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Introduction

Preface

The fascinating world of marine biology is rich in organisms with an astonishing variety of sensory capabilities and motility skills. Among these, copepods represent a striking example. Copepods might be the most abundant metazoans (multicellular species) on earth [START_REF] Hardy | The Open Sea. The World of Plankton[END_REF]. While you read this manuscript, thousands of species of copepods eat, reproduce and escape from predators (Kiørboe, 2011) all over the planet [START_REF] Humes | How many copepods?[END_REF]. Nowadays, about 11500 species are known [START_REF] Humes | How many copepods?[END_REF], and yet they are estimated to represent the 50% of the existing ones [START_REF] Hulings | A manual for the study of meiofauna[END_REF]. Copepods are crustaceans. Some species, called pelagic, live in the open ocean or in freshwater reservoirs. Other species, called benthic, live on sub-water floors and ocean reefs. There are also continental species living in wet terrestrial environments. A picture of the two life stages of a pelagic copepod is presented in Fig. 1.

In some environments, copepods account for 96% of the total amount of zooplankton species [START_REF] Turner | The importance o small planktonic copepods and their roles in pelagic marine food webs[END_REF][START_REF] Huys | Copepod Evolution[END_REF]. The zooplankton, together with their plant counterparts, the phytoplankton, make up the plankton community. Plankton are organisms that drift, carried by ocean currents. They are fundamental for the ecology and the carbon cycle of the planet [START_REF] Sardet | Plankton: wonders of the drifting world[END_REF]. Phytoplankton, through photosynthesis, produce carbon compounds from carbon dioxide, providing about the 50% of the oxygen present on earth. When they die before they are eaten, plankton sink and take with them about 2 billion tons of carbon dioxide each year. Plankton are fundamental in the ocean's food web, representing a primary source of nutrition for many marine species.

Pelagic copepods live in a vast and dispersive environment, constantly traversed by turbulent currents. Most species are virtually blind, some having a single light-sensitive eye. Given the size and speed of most species, copepods experience water as a viscous fluid. This greatly influences their swimming abilities [START_REF]Life in transition: Balancing inertial and viscous forces by planktonic copepods[END_REF]. Under these conditions, daily Darwinian challenges, such as escaping predators, hunting preys and finding mates for reproduction, become extremely challenging. Random encounters with other individuals are not sufficiently frequent to promote a survival of the species. Light detection has been shown to be useless for copepods in many cases [START_REF] Kiørboe | What makes pelagic copepods so succesful?[END_REF]. The reasons behind copepods biological success are now sought in the sensory organs they developed to explore their environment and in the ability they have evolved to swim. They acquire information from the surrounding flow [START_REF] Kiørboe | What makes pelagic copepods so succesful?[END_REF] through non-visual sensations including chemical [START_REF] Strickler | Calanoid copepods, feeding currents, and the role of gravity[END_REF][START_REF] Pfaffenhöfer | Perceptive performance and feeding behavior of calanoid copepods[END_REF] and hydrodynamic perception [START_REF] Strickler | Intra-and interspecific information flow among planktonic copepods: receptors[END_REF]. They manage to escape from predators and to catch preys and food particles with jumps, characterized by great accelerations up to 100 body lengths per second [START_REF] Kiørboe | Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods[END_REF].

Inspired by these organisms, this manuscript aims to model analytically and numerically two specific features that ease the success of these crustaceans. First, copepods experience water as a viscous fluid, in a regime where viscous and inertial forces compete. Although many results for swimmers moving in the creeping flow limit are known [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF], much has to be done to fully uncover the effects of fluid inertia on the flow disturbances emitted by swimmers. We model the hydrodynamic signals emitted by predators, preys and passive particles at low but non-negligible Reynolds number. Second, the mechanosensitive abilities of copepods have been experimentally shown (Kiørboe and Visser, 1999;[START_REF] Viitasalo | Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities[END_REF]. We provide two new strategies aquatic organisms might exploit to process the hydrodynamic signals measured.

Before digging into mathematical discussions, we review the concepts of fluid inertia and mechanosensitivity in a more general way.

Inertia effects for swimming organisms

Swimming represents natural locomotion in a fluid. A swimmer, to self-propel, moves its body (and/or its body extremities) in a coordinated fashion to interact with the fluid medium. There exist other mechanisms that allow self-propulsion in liquids, we do not consider here [START_REF] Walsby | Gas vesicles[END_REF]. Interestingly, the physics governing the swimming of an organism changes with its size and swimming speed.

The world of plankton includes organisms whose size spans from ∼ 1 µm up to tens of centimeters. Assuming U is the typical speed of the organism, a its typical dimension and ν f is the kinematic viscosity of the fluid, one defines the Reynolds number of the organism Re p , as

Re p = U a ν f .
In general, the Reynolds number is used in physics to balance the importance of inertial versus viscous forces. At low Reynolds, when an organism tries to move, the momentum induced by inertial forces is damped by fluid viscosity. An organism whose size is about a ∼ 50 µm moving in water at the speed of U = 200 µm, i.e. at four body-lengths per second, has an associated Reynolds number Re p 1. It experiences the same physics of a sphere of a = 1cm diameter moving at U = 0.1 cm/s in sour cream. Imagine to push the sphere for some time at that speed and then to stop and to observe after how much time it would halt. As the sphere in sour cream, a microorganism experiences water as a viscous fluid.

We list here some interpretations of the Reynolds number [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. One can identify two typical time scales of the fluid velocity field. Consider for instance the time needed to transport convectively, i.e. at speed U , an amount of fluid over a distance a, τ conv = a/U . The time needed to overcome the same distance by a simple diffusive process is τ diff = ν f a 2 /U . When the Reynolds number is very small, the diffusive time is much shorter than the advective time and the flow dynamics is lead by diffusion.

One can also observe that viscous forces in a fluid can be written in general as f viscous = ν f U L and inertial forces as [START_REF] Purcell | Life at small reynolds number[END_REF]. These forces can be made dimensionless with a quantity defined as F = ν 2 f /ρ f , where ρ f is the fluid density. Now, F = 1 nN in water and Re p = f viscous /F = (f inertial /F ) 1/2 . [START_REF] Purcell | Life at small reynolds number[END_REF]. For a scallop, slowly alternating the two configurations (State 1 and State 2) in a perfectly reversible cycle forbids net motion. Panel (b) is a schematic illustration of the motion of cilia distributed over the surface of a microorganism. The single cilia perform an asymmetric pattern. Through hydrodynamic interaction, cilia perform organized beating that allows propulsion [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. Panel (c) shows different swimming strategies. Paramecium and opalina algae move thanks to the common beating of the cilia displaced over their surface. An escherichia coli bacterium propels by twisting around the symmetry axis of its body. A chlamydomonas alga moves along helix-like trajectories activating two appendages stuck on its front section. the scallop are equivalent, and the cycle is reversible, the organism ends up in its starting position. This was the example used by [START_REF] Purcell | Life at small reynolds number[END_REF] to introduce his scallop theorem about the kinematic reversibility of low Reynolds number flows (see Fig. 2a).

f inertial = ν f U 2 /L 2
Marine organisms have developed multiple techniques to swim in a viscous fluid regime [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. For instance, some perform nonreciprocal motions: they screw into the fluid or they beat appendages in asymmetric cycles to move (see Fig. 2b). The key is that they exploit drag to swim. Scientific literature is rich in model for motile swimmers at low Reynolds number (see Fig. 2 and literature cited in [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF].

The low Reynolds number limit does not apply to organisms whose size and speed exceed some limits, such as copepods [START_REF] Kiørboe | Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods[END_REF]. Copepods grow as they age [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF] and swim with different swimming gaits [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]. In some cases, they cruise through water [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF]. In other cases, they jump reaching dizzying speeds of about 100 body lengths per second [START_REF] Kiørboe | Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods[END_REF]. Sometimes one can consider their swimming to develop in the regime of low Reynolds number, sometimes not. In this second case, inertial forces matter. Experimentally, the importance of inertial forces for swimming microorganism have been observed [START_REF] Hamel | Transitions between three swimming gaits in paramecium escape[END_REF][START_REF] Jiang | Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt?[END_REF][START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF]. Fluid inertia breaks the time-reversibility of low Reynolds number flow [START_REF] Lauga | Continuous breakdown of Purcell's scallop theorem with inertia[END_REF] and could lead to new propulsion mechanisms.

The effects of fluid inertia on the dynamics of non motile (incapable of selfpropulsion) particle, have been deeply studied in the past 70 years. We know fluid inertia is key in understanding some experimental evidences [START_REF] Segré | Behaviour of macroscopic rigid spheres in poiseuille flow part 2. experimental results and interpretation[END_REF][START_REF] Basset | A treatise on hydrodynamics: with numerous examples[END_REF][START_REF] Boussinesq | Sur la résistance qu'oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables[END_REF]. In chapter 1 of this manuscript, we list results about the significance of fluid inertia effects on the motion of non motile particles [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF]; ?; [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF][START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF][START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF].

The significance of inertial effects on swimming dynamics is now of central interest in the active matter community. In chapter 2, we show how it is possible to translate to motile particles known results for non motile particles, thanks to a procedure based on the method of matching asymptotic expansions [START_REF] Hinch | Perturbation methods[END_REF], a mathematical technique widely use to calculate fluid inertial effects [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF][START_REF] Proudman | Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder[END_REF]. We explain the assumptions needed to employ such procedure and we describe cases in which it fails. With this, we derive the analytical expression for the dynamics of a swimming spherical particle in time dependent motion (Wang and Ardekani, 2012b). Then, we apply the procedure to determine the dynamics of a spherical particle moving in a pure shear flow and in a density stratified fluid.

In order to apply the procedure described in chapter 2, we need to neglect a specific inertial effect known as: the Oseen effect. In chapter 3 of this thesis, we relax this assumption. We provide the analytical solution to the equations governing the motion of the fluid around an unsteady swimmer when Oseen inertia is not negligible. We describe analytically the dynamics of the swimmer and of the fluid. We show that this work turns out to be a generalization of the result for non motile particle derived by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF].

The flow emitted by a swimmer is a leading source of information for blind microorganims. Its intensity and topology elicit sensory mechanism of marine organisms supplying details about the source of that flow. In the next section we provide an introduction to mechanosensing: the ability of marine organisms to sense hydrodynamic signals. Figure 3: In panel (a), a picture of a copepod in the adult stage (photo credits Wikipedia). Panel (b) illustrates schematically a seta bent by flow shears. The bending triggers neuronal activity, and the sensation is transmitted to the copepod brain. served in various eukaryotes species [START_REF] Fenchel | Motile chemosensory behavior of phagotrophic protists: mechanisms for and efficiency in congregating at food patches[END_REF][START_REF] Wan | Origin of eukaryotic excitability[END_REF].

It has been experimentally observed that copepods are sensitive to hydromechanical signals (Kiørboe et al., 1999;[START_REF] Tiselius | Sensory capabilities and food capture of two small copepods, paracalanus parvus and pseudocalanus sp[END_REF][START_REF] Paffenhöfer | Ultrastructure of cephalic appendage setae of marine planktonic copepods[END_REF]. The hydrodynamic signals are quantities triggered by fluid motions, such as pressure, density and velocity fields (Colvert et al., 2017a). Copepods hold two antennae stuck on their front head, which are important mechanosensitive apparatus [START_REF] Friedman | Comparative morphology and functional significance of copepods receptors and oral structures[END_REF]. Antennae are covered by hairlike sensory structures called setae. Setae bend due to the spatial variations in the flow velocity and elicit a neuronal response (see Fig. 3b).

is due to a symmetry of the detected signal. A single measure of flow gradients prevents solving this ambiguity of the sensed signal [START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF][START_REF] Takagi | Directional hydrodynamic sensing by free-swimming organisms[END_REF]. In this manuscript, we show how this issue can be solved with a stereo-sensory mechanism relying on two instantaneous measures of the hydrodynamic cue.

In the chapter 4, we model a sensory system, whose geometry is inspired by copepods antennae. This system measures the flow gradient twice. The gradients are measured along a given direction, therefore the information is in the form of two 3-dimensional vectors. We define two sensory-control laws. The first relying on the direction of the measured vectors. The second on their magnitude. We show both strategies are successful in solving the ambiguity of the measured sensory cue for simple flows with low Reynolds number. We assess the robustness of these strategies to noise.

Chapter 1

Inertial effects on passive particles

This first chapter provides a list of results about the dynamics of spherical passive particles in viscous flow. We mention the Stokes equations and we derive the solution in spherical coordinates. We introduce fluid inertia effects and we list known leading results on the effects of fluid inertia on passive particle dynamics.

Introduction

In this chapter, we give a list of results about the dynamics of a single spherical passive particle translating in a viscous flow. First, we detail the creeping flow limit, concerning the motion of particles undergoing an over-damped dynamics, i.e. particles translating in a fluid where viscous friction overcomes any other force source. Second, we describe some of the leading results of the literature about the role of fluid inertia when the particle leaves the over-damped limit. This chapter is thought as a pedagogical introduction to the techniques useful to derive the hydrodynamic force and the fluid flow generated by an active particle moving at small Reynolds number.

The physics behind a translating particle in a fluid is described by classical Newton's laws. In particular, in this chapter we consider the case of a spherical solid particle set at position x p in Galilean reference frame R (see for clarity Fig. 1.1), whose at speed can be written as v p (t) = dx p dt .

(1.1)

All along this work, we consider the fluid to be Newtonian, incompressible and homogeneous. The fluid surrounding the particle has a non uniform velocity v f (x, t). Here x is expressed in the Galilean reference system R fixed in the laboratory. 

Dynamical equation of a translating particle

The dynamics of a particle in a fluid is determined by the action of an hydrodynamic force f h and of external forces (e. g. buoyancy, electromagnetic force), noted F ext . For a particle with mass m p , the dynamical equation is

m p dv p dt = f h + F ext .
(1.2)

We remind here, for the sake of completeness, that the force a fluid exerts on a particle can be calculated as

f h = Sp Σ • n dS p , (1.3)
where Σ is the stress tensor generated by the fluid and n is the unit vector normal to the particle surface S p . The stress tensor is

Σ = -I p + T , (1.4)
where I is the identity tensor and p is the pressure. The viscous stress tensor T is obtained computing the strain of the velocity vector field v f as

T = µ f 1 2 ∇v f + (∇v f ) T , (1.5)
where µ f is the fluid dynamic viscosity.

The velocity field and the pressure of the fluid determines the particle dynam-1.1. Introduction ics. The equations describing the flow field are the Navier-Stokes equations

ρ f ∂v f ∂t + v f • ∇v f = -∇p + µ f ∆v f + F ext , (1.6)
where we introduced the fluid density ρ f . All quantities in Eq. (1.6) are expressed with respect to a laboratory-fixed reference frame R. As mentioned, the fluid flow considered is incompressible. In a mathematical framework, the incompressibility condition is expressed as

∇ • v f = 0 .
(1.7)

In order to solve the Navier Stokes equations, one needs to define the boundary conditions and the initial conditions of the problem. Boundary conditions are inferred by physical assumptions. Particularly, for a solid body, the fluid velocity is assumed to match that of the solid particle at the surface of the particle. Therefore, one introduces the so called no-slip boundary condition on the particle surface. To respect the principle of energy conservation, one sets a second boundary condition at a far distance from the particle. Indeed, since the size of the particle is considered small with respect to the domain of interest, one can assume that, far from the particle, the flow will move with the same velocity as if the particle would not exist. In other words, the flow field induced by the particle motion drops to zero far away from the particle. The unperturbed flow is named here U ∞ (x, t). Such boundary conditions (the condition at infinity and the no-slip boundary conditions) can be formalized as v f = v p (t) for xx p ∈ S p ,

(1.8a)

v f → U ∞ (x, t) for |x -x p | → ∞ .
(1.8b)

Note that the boundary conditions on the sphere differ when the particle is free to rotate. In this case, the no-slip condition becomes

v f = v p (t) + ω p × (x -x p ) for x -x p ∈ S p ,
(1.9)

where ω p is the angular velocity of the particle.

There exists a more convenient way to express the flow field equations in many cases relevant for the present work. In order to derive it, we impose a change of variables as r = xx p (t) and w(r, t) = v f (x p + r, t) -U ∞ (x p + r, t) .

(1.10)

One can see the v f as the total flow, U ∞ as the background flow and the disturbance produced by the particle as w. Let us show how the Navier-Stokes equations are modified by these choices. Such change of variables does not induce any change for the spatial derivatives, therefore

∂ ∂x i = ∂ ∂r i
with i = 1, 2, 3 .

(1.11)

As a consequence, the incompressibility condition for the flow field w is

∇ • w = 0 .
(1.12)

A little excursus here is needed to explain how the time derivative adapts to the change of variables in Eq. (1.10) in order to maintain the physical consistency of Eq. (1.6). Formally, the field w can be written as w(r(x, t), t) .

( where, with the 'parentheses' notation, we clarify which variable is kept fixed while applying the time derivative. Using Eqs. (1.10,1.13,1.14), the Navier Stokes equations become

ρ f ∂w ∂t r -ρ f v p •∇w+ρ f w•∇(w+U ∞ )+ρ f U ∞ •∇w = -∇p+µ f ∆w+F ext . (1.15)
The change of variables imposed interests also the boundary conditions of the problem which transform into w = v p (t) -U ∞ (x p + r, t) for r ∈ S p , (1.16a) w = 0 for r → ∞ .

(1.16b)

where r = |r| is the distance from the particle center. In case the rotational dynamics of the particle is non-negligible, the boundary condition at the surface is written as w = v p (t) + ω p × r -U ∞ (x p + r, t) for r ∈ S p .

We now focus on the nature of the flow field U ∞ . All along the present manuscript, we will consider the dimension of the particle to be sufficiently small, so that the background flow field U ∞ can be expressed as a superimposition of a uniform flow and a linear flow at the scale of the particle. In other words, we will consider U ∞ (x p + r, t) = U ∞ (x p , t) + A • r .

(1.17)

With this assumption, the Navier-Stokes equations, Eq. (1.6), can be rewritten as [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]) (1.18) or in a more compact form

ρ f ∂w ∂t r -ρ f v p • ∇w + ρ f w • ∇w + ρ f A • w +ρ f U ∞ (x p , t) • ∇w + ρ f A • r • ∇w = -∇p + µ f ∆w + F ext ,
ρ f ∂w ∂t r +ρ f (w•∇w-u s •∇w)+ρ f A•w+ρ f A•r•∇w = -∇p+µ f ∆w+F ext . (1.19)
Here we introduced u s = v p (t) -U ∞ (x p , t) , (1.20) whose intensity will be defined as U s = u s . This velocity is known as slip velocity and quantifies the speed of the particle center of mass relative to the background fluid velocity at the position of the particle. The boundary conditions of the problem can be equivalently expressed considering the symmetric and antisymmetric part of the background flow gradients as A = S + Ω. Commonly, the symmetric matrix S is named the flow strain, while the Ω is proportional, through a factor 1/2, to the flow vorticity. In terms of these quantities, the boundary conditions become

w = u s -S • r + ω s × r for r ∈ S p , (1.21a) 
w = 0 for r → ∞ . (1.21b)
Here we denoted ω s × r = ω p × r -Ω • r, the slip angular velocity.

It is worthy to describe here the physical meaning of the change of variables adopted. The vector quantities in Eqs. (1.19, 1.16) are expressed as measured by an observer fixed in the laboratory frame. Instead, the set of spatial coordinates chosen, i. e. r, is expressed with respect to the center of the translating particle.

Inertial parameters

The physical meaning of the terms in the Navier-Stokes equations is better understood when the equations are rewritten in dimensionless form. For the dimensionless variables we measure lengths with a characteristic size a, times with a characteristic time τ c and velocities with a characteristic velocity U c . All along this manuscript, the typical length a will represent the particle radius. Fluidvelocity gradients are usually made dimensionless with a characteristic strain rate s c . The variables involved in Eq. (1.19) are expressed in terms of these character-Chapter 1. Inertial effects on passive particles istic scales and Eq. (1.19) becomes

a 2 ν f τ c ∂w ∂t r + aU c ν f w • ∇w -u s • ∇w + a 2 s c ν f (A • w + A • r • ∇w) = -∇p + ∆w + F ext .
(1.22)

From now on, all variables will be considered dimensionless if not clearly stated.

The dimensionless prefactor before each term in Eq. (1.22) are identified in literature as

Re p = aU c ν f , Re s = a 2 s c ν f , Sl = a U c τ c and Re p Sl = a 2 ν f τ c . (1.23)
Respectively, Re p is known as particle Reynolds number, Re s as shear Reynolds number and Sl as Strouhal number. In general, the left hand side terms of the Navier Stokes equations gathers inertial terms and the right hand side instead accounts for the viscous-diffusive and pressure forces.

More in details, each term in Eqs. (1.22) is linked to a different fluid inertia force. The particle Reynolds number Re p describes how convective terms based on the slip-velocity affect the dynamics of the flow. Its intensity is proportional to the particle typical size a and to the typical velocity scale of the problem U c , which in case of a passive particle is usually chosen as the magnitude of the slip velocity at the surface of the particle U s = U c . When Re p is vanishingly small, all inertial effects are negligible, the fluid flow follows a time independent diffusionlike equation respecting the well-known steady Stokes dynamics [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]), which will be described in details in the following sections.

Fluid convection can make a qualitative difference on the dynamics because it can carry the fluid disturbance away from the particle more rapidly than diffusion alone. In physical dimension, the magnitude of fluid convective effects and that of viscous flow effects are balanced as

ρ f u s • ∇w µ f ∆w ≈ ρ f w • ∇w µ f ∆w ≈ O U c a ν f ≈ O(Re p ) .
(1.24)

We will say that the flow dynamics experiences convective inertial effects when terms proportional to Re p are non-negligible in the Navier-Stokes equations. In other words, one can imagine to build a dimensional distance from the particle O = a/Re p , (1.25) defined 'Oseen length, at which the Stokes approximation breaks down [START_REF] Proudman | Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder[END_REF]. In this far domain, the fluid flow cannot be considered independent on convective inertial effects anymore. This is one of the way to observe that Stokes equations are singular (see chapter 2 for explanations and [START_REF] Hinch | Perturbation methods[END_REF].

Whenever the flow field turns out to be spatially inhomogeneous, the shear 1.2. The Stokes limit Reynolds number Re s quantifies how the external fluid-velocity gradients affect the disturbance caused by the particle. Explicitly computing the relative magnitude of the shear-induced convection and the viscous effects, we have

ρ f A • r • ∇w µ f ∆w ≈ ρ f A • ∇w µ f ∆w ≈ O a 2 s c ν f ≈ O(Re s ) . (1.26)
The flow dynamics is said to be influenced by shear-induced convective inertial effects when terms proportional to Re s are non-negligible.

The relative importance of the unsteady effects is instead determined by balancing the unsteady and the viscous terms of Eq. (1.22)

ρ f ∂w/∂t µ f ∆w ≈ O a 2 ν f τ c ≈ O(Re p Sl) .
(1.27)

When Re p Sl terms are non-negligible, the flow dynamics is time dependent and influenced by unsteady inertial effects. We now consider the physical meaning of the unsteady inertia. The typical time scale τ c of evolution of the flow dynamics is assumed to be proportional to the time dependence of the boundary conditions over the particle surface. The time dependent motion of the particle induces a time dependent perturbation in the flow. In the region nearby the particle the flow is affected by the motion of the particle more than the flow in the far distance from it, as stated also by the nature of the boundary conditions. This modifies the stress over the particle surface. Since in the next chapters we will focus on studying the dynamics of swimming organisms, it is important to understand to which extent ow much the time characteristic of swimming, such as frequency, affects the dynamics. The perturbation diffuses in the domain with a typical time scale O(a 2 /ν f ). The time-rate of change of the perturbation is lead by the typical time τ c . The dimensionless number Re p Sl = a 2 /ν f τ c balances two time-scales. Whenever the typical frequency τ c is smaller than the diffusive timescale, the flow cannot be considered steady, with respect to the particle dynamics, and therefore unsteady effects matter.

All along the manuscript we will consider the particle Reynolds number Re p , the shear Reynolds number Re s and the unsteadiness parameter SlRe p to be small with respect to unity. The leading dynamics will be guided by the viscous effects. In the following sections we show the Stokes limit, describing the dynamics of a flow in the limit of negligible inertia. Further on we present a detailed list of leading results for the dynamics of particle undergoing fluid convective effects and unsteady effects.

The Stokes limit

When the particle Reynolds number is asymptotically small, Re p 1, the problem reaches the Stokes limit, also known as creeping flow limit. In such limit, the fluid dynamics is over-damped, i. e. dominated by viscosity. Friction forces dominate the dynamics of the fluid. In order to write the equations describing the fluid dynamics in this limit, one further consideration is needed. There exists two classes of over-damped problems: the steady Stokes problem and the unsteady Stokes problem. If the time dependence of the fluid is non-negligible, the unsteady effects matter and the first term in the Navier Stokes equations might be relevant and thus non negligible. In this case the equation describing the flow dynamics are the unsteady Stokes equations [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF])

Re p Sl ∂w ∂t = -∇p + ∆w + F ext . (1.28a)
When the unsteady term is negligible, all the terms on l.h.s of Eq. (1.22) can be neglected. In the limit Re p 1 and Sl 1, Eqs. (1.22) can be approximated with the steady Stokes equations [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF] -∇p + ∆w + F ext = 0 .

(1.29a)

Below we present first the solution to the steady Stokes problem and then we will show how to deal with the unsteady Stokes equations.

Steady Stokes problem

Solution for a translating particle at constant speed

We introduce here a well known problem, which was solved by Stokes in 1845. The analysis describes the fluid flow generated by the translation at constant speed of a spherical particle in a still fluid. It is a common situation in physics, happening for instance for spherical particles released in a still fluid, moving under the effect of gravity or charged spheres inside a viscous flow undergoing the effect of an external electric field. The analysis concerns the dynamic of the particle after the initial transient, when the particle reaches a constant speed. This constant speed results from the balance between buoyancy and the viscous drag (in case other external forces are negligible).

Because of the geometry of the particle, the problem is solved in spherical coordinates. The flow solution is assumed to be invariant under rotation around the axis defined by the direction of the particle motion, i.e. the axis parallel to v p . In the spherical basis {e r , e θ , e ϕ }, with |x| = r and θ the angle between e r and v p , it can be expressed as the axisymmetric flow.

The flow field is independent on ϕ and has no components along e ϕ . Because of energy conservation, such flow should be vanishingly small at a large distance from the particle. Since the particle is translating at constant speed, the boundary conditions on the particle surface for this problem can be defined as in Eq. (1.16). The solution proposed by Stokes is valid for incompressible flow, thus

∇ • w = 0 . (1.30)
Therefore it is possible to write the flow as the curl of a vector potential A, in the form w = ∇ × A(r, θ) .

(1.31)

Since the flow has no components along e ϕ , the vector potential can be written as

A = A(r, θ)e ϕ .
(1.32)

The dynamical equation therefore transforms as

∆ 2 A ϕ (r, θ) = 0 , (1.33)
where ∆ is the Laplacian operator. This equation can be solved by separation of variables method. Once Eq. (1.33) is solved, the components of the flow can be derived, from Eq. (1.31), as [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF])

w r = 1 r sin θ ∂ ∂θ (A ϕ sin θ) , w θ = - 1 r ∂ ∂r (rA ϕ ) .
(1.34)

The components of the flow velocity are explicitly written as

w r = v p 3a 2r - a 3 2r 3 cos θ , w θ = -v p 3a 4r + a 3 4r 3 sin θ , (1.35)
where the particle radius a and the particle speed v p = |v p | have been reintro-duced to give the physical expressions of the velocities. Now, it is interesting to note that the speed of the particle v p has been assumed known. In real situations, this speed results from the balance of the forces acting on the particle. In the case of a free falling particle, buoyancy is balanced by viscosity. One thus needs to quantify the viscous drag to derive v p . Let us compute the hydrodynamic force given by Eq. (1.35). By integrating the stress tensor on the particle one finds [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF] Sp -P n dS p = -2πµ f av p , and

Sp

-T • n dS p = -4πµ f av p .

(1.36)

Therefore, the hydrodynamic force on the particle can be written as

f h = -6πµ f av p .
(1.37)

The particle will move at constant speed when no net force acts on it. In the Stokes limit, buoyancy, viscous drag and external forces balance. Thus,

f h + F ext = 0 . (1.38) With F ext = 4 3 πa 3 (ρ p -ρ f )g, the velocity of the particle is v p = 2(ρ p -ρ f )a 2 g 9µ f . (1.39)
This calculation is easily extended to the case of a particle moving at constant speed in a steady uniform flow U ∞ , even when the particle velocity and the fluid velocity are not parallel. In this case

f h = 6πµ f a(U ∞ -v p ) .
(1.40)

It is important to make some remarks about the fluid velocity w derived in this section. The radial and tangential components of the fluid velocity in Eq. (1.35) contain terms proportional to r -1 and r -3 . As soon as the distance from the sphere increases, r a, the second terms of both expressions turns out to be negligible with respect to the first one. This leads to some comments that will be useful later on. First, it can be proven that the only contribution to the hydrodynamic force f h comes from the first terms of Eq. (1.35), proportional to r -1 . This can be derived by explicitly computing the integrals in Eq. (1.36). Second, the flow field far from the particle can be well approximated with the terms proportional to r -1 in Eq. (1.35). In cartesian coordinates, this approximated version of the creeping flow can be written as

w x = v p 3a 4 zx r 3 + O a 3 r 3 , w y = v p 3a 4 zy r 3 + O a 3 r 3 , w z = v p 3a 4 1 r + z 2 r 3 + O a 3 r 3 .
(1.41)

This leading order version of the solution is named stokeslet and contains all the information useful to compute the Stokes force on the particle f h .

Generalized solution for Stokes equations: the Lamb solution

In 1945, Horace Lamb outlined a general solution of the Stokes equations in spherical coordinates. The intuition comes from taking the divergence of the Stokes equations and observing that the pressure field p is thus solution of a Laplace equation ∆p = 0 .

(1.42)

Lamb considered an expansion of the pressure field in harmonic polynomial basis

p = ∞ n=-∞ p n . (1.43)
As a consequence (details are given in [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF], the velocity field can be expressed as

w = ∞ n=-∞ ∇ × (rχ n ) + ∇ϕ n + (n + 3) 2µ f (n + 1)(2n + 3) r 2 ∇p n - n µ f (n + 1)(2n + 3) rP n (1.44)
where χ n , ϕ n and P n are solid spherical harmonics. Thanks to this solution, [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF] implemented a systematic method to derive the solution of the Stokes equations given the boundary conditions on the particle surface. This method is valid for any background flow that can be expressed in terms of harmonic polynomials. Note that the solution proposed by Lamb is valid everywhere in the domain, inside and outside the particle surface, thus, for r ≤ a and for r > a. If, as in the example shown in the previous section, the analysis is limited to the domain outside the particle, then, only the terms of order -(n + 1), n ≥ 1 are valid solution to the Stokes equations, since they can match the boundary conditions at infinity. Thus Eq. (1.44) transforms into

w = ∞ n=1 ∇ × (rχ -(n+1) ) + ∇ϕ -(n+1) - (n -2) µ f 2n(2n -1) r 2 ∇p -(n+1) + (n + 1) µ f n(2n -1)
rP -(n+1) .

(1.45)

Each component of this solution contributes to the general flow expression with a term whose intensity is proportional to a n /r n . Now, whatever the form of the non perturbed flow field U ∞ , since the dimension of the particle is negligible, it is possible to expand the unperturbed velocity field at the position x p as

U ∞ (x p + e r ) = U ∞ (x p ) + ∇U ∞ (x p ) • e r + . . . . (1.46)
The first term of this expansion, being a uniform flow, can be written in terms of harmonic function of first order, namely cos θ and sin θ. The leading order terms of the Lamb solution decrease in space as function of r -1 . Furthermore, it is possible to show that the second term of the Taylor expansion presented in Eq. (1.46) is proportional to harmonic function of second order, namely cos 2 θ, sin 2 θ and cos θ sin θ. Thus, the second term of the corresponding Lamb solution radially decreases as a 2 /r 2 . This discussion is valid, whatever the order -(n + 1) of the term of the Lamb solution considered.

This means that, for any form of the unperturbed flow, the perturbation induced by the particle moving is well approximated by the first order solution, when the dimension of the particle is negligible with respect to the typical length scale of the shear. The intensity of this solution is proportional to the uniform flow given by v p -U ∞ (x p ). Physically, this simply means that, whenever the particle is small enough to not extend over a region in space where the non-uniformity of the flow becomes important, then the effect of the flow is well approximated by a uniform flow U ∞ (x p ). The dynamics of the particle would then be affected by a simple uniform flow whose relative velocity with respect to the particle speed will be v p -U ∞ (x p ). This results is of fundamental importance for different analysis that will be presented later on in this manuscript.

Solution by multipole expansion

The Stokes equations are linear. One can look for fundamental solutions and then superimpose them to model flows in the creeping flow limit. In this sense, the most basic solution represents the flow due to a point force like f δ = f q δ(r). Here δ is a three dimensional Dirac delta-function, q is a unit vector stating the direction of the force, and f the force magnitude. We define f = f q. The equations leading the dynamics of the flow generated by f δ are, in dimensional variables, the inhomogeneous Stokes equations [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF]) ∇ • w = 0 .

-∇p + µ f ∆w + f δ = 0 , (1.47a) (a) (b) (c)
(1.47b)

The solution to this equation is

w S (q, r) = G • f . (1.48)
where

G = I r + (I • r) r r 3 (1.49)
is known as the Stokes Green tensor [START_REF] Kim | Microhydrodynamics: principles and selected applications[END_REF]. Here I is the identity matrix.

Consider again the solution to the Stokes equation for the spherical particle in Eq. (1.35). The particle dimensions are negligible when the distance from the particle grows considerably with respect to the particle size, r a. Note that, substituting Eq. (1.37) into Eq. (1.35) one have

w = - 3a 4r + a 3 4r 3 f h 6πµ f a - 3a 4r - a 3 4r 3 (f h • r)r 6πµ f a r 2 .
(1.50)

Taking the limit a/r → 0 of Eq. (1.50), one recovers the expression in Eq. (1.48). At far distance from the particle, the disturbance induced is approximated as the flow due to a point force f δ , whose intensity is equal and opposite to the hydrodynamic force f h experienced by the particle in the Stokes limit.

The derivatives of the fundamental solution, Eq. (1.48), are solutions to the Stokes equations as well, since the equations are linear. Such derivatives can be expressed in the form of a multipole expansion analogous to the one used to define the electric field due to multiple point charges localized at short distance one from each other. Note anyway that the source of a flow field is a vector, and not a scalar as in the case of the electromagnetic field. Therefore the expansion contains tensor forms. The expansion can be calculated at position p as a Taylor series expansion as [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF] (1.51) where p can be read as the 'direction' of application of the multipole. In other words, as the 'pole' moments of the singularity. Two fundamental solutions extensively used in biophysics are represented by the multipole of order 1 and 2. The multipole of order 1 is the Stokeslet and the multipole of order 2 is known as Stokes doublet. Mathematically [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF] 

w = w S -p • ∇w S + 1 2 (p • ∇) 2 w S + . . . ,
w D (r, p, q) = (p × q) × r r 3 - (q • p)r r 3 + 3 (q • r)(p • r)r r 5 . (1.52)
The symmetric part of this multipole, named Stokes stresslet is obtained when p is parallel to q. In this configuration, the two forces of the doublet p•∇w S point in direction q and -q and are aligned along p = q. The stresslet is commonly used to model self-propelling particles: one force represents the thrust of the organism and the other the viscous drag of the flow. Small particles, in certain conditions, displace applying on the flow a force equal and opposite to the drag the fluid operates on them. The far field approximation of the flow they generate is well approximated by the Stokes stresslet. We will come back on this point in the next chapters. Images for the first three fundamental solutions to the Stokes equations are presented in Fig.

(1.3). The third order term of the expansion, Eq. (1.51), is named Stokes quadrupole.

Unsteady Stokes equations

In previous sections, we detailed some techniques to solve the steady Stokes equations (1.29). Such equation is valid when the flow can be assumed steady. As a consequence, all solutions derived in the previous section are time reversible. As well, the Stokes equations hold another interesting property: the 'instantaneity'. The flow at any time can be defined without knowing its history everywhere in the domain. Various situations do not respect the assumption of steadiness. As we will see in the next chapters, the main focus of the present work is to analyze active particles that moves thanks to self-propelling mechanisms, so the flow time dependence could be of interest. Here we show how the time dependence of the perturbed flow modifies the shape of the hydrodynamic force on the particle. For this analysis I thank my supervisor F. Candelier, who provided me an elucidate explanation of the problem.

Unsteady motion of a sphere in uniform flow

In general, when the inertial terms are included in Eq. (1.22), the problem becomes soon too complex and analytical solution can only be approximated. It turns out that, with some hypothesis, it is possible to solve Eq. (1.22) analytically, even in presence of the unsteady term. This is the case for a particle moving with a time dependent motion in a uniform flow. As already discussed, the intensity of the terms involved in the complete Navier-Stokes equations can be parametrized by means of dimensionless quantities: the Reynolds and the Strouhal numbers. The case discussed in the following sections assumes that the advective effects due to the flow field are negligible with respect to its time dependence. Such limit is equivalent to consider where the boundary conditions are

w → 0 for r → ∞ (1.55a) w = v p (t) -U ∞ for r ∈ S p . (1.55b)
The analysis of the flow generated by a sphere in unsteady motion in a steady uniform flow was firstly performed by [START_REF] Boussinesq | Sur la résistance qu'oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables[END_REF] and then by Basset (1888) some years later. The goal of their analysis was to derive the hydrodynamic force on a particle of spherical shape moving with time dependent speed v p = v p (t) in a uniform flow.

Since the Stokes equations are linear, it is possible to derive a solution by taking the Fourier transform in time of the particle velocity such that (see also [START_REF] Landau | Fluid Mechanics[END_REF] 

v p (t) = 1 2π ∞ -∞ U ω (ω)e -iωt dω and U ω (ω) = 1 2π ∞ -∞ v p (t)e -iωt dt .
(1.56)

The problem translates into an infinite set of equations, whose boundary conditions can be written as w = U ω e iωt for r ∈ S p .

(1.57)

The solutions to these equations lead to the expression of the force induced by a particle whose motion is time periodic with frequency ω. If one wants to recover the solution for the case of a general particle translation, it will only suffice to add all these terms in order to recover the Fourier transform of the specific motion considered. The force on the sphere for a motion of specific frequency ω can be written as [START_REF] Landau | Fluid Mechanics[END_REF]) 

F ω = -6πaµ f 1 - ia 2 ω 9ν f + a 2 ω ν f 1 2 (1 -i) √ 2 U ω . ( 1 
f h (t) = -6πaµ f v p (t) - 1 2 m f dv p (t) dt -6ρ f a 2 √ ν f π t 0 dv p (τ ) dτ dτ √ t -τ .
(1.60)

The first term of this expression is the Stokes drag. The second term is known as the added mass term, and the last term is known in literature as the history force. This integral reflects the contributions of all the perturbations the particle made at times 0 < τ < t. Evolutions in time of the history and Stokes terms of Eq (1.60) are shown in Fig.

(1.4). In the next section, the meaning of each term involved in Eq. (1.60) will be explained detailing an illustrative study performed by [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF] and revisited some years later by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF].

Force on a sphere in sudden acceleration in uniform flow

This section describes the dynamics of a particle moving in a steady flow after an impulsive acceleration from rest. The goal here is to provide to the physical meaning of the terms present in Eq. (1.60). The full solution to the problem can be found in the papers by [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF] and [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF]. Here we detail only the expression of the hydrodynamic force on a spherical particle whose motion can be mathematically expressed as

v p (t) = U H(t) , (1.61)
where H(t) is the Heaviside step function. Substituting such expression into Eq. (1.60), one obtain

f h = -6πaµ f U H(t) - 1 2 m f U δ(t) -6ρ f a 2 √ ν f π U √ t .
(1.62)

We now explain the meaning of each of these terms one by one. The first one represents the Stokes drag. The second one corresponds to the added mass, the mass of fluid set in acceleration by the instantaneous motion of the particle. The particle accelerates a certain amount of fluid around it that, because of the principle of action-reation, accelerates the particle back with a force proportional to the volume of liquid displaced by the particle. The value of the coefficient depends on the geometry of the particle in motion and for a sphere is 1/2. The third term is the history force. When the particle starts to move, the fluid in the region near the sphere is instantaneously set in motion. This creates a large velocity gradient near the surface. The force exerted on the particle is proportional to this gradient (see Eq. (1.3)). At the beginning of the motion, the gradients are strong and the 1. Here the parameters chosen are a = 1.7 mm, ρ f = 1 , ν f = 10 -6 . So that we have Re p = 0.1 and Re p Sl = 3.

intensity of the history term is maximum. Then, the force decreases as 1/ √ t. Let us now see by means of simple arguments how this time dependency arises.

The force the particle undergoes because of the induced flow gradients can be written as

f h ∝ µ f ∆w L(t) S p , (1.63) 
where L(t) is the characteristic size of the velocity gradients at t. The only physical mechanism responsible for the increase of L(t) is diffusion, as clear from the unsteady Stokes equations. Therefore the typical length L(t) varies as

L(t) ∼ ν f t . (1.64)
Substituting this expression into Eq. (1.63), we obtain

f h ∝ µ f a 2 ∆w √ ν f t , (1.65)
which explains the physical scaling of the last term in Eq. (1.62). Now, any kind of unsteady motion of the particle can be seen as a series of small step-like changes in the velocity intensity over a time step of length δt. The integral represents thus a sum over all the influences on the particle dynamics happening at each instant in time. The elementary contribution to the force due to the flow gradients can be written as

-6ρ f a 2 √ ν f π U n -U n-1 δt δt √ t -nδt , (1.66)
from which, summing and taking the continuous limit one obtains

lim δt→0 m n=1 U n -U n-1 δt δt √ t -nδt → t 0 dv p (τ ) dτ dτ √ t -τ , (1.67) 
where t = mδt.

History term for a general background flow

The equations describing the case of a particle in unsteady motion in a non uniform background flow belong to a class of problems governed by the unsteady Stokes equations for which no analytical solution exist. When the flow solution to the equations is unknown, the stress on the particle surface cannot be computed and therefore it does not exist an analytical expression of the hydrodynamic force. Despite this, using Lorentz reciprocal theorem (details in chapter 2), one can derive a formulation of the hydrodynamic force for particles moving in a general background flow. A major result using this approach is due to [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF], who derived an expression of the force taking into account the first order effects of the flow non-linearities. The hydrodynamic force is

f h = -6πaµ f v p (t) -U ∞ (x p ) - a 2 6 ∆U ∞ (x p ) - 1 2 m f d dt v p (t) -U ∞ (x p ) - a 2 6 ∆U ∞ (x p ) -6ρ f a 2 √ ν f π t 0 d dτ v p (τ ) -U ∞ (x p ) - a 2 6 ∆U ∞ (x p ) dτ √ t -τ .
(1.68)

This expression has been derived using the Faxen relations (Faxen, 1922). These lasts state that a particle moving in a background flow U ∞ experiences a force, in the creeping flow limit, approximated as

f h = -6πaµ f v p (t) -U ∞ (x p ) - a 2 6 ∆U ∞ (x p ) . (1.69)
This last is then simplified for the case of a linear flow (1.70) and Eq. (1.68) turns into

U ∞ (x p ) = A • x p ,
f h = -6πaµ f (v p (t) -U ∞ (x p )) - 1 2 m f d(v p (t) -U ∞ (x p )) dt - 6ρ f a 2 √ ν f π t 0 d(v p (τ ) -U ∞ (x p )) dτ dτ √ t -τ .
(1.71)

As one can note from the expressions Eq. (1.68) and Eq. (1.71), a change to the hydrodynamic force experienced by the particle in the Stokes limit, due to the features of the background flow, leads to a change to the term convoluted with the kernel K ∝ 1/ √ t in the BBO approximation. In the next chapter we will explore this link and we will provide a proof that this relation is due to the nature of the unsteady Stokes equation.

The effects of convective terms

Despite their relevance, the unsteady and steady Stokes approximations have limitations. For instance, an interesting weakness of the Stokes equations is known as Stokes' paradox: the Stokes equations cannot be solved in the case of an infinitely long cylinder moving in a fluid. This is known as Whitehead paradox.

There are different observations that are not reproducible in the Stokes limit: it has been shown that the time a spherical particle needs to reach its steady velocity when released in a fluid at rest is much shorter than the time predicted by the B.B.O. approximation. As well, a spherical particle moving parallel to a Couette flow experiences a force perpendicular to its direction of motion [START_REF] Segré | Behaviour of macroscopic rigid spheres in poiseuille flow part 2. experimental results and interpretation[END_REF]. These phenomena cannot be explained if the analysis is restrained to the Stokes assumption. In the past 50 years, many efforts of the fluid mechanics community have been devoted to their comprehension.

In previous sections, all results are derived by assuming that the convective terms of the Navier-Stokes equations are negligible. The full Navier-Stokes equations without this assumption are recalled here

ρ f ∂w ∂t r +ρ f (w•∇w-u s •∇w)+ρ f A•w+ρ f A•r•∇w = -∇p+µ f ∆w+F ext . (1.72)
Following the same approach as in previous section, let us firstly consider the convective effects in the limit of steady disturbance flow.

As known in the literature, a general analytical solutions of Eq. (1.72) does not exist. The solutions available are for situations where the convective terms are considered only as perturbations to the leading Stokes dynamics. In other words, Eq. (1.72) can only be solved approximately, by considering the effects induced by convective terms much smaller than the Stokes drag. This implies that the Stokes equations must be a good approximation to the solution of Eq. (1.72). We will now give more details on how the intensity of terms of Eq. (1.72) can be evaluated and consequently how approximate solutions can be derived.

The Stokes flow is the solution to the leading dynamics of Eq. (1.72) and it scales as r -1 . Recall that, the scaling of terms of Eq. (1.72) can be inferred to be

|∇w| ≈ O U c a r 2 and |∆w| ≈ O U c a r 3 . (1.73)
Therefore, the convective and viscous term balance at a dimensional distance evaluated as r = a O = a Re p .

(1.74)

The unsteady force of Eq. (1.72) balances viscous forces at a dimensional distance given by r = a p = a Re p Sl , (1.75)

where p is defined the 'penetration length. The shear induced convective forces of Eq. (1.72) balance instead at another characteristic distance, we identify as

r = η = ν f s c , (1.76)
at which the convection induced by flow gradients cannot be neglected. At last, note also that the ratio between the non linear convective term and the viscous term is

ρ f w • ∇w ν f ∆w ≈ O U c a ν f ≈ O(Re p ) .
(1.77)

The third term in Eq. (1.72) is always negligible compared to the viscous term, since we will always assume that Re p 1 in this manuscript. Therefore the quadratic term in Eq. (1.72) can always be neglected. As a consequence, the Navier-Stokes equations become linear

a 2 ν f τ c ∂w ∂t r - aU c ν f u s • ∇w + a 2 s c ν f (A • w + A • r • ∇w) = -∇p + ∆w + F ext .
(1.78)

One can rely on the method of matched asymptotic expansions to deal with the solution of Eq. (1.78). Before detailing the method, a clarification on the meaning of the scales derived above, p , O , η , is needed. One can image that such length-scales split the domain in different subdomains around the particle. See Fig. 1.5 for a schematic view of the subdomains.

For instance, for the case of a particle moving in a linear background flow U ∞ = A • r, three different subdomains can be identified. The first one, for r ∈ [a, min(a O , a η )], so in the vicinity of the particle, where the Stokes assumption is valid. Here, convective effects are negligible with respect to viscosity. This 1.3. The effects of convective terms domain is commonly defined inner domain. The second one, called intermediate region, mathematically written as r ∈ [min(a O , a η ), max(a O , a η )], where the leading convective term balances the viscous term. And, finally, the outer region for r max(a O , a η ).

In each subdomain, the leading differential equation, Eq. (1.72), can be simplified. In the region nearby the particle, the Stokes equations is valid and the hydrodynamic force is the Stokes drag at leading order. In the intermediate and outer region, the effects induced by convective terms depend on the ratio between the lenghtscales related to the convective effects O / η . When O η , the effect induced by the Oseen convection can be neglected compared to the effects induced by flow non-uniformities. Conversely, if O η , the Oseen effect is dominant.

Therefore one applies the method of matched asymptotic expansions to solve Eq. (1.72). In short, this method exploits the three subdomains described above: the inner, the outer and the intermediate regions. In the inner region, the solution is given as an expansion, whose leading term is the Stokes flow. In the outer region, the sphere is seen as a point-perturbation in an unperturbed background flow. The solution in the outer domain is the flow due to a point disturbance when inertial terms matter. When both problem are solved, the general solution can be found by matching the outer and inner solutions [START_REF] Hinch | Perturbation methods[END_REF]. Details on this method will be given in the next chapter.

Convective effects in uniform flow: Oseen correction

Carl [START_REF] Oseen | Über die Stokes'sche Formel und über eine verdte Aufgabe in der Hydrodynamik[END_REF] remarked that the Stokes equations are not valid everywhere around a translating particle since the intensity of the neglected terms would become of the same intensity as the viscous term at a distance O from the particle. In order to overcome this inconsistency, [START_REF] Oseen | Über die Stokes'sche Formel und über eine verdte Aufgabe in der Hydrodynamik[END_REF] (1.79)

Here the direction e z has been chosen without loss of generality. The perturbation induces a linear correction to the Stokes equations of the form

-Re p ∂ z w = -∇p + ∆w , (1.80) 
where ∂ z is the space derivative along direction e z . The solution was obtained using the method of matched asymptotic expansion. One of the main effects of the Oseen perturbation (i.e. l.h.s. of Eq. (1.80)) is on the geometry of the flow field [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]. In particular, it breaks the fore-aft symmetry of the Stokes flow. A representation of a flow field solution to the Oseen equations is provided in Fig. 1.6. This symmetry breaking produces a wake behind the particle, which acts as a sink for the momentum of the fluid. The Stokes drag is thus increased by the presence of this wake. The force induced by the fluid on the particle has been quantified by [START_REF] Oseen | Über die Stokes'sche Formel und über eine verdte Aufgabe in der Hydrodynamik[END_REF] to be

f h = -6πaµ f 1 + 3 8 Re p v p .
(1.81)

This result was then refined by [START_REF] Proudman | Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder[END_REF], who calculated, still using asymptotic matching techniques, the higher order effects in Re p , obtaining

f h = -6πaµ f 1 + 3 8 Re p + 9 40 Re p 2 log Re p v p .
(1.82)

Note that, the new term proportional to Re 2 log Re p , is larger than Re p 2 and smaller than Re p 3 and was defined 'switchback' term by [START_REF] Kaplan | Chaotic behavior of multidimensional difference equations[END_REF].

'In trying to find terms of a certain order one is forced to reconsider lower order terms' [START_REF] Kaplan | Chaotic behavior of multidimensional difference equations[END_REF]. We will come back on the 'switchback' terms in When a spherical particle moves in a Poiseuille pipe flow, it is attracted towards the center of the of the pipe. Such effect cannot be explained in the Stokes limit. Here we present the result obtained by [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF] on the inertial effects a spherical particle experiences while moving in a pure shear flow. The assumption of this study, which was revisited later [START_REF] Saffman | Corrigendum to: "the lift on a small sphere in a slow shear flow[END_REF], is to consider a pure shear flow, written for instance as

v f = A 13 z e x ,
(1.83)

with {e x , e y , e z } and {x, y, z} in the laboratory frame of reference. The particle is assumed to move with a speed parallel to the flow equal to v p = v p e x . The background flow with respect to the variables centered on the particle turns out to be

U ∞ = v f -v p = (A 13 (z -z p ) -v p )e x (1.84)
The Navier Stokes equations in this case transforms as -Re p u s • ∇w + Re s (A 13 z∂ x w + A 13 w z e x ) = -∇p + ∆w .

(1.85) [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF] assumed that the inertial effects induced by the flow shear were much larger than the Oseen effect due to the particle translation, with the condition 1 Re s Re p . Using the matched asymptotic expansion, the correction to the Stokes drag results in [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF] 

f h • e z = 6.46µ f a a 2 A 13 ν f |v p | . (1.86)
It is interesting to note that this force is perpendicular to the flow and, for this reason, it is usually called the 'lift' force. Without considering inertial effects, the hydrodynamic force would be parallel to the flow. This result, together with the Oseen drag given by Eq. (1.81), shows the importance of convective inertial effects on particle dynamics.

Combined effects of unsteadiness and fluid inertia on passive particles

As shown, convective effects are fundamental to understand of the dynamics of particles in non-uniform flows. Unsteadiness induces flow gradients which modify the hydrodynamic force leading the dynamics of the particle, introducing a memory term. Both fluid convection and unsteadiness have been considered separately above. Situations in which convective and unsteady effects act simultaneously have been also tackled [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF][START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF][START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF].

Intuitively one can imagine that these mixed effects arise when the gradients generated by the unsteady motion of the particle diffuse up to to scale where convective effects matter. Here, the vorticity can also be advected by the background flow, accelerating a pure diffusive dynamics.

Force on a sphere in sudden acceleration in uniform flow

Here we reconsider the results derived by [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF], then refined by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF], to compute the force acting on a spherical particle in unsteady motion, by focusing on the effects of fluid convection. [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF] considered the dynamics of a viscous flow past a spherical particle moving at constant speed after a sudden jump. In particular, they addressed the problem with the method of matched asymptotic expansions performed in terms of the Reynolds number Re p , finding a solution valid up to Re p 2 log Re p . The solution presented a physical inconsistency that was later solved by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF]. By means of simple arguments, the same used by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF], it is possible to show why and when, during the evolution of the flow, one expects the convective effects to become important. As already explained, in the analysis of the unsteady motion of a particle in still fluid, in absence of convective effects, the vorticity generated by the instantaneous jump of the particle, needs some time to diffuse over a given length L(t). In previous sections, we showed by means of geometrical considerations, how the convective effects depend on the distance O at which viscous and convective effects of the fluid become comparable. Said differently, the vorticity generated on the particle surface by the initial jump takes some time to travel up to the distance O , where convective effects matter. During this transient, the particle dynamics is independent of the flow convection and thus satisfies the Basset-Boussinesq condition. During the transient, the his-tory force acting on the particle decreases as √ t, as can be understood by diffusion arguments. The time the vorticity needs to cross the Oseen length O can be quantified as

T = 2 O ν f = 1 Re p 2 a 2 ν f . (1.87)
As in [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF], we make time dimensionless by using the characteristic time a 2 /ν f . This implies that, one expects the convective effects to matter for time larger than a transient interval of duration

t ≥ 1 Re p 2 .
(1.88)

After this transient, the perturbation induced by the particle motion reaches a region where flow convection accelerate the diffusion of the vorticity. At this time, convective effects start to affect the relaxation time of the hydrodynamic force. The unsteady force derived by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF] can be expressed as

f h = 6πaµ f v p H(t ) + 1 9 δ(t ) + 1 √ πt + 3 8 Re p 1 + 4 Re p 2 t 2 erf(Re p √ t /2) + 2 √ πt Re p 1 - 2 Re p 2 t exp(-Re p 2 t /4) - 8 3 Re p √ πt - 9 40
Re p 2 log Re p .

(1.89)

In Eq. (1.89), one can immediately verify that for Re p → 0 the result is consistent with the expression for the hydrodynamic force derived by [START_REF] Basset | A treatise on hydrodynamics: with numerous examples[END_REF] and [START_REF] Boussinesq | Sur la résistance qu'oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables[END_REF]. For t = O(1), one also has Re p 2 t 1. In this limit, the terms proportional to 'erf' and 'exp' in Eq. (1.89) are negligible. One thus recovers that the effects due to fluid convection are negligible during this initial transient. At larger times, when Re p 2 t 1, one has lim t →∞ erf(Re p √ t /2) → 1. The force than decays in time as t -2 , much faster than the t -1/2 scaling derived in B.B.O. theory. This faster decay explains experimental observations which show that the time needed for a free falling particle to reach its terminal velocity is much smaller than predicted by B.B.O. theory.

The result obtained by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF] has limitations however. The case considered in [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF] and by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF] is limited to motions of a particle when unsteadiness is restricted to initial times. Whenever the particle shows a more complex dynamics, the procedure used in [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF] and [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF] is not valid. For instance, for a particle moving with oscillatory motion, the vorticity is generated at each period. New perturbations injected in the flow at time τ will affect the dynamics with a force proportional to 1/ √ tτ before it reaches the Oseen length. The behavior of the force for this kind motion cannot be predicted invoking the results of [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF]. [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] extended the result of [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF] to the case of a particle undergoing general time dependent motion in a uniform flow at low Reynolds number. [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] determined the force on a particle with unsteady motion in a uniform flow at low Reynolds number. The result below is valid for any particle motion but the background flow needs to be uniform. The fluid dynamics equations are [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF])

Force on a sphere with unsteady motion in uniform flow

-∇p + ∇ 2 w = Re p Sl ∂w ∂t + Re p w • ∇w -Re p (v p (t) -U ∞ (t)) • ∇w (1.90)
with boundary conditions

w = v p (t) -U ∞ (t) for r ∈ S p , (1.91a) w → 0 for r → ∞ .
(1.91b) [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] solved this problem by using the generalized reciprocal theorem and by assuming that the convective shear effects are negligible compared to the Oseen effects, η O . Using the notations of their paper, we write the force for a spherical particle as

f h = -6π v p -U ∞ - 2π 3 Re p Sl d dt v p -U ∞ + 3 8 Re p Sl π 1 2 t -∞ 2 3 F s (t) - 1 a 2 √ π 2 a erf( a ) -exp(-a 2 ) F s (s) + 2 3 F ⊥ s (t) + exp(-a 2 ) - 1 2 a 2 √ π 2 a erf( a ) -exp(-a 2 ) F ⊥ s (s) 2ds (t -s) 3 2
.

(1.92)

In Eq. (1.92), the vector a is called the 'pseudo-displacement' vector, and is defined as

a(t, s) = Re 2 t -s Re Sl 1 2 Y s (t) -Y s (s) t -s . (1.93) with Y s (t) -Y s (s) = t s v p (u) -U ∞ (u) du .
(1.94)

In Eq. (1.92), the component of the force induced by the slip velocity on the particle is

F s (s) = -6π(v p (s) -U ∞ (s)) . (1.95)
It can be projected along and orthogonally to the vector Y s (t) -Y s (s) as

F s (s) = P (s) ⊗ P (s) • F s (s) , (1.96) F ⊥ s (s) = (I -P (s) ⊗ P (s)) • F s (s) , (1.97) with P (s) = Y s (t) -Y s (s) Y s (t) -Y s (s) . (1.98)
The meaning of terms in Eqs. (1.96, 1.97) can be understood by considering the case of a particle in a still fluid, U ∞ = 0, sinking under the effect of gravity. This example is contained in [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] to explain the evolution of the force during the acceleration from rest up to the Stokes speed. In this simple case, Y s = Y p , F s = -6πv p , thus the force can be written as

f h = 6πv p - 2 3 πRe Sl d dt v p - 9 4 (πRe Sl) 1 2 t 0 2 3 v p - 1 A 2 π 1 2 2A erf(A) -exp(-A 2 ) v p (s) 2ds (t -s) 3 2 + 8v p 3t 1 2 , (1.99)
where one identifies the Stokes drag, the added mass term, and the modified history term (where convective effects are considered). Here A is a scalar since the vector a is parallel to the force and thus has only one component.

A last interesting result we present here concerns the appendix of the paper from [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. In this appendix, John Hinch formulates a simplified version of the problem, providing intuitive explanations for the history kernel obtained by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] for different particle dynamics. Here below we resume the Appendix D of [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF], due to J. Hinch. The aim of this Appendix was to provide, through simplified arguments, a complementary description to the behavior of the hydrodynamic force for a variety of particle motions derived by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. We here detail this results exhaustively.

Digression on the

Consider a sphere of radius a fixed in a fluid flow streaming along e z with speed U . See Fig. 1.8. We now make use of dimensional variables in continuity with the work of J. Hinch. The equations of motion of the flow field are the Oseen equations, one can write as

ρ f U ∂ z w = -∇p + ν f ∆w , (1.100)
where ∂ z is the derivative along e z . Integrating this expression in space, we are lead to

R 3 dV ρ f U ∂ z w = 6πaµ f U e z (1.101)
where the contribution of the r.h.s. of this equation has been replaced by the corresponding force expression: the Stokes drag. The left hand side can be worked out as following. In the domain z > 0, the wake generated by the particle diffuses orthogonal to the flow stream. The area of the domain interested by the wake grows orthogonal to the flow stream through pure diffusion, therefore its width increases as δ(z) = √ ν f t. The life time t of the wake at position z downstream can be calculated simply as t = z/U . Eq. (1.101) can be simplified integrating along the direction of the flow e z . Assuming the velocity of the flow in absence of the wake as U , one can write

R 2 dxdy ρ f U (U e z -w(z)) = 6πaµ f U e z (1.102)
where w(z) is the evaluation of the flow at position z. The momentum flux, rescaled by the velocity magnitude U , in absence of the disturbance inside the wake, at a given position z, is

R 2 dxdy ρ f U = ρ f U πδ(z) 2 = ρ f πν f z (1.103)
Furthermore, δ can be expressed as

δ 2 (z) = 1 4 R 2 dxdy(x 2 + y 2 ) e -x 2 +y 2 4ν f t(z) 4πν f t(z) .
(1.104)

Taking Eq. (1.102), Eq. (1.103) and Eq. ( 1.104) together one has

R 2 dxdy ρ f U (U e z -w(z)) = 6U a 4z ρ f U π R 2 dxdy (x 2 + y 2 ) e -x 2 +y 2 4ν f t(z) 4πν f t(z) e z . (1.105)
And, by identification

U e z -w(z) = 3U a 2z e -U x 2 +y 2 4ν f z . (1.106)
As everywhere in the flow, the wake should respect the principle of mass conservation. As a leading condition of the Oseen flow is that, far away from the particle, the velocity components become purely radial [START_REF] Lamb | [END_REF]. Therefore, one can imagine the mass flux being advected by the wake to be replaced by the sphere, which would act as a mass source spherically symmetric. The power of such mass flow can be expressed as

u r (r) = 6πµ f a ρ f 4π r 2 (1.107)
where 6πµ f a is the mass deficit in the wake.

Start up from rest

Consider a particle whose motion is characterized by a start up from rest, followed by a constant translation at speed U . The wake length at time t, must be equal to z = U t. At the end of the wake one can imagine the presence of a mass sink of strenght 6πaν f , equivalent to the mass deficit of the wake. Therefore, the such sink induces an increase in the flow flux at the positon of the particle r p = U t as, from Eq. (1.107)

u r (r = r p ) = 6πµ f a ρ f 4π U 2 t 2 (1.108)
and therefore an increased drag of

6πµ f au r (r = r p ) ∝ t -2 (1.109)
the time decays observed by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] for the hydrodynamic correction due to Oseen effect on a passive particle moving with a step-like increase of the center-of-mass speed (see also [START_REF] Bentwich | The unsteady matched stokes-oseen solution for the flow past a sphere[END_REF][START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF].

Sudden stop

For a particle whose center-of-mass speed stops abruptly, the argument goes as follows. One can imagine the wake to be infinitely extended in direction z and about to diffuse orthogonal to his ax. The disturbance, again from Eq. (1.107), grows as 6πµ f a/ρ f 4πν f t. Along the wake, the velocity disturbance orthogonal to the wake axis comes half from a contribution upstream with respect to that points, half from a contribution downstream relatively to it. Therefore, one expect on the particle, which is only affected by a contribution coming from downstream, an additional drag develop of intensity

-6πµ f a 3a 4t (1.110)
the same velocity decay observed by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] for the case of a particle suddenly stopping.

Conclusion

In this chapter, we have presented a list of results on the dynamics of particles at small Reynolds number. We started with the solution of the Stokes equations for a spherical particle moving in a fluid at rest. We then introduced finite Reynolds effects, unsteadiness and the existence of a background flow. The scope of this introductory chapter was to give a summary on existing work on inertial effects for passive particles. Since we are now going to deal with the analysis of the dynamics of a self-propelled particle, a detailed introduction on the meaning and importance of inertial effects for passive particles seemed necessary.

Chapter 2

Unsteady and shear convective effects on the dynamics of active particles

The first chapter focuses on the dynamics of passive particles. We now discuss the dynamics of active particles moving in a viscous fluid, via the squirmer model, that we detail. We illustrate the stokesian dynamics and the effects of unsteady inertia upon the motion of a self-propelled squirmer. We infer the effects of shear-convective and unsteady inertial contributions on a squirmer from the corresponding effects on passive particles. We show this is possible thanks to a procedure based on the method of matching asymptotic expansions feasible when fluid convective effects are negligible.

Introduction

The first chapter focuses on the dynamics of passive particles. We now turn our attention to the dynamics of small active particles moving in a viscous fluid. Particles are as defined active when they can produce net motion autonomously. To move, active particles consume an amount of energy for instance stocked in their muscles or in the reactants over their surface. Examples of active particles are living organisms that swim interacting with the flow through cilia [START_REF] Drescher | Dancing volvox: Hydrodynamic bound states of swimming algae[END_REF], legs [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF][START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF], appendages [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF] or by shape deformation [START_REF] Chisholm | A squirmer across Reynolds numbers[END_REF]; inert particles which selfpropel thanks to physicochemical interactions with the flow, such as Janus particles [START_REF] Zhang | Janus particle synthesis, assembly, and application[END_REF]; artificial robots translating thanks to mechanical activity induced by servomotors. When dealing with the theoretical analysis of their dynamics, it is common to reduce the complexity of the calculations, assuming the particle to be spherical or quasi-spherical. How small active particles such as motile micro-organisms move in a fluid is an open question of active-matter research. Indeed, the swimming strategies commonly used by organisms, moving either in water or in the air at high Reynolds numbers are fruitless at small Reynolds numbers. Nowadays, scientific literature boasts many studies about the analytical and computational analysis of swimming strategies adopted in the Stokes limit [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]Bren-nen, 1974;[START_REF] Purcell | Life at small reynolds number[END_REF][START_REF] Guasto | Oscillatory flows induced by microorganisms swimming in two dimensions[END_REF][START_REF] Goldstein | Green Algae as Model Organisms for Biological Fluid Dynamics[END_REF]. Despite this, less is known about the influence of fluid inertia effects on swimmers and active particles in general. In the previous chapter, it has been shown that inertial effects might be substantial and lead to unexpected dynamics otherwise impossible in the creeping flow limit. These effects are expected to matter for larger organisms, and for those with vigorous swimming gaits. In nature, a leading example illustrating the importance of fluid inertia on swimmers is represented by copepods dynamics. During their life cycle, these organisms grow in size and change their swimming gaits. The steady creeping-flow approximation do not hold for grown organisms [START_REF] Visser | Small, wet & rational, individual based zooplankton ecology[END_REF][START_REF] Catton | Quantitative analysis of tethered and free-swimming copepodid flow fields[END_REF], and for the large accelerations generated when these organisms escape predators by jumping [START_REF] Visser | Small, wet & rational, individual based zooplankton ecology[END_REF][START_REF] Jiang | The fluid dynamics of swimming by jumping in copepods[END_REF]. It has been shown that inertial effects break the time-reversibility of Stokes flow, and may thus provide new mechanisms of propulsion [START_REF] Lauga | Continuous breakdown of Purcell's scallop theorem with inertia[END_REF]. For instance, the ciliate paramecium makes use of inertial effects induced by fast accelerations to escape predators [START_REF] Hamel | Transitions between three swimming gaits in paramecium escape[END_REF]. The clam clione antartica exploits unsteady fluid inertia for propulsion [START_REF] Childress | Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in Re ω[END_REF].

In order to compute how inertial effects influence the dynamics of an unsteady swimmer, Wang and Ardekani (2012b) solved the associated timedependent Stokes equations via the squirmer model [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF][START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers[END_REF]. The authors derived a history force contribution depending on the imposed swim stroke, with a kernel that decays as t -1/2 , essentially that of a passive particle. The results of Wang and Ardekani (2012b) raise interesting questions. First, is there a principle dictating that the history force for an active particle is essentially that of a passive one? Second, how does the history force depend on the shape of the swimming particle? After all, not all motile microorganisms are spherical. Third, since natural environments are rarely perfectly quiescent, how do fluid-velocity gradients affect the inertial dynamics? Does a small swimmer in a shear flow experience a lift force, analogous to Saffman's lift force on a passive particle in shear?

In the present chapter, we provide an introduction to one of the models most frequently used to tackle the dynamics of swimming organisms, the squirmer model. We show existing results about the inertial effects acting upon a swimming squirmer in the limit of negligible fluid convective (Oseen) inertia. Successively, we prove that, when convective inertia is neglected, results about inertial effects on active particles can be inferred from the corresponding results for passive particles, employing the method of matching asymptotic expansions (abbr. MAE).

Formulation of the problem

As for a passive particle, the physics leading the dynamics of a self-propelled particle swimming in a fluid is described by the laws of mechanics and fluid mechanics. In continuity with the previous chapter, we define the position of the swimmer x p in a Galilean reference system R. The speed of such a swimmer can be written in this reference frame as

v p = dx p dt . (2.1)
We consider the fluid surrounding the particle to be Newtonian, incompressible and homogeneous. The dynamical equation for an active particle can be written as

m p dv p dt = f h + F ext , (2.2)
where m p is the mass of the particle. The computation of the hydrodynamic force f h requires the determination of the dynamics of the fluid flow w around the particle. Since the particle is active, we expect the term f h to account also for the active propulsion necessary for the motion. The size of the particle a is considered to be small so that nearby the particle the background flow can be expanded as

U ∞ = U ∞ (t) + A • r.
The dynamics of the flow surrounding an active particle moving with velocity v p , in a background flow U ∞ , respects the following Navier-Stokes equations

Re p Sl ∂w ∂t r + Re p (w • ∇w -u s • ∇w)+Re s (A • w + A • r • ∇w) = -∇p + ∆w + F ext .
(2.3)

Variables are here made dimensionless with the same characteristic quantities adopted in the previous chapter: U c , τ c , s c and a. The dynamical equation of the fluid flow keeps unvaried from the case for passive particles (see chapter 1). The exception is encoded in the expression of the boundary conditions. For an active

v s v p -U ∞ ω s Figure 2
.2: Schematic representation of the slip velocity model for an active particle. The vector ω s expresses the angular slip speed of the particle, v p is the velocity of the particle and U ∞ the velocity of the background flow. v s quantifies the active displacements of the surface points.

particle, these are written as

w = v p (t) -U ∞ (r, t) + v s for r ∈ S p ,
(2.4a)

w = 0 for r → ∞ . (2.4b)
Here we introduced v s , the swimming velocity. In this manuscript, we adopt the formalism introduced by [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF] to define the swimming velocity. The vector field v s quantifies the translation in time of the particle surface points due to the activity of the particle. One can think about the slip velocity, i.e. the velocity of the fluid over the surface of the active particle, as a superimposition of a rigid body transformation of the particle surface v p (t) -U ∞ (r, t) and an active contribution v s . See Fig. 2.2 for a schematic representation. Since we do not consider rotations and torques on active self-propellers in this chapter, the angular dynamics is omitted. When particle rotation is included in the calculations, the boundary condition on the surface transforms as w = v p (t) -S • r + ω s × r + v s for r ∈ S p , where ω s and S have been introduced in chapter 1.

The squirmer model

Many different marine organisms, for instance some species of algae [START_REF] Goldstein | Green Algae as Model Organisms for Biological Fluid Dynamics[END_REF], move thanks to the collective fluctuations of cilia [START_REF] Brumley | Hydrodynamic synchronization and metachronal waves on the surface of the colonial alga volvox carteri[END_REF], small flexible organic filaments displaced all over their surface. The common beating of these cilia entertains the fluid close to the surface and generates a flow gradient along the surface. The induced stress provides the necessary hydrodynamic force that allows the organism to propel. Amongst the organisms translating with cilia, a leading case are the paramecium [START_REF] Pedley | Spherical squirmers: models for swimming micro-organisms[END_REF] and the opalina [START_REF] Sleigh | The biology of cilia and flagella[END_REF]. The paramecium inspired a model widely used to describe self-propellers: the squirmer model [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF][START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers[END_REF]. Theoretically, the squirmer model represents the common beating of cilia as a continuous surface undergoing time dependent fluctuations around a spherical mean shape. A [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]. The yellow circle represents the average spherical shape of the squirmer, the violet area represents a realization of the [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF] model for σ = 25, = 0.05, a = 100 and N 0 = 17. Here parameters are named as in [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF], σ is the frequency of the surface wave motion, the amplitude, a the radius, N 0 the lowest mode for this specific squirming. v p is the resulting velocity of the squirmer.

schematic representation of the model firstly introduced by Blake ( 1971) is provided in Fig. 2.3. Despite its original goal, the squirmer model has been used to model diverse swimmers characterized by a variety of swimming gaits. Due to its simplicity, the squirmer became a prototype to investigate properties of the flow-swimmer dynamics in the context of swimmer locomotion (Wang and Ardekani, 2012a,b;[START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF][START_REF] Chisholm | A squirmer across Reynolds numbers[END_REF], swimmer feeding [START_REF] Magar | Nutrient Uptake by a Self-Propelled Steady Squirmer[END_REF][START_REF] Magar | Average nutrient uptake by a self-propelled unsteady squirmer[END_REF][START_REF] Michelin | Unsteady feeding and optimal strokes of model ciliates[END_REF] and swimmer-swimmer interactions [START_REF] Ishikawa | Hydrodynamic interaction of two swimming model micro-organisms[END_REF]. We mention that many motile organisms do not propel thanks to cilia or flagella [START_REF] Waterbury | A cyanobacterium capable of swimming motility[END_REF].

The squirmer model in the creeping flow limit

In general, because of the geometry of the problem, the solution to the Stokes equations for a squirmer is obtained in spherical coordinates (exceptions are for particles with different geometries, as ellipsoidal particles, see for instance [START_REF] Liu | Hydrodynamics of an elliptical squirmer[END_REF]. In the limit of low Reynolds number, the fluid equation of motion Eq. (2.3) reduces to the Stokes equations [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF] ∇p -∆w = 0 .

(2.5)

The boundary conditions to solve these equations are due to the specific swimming gait of the particle (i.e. the swimming speed v s ). There exist two formulations to mathematically model the boundary conditions due to the movement of the cilia, namely relying on a Lagrangian [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF] or an Eulerian [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers[END_REF] formalism. Since most of the work presented in the next two chapters rely on the squirmer model, it is instructive to dig into this two different approaches and compare them. In the next section we provide a detailed description about how the two formalisms are implemented. The next subsection is far from the main argument of the chapter, therefore, a non interested reader is invited to proceed to Sec. 2.3.3 .

Lagrangian and Eulerian formulation of the surface envelope

Consider the following problem. Let M be a material point, labelled by the (Lagrangian) polar coordinates θ 0 , belonging to the moving surface of the particle (see Fig. 2.3a). In a general case, the position vector of M with respect to the centre of the nearly sphere can be written in the form

r s = (1 + s h(θ, t))e r ≡ r s (θ, t) e r (2.6)
where θ is the current Eulerian angle between vectors v p and r s , and e θ is the unit vector orthogonal to e r in the plane defined by v p and e r . Here h(θ, t) is a function that defines the instantaneous shape of the deforming particle, and s is a constant parameter taken to be small compared to unity s 1 (i.e. nearly sphere assumption). We mention that for the sake of simplicity, the deformations have been taken to be axisymmetric with respect to the direction of the velocity vector v p .

Eulerian approach

Consider first the Eulerian approach, determined by the Eulerian variables (θ, r). Since the particle is nearly spherical (i.e. s is a small parameter), one can solve the flow dynamics by using a perturbation method based on an expansion with respect to this small parameter. Indeed, this is the classical method of perturbation analysis described for instance by [START_REF] Hinch | Perturbation methods[END_REF]. The flow solution to the Stokes equations w can be expanded in Poincaré formalism in the surface parameter s as

w = w (0) + s w (1) + 2 s w (2) + O( 3 s ) .
(2.7)

One then expands (via a Taylor series) the flow at the particle surface, this to recast the boundary condition on the perturbed surface r s to a convenient boundary r = e r [START_REF] Hinch | Perturbation methods[END_REF] w

r=1+ sh(θ, t) = w r=1 + s h(θ, t) ∂w ∂r r=1 + 1 2 2 s h(θ, t) 2 ∂w ∂r r=1
.

(2.8)

To solve Eq. (2.5), with Eq. (2.7) one needs boundary conditions over the distorted surface at any order s . The boundary condition at order 0 s is associated to the particle translation in viscous flow v p . The higher order boundary conditions are defined by the surface velocity v s . These can be determined from the velocity of M with respect to the frame of reference centred on the particle. The polar coordinates of M is ruled by a time-dependent function which also depends on θ 0 . In what follows, and as in [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF], one can assume this function to be in the form θ = θ 0 + s ϑ(θ 0 , t) , (2.9) which means that only small deviations of θ with respect to θ 0 are allowed. By using these assumptions, the velocity of M , which is given by the material (i.e. total) derivative with respect to time of Eq. (2.6), can be written in the form

v s = s ∂h ∂t + s ∂ϑ ∂t θ 0 ∂h ∂θ e r + (1 + s h) s ∂ϑ ∂t θ 0 e θ ,
which can also be recast as follows

v s = s ∂h ∂t e r + ∂ϑ ∂t θ 0 e θ + 2 s ∂ϑ ∂t θ 0 ∂h ∂θ e r + h ∂ϑ ∂t θ 0 e θ .
(2.10) From Eq. (2.7), ( 2.8) and (2.10), the boundary conditions at different order in s are

w (0) r=1 = v p (2.11a) w (1) r=1 = ∂h ∂t e r + ∂ϑ ∂t θ 0 e θ -h(θ, t) ∂w (0) ∂r r=1
(2.11b)

w (2) r=1 = ∂ϑ ∂t θ 0 ∂h ∂θ e r + h ∂ϑ ∂t θ 0 e θ -h(θ, t) ∂w (1) ∂r r=1 - 1 2 h(θ, t) 2 ∂ 2 w (0) ∂r 2 r=1 .
(2.11c)

One needs also to ensure the conservation of the particle volume. This is formally obtained imposing

Sp v s • n dS p = 0 (2.12)
where n is the outward unit normal of the infinitesimal surface dS p which is defined by the relation

n dS p = ∂r s ∂θ dθ × ∂r s ∂φ dφ .
(2.13)

The boundary conditions and the variable are written in Eulerian coordinates, therefore the solution to Eq. (2.5), with Eqs. (2.11), at any order in s , can be determined with the general Lamb method (see chapter 1 and p. 209 of [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF].

Lagrangian approach

The approach by [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF] relies instead on Lagrangian variables (r, θ 0 ) to describe the particle surface velocity. Eulerian variables (r, θ) are expressed in Lagrangian formalism as

r = 1 + s h 0 (θ 0 , t) , θ = θ 0 + s ϑ(θ 0 , t) , (2.14)
where functions h 0 (θ 0 , t), ϑ(θ 0 , t) can be expressed in terms of orthogonal polynomials as

h 0 (θ 0 , t) = α n P n (cos θ 0 ) , ϑ(θ 0 , t) = β n V n (cos θ 0 ) .
(2.15)

Here P n are Legendre polynomials and the definition of V n is

V n = - 2 n(n + 1) P 1 n (cos(θ 0 )) .
(2.16)

The velocity of the surface, i.e. the boundary conditions for r ∈ S p , can be written in lagrangian coordinates as

v s = s ∂h 0 (θ 0 , t) ∂t e r + (1 + s h 0 (θ 0 , t)) s ∂ϑ(θ 0 , t) ∂t e θ , (2.17) 
where e r = e r 0 + s ϑ(θ 0 , t)e θ 0 and e θ = e θ 0s ϑ(θ 0 , t)e r 0 .

(2.18) Here e r 0 (θ 0 ) = sin θ 0 e x + cos θ 0 e z , (2.19a)

e θ 0 (θ 0 ) = cos θ 0 e x -sin θ 0 e z .
(2.19b)

The velocity of the flow is then expanded, with Taylor expansion in Lagrangian coordinates, around the mean spherical shape of the surface, one obtains:

w(r, θ) = s w (1) (1, θ 0 ) + 2 s w (2) (1, θ 0 ) + 2 s h 0 (θ 0 , t) ∂w (1) ∂r | r=1,θ=θ 0 + 2 s ϑ(θ 0 , t) ∂w (1) ∂θ 0 | r=1,θ=θ 0 + O( 3 s ) .
(2.20)

The boundary conditions are obtained comparing the coefficients in Eq. (2.17) and in Eq. ( 2.20) at different s order, as

w (0) r=1 = v p w (1) | r=1 = ∂h 0 (θ 0 , t) ∂t e r 0 + ∂ϑ(θ 0 , t) ∂t e θ 0 w (2) | r=1 = ∂ϑ(θ 0 , t) ∂t h 0 (θ 0 , t)e r 0 -h 0 (θ 0 , t) ∂w (1) r ∂r e r 0 + ∂w (1) r ∂θ 0 e θ 0 -ϑ(θ 0 , t) ∂w (1) r ∂θ 0 e r 0 + ∂w (1) θ 0 ∂θ 0 e θ 0 .
(2.21)

Up to first order in s , the boundary conditions for the two approaches are equivalent. In fact, the vectors of the orthogonal basis are equivalent e r = e r 0 and e θ = e θ 0 , so as the functions h(θ, t) = h 0 (θ 0 , t) and ϑ(θ 0 , t) = ϑ(θ, t). At order 2 s , an expansion of h 0 , ϑ should be performed (see Eq. (2.25)), in order to check the equivalency of the boundary conditions in the two cases. Note anyway that the Stokes equations leading the dynamics of the flow field w are written in Eulerian coordinates. Therefore, one might expect a change in the metric of the Laplacian operator ∆ in Eq. (2.5) due to the change of variables in Eq. (2.14). The Stokes equations for w (2) in Lagrangian variables should hold terms due to the change in the metric. The problem deserves a closer analysis, but it is far from the central discussion of the present thesis and requires complex calculations, therefore we postpone it.

For the remainder of this manuscript we will consider only spherical shapes. As we will present in chapter 3, the analysis of the inertial dynamics of the fluid is complex and we omit surface corrections up to O( 2 s ).

Spherical squirmer

All along this manuscript we will use the Eulerian formalism and we will consider a spherical squirmer, whose shape can be obtained setting

h(θ, t) = 0 . (2.22)
Whatever the expression of the time-law ϑ(θ, t), the velocity of the surface (2.10) is purely tangential and can be expanded in a basis of associated Legendre polynomials. Following the original papers by [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers[END_REF] and [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF], this expansion is usually written in the form

v s = ∞ i=1 B n V n (cos(θ)) e θ .
(2.23)

In practical situation, the B n coefficients can be time dependent. They can be determined by using the orthogonality property of the associated Legendre poly- nomials as

B n = - 2n + 1 4 s π 0 sin(θ) ∂ϑ ∂t θ 0 P 1 n (cos(θ))dθ . (2.24)
Let us mention that in order to determine the B n coefficients, one has to express the (input) function ϑ(θ 0 , t) in terms of the current (i.e. Eulerian) coordinate θ. This means the reciprocal relation of Eq. (2.9) that links θ 0 to θ must be known. In general, determining such a reciprocal relation might be a difficult task. In the present situation however this task can be achieved iteratively by exploiting the fact that the shape parameter s is assumed to be small. As an example, by using the well-known Newton's algorithm which allows to solve iteratively the non-linear equation involved in the determination of the reciprocal function, we are led to

θ 0 = θ -s ϑ(θ, t) + 2 s ϑ(θ, t) ∂ϑ ∂θ 0 (θ, t) + O( 3 s ) . (2.25)
The present formulation make use of Eulerian coordinates, instead of the Lagrangian formulation adopted by [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]. Making this choice, the Eulerian formulation of the operators of the Stokes equations leading the flow dynamics keeps unvaried.

Simplified tangential squirmer

To investigate more complex dynamics, for instance, dynamics involving inertial effects (Wang and Ardekani, 2012a,b;[START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF], hydrodynamic interactions between different organisms, and collective motion [START_REF] Li | Hydrodynamic interaction of swimming organisms in an inertial regime[END_REF], the squirmer model is usually simplified. The tangential component is function of the first two harmonics in the Legendre expansion only, (Eq. (2.23))

v s (θ) = B 1 (t) sin θ + B 2 (t) sin θ cos θ e θ .
(2.26)

The resulting dynamics is usually discussed in terms of the parameter β = B 2 /B 1 , where B 1 is defined to be positive. One distinguishes pullers (β > 0) from pushers (β < 0), reflecting the form of the fluid disturbance caused by the swimmer. The first term in Eq. ( 2.26) has dipole symmetry, the second term is a stresslet with quadrupolar symmetry [START_REF] Pak | Generalized squirming motion of a sphere[END_REF]. Higher-order contributions are neglected in Eq. (2.26). The flow field streamlines generated by respectively puller and pusher particles are presented in Fig.

(2.4). The terms describing the flow field generated by a squirmer in the Stokes limit can be interpreted by means of Stokes singularities [START_REF] Pak | Generalized squirming motion of a sphere[END_REF]. Particularly, the flow originating from a swimming gait modeled as in Eq. (2.26) holds a stresslet symmetry in the far field. In nature, an example of pusher is given by a swimming spermatozoa, while a commonly studied puller is represented by the alga clamydomonas reinhardtii [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. For this simplified model, in absence of external forces, the hydrodynamic force on the particle in Stokes limit turns out to be

f h = -6πµ f a v p - 2 3 B 1 p , (2.27)
where p is the swimming direction of the particle. Note the -2/3B 1 terms in the expression of the force. This term is due only to the particle activity and is here written as a force aligned with the swimming direction. This force is known as thrust and allows the organism to move. Since in the stokesian dynamics it is assumed that there are no net-forces acting on the particle, the velocity of the particle center of mass turns out to be

v p = 2 3 B 1 .
(2.28)

Thrust and drag compensate, therefore the particle displace with a constant speed completely determined by the intensity of the swim gait coefficient B 1 . The thrust and drag forces scale linearly with viscosity in the creeping flow limit, hence the center of mass speed is independent on the fluid viscosity.

We now describe the effects of unsteady fluid inertia upon the dynamics of the squirmer and how these modify the expression of Eq. (2.27).

The dynamics of a squirmer in unsteady motion

The zooplankton and phytoplankton world is characterized by a diversity of species holding various sizes and propulsion strategies. As observed in the previous chapter, the size and the speed of a moving particle are fundamental to quantify the inertial effects leading its dynamics. Specifically, in the region nearby the translating particle, the magnitude of the unsteady term in the associated Navier Stokes equations is proportional to the adimensional parameter Re p Sl, alternatively written as a 2 /(ν f τ c ). For a swimmer, τ c can be set as the typical frequency of the swimming dynamics τ c = 1/ω c . Therefore, a self-propelling particle of given typical dimension a experiences inertial effects whose intensity scales with the swimming frequency (e.g. fast beating of appendages, fast jumps . . . ). Effects of unsteadiness on swimming dynamics have been quantified for different organisms [START_REF] Childress | Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in Re ω[END_REF]Wang and Ardekani, 2012b;Redaelli et al., 2022b).

An analytical model to quantify the unsteady effects for a moving particle was introduced by Wang and Ardekani (2012b) (see also [START_REF] Morrison | Transient electrophoresis of a dielectric sphere[END_REF]), who considered a squirmer displacing thanks to an unsteady swimming gait in a non uniform flow U ∞ . To model the situation, the time dependence of the problem was included in the amplitude parameters of the Legendre Polynomials B n (t), with n = 1, 2, 3, in the definition of the swimming velocity, Eqs. (2.23). The authors assumed the convective contributions to the dynamics to be negligible, setting Re s 1 and Re p 1, and the unsteady ones to dominate, assuming Re p Sl finite. To model the dynamics of the fluid, they used the Unsteady Stokes equations.

By means of the reciprocal theorem [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF] and the Laplace transforms, the authors computed the total hydrodynamic force induced by w and obtained the dynamical equation for the squirmer as

m p dv p dt = (m p -m f )g + m f DU ∞ Dt -6πν f ρ f a v p (t) -U ∞ (t) - 1 6 a 2 ∇ 2 U ∞ - 1 2 m f d dt v p (t) -U ∞ - 1 10 a 2 ∇ 2 U ∞ -6πν f ρ f a 2 t 0 dτ 1 πν f (t -τ ) d v p (t) -U ∞ -1 6 a 2 ∇ 2 U ∞ dτ - 3 2 ν f ρ f a Sp v s dS p - 3 2 ν f ρ f Sp t 0 dτ 1 πν f (t -τ ) dv s dτ dS p .
(2.29)

The dimensional parameters have been introduced to illustrate the physical meaning of each term involved in the expression [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF]. Here, m p is the mass of the squirmer, m f the mass of the fluid volume displaced. In Eq. (2.29) note the presence of the added mass term, the buoyancy and the Stokes drag. The two terms in the last line of Eq. (2.29) distinguish this expression from the corresponding one for passive particles and are due to the swimming dynamics. They are both uniquely determined by the swimming gait v s . The first one opposes to the Stokes drag and represents the thrust of the organisms, which allows it to move. The second is a history force contribution. The kernel quantifying such inertial effect is equivalent to the B.B.O. kernel for passive particles, this time convoluted with an active term v s .

In the next sections, we show how to derive this result with the method of matched asymptotic expansions. We prove that this method allows us obtain this results with a mathematical procedure that avoid complex calculations.

Unsteady inertia on squirmer via matching method

We now demonstrate how the effects due to fluid inertia on a self-propelled particle can be translated from the corresponding result for a passive particle, in the limit of negligible Oseen effects (Redaelli et al., 2022b). We illustrate that this is possible thanks to a procedure based on the method of matching of asymptotic expansions, applicable when the inertial contributions can be written as a secondorder perturbation to the Stokes dynamics. Below, we derive the dynamics of a squirmer moving in steady shear flow and the dynamics of a squirmer in unsteady motion by means of such procedure. For the remainder of the chapter, we assume that Re p Re p Sl 1 and Re p Re s 1 .

(2.30)

Matched asymptotic expansions for perturbed Stokes problems

Consider a self-propelled particle creating a flow w while moving. The method of matched asymptotic expansions can be used to solve the flow dynamics when described by the Stokes equations perturbed by inertial corrections that are small near the particle. Assuming Eq. (2.30), consider the linearized disturbance equations

Re p Sl ∂w ∂t + Re s (A • w + A • r • ∇w) = -∇p + ∆w .
(2.31) L.h.s. terms of these equations are perturbations, see Eq.(2.30). The solution of Eq. (2.31) at leading order is well approximated by the solution to the quasisteady Stokes equations, whose approximated expression evolves spatially as (see also chapter 1)

w ∝ r -1 . (2.32)
As pointed out already by [START_REF] Oseen | Über die Stokes'sche Formel und über eine verdte Aufgabe in der Hydrodynamik[END_REF], far from the particle, the inertial perturbations may be substantial and the Stokes assumption may not be valid. Since w ∝ r -1 at leading order, the terms in Eq. (2.31) scales as ∇w ∝ 1/r -2 , ∆w ∝ 1/r -3 and w • ∇w ∝ 1/r -4 . We define a dimensionless parameter ε. When fluid-velocity gradients dominate the inertial corrections, the parameter is ε = √ Re s ; when unsteady effects matter most, ε = Sl Re p . At a given distance from the particle, that we define r ∼ 1/ε, with ε 1, inertial terms in Eq. (2.31) are of the same order of the viscous term, thus the Stokes assumption is not valid.

Since the Stokes assumption is valid only in a region of the domain around the particle, Eq. (2.31) is defined singular [START_REF] Hinch | Perturbation methods[END_REF]. In this case regular perturbation theory fails [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF]. The method of matched asymptotic expansions is therefore applied [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF][START_REF] Proudman | Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder[END_REF][START_REF] Childress | The slow motion of a sphere in a rotating, viscous fluid[END_REF]. To this end, it is common to split the domain around the particle in two regions and look for the solutions respectively for the inner region, nearby the particle, for r ∼ 1, and the outer region, at r ∼ 1/ε.

In the inner region, the inertial effects do not matter at leading order in ε expansion. The disturbance velocity and the pressure can be expanded in the small parameter ε as

w in = w (0) in + εw (1) in + . . . , p in = p (0) in + εp (1) in + . . . , (2.33)
where w (0) in is the Stokes flow. Injecting Eq. (2.33) into Eq. (2.31), one derives a set of equations for w in at any order in ε. The distance at which the Stokes assumption breaks down is assumed to be much larger than the particle size r ∼ 1/ε. At this distance, the particle physical dimension is negligible with respect to the size of the domain studied. The boundary conditions on the particle surface are approximated by a source term in the form of Dirac δ-function as f (0) δ(r) [START_REF] Schwartz | Théorie des distributions[END_REF]. The intensity of f (0) is equal and opposite to the hydrodynamic force experienced by the particle in the Stokes limit.

Explicitly, the equations governing the dynamics of the outer flow field are obtained through 'variables stretching', as r = εr. The outer flow equations are linear and one can write them as [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF][START_REF] Childress | The slow motion of a sphere in a rotating, viscous fluid[END_REF][START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF])

Re p Sl ∂w out ∂t + Re s (A • w out + A • r • ∇w out ) = -∇p + ∆w out + εf (0) δ( r) . (2.34)
The solution w out to the outer flow equations is expanded in terms of the parameter ε and equations to each order in ε expansion can be solved in closed form by Fourier transform. Note that, because of the variables rescaling, the first order of the outer flow field is proportional to ε. The point-force term replaces the ε boundary condition on the particle surface, due to the slip, in the outer domain.

The outer flow w (0) out becomes the external boundary condition for the inner flow up to first order w (1) in . Indeed, inertial effects are taken into account in deriving w (0) out . Thanks to the matching procedure, the expansions in the inner 'in' and outer 'out' domains can be matched in the matching region, at r ∼ ε -1 [START_REF] Saffman | On the motion of small spheroidal particles in a viscous liquid[END_REF][START_REF] Hinch | Perturbation methods[END_REF] providing a solution to Eq. (2.31) at order ε. The matching is formally expressed as (2.36)

lim r→∞ w (0) in (r) + εw
Note that usually the solution to the outer flow problem is derived in Fourier space. Using

ŵ(k) = 1 8π 3 R 3 w( r)e -ik• r d r , (2.37) 
and

ŵ( r) = 1 8π 3 R 3 w(k)e ik• r dk , (2.38)
the expression of Eq. (2.36) in Fourier space can be written as

lim r→∞ w (1) in (r) = 1 8π 3 R 3 w (0) out (k) -w (0) in (k) dk .
(2.39)

We observe here that expression in Eq. (2.39) identifies an r-independent uniform flow [START_REF] Schwartz | Théorie des distributions[END_REF].

Independently on the nature of the inertial correction, one can look for the shape of the hydrodynamic force by expanding it in the parameter ε as (1) in (r) converges to a uniform flow, we can write as U (t), as expressed from Eq. (2.39). The intensity of U (t) is proportional to the hydrodynamic force experienced by the particle in the Stokes limit, due to the slip velocity f (0) h = -Ru s (see for instance Eq. (2.27) and Eq. (1.20) for the definition of the slip velocity). One can imagine the inner problem at order ε as a particle fixed in the uniform flow U (t). Therefore, the first order correction to the force exerted on the particle can be written as an additive Stokes drag

f h = f (0) h + εf (1) h + . . . , ( 
f (1) h = R • U (t) (2.41)
where R is the resistance matrix of the particle. We stress once more here that all the present derivation is feasbile since the correction at order ε in Eq. (2.31) have been neglected. In the following section we derive the inertial correction on the hydrodynamic force on active particles for three leading cases in literature following the procedure shown here. Let us firstly illustrate how the uniform flow in Eq. (2.41) may arise by means of a schematic representation.

The outer uniform flow

A toy-model form of an outer solution can be written as

w out (r, t) = exp[-εU(t)r] r .
(2.42)

Here U(t) is a time-dependent velocity. Recall that Eq. (2.42) is written in nondimensional form. For small values of ε, Eq. (2.42) can be expanded as

w out (r, t) = 1 r -ε U + O ε 2 r + . . . . (2.43)
In this expansion, the first term r -1 would correspond to the Stokeslet, decaying as r -1 far from the particle. This term holds information about the sphere which in the far field is seen as a punctual disturbance. This term matches with the Stokes solution of the inner flow w (0)

in . The next term, of order ε, is the uniform flow mentioned above, a uniform velocity that does not depend on the spatial coordinate r. This term becomes an outer boundary condition for the inner problem. The solution of the flow field in the inner problem at order ε is fundamental to obtaining the inertial correction to the hydrodynamic force. Note that all terms in the expansion in powers of ε in Eq. (2.43) are of the same order in the matching region r ∼ 1/ε, and that the uniform flow is an element of this expansion.

An important feature of the uniform boundary condition at order ε is that it depends on the shape of the particle in a simple way; this might be useful especially when dealing with living microorganism, given the variety of size and shape of swimmers in nature. The shape of the particle in the outer flow equation is encoded in the amplitude of the δ-function mentioned above, in terms of the Stokes resistance tensor R of the swimmer [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF]. Its dynamics is encoded in the force produced by the swimmer in Stokes limit, the first term in Eq. (2.40). As a consequence, only the resistance tensor R and the Stokes force are needed to determine the leading-order inertial correction to the hydrodynamic force. The first order term of the outer flow solution is a uniform flow. It is this uniform flow alone that accounts for inertial effects. Therefore the inertial effects turn out to have the same shape of an additional Stokes-like drag.

This is what can be observed in [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF] for the case of a passive particle. In short, the resistance tensor of a solid sphere is R = 6πI, with identity tensor I, whereas the resistance tensor for a bubble is smaller by a factor of 2 3 . This implies that the amplitude of the uniform flow far from the bubble equals 2 3 that of a solid sphere, since the amplitude of δ-contribution in the outer domain is proportional to the resistance tensor of the particle. This uniform flow in turn generates an inertial correction of the same form as the Saffman lift force on a solid sphere, but scaled by a factor of 2 3 . Taken together this means that the inertial lift force on a bubble equals that for a solid sphere multiplied by a factor 4 9 , to order ε. [START_REF] Harper | Maximum dissipation resulting from lift in a slow viscous shear flow[END_REF] used related considerations to determine the lift force on a dumbbell in a shear flow. More recently, the same principle was employed by [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF] to determine inertia effects on a passive particle of arbitrary shape in a steady linear flow. In the following, we show that the same principle can be used to determine the inertial correction on the hydrodynamic force for an active particle.

Inertial corrections to the hydrodynamic force

The main point here is to note that the principle outlined in Sec. 2.4.1 can be applied to active particles. This allows us to infer inertial corrections to the hydrodynamic force and torque on an active particle moving through a fluid. We will explain at the end of the chapter why this is not feasible when convective terms ∝ Re p matter. Neglecting Oseen effects allows us to write the inertial correction to a Stokes equation in the form of a linear application as

L (w, ε) with n > 1 .
(2.44)

An example is the Saffman problem, with L (w, ε) = ε 2 (A • w + (A • r) • ∇w), for a particle moving with a steady velocity in a time independent linear undisturbed flow with fluid velocity gradients A. In this case, the perturbation parameter is given by ε = √ Re s . A second example are the unsteady Stokes equations, already shown in chapter 1, where L (w, ε) = ε 2 ∂w/∂t with ε = SlRe p . Now, if the perturbation is of the order ε 2 , the two first terms of the inner expansion -the first two terms in the expansion of Eq. (2.33) in the parameter ε -are both solutions of the steady Stokes equations. This is the key fact that allows to apply the procedure.

Inner solution

As an example, consider the second case, the unsteady inertial perturbation. Since the perturbation parameter is ε 2 , one might expect that only terms even in ε occur in the perturbation expansion for the disturbance velocity. For singular perturbation problems, however, other terms may appear: in the present case terms that are odd in ε, in other cases even terms that contain log ε [START_REF] Hinch | Perturbation methods[END_REF]. This is well known, and such additional terms are sometimes called 'switchback' terms. The point is that the leading switchback term here, of order ε, has a very simple form.

In order to flesh out these arguments, consider first the expansion of the disturbance velocity and pressure close to the particle as in Eq. (2.33). Here w (0) in obeys Stokes equations with boundary conditions

w (0) in = v p + v s (t) for r ∈ S p , (2.45)
where v s is a generic swimming dynamics. Under condition (2.44), the first-order correction w

(1) in too obeys Stokes equations, but now with boundary conditions w

(1) in = 0 for r ∈ S p .

(2.46)

To solve these two Stokes problems, boundary conditions far from the swimmer are needed.

Outer solution

As said, the boundary conditions in the far field for the inner solution are obtained by matching the inner solution to an outer solution for the disturbance velocity, evaluated in the matching region. This outer solution, w out (r, t), is obtained by solving the full inertial problem, including the perturbation. Let us express here the delta force at the origin of the coordinate system, also known as source term, in the form

f (0) = D(t) δ(r) = -f (0) h .
(2.47)

where δ(r) is the Dirac delta function, and the amplitude D(t) remains to be determined and contains information about the force produced by the swimmer in the Stokes limit. The outer flow is thus solution to the equation

-∇p out + ∆w out = L (w out , ε) + f (0) .
(2.48)

In order to find an approximate solution to equation Eq. (2.48), w out is expanded as w out (r, t) = T (0) (r, t) + εT (1) (t) + . . .

(2.49)

To lowest order, the outer solution is the classical solution to the Stokes problem perturbed by a punctual force, so [START_REF] Meibohm | Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number[END_REF])

T (0) (r, t) = G(r)D(t) with [G] ij = 1 8π 1 r + r i r j r 3 , (2.50)
as in chapter 1. Here, we omitted the explicit variables stretching, i.e. r = εr.

With the stretching, one immediately realize that G(r) = ε G( r), so at first order, namely T (0) , the outer flow is actually proportional to ε.

When condition (2.44) holds, the first order solution of the outer flow is given by [START_REF] Meibohm | Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number[END_REF])

T (1) (t) = - t 0 dτ K(t -τ ) dD(τ ) dτ ≡ U (t) , (2.51)
where it is assumed that D(0) = 0 [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF], otherwise the lower bound of the integral extends to -∞. There exist more than one way to prove that the shape of the first order term T (1) of the solution to Eq. (2.48) is given by an expression uniform in space as Eq. (2.51). One of this is presented in Eq. (2.39). Note that the term [START_REF] Boussinesq | Sur la résistance qu'oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables[END_REF][START_REF] Basset | A treatise on hydrodynamics: with numerous examples[END_REF][START_REF] Oseen | Neuere Methoden und Ergebnisse in der Hydrodynamik[END_REF].

The matching

Equations (2.50) and (2.51) provide the desired boundary conditions for w

(j)
in , namely w (j) in ∼ T (j) at r ∼ ε -1 for j = 0 and 1. The symbol ∼ expresses the matching procedure, Eq. (2.35). Consider first the Stokes problem at order ε 0 . For a particle swimming with an active self propulsion f a (t) the Stokes flow generates a force equal to f (0)

h (t) = f a (t) -R(t)v p (t) .
(2.52)

Eq. (2.52) reflects the fact that the velocity over the surface of the organism can be written as a sum of two terms. The first one is the active contribution [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF], written in terms of the active force produced by the swimmer, f a (t), the thrust. The second term is the passive part of the disturbance force. It depends upon the instantaneous shape of the particle encoded in the resistance tensor R(t).

The hydrodynamic force experienced by the particle, D(t), must equal the Stokes force exerted by the swimmer upon the fluid:

D(t) = -f (0) h (t) = -[f a (t) -R(t)v p (t)] .
(2.53)

Now, U (t) is a uniform flow, the order-ε Stokes problem for w

(1)

in is just the Stokes problem for a frozen particle (a particle kept at fixed position and orientation in the uniform flow U (t) at infinity). Therefore, the desired inertial correction εf

(1) h (t) is thus simply given by the hydrodynamic force such a particle experiences, f

(1)

h (t) = R(t)U (t) .
(2.54)

Taking Equations (2.51), (2.53), and (2.54) together the expression for the inertial correction to the hydrodynamic force for an active particle will be:

f (1) h (t) = R(t) t 0 dτ K(t -τ ) d dτ [f a (τ ) -R(τ )v p (τ )] .
(2.55)

Note that the active part f a (t) in f (0) h (t) contributes linearly to the inertial correction at order ε, whereas the resistive part appears in the form of two possibly time-dependent factors R(t), one inside the integral, and one outside. This is the main message of the present discussion. Independently on the specific swimming dynamics and on the shape of the particle, the definition of the inertial correction as in Eq. (2.55) is general. If one knows the force induced in the Stokes limit by an active particle and its resistance tensor, it can directly obtain the shape of the inertial correction to the hydrodynamic force without further computations. The temporal behavior of the kernel K is determined case by case, but, as said, is known for many different dynamics recurrent in the biological realm: unsteady self-propulsion, self-propulsion in shear flow etc. This equation is also valid for passive particles, for which f a = 0. The dimensionless parameter for the numerical evolution is Re p Sl = 3 (for an equivalent plot see Wang and Ardekani, 2012b).

The case of an unsteady squirmer

As an example, consider how to obtain the history force upon a spherical squirmer with active stroke as in Eq. (2.26), with time dependents coefficient B n (t). The particle is moving with velocity v p (t) in direction p(t) in a fluid at rest (Wang and Ardekani, 2012b). Assuming that convective and shear inertia are negligible, Stokes equations are perturbed only by the unsteady term. In this case, the small parameter is ε = a 2 /(ντ c ) and the uniform flow is given by

U (t) = 1 6π t 0 dτ 1 π(t -τ ) df (0) h (τ ) dτ .
(2.56)

The resistance tensor is simply that of a sphere, 6πI, and the active force is f a (t) = 6π 

f h (t) = -6π(v p (t) - 2 3 B 1 (t)p(t)) -6πε t 0 dτ 1 π(t -τ ) d dτ v p (τ ) - 2 3 B 1 (τ )p(τ )
(2.57)

for the unsteady hydrodynamic force on a squirmer. In the special case where p is a constant vector, Eq. (2.57) reduces to the result obtained earlier by Wang and Ardekani (2012b). Note that here the added-mass term is absent. Using scaling arguments, one can prove that such a term is an a higher-order contribution to the force, particularly of order ε 2 , which can be considered negligible in the present work. This expression was first derived by [START_REF] Morrison | Transient electrophoresis of a dielectric sphere[END_REF], describing the electrophoretic force upon a dielectric sphere in a transient electric field. Fig. 2.5 shows a numerical realization for the dynamics of an unsteady squirmer.

The code used is due to [START_REF] Daitche | Advection of inertial particle in the presence of the history force: higher order numerical symulation[END_REF], and resumed in Appendix A.

Eq. (2.55) explains why the hydrodynamic force on an unsteady spherical squirmer must be of the form (2.57), and it demonstrates how to generalise the result to arbitrary shapes. Since motile aquatic microorganisms exhibit a rich variety of shapes and swimming gaits [START_REF] Childress | Mechanics of Swimming and Flying[END_REF][START_REF] Beckett | Biology: A Modern Introduction[END_REF], it is useful that Eq. (2.55) separates the contributions to the hydrodynamic force due to particle shape, through the tensor R, from those due to the time-dependence of the fluid disturbance, through the kernel K.

Eq. (2.55) implies that the inertial correction vanishes in the steady limit, for example for a steady squirmer with v p = 2 3 B 1 p. In this case f (0) h vanishes, so that there is no inertia-induced force at order ε (see for example [START_REF] Choudhary | How inertial lift affects the dynamics of a microswimmer in poiseuille flow[END_REF][START_REF] Shaik | Squirming in density-stratified fluids[END_REF]. As a consequence, the disturbance flow produced by the swimmer is a stresslet. For transient dynamics, on the other hand, f (0) h (t) is non-zero, resulting in transient inertial corrections. Such corrections arise for sudden starts or stops, and also when B 1 (t) is a smooth but rapidly varying time-dependent function, so that a difference between v p (t) and 2 3 B 1 (t)p(t) is maintained.

The case of a squirmer in shear flow

The above example concerns unsteady inertia effects, but there are several other situations where Eq. (2.55) may help to determine the influence of fluid inertia on the dynamics of active particles, as active particles in shear flows. The amoeba Naegleria Fowleri, for instance, thrives in water-discharge flows from industrial plants which can have shear rates as high as 85000 s -1 [START_REF] Perrin | Design of a rotating disk reactor to assess the colonization of biofilms by free-living amoebae under high shear rates[END_REF]. For a micron-sized organism this results in a shear-Reynolds number of the order of Re s ∼ 0.1, so that ε ∼ 0.3, which means that fluid inertia should matter. The equation of motion for a spherical squirmer in a shear flow follows directly from Eq. (2.55). From the equivalent formulation for a passive particle

R 4π 3 ε 2 dv p (t) dt = -6π v p (t) -U (r) -6πε t 0 K(t -τ ) d dτ v p (τ ) -U (r) dτ + F ext .
(2.58) one obtains

R 4π 3 ε 2 dv p (t) dt = -6π v p (t) -U (r) - 2 3 B 1 p(t) -6πε t 0 K(t -τ ) d dτ v p (τ ) -U (r) - 2 3 B 1 p(τ ) dτ + F ext .
(2.59)

Here R is the particle-to-fluid density ratio, U (r) is the undisturbed shear flow at position r with respect to the particle center [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF], and F ext is an external force. In the steady limit, when B 1 p tends to a steady vector, the velocity of the particle approaches

v p = U (r) + 2 3 B 1 p + 1 6π F ext -ε 1 6π K • F ext . (2.60)
Here K is the steady-state limit of the kernel. In this limit, the ε-inertia correction induced is the same as for a passive particle. However, the time required to reach the steady state is usually very long (typically much larger than the inverse shear rate). During this transient, the inertial effects on passive and active particles differ. The last term of Eq. (2.60) shows that an active particle moving with a steady velocity in a shear flow may experience a lift force, but only if there is an external force. Also note that if B 1 (t)n(t) varies rapidly, then K simplifies to the B.B.O.-kernel. In this limit, convective inertia effects induced by shear do not matter.

The case of a squirmer in a density stratified fluid

Eq. (2.55) can be used to describe active particles in density-stratified fluids, provided that convective inertia does not matter. Equation (2.55) shows that there may be important inertial corrections even for Re p = 0, when the particle density exceeds the fluid reference density, resulting in an external force F ext due to gravity. The equation for a passive particle in a viscous stratified fluid has been derived by [START_REF] Mehaddi | Inertial drag on a sphere settling in a stratified fluid[END_REF]. Consider the steady case, the force on the particle can be written as

f h = -6πµ f a I + a s M • v p , (2.61) 
that transforms into

f h = -6πµ f a I + a s M • v p - 2 3 B 1 p , (2.62)
for active particles. Here

M =      1 14 E k √ 2 2 0 0 0 1 14 E k √ 2 2 0 0 0 5 14 E k √ 2 2      . (2.63)
Here s is the stratification length of the fluid and E k are elliptic integrals of the first kind [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]. [START_REF] More | Motion of an inertial squirmer in a density stratified fluid[END_REF], by contrast, considered together stratification and inertial effects due to convective fluid inertia. As explained below, the principle does not apply in this case.

Theoretical limit of the principle

Last but not least, we discuss when and how the principle may fail. One example where the principle does not work is given by an active particle moving with a large enough slip velocity so that convective inertia cannot be neglected. In this case, the perturbation in the perturbed Stokes problem takes the form L = -ε v p • ∇w in a quiescent fluid, with ε = Re p . This perturbation is of order ε, so the above condition needed to justify the principle is not fulfilled. As a consequence, the inner solution is no longer governed by a Stokes equations, as assumed above, but by an inhomogeneous differential equation including terms arising from the solution at leading order in ε. This explains why the inertial Re pcorrections to the force acting on a spherical squirmer described in Refs. (Wang and Ardekani, 2012a;[START_REF] Chisholm | A squirmer across Reynolds numbers[END_REF] are not entirely recovered by the principle. Returning to the results of [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF], note that the principle does give the correct Oseen correction to the drag force on a bubble: setting f a = 0 in Eq. (2.55), and inserting the resistance tensor of a spherical bubble, R = 4πI, gives the correct result, namely that convective-inertial correction to the drag force on a bubble is 4 9 times that for a solid sphere. The result is correct for a spherical bubble because the additional terms mentioned above vanish due to spherical symmetry.

Conclusion

In this chapter, we review the dynamics of a swimming squirmer in viscous flows. We detailed the hydrodynamic force acting on a squirmer in the creeping flow limit and the effects of unsteady inertia on a squirmer translating with time dependent swimming strokes. We showed that thanks to a fundamental principle of the method of matched asymptotic expansions, it is possible to infer the effect of fluid inertia on the dynamics of motile microorganisms moving in a fluid with greatly simplified calculations. In its original form, the principle was used by [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF] to infer the lift force on a bubble in shear flow from Saffman's result for a solid particle and here is proven that the principle works for active particles too. The result explains why the history force has essentially the same form for active and passive particles. One important consequence of this result is that particle the shape affects the inertial correction to the hydrodynamic force in a very simple way, making it possible to investigate the effect of particle shape on the hydrodynamic force in a straightforward manner. The example considered, the effect of unsteady inertia on the hydrodynamic force, has much relevance for a class of swimmer undergoing highly unsteady swimming dynamics (Wang and Ardekani, 2012b). The discussion also interests other situations where the principle applies, namely shear flows and density-stratified fluids.

Naturally, the method has limitations. As presented here, certain conditions must be fulfilled for the principle to work. These conditions are met for unsteady and Saffman problems, but not for the Oseen problem (convective fluid inertia). Therefore it remains an open problem how to compute convective inertial corrections to the history force on an active swimmer, even for a time-dependent homogeneous flow. One question is how the convective corrections to the history force differ from those obtained by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] for a passive particle? At any rate, such convective effects must be considered to describe the disturbance velocities generated by jumping copepods, where unsteady and convective fluid inertia are likely to be equally important. In the next chapter the calculation for relevant convective effects is performed and detailed and contributions to the hydrodynamic force induced by Oseen effects are quantified. The content of this chapter (from Sec. 2.4 on) is published in Redaelli et al. (2022b).

Chapter 3

The dynamics of an inertial unsteady squirmer

The procedure introduced in the previous chapter fails when Oseen effects affect the flow dynamics. Here we compute how the history kernel derived in the previous chapter (B.B.O.) is modified by Oseen convective inertia. The result provided here can be considered a generalization of the result from [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] from passive to active particles.

Introduction

The procedure introduced in the previous chapter proved that the history kernels for active and passive particles are equivalent. The time dependence of such kernels is commonly found in any isotropic diffusive process

K(t -τ ) ∝ I √ t -τ . (3.1)
Here, t is the instant in time at which the dynamics of the particle is evaluated and τ the instant at which part of the flow vorticity detached from the particle surface (see chapter 1). With this result, Wang and Ardekani (2012b) fitted the measures about the velocity decay of a copepod after a sudden jump [START_REF] Jiang | The fluid dynamics of swimming by jumping in copepods[END_REF], despite the fact that possible effects of convective fluid inertia were not considered. The Reynolds number associated to jumping copepods is large Re p ∼ 10, . . . , 100 [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF] and for the case of passive particles, convective inertia causes the kernel to decay more rapidly than the t -1/2 diffusion decay observed for purely unsteady dynamics [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF][START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF][START_REF] Mei | Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number[END_REF].

The importance of convective inertia can be understood with simple physical examples. Let us consider an organism that suddenly stops to swim. In the creeping-flow approximation, the surrounding fluid and the organism arrest instantly. In reality, the disturbance flow around the organism takes some time to vanish, as explained by the B.B.O. kernel. When the inertia of the organisms is not negligible, the organism itself takes some time to halt after stopping swimming. The fluid and the organism might experience thus the inertia of each other and the B.B.O. approximation might fail. For instance, this was observed for the case of a paramecium jumping to escape a simulated predator [START_REF] Hamel | Transitions between three swimming gaits in paramecium escape[END_REF]. For passive particles, how convective inertia due to a non-zero slip velocity (Oseen effect) changes the history force have been determined by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. A further comprehension of the influence of fluid convective effects on the dynamics of active particles is needed. Fluid inertia influences the motion [START_REF] Lauga | Continuous breakdown of Purcell's scallop theorem with inertia[END_REF][START_REF] Hamel | Transitions between three swimming gaits in paramecium escape[END_REF][START_REF] Childress | Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in Re ω[END_REF][START_REF] Chisholm | Partial drift volume due to a self-propelled swimmer[END_REF] and the feeding strategies [START_REF] Jiang | Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt?[END_REF][START_REF] Goldstein | Green Algae as Model Organisms for Biological Fluid Dynamics[END_REF] of marine organisms and also their encounter rates [START_REF] Li | Hydrodynamic interaction of swimming organisms in an inertial regime[END_REF]. The flow field generated by jumping organisms allows to capture prey [START_REF] Bundy | Perception of inert particles by calanoid copepods: Behavioral observations and numerical model[END_REF], and [START_REF]Life in transition: Balancing inertial and viscous forces by planktonic copepods[END_REF] described the significance of fluid inertia for signalling, swimming and mating of planktonic species.

In general, during the transient after a sudden start, a steady disturbance flow builds up that gives rise to a steady convective-inertia correction to the hydrodynamic force. For a passive sphere this is just the Oseen correction, and Lovalenti and Brady (1993) calculated how the steady limit is approached. At small times, the acceleration imposed to the flow is large, and its dynamics is dominated by unsteady effects and the kernel is close to the BBO kernel. For times larger than the Oseen time it decays as t -2 , in this situation. In the present chapter we aim to generalize the results of [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] to active particles.

The task to compute the hydrodynamic force on a small motile organism becomes considerably more complicated if one has to account for Oseen effects. Wang and Ardekani (2012a) determined convective inertial corrections for a steady, spherical squirmer, modeling the swimming gait as a steady surface velocity on the squirmer (see also [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF]; [START_REF] Chisholm | A squirmer across Reynolds numbers[END_REF]). However, the gait of motile organisms is usually time-dependent, and the quasi-steady approximation may fail if the time scale of the gait is much smaller than the time scale of the relaxation of the flow. In order to understand how convective inertia modifies the unsteady dynamics of a small motile organism, in this chapter we calculate the hydrodynamic force on a small, unsteady, inertial spherical squirmer in a spatially homogeneous flow.

While [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] used the reciprocal theorem to obtain their results, we employ the method of matched asymptotic expansions [START_REF] Hinch | Perturbation methods[END_REF]. Our solution generalizes that of [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. We find that the kernels are closely related (we checked they were numerically identical for different examples, without proving it mathematically) to the one computed by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. Despite this, there exist two major differences to the passive case. First, for the squirmer, the kernels are convoluted with a source that contains an active part. Second, the in-homogeneous part of the solution to the inner problem of order ε contributes to the hydrodynamic force on the squirmer. For a passive spherical particle, spherical symmetry ensures that such contributions vanish. We discuss the significance of the in-homogeneous contribution for the squirmer. The asymptotic matching allows us to determine the disturbance flow. We show how the disturbance develops for two key examples -a sudden start and an unsteady motion with an oscillatory gait -and discuss the implications of our findings for the biology of small motile organisms in the ocean.

To begin, we provide a known result for the effects of convective inertia on a steady squirmer (Wang and Ardekani, 2012a;[START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF].

The squirmer model in uniform flow: Oseen effect

When the size of the swimmer matters, inertial effects induced by fluid convection may influence its dynamics [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF][START_REF] Hamel | Transitions between three swimming gaits in paramecium escape[END_REF]. We now details the result of Wang and Ardekani (2012a), and later revisited by [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF], mentioned in the introduction. The problem is formulated as follow. Unsteady effects are assumed negligible Re p Sl 1, i.e. the time dependence of the flow is neglected. The absence of unsteadiness is encoded by a stationary swim stroke. This last is modeled as (see also chapter 2)

v s (θ) = B 1 sin θ + B 2 sin θ cos θ e θ .
(3.2)

The leading dynamics still develops in the Stokes limit and the particle is assumed to move at constant speed v p . The governing equations for the flow field w are the Stokes equations perturbed by the fluid convective effects based on the slip velocity u s , proportional to Re p . The authors computed the correction up to Re p 2 to the steady translation speed of the sphere [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF])

v p = 2 3 B 1 1 - 3 20 β Re p + 1 8 β Re p 2 + 11987 470400 β 2 Re p 2 , (3.3)
and the resulting hydrodynamic force, which can be rewritten as

f h = -1 - 1 k 1 + 3 8 Re p - Re p β 20 2k + 1 k p , (3.4) 
where k = 3|vp| 2B 1 = 3vp 2B 1 . It might be noticed that, for Re p = 0, such results reduce to the case of a translating squirmer in the creeping flow limit, as expected.

The dynamics of an unsteady inertial squirmer

We showed in chapter 2 that an analytical description of the effects due to fluid unsteadiness on a swimming squirmer can be calculated with the method of matched asymptotic expansions. With the same method here we calculate the inertial effects induced by the competition between the unsteady and the Oseen terms in the flow equations. Here we consider the undisturbed flow to be 0 or uniform, i.e. Re s = 0. with boundary conditions now written as

w → 0 for r → ∞ , (3.6a) w = v s (t) + v p (t) for r ∈ S p . (3.6b)
We consider the swimming velocity v s (t) to be time dependent. We consider ω s = 0, for the remainder of the chapter.

For the sake of simplicity, we will consider the absence of external forces, thus F ext = 0. The disturbance flow equations in Eq. (3.5) for a particle moving with time dependent motion in an otherwise quiescent fluid, are equivalent to the equations for a passive particle used in [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF].

The variables are here made dimensionaless by expressing velocities in unit of U c , time in unit of τ c and lengths in unit of the particle radius a, as in chapter 2. In what follows it is further assumed that Re p 1 and Re p Sl 1 .

(3.7)

Under these two limits, the disturbance velocity in the vicinity of the particle, and at leading order, is well approximated by the quasi-steady Stokes solution which is known to decay slowly with respect to the radial coordinates r (i.e. the velocity decays as 1/r). As seen in chapter 1, it can be shown that the unsteady term Re p Sl∂ t w in Eq. (3.5) becomes of the same order of magnitude as the viscous term w at a distance given by which is usually called the 'Oseen length'.

These inertial corrections are singular perturbations [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF][START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. We use the method of matched asymptotic expansions (MAE) in the parameter ε to compute the inertial corrections to the hydrodynamic force [START_REF] Hinch | Perturbation methods[END_REF]. It is natural to take the independent non-dimensional parameter as: ε = Re p Sl .

(3.10)

In order to apply the asymptotic matching method, ε is assumed to be small too. We note here that the ratio p / O characterizes the competition between the convective effects and the unsteadiness on the disturbance flow and is a finite parameter. Based on the value of such ratio, whenever p / O 1 the unsteady effects take place much nearer to the particle with respect to the effects due to the convection imposed by the slip velocity (Oseen effects). As a consequence unsteady effects dominate. We expect the hydrodynamic force to converge to the B.B.O. correction (this limit have been already analyzed in Wang and Ardekani (2012b) and Redaelli et al. (2022b)). Equivalently whenever p / O 1, Oseen effects are dominant. We expect the correction to the hydrodynamic force to approach the Oseen regime.

Introducing the typical lengths p , O and the parameter ε, eq. (3.5) can be re-written as

ε 2 ∂w ∂t -ε p O v p (t) • ∇w + ε p O w • ∇w = -∇p + w . (3.11)
In order to apply the MAE, first we solve the equation in the outer domain, obtaining w out , and then we define the solution in the domain nearby the particle w in . We recall here that the hydrodynamic force acting on the particle can be written, in the formalism of MAE, as

f h = f (0) h + ε f (1) h + . . .
(3.12)

We will see that the outer solution w out obtained here only depends on the dynamics of the particle in the Stokes limit. In contrast, the inner flow depends on the specific swimming gaits v s (t) imposed over the particle surface.

Solution of the outer flow

We recall some key elements required to apply the matching method. First, one assume that in the matching region, where the distance r is much larger than the particle size, the effect of the particle on the flow can be modelled by a punctual source term, i.e. a Dirac function in space located at the position of the particle [START_REF] Childress | The slow motion of a sphere in a rotating, viscous fluid[END_REF]. Second, the solution at leading order of Eq. (3.5) behaves |w| ∝ r -1 . According to these assumptions, with scaling arguments, we can show that in the matching region, the quadratic terms ε( p / O ) w • ∇w in Eq. (3.5) turn out to be negligible compared to other terms. This can be explicitly showed

ε 2 ∂w ∂t ∝ ε 2 r -1 ∝ ε 3 , (3.13a) ε p O v p (t) • ∇w ∝ ε p O r -2 ∝ ε 3 , (3.13b) ε p O w • ∇w ∝ ε p O r -3 ∝ ε 4 . (3.13c)
The outer flow equations can therefore be simplified as follows

∇ • w out = 0 , (3.14) ε 2 ∂w ∂t -ε p O v p (t) • ∇w out = -∇p out + w out + f (0) δ(x) . (3.15)
Here, the strength of the point force is

f (0) = -f (0)
h . It is equivalent to the force experienced by the active particle in the Stokes limit, but with an opposite sign (much like D(t) for the case of the unsteady swimmer shown in the previous chapter). Eq. (3.15) is commonly written in spatial coordinates rescaled by ε. We did not employ different symbols for stretched variables in Eq. (3.15) for the sake of exposition. We will not perform the matching explicitly and so, there is no need to deal with multiple variable definitions.

In order to derive an analytical solution of equations (3.14) and (3.15), we express the equations (3.14) and (3.15) in Fourier space, using Eq. (2.37) as k • ŵout = 0 , (3.16) and

ε 2 ∂ ŵout ∂t -iε p O (v p (t) • k) ŵout = -ik pout -k 2 ŵout + f (0) .
(3.17)

By projecting (3.17) along the vector k and making use of (3.16), the pressure field pout can be determined analytically

pout = - i k 2 k • f (0) , (3.18) 
a very common result in singular problem. Substituting pout in (3.17) yields

ε 2 ∂ ŵout ∂t = -k 2 ŵout -iε p O (v p (t) • k) ŵout + k 2 Ĝ • f (0) , (3.19)
where the usual Green tensor Ĝ of the Stokes equations (in Fourier space)

[ Ĝ] ij = 1 k 2 δ ij - k i k j k 2
has been introduced. Eq. (3.19) is a non homogeneous differential equation in time, its solution reads as

ŵout = k 2 ε 2 t 0 dτ Ĝ • f (0) (τ ) exp - k 2 ε 2 (t -τ ) + i ε p O t τ dτ k • v p (t)(τ ) .
(3.20)

Here, for the sake of simplicity, it has been assumed that the force f (0) is 0 for any t ≤ 0.

We now seek an expansion of the outer solution (3.20) in the Fourier space [START_REF] Meibohm | Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number[END_REF].

ŵout = T (0) reg + ε T (1) reg + ε T (1) sing + O(ε 2 ) , (3.21)
where the terms T (n) reg correspond to regular parts of the expansion and T (n) sing to singular parts (i.e. terms based on the Dirac-delta distribution).

Regular parts of the expansion are determined from Eq. (3.19) by considering this equation as a regular equation. It is found that

T (0) reg = Ĝ • f (0) , (3.22) 
T (1) reg = i p O (v p (t) • k) Ĝ • f (0) k 2 . (3.23)
In the physical space, these regular terms transform into

T (0) reg = G • f (0) , (3.24) T (1) reg = - p O v p (t) • ∇ 3r 32π 1 - 1 3 r ⊗ r r 2 • f (0) . (3.25)
Here we used the definition of the Green-Stokes tensor in physical space

[G] ij = 1 8π δ ij r + r i r j r 3 .
The Fourier transform of the Green-Stokes propagator is detailed in Lisiki (2013) for instance. The Fourier transform of the other terms has been obtained thanks to a Mathematica code, inspired by [START_REF] Candelier | Note on the method of matched-asymptotic expansions for determining the force acting on a particle[END_REF], with which we calculate the direct and the inverse Fourier transforms of Legendre polynomials at any order. Note that, the first term of the outer expansion, the leading term T (0) reg , is represented by a 'stokeslet' flow field, as expected.

We now deal with the singular term, that, in the Fourier space, can be determined by evaluating the limit [START_REF] Childress | The slow motion of a sphere in a rotating, viscous fluid[END_REF][START_REF] Saffman | The lift on a small sphere in a slow shear flow[END_REF])

T (1) sing = lim ε→0 ŵout - T (0) reg ε -T (1) reg .
(3.26)

The shape of T (1) sing can be obtained by Eq. (3.26), using (3.20), by a simple integration by parts. One can express ŵout as

ŵout = Ĝ • f (0) (t) - t 0 dτ Ĝ • df (0) (τ ) dτ -Ĝ • f (0) (τ ) i ε p O v p (τ ) • k • exp - k 2 ε 2 (t -τ ) + i ε p O t τ dτ k • v p (τ ) .
(3.27)

Within the Fourier formalism used here, the flow terms can be interpreted in the sense of generalized functions. There exists a fundamental result for a generalized function t integrable over the entire domain, with integral equal to

R 3 t(r)dr = C , (3.28)
stating that [START_REF] Schwartz | Théorie des distributions[END_REF])

lim ε→0 1 ε 3 t r ε → Cδ(r) . (3.29) 
From Eq. (3.27) and (3.26), and exploiting Eq. (3.29), we have

T (1) sing = 8π 3 U (t) δ(k) , (3.30) 
where U (t) is a uniform term given by ,τ ) .

U (t) = 1 8π 3 d 3 k - t 0 dτ Ĝ • df (0) (τ ) dτ e K(t,τ ) +i p O t 0 dτ Ĝ • f (0) (τ )(k • v p (τ ))e K(t
(3.31) with K(t, τ ) = -k 2 (t -τ ) + 2i √ t -τ k • a(t, τ ) . (3.32)
Here a is the 'pseudo displacement vector' initially introduced by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF]. Such a vector, a(t, τ ), is defined as

a(t, τ ) ≡ p O 1 2 √ t -τ t τ dt v p (t ) . (3.33)
In order to perform the k-integration in (3.31), and following [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF], we express the vectors in spherical coordinates defined around an axis that moves with the displacement vector a. We therefore write k • a = kA(t, τ ) cos(θ a ) and p = a(t, τ )

A(t, τ ) , (3.34)
where θ a is the angle between k and a, and A(t, τ ) is the norm of a. Performing the k-integration yields

U (t) = - t 0 dτ K (1) (t, τ ) 6π • df (0) (τ ) dτ - p O t 0 dτ K (2) (t, τ ) 6π • f (0) (τ ) , (3.35)
where the expressions of the kernels K (1) and K (2) are given in (3.37) and (3.38).

So, by using Eq. (3.21), Eq. (3.24), Eq. (3.25), Eq. (3.35) and transforming back to the real space, we have

w out = 1 8π 1 r + r ⊗ r r 3 • f (0) (t) -Re p v p (t) • ∇ 3r 32π 1 - 1 3 r ⊗ r r 2 • f (0) -ε t 0 dτ K (1) (t, τ ) 6π • df (0) (τ ) dτ -Re p t 0 dτ K (2) (t, τ ) 6π • f (0) (τ ) .
(3.36)

In (3.36), the integral kernels K 1 and K 2 have elements:

[K (1) (t, τ )] ij = - 3 8 -2+A(t, τ ) -2 erf(A(t, τ )) A(t, τ ) -2 exp(-A(t, τ ) 2 ) A(t, τ ) 2 √ π δ ij √ t -τ - 3 8 1-3 2 A(t, τ ) -2 erf(A(t, τ )) A(t, τ ) + 3 exp(-A(t, τ ) 2 ) A(t, τ ) 2 √ π (δ ij -p i (t, τ )p j (t, τ )) √ t -τ , (3.37)
and

[K (2) (t, τ )] ij = - 3 8 1 2A(t, τ ) 1 -3 2 A(t, τ ) -2 erf(A(t, τ )) A(t, τ ) + 3 exp(-A(t, τ ) 2 ) A(t, τ ) 2 √ π × (p i (t, τ )v j (τ ) -3(p k (t, τ )v k (τ ))p i (t, τ )p j (t, τ )) t -τ - 3 8 1 2A(t, τ ) 3 erf(A(t, τ )) A(t, τ ) 3 -4 + 6A(t, τ ) -2 exp(-A(t, τ ) 2 ) √ π × (p k (t, τ )v k (τ ))(δ ij -p i (t, τ )p j (t, τ )) t -τ .
(3.38)

We wrote here v i the components of v p , p i the components of the swimming direction vector p. The kernels K (1) and K (2) are the modified history kernels, which account for the convective and unsteady inertia of the fluid. As a difference with respect to [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF], we obtain two separate kernels convoluted with f (0) , whose definition contains the active contribution to the motion f a (see sec 3.3). We provide in the next section a detailed analysis of the behavior of these kernels in different physical situations.

Asymptotic limit of the outer uniform flow disturbance

The outer flow expansion depends on the shape of the moving particle (active or passive) only through the associated resistance tensor. Beside this, it depends on the dynamics of the particle only through the force it exerts on the fluid in the creeping flow limit

f (0) = -f (0)
h (and the memory of that force df (0) /dt). This means that, in principle, the method devised here can be used to determine the outer-flow produced by any kind of moving particle, provided that the hydrodynamic force in the Stokes limit is known. The result in Eq. (3.36) yields a general expression for the outer flow generated by any small particle experiencing fluid inertia effects. With the matching method, we derive Eq. (3.36) observing the particle just as a point-like disturbance. The result is thus independent on the shape and the level of activity of the particle. Said differently, the fluid flow far from the particle is spatially equivalent for active and passive particles. As a consequence, Eq. (3.36) is valid for both active and passive particles.

Note also that the equations of the outer flow are equivalent in presence of external forces. External forces would just modify the f (0) , since it is the sole ingredient depending on the particle Stokes dynamics. In the following we show analytically that the kernels here obtained are valid for the dynamics of passive particles. In conclusion, note that whenever the flow dynamics is well approximated by Eq. (3.11), the singular contribution to the outer flow is a spatially uniform time dependent flow field which shape is encoded in U (t).

Recover passive particle dynamics

To go a bit further, let us now discuss the different terms involved in the expansion of the outer flow in Eq. (3.36). As mentioned, the leading order (i.e. order zero) is the well known stokeslet solution [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]. It represents the far-field disturbance flow produced by a moving particle in the creeping flow limit. Higher order terms account for a combination of convective and unsteady inertia effects. The first contribution in Re p represents a regular perturbation to the stokeslet solution. The lasts two integral terms express memory effects upon the flow velocity. The contribution of these two terms to the outer flow takes the form of a uniform but time-dependent flow field. As it will be shown later, this uniform flow generates on the particle a force that is equivalent to the force derived by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] for a passive sphere. The kernels K 1 and K 2 encode the influence of both convective inertia effects and fluid unsteadiness in a non-additive way.

We verify here that these kernels are general by recovering an existing result for passive particles. We have seen in chapter 2 that the Stokes force on an active swimmer contains an active contribution f a . For the present analysis we set this active contribution to 0. We consider a passive sphere in instantaneous acceleration from rest, as in [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF]. We set v p (t) = U H(t), where H(t) is the Heaviside function. We know that the Stokes drag acting on a sphere moving at speed v p (t) in a quiescent fluid is f See also [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF] and [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF].

less variables proposed by [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF], τ c = a 2 /ν, obtaining Sl = Re p -1 . Within this choice of the characteristic parameters, the expansion is performed in terms of Re p . The linear applications expressed by the kernels K 1 and K 2 of Eq. (3.35) can be analytically integrated and the shape of the inertial contribution to the outer flow is [START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF])

U (t) = - 4 e -Rep 2 t 4 √ πRe p 3 √ t 3 + 2 e -Rep 2 t 4 √ πRe p √ t + erf Re p √ t 2 + 4 erf Rep √ t 2 Re p 4 t 2 .
(3.39)

The particle can be seen as frozen inside this uniform flow and therefore the inertial correction to the hydrodynamic force f

(1)

h is shaped as a supplementary Stokes drag due to U (t). The result in Eq. (3.39) is plotted in Fig. 3.1 for different values of Re p .

Outer flow behaviour in two opposite limits

It is worthwhile to discuss the temporal behaviour of w out in two different physical situations corresponding to either high or weak flow unsteadiness. To facili-tate our discussion, we denote

I 1 = -ε t 0 dτ K (1) (t, τ ) 6π • df (0) (τ ) dτ , (3.40)
and

I 2 = -Re p t 0 dτ K (2) (t, τ ) 6π • f (0) (τ ) . (3.41)
Firstly we consider situations where the unsteadiness is high. This is obtained evaluating the limit p / O → 0. It turns out that A(t, τ ) → 0, therefore

I 1 → -ε t 0 dτ I π(t -τ ) • df (0) (τ ) dτ and I 2 → 0 . (3.42)
In this situation, we recognize the well-known B.B.O. kernel [START_REF] Boussinesq | Sur la résistance qu'oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables[END_REF][START_REF] Basset | A treatise on hydrodynamics: with numerous examples[END_REF] that describes how the disturbance-velocity gradients relax due to pure viscous diffusion. Given that in this limit the ε terms are dominant over the Re p terms, Eq. (3.36) converges to the outer flow one would obtain solving the purely unsteady Stokes equations (see chapter 2). Since fluid inertia is negligible, the evolution of the flow gradients is only diffusive. This result has been already shown in Redaelli et al. (2022b). When convective contributions are negligible, Eq. (3.15) reduces to a steady Stokes equations perturbed by a unsteady term at order ε 2 .

Another asymptotic behavior we can explore arises when the motion approaches a quasi-steady state, which is characterized by p / O → ∞. Analytically one can prove that I 1 → 0 and I 2 → -Re p |v p |f (0) /(16π) .

(3.43)

In this steady limit, only the well-known Oseen correction accounting for fluid inertia survives. We come back on the Oseen limit when we discuss how the inertial terms in the hydrodynamic force expansion evolve when p / O varies.

To conclude, we note that for a passive spherical particle, knowing the outer flow is sufficient to determine the inertial corrections on the hydrodynamic force, because of the symmetries of the problem. One just needs to compute the resistance matrix R of the particle, related to the geometry of the particle itself. Once this is known the inertial correction coming from this far field flow can be quickly written as f

(1) h = 6π U (t), just as a supplementary Stokes drag. In a general case, however, we will see that there exist additional terms in the force definition, induced by the inner flow. Indeed, to solve the dynamics of an active particle, one needs to solve also the flow equations in the inner region. Inner equations involve, through the boundary conditions, the specific swimming-gaits of the particle.

Inner flow expansion

In the inner region, that is the region nearby the particle, defined by r = O(1), the inertial effects matter only at first order in ε expasion (see chapter 2). The solution of the inner problem can be sough in the form of an expansion in ε (see also chapter 2). Here, we know in advance that the problem considered is a singular one, since terms involved in the inner expansion must be matched to the corresponding outer ones (3.21), whose explicit singular shapes are given in (3.36). Matching must be performed order by order.

At order 0, the set of equations reduce to the Stokes problem, one can depict as

∇ • w (0) in = 0 , (3.44) -∇p (0) in + w (0) in = 0 , (3.45)
with boundary conditions given by

w (0) in = v p (t) + v s (t) for r ∈ S p , (3.46a) w (0) in ∼ T (0) reg for r → ∞ , (3.46b)
where the symbol ∼ that we have used in (3.46) expresses the matching between the inner and the outer solutions (see chapter 2 and [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF].

At order 1, equations to solve correspond to an inhomogeneous Stokes problem ∇ • w

(1) in = 0 , (3.47) (3.48) with boundary conditions

-∇p (1) in + w (1) in = - p O v p (t) • ∇w (0) in + p O w (0) in • ∇w (0) in ,
w (1) in = 0 for r ∈ S p , (3.49a) w (1) in ∼ T (1) reg + U (t) for r → ∞ , (3.49b)
where we introduced the singular term U , obtained while evaluating the outer flow field. Solution of this problem can be sought in the form

w (1) in = w (1) p + U (t) + w (1) h , (3.50a) p (1) in = p (1) p + p (1) h , (3.50b)
where w

(1) p + U (t) and p

(1) p correspond to one (forced) particular solution and w

(1) h and p

(1) h to the homogeneous part of the solution. Here, the uniform term U (t) has been included as a part of the particular solution for mathematical convenience. The velocity w 

-∇p (1) p + w (1) p = - p O v p (t) • ∇w (0) in + p O w (0) in • ∇w (0)
in .

(3.52)

The solution can be obtained, for instance, by using Fourier transforms. We mention that, by construction, the particular solution naturally fulfills the boundary condition (3.49):

w (1) p ∼ T (1) reg , r → ∞ .

Once the particular solution of the problem is obtained, the remaining homogeneous part of the full solution can be derived by solving the following Stokes problem

∇ • w (1) h = 0 , (3.53) -∇p (1) h + w (1) h = 0 , (3.54)
whose boundary conditions now read

w (1) h = -w (1) p | r∈Sp -U (t) for r ∈ S p , (3.55a) w (1) in ∼ 0 for r → ∞ . (3.55b)
So far, the inner equations written in this section, and which must be solved to determine the flow produced by a swimmer and the force acting on it, remain general. In particular they are valid whatever the shape of the swimmer. Despite this, we observe that when the shape of the swimmer changes over time the mathematical difficulties in solving these equations increases significantly. Whenever the spherical symmetry is broken, one needs to take into account perturbation over the surface shape in the calculation of the flow. This adds a complexity which is strictly mathematical and thus far from the goal here. In what follows, as an illustration of our approach, we solve the inner equations for a model case, namely that of a spherical squirmer, for which a large corpus of theoretical results exists.

Inertial squirmer with tangential deformation

In order to derive the analytical expression of the hydrodynamic force, we employ the model of an actively translating spherical squirmer. The surface velocity is assumed as v s (θ, t) = B 1 (t) sin θ + B 2 (t) sin θ cos θ e θ .

(3.56)

Solving Equations (3.44) to (3.54) allows us to explicitly compute the inner flow fields and the stress tensor on the particle. The analytical shape of the flow field is complex and omitted here for clarity. Integrating the stress tensor over the surface of the particle provide the force acting on the squirmer. This force reads 3.3. Inertial squirmer with tangential deformation as f h = f p p, where

f p = -6π v p (t) - 2 3 B 1 (t) -ε 6π t 0 dτ K (1) (t, τ ) • d dτ v p (τ ) - 2 3 B 1 (τ ) -Re p 6π t 0 dτ K (2) (t, τ ) • v p (τ ) - 2 3 B 1 (τ ) -Re p 2π 5 v p (t)B 2 (t) + 2π 15 B 1 (t)B 2 (t) .
(3.57)

We recognize here the usual Stokes drag and the thrust, the leading terms of the hydrodynamic force. The behavior of kernels K (1) and K (2) accounts for both unsteady and convective inertia effects. The terms in the last row of Eq. (3.57) quantify the influence on the hydrodynamic induced by the pure activity of the particle. The active swimming breaks the spherical symmetry of the particle and leads to an inertial correction for the hydrodynamic force. Adding higher order terms in the definition of the swimming speed (3.56) just carries inertial corrections proportional to Re p . These terms modify the slip velocity and do not influence the Stokes force on the particle. Playing with inertial parameters Re p and Sl, Eq. (3.57) can be used to model situation where one of the two effects prevails or situations in which they compete.

Highly unsteady dynamics

At first, let's deal with the case of an highly unsteady dynamics, assuming p / O → 0. This limit have been already considered to derive expression (3.42). The highly unsteady dynamics model, for instance, swimming situations characterized by high frequency. Mathematically, situations in which B 1 (t) and B 2 (t) are time dependent and the unsteady inertia is much larger than convective induced effects. In this limit, the hydrodynamic force Eq. (3.57) turns out to be a generalization of the result from Wang and Ardekani (2012b) 

f p = -6π v p (t) - 2 3 B 1 (t) -ε 6π t 0 dτ 1 π(t -τ ) • d dτ v p (τ ) - 2 3 B 1 (τ ) -Re p 2π 5 v p (t)B 2 (t) + 2π 15 B 1 (t)B 2 (t) .
(3.58)

In fact, Eq. (3.58) contains additional inertial terms (i.e. the last line of expression (3.58)) which account for the propulsion dynamics of the organism. Assuming Re p → 0 and Re p Sl non negligible, Eq. (3.57) reduces to Wang and Ardekani (2012b). Note that Eq. (3.58) does not account for the added mass force, which cannot be included here since it is a term of higher order in the ε expansion of the force (see chapter 1).

Dynamics in the limit of strong convective effects

Eventually, with such theory it is also possible to investigate the dynamics assuming negligible unsteady effects, in the limit p / O → ∞. For instance, the dynamics of a swimmer whose swimming gait is characterized by a low frequency. Within p / O → ∞, the typical time of the swimmer dynamics, τ c is assumed much longer than the time the flow field needs to organise itself after the perturbation (the viscous time τ ν = a 2 /ν f ). As shown in Eq. (3.43), in this limit, the effects of the integral terms reduces to an Oseen correction to the Stokes flow. This situation is named quasi-steady inertial dynamics. The force is thus written as

f p (t) = -6π v p (t) - 2 3 B 1 (t) 1 + 3 8 Re p v p (t) -Re p 2π 5 v p (t)B 2 (t) + 2π 15 B 1 (t)B 2 (t) .
(3.59)

When time dependence can be completely neglected, or in the limit of a steady dynamics, this expression can be further simplified. The steady dynamics is obtained by considering steady the boundary conditions of the problem. Substantially, this resumes in replacing B 1,2 (t) with their steady limit B 1,2 . In the steady limit, the history force vanishes and the system dynamics is force-free. Through Eq. (3.59), setting f p = 0, the constant translation speed of the squirmer v p can be computed analytically. The expression found here matches the result of [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF] (see also Wang and Ardekani, 2012a) 

up to Re p v p = 2 3 B 1 1 - 3 20 Re p B 2 B 1 . (3.60)
One advantage of using the method of matched asymptotic expansions, instead of the generalised reciprocal theorem [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF], is that it allows us to determine the analytical expression of the disturbance flow. In what follows, we analyze the disturbance flow produced by the spherical squirmer in two situations, namely the jumping-like motion, and the periodic motion and plot the disturbance flow fields for the dynamics.

Center of mass speed

We integrated numerically the dynamical equation of the particle for the case of a 'jumping' squirmer. The 'jump' is here modeled as a sudden start For times much smaller than the Oseen time, the dynamics is well described by the BBO equation (Wang and Ardekani, 2012b), as expected. As in [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF], the unsteady approximation for a passive particle is valid up to the Oseen time and the effect of convective contribution are of order O(Re p ). In the present case, unsteady and convective forces are comparable in intensity. Furthermore, the squirming induces convective contribution on the hydrodynamic force since the beginning of the motion (see last two terms of Eq. (3.57)). We observe the effects of fluid convection already for t ∼ 0.25t O , when the two solutions start to differ. Although the inertial parameters are quite small, convective inertia nevertheless has a noticeable effect on the centre-of-mass speed. The largest relative difference between the full and BBO solutions is about 10%. In the steady limit, the center-of-mass speed converges to the value derived by [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF], 

B 1 (t) = erf(50t) and B 2 (t) = 3 2 B 1 (t) . ( 3 
v p = 2 3 B 1 (1 -3 20 βRe p ) , ( 3 

Disturbance flow

We already observed that disturbance flows generated by active swimmers at low Reynolds number can be modeled with Stokes singularities [START_REF] Guasto | Fluid mechanics of planktonic microorganisms[END_REF] or by means of the source dipole [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. Living organisms experiencing the effects of external forces (i.e. gravity) are modeled as stokeslets [START_REF] Drescher | Direct measurement of the flow field around swimming microorganisms[END_REF][START_REF] Guasto | Fluid mechanics of planktonic microorganisms[END_REF], self-propelled swimmers as stresslets [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. Flow disturbances due to jumping plankton have been modeled with impulsive stresslets and impulsive stokeslets [START_REF] Afanasyev | Wakes behind towed and self-propelled bodies: Asymptotic theory[END_REF][START_REF] Kiørboe | Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods[END_REF][START_REF] Jiang | The fluid dynamics of swimming by jumping in copepods[END_REF]. These models do not account for possible convective effects, despite the large Re p characterizing the motion of some motile organism [START_REF] Jiang | The fluid dynamics of swimming by jumping in copepods[END_REF]. Disturbance-flow patterns are among the sources of information swimming organisms exploit to explore their environment. When inertia matters the flow streamlines patterns are affected by fluid convection and modified in time because of the time dependance of the swimming gaits. With the present theory we can explore both the effects due to convection and the evolution of the flow disturbance in time. Let's thus analyze the disturbances induced by a jumping squirmer and a squirmer translating with time periodic swimming in the limit of ε 1. (1) in approaches its steady limit after a sudden start, Eq. (3.61), for the same parameters as in Figure 3.2. At short times, the streamlines of the disturbance flow are almost those of a stokeslet. Since f (0) is proportional to the difference between v p and 2 3 B 1 (t)p(t), the disturbance flow is dominated by the stokeslet generated by the uniform flow (Eq. 3.36). For times much smaller than the Oseen time, this is well described by the solution of the unsteady Stokes equations. However, there is a small recirculation region at the rear of the spherical swimmer, produced by the instantaneous inhomogeneous inner solution. This is an effect of convective inertia. During the transient, the recirculation area grows in time. At the same time, the intensity of the stokeslet decreases, as f (0) = -6π( 23 B 1 pv p ) decays to zero (Fig. 3.2). After this transient, the disturbance flow converges to the disturbance flow in Fig. 3(a) of [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF] (not shown). Since the Reynolds number Re p is small, the steady disturbance flow is quite similar to the steady Stokes solution, as in Fig. 3(a) of [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF]. Since there are no external forces in the example considered, f (0) = 0 in the steady state. Therefore the disturbancevelocity field is a stresslet which decays much more rapidly as a function of the distance to the organism than the stokeslet.

Jumping swimmer
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Periodic swimming

We also consider the disturbance flow generated by an unsteady squirmer, with time-dependent coefficients B 1 (t) = 2.39 + 3.5 cos(ωt) + 0.16 cos(2ωt) , B 2 (t) = 5.45 sin(ωt) -2.35 sin(2ωt) .

(3.63)

In the simulations, we initially set v p (0) = (2/3)B 1 (0)p to ensure that f (0) (0) = 0. Fig. 3.4 shows the resulting disturbance flow over one swimming period. The parameters are given in the caption of Fig. 3.4, they correspond to Re p = 0.1, Sl = 0.1, and ε = 0.1. So unsteadiness is quite small, but comparable in inten-sity to convective-inertia effects, just as in Fig. 3.2. Wang and Ardekani (2012b) considered much stronger unsteadiness. Since the coefficients (3.63) change as a function of time, so does the parameter β(t) = B 2 (t)/B 1 (t) that distinguishes pullers (β > 0) from pusher (β < 0) (see chapter 1 and [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. At t = π and 2π, β = 0 [panels (b) and (d)]. For t = π 2 , the coefficient β is positive. The streamlines of the disturbance flow look like those of a puller [panel (a)]. For t = 3π 2 , the disturbance flow is close to that of a pusher, because β < 0 at that time [panel (c)]. Fig. 3.4 also shows the corresponding quasi-steady Stokes solution plus inertial corrections, obtained by computing the steady Stokes solution and the steady convective-inertia correction for given values of B 1 (t) and B 2 (t) (red solid lines). We conclude that this quasi-steady approximation works very well. Unsteady effects contribute only weakly because the coefficients vary more slowly than the viscous time, a 2 /ντ c 1. Fig. 3.4 also illustrates the magnitude |w

(0) in + εw (1)
in | of the disturbance flow. It is localised around the swimmer because the magnitude decays as r -2 away from the surface: the disturbance is mainly a stresslet because the squirmer is almost force free at large times, f (0) ∼ 0. Note however, that the difference (2/3B 1 n-v p ) is always non-zero if the squirmer is subject to an external force. In this case, the disturbance flow generated by the squirmer contains a stokeslet in the steady limit [START_REF] Guasto | Fluid mechanics of planktonic microorganisms[END_REF].

Conclusion

In this chapter we determined the hydrodynamic force on a small spherical inertial squirmer in an unsteady, spatially homogeneous flow. We obtained the hydrodynamic force with the method of matched asymptotic expansions in the parameter ε = Re p Sl, for small particle Reynolds number Re p . Our main result, Eq. (3.57), for the hydrodynamic force generalises the result of [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] from a passive sphere to an active particle, an unsteady spherical squirmer. Eq. (3.57) describes how convective inertia changes the kernel of the history force. As explained by [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF], convective inertia tends to cause the kernel to decay more rapidly. We believe that the kernels for passive and active particles are identical. We did not demonstrate this analytically, but numerical evaluation for all cases we considered showed them to be the same. The kernels do not depend upon the particular swimming gait of the squirmer, given by the coefficients B 1 (t) and B 2 (t). This information is encoded in f (0) . For the active particle, this amplitude contains an additional term, compared with the passive sphere. This term stems from the active surface-velocity field.

A second difference to the result of [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] is that an inhomogeneous part of the inner solution contributes to the hydrodynamic force. Spherical symmetry ensures that this contribution vanishes for a spherical pas-sive particle, but swimming breaks spherical symmetry. This contribution explains why the principle used by Redaelli et al. (2022b) to compute inertial corrections to the hydrodynamic force works in the Saffman limit and for unsteady inertia, but not for the Oseen problem considered here.

Our expression (3.57) for the hydrodynamic force simplifies to known results in two limits. First, when unsteadiness dominates, our result simplifies to that of Wang and Ardekani (2012b) and Redaelli et al. (2022b), where the history force is determined by the B.B.O. kernel which decays as t -1/2 . Second, when particle inertia is more important than unsteadiness, our expression converges to the steady Oseen approximation obtained by Wang and Ardekani (2012a) and [START_REF] Khair | Expansions at small Reynolds numbers for the locomotion of a spherical squirmer[END_REF].

In order to illustrate the effects of weak unsteady and convective fluid inertia, we considered two examples, a sudden start of the centre-of-mass motion, and a squirmer moving with a periodic gait. We analysed the disturbance flow created by the swimmer for both cases. For a sudden start we observed the transition from the initial stokeslet to a stresslet at later times. For the periodic swimming gait, we found that for relatively small values of the particle Reynolds number and the Strouhal number, the disturbance flow is quite well approximated by a quasi-steady approximation, where one determines the steady Stokes solution and the steady inertial correction for any instant of time for the given coefficients B 1 (t) and B 2 (t). This works well as long as these coefficients vary more slowly than the viscous time.

We stress that the theory presented here rests on the assumption that Re p 1. Marine organisms come in many different sizes, and they swim with different speeds and with different swimming gaits. A number of empirical studies have estimated both the particle Reynolds number Re p and the Strouhal number Sl for different microswimmers. [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF] estimated the Strouhal number for jumping copepods, and concluded that Sl ∼ 1 for nauplii (with Re p = 5 . . . 10) and for adult copepods that jump more vigorously (Re p ∼ 40). [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF] measured Re p and Sl for copepods in different stages of their evolution, observing Sl ∼ 1, and Re p -values up to 70 (see their Tab. S1). For these values of Re p , our theory most certainly fails. However, there are also organisms that jump less vigorously. The ciliate Mesodinium rubrum, for instance, jumps with particle Reynolds numbers of order of unity [START_REF] Jiang | Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt?[END_REF]. Also, cruising copepods tend to swim with smaller particle Reynolds numbers, in the range ∼ 0.1 -0.4, see Tables I andII in [START_REF] Qiu | Gyrotactic mechanism induced by fluid inertial torque for settling elongated microswimmers[END_REF]. In these cases, our theory may give a qualitatively correct description of the dynamics, and of the disturbance flow. We stress that convective and unsteady inertia effects are equally important in the examples mentioned above. Our theory accounts for both, and it shows that quasi-steady approximations may nevertheless work, provided that the unsteady swimming gait is slow enough.

For a sudden start of the centre-of-mass motion, the disturbance created by the squirmer at small Re p is quite different from the disturbance flow due to steady swimming. During the transient after the sudden start, the disturbance flow is essentially a stokeslet, which decays slowly as the distance from the swimmer increases, as r -1 . At long times, the disturbance is a stresslet, as expected, at least when no external forces act. The stresslet decays faster, as r -2 , and this implies that squirmers are easier to detect immediately after a sudden start, because the disturbance they cause can be perceived from further away.

Here we considered how fluid inertia affects a small squirmer. The disturbance caused by small motile organisms in a marine environment has been described in other ways, by superposing different elementary Stokes solutions. Examples are the impulsive stokeslet and the impulsive stresslet [START_REF] Afanasyev | Wakes behind towed and self-propelled bodies: Asymptotic theory[END_REF]. [START_REF] Guasto | Fluid mechanics of planktonic microorganisms[END_REF] give examples where this approach fails, because it does not reliably approximate the outer disturbance flow, and they state possible reasons: inertia effect induced by the unsteadiness, buoyancy (giving rise, for example, to a Stratelets [START_REF] Ardekani | Stratlets: low Reynolds number point-force solutions in a stratified fluid[END_REF]), or a combination of both. At least for small particle Reynolds numbers, our results show how convective and unsteady fluid inertia modify the disturbance flow. In this limit, i.e. at small Reynolds number, the outer flow is universal: shape and swimming gait enter only through an amplitude, the kernels describing the history effect on the outer disturbance flow do not depend on these details. However, for larger particle Reynolds numbers it remains an open question how history force and disturbance flow depend on the shape and propulsion mechanism of the swimmer. These results are publicly available at Redaelli et al. (2022a).

Chapter 4

How to locate a low Reynolds prey from its hydrodynamic signature?

In this chapter, we deal with the source tracking problem for an agent sensing hydrodynamic cues from a flow at low Reynolds number. We present two tracking strategies based on stereo-measurements of the flow gradient or its symmetric part. We show that both strategies allow the agent to overcome a classic problem of tracking at low Reynolds: the intrinsic symmetries of the flow.

Introduction

An exhaustive understanding of the mechanosensitive skills of planktonic species is still lacking. Mechanosensitive skills [START_REF] Visser | Small, wet & rational, individual based zooplankton ecology[END_REF] are of fundamental importance for plankters. They exploit hydrodynamic cues to escape from predators, to hunt preys, and to detect food particles [START_REF] Strickler | Planktonic copepods reacting selectively to hydrodynamic disturbances[END_REF][START_REF] Kiørboe | Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods[END_REF]. Research is now focused on modeling the sensor-action behavior of plankters with tools coming from mathematical modeling and computer simulations (Colvert et al., 2017b;[START_REF] Takagi | Active hydrodynamic imaging of a rigid spherical particle[END_REF].

Biology imposes some constraints on the modeling of mechanosensing, such as the shape of the organism and the environment it inhabits. The main inspiration for the work presented in this chapter comes from copepods. Pelagic copepods inhabit almost all water environments on the planet, most of which are turbulent [START_REF] Hardy | The Open Sea. The World of Plankton[END_REF]. They are characterized by an elongated ellipsoidal shape [START_REF] Wadhwa | Zooplankton Hydrodynamics: an investigation into the physics of aquatic interactions[END_REF] and equipped with a pair of antennae attached to their head. The antennae are organs specialized in the sensory reception of hydrodynamic signals. Experimental evidences demonstrated that copepods manage to measure strain rate as slow as 10 -2 s -1 [START_REF] Tuttle | Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator[END_REF].

The copeopods' antennae have been modeled as straight line of sensors mapping the relative flow velocity (i.e. the gradient of the flow) into useful information [START_REF] Takagi | Directional hydrodynamic sensing by free-swimming organisms[END_REF]. [START_REF] Visser | Small, wet & rational, individual based zooplankton ecology[END_REF] calculated the space-time map of the magnitude of the measured flow along the antennae to infer the distance of the flow source. [START_REF] Takagi | Active hydrodynamic imaging of a rigid spherical particle[END_REF] modeled a slightly different situation, where the hunter (i.e. the copepod) generates an active flow that bounces on an obstacle, typically a food particle. The disturbance created on the active strain by the presence of the particle is then detected by predator's sensors. This information is used to locate spatially the food particle. [START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF] modeled the prey-predator dynamics of two agents in the low Reynolds number limit. Each agent relies on a measure of the gradient of the flow emitted by the other to infer the opponent's position.

In all these situations, the strategy employed by the agent relies on a single measure of the flow. Except for the case of the active strain [START_REF] Takagi | Active hydrodynamic imaging of a rigid spherical particle[END_REF], the sensory measure suffers ambiguity because of the intrinsic symmetry of the Stokes flow detected. The work presented here addresses some key questions: What are the symmetries of the flow that result in sensing ambiguity? Can a combination of multiple measures overcome such ambiguity?

In this chapter, we detail the ambiguity arising from the symmetry of the sensed flow cues. Then, we present two strategies able to overcome this issue thanks to stereo-sensing. Where possible, we discuss analytically the performance of both strategies. We assess the robustness of each of the strategies with respect to noise.

Modeling flow fields

We consider the hydrodynamic signal generated by organisms whose dimension a and speed U c are small such that the associated Reynolds number Re p = U c a/ν f 1 is small. The flow is a Stokes flow (see for reference chapter 1 of [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF]. As already shown, it is common to model such flow using force singularities [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF][START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF][START_REF] Dhont | An introduction to dynamics of colloids[END_REF][START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF].

The first fundamental singularity is the stokeslet, induced by a singular point force, i. e. f δ = f δ(r) q, here δ is a three dimensional Dirac delta-function and q is a unit vector. Here q is the direction of application of the force and f represents its magnitude. We define f = f q. The flow at position r, can be expressed as

w(r) = G(r) • f , (4.1)
with G the Oseen tensor (See also Eq. (1.48)). Any derivative of Eq. (4.1) is also a solution of the Stokes equations, associated with the corresponding derivative of the forcing term f δ . As discussed in chapter 1, the hierarchy of solutions in the formalism of singularities can be written as a Taylor expansion. The solution associated with the derivative of order n of such a series, i.e. 1 n! (p • ∇) n f δ , is defined as the Stokes multipole of order n. Here we introduced p, which can be interpreted as a pole moment [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF].

In this chapter, we consider two terms of the Taylor expansion n = 0, 1. The first one, already introduced, is the stokeslet term, used to model nonneutrally buoyant passive particles (or active swimmers non perfectly buoyant as described in [START_REF] Drescher | Direct measurement of the flow field around swimming microorganisms[END_REF]. The second one is the Stokes doublet and corresponds to the singularity of order n = 1

w(p, f , r) = p • ∇ G(r) • f . (4.2)
This singularity represents the flow due to two opposite point forces f and -f whose application points are shifted along p. When f and p are parallel, the resulting flow is named stresslet and is used to model self-propelled organisms moving at constant speed [START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. The constant speed arises because of the compensation of two equal and opposite forces acting on the center of mass of the organism: the drag D and the trust T = -D = f . Particularly, when the forces f and -f point inward, the flow is said to be of puller type (Fig. 4.1). Conversely, when the forces point outwards, the flow is said to be of pusher type (Fig. 4.1).

For the remainder of this chapter, the axis of symmetry of the flow will be p = e z . 

Sensing flow cues

Planktonic organisms are constantly drifted by ocean currents. They only measure the flow relative to the flow advecting them. These measurements are named hydrodynamic cues (Colvert et al., 2017a). We model here this situation, that we will use for the remainder of the chapter.

We define a reference frame R centered on the source of the flow field whose basis is {e x , e y , e z }. We consider an agent centered at r a in R. This agent consist of a sensory system, whose basis is {n, b, t}, holding two sensors respectively positioned at r R = r a + n and r L = r an. These sensors are sensitive to either the gradient of the flow ∇w, or its symmetric part sym(∇w). Here, 2 is the inter-sensors distance and n is the direction along which sensors are placed. The vector t is the swimming direction of the agent, while b is named We assume the agent is advected by the local flow w(r a ) and able to sense hydrodynamic cues only at sensor locations r R and r L . We assume that the agent's body does not interfere with the measured flow (i.e. the information available to the sensors does not contain the flow produced by the agent). The flow velocities at the sensors position are respectively w R and w L , where we defined w R/L = w(r R/L ). Since the agent is advected, the detectable information are the velocity differences w Lw(r a ) and w(r a )w R . Assuming the antennae length is small compared to the spatial variables of the flow, the velocity differences can be approximated at first order by flow gradients. So one can write

w R/L = w(r a ) ± n • ∇w| r R/L + O( 2 ) , (4.3)
since sensors are located along the direction n. The information sensed by the agent can be written as

I ∇ (r R/L ) = n • ∇w(r R/L ) . (4.4)
When the agent is both advected and rotated by the local flow, it is blind to the flow vorticity, and only sensitive to the flow strain. In such a case, the information sensed by the agent is

I ∇ S (r R/L ) = 2 n • ∇w(r R/L ) + [∇w(r R/L )] T = n • sym(∇w) , (4.5)
where the superscript T denotes the transpose. The gray shadowed area illustrates the ambiguity the prey suffers in locating the incoming direction of the predator, where θ = 70 • . Panel (b) shows the problem studied by [START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF]. Prey and predator measure gradients of the opponent's flow, which holds an intrinsic symmetry. Therefore, the predator senses the same information for the prey positioned at two symmetric locations as in picture, swimming either towards p or in the opposite direction -p.

Symmetries of measured hydrodynamic signals

We now explore the features of the information sensed by the agent (the hydrodynamic signal). Despite the simplicity of the situation, we show that the localization of the flow source with hydrodynamic signals is complex. Since the agent measures flow gradients along a specific direction n, i.e. Eq. (4.4) and Eq. (4.5), it can measure 3 independent scalars. The source location and its intensity (f for a Stokeslet) represent 6 scalars. As already pointed out by Colvert et al. (2017b) and [START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF], a single measure of the flow gradient along a direction is ambiguous.

Consider the Stresslet flow due to a particle swimming along p = e z direction (see Fig. 4.2). Without loss of generality, we choose the position of the agent to be r a = r sin θe x + r cos θe z . We assume that n lies in the same plane. Here θ is the 'elevation' angle and r = |r a | is the distance from the source. The gradient perceived by the agent at r a is [START_REF] Spagnolie | Hydrodynamics of selfpropulsion near a boundary: predictions and accuracy of farfield approximations[END_REF]) (4.8) The symmetries of I ∇ can be observed by the transformations ϕ = ϕ + mπ, but also θ = θ + mπ, with m an integer number (alternatively p → -p and r a → -r a ). This is shown in Fig. 4.3b. The information collected by a predator agent is the same for a low Reynolds prey swimming in direction p or -p, positioned symmetrically with respect to the center of the sensory apparatus (see [START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF]. Commonly, the doublet flow is said to hold a fore-aft symmetry [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF].

I ∇ (r a ) = 1 r 3 n - 3g 1 r 2 + 15(n • r a )(p • r a ) 2 r a r 4 , (4.6) with g 1 = [(n • r a + 2(p • n)(p • r a ))]r a + (p • r a ) 2 n . ( 4 
These symmetries affect the success of any strategy relying on a monomeasure of the flow gradients. This happens both in Stokes flow for force dipole, i.e. force dipole symmetries [START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF], and for potential flows [START_REF] Takagi | Directional hydrodynamic sensing by free-swimming organisms[END_REF]. This issue might be solved by enriching the sensory information adding multipole effects at short distance from the flow source [START_REF] Sichler | Hydrodynamic object recognition: When multipoles count[END_REF]. But, the ambiguity persists at large distances (see Fig. 4.3 for a representation of the symmetries).

Another way to lift the ambiguity is to use stereo-sensing (i.e. two measures of the flow gradient). This is what we will focus on in this chapter.

A useful mathematical analogy

Here we show an interesting mathematical analogy. Note that the sensory cue measured by the agent is proportional to the directional derivative along n of the Stokes flow generated by the target I ∇ ∝ n • ∇w. This quantity, measured by the agent, is a solution of the Stokes equation: it is equivalent to the flow generated by a singularity with a pole in direction n, see Eq. (1.51). It means that an agent in a flow field generated by a singularity of order n, detects an information I ∇ equivalent to a singularity of order n + 1, with pole n. The information field I ∇ for a given n has thus the same properties as a Stokes flow field. This is a useful insight, we will exploit.

The strategies

In the following, we prove that a stereo-measure is enough to solve the symmetry problem. The information collected by each measure is a three dimensional vector. We derive two locating strategies. One strategy exploits the magnitude of these vectors: the Braitenberg strategy. The other relies on the direction of information vectors: the triangulation strategy. We show the key behind the comprehension of both strategies stems from the flow geometry. The first strategy has been inspired by the strategy employed by organisms with two ears to locate a sound source in 3D [START_REF] Grothe | The natural history of sound localization in mammalsa story of neuronal inhibition[END_REF]. We extend this concept here to locate the source of a vector field. Consider an agent measuring simultaneously the flow gradient (or flow strain) at two different locations, the position of sensors R and L. From these two measures, it can extract the directions of the information vectors ÎR = I R /|I R | and ÎL = I L /|I L |. Such directions identify two skew lines in 3D space. Since n • ∇w is a solution of the Stokes equation (see sec. 4.2.3 above), such skew lines are tangent to its streamlines and moving towards the direction in which these lines approach each other will eventually allow to reach the source of the singularity (where all streamlines meet).

The triangulation strategy

Let us see what happens assuming that the agent infers the closest point to the two lines directed as ÎR and ÎL . In the agent reference system such point will be oriented along d, the direction computed by 'triangulating' ÎR and ÎL . The unit vector d is the target swimming direction.

In what follows, T represents the non-linear triangulation operation and can be expressed as (see Appendix B)

T (I L , I R ) = sign n × (I R -I L ) × (I R + I L ) • (I R + I L ) I L + I R 2 , (4.9) so T (I L , I R ) = ± I L + I R 2 . (4.10)
Note that, the same strategy can be written with unit vectors ÎL and ÎR . Since the intensity of the measured signal is important for further discussions, we keep the strategy definition as in Eq. (4.9) for the remainder of this chapter. Whatever the Stokes singularity considered, the dot product between the inferred direction d and -e r is non-negative. It is the self-similarity of the field n • ∇w that ensures this. Flow streamlines originate from the singularity and their inter-distance increase moving away from the source. For this reason, the triangulation will always give a direction in the half space towards the source. The sign function ensures that the agent swims along the average streamlines inferred through I L +I R Note that the two measures of the gradient flow are not enough to locate exactly the source, but they provide a direction that brings the agent closer to the source. With an iterative process, the agent can find the source.

The dynamical equation for the angular dynamics of a successful strategy based on the direction d inferred from triangulation can be written as

d = T (I R , I L ) , ω a = t × d |d| , ṫ = ω a × t .
(4.11)

The agent orients its swimming direction t towards the inferred direction d rotating around an axis given by the triangulation operation: ω a . With the 'dot' we denote the time derivative. We assume that the agent angular speed is much higher than its own linear speed and much higher than the swimming speed of the prey. This theoretical limit has been inspired by the ability of planktonic species as copepods [START_REF] Jiang | Hydrodynamic signal perception by the copepod oithona plumifera[END_REF] and mesodinium rubidium [START_REF] Jiang | Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt?[END_REF] to jump towards a prey or far away from a predator just after the detection of it, with angular -translational evolution faster than any real evolution in the dynamics of the opponent. [START_REF] Jiang | Hydrodynamic signal perception by the copepod oithona plumifera[END_REF] estimated a copepods jump with speed ∼ 15 times larger than the prey speed. With data from Tab. n.2 in [START_REF] Jiang | Hydrodynamic signal perception by the copepod oithona plumifera[END_REF], one can infer rotational speed up to 30 rad/s.

The stereo measure of the strategy allows to solve the symmetries presented in the previous section as we will show below analytically.

The Braitenberg strategy

(a) The triangulation strategy is based on the direction of the information signals.
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We now consider the Braitenberg strategy, based on the magnitude of these signals. This strategy is inspired by the Braitenberg robot, introduced to simulate the reactive behaviors of animals [START_REF] Braitenberg | Vehicles: Experiments in synthetic psychology[END_REF]. We use this strategy as a benchmark to compare with the triangulation strategy.

In its simplest version, the Braitenberg robot consists of a vehicle with two sensors and two active wheels (see Fig. wheel, and the rotating speed of the wheel is a function of the magnitude of the signal measured by the sensor. The connections between wheels and sensors can be of two kinds. They can be 'ipsilateral', when each sensor is connected with the wheel located on the same side of the robot, or 'contralateral' when each sensor is connected with the wheel located on the opposite side (see Fig. 4.6). The information measured by the sensors can be inhibitory or excitatory. When it is inhibitory, the wheel speed is a decreasing function of the signal, when it is excitatory, an increasing function. The geometry of the connections and the feature of the sensation model the four taxis behaviors observed in the animal world: fear, aggression, liking, and love [START_REF] Braitenberg | Vehicles: Experiments in synthetic psychology[END_REF].

Here, the Braitenberg agent mimics the 'love' (or 'likely') behavior, therefore we model 'contralateral ' (or 'ipsi-lateral') 

ω a = (|I L | -|I R |)b , ṫ = ω a × t .
(4.12) See Fig. 4.5 for a schematic view of this strategy. This strategy aims to maximize the gradient of |I|. It needs to solve 2 degrees of freedom to explore successfully the space of orientations in three spatial dimensions. Since the rotation axis is fixed (b in the present model), with only two sensors (or two measures of the sensory cue), as in Eq. (4.12), the agent is trapped in a planar dynamics, in the plane orthogonal to b. The solution to this issue is found by drawing inspiration from the behaviour of biological organisms that rotate around their swimming direction, adding a roll to their dynamics.

The importance of roll rotation

In Nature, many organisms exhibit a continuous rolling around the swimming direction [START_REF] Wang | Origins of eukaryotic excitability[END_REF]. Inspired by this behavior, we rewrite the equations of the agent angular dynamics as { ṅ, ḃ, ṫ} = (ω a + Ω roll t) × {n, b, t} .

(4.13)

Setting Ω roll = 0, we aim to model the motion of these organisms. We add a fixed angular speed around t, independent of the n and b directions, to the Braitenberg strategy, in Eq. (4.12). This allows the agent dynamics to explore 2 degrees of freedom, necessary to determine an orientation in 3 dimensions.

An alternative solution consists of adding two more sensors to the sensory system, along the vector b at positions x N/S = r a ± b. These added sensed cues elicit a rotation around the -n axis in the agent reference. The dynamical equations of this second Braitenberg strategy are written as We discuss some theoretical considerations about this strategy in Sec. 4.4.

ω a = (|I L | -|I R |)b , { ṅ, ḃ, ṫ} = ω a × {n, b, t} , ω n = -(|I S | -|I N |)n , { ṅ, ḃ, ṫ} = ω n × {n, b, t} .

Analysis of the strategies

We now perform a numerical, and, when possible, analytical analysis of the two strategies.

We restrain our discussion to the angular dynamics of the agent. The tracking problem in real situations involves multiple parameters, among which the linear speed of the agent and the sensitivity threshold of its sensors [START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF]. The goal of this chapter is to provide a solution to the ambiguity of the sensed hydrodynamic cues. In their work, [START_REF] Takagi | Directional hydrodynamic sensing by free-swimming organisms[END_REF] stated that if an agent sensing directional gradients 'can distinguish flows in opposite directions along each antennule, it can potentially determine in which of two broad sectors the axis of approach resides.'. We show here that with a stereo measure the agent succeed in this distinction. We envisage further studies to evaluate the impact of kinematic parameters on tracking problems in 3D.

The Braitenberg strategy

Theoretical discussion

We now discuss some theoretical considerations about the Braitenberg's strategy. We know that, since the sensory cue is a solution of the Stokes equations, its magnitude decreases in space as f (θ)/r n , with n ≥ 2, given the lowest order singularity considered is the stokeslet flow.

We assume the sensory cue holds a central symmetry and is axisymmetric. We also assume an agent performs two measures of the flow gradient magnitude at r R and r L . In this case, the information I L and I R collected are functions of θ, and r (and not on ϕ because of axisymmetry). Since the distance between sensors is small, the angular speed ω a can be written as

ω a ∝ n • ∇|n • ∇w| . (4.15)
Note that the quantity |n • ∇w| can be written as

|n • ∇w| ∝ |f (θ)| r n , (4.16) whose gradient is 1 r n+1 {-n|f (θ)|, ∂ θ |f (θ)|, 0} , (4.17) 
in spherical coordinates. The direction of this gradient holds a non-negative component along the direction -e r . A simple strategy inferring this direction manages to solve the flow ambiguity encountered with one sensor, determining the direction of the source along n. This is the core of the Braitenberg strategy.

For the Braitenberg strategy with two sensors. The performance depends on the value of the parameter Ω roll . In the next sections, we prove that 2 sensors are enough to solve the ambiguity of the signals and that an imposed roll, i.e. Ω roll , is not strictly necessary. This happens thanks to the triangulation strategy. The total information obtained via 2 sensed hydrodynamic signals is 6 scalars. We observe that these scalars are enough to determine the direction of the source unambiguously along the direction n.

The triangulation strategy

Triangulation without dynamics

The triangulation strategy is essentially a locating algorithm. Here, we compute the performance of the T algorithm, without considering the rotation dynamics, by evaluating the performance parameter Λ as Here e r is the radial direction outgoing from the source location. The flow is axisymmetric, so we restrain the analysis assuming r a is in the plane {e ρ , e z } without loss of generality. For any position r a , we impose a random orientation of the sensory system {n, b, t}. We compute d using T (I L , I R ). We average Λ(r a ) over multiple realizations (Fig. 4.7).

Λ(r a ) expresses the angular distance between the prediction d and the optimal direction -e r . It can be interpreted as a measure of the information the strategy can extract from the local flow about the source position. Although two measures of the flow gradient prevent to determine the source position exactly, they hold enough information to solve the ambiguity of Stokes flow for any Stokes singularity. This is valid for any position r a and any orientation of the sensory system. Note that, for any point in space, Λ(r a ) ≥ 0.

Triangulation with dynamics

We now consider the angular dynamics associated with the triangulation strategy. We show that we can find a set of orientations of the swimming direction t towards which the angular dynamics evolves, for any position of the agent r a , an attractor of the dynamics. This set of points can be found analytically when the sensed hydrodynamic cue is the flow strain in the limit of small roll rotation.

To demonstrate it, we consider a trace-less diagonal matrix S, representing the flow strain sensed by the agent. The flow is incompressible and the agent is not sensitive to the magnitude of S, therefore S can be written, without loss of generality, as (4.19) in the basis of its eigenvectors. Here -1 ≤ s ≤ 1. It is the ratio between the eigenvalues that matters for the triangulation strategy.

S =   1 0 0 0 s 0 0 0 -1 -s   ,
The eigenvectors of a symmetric matrix are orthogonal. The flow generated by a Stokes singularity is axisymmetric, in the present manuscript the axis of symmetry is e z , without loss of generality (see Fig. 4.1). The unitary basis set by the eigenvectors of S can be written as {e 1 , e 2 , e ϕ }. Here, e ϕ is parallel to the azimuth direction of the corresponding cylindrical coordinates {e z , e ρ , e ϕ }, and {e 1 , e 2 } are co-planar with {e z , e ρ }.

There exists a rotation matrix R transforming {e 1 , e 2 , e ϕ } into {n, b, t}, the basis of the sensory system. One can write {n, b, t} = R • {e 1 , e 2 , e ϕ } .

(4.20)

This matrix can be mapped into three Euler angles, respectively α, β, γ, with the proper scheme ZXZ, as R(α, β, γ). The matrix R is composed by a rotation of angle α around e ϕ ; a rotation of angle β around e 1 ; and a rotation of angle γ around the rotated e ϕ .

A schematic representation of the rotation induced by the triangulation, Eq. (4.11), can be written as

ω a = e ϕ × (R T • S • R • e 1 ) .
(4.21)

Consider an orientation of the sensory system {n t , b t , t t } at time t. The associated set of Euler angles is {α t , β t , γ t }. The agent measures the strain of the flow S, computes ω a and then rotates by an angle δψ = |ω a |δt around ω a . One can write the total evolution of the system, as {n t+δt , b t+δt , t t+δt } = R • {e 1 , e 2 , e ϕ }. The matrix R can be expressed as [START_REF] Mebius | Derivation of the euler-rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations[END_REF])

R = (I + δt Ω a ) • R . (4.22)
Here, Ω a is the skew matrix associated with the rotation ω a . The matrix R is associated with three Euler angles α t+δt , β t+δt , γ t+δt , whose expression can be derived as

α t+dt = arctan - R 2,3 R 1,3 , β t+dt = arccos( R 3,3 ) , γ t+dt = arctan - R 3,2 R 3,1 . 
(4.23)

In Eqs. (4.23), we refer to the matrix element of R with subscripts (i, j). The fixed points of this evolution are provided by the values of α, β, γ so that the variations δα, δβ, δγ, expressed as

δα = arctan - R 2,3 R 1,3 -α t , δβ = arccos( R 3,3 ) -β t , δγ = arctan - R 3,2 R 3,1 -γ t , (4.24) 
evaluates to 0. The analytical treatment is hard, therefore, we used Mathematica to find the fixed points.

There is an infinite set of points {α * , β * , γ * } in the space of Euler angles, that are fixed points of the angular dynamics. In the space of Euler angles these points define a limit cycle, whose shape reminds two counter rotating helices (see Fig. 4.10 for a representation). After some algebra, setting Eqs. (4.24) equal to 0, one can define a closed relationship between the values of α * and β * as

cos 2α * = s 2 -(s(s + 4) + 1) cos 2β * + 1 (s 2 -1)(1 -cos 2β * ) . (4.25)
In the formalism of Euler angles, the swimming direction t with respect to the eigenbasis of the strain can be written as

t = {sin α sin β, -cos α sin β, cos β} = {t 1 , t 2 , t 3 } . (4.26)
The values of α * , β * and γ * can be associated with a limit cycle on the unit sphere of directions of the vector t. Fig. 4.8 schematizes this mapping and helps in understanding the following steps.

Consider that (Eq. (4.25))

cos 2β * = s s + 2 for α * = ±π/2, cos 2α * = s + 1 s -1 for β * = ±π/2 . (4.27)
From Eq. (4.26), note that when α = π/2, t lies in the {e 1 , e ϕ } plane and the component of t along e ϕ is cos β. As well, when β = π/2, t lies in the {e 1 , e 2 } plane, and cos α quantifies the component of t along e 2 . Denote as t * 3 , t * 2 and t * 1 the quantities

t * 3 = cos 1 2 arccos s s + 2 , t * 2 = cos 1 2 arccos s + 1 s -1 , t * 1 = 1 -t * 2 2 -t * 2 3 .
(4.28)

Consider an ellipsoidal cylinder. The ellipse, basis of the cylinder, has a major and a minor axis whose lengths are respectively t * 2 and t * 3 , functions of s. The symmetry axis of the cylinder is aligned with e 1 , the eigenvector associated to the largest eigenvalue of the strain. The set of points associated to {α * , β * , γ * } can be thought as the two intersections between the unit sphere and the ellipsoidal cylinder. There are two contiguous set of fixed points in the space of orientations of t. These two limit cycles are shifted along e 1 by the transformation α * → α * + π and β * → β * , or the transformation α * → πα * and β * → πβ * . These correspond to two opposite orientations of t. See the blue and the red cycles in Fig. 4.8.

A strategy is successful when allows the swimming direction to orient towards one of the two limit cycles unambiguously. We will observe with a real example in Sec. 4.4.2 that the non-linearity of the triangulation strategy solves this ambiguity. One of the two limit cycles became unstable (red in Fig. 4.8). The other become stable (blue in Fig. 4.8). The orientation of t converges towards the stable one, which turns out to lie in the same hemisphere of the source direction -e r . This is also illustrated in Fig. 4.9. In both Fig. 4.9a and Fig. 4.9b, only one limit cycle is shown.

Note that, adding a small fixed roll speed around t, does not affect the shape of limit cycles of the angular dynamics. Here we show the success of the previously derived theory on a real example, for the sake of clarification. As already discussed, the triangulation strategy can be expressed in the form of a sign non-linear operation multiplied by the mean of the information vectors (see Eq. (4.9))

T (I L , I R ) = sign (1 + I L • I R )(n • (I R -I L )) I L + I R 2 . (4.29)
Since is small with respect to the flow spatial scale, the quantity inside the sign operation can be approximated by its gradient at first order as

I R -I L = n • H • n . (4.30)
Here, H is the directional derivative of the information vectors along n. Given the definitions of the hydrodynamic cues sensed, Eqs. (4.4, 4.5), H ∇ and H S are expressed as

H ∇ = n • ∇I ∇ = ∇(n • ∇w) , (4.31a) H ∇ S = n • ∇I ∇ S = ∇(n • S) . (4.31b)
When the flow source is due to a passive particle (Stokeslet) drawning along p, these expressions are

H ∇ (r) = n • ∇I ∇ = 3 i=1 g i , (4.32) 
with

g 1 = 3 r 5 -(p • r)n r + 3(p • r)(n • r)(r r) r 2 , g 2 = 1 r 3 n p + 6(p • r)(r • n)r r r 4 , g 3 = - 3 r 5 (n • r)r p + (p • r)((n • r)I + r n) , (4.33) 
for an agent sensing the gradient of the flow, and

H ∇ S (r) = n • ∇I ∇ S = 4 i=1 h i , (4.34) 
with (4.35) for the agent sensing the strain of the flow. Note that these functions are not the Hessian of the flow, but the gradient of the directional gradients (or strains). We illustrate the evolution of δα, δβ, defined in Eqs. (4.24), as a vector field in Fig. 4.10b for this case. The streamlines plotted correspond to the mean value of the information vectors, i.e. the linear contribution of Eq. (4.29). The sign of n • (n • H ∇ S ,∇ • n) determines the direction of the flow along these streamlines.

h 1 = 1 r 3 (p n) -(n • p)I -n p , h 2 = - 3 r 5 (r • n)p r -(p • n)r r -(p • r)n r , h 3 = 3 r 5 (n • r)r p + (p • r) r n + (n • r)I , h 4 = - 15 r 7 (p • r)(n • r)r r ,
Note the four fixed points in the evolution space defined by α, β. Such points correspond to the two limit cycles of the dynamical equation derived in Sec. 4.4.2. Two of these fixed points are stable, and two are unstable (this can be evaluated with Mathematica from Eqs. (4.24)). Without the non-linear operation, the stable fixed points can be mapped into each other with the transformation α * → α * + π and β * → β * , or the transformation α * → πα * and β * → πβ * (see Eq. (4.25)). The same happens for unstable fixed points. There exist two stable swimming directions with opposite orientations. This confirms once more that a simple lin-ear operation prevents solving the flow symmetries. The sign operation ensures that the periodicity of the stable solution becomes 2π, i.e. α * → α * + 2π and β * → β * . The corresponding stable cycle turns out to be oriented towards the source direction.

We want to stress one last interesting point. For any value of {α * , β * , γ * }, the magnitude of the 'Hessian' of the sensed information is an indirect measure of the robustness of the strategy to noise. Consider a noise perturbing the agent performance in determining sign

[n • (n • H ∇ S ,∇ • n)].
At a given noise magnitude, the output sign reverses with statistical significance. In this condition, the nature of the fixed points reverses, and the strategy fails. We detail the discussion on noise below.

All arguments presented in this section are equivalent for the case of an agent sensing the stresslet gradient (or strain). This is here not reported for the sake of a concise exposure.

In Appendix C a preliminary study on the distribution of the directions of t * over the limit cycle is presented.

Agent sensing the full flow gradient

The argument slightly changes for an agent sensing the complete flow gradient. In general, the flow gradient is a non-diagonal matrix and its eigenvectors do not define an orthogonal basis. Schematically, the complete flow gradient ∇w can be expressed in the base of the eigenvectors of the strain as

∇w =   1 Ω 0 -Ω s 0 0 0 -1 -s   .
(4.36)

In this case, the expressions of α * and β * are

cos 2β * = s 2 -Ω 2 2s + s 2 + Ω 2 , cos 2α * = s + 1 s -1 . 
(4.37)

As expected, for Ω = 0, the corresponding values for pure-strain are recovered. The discussion on this second example closely follows the steps in Sec. 4.4.2 and thus it is not reported here.

Noise robustness

We now assess the robustness of the two strategies against noise. We model three different noise sources. The first models the inaccuracies of the sensory system, we name it noisy measure. The second mimics the presence of a thermal noise affecting the agent's motion, named noisy dynamics. The third aims to model an external uniform gradient E, as if the hydrodynamic cues measured by the agent were affected by a non uniform ambient flow.

In the following, the components of the noise vector η are i.i.d. random variables following a normal distribution, as η i,j ∼ N (0, σ), where i = L, R refers to the two sensors and j = 1, 2, 3 depict the three spatial dimensions. We choose the noise such that σ ∝ e z • ∇w r) , (4.38)

where r is the distance from the flow source.

In all the simulations we set Ω roll = 0.4, without loss of generality, and = 0.01. We compare the strategies performances with Ω roll = 0 and Ω roll = 0 . When the roll is absent, the Braitenberg strategy is substituted with the multi-sensory strategy (presented in Sec. 4.3.3), for comparison.

Note that the parameter is proportional to the magnitude of the sensed information. In the following, is chosen little with respect to the size of the domain considered to respect the condition of close sensors. The noise magnitude can be re-scaled as a function of to explore different situations.

We define here Γ(r a ) as

Γ(r a ) = -t * • e r = cos ψ , (4.39) 
function of the agent position r a . We call ψ the angle between the swimming direction, when along the limit cycle, t * and the direction of the source -e r . This parameter evaluates the performance of the strategy, once the angular dynamics is solved.

Noisy measure

Triangulation strategy

Here we model the inaccuracies of the sensory system. The triangulation strategy relies on the direction of the information vectors. We perturb the sensed vectors introducing an additive noise. The noise affects the information vectors as

I L → I L + η L , I R → I R + η R . (4.40)
The equation governing the angular dynamics of the agent is

ṫ = ω a × t . (4.41)
Here is used to define vectors affected by noise. We know that ω a = t × d.

Consider once more the expression of the triangulation algorithm

d = sign n × (I R -I L ) × (I R + I L ) • (I R + I L ) I L + I R 2 . (4.42)
Adding noise, this equation transforms as

d = sign n • (I R -I L + η R -η L ) I L + I R 2 + η L + η R 2 . (4.43)
or, alternatively,

d = sign (n • H • n) • n + η -• n I L + I R 2 + η + 2 , (4.44)
where we defined η ± = η R ± η L . We can identify a distance from the source r * (θ) at which the noise-free information quantity (n • H • n) • n, proportional to , balances with noise magnitude σ. At distances larger than r * (θ), we expect the outcome of the sign function to be dominated by noise, making the strategy ineffective. The linear contribution, outside the sign function, follows a normal distribution whose standard deviation is 3/2σ. This noise perturbs the inferred direction d. An analytical description of the trajectories of the swimming direction t when affected by noise is complex and here postponed. Numerical results showing the effect of this noise on the resulting angular dynamics are provided in Sec. 4.5.2.

Braitenberg strategy

The Braitenberg strategy balances the magnitude of the sensed information. When the information is perturbed as in Eq. (4.40), I L and I R follow a Gaussian multivariate distribution. The magnitude of these variables therefore is a random variable distributed as a non-central generalized χ-squared distribution. The probability density function of a generalized χ-squared variable do not have a simple closed-form expression. To quantify theoretically the effects of noise on this strategy, we would need to compute the distribution of the difference between two generalized χ-squared variables. The analytical evaluation of the effect of noise is out of the scope of this work. We proceed with numerical considerations.

Results about noisy measure

We discussed in Sec. 4.5.1 that there exists a finite domain around the flow source, a region enclosed by the curve r * (θ), where the information magnitude is larger than the noise intensity σ. For the sake of representation, the value of r * (θ) traced in plots correspond to r * (θ) := (e z • H ∇/∇ S (r) • e z ) • e z = σ. The expressions of H ∇/∇ S for the flow stokeslet are provided in Eq. (4.33,4.35).

We plot the value of Γ, Eq. (4.39), averaged over multiple realizations, for four different hydrodynamic cues in Fig. 4.11. The domain considered is a square around the source, with side of length r = 5. In the simulations, σ = 0.03, which corresponds to sensory cue found when |I| ∼ 7 < r < 8 for the sources considered. Here r * (θ) ∼ 3 and |I|(r * (θ)) ∼ 0.1. The strategies perform well up to a noise intensity of about 30% of the signal magnitude.

Gradient Stresslet Strain Stresslet

Strain Stokeslet

Gradient Stokeslet

Triangulation The circle in the bottom left covers up to the distance r = 0.5 from the source position. The noise considered here is on the agent measures.

Ω roll = 0 Ω roll = 0 Ω roll = 0 Ω roll = 0 Braitenberg e x e z

Noisy dynamics

The second noise model aims to mimic the presence of a thermal noise affecting the agent's orientation, named noisy dynamics. It perturbs the angular dynamics as { ṅ, ḃ, ṫ} = (ω a + Ω roll t) × {n, b, t} + {0, 0, η} .

(4.45)

Eqs. (4.45) describe a Langevin dynamics for the swimming direction of the agent. We still consider the agent anchored to a fixed spatial position. From Eq. (4.45), we observe that the average swimming dynamics is

{ ṅ, ḃ, ṫ} = (ω a + Ω roll t) × {n, b, t} . (4.46a)
When guided by the triangulation strategy, the evolution of t follows the dynamics described in Sec. 4.4.2. The fixed points of this dynamics reside on a limit cycle whose geometry is determined by the eigenvalues of the strain S of the sensed flow. As shown in Sec. 4.4.2, from any initial orientation, the agent swimming direction converges towards the limit cycle. The only noise effect consists in perturbing t * around its stable limit direction. This effect averages out when we computing the mean value of Γ.

As discussed, we expect this kind of noise to have negligible effects on the triangulation strategy. Numerical result supporting this assumption are shown in Fig. 4.12. Here σ = 0.03, which corresponds to |I| when 7 < r < 8. We plot the domain up to r = 5. The triangulation strategy performs well in the whole domain considered. The Braitenberg strategy with 4 sensors (in the last column) is rather heavily affected, even when the noise is only the 3% of the signal intensity (at r ≈ 1.5).
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Turbulent noise

The third and last noise model embraces the influence of a background flow with uniform gradient E. We define E as (4.47) written in the Cartesian basis {e x , e y , e z } so that |E| = σ. In this case the information vectors become

E = σ    √ 6 6 0 0 0 √ 6 6 0 0 0 - √ 6 3    , 
I R/L → I R/L + η E = I R/L + E • n , (4.48)
where E is constant. The matrix is expressed in the basis centered on the source {e x , e y , e z }. As for the case of the noisy measure, there exists a distance from the source r * E (θ) at which the magnitude of the noisy contribution η E becomes as intense as the information vector I R/L . Note that, in this case, this distance is determined directly from the value of the measured signal: the gradient or the strain of the flow. Therefore, when experiencing the stokeslet flow, the signal magnitude decays as ∼ r -2 , while when the agent is embedded in the stresslet flow, it decays as ∼ r -3 . At distances r > r * E (θ), the information about the source location becomes negligible with respect to the noisy pure strain flow. Here, r * E (θ) := (e z • ∇w(r) • e z ) = σ. One more remark. Consider the triangulation strategy, at distances r > r * E , the background flow intensity is larger than the source flow. The angular dynamics for r > r * E (θ) follows the theory derived in Sec. 4.4.2. We expect the triangulation to orient with a limit cycle centered around the eigenvector of the total shear, resulting from a superimposition between the signal and the noise S.

Results for an ambient shear noise are provided in Fig. 4.13. The Braitenberg strategy is only slightly influenced by the constant noise, when its magnitude is lower than the source flow magnitude. The small blue regions for the Braitenberg strategy measuring the stokeslet gradient are discussed further on in sec. 4.5.5. Here σ = 0.06, which corresponds to |I| ∼ 2 < r < 3 for stresslet gradients and |I| ∼ 4 < r < 5 for stokeslet gradients. The noise considered here is due to an ambient constant shear.

Concluding remarks

We conclude this section with some observations. First, the performance of the Braitenberg strategy nearby the flow source is greatly reduced, up to the point when the strategy has counterproductive effects. The flows considered here are Stokes singularity. When the agent gets close to r = 1, one of the sensor might end up in a position |r R/L | < 1. In this case, the induced active angular speed is proportional to a quantity increasing as a power law r n , with n ≥ 2. In this regime, further studies are needed to tune the parameter Ω roll and the proportionality between sensed information and angular speed, to increase the performance of the strategy.

Second, observe that for any hydrodynamic cue, the strategies perform equally or better when the roll is active. Particularly, the Braitenberg strategy with roll is more effective than the same strategy with 4 sensors, when the dynamic noise affects the evolution.

Application of the strategies

Trajectories

Until now we focused on the rotation of the agent, assuming its angular speed is much higher than both its linear speed and the angular speed of the source.

In animal world encounters are essential [START_REF] Kiørboe | A mechanistic approach to plankton ecology[END_REF]. For completeness, we relax the previous assumption and consider also the linear dynamics of the agent. The information flow is still a Stokes singularity whose source is considered fixed with respect to the moving agent. Such a situation is hardly physical. The idea is just to provide a visual evidence of the strategy success.

In the limit where the linear speed of the agent is much larger than the linear speed of the prey (i.e. the source), the agent will cross a given region of space in a time interval short enough that allows us to consider the position of the source unvaried. In the simulations performed here, the source never changes position all along the realization of the dynamics. The trajectories obtained can be thought of as a superimposition of multiple real situations. The key concept here is to prove that, from any point in space the strategies are successful. They allow the agent to swim towards the flow source. Inspired by [START_REF] Pedley | Hydrodynamic phenomena in suspensions of swimming microorganisms[END_REF], we write the equations for the agent dynamics as ṙa = V a t , { ṅ, ḃ, ṫ} = (ω a + Ω roll t) × {n, b, t} . We observe the appearance of helix-like trajectories, observed in nature [START_REF] Wang | Origins of eukaryotic excitability[END_REF]. Both strategies perform better when the twist is applied. For the triangulation, this was expected, since the twist accelerates the convergence of the rotational dynamics towards the fixed points. The twist provides additional information fundamental for the success of the Braitenberg strategy. As a remarkable result, Fig. 4.14 proves that a strategy based on stereo-measures of the hydrodynamic cues allows the agent to solve the ambiguity of the measured sensory cue.

Note that the linear and angular velocity parameters V a and Ω roll affect directly the strategy success in converging towards the source. The dynamics also change when the flow emitted by agent and source are considered. We envisage future studies for the analysis of these details.

Conclusion

In this chapter, we derived two strategies that allow a blind agent to solve the ambiguity of the hydrodynamic cues in Stokes flow. We prove that with a stereosensory system, the agent exploits the geometry of the flow to successfully infer the source direction along its antennae. With both theoretical and numerical analysis, we showed the good performance of the strategies on two Stokes singularities, typically used to model the far field flow generated by a small active (stresslet) and passive (stokeslet) particles. We also proved the robustness of both strategies against noise. We built three noise models. The first mimics the inaccuracies of the agent's sensors; the second perturbs the swimming direction chosen by the agent; the third models a constant background flow, which superimposes to the flow emitted by the source. We observed that within a maximal distance from the source, the information emitted by the source is enough to allow the agent to find the source. In this region, both strategies are successful. Further than this limit, the performance of the strategies drops to zero quickly. The triangulation strategy is robust against noise affecting its swimming direction.

Chapter 5

Conclusion and Perspectives

Conclusions

The aim of this thesis was to uncover, through simplified models, the physical principles behind the biological success of pelagic copepods. We focused mainly on two features of these organisms: the swimming abilities and the mechanoreceptive skills. We promoted an exemplified theoretical-numerical approach to the analysis, over a more realistic one. We considered the swimming problem through self-propelled spheres, and we replaced the complex geometry of copepods mechanosensitive apparatus with a stereo sensory linear system. The leading results of this manuscript are listed below.

• We investigated the inertial effects on the hydrodynamic force acting on a self-propelling particle in absence of Oseen inertia. Inspired by the work of [START_REF] Legendre | The lift force on a spherical bubble in a viscous linear shear flow[END_REF], we detailed a procedure, based on the method of matched asymptotic expansions, to transpose known results concerning inertia effects on passive particles to active particles. This procedure only requires knowing the Stokes dynamics of the particle. We focused on the inertial effects on a spherical squirmer due to fluid unsteadiness. We validated the method recovering existing results (Wang and Ardekani, 2012b). Then, we derived the dynamical equations for a swimmer moving in a stratified fluid or in a uniform shear.

• We calculated the hydrodynamic force experienced by an unsteady squirmer swimming at low but non negligible Reynolds number. We computed Oseen-like inertia effects with the method of matched asymptotic expansions. The outcome is a generalization for self-propelling particles of the result of [START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF] for passive particles. We solved numerically the dynamical equation of a squirmer for two example cases. The motion of an inertial squirmer 'jumping'; and the motion of a squirmer swimming with a periodic swimming gait. We calculated the disturbance flow induced in these two cases. We observed that for a sudden start of the center-of-mass motion, the disturbance evolves from a stokeslet-like flow, which decays slowly as r -1 , just after the start, to a stresslet, that decays faster r -2 , at later times. Squirmers are easier to detect immediately after a sudden start. We showed that the disturbance flow can be well approximated by its quasi-steady limit when the viscous time is shorter than the typical time of the swimming gaits. We observed that the derived equation allows us to explore asymptotic cases, where either unsteady inertia or Oseen inertia is dominant, and intermediate regimes, where Oseen and unsteady inertia compete. We stress that this theory rests on the assumption that Re p 1, and for Re p Sl 1, but it may provide quantitative results for organisms jumping at low but non negligible Reynolds number [START_REF] Jiang | Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt?[END_REF][START_REF] Hamel | Transitions between three swimming gaits in paramecium escape[END_REF].

• We designed two sensing-control strategies that solve a recurring difficulty in the tracking problem: the symmetry of the perceived signal. We developed a sensory system detecting two measures of the flow gradient (or the flow strain), in the form of three dimensional vectors. We built two tracking strategies, based on these stereo-measurements. One strategy relies on the direction of the two measured vectors, the triangulation, the other on their magnitude, the Braitenberg strategy. We proved that the success of the strategies is encoded in the topology of the signal measured. We showed that both strategies benefit from a fixed twist around the swimming direction. An agent equipped with any of these strategies successfully solve the ambiguity of the measured sensory cue. We demonstrated it with two flows commonly used to describe passive and active particles at low Reynolds numbers. Then, we tested the two strategies in presence of noise. The triangulation is extremely robust against noise influencing the swimmer dynamics.

Perspectives

Here, we provide insights about possible further investigations of both problems considered in this manuscript.

Swimming dynamics

• A leading discussion arising from this manuscript covers the comparison between the Lagrangian [START_REF] Lighthill | On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers[END_REF] and the Eulerian [START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF] approach to the squirmer model. In chapter 2, we showed how the Lagrangian formulation of the problem might lead to corrections in the leading Stokes dynamics due to the variations in the spatial linear operators. Further works are needed to check if the problem at the second order in the surface perturbation parameter provides the same result for the fluid flow for both formulations.

• The spatial arrangement of the forces an organism applies to swim [START_REF] Wadhwa | Hydrodynamics and energetics of jumping copepod nauplii and copepodids[END_REF][START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF] shapes the decay of the induced flow in the domain around it [START_REF] Kiørboe | Flow disturbances generated by feeding and swimming zooplankton[END_REF][START_REF] Jiang | Why does the jumping ciliate Mesodinium rubrum possess an equatorially located propulsive ciliary belt?[END_REF]. Swimmers that move thanks to breast strokes (i.e. the propulsive force is generated thanks to the simultaneous beating of swimming appendages) generates velocity disturbance decaying as r -3 . Copepods that cruise generate currents, which allow them to feed and to self propel at the same time, that decay in space as r -2 . Hovering swimmers emit disturbances decaying as slow as r -1 . The faster the spatial decay, the more silent the organism is, the harder for a predator to detect it. The spatial decay of swimmers is usually modeled thanks to point forces [START_REF] Guasto | Fluid mechanics of planktonic microorganisms[END_REF]. The squirmer model accounts for the physical shape of the moving swimmer. It could be of interest, for instance, to extend the surface swelling of the squirmer to the case of radial distortions. We tried to explore this idea and we obtained the shape of the hydrodynamic force experienced by the inertial squirmer. Despite this, we did not investigate the disturbance flow induced. We believe that including radial distortions might improve the model fidelity. This way, one could model the impact of the morphology of the swimming dynamics on the flow disturbance spatial decay.

• The study of inertia effects on swimming dynamics could be extended to bodies with complex shapes. For instance, cilate swimmer or flappers. During this thesis, we developed a numerical tool to evaluate the motility matrix of particles with complex shapes. The inspiration for this algorithm came from a paper from [START_REF] Durlofsky | Dynamic simulation of hydrody-namically interacting particles[END_REF]. As a future work, we envisage using the results of chapter 2 and 3 and this algorithm to calculate the inertia effects for a particle with complex shape swimming in a viscous flow.

Sensory-control strategy

The goal of chapter 4 was to provide two new sensory-control strategies as tools for future investigations. We proved their success in solving the ambiguity of the sensed hydrodynamic cue and their robustness to noise. Many different inspections might benefit from these two strategies. We list some of them here below.

• We envisage the study of a prey-predator dynamics where two agents explore the environment with the sensory mechanism built here and act pursuing facing scopes. One acts as a predator, the other as a prey. In the present manuscript, we considered a non-motile prey. We avoided the influences of the agent's flow. Considering both lead to a more challenging problem. One could investigate the impact of parameters such as the initial distance between agents, their angular and linear speeds, or their sensing thresholds.

• Experimental data suggest copepod abilities to distinguish signals emitted by multiple preys [START_REF] Pfaffenhöfer | Perceptive performance and feeding behavior of calanoid copepods[END_REF]. They choose which prey to attack given its location with respect to their mouth position [START_REF] Pfaffenhöfer | Perceptive performance and feeding behavior of calanoid copepods[END_REF]. Multiple numerical tools could be used to tackle this exploration-exploitation. Reinforcement Learning algorithms could provide insight on the balance between energy disposal and decision-making of agents, assuming the ability to locate the target given by the sensory mechanism developed here.

• Experimental evidence showed the ability of copepods to distinguish between a prey, a predator and a passive particle via mechanosensing [START_REF] Tuttle | Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator[END_REF]. A classification problem could thus be built. Given the information collected by mechanoreceptors, the agent might balance the signal magnitude and the signal pattern to infer the nature of the signal source. At given intensity, strongly converging streamlines might be a clear sign of a small organism nearby, like a prey. The same signal intensity with more parallel streamlines could reveal the presence of a distant predator. A flow disturbance with a different geometrical structure could be due to a distinct source, such as a sinking, passive food particle.

• Both strategies do not exploit the memory storage of the sensory signal. We believe future investigations might test the performances of these strategies, when able to store a prescribed number of measures in time. This might be tested in time dependent flows, coupled with a decision making algorithm.

• We only schematically investigated the effects of a background flow on the strategies' performance. We envisage the application of these strategies for agents swimming in turbulent flows. In particular, we advise a study coupling this detection strategy with an optimal swimming strategy, such as the one proposed by [START_REF] Monthiller | Surfing on turbulence: A strategy for planktonic navigation[END_REF] for Plankton navigation. We expect the outcome of this work could provide clues to understanding the mating mechanism that allows marine organisms living in turbulent environments to foster their species. As well, it might furnish a numerical comparison for recent experimental data observing copepods' beneficial active swimming in turbulent flows [START_REF] Michalec | Zooplankton can actively adjust their motility to turbulent flow[END_REF].

We conclude by observing that in nature, organisms performing optimally in all daily Darwinian challenges do not exist [START_REF] Litchman | Trait based community ecology of phytoplankton[END_REF][START_REF] Litchman | Trait-based approaches to zooplankton communities[END_REF]. The two strategies presented here do not perform optimally. Our inspection is that more efforts are needed to analyze the disturbance flows from the perspective of information content. The link between the topology of the flow and the mechanosensor morphology deserve more investigations. These studies might reveal new fascinating prospect to clarify the importance of mechanoreception for the biology of the micrometer scale. sider ÎR = {cos θ 1 , 0, sin θ 1 } , ÎL = {cos θ 2 , 0, sin θ 2 } .

(B.5) Note that, the direction chosen as swimming direction by the agent depends on the relative orientation of ÎR with respect to ÎL , therefore on θ 1 and θ 2 . Consider the cross product n × ( ÎR -ÎL ) × ( ÎR + ÎL ) = 2n × ÎR × ÎL .

(B.6)

The result of this triple cross product is {0, 0, 2 sin(θ 1θ 2 )}. Note that it is the angle difference between the θ 1 and θ 2 that defines the orientation of this vector. The blue dashed line represents the direction of the eigenvector associated to the largest eigenvalue of the strain, e 1 in this case. The green segment denotes the direction of the flow source -e r . Finally, the red direction shows a vector τ parallel to the swimming direction along the limit cycle t * . The gray line shows the unitary sphere of orientations of the vector t.

To derive the distribution of ψ, we assume ξ to be distributed uniformly on the ellipse. This is justified since here we observe the absence of any preferential direction along the ellipse for the swimming directions t * , i.e. P (ξ) = 1 2π . We calculate the distribution of µ = cos ψ, assuming that P (µ)dµ = P (ξ)dξ. The analytical formula for P (cos ψ) is complex and omitted. We stress here that the change of variable formula used to determine P (µ), given P (ξ), is valid over intervals where µ is a monotonic function of ξ. Therefore, when deriving the expression of P (ξ), the domain µ ∈ [-1, 1] needs to be split accordingly. The result is compared with realizations from numerical simulations in Fig. C.2. Note that, the theoretical distribution does not perfectly describe the numerical results. The main assumption made here concerns the uniform distribution of P (ξ). This assumption deserves more investigations, and we envisage this in future works.

The only parameters determining the distribution are 2 and 3 . Indeed, by the eigenvalues of the strain. The average value of Γ can be evaluated computing Γ = dµµP (µ) .

(C.4)

A special case is represented by the agent measuring the strain of the flow stokeslet. Note that within the theoretical discussion presented in Sec. 4.4.2, we consider a schematic strain matrix S, whose eigenvalues represent the ratios between eigenvalues of a real flow strain. The ratios between the eigenvalues of the stokeslet strain are constant all over the domain around the source. As a consequence, the histogram for the stokeslet strain is equivalent everywhere. Specifically, the ellipsoidal cylinder mentioned in Sec. 4.4.2 has a circular base. The value of Γ is constant, as one can observe in Fig. 4.12. 
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 1 Figure 1: Copepods Arcatia-Tonsa at two different life stages. (a) naupilii (larval) stage and (b) adult stage. Some morphological traits of copepods' body are indicated. Pictures taken at I.R.P.H.E. laboratory in Marseille by Paul Magnier.

Figure 2 :

 2 Figure 2: Panel (a) shows a scallop in reciprocal motion, as presented by Purcell(1977). For a scallop, slowly alternating the two configurations (State 1 and State 2) in a perfectly reversible cycle forbids net motion. Panel (b) is a schematic illustration of the motion of cilia distributed over the surface of a microorganism. The single cilia perform an asymmetric pattern. Through hydrodynamic interaction, cilia perform organized beating that allows propulsion[START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. Panel (c) shows different swimming strategies. Paramecium and opalina algae move thanks to the common beating of the cilia displaced over their surface. An escherichia coli bacterium propels by twisting around the symmetry axis of its body. A chlamydomonas alga moves along helix-like trajectories activating two appendages stuck on its front section.

  Figure 1.1: Schematic view of the problem.

Figure 1 . 2 :

 12 Figure 1.2: Polar coordinates for the solution of the Stokes equations. Representation of the Stokes flow for a particle moving with velocity v p e z . The streamlines are plotted in the laboratory frame.

Figure 1 . 3 :

 13 Figure 1.3: Flow streamlines for solutions to the Stokes equations by multipole expansion. Panel (a) shows to stokeslet flow. Panel (b) represents the stresslet flow. Panel (c) shows the quadruplet flow, obtained as the symmetric part of the Stokes quadrupole. Red arrows schematize the direction of the imposed force vectors.

Figure 1

 1 Figure 1.4: Time evolution of terms in Eq. (1.60), for imposed v p (t) = 239 + 350 cos(t) µm/s.shows the evolution of the Stokes drag; -•shows the evolution of the B.B.O. correction. Force have been made dimensionless by 6πaµ f U c .Here the parameters chosen are a = 1.7 mm, ρ f = 1 , ν f = 10 -6 . So that we have Re p = 0.1 and Re p Sl = 3.
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 11 Figure 1.5: Schematic view of the domain splitting into inner, outer and intermediate regions. The example refers to the shear induced length-scale η .
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 1 Figure 1.7: Schematic view of the Saffman problem.
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 1 Figure 1.8: Schematic view of the Hinch problem. The shadow area schematically illustrate the wake of the particle.

Figure 2 . 1 :

 21 Figure 2.1: Schematic illustrating the squirmer model. The squirmer swims head first, along the direction p in the e x -e z -plane. Points on the surface in this plane are parameterised by the angle θ. Shown are the lab-coordinate system e i and the coordinate system e r and e θ in the body frame.

  Figure 2.3: Panel (a): scheme of the wavy surface model. Panel (b) shows the squirmer model as in[START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF]. The yellow circle represents the average spherical shape of the squirmer, the violet area represents a realization of the[START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF] model for σ = 25, = 0.05, a = 100 and N 0 = 17. Here parameters are named as in[START_REF] Blake | A spherical envelope approach to ciliary propulsion[END_REF], σ is the frequency of the surface wave motion, the amplitude, a the radius, N 0 the lowest mode for this specific squirming. v p is the resulting velocity of the squirmer.

  Figure 2.4: Streamlines of the simplified squirmer model. Panel (a) shows pullerlike flow with β = 1, panel (b) represents the pusher-like flow with β = -1. The streamlines are plotted in the laboratory reference frame. Here, p is the swimming direction.

h

  represents the Stokes drag. To include inertial effects in the dynamics, one computes the hydrodynamic force up to order f (1) h . The flow field at first order w

Figure 2

 2 Figure2.5: Time evolution of the center of mass speed of an unsteady squirmer, Eq. (2.57). We use B 1 (t) = 2.39 + 3.5 cos(t) + 0.16 cos(2t). Here,shows the evolution of the velocity with B.B.O. correction; -•shows the Blake solution. The dimensionless parameter for the numerical evolution is Re p Sl = 3 (for an equivalent plot seeWang and Ardekani, 2012b).

  Re p Sl ∂w ∂t r + Re p (w • ∇wu s • ∇w) = -∇p + ∆w + F ext . (3.5) 

  length' of the flow w. Similarly the convective term Re p v p (t)•∇w in Eq. (3.5) becomes of the same order of magnitude as the viscous term at a

hFigure 3 . 1 :

 31 Figure3.1: The evolution of the inertial correction for a step-wise change in the particle center-of-mass speed v p (t) = H(t). The value of the force has been rescaled by the Stokes drag f 0 = |f 0 |. Plots are for -• • -Re p = 0.5, • Re p = 0.7, --Re p = 0.9, -• -Re p = 1.1. See also[START_REF] Sano | Unsteady flow past a sphere at low reynolds number[END_REF] and[START_REF] Lovalenti | The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number[END_REF].

p

  and the pressure p (1) p are solutions of the following set of equations ∇ • w (1) p = 0 , (3.51)

  .61) The error function in (3.61) ensures f (0) h = 0 initially. For the nondimensionalisation, we choose the steady Stokes swimming speed, u c = (2/3)B 1 and the Oseen time, τ c = t O ≡ 2 O /ν. This is the time it takes for the disturbance 3.4. Center of mass speed to diffuse over the Oseen length O . The parameter values for the numerical computation correspond to Re p = 0.1, ε = 0.1, and Sl = 0.1.

  Figure 3.2: Center of mass speed v p of a spherical squirmer after a sudden start[Eq. (3.61)]. The solid line shows the result of a numerical integration using our expression for the hydrodynamic force, Eq. (3.57). The horizontal line denotes the asymptote obtained as t → ∞. The dashed line was obtained by integration Eq. (2.12) ofWang and Ardekani (2012b). Parameters: a = 141µm, B 1 = 10 -3 m/s, β = 3/2, ν = 10 -6 m 2 /s. This gives u c = 0.714 mm/s, t O = 1.96 s, Re p = 0.1, ε = 0.1, and Sl = 0.1.
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  Figure 3.3 shows how the disturbance velocity w (0) in + εw

Figure 3 . 3 :

 33 Figure 3.3: Disturbance flow during the transient after a sudden start, Eq. (3.61). Shown is the disturbance flow in the e x -e z -plane, in the laboratory frame at different non-dimensional times: t = 0.002 in panel (a), 0.08 in panel (b), 0.16 in panel (c), and 0.24 in panel (d). All other parameters are the same as those of Fig. 3.2. The arrow indicates the swimming direction.

  Figure 4.1: Flow sources considered in this chapter. Panel (a) represents the stokeslet flow. Panel (b) represents the flow of a puller (e.g. Chlamydomonas Reinhardtii). Panel (c) shows the flow of a pusher (e.g. Spermatozoa). All streamlines are plotted in the laboratory reference frame.

  Figure 4.2: Representation of the tracking problem. The cylindrical coordinates {e ρ , e ϕ , e z } are centered on the prey. The swimming direction of the prey is p, chosen parallel to e z without loss of generality. The predator is located in r a and its sensors in r L = r an and r R = r a + n.

  Figure 4.3: Panel (a) refers to the problem proposed by[START_REF] Takagi | Directional hydrodynamic sensing by free-swimming organisms[END_REF]. The gray shadowed area illustrates the ambiguity the prey suffers in locating the incoming direction of the predator, where θ = 70 • . Panel (b) shows the problem studied by[START_REF] Borra | Reinforcement learning for pursuit and evasion of microswimmers at low reynolds number[END_REF]. Prey and predator measure gradients of the opponent's flow, which holds an intrinsic symmetry. Therefore, the predator senses the same information for the prey positioned at two symmetric locations as in picture, swimming either towards p or in the opposite direction -p.

  2θ + 6 cos 2ϕ + 6 cos(2θ + 2ϕ) + 15 cos(2θ + 4ϕ) e x -9 8 cos ϕ sin ϕsin(2θ + ϕ) + 5 sin(2θ + 3ϕ) e z   f (r).
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 4 Figure 4.4: Panel (a) illustrates the flow w(r a ) moving the agent and its sensors R and L. Panel (b) shows the computed hydrodynamic cues, I L and I R . Panel (c) is a schematic view of the 'triangulation' strategy.

  c) Figure 4.5: Panel (a) illustrates the flow moving the agent and its sensors R and L. Panel (b) shows the computed hydrodynamic cues, as I L and I R . Panel (c) is a schematic view of the 'Braitenberg' strategy.

  Figure 4.6: Scheme of the Braitenberg robot in 2D. Here the 'ipsilateral' (continuous line) and 'contralateral' (dashed line) configurations are shown.

  connections with excitatory (or inhibitory) information. The agent measures simultaneously the magnitude of the hydrodynamic cues |I L | and |I R | (Eqs. (4.4, 4.5)). It then rotates around the rotation axis b with an angular speed whose magnitude is proportional to the difference between |I L | and |I R |. The angular dynamics of the Braitenberg strategy is

  N/S = b • ∇w(x N/S ).

  Figure 4.7: On the left, in blue, the streamlines of the source flow. The second and third columns represent the evaluation of the triangulation strategy. The black streamlines represent the inferred direction d averaged over multiple realizations. The color map represents the value of the averaged Λ = -er•d |er|•|d| . The second column shows the performance for an agent measuring flow strains and the third of an agent measuring flow gradients. The circles in the bottom-left corner represent the position of the source in all settings. The domain considered is up to r = 5 both in e ρ and e z directions.
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 4 Figure 4.8: Schematic view of the rotation dynamics fixed points. The sphere represents the space of orientations of t. In red and blue the two limit cycle identified by the theoretical solution of the angular dynamics. The ellipse at the basis of the cylinder has major and minor axis whose lengths are t * 2 , t * 3 . (e 1 , e 2 ) lie in the (e ρ , e z ) plane. The dotted segment represent the direction of the eigenvector with largest eigenvalue of the flow strain. The green segment is -e r , the direction of the source.

  Figure4.9: (a) Illustration of the evolution of the angular dynamics of the swimming direction t. The agent operates the triangulation strategy and measures the flow strain. In blue, the limit cycle of the evolution. Red-to-black dots show the trajectory of t for a specific realization. With t ρ , t ϕ , t z we denote the components of the swimming direction t in the cartesian basis {e ρ , e ϕ , e z }. We place the agent in the {e ρ , e z } plane without loss of generality. The black square is the direction of t at the end of the simulation. The green segment shows the direction of the source -e r . The blue dotted segment represents the direction of the eigenvector of the strain with the largest eigenvalue e 1 . (b) Illustration of the evolution of the agent orientation. Snapshots are taken at three different time instants {c 1 , c 2 , c 3 }.
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 4 Figure 4.11: Each column shows the value of Γ, averaged over multiple realizations, for different hydrodynamic cues. The first column refers to the triangulation operation with Ω roll = 0, the second refers to the triangulation with Ω roll = 0. The third and fourth columns show the performance of the Braitenberg strategy, respectively when Ω roll = 0 (third column) and Ω roll = 0 (fourth column). The green line shows the boundary of the domain delimited by r * (θ) (see Main Text).The circle in the bottom left covers up to the distance r = 0.5 from the source position. The noise considered here is on the agent measures.
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 4 Figure 4.12: Each column shows the value of Γ, averaged over multiple realizations, for a different hydrodynamic cue. The first and the second column refer to the triangulation strategy with Ω roll = 0, or with Ω roll = 0. The third and fourth column show the performance of the Braitenberg strategy, respectively when Ω roll = 0 (third column) and Ω roll = 0 (fourth column). The circle in the bottom left covers up to the distance r = 0.5 from the source position. The noise considered here affects the agent dynamics.
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 4 Figure 4.13: The color-map shows the value of averaged Γ for multiple realizations. The first column refers to the triangulation operation with Ω roll = 0, the second refers to the triangulation with Ω roll = 0. The third and fourth columns show the performance of the Braitenberg strategy, respectively when Ω roll = 0 (third column) and Ω roll = 0 (fourth column). The green line shows the domain delimited by r * E (see Main Text).Here σ = 0.06, which corresponds to |I| ∼ 2 < r < 3 for stresslet gradients and |I| ∼ 4 < r < 5 for stokeslet gradients. The noise considered here is due to an ambient constant shear.

  Figure 4.14: Trajectories obtained with Eq. (4.49). Here parameters used for the evolution are Ω roll = 0.5 and V a = 0.2. The green dot represents the position of the flow source.

Figure C. 1 :

 1 Figure B.1: In panel (a) a schematic illustration of the triangulation for two coplanar directions. In panel (b) the result of the sign operation. The blue areas stand for the negative value -1. The yellow area stand for the positive value 1.

  Figure C.2: The red line represents the theoretical p.d.f. P (cos ψ) for three different agent positions (a) θ = π/6, (b) θ = π/4, (c) θ = π/3 in the {e ρ , e z } plane.The sensory cue sensed is the strain of the stresslet flow. The blue histogram is obtained thanks to numerical simulations. Here, θ is the elevation angle, e z represents the axis of symmetry of the source flow. Note the discrepancy in (a).

  The nature of the inertial perturbation, L , is encoded in the temporal behaviour of the kernel K(t) which does not depend on particle shape. This kernel is known for the Saffman problem (see, for instance, references in[START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF], when the undisturbed problem is a shear, for solid-body rotation, or for two-dimensional elongational flow. For the unsteady problem, K(t) is just the

	B.B.O. kernel I/[6π	√	πt]

T (1) (t) is spatially uniform anytime condition (2.44) is re-spected.

always towards the source.
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Fait à

Formulation of the problem
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As in [START_REF] Daitche | Advection of inertial particle in the presence of the history force: higher order numerical symulation[END_REF], one can write the history force as

where f (τ ) = v p -2 3 B 1 n and K(tτ ) is the B.B.O. kernel. Deriving Eq. (A.2), the condition f (0) = 0 is necessary. Therefore Eq. (A.1) transforms as

One can write a quadrature scheme for the integral contribution to this equation, splitting the integral over intervals of length h, as

Afterwards, the function f (τ ) is linearized around the time-point τ i (this is also known as Newton-Cotes method)

Taken all together, Eq. (A.4) and Eq. (A.5) lead to

Therefore, the complete integral can be expressed in form of a linear sum as

This sum can be re-exressed as a weighted sum, as

By indexing the coefficient in the reversed order, i αf (τ n-i ) instead of i αf (τ i ), one can obtain

This procedure can be extended to higher order, the integration of terms in Eq. (A.8) can be extended, obtaining coefficients, β n j of higher order. In Daitche (2013) a detailed explanation of the derivation of higher order terms is also provided.

With the first order approximation the discrete equation for the numerical integration turns out to be A.10) where W = v p -2 3 B 1 n. Here 2 3 B 1 (t) is an input function.

Appendix B

The triangulation algorithm

Here we show the triangulating algorithm T (I R , I L ). The direction d inferred by the algorithm identifies the location of the nearest point to the skew lines, directed as ÎR and ÎL , outgoing the sensory positions. Consider these two lines as

where l R and l L are parameters and r L and r R the positions of the sensors. The goal is to find the position of the closest point r d to the two skew lines. Some simple steps are needed. Define

Along l R , we define c R the closest point to r d . Along l L , we define c L the closest point to r d . This points can be found computing

The line connecting r a , at the center of the sensors, and r d is

The result is then normalized d/|d|.

More intuitively, one can obtain a successful strategy reasoning on the direction of the vectors ÎR -ÎL and ÎL + ÎR . We show it using an example with two co-planar vectors. We express the vectors in the basis of the agent {n, b, t}. Con-

Appendix C

Distribution of the swimming direction over the limit cycle

We provide here another theoretical result concerning the distribution of the values of Γ(r a ), defined as

for a specific position of the agent r a . We call ψ the angle between the swimming direction, when along the limit cycle, t * and the direction of the source -e r .

To evaluate the pdf of Γ, we simplify the geometry of the problem. Consider the unit sphere of orientations of the vector t. We now define σ, a vector oriented in the direction of the flow source -e r . We call τ a vector fixed in the center of the unit sphere directed as t * . We choose e 1 as the eigenvector with largest eigenvalue of the flow strain. We consider the point where the eigenvector e 1 intersects the unit the sphere. We consider a plane tangent to the unit sphere at this point. We trace an ellipsoidal cone by a revolution of σ along the limit cycle on the unit sphere of orientations of t. Consider the intersection between the cone and the plane. This is an ellipse whose major 2 ∝ t * 2 and minor 3 ∝ t * 3 axis are functions of the eigenvalues of the strain, Eq. (4.28). A scheme of such an ellipse is provided in Fig. C.1. Now consider the ellipse. We call c the distance between the intersections of e 1 and σ with the ellipse major axis 2 . The goal is to determine the distribution of cos ψ, i.e. the dot product between the swimming t * and the source -e r directions. From Here ξ is the angle used to parameterize the ellipse. Therefore, the value of cos ψ can be written as a function of ξ, as

Swimming in simple flows The strategies presented here aim to maximize the measured gradient. The triangulation strategy maximizes the convergence of the streamlines, detecting sources and sinks in flows. The Braitenberg strategy maximizes the gradient intensity. We can thus exploit such strategies to explore flow regions where gradients are maximal in these senses.

Consider a Poiseuille flow developing inside a pipe. Consider it flowing along e x . The flow velocity field can be written as

where R is the radius of the pipe. The maximal speed v max develops at the center of the pipe. We expect the Braitenberg strategy to explore the walls of the cylinder, while trying to maximize the gradient magnitude. The triangulation does not Consider a Sampson flow. This is a solution to the Stokes equation for an infinitely thin orifice. We use it as a model for the siphon commonly used as experimental set to test the sensitivity to hydromechanical signals of copepods, and plankton in general [START_REF] Fields | Orientation affects the sensitivity of arcatia tonsa to fluid mechanical signals[END_REF] and to model blood flows in some specific condition [START_REF] Shah | Extravasation of brownian spheroidal nanoparticles through vascular pores[END_REF]. The analytical expression of such flow is w = U ρ e ρ + U z e z , (D.2) with

The cylindrical coordinates {e z , e ρ , e ϕ } refers to the axis of symmetry of the sink. Q represents the suction strength. We observe the behavior of an agent equipped with the strategies embedded in a Sampson flow. An illustration of this case is shown in Fig. D.2. Note that the Braitenberg strategy becomes ineffective at a larger distance from the sink with respect to the triangulation strategy. This can again be explained as a consequence of the magnitude of the flow, that nearby
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Copepods are one of the most abundant living organisms on Earth. As most plankton species, they have very limited eye, yet they manage to escape predators, attack preys and catch passive food particles. Experimental evidence show that these plankters exploit hydrodynamic signals to sense the environment. Inspired by these animals, this thesis aims at two objectives: (1) modeling the hydrodynamic signals emitted by predators, preys and passive particles at low but non-negligible Reynolds number and (2) understanding how these signals can be processed to detect their source. First, we quantify the effects on motile organisms due to fluid inertia at finite Reynolds number using the method of matched asymptotic expansions (MAE). We show how the expression of the hydrodynamic force on the motile organism simplifies when fluid convective effects are small and how one can translate known inertial effects for nonmotile particles to motile ones. We then include fluid convective inertia in the calculations. We provide the analytical expressions for the hydrodynamic force and the flow field disturbance generated by an unsteady inertial active particle. Second, we develop a detection strategy based on hydrodynamic cues. Since planktonic organisms are advected by flow currents, the information they can collect is at first order the flow gradient or its symmetric part. We describe a 'triangulation' strategy based on two measures of flow gradients. We show the good performance of this strategy for different Stokes flows and that it allows organisms to overcome a fundamental difficulty of tracking: the intrinsic symmetries of the flow. Keywords: Inertial effects, disturbance flow, tracking strategies, hydrodynamic cues.