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N -body simulations are currently the only available technique to solve clustering at non-linear scales. With the upcoming measurements from Stage IV surveys (such as Euclid, DESI or LSST), which will provide unprecedented precision, understanding the resolution and limitations of simulations has become an urgent necessity. In this thesis, we exploit a new technique to assess resolution of N -body simulations in the non-linear regime of structure formation. For this, we use a particular set of cosmologies with an Einstein de-Sitter evolution (Ω m = 1) and a power-law spectrum of perturbations (P k I ∝ k n ), known as scale-free cosmologies. An important property is their self-similar evolution (i.e., at fixed appropriately rescaled coordinates, any given dimensionless clustering statistic is constant in time). This provides an excellent tool to determine the resolution at which we can measure said statistics. We exploit the fact that any deviations from a self-similar behaviour must be due to unphysical scales introduced by the N-body system, and thus the extrapolation to the continuum limit is no longer a good approximation for the simulation.

As a test sample for the main results of this thesis, we exploit a suite of large N -body simulations (up to N = 4096 3 ) performed with Abacus. We run a variety of spectral indices n, to facilitate the extrapolation of our results to ΛCDM-like cosmologies. We also run sets of simulations differing by a single discretization parameter, in order to study how resolution might depend on them.

We start by presenting the analysis of matter field statistics. First, we study the minimum resolved scale for the power spectrum, and its dependence on the initial configuration's interparticle distance. We continue by examining the resolution of pairwise velocities, and their connection to that of the density 2-point correlation function. In addition, as a by-product of these studies, we were also able to revisit the stable clustering hypothesis, estimating its compatibility with the data. Finally, we provide an analysis of halo statistics for different popular halo-finders (FoF, Rockstar and CompaSO). We study the convergence of the halo mass function, the halo-halo relative pairwise velocity and their two-point correlation function, determining resolution limits as a function of scale and the number of particles per halo.
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Introduction (EN)

How the Universe evolved from a hot and homogeneous plasma to contain the structures such as clusters, galaxies, or stars that we observe today is still an open question that has been one of the major problems in astrophysical cosmology in the last half century. Indeed, although the distribution of matter in the current Universe has been revealed to be highly inhomogeneous even at very large scales, this has been inferred to not be the case at early times, when the Universe was still young. Observations of the Cosmic Microwave Background (CMB) constitute the earliest "picture" of the state of the Universe we currently have access to. Fluctuations at this time are seen to be very small, and thus evolution can be treated linearly. As these perturbations become larger and larger and structures start to cluster at later times, the evolution becomes more and more non-linear, and analytical approximations break down.

In order to study the non-linear regime of structure formation, numerical techniques have been developed to solve the evolution equations. Very sophisticated N -body codes, highly parallelized, and able to run on a mix of CPU and GPU clusters have emerged in the past decades. Massive simulations have been commissioned on numerous supercomputers around the globe, in order to calculated predictions against which to test the highly accurate data coming from current and future generations of surveys. All this makes the problem of understanding the accuracy and limitations of numerical simulations a key pressing question in research in cosmology today.

This thesis tackles the issue of resolution in N -body simulations for structure formation. This approach approximates the continuum density field by a discrete set of particles in a finite box, which limits their fidelity in reproducing the evolution of the Universe. The dependence of different statistics computed from simulated data on these unphysical scales introduced by the N -body method will be the core of our analysis. We will aim at setting boundaries to resolved scales at a desired precision, as well as unveiling the factors limiting this resolution.

In particular, we will analyse the performance of Abacus, a new N -body code used to run the largest Cold Dark Matter (CDM) suite of simulations to date, AbacusSummit. Although our exact reported results are specific to this code, the iii techniques presented here can be extended to analyse any other N -body solver. In addition, results can also be approximately extrapolated to any other current codes, as long as the accuracy of their integration is equivalent to that of Abacus.

Abacus is a highly parallelized N -body code, optimized for fast GPU calculations. One of its many particularities is the method it uses to do the force calculations: it uses an innovative technique to exactly decouple far-and near-field interactions, which allows for highly accurate computations. While the far-field is obtained by a multipole expansion, and handled by massively parallelized CPU calculations, the near-field is computed on GPUs by a direct pairwise summation. Thanks to this decomposition, Abacus only needs a small fraction of a simulation loaded into memory at any single time, making it the perfect code for small clusters and local computer facilities.

The methods used in assessing the accuracy of the N -body simulations are based on the analysis of a certain set of cosmologies known as scale-free. They are flat and matter-only (Ω m = 1), with a power-law power spectrum of initial conditions (P I (k) ∝ k n ). In addition, they allow for self-similar solutions of the BBGKY equations, which translates into a self-similar evolution of clustering statistics, i.e. the value of a dimensionless statistic of time and space will be constant in time when rescaled by the appropriate rescaled coordinates. These models became really popular by the end of the previous century, as their simple background allowed for less complicated theoretical predictions for structure formation than in ΛCDM solutions. Moreover, their property of self-similarity allowed for minor qualitative tests of convergence in simulations. However, the limitations caused by the poorer resolution of the numerical simulations available at the time restricted their usefulness, and made the scientific community to be less and less interested in them.

Here, we will build upon the ideas once abandoned by most to, this time, give a quantitative and precise test to the limits in resolution for N -body simulations and their dependence on numerical discretization parameters. As an after-effect, we will explore the theoretical predictions from the so-called stable clustering hypothesis, a model for non-linear evolution in which clustering freezes in physical coordinates. Finally, our results will be extrapolated to ΛCDM-like cosmologies, in the limit in which they can be approximated by adiabatic interpolations of scale-free models of different spectral indices n.

Thesis Layout

The pluralis majestatis (or "Royal We") set of pronouns is adopted throughout this thesis as an acknowledgement of the collaborative nature of the individual projects within. The manuscript is divided into 3 global sections: v • Theoretical background and introduction: It contains a literature review and general introduction to better understand the context of the research reported in the thesis. It introduces the formalism and theories tested in the Results chapters later on, and constitutes an extended version of the individual Introductions of the chapters in that section. It's subdivided into:

chapter 1: It starts by introducing the ΛCDM model as the currently accepted background cosmology of the Universe, and continues with a description of a linearly perturbed inhomogeneous Universe. This chapter sets the background for the theory of structure formation.

chapter 2: It describes scale-free simulations and their self-similar evolution, as well as the relevant scaling relations that will be used for the Results section. It finishes with a small overview of the history of scale-free models' studies, as well as a theoretical description of stable clustering.

chapter 3: It summarizes the main techniques currently used by N -body codes to solve for the evolution of the Universe. We discuss in particular initial conditions, force solvers, and time integration algorithms. Next, we summarize Abacus main properties and routines. We finish this chapter with a brief summary of the three halo-finders employed in the results section for the halo statistics analysis.

• Results: This section can be read independently, as each chapter is selfcontained with an introduction, results, and discussion section. These chapters have been previously presented in accepted or submitted publications.

chapter 4: This thesis chapter was originally published, in its totality, as S. Maleubre et al. Accuracy of power spectra in dissipationless cosmological simulations, MNRAS 512, 1829-1842 (2022).

It analyses resolution effects on the matter density power spectrum in the non-linear regime of structure formation. It contains a section about shot-noise, and discusses the compatibility of our data with the stable clustering hypothesis.

chapter 5: This thesis chapter contains the dark matter field section of the paper submitted to MNRAS, and publicly available on arXiv (arXiv:2211.07607) as S. Maleubre et al. Constraining accuracy of pairwise velocities using scale-free models.

We study the resolution limits on the radial component of the pairwise velocity by a direct estimation (using a modification of the code Corrfunc), and compare them to those from the density 2-point correlation function by applying pair conservation. As in the previous chapter, we study our results for the smaller non-linear scales in the context of the stable clustering hypothesis.

chapter 6 This thesis chapter contains the halo analysis section of the aforementioned paper in chapter 5. In addition, it also contains a rewritten summary of relevant results from M. Leroy It contains the halo analysis sections of the former publication, and the results on the halo mass function (HMF) with FoF and Rockstar algorithms of the latter. It also presents a small study about Rockstar's halo vs. subhalo and bound vs. unbound mass assignments. We explore different halo-halo statistics of structures identified with three particular halo-finders: FoF, Rockstar and CompaSO, as well as investigating the effects of the cleaning process for the latter.

• Summary of conclusions: This final section constitutes a summary of the most important findings of the projects carried out during the completion of this thesis.

Statement of authorship and participation of the published and/or submitted publications composing this manuscript, in order of publication:

• M. Leroy 

Introduction (FR)

Comment l'Univers a évolué à partir d'un plasma chaud et homogène pour contenir les structures telles que les amas, les galaxies ou les étoiles que nous observons aujourd'hui est encore une question ouverte, et fut l'un des problèmes majeurs de la cosmologie astrophysique au cours du dernier demi-siècle. En effet, bien que la distribution de la matière dans l'univers actuel s'est révélé très inhomogène, même à très grandes échelles, on en a déduit que ce n'était pas le cas aux premiers temps, lorsque l'Univers était encore jeune. Les observations du fond diffus cosmologique (CMB) constituent la plus ancienne "image" de l'état de l'Univers à laquelle nous avons actuellement accès. On constate que les fluctuations à cette époque sont très faibles, et que l'évolution peut donc être traitée linéairement. Au fur et à mesure que ces perturbations deviennent de plus en plus grandes et que les structures commencent à se regrouper plus tard, l'évolution devient de plus en plus non linéaire, et les approximations analytiques s'effondrent. Afin d'étudier le régime non linéaire de la formation des structures, des techniques numériques ont été développées pour résoudre les équations d'évolution. Des codes à N -corps très sophistiqués, hautement parallélisés et capables de fonctionner sur un mélange de clusters CPU et GPU ont émergé au cours des dernières décennies. Des simulations massives ont été commandées sur de nombreux superordinateurs dans le monde entier, afin de calculer des prédictions par rapport auxquelles tester les données très précises provenant des générations actuelles et futures de relevés cosmologiques. Tout cela fait du problème de la compréhension de la précision et des limites des simulations numériques une question essentielle et urgente dans la recherche en cosmologie d'aujourd'hui.

Cette thèse aborde la question de la résolution dans les simulations à N -corps pour la formation des structures. Cette approche estime le champ de densité du continuum par un ensemble discret de particules dans une boîte finie, ce qui limite leur fidélité à reproduire l'évolution de l'Univers. La dépendance de différentes statistiques calculées à partir des données simulées sur ces échelles non physiques introduites par la méthode à N -corps sera au coeur de notre analyse. Nous viserons à fixer des limites aux échelles résolues à une précision souhaité, ainsi qu'à dévoiler les facteurs limitant cette résolution.

vii viii

En particulier, nous analyserons la performance d'Abacus, un nouveau code à N -corps utilisé pour exécuter la plus grande suite de simulations de matière noire froide (CDM) à ce jour, AbacusSummit. Bien que nos résultats exacts rapportés soient spécifiques à ce code, les techniques présentées ici peuvent être étendues pour analyser tout autre code à N -corps. De plus, les résultats peuvent également être approximativement extrapolés à tout autre code actuel, tant que la précision de leur intégration est équivalente à celle d'Abacus.

Abacus est un code à N -corps hautement parallélisé, optimisé pour les calculs rapides sur GPU. Une de ses nombreuses particularités est la méthode qu'il utilise pour effectuer les calculs de force : il utilise une technique innovante pour décomposer exactement les champs d'interactions lointaines et proches, ce qui permet des calculs très précis. Alors que le champ lointain est obtenu par une expansion multipolaire et géré par des calculs massivement parallélisés du CPU, le champ proche est calculé sur les GPU par une sommation directe par paire. Grâce à cette décomposition, Abacus n'a besoin que d'une petite fraction d'une simulation chargé en mémoire à tout moment, ce qui en fait le code idéal pour les petits clusters et les installations informatiques locales.

Les méthodes utilisées pour évaluer la précision des simulations à N -corps sont basées sur l'analyse d'un certain ensemble de cosmologies dites sans échelle. Ils sont plates et uniquement constituées de matière (Ω m = 1), avec un spectre de puissance des conditions initiales de type loi de puissance (P I (k) ∝ k n ). De plus, ils permettent des solutions auto-similaires des équations BBGKY, ce qui se traduit par une évolution auto-similaire des statistiques de clustering, c'est-à-dire que la valeur d'une statistique sans dimension du temps et de l'espace sera constante dans le temps lorsqu'elle est remise à l'échelle par les coordonnées redimensionnées appropriées. Ces modèles sont devenus vraiment populaire à la fin du siècle précédent, car leur fond simple permettait des prédictions théoriques moins compliquées pour la formation de la structure que dans les solutions ΛCDM. De plus, leur propriété d'auto-similarité permettait de faire des tests qualitatifs mineurs pour la convergence dans les simulations.. Cependant, les limitations causées par la résolution plus faible des simulations numériques disponibles à l'époque ont restreint leur utilité, et ont fait que la communauté scientifique s'y intéresse de moins en moins.

Ici, nous nous appuierons sur les idées abandonnées par la plupart de la communauté scientifique pour, cette fois, donner un test quantitatif et précis aux limites de résolution des simulations à N -corps et à leur dépendance aux paramètres de discrétisation numérique. Comme effet secondaire, nous explorerons les prédictions théoriques de l'hypothèse dite du clustering stable, un modèle d'évolution non linéaire dans lequel le regroupement se fige dans les coordonnées physiques. Enfin, nos résultats seront extrapolés aux cosmologies de type ΛCDM, dans la limite où ils peuvent être approximés par des interpolations adiabatiques de modèles sans échelle de différents indices spectraux n.

Format de la thèse

Le jeu de pronoms pluralis majestatis (ou "Nous de majesté") est adopté tout au long de cette thèse, en reconnaissance de la nature collaborative des projets individuels qui la composent. Le manuscrit est divisé en 3 sections globales :

• Contexte théorique et introduction : Elle contient une revue de la littérature et introduction générale permettant de mieux comprendre le contexte de la recherche rapportée dans la thèse. Il introduit le formalisme et les théories testées dans les chapitres Résultats plus loin, et constitue une version étendue des introductions individuelles des chapitres de celle section. Elle est subdivisée en :

-Chapitre 1 : Il commence par présenter le modèle ΛCDM comme la cosmologie de fond actuellement acceptée de l'Univers, et se poursuit par la description d'un Univers inhomogène perturbé linéairement. Ce chapitre établit le contexte de la théorie de la formation des structures.

-Chapitre 2 : Il décrit les simulations sans échelle et leur évolution autosimilaire, ainsi que les relations d'échelle pertinentes qui seront utilisées pour la section Résultats. Elle se termine par un petit aperçu de l'histoire des études des modèles sans échelle, ainsi qu'une description théorique de la stabilité du clustering.

-Chapitre 3 : Il résume les principales techniques actuellement utilisées par les codes à N -corps pour résoudre l'évolution de l'Univers. Nous discutons en particulier les conditions initiales, les solveurs de force et les algorithmes d'intégration temporelle. Ensuite, nous résumons les principales propriétés et routines d'Abacus. Nous terminons ce chapitre avec un bref résumé des trois chercheurs de halos employés dans la section des résultats pour l'analyse statistique des halos.

• Résultats : Cette section peut être lue indépendamment, car chaque chapitre est autonome et comporte une introduction, des résultats et une discussion.

Ces chapitres ont été présentés précédemment dans des publications acceptées ou soumises.

x -Chapitre 4 : Ce chapitre de thèse a été publié à l'origine, dans sa totalité, sous le titre S. Maleubre et al. Accuracy of power spectra in dissipationless cosmological simulations, MNRAS 512, 1829-1842 (2022).

Il analyse les effets de résolution sur le spectre de puissance de la densité de matière dans le régime non linéaire de la formation des structures. Il contient une section sur le bruit blanc, et discute la compatibilité de nos données avec l'hypothèse de clustering stable.

-Chapitre 5 : Ce chapitre de thèse contient la section sur le champ de matière noire de l'article soumis à MNRAS, et disponible publiquement sur arXiv (arXiv:2211.07607) sous le titre S. Maleubre et al. Constraining accuracy of pairwise velocities using scale-free models.

Nous étudions les limites de résolution de la composante radiale de la vitesse par paire par une estimation directe (en utilisant une modification du code Corrfunc), et les comparons à celles de la fonction de corrélation à 2-points de la densité en appliquant la conservation des paires de particules. Comme dans le chapitre précédent, nous étudions nos résultats pour les échelles non linéaires les plus petites dans le contexte de l'hypothèse du clustering stable.

-Chapitre 6 : Ce chapitre de thèse contient la section d'analyse du halo du document susmentionné au chapitre 5. En outre, il contient également un résumé réécrit des résultats pertinents de M. Leroy et al. (comprenant S. Maleubre) Testing dark matter halo properties using self-similarity MNRAS 501, 5064-5072 (2021). Il contient les sections d'analyse du halo de la publication précédente, et les résultats sur la fonction de masse de halo (HMF) avec les algorithmes FoF et Rockstar de la seconde. Il présente également une petite étude sur les algorithmes Rockstar halo vs. subhalo et les affectations de masse liées vs. non liées de Rockstar. Nous explorons différentes statistiques de halo-halo de structures identifiées avec trois halo-finders particuliers : FoF, Rockstar et CompaSO, ainsi que l'étude des effets du processus de nettoyage pour ce dernier.

• Résumé des conclusions : Cette section finale constitue un résumé des conclusions les plus importantes des projets menés à bien pendant la réalisation de cette thèse.

Déclaration de la réalisation et de la participation des publications soumises et/ou publiées composant ce manuscrit, dans l'ordre de publication : 

ΛCDM in a nutshell

The last few decades have seen an increase in cosmological observations, leading scientists to establish the current paradigm in cosmology, the standard cosmological model, ΛCDM 1 . It is described by a Universe in accelerated expansion (Type Ia Supernovae [START_REF] Perlmutter | Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35[END_REF][START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF], Baryon Acoustic Oscillations (BAO) [START_REF] Cole | The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications[END_REF][START_REF] Eisenstein | Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies[END_REF]), sourced by a cosmological constant (Λ), and dominated by a non-relativistic species, cold dark matter (CDM) [START_REF] Schmidt | The distribution of mass in M 31[END_REF][START_REF] Persic | The universal rotation curve of spiral galaxies -I. The dark matter connection[END_REF][START_REF] Zackrisson | Gravitational lensing as a probe of cold dark matter subhalos[END_REF][START_REF] Mayer | New and old probes of dark matter scenarios on galactic and sub-galactic scales[END_REF]. Despite the model's remarkable success at explaining observations across space and time, the two aforementioned components, the core of the theory, are unknown. Together, Dark Energy and Dark Matter account for ∼ 95% [START_REF]results. VI. Cosmological parameters[END_REF] of the total energy density in the Universe. Understanding their nature is one of the biggest problems in cosmology today.

Observations have shown that dark matter interacts gravitationally with ordinary (baryonic) matter, but there is no current evidence of any other type of interaction. There are many theories trying to explain its origin (axions [START_REF] Peccei | CP Conservation in the Presence of Pseudoparticles[END_REF][START_REF] Peccei | Constraints imposed by CP conservation in the presence of pseudoparticles[END_REF][START_REF] Preskill | Cosmology of the invisible axion[END_REF][START_REF] Duffy | Axions as dark matter particles[END_REF][START_REF] Ringwald | Exploring the role of axions and other WISPs in the dark universe[END_REF], primordial black-holes [START_REF] Chapline | Cosmological effects of primordial black holes[END_REF][START_REF] Carr | Primordial black holes as dark matter[END_REF][START_REF] Green | Primordial black holes as a dark matter candidate[END_REF], WIMPS [START_REF] Jungman | Supersymmetric dark matter[END_REF][START_REF] Roszkowski | Particle dark matter: A Theorist's perspective[END_REF][START_REF] Lahanas | LSP as a Candidate for Dark Matter. The Invisible Universe: Dark Matter and Dark Energy[END_REF][START_REF] Peskin | Supersymmetric dark matter in the harsh light of the Large Hadron Collider[END_REF][START_REF] Wu | Little Higgs dark matter after PandaX-II/LUX-2016 and LHC Run-1[END_REF][START_REF] Roszkowski | WIMP dark matter candidates and searches-current status and future prospects[END_REF], etc.) without a clear consensus. In the meantime, numerous experiments are trying to get a direct observation (DAMIC [START_REF]DAMIC: a novel dark matter experiment[END_REF][START_REF] Lee | Dark Matter in CCDs at Modane (DAMIC-M): a silicon detector apparatus searching for low-energy physics processes[END_REF], XENON [START_REF]The XENON1T dark matter experiment[END_REF][START_REF]Search for inelastic scattering of WIMP dark matter in XENON1T[END_REF], DarkSide [START_REF] Alexander | DarkSide search for dark matter[END_REF], etc.), that could help shed some light on the topic. Nevertheless, indirect observations led the scientific community to think that dark matter particles collapsed into structures known as halos, creating the potential wells into which baryonic particles subsequently fell and formed the galaxies we observe today. This scenario will be the centre of this thesis, where we will analyse the power of N -body simulations to describe dark matter structures, in order to extract cosmological information for forthcoming observational surveys.

On the other hand, dark energy is explained by a cosmological constant, in the context of General Relativity [START_REF] Einstein | Cosmological Considerations in the General Theory of Relativity[END_REF], as an additional energy component whose density remains constant in time. From the point of view of quantum field theory, empty space carries energy by short-lived, virtual particles, allowing for a constant vacuum energy in an expanding Universe. But the computed value for such an energy source is around 120 orders of magnitude bigger than the value of Λ inferred from observations. Many alternative theories have been proposed, both modifying the energy source driving expansion [START_REF] Ratra | Cosmological consequences of a rolling homogeneous scalar field[END_REF][START_REF] Chiba | Kinetically driven quintessence[END_REF][START_REF] Kamenshchik | An alternative to quintessence[END_REF], as well as the theory of gravity itself [START_REF] Bartolo | Scalar-tensor gravity and quintessence[END_REF][START_REF] Dvali | 4D gravity on a brane in 5D Minkowski space[END_REF][START_REF] Capozziello | Curvature Quintessence[END_REF]. To this end, new Stage IV surveys (such as Euclid [START_REF] Laureijs | Euclid Definition Study Report[END_REF], DESI [START_REF]The DESI Experiment Part I: Science,Targeting, and Survey Design[END_REF], LSST [START_REF] Ivezić | LSST: From Science Drivers to Reference Design and Anticipated Data Products[END_REF]) will observe the sky and allow unprecedentedly precise measurements of different physical phenomena (including weak lensing, galaxy clustering or time evolution of the BAO scale), shedding light on the nature and evolution of dark energy.

Equations in this chapter use a unit system in which:

ℏ = c = k B = 1 (1.1)

Fundamental equations for the background cosmology

Einstein's General Relativity is the current framework governing the theory of cosmology. It is used to describe a curved, perturbed, and expanding Universe by means of a metric (describing the geometry of time and space), and a set of equations encoding information about the energy content of the Universe.

The spacetime metric g µν contains information about the effects of gravity at a particular time and position. It takes into account the properties of homogeneity and isotropy of our Universe, and defines an invariant line element

ds 2 = g µν dx µ dx ν (1.2)
such that

ds 2 = -dt 2 + a 2 (t)γ ij dx i dx j (1.3)
with

γ ij = δ ij + K x i x j 1 -Kx k x k , for K ≡            0 Euclidean +1 spherical -1 hyperbolic (1.4)
where K is the constant curvature parameter, δ ij is the Kronecker delta, and a(t) is a function of time known as scale factor. This is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric of a homogeneous and isotropic Universe.

We now turn to the components of this background Universe, expressed through the energy-momentum tensor by the mean density (ρ) and pressure (P) of the different constituents, such that T µ ν = diag (-ρ, P, P, P). The Einstein equation determines the dynamics of the Universe, relating together the metric and the energy-momentum tensor.

G µν + Λg µν = 8πGT µν (1.5)
with

G µν = R µν - 1 2 Rg µν (1.6)
where Λ is the cosmological constant (source for the accelerated expansion), G µν is known as the Einstein tensor, and R µν and R are the Ricci tensor and scalar, respectively.

Combining the non-zero components of the Einstein tensor with T µν , and adding the contribution from Λ such that

T (Λ) µ ν = - Λ 8πG δ µ ν with ρ Λ ≡ Λ 8πG (1.7)
we arrive to the Friedmann equations,

ȧ a 2 = 8πG 3 ρ - K a 2 (1.8) ä a = - 4πG 3 (ρ + 3P) (1.9)
where ρ and P contain the sum of all contributions to the energy density and pressure of the Universe.

If we differentiate with respect to time Equation 1.8, and substitute into Equation 1.9, we get the so called continuity equation for the time evolution of the energy density,

ρ + 3 ȧ a (ρ + P) (1.10)
The different solutions to Equation 1.10 correspond to the different components that form the Universe:

• Matter: We call "matter" all particles behaving as a non-relativistic gas, where the pressure is much smaller than the energy density, |P| ≪ ρ. In the approximation of P = 0, we have that Equation 1.10 gives:

ρ m ∝ a -3 (1.11)
In the homogeneous and isotropic limit of ΛCDM scenario, this includes both baryonic and dark matter components.

• Radiation: The term "radiation" denotes anything behaving as a relativistic gas, where P = 1 3 ρ. Substituting into Equation 1.10 we have

ρ γ ∝ a -4 (1.12) 
• Dark energy: In the ΛCDM scenario, dark energy is explained by the cosmological constant (Λ), which is a component causing the expansion of the Universe (negative pressure), and with constant energy density (or P = -ρ), such that

ρ Λ ∝ a 0 (1.13)
These results arise from solving Equation 1.10 in the perfect fluid framework, where P = wρ. This gives a solution of the form

ρ X ∝ a -3(1+w X ) (1.14)
with w = 0 for matter, w = 1/3 for radiation, and w = -1 for a cosmological constant.

Finally, we want to note a rewritten form of Equation 1.8, that will be convenient for the numerical computation part of the thesis. Defining the critical density

ρ c ≡ 3H 2 0 8πG (1.15)
where H 0 is the value of the Hubble parameter today. Such that the density parameter of each species today is

Ω X = ρ X,0 ρ c (1.16)
with ρ X,0 the critical density of species X today, and therefore

ρ X = ρ c Ω X a -3(1+w X ) (1.17)
Finally, substituting the Hubble rate by

H(t) = ȧ a (1.18)
we get to

H(t) 2 H 2 0 = ρ(t) ρ c = S=γ,m,Λ Ω S a -3(1+w S ) + Ω k a -2 (1.19)
with Ω k ≡ 1 -S Ω S the curvature term. Equation 1.19 contains all we will need to calculate the evolution of the homogeneous background Universe. See Figure 1.1 for a simplified version of the change in energy content as a function of time, which will dictate the different epochs, as will be explained in the following section. 

Timeline of the evolution of the Universe

Our current understanding of the Universe can be framed by the Big Bang theory [START_REF] Lemaître | Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques[END_REF][START_REF] Lemaître | The Beginning of the World from the Point of View of Quantum Theory[END_REF]. It extrapolates that the Universe began with an explosion of space that helped evolved a very dense and very hot initial state into the one we can see right now, and after which, the Universe is postulated to have gone through a period of rapid accelerated expansion -Inflation [START_REF] Guth | Inflationary universe: A possible solution to the horizon and flatness problems[END_REF][START_REF] Linde | A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems[END_REF][START_REF] Albrecht | Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking[END_REF] -driven by a form of energy with negative pressure. This epoch of Inflation was theorized in the hopes of solving several observational problems such as the horizon problem, the flatness problem, and the magnetic monopole's problem. Inflation dilutes exotic particles, and also stretches out density and temperature variations that once were in casual contact, to very large scales. However, as for the nature of dark energy, the source driving Inflation is currently unknown. A simple possibility is a scalar field that could decay, ending Inflation. But currently there is no known such field that could have driven this transitory epoch, and as such, other theories have been proposed in the literature [START_REF] Khoury | Ekpyrotic universe: Colliding branes and the origin of the hot big bang[END_REF][START_REF] Wands | Multiple Field Inflation. Inflationary Cosmology[END_REF][START_REF] Qiu | Towards anisotropy-free and nonsingular bounce cosmology with scale-invariant perturbations[END_REF][START_REF] Hinterbichler | Chameleonic inflation[END_REF]. After the phase of accelerated expansion has ended, the Universe is much larger and cooler than before. It is then when the Reheating phase begins, and Standard Model particles are produced. The mechanism governing this production is model dependent, but it's often based in the coupling of the inflaton field with the matter field. This marks the end of Inflation.

After the inflationary epoch has ended, the Universe keeps expanding, but at a much slower rate. Temperatures are still high, and the energy density of relativistic particles dominates the energy content of the Universe. The Radiation epoch begins.

As the Universe keeps expanding, it cools down and quarks from the Standard Model get confined into neutrons and protons. Subsequently, these particles react and fuse into nuclei. The Big Bang Nucleosynthesis, also known as primordial nucleosynthesis, consisted in the formation of light isotopes, which will eventually become the elements to fuel the first stars.

As the Universe keeps expanding, the energy density of photons drops below that of matter. We reach matter-radiation equality, and the Matter epoch starts. As temperatures keep decreasing, electrons start binding to the newly made nuclei, forming neutral atoms, during an epoch known as Recombination. The Space becomes emptier, increasing the mean free path of photons and causing them to decouple from matter (they drop out of thermal equilibrium with the now neutral matter). The Universe becomes transparent to photons, and these travel freely through the Universe, constituting what is observed today as the Cosmic Microwave Background (CMB, [START_REF] Penzias | A Measurement of Excess Antenna Temperature at 4080 Mc/s[END_REF]). At this point, the only new photons come from the spintransition of the neutral hydrogen filling space (known as the 21 centimetre line, in the radio spectrum), and the photons from the last scattering surface have redshifted to below visible energy wavelengths. The Universe is thus, devoid of visible light, and enters a period called "Dark Ages". During this epoch, where the Universe is still matter-dominated, ordinary matter starts collapsing, forming structures. They fall into the gravitational potential wells created by dark matter, making the Universe less and less homogeneous. At a similar time, smaller structures such as stars and quasars start forming by the collapse of interstellar clouds. The nuclear fusion reactions occurring at the interior of these structures create heavier elements in a process call Stellar Nucleosynthesis, as they evolve and change composition. This marks the end of the "Dark Ages". Although the actual source objects are uncertain, some of their processes radiate energy at wavelengths capable of re-ionizing neutral hydrogen, and creating bubbles of ionized gas. This epoch is known as Reionization, where the ionized plasma regions kept growing, as more ionizing sources were being created throughout the Universe. Neutral hydrogen became the exception, and the next phase of accelerated expansion helps to keep this ratio until today.

At some point in the "near" past, the energy-density of matter dropped below that of the dark-energy-density. A new period of accelerated expansion began, starting the Dark-Energy era. In the ΛCDM scenario, this expansion is sourced by a cosmological constant, Λ, whose energy density is independent of the size of the Universe. As a consequence, as the density of matter and radiation keep decreasing, the dark energy term dominates the current content of the Universe.

We can see a summary of the different epochs in Figure 1.2. The fate of the Universe is still unknown, and an open question in cosmology. It will ultimately be determined by its energy density, and subsequently by its overall shape (spatial geometry). There exist three possibilities, depending on the curvature of the Universe, and on the assumption of a cosmological constant. Looking at Equation 1.19 we have that a closed Universe (Ω k < 0) implies Ω S > 1, in which gravity eventually stops the expansion of the Universe. This scenario implies that the matter content will surpass again that of dark-energy, stopping the accelerating expansion and reverting it to a collapse of all matter in the Universe to a point. This is known as the Big Crunch. This theory allows for a new Big Bang to happen immediately after the Big Crunch (cyclic model [START_REF] Overduin | Wolfgang Priester: from the big bounce to the Λ-dominated universe[END_REF]), in a model known as Big Bounce, and in which each Universe will start from a Big Bang powered by the Big Crunch of the preceding one. Alternatively, if the geometry of space is open (Ω k > 0), it implies Ω S < 1. Such a Universe expands forever, as the effects of gravity are not able to stop the expansion. In this type of scenario, the temperatures continue dropping and the Universe "dies" in a so-called Big Freeze. Finally, a flat Universe (Ω k = 0) corresponds to Ω S = 1, where dark-energy will keep an accelerated expansion of the Universe forever, resulting in the same scenario as for an open geometry. If an alternative form of constantly increasing dark-energy is considered, the Big Freeze final scenario could be substituted by a Big Rip, where every binding force is overpowered by the acceleration, ripping everything apart [START_REF] Caldwell | Phantom Energy: dark energy with w < -1 causes a cosmic doomsday[END_REF]. Figure 1.3 shows the relative size of the universe for the three geometries, plus ΛCDM (Ω m = 0.3, Ω Λ = 0.7). 

The Inhomogeneous Universe

Up until this point, we have considered the universe to be homogeneous, which is enough to explain the time evolution of the different energy contents. But a homogeneous Universe cannot seed structure formation, and the Universe we observe today could have never been formed. In reality, small initial matter perturbations formed during Inflation amplified in time, allowing structures to collapse under the force of gravity and grow through cosmic time.

We will explore here how, as long as the inhomogeneities (perturbations) are small, we can treat them in perturbation theory. We will expand Einstein's equations to linear order in fluctuations, and study their evolution in time through the different cosmic epochs. We will end the section with a small overview of non-linear structure growth and the formation of halos, hosts of the observable galaxies.

Metric and density perturbations

Let us start by calculating the perturbations to the metric. If we now conveniently defined a new timescale called conformal time

dτ = dt a(t) (1.20)
we have that the line element in Equation 1.3 (to which we also impose a flat Universe, i.e. k = 0) can be written as

ds 2 = ḡµν dx µ dx ν = a 2 (τ ) -dτ 2 + δ ij dx i dx j = a 2 (τ )η µν dx µ dx ν (1.21)
where η µν is known as the Minkowski metric, and it will be the element to perturb.

We then have that the FLRW metric ḡµν is modified by a small perturbation δg µν , such that

g µν = ḡµν + δg µν = a 2 (τ ) (η µν + h µν ) (1.22)
and for which we will only keep first-order perturbations, i.e. we drop any term of O(h 2 ) from the equations. It can be found that, the most general perturbed flat FLRW metric takes the form [START_REF] Bardeen | Gauge-invariant cosmological perturbations[END_REF] 

ds 2 = a 2 (τ ) -(1 + 2A)dτ 2 -2B i dτ dx i + (δ ij + h ij ) dx i dx j (1.23)
for which we can do a Scalar-Vector-Tensor (SVT) decomposition: where A is a scalar, B i can be decomposed into scalar (B) and vector perturbations, and h ij into scalar (C and E), vector and tensor ones. This is particularly useful as at linear order they decouple in the Einstein's equations and evolve separately. We thus will only take into account here the perturbed linear element considering scalar perturbations, as they are the ones responsible for the structure of the universe.

It is convenient to define the metric perturbations in such a way that they're invariant under change of coordinates. In this context, the Bardeen potentials Φ and Ψ are gauge-invariant quantities, a combination of the scalar perturbations in A, B, C, and E. We can now fix the gauge, with the Newtonian gauge being a commonly used one in perturbation theory, and where B = E = 0. This transforms the linear element in Equation 1.23 into

ds 2 = a 2 (τ ) -(1 + 2Ψ)dτ 2 + (1 -2Φ)δ ij dx i dx j (1.24)
We now turn to perturbations of the energy-momentum tensor, which we write in an equivalent form to the metric perturbations, such that

T µ ν = T µ ν + δT µ ν (1.25)
where

T µ ν = (ρ + P)ū µ ūν -Pδ µ ν (1.26)
is the energy-tensor of the homogeneous background cosmology (perfect fluid), and u µ ≡ dx µ /ds is the relative four-velocity between the fluid and the observer.

It is relevant to mention, for the purpose of dealing with perturbations of the different ingredients in the universe, that fluctuations can be treated adiabatically. Most models of Inflation predict initial perturbations to be adiabatic, which implies that they can be calculated as the difference between the background density at two distinct global times (i.e. as a time shift in the background density).

δρ X (τ, x) ≡ ρX (τ + δτ (x)) -ρX (τ ) = ρ′ X δτ (x) (1.27)
with δτ (x) equal for all species.

If we now apply the continuity equation (Equation 1.10) for a perfect fluid (Equation 1.14) we have that

δ i ∝ δ j (1.28)
where δ X = δρx ρX is known as the fractional density contrast, and i and j are two different species.

It follows then, that the total density perturbation is just the sum of each individual change

δρ tot = ρtot δ tot = X ρX δ X (1.29)
This just means that there is no exchange of density perturbations between the different components, i.e., the entropy change is zero. We can define the pressure as a function of the energy density ρ and the entropy S as P = p(ρ, S). The pressure perturbations can then be calculated by a linear expansion around ρ and S, such that

δP = δP δS ρ δS + δP δρ S δρ (1.30)
where the first term in the RHS corresponds to the non-adiabatic pressure and vanishes otherwise. We define the adiabatic sound horizon as

c 2 s = δP δρ S (1.31)
so that the pressure perturbations of an adiabatic fluid are proportional to its density perturbations, and subsequently also independent for each component.

δP = c 2 s δρ (1.32)
constitutes the equation of state of perturbations.

Introducing now perturbations in the density and pressure (ρ → ρ + δρ and P → P +δP), which account for the sum of all density components but is dominated by the species that is dominant in the background, we arrive to

T µ ν = (ρ+δρ)ū µ ūν +( P +δP)ū µ ūν -( P +δP)δ µ ν +(ρ+ P)(δu µ ūν +ū µ δu ν )-Π µ ν (1.33)
with Π µ ν being the anisotropic stress, and whose contribution can be neglected. As before, we apply an SVT decomposition, keep scalar perturbations, and fix the transformations in the Newtonian gauge.

With the expressions for the perturbed metric and the energy-momentum tensor, we can now compute the perturbed conservation equation ∇ µ T µ ν = 0. Considering the ν = 0 component we obtain the evolution of the density perturbations ρ′ + 3H(ρ + P) + δρ ′ + 3H(δρ + δP)

+ (∇ • v -3Φ ′ )(ρ + P) = 0 (1.34)
into which we can substitute for the density contrast (δ) to obtain the relativistic continuity equation

δ ′ + 1 + P ρ (∇ • v -3Φ ′ ) + 3H δP δρ - P ρ δ = 0 (1.35)
If we look at the ν = i component, we obtain the relativistic Euler equation

v ′ + (1 -3c 2 s )Hv = - ∇δP ρ + P -∇Ψ (1.36)
with prime derivatives taken with respect to conformal time (□ ′ ≡ d/dτ ), and where H = aH is the Hubble parameter in conformal time.

Equivalently, Einstein equations of General Relativity relate the potentials Φ and Ψ to the components of the perturbed stress-energy tensor. To linear order in these perturbations, it is possible to write a system of algebraic equations, a combination of the different components, relating the potentials to the density perturbation of matter.

For the 00 component we have

∇ 2 Φ -3H(Φ ′ + Ψ) = 4πGa 2 δρ (1.37)
while the i0 component looks like

Φ ′ + HΦ = 4πGa 2 (ρ + P)v (1.38)
If we now write both expressions together, they form the Poisson equation

∇ 2 Φ = 4πGa 2 ρ∆ (1.39)
where ∆ is known as the comoving-gauge density perturbation and defined as

ρ∆ ≡ δρ -3H(ρ + P)v = ρδ -3H(ρ + P)v (1.40)
where we have used the definition of density contrast δρ = ρδ.

Considering now the i ̸ = j components, we have a constraint for the difference of the two potentials,

Φ -Ψ = 8πGa 2 PΠ (1.41)
which implies Φ = Ψ for a vanishing anisotropic tensor, as for adiabatic components.

Finally, we can consider the trace-part ii, such that Initial conditions for perturbations are set up during Inflation, when quantum fluctuations of the inflaton exit the horizon and freeze into superhorizon constant curvature perturbations. They later re-enter the horizon after reheating, seeding the subhorizon perturbations at later times. Figure 1.4 shows a schema for the evolution of fluctuations during and just after Inflation.

Φ ′′ + H(Ψ ′ + 2Φ ′ ) + (2H ′ + H 2 )Ψ + 1 3 ∇ 2 (Ψ -Φ) = 4πGa 2 δP (1.42)

Evolution of fluctuations

We start by calculating the expression for these curvature perturbations. They are related to the three-dimensional Ricci scalar derived from the fully spatial part in Equation 1.23 when taking only into account scalar perturbations. We get an expression that depends on the scalars C and E that we found when perturbing the metric, plus a linear combination of B and v that makes it gauge-invariant

R = C - 1 3 ∇ 2 E + H(B + v) (1.43)
Working as before in the Newtonian gauge (B = E = 0, C = -Φ), and using the 0i solution to Einstein equations, we have

R = -Φ - H(Φ ′ + HΦ) 4πGa 2 (ρ + P) (1.44)
Taking the temporal derivative and with some manipulation, it can be shown that the time evolution of curvature perturbations follows

d ln R d ln a ∼ k H 2 (1.45)
which goes to zero (R = const.) at superhorizon scales k ≪ H.

We now analyse the evolution of the gravitational potential Φ, with Figure 1.5 showing the solutions at different scales, before and after matter-radiation equality. From the ii component of the Einstein equations (Equation 1.42) and making use of some background relations for w and H, imposing adiabatic perturbations, and passing to Fourier space, we have

Φ ′′ + 3(1 + w)HΦ ′ + wk 2 Φ = 0 (1.46)
The growing mode solution at k ≪ H is Φ = const., which means that the gravitational potential is frozen at superhorizon scales. Once it exits, its evolution will depend on the epoch at which we analyse it. For a radiation-dominated Universe, the solution is oscillatory with an amplitude decaying as a -2 . However, for a matter-dominated Universe the potential is constant again.

In addition, it is important to look into the matter-radiation equality transition. A constant Φ is a solution to Equation 1.46 in superhorizon scales, only if w is also a constant. During the transition we will need to then take into account the change in w of the dominated species. Solving Equation 1.50 for k ≪ H gives us a solution of the form R = f (w)Φ. As R is constant all across superhorizon scales, we have then

Φ MD = f (w γ ) f (w m ) Φ RD = 9 10 Φ RD (1.47)
where f (w) is a constant depending on the value of w of each species, and MD and RD refer to, respectively, matter-dominated and radiation-dominated epochs. This simply means that the gravitational potential will suffer a small "jump" decreasing amplitude at the epoch of equality. 5: Evolution of the gravitational potential with respect to its value at superhorizon scales, fixed by Inflation. The smallest scale (blue) enters the horizon well before matter-radiation equality, and it's fully damped during matter era. Scales that enter during radiation epoch (orange and green) but don't have time to vanish, get suppressed by a factor 9/10 with respect to their value before equality during matter era. Finally, scales that enter during matter dominated epoch (red) simply suffer the 9/10 damping and remain constant thereafter.

We can also look at the evolution of the density contrast, with Figure 1.6 showing the solutions for the dark matter density field, at the same scales as Figure 1.5, before and after matter-radiation equality. The 00 component in the Einstein equations (Equation 1.37) relates the gravitational potential Φ, which we have already computed, to the total density contrast δ. If we solve the equation in Fourier space we have that, for superhorizon scales (k ≪ H, and where Φ ′ vanishes), δ ≈ -2Φ = const. This is an important solution, as it means that both the gravitational potential and the density contrast are frozen at superhorizon scales, which avoids perturbations being wiped out by Inflation.

Once perturbations re-enter horizon, their evolution will depend on both the epoch at which they are analysed, but also which species they are related to. For perturbations to the radiation density contrast during radiation era, we can solve the Poisson equation at subhorizon scales and find that δ γ ∼ a 2 Φ. Substituting by the behaviour of the gravitational potential during the same epoch, we then get that δ γ oscillates at a constant amplitude around zero, and with same frequency as Φ. On the other hand, during the matter-dominated epoch, radiation perturbations are subdominant. We then use the conservation equations (Equation 1.35 and 1.36) at subhorizon scales and find that they also oscillate at constant amplitude, and around a shifted equilibrium proportional to the value of constant Φ during this epoch.

If we now look into matter density perturbations during radiation epoch, we can divide the components into dark matter and baryons. The latter are coupled to photons and also oscillate (origin of BAO). However, for the dark matter component, we can also use the conservation equations (Equation 1.35 and 1.36) at subhorizon scales, and where the background evolution is that of a two fluid cosmology. We find a solution of the form δ m ∝ ln a, which implies that (dark) matter density perturbations grow very slowly during the radiation epoch. This supports the theory for which dark matter fluctuations serve as a seed of baryonic structure formation, as the latter follows the growth of δ m after decoupling during matter-dominated era. For perturbations to the matter density contrast during matter epoch, we can also solve the Poisson equation at subhorizon scales, as we did before for radiation fluctuations in the radiation epoch. We find this time that δ m ∼ aΦ, with Φ = const. during this epoch, which implies that matter density perturbations grow proportionally to the scale factor during matter-domination. Relevant to structure formation is also the behaviour of δ m at late times, when the dark-energy density dominates the Universe. ΛCDM does not predict any fluctuations to the latter, as it is sourced by a constant, so that ∆ = ∆ m in Equation 1.39. Solving for Φ and substituting into Equation 1.42, under the assumption that pressure fluctuations are negligible, returns the evolution for density perturbation ∆m ′′ + H∆m ′ = 4πGa 2 ρm ∆m (1.48) For a Λ-dominated regime, we have that H ≫ 4πGa 2 ρm , so that the solution has the form ∆ m ∝ e -2Ht ∝ a -2 . Dark-energy suppresses the growth of structure at all scales, both super and subhorizon. 

Large-scale structure formation

We have seen in the previous section how matter field perturbations evolve in the linear regime. However, the structures we see today have undergone a non-linear collapse into bound objects such as galaxies or stars. These are the objects that surveys observe, and thus, to fully exploit the cosmological information contained in the linear field, we need a way to link both of them together. There exist a number of simplified models that help explain how the build-up of structure originated by linear perturbations leads ultimately to galaxy formation. In this section, we will examine the formation of dark matter halos, which are the structures where galaxies are expected to form.

The spherical collapse model

The idea behind the spherical collapse model is that it allows a link between linear and non-linear structure formation. We can estimate the overdensities in the non-linear regime by comparing it to what linear theory would have predicted at the same point.

The model follows from the Birkhoff's theorem in General Relativity, which implies that the evolution of a spherical overdensity will be independent of the background evolution, evolving like a "sub-universe" with a density higher than the critical density. If we take a spherical region with radius R 0 and shrink it to radius R, leaving a gap between the two, we would have created an overdensity

ρ 0 R 0 = ρR with ρ 0 < ρ (1.49)
as the mass enclosed hasn't changed. This overdensity will then evolve independently of the background as a closed FLRW universe. The parametric solutions to the Friedmann equations of such a universe (assuming a matter-only background cosmology2 ) can be written as

R = A(1 -cos(θ)) with A = GM K (1.50) t = B(θ -sin(θ) with B = GM K 3/2 (1.51)
where K describes the curvature caused by the over-density of the enclosed region. Initially, the overdensity will expand with the Universe, but the expansion will slow down, turn over, and eventually collapse since it is gravitationally bound to the excess mass it encloses. The turnaround point is reached at θ = π, with r ta = 2A at t ta = πB. Comparing the density of the sphere at turnaround with the density of the background we have that

ρ ta ρ EdS (t ta ) = R 3 EdS (t ta ) r 3 ta = 3π 4 2 ≈ 5.55 (1.52)
where we have used R(t) = ax in the Friedmann equation to solve for R EdS (t).

Collapse is taken at R coll = 0, which implies t coll = 2t ta and δ → inf. In reality, small perturbations during this process will eventually halt the compression and the system will reach a stationary state. A halo of a fixed mass and radius will be formed. In this model, the scales of collapse are determined by the virial theorem:

U vir = -2K vir (1.53)
where U and K are the potential and kinetic energy of the system, respectively. This implies a total energy

E vir = K vir + U vir = - GM 2r vir (1.54)
and by energy conservation

E vir = E ta = - GM r ta (1.55)
resulting in r vir = r ta /2. Comparing the densities at the time of collapse we then have

ρ vir ρ EdS (t vir ) = R 3 EdS (t vir ) r 3 vir = 18π 2 ≈ 178 (1.56)
which is much higher than the predicted value from linear theory δ L coll = 1.686, result of a Taylor expansion of Equation 1.50 and 1.51. This result shows how rapidly scales become non-linear at collapse, and also motivates a relation between the linear and non-linear regimes. We can look at the linear matter density contrasts at an early cosmic time to know which will collapse, and whenever it grows to ∼ 1.69 according to linear growth, the matter concentration shall collapse to a virialized object, with a characteristic over-density of 178.

Although formalisms like the (extended) Press-Schechter (PS, [START_REF] Mo | Galaxy Formation and Evolution[END_REF][START_REF] Press | Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation[END_REF]) have been developed to link overdensities above δ L threshold with halos, comparisons with N-body modelling (the current reliable mechanism to compute non-linear scales evolution) show some mismatch regarding halo abundances at a given mass scale. The modern approach consists of thinking of spherical collapse as motivation for fitting a PS-like form for the mass function (see [START_REF] Sheth | Large-scale bias and the peak background split[END_REF][START_REF] Jenkins | The mass function of dark matter haloes[END_REF]) to simulations. This is the approach we'll follow in chapter 6 when analysing the Halo Mass Function (HMF). In the work presented in this manuscript, we have made use of a special class of models, known as scale-free cosmologies. We will present here a summary of their principal characteristics and properties, as well as a small review of its applications during the last decades.

Definition and properties

Scale-free cosmological models are Einstein-de-Sitter (EdS) background cosmologies with a power law initial spectrum of fluctuations, presenting a self-similar clustering evolution.

Let's start by analysing their background cosmology. An EdS Universe is spatially flat with zero cosmological constant (i.e. Ω = Ω m = 1). The Friedmann equation for the evolution of the scale factor (Equation 1. [START_REF] Roszkowski | Particle dark matter: A Theorist's perspective[END_REF]) is written as

H(t) 2 ≡ ȧ a 2 = H 2 0 Ω m a -3 with Ω m = 1 (2.1)
of which the solution has the form

a ∝ t 2/3 (2.2)
The scale factor thus scales as a power law, and there are no characteristic time-scales.

Definition and properties

Consider now initial Gaussian fluctuations in the form of a power law, such that the power spectrum is

P I (k) ≡ ⟨|δ k | 2 ⟩ = Ak n (2.3)
with 4 > n ≥ -3 [START_REF] Peebles | The Gravitational-Instability Picture and the Nature of the Distribution of Galaxies[END_REF] constant 1 . This implies that there aren't any preferred scales in the initial power spectrum either.

Self-similarity

Such models are known to admit self-similar solutions to the Vlasov equation [START_REF] Davis | On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe[END_REF], such that any dimensionless statistical quantity derived from the phase space density can be written as

f (x, t) = f (x/t α ) (2.4)
We can constrain α by the asymptotic value of, for example, the dimensionless power spectrum in he linear regime. From chapter 1 we know that linear matter fluctuations have a growing mode δ m ∝ a in a matter-dominated universe. For an EdS cosmology we then have

P L (k, a) = a 2 Ak n (2.5)
which results in

∆ 2 L (k, a) = 1 2π 2 k 3 a 2 Ak n ∝ a 2 k 3+n (2.6)
We define the self-similar rescaling by the scale of non-linearity, which separates the linear regime (∆2 (k) ≪ 1) from the non-linear regime (∆

2 (k) ≫ 1) 2 ∆ 2 L (k NL , a) ≡ 1 with k N L ∝ a -2/(3+n) ∝ t -4/3(3+n) (2.7)
from which we see that k N L ∝ t -α for α = 4/(9 + 3n), and where the constant of proportionality can be fixed at a given time a 0 from initial conditions. This means that ∆ 2 L (k), and by extension any dimensionless clustering statistic f , is no longer an arbitrary function of two independent variables k and a, but only of the rescaled variable k/k NL . Scale-free cosmologies might thus be characterized by a single scale, the scale of non-linearity, containing all the information about the temporal evolution. If the evolution of the gravitational clustering does not depend on any other scales, it must then be self-similar in the rescaled coordinate. Equation 2.4 becomes, in general,

f (x 1 , x 2 , ...; a) = f 0 (x i /X NL,i (a)) (2.8)
where X NL,i (a) is the non-linearity scale with same dimensions as x i . Figure 2.1 shows a slice of an N -body simulation of a scale-free model at two different time-steps, statistically equivalent to zoom-in/out the scale of the system. This self-similar evolution of clustering is a crucial property we will be using for the analysis performed in chapter 4-6. If clustering of scale-free simulations needs to behave self-similarly as long as no other scales play a role in the evolution of the system, and the sole additional scales are coming from the N -body description, we can consider deviations from the self-similar behaviour as departures from the continuum limit of the N -body picture. These departures are understood as limitations due to the unphysical parameters introduced by the discretization of the density field, restricting the range of time and length scales which Nbody systems can resolve.

Relevant scaling relations

Relevant scaling relations

We have seen that, for example, we can rescale the dimensionless power spectrum as k/k NL , with k NL given by Equation 2.7. However, in chapter 4 we will, in fact, express it as a function of R NL , such that

∆ 2 (k, a) = ∆ 2 (kR NL (a))
(2.9)

with

R NL ∝ k -1 NL ∝ a 2/(3+n) (2.10)
This will also serve as our rescaling function for the 2-point correlation function (2PCF) and the pairwise velocity in chapter 5 and 6. 3 Likewise, we define the density of non-linearity as the mass contained within a sphere of radius R NL , such that

M NL ∝ R 3 NL ∝ a 6/(3+n) (2.11)
It will also be convenient to define our time-step in the simulation by their degree of clustering. The interval between two consecutive time-steps will be such that the characteristic non-linear mass M N L grows by a factor 2 y4

log 2 M NL (a i+1 ) M NL (a i ) = y = 6 3 + n log 2 a i+1 a i (2.12) or log 2 a S a 0 = 3 + n 6y -1 S (2.13)
where S = 0, 1, 2, ... is a monotonically growing integer as the simulation evolves in time, and a 0 is fixed from initial conditions. From the expression in Equation 2.12 we can infer that the smaller is the spectral index, the faster structures will cluster and become non-linear. This will be translated into larger resolution effects for redder indices (as n → -3), visible in the statistical analysis of our different simulations.

When extrapolating our results to LCDM cosmologies, we can consider that the transition between scales that enter during the radiation dominated regime and the ones entering during matter domination is a slow one. The change in the slope of the matter power spectrum is gradual. With this in hand, the EdS scenario can be considered a good approximation to LCDM cosmologies during the matter 3 The proportionality constant will be defined by the top-hat variance at the start of the simulation, with σ i (Λ, a i ) = 0.03 and a i = 0.0005. Such that, R NL (a) = Λ σ i a ai 2/(3+n) 4 In chapter 4-6 we will use y = 1/2. domination (MD) epoch, i.e., MD-LCDM can be approximated by an adiabatic interpolation of scale-free cosmologies of different spectral indices, such that they approximate the behaviour of the variance at a common scale. We define the effective spectral index from the top-hat variance of density fluctuations at a particular scale

n eff = -3 -2 d log σ d log R R (2.14)
Figure 2.2 shows the relation in Equation 2.14 for a ΛCDM cosmology [START_REF]results. VI. Cosmological parameters[END_REF], calculated with the python toolkit Colossus5 [START_REF] Diemer | COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos[END_REF]. The studies carried out here focus on non-linear scales, reason why we will be analysing spectral indices -1.5 > n > -2.25 (n ≲ -2.25 needs much larger simulations that the ones we have used in this thesis to achieve results with a comparable accuracy) in chapter 4-6. 

A tool for cosmological clustering analysis

Scale-free models became a popular tool for testing theories of structure formation during the last quarter of the previous century. [START_REF] Totsuji | The Correlation Function for the Distribution of Galaxies[END_REF] found that the correlation function for the distribution of galaxies of a particular patch in the sky could be approximated by a power law. Later, [START_REF] Peebles | The Gravitational-Instability Picture and the Nature of the Distribution of Galaxies[END_REF] studied the shape of the 2PCF of galaxy clusters, and also found it to be well approximated by a power law in a given range of scales. It framed the results in an EdS scenario with power law initial power spectrum of perturbations. In [START_REF] Davis | On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe[END_REF], the authors showed that the previous set-up produces self-similar solutions for the BBGKY equations, leading to self-similar clustering evolution, and that under the assumption of stable clustering (see below), they are solely dependent on the spectral index of initial perturbations. Additionally, results from the N-body experiment in [START_REF] Miyoshi | Development of the correlation of galaxies in an expanding universe[END_REF] also showed, from the simulation's perspective, a power law shape for the correlation function of galaxies in an expanding universe.

All these previous results motivated, in the years to follow, a number of N -body simulations for the study of clustering statistics (e.g. [START_REF] Aarseth | N-body simulations of galaxy clustering. I. Initial conditions and galaxy collapse times[END_REF][START_REF] Efstathiou | Self-similar gravitational clustering[END_REF][START_REF] Efstathiou | On the clustering of particles in an expanding universe[END_REF][START_REF] Peebles | Renormalization group computation of the mass distribution in an expanding universe. I -Method[END_REF][START_REF] Efstathiou | Gravitational clustering from scale-free initial conditions[END_REF][START_REF] Owen | Cosmological simulations with scale-free initial conditions. I. adiabatic hydrodynamics[END_REF], to name merely a few). Numerical modelling of self-similar scenarios provided a particularly powerful tool for cosmological analysis. It could provide detailed information about the state of a system at a particular time, and then be self-similarly rescaled to the state at any other desired time. We will discuss below one of the main applications which scale-free simulations have been used for, and which will be relevant for our own analysis: tests of the stable clustering hypothesis.

By the beginning of the century, N -body codes improved in resolution, and scale-free simulations started to be used to assess their accuracy in a broader sense (by means of qualitative analysis). Additionally, tests proving or ruling out stable clustering followed each other, with mixed results. The different clustering scenarios also fostered the modelling of halo density-profiles. More recently, scalefree simulations were also used, complementing LCDM results, to model halo concentrations or testing universal definitions of mass in the HMF. Some notable studies during this period can be found in [START_REF] Bertschinger | Cosmological N-body simulations[END_REF][START_REF] Colombi | Self-Similarity and Scaling Behavior of Scale-free Gravitational Clustering[END_REF][START_REF] Jain | Self-similar evolution of gravitational clustering: Is N = -1 special?[END_REF][START_REF] Jain | Does gravitational clustering stabilize on small scales?[END_REF][START_REF] Jain | Self-similar evolution of gravitational clustering. II. N-body simulations of the N = -2 spectrum[END_REF][START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF][START_REF] Raig | Testing the modified Press-Schechter model against N-body simulations[END_REF][START_REF] Knollmann | Dark matter halo profiles in scale-free cosmologies[END_REF][START_REF] Knollmann | Phase-space density profiles in scale-free cosmologies[END_REF][START_REF] Widrow | Power spectrum for the small-scale Universe[END_REF][START_REF] Elahi | Subhaloes in scale-free cosmologies[END_REF][START_REF] Diemer | A universal model for halo concentrations[END_REF][START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF][START_REF] Benhaiem | Stable clustering and the resolution of dissipationless cosmological N-body simulations[END_REF][START_REF] Diemer | An Accurate Physical Model for Halo Concentrations[END_REF][START_REF] Diemer | Universal at Last? The Splashback Mass Function of Dark Matter Halos[END_REF] among many others.

The work performed in this thesis builds upon the technique described in [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF] to assess accuracy of N -body simulations. Contrary to previous studies, it develops a framework for quantitative resolution tests with respect to N -body parameters. In addition to the work presented here, [START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF][START_REF] Garrison | Self-similarity of k-nearest neighbour distributions in scale-free simulations[END_REF] apply a parallel strategy for the analysis of the k-nearest neighbours probability distribution and the force softening employed in simulations, respectively.

Stable clustering

The stable clustering hypothesis postulates that at sufficiently small scales, collapsing regions reach a stationary physical size. This implies, in particular, that the average relative motion of particles within gravitationally bound structures should compensate the Hubble expansion. We can use the conservation of particle pairs (i.e. the number of neighbours of a particle remains constant in time in physical coordinates) to predict the time-evolution of the 2PCF in the non-linear regime.

We start with the continuity equation (Equation 1.35) for the density contrast in the non-relativistic (ϕ ′ = 0), matter-only (P = 0), FLRW model, i.e. Newtonian approximation

(∂ t -Hx • ∇)ρ + a -1 ∇ [ρ (Hr + v)] = 0 (2.15)
with ρ = ρ(1 + δ), and where we kept terms of order vδ

∂δ ∂t + 1 a ∇ ([1 + δ] v) = 0 (2.16)
The pair conservation equation reads (see [START_REF] Davis | On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe[END_REF] for a full step-by-step derivation)

∂ξ ∂t + 1 ax 2 ∂ ∂x x 2 (1 + ξ) v = 0 (2.17)
where we have used 1 + ξ = ⟨(1 + δ 1 )(1 + δ 2 )⟩ and the radial separation

∇ x v = x -2 ∂ x (x 2 v x ).
Stable clustering implies v = -Hax. Using Equation 2.2 for scale-free cosmologies, we have v = -(2/3t)ax. From self-similarity we also have (Equation 2.4) ξ = ξ(x/t α ). Plugging these conditions into Equation 2.17 and using the change of variables s ≡ x/t α , we have (for ξ(s) ≫ 1)

dξ(s) ds = - 2 α + 2/3 s -1 ξ(s) (2.18)
which admits a solution of the form

ξ(s) ∝ s -γ with γ = 2 α + 2/3 (2.19)
Substituting the value of α = 4/(9 + n) that we found in Equation 2.7, we obtain the expression for the evolution of small scales under the stable clustering assumption

ξ ∝ s -9+3n 5+n (2.20)
Similar scaling solutions for other statistics can also be derived from that expression. This specific prediction for the clustering at asymptotically small scales can be tested against measurements from numerical simulations, as we will show in chapter 4 and 5. 

N-body Simulations

In the previous chapter, we have seen the tremendous power that Large-Scale Structure (LSS) has at constraining cosmology, although we have also seen how difficult it is to model as soon as scales start becoming non-linear. Standard Perturbation Theory (SPT, [START_REF] Blas | Time-sliced perturbation theory for large scale structure I: general formalism[END_REF]; see also [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF] for a detailed review), Renormalized Perturbation Theory (RPT, [START_REF] Crocce | Renormalized cosmological perturbation theory[END_REF]) or Effective Field Theory (EFT, [START_REF] Baumann | Cosmological non-linearities as an effective fluid[END_REF][START_REF] Carrasco | The effective field theory of cosmological large scale structures[END_REF]) are working to extend the theoretical framework to smaller scales, but even they are not enough. These methods are able to achieve accuracies on power spectrum predictions of ∼ 1% with respect to numerical simulations, up to scales k ≈ 0.3hMpc -1 (see e.g. [START_REF] Foreman | The EFT of large scale structures at all redshifts: analytical predictions for lensing[END_REF][START_REF]The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure[END_REF]). This is sufficient for modelling the mildly nonlinear regime, but these techniques cannot be used to predict the signal in the highly non-linear regime that future analyses will probe. The current generation of surveys, part of the so called "Stage IV", will be involved in the study and understanding of the expansion of the Universe and the nature of Dark Energy. Data collected from the EUCLID mission [START_REF] Laureijs | Euclid Definition Study Report[END_REF], a space telescope, and ground-base telescopes like the Vera C. Rubin Observatory (LSST, [START_REF] Ivezić | LSST: From Science Drivers to Reference Design and Anticipated Data Products[END_REF]) or DESI (Dark Energy Spectroscopic Survey, [START_REF]The DESI Experiment Part I: Science,Targeting, and Survey Design[END_REF]) will have an unprecedented precision at very small scales. Early reports stated that the requirements to fully exploit dark matter clustering statistics will be at the 1% level for relevant scales (k ≈ 10hMpc -1 ) in the power spectrum [START_REF] Huterer | Calibrating the nonlinear matter power spectrum: Requirements for future weak lensing surveys[END_REF], when analysing data from these future weak lensing, wide-field surveys. This precision cannot be attained, nowadays, by any analytical method, whether exact or perturbative, so the community needs to look elsewhere for a solution.

The modelling technique known as N -body simulations has been used for decades to trace the evolution of structures, by sampling the density field as a discrete system of N particles. Cosmological N -body simulations are intended to be as faithful as possible replicas of the cosmos, used to study its real properties and evolution. It is the closest approximation to experimental cosmology, as opposed to observational cosmology, where we have only access to a single realization of the universe.

N -body simulations are currently the way to model the evolution of structures in the non-linear regime, as mentioned before, not directly accessible through analytical tools. They provide a way to make predictions for observable quantities, with the aim of, eventually, testing cosmological models and studying poorly understood physical processes.

But ultimately, cosmological simulations are artificial representations of our Universe, approximations at a lower resolution of the real thing. The challenge then resides on balancing the very complex (i.e. large and old) system they need to model versus the usability and feasibility of the end product (the simulation itself). This will be the main topic of this thesis: studying how accurately N -body simulations, and in particular the Abacus N -body code, are able to represent the properties and evolution of the cosmological models they try to replicate.

In the N -body approach, the continuous matter density field is sampled through a set of discrete, identical, point-like tracers that we call "particles", which carry a given mass (resolution), and that only interact via gravity. Their dynamics are treated in the Newtonian limit and expanding coordinates (in terms of the departure from the mean homogeneous and isotropic model), so that the task of the N -body solver is to integrate their equation of motion (EoM) [START_REF] Peebles | The large-scale structure of the universe[END_REF] in comoving coordinates

vi + Hv i = - 1 a ∇ x ϕ (3.1)
where the gravitational potential can be expressed in terms of the density field by the Poisson equation

∇ 2 x ϕ = 4πGa 2 ρ(x) (3.2)
and by direct summation of the individual particles in the system

ϕ(x i ) = - G a j̸ =i m j 1 |x i -x j | (3.3)
The EoM of the system consist of a set of coupled differential equations that needs to be solved by setting up initial conditions for positions and velocities of all particles in the system, a way of calculating the gravitational potential in the RHS at every particle's position, and finally integrating the dynamics by moving the system forward in time. Different N -body codes tackle these steps in different ways. We will explore here the most common ones, to later focus on the approach followed by Abacus.

Initial Conditions

The evolution of inhomogeneities in the Early Universe can be treated analytically, through Perturbation Theory, as long as these inhomogeneities are small. We make use of Einstein-Boltzmann solvers (such as CLASS [START_REF] Lesgourgues | The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview[END_REF] or CAMB [START_REF] Lewis | Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models[END_REF]) to calculate the set of ODE governing small perturbations of the Early Universe and evolve our system for at least a good part of its very long evolution, thereby reducing as much as possible the accumulation of numerical errors in the simulation.

A standard procedure is to compute a 3D density matter power spectrum of perturbations, that we will impose on the set of N particles. Traditionally, this displacement field is calculated by the Zel'dovich approximation (ZA, [START_REF] Zel | Gravitational instability: An approximate theory for large density perturbations[END_REF]), and where the density field is obtained as a statistical realization of the matter power spectrum at a given matter-dominated redshift.

The ZA corresponds to the first order solution to Lagrangian Perturbation Theory (LPT). In this framework, the motion of each particle at initial position q is updated in time by a Lagrangian displacement field in the form

x = q + Ψ(q) (3.4)
where Ψ is found perturbatively. This gives a prescription to perturb the positions of particles from a pre-initial conditions regular pattern, and assign them velocities according to the growing mode in linear perturbation theory. This first order approximation is calculated by integrating both the Euler equation and the one setting the evolution of the density contrast, and applying the solutions for the linear growth factor and overdensity. We then get an expression for the differential position of a particle such that

ẋ = - Ḋ∇ϕ 0 4πG ρ0 =⇒ Ψ ≡ x -x 0 ∼ - a∇ϕ(a) 4πG ρ0 (3.5)
where Ψ is the first order Lagrangian (Zel'dovich) displacement field. Taking its Fourier transform, and substituting ϕ k from the Poisson equation we'll have an expression in terms of the density fluctuations δ k , that can now be obtained from the computed power spectrum from the Einstein-Boltzmann solver. Fourier transforming back to position-space we obtain the desired initial conditions for the simulation.

Ψ = d 3 k (2π) 3 e ik•x ik k 2 δ k (3.6)
Thanks to its simplicity, the Zel'dovich approximation has been widely used to set up initial conditions for cosmological simulations. However, it has long been known that simulations starting from this set-up of initial conditions exhibit transients that take a long time to decay [START_REF] Colombi | Self-Similarity and Scaling Behavior of Scale-free Gravitational Clustering[END_REF][START_REF] Grinstein | On the validity of the Zel'dovich approximation[END_REF][START_REF] Juszkiewicz | Weakly nonlinear Gaussian fluctuations and the Edgeworth expansion[END_REF]. When including the second order term in LPT, a study [START_REF] Scoccimarro | Transients from initial conditions: a perturbative analysis[END_REF] showed that the transients become smaller and decay more rapidly, also giving a recipe for implementing second-order Lagrangian initial conditions.

The solutions for the particle's motions in 2LPT are simply calculated by expanding the Lagrangian displacement field to second order in perturbations, such that

x = q -D 1 ∇ϕ 1 + D 2 ∇ϕ 2 (3.7)
where the first term corresponds to ZA and the second term is the second order expansion. D 1 (D 2 ) are the linear (second-order) growth factor and ϕ 1 (ϕ 2 ) are given by the linear (second-order) overdensity through the Poisson equation. When deciding how to set-up initial conditions, one then needs to think about the trade-off in simplicity versus numerical errors. If a lower order perturbative method is preferred, the simulation will need to start at a much earlier time, but the N -body solver will need to deal with discreteness effects and numerical errors of its force calculation. Alternatively, a later starting time can be used only if higher-order LPT are implemented, and avoid in this way the accumulated integration errors from the N -body method.

Nowadays, 2LPT initial conditions have become the norm, with several developed codes such as 2LPTIC [START_REF] Crocce | Transients from initial conditions in cosmological simulations[END_REF] or MUSIC [START_REF] Hahn | Multi-scale initial conditions for cosmological simulations[END_REF], being widely used. In addition, extensions to 3LPT corrections were first proposed in [START_REF] Buchert | Lagrangian theory of gravitational instability of Friedman-Lemaître cosmologies -a generic third-order model for non-linear clustering[END_REF][START_REF] Catelan | Lagrangian dynamics in non-flat universes and non-linear gravitational evolution[END_REF][START_REF] Bouchet | Perturbative Lagrangian approach to gravitational instability[END_REF] and have been recently explored in [START_REF] Michaux | Accurate initial conditions for cosmological N-body simulations: minimizing truncation and discreteness errors[END_REF], and especially for multi-fluid cosmologies [START_REF] Hahn | Higher order initial conditions for mixed baryon-CDM simulations[END_REF][START_REF] Elbers | Higher order initial conditions with massive neutrinos[END_REF].

Gravity Force Solvers

As we mentioned before, the function of N -body solvers consists in integrating the equation of motion of particles in the system, given by Equation 3.1. In cosmology, they simulate collisionless particles affected by the force of gravity.

However, solving the force law for a potential of the form in Equation 3.3 leads to an infinite value as the distance between two particles approaches zero. In order to solve this issue, it can be modified to soften at small scales by introducing a small term, ϵ, in the denominator to regularize the divergences at zero separation:

ϕ(x i ) = - G a j̸ =i m j 1 [(x i -x j ) 2 + ϵ 2 ] 1/2 (3.8)
where ϵ is called the gravitational force softening/smoothing. Its value cannot be too small, or it will fail at avoiding the divergences, leading to noisy, unstable solutions, and integration times of the simulation will become very expensive. At the same time, too large values will reduce spatial resolution, preventing accurate calculation of small-scales. We will explore in this thesis how this parameter impacts convergence of estimated statistics in N -body simulations, while a study on its optimization in Abacus (the N -body solver exploited during this thesis) can be found in [START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF].

In addition, as gravity is a long-range unscreened force, every particle in the system interacts with any other particle, making the problem to solve O(N 2 ). For current simulations with trillions of particles, calculating O(10 24 ) pairwise interactions rapidly becomes an impossible task. For this reason, several methods have been developed, with the objective of reducing the order of this N dependence, while keeping the force calculation as accurate as possible. They represent one of the main differences between the various N -body codes available. Some of the most popular techniques are:

Particle-Mesh (PM) method

The PM [START_REF] Hockney | Computer simulation using particles[END_REF][START_REF] Klypin | Three-dimensional numerical model of the formation of large-scale structure in the Universe[END_REF] technique exploits the properties of solving the Poisson equation for the gravitational potential in Fourier space, convolving the density field with a Green's Function. Using the convolution theorem, a position-space convolution becomes a simple multiplication in reciprocal-space.

First, one needs to compute the density field from the particles' positions. To perform this step, codes use different mass assignment algorithms, that translate discrete point-like masses into a continuous density field. They create a grid of a particular size h, and each particle in the grid is given a "shape", such that each cell in the mesh contains a fraction of the particle's mass. The density in the grid is then calculated as

ρ(x m ) = 1 h 3 N i=1 m i W (x i -x m ) (3.9)
where x m is the position of the cell, x i the position of the particle i, and W (x) is the density assignment function, that can take several forms depending on the chosen interpolation scheme (e.g., Nearest-Grid-Point (NGP), Clouds-in-Cells (CIC), Triangular-Shaped-Cloud (TSC), etc.).

Once the density field has been computed, codes usually make use of the Fast Fourier Transform (FFT) algorithm to solve the Poisson equation for the gravitational potential. This reduces the complexity of the calculation to O(N log N ) [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF]. They then need to Fourier transform back the potential into the real-space, resulting in a potential field defined on each of the grid cells.

Finally, the forces (gradient of the calculated potential) are approximated by finite differentiation, and interpolated back to the particle's positions using the same mass-assignment definition W (x). This algorithm is simple and quite efficient, but its major issue comes from its poor small-scale resolution. The spatial resolution is limited by the size of the mesh, and the smaller it is, the more computationally expensive the problem becomes. This means that, for cosmological simulations, systems of interest will be unresolved if they cluster below the mesh scale.

In order to refine this method, several alternatives have been explored. Adaptative Mesh Refinement (AMR, [START_REF] Yahagi | N-body code with adaptive mesh refinement[END_REF][START_REF] Teyssier | Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES[END_REF]) techniques adapt the grid-size on a cell-by-cell basis, when better spatial-resolution is needed according to a fixed refinement criteria, e.g., keeping the mean number of particles per cell roughly constant. While this technique avoids using a global smaller grid, limiting the computational power required, tracking the different refinement levels and cells is more complicated than for regular grids.

Alternatively, Particle-Particle Particle-Mesh (P 3 M, [START_REF] Eastwood | P3M3DP-The three-dimensional periodic particle-particle/particle-mesh program[END_REF][START_REF] Efstathiou | Numerical techniques for large cosmological N-body simulations[END_REF]) algorithms use direct summation to calculated forces between nearby particles, while the smooth mesh potential is used for longer distance interactions. It solves the mesh resolution problem, while keeping the O(N 2 ) interactions to a minimum. As a trade-off, the sum of the two potentials overlaps, as PM forces include contributions from all particles, and it's quite difficult to compensate.

Tree method

In the Tree algorithm [START_REF] Barnes | A hierarchical O(N log N) force-calculation algorithm[END_REF], the simulation's volume is recursively divided into subdomains (tree nodes) until the smallest structure contains only one or a few particles, forming different levels of a hierarchical tree structure. The gravitational potential at a "distant" position x is calculated by a multipole-expansion at the centre of mass s of a group of particles x i in a node. The collective contribution of all "distant" particles is approximated, usually, by just the monopole

M = i m i , such that -G N node i=1 m i |x -x i | -→ -G M |x -s| (3.10)
The accuracy of this method resides on the determination of "distant" particles. This is done by setting a threshold for the opening angle, θ o ≥ d/l, where l is the distance from the position x to the node, and d is the size of the node. Each particle then interacts directly with nearby particles, and by a multipole-expansion potential with distance ones.

Interactions through the multipole-expansion are O(N log N ), and the error in the force calculation increases with θ o . The equilibrium is found then by a large enough θ o that allows for a small number of O(N 2 ) direct summations, but small enough that the errors from the multipoles' approximation are kept small. Some advantage of this method are their ability to resolve small-scales, only limited by the force softening in the pairwise summation, and the speed of the algorithm even in highly clustered regions. However, the tree method struggles to accurately calculate forces for highly homogeneous distributions, where the forces at each particle almost vanish and a multipole expansion is not sufficient. In addition, periodic boundary conditions widely used in cosmological simulations aren't added automatically, as with FFT methods, and need an additional mechanism to implement them.

In order to beat some of the disadvantages, many N -body codes implement a combination of PM and Tree algorithms, known as Tree-PM method [START_REF] Bagla | TreePM: A code for cosmological N-body simulations[END_REF]. They start from the Poisson equation in Fourier space, and split the potential into short and long-range components [START_REF] Ewald | Die Berechnung optischer und elektrostatischer Gitterpotentiale[END_REF] 

ϕ long k = ϕ k e -k 2 r 2 s (3.11a) ϕ short k = ϕ k 1 -e -k 2 r 2 s (3.11b)
where r s is the splitting scale. The long-range term is solved in Fourier space following the steps in the PM algorithm, while the short-range term is Fouriertransformed back into real space and solved with the Tree method.

Just like with the force splitting technique in P 3 M, the short and long-range forces calculated with the prescription from Equation 3.11 do not have an exact transition, giving rise to systematic errors at scales slightly above r s .

With respect to P 3 M codes, the variation in the number of operations with increased clustering is much smaller in TreePM algorithms, a real advantage when computing highly dense regions. However, the former requires much less computational memory, entailing the big advantage of being able to run on small machines.

Multigrid Iterative Solvers

Another alternative method to solve the Poisson equation consists in approximating the Laplace operator on a grid by finite differences [START_REF] Kyziropoulos | Parallel N-body simulation based on the PM and P3M methods using multigrid schemes in conjunction with generic approximate sparse inverses[END_REF][START_REF] Ruan | Fast full N-body simulations of generic modified gravity: conformal coupling models[END_REF]. The potential and the density are discretized at N equally-spaced points at distance h, and the system becomes N algebraic equations with N unknowns that can be solved iteratively.

A popular iterative method to solve the Poisson equation in N -body simulations is the Newton-Raphson's method (also known as Gauss-Seidel relaxation method). However, iterative solvers only communicate information to neighbouring points (7-points stencil for 3D calculations), and advance on a cell by iteration. This means that convergence to the solution is really slow. This is where multigrid acceleration comes into play, using hierarchical discretizations to speed up convergence. The system is mapped into coarser grids (restriction, i.e. downsampling operation), where information travels faster within the boundaries of the system, and it is iterated for a solution until reaching minimum resolution. Subsequently, the prolongation (i.e. upsampling operation) is performed, where solutions are mapped into a finer grid and used as a guess for a new iteration. Depending on the type of cycle used, the system might perform several prolongations (and restrictions) until reaching again the original target grid resolution, and the converged solution for the system of equations.

The speed using this method is usually O(N ). In addition, solutions to the Poisson equation do not rely on the superposition principle, working also for nonlinear Poisson-like equations, and making them a popular solver for simulations of modification of gravity.

Time integration

Once the gravitational forces (hence the acceleration) are calculated for every particle, the system has to be evolved forward in time (find new positions and velocities) by integrating Equation 3.1. There exist numerous integrators that can be used to solve the second order ODE, such as Euler, mid-point or the popular family of Runge-Kutta methods. Nevertheless, if we are interested in a system conserving energy (as for N -body simulations), symplectic methods such as the Leap-Frog scheme are better suited.

Leap-Frog [START_REF] Quinn | Time stepping N-body simulations[END_REF] is one of the most used methods in N -body problems to integrate the EoM. It is a second order accuracy, symplectic method, with relatively low computational requirements. There are two main types depending on the order in which velocities and positions are updated, and where are forces calculated:

Kick-Drift-Kick

One starts by shifting velocities at half time-step, using forces at present time (kick). Then, one use that velocity to update positions to the full time-step (drift). Finally, one recomputes the forces at the new positions, and use them to update the velocities at full time-step (kick).

v n+1/2 = v n + F (x n )∆t/2
(3.12a)

x n+1 = x n + v n+1/2 ∆t (3.12b) v n+1 = v n+1/2 + F (x n+1 )∆t/2 (3.12c)
Drift-Kick-Drift First, the positions are calculated at half time-step (drift). Then, the forces at these new positions are computed and used to shift the velocities the full time-step (kick). Finally, positions are updated to the full time-step (drift).

x n+1/2 = x n + v n ∆t/2 (3.13a) v n+1 = v n + F (x n+1/2 )∆t (3.13b) x n+1 = x n+1/2 + v n+1 ∆t/2 (3.13c)
If a variable time-step ∆t is used during the integration, KDK performs better than DKD. As most N -body codes do not use a fixed time-step, the former is the most popular type of Leap-Frog algorithm for cosmological simulations.

Another advantage of this method is that it is time reversible. If one advances the solution from its initial condition to some future point, makes that point the new initial condition, and reverse time, the system will arrive at its original state. This assumption does not take into account loss of accuracy due to floating points, neither in the force calculation. This is the reason why most N -body simulations aren't fully reversible. Finally, the choice of time-stepping highly depends on the N -body method used to solve the gravitational force. AMR techniques usually use individual time-steps for their particles, depending on if they belong to more or less clustered regions. PM methods usually impose the same time-step to all particles in the system, while Tree algorithms show a mix of the two procedures. The final accuracy that the N -body solver will be able to achieve will depend on the election and control of this parameter. A too small ∆t will drag the computational time, but a too large value could "over skip" particles' interactions. For a small study of this parameter in Abacus see [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF].

Abacus

The core work presented in this thesis has been performed using Abacus N -body code [START_REF] Garrison | The Abacus Cosmos: A Suite of Cosmological N-body Simulations[END_REF][START_REF] Garrison | A high-fidelity realization of the Euclid code comparison N-body simulation with Abacus[END_REF][START_REF] Garrison | The abacus cosmological N-body code[END_REF]. All simulations analysed in chapter 4, 5 and 6 were run with it, and even though the main results can be more generally extrapolated to other N -body solvers, one of our objectives along the process was testing Abacus resolution.

Abacus is a high-performance, high-accuracy N -body code, optimized for CPU+GPU architectures. It has been used to produce the largest suit of Nbody simulations to date, AbacusSummit [START_REF] Maksimova | AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations[END_REF], which was run on the fastest supercomputer at the time. It reports a force accuracy of 10 -5 median fractional error compared to Ewald summation forces, for a typical set-up of the code. In addition, thanks to its architecture, only a small fraction of the simulation needs to be loaded into memory at any one time (small ramdisk use), reading and writing into store-disk memory the fractional updates to the state of the simulation. It is also reportedly1 able to perform over 30 million particle updates per second on commodity dual-Xeon, dual-GPU computers (with specifications from 2017) making it the perfect N -body code for lab/department local cluster computers.

Initial Conditions

Abacus set-up of initial conditions (IC) is done by a customized Zel'dovich approximation algorithm2 (with an optional 2LPT correction) based on Particle Linear Theory (PLT, [START_REF] Marcos | Linear perturbative theory of the discrete cosmological N-body problem[END_REF]). The latter was first applied and tested in [START_REF] Garrison | Improving initial conditions for cosmological N-body simulations[END_REF] as a way to improve IC, and address the missing growth at small scales in simulations.

Initial particles' configurations consist of a perturbed regular pattern formed of discrete particles. They are affected by a small-scale suppression of power due to the discretization of the continuum density field. Fortunately, PLT gives the evolution of such a system, as opposed to the fluid approximation generally used to set up IC, and can be used to compensate for that missing growth.

Those discreteness effects manifest themselves by a misalignment of the longitudinal modes in particle theory with respect to fluid theory, leaking into transverse modes and producing transients. Longitudinal modes are responsible for the production of density perturbations, which translates the misalignment into "overdriven" and "underdriven" collapsing modes, and whose effects accumulate over time. This is of particular importance, as we have seen before that, in order to compensate for higher-order non-linearities in LPT, simulations are usually started at an earlier redshift, neglecting that first-order results are in fact divergent from those in the fluid limit.

In practice, Abacus particles' displacements do not start in pure k modes, but in the true longitudinal modes of the grid. However, they evolve in the pure growing mode, as opposed to standard ZA where velocities are always parallel to displacements. This method for setting up IC eliminates the spatial and temporal transients coming from the excitation of transverse modes to linear order.

In addition, to compensate for the missing growth at small-scales, the IC procedure rescales the initial displacement amplitudes in such a way that, at a "target redshift", the simulations power spectrum and the fluid power spectrum match in linear theory. This redshift, z P LT , is a user-specified parameter in Abacus IC. However, it needs to be early enough that displacements are still small and PLT holds, but close enough to non-linear evolution that the formation of the first non-linear structures is seeded with the correct power spectrum.

Finally, the algorithm (optionally) applies a customized 2LPT in configurationspace, that preserves the displacements from PLT.

It is worth noting that Abacus ICs are initialized over a particle lattice pre-ICs, as less structured configurations (such as "glass") are harder to treat in the PLT framework.

Force Solver

One of the most innovative characteristics of Abacus, which differentiates it from other N -body codes, is its force solver method, developed in [START_REF] Metchnik | A fast N-body scheme for computational cosmology[END_REF]. It is based on a new approach at calculating the gravitational potential, that analytically separates near-and far-field forces. In a nutshell, it uses a GPU-accelerated pairwise direct summation for the former, while the latter exploits a higher-order multipole expansion of the gravitational potential at each cell.

A simulation box is decomposed in a 3D Cartesian grid with K 3 cubic cells, typically containing 30 -100 particles each. The selection of cells that will interact via near-or far-field forces is determined by the near-field radius R, such that each particle in a cell will interact with particles in its (2R + 1) 3 neighbouring cells (including its own) by a near-field computation, and with the rest by the far-field.

The near-field force is computed as a softened Newtonian gravity (1/r 2 ) from all close cells, using open-boundary conditions. It solves all O(N 2 ) interactions using massive parallelized GPU's algorithms to accelerate the computation.

As any other N -body code calculating particle-particle interactions by brute force, Abacus needs to use a softened force law to avoid asymptotically infinite forces from very close particles. It uses a spline softening [START_REF] Garrison | Improving initial conditions for cosmological N-body simulations[END_REF], in which the force law is softened at very small separations but explicitly switches to the unsoftened form for larger distances. It is derived as a second order Taylor expansion in r of a Plummer softening 3 , taking the form

F(r) =      10 -15 (r/ϵ s ) + 16 (r/ϵ s ) 2 r/ϵ 3 s , r < ϵ s r/r 3 , r ≥ ϵ s (3.14) 3 F(r) = r (r 2 +ϵ 2 p ) 3/2
, where ϵ p is the softening length.

which impose a smooth transition at the softening scale ϵ s . In practice, the user will choose a Plummer softening scale ϵ p , and the code will internally convert it to an ϵ s such that pairwise orbits are well resolved for a given time-step. The particular conversion takes the form ϵ s = 2.16ϵ p .

In addition, Abacus supports comoving and proper softening prescriptions. A comoving softening is fixed throughout the simulation, as this one advances in comoving coordinates. Alternatively, a proper softening can be selected, which evolves as ϵ prop = aϵ com . It increases at early times, and it can become too large at the timespan of standard simulations. To overcome this, proper softening is capped such that:

ϵ(a) = min a 0 ϵ 0 a , 0.3 (3.15)
where ϵ 0 is the value of the softening at a time a 0 and the value of 0.3 is standard but customizable for each simulation. Generally, a proper softening scheme is preferred. Simulations need less time-steps, as they advance faster at earlier times, and they reportedly show better convergence to continuum (see [START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF] and chapter 4 for further details).

The far field computation consists of a Fourier-space convolution between the multipole expansion of the mass distribution (multipoles) in each cell, and a set of linear coefficients (derivatives) defined in the far-field grid, to give the Taylor expansion (Taylors) of the gravitational potential in all other cells. The multipoles are an approximation to the mass distribution of particles in every cell by a multipole expansion of the form:

M a,b,c i,j,k = n q x a q y b q z c q , for            0 ≤ a ≤ p 0 ≤ b ≤ p -a 0 ≤ c ≤ p -a -b (3.16)
in a cell with n point masses with displacements (x q , y q , z q ) from the origin (i, j, k), and where p is the multipole order. They are updated at every step, and calculated over the drifted particle positions. On the other hand, the derivatives tensor is a fixed, precomputed property of the grid at a given K, R and multipole order p. It is defined in the "far-field" cells of the grid, from the derivative of the gravitational potential, and in Fourier-space it includes the contribution from all periodic images of the box.

The gravitational potential of a target cell is calculated by summing over the contribution of all distant cells, including their periodic images. Although, contrary to hierarchical tree grids, where many separated interactions of pairs of cells are performed, Abacus' regular Cartesian grid (with translation symmetry) allows for an accelerated summation for all targets cells at once, by performing a convolution of the multipoles and derivatives in Fourier-space. In addition, computing the Fourier transforms of the grid of multipoles and the grid of all the weights (derivatives), allows including periodic boundary conditions for "free". This Fourier-space convolution is then inverse Fourier transformed, yielding the Taylor expansion coefficients of the gravitational potential in the grid. This method for calculating the far-field interaction returns a 1/r 2 force, whose accuracy is only controlled by the value of the multipole p. As the calculation for the near-field is exact (down to softening), the total force in each cell is only dependent on the value of the near-field radius R and the multipole order p. To increase the total force accuracy, we can play around increasing p, and subsequently the order of the Taylor expansion of the gravitational potential, or increasing R, and the number of cells that will interact via near-force calculations. A good middle point between performance and accuracy is reported at R = 2 (meaning 125 interacting cells) and p = 8. Thanks to the strictly bounded domain of the near-force, and the Fourier-space computations of the far-field (requiring only a localized 2D view of the data), these numbers allow for only needing ∼ 1% of the total simulation to be loaded into memory at any one time.

Time-step integration

As many other N -body codes, Abacus' integration method is the standard secondorder Leap-Frog KDK. However, it uses a fixed, global time-step size for all particles in the simulation, that recalculates at the beginning of each integration cycle. As of today, this is the only available stable technique, though some efforts have been made by their developer's team into a micro-stepping, where each particle's time-step will be based on their local dynamics (see [129, §5]).

The size of the time-step ∆a is determined by following several criteria. First, it is limited to a fraction η H of the Hubble time, effectively only relevant at early redshifts, before the formation of first structures, and where initial displacements are still small. Second, the ratio of the root-mean-square (rms) velocity to the maximum acceleration is computed in each cell, and the lowest ratio sets the global time step. This is scaled by a parameter η acc (user-specified), and a factor aH to convert from ∆t to ∆a. Additionally, to avoid abnormally cold cells setting up too conservative timesteps, the ratio of the entire simulation's rms velocity to its maximum acceleration is computed, and sets the time-step if it is larger than the aforementioned individual cell ratio. All together, the time-step criterium looks like this:

∆a = min η H a, η acc aH max min c∈cells v rms a max c , v rms a max global (3.17)
Finally, the time-step is also shortened to land exactly on full output redshifts, while other output times (like 10% subsamples) are a "best effort", using the first step after reaching the requested redshift.

Halo Finders

One of the main utilities of N -body simulations is being able to test results from observations, and draw conclusions about cosmological properties of the Universe. For this reason, we need to be able to identify observables in our simulations in a way that we can establish a comparison with real-world objects. This is the context in which halo-finder algorithms enter into play. They are able to identify clumps of particles in the simulations, and relate them into large virialized structures known as dark matter halos. N -body codes lack the baryonic physics that would allow the resolution of galaxies, the true observables, but they are presumed to form in the potential wells of these halo structures, and as such, expected to follow a similar large-scale evolution. Hence, the exploitation of the full capabilities of N -body simulations relies upon the ability of these halo-finder algorithms at identifying these collapsed structures within the dark matter density field.

There are several techniques used to identify halos from simulations, which leads to different definitions for these structures. Each one of them has its advantages and disadvantages, depending on the information we are seeking to retrieve and the accuracy we're expecting to obtain, versus the simplicity of the algorithm. Some link neighbouring particles in configuration-space, others add information from the velocity field, another kind identifies overdensities in the matter field, etc.

From the diverse plethora of group-finding algorithms to date, we will explore in chapter 6 the properties of three particular, contrasting halo-finders: FoF, Rockstar and CompaSO. A brief description of each one of them can be found below.

FoF

The Friends-of-Friends algorithm [START_REF] Davis | The evolution of large-scale structure in a universe dominated by cold dark matter[END_REF] is a popular method based on connecting nearby particles in configuration-space. Two particles are linked together (friends) if their distance lies below a certain threshold, the "linking length" b. If those two particles are within this distance b to other particles (friends-of-friends), they also get linked together. The result is a net of linked particles whose boundary is set by pairs closer than b to inner particles but further away to their next nearest neighbour. By construction, particles are uniquely assigned to a halo, avoiding the intersection of FoF groups. This can be problematic when two structures come close enough that they "combine", forming a "FoF bridge", and producing weirdly shaped structures. This property also means that any substructure that can be defined by assigning a smaller linking length (hierarchical-FoF) to the algorithm always lies completely within its host.

The main parameter defining the properties of FoF halos is, then, the size of the linking length b. If the density field is sampled by a large enough number of particles, then a given (local) density corresponds to the same mean distance between particles. Different values of b will then enclose different overdensities. But as halos change in mass (number of particles), their boundaries become more/less fuzzy, with smaller halos deviating significantly from that statement. This has been a hot-topic in the literature since a long time [START_REF] More | The overdensity and masses of the friends-of-friends halos and universality of halo mass function[END_REF], invoking percolation theory to explain it. It was stated that the relation between b and δ was not that simple, and that it would depend also on halo-concentration (and thus cosmology, halo mass, and redshift).

Rockstar

The Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement (Rockstar, [START_REF] Behroozi | The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores[END_REF]) is a group-finding method that uses information from both the position and the velocity of the particles. It works in a six phasespace dimensional framework, with an optional time refinement algorithm that tracks mergers.

The code starts by creating FoF groups in real-space, using a larger-thanusual (for virialized mass halos) linking length (b = 0.28 by default). This assures that, even if halos are "fuzzy", virial spherical overdensities can be determined within. It then calculates a phase-space metric defined for each FoF group, that is computed by normalizing positions and velocities between particle pairs by their group dispersions, such that

d(p 1 , p 2 ) = |x 1 -x 2 | 2 σ 2 x + |v 1 -v 2 | 2 σ 2 v 1/2 (3.18)
Once the phase-space of the system has been defined, the algorithm performs another FoF group finding, but this time in the new base. It links particles with an adaptative phase-space linking length, forcing a constant fraction of particles (default 70%) to form a subgroup. The process is then repeated within each subgroup, creating a hierarchical set of structures until a minimum size is achieved. This final level will contain the halo-seeds, and each particle in the simulation will be assigned to their closest seed in a new phase-space base, calculated with respect to it. Once all particles have been distributed, Rockstar performs an (optional) unbinding process, where it only keeps as part of the halos gravitationally bounded particles.

With respect to Rockstar's halo properties, the code defines halo masses by using various (user-specified) SO criteria, with virial mass as default. All halo centres and velocities are calculated using a subset of the innermost particles (∼ 10% of the halo radius), minimizing a Poisson error σ/ √ N .

CompaSO

COMPetitive Assigment to Spherical Overdensities (CompaSO, [START_REF] Hadzhiyska | COMPASO: A new halo finder for competitive assignment to spherical overdensities[END_REF] is an algorithm set in configuration-space, and developed as a group-finding tool for

Abacus N -body code. It runs on-the-fly, and was created to meet the demanding requirements of massive N -body simulations, and the high speed calculations achieved by Abacus.

The algorithm runs a set of FoF and SO methods to compute halos from simulations. It first measures the local density using a kernel of the form W = 1 -r 2 /b 2 kernel , where typically b kernel = 0.4Λ. L0 halos (the outermost FoF groups) are formed by particles with a density ∆ higher than a given threshold. The main halos (L1 halos) are then formed inside these groups. For each L0 group, the particle with the highest kernel density will constitute the first halo nucleus, to which all particles within a radius R L1 will be preliminarily assigned. Particles in the outermost > 0.8R L1 region are eligible to become a halo centre on its own, as long as they are the densest within their kernel radius.

Once the first L1 halo has been established, the algorithm proceeds to find the next densest particle among the eligible ones (outside R L1 or within its outermost region), and the particle assignment process starts again. The search for new halo centres ends when no sufficiently dense particles remain unassigned. Finally, if a particle can be assigned to more than one halo, the algorithm performs a competitive assignment. This method reassigns a particle to a new halo only if its enclosed density with respect to it is twice that of the old one.

A merger-tree algorithm was developed in [START_REF] Bose | Constructing high-fidelity halo merger trees in ABACUSSUMMIT[END_REF], serving as a post-processing "cleaning" procedure for CompaSO halos. Structures are sometimes fragmented and/or re-collapse at different epochs. To correct for this, the merger-tree procedure checks what fraction of the particles of a halo at time t i came from a much larger halo located at a similar position at time t i-1 and t i-2 . If a sufficiently large fraction did, then the newer halo is deemed a "potential split" and merged into the larger halo. In addition, if at an earlier redshift a halo peak mass exceeds more than twice its present day mass, it is also merged into a more massive neighbour, from whom it had presumably split off. We will be particularly testing how this procedure improves halos determined by CompaSO in chapter 6.
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Accuracy of power spectra in dissipationless cosmological simulations 

Abstract

Introduction

The power spectrum (PS), together with its Fourier transform, the two-point correlation function (2PCF), are the most basic statistical tools employed to characterize clustering at large scales in cosmology. Building a precise theoretical framework for their calculation is crucial in order to fully exploit observational data coming from the next generation surveys, such as DESI [START_REF]The DESI Experiment Part I: Science,Targeting, and Survey Design[END_REF], Vera C. Rubin Observatory LSST [START_REF] Ivezić | LSST: From Science Drivers to Reference Design and Anticipated Data Products[END_REF] or Euclid [START_REF] Laureijs | Euclid Definition Study Report[END_REF], that will open a new window in the era of "precision cosmology". In this context the nonlinear regime of gravitational evolution is of particular importance, as it will be a key to distinguishing among the plethora of exotic dark energy and modified gravity models [START_REF] Casas | Linear and non-linear Modified Gravity forecasts with future surveys[END_REF] as well as tightly constraining the LCDM scenario. Studies have estimated that to exploit fully the observed data, the matter PS in the range of scale (0.1 ≲ k/hMpc -1 ≲ 10) needs to be determined to 1 -2% accuracy, depending on the specifications of the survey [START_REF] Huterer | Calibrating the nonlinear matter power spectrum: Requirements for future weak lensing surveys[END_REF][START_REF] Kitching | On mitigation of the uncertainty in non-linear matter clustering for cosmic shear tomography[END_REF][START_REF] Hearin | General requirements on matter power spectrum predictions for cosmology with weak lensing tomography[END_REF]. In the context of the preparation for the Euclid mission, a new study has been carried out with the goal of achieving a 1% precision at non-linear scales [START_REF] Knabenhans | Euclid preparation: II. The EuclidEmulator -A tool to compute the cosmology dependence of the nonlinear matter power spectrum[END_REF], which adds to the efforts of other large-volume simulations [START_REF] Ishiyama | The Uchuu simulations: data release 1 and dark matter halo concentrations[END_REF][START_REF] Heitmann | The Last Journey. I. An extreme-scale simulation on the Mira supercomputer[END_REF][START_REF] Angulo | The BACCO simulation project: exploiting the full power of large-scale structure for cosmology[END_REF], the amendments to the widely used HaloFit Model in [START_REF] Takahashi | Revisiting the halofit model for the nonlinear matter power spectrum[END_REF], or the most recent updated version of HMcode [START_REF] Mead | hmcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback[END_REF]. In the context of the preparation for the Euclid mission, a new study has been carried out with the goal of achieving a 1% precision at non-linear scales [START_REF] Knabenhans | Euclid preparation: II. The EuclidEmulator -A tool to compute the cosmology dependence of the nonlinear matter power spectrum[END_REF], which adds to the efforts of other large-volume simulations [START_REF] Ishiyama | The Uchuu simulations: data release 1 and dark matter halo concentrations[END_REF][START_REF] Heitmann | The Last Journey. I. An extreme-scale simulation on the Mira supercomputer[END_REF][START_REF] Angulo | The BACCO simulation project: exploiting the full power of large-scale structure for cosmology[END_REF], the amendments to the widely used HaloFit Model in [START_REF] Takahashi | Revisiting the halofit model for the nonlinear matter power spectrum[END_REF], or the most recent updated version of HMcode [START_REF] Mead | hmcode-2020: improved modelling of non-linear cosmological power spectra with baryonic feedback[END_REF].

In practice, calculation of predictions at these scales rely entirely on numerical simulations that use the N -body method. One important and unresolved issue in this context is the accuracy limitations on such simulations arising from the fact that they approximate the evolution of the dark matter phase space distribution using a finite particle sampling, as well as a regularization at small scales of the gravitational force. Despite the extensive use and spectacular development of N -body cosmological simulations over the last several decades, no clear consensus exists in the literature about how achieved accuracy, even for the PS, depends on the relevant parameters in an N -body simulation. Various studies have led to different conclusions (see e.g. [START_REF] Splinter | Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations[END_REF][START_REF] Knebe | On the effects of resolution in dissipationless cosmological simulations[END_REF][START_REF] Romeo | Discreteness Effects in ΛCDM Simulations: A Wavelet-Statistical View[END_REF][START_REF] Joyce | Towards quantitative control on discreteness error in the non-linear regime of cosmological N-body simulations[END_REF]), and in practice very different assumptions are made by different simulators about the range of resolved wavenumbers. A crucial difficulty is that, strictly, attaining the physical limit requires extrapolating the number of particles to be so large that there are many particles inside the gravitational softening length. Such a regime is unattainable in practice as the softening itself is small in simulations resolving small scales. Alternatively convergence may be probed also by comparing between two or more codes to assess the accuracy of their results (see e.g. [START_REF] Garrison | A high-fidelity realization of the Euclid code comparison N-body simulation with Abacus[END_REF][START_REF] Schneider | Matter power spectrum and the challenge of percent accuracy[END_REF]), but this establishes only a relative convergence that can give confidence in the accuracy of the clustering calculation but does not take into account the effects of discretization and dependence on the N -body parameters.

In this article we study the small scale resolution limits on the PS arising from finite particle density and gravitational softening. To do so we use and extend a methodology detailed in [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF] (hereafter P1) which uses the property of selfsimilarity of "scale-free" cosmological models, with an input power-law spectrum of fluctuations P (k) ∝ k n and an Einstein de Sitter expansion law, to derive resolution limits for the 2PCF. In [START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF] (hereafter P2) this analysis has been extended to determine how resolution depends in detail on the gravitational softening, and in particular on whether such softening is held constant in comoving or proper coordinates. In [START_REF] Leroy | Testing dark matter halo properties using self-similarity[END_REF] the method has been shown to be a powerful tool also to infer the accuracy of measurements of the halo mass function and halo 2PCFs. In our analysis here we change focus to the PS, determining small scale resolution limits for it and examine how they compare with the limits for the 2PCF. While these previous articles based their analysis on a suite of simulations of a single scale-free model, with n = -2, we extend to simulations of a range of indices. This allows us to address more precisely the question of extrapolation to non scale-free cosmologies like the standard LCDM model. Furthermore, we are able to exploit a new set of much larger scale-free simulations (N = 4096 3 rather than N = 1024 3 ) that were produced on the Summit supercomputer based on the methodology of the AbacusSummit suite [START_REF] Maksimova | AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations[END_REF]. These allow us in particular to identify more precisely the finite box size effects that are an important limiting factor for analysis of scale-free models with redder spectra. Our analysis shows that we can indeed obtain precise information about convergence and spatial resolution cut-offs for the PS as a function of time, and that a level of precision in line with the requirements of forthcoming observational programs may be achieved.

The article is structured as follows. In the next section we recall briefly what scale-free cosmologies are and explain how their self-similar evolution is able to provide a method for determining the precision with which statistical quantities are measured in N -body simulations. In Section 3 we describe our numerical simulations and then detail our calculation of the PS. In Section 4 we present and analyse our results, detailing the criteria used to identify converged values of the PS and temporal regions within which a given accuracy is attained, and using them to infer limits on resolution at small scales in the different models. Section 5 describes how the results can be extrapolated to infer conservative resolution limits in non scale-free (LCDM type) cosmologies. In the final section we summarise our results

Scale-Free Cosmologies and Self-Similarity

and discuss them in relation to both the related works P1 and P2, and more broadly to the literature on numerical study of the dark matter PS in cosmology.

Scale-Free Cosmologies and Self-Similarity

One of the limitations of using N -body simulations for the study of cosmological systems comes from its inherent discreteness, as the continuous phase space density describing dark matter is sampled using a finite number N of objects. Such simulations thus introduce a set of unphysical parameters which necessarily limit the range of time and length scales which they resolve. These parameters can be divided into the numerical parameters controlling the approximations made in the integration of the N -body dynamics and forces, and the parameters introduced in passing from the physical model to the N -body system: the mean interparticle spacing Λ, the force softening scale ϵ and the size of the periodic box L, and a starting redshift z i that can be parametrized by the value of σ i (Λ, zi), the square root of the variance of normalized linear mass fluctuations in a top-hat sphere of radius Λ. We will refer to the latter as the discretization parameters.

Following this distinction, we can divide the consideration of limitations on N -body simulations into two main parts: the issue of convergence of the numerical solution of a specific configuration (fixed Λ, ϵ, L and σ i ), and the convergence towards the continuum cosmological model (extrapolated by taking the appropriate limit of the discretization parameters). The former can be treated by studying stability under variations of numerical parameters such as time-stepping or force accuracy. We will discuss this point only briefly here as it has already been treated extensively in P1 and P2. The latter is more challenging and, as we have discussed in the introduction, lacks a consensus in the literature. We will be focusing primarily on it here, considering convergence to the physical limit of the matter PS.

The value of scale-free models in the context of physical resolution of N -body simulations relies on the self-similarity of their evolution: temporal evolution of clustering is equivalent to a well defined rescaling of the spatial coordinates. This is the case because such models are characterized by just one length scale and one time scale: their initial (linear) PS of fluctuations is a simple power law P (k) ∝ k n , and an Einstein-de-Sitter expansion law a ∝ t 2/3 (where a is the scale factor). The single length scale can thus be defined as the non-linearity scale R N L given by

σ 2 lin (R N L , a) = 1 linear theory -------→ R N L ∝ a 2 3+n (4.1)
where σ 2 lin as the variance of normalized linear mass fluctuations in a sphere, while the time scale is fixed by the normalization of the Hubble law (i.e. by the mean mass density combined with Newton's constant G). For the case of statistics such as the PS which are a function of wavenumber k and time, it follows simply by dimensional analysis that a suitable dimensionless definition of the statistic f can be written as a function of k R N L (a 0 ) where a 0 is some reference scale-factor:

f (k, a) = f (k R N L (a 0 ), a/a 0 ) . (4.2)
As the reference scale-factor is itself arbitrary (because of the EdS expansion law) we can take a 0 = a, and obtain

f (k, a) = f 0 (k R N L (a)) (4.3)
where f 0 is independent of time. For the case of the PS we use in our analysis the canonical definition of the dimensionless PS

∆ 2 (k, a) = k 3 P (k, a) 2π 2 , ( 4.4) 
and thus self-similar behaviour corresponds to

∆ 2 (k, a) = ∆ 2 0 (k R N L (a)) (4.5)
In N -body simulations of scale-free cosmologies, any deviations from this selfsimilar evolution can only be due to unphysical scales. Conversely results can represent the PS in the desired physical limit -which must be independent of these parameters -only to the extent that the rescaled dimensionless PS statistic becomes independent of time. As in P1 and P2 we caveat that self-similarity does not in itself prove definitively that a measured PS represents the physical limit, as it is not impossible that an unphysical parameter may itself have a self-similar scaling. In particular, as highlighted in P1 and P2, we need to be careful to ensure that there are not hidden errors due to time-stepping, whose errors seem approximately self-similar even when the time step size is not an equispacing of log a.

Numerical Simulations

Abacus code and simulation parameters

We have performed simulations using the Abacus N -body code [START_REF] Garrison | The abacus cosmological N-body code[END_REF]. Abacus is designed for high-accuracy, high-performance cosmological N -body simulations, exploiting a high-order multipole method for the far-field force evaluation and GPU-accelerated pairwise evaluation for the near-field. The larger, N = 4096 3 simulations in this work were run as part of the AbacusSummit project [START_REF] Maksimova | AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations[END_REF] using the Summit supercomputer of the Oak Ridge Leadership Computing Facility.

We report results here based on the simulations listed in Table 4.1. We have simulated three different exponents for the PS (n = -1.5, -2.0, -2.25) in order to probe the range of exponents relevant to structure formation in a LCDM cosmology. Ideally we would extend this range further towards n = -3, but as we will discuss below, n = -2.25 represents in practice the accessible limit below which even our largest simulations would be swamped by finite box size effects. Indeed our simulations include for each n a pair of simulations with N = 1024 3 and N = 4096 3 for which parameters are otherwise identical.

The remaining crucial parameter for our simulations is the softening length. Again the simulations in Table 4.1 have been chosen to include for each n a least one pair of simulations (with N = 1024 3 ) which differ only in this parameter (and for n = -2.0 a range of different softenings). In Abacus the gravitational force is softened (see P2 for the explicit functional form and a more detailed discussion) from its Newtonian form using a compact spline which reverts to the exact Newtonian force at 2.16ϵ, where ϵ is defined for convenience as an "effective Plummer smoothing" i.e. the softening of a Plummer model (with two body force F (r) ∝ (r 2 + ϵ 2 ) -3/2 ) with the same minimal pairwise dynamical time. The values of ϵ in our simulations are given in Table 4.1 as a ratio to the mean inter-particle spacing Λ. For the values given without an asterisk this value is fixed throughout the simulation i.e. the smoothing length is fixed in comoving units. For the values with an asterisk the value given is that at the time of our first output, at the scale-factor a = a 0 defined below. For a < a 0 the smoothing is again fixed in comoving coordinate, while for a > a 0 it is kept fixed in physical coordinates i.e. ϵ/Λ ∝ 1/a. Our choices for the simulations with n ̸ = -2 have been guided by the detailed study in P2 of the effect of softening on resolution, based on the study of the 2PCF in a very large suite of n = -2 simulations (including the subset of four 1024 3 simulations of n = -2.0 we report here). We will see below that the qualitative and quantitative conclusions of P2 found using the 2PCF extend also to the PS. Initial conditions have been set up using the standard method based on the Zeldovich Approximation (ZA) but modified as described in detail in [START_REF] Garrison | Improving initial conditions for cosmological N-body simulations[END_REF], to include both next order 2LPT corrections to the ZA as well as corrections for deviations from the ZA due to discretization described analytically by the "particle linear theory" (PLT) derived in [START_REF] Marcos | Linear perturbative theory of the discrete cosmological N-body problem[END_REF][START_REF] Joyce | Gravitational Evolution of a Perturbed Lattice and its Fluid Limit[END_REF]. The initial conditions are then characterized by two parameters: σ i , the value of the top-hat variance at the grid spacing in the n N ϵ/Λ S f log 2 (a f /a 0 ) -1.5 4096 3 0.3 * 29 3.625 -1.5 1024 3 0.3 * 29 3.625 -1.5 1024 3 The first column shows the name of the simulation, n is the spectral index of the initial PS, and N the number of particles. The fourth column gives the ratio of the effective Plummer force smoothing length ϵ to mean inter-particle separation (equal to the initial grid spacing Λ), for a < a 0 (as defined by Equation 5.9, the time of our first output). For the cases without an asterisk this is its value at all times (i.e. the smoothing is fixed in comoving coordinates) while for the cases with an asterisk the smoothing for a > a 0 is fixed in proper coordinates. The last two columns give, respectively, the value of the time parameter S at the last snapshot and the final scale factor relative to that at first output. Note that given that the first output is at S = 0, the number of outputs for each simulation is S f + 1.

initial configuration, and a P LT , the target scale factor at which the PLT evolved modes coincide exactly with the ZA evolved modes prior to correction. For all our simulations here we have σ i = 0.03, and a P LT = a 0 where a 0 corresponds to the time defined by

σ lin (Λ, a 0 ) = 0.56 (4.6) 
i.e. to the epoch at which fluctuations of peak-height ν ≈ 3 are expected to virialize in the spherical collapse model (σ lin ≈ δ c /ν, with δ c = 1.68), and the first non-linear structures appear in the simulations. The accuracy of the numerical integration of the initialized N -body system in Abacus is determined in practice essentially by a single parameter, the time-step parameter η. For all simulations here we have used η = 0.15, on the basis of the extensive tests of the convergence of the 2PCF reported in P1 and P2. We do not explore here further the sensitivity of results to the choices of σ i and a P LT , based also on tests which have been performed in the context of the studies of P1 and P2. In practice our σ i is sufficiently small so that reducing it further leads to no significant change to the initial conditions, because of the application of the PLT corrections. The effects of the choice of the value of a P LT is a subject we will explore in future work.

As in P1 and P2, we have saved the outputs (full particle configurations) of our simulations starting from a = a 0 and then at subsequent times separated by intervals in which the characteristic non-linear mass M N L grows by a factor of √ 2. Given that M N L ∝ R 3 N L , the scaling in Equation 6.1 implies that the outputs correspond to scale-factors a i where

log 2 M N L (a i+1 ) M N L (a i ) = 1 2 = 6 3 + n log 2 a i+1 a i . (4.7)
It is convenient then to define the time variable S by

S = 12 3 + n log 2 a s a 0 (4.8)
with the outputs corresponding to S = 0, 1, 2 . . . . The final time S f up to which we have integrated is dictated by two competing considerations. On the one there is a limitation on numerical cost arising from the use of a global time-step in

Abacus which means that it can no longer integrate efficiently when the central densities of halos become too large. On the other hand finite box size effects become dominant at sufficiently long times. For n = -1.5, it is the former limitation which dictates the stopping time, while for n = -2.25 it is the latter. This will be illustrated explicitly in our analysis below.

Power spectrum calculation

In this section we describe the method we have used to measure the matter PS of our particle data sets.

We recall first that the PS P d (k) of a distribution of discrete equal mass points, in a periodic cube of side L, may be calculated, for wave-vectors k = (2π/L)n where n is any non-zero triplet of integers, as

P d (k) ≡ |δ d (k)| 2 L 3 (4.9)
where

δ d (k) = L 3 N j e ir j •k (4.10)
being the sum over all N particles in the volume (with δ d (k) the coefficients of the Fourier sum for the periodic system).

Because of the excessive computational cost of performing directly the summation in Equation 4.10, we use instead, as is commonplace, an approximation which replaces the Fourier sum by an FFT on a grid of N g points covering the same volume. We thus assign a fraction of each particle's mass to each cell to obtain the number density in a cell klm given, in units of the cell volume, as

n klm = N i=1 W (r i ) (4.11)
where W (r i ) is the mass assignment function, with r i the relative position of the particle in the grid and the centre of the cell. We have used a so-called Triangular Shape Cloud (TSC) mass assignment [START_REF] Hockney | Computer simulation using particles[END_REF], of which the functional form is given as

W (x i ) =              0.75 -x 2 i if |x i | < 0.5 (1.5 -|x i |) 2 2 if 0.5 < |x i | < 1.5 0 else (4.12)
After performing the Fourier transform using the publicly available code pyfftw [START_REF] Gomersall | pyFFTW[END_REF], we correct by dividing by the "alias" sum of the Fourier transform of the window function [START_REF] Takahashi | Revisiting the halofit model for the nonlinear matter power spectrum[END_REF][START_REF] Angulo | The detectability of baryonic acoustic oscillations in future galaxy surveys[END_REF][START_REF] Sato | Nonlinear biasing and redshift-space distortions in Lagrangian resummation theory and N -body simulations[END_REF], which is given exactly for the TSC assignment by

P f → P f / n W 2 (k + 2k g n)
n W 2 (k + 2k g n) ≈ j 1 -sin 2 πk j 2k g + 2 15 sin 4 πk j 2k g . (4.13)
where the product is over the three components of k.

The relation between the PS P f estimated on the FFT grid and the exact result is then [see 109, 155]

P f (k) = n |W (k + 2k g n)| 2 P d (k + 2k g n) (4.14)
where W (k) is the FT of the window function W (r), k g = πN 1/3 g /L is the Nyquist frequency of the FFT grid, and the summation is over all triplets of integers n (including n = 0). Equation 4.14 tells us how the use of the FFT grid limits the accuracy of our measurement of the PS, due to "aliasing" which becomes important for wavenumbers of modulus k approaching k g . As detailed further in Appendix ??, we apply a commonly used correction which reduces these effects dividing P f by n W 2 (k + 2k g n) and cutting the results at k g /2, where the correction is no longer valid (see [START_REF] Takahashi | Revisiting the halofit model for the nonlinear matter power spectrum[END_REF][START_REF] Angulo | The detectability of baryonic acoustic oscillations in future galaxy surveys[END_REF][START_REF] Sato | Nonlinear biasing and redshift-space distortions in Lagrangian resummation theory and N -body simulations[END_REF]).

We need for our study to obtain highly accurate PS measurements at scales well below the Nyquist frequency of the initial particle grid, k Λ = πN 1/3 /L. Our analysis establishes a posteriori what the maximal required wavenumber is, and what level of accuracy we need. In practice the calculation times for the PS of the full particle loads of even our smaller 1024 3 simulations becomes excessive for N g ∼ 3000 3 , which does not give sufficient resolution for our requirements. To overcome this limitation we employ the widely used technique of "folding" (see e.g. [START_REF] Jenkins | Evolution of Structure in Cold Dark Matter Universes[END_REF]): the PS is calculated (using the FFT method) on a new particle configuration obtained by superimposing sub-cubes of the initial configuration i.e. the particle positions are modified by taking x → x% (L/2 m ), where the operation a%b stands for the reminder of the division of a by b and m is a positive integer. It can be shown easily that the PS of the two configurations are identical for the modes which are common to them. If one uses the same FFT grid, for each folding we can access accurately a maximal wavenumber which is multiplied by two, at the cost of losing half the wave-vectors (as they are integer multiples of 2 m+1 π/L).

For the results reported here we have used a grid with N g = 1024 3 . For the 1024 3 simulations we have calculated the PS using the full particle loads for foldings m = 0, 1, 2, 3, 4, 6; for the 4096 3 simulations we have used the available random down-sampling to 10% of the full particle loads, and have included an additional folding with m = 8 (in order to reach the same maximal wavenumber in units of k Λ ). The next step is to use our measured P f to estimate the PS of the matter field corresponding to an ensemble average over realizations of the theoretical model. Given that the latter is a function only of k, we use, as is standard, an estimator for the average in bins defined by spherical shells, taking

P (k; ∆k) =   1 N k k∈[k,k+∆k] P f (k)   - L 3 N 1 f -1 (4.15)
where the sum in the first term is over the N k modes with modulus in the range [k, k + ∆k], and the second term is a correction for the shot noise added to the PS of the particle distributions when a (random) down-sampling to a fraction f of the total particle number is applied. We have calculated using bins with constant logarithmic spacing, taking twelve bins per octave, i.e. 1 + (∆k/k) = 2 1/12 . This choice of binning is convenient because it ensures that the bins for different snapshots still match when rescaled by R N L (which changes between snapshots by multiples of 2 1/6 ). In other words our binning is designed so that it doesn't break self-similarity.

In the results presented below, in order to reduce statistical noise sufficiently, we have rebinned by grouping four such bins, corresponding to ∆k/k ≈ 0.26. The shot noise subtraction in Equation 4.15 accounts for (random) downsampling, and vanishes when f = 1 (as in all of our 1024 3 simulations). We note that this formula does not include subtraction of the shot noise term characteristic of the PS (of any stochastic point process) at asymptotically large k (here P (k → ∞) = L 3 /N = Λ 3 ). Some authors advocate making such a subtraction to correct for discreteness effects, while others argue against doing so (see e.g. [START_REF] Heitmann | The Coyote Universe. I. Precision determination of the nonlinear matter power spectrum[END_REF]). Our method here is precisely designed to detect how N -body discretization modifies the continuum PS, and so we do not wish to make any a priori assumption about how to model such effects. It is nevertheless an interesting question to assess specifically whether shot noise subtraction can be effectively used to correct for discreteness effects. We return to a discussion of this issue therefore after our main analysis, in subsection 4.4.4. As detailed there, it turns out that shot noise is not a good model in the range of wave-number where we can establish accurate convergence to the physical limit.

Finally we combine, for each snapshot, the measurements with different foldings to obtain a single estimate for each bin. Since the ratio of a given wavenumber k to the Nyquist wavenumber of the grid scales as 1/2 m , comparison of the different measurements of P (k; ∆k) in a given simulation allows us to assess the magnitude of the (systematic) inaccuracies arising from the FFT grid. Doing so we have concluded that, for k < k g /2, the accuracy of our PS measurement is always better than 0.2%. As this level of accuracy is sufficient for our purposes here, we construct a single measurement of P (k; ∆k) for each snapshot taking for each bin the measurement from the available folding with the lowest value of m.

For economy of notation we will omit everywhere the bin width and label bins by a k corresponding to their geometric centre. Likewise we calculate ∆ 2 (k) using Equation 4.4 at this same value for k.

Results

Self-similarity of the dimensionless power spectrum

As we have discussed, in scale-free cosmologies independence of the discretization parameters in an N -body simulation should correspond to a self-similar evolution for the PS, which is conveniently characterized in terms of the dimensionless ∆ 2 as given in Equation 4.5. in Table 4.1. For each index there are two panels: the left panel gives ∆ 2 (k) as a function of k/k Λ (where k Λ is the Nyquist wavenumber of the initial particle grid), while the right panels give the same rescaled quantity as a function of the variable kR N L . Thus self-similar evolution corresponds to the superposition in this latter plot of the data at different times. In the right panel vertical dotted lines are plotted of the rescaled k Λ R N L for each epoch, while dotted-point lines in both panels represent the shot-noise L 3 /N . These plots illustrate qualitatively the crucial features we will analyse more quantitatively below. For all spectral indices, we can see the same basic trends: self-similarity -identified as proximity to the common locus traced by the different curves -propagates monotonically to larger kR N L (and thus larger ∆ 2 ) as a function of time. At early times the self-similar range is restricted to linear scales (∆ 2 ≪ 1), but it develops progressively in the non-linear regime (∆ 2 ≫ 1). At each time we can identify an apparent upper cut-off (in k-space) to self-similarity where it branches off from the common locus. As a function of time this cut-off starts very close to k Λ , this corresponds to the imprint of the initial lattice, as in the initial conditions the input PS is represented only up to this wavenumber. As non-linear structure develops at smaller scales, this cut-off appears to progressively overtake the wavenumber k Λ and at the final time appears to be significantly larger. Regarding the shot noise, we can see two main behaviours: at early times evolution is still self-similar for values of the PS larger than a rescaled L 3 /N term, while for later times self-similarity is broken at a smaller k and it's only at large k when ∆ 2 is completely dominated by it.

Differences between the evolution for the three cases, which we will see in greater detail below, are also evident on visual inspection. Firstly the range of scale, and the maximal value of ∆ 2 , for which there is self-similarity decreases markedly from n = -1.5 to n = -2.25. This is just a reflection of the smaller range of scale-factor which is accessible in simulations of a fixed size. Furthermore we can detect that the quality of the superposition is significantly poorer for n = -2.25. This is the result of the very much more significant finite size effects present for this very red index: in fact, as we will see below, the quality of the self-similarity is so much less good in this case that we can exploit these simulations to obtain information about the propagation of resolution at the 1% level only in a very limited range.

Convergence to self-similarity

The accuracy and extent of self-similarity, and how it is limited by the different unphysical simulation parameters, can be better visualized by plotting the data Likewise the consecutive plots, at increasing kR N L , correspond to smaller scales (i.e. larger k/k Λ ) at any given time. The first plot in the first two figures (not plotted for n = -2.25) corresponds to the highly linear regime, and a comoving k which is at the first output more than a decade below k Λ , while the last plot for all figures corresponds to the highly non-linear amplitude and a comoving k which is larger than k Λ until close to the last output.

These selected plots illustrate that, in the large range of rescaled wavenumbers and clustering amplitudes shown, we can clearly identify, for each of these three values of n, converged values of the PS at the sub percent level. The temporal extent and the degree of the convergence vary, but the converged values are indeed independent of the (unphysical) parameters of the different simulations. Examining the deviations from the self-similar behaviour we can clearly identify the signatures of the three crucial unphysical scales: the initial grid spacing Λ (parametrized by k Λ ), the force softening ϵ and the box size. In the first three panels of Figure 4.2 and Figure 4.3, which show data for wavenumbers k ∈ [0.005, 1]k Λ , we can see that the results obtained are insensitive to the gravitational softening (with only some marginally significant differences in the third panel). This is as expected given that the smoothing in all simulations is always much smaller than Λ. In these same three panels, on the other hand, the imprint of the two other scales are clearly visible. Comparing the simulations of the two different box sizes (1024 3 and 4096 3 ) we can see that the larger box improves the self-similarity at larger scales (and later times). While in the first panel this improvement appears just to be due to the reduced noise in the PS estimator (because of the finer sampling in reciprocal space), in the other two bins we observe that the cut-off to the self-similar plateau extends to smaller k/k Λ . This effect is particularly important in the first panel of Figure 4.4, where the smaller simulations (N = 1024 3 ) are highly affected by the size of the box and do not reach a converged value. Finally the cut-off (at small scales) to self-similarity clearly depends significantly only on k/k Λ , and is set by it alone. It is crucial for our extrapolation of our results to non scale-free models that we can thus separate the effects of resolution due to the grid from the effects of finite box size. 4.1). Circles correspond to the largest (N = 4096 3 ) simulations and triangles to the N = 1024 3 simulations. The simulations using physical softening are plotted in purple and those with comoving softening in orange. The horizontal dashed line marks our estimated converged value (∆ 2 conv ) in each bin, determined in the largest simulation as described in the text. The blue shaded region indicates that within ±0.5% of this value. These plots show in particular that the convergence of the PS depends on box-size for larger scales (i.e. small k) and on the force smoothing for smaller scales. The lower panel of each plot shows, for the larger simulation, the fraction of ∆ 2 represented by a shot-noise term (∆ 2 shot = (π/2)(k/k Λ ) 3 ), and the dotted horizontal line marks 0.5%. We note that the observed deviations from the estimated converged value are not well approximated by such a term. The additional simulations with different softenings allow us to see more clearly its effect on convergence at smaller scales. In particular we note that the chosen physical softening converges as well as the smallest comoving softening, as found in P2 for the 2PCF.

We note that the quality of the convergence to self-similar behaviour is much better for n = -1.5 (it is achieved through a larger number of snapshots), because of the finite size effects which become more marked as the spectrum reddens. In particular this effect is crucial in the intermediate scales (typified by the third panel in the first two figures and the first one in Figure 4.4) where we observe that, for n = -2.0, the converged window is still quite small even in the largest

N = 4096 3 simulation.
The last panel in these figures, for all three n, corresponds to considerably smaller scales and is close to the larger kR N L for which we can identify robustly a converged value (using criteria described in detail below). At these smaller scales conv , but it appears smaller than on the previous plots because the range on the y-axis has been increased to fit the data in the smaller simulations. Compared to the plots in the previous two figures, we see clearly how convergence can be obtained only with much larger simulations as n decreases towards n = -3.

the results are now insensitive to the box size, but do show dependence on the softening (except for n = -2.25 where box-size effects wipe out this behaviour). The simulations with proper softening and those with the smaller comoving softening show the widest and most coincident regions of self-similarity, while the simulations with larger comoving softening show a suppression of power relative to the selfsimilar value which decreases as k/k Λ does so. Further the same ϵ = Λ/30 comoving smoothing shows just marginal (∼ 1%) deviation in the n = -2.0 simulation, but more significant (∼ 3%) deviation for n = -1.5. These behaviours are very similar to those which have been analysed and discussed for the 2PCF in P2 for n = -2.0. They provide clear evidence that the analogous conclusion may be drawn for the PS as was drawn in P1 and P2 for the 2PCF: the limit on resolution at small scales at any time, corresponding to the largest k at which self-similarity may be attained, is determined by k Λ alone (i.e. by the initial grid spacing, or mass resolution) provided the smoothing is chosen sufficiently small. As can be seen already by comparing the panels of Figure 4.2, Figure 4.3 and Figure 4.4, and will be quantified more precisely below, this intrinsic limit on the resolved k/k Λ increases with time (i.e. as a function of log 2 (a/a 0 )). Thus there is an upper limit on the required comoving smoothing to attain this intrinsic resolution limit, which depends on the range of scale-factor over which the simulation is run. Our results for n = -2.0 indicate, in line with the conclusion of P2 based on the 2PCF, that

Results

for a comoving smoothing below approximately Λ/30 there is no significant gain in resolution for a typical large LCDM simulation (which has a comparable range of scale-factor, log 2 (a/a0) ∼ 2.5). For the n = -1.5 simulation which runs over a slightly larger range of scale-factor (or a LCDM simulation with a correspondingly higher mass resolution), the limiting comoving smoothing required will be a little smaller. Likewise for the n = -2.25 simulations which span a much lesser range of scale factor, a larger comoving smoothing is sufficient. In all cases, on the other hand, as was also observed in P2 for the 2PCF, we see that the chosen proper smoothing -despite being significantly larger at early times than the comoving smoothing, and thus providing significant numerical economy -appears to be quite adequate to attain the intrinsic resolution limit.

Evolution of small scale resolution as a function of time

We turn now to a more precise quantitative analysis. We focus on the intrinsic upper cut-off (in wavenumber) to resolution determined by k Λ , using our data to estimate how it evolves with a/a 0 . To do so we first detail the procedure we use to estimate a converged value of ∆ 2 in each rescaled bin with an associated error bar (relative to the true physical value). Using these we can then determine, for each comoving k, its precision relative to this estimated converged value as a function of time. For any fixed level of precision significantly larger than our intrinsic error on the converged value, we can thus obtain an accurate estimate of the maximal resolved wavenumber at each time.

To estimate converged values for ∆ 2 per rescaled bin we proceed as follows 1 . Firstly we calculate an estimated converged value (which we denote ∆ 2 est ) in each rescaled bin as the average PS in the temporal window of fixed width -here we take six snapshots, but the precise choice is not crucial -which minimizes

∆ 2 max -∆ 2 min ∆ 2 = α , ( 4.16) 
where ∆ 2 max , ∆ 2 min and ∆ 2 are, respectively, the maximum, minimum and average value in the window. α represents the chosen limit for convergence, fixed at 1% for this study unless stated otherwise, which means that a bin is considered to have converged if α < 0.01. Finally, we determine for each rescaled bin deemed to have converged under the aforementioned criteria, a (connected) temporal window by seeking the largest one (containing at least three snapshots) with

|∆ 2 -∆ 2 est | ∆ 2 est < α/2 (4.17)
i.e., values within the (1%) converged region. We denote by ∆ 2 conv the average ∆ 2 calculated in this largest window, and take it as the value of the dimensionless PS of the bin. The error on this value is estimated as

δ(%) = ±0.5% w min w (4.18)
where w is the number of snapshots in the converged window (the one used to calculate ∆ 2 conv ) and w min the smallest window for which Equation 6.15 is fulfilled (by construction ≥ 3, and typically, for our parameter choices, 4 or 5). Although the residual deviations from self-similarity are clearly not uncorrelated between snapshots, visual inspection shows that this simple choice gives a conservative but reasonable error bar that reflects well how confidence in the estimated converged value decreases as the size of the window does.

We can now determine the estimated precision of the PS measured at any scale and time, i.e., the difference between its measured value in a given simulation and the true physical value. Figure 4.5 displays the result for five different comoving scales specified in units of k Λ , (0.5, 1.5, 3)k Λ , for the 4096 3 simulations with n = -1.5 (hashed), n = -2.0 (filled) and n = -2.25 (circles). The horizontal grey dotted lines mark the 5% and 1% precision levels.

This plot shows that the precision of the PS measured at any giving comoving k improves monotonically in time (at least starting from the time a = a 0 at which the first non-linear structures start to form). This is a reflection of the fact that the physical origin of the imprecision probed in this plot is the discretization on the lattice: our plot is restricted to values of k/k Λ and time scales where the finite box size effects are negligible, and the data is for the largest simulations (with proper softening) in which the convergence is insensitive to softening. The monotonic improvement of precision is then simply a result of the non-linear gravitational dynamics which efficiently "transfers power" from large to small scales i.e. the power at fixed comoving k is determined by power initially at progressively larger scales less affected by the lattice discretization. Correspondingly in a given simulation the maximal wavenumber resolved at any given precision (e.g. 1% or 5%) increases monotonically as a function of time. resolved well in the initial conditions, while for the latter the physical PS can only be first resolved when the fluctuations at these sub-grid scales are created by non-linear evolution at a level sufficient to dominate over the initial discreteness fluctuations. For the smallest k the precision of the n = -2.25 and n = -2.0 simulations, at a given time, are markedly better than for n = -1.5, but this difference in precision appears to systematically decrease as k increases, becoming almost negligible for k = 3k Λ . The source of the difference for the smaller k arises from the method used to set up initial conditions: as they are defined by a fixed amplitude of σ lin at the starting redshift (and thus also at a = a 0 ), a redder spectrum -for which the mass variance decreases more slowly with scaledominates more over the corrections to power from discreteness above k Λ . On the other hand, as we are comparing the simulations starting from a 0 -approximately the epoch at which non-linear structure formation first develops in them -it is not surprising to see that the propagation of the resolution at non-linear scales may be approximately model independent when plotted as a function of a/a 0 : it is the evolution of the comoving size of the first virialized structures which might be expected to determine the propagation of resolution, and this can be expected to be primarily determined by a/a 0 .

To probe further this apparent model independence of the resolution as a function of a/a 0 , we show in Figure 4.6 the evolution of the maximal resolved wavenumber (left panel) and maximal resolved ∆ 2 (right panel) as a function of time. The criterion for resolution is set at a precision of 5% (i.e. the parameter α = 0.05), which allows us to extend both the temporal range probed and obtain also more constraints from the n = -2.25 simulation. We see that indeed, once the non-linear evolution develops sufficiently, starting from approximately a ∼ 4a 0 , the resolution is approximately the same irrespective of n. Further the resolution appears to be correlated with the maximal resolved ∆ 2 , consistent with the hypothesis that it can essentially be determined in a model independent manner.

Shot noise and discreteness effects

As discussed in subsection 4.3.2, it is interesting to consider whether shot noise can be used to model deviations from the physical PS due to N -body discretization. In our analysis above we did not subtract a Poisson noise term from the calculated PS other than to account for that induced by random down-sampling of our larger samples. Indeed our method is designed to pick up any dependence on any unphysical scale (and Λ in particular) as a break from self-similarity. It does not require that we make any assumption on the functional form of such modifications or the range of applicable scales. We now consider what our results above tell us specifically about this question.

First from Figure 4.1 we see that the PS does approach the shot noise level at asymptotically large k (as it must, by definition). However it can be seen that it only attains this behaviour at scales k ≫ k Λ , significantly larger than those where we have seen the simulations to be converged (as shown in Figure 4.5). At early times in particular it can be seen that the measured PS is in fact below the shot noise level. Subtracting such a term clearly cannot then give an approximation for the (positive) physical PS, and it would evidently spoil the apparent self-similarity of our data (seen in the right panels) in a range of scale. At intermediate times, especially for the smaller n = -2.25 index, we can observe that the simulations depart from self-similarity at k smaller than those where the shot noise dominates the PS, indicating that the reason for this self-similarity breaking is not due to a shot noise of this form. Only in the latest snapshot of our simulations can we see that this term dominates at the scales close to those where there are deviations from self-similarity. These conclusions can be seen more fully and further quantified from the lower subplots of In all cases we see that, in some part of the range where the PS falls within 0.5% of its estimated converged value, the shot noise represents a significantly larger fraction. Shot noise thus overestimates the deviations of the PS. This makes it clear that if such a term is subtracted, it will in fact degrade the convergence in some range i.e. the PS with subtracted shot noise will approximate the physical PS with a reduced range of scale and/or time.

To see how significant this undesired effect of shot noise subtraction may be, we have performed an identical analysis as the one described in the subsections above, but now subtracting a Poisson noise term. Figure 4.7 is the equivalent of Figure 4.5 with the subtraction. We see clearly that the convergence is indeed destroyed at early times, as anticipated above. We also see that convergence for larger k is affected, and 1% precision for k > k Λ is never really achieved, and we do not resolve k ∼ k Λ even at 5% and later times.

In conclusion, and under our self-similar analysis of our simulations, we understand that a term of such form does not appropriately describe the shape of PS. While the smallest scales per snapshots are indeed well dominated by L 3 /N , we argue that subtracting a term of this form at all times and scales is not justified, and does indeed degrade the PS resolution. The region where this procedure would be reasonable (k ≫ k Λ ) is not accessible at a 1% precision for comparable simulations, The horizontal dotted lines correspond to 1% and 5%.

and thus the procedure becomes redundant.

Resolution limits for non Scale-Free Cosmologies

While our method, by construction, is limited strictly to scale-free cosmologies, our underlying motivation is of course to quantify the resolution in simulations of non scale-free cosmologies such as LCDM or variants of it. Such cosmologies are not really so very different from scale-free cosmologies for what concerns their non-linear evolution: for this purpose their PS can be considered to be an adiabatic interpolation of power-law spectra, with the modified expansion rate due to dark energy only coming into play at very low redshift. We have anticipated this extrapolation of our results above by choosing to simulate, as far as practicable, scale-free models with n in the range relevant to LCDM, and focusing on the dependence of our results on these exponents. Further we have characterized how resolution depends on time in terms of a scale factor relative to a 0 which can be defined, as given in Equation 5.9, for any cosmology, and has the simple physical meaning as the time when non-linear structures start to develop. Figure 4.8 illustrates how the parameter log 2 (a/a 0 ) maps to the redshift in a simulation of a standard LCDM model ("Planck 2013", [START_REF]Planck 2013 results. XVI. Cosmological parameters[END_REF]). The mapping is just a function of the mean interparticle spacing Λ (and the linear power spectrum of the model) as these allow the determination of a 0 . This means that, given a simulation of a determined grid spacing Λ, one can always find a one-to-one relation between the desired evolved redshift of the LCDM and our time variable log 2 (a/a 0 ). As discussed in P1, non-EdS expansion at low redshift introduces the possibility of mapping the time rather than the scale-factor, but the difference in the effective log 2 (a/a 0 ) is in practice very small, and we will neglect it here.

Our analysis above shows that we have two quite different regimes for the evolution of small scale resolution. For the modes k > k Λ , which are not modelled k (hMpc 1 ) Figure 4.9: Resolved k as a function of redshift for a fixed value of the mean interparticle spacing Λ = 0.5h -1 Mpc, using a standard LCDM cosmology ("Planck 2013", [START_REF]Planck 2013 results. XVI. Cosmological parameters[END_REF]). Orange points correspond to 1% precision, α = 0.01, while purple points represent a 5% precision, α = 0.05. We've added an axis for the k Λ of the hypothetical LCDM simulation for an easier extrapolation with Figure 4.8 and Figure 4.5 in the initial conditions and which always describe the strongly non-linear regime, resolution is approximately n independent as a function of log 2 (a/a 0 ). For these modes it seems very reasonable that we can carry over straightforwardly our results from the scale-free case to the general case (modulo small possible corrections due to non EdS evolution). That is, given the grid spacing of the simulation the results in Figure 4.5 (or Figure 4.6) can simply be converted to resolution as a function of redshift using Figure 4.8. As an example, Figure 4.9 shows, for a model Λ = 0.5h -1 Mpc simulation, the smallest scale which we will have access to as a function of redshift at a 1% and 5% precision.

On the other hand, for the modes k < k Λ we have seen that the resolution as a function of time shows n-dependence. These differences can be understood as arising directly from the initial conditions, and are thus essentially dependent on the behaviour with scale of the mass variance around the initial grid spacing. For a generic LCDM type cosmological model with a slowly varying exponent we can thus expect to determine the resolution from that of a scale-free model which, at scales ∼ Λ, approximates the behaviour of the variance. Such an effective exponent can be estimated as:

n eff = -3 -2 d log σ d log R R=Λ (4.19)
Taking the aforementioned LCDM model ("Planck 2013"), its estimated n eff is situated typically around or below our smallest simulated exponent, at least for Λs of typical (current) N-body simulations, n ∼ (-2.5, -2) for Λ ∈ [0.1, 1]. The resolution of n = -2.25 shows the same tendency as n = -2.0, inferred from Figure 4.5. We thus conclude that we can use our results for n = -2.0 to obtain conservative bounds on precision for numerical simulations of such models.

These statements assume of course implicitly that the method of setting up initial conditions is like that used in our simulations, that convergence has been established with respect to time-stepping and any all other numerical parameters, and that the box size is sufficiently large so that finite box effects are negligible at these scales considered.

Discussion and Conclusions

We conclude by discussing our results first in relation to the closely related recent studies in P1 and P2, and then in relation to the broader literature on the power spectrum of dark matter in the non-linear regime.

Our analysis here is a development of that already presented in P1 and P2, which focused on the self-similarity of the 2PCF, and also in [START_REF] Leroy | Testing dark matter halo properties using self-similarity[END_REF], which explored the self-similarity of halo mass and 2PCF functions. It further confirms that the study of self-similarity in scale-free cosmologies, using the methods introduced in P1, is a very powerful tool to quantify resolution of cosmological N -body simulations. We have performed a complementary analysis to the real-space analysis of the 2PCF in P1, giving a precise quantitative characterization of the evolution of resolution of the PS in k-space. Doing so we have tested even further the accuracy of the Abacus code by demonstrating that it can measure this essential cosmological statistic to an accuracy well below percent level in a wide range of scales. While these previous studies used suites of simulations for a single power-law (n = -2.0) and a single box size (N = 1024 3 ), we have considered a suite for both different power-laws and also a much larger box (N = 4096 3 ). This has allowed us to identify the effects of finite box size, and separate them clearly -over a range which depends strongly on the exponent n -from the resolution limits due to the finite particle density and gravitational smoothing. This is essential for robustly extrapolating these results on small scale resolution limits to non scale-free models.

It is interesting to compare our conclusions concerning the resolution of the PS to those obtained for the 2PCF in P1 and P2. Qualitatively, our analysis simply confirms that the main conclusions in these works map into reciprocal space just as one would naively expect. In particular P1 and P2 concluded that the lower cut-off scale to resolution for the 2PCF is, provided gravitational force smoothing is sufficiently small, fixed by the initial grid spacing. Further this scale is found, starting from a certain time, to be a monotonically decreasing function of time. We have drawn here identical conclusions about the PS in k-space. Looked at in more detail qualitatively, and quantitatively, the results in the two spaces are not, however, related in the simple manner one might expect. For example, the lower cut-off to resolution in real space was found, at the few percent level, to decrease in proportion to a -1/2 starting from 0.2Λ. Mapped into reciprocal space this would give a resolved k very considerably larger than what we have found (and with a very different a dependence). Comparing any of our various measurements confirms the conclusion that the resolution in reciprocal space is much poorer than in direct space, in the simple sense that inverse wavenumber characterising it is much smaller than π divided by the spatial resolution. Thus, in reciprocal space, discreteness effects are "smeared" out over a larger range of scale than in direct space, where they are more localized. The same is true also of the effects of gravitational smoothing: indeed we have found here that for the n = -2.0 simulation a comoving smoothing of Λ/30 produces few percent (1%) deviations from self-similarity at k ∼ 2k Λ (i.e. k ∼ π/(15ϵ)) while in real space similar deviations are seen at only ∼ Λ/10 (i.e. r ∼ 3ϵ).

As we have discussed in the introduction the question of resolution of different statistics, and in particular the 2PCF or PS, as measured in N -body simulations, has long been a subject of discussion in the literature. In the light of new and more accurate surveys it has become an even more important practical issue. Most current studies are based on the comparison of results from simulations at different mass resolution, where the highest available resolution is considered as the "true" converged value relative to which precision is measured. Our analysis here is based on the much more robust identification of converged values possible in scale-free simulations. As we have discussed in the last section these results can be extrapolated in a simple manner to obtain robust conservative resolution limits in LCDM models.

Laying aside the numerous caveats that we have underlined should be born in mind when extrapolating to any other set of simulations (and notably different codes), it is interesting to compare our conclusions with typical assumptions about resolution of PS measurements in the literature. In the recent literature on simulations of LCDM cosmologies focused on extracting very accurate measurements at intermediate scales, such assumptions are generally quite consistent with, and indeed often somewhat more conservative than, the limits we have found. For example, [START_REF] Ishiyama | The Uchuu simulations: data release 1 and dark matter halo concentrations[END_REF] assume that 2% accuracy is attained for k < k Λ /2 at z = 0, [START_REF] Heitmann | The Last Journey. I. An extreme-scale simulation on the Mira supercomputer[END_REF] a 5% accuracy at the same range up to z < 1, or [START_REF] Angulo | The BACCO simulation project: exploiting the full power of large-scale structure for cosmology[END_REF] assume a 1% accuracy up to the same scale. In studies which extend their analysis of the PS to the strongly non-linear regime, on the other hand, it is commonplace to include wavenumbers k approaching k ∼ π/ϵ, for ϵ ≪ Λ (e.g. [START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF][START_REF] Springel | First results from the IllustrisTNG simulations: matter and galaxy clustering[END_REF]). Indeed strong clustering develops down to these small scales, and it may be that it provides a reasonable approximation to the true physical limit, allowing at the very least qualitative conclusions that are correct. Nevertheless our analysis indicates that resolution in fact appears to degrade very rapidly for k significantly larger than a few k Λ . This suggests (as argued previously in e.g. [START_REF] Splinter | Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations[END_REF][START_REF] Romeo | Discreteness Effects in ΛCDM Simulations: A Wavelet-Statistical View[END_REF][START_REF] Joyce | Towards quantitative control on discreteness error in the non-linear regime of cosmological N-body simulations[END_REF] that caution should be exercized in making use of simulation data in the range of k ≫ k Λ .

An illustration of this conclusion is given by considering what has been inferred

from N -body simulations about the behaviour of the PS at asymptotically large k. In early work, Peebles [START_REF] Peebles | The Gravitational-Instability Picture and the Nature of the Distribution of Galaxies[END_REF] envisaged the possibility that the non-linear structures would decouple as they shrink in comoving coordinates, the so-called "stable clustering" hypothesis. Simulations of scale-free models have been an ideal testing ground for it, as Peebles derived in this case a simple analytical prediction for a power-law behaviour corresponding to ∆ 2 (k) ∼ k γ where γ = 3(3 + n)/(5 + n). While early simulation studies [START_REF] Efstathiou | Gravitational clustering from scale-free initial conditions[END_REF][START_REF] Colombi | Self-Similarity and Scaling Behavior of Scale-free Gravitational Clustering[END_REF][START_REF] Jain | Self-similar evolution of gravitational clustering. II. N-body simulations of the N = -2 spectrum[END_REF][START_REF] Bertschinger | Simulations of structure formation in the universe[END_REF][START_REF] Valageas | Scaling laws in gravitational clustering for counts-in-cells and mass functions[END_REF] showed evidence for its validity -at least for the shallower indices in which the finite box effects were not overwhelming for smaller simulations -studies by [START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF] and [START_REF] Widrow | Power spectrum for the small-scale Universe[END_REF] concluded that it breaks down, and further that the power spectrum's behaviour at small scales can be characterized by a single, but significantly smaller, n-dependent exponent. The robustness of these conclusions have been questioned in [START_REF] Benhaiem | Self-similarity and stable clustering in a family of scale-free cosmologies[END_REF][START_REF] Benhaiem | Stable clustering and the resolution of dissipationless cosmological N-body simulations[END_REF] using a new analysis of simulations of the same size (N = 256 3 ) as those of [START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF]. Shown in Figure 4.10 are the estimated converged values of the logarithmic slope of ∆ 2 , from our 4096 3 simulation of each of the three exponents. These have been estimated by applying to the logarithmic slope the same method described in detail in Section 6.3 for the PS, with parameter α = 0.05. This corresponds to an estimated precision of at most ±2.5%, i.e. about twice the diameter of the plotted points. The error bars shown in the plot correspond to ± the absolute value of the biggest difference in the converged values obtained in our different simulations (using identical convergence criteria), and indicate a significantly larger systematic error (towards an underestimate of the exponent) due to smoothing in the last few bins. These results show measured exponents remarkably close to the predicted stable clustering values, with at most marginal The curves are remarkably close to consistency with the hypothesis of asymptotic stable clustering, with at most, given our indicated error bars, marginal evidence for slightly lower values. We note that the studies by [START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF] and [START_REF] Widrow | Power spectrum for the small-scale Universe[END_REF] estimate asymptotic converged slopes equal to 0.91 for n = -1.5, 0.77 for n = -2.0 and 0.7 for n = -2.25.

evidence for a deviation from stable clustering. The considerably smaller exponents derived in the studies of [START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF] and [START_REF] Widrow | Power spectrum for the small-scale Universe[END_REF] are clearly due to the extrapolation to poorly resolved scales ( [START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF] used ϵ = Λ/15 and N = 256 3 ). We will present elsewhere further detailed study of this issue, including also in particular the corresponding real space analysis of the 2PCF which can provide a consistency check on any possible detection of an asymptotic exponent.

Introduction

Observational tests such as Type Ia supernovae [START_REF] Perlmutter | Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35[END_REF][START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF], large-scale structure analysis from Baryon Acoustic Oscillations (BAO, [START_REF] Cole | The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications[END_REF][START_REF] Eisenstein | Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies[END_REF]) and the temperature anisotropies of the cosmic microwave background (CMB, [START_REF]Planck 2013 results. XVI. Cosmological parameters[END_REF][START_REF] Jaffe | Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations[END_REF][START_REF] Pryke | Cosmological parameter extraction from the first season of observations with the Degree Angular Scale Interferometer[END_REF]) provide compelling evidence that the Universe is in an accelerated expansion. To explain this within the framework of General Relativity requires a new type of "dark" energy that accounts for about 70% of the total, and whose nature is still unknown. In the current standard model of cosmology (LCDM), this energy component is in the form of a cosmological constant. Alternative theoretical approaches either add extra degrees of freedom to characterize the energy content of the Universe or modify the Einstein-Hilbert action (for a review on these models see [START_REF] Clifton | Modified gravity and cosmology[END_REF]).

Ongoing and future surveys such as the Dark Energy Spectroscopic Survey (DESI) [START_REF]The DESI Experiment Part I: Science,Targeting, and Survey Design[END_REF] or the space-based mission Euclid [START_REF] Laureijs | Euclid Definition Study Report[END_REF] will provide large scale structure maps of the Universe of unprecedented statistical precision, allowing astronomers to measure the expansion history of the Universe and the growth rate of cosmic structures in sufficient detail to potentially distinguish between the different possible aforementioned scenarios. Indeed, one of the most valuable tests to discriminate between these multiple models observationally, and ultimately determine which can explain current data, consists in the study of the rate at which cosmic structures grow (see e.g. [START_REF] Perenon | Optimising growth of structure constraints on modified gravity[END_REF][START_REF] Brando | Relativistic corrections to the growth of structure in modified gravity[END_REF]), as different theories can predict quite different growth histories even for the same background evolution. A popular way of constraining this growth rate is by analysing the corrections to galaxy redshifts due to their peculiar velocities, which produces a modification of galaxy clustering, an effect called redshift-space distortions (RSD, [START_REF] Jackson | A critique of Rees' theory of primordial gravitational radiation[END_REF][START_REF] Kaiser | Clustering in real space and in redshift space[END_REF]). Since peculiar velocities are caused by gravitational pull, we can trace a relation between the velocity field and the mass density field and thus estimate the rate at which structures grow.

In order to exploit this information, it is essential to calculate accurate theoretical predictions for the large-scale structure of the Universe. Below scales where the perturbative approaches break down, such calculations rely entirely on cosmological simulations performed using the N -body method. This approach approximates the continuous phase-space distribution of dark matter by that of a sparse finite sample of particles, and evolves them in a finite box with periodic boundary conditions. In this context, an important question is the accuracy and scale-range limitations of this method in attaining the physical limit.

The assessment of the accuracy to which results converge to values independent of the numerical parameters (time stepping, force accuracy parameters) introduced in the resolution of the N -body system is straightforward. In this respect, extensive code comparisons [START_REF] Garrison | A high-fidelity realization of the Euclid code comparison N-body simulation with Abacus[END_REF][START_REF] Heitmann | The cosmic code comparison project[END_REF][START_REF] Schneider | Matter power spectrum and the challenge of percent accuracy[END_REF][START_REF] Grove | The DESI N-body simulation project -I. Testing the robustness of simulations for the DESI dark time survey[END_REF] give considerable added confidence in the precision of results for different statistics. Such comparisons do not address, however, the question of the accuracy with which these simulations represent the physical limit. While dependence on box size can be assessed by direct extrapolation studies (see e.g. [START_REF]Euclid preparation: II. The EUCLIDEMULATOR -a tool to compute the cosmology dependence of the nonlinear matter power spectrum[END_REF]), assessing the accuracy limitations imposed at small scales due to the discretization of the matter field is much more complex. The reason is that there are, at least, two relevant unphysical parameters, the mean interparticle spacing (denoted Λ here) and the gravitational force smoothing (denoted ϵ), and numerical extrapolation to the continuum physical limit, corresponding to ϵ/Λ → 0, is in practice unattainable. Precise quantitative conclusions regarding it have remained elusive and sometimes controversial (see [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF] for a discussion and some references).

Previous studies using N -body simulations have already used the information contain in the dark matter and halo pairwise velocity field to study plausible deviations from the standard model [START_REF] Hellwing | Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field[END_REF][START_REF] Gronke | Halo velocity profiles in screened modified gravity theories[END_REF][START_REF] Bibiano | Pairwise velocities in the "Running FLRW" cosmological model[END_REF][START_REF] Valogiannis | An accurate perturbative approach to redshift space clustering of biased tracers in modified gravity[END_REF]. Such conclusions ultimately rely on the ability of the N -body method to accurately predict and compute the desired statistic and that of the chosen halo finder retrieving halo properties accurately. But halos are not uniquely defined entities, and their properties depend strongly on the algorithm adopted for their extraction. We will explore this topic in the next chapter.

In this article, we use the techniques introduced in [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF] and developed and applied also in [START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF][START_REF] Garrison | Self-similarity of k-nearest neighbour distributions in scale-free simulations[END_REF][START_REF] Leroy | Testing dark matter halo properties using self-similarity[END_REF] and [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF] to derive resolution limits arising from particle discretization for different statistics by analysing deviations from selfsimilarity in scale-free cosmological models. Here, we employ these methods to assess and quantify the limits arising from discretization on the precision at which the radial component of the pairwise velocity of the full dark matter field can be retrieved from N -body simulations. This article is structured as follows. The first part of the next section describes what scale-free cosmologies are and how their self-similar evolution can be used to determine the accuracy at which different statistics can be measured in N -body simulations. Next, we recall the expressions for the radial component of the pairwise velocity and the pair conservation equation, as well as give the equation for the latter in the context of scale-free cosmologies. Section 3 contains a summary of the simulations used, as well as a brief description of Abacus, the N -body code used for their computation. It also contains a description of the method used to estimate convergence of the different statistics in the dark matter field. In section 4 we present and analyse our results, as well as infer resolution limits to non-scale-free cosmologies. Finally, we summarize our main ideas in Section 5.

Scale-Free Simulations and PairWise Velocity

Scale-free simulations and Self Similarity

Scale-free cosmologies have an Einstein-de Sitter, EdS, (Ω M = 1) background and a power-law power spectrum (P k ∝ k n ) of initial perturbations, which are thus characterized by just one length scale, the scale of non-linearity. This can be defined by

σ 2 lin (R NL , a) = 1 (5.1)
where σ 2 lin is the variance of normalized linear mass fluctuations in a sphere. Its temporal evolution can be calculated from linear perturbation theory as

R NL ∝ a 2 3+n
(5.2) One can infer that, if the evolution of gravitational clustering is independent of any other length scale (notably ultraviolet or infrared cut-offs to the assumed power-law fluctuations), it must be self-similar, i.e., the temporal evolution of the statistics describing clustering is given by a spatial rescaling following Equation 6.2. More specifically, any dimensionless function F (x 1 , x 2 , ...; a) describing clustering (where the x i are the parameters on which the statistic depends) will obey a relation of the form

F (x 1 , x 2 , ...; a) = F 0 (x i /X NL,i (a)) (5.3)
where X NL,i encodes the temporal dependence of the characteristic scale with the same dimensions as x i (as inferred from R NL ).

Our interest in self-similarity is driven by the fact that it greatly simplifies the description of clustering: its time dependence is effectively trivial, and any statistic describing clustering is specified by the single time-independent function on the right-hand side of Equation 6.3. As discussed in our previous papers, we can use this property to determine the range of scales that a simulation can reliably reproduce: any deviation from self-similarity arises necessarily from dependence on the unphysical scales proper to the N -body simulations.

Pairwise Velocity and pair-conservation equation

In this study we focus on the radial component of the mean pairwise velocity defined by

v r 12 = (v 1 -v 2 ) • r |r| (5.4)
where the velocity difference (v 1v 2 ) of a pair of objects is projected on to their separation vector r, and < • • • > denotes the ensemble average. It can be estimated in a finite simulation by directly averaging the pair velocity over all pairs. To do so, here we have coded an appropriate modification of the analysis tool Corrfunc [START_REF] Sinha | CORRFUNC: blazing fast correlation functions with AVX512F SIMD intrinsics. Software Challenges to Exascale Computing[END_REF][START_REF] Sinha | CORRFUNC -a suite of blazing fast correlation functions on the CPU[END_REF]. To facilitate our analysis based on self-similarity, we will always consider below the dimensionless ratio of v r 12 to the Hubble flow (Hr), so that self-similarity has the simple expression in the form of Equation 6.3.

The first half of this paper focuses on the matter field, and the choice to study

v r
12 is motivated by the fact that, in this case, it can also be related to the two-point correlations of mass density via the so-called pair conservation equation. This relation was first derived by [START_REF] Davis | On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe[END_REF] as a consequence of the BBGKY equations. In their statistical description, matter was approximated by a set of identical particles of mass m, making their theoretical results directly applicable to those of N -body simulations. Starting from the continuity equation for the density contrast (zeroth moment of the Vlasov equation) one obtains the pair conservation equation:

∂ξ 12 ∂τ + ∇ 12 • [v r 12 (1 + ξ 12 )] = 0 (5.5)
where τ is equal to the conformal time and ξ 12 is the standard reduced two-point density-density correlation function (2PCF) defined as the ensemble average at two different locations (1

+ ξ 12 =< (1 + δ(x 1 ))(1 + δ(x 2 )) >).
This can be conveniently rewritten as [START_REF] Nityananda | Scaling properties of non-linear gravitational clustering[END_REF]:

v r Hr = - 1 3(1 + ξ) ∂ ξ ∂ ln a (5.6)
where ξ = 3x -3 x 0 ξy 2 dy, the cumulative two-point correlation function (cumulative 2PCF), is the average 2PCF interior to x where we have normalized the velocity to the Hubble flow (Hr). For economy, we have dropped the indices 12 in the two-point quantities. As Equation 5.6 is exact, it implies that we can estimate v r in a finite sample indirectly, using instead of the velocities themselves the direct estimators of the 2PCF, the cumulative 2PCF and its derivative, combined in the appropriate way. This has been previously exploited in an early study of the pair velocity in scale-free models by [START_REF] Jain | Does gravitational clustering stabilize on small scales?[END_REF] focused on the question of whether clustering become stable at small scales [START_REF] Peebles | The Gravitational-Instability Picture and the Nature of the Distribution of Galaxies[END_REF], i.e. whether it tends to become stationary in physical coordinates, corresponding to v r = -Hr.

In the context of scale-free models and their expected self similarity, it is convenient to rewrite Equation 5.6 with the time derivative taken at a fixed value of the rescaled commoving separation (i.e. at fixed r/R NL rather than fixed r)

v r Hr = - 2 3 + n ξ ξ -1 ξ 1 + ξ - 1 3 (1 + ξ) ∂ ξ ∂ ln a r/R NL . (5.7)
When the two-point density correlations (as described by ξ and ξ) are self-similar, the last term vanishes and we can infer that v r is also self-similar. On the other hand, self-similarity of ξ and ξ is not a requirement for that of v r . We will pay careful attention to this point in our analysis below, and we will show that there is in fact a regime in our simulations in which v r approximates well selfsimilarity while the 2PCF does not.

Numerical simulations

Abacus code and simulation parameters

We report results based on the simulations listed in Table 6.1, performed using the Abacus N -body code [START_REF] Garrison | The abacus cosmological N-body code[END_REF]. Abacus offers high performance and accuracy, based on a high-order multiple method to solve far-field forces and an accelerated GPU calculation of near-field forces by pairwise evaluation. While the N = 1024 3 simulations were run using local facilities at the Harvard-Smithsonian Center for Astrophysics (CfA), the larger N = 4096 3 simulation are part of the AbacusSummit project [START_REF] Maksimova | AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations[END_REF], which used the Summit supercomputer of the Oak Ridge Leadership Computing Facility.

The simulation data we exploit in this article are summarized in Table 6.1. As in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], we have simulated three different exponents (n = -1.5, n = -2.0 and n = -2.25), chosen to probe the range relevant to standard (i.e. LCDM-like) models. For the first two exponents, we have two simulations with different N but otherwise identical parameters, allowing us to study finite box size effects. For the larger (N = 4096 3 ) simulations, the statistics have been calculated on (random) sub-samples of different sizes (25%, 3%) to facilitate the assessment of finite sampling effectsFor the other two spectral indices, n = -2.0 and n = -2.25, we have four N = 1024 3 simulations, each with identical N -body parameters but different realizations of the IC. These will be analysed below, both individually and as an average.

We work in units of the mean inter-particle (i.e. initial grid) spacing, Λ = L/N 1/3 . The essential time-stepping parameter in Abacus has been chosen as η = 0.15 for all simulations, and the additional numerical parameters have been set as detailed in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]. These choices are based on the extensive convergence tests of these parameters reported in our previous studies (see [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF]).

The remaining parameter correspond to the softening length. As previously introduced in [START_REF] Garrison | Improving initial conditions for cosmological N-body simulations[END_REF], Abacus performs a spline softening derived as a Taylor expansion in r of the Plummer softening expression, requiring a smooth transition at the softening scale up to the second derivative. All softening lengths in this study have been fixed in proper coordinates for the interesting redshifts, decreasing as ϵ(a) ∝ 1/a in commoving coordinates, those used by the simulation. To avoid a too large softening at earlier times, we fixed it in commoving coordinates down to a 0 , the first output of our simulation, and change to proper from then on. For all the simulations studied here, we use ϵ(a 0 )/Λ = 0.3. This value has been chosen following the results in [START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF] and [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], being both accurate and efficient for the spectral indices analysed.

The start of the simulation (a = a i ) is chosen so that top-hat density fluctuations at the particle spacing are given by σ i (Λ, a i ) = 0.03 (5.8) While the first output epoch (a = a 0 ) corresponds approximately to the formation of the first non-linear structures, fixed at the time at which fluctuations of peakheight ν ≈ 3 are expected to virialize in the spherical collapse model (σ ∼ δ c /ν, with δ c = 1.68):

σ 0 (Λ, a 0 ) = 0.56 (5.9)
Subsequent output values are spaced by a factor √ 2 in the non-linear mass scale. Given that M NL ∝ R 3 NL and substituting in Equation 5.9, we get:

∆ log 2 a = 3 + n 6 ∆ log 2 M NL = 3 + n 12 (5.10)
We use log 2 (a/a 0 ), as the time variable of our analysis, which indicates how many epochs have passed since the first output. It is also convenient to define the variable with S = 0, 1, 2, ... corresponding to the different outputs of the simulation. Initial conditions have been set up using a modification to the standard Zel'dovich approximation (ZA), detailed in [START_REF] Garrison | Improving initial conditions for cosmological N-body simulations[END_REF]. This includes a second order Lagrangian perturbation theory (2LPT) correction as well as particle linear theory (PLT) corrections as described in [START_REF] Joyce | Quantification of discreteness effects in cosmological N-body simulations. II. Evolution up to shell crossing[END_REF] and [START_REF] Garrison | Improving initial conditions for cosmological N-body simulations[END_REF]. The latter corrects the initial conditions for discreteness effects at early times, so that the result of fluid evolution is reproduced at a target time a = a PLT . For all our simulations here we have a PLT = a 0 , with a 0 defined by Equation 5.9.

S = 12 3 + n log 2 a S a 0 (5.11)

Estimation of converged values

As in our previous papers, we will assess the convergence to the physical limit by studying the temporal evolution of statistics, which become time-independent in the case of self-similarity. To make this study quantitative -i.e. to identify estimated converged values, and converged regions at some precision -we need to adopt appropriate criteria. While the conclusions drawn should not of course depend significantly on the chosen criteria, these criteria are intrinsically somewhat arbitrary in detail. In practice, their choice is made based on visual examination of data. We follow here the simple procedure described in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]. It allows us to estimate a converged value and converged region at a chosen precision, per rescaled bin for each of the statistics analysed in this paper. The method is equivalent for all our matter-field dimensionless statistics(ξ, ξ, v r /Hr), and we denote our chosen statistic by X in the following.

We first calculate an estimated converged value (denoted as X est ) in each rescaled bin as the average of the statistic in a specific temporal window. The width of this window is conveniently specified by a number of snapshots w, corresponding to an increase in the non-linearity scale by a factor of 2 w/6 (below we use w = 5).

To identify the location of the candidate converged window, we "slide" a window of width w across the data to find that which minimizes

∆ = |X max -X min | 2µ X (5.12)
where X max , X min , and µ X are respectively the maximum, minimum, and average values in the window. Specifying now a parameter p characterizing the precision of convergence, any bin is considered to be converged only if the minimal value of ∆ is less than p.

To identify the region of convergence to this estimated value (at precision p), for each rescaled bin with a converged X est , we find the largest (containing at least three consecutive snapshots, though again this number is not essential) connected temporal window verifying

|X -X est | X est < p . (5.13)
We denote X conv the average calculated over this new window, and take this as the estimated converged value of the statistic for the given rescaled bin. We note that, in the following (as in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]), when we say that we have precision at x% we mean that p = x/100 1 .

In the results presented below, all two-point quantities have been calculated over the same r/R NL grid. We use bins of constant logarithmic spacing 1+(∆r/r) ≈ 2 1/12 (following [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]), ensuring that bins of different snapshots match when rescaled by R NL to facilitate comparison between them. In order to reduce statistical noise sufficiently, we have rebinned by grouping four such bins, corresponding to ∆r/r ≈ 0.26. In our presentation below we label our bins, for simplicity, just by the value of the rescaled variable at the geometrical centre of the bin.

Results

Radial pairwise velocity of matter field

As discussed above, in a scale-free cosmology, self-similarity implies an independence of the results of an N -body simulation of their discretization parameters. By carefully examining the departures from self-similarity that are actually measured, we can infer how the resolved scales depend on the unphysical scales in the Nbody simulation. We report in this section this analysis for the mean pairwise
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velocity in the matter field.

Direct estimation

As discussed in subsection 5.2.2, v r /Hr can be estimated directly from the measured particle velocities, or indirectly from measurements of the 2PCF. We consider first the former estimate. Figure 5.1 shows the estimated v r /Hr as a function of time (parameterized by the variable log 2 (a/a 0 )) at different rescaled distance, for spectral indices n = -1.5, n = -2.0 and -2.25. Each plot correspond to the simulations with the highest number of particles (N = 4096 3 for n = -1.5, and the average of the four N = 1024 3 simulations for the other). The left panel gives v r /Hr as a function of r/Λ (with Λ the grid spacing), while the right panel gives it as a function of the rescaled variable r/R NL . Self-similarity corresponds to the superposition of the data at different times in the latter plot.

These plots show qualitatively the general behaviour of the statistic, which is similar to that seen for the 2PCF [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF] and the PS [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]. Self-similarity can be seen to propagate from larger commoving scales, significantly above Λ at early times, to smaller scales as time evolves. In particular, the scales around the "turnaround" point -corresponding to the maximal radial infall velocity -are only resolved at later times. As for the 2PCF and PS in our previous studies, the redder the index, the more reduced is the range of approximate self-similarity. This is a reflection primarily of the smaller range of scale-factor which is accessible in simulations of a fixed size as n decreases, and also, as we will see further below, of larger finite box size effects. Finally, we note that all three models appear to show the same behaviour at asymptotically small scales, tending to a value close to -1, the value predicted by the stable clustering hypothesis. We will assess these behaviours quantitatively below in section 5.4.1.

Estimation using pair conservation

We next consider the estimation of v r from the estimated 2PCF, using the exact relation Equation 5.7 for v r in terms of ξ, ξ and ξ. As noted, we can also test the validity of the relation when the term in ξ vanishes, which corresponds to selfsimilarity of ξ. Figure 5.2 shows the normalized pairwise velocity at each rescaled coordinate for a set of selected redshifts, in the same way as in the right panel of Figure 5.1. In addition, we have added a dotted line which gives the new estimation obtained using pair conservation. The left panel excludes the non-self-similar term, while the right panel corresponds to the full (exact) expression Equation 5.7. To estimate the time derivative, we have simply used a finite difference estimate on The solid lines in each pair of panels (left and right) are identical and correspond to the results obtained by direct estimation using the velocities (as in Figure 5.1). The dots correspond, in the left panels, to estimations using pair-counting and the assumption of self-similarity of the 2-pt statistics i.e. using Equation 5.7 with the last term set to zero. In the right panels, this last term is also included in the estimator.

the closest two "neighbouring" snapshots.

In the right panels we see that, as required by pair conservation, we recover v r to a very good approximation from the alternative estimator. The very small differences can be attributed to finite particle number noise and possible systematic offset due to the estimation of the time derivative. Given the close spacing (Equation 6.10) of our snapshots, it is unsurprising that any such effect appears to be small. At small scales, on the other hand, close examination shows that the pair conservation estimator is slightly less noisy than the direct one. This is as might be anticipated: because of the intrinsic dispersion in the pairwise velocities, we can expect its average to have a greater variance than the direct pair count (as noted previously by [START_REF] Jain | Does gravitational clustering stabilize on small scales?[END_REF]). Thus, in assessing what is required to obtain an accurate estimation of the pairwise velocity, one needs to consider between the need to have closely spaced outputs to accurately estimate the time derivative if pair counting is used, or a larger volume for accurate direct estimation. The left panels, on the other hand, show very large discrepancies between the two estimators, which we can infer as being due to a significant deviation in the corresponding range of the (integrated) 2PCF from self-similarity. Indeed, we can see that this is the case from the corresponding direct analysis of ξ displayed in Figure 5.3: the scales at which the agreement of the estimators break corresponds to the break from self-similarity of ξ. We note that, at late times, the associated break appears to occur at a scale where v r /Hr approaches -1, the value corresponding to stable clustering. Thus, there is indeed a range where approximate self-similarity appears to persist despite the fact that the 2PCF differ much more from their physical values, and this range appears to correspond, at later times, to that where stable clustering is well approximated.

Quantitative determination of resolved scales

To better understand, and then also quantify, the limitations on the range of selfsimilarity arising from the different unphysical simulation parameters (specifically Λ, ϵ and N ) we now study more closely the evolution as a function of time of v r /Hr (estimated directly and indirectly via pair conservation), and of ξ and ξ, for fixed values of r/R NL . This corresponds to taking the values on vertical lines in the right panels of Figure 5.1 (and the equivalent plots for ξ and ξ). As discussed, selfsimilarity of the statistic then corresponds to time independence, i.e. to convergence (in some range) of the time series to a fixed value. respectively, shows such plots for three chosen values of r/R NL . (We exclude n=-2.25 for economy, but will discuss it further below). To help understand the scales involved in each plot, we also display the values of x/Λ on the upper x-axis. As R NL is a monotonically growing function of time, x/Λ increases from left to right, translating the fact that the spatial resolution relative to the grid increases with time in these plots. We note that in almost all the plots we can identify easily by eye what appears to be a converged value in a finite range of scale (the only exceptions are those of ξ in the first panels). In all these cases, a lower cut-off to this converged range is clearly identifiable. As we discussed in the analysis of similar plots in our previous analyses [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], and will see again in detail now, this lower cut-off clearly corresponds to the resolution limit fixed by the ultraviolet cut-offs (Λ and ϵ).

The different estimations of the statistics shown are indicated in the legend and described in the figure caption. Recall that, as detailed in Table 6.1, the properties of the simulations analysed differ for the two different exponents. While data for n = -1.5 correspond to a single realization of each box size, n = -2.0 presents data from four different realizations of N = 1024 3 boxes and their statistical average.

In the cases in which the rescaled bin is converged following the criterion specified above, in subsection 6.3.2, at a precision of 1% (i.e. p = 0.01), the estimated converged value is indicated as a dashed line and the red shaded region indicates that within 1% of this value. In addition, we add a sub-plot with the dispersion between this value and individual data from direct estimation from all our simulations (including the individual N = 1024 3 boxes with n = -2.0). This value of 1% is chosen because it is approximately the smallest value of p for which we obtain a significant range of contiguous bins satisfying our convergence criteria. It corresponds to the highest precision (i.e. smallest p) at which we can in practice establish convergence using our data.

The first panel of each figure corresponds to a highly non-linear (small) scale. Although v r /Hr is not converged at the 1% precision level, the different estimators nevertheless give highly consistent values and appear to show robust convergence albeit at lower precision (of order a few percent), starting from a scale well below Λ. As anticipated in the previous section, the converged value is close to -1. Further, we see more clearly that this convergence is indeed not associated with that of ξ, i.e. at this scale the measured cumulative 2PCF ξ approximates very poorly its physical value.

The next (second) panel (of both Figure 5.4 and Figure 5.5) corresponds to the bin around the smallest rescaled separation for which v r /Hr (in the statistically largest available simulation, using direct estimation) converges (according to our convergence criterion, at the chosen 1% precision level). The lower cut-off to the convergence of v r /Hr is just slightly below the grid spacing (at about Λ/2). We see also that ξ shows convergence starting from the same scale, so the range of convergence for the pair counting estimator using ξ = 0, i.e. assuming selfsimilarity of ξ, is accurate in a similar range. Looking at the lower sub-panels in the plots of v r /Hr, we see that the convergence of the direct estimators in the individual N = 1024 3 simulations is degraded at slightly larger scales, just above Λ for n = -1.5 and slightly below for n = -2.0. These are simply finite N (at a fixed Λ) noise in the estimators, as the associated fluctuations disappear in the larger (N = 4096 3 ) simulation for n = -1.5 but also when the four N = 1024 3 simulations are combined for n = -2.

The third panel of both figures shows a considerably larger scale, in the weakly non-linear regime, which have a lower cut-off to convergence (at the 1% level) a few times larger than the grid spacing. In this case, for n = -1.5, there is no visible evidence for the finite N effects seen in the previous bin. On the contrary, for n = -2.0, we observe much poorer convergence of v r /Hr both in the direct estimations (lower sub-panel) and in the pair counting estimator (solid lines in main panel). Further, we see now an offset from the estimated converged value that is a systematic shift rather than a random noise, and even in the average over the four simulations, a break from convergence is detected within the range of scale probed. The cancellation (or at least partial cancellation) of these systematic offsets when the realizations are averaged indicates that this is due to significant differences in the initial power at larger scales due to the finite sampling of modes. On the other hand, the observed break from convergence at large scales (in the average) can be attributed to finite box size effects arising from the missing power in modes below the fundamental of the simulation box, finite L, and no longer due to a finite N at fixed Λ as before. These same tendencies are present, but even much more pronounced for n = -2.25 (data not shown). Indeed, in this case the lower and upper cut-offs to convergence below the few percent level are no longer clearly separable from one another in almost all bins. For this reason, we do not use the n = -2.25 below in our quantitative assessment of resolution limits.

Resolution as a function of time

Applying the analysis detailed above to all bins, we can deduce the comoving scales which are resolved (i.e. self-similar) at each given time, for each of the Results obtained using the pair counting estimator are drawn as a continuous line in the appropriate colours. Horizontal red dashed lines indicate the converged value of each of the three statistics, calculated from the largest simulation as described in the text, and the red shaded region indicates that within ±1% of this value. The sub-panels in the plots of v r /Hr give the dispersion of the results obtained using the direct estimation with respect to the converged value. Resolved scales (in units of the initial grid-size, Λ) at 1% (upper row) and 5% (lower row) precision as a function of log 2 (a/a 0 ). We show results for the spectral indices n = -1.5 and n = -2.0 (in green and orange, respectively) using the simulations with N = 4096 3 for the former and the average of four N = 1024 3 simulations for the latter. The left panels show the results for v r /Hr (direct estimation), while the right shows the results for the cumulative 2PCF. The black dashed line shows the evolution of the softening-length ϵ in units of Λ (which is the same in all simulations).

statistics and estimators we have calculated. Figure 5.6 shows the comoving separation, in units of the grid spacing, of the resolved bins at the 1% (upper two panels) and 5% (lower two panels) precision levels, i.e. of the bins found to be converged according to the criteria described in subsection 6.3.2 for p = 0.01 and p = 0.05. The points in the left panels are for the mean pairwise velocity direct estimate using the N = 4096 3 simulation for n = -1.5 and the average over the four N = 1024 3 simulations for n = -2. The right panels show the cumulative 2PCF, using the same simulations.

The resolution ranges for ξ (in the right panels) can be taken essentially to be those for the mean pairwise velocity estimated from pair conservation and imposing the additional constraint that ξ is resolved, i.e. ξ = 0, because ξ(r) is always resolved starting from a significantly smaller scale than for ξ as can be seen in the right panels of Figure 5.4 and Figure 5.5. This is just a simple consequence of the fact that ξ, by definition, is sensitive (at any given precision level) to ξ(r) over a range of scale below r. It will only therefore be resolved starting from a lower cut-off, below which ξ(r) is resolved over some significant range.

Comparing the upper panels, we see that, as anticipated, the relaxation of the self-similarity constraint extends only very modestly the resolved regions, for the case of convergence at the 1% level. There are some additional bins that meet the convergence criterion, but most of them are not contiguous with the main converged region and thus do not actually extend the lower limit to resolution (i.e. the scale below which convergence is affected by the unphysical UV scales). In contrast, at 5% precision, there is a very marked difference between the two plots: again as anticipated in our more qualitative analysis above, we see that the resolution of the pairwise velocity now extends down to scales of order the softening length (indicated by the dashed line in each plot). As we will discuss further below, the apparent explanation for this is that the behaviour of the pairwise velocity at these small scales -corresponding to stable clustering -remains the same whether the spatial clustering is resolved or not.

Resolution limits extrapolated to LCDM

LCDM models are not scale-free: the linear PS is not a power-law, and there are deviations from EdS power-law scale factor. Nevertheless, the latter deviations are only at very low redshift and the PS, in the range of scales relevant to large scale structure formation in cosmology, can be well approximated as a slowly varying power-law: its logarithmic slope varies roughly between n = -2.5 and n = -1.5 over two decades in scale. From Figure 5.6 we see that the behaviour of the lower cut-off to resolution is quite weakly dependent on n when plotted as a function of a/a 0 . Thus, we can confidently bracket the lower resolution limits (due to the U V cut-offs, Λ and ϵ) using the scale-free results. As discussed in our previous analyses, given the physical grid spacing of a LCDM simulation, one can infer a 0 and then obtain a conversion between redshift z and the variable log 2 (a/a 0 ) which allows an approximate "mapping" of the scale-free results to the LCDM simulation. Taking the tighter bounds obtained for n = -1.5, Figure 5.7 shows an example of conservative resolution for a simulation with Λ = 0.5h -1 Mpc. Results are given for a 1% (orange) and 5% (blue) precision in the direct estimation of the pairwise velocity, as plotted in the left panels of Figure 5.6. Note that the larger missing scales at 5% simply show that v r /Hr is converged at much earlier redshifts.

Converged mean pairwise velocities and stable clustering

Having focused on identifying the resolved scales, it is also interesting to look at what can be inferred about the behaviour of the studied statistics, and in particular [START_REF]Planck 2013 results. XVI. Cosmological parameters[END_REF]) in an N -body simulation with a mean-interparticle spacing of 0.5h -1 Mpc (indicated by dashed vertical line). The orange (blue) line corresponds to the 1% (5%) precision limits, calculated using data from direct estimation as displayed in the left panels of Figure 5.6, for the N = 4096 3 with n = -1.5 simulation.

about their behaviour at asymptotically small scales, where the convergence or deviation from stable clustering is of particular interest. We show in Figure 5.8 the converged values of the normalized pairwise velocity for the three simulated spatial indices. These values correspond to the same analysis used to obtain the left panels in Figure 5.6, but while these show the resolved regions, we now plot the corresponding converged values in each rescaled bin determined by this analysis (i.e. the mean values X conv in the discussion in subsection 6.3.2). The points plotted are a combination of the values for the bins converged at the 1% level and at the 5% level: we plot X conv for all bins which converge with p = 0.01, and then also for the bins which do not converge at p = 0.01 but do at p = 0.05. We add an indicative estimate of the error on X conv which takes into account the expectation that it will decrease as the size of the converged window increases: where w is the size (in consecutive snapshots) of the converged window (used to calculate X conv ) and w min the smallest window for which Equation 5.13 is satisfied, and we have taken here w min = 3. Error bars for the 1% level are smaller than the points, thus where the error bars are visible, the corresponding bins converge only at the 5% level. As could be anticipated, we see that both the accuracy and range of scale measured increases as n does. We see in this plot that, while there is a clear n-dependence in the shape of the function at larger scales, the behaviour at asymptotically small scales shows a remarkable consistency towards a "universal" stable clustering (bearing in mind that the error bars are only quite rough estimates of the systematic uncertainties due to finite resolution). Positing this to be the correct physical limit also explains why it can be measured quite well even at scales where the physical behaviour of the clustering is not itself resolved: stable clustering is a robust behaviour that it is not spoiled by the discretization of the density field in an N -body simulation.

δ = ±p w min w (5.

Conclusions

The analysis we have reported here is an extension of that in a set of papers [83-85, 150, 177], which have shown the usefulness of self-similarity and scale-free cosmologies in quantifying resolution of cosmological N -body simulations. Our focus here has been on the radial component of the pairwise velocity in the full matter field. We have also extended, as a complement and for comparison, the analysis of the 2PCF of the matter field (previously studied in [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF]). Compared to these previous studies which used a single power law (n = -2.0) and simulations of a single size (N = 1024 3 ), as in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF] we have considered a set of both different power laws and different box sizes. Unsurprisingly, we have found that the same methods indeed allow us to quantify the evolution of resolution at small scales of the mean pairwise velocity, and further confirm the high levels of accuracy attained by the Abacus code also in its determination of correlations in the velocity field.

Our exploitation here of simulations of different sizes, of several realizations, and of scale-free models with different exponents has allowed us not only to improve some of the results in this previous work but has also been essential to allow us to extend the method to a velocity statistic. This is the case because it is crucial for an accurate determination of the precision of convergence to be able to separate very clearly the effects of discretization at small scale from both the noise and systematic effects at large scales due to the finite box size. For the pairwise velocity statistics, which are more sensitive than the 2PCF to these effects, the comparison of different (and larger) box sizes and different exponents turns out to be essential to disentangle clearly the different effects. We have also exploited the two different estimators of the statistic -directly from the velocities or indirectly by pair-counting -to identify noise due to finite size effects. The comparison of different exponents has allowed us also to see how the range of converged scales markedly degrades due to finite size effects as n decreases, and in practice our n = -2.25 simulations are not useful for placing precision limits at the 1% level. Further, we argue that our results for the evolution of small scale resolution can be extrapolated to LCDM type models, as they are, when suitably expressed, very weakly dependent on scale-free index n (which have been chosen to probe the relevant range). The same is not true of box size effects, which are strongly n dependent, and indeed we do not attempt to make an extrapolation for these.

For the pairwise velocity of the dark matter, we have found that we can determine the evolution of lower cut-off to resolution at the 1% level. It is approximately equal to the corresponding cut-off for the cumulative 2PCF, which converges at the same precision level varying from a few times the grid spacing at early times to slightly below this scale at late times. This is a few times larger than the scale at which the 2PCF itself attains the same precision [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF]. This reflects the coupling of the velocity correlation at a given scale to the clustering at smaller scales (as expressed through the integral ξ in the self-similar limit). On the other hand, at 5% precision we have obtained resolution extending down to scales of order the softening ϵ, where even the 2PCF is far from its converged value [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF]. In the corresponding range of scale v r /Hr ≈ -1, i.e. the result is consistent with the so-called stable clustering hypothesis in which non-linear structures become stationary in physical coordinates [START_REF] Peebles | The Gravitational-Instability Picture and the Nature of the Distribution of Galaxies[END_REF]. The conclusion that clustering may indeed tend to this behaviour at asymptotically small scales is consistent with an early analysis (with much smaller simulations, N ∼ 10 6 ) of the question using pairwise velocities by [START_REF] Jain | Does gravitational clustering stabilize on small scales?[END_REF] (estimated by pair-counting), and also with results for the shape of the power spectrum at large k reported in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]. In this hypothesis, the fact that resolution extends to such small scales for v r /Hr is simply due to the fact that the stable behaviour is not spoiled by the discretization of the matter field, and persists even if the clustering is very different to that in the continuum model.

With respect to the preparation of theoretical predictions for forthcoming surveys, and specifically for redshift space distortions, our analysis of the pairwise velocity gives only an indication of the resolution limits at small scales in N -body simulations. It would be straightforward to extend our analysis to additional statistics used in this context e.g. PDFs of the pairwise velocity and their moments (see references in introduction). Further, to attain a quantification of bounds for the typically cited target 1% level would require slightly more data sets than what we have used here --either slightly larger simulations, or a couple of realizations of the same size as our largest simulations here.

We conclude with some comments on other possible further developments of this work. Our analysis of the mean pairwise velocities in the dark matter field (cf. Figure 5.8) shows an apparently universal shape below the scale of maximal infall, and going asymptotically to stable clustering. It would be interesting to compare these results with those in LCDM, making use of the resolution limits we have determined here, to assess whether we indeed find the same behaviour. To establish the evidence for stable clustering at asymptotically small scales, a fuller comparative joint analysis of the 2PCF, PS, and pairwise velocity itself should be performed.
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Constraining accuracy of halo-finder statistics using scale-free models 

Abstract

We present a continuation of the analysis aiming at quantifying resolution of N -body simulations by exploiting large (up to N = 4096 3 ) simulations of scale-free cosmologies run using Abacus.

Here we focus on HMF, 2PCF and pairwise velocities of halo centres selected with two of the most popular halo-finders, FoF and Rockstar, together with the new CompaSO algorithm. We establish convergence, for both Rockstar and CompaSO, of mass functions at the 1% precision level and of the mean pairwise velocities (and also 2PCF) at the 2% level. We find that of the two halo finders, Rockstar exhibits greater self-similarity, especially on small scales and small masses. Furthermore, we also show that FoF HMF exhibits a systematic deviation from self-similarity which can be explained by resolution dependence of the algorithm's mass assignment, previously reported in the literature. Weak evidence for convergence is observed only starting from halos of several thousands of particles, and mass functions are overestimated by at least 20 -25% for halos of 50 particles. Finally, we also give resolution limits expressed as a minimum particle number per halo in a form that can be directly extrapolated to LCDM.

Introduction

Dark matter is thought to account for more than 85% of the total matter in the universe. It forms clumps by gravitational attraction, channelling baryons together and serving as birthplaces for galaxies. Cosmological N -body simulations track dark matter particles, reporting their position and velocity at different discrete time-steps. However, our central goal is to use them to produce predictions for real-world observable objects, such as galaxies, and provide a framework for testing cosmological models. To this end, simulated dark matter particles are processed and bounded together into large virialized objects, dark matter halos, whose evolution is expected to closely trace that of their hosted galaxies. Our current ability to identify such structures (halo-finding) requires certain assumptions, and in particular what is the definition of a halo: how do we define the edge, where is its centre or even how particle membership is treated. As a consequence, the extracted properties of such objects are very sensitive to the particular model used to define these structures, and the precision of most statistical measurements is much poorer than for the dark matter field.

The issue of the precision of relevant halo properties is particularly complex, as it combines two distinct issues: that of the precision with which mass distribution in the N -body simulation represents the physical limit (analysed in the previous two chapters), and that of the halo definition and extraction (which will be the focus of this chapter). Numerous ways have been proposed and exploited (see [START_REF] Knebe | Structure finding in cosmological simulations: the state of affairs[END_REF] for a review), and still different halo-finders running on the same simulation indeed show different results [START_REF] Knebe | Haloes gone MAD: the halo-finder comparison project[END_REF]. This illustrates the previous statement, indicating that a large fraction of the uncertainty in retrieving information about halo properties is actually due to the process of halo finding itself. We will study here the accuracy at which we can measure different halo properties and statistics when using different halo finders (FoF,Rockstar and CompaSO).

In this chapter, we use the techniques introduced in [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF] and developed and applied also in [START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF][START_REF] Garrison | Self-similarity of k-nearest neighbour distributions in scale-free simulations[END_REF][START_REF] Leroy | Testing dark matter halo properties using self-similarity[END_REF] and [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF] to derive resolution limits arising from particle discretization for different halo statistics by analysing deviations from self-similarity in scale-free cosmological models. In particular, we expand the previous chapter's analysis on the radial component of the pairwise velocity to include that of halos, as well as to assess and quantify the limits on the precision with respect to halo-finder. In addition, we revisit and develop further the analysis in [START_REF] Leroy | Testing dark matter halo properties using self-similarity[END_REF] of the mass functions and two-point correlation function of halos (that uses FoF and Rockstar halofinders), extending it to include both larger simulations and scale-free models with different exponents, as well as to the new halo finder CompaSO [START_REF] Hadzhiyska | COMPASO: A new halo finder for competitive assignment to spherical overdensities[END_REF][START_REF] Bose | Constructing high-fidelity halo merger trees in ABACUSSUMMIT[END_REF]. We point out that we only test each halo-finder individually for their convergence properties, but we cannot say if one is better than the other for constructing observables, or which halo definition is the "correct one". This article is structured as follows. The first part of the next section recaps what scale-free cosmologies are and how their self-similar evolution can be used to determine the accuracy at which different statistics can be measured in N -body simulations. We end the section with a description of the halo statistics that will be analysed. Section 3 contains a summary of the simulations used, as well as a brief description of Abacus, the N -body code used for their computation. It also summarizes the methods used to estimate convergence of the different statistics, and ends with a summary of the halo finders we compare (FoF, Rockstar and CompaSO). In section 4 we present and analyse our results, and finally, we summarize our results in Section 5.

Scale-Free Simulations and Halo Statistics

Scale-free simulations and Self Similarity

As stated in the previous chapters, the self-similarity of scale-free models has been widely exploited since the early development of N -body simulations, as an instrument to check the reliability of results (e.g. [START_REF] Efstathiou | Gravitational clustering from scale-free initial conditions[END_REF][START_REF] Colombi | Self-Similarity and Scaling Behavior of Scale-free Gravitational Clustering[END_REF]), and study halo properties (e.g. [START_REF] Knollmann | Dark matter halo profiles in scale-free cosmologies[END_REF][START_REF] Elahi | Subhaloes in scale-free cosmologies[END_REF][START_REF] Diemer | A universal model for halo concentrations[END_REF][START_REF] Diemer | An Accurate Physical Model for Halo Concentrations[END_REF][START_REF] Cole | The structure of dark matter haloes in hierarchical clustering models[END_REF][START_REF] Navarro | A universal density profile from hierarchical clustering[END_REF][START_REF] Ludlow | Einasto profiles and the dark matter power spectrum[END_REF]). However, whether due to resolution constraints or small number of available snapshots, the required self-similarity of these models was mainly a true-or-false test, and was not exploited in the quantitative way we have done previously and expand here. We analyse self-similarity of scale-free cosmologies to extract quantitative constraints on resolution for different halo-finders.

In scale-free simulations, the initial power spectrum of fluctuations is a power law of the form P (k) ∝ k n , where the spectral index n is fixed for each cosmology. They have an Einstein de Sitter (EdS) background (Ω tot = Ω M = 1) following an expansion law a(t) ∝ t 2/3 , and thus are characterized by just one scale, the scale of non-linearity. This length scale is given by

σ 2 lin (R NL , a) = 1 (6.1)
as the variance of normalized linear fluctuations of a sphere with radius R NL at a given time a. Using linear perturbation theory we have

R NL ∝ a 2 3+n
(6.2)
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which gives the relation between time and scale of this type of cosmology.

From this relation we can infer that, in the absence of additional independent length scales, clustering evolution must behave self-similarly, i.e. a single solution describes the structure and time behaviour of the system, when expressed in properly scaled variables. For any dimensionless clustering statistic, a function of scale and time, we have

F (x 1 , x 2 , ...; a) = F 0 (x i /X NL,i (a)) (6.3)
where each X NL,i (a) encodes the temporal dependence of any quantity with the dimensions of x i , inferred from self-similar rescaling.

From Equation 6.1 and 6.2 we can define the rescaling quantities used in the current analysis, see the characteristic length and mass scales of non linearity. Defining σ i ≡ σ i (Λ, a i ) where a i is the value of the scale factor at the start of the simulation, we can infer where ρ is the mean (comoving) mass density and m P = Λ 3 ρ is the mass of a particle in the simulation.

R NL (a) = Λ a a i σ i 2/(3+n) (6.4) 
During our analysis, as we have been doing for the previous studies, we will use this property of self-similarity to assess the range of scales that a simulation can reproduce at a desired precision, for some given statistic. In particular, this work will treat the reliability of different halo-finders, notably the accessible scales with respect to a halo's particle number.

Halo quantities

In subsection 6.4.1 we will use self-similarity to test different halo selection algorithms (FoF, Rockstar and CompaSO).

We will start by analysing the convergence of the mass function (HMF) as a function of rescaled mass, as clustering statistics are measured as a function of the mass of halos. We recall that the HMF is just the number density of halos of a given mass at a given redshift. Following the treatment of Press & Schechter [START_REF] Press | Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation[END_REF], it is convenient to express it in terms of the "multiplicity" function f [START_REF] Jenkins | The mass function of dark matter haloes[END_REF][START_REF] Tinker | Toward a halo mass function for precision cosmology: the limits of universality[END_REF] defined by

dn d ln M = f (σ) ρ M d ln σ -1 d ln M (6.6)
where ρ is the mean matter density, and σ is defined by Equation 6.1 but now as a function of mass using M NL ∝ R 3 NL . For scale-free cosmologies, we can conveniently express f (σ) in terms of the rescaled mass M/M NL as

f (M/M NL ) = 6 3 + n M 2 n ρ (6.7)
where we used n ≡ dn/dM and from Equation 6.

1 d ln σ -1 /d ln M = (3 + n)/6
We continue our analysis with the halo-halo 2PCF, ξ hh (r, M, a), which is a dimensionless function of the separation r and of the halo mass M , calculated at a given snapshot. Similarly, the radial component of the pairwise velocity can be computed as the correlation between two centres weighted by their projected velocity. In both cases, if self-similarity applies, it is conveniently rewritten in terms of the dimensionless rescaled functions ξ hh (r, M, a) = ξ hh,0 (r/R NL , M/M NL ) (6.8) v r,hh Hr = V r,0 (r/R NL , M/M NL ) . (6.9)

Following the procedure on the previous chapter, we have used a modification of the analysis tool Corrfunc [START_REF] Sinha | CORRFUNC: blazing fast correlation functions with AVX512F SIMD intrinsics. Software Challenges to Exascale Computing[END_REF][START_REF] Sinha | CORRFUNC -a suite of blazing fast correlation functions on the CPU[END_REF] to calculate both the 2PCF and the radial component of the pairwise velocity.

Numerical simulations 6.3.1 Abacus code and simulation parameters

We report results based on the same simulations as in the dark matter field section, and listed in Table 6.1. After the previous assessment of the simulations with the reddest spectral index, and the fact that statistical precision is degraded in halo analysis with respect to results from the matter field, we chose to cut them out of the current study. We again make use of the Abacus N -body code [START_REF] Garrison | The abacus cosmological N-body code[END_REF], which offers high performance and accuracy. It is based on CPU calculations of the far-field forces by a high-order multiples expansion, and an accelerated GPU calculation of near-field forces by pairwise evaluation. As stated before, the N = 1024 3 simulations were run using local facilities at the Harvard-Smithsonian Center for Astrophysics (CfA), while the larger N = 4096 3 simulation are part of the AbacusSummit project [START_REF] Maksimova | AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations[END_REF], which used the Summit supercomputer of the Oak Ridge Leadership Computing Facility.

In this work we make use of two different exponents (n = -1.5, n = -2.0), relevant to standard (i.e. LCDM-like) models, and in the limits of our accessible computational power. We use simulations of two different sizes (N ) but otherwise identical parameters, allowing us to study finite box size effects. For the larger (N = 4096 3 ) simulations, the statistics have been calculated on (random) subsamples of different sizes (25%, 3%) to facilitate the assessment of finite sampling effects. In addition, we have four N = 1024 3 simulations for n = -2.0, each with identical N -body parameters but different realizations of the IC, and aiming at differentiating deviation from self-similarity due to box-size effects and statistical sampling. These will be analysed below, both individually and as an average.

We work in units of the mean inter-particle (i.e. initial grid) spacing, Λ = L/N 1/3 , and the particle mass of the simulation, m P = Λ 3 ρ. The essential time-stepping parameter in Abacus has been chosen as η = 0.15 for all simulations, and the additional numerical parameters have been set as detailed in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF]. These choices are based on the extensive convergence tests of these parameters reported in our previous studies (see [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Garrison | Good and proper: self-similarity of N-body simulations with proper force softening[END_REF]). In addition, and while most of the simulations have been run with a force softening fixed in physical coordinates (evolving as ϵ(a) ∝ 1/a in comoving ones), and taking the value ϵ(a 0 )/Λ = 0.3, the small box (N = 1024 3 ) with n = -2.0 has an additional simulation with comoving softening of a value ϵ(a) = 0.03. This simulation is used to compare FoF and Rockstar halo-finders.

As in our previous studies, the Gaussian initial conditions are specified at time a = a i fixed by σ i = 0.03. The first output epoch (a = a 0 ) corresponds to σ 0 (Λ, a 0 ) = 0.56, the approximated time of formation of the first non-linear structures, with subsequent output values spaced by a factor √ 2 in the non-linear mass scale. Plugging this into 6.5, we get:

∆ log 2 a = 3 + n 6 ∆ log 2 M NL = 3 + n 12 (6.10)
Although we use log 2 (a/a 0 ) as the time variable of our analysis, which indicates how many epochs have passed since the first output, we also make used of a variable S = 0, 1, 2, ..., corresponding to the different outputs of the simulation, and that is defined as

S = 12 3 + n log 2
a S a 0 (6.11) 6.12), and it is denoted by X conv . Finally, the estimation of the precision at which the statistic is evaluated in the simulation, denoted as f in the equation below, is calculated as the maximal fractional difference between any value of the statistic within the converged region and the estimated converged value X conv , such that

1 -f < X(y i /Y NL , a) X conv (y i /Y NL ) < 1 + f (6.13)
The second method follows a similar idea, although it presents small variations in the method of calculating the X conv value and determining its precision. The new criterion follows that presented in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], which we will recap here.

We first calculate an estimated converged value X est as the average of the statistic in a fixed-size temporal window minimizing

∆ = |X max -X min | 2µ X (6.14)
where X max , X min and µ X are, respectively, the maximum, minimum, and average values in the window. We say that a bin is converged at precision p if ∆ min < p.

We point out that X est is calculated in a fixed temporal window, and it is only used to assess whether the statistic is converged in a particular rescaled variable. To define the entire region of convergence we find the largest connected temporal window verifying

|X -X est | X est < p (6.15)
The converged value of the statistic at each rescaled bin is then calculated as the mean value of the statistic within the full resolved region (i.e. the region verifying 6.15), and it is denoted by X conv . In this case, the precision at which the statistic is evaluated in the simulation is given by p, and when we say that we have a precision at x% we mean that p = x/100.

Halo Finders: FoF, Rockstar and CompaSO

In this paper we analyse results from three different group-finding algorithms, comparing their level of resolution in a set of halo-statistics, as well as the accuracy of convergence. Competitive assignment to spherical overdensities (CompaSO) [START_REF] Hadzhiyska | COMPASO: A new halo finder for competitive assignment to spherical overdensities[END_REF] is a newly developed halo-finder specifically created to meet the demanding requirements of the AbacusSummit cosmological N -body simulations. It runs on-the-fly, as part of the simulation code itself, with two of its primary requirements being keeping up with the high speed of Abacus [START_REF] Maksimova | AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations[END_REF], and supporting the creation of merger trees to be used in the Dark Energy Spectroscopic Instrument (DESI) project. On the other hand, Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement (Rockstar) [START_REF] Behroozi | The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores[END_REF] is a well established, widely used halofinding algorithm, that uses information from both position and velocity of the particles. Finally, Friends of Friends (FoF) is an algorithm first used in a set of papers [START_REF] Davis | The evolution of large-scale structure in a universe dominated by cold dark matter[END_REF][START_REF] Huchra | Groups of galaxies. I. Nearby groups[END_REF][START_REF] Press | How to identify and weigh virialized clusters of galaxies in a complete redshift catalog[END_REF] to define groups in redshift galaxy surveys and cosmological simulations. It connects particles together when they are separated by a distance smaller than b (linking length), creating networks of linked particles as halos.

The CompaSO algorithm is a configuration-space, FoF and SO algorithm to compute halos from N -body simulations. It first obtains a measurement of the local density using a kernel of the form W = 1 -r 2 /b 2 kernel , where typically b kernel = 0.4Λ. Particles with a density ∆ higher than a chosen threshold are then grouped together into FoF groups (L0 halos). The main halos (L1 halos) are then formed inside these groups. Within each group, the algorithm finds the particle with the highest kernel density-the first halo nucleus-and makes a preliminary assignment to it of all particles within a radius R L1 (innermost radius enclosing ∆ < ∆ L1 = 200 in EdS). Particles outside 80% of R L1 are eligible to become their own halo centre as long as they are the densest within their kernel radius. The algorithm then finds the next highest density among eligible particles, which becomes the next halo nucleus. Particles are assigned to this nucleus as the first, but if a particle belongs to both halos one and two, the algorithm performs a competitive assignment. This reassigns a particle to a new halo if its enclosed density with respect to the new halo is twice that of the old one. The search for new halo centres within L0 continues until no particles remain that are likely to nucleate halos of sufficient density.

CompaSO can sometimes fragment elongated halos into multiple objects, due to its spherical nature, or identify substructure as a distinct halo at one epoch that was already identified as a monolithic halo at a previous epoch. For this reason, a cleaning procedure is performed in post-processing, relying on mergertrees information [START_REF] Bose | Constructing high-fidelity halo merger trees in ABACUSSUMMIT[END_REF]. This procedure checks what fraction of the particles of a halo at time t i come from a much larger halo located at a similar position at time t i-1 and t i-2 . If a sufficiently large fraction did, then the newer halo is deemed a "potential split" and merged into the larger halo. In addition, if at an earlier redshift a halo peak mass exceeds more than twice its present day mass, it is also merged into a more massive neighbour, from whom it had presumably split off. The described cleaning method affects, in general, low-mass halos around more massive ones, appending their particle list to the latter, and resulting in cleaned halo catalogues with a lower number of smaller halos vs. a larger number of bigger halos. As we will show in subsection 6.4.1, this shifts the value of the HMF in each mass-bin exactly in the correct direction to preserve self-similarity, which is evidence for the good performance of the procedure.

Rockstar is a six phase-space dimensions plus time halo finder, aiming at maximizing consistency of halo properties across snapshots. The code starts by creating FoF groups of a linking length larger than standard (b = 0.28 by default), which assures that virial spherical overdensities can be determined within. For each of these FoF groups, a phase-space metric is defined by normalizing the positions and velocities of the particles by the position and velocity dispersions of the group, such that for two particles p 1 and p 2 the distance metric is defined by:

d(p 1 , p 2 ) = |x 1 -x 2 | 2 σ 2 x + |v 1 -v 2 | 2 σ 2 v 1/2 (6.16)
The algorithm now performs a modified FoF in phase-space within each group, where it links particles with and adaptive phase-space linking length such that a constant fraction of particles (default 70%) is always linked together with at least another particle into subgroups. The process repeats for each subgroup, creating a hierarchical set of structures until a minimum size substructure is found at the deepest level. Seed halos are placed at this final structure, and particles at higher levels are assigned to the closest seed halo in phase-space, where now the metric (Equation 6. [START_REF] Carr | Primordial black holes as dark matter[END_REF]) is calculated with respect to the seed halo. More than one seed can be found within each of the first level FoF groups, corresponding to either a halo or subhalo. This categorization is performed by including temporal information of previous steps, following particle-halo associations across time-steps. During its final step, Rockstar calculates the gravitational potential of all particles using a modified Barnes-Hut method in order to unbind particles.

Rockstar defines halo masses by using various (user-specified) SO criteria. We generally (except when stated otherwise) restrict ourselves in this study to using the SO mass corresponding to the virial radius, including all halo structures and considering only gravitationally bound mass (STRICT_SO_MASSES=0). Although, in section 13 we will explore the differences to the HMF analysis arising from using bound vs. unbound particles, as well as parents only, subhalos, and all structures. Finally, halo centres and velocities are calculated in the code using a subset of the innermost particles (∼ 10% of the halo radius), minimizing a Poisson error σ/ √ N . The algorithm has been run using default parameters but for: TEMPORAL_HALO_FINDING = 0 and MIN_HALO_OUTPUT_SIZE = 25.

Finally, FoF is a percolation algorithm that defines halos hierarchically by fixing a linking length (b), and demanding that any particle within that distance to another particle is linked together to form a group. If we have two particles A and B, they are linked together (friends) if their separation is smaller than the fixed length b. If B also has a particle C within distance b, B and C are also linked together (friends). This makes A and C indirectly linked together (friends-of-friends), creating a network of linked particles by subsequent steps that we call groups or halos.

In this algorithm, the main parameter defining the properties of halos is the size of the linking length b. In cosmological applications, bound structures (dark matter halos) are usually identified by using b = 0.2Λ, where Λ is the interparticle separation of the simulation as defined throughout this thesis Λ = L N . This is a heuristic argument based on spherical collapse, and for which the mean overdensity of an identified halo is expected to be ∆ ≈ 180 [START_REF] More | The overdensity and masses of the friends-of-friends halos and universality of halo mass function[END_REF]. However, the relation between the value of b and spherical overdensity masses has been highly questioned, and values different from the reported above have been also used in the literature [START_REF] Gardner | Dependence of halo properties on interaction history, environment, and cosmology[END_REF].

In this study, we use b = 0.138 and only retain halos with at least 25 linked particles, to be consistent with the choices made for the other halo finders.

Results

We will start with the analysis of self-similarity of the halo mass function (HMF). We will compare FoF and Rockstar algorithms in a simulation with n = -2.0, N = 1024 3 and comoving softening ϵ = 0.03Λ, to later extend the comparison between Rockstar and CompaSO with a larger set of different simulations from Table 6.1. We will then explore the convergence of the radial pairwise velocities of halos, comparing it also with that of the 2PCFs.

Halo mass function

We first show in Figure 6.1 and 6.2 the multiplicity function f , as defined in subsection 6.2.2, as a function of the rescaled mass M/M NL 1 . We refer hereafter to f as the halo mass function (HMF). In Figure 6.1 we compare results from FoF (left) and Rockstar (right) at different time-scales, obtained from the n = -2.0, N = 1024 3 and comoving softening ϵ = 0.03Λ simulation. This figure shows that the self-similar scaling appears to apply to a very good approximation for both halo-finders, but suggests that this scaling might be more closely followed in the latter catalogue. We will assess the degree of this self-similarity quantitatively below. On the other hand, 1 Disclaimer: Figure 6.1 comparing FoF and Rockstar uses f (3 + n)/6 as in [START_REF] Leroy | Testing dark matter halo properties using self-similarity[END_REF], while Figure 6.2 uses f as in [START_REF] Maleubre | Constraining accuracy of pairwise velocities using scale-free models[END_REF] in Figure 6.2, the two left panels correspond to the CompaSO catalogue obtained from the N = 4096 3 simulations of n = -1.5 (upper) and n = -2.0 (lower), while the right panels are for Rockstar catalogue of a single N = 1024 3 simulation of the same two exponents, and physical softening ϵ(a 0 ) = 0.3Λ (i.e. a different simulation than in Figure 6.1). All plots show that the self-similar rescaling also appears to apply to a good approximation, especially at late times. The smaller Rockstar boxes show greater deviations at larger rescaled masses, which are simply due to the reduced number of halos in the smaller volume. Also comparing the two indices for each halo finder, we observe that the self similarity at large rescaled masses show visible deviations at later times for n = -2.0, while n = -1.5 presents almost no such deviations. This difference mirrors what we observed in the analysis above of the dark matter statistics, and reflects the increasing importance of finite box size as the index of the power spectrum reddens.

Following the same steps as in our analysis of the dark matter statistics, we next study these qualitatively-apparent features quantitatively by considering vertical slices in Figure 6.1 and 6.2, assessing the self-similarity of the HMF as a function of time in bins of fixed rescaled mass.

Results for the comparison between FoF and Rockstar are shown in Figure 6.3 and 6.4, respectively. Each panel shows the measured value of the rescaled mass function at all available snapshots of the simulation, and for a finite bin of halo mass M/M NL . These bins have an equal logarithmic spacing with a width of about 40% their central value and are equally spaced across the full range sampled by the simulation. To facilitate comparison between the two figures/halo-finders, their yaxis is fixed such that y max /y min = 2. The dashed vertical lines in each plot indicate a particle resolution corresponding to 50 and 5000 particles, for the geometric centre of the mass-bin. In addition, Figure 6.4 has a small plot showing the fractional change ∆Y /Y (with Y = M 2 NL n(M, a)) between consecutive snapshots. The comparison between Rockstar and CompaSO (before and after performing the cleaning process) is shown in Figure 6.5, for n = -1.5 (left panels) and n = -2.0 (right panels). In this figure, each plot shows the results of all halo-finders analysed at three chosen representative rescaled mass bins. We also indicate, on the upper x-axis, the number of particles in a halo (M/m part ), where m part is the particle mass of our simulations, on the upper x-axis. The horizontal lines in the panels indicate the estimated converged value when such convergence is attained at 1% precision, using exactly the same criteria as detailed in subsection 6.3.2 (second method, with p = 0.01). The uppermost two panels correspond to the smallest rescaled mass at which such convergence is obtained (for at least one of the finders), and the bottom panels to the largest such rescaled mass. This value of 1% is again chosen because it is approximately the smallest value of p for which we obtain a significant range of contiguous bins satisfying our convergence criteria.

As M NL grows as a function of time, the halos populating a given M/M NL bin contain more and more particles as time progresses. Thus, each plot effectively shows the measured mass function as a function of increased resolution. At the same time, as halos get bigger, their number gets smaller. The average number of halos in each bin decreases monotonically: this number is proportional to the simulation volume in units of the characteristic volume R 3 NL , meaning that in the approximation of M 2

NL n(M, a) constant, it's proportional to 1/M NL . Thus, we expect the effects of sparseness of sampling in finite bins to make the signal noisy at late times. We indeed can see this effect in our results, here in the HMF but further in the chapter also for the 2PCF and the pairwise velocity. Nevertheless, we see that most of our plots are clearly not dominated by such sampling noise, and we can clearly identify systematic dependences in resolution alone. We also note that the different halo finders have different mass definitions, so in these figures we do not expect agreement in the value of f (M/M NL ) but we are interested instead in comparing the time/particle number range in which a convergence to a constant behaviour (i.e. self-similarity) is attained.

Examining these plots, we see several clear trends depending on the halo-finder. Looking at Figure 6.3 we see that, once FoF halos reach 25 particles (minimum number of particles defining a halo according to our chosen parameters) their rescaled HMF decreases monotonically as the number of particles per halo increases, and until it becomes noisy due to sparseness effects at later times. The convergence towards a resolution independent value is marginal at best, and only in a few of the mass bins. In these cases, the flattening out of the curve only occurs at several thousand particles, which means that results for halos with 50 -100 particles have their inferred converged value systematically overestimated by 20 -25%. This monotonic decrease of the HMF from FoF halos at scales where it should be well converged doesn't come as a surprise. The FoF algorithm is known to suffer from a measured halo-mass that is resolution dependent. Studies in the literature ( [START_REF] More | The overdensity and masses of the friends-of-friends halos and universality of halo mass function[END_REF][START_REF] Warren | Precision Determination of the Mass Function of Dark Matter Halos[END_REF]) have shown, by using the FoF algorithm on idealized isolated halos, that it systematically overestimates their mass because of finite size-effects (mass-resolution). This effect can be understood using percolation theory, and the The snapshot spacing is such that this number increases by a factor of two for every two snapshots. We observe at best marginal evidence for convergence to a resolution independent value in a few of the bins, starting from of order 5000 particles per halo. The behaviour can be contrasted with that in the following figure for Rockstar halos. Note that, to facilitate comparison, the logarithmic range plotted on the y-axis is the same in all panels and in both figures (y max /y min = 2).

probability of having two particles linked together depending on the size of the system. As the HMF is a decreasing function of mass, the number of halos for a given FoF-mass are overestimated at lower resolution, as we can see from Figure 6.3.

Our results are consistent with the aforementioned studies and moreover, provide an in situ quantification of the resolution effects in cosmological simulations.

Rockstar catalogues show generally good convergence. In Figure 6.4, all but the first bin exhibit a clear convergence down to the intrinsic limit in precision (of the order of 2% here), corresponding to fluctuation of the derivative around zero (lower panels). We observe further that different M/M NL bins converge from a number of particles per halo situated around 50 particles, 100 at most. Finally we observe, for the larger mass bins, the growth of fluctuations due to sampling and also strong systematic deviations due to finite box-size. Similarly, now looking at Figure 6.5, we see that a 1% precision level is attained starting from the order of 100 particles (regardless of the spectral index n), with degrading convergence at larger mass/later time due to sampling and smaller box size. Differences between the two results are minimal and mainly due to an improvement in the analysis of the converged regions from method 1 to method 2 in subsection 6.3.2.

Regarding CompaSO catalogues, looking at Figure 6.5, they show equally good convergence as Rockstar (1% precision) beyond ∼ 1000 particles when the cleaning is performed, while the raw CompaSO catalogues never meet the convergence criteria and show instead a clear monotonic dependence on the resolution. On one hand, the larger number of particles needed for convergence in CompaSO is expected, as the kernel density scale is fixed and does not scale self-similarly (i.e., a new scale is inserted in the problem, which is assumed will affect self-similarity of small objects). On the other hand, the behaviour displayed by the raw CompaSO is very similar to that observed above for FoF-selected halos. Thus, the merger-tree based cleaning (discussed in subsection 6.3.3) appears to correct very appropriately the mass of halos, by increasing by the right amount the number of larger halos at each given time to restore the self-similarity.

In the panels of the bottom row, which probe the most massive halos resolved, a clear upper cut-off exists in the convergence in the cleaned CompaSO catalogues at a few times 10 4 particles. Comparing with the plain behaviour seen in the same bin for the smaller Rockstar boxes, which appear to show a down-turn of the data away the converged value at a slightly earlier time, it appears that these deviations can be attributed to finite box size effects. Further tests against larger Rockstar boxes would be desirable to confirm this and exclude any evidence for residual resolution dependence in the cleaned CompaSO, as well as test against self-similarity for the different cleaning parameter values.

Indeed, we note that one of the more general conclusions we can draw is that the self-similarity tests on scale-free models are an excellent tool for testing resolution of halo finders. Furthermore, while we do not claim these tests to be proof of correctness, self-similarity is a necessary evidence for it, and results can be used to place minimal convergence limits on halo finder algorithms.

Comparison with other Rockstar catalogues.

Our analysis clearly indicates that it is the resolution dependence of mass assignment in the FoF algorithm that causes the poor accuracy in the determination of the HMF. As Rockstar does so much better, the question obviously arises as to why there is such a great difference, given that Rockstar is built itself on an initial FoF selection. It is evident that a potentially important difference can arise from the mass unbinding performed by Rockstar, which produces the final mass assigned to the halos in the default output catalogue we have analysed here. As Rockstar can also provide output catalogues including both bound and unbound mass, it is easy to test whether this is the case. Figure 6.6 shows a comparison between convergence plots, for a single chosen bin of rescaled mass M/M NL in [0.20, 0.25], while using different mass assignments provided by the algorithm. The left panel compares the catalogue we have analysed above (bound mass only) with a catalogue in which the same halos also contain their unbound mass. The central panel compares the same two mass assignments, but now including only the parent halos (removing all structures tagged as satellites). Finally, the right panel shows the catalogues of subhalos (satellites) only, with and without bound mass. From these plots we see that it is indeed clearly the mass unbinding process which corrects for the resolution dependence in the FoF seed halos of Rockstar. However, they also show that the mass unbinding essentially affects only the population of subhalos, as most live around the "fuzzy" boundaries of the FoF precursors, and thus a selection of the parent halos only, using the unbound mass, leads also to good convergence of the HMF. We have compared in detail our quantitative results for the parent-only catalogues with those we obtained above and found them to be essentially unchanged. We leave a report of a fuller analysis, and in particular an analysis of the subhalo catalogues, for future work elsewhere.

2PCF and Pairwise velocities

We now turn to our analysis of the 2PCF, and the mean pairwise velocities of halo centres. We have first considered the HMF, as we would expect that any other halo statistics -which are generically expected to depend on M/M NL -will be self-similar to a good approximation at a given rescaled r/R NL only if the HMF is too. Amongst other considerations, we will examine below the extent to which this is the case quantitatively for the 2PCF and mean radial pairwise velocity. We do not present here results for the FoF halos because, as it can be anticipated, the non-similarity of the HMF leads to a strong breaking of self-similarity also in the 2PCF (we did not go further analysing v r , but we don't expect any significant change). Like for the HMF, we find only at most some weak, marginal convergence in ξ, and our conclusion is that this halo-finder is unsuitable for precision measurements of a physical clustering signal in halos, unless a lower cut-off of at least several thousand particles in used. Determining these bounds reliably would require considerably larger simulations than ours. Figure 6.7 and 6.8 show, respectively, for the same three rescaled-mass bins in Figure 6.5, the 2PCF and mean radial pairwise velocity for halo centres. The latter is calculated directly only, as the pair conservation relation we exploited for the dark matter analysis is not valid for halos. We display results for the cleaned CompaSO catalogues in the N = 4096 3 simulations and the indices n = -1.5 and n = -2.0. We plot the values of the statistic as a function of the rescaled distance r/R NL , and for all redshifts with data in the given bin of rescaled mass. In each plot we have marked by a black vertical line the scale 2r vir /R NL corresponding to twice the virial radius, r vir , of the corresponding rescaled mass. In addition, the shaded area marks the corresponding scale to the minimum and maximum mass limits on the finite bin. Although CompaSO halos may be separated by less than 2r vir (as they are neither spherical nor have a spatial extent directly determined by r vir ) we expect a scale of this order to be an effective lower cut-off to the range in which a physical halo correlation function can be measured. Figure 6.7 and 6.8 display qualitative behaviour similar to that in the statistics we have analysed previously: both statistics show clear self-similarity propagating in time from larger to smaller scales in time. As anticipated, the scale 2r vir /R NL does seem to give a good indication of the lower cut-off scale. Perhaps surprisingly, at the latest times self-similarity seems even to extend to separations as small as r vir . Further the plots appear to show, again perhaps surprisingly, that the convergence of v r is slightly better than that of the 2PCF.

Following again the analysis in the previous sections, to assess more fully and quantify these behaviours, we take vertical slices in Figure 6.7 and 6.8. As v r /Hr and ξ are each functions of the two rescaled variables r/R NL and M/M NL , each such plot thus corresponds now to a specific bin of each of these two variables (and self-similarity again to a time independent behaviour of the dimensionless statistics). Limitations of space here impose the choice of a few illustrative values of r/R NL and M/M NL .

In Figure 6.9 we show three plots for each of the two statistics, for Rockstar and cleaned CompaSO halo catalogues obtained in the N = 1024 3 and N = 4096 3 simulations of n = -1.5, respectively: the bins correspond to three values of M/M NL over the range in which we obtain satisfaction of our convergence criteria at the 2% level, and for which, as in the previous figures the converged values are indicated by horizontal lines and the precision by the shaded regions. The value of r/R NL in each bin has been chosen to correspond approximately to 2r vir /R NL , which is approximately the smallest scale from which we observe convergence of both statistics (using the same criteria). Just as in the plots for the HMF in Figure 6.5, we also plot in the upper x-axis the number of particles in the analysed halos as a function of time. We do not display the results for the raw CompaSO catalogue because this data is almost exactly superimposed on that for the cleaned catalogue (more remarkably for v r /Hr): differently to what we observed for the HMF, the accuracy of these halo statistics, and indeed their convergence (see below), is insensitive to the associated re-assignment of particles. The value of 2% precision has (like in the corresponding HMF plots above) been chosen because it is approximately the smallest value of p for which we obtain a significant range of contiguous bins satisfying our convergence criteria, corresponding to the highest precision at which we can in practice establish convergence using our data.

As anticipated from Figure 6.7 and 6.8, the convergence of the pairwise velocity (left panels) is indeed significantly better than that of the 2PCF (right panels). Convergence is attained (at a given precision, here 2%) starting from a smaller particle number (i.e. earlier in time). This difference becomes more pronounced in the largest mass bin, as clearly illustrated here in the chosen bin (bottom plots in the figure) in which the 2PCF alone fails to meet the convergence criteria. We believe the explanation for this comes from the very different dependencies of the two statistics on the rescaled mass. Comparing the converged values of the two statistics in the different mass bins in Figure 6.9, we see that the pairwise velocity is only very weakly dependent on the mass compared to the 2PCF: the former varies by only 20%, while the latter changes by a factor of 5 (as the mass itself varies by a factor of 50). Errors in the mass assignment of the halos selected in a given mass bin will thus feed through to give a much larger error in the 2PCF.

Examining further the lower bounds to convergence, we observe that the Rockstar data converges on small scales at fewer particles per halo than the CompaSO, while both perform equivalently at larger scales. This is clearest in the lowest mass bin, extending to the larger mass bins, albeit somewhat obscured by the relative noisiness at larger scales of the Rockstar data (due to smaller box size). 

Resolution limits for halo statistics in scale-free and LCDM-type simulations

As we have discussed, the lower cut-offs to convergence for the halo statistics we have analysed can be stated as cut-offs on the number of particles per halo, and in the case of the correlation functions (which depend also on separation) also in terms of a cut-off on separation in units of the virial radius. Further, in the data shown above we have seen that in practice the requirement on particle number, for a given halo finder, seems not to depend significantly on the mass bin for the HMF or the pairwise velocity at a given scale, at least for the approximately fixed separations (in units of virial radius) which we examined. Figure 6.10 presents a more complete view of the data to test whether these behaviours are really valid in general: for n = -1.5 (upper panels) and n = -2 (lower panels), the leftmost panel shows in each case the lower cut-off to convergence expressed in particles per halo for the HMF as a function of the rescaled mass, while the other two panels show, for the pairwise velocity and 2PCF respectively, the analogous quantity as a function of separation in units of r vir , and for different bins of rescaled mass. In each plot, the two sets of curves shown correspond to the two indicated halo finders (full line/circles to cleaned CompaSO and dotted lines/stars to Rockstar), and each of the curves (or points) to different mass bins M/M NL . The dashed-thick lines correspond to best (least-squares) fits of a linear dependence on r/r vir -M/M NL for the HMF case -to the data (for each of the halo-finders separately). All results correspond to our best reported precision: 1% for the HMF and 2% for the 2PCF and pairwise velocity.

The plots for v r show that the anticipated behaviours indeed hold: the bounds for the different mass-bins collapse approximately onto a single line and can thus be well approximated as a bound on the number of particles per halo as a function of r/r vir exclusively. On the other hand, the column plotting the ξ data shows that, although the dependence on M/M NL is weak for the converged values, the quality of convergence for large mass-bins (and large scales) is significantly reduced with respect to the former statistic.

The behaviours also confirm and further quantify the trends we observed in subsection 6.4.2. In particular, we see that the number of particles per halo required for a self-similar behaviour is, for each of the two statistics, indeed higher for CompaSO than Rockstar at small scales, but this difference disappears progressively as we go to larger scales, where both halo finders perform similarly. We also see further quantified the better convergence of v r compared to ξ. Finally, we note that the actual number of particles per halo required to meet the convergence to be appropriate for any cosmology, like LCDM, in the range in which structures are seeded by a linear power spectrum with a close to power law behaviour and comparable exponents to these. One caveat is that the scale-free models are EdS cosmologies, so more caution should be used when adapting the bounds at z ≈ 0 where deviations from EdS become significant. Nevertheless, it seems unlikely that these effects, arising essentially from the resolution limits on identification of halos, would have significant sensitivity to the background cosmology.

Conclusions

The analysis we have reported here builds upon a set of papers ([83-85, 177]), which have shown the usefulness of self-similarity and scale-free cosmologies in quantifying resolution of cosmological N -body simulations. They analysed convergence of different matter field statistics, and tested for N -body parameters allowing the best representation to a continuum limit system. We have gone a step further here and tested resolution limits of halo-finders computed over the previously tested N -body simulations. Our focus has been on the HMF, 2PCF, and radial component of the pairwise velocity, for halos selected using the FoF, Rockstar and CompaSO catalogues. Compared to the aforementioned previous studies which used a single power law (n = -2.0) and simulations of a single size (N = 1024 3 ), as in [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF] we have considered a set of both different power laws and different box sizes. We find that self-similarity tests are indeed an excellent tool to assess the performance of different halo finders, as shown, for example, by their capacity to detect the subtle differences resulting from the cleaning of the CompaSO catalogues.

As for the previous chapters, our exploitation of simulations of different sizes, of several realizations, and of scale-free models with different exponents has allowed us not only to improve some of the results in this previous work, but has also been essential for extrapolating the results to LCDM-like cosmologies.

We have been able to use our data to establish resolution limits at the 1% precision level for the HMF, and at the 2% level for the 2PCF and pairwise velocity in both the Rockstar catalogues and the CompaSO catalogues, provided the cleaned version described in [START_REF] Bose | Constructing high-fidelity halo merger trees in ABACUSSUMMIT[END_REF] is used for the HMF. For halos selected using the simple FoF algorithm, our analysis identifies and allows the precise quantification of a resolution dependence of the assigned mass, which has been anticipated in previous work ( [START_REF] More | The overdensity and masses of the friends-of-friends halos and universality of halo mass function[END_REF][START_REF] Warren | Precision Determination of the Mass Function of Dark Matter Halos[END_REF]). We express the lower limits to resolution for the HMF as a lower limit on the number of particles, which turns out to be roughly independent of the mass. For the pairwise velocity and 2PCF, which are also functions of separation, we find that the lower bounds on the number of particles are, to a good approximation, independent of mass when plotted as a function of separation in units of the virial radius (corresponding to the given mass).

Plotting the inferred lower bounds on particle numbers for each of the three statistics, for n = -1.5 and n = -2 simulations, shows that the results show no significant dependence on n and thus can be confidently adopted to LCDM-like simulations. At the 1% level, Rockstar is not able to resolve the HMF below ∼ 100 -200 particles, the cleaned version of CompaSO breaks self-similarity below ∼ 1000 particles, and its raw version never achieves this convergence at the same precision. For the 2PCF and pairwise velocities, the 2% precision level is attained with significantly smaller particle numbers than the previous statistic, with the latter requiring the least. For these, the effects of cleaning CompaSO are less significant, as the dependence on mass-bin is suppressed. At small scales, Rockstar exhibits self-similarity starting at a smaller particle number than CompaSO, plausibly explained by the introduction of a fixed kernel density scale in the latter, which the authors assume will certainly affect self-similarity of small objects. This difference decreases as the separation increases and disappears at (10 -20)r vir .

We conclude by pointing out that our analysis has confirmed that self-similarity is a powerful tool to put halo algorithms to the test and compare their resolution. It would be interesting to explore in particular, whether the CompaSO algorithm can be further modified in order to improve its resolution at low halo mass, while maintaining its computational speed. different force softening prescriptions affect resolution, with a softening fixed in physical coordinates achieving the highest performance at the lowest computational expense. As a final conclusion, we determined that once the force softening is small enough, the sole parameter affecting resolution of the matter density power spectrum is the value of k Λ . chapter 5 focused on a new statistic, the radial component of the pairwise velocity, relevant for studies in redshift-space, and subsequently, for comparisons with results from galaxy surveys. We related resolution of the velocity statistic with that of the 2PCF by means of the pair conservation equation. We stated that the former has a higher dependence on the size of the ensemble than the latter, needing a higher N to achieve subpercent accuracy at small scales. However, for a given precision, the pairwise velocity is resolved at smaller scales than the 2PCF. This is a direct effect of the pair conservation relation, which accounts for the time evolution of the cumulative-2PCF, "correcting" for the break of self-similarity of this statistic. The conclusions of this chapter were twofold: a direct estimation of the pairwise velocity requires a higher number of particles than the 2PCF, and a pair-conserved estimation needs an accurate computation of time-derivatives of the 2PCF (its calculation at more snapshots). We also concluded that the main parameter affecting resolution of both the pairwise velocity and the 2PCF is, again, the interparticle distance at initial conditions.

An additional main result from the analysis of non-linear scales in the aforementioned two chapters was their compatibility with stable clustering. First, from the asymptotic slope of the power spectrum, and next from the value of the radial pairwise velocity consistent with that of the Hubble flow.

Finally, chapter 6 analysed the performance of three different halo-finders: FoF, Rockstar and CompaSO. We started by studying the resolution of the HMF at different re-scaled mass-bins, as a function of minimum particle number per halo. Subsequently, we also looked at the results of halo-halo 2PCF and pairwise velocity for different halo masses, as a function of scale. In general, we reported that FoF presents the highest resolution effects, while Rockstar and CompaSO achieve percentage accuracy at a wide range of masses and scales.

All our results were extrapolated to place limits on N -body simulations of ΛCDMlike cosmologies. For this, we analysed every statistic in scale-free simulations with several spectral indices, relevant to structure formation in the non-linear regime of ΛCDM. The main disclaimer about the reported conclusions in this manuscript is the characteristic high accuracy of the N -body code employed in this analysis (Abacus), as well as the process to set up initial conditions (2LPT+PLT evolution from particles in a lattice). If the basic performance of your preferred code is below that of the one in this analysis, higher resolution effects are, of course, to be expected. Nevertheless, the work exposed here constitutes a general method to assess resolution, and an equivalent study can be done using a different N -body solver.
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Figure 1 . 1 :

 11 Figure 1.1: Evolution, as a function of the scale factor, of the energy density of the different species with respect to the critical density today.

Figure 1 . 2 :

 12 Figure 1.2: Credit: www.esa.int. Artistic view of the evolution of the cosmos on large scales, from Inflation all the way to the present time.

Figure 1 . 3 :

 13 Figure 1.3: Fate of the universe with respect to its geometry and energy content. A closed Universe (red) will collapse, while a flat Universe (green) will expand forever at a steady rate. An open Universe (orange) and flat ΛCDM (blue) scenario will have an infinite accelerated expansion.
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 14 Figure 1.4: Credit: D. Baumann Lecture Notes in Cosmology § 6.1. Initial perturbations from Inflation and superhorizon evolution until re-entry, as a source for fluctuations in the energy components fields.

Figure 1 .

 1 Figure 1.5:Evolution of the gravitational potential with respect to its value at superhorizon scales, fixed by Inflation. The smallest scale (blue) enters the horizon well before matter-radiation equality, and it's fully damped during matter era. Scales that enter during radiation epoch (orange and green) but don't have time to vanish, get suppressed by a factor 9/10 with respect to their value before equality during matter era. Finally, scales that enter during matter dominated epoch (red) simply suffer the 9/10 damping and remain constant thereafter.
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 16 Figure 1.6: Evolution of the dark matter density contrast at same scales as Figure 1.5.

Figure 2 . 1 :

 21 Figure 2.1: Scale-free simulation (with spectral index n = -2.0) performed with the Abacus N -body code as part of the analysis in this manuscript. If we zoom-in 10 × R NL in the figure on the left, we will obtain a configuration that is statistically identical to the one on the right, at the scales at which self-similarity holds. Alternatively, we can understand them as the evolutionary state of the system at two different time-steps t 1 and t 2 , and during which the scale factor has grown by √ 10 (since R NL ∝ a 2 for n = -2).
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 22 Figure 2.2: The top-hat, root-mean-square variance of the linear density field today (z = 0) on scales R, and the n eff corresponding to those scales as calculated by Equation 2.14

  Figure 4.1 shows the evolution of ∆ 2 as a function of time (parametrized by the variable log 2 (a/a 0 )) for each of the three different spectral indices we have simulated, in all cases for the largest simulation (with N = 4096 3 )
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 41 Figure 4.1:Dimensionless PS ∆ 2 as a function of wavenumber (leftmost panels) and of rescaled wavenumber (second column) of our largest simulations (N = 4096 3 ), for which self-similar evolution corresponds to a ∆ 2 which is invariant in time. The times shown correspond to every fourth snapshot S = 0, 3, 7 • • • (where S is as defined in Equation6.11) over the total time-span of the simulations. The vertical dotted lines in the right panels correspond to the rescaled Nyquist wavenumbers for each displayed epoch. The shot noise limit, ∆ 2 shot = (π/2)(k/k Λ )3 , is represented with dash-dotted lines. The right panels show the appropriately shifted line for each displayed epoch.
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 4 Resultsin the right panels of Figure4.1 at chosen fixed values of kR N L as a function of time, and for the different simulations in Table4.1.
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 42 Figure 4.3 and Figure 4.4 show such plots for, respectively, n = -1.5, n = -2.0 and n = -2.25, for the indicated values of kR N L . For convenience we plot also on the upper x-axis the corresponding value of k/k Λ , and a subplot of the ratio of shot noise over ∆ 2 . As R N L is a monotonically growing function of time, k/k Λ increases from right to left in each plot: indeed k/k Λ can simply be considered as the inverse of the spatial resolution relative to the grid which increases as a function of time.
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 42 Figure 4.2:Evolution of the dimensionless PS as a function of logarithmic scale factor log 2 (a/a 0 ) (lower x-axis) and as a function of k/k Λ (upper x-axis) for a set of given rescaled bins labelled by their bin value kR N L , in each of the indicated n = -1.5 simulations (cf. Table4.1). Circles correspond to the largest (N = 4096 3 ) simulations and triangles to the N = 1024 3 simulations. The simulations using physical softening are plotted in purple and those with comoving softening in orange. The horizontal dashed line marks our estimated converged value (∆ 2 conv ) in each bin, determined in the largest simulation as described in the text. The blue shaded region indicates that within ±0.5% of this value. These plots show in particular that the convergence of the PS depends on box-size for larger scales (i.e. small k) and on the force smoothing for smaller scales. The lower panel of each plot shows, for the larger simulation, the fraction of ∆ 2 represented by a shot-noise term (∆ 2 shot = (π/2)(k/k Λ ) 3 ), and the dotted horizontal line marks 0.5%. We note that the observed deviations from the estimated converged value are not well approximated by such a term.
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 43 Figure 4.3: Same as in Figure 4.2 but for the five indicated simulations with n = -2.0.Circles again correspond to the N = 4096 3 simulation and triangles to those with N = 1024 3 . Purple corresponds again to physical softening, while the different choices of comoving softening (1/60, 1/15, 1/30) correspond respectively to lilac, yellow and orange. The additional simulations with different softenings allow us to see more clearly its effect on convergence at smaller scales. In particular we note that the chosen physical softening converges as well as the smallest comoving softening, as found in P2 for the 2PCF.
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 44 Figure 4.4: Same as in Figure 4.2 and Figure 4.3 but for the three indicated simulations with n = -2.25. Circles correspond to the N = 4096 3 simulation and triangles to N = 1024 3 ; physical softening is plotted in purple and orange is used for comoving softening. The light blue region corresponds again to ±0.5% of ∆ 2conv , but it appears smaller than on the previous plots because the range on the y-axis has been increased to fit the data in the smaller simulations. Compared to the plots in the previous two figures, we see clearly how convergence can be obtained only with much larger simulations as n decreases towards n = -3.

Figure 4 .

 4 Figure 4.5 also illustrates clearly the qualitative difference between the modes k < k Λ and k > k Λ : the former are wavenumbers for which the PS is already
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 45 Figure 4.5: Estimated precision, in percentage, of the PS relative to its true physical value as a function of time, for different selected comoving scales. The indicated confidence intervals correspond to the estimated error δ in the converged value. The plots in each case are for the largest simulations (N = 4096 3 ) for the three spectral indices: n = -1.5 (hashed), n = -2.0 (filled) and n = -2.25 (circles). The horizontal dotted lines correspond to 1% and 5%.
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 46 Figure 4.6: Maximum resolved wavenumber (in units of the Nyquist frequency of the grid) at 5% precision as a function of time (left panel), and the corresponding maximum resolved dimensionless PS as a function of time (right panel). Results are given for our three different spectral indices (n = -1.5, -2.0, -2.25) for the 4096 3 simulation of each case. We note an approximately n-independent resolution in the non-linear regime.
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 42 Figure 4.3 and Figure 4.4. We can compare directly the deviation of the PS actually observed in the simulations from its converged value, with the fraction represented by a shot noise term (shown in the lower subpanels).
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 47 Figure 4.7: Equivalent analysis to Figure 4.5 where a shot noise term (P (k) = Λ 3 ) has been subtracted from the computed PS. It shows the estimated precision, in percentage, of the PS relative to its true physical value as a function of time, for different selected comoving scales. The indicated confidence intervals correspond to the estimated error δ in the converged value. The plots in each case are for the largest simulations (N = 4096 3 ) for the three spectral indices: n = -1.5 (hashed), n = -2.0 (filled) and n = -2.25 (circles).The horizontal dotted lines correspond to 1% and 5%.
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 48 Figure 4.8: Redshift z corresponding to different fixed values of log 2 (a/a 0 ) as a function of mean interparticle spacing Λ, using a standard LCDM cosmology ("Planck 2013", [158]). As discussed in the text, combining this plot with the curves for in Figure 4.5 and Figure 4.6 we can infer a conservative bound on attainable precision as a function of redshift in an LCDM simulation.
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 25410 Figure 4.10: Estimated converged logarithmic slopes of the PS for each of the three simulated values of n in our biggest 4096 3 simulations. The dashed horizontal lines indicate the exponent corresponding to stable clustering, γ = 3(3 + n)/(5 + n). The estimated precision of these measurements and the derivation of the error bars are detailed in the text.The curves are remarkably close to consistency with the hypothesis of asymptotic stable clustering, with at most, given our indicated error bars, marginal evidence for slightly lower values. We note that the studies by[START_REF] Smith | Stable clustering, the halo model and non-linear cosmological power spectra[END_REF] and[START_REF] Widrow | Power spectrum for the small-scale Universe[END_REF] estimate asymptotic converged slopes equal to 0.91 for n = -1.5, 0.77 for n = -2.0 and 0.7 for n = -2.25.
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 51 Figure 5.1: Directly estimated v r /Hr as a function of commoving separation (left column) and of the rescaled coordinate r/R NL (right column), for simulations with spectral indices n = -1.5, n = -2.0 and n = -2.25 (N = 4096 3 for the former exponent and average over four N = 1024 3 for the last two). Self-similar evolution corresponds to a superposition of the curves in the rescaled plots. The times shown correspond to every fourth snapshot S = 0, 4, 8, ... (where S is as defined in Equation 6.11) over the total time-span of the simulations.
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 52 Figure 5.2:Comparison of different estimators of v r /Hr as a function of the rescaled length r/R NL , for the same simulations as in Figure5.1. The solid lines in each pair of panels (left and right) are identical and correspond to the results obtained by direct estimation using the velocities (as in Figure5.1). The dots correspond, in the left panels, to estimations using pair-counting and the assumption of self-similarity of the 2-pt statistics i.e. using Equation 5.7 with the last term set to zero. In the right panels, this last term is also included in the estimator.
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 553 Figure 5.3: Cumulative 2PCF as a function of rescaled length r/R NL at same times as in Figure 5.2. Simulations correspond to n = -1.5, n = -2.0 and n = -2.25, with N = 4096 3 in the former exponent and the average over four N = 1024 3 for the other two.
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 54 Figure 5.4 and Figure 5.5, for spectral indices n = -1.5 and n = -2.0respectively, shows such plots for three chosen values of r/R NL . (We exclude n=-2.25 for economy, but will discuss it further below). To help understand the scales involved in each plot, we also display the values of x/Λ on the upper x-axis. As R NL is a monotonically growing function of time, x/Λ increases from left to right, translating the fact that the spatial resolution relative to the grid increases with time in these plots. We note that in almost all the plots we can identify easily by eye what appears to be a converged value in a finite range of scale (the only exceptions are those of ξ in the first panels). In all these cases, a lower cut-off to this converged range is clearly identifiable. As we discussed in the analysis of similar plots in our previous analyses[START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], and will see again in detail now, this lower cut-off clearly corresponds to the resolution limit fixed by the ultraviolet cut-offs (Λ and ϵ).
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 54 Figure 5.4:Evolution, for n = -1.5 simulations, of v r /Hr (left panels), and of the 2PCF and cumulative 2PCF (right panels), as a function of logarithmic scale factor log 2 (a/a 0 ), lower x-axis, and as a function of r/Λ, upper x-axis. Each row correspond to a different bin of rescaled separation r/R NL as labelled. The blue triangular symbol represents the smaller N = 1024 3 simulation, while the red circles represent the N = 4096 3 simulation. Results obtained using the pair counting estimator are drawn as a continuous line in the appropriate colours. Horizontal red dashed lines indicate the converged value of each of the three statistics, calculated from the largest simulation as described in the text, and the red shaded region indicates that within ±1% of this value. The sub-panels in the plots of v r /Hr give the dispersion of the results obtained using the direct estimation with respect to the converged value.
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 5556 Figure 5.5: Same as Figure 5.4, but for n = -2.0 simulations. There are now four sets of triangular symbols representing the different N = 1024 3 simulations (in the sub-panels only), while the orange circles represent the average of the four. Note further that the results for v r /Hr from the N = 4096 3 simulation are all obtained by pair counting only, so that there are no red circles in the left panels.
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 57 Figure5.7: Minimum comoving scale r min at which v r /Hr is resolved as a function of redshift, estimated for a standard LCDM cosmology ("Planck 2013",[START_REF]Planck 2013 results. XVI. Cosmological parameters[END_REF]) in an N -body simulation with a mean-interparticle spacing of 0.5h -1 Mpc (indicated by dashed vertical line). The orange (blue) line corresponds to the 1% (5%) precision limits, calculated using data from direct estimation as displayed in the left panels of Figure5.6, for the N = 4096 3 with n = -1.5 simulation.
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 1458 Figure 5.8: Estimated converged v r /Hr as a function of rescaled separation, for the three different indicated exponents.In the main plot the same data has been used for the left panels in Figure5.6 i.e. using direct estimation. The converged values are obtained using the 1% and 5% precision criteria, with the error bars estimated as described in the text. The sub-plot shows these same errors as shaded regions; it also shows (star symbols) the relative difference with the converged values obtained using pair counting estimation.
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 61 Figure 6.1: HMF as a function of rescaled mass M/M NL for a simulation with n = -2.0, N = 1024 3 and comoving force softening ϵ = 0.03Λ. The left panel shows results from FoF, while the right one shows results from Rockstar. Self-similar evolution corresponds to the superposition of the curves in each plot. The times shown correspond to every sixth snapshot S = 0, 6, 12, ... over the total span of the simulation.
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 562 Figure 6.2: HMF as a function of rescaled mass M/M NL for simulations of spectral index n = -1.5 (upper panels) and n = -2.0 (lower panels). The left column shows results from CompaSO (after the cleaning procedure detailed in[START_REF] Bose | Constructing high-fidelity halo merger trees in ABACUSSUMMIT[END_REF]) for the N = 4096 3 simulation. The right column shows results from Rockstar for a single N = 1024 3 simulation. Self-similar evolution corresponds to the superposition of the curves in each plot. The times shown correspond to every third snapshot S = 0, 3, 6, ... over the total span of the simulation.
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 63 Figure 6.3: Dependence on resolution of the FoF HMF. Each plot corresponds to the bin of rescaled mass M/M NL indicated on the top right and shows the rescaled HMF as a function of scale-factor. The loosely (densely) dashed black vertical line indicates the time at which the central mass in the bin corresponds to 50 (5000) particles. The snapshot spacing is such that this number increases by a factor of two for every two snapshots. We observe at best marginal evidence for convergence to a resolution independent value in a few of the bins, starting from of order 5000 particles per halo. The behaviour can be contrasted with that in the following figure for Rockstar halos. Note that, to facilitate comparison, the logarithmic range plotted on the y-axis is the same in all panels and in both figures (y max /y min = 2).
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 64 Figure 6.4: Dependence on resolution of the Rockstar HMF, as in the previous figure. A sub-panel has been added in every plot showing the fractional change ∆Y /Y of the rescaled HMF relative to the next snapshot. The full vertical green lines in the upper panels correspond to the most extended regions in which ∆Y /Y is below ±0.025 (convergence method one in subsection 6.3.2), also shown by horizontal lines in the lower panel. In contrast to the previous figure we observe very clear evidence for convergence to a resolution independent result in almost all bins starting from around 50 particles per halo.
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 65 Figure 6.5: Evolution of the HMF for the index n = -1.5 (left column) and n = -2.0 (right column) as a function of log 2 (a/a 0 ), lower x-axis, and halo particle number (M/m part ), upper x-axis, for a set of given mass-rescaled bins M/M NL . Blue triangles correspond to Rockstar for a single N = 1024 3 simulation, while circles correspond to CompaSO for the N = 4096 3 simulation (orange corresponds to results before merger-tree cleaning and red corresponds to results after). Horizontal dashed lines represent the converged value of the HMF, and the shaded regions indicate that within ±1% of this value.
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 66 Figure 6.6: Convergence of the HMF in different Rockstar catalogues from a simulation with n = -2.0, N = 1024 3 and comoving force softening ϵ = 0.03Λ. Each panel shows, for a rescaled mass bin with M/M NL in [0.20, 0.25], results for different mass assignments within the algorithm. The left panel compares results for two catalogues containing all halos, one with the full masses obtained from Rockstar's group finding and one with only the estimated gravitationally bound mass. The central panel compares these same two catalogues, but from which the subhalos have been removed. The right panel compares the subhalos with the two mass assignments. The poor resolution of the underlying FoF mass assignment is clearly corrected for by the removal of unbound mass. We point out that all halos with less than 25 particles have been removed.
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 67 Figure 6.7: 2PCF as a function of rescaled separation r/R NL , for n = -1.5 (left column) and n = -2.0 (right column) simulations. The statistic is computed for each bin of rescaled mass M/M NL , showing here those corresponding with Figure 6.5. The data corresponds to cleaned CompaSO for the N = 4096 3 simulations. Per mass bin, we show all snapshots containing halos in said bin.

  NL = 17.224 log 2 (a/a 0 )=0.0 log 2 (a/a 0 )=2.[START_REF] Bertschinger | Cosmological N-body simulations[END_REF] 
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 68 Figure 6.8: Same as Figure 6.7 but for the estimation of v r /Hr.
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 69 Figure 6.9: Evolution, for n = -1.5 simulations, of v r /Hr (left column) and the 2PCF (right column) as a function of log 2 (a/a 0 ), lower x-axis, and number of particles in the halo, upper x-axis. Each plot shows the scale closer to ∼ 2r vir for each mass-bin on Figure 6.2. Blue triangles correspond to Rockstar for a single N = 1024 3 simulation, while red circles correspond to cleaned CompaSO for the N = 4096 3 simulation. Horizontal red dashed lines represent the converge value of v r /Hr and 2PCF, and the shaded regions indicate that within ±2% of this value. The lower panel of each plot indicates the dispersion of the direct measurement of the statistic with respect to its converged value, while the shaded region covers the imposed ±2% precision.

  et al. (includes S. Maleubre) Testing dark matter halo properties using self-similarity MNRAS 501, 5064-5072 (2021).

  Equation 1.35-1.42 determine how the metric and the perturbations of the energy components evolve with time. Due to the complicated interactions between the different species in the universe, solving the coupled differential equations is quite complex, and often done numerically. Alternatively, we can study analytically the general features (proportionality) of the solutions, by studying individually the different components of the Universe (assuming adiabaticity) at each epoch in time.

Table 1 .1:

 1 Summary of the evolution of perturbations of the different components in the universe during matter and radiation dominated epochs, for both superhorizon and subhorizon scales.

		Radiation domination Matter domination
	Φ		
	-Superhorizon	const.	const.
	-Subhorizon	∝ a -2 × oscill.	const.
	δ γ		
	-Superhorizon	const.	const.
	-Subhorizon	oscill.	const. + oscill.
	δ m		
	-Superhorizon	const.	const.
	-Subhorizon	ln(a)	∝ a
	δ b		
	-Superhorizon	const.	const.
	-Subhorizon	oscill.	∝ a
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Table 4 . 1 :

 41 Summary of the N -body simulations used for the analysis in this paper.

	1/30 29	3.625
	-2.0 4096 3 0.3 * 35	2.917
	-2.0 1024 3 0.3 * 37	3.083
	-2.0 1024 3 1/30 37	3.083
	-2.0 1024 3 1/60 37	3.083
	-2.0 1024 3 1/15 37	3.083
	-2.25 4096 3 0.3 * 35	2.1875
	-2.25 1024 3 0.3 * 37	2.3125
	-2.25 1024 3 1/30 37	2.3125

Table 5 . 1 :

 51 Summary of the N -body simulation data used for the analysis of this paper. The first column shows the spectral index of the initial PS, N is the number of particles of each simulation, and the third column shows the number of simulations with identical parameters but different realizations of the IC. The fourth column shows the available statistic and sampling of the matter field.
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1.2. The Inhomogeneous Universe

The treatment here is valid for an Einstein-de-Sitter cosmology (Ω m = 1), similar models can be constructed for other cosmologies as well, including ΛCDM [52] §5.1.1 -5.1.2. Nevertheless, EdS is a good approximation at early times, where structure formation starts.

The requirements for the values of n come from linear theory restrictions. n ≥ 3 assures a non-divergent linear density contrast, such that at initial conditions ξ I (r) ∝ r -(n+3) , ξ → 0 if r → inf, and n < 4 assures that non-linear processes at small scales do not affect the behaviour of long-wavelength perturbations.

Note that, alternatively, in chapter 4-6 we use the linear variance of fluctuations σ 2 L (r, a) to compute R N L . One can also make use of the linear 2-point correlation function, or any other dimensionless clustering statistic, with equivalent results.

https://bitbucket.org/bdiemer/colossus/src/master/

Information from https://abacussummit.readthedocs.io/en/latest/abacus.html

https://github.com/abacusorg/zeldovich-PLT.git

We exploit a suite of large N -body simulations (up to N=4096 3 ) performed with Abacus, of scale-free models with a range of spectral indices n, to better understand and quantify convergence of the matter power spectrum. Using self-similarity to identify converged regions, we show that the maximal wavenumber resolved at a given level of accuracy increases monotonically as a function of time. At the 1% level it starts at early times from a fraction of k Λ , the Nyquist wavenumber of the initial grid, and reaches at most, if the force softening is sufficiently small, ∼ 2 -3k Λ at the very latest times we evolve to. At the 5% level, accuracy extends up to wavenumbers of order 5k Λ at late times. Expressed as a suitable function of the scale-factor, accuracy shows a very simple n-dependence, allowing a extrapolation to place conservative bounds on the accuracy of N -body simulations of non-scale free models like LCDM. We note that deviations due to discretization in the converged range are not well modelled by shot noise, and subtracting it in fact degrades accuracy.Quantitatively, our findings are broadly in line with the conservative assumptions about resolution adopted by recent studies using large cosmological simulations (e.g. Euclid Flagship) aiming to constrain the mildly non-linear regime.On the other hand, we remark that conclusions about small scale clustering (e.g. concerning the validity of stable clustering) obtained using PS data at wavenumbers larger than a few k Λ may need revision in light of our convergence analysis.

The exact procedure we use here is slightly different to those used in both P1 and P2.

What we denote p here corresponds to α/2 in[START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF].
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Table 6.1: Summary of the N -body simulation data used for the analysis of this paper. The first column shows the spectral index of the initial PS, and N is the number of particles of each simulation. The third column gives the ratio of the effective Plummer force smoothing length ϵ to mean inter-particle separation (equal to the initial grid spacing Λ), at the time of our first output. For the case with an asterisk, this is its value at all times (i.e. the smoothing is fixed in comoving coordinates) while for the others, the smoothing is fixed in proper coordinates. The last column indicates the halo-finder utilized.

Rockstar n = -2.0 1024 3 0.03 * FoF and Rockstar

Estimation of converged values

As in previous chapters, we will assess the convergence to the physical limit by studying the temporal evolution of statistics, which become time-independent in the case of self-similarity. Our final objective is to make a quantitative analysis of convergence -i.e. to identify estimated converged values, and converged regions at some precision -for which we need to fix a criterion. The conclusions drawn should not depend significantly on the method, and we will illustrate this by the use of two slightly modified criteria for convergence based on [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF][START_REF] Leroy | Testing dark matter halo properties using self-similarity[END_REF] and [START_REF] Maleubre | Accuracy of power spectra in dissipationless cosmological simulations[END_REF], respectively. The methods will be equivalent for all halo statistics (f (M/M NL ), ξ hh , v r,hh /Hr), so we will denote them by X in the following.

The first method, first described in [START_REF] Joyce | Quantifying resolution in cosmological N-body simulations using self-similarity[END_REF], was used to compare FoF and Rockstar halo-finders, using a simulation with n = -2.0, N = 1024 3 , and comoving force softening ϵ = 0.03Λ.

To identify converged regions, we analyse the fractional variation of the rescaled statistic between consecutive snapshots (∆X/X), and at a given rescaled variable (i.e. M/M N L , r/R N L ). Fluctuations around zero of this fractional variation will quantify the level at which convergence might be obtained. We now define a characteristic level for convergence, α, and identify the longest window of consecutive snapshots verifying

The converged value of the statistic at each rescaled bin is calculated as the mean value of the statistic within the resolved region (i.e. the region verifying criteria for these two statistics are in fact considerably smaller than those required for the HMF. Although convergence for the latter is established at a 1% and the 2-pt statistics are only converged at 2% level, relaxing the precision limits for the HMF only changes very slightly the required particle numbers. This is explained in the same way as we explained the relative quality of the convergence of v r and the 2PCF: the HMF is itself a much stronger function of rescaled mass than the 2PCF (and a fortiori than v r ). For example, comparing the second to third rows of Figure 6.5, we see that the HMF changes by a factor of 10, while in Figure 6.9 (as discussed above) we see that the 2PCF varies by a factor of 3 and the mean pairwise velocity only by 20%. Thus, to obtain a 2% error in v r and ξ we can tolerate a much larger error in the mass function. It is for the same reason that v r (and ξ in some range) show no significant sensitivity to the cleaning of the CompaSO catalogues, as these correspond (as seen above) to relatively small changes to the mass assigned to halos.

Results

M/M NL

Finally, we see that the two sets of plots, for n = -1.5 and n = -2.0, differ only very marginally. Further, they are formulated in terms of mass and length units (M NL and r vir ) that are also clearly defined not just in scale-free cosmologies but in any cosmology. Given this, it is very reasonable to take these resolution bounds

Summary of Conclusions

N -body simulations are an excellent tool for the study of cosmological structure formation in the non-linear regime. Their accuracy though, depends on their capacity to reproduce the continuum limit at each given scale of interest. Assessing this challenge has been the main topic of this work, studying how the different discretization parameters affect statistical results from N -body simulations.

Scale-free simulations have resulted to be a very useful instrument to assess the accuracy at which each scale is resolved, for a given statistic, from N -body codes. The main advantage of the method described in this work is the possibility of studying precision in a non-comparative, independent manner. Most tests currently performed in the literature evaluate resolution at a given scale as a ratio of two different realizations, either comparing two different sets of discretization parameters, or two different N -body codes. This method gives information about the overall performance of a simulation, but makes more difficult the quantitative analysis of resolution and intrinsic dependence of it in N -body parameters.

The main advantage of using scale-free simulations relies on a particular property of these cosmologies, i.e. their self-similar evolution. When expressed in the appropriate re-scaled coordinates, clustering statistics at a given scale becomes independent of time. We can then presume deviations from this behaviour as being caused by "extra" scales, not intrinsic to the cosmology itself. These extra scales come from the discrete nature of N -body simulations, where the infinite, continuous matter density field is described by a finite set of particles in a box.

In chapter 4 we studied how the different discretization parameters affect the small scales of the matter density power spectrum. We concluded that large values of k do not really see the size of the box L, especially for the larger values of the spectral index n relevant to these scales in current LCDM simulations. On the other hand, they are completely dependent on the interparticle separation at initial conditions (Λ ≡ N L 3 → k Λ ). At subpercent level, our simulations weren't able to resolve the studied statistic for scales more than a couple of times smaller than this parameter, and only at the very last steps. Additionally, we were able to study how