The diversity of phytoplankton communities may 

be compared to the trophic gradient observed on the global scale going from 

microphytoplankton-dominated communities during the seasonal bloom in temperate 

region, to picophytoplankton-dominated communities in stratified oligotrophic 

conditions, observed seasonally in temperate region or permanently in subtropical region 

(Lavigne et al., 2015; Mayot et al., 2017).  

The composition of the phytoplankton communities was inferred using a pigment-based 

clustering approach, allowing to group samples with similar pigment composition, which 

led to the discrimination of four distinct phytoplankton clusters over the year (Figure 4.2). 

The first cluster corresponds to deep, late summer and winter communities with a large 

proportion of picophytoplankton and a significant contribution to pigment composition 

of chlorophyll-b. The second cluster coincides with the bloom community with a shared 

contribution of microphytoplankton and nanophytoplankton, and with a high fucoxanthin 

contribution, typically associated with diatoms. The third cluster is associated with 

summer communities below the deep chlorophyll maximum (DCM), also exhibiting a 

mixed composition of micro- and nanophytoplankton. Finally, the fourth cluster is 

characteristic of surface summer picophytoplankton-dominated communities, typically 

associated with Synechococcus.  
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Figure 4.1 : Scatterplot of the ratios of F440/F470 vs. F532/F470 for each phytoplankton strain grown in culture. The 

color code indicates the taxon to which each strain belongs; the symbols indicate the strain code in the RCC. 
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Figure 4.2 : Vertical distribution of four pigment-determined clusters indicative of different phyto-plankton 

communities over an annual cycle in the Northwestern Mediterranean Sea (BOUSSOLE site). The size of the dots 

indicates the chlorophyll a concentration, a proxy of the phytoplankton biomass. Treemap of the relative pigment 

concentration of each cluster, with the size class corresponding to the pigment taxa affiliation as color. 
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After demonstrating that the MSF allows discrimination of five different taxa, we 

compared the relative pigment composition of our in-situ clusters to that of the five 

laboratory characterized taxa. As the main driver of MSF variability between 

phytoplankton communities is the pigment composition, this analysis will determine if we 

are in the range of variability where we know that the MSF can discriminate different 

phytoplankton taxa. A correspondence analysis was applied to the pigment composition 

determined for the ten phytoplankton strains grown in the laboratory. This method allows 

a visualization of the different strains in a space where the distance between two samples 

reflects their relative pigment composition similarity (Figure 4.3). We observe three 

distinct poles corresponding to the different taxa represented by the ten selected strains. 

One is composed of diatoms and pelagophytes, while the two others correspond to 

Synechococcus and Prochlorococcus, respectively. The data from the in-situ seawater 

samples are projected on the same graph as supplementary observations. These data are 

evenly spread in the center of the plan, indicating that the variability in the pigment 

composition in the field is similar to that observed in the laboratory cultures. Moreover, 

the four field-based clusters are well distinguished in the CA projection plan. As we already 

showed that the MSF can be used to discriminate the different laboratory characterized 

taxa, we can expect that it will be sensitive enough to discriminate the in-situ clusters that 

have a comparable pigment composition. 

However, the in-situ samples have lower eigenvalues, i.e. absolute values on CA axes, 

indicating that the pigment variability is less contrasted than in laboratory strains. This 

result is not surprising because of the complexity of the pigment composition in natural 

samples associated with mixed phytoplankton assemblages, instead of a single taxon in 

monospecific cultures. This characteristic of open ocean samples could somewhat 

hamper the possibilities of inferring information on phytoplankton community 

composition from MSF measurements. This will be tested in the next section. 
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Figure 4.3 : Correspondence analysis of the pigment concentrations of the strains grown in culture. The in-situ 

pigment concentrations measured in the BOUSSOLE seawater sample are represented using the same color code as 

in Figure 4.2 and projected as supplementary observations. 
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 IV.3.3. Discrimination of phytoplankton taxa from in-situ fluorescence and 

additional optical measurements 

 

In view of application of MSF to BGC-Argo profiling floats, we evaluated the benefit of 

using additional optical sensors in combination with MSF for the discrimination of 

phytoplankton taxa. Several sensor configurations were tested. We trained a Histogram 

Gradient Boosting (HGB) to predict four different phytoplankton clusters from a 

combination of MSF, bbp and Cp. 

The mean global accuracy of the HGB classification using all the descriptors is 72% (+/- 

10%) (Table 4.2). This demonstrates the possibility to use MSF in combination with a 

backscatterometer and a transmissometer to discriminate phytoplankton taxonomical 

groups from sensors embarked on BGC-Argo floats.  

The mean importance of descriptors in the discrimination of clusters (i.e. impurity) (Figure 

4.4, Table 4.2) indicates a significant role of all the descriptors with a particular importance 

of the bbp/Cp, F470/F440 and F532/F440 ratios. 

BGC-Argo is a global network of profiling floats dedicated to the observation of 

biogeochemical variables (Claustre et al., 2020). Currently, two types of sensor 

configuration, including at least two excitation wavelengths for fluorescence, have been 

deployed. The first one is composed of F440, F470, bbp and Cp and the second one is the 

same without Cp measurements. In the following section, we will investigate how the 

model perform using these two configurations, and estimate how it would perform 

considering a potential integration of the ECO 3X1M on the profiling float. To do so, we 

tested the prediction of the four clusters with a different combination of descriptors, 

corresponding to different BGC-Argo float sensor packages (Figure 4.5). In the case of a 

sensor package with MSF (F440, F470 F532), backscatter meter (bbp) and transmissiometer (cp), 

the precision and recall scores are homogeneous among all four clusters with values 

varying between 65% and 75%. A configuration with F440, F470, bbp and cp or with F440, F470, 

F532 and bbp, lead to an overall slightly lower precision and recall scores and with more 
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variability, although all four clusters display scores above 60%. When only taking into 

account F440, F470 and bbp, the scores are significantly lower. Finally, the use of MSF 

measurements only, F440 F470 and F532, led to variable performances depending on the 

cluster. Thus, removing transmissometer or the 532 nm excitation fluorescence seemingly 

trigger a significant decrease in the global accuracy and recall of the model (Figure 4.5), 

which may lead to a lower performance of some BGC-Argo sensors packages. 
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Table 4.2 : Description and impurity of the different descriptors  of the four environmental phytoplankton clusters 

defined in Fig. 4.2. 

 

 F440/F470 F532/F470 BBP/Cp F440/BBP F470/BBP F532/BBP F440/Cp F470/Cp 

mean 0.9 0.6 894 0.73 0.84 0.45 609 685 

std 0.09 0.25 424 0.28 0.4 0.16 276 314 

min 0.63 0.19 0.1 0.37 0.35 0.3 0.05 0.05 

max 1.18 1.1 1983 1.68 2.22 1.46 1369 1527 

Impurity 0.19 0.19 0.24 0.07 0.08 0.08 0.07 0.05 

  

 

Figure 4.4 : Importance of the different descriptors in  the classification model, expressed as the mean decrease 

impurity. 
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In order to compensate for the decrease of performance of the classification, we may 

reduce the level of discrimination of the model by reducing the number of clusters. In 

doing so, we were able to evaluate the performances on two other clustering choices 

(Figure 4.6). On the first one, we reduced the number of clusters to three clusters by 

grouping the cluster 2, made of mixed communities dominated by nano and 

microphytoplankton with a domination of alloxanthin, and cluster 3, gathering mixed 

communities dominated by 19’-HF. This led to a discrimination between surface, summer 

picophytoplankton with zeaxanthin, deep and winter picophytoplankton with chlorophyll 

and divinyl chlorophyll b and mixed communities of micro and nanophytoplankton. On 

the second clustering choice, we predicted only two clusters corresponding to 

picophytoplankton with zeaxanthin or chlorophyll b, and mixed communities of 

microphytoplankton and nanophytoplankton. The performance of the model, for each 

BGC-Argo sensors configuration (Figure 4.5), is evaluated by looking at the mean balanced 

recall on the same cross validation method as used before (Figure 4.6). In the 

configuration where all sensors are available, the number of predicted clusters does not 

influence the performance with a consistent balanced recall of around 75%. On the 

contrary, with fewer sensors, reducing the number of clusters leads to an increase in 

performances. When there is only two fluorescence excitation wavelengths, i.e. F440 and 

F470, the absence of cp measurement leads to a decrease of recall from 71.1% to 57.7% 

when four clusters are predicted. However, if the number of clusters is reduced to only 

two, the recall of configuration with F440, F470 and bbp increase from 57.7% to 78% (Figure 

4.6 and Table 4.2).  Thus, these results enlighten the possibility of retrieving taxonomic 

information with fewer sensors, which could be of particular interest in view of the 

integration of a new ECO-puck sensor measuring F440, FF470 and BBP parameters from BGC-

Argo floats. 
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Figure 4.5 : Accuracy and recall of the HGB classification model for each cluster on each BGC-Argo sensors package 
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Figure 4.6 : Values of the mean weighted recall resulting from a cross validation with different number of clusters 

and different sensor configurations. 
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IV.4. Conclusion and perspectives 

 

Phytoplankton community structure plays a key role in numerous processes that regulate 

the carbon cycle (i.e. nutrient uptake, CO2 fixation through photosynthesis efficiency, 

sinking speed). However, the in-situ high frequency measurement tools mostly take 

account of only Chla concentration, overlooking the community composition. We studied 

here the possibility to use multispectral fluorometer as a new sensor to enable the 

estimation of the phytoplankton community taxonomic composition. 

Our results from laboratory experimentations show that the multispectral fluorometer 

signal depend on the observed strain, suggesting that it can be used in-situ to estimate 

the phytoplankton community composition. The one year time series of multispectral 

fluorescence revealed that the ratio between the three excitation channels depends on 

phytoplankton community composition. The clustering method reveal four contrasted 

phytoplankton communities. Those cluster were fairly predicted from our machine 

learning model based on MSF and optical measurements. We highlighted the possibility 

to decrease the taxonomic information to establish predictive models with fewer sensors. 
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V.1. Introduction 

 

Phytoplankton play a key role in the regulation of the carbon biogeochemical cycle 

(Falkowski, 1994b). By transforming dissolved inorganic carbon into particulate organic 

carbon through photosynthesis, they are the keystone of the biological carbon pump 

(BCP, Buesseler et al., 2007). The BCP involves a series of processes, starting with primary 

production and eventually leading to the export and storage of carbon in the deep ocean. 

Many of these processes depend not only on phytoplankton biomass but also on 

community structure, from the intensity of CO2 fixation through photosynthesis (e.g. 

Cermeño et al., 2005; Uitz et al., 2008), to trophic interactions (e.g. Cushing, 1989; Finkel, 

2007) and the transfer of carbon to depth (Michaels and Silver, 1988; Buesseler et al., 

2007; Guidi et al., 2009; Henson et al., 2012). In a context of global changes where 

anthropogenic activities modify the carbon cycle (Friedlingstein et al., 2022) and the 

functioning of the ecosystems (Hoegh-Guldberg and Bruno, 2010; Mayersohn et al., 2022), 

it is a critical challenge to develop an ability to monitor phytoplankton biomass and 

community structure on the global scale. Global ocean biogeochemical models (GOBMs) 

aim to take into account the phytoplankton influence on carbon cycling, but rely on sparse 

observations of biomass and diversity for their validation. Assessing the biomass and 

composition of phytoplankton communities at large scales is technically challenging due 

to the broad size range covered by the organisms (e.g. Finkel et al., 2010) and their strong 

space-time variability.  

 

While shipborne measurements provide detailed, yet but spatially sparse information on 

phytoplankton, ocean color satellites and autonomous in-situ bio-optical platforms 

provide large-scale observations. In particular, the BioGeoChemical-Argo (BGC-Argo) 

program aims to monitor and understand key biogeochemical processes in the global 

open ocean based on a network of profiling floats equipped with a suite of physical and 

biogeochemical sensors (Biogeochemical-Argo Planning Group, 2016; Roemmich et al., 

2019; Claustre et al., 2020).  
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The capacity to extract information on phytoplankton biomass and community 

composition from BGC-Argo floats is of a great interest to refine estimations of carbon 

fluxes in the global ocean. BGC-Argo floats estimate phytoplankton biomass through a 

proxy, the chlorophyll-a (Chla) concentration, derived from in-situ fluorescence 

measurements. However, not only the Chla-to-carbon ratio may vary depending on 

several factors, light and nutrient availability in particular (Geider, 1987; Dubinsky and 

Stambler, 2009), but also the fluorescence-to-Chla varies significantly on a broad range of 

scales (Roesler et al., 2017; Petit et al., 2022; Schallenberg et al., 2022).  

A promising alternative is to use optical properties, such as the particulate backscattering 

(bbp) or beam attenuation (cp) coefficients, to retrieve the carbon biomass of 

phytoplankton (e.g. Oubelkheir et al., 2005; Loisel et al., 2011; Koestner et al., 2022), or a 

combination of bbp and cp  to retrieve information about the plankton community 

composition (Rembauville et al., 2017; Terrats et al., 2020). While simple models have 

difficulty accounting for the complex, variable bio-optical relationships, machine learning 

methods may significantly improve our ability to derive biomass from optical 

measurements. However, precedent methods are often based on spatially and temporally 

limited database or retrieve only a limited information on the phytoplankton community 

composition. Thus, there remains a need to develop methods that quantify the biomass 

and structure of phytoplankton communities based on the variables measured by BGC-

Argo floats. 

 

In the current study we investigate the possibility to use two machine learning regression 

models to retrieve i) the particulate organic carbon (POC) concentration and ii) the relative 

contribution of four plankton groups to the POC from BGC-Argo float measurements. All 

BGC-Argo floats measure temperature, salinity, fluorescence and the bbp coefficient, 

which are then used as predictors of the POC concentration. In order to go beyond the 

biomass information and to predict the composition of the plankton assemblage, we not 

only use the bbp coefficient but also the cp coefficient. The cp coefficient is not one of the 

standards variables (EOVs) of the global BGC-Argo program, as is bbp, but it can be (and 

frequently is) measured by BGC-Argo floats. This allows to use the bbp-to-cp ratio which is 
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known to vary with the composition of the particle pool and phytoplankton assemblage  

(e.g. Twardowski et al., 2001; Boss et al., 2004; Cetinić et al., 2012). 

We defined a standard protocol to construct a dataset of concomitant measurements of 

POC, relative contribution to POC of four plankton groups and hydrographical as well 

optical measurements, measured from the same suite of sensors as those mounted on 

BGC-Argo floats. This protocol has been implemented in the Southern Ocean, North 

Western and Eastern Mediterranean Sea. The resulting dataset covers contrasted 

plankton assemblages and tropic regimes, which allows us to develop methods potentially 

applicable on large to global scales. Ultimately, we apply the proposed ML based methods 

to a time series acquired by a BGC-Argo float deployed in the Northwestern 

Mediterranean Sea as a case study. We then discuss the potential of such an approach to 

infer quantitative information on the biomass and composition of plankton and 

phytoplankton communities, across a wide range of trophic regimes, through application 

to BGC-Argo floats deployed in the global open ocean. 

 

V.2. Material and methods 

 

V.2.1. Standard sampling protocol 

 

Based on Rembauville et al. (2017), we defined a standardized sampling protocol 

for implementation on different oceanographic cruises in order to obtain harmonized 

interoperable datasets in different regions of the global open ocean. This protocol 

includes, first, discrete seawater sampling from Niskin bottles mounted on a CTD-rosette 

device for the determination of the concentration of the (total) particulate organic carbon 

as well as its partitioning into four different plankton groups, i.e. bacteria, pico-, nano- and 

microphytoplankton (see section II.1.2). Second, we use hydrographic and optical sensors 

attached to the frame of the CTD-rosette for concomitant high frequency measurements 

of the particulate backscattering coefficient at 700 nm and particulate beam attenuation 

coefficient at 660 nm (see section II.1.3), in addition to basic hydrographical properties 
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(pressure, temperature, and salinity) and Chla concentration determined from in-vivo 

fluorescence. Specifically, we used an SeaBird ECO FLBBCD sensor for measurement the 

particulate backscattering coefficient and Chla fluorescence, and a SeaBird C-Rover beam 

transmissometer for measurement the particulate attenuation coeffcient. Temperature 

and salinity are determined using SBE sensors. 

 

V.2.1.1) Oceanographic field cruises 

 

The sampling protocol was implemented in the course of three different 

oceanographic missions (Figure 5.1), i.e. the Southern Ocean and Climate 

(SOCLIM) cruise conducted in the Southern Ocean (SO), the Pelagic Ecosystem 

Response to dense water formation in the Levant Experiment (PERLE) cruise, and 

the recurrent monthly cruises at the BOUée pour l’acquiSition d’une Série Optique 

à Long termE (BOUSSOLE) fixed station, in the Mediterranean Sea.  

The SOCLIM cruise took place in the Indian sector of the SO in October 2016 on board of 

the R/V Marion Dufresne II. The sampling protocol was performed at 11 stations between 

35°S and 58.5°S providing 36 data points. The PERLE mission is composed of three cruises; 

PERLE0, PERLE1 and PERLE2, in the eastern Mediterranean basin between 2018 and 2019, 

providing 33 data points. The BOUSSOLE mission consists of monthly cruises in the 

Northwestern Mediterranean Sea at the BOUSSOLE long-term observation site situated 

at 7°54′E, 43°22′N (Antoine et al., 2008).The protocol was performed over a full seasonal 

cycle from November 2020 to October 2021, providing a total of 27 samples. The final 

database is thus composed of 99 samples distributed in contrasted oceanic regimes of 

the SO and Mediterranean Sea.  

 

V.2.1.2) Plankton organic carbon assessment 
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For determining the concentration of POC, 2.7 L of seawater were sampled at 3 depths (at 

the surface, at the level of the deep chlorophyll maximum or DCM, and just below the 

DCM) and filtered onto pre-calcinated (24 h, 450°C) GF/F filters. Blanks were measured at 

each station by filtering 2 L of milli-Q water. Filters were then stored into pre-calcinated 

glass vials and dried in an oven (24 h, 50°C). Back in the laboratory,  

 

 

 

 Figure 5.1 : Geographic location of the stations sampled during the three different missions: (a) SOCLIM and (b) 

BOUSSOLE and PERLE. The trajectory of the BGC-Argo profiling float lovbio064b (WMO 6901496) deployed at the 

BOUSSOLE site is also shown in (a). The sampling station names are indicated on the map. 
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samples were fumigated with pure HCl (24 h) to dissolve the carbonate fraction. The 

analysis of carbon was performed with a CHN analyser (Perkin-Elmer 2400) calibrated with 

acetanilide.  

For flow cytometry analyses, 1.5 mL of seawater were sampled from the Niskin bottles, 

fixed with 0.2mL of glutaraldehyde (0.5% final concentration), flash-frozen in liquid 

nitrogen, and stored at −80°C until analysis in the laboratory. The abundance of 

heterotrophic microbes (including Bacteria and Archaea), pico- and nanoplankton was 

measured by flow cytometry using a FACSCalibur instrument The biovolume and carbon 

content of bacteria, picoplankton and nanoplankton were estimated using constant cell 

volume and cell carbon content by size class from the literature (Table 5.1). 

For microplankton abundance and diversity, 100 mL of seawater was sampled in opaque 

bottles, fixed with acidic lugol (1% final concentration) and stored at 4°C. Back in the 

laboratory, samples were sedimented into an Utermöhl counting chamber (24 h, dark). 

Microplankton cells were enumerated and identified to the most precise taxonomic level 

possible using an inverted microscope with phase contrast, Olympus IX70 at X400 

magnification for SOCLIM and PERLE data and NIKON Eclipse TS2 at X200 for BOUSSOLE 

data. For each sample, 500 to 1,500 cells were enumerated and species were identified 

following recommendations by Hasle and Syvertsen (1997). Morphometric 

measurements were made from high-resolution images (Olympus DP71 camera) using 

the Fiji image processing package (available at http://fiji.sc/Fiji). Biovolume of each 

microplankton species/group was estimated from morphometric measurements 

(performed on 20 individuals randomly selected for each species/group) and shape-

specific equations (Hillebrand et al., 1999). Carbon content of each microplankton group 

was calculated using group-specific equations from the literature (Table 5.1). The full list 

of microplankton groups/species and the associated biovolume is given in the supporting 

information dataset. The total plankton carbon (Ctot) was defined as the sum of bacteria, 

pico-, nano- and microplankton carbon biomass:  

 

Ctot = Cbact + Cpico + Cnano + Cmicro 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-tbl-0001
http://fiji.sc/Fiji
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-bib-0046
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-tbl-0001
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Table 5.1 : Plankton Groups Considered in This Study and Their Associated Characteristics 

Plankton 

group 

Corresponding taxa Analytical 

method 

Biovolume 

(µm3) 

Carbon content 

(pgC) 

Bact Heterotrophic bacteria Cytometry 0.25a 0.015a 

Pico Prochlorococcus 0.68b 0.029b 

Synechococcus 0.86b 0.080b 

Picoeukaryotes 2.76b 0.73b 

Nano Nanoplankton 284c 15c 

Micro Diatom (55 groups) Optical microscopy Shape-specific d
 

Dinoflagellate (14 

groups) 

Shape-specific d
 

Ciliate (4 groups) Shape-specific d
 

Silicoflagellate (1 group) 3288 d
 

 

a Bratbak (1985) 

b Grob et al. (2007) 

c Verity et al. (1992) 

d Menden-Deuer and Lessard (2000)  

V.2.1.3) Optical data 

 

Vertical profiles of the chlorophyll a fluorescence (F), particulate backscattering coefficient 

at 700 nm (bbp) and particulate beam attenuation coefficient at 650 nm (cp) were acquired 

using sensors similar to those mounted onto BGC-Argo floats. A SeaBird ECO FLBBCD 

sensor was mounted on the CTD-rosette frame to measure chlorophyll fluorescence and 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0001_49
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0001_50
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0002_51
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0002_52
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0002_53
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0002_54
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0002_55
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0002_56
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0003_57
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0003_58
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0004_59
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0004_60
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0004_61
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JC013067#jgrc22515-note-0004_62
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bbp coefficient. Similarly, the cp coefficient was measured using a SeaBird C-Rover 

transmissometer (25 cm path length). 

The fluorescence data were corrected for non-photochemical quenching (NPQ) on 

daytime profiles following the method of Xing et al. (2012) and converted to chlorophyll a 

concentration (FChl, mg m-3) by first applying the factory calibration (dark value and slope) 

(Schmechtig et al., 2018) and then multiplying by a factor of 0.5 following the 

recommendation of Roesler et al. (2017). The bbp coefficient (m-1) was calculated as 

described in Schmechtig et al. (2015) and references therein. Briefly, raw instrument 

measurements (counts) were transformed into the total volume scattering function (β) at 

an angle of 124° and wavelength of 700 nm by applying the manufacturer-provided 

scaling factor and dark count. The bbp coefficient was then calculated as follows :  

bbp = 2πχ(β-βsw) (1) 

 

where χ is a wavelength-dependent conversion factor (here 1.142) and βsw is the 

contribution of pure seawater to scattering that depends on temperature and salinity. The 

cp coefficient was retrieved from the transmittance measured by the transmissometer. 

The transmittance data (T) were transformed into cp as:  

cp = 1/l*ln(T) (2) 

where l is the sensor pathlength (25 cm) and T derived as: 

 

T=(Vs-VD)/(Vw-Vd) (3) 

 

where Vs in the instrument signal, Vd is the dark value and Vw is the value in the pure 

water used for calibration. 

The windows of the optical instruments were carefully cleaned prior to each deployment 

and no drift correction needed to be applied to the shipborne measurements (see section 

2.2). Spikes were removed from the Chla fluorescence and bbp signals by applying a low-

pass filter that consists of a 5-point running median followed by a 7-point running mean 
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(Briggs et al., 2011). Finally, the CTD and optical data were averaged at the depth 

corresponding to the discrete seawater sampling for plankton diversity determinations (± 

1 m). 

 

 

 

V.2.2. BGC-Argo timeseries 

 

A BGC-Argo profiling float (World Meteorological Organisation identifier: 6901496) has 

been selected for prediction of POC and partitioning into plankton group-specific POC 

based on the machine learning methods presented below (Section II.3). This float was 

equipped with temperature, salinity, bbp, cp and fluorescence sensors (Seabird Electronic 

ECO-Puk triplet, Seabird C-Rover). This float cycled from March 2014 to April 2015 in the 

Northwestern Mediterranean Sea (BOUSSOLE region). The float data were downloaded 

from the Argo database accessible at ftp://ftp.ifremer.fr/ifremer/argo/.  The data were 

processed following the standard BGC-Argo protocol, as described in Section II.1.3. In 

addition, cp data were corrected from sensor drift by subtracting a median cp value, used 

as an “offset”, computed from the cp values acquired between 300 m and the maximum 

sampled depth (Barbieux et al., 2022). 

 

V.2.3. Machine learning-based models 

 

Two different machine learning models have been used in order to address the two main 

objectives of this work. First, the estimation of the total POC concentration from the 

standard set of BGC-Argo sensors has been investigated through the use of an extreme 

gradient boosting regressor (XGBoost) algorithm. Second, the prediction of the partition 

of the total POC into four plankton classes based on the standard BGC-Argo sensor 

http://ftp.ifremer.fr/ifremer/argo/
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package in addition to a transmissometer, has been investigated using a Partial Least 

Square analysis (PLS) method in a manner analogous to Rembauville et al. (2017).  

 

V.2.3.1) XGBoost model for predicting the total POC stock 

 

XGBoost (XGB), for Extreme Gradient Boosting, is an effective tree based ensemble 

learning algorithm (Chen and Guestrin, 2016). It builds several models sequentially where 

each new model attempts to correct errors from the previous one. XGBoost uses the 

gradient descent algorithm to minimize the loss function of the model. The descriptors 

are temperature, salinity, pressure, bbp, Chla concentration estimated from fluorescence 

(FChl) and the bbp/FChl ratio. The different hyperparameters, which are the parameters that 

define the model architecture, are optimized through a gridsearch procedure. The 

gridsearch algorithm calculates the model performances for a combination of 

hyperparameters values. The resulting model is composed of 700 trees of a depth of 4, 

with a learning rate of 0.2. The XGBoost model is performed with the XGBoost Python 

library version 1.6.0. 

 

V.2.3.2) Partial Least Square regression for predicting the POC content of the plankton groups 

 

The Partial Least Square regression (PLS) is a regression method that is particularly well 

suited to predict multiple outputs from an ensemble of predictors that are significantly 

correlated. Here we predicte the relative carbon content associated with each of four 

plankton groups (Cgroup, %) based on temperature, salinity, pressure, bbp, FChl, cp, and the 

ratios of FChl/bbp, FChl/cp and bbp/cp. This method has been developed initially for the SO 

by Rembauville et al. (2017), providing promising results and potential for extension to 

other oceanic regions. The covariance between hydrographical and optical data that are 

used as predictors and phytoplankton taxa abundances has been studied with a 

redundance analysis (RDA). This analysis allows to explore the multiple correlations 

between a matrix Y of response variables and a matrix X of explanatory variables. We have 
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used here the taxa cells counts from microscopy and flow cytometry analysis as the 

explanatory variables and the predictors used in the PLS as the response variables. The 

PLS model is performed with the Scikit-learn Python library version 1.2.0 whilst RDA is 

performed with the Vegan R package version 2.6. 

 

V.3.3. Evaluation of the performances of the models 

The performances of the machine learning models are evaluated by measuring a set of 

metrics through a procedure of cross validations. A cross validation consists of randomly 

subsampling the dataset into a learning subset and a testing subset, in order to train the 

model on the learning set and test the model on the testing set. This procedure enables 

to assess the capacity of the model to predict outcomes from data that have not been 

used for the training even on a relatively small dataset. This aims to avoid overfitting. A 

classical performance metrics in regression models is the determination coefficient (R²) 

defined as follows:  

 

 

𝑅2 =  
∑  𝑛

𝑖=1 (𝑦𝑖 −  ŷ𝑖)²

∑  𝑛
𝑖=1 (𝑦𝑖 − �̅�)²

 
(4) 

 

  

where n is the total number of observations, yi is the observation number i, ŷi is the 

prediction corresponding to observation number I and 𝑦 ̅is the mean of the measures. 

This metrics allows to determine the strength of the correlation between the predictions 

and the actual observations. We further use the Root Mean Square Error (RMSE) as an 

indicator of the accuracy of the predictions. The RMSE is defined as follows:  

 

𝑅𝑀𝑆𝐸 =  √
∑  𝑛

𝑖=1 (ŷ𝑖 − �̅�)²

𝑛
 (5) 
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This metric is expressed in the same units as the predicted variables. The mean absolute 

percentage error (MAPE) is also used and defined as follows:  

 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
 ∑ |

ŷ𝑖 − �̅�

𝑦𝑖
|

𝑛

𝑖=1

 (6) 

 

The MAPE expresses the accuracy of the regression as a percentage of the absolute value 

of the predicted variables. 

All data processing is performed with the R software version 4.2.2. All machine learning 

models are executed with Python software version 3.9. 

 

V.3. Results and discussion 

 

 V.3.1. Prediction of the POC stock 

We investigated the possibility to predict the stock of the particulate organic carbon from 

the standard BGC-Argo variables.The XGBoost algorithm applied to this dataset yields a 

POC predictive model with a R² of 0.72 (+/- 0.27), a RMSE of 15 (+/- 7) mg m-3, and a MAPE 

of 34 (+/- 12)% (Figure 5.2). The MAPE score indicates that, in similar oceanic conditions as 

those represented in the learning dataset, the POC concentration can be predicted with 

an expected accuracy of 66%. The learning dataset covers a large trophic gradient, from 

the seasonal bloom encountered in the naturally iron-enriched waters of the Kerguelen 

Plateau or in the Northwestern Mediterranean Sea, to the oligotrophic conditions of the 

subtropical Indian Ocean or of the Eastern Mediterranean Sea. Hence we can expect that 

the performance of the model would be similar in a wide range of trophic conditions on 



114 

 

the global scale. Moreover, the diversity of the conditions found in the Mediterranean Sea 

is particularly well represented in the dataset. We should thus be able to use the proposed 

predictive model to derive a timeseries of POC concentration based on measurements 

from a BGC-Argo float deployed in the Northwestern Mediterranean Sea. 

 

 

 

 

 

 

 

 

Figure 5.2 : Comparison of predicted versus measured POC concentrations. The POC predictions are obtained using 

the XGBoost algorithm applied to 30% of the dataset not used for training. 
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V.3.2. Partition of the particulate organic carbon in the planktonic community 

 

We investigate the possibility to use a PLS regression model to retrieve the relative 

contribution of four plankton group to the total particulate organic carbon content, based 

on optical and hydrological data similar to those measured by BGC-Argo floats. We define 

the four plankton groups as follows: heterotrophic bacteria, picophytoplankton (0.2-2 

µm), nanophytoplankton (2-20 µm) and microphytoplankton (20-200 µm). The same 

database as the one used to develop the XGBoost model, in addition to data from the C-

Rover transmissometer (cp), is used to test this model. 

The three regions show a distinct distribution of the carbon among the three plankton 

groups (Figure 5.3). The SOCLIM dataset is characterized by a dominant contribution of 

microphytoplankton to POC that reaches more than 50% at the a32 and a31 stations. In 

contrast, the sampling stations O23 and O24, that are situated north of the Polar Front, 

display a dominant contribution of nanophytoplankton to Ctot. In the BOUSSOLE dataset, 

the POC content appears to be strongly dominated by nanophytoplankton, whose 

contribution reaches up to 80%, especially between the monthly cruises b225 and b228, 

that took place in late winter and spring. The cruises b229 to b235 also show a dominance 

of nanophytoplankton (~75% of Ctot) yet with a significant contribution of bacteria (~20%). 

The PERLE dataset shows a mixed plankton assemblage, with a significant contribution of 

bacteria and nanophytoplankton to Ctot at most of the sampling stations. The 

contribution of microphytoplankton to Ctot in the PERLE 1 cruise data is equally important 

as that of nanophytoplankton. The resulting global dataset is thus composed of 

contrasted plankton assemblages that may represent, to a certain extent, the diversity of 

plankton assemblage observed on the global scale. 

We use this dataset to evaluate the possibility to extend the method developed by 

Rembauville et al. (2017) for the SO to other oceanic provinces. We performed a cross-

validation of the PLS model using the descriptors presented in Section V.II.3.2 to predict 

the contribution of the four plankton groups to Ctot. The cross-validation process was 

applied to each of the individual cruise datasets as well as to the combined datasets. The 

resulting RMSE of the predictions of the Ctot contribution of each plankton group for each 
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dataset is presented in Figure 5.4. Higher RMSE values are observed for bacteria and 

nanophytoplankton, with values comprised between 10 and 12.5%, whereas 

picophytoplankton shows the lowest RMSE (<5%). The microphytoplankton group is 

characterized by a significant variability in the RMSE among the three cruise datasets, 

which reflects the variability in the relative contribution to Ctot of this group as seen in 

Figure 5.3. Indeed, the lower RMSE associated with the BOUSSOLE dataset results from a 

lower average contribution of microphytoplankton to Ctot, while it is larger in the other 

datasets. 
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Figure 5.3 : Relative contribution of each plankton group to the total particulate organic carbon, represented as 

cumulative percentage, for the three missions represented in the dataset and each sampling station. The sampling 

station is indicated on the X axis with the station name followed by the depth of sampling separated by underscore 

symbole. 
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In order to understand the variability in the model performances in predicting the relative 

carbon contribution of the four plankton groups, we consider the covariations between 

the cellular abundance of the different plankton taxa and the selected predictors using an 

RDA (Figure 5.5). The first Principal Component (PC1) of the RDA accounts for 29% of the 

dataset variance, and opposes the cellular abundance of phototrophic organisms to that 

of heterotrophic bacteria. The abundance of bacteria is anti-correlated, on the one hand, 

to temperature and salinity because they occur in a deeper layer than phytoplankton 

organisms and, on the other hand, to the FChla/bbp ratio because they do not synthetise 

chlorophyll. 

The second Principal Component (PC2) represents 20% of the variance of the dataset. 

While all picophytoplankton organisms, Synechococcus and Prochlorococcus, are 

associated with negative eigenvalues on the PC1, microphytoplankton taxa are associated 

with both negative and positive eigenvalues of PC2, depending on the taxa. The cellular 

abundance of diatoms and silicoflagellates is anti-correlated with that of ciliates and 

dinoflagellates, which likely reflects distinct microphytoplankton assemblages sampled in 

the PERLE and BOUSSOLE regions. The PERLE dataset is indeed characterized by a large 

abundance of dinoflagellates while, in the BOUSSOLE and SOCLIM dataset, the 

microphytoplankton community shows a dominance of diatoms and silicoflagellates. 

Interestingly, the optical variables are associated with large PC2 eigenvalues, with the bbp 

and cp values strongly correlated with the abundance of diatoms and silicoflagellates. This 

may be explained by the presence of a silica frustule that modifies the light scattering 

properties of these organisms (Sun et al., 2016). Previous studies have used the influence 

of the POC-to-Chla ratio and external skeleton composition that both affect scattering 

properties to define an index of diversity based on the bbp-to-fluorescence ratio (Cetinić 

et al., 2015; Terrats et al., 2020). Dinoflagellates and ciliates do not have the same optical 

properties as diatoms and coccolithophores, leading to discrepancies within the 

microphytoplankton group and to lower performances of the model to predict the Ctot 

contribution of microphytoplankton when the full (combined) dataset is used for the 

algorithm training (Figure 5.4).  
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The global fit of the model is presented in Figure 5.6 which also shows the R² values 

associated with the cross validations. The best R² are obtained when the BOUSSOLE or 

SOCLIM dataset are used for the algorithm training, while the model evaluation on the 

PERLE dataset is characterized by a lower R² value. These low values may be due to a much 

more limited variability of the plankton assemblage in the PERLE data. The PERLE dataset 

is overall characterized by a large abundance of dinoflagellates (Figure 5.5) which have 

different optical properties than other taxa belonging with the microphytoplankton 

group. Moreover, the cross-validation procedure leads to a random sub-sampling of the 

dataset, which may, in the case of a small number of observations, lead to an under-

representation of a plankton assemblage from the learning or testing subset. This type of 

methods may be subject to overfitting, and learning dataset must be large and contrasted 

enough to make an objective prediction. However, the robust performances of the model 

for predicting the plankton group-specific contribution to Ctot in the full dataset indicate 

that this method could be used with a large dataset to predict plankton assemblage in a 

large variety of oceanic regimes. Given the overall robust performances of the model 

when based on the Northwestern Mediterranean (BOUSSOLE) dataset, we are confident 

in its application to the timeseries collected by float # 6901496 and the derived predictions 

of the plankton assemblage. 
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Figure 5.4 : Root mean square error (in %) of the predicted contribution of each plankton group to POC for the 

different dataset cross-validation. The vertical black lines represent the standard deviation of the different folds  of 

the cross-validation procedure. 
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Figure 5.5 : RDA analysis of the plankton diversity based on the microscopy and flow cytometry cell counts for the 

global dataset (i.e. including the BOUSSOLE, PERLE and SOCLIM data). The hydrographical and optical data are 

projected as environmental data. P0, P1 and P2 respectively stand for PERLE 0, PERLE 1 and PERLE 2 cruises. Syn 

stands for Synechococcus, picoe for picoeukaryote, proc for Prochlorococcus and bact for bacteria and to lower 

performances of the model to predict the Ctot contribution of microphytoplankton when the full (combined) dataset 

is used for the algorithm training (Figure 5.). 
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Figure 5.6 : Correlation between the predicted and the observed relative contribution to Ctot/POC/Carbon of the four 

plankton groups obtained using the partial least square regression model applied to the different dataset : (a) 

SOCLIM, (b) PERLE, (c) BOUSSOLE, (d) Combination of the three campagne. Bact stand for bacteria, pico for 

picophytoplankton, nano for nanophytoplankton and micro for microphytoplankton. The black line represents a 1:1 

regression. 
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V.3.3. Time series of the stock of particulate organic carbon and its partition between four 

plankton groups derived from BGC-Argo float measurements in the Mediterranean Sea 

 

In this section we make use of the XGBoost model to predict the POC concentration based 

on measurements from the BGC-Argo float (WMO #6901496) deployed in the BOUSSOLE 

area (Figure 5.7). Over the float timeseries, we observe two different events of mixed layer 

deepening followed by an increase in FChla. The deepening of the mixed layer may have 

led to an injection of nutrients into the upper oceanic layer, to the benefit of 

phytoplankton. This hypothesis would explain the observed increase in the Chla 

concentration. The rapid consumption of nutrients in surface waters associated with a 

rapid restratification of the water column is followed by the formation of a DCM that that 

tends to deepen until July, after which it disappears. This Chla dynamics is coherent with 

the seasonality documented in the Northwestern Mediterranean Sea (D’Ortenzio et al., 

2005; Lavigne et al., 2015; Barbieux et al., 2019, 2022). Overall the predicted POC 

concentration follows the temporal Chla dynamics, which suggests that, on a seasonal 

scale, the FChla can be used as a proxy of phytoplankton biomass. Interestingly, we also 

note that the DCM is accompanied by a deep POC maximum, indicating that the DCM is 

actually a deep biomass maximum (DBM; Barbieux et al., 2019; Mignot et al. 2014). 

However the relationship between the Chla and POC concentrations also presents small 

variations depending on the photoacclimation status and composition of phytoplankton 

communities (Dubinsky and Stambler, 2009; Brunet et al., 2011). The Chla-to-POC ratio 

increases from summer to fall below the mixed layer, reaching the maximum value of the 

timeseries, 0.05. This may be associated with the presence of a phytoplankton 

assemblage adapted to lower light conditions but close to the nutricline (Staehr et al., 

2002; Graff et al., 2016). Conversely, in surface waters, the Chla-to-POC ratio is low (~0.01), 

which indicates a lower intracellular Chla content consistently with more favorable light 

conditions. Between May and June, at a depth of ~50 m, the Chla/POC ratio is low despite 

a high POC concentration, thus indicative of high carbon biomass but low Chla 

concentrations or a change of phytoplankton community composition. 
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We now use the PLS regression method to infer from the BGC-argo timeseries changes in 

the plankton assemblage associated with the dynamics in POC (Figure 5.8). The resulting 

timeseries shows a dominance of nanophytoplankton in the upper layer of the water 

column and of bacteria at depth. The maximum values of the POC concentrations, 

observed in May at ~40 m, coincide with a contribution to Ctot of nanophytoplankton 

close to 100%. This reflects the variability observed in the training Northwestern 

Mediterranean dataset. Interestingly, the increase in the FChla/POC ratio below the MLD in 

summer is associated with an increase in the Ctot contribution of picophytoplankton, 

close to 15%. One caveat of the method is that it can predict values of the relative 

contribution to Ctot that are negative or above 100%. This may happen when the optical 

and hydrographical conditions of the predicted data are not well represented in the 

training dataset. Here, 11% of the predicted values were either inferior to 0% or superior 

to 100%.  

The observed patterns suggest that the proposed algorithms applied to BGC-Argo float 

data allows, not only to predict the POC concentration, but also the contribution of four 

different plankton groups to the POC stock.  

The combination of both the XGBoost and PLS methods would enable to estimate 

plankton group specific carbon stock and fluxes (Boyd and Newton, 1999; Mouw et al., 

2016). Such information derived from BGC-Argo floats measurements would be of a great 

interest to better assess the carbon cycle in the global ocean. The precision of the 

predicted information appears to be dependent on the number of data as well as the 

range of optical and hydrographical environments associated to plankton assemblage 

represented in the learning dataset. In view of developing such method for future 

applications to the global BGC-Argo network, we recommend the acquisition of an in-situ 

database of interoperable optical, hydrographical and plankton diversity measurements 

similar to the datasets collected and utilized in the present study. Field sampling should 

include, at a minimum, one sample a at the surface, one at the depth of the chlorophyll 

maximum and one below the euphotic zone in order to account for the strong vertical 

variability often encountered in the distribution of open ocean phytoplankton and 

bacteria communities. We also recommend the optical and hydrographical data be 
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processed following the BGC-Argo guide for good practices (Bittig et al., 2019) and the 

plankton group-specific carbon biomass be assessed as described in Section II.1.2, 

following Rembauville et al. (2017).  

 

 

 

. 
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Figure 5.7 : Time series of (a) the POC concentration (mg m-3) predicted with the XGBoost model applied to the BGC-

Argo profiling float lovbio064b data, (b) the FChl measured by the BGC-Argo float, and (c) the ratio FChla/POC 

calculated from predicted POC and measured FChl. ) The bold black line corresponds to the mixed layer depth. 
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Figure 5.8 : Time series of (a) the POC concentrations predicted with XGBoost model, and (b–d the )relative 

contribution of the four plankton groups to Ctot predicted with the PLS model, applied to the BGC-Argo float 

lovbio064b data. Here the PLS model was trained using the whole database, i.e. comprising the data from the 

BOUSSOLE, PERLE and SOCLIM missions. The black bold line represents the mixed layer depth. 
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V.4. Conclusion 

 

The present study uses two different machine learning based methods to estimate POC 

concentration and its partition between four plankton groups. The POC prediction uses 

temperature, salinity, in-situ fluorescence and bbp data as predictive variables, the 

standard BGC-Argo measurements. The prediction of plankton assemblage uses the same 

variable plus the cp to enable particle structure determination. Both methods were 

evaluated on three different cruises, located in Southern Ocean, northwestern 

Meditteranean sea and eastern Mediterranean sea. The POC concentration prediction 

showed good results on the whole dataset, indicating a possible use on large scale with 

the help of BGC-Argo data. The plankton assemblage prediction also presented promising 

results on the different dataset. We note a sensitivity to the representativity of optical 

environment and plankton assemblages represented in the dataset. 

The predictive methods were used to assess POC concentration and plankton assemblage 

of a BGC-Argo float timeseries situated in the northwestern Mediterranean sea. We were 

able to retrieve the temporal and vertical POC dynamics as well as plankton assemblage 

succession. The combination of these two methods presented in these paper appear as 

promising tools to observe phytoplankton community from BGC-Argo floats on the global 

scale. 
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VI General conclusion and perspectives 

 

VI.1. Main results 

 

Decades of oceanographic studies have demonstrated the importance of phytoplankton 

biomass and community composition on marine biogeochemical cycles (Falkowski, 

1994b; Morel and Price, 2003; Litchman et al., 2015) and functioning of ecosystems 

(Cushing, 1989; Field et al., 1998; Finkel, 2007). Yet, observing phytoplankton at global, 

temporal, and vertical scales remains a challenge. In this thesis, we developed new 

methods to estimate phytoplankton biomass and community composition from BGC-

Argo profiling floats. The main results of this work are summarized in the following 

section. 

Estimation of the phytoplankton biomass 

In-situ fluorescence is a very convenient tool for assessing the Chla concentration on large 

scales. It is widely used for its ease of application and low deployment cost. It is a key 

variable in the BGC-Argo program, in which each profiling float is equipped with a 

fluorometer (Claustre et al., 2020). However, the relationship between the in-situ 

fluorescence signal and the Chla concentration has been shown to vary considerably in 

the global ocean, depending on the bioregion (Roesler et al., 2017; Schallenberg et al., 

2022a). Because oceanic bioregions are characterized by specific environmental 

conditions (the light-nutrient regime in particular), with phytoplankton communities 

responding to these conditions, we hypothesized that the composition of the 

phytoplankton communities influences the fluorescence signal on a regional scale. Three 

different databases of concurrent in-situ fluorescence and HPLC pigment measurements 

were analyzed to assess the influence of changes in phytoplankton community 

composition on the fluorescence signal regionally as well on the vertical and seasonal 

scales (section III).  

Phytoplankton community composition appears to significantly influence the in-situ 

fluorescence signal, and ultimately its conversion to Chla concentration at all considered 
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scales. We find a key influence of the size structure, where communities with a dominance 

of microphytoplankton appear to have a higher fluorescence-to-Chla ratio. Conversely, 

picophytoplankton-dominated communities have a lower fluorescence-to-Chla ratio, in 

part due to their pigment composition. Indeed, the presence of zeaxanthin, a non-

photosynthetic pigment is often present in large concentration in picophytoplankton-

dominated communities, and it is assumed that the energy absorbed by this pigment is 

directly re-emitted as heat so that the fluorescence de-excitation pathway is less 

important in such communities (Bidigare et al., 1989). These results could largely explain 

the overestimation of the Chla concentration from in-situ fluorescence in meso- to 

eutrophic environments, such as the iron-enriched waters of the Kerguelen Plateau or the 

Northwestern Mediterranean spring bloom which show large contributions of 

microphytoplankton (diatoms) to the algal assemblage, and the Chla underestimation in 

oligotrophic conditions, such as the Mediterranean summer surface waters, typically 

dominated by picophytoplankton. 

We investigated in section V the use of machine learning algorithms to estimate the POC 

stock and the contribution of phytoplankton to this stock, in order to possibly 

complement the fluorescence-based determination of the phytoplankton biomass. The 

combination of the XGBoost and PLS regression methods provided promising results on 

the estimation of phytoplankton biomass for applications to BGC-Argo float sensors. The 

results showed robust performances of the machine learning based models in different 

contrasted open ocean environments, indicating the possibility of applying the methods 

on the global scale. The application of the proposed methods to a BGC-Argo float 

deployed in the Northwestern Mediterranean Sea clearly demonstrates the feasibility to 

monitor the POC dynamics within the entire water column and throughout the whole 

timeseries. Moreover, the combined use of modelled POC and Chla estimated from 

fluorescence allowed us to observe different mechanisms that influence the carbon-to-

Chla ratio such as photoacclimation of phytoplankton cells to changing light conditions 

over the seasonal cycle.  

Estimation of phytoplankton community composition 
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The estimation of phytoplankton community composition from BGC-Argo float is a critical 

challenge that has led to several studies (e.g. Briggs et al., 2013; Cetinić et al., 2015; 

Sauzède et al., 2015; Rembauville et al., 2017). All the methods proposed so far rely on the 

measurements of seawater optical properties; some of them allow a quantification of the 

size structure of the phytoplankton community (Sauzède et al. 2015; Rembauville et al. 

2017). Although these methods provide promising results for the estimation of 

phytoplankton community structure from BGC-Argo floats, they are either restricted to a 

specific oceanic region or provide information limited to the phytoplankton taxonomic 

composition. In this thesis we evaluated two different approaches to estimate 

phytoplankton community structure. 

The first approach makes use of in-situ multispectral fluorescence (section IV). It is based 

on the difference in light absorption by different accessory pigments, used as biomarkers 

of specific phytoplanktonic taxa (Escoffier et al., 2015). It has already been used in 

freshwater environments and also showed promising results in the open ocean (Proctor 

and Roesler, 2010; Thibodeau et al., 2014b). We therefore studied the response of a 3-

channel multispectral fluorometer based on laboratory experiments with ten 

phytoplankton strains grow in culture. The same multispectral fluorometer has also been 

deployed at sea over one year to study the response of multispectral fluorescence to 

phytoplankton seasonal succession. This work was conducted with the aim to propose a 

method for predicting the composition of phytoplankton communities based on a 

fluorometer that could easily be mounted on a BGC-Argo profliling float. 

In the laboratory, the multichannel fluorometer responded very different to the different 

selected phytoplankton taxa. It thus appears possible to distinguish different 

phytoplanktonic groups according to the ratios of the fluorescence signal emitted in 

response to excitation in the three different channels. This indicates that the fluorometer 

is quite sensitive to phytoplankton community composition. The results of the field 

deployment of the multichannel fluorometer indicate a less marked differentiation of the 

different communities. This can be explained by the composition of natural 

phytoplankton assemblages characterized my mixed populations, in comparison with the 

mono-specific cultures used for laboratory experiments. However, by combining in-situ 
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multispectral fluorescence with optical and hydrographic measurements, the use of a 

machine learning model, in the present work a histogram gradient boosting, allowed us 

to predict four different mixed phytoplankton communities. Each community was 

dominated by a certain taxonomic groups but still is composed of several groups. Two of 

the four communities were dominated by picophytoplankton organisms, one by 

Synechococcus, the other by Prochlorococcus. The two remaining communities were 

dominated by nanophytoplankton but with varying relative contributions of micro- and 

picophytoplankton. In the present work, we also determined the degree of information 

(i.e. the number of phytoplankton communities) that can be predicted from the method 

applied to different configurations of BGC-Argo sensors. 

The second approach to assessing phytoplankton composition from BGC-Argo data is 

based on an empirical relationship between bio-optical properties and plankton 

community size structure (section V). It consists of a PLS regression model that predicts 

the relative contribution to POC of four plankton groups (i.e. the three phytoplankton size 

classes plus bacteria) from hydrographical and optical data. This method has been first 

developed by Rembauville et al. (2017) based on a dataset collected in the Indian sector 

of the Southern Ocean. One of the goals of this thesis work was to evaluate the possibility 

of extending this method to different open ocean environments and trophic regimes.  

The results showed the robust performance of the method in various oceanic 

environments. However, such method needs a learning dataset that covers a wide range 

of optical regimes associated with different plankton assemblages. The work of data 

collection carried out during this thesis allowed to construct a database comprising 

measurements from contrasted optical and biogeochemical conditions encountered over 

a seasonal cycle in the Northwestern Mediterranean Sea. The developed method, applied 

to observations from a BGC-Argo float deployed in the same region as the training 

dataset, revealed consistent annual and vertical dynamics of the plankton assemblage. 

Such of machine learning-based models hence offer a promising way for retrieving 

information related to phytoplankton community structure on large spatial and temporal 

scales based on BGC-Argo floats.  
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VI.2. Biogeochemical implications  

 

Improving phytoplankton biomass estimates from BGC-Argo floats 

Our results highlight the need to develop alternative methods to the current linear 

conversion of the in-situ fluorescence signal in terms of Chla concentration. As 

phytoplankton community composition significantly influences the fluorescence-to-Chla 

ratio, it is essential to introduce a correction coefficient that accounts for the variability in 

the phytoplankton communities encountered by the BGC-Argo floats over their lifetime. 

The estimation of Chla concentration based on fluorescence could be complemented, 

using additional BGC-Argo sensors, by other methods for estimating the composition of 

the phytoplanktonic communities, such as those presented in this thesis. Coupling these 

approaches could both help to better constrain the estimation of the Chla concentration 

and provide information on the taxonomic composition or size structure of 

phytoplankton communities. Another possibility to better constrain the fluorescence-

based Chla concentration would be to use fluorometers with different excitation 

wavelengths. This would enable to use the fluorescence signal emitted in response to 

excitation in the wavelength channel corresponding with light absorption by Chla and 

avoid the absorption of non-photosynthetic pigments (Bricaud et al., 2004). This could be 

especially efficient in stratified oligotrophic regimes, where the vertical variability of such 

pigment concentration is pronounced and thus likely to induce errors in the estimation of 

the Chla concentration based on BGC-Argo fluorometers.  

Accurate estimation of the Chla concentration from fluorometers mounted on BGC-Argo 

floats is valuable information, especially when complemented by other bio-optical 

variables. We considered, in this thesis, the possibility of assessing POC concentration 

from BGC-Argo float sensors. While the POC had previously been inferred from bio-optical 

empirical relationships using the bbp or cp coefficient (e.g. Gardner et al., 2006; Loisel et 

al., 2011; Cetinić et al., 2012), machine learning methods help to better account for the 

variety of factors affecting the bio-optical relationships. Ultimately, improving the 

estimation of the Chla and POC concentrations will increase the accuracy of the retrieved 

Chla-to-POC ratio, a key index of the physiological status of phytoplankton communities 
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(Behrenfeld and Boss, 2003; Westberry et al., 2008; Graff et al., 2016; Barbieux et al., 2022) 

and input variable of satellite carbon-based primary production models (Behrenfeld et al., 

2005; Westberry et al., 2008). 

Observing phytoplankton community composition from BGC-Argo floats 

In the present thesis, we introduced two different machine learning methods based on 

either multispectral fluorescence or optical measurements, both dedicated to estimating 

phytoplankton community compositon from BGC-Argo floats. The multispectral 

fluorescence-based approach enables to predict taxonomic information (i.e. 4 different 

types of mixed phytoplankton assemblages) and represents a significant opportunity for 

the global BGC-Argo program. Indeed, the four different types of predicted communities 

are associated with distinct biogeochemical regimes encountered in the open ocean. The 

method is particularly efficient to distinguish between two picophytoplankton 

communities, dominated by either Synechococcus or Prochlorococcus, based on in-situ 

sensors, which, to our knowledge, had never been done in the past. This is of a particular 

interest as those two taxa are estimated to contribute 10–40% of global net primary 

production (Raven, 1998; Agawin et al., 2000; Uitz et al., 2010), a significant fraction of 

which being potentially exported (Stukel et al., 2013; Visintini et al., 2021). Phytoplankton 

is often represented in biogeochemical modelling by few size classes and this may lead to 

inaccuracy in biogeochemical cycles modelling (Gruber and Doney, 2009). Such method 

deployed on BGC-Argo floats would allow to precise the community composition in such 

models and reduce the bias. 

The second method permits to infer the partitioning of the total POC stock among four 

plankton groups from bio-optical and hydrological BGC-Argo measurements. Multiple 

algorithms have been developed for determining phytoplankton community composition 

on the global scale based on satellite ocean color observations (e.g. Brewin et al., 2011; 

Bracher et al., 2017; Mouw et al., 2019). Although extremely valuable because of their wide 

scope, most of these products are restricted to the surface layer of the ocean. In contrast, 

the proposed BGC-Argo-based method allows a vertical description of the size structure 

of the phytoplankton community. Our results suggest that this method can be applied to 

wide range of open ocean environments. This method is of a particular interest to quantify 
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carbon stocks in regions characterized by high seasonality where the phytoplankton 

community succession and vertical distribution vary significantly throughout the year 

(Henson et al., 2012; Cornec et al., 2021).  

The two methods presented in this work therefore appear to be complementary in terms 

of the information they provide. The multispectral fluorescence-based approach appears 

particularly relevant for stratified oligotrophic environments, where limited 

phytoplankton biomass and community gradients preclude the use of empirical 

relationships that typically require datasets with a large range of variability to perform in 

a robust manner. In contrast, the method based on optical and hydrographic 

measurements would be more powerful for regions with marked seasonal variability in 

the phytoplankton biomass and size structure.  

 

VI.3. Perspectives 

 

Data collection 

The implementation of predictive methods from in-situ sensors relies, above all, on the 

possibility of collecting accurate reference data, representative of a wide range of 

environments. Moreover, the variables of interest and the predictive variables must be 

measured concomitantly. The collection of baseline data on phytoplankton community 

composition is based on seawater sampling, which reduces the amount of data collected 

per cruise. During this thesis work, we have developed different protocols to build a 

reference database for phytoplankton community composition for developing predictive 

methods. These protocols resulted in a one-year sampling effort in the Northwestern 

Mediterranean. The promising results of the methods based on these data encourages 

the extension of this protocol to different oceanic regions. Increasing the amount of data 

will not only improve the performance of the models, but also provide a better 

understanding of the mechanisms underlying the relationships between phytoplankton 

community composition and the different predictor variables. It is also particularly 
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important to perform these samples during float deployments, in order to improve the 

performances of these methods on BGC-Argo floats. 

Future studies 

The studies carried out within the framework of this thesis focus on the composition of 

phytoplankton communities. In future, it would be interesting to test the covariance 

between the fluorescence-to-Chla ratio and the phytoplanktonic groups predicted by 

multispectral fluorescence or optical measurements. This could result in new methods to 

converte in-situ fluorescence into Chla concentration, taking account of the community 

composition. In the longer term, as more data become available for training, we hope to 

be able to test the predictive method presented in Chapter 5 to other ocean regions. 

Ultimately, this method could be applied to the BGC-Argo floats equipped with the 

relevant sensor package in order to generate large-scale 3D estimates of phytoplankton 

group-specific POC concentrations. These POC estimates would be valuable to improve 

our understanding of the responses and biogeochemical impact of phytoplankton 

communities to changes in environmental drivers also measured by the BGC-Argo floats 

(light regime and mixed layer depth, in particular). Such estimates could also serve as a 

reference for the validation of global biogeochemical models that integrate different 

classes of plankton and lack in-situ validation data (e.g. Le Quéré et al., 2005; Stocker et 

al., 2013). 

The methods presented here, along with recent works (Rembauville et al. 2017; Terrrats 

et al. 2020), pave the way for taking into account phytoplankton community composition 

in biogeochemical cycle studies using BGC-Argo floats. This is in line with the evolution of 

the BGC-Argo program that aims not only to increase the size of the fleet, but also to 

extend the range of variables observed by the floats (Claustre et al., 2020; Bishop et al., 

2022; Picheral et al., 2022), an evolution consistent with recommendations of the 

international community to enhance biological observations from existing programs (e.g. 

Miloslavich et al., 2018; Boss et al., 2022). The parallel development of new predictive 

methods and integration of novel sensors onto BGC-Argo floats will eventually allow a 

finer understanding and quantification of global biogeochemical processes along with 

integrative analyses of ecological processes. 
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