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André Nicolet, PR, Univ. Aix-Marseille
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Title: Full-wave discontinuous Galerkin time-domain methods for semiconductor device simulation
fg
Abstract: In this dissertation we illustrate, from conception to implementation, a discontinuous
Galerkin time-domain (DGTD) solver for optoelectronic simulation in the full-wave regime, with a
particular focus on Photo-Conductive Antennas (PCAs) for THz radiation generation. These semi-
conductor devices absorb light and emit THz waves, and are of major relevance in a broad range
of applications (from material characterization to detection of cancer tissue), but their simulation
is a challenging task – it requires to concurrently describe electromagnetic field propagation and
charge transport in complex geometries (usually featuring nanoparticles), whereas the two mecha-
nisms occur at very different time and space scales. The usual mathematical model is composed of
Maxwell’s equations coupled with drift-diffusion (DD) equations. This system can be particularly
difficult to tackle with usual numerical methods (e.g. FD, FEM, FV), so that it is typically not
available in commercial solvers, if not in simplified versions that decouple the electrical and the
optical part. But this happens at the detriment of accuracy and not necessarily at the advantage
of implementation effort and computational cost. In the past two decades, the DGTD method has
become a credible alternative to such usual methods, as it embeds and enhances some of their key
features. In this work we discuss its application to the Maxwell-Drift-Diffusion (MDD) system for
the simulation of PCAs. We start by introducing the model and its physical meaning, to then define
a formal mathematical framework for the DG formulation – in which the presence of diffusion re-
quires special treatment – and elaborate on key tasks such as numerical flux definition and explicit
time integration with Low-Storage Runge-Kutta methods. We complement this with a few purely
mathematical considerations (e.g. on well-posedness and asymptotic behavior). The MDD equa-
tions are then enhanced with Drude and Lorentz dispersion models to account for further important
phenomena such as plasmon resonance and light absorption respectively. The model is coded in
two dimensions and an itinerary through code verification is presented along with simulation and
convergence results for relevant test cases. Finally, typical PCA geometries are simulated (classical,
with anti-reflective coating, plasmon-enhanced). The process entails two steps: the steady state
of the semiconductor is calculated with the aid of a commercial solver (Silvaco Atlas), then it is
loaded (via a suitable interpolation technique) into the DGTD solver for the subsequent (transient)
optoelectronic simulation. In the considered devices, the concurrent description of the physical
components of the system and their interaction turns out to be particularly demanding in terms of
space discretization; the DGTD method allows to effectively handle the constraint, thanks to the
possibility of hp-adaptive refinement.
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Titre: Méthodes Galerkine discontinues en domaine temporel pour la simulation full-wave de dis-
positifs à semi-conducteur.
fg
Résumé: L’objectif de la présente thèse est le développement d’un solveur Galerkine discontinu en
domaine temporel (GDDT) pour la simulation en régime full-wave de dispositifs opto-électroniques
tels que les antennes photo-conductives (APC) pour la génération d’ondes THz. Ces dispositifs à
semi-conducteur absorbent la lumière et rayonnent des ondes THz, ce qui les rend extrêmement
importants dans une vaste gamme d’applications (de la caractérisation de matériaux, à la détection
de tissus cancéreux). Leur simulation est en revanche une tâche exigeante – elle entrâıne la de-
scription simultanée, en géométries complexes (typiquement incluant des nano-particules), de deux
phénomènes se déroulant sur des échelles spatiales et temporelles assez différentes, tels que la prop-
agation du champ électromagnétique et le transport de charge électrique dans un semi-conducteur.
Le modèle mathématique typiquement utilisé se compose des équations de Maxwell couplées avec
celles de dérive-diffusion. Ce système peut s’avérer particulièrement difficile à résoudre à l’aide de
méthodes numériques classiques (e.g. différences finies, éléments finis, volumes finis). Pour cette
raison, en général, dans les logiciels commerciaux sa simulation passe par une simplification : la par-
tie électrique et la partie optique sont découplées ; tout cela au détriment de la précision du modèle
et pas forcément en simplifiant la conception ou en réduisant le coût computationnel. Au cours des
deux dernières décennies, la méthode GDDT est devenue une alternative crédible aux méthodes
numériques usuelles susmentionnées. Dans cette thèse on propose son application au système
Maxwell-Dérive-Diffusion (MDD) pour la simulation d’APCs. Le point de départ est l’introduction
du modèle avec sa signification physique, pour ensuite définir les fondations mathématiques de la
formulation DG – dans laquelle la présence de diffusion nécessite une attention particulière – et
discuter des tâches cruciales telles que la définition du flux numérique et l’intégration temporelle
par des méthodes Low-Storage Runge-Kutta explicites. Des modèles de dispersion de Drude et
Lorentz sont ensuite intégrés dans les équations MDD pour modéliser d’autres phénomènes impor-
tants, notamment la résonance plasmonique et l’absorption de lumière. Le modèle est codé en deux
dimensions ; un parcours de vérification par étapes est proposé, ainsi que des résultats numériques
et des analyses de convergence. Pour conclure, des géométries typiques d’APCs sont simulées
(classique, avec couche antireflet, avec nano-particules métalliques). Le procès se déroule en deux
étapes : d’abord on calcule l’état stationnaire du semi-conducteur à l’aide du solveur commercial
Silvaco Atlas, ensuite on l’importe (par interpolation) dans le solveur DGTD pour la simulation
opto-électronique. Dans ces dispositifs, la description simultanée et l’interaction des différentes
composantes physiques du système se révèle particulièrement exigeante en terme de discrétisation
en espace ; la méthode numérique considérée permet de gérer cette contrainte de façon optimale,
grâce à une adaptation locale du degré d’interpolation et de la taille du maillage.
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Chapter 1

Introduction and motivations

Semiconductors constitute the heart and soul of integrated electronic systems, thus of modern
technology. The extraordinary progress in circuit integration, since Moore’s prediction from the
Sixties, can certainly be majorly credited to the concurrent refinement of computer-aided design
tools. Indeed, a higher scale of integration has regularly demanded a deeper understanding of
semiconductor physics and more accurate mathematical models of devices to be numerically im-
plemented and simulated. As a consequence, semiconductor device modeling has become complex
to the degree that today it is an industry of its own.

1.1 Semiconductor device simulation

The main phenomena to be predicted are transport, generation and recombination of electrons
and holes, in order to derive higher-level quantities (e.g. electric current and voltage) that can be
practically used for device simulation. The most celebrated model is represented by the Boltzmann
transport equation (BTE), which is derived from arguments of statistical thermodynamics and
quantum mechanics of electrons in crystal lattices [AM76],[Jün09]. The BTE governs the distribu-
tion function of the six-dimensional position-momentum phase space; due to its high complexity,
it is typically solved with Monte Carlo methods, which simulate stochastic particle trajectories be-
tween collisions rather than solving partial differential equations. These methods allow to account
for the several possible collision mechanisms and different energy band structures, hence they are
attractive in terms of accuracy, but also computationally expensive [VG06].

A common approximation consists in restricting the attention to only certain moments of the
distribution function. Applying the method of moments to the BTE yields a set of macroscopic
transport equations; to the lowest order, these constitute the Drift-Diffusion (DD) model – a pair
of non-linear advection-diffusion-reaction equations that express electric charge continuity in terms
of electron and hole concentrations, drift (advection) and diffusion currents, carrier recombination
and generation.

Since the 1950s, the DD model has been a staple of semiconductor simulation, thanks to its
simplicity and the low computational cost compared to the more rigorous BTE [ABL98],[VG06].
A further reason might lie in the refinement that it has undergone over the course of such decades,
to take into account higher-order effects due to device scaling, such as velocity saturation under
high electric fields. Besides, the DD framework can serve as a foundation for more refined models
– additional variables and equations can be introduced by considering higher-order moments of the
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BTE, leading to so-called energy-transport (ET) and hydrodynamic (HD) models [Jün09].
For example, a fundamental assumption consists in the electron gas being in thermal equilibrium

with the lattice (i.e. at the same temperature). Collisions play a fundamental role in maintaining
such condition, which is valid as long as the mean free path (the distance a particle travels between
two collisions) is small compared to the characteristic device size. The mean free path is of the order
of 100 nm, hence the initial approximation is usually legitimate in devices whose diameter exceeds
1 µm, but a rigorous analysis should also take electric field intensity into account. In essence, if
carriers are accelerated beyond equilibrium, it becomes necessary to add additional equations to
the picture, in order to describe momentum and energy conservation [Jün09], [FGJJ95]). In the
end, the aforementioned reasons should explain why the DD model is still the default option in
most semiconductor simulation software.

The main interest here is in semiconductor devices that undergo electrical and/or optical ex-
citation. As with any dynamical system, the goal can be to investigate a transient response or
a steady state. The two options lead to essentially three different models, which are summarized
below and will be illustrated in detail in the body of this work.

• Static Poisson-Drift-Diffusion – To describe the steady state of a semiconductor, the static
DD equations are coupled to Poisson’s equation for the electrostatic potential.

• Quasi-static Poisson-Drift-Diffusion – The dynamic DD equations are coupled to Poisson’s
equation for the electric potential, which is supposed to vary slowly, in that the shortest
wavelength in its spectrum is much larger than the characteristic size of the device. If so,
field propagation can be neglected inside the semiconductor and the laws of electrostatics
approximately hold.

• Maxwell-Drift-Diffusion (MDD) – The (dynamic) DD model is coupled to Maxwell’s equa-
tions. When the shortest wavelength in the spectrum of the electric field approaches the
characteristic size of the device, field propagation becomes relevant and a rigorous model is
required to be electrodynamic, or full-wave.

The Poisson-Drift-Diffusion (PDD) model, in its static and quasi-static versions, is the backbone of
dark electronic device simulation; the necessity of describing wave propagation, on the other hand,
usually arises in the field of optoelectronics, i.e. of electronic devices that interact with or simply
emit light. Notable applications include CMOS image sensors [CBV+09], solar cells [DFAA12]-
[ISKZ14]-[MHH+19], and THz radiation generation [MPG+14]-[ZTL+18]. Nevertheless, it is not
uncommon for optoelectronic devices to be forced into a convenient steady state before undergoing
optical excitation. In such cases, a static PDD solver would be required to calculate the steady-state
prior to the transient simulation, which would be quasi-static or full-wave.

The choice between quasi-static and full-wave simulation is the result of a trade-off between
numerical complexity (design effort), computational load and accuracy. A recognizable trend in
commercial software consists in adopting a modular approach. Typically, a PDD solver predicts
carrier dynamics and interacts, according to a certain protocol, with a separate optical module that
solves just Maxwell’s equations (with no DD equations). For example, the two might be alternately
executed and exchange information at the end of each call, until a stop criterion is fulfilled (e.g. a
maximum number of iterations is reached).1

1The PDD solver in question can be static or quasi-static, depending on particular implementation choices. Ex-
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The approach avoids the effort required by a single multiphysics solver, e.g. designing and
testing a numerical scheme capable of handling, at once, two very different characteristic time/space
scales like those associated to charge transport and electromagnetic wave propagation. However,
the separate resolution of the two phenomena weakens the coupling between them and inevitably
yields a model of lower accuracy. Besides, considerable design effort (and computational overhead)
is likely to be required if the two modules are based – as it happens – on different numerical
schemes/meshes (e.g. finite elements at the electrical side, finite differences at the optical one). Let
us elaborate on this point with an example.

In the design of photo-conductive devices, i.e. devices in which conductivity increases as a
result of light absorption, the major goal is to maximize the amount of light that penetrates the
semiconductor. However, this amount is reduced as the conductivity increases – an effect known as
screening. Neglecting this aspect can lead to significantly overestimate efficiency [KD16],[BES17].

Capturing mechanisms such as screening requires prompt interaction between the solution to
Maxwell’s equations and that to the DD ones. Let us analyze how this would be done in the two
approaches.

• In the modular approach, the two solvers would have to exchange data at a high rate; the
computational cost associated to the exchange itself would increase, along with the design
effort required to interface the solvers. Furthermore, by solving both Poisson’s and Maxwell’s
equations, two versions of the time-varying electric field would be calculated: a slow-varying
one and an optical one.

• In the MDD approach, interaction would be instantaneous, no interfacing between different
solvers (or methods) would be needed, and one time-varying electric field would be calculated.
The design effort for one multiphysics solver would be high, as outlined earlier, but the choice
would pay off, in terms of both accuracy and computational efficiency.

Throughout the comparison we have not mentioned a fundamental aspect: the MDD solver
should evidently rely on an appropriate numerical method. The next section is devoted to this
topic.

1.2 The choice of an appropriate numerical method

The finite-difference time-domain (FDTD) method [TH05] is perhaps the most commonly employed
technique for simulating optical devices. It owes its success in academic and commercial contexts
to the simplicity of the algorithm. However, this simplicity is also its main pitfall – the constraint
of using a Cartesian mesh entails at least two major limitations [NPB09].

• Refinement cannot be local, so that high computational resources may be easily demanded
to represent structures in which the electromagnetic field exhibits strong spatial variations
(which is often the case in nanophotonics). Furthermore, since time integration is explicit,
tight space discretization implies small timesteps. One way to fix such a flaw is to implement
nested areas of varying grid density, but this generally happens at the detriment of the original
algorithm’s simplicity.

amples will be provided in the course of the dissertation.
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• The Cartesian grid environment is also incompatible with curved objects – the resulting
staircasing effect can lead to significant inaccuracy; here as well, mitigating the problem
entails a more complex implementation.

In the end, a viable alternative to the FDTD method should be able to: a) accurately describe
complex geometries without staircasing (hence support unstructured meshes); b) allow explicit
time-stepping; c) offer higher order spatial discretization to limit mesh refinement (and its impact
on the maximum stable time step). Among other possible numerical frameworks, e.g. the Finite
Volume Method (FVM) or the Finite Element Method (FEM), the Discontinuous Galerkin Time-
Domain (DGTD) method complies with all such criteria, as outlined through the following points
[NPB09], [DDL+13].

• It supports unstructured (and even non-conforming or hybrid) meshes.

• Following the Galerkin approach, the unknowns are expanded into a polynomial basis, yielding
a set of coupled ordinary differential equations for the time-dependent expansion coefficients.
The key difference with respect to the classical FEM, however, is that the expansion is local
to each mesh element.2

• Different interpolation degrees are allowed in different elements; thus, so-called hp-adaptive
discretization is possible (i.e. the mesh size and the interpolation degree can change locally,
independently, where needed).

• When explicit time integration is used, the global matrix is block diagonal and the local
problems are solved independently at each time step, yielding a natural adaptability to parallel
computing.

To complete the picture, it is worthwhile to highlight a similarity between DG and FV meth-
ods. In many cases of interest Maxwell’s equations can be cast in a particular form – that of a
conservation law – which is the standard field of application of FV methods. These are particularly
interesting thanks to their ability to capture discontinuous solutions which may occur in non-linear
advection problems. DG methods share this property with FV ones since a first-order FV method
can be viewed as a DG scheme in which a zeroth-order interpolation is adopted in all elements.
Hence, a higher-order DG scheme can be seen as an enhancement to a classical FV one [DDL+13].

Thanks to all these strengths, throughout the last two decades the DGTD method has become
a credible competitor to FDTD and FEM methods for optical simulation, to the point of earning
its right in the world of TCAD [ANS].

So far we have limited the attention to optical simulation – numerical approaches to optoelec-
tronics deserve further discussion.
An extensive literature exists on the numerical treatment of the PDD system (in the transient and
static cases) for linear and non-linear diffusion, with and without recombination terms.

A fundamental way of solving the static PDD system is the so-called Sharfetter-Gummel scheme,
on which notable papers proposing FEM formulations [BMP89], [BMM+05] are based. The scheme
has been recently considered in combination with a DG method as well [CB20b].

2The resulting numerical solution is two-valued at interfaces between elements, and neighboring elements need to
be coupled via suitable boundary conditions – a crucial point that will be discussed in detail throughout this work.
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The quasi-static PDD system has been largely studied in the FV framework (see [CHF07],
[BC12a], [BC12b], [BCCH19] and references therein). One fundamental principle in these works
is to develop schemes that preserve some important physical properties, such as positiveness of
carrier concentration and/or asymptotic stability, which in turn confer desirable properties to the
discrete system. Furthermore, notable one-dimensional DGTD works exist, e.g. [LS04], [LS07],
[LS10a]. It is worthwhile to also mention a recent DGTD approach that addresses a Poisson-Drift
hydrodynamic model (see [GDI+22] and [Blo70]).

The literature on the MDD system is comparably less rich. Purely mathematical studies exist
(e.g. [Jer96]), along with a few works based on the FDTD method (e.g. [MPG+14], [KYI09]), which
are references in the field. Only recently, a DGTD approach has been considered [CB20a]. In fact,
the literature on optoelectronic devices mostly relies on commercial solvers, which adopt the mod-
ular approach outlined in Section 1.1 and hence weakly couple electromagnetic wave propagation
and carrier dynamics.

1.3 The project

The present doctoral project stems from joint research interests of the following academic and
industrial entities.

The Atlantis team (Inria centre at Université Côte d’Azur) gathers applied mathematicians
and computational scientists working on innovative numerical methods for nanophotonics. In this
context, throughout previous research projects (e.g. [Viq15], [Sch18], [Gob20]), the team has de-
veloped DIOGENeS 3 – a suite of high-order time- and frequency-domain discontinuous Galerkin
solvers, adapted to high-performance computing systems, for Maxwell’s equations coupled to local
and non-local dispersion models on unstructured tetrahedral meshes.

Silvaco, Inc. is a leading Electronic Design Automation (EDA) and Intellectual Property (IP)
provider headquartered in Santa Clara, California and having sites in North America, Europe
and Asia. Their portfolio includes software tools for process and device simulation, supporting
integrated circuits (e.g. analog/mixed-signal, memories), power electronics, error reliability and
photonic devices (e.g. solar cells). Semiconductor simulation is based on Atlas [Sil], a collection
of two- and three-dimensional solvers for electronic devices and electromagnetic wave propagation,
with a broad range of physical models. In particular, in the DD approximation, optoelectronic
simulation relies on a module solving the PDD system with the Box Integration Method (BIM)
and a Finite-Difference Time-Domain (FDTD) solver for Maxwell’s equations.

The growing demand for optical simulation of semiconductor devices in both academic and
industrial contexts has paved a common ground – at Atlantis, it has fostered the idea of expanding
the know-how in DGTD methods to the field of semiconductor simulation and develop a multi-
physics solver; at Silvaco, it has triggered the curiosity to investigate the potential of such methods
in full-wave optoelectronic simulations.

Choosing a semiconductor model has entailed a trade-off between accuracy, theoretical com-
plexity and computational load. As its long and great success suggests, the DD model represents
an optimal synthesis of such constraints:

3https://diogenes.inria.fr/
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• it is much less complex than the BTE, both theoretically and numerically – it allows deter-
ministic resolution;

• it allows to refer to the repertoire of numerical methods for classical advection-diffusion-
reaction problems;

• it provides an initial insight into charge carrier dynamics, but also lays the foundations
for more accurate models – higher-order moments from the BTE lead to coupling further
equations to the basic DD ones.

As to designating a key application for the developed solver, there has been convergence on
Photo-Conductive Antennas (PCAs) for THz radiation generation. The choice is motivated in the
next section. Here, we preliminarily remark two key points that will be apparent:

• PCAs require by definition the resolution of Maxwell’s equations along with the DD ones;

• from a numerical standpoint, they demand to resolve strong variations in space and time of
the electromagnetic field and charge distribution.

1.4 The selected application: THz radiation generation

The first time-domain spectroscopy and imaging systems were commercialized in the early 2000s
and since then, the terahertz band (0.1 − 10 THz) of the electromagnetic spectrum has drawn
increasing attention. THz emission was achieved in such systems by exciting ultrafast PCAs with
sub-picosecond optical laser pulses. In the subsequent years several alternative technologies have
been developed, but THz-PCAs have kept the lead thanks to the benefits of wide and continuous
bandwidth, high signal-to-noise ratio, room temperature operation, and accurate magnitude and
phase measurement. THz radiation is particularly attractive because it is nondestructive – the
scanned samples are not altered. As a consequence, it is nowadays possible to enumerate a broad
range of applications of THz-PCAs. In the industry of integrated circuits, for example, they allow
fault localization and infra-package inspection. In physics, they find use in material characteriza-
tion (e.g. conductivity and dielectric response). In biomedical science, they can be employed to
analyze crystalline pharmaceuticals and assess margins of cancerous tissue. Moreover, consider-
able attention in the scientific community has been devoted to THz transmitters and receivers for
wireless communication [Bur16],[KMN21].

A basic THz PCA and its operation are depicted in Figure 1.1. A semiconductor layer is
contacted by two electrodes (e.g. gold), which are used to apply an electrostatic field. Ultrashort
laser pulses (tens to hundreds of femtoseconds) impinge on the gap between the two electrodes
and illuminate the semiconductor. A lens, typically made of silicon, collects and collimates the
generated THz radiation. If the incident photon energy is greater than the bandgap, electron-hole
pairs are formed in the proximity of the surface and are accelerated in opposite directions by the
applied electrostatic field, yielding a photo-current.
As the light pulse fades in, the conductivity of the semiconductor increases proportionally to electron
and hole concentrations, yielding a rise in the amplitude of the photo-current. Conversely, as the
pulse fades out, the photo-generation rate drastically decreases and recombination takes the lead
– photo-generated carriers rapidly recombine, the conductivity decreases consequently, and the
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Figure 1.1: Illustration of the operation principle of a classical PCA [BES17]

photo-current as well. In essence, throughout the process, a pulsed photo-current is observed. It is
to this pulse that the emission of a pulsed wave in the THz regime is ascribed.

Two main goals are identified in PCA design: maximizing the amplitude of the photo-current
pulse and minimizing its fall time. The first aims at boosting the radiated field and is typically
obtained by increasing the applied electrostatic field. The latter aims at ensuring that most of the
radiated power actually is in the THz range – the fall of the photo-current closes the shape and
hence ultimately determines its spectrum.
The fall of the photo-current is determined by recombination and in particular by carrier lifetime, a
crucial physical quantity in this setup: the shorter the lifetime, the greater the emitted THz power
[LGK+17].
The most common material for the illuminated layer is Low-Temperature-grown Gallium Arsenide
(LT-GaAs). The reason lies in the high density of crystal defects, which yields a lifetime of the
order of 0.3 ps [MPG+14]. Given that the bandgap of GaAs is 1.42 eV, the designated excitation
wavelength (photon energy) is typically about 800 nm (1.55 eV) [Bur16].

An important trade-off exists in the preparation of the material. On the one hand, doping
is necessary to increase the concentration of photo-induced electron-hole pairs (hence the photo-
current and the emitted THz pulse). Nevertheless, higher conductivity also means higher optical
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density, i.e. sharper air-semiconductor refractive mismatch, which implies higher field reflection at
the air-semiconductor interface and hence less incident photons in the material.

The main pitfall of the described device is the low optical-to-THz conversion efficiency. Increas-
ing the bias voltage is not sufficient and is anyhow limited by breakdown effects. A more viable
option has been identified in enhancing light transmission into the semiconductor, to increase the
probability of light absorption. The most widespread solution consists in introducing metal nanos-
tructures on the gap between the electrodes – the resulting diffraction yields a strong near-field
distribution in the underlying material and therefore improves power matching between the source
and the device. It has been observed that such technological enhancement increases efficiency by a
factor of 1.5 to 2 [LGK+17]. An example of the resulting structure is shown in Figure 1.2.

Figure 1.2: An enhanced PCA with an array of metallic nanoparticles in the gap between the two
electrodes [BGP19].

PCA simulation has been the object of several different approaches. In the simplest ones,
lumped-parameter models have been proposed; for example, in [KHSB13] a PCA is represented by
an equivalent circuit, while in [YBG+15] a circuit replaces the semiconductor and interacts with a
DGTD solver for Maxwell’s equations. Attempts to solve the MDD system are found in the FDTD
framework [KYI09],[MPG+14],[ZHA+15] and they all rely on a predictive (field-independent) model
of photo-generation, which yields good agreement with experimental data for the classical antenna
geometry.
When nanostructures are introduced, on the other hand, field-dependent photo-generation mod-
els need to be considered. However, in such cases the numerical method itself becomes anyhow
inadequate – the aforementioned near-field distribution demands a very fine mesh to be correctly
resolved, thereby dramatically increasing the computational load, as pointed out in Section 1.2.

All the above approaches are based on presuppositions legitimated by considering a simple,
basic PCA geometry. In modern devices, however, the presence of nanostructures is systematic
and entails considerably higher numerical complexity.
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The task has been tackled with a two-solver FEM approach [BES17], [BPK+19],[Bat21], which
consists in a preliminary, purely electromagnetic simulation that calculates the photo-generation
profile; the latter is then used in a subsequent PDD simulation that describes carrier dynamics. In
[Bat21], actually, a third solver is used as well, to finally compute the THz field emitted by the
calculated photo-current. This kind of multi-solver approach has an evident pitfall – the optical
field is unaffected by carrier dynamics, hence screening cannot be described [KD16].

More recently, further DGTD approaches have been proposed. In [GDI+22], Poisson’s equation
is coupled to a drift-only hydrodynamic model. In [CB20a] the MDD model is solved to simulate
classical and nanoparticle-enhanced PCAs, and similarly in [CB21a], where dispersion is considered
as well, and is proved to ensure a more accurate description of screening.

1.5 Outline

In this dissertation we illustrate, from conception to implementation, a DGTD solver for the MDD
system enhanced with dispersion equations for semiconductors and metals. The solver has been
implemented in two dimensions and allows to simulate both basic and complex PCAs, thanks to a
field-dependent description of light absorption.

With respect to the existing literature on MDD simulation, several topics are explored, including:

• the applicability of criteria for determining the maximum mesh size that are commonly used
in the DD literature;

• the advantages of locally hp-adaptive discretization;

• the calculation of the steady state of a PCA in Silvaco Atlas and the process of importing it
into an unstructured mesh for the subsequent transient DGTD simulation;

• the role of steady state variables in the numerical DG formulation and their impact on the
behavior of a PCA during the transient simulation;

• a detailed elaboration on how the Lorentz dispersion model from classical electrodynamics
can describe light absorption and hence photo-gemeration;

• numerical orders of convergence, obtained in suitable test cases, based on explicit Runge-
Kutta time integration schemes;

• the relation between the maximum stable time step and the mesh size in advection-diffusion
problems – a generalization of the classical CFL condition is discussed;

• the possibility of paving the way for stability studies, by considering a priori energy bounds,
or by following classical references on DG methods for elliptic problems.

In detail, our approach is organized as follows.

• Chapter 2 formally states the MDD model from a mathematical standpoint, in bounded and
unbounded domains. The physical meaning of its actors is detailed – transport parameters,
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such as mobility and diffusivity, are introduced along with the reaction terms describing
recombination and generation processes. Special attention is devoted to the photo-generation
model, which plays a pivotal role in the coupling of the electromagnetic field with carrier
dynamics, and which is best described by introducing of a Lorentz dispersion model. Then,
the topic of device biasing and steady state calculation is analyzed, with a presentation of the
PDD model and the role of its solution in the subsequent (transient) MDD simulation. Drude
and Lorentz models are finally introduced in the picture to model dispersion in metals and
semiconductors, respectively. The chapter is concluded by setting the basis for a preliminary,
a priori energy bound and recalling some existing mathematical results on the MDD model
that link it to the PDD one.

• Chapter 3 lays the foundations for the DG formulation of the MDD model. The starting
point is a local weak formulation, which paves the way for the crucial subject of defining the
discontinuity of the numerical solution on the skeleton of the mesh. To this purpose, the
advective and the diffusive part of the equations are separately analyzed, the former allowing
a link to the FV framework. Space discretization is completed with the semi-discrete (matrix
form) of the equations. The analysis proceeds with the derivation of a global weak formulation
along the lines of a prominent reference on DG methods for elliptic problems. The subject of
(explicit) time integration is finally contemplated, with a survey on a suitable condition for
the maximum time step in the concurrent presence of advection and diffusion.

• Chapter 4 starts by deriving the two-dimensional (TE) version of the MDD model and pro-
ceeds through an itinerary of steps that aim at verifying the code from its elementary building
blocks (source-free Maxwell’s equations, simple advection, the heat equation) to the whole
system, thanks to manufactured solutions. Along the way, particular attention is dedicated
to the potential difficulty of tracking an exact solution while assigning physically meaningful
values to parameters. Simulation results for three fundamental test cases are discussed, with
convergence analyses.

• Chapter 5 tackles two essential aspects of simulation of real devices, in which no exact solution
can be tracked: a) the problem of domain truncation and field injection; b) the crucial subject
of providing a steady state solution to the MDD solver. The latter is handled as follows:
each device is simulated in the TCAD environment of Silvaco Atlas, then the output of the
electrostatic simulation, defined on a Cartesian mesh, is extracted and imported into the
unstructured mesh used in the DGTD simulation. Finally, a selection of relevant PCAs is
introduced and relevant simulation results are shown, with a detailed elaboration on the
choice of an appropriate numerical setting.

• Chapter 6 draws a summary of the work with some background on additional routes that
have been explored and proposes future research directions.
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Chapter 2

Continuous model

This chapter presents the equations, the initial and the boundary conditions constituting the MDD
model. A formulation for interior problems and exterior problems is considered – the former is
mostly relevant to purely mathematical studies and numerical tests, whereas the second is here
intended as the target scenario for actual device simulation.
Each function appearing in the equations is described. Designating a photo-generation function,
as will be seen, is a task of special relevance as it links electromagnetic wave propagation to light
absorption.
Another fundamental topic regards the static quantities that describe the steady state of the semi-
conductor prior to illumination. They obey a separate set of equations and boundary conditions,
which will be detailed and linked to the subsequent transient simulation.
The scenario of an exterior problem is finally generalized to include Drude and Lorentz models
describing dispersion in metals (e.g. the electrodes) and the semiconductor (for light absorption).
The chapter is concluded by further mathematical aspects on the MDD model, e.g. its asymptotic
behavior and its link to the PDD one. Moreover the foundations for a priori energy bounds are
sought.

Figure 2.1: A two-dimensional bounded semiconductor domain Ω with ∂Ω = ΓD ∪ ΓN , ΓD =
ΓD1 ∪ ΓD2 representing metal contacts ideally connected to a voltage source, ΓN = ΓN1 ∪ ΓN2

representing electrically insulating boundaries.
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2.1 Interior problem

Let Ω ⊂ R3 be an open convex polygonal domain filled with a semiconductor. Let ∂Ω = ΓD ∪ ΓN
denote the boundary of Ω, composed of the disjoint subsets ΓD (semiconductor-PEC interfaces)
and ΓN (semiconductor-dielectric interfaces, electrically insulating boundaries).
Consistently with its physical meaning, ΓD is assumed to have finitely many connected components.
An exemplary two-dimensional geometry is proposed in Figure 2.1.

The considered mathematical model consists of Maxwell’s equations coupled with charge con-
tinuity equations via drift and diffusion currents:

∇×E = −µ∂H

∂t
,

∇×H = ε
∂E

∂t
+ Jn + Jp,

q
∂n

∂t
= ∇ · Jn + qG− qR,

q
∂p

∂t
= −∇ · Jp + qG− qR,

Jn = Jn,drift + Jn,diff = qnµnE + qDnα,

Jp = Jp,drift + Jp,diff = qpµpE− qDpβ,

α = ∇n,
β = ∇p,

in Ω× [0,+∞[.

(2.1)

The unknowns of (2.1) are

E,H : Ω̄× [0,+∞[ → R3,

n, p : Ω̄× [0,+∞[ → R,
α,β : Ω̄× [0,+∞[ → R3,

and the following functions are assigned:

µn, Dn, µp, Dp : U ∈ R3 → R,
G : Ω̄× [0,+∞[ → R,
R : (u, v) ∈ R2 → R,

µ, ε : Ω̄→ R.

Their physical meaning is outlined below.

• E,H represent the total electric and magnetic field respectively (more details in Section 2.4).

• n (p) is the electron (hole) concentration in the semiconductor, whose gradient is represented
by the auxiliary vector field α (β).

• µn (µp) and Dn (Dp) are electron (hole) mobility and diffusivity respectively. They are
generally non-linear functions of the electric field.
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• G and R are non-linear functions modeling optical generation and net thermal recombination
of electron-hole pairs.

• µ = µ0µr denotes magnetic permeability (equal to the product of vacuum and relative per-
meabilities) and ε = ε0εr denotes electric permittivity (equal to the product of vacuum and
relative permittivities); µr and εr are generally space-varying.

The models used for mobility, generation and recombination are detailed in Section 2.3.

The problem is mathematically closed with the initial and boundary conditions

E(x, y, z, 0) = E0(x, y, z) (x, y, z) ∈ Ω̄,

H(x, y, z, 0) = H0(x, y, z) (x, y, z) ∈ Ω̄,

n(x, y, z, 0) = n0(x, y, z) (x, y, z) ∈ Ω̄,

p(x, y, z, 0) = p0(x, y, z) (x, y, z) ∈ Ω̄,

n(x, y, z, t) = nD(x, y, z) (x, y, z, t) ∈ ΓD × [0,+∞[,

p(x, y, z, t) = pD(x, y, z) (x, y, z, t) ∈ ΓD × [0,+∞[,

n̂×E(x, y, z, t) = 0 (x, y, z, t) ∈ ΓD × [0,+∞[,

n̂ · Jn = n̂ ·
(
nµnE(x, y, z, t) +Dnα(x, y, z, t)

)
= 0 (x, y, z, t) ∈ ΓN × [0,+∞[,

n̂ · Jp = n̂ ·
(
pµpE(x, y, z, t)−Dpβ(x, y, z, t)

)
= 0 (x, y, z, t) ∈ ΓN × [0,+∞[,

n̂×H(x, y, z, t) = n̂×HN (x, y, z, t) (x, y, z, t) ∈ ΓN × [0,+∞[,

(2.2)

where n̂ is the outward unit normal vector to ∂Ω and E0,H0, n0, p0, nD, pD,HN are given
functions.

2.1.1 Interpreting initial and boundary conditions

The reader will notice that (2.1) features only two of Maxwell’s equations. For the other two to
be implied, thus omitted, the initial data cannot be arbitrary. Also, the right-hand side of the
boundary conditions is chosen in compliance with the underlying physics. Assignation is done per
the following criteria.

• The initial data must satisfy a few compatibility conditions. The first are

∇ · εE0 = q(p0 − n0 + C) in Ω,

∇ · µH0 = 0 in Ω,
(2.3)

where C : Ω̄→ R is the net doping. These ensure that for all t > 0 Gauss laws for electricity
and magnetism are implied by the first two Maxwell’s equations, thus not need to be explicitly
included in the model.
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• ΓD represents semiconductor-metal interfaces.

The condition on the electric field stems from assuming the metal to be a perfect electric
conductor (no boundary condition would be imposed otherwise).

As to the semiconductor, the nature of the interfaces must be specified. The hypothesis here
is that these are ideal Ohmic contacts, meaning that the contact resistance and the depth of
the space charge region are negligible.
The latter condition implies that the space charge region collapses on the metallurgical junc-
tion, and becomes a mesh (boundary) face, thereby justifying that boundary conditions are
imposed on ΓD.
Without resistance no power is dissipated, hence the contact can be described as being at
thermodynamic equilibrium even when currents are flowing; as a consequence, carrier con-
centrations are pinned to their thermodynamic-equilibrium values [MK02] and hence verify
the law of mass action

n(x, y, z, t) p(x, y, z, t) = n2
i (x, y, z, t) ∈ ΓD × [0,+∞[, (2.4)

where ni denotes the intrinsic concentration.1

It is worthwhile to mention an alternative way to justify the last condition. For a general
metal-semiconductor interface one would typically enforce the Neumann boundary conditions
[Nan91]

n̂ · Jn(x, y, z, t) = −q vn ∆n(x, y, z, t) (x, y, z, t) ∈ ΓD × [0,+∞[,

n̂ · Jp(x, y, z, t) = q vp ∆p(x, y, z, t) (x, y, z, t) ∈ ΓD × [0,+∞[,
(2.5)

where ∆n,∆p denote the deviation of carrier concentrations from thermodynamic-equilibrium
values, and vn, vp are the surface recombination velocities of electrons and holes respectively.
Even if dimension-wise these are velocities, they are not related to an actual velocity but
rather to the rate at which excess carriers recombine at the interface [MK02]. The condition
vn =∞ = vp is an alternative definition of ideal Ohmic contact and implies ∆n = 0 = ∆p in
order to have finite current.

If the dopant distribution C slowly varies with space – it is the case in all applications of our
interest – the net charge can be assumed to be zero outside the space charge region [MK02].
In case of negligible depth, the edge of the region coincides with the metallurgical junction,
which is located on ΓD. Hence it is imposed that

p(x, y, z, t)− n(x, y, z, t) + C(x, y, z) = 0 (x, y, z, t) ∈ ΓD × [0,+∞[. (2.6)

Substituting (2.6) into (2.4) defines the right-hand sides as

nD =
C +

√
C2 + 4n2

i

2
pD =

−C +
√
C2 + 4n2

i

2
.

(2.7)

Note that (2.7) are time-independent as motivated by the hypothesis of thermodynamic equi-
librium. They actually are space-independent as well – in practice, contacts are fabricated
on uniformly doped regions, hence C is constant on each segment of ΓD.

1This is defined as the free electron concentration that exists in an undoped semiconductor at thermodynamic
equilibrium. It generally varies with temperature and doping – common models can be found for example in [Sil]. In
the present context it is assumed to be constant.
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• ΓN represents semiconductor-dielectric interfaces, which are supposed to be electrically insu-
lating i.e. to prevent electrons and holes from flowing outside the semiconductor. Mathemat-
ically, this translates to Jn and Jp being tangent to ΓN .
The hypothesis applies to a steady state as well, hence it is required that

n̂ ·
(
n0µnE0 +Dn∇n0

)
= 0 = n̂ ·

(
p0µpE0 −Dp∇p0

)
on ΓN . (2.8)

Assigning HN is required mathematically but it is cumbersome from a physical standpoint,
as such a vector field should either represent a current density or the tangential component
of the magnetic field in a surrounding volume in which the problem were not solved.
In fact, the interior problem itself is just a mathematical tool – a stepping stone to a scatter-
ing problem, as anticipated in Section 2.1.
It is licit to consider it so, because: a) (2.1) is valid in both scenarios; b) when switching
between the two, only the electromagnetic part of (2.2) changes; c) the changes are irrelevant
to the core task – developing a DG scheme for Maxwell’s equations coupled with nonlinear
advection-diffusion-reaction.
In the end, n̂×H|ΓN = n̂×HN is meant to mimic (and prepare the ground for) a transmission
condition to be imposed in an exterior problem.

2.2 Exterior problem

Figure 2.2: A two-dimensional representation of the original semiconductor domain Ω immersed in
a bounded dielectric domain Ωe and subject to an incident field – typically a plane wave of vector
k forming an angle θ with the x axis.

We now let the bounded semiconductor domain Ω be immersed in Ωe, an ideally unbounded
dielectric which is artificially truncated for computational purposes (Figure 2.2). The dielectric is
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assumed to be linear, isotropic, non-dispersive in time and homogeneous in space. The pair (Ei,Hi)
represents a plane wave, possibly pulsed in both space and time, whose spectrum is centered at
an optical frequency; it impinges on the device and generates free charge carriers. This is the
incident field and is solution to source-free Maxwell’s equations in Ωe in the absence of the scatterer.
Linearity of such equations allows a scattered-incident field decomposition in Ωe \ Ω, while inside
Ω the incident field does not solve Maxwell’s equations. In the end we write

(E,H) =

 (Es,Hs) + (Ei,Hi) in Ωe \ Ω

(Et,Ht) in Ω
, (2.9)

with the scattered field (Es,Hs) and the internal field (Et,Ht) to be calculated numerically.
The equations in (2.1) remain valid, but outside Ω the model consists in source-free Maxwell’s
equations

∇×E = −µ∂H

∂t
,

∇×H = ε
∂E

∂t
,

in Ωe \ Ω × [0,+∞[,

(2.10)

and E,H, µ, ε are defined in Ω̄e rather than just in Ω̄.
The initial and boundary conditions for the semiconductor equations remain the same, whereas a
change in those for E,H is required:

E(x, y, z, 0) = E0(x, y, z) (x, y, z) ∈ Ω̄e,

H(x, y, z, 0) = H0(x, y, z) (x, y, z) ∈ Ω̄e,

n̂×E +

√
µ

ε
n̂× (n̂×H) = n̂×Ei +

√
µ

ε
n̂× (n̂×Hi) on Γe × [0,+∞[,

n(x, y, z, 0) = n0(x, y, z) (x, y, z) ∈ Ω̄,

p(x, y, z, 0) = p0(x, y, z) (x, y, z) ∈ Ω̄,

n(x, y, z, t) = nD(x, y, z) (x, y, z) ∈ ΓD × [0,+∞[,

p(x, y, z, t) = pD(x, y, z) (x, y, z) ∈ ΓD × [0,+∞[,

n̂×E(x, y, z, t) = 0 (x, y, z, t) ∈ ΓD × [0,+∞[,

n̂ · Jn = n̂ ·
(
nµnE(x, y, z, t) +Dnα(x, y, z, t)

)
= 0 (x, y, z, t) ∈ ΓN × [0,+∞[,

n̂ · Jp = n̂ ·
(
pµpE(x, y, z, t)−Dpβ(x, y, z, t)

)
= 0 (x, y, z, t) ∈ ΓN × [0,+∞[.

(2.11)

The first novelty is the absence of n̂ ×H|ΓN – transmission conditions are implicitly required on
ΓN , namely the continuity of n̂×E and n̂×H. The second is the Absorbing Boundary Condition
(ABC) on Γe, which is meant to approximate the notable Silver-Müller radiation condition and
enforce propagation of (Es,Hs) towards infinity in all directions with no reflection, as it would be
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if Ωe = R3. Bearing in mind (2.9) the ABC can be equivalently stated as

n̂×
(

Es +

√
µ

ε
n̂×Hs

)
= 0 on Γe × [0,+∞[,

(Es,Hs) = (E−Ei,H−Hi),

(2.12)

and requires the scattered field to behave (locally to the observation point on Γe) as a plane wave
impinging normally to the boundary. While the plane wave behavior can be achieved to a fair degree
by placing Γe far enough from ∂Ω, the angle of incidence cannot be controlled and represents an
inherent inefficacy to the ABC – a topic that will be further discussed in Section 5.1.

2.3 Key functions in the Drift-Diffusion model

We present here in detail the reaction terms (recombination, optical generation) and the transport
coefficients (mobility, diffusivity).

2.3.1 Recombination

Recombination is the process by which a free electron fills a hole: the free electron disappears (it
becomes a bound electron) and the hole too (the vacancy is filled).
Generation is the reverse process – a bound electron acquires enough energy for a transition from
the valence band to the conduction band, it thus becomes free and leaves a hole ”behind”.
Two mechanisms are typically modeled, as discussed below.

Generation-recombination due to lattice vibrations, commonly modeled by the prominent Shockley-
Read-Hall model [SR52], which describes it as a two-step process thanks to lattice defects (called
traps). The idea is that such imperfections create an allowed energy level in the bandgap, and offer
the possibility of band-to-trap and trap-to-band transitions. Such intermediate passages require
smaller amounts of energy than direct interband ones, hence they happen at a higher rate.

The Auger effect, which is qualitatively described in [Dem10] as follows.2 An excited electron
must release its excess energy in order to decay into an available lower-energy state. The decay is
generally radiative (photon emission), but it can also happen that the energy is directly transferred
to another electron; and if it’s higher than the binding energy of the second electron, auto-ionization
happens.

The semiconductor picture is more complex, with four types of carrier-carrier interaction to be
considered [Sel84]:

(a) Electron capture – an electron recombines and the excess energy is transferred to another
conduction electron;

(b) Hole capture – an electron recombines and the excess energy is transferred to a hole, which
moves away from the valence band edge;

(c) Electron emission – a free electron is generated and the excitation energy comes from a high
energetic electron in the conduction band;

2Named after P.V. Auger who discovered it in 1923 [Aug23].
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(d) Hole emission – a free electron is generated and the excitation energy comes from a high
energetic hole in the valence band.

As a result, the net thermal recombination rate R is described by

R(n, p) =
np− n2

i

τn(p1 + p) + τp(n1 + n)
+ (np− n2

i )(CAnn+ CApp). (2.13)

with the first addend being the SRH model and the second accounting for the Auger effect. By
net, it is meant that R > 0 reduces electron and hole concentrations (recombination), R < 0 pulls
concentrations up (generation). The parameters appearing in (2.13) are described below.3

• τn (τp) is the electron (hole) lifetime, that is the average time it takes to electrons (holes) to
recombine.

• n1 (p1) is the electron (hole) concentration that would be established at thermodynamic
equilibrium if the (extrinsic) Fermi level EF matched the trap one Et [VG06].4

In formulae,

n1 = ni exp

(
EF − Ei
kBT

) ∣∣∣∣
EF=Et

, p1 = ni exp

(
Ei − EF
kBT

) ∣∣∣∣
EF=Et

. (2.15)

In the expressions ni is the intrinsic concentration, Ei is the intrinsic Fermi level, kB is the
Boltzmann constant and T is the temperature of the lattice.

Note that unless otherwise expressly stated, in the present work it is assumed that carriers
are in thermal equilibrium with the lattice, at a common uniform temperature T = 300 K.

• CAn (CAp) is the Auger capture coefficient for electrons (holes) and accounts for the rate at
which events of type (a) (type (b)) happen. It is measured in m6 s−1.

Note that (2.17) does contemplate events of type (c) and (d) but the corresponding coefficients
do not appear explicitly because they are expressed in terms of CAn and CAp [Sel84].

The function R models non-radiative recombination-generation processes working towards es-
tablishing the thermodynamic condition np = n2

i (the law of mass action) and finds use in both
transient and stationary problems. To our purposes, however, it is convenient to separate R into a
stationary and a dynamic part as follows.
Electron concentration can be thought of as the sum of a static term and a transient deviation:
n = nDC + nAC . Similarly, p = pDC + pAC . The concept will be detailed in Section 2.4, where
separate sets of equations for the static and dynamic components will be sought. The key point here
is that nAC , pAC are null at equilibrium (by definition), sway away from it when optical generation

3A practical example of thermal generation will be shown in Section 5.3.
4Textbooks on semiconductor devices (e.g. [MK02]) usually introduce the Fermi level EF along with the Fermi-

Dirac distribution function, giving the probability that an allowed one-electron energy level E is occupied, which has
the form

f(E) =
1

1 + exp

(
E − EF
kBT

) , (2.14)

and predicts that at T = 0K all the levels below EF are occupied and all those above EF are unoccupied.

18



of electron-hole pairs takes place, to finally collapse back to zero once illumination is over; and to
describe such behavior in dedicated equations it is desirable to consider the decomposition

R = R′ +R′′, (2.16)

with

R′(nDC , pDC) = R(nDC , pDC)

=
nDC pDC − n2

i

τn(p1 + pDC) + τp(n1 + nDC)
+ (nDC pDC − n2

i ) (CAn nDC + CAp pDC),
(2.17)

modeling steady-state recombination, which works towards bringing nDC , pDC to the thermody-
namic equilibrium values, and

R′′(nAC , pAC) = R(nAC , pAC)|ni=0

=
nAC pAC

τn(p1 + pAC) + τp(n1 + nAC)
+ nAC pAC (CAn nAC + CAp pAC),

(2.18)

specifically operating on transient deviations with respect to the steady-state and working towards
a null equilibrium condition.

2.3.2 Optical generation

G represents the rate at which electron-hole pairs are generated by photon absorption, i.e. the
number of absorbed photons per unit volume and time.

2.3.2.1 Predictive approach

For normal incidence on the semiconductor surface a common simple expression is [RV04],[ST07]

G = Φ0 α ηo ηi exp(−αd), (2.19)

where:

• Φ0(m−2 s−1) is the incident photon flux (number of incident photons per unit surface) per
unit time;

• α(m−1) is the absorption coefficient and is frequency-dependent;

• ηo = 1−R is the optical quantum efficiency and accounts for photon loss by light reflection
at the surface; R denotes Fresnel’s reflection coefficient;

• ηi is the internal quantum efficiency – the fraction of transmitted photons that is actually
absorbed;

• d is the distance from the surface – modeling exponential attenuation of the light flux towards
the bulk.5

5As pointed out in [RV04], ηo can be quite low for a semiconductor-air interface, e.g. 0.7 in the case of silicon.
This is why photo-detectors are usually treated with anti-reflective coating – in essence an impedance matching layer.
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This model is used in FDTD papers (e.g. [MPG+14],[KYI09]) to solve (2.1) with focus on PCAs
similar to the one in Figure 2.3. The incident photon flux is described by a modulated irradiance
- reproducing the Gaussian character in space and time of the narrow-band laser - divided by the
photon energy corresponding to the carrier frequency ν0:

Φ0 = Φ0(x, y, z, t) =
I0

hν0
exp

−(x− x0

σx

)2

−
(
y − y0

σy

)2

−

(
t− t0 − z−z0

vsc

σt

)2
 . (2.20)

Here, z = z0 locates the semiconductor surface and (x0, y0, z0) is the gap center. Normal incidence
is assumed and wave transmission (photon injection) along z is predicted. In essence, incident
photons are transmitted at the interface just like in (2.19), then travel away from it at the speed
of light vsc :=

√
1/(εµ).

Predict is the keyword here because irradiance is another word for the time-averaged Poynting
vector [Hec12], hence calculating its actual value inside the semiconductor is incompatible with the
goal of solving Maxwell’s and semiconductor equations at the same time.

Figure 2.3: An illustration of the photo-generation process considered in [MPG+14] and [KYI09].
The center of the laser spot matches that of the gap, namely (x0, y0, z0). The spot is much smaller
than the gap, so that diffraction by the electrodes can be neglected and the transmitted photon
flux can be approximated as ηoΦ0 (with Φ0 given by (2.20)). Below the semiconductor surface
(z = z0), photo-generated electrons and holes are accelerated in opposite directions thanks to the
applied voltage.

It is important to remark that experimental results validate (2.20) for geometries featuring a
planar and sufficiently wide gap, i.e. in which the laser spot is well contained in the gap so that
diffraction by metallic components is negligible. However, great interest has been devoted by the
scientific community to geometry optimization. As highlighted in [LGK+17], in attempts to boost
photo-generation (thus optical-to-THz conversion efficiency) major benefit has been drawn from the
integration of plasmonic structures in the gap. The underlying principle is that electromagnetic
radiation penetrating sub-wavelength metallic nanoparticles induces collective oscillations in the
electron gas, which yield near-field enhancement [Mai07]. In all the investigated geometries it is
pivotal to intercept the incident wavefront with sub-wavelength-sized metallic obstacles. Hence,
predicting the field distribution becomes unfeasible and photo-generation enhancement can only be
observed if the actual irradiance inside the semiconductor is calculated.
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2.3.2.2 State of the art of commercial software

The aforementioned incompatibility is typically overcome in commercial software by having several
separate modules:

• one for wave propagation which solves Maxwell’s equations;

• one for charge carrier dynamics that solves either of the two following systems, which are
detailed in Section 2.4:

(a) the static version of (2.1);

(b) an electro-quasi-static version of (2.1) in which time-varying semiconductor equations
are coupled with Poisson’s equation for a time-varying electric potential.

It is the case of the software Silvaco Atlas [Sil], where a preliminary simulation computes the dark
steady state of an optoelectronic device, then the following loop takes place until a given stop
condition is fulfilled.

1. The calculated Jn and Jp are sources to Maxwell’s equations in the Luminous FDTD solver.

2. Luminous simulates electromagnetic scattering by solving Maxwell’s equations until a steady
state is reached (the energy difference between two consecutive iterations is monitored).

3. The calculated optical field is passed back to the charge transport module (of type (a)) which
computes a new steady state of n and p with photo-generation in the equations.

The generation function is

G(x, y, z) = α
S(x, y, z, t̃)

hν0
,

α = 4πk(ν0),

S(x, y, z, t̃) =
||E(x, y, z, t̃)||2

2ζ
,

(2.21)

t̃ being the discrete time at which the optical steady state is reached (and a new semiconductor
simulation starts), ν0 the carrier frequency of the (narrow-band) incident field, ζ the characteristic
impedance, and k the imaginary part of the refractive index.
It is interesting to analyze how (2.21) compares to (2.19). Beside ηi = 1 (all injected photons
are absorbed) and d = ∞ (unlimited light penetration depth), the idea is: compute the photon
flux inside the semiconductor (= Injected power density / hν0) from the optical simulation rather
than predict how the incident photon flux is transmitted across the surface (Φ0 ηo exp(−αd)).
The injected power density appearing in (2.21) is a function of the steady-state optical field and
its expression recalls the time-averaged Poynting vector of a plane wave.

Anther relevant model is found in [Bur16] for narrow-band simulation of THz PCAs in the
COMSOL environment. A frequency-domain solver for Maxwell’s equations calculates the sinu-
soidal steady state at the carrier frequency ν0; then, a quasi-static solver of type (b) determines
electron and hole dynamics and the evolution of the time-varying electric potential, with

G(x, y, z, t) = α(ν0)
P (x, y, z, ν0)

hν0
exp

(
4 ln(0.5)

(
t− t0
σt

)2
)
, (2.22)
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where α has the same expression as (2.21) and P is the (sinusoidal) steady-state injected power
density. Again, P is a Poynting-like function of the optical electric field, but the expression is much
less simple than (2.21) and omitted for brevity.

It is worthwhile to notice that (2.22) brings three key concepts together: power loss (α); active
power associated to the computed electromagnetic field distribution inside the semiconductor (P );
and the instantaneous, pulsed character of optical excitation (the Gaussian function).

An important limitation of (2.20) and (2.22) with respect to (2.21) should be highlighted. The
total drift current is related to the electric field by Ohm’s law

Jdrift = (qnµn + qpµp)E, (2.23)

with qnµn+ qpµp being the conductivity of the semiconductor. As the excitation pulse rises, n and
p increase and so does the conductivity; as a result, the field penetration depth is reduced (and
photon injection with it). The first two models fail to capture the mechanism because they fix G
prior to the semiconductor simulation, whereas the feedback loop between Silvaco modules seems
a more rigorous option.

2.3.2.3 Rigorous approach

The quest for real-time photo-generation should start from finding time-domain counterparts to the
frequency-domain quantities encountered so far – time-domain absorption should be the keyword.
In quantum optics, absorption is defined in terms of the probability of electron transition between
two energy levels, which is calculated relying on perturbation theory [GAF10]. Such a course
is pursued in [BPW+22] to study valence-to-conduction-band transitions in semiconductors. The
authors elaborate on the view of the photon absorption process as a transfer of energy to the electron
throughout the interaction time window, in which the wave function evolves from an initial state
v (of the valence band) to a final state c (of the conduction band). This leads to establishing a
fascinating bridge to classical electrodynamics, which identifies the instantaneous absorbed power
density with the work done by the electric field on the moving electron, with the definition of

Pv→c(x, y, z, t) = Jv→c(x, y, z, t) ·E(x, y, z, t) (2.24)

as the power density absorbed at time t during the transition from state v to state c. Jv→c denotes
the current density operator associated to such a transition; its detailed expression is quite complex
and intentionally omitted to keep the focus on the search of a counterpart to (2.24) that suit our
non-quantum model.

The collective displacement of bound electrons is commonly described semi-classically by the
Lorentz model - a damped harmonic oscillator - and subsequently expressed in terms of a current
density. Following [Gra16], electron motion in the presence of an electric field is described by
Newton’s law as

m
∂2x

∂t2
= qE−mγ∂x

∂t
−Kx ⇐⇒ ∂2x

∂t2
+ γ

∂x

∂t
+ ω2

rx =
q

m
E, (2.25)

where E = E(x, y, z, t), x = (x, y, z, t) is the (time-varying) position vector, q is the elementary
charge, m the effective mass, ωr :=

√
K/m the resonance (angular) frequency, K the constant in

Hooke’s law and γ−1 the average time interval between two collisions (the relaxation time).
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By associating a dipole moment to each atom and letting N denote the number of dipoles per unit
volume, it is possible to define the polarization density vector field

P(x, y, z, t) = qNx(x, y, z, t). (2.26)

The Fourier transform of the last two equations yields 6

x(x, y, z, ω) =
1

ω2
r − ω2 + iωγ

q

m
E(x, y, z, ω),

P(x, y, z, ω) = qNx(x, y, z, ω),

(2.27)

and leads to the electric constitutive relations

P(x, y, z, ω) = ε0
ω2
p

ω2
r − ω2 + iωγ

E(x, y, z, ω),

D(x, y, z, ω) = ε(ω) E(x, y, z, ω) = ε0ε∞E(x, y, z, ω) + P(x, y, z, ω),

ε(ω) = ε0

(
ω2
p

ω2
r − ω2 + iωγ

+ ε∞

)
= ε′(ω)− iε′′(ω),

(2.28)

where D denotes the Fourier transforms of the electric displacement field, ωp =

√
q2N

mε0
is called

the plasma angular frequency ; ε∞ is introduced to model the contribution of free electrons to
polarization.7

The imaginary part of the complex permittivity accounts for the energy lost in the process of
establishing a net dipole moment density in the material [KCK06]. The resonance condition ω = ωr
defines an absorption peak, i.e. a peak in interband transition probability.

Substituting (2.26) into the equation of motion or inverse-transforming the P-E relation from
(2.28) yields the set of ordinary differential equations

∂P

∂t
= Jl,

∂Jl
∂t

= ε0ω
2
pE− γJl − ω2

rP,

(2.29)

which introduces the polarization current density Jl (to be added to Jn and Jp in the Ampère-
Maxwell law in order to couple (2.29) to Maxwell’s equations).8 The classical counterpart to (2.24)
is then

Pabs(x, y, z, t) = Jl(x, y, z, t) ·E(x, y, z, t), (2.30)

and expresses that the power ceded by the electromagnetic wave to the medium corresponds to
the work done by the electric field throughout the displacement of the charges constituting the
polarization current [Gra16].

6The Fourier transform of a signal x(t) is here defined as x(ω) = F[x](ω) =
∫ +∞
−∞ x(t)e−iωtdt .

7The ∞ subscript can be justified following [Mai07], which introduces it to account for residual polarization due
to free electrons in noble metals excited at ω > ωp. The parameter is used to fit experimental data of semiconductors
as well [SWM17].

8The l subscript is introduced to distinguish polarization current from drift and diffusion ones. No subscript is
attached to P as there is no risk of ambiguity.
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The fact of deriving (2.29) from a harmonic oscillator should suggest to expect that some of the
power absorbed by the system at time t be stored in the form of energy (to sustain oscillations).
The point can be better understood in the monochromatic case, following a classical argument from
linear circuit theory [CDK87]. Let us omit space dependence for brevity and let E = E0 cos(ωt +
ΦE). Linearity of the dispersion model implies Jl = J0 cos(ωt+ ΦJ) and P = P0 cos(ωt+ ΦP ) for
some J0,P0,ΦJ ,ΦP . The resulting instantaneous absorbed power (per unit volume) is

Pabs(t) = E0 · J0
cos(ΦE − ΦJ) + cos(2ωt+ ΦE + ΦJ)

2
. (2.31)

In the sinusoidal regime, a quantity of fundamental interest is the time average of the instantaneous
power delivered to a system in a period T = 2π/ω, which represents the power dissipated in a period
and is known as the active power. Applying this definition to the absorbed power (2.31) yields

P̂ :=
1

T

∫ T

0
Pabs(t) dt =

E0 · J0

2
cos(ΦE − ΦJ), (2.32)

which identifies the active absorbed power with the static component of Pabs(t). This should be
expected as the time-varying component of Pabs(t) has a time-varying sign as well, hence cannot
describe such an irreversible process as dissipation.

The salient point is: our quest for real-time optical absorption requires isolating the portion of
(2.30) that models dissipation. This is straightforward when an explicit expression like (2.31) is
available but a more general procedure should be conceived. The natural way forward is to seek,
based on (2.29), a power (density) balance of the form

Pabs(t) = Pdiss(t) +
∂W (t)

∂t
, (2.33)

where Pdiss denotes the instantaneous dissipated power per unit volume and W is the energy per
unit volume stored in the oscillator. The key is to multiply the second equation of (2.29) by Jl,

Jl ·
∂Jl
∂t

= ε0ω
2
pJl ·E− γJl · Jl − ω2

rJl ·P. (2.34)

then, using the first equation of (2.29), (2.34) is recast as

ε0ω
2
p Pabs = Jl ·

∂Jl
∂t

+ γJl · Jl + ω2
r

∂P

∂t
·P

=
1

2

∂ (Jl · Jl)
∂t

+ γJl · Jl + ω2
r

1

2

∂ (P ·P)

∂t
,

(2.35)

and finally

Pabs =
γ

ε0ω2
p

Jl · Jl +
∂

∂t

1

2ε0ω2
p

[
Jl · Jl + ω2

rP ·P
]
. (2.36)

To fully appreciate (2.36) it is better to restate it in terms of the state variables of the harmonic

oscillator – the position x and the velocity
∂x

∂t
. From (2.26) and the first equation of (2.29),

Jl = qN
∂x

∂t
, (2.37)
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and in turn
γ

ε0ω2
p

Jl · Jl =
γ

ε0
q2N

mε0

Jl · Jl =
γm

q

∂x

∂t
· qN ∂x

∂t
= γmN

∂x

∂t
· ∂x

∂t
. (2.38)

Hence, the first term at the right-hand side of (2.36) is the scalar product of the frictional force
per unit volume and the velocity, i.e. the instantaneous power (per unit volume) dissipated by
the external force to impose oscillation against friction. Its sign is constant and non-negative as
required.
Similarly,

1

2ε0ω2
p

Jl · Jl = N
1

2
m

∂x

∂t
· ∂x

∂t
,

1

2ε0ω2
p

ω2
rP ·P =

1

2ε0
q2N

mε0

K

m
q2N2 x · x = N

1

2
K x · x,

(2.39)

are the kinetic and potential energy (per unit volume) respectively.
It is thus concluded that (2.36) expresses the sought power (density) balance with

Pdiss =
γ

ε0ω2
p

Jl · Jl,

W =
1

2ε0ω2
p

[
Jl · Jl + ω2

rP ·P
]
.

(2.40)

and that the first term (Pdiss) should be responsible for optical absorption.

For a consistency check, it is interesting to go back to the monochromatic case and calculate
the active power. Time-averaging both sides of (2.36) and bearing in mind the periodicity of Jl
and P,

P̂ =
1

T

∫ T

0
Pabs dt =

1

T

γ

ε0ω2
p

∫ T

0
Jl · Jl dt+

1

T

1

2ε0ω2
p

∫ T

0
d

[
Jl · Jl + ω2

rP ·P
]

=
1

T

γ

ε0ω2
p

∫ T

0
Jl · Jl dt+

1

2ε0ω2
p

[
Jl · Jl + ω2

rP ·P
]∣∣∣∣T

0

=
1

T

γ

ε0ω2
p

∫ T

0
Jl · Jl dt,

(2.41)

which is coherent with the interpretation.
The foregoing developments suggest that a sensible photo-generation function complying with

the requirement of real-time updates based on the computed electromagnetic field is

G(x, y, z, t) = ηi
γ

ε0ω2
p

||Jl(x, y, z, t)||2

hν0
. (2.42)

The internal efficiency ηi has been recovered from (2.19) to admit that some resonating dipoles
may not release any electron (ηi < 1). The classical notion (2.30) is therefore supplemented with
a probabilistic concept belonging to the quantum framework, to make the picture slightly more
realistic.
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On the other hand, there is no need for the exponential attenuation term anymore, because elec-
tromagnetic wave propagation in a dispersive medium, i.e. with a complex wave vector, is now
explicitly described by the mathematical model. Moreover the model naturally captures electric-
field screening (the electric field is instantaneously affected by the change in the carrier densities
and hence in the material’s conductivity).9

The function proposed in (2.42) is also considered in [CB21b], although with a more concise ap-
proach. Interestingly, in the reference it is shown how a Poynting-like approximation – rather
than one based on a dispersion model – yields appreciably different results and overestimates the
photo-generation rate.

An important concluding remark regards the practical use of (2.28-2.29). The model’s param-
eters are tuned in order to fit experimental data, which should position ωr in the proximity of the
absorption peak of the material. However several peaks can exist in general, and a single oscillator
may not provide enough degrees of freedom to achieve sufficient adherence to the reference curves.
For a reference on tailoring semiconductor dispersion models to wide frequency ranges, the reader
is suggested to look at [SWM17]. A general description of dispersion models coupled to Maxwell’s
equations in the finite-difference framework can be found in [TH05]. The topic is also discussed in
[Viq15] with focus on DGTD methods applied to plasmonics.
Multiple oscillators are likely to be required in broad-band simulations. In narrow-band simula-
tions, on the other hand, what matters most is adherence in the proximity of the carrier frequency.
The scope of the present work is limited to the latter situation, and one oscillator will appear to
be sufficient in practice. To retrieve ε∞, wp, wr, γ, the fitting method from [Viq18] and available in
DIOGENeS [Atl] has been used. The incorporation of (2.42) in (2.1) will be formally carried out
in Section 2.4.

2.3.3 Mobility

Mobility (m2 V−1 s−1) relates drift velocity to the electric field: vn = −µnE, vp = µpE. It models
the fact that carriers are accelerated in a crystal and therefore can lose momentum due to various
phenomena, such as lattice vibrations (lattice scattering), attraction/rejection by ions of dopant
(ionized impurity scattering), a rough interface between two materials (surface scattering).
Mobility has the following expression, which stems from the Drude model of free electrons [AM76]:

µn =
qτcn
m∗n

, µp =
qτcp
m∗p

, (2.43)

where τcn (τcp) denotes the average time between collisions and m∗n (m∗p) the effective mass, which
is a function of energy band curvature.

Different scattering mechanisms are described by dedicated, tailored models. It is common to
assume them statistically independent, so that they concur per Matthiessen’s rule [RA15],[AM76],
which states

1

µn
=

1

µn,lattice
+

1

µn,ion
+

1

µn,surf
(2.44)

for electrons, then similarly for holes. The rationale is that the mechanism happening at the highest
rate should dominate, i.e. be the one to limit drift the most.

9It may be worthwhile to note that (2.42) has the required dimension of m−3 s−1, as it is the ratio of volumic
power density (W m−3) over energy (J), times a dimensionless quantity (ηi).
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Evidently, mobility varies with temperature and doping. Its degradation at high electric field
values is also of great relevance.
A quite exhaustive hierarchy of models is presented in [VG06]. In the present context, special
attention is devoted to field-dependent mobility due to the very strong electrostatic field existing
in photo-conductive antennas, and it is assumed that

µn(E) =
µn0(

1 +
(
E µn0
vn,sat

)βn) 1
βn

,

µp(E) =
µp0(

1 +
(
E µp0
vp,sat

)βp) 1
βp

,
(2.45)

which is known as the Caughey-Thomas model [CT67]. The only difference between the two equa-
tions lies in the values assigned to the parameters, thus it suffices to analyze the first one. For
low values of E := ||E||, µn can be approximated by the low-field value µn0 and vn = −µn0E. As
E increases, the velocity reaches a saturation amplitude vn,sat; at this point, further increasing E
yields nonlinear effects. The fitting parameters βn, βp are positive and depend on the material.

2.3.4 Diffusivity

Diffusivity (m2 s−1), also referred to as the diffusion constant or the diffusion coefficient, appears
by virtue of Fick’s law

Jn,diff = Dn∇n, Jp,diff = −Dp∇p, (2.46)

which is readily recognized in (2.1) and models the fact that particles diffuse from regions of higher
concentration to regions of lower concentration. The signs reflect the convention of Jp (Jn) being
directed as (opposite to) the flow.

As discussed in [AM76], electron and hole currents must vanish at thermodynamic equilibrium,
that is

Jn,drift + Jn,diff = 0 = Jp,drift + Jp,diff , (2.47)

and it can be verified that this implies the Einstein relations

Dn = VTµn, Dp = VTµp, (2.48)

where VT = kBT
q is the thermal voltage, q is the elementary electric charge, kB is the Boltzmann

constant, T is the absolute temperature.

In the applications of our interest, doping is not high enough to violate the hypothesis, but
it is worthwhile to mention that the presented form of (2.48) only holds if the semiconductor
is non-degenerate. Otherwise, correction terms depending on carrier densities become necessary
[Kan18].10

The Einstein relations are still valid when thermodynamic equilibrium is weakly perturbed
[BSL+07]. At high fields, it becomes necessary to upgrade (and complexify) the D −E relation in
order to account for hot-carrier diffusion [KCK06]. Several models based on different hypotheses

10A semiconductor is said to be non-degenerate if the Fermi level EF is more than 3kBT away from both the
conduction and the valence band edges [VG06]. A fundamental concept in semiconductor physics is that N-type
(P-type) doping shifts EF towards the conduction (valence) band, thereby modifying the distance just mentioned.
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on the Boltzmann transport equation have been derived in the literature [Sel84], [Jün09] but there
seems to be no convergence on a particular one. A survey of textbooks on semiconductor device
physics (e.g. [MK02], [SN06], [SB14], [RV04]) would show a tendency to consider high-field effects
on drift (that is, velocity saturation as per (2.45)) while retaining (2.48). In [Hes00], for example,
the issue is addressed; but it is also argued that adequate refinement of the drift-diffusion model
to include hot-carrier diffusion might require a computational load comparable to Monte Carlo
simulations of the Boltzmann transport equation itself.
All such reasons should justify the spotlight on several mobility models, while not on high-field
diffusivity, in commercial software (e.g. [Sil], [COM]). A decision has been made in the present
work to align with such trend, in accordance with the literature on photo-conductive antenna
simulation (e.g. [MPG+14], [Bur16]).

2.4 Device biasing

A fundamental concept in semiconductor device theory is that of static (or DC) operating point –
a static input is applied with the aim of enforcing a convenient steady state, an identified optimal
setting in which to apply a time-varying (or AC) input. In the enforced steady state, the device is
said to be biased.
We are mostly interested in devices that are biased electrically, by means of a voltage applied via
metal contacts, and shall assume that no static magnetic field is applied.
Once the device is biased, the unknowns of our model are decomposed in static (DC) and time-
varying (AC) parts: 

E
H
n
p

 (x, y, z) =


E
H
n
p


DC

(x, y, z) +


E
H
n
p


AC

(x, y, z, t), (2.49)

and similarly the auxiliary variables α,β.
We shall assume the DC quantities assigned or numerically calculated by a separate solver. The
interest here lies in understanding their physical meaning and exploiting the consequences of (2.49)
on the MDD model.11

2.4.1 The static Poisson-Drift-Diffusion model

EDC , nDC , pDC constitute the solution to the electrostatic problem

11In the context of this section the dispersion model introduced earlier does not play a relevant role, thus we find
it convenient to omit P, Jl in (2.49). Their static and dynamic components will be introduced in Section 2.5.
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∇×E = 0,

∇ · εE = 0,

in Ωe \ Ω,

∇×E = 0,

∇ · εE = q(p− n+ C),

∇ · Jn − qR′ = 0,

−∇ · Jp − qR′ = 0,

Jn = −qnµn∇φ+ qDn∇n,
Jp = −qpµp∇φ− qDp∇p,

in Ω,

(2.50)

whose resolution usually relies on the introduction of an electrostatic potential φ : Ω̄e → R such
that E = −∇φ, yielding

∇ · (ε∇φ) = 0,

in Ωe \ Ω,

∇ · (ε∇φ) = −q(p− n+ C),

∇ · Jn − qR′ = 0,

−∇ · Jp − qR′ = 0,

Jn = −qnµn∇φ+ qDn∇n,
Jp = −qpµp∇φ− qDp∇p,

in Ω.

(2.51)

The boundary conditions read
n = nD on ΓD,

p = pD on ΓD,

φ = Vbias + φbi on ΓD,

n̂ · Jn = 0 on ΓN ,

n̂ · Jp = 0 on ΓN ,

n̂ · ∇φ = 0 on ∂Ωe,

(2.52)

with nD, pD given by (2.7), Vbias being the applied voltage and φbi = VT log(nD) the built-in
potential – the potential barrier that spontaneously arises at the metal-semiconductor interfaces
[Mar86]. The homogeneous Neumann condition on ∂Ωe is meant to approximate the asymptotic
behavior of φ and forces electrostatic field lines to be tangent to the boundary of the computational
domain, consistently with the absence of electric charges at infinity.
Note that in the resolution of (2.51-2.52) one also enforces the continuity of the normal component
of the electric displacement field n̂ ·D = −n̂ · ε ∇φ on ΓN .

The currents calculated in (2.51) are expected to produce a stationary magnetic field HDC
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according to
∇×H = 0,

∇ · µH = 0,

in Ωe \ Ω,

∇×H = Jn + Jp,

∇ · µH = 0,

in Ω,

(2.53)

with n̂ ×H to be assigned on the boundary of the computational domain, however it is apparent
that HDC plays no role in (2.51-2.52): in practice, (2.53) does not need to be solved.

The absence of G in (2.51) deserves a remark. It was outlined in Section 2.3.2.2 that (2.51) is
solved with G in Silvaco Atlas, but this is a particular implementation choice that allows to couple
the optical solver with the semiconductor one. The general rule is to employ the static PDD system
in cases where no light is involved.

2.4.2 The quasi-static Poisson-Drift-Diffusion model

An alternative route to EDC , nDC , pDC is to see these as the steady state asymptotically reached
by a modified version of (2.1) based on an electro-quasi-static approximation [VG06], sometimes
referred to as the van Roosbroeck system.12 The difference with respect to (2.51) is that the electric
field obeys the laws of electrostatics but is time-varying, hence derived from a time-varying potential
φ : Ω̄e × [0,+∞[→ R. The resulting system is

∇ · (ε∇φ) = 0,

in Ωe \ Ω× [0,∞[,

∇ · (ε∇φ) = −q(p− n+ C),

q
∂n

∂t
= ∇ · Jn − qR,

q
∂p

∂t
= −∇ · Jp − qR,

Jn = −qnµn∇φ+ qDn∇n,
Jp = −qpµp∇φ− qDp∇p,

in Ω× [0,+∞[.

(2.54)

The boundary conditions have the same form as (2.52) except that now Vbias = Vbias(t). Calculating
the steady state by means of (2.54) could be motivated by an interest in monitoring the transient
behavior between thermodynamic equilibrium and the desired DC operating point. In this case,
(2.51) would have to be solved for Vbias = 0 V, to provide the initial conditions for the transient
simulation. This first step is common to (2.51) and (2.54), then resolution strategies diverge:

• (2.51) is recast as a single non-linear equation in the unknown φ, and solved with an iterative
method for increasing values of Vbias;

12After W. W. van Roosbroeck, who first formulated it in 1950. The original paper is here referred to as [vR50].
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• (2.54) is solved in the time domain with a time-varying Vbias.

It should be noted that initial and boundary conditions depend on the particular application
and, more importantly, that there exist several situations in which a transient response itself is of
primary interest (rather than the calculation of a subsequent steady state). One example has been
outlined in Section 2.3, with reference to [Bur16], in which (2.54) is solved to observe THz emission
resulting from a a pre-defined photo-generation function.
More generally speaking, the electro-quasi-static approximation of Maxwell’s equations has proven
to be relevant in nanophotonics, in the study of plasmon resonances in nanoparticles [May13].13

2.4.3 DC and AC components in the Maxwell-Drift-Diffusion model

The introduction of (2.49) in the full-wave model yields two types of terms: time-varying (containing
AC quantities only or AC quantities multiplied by DC quantities) and purely static (containing
DC quantities only). Two key advantages stem.

• Purely static terms can be simplified because they solve a self-consistent set of equations de-
scribing the pre-calculated DC operating point. They don’t need to be coded in the transient
solver.

• In applications of our interest typically ||EDC || >> ||EAC ||. This allows f(||E||) ≈ f(||EDC ||)
for f = µn, µp, Dn, Dp, thereby removing a major source of non-linearity and computational
complexity.
To keep the notation compact field dependence of mobility and diffusivity will be omitted in
the formulae, unless strictly necessary.

The resulting equations are presented below, with the purely stationary terms in opaque red (their
time derivatives are omitted).

13As the lowest-order term in a series of models derived with a perturbation technique. It should be noted that
the reference also highlights the importance of higher-order corrections, hence of a full-wave approach.
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∇×EAC + ∇×EDC = −µ∂HAC

∂t
,

∇×HAC + ∇×HDC = ε
∂EAC

∂t
,

in Ωe \ Ω× [0,+∞[,

∇×EAC + ∇×EDC = −µ∂HAC

∂t
,

∇×HAC + ∇×HDC = ε
∂EAC

∂t
+ q nAC µn(EAC + EDC) + qDnαAC

+ q pAC µp(EAC + EDC)− qDpβAC

+ q nDC µnEAC + q pDC µpEAC

+ q nDC µnEDC + qDn∇nDC + q pDC µpEDC − qDp∇pDC ,
∂nAC
∂t

= ∇ · (nAC µn(EAC + EDC)) +∇ · (DnαAC) +G−R′′(nAC , pAC)

+∇ · (nDC µnEAC)

+ ∇ · (nDC µnEDC) +∇ · (Dn∇nDC)−R′(nDC , pDC),

∂pAC
∂t

= −∇ · (pAC µp(EAC + EDC)) +∇ · (DpβAC) +G−R′′(nAC , pAC)

−∇ · (pDC µpEAC)

−∇ · (pDC µpEDC) +∇ · (Dp∇pDC)−R′(nDC , pDC),

αAC = ∇nAC ,
βAC = ∇pAC ,

in Ω× [0,+∞[.
(2.55)

A similar reduction stems from injecting (2.49) in initial and boundary conditions, which become

nAC(x, y, z, 0) = 0 (x, y, z) ∈ Ω̄,

pAC(x, y, z, 0) = 0 (x, y, z) ∈ Ω̄,

nAC(x, y, z, t) = 0 (x, y, z, t) ∈ ΓD × [0,+∞[,

pAC(x, y, z, t) = 0 (x, y, z, t) ∈ ΓD × [0,+∞[,

n̂ · Jn,AC = 0 (x, y, z, t) ∈ ΓN × [0,+∞[,

n̂ · Jp,AC = 0 (x, y, z, t) ∈ ΓN × [0,+∞[,

(2.56)

for the semiconductor, where

Jn,AC = nAC µn (EAC + EDC) +DnαAC + nDC µnEAC ,

Jp,AC = pAC µp (EAC + EDC)−DpβAC + pDC µpEAC .
(2.57)

For the electromagnetic field, depending on whether the problem is interior or exterior, one
enforces
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EAC(x, y, z, 0) = 0 (x, y, z) ∈ Ω̄,

HAC(x, y, z, 0) = 0 (x, y, z) ∈ Ω̄,

n̂×EAC(x, y, z, t) = 0 (x, y, z, t) ∈ ΓD × [0,+∞[,

n̂×HAC(x, y, z, t) = n̂×HN,AC(x, y, z, t) (x, y, z, t) ∈ ΓN × [0,+∞[,

(2.58)

or

EAC(x, y, z, 0) = Ei
AC(x, y, z, 0) (x, y, z) ∈ Ω̄e,

HAC(x, y, z, 0) = Hi
AC(x, y, z, 0) (x, y, z) ∈ Ω̄e,

n̂×EAC(x, y, z, t) = 0 (x, y, z, t) ∈ ΓD × [0,+∞[,

n̂×E + n̂×
√
µ

ε
(n̂×H) = n̂×Ei + n̂×

√
µ

ε
(n̂×Hi) on Γe × [0,+∞[.

(2.59)

Such conditions are motivated as follows.

• nAC , pAC represent the excess of electron-hole pairs with respect to the initial stationary
distributions nDC , pDC . Such excess is assumed to be photo-generated by pulsed illumination
at some t > 0. It is therefore null at t = 0 and (asymptotically) collapses back to zero, as light
fades, under the effect of recombination (2.18). As a result, initial conditions on nAC , pAC
are homogeneous.

• Since (2.7) are static, nAC , pAC are zero on ΓD.

• By the same argument, the conditions on ΓN are unchanged, consistently with the requirement
that charge carriers not leave the semiconductor.

• As just anticipated, it is assumed that the semiconductor is hit by the incident field at t > 0 so
that the scattered field (Es

AC ,H
s
AC) and the total one inside the semiconductor (Et

AC ,H
t
AC)

are initially null.

• Assuming perfect electric conductors, the tangential component of the time-varying electric
field is null on ΓD.

• The tangential component of the time-varying magnetic field is imposed on ΓN for an interior
problem (as shown in practice in Section 4.2). For a scattering one, this is implicitly replaced
by transmission conditions, and absorbing boundary conditions are enforced on EAC ,HAC ,
to which the decomposition (2.9) applies.

The ultimate target of the developed solver is the purely time-varying version of (2.1), that is (2.55)
after simplification of the opaque terms. Nevertheless, for the sake of clarity and readability, the
decomposition (2.49) will not be unfolded in the forthcoming sections unless otherwise stated –
with no loss of generality, the fact that the equations contain terms to be simplified will remain
implied.
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Figure 2.4: The semiconductor domain Ω now contacting a collection of dispersive metal regions
ΩM via Ohmic interfaces ΓD = ∂ΩM ∩ ∂Ω.

2.5 Dispersion

It was pointed out in Section 2.3 that full coupling in (2.1) is achieved when G is calculated at the
same time as the electromagnetic field, ideally via a dispersion model for the semiconductor. Aside
from that, simulation of plasmon-enhanced devices demands to lift the original setting in which ΓD
is a collection of perfectly electrically conducting faces, and let metals be imperfect conductors of
finite-depth, typically modeled as dispersive dielectrics.

The new setting is depicted in Figure 2.4. Electrodes and in-between electrically floating plas-
monic isles are represented by finite-depth (yellow) regions constituting ΩM . ΓD, marked in red,
collects the interfaces: ΓD = ∂ΩM ∩ ∂Ω. These remain Ohmic contacts, hence Dirichlet boundary
conditions on n and p are not affected; to the electromagnetic field, on the other hand, they become
ordinary internal mesh faces on which to enforce continuity of tangential components.

Regardless of the specific material, the usual approach to dispersion consists in defining a
complex permittivity based on Drude and Drude-Lorentz models, let it be a Padé approximant
of experimental data, and write a set of time-domain auxiliary differential equations to be solved
along with Maxwell’s ones. The interested reader is referred to [Viq15] for more details – here, the
final results are stated.

As anticipated in Section 2.3, one Lorentz pole is sufficient to our purposes. Then, if it is
assumed that oscillations of the electron gas inside the metallic regions do not trigger interband
transitions, a simple one-pole Drude model is acceptable as well.

The Lorentz dispersion model for the semiconductor is precisely (2.28-2.29) from Section 2.3.
The Drude model is analogous, except that: the high-frequency relative dielectric constant ε∞
generally has a different value; ωr = 0, meaning no interband transitions; the plasma frequency
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and the reciprocal of the average time between collisions are denoted by ωd and γd respectively.
For (x, y, z) ∈ ΩM the constitutive relations in the frequency domain read

D(x, y, z, ω) = ε(ω) E(x, y, z, ω) = ε0ε∞E(x, y, z, ω) + P(x, y, z, ω),

P(x, y, z, ω) = ε0
ω2
d

−ω2 + iωγd
E(x, y, z, ω),

ε(ω) = ε0

(
ω2
d

−ω2 + iωγd
+ ε∞

)
= ε′(ω)− iε′′(ω),

(2.60)

and their time-domain counterpart is

∂P

∂t
= Jd,

∂Jd
∂t

= ε0ω
2
dE− γdJd.

(2.61)

In fact, P is not essential and Jd can be designated as the only relevant unknown.

The enhanced MDD system modeling scattering from a plasmon-enhanced semiconductor device
with real-time photo-generation is assembled as follows:

∇×E = −µ∂H

∂t
,

∇×H = ε
∂E

∂t
,

in Ωe \ Ω× [0,+∞[,

∇×E = −µ∂H

∂t
,

∇×H = ε0ε∞
∂E

∂t
+ Jd,

∂Jd
∂t

= ε0ω
2
dE− γdJd,

in ΩM × [0,+∞[,

∇×E = −µ∂H

∂t
,

∇×H = ε0ε∞
∂E

∂t
+ Jn + Jp + Jl,

q
∂n

∂t
= ∇ · Jn + qG− qR,

q
∂p

∂t
= −∇ · Jp + qG− qR,

∂P

∂t
= Jl,

∂Jl
∂t

= ε0ω
2
pE− γJl − ω2

rP,

in Ω× [0,+∞[,

(2.62)

where G = G(Jl) as per (2.42). Recalling that µ = µ0µr, ε = ε0εr, we point out that in applications
of our interest, typically: µr = 1 and εr (ε∞ in case of dispersion) is material-wise constant.
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The system (2.62) is closed with the initial and boundary conditions (2.11), after remotion of
n̂×E|ΓD = 0, plus the following initial conditions:14

P(x, y, z, 0) = ε0
ω2
p

ω2
r

EDC (x, y, z) ∈ Ω̄,

Jl(x, y, z, 0) = 0 (x, y, z) ∈ Ω̄,

Jd(x, y, z, 0) = 0 (x, y, z) ∈ Ω̄M .

(2.63)

The interpretation of (2.63) goes as follows. Drude and Lorentz unknowns can be decomposed as

P = PDC + PAC ,

Jl = Jl,DC + Jl,AC ,

Jd = Jd,DC + Jd,AC ,

(2.64)

with Jl,DC = Jd,DC = 0 (polarization current is time-varying by definition) and PDC = ε0
ω2
p

ω2
r

EDC

derived from (2.29) to model the dielectric response of the semiconductor to the electrostatic field.
Then, the AC part of (2.64) is required to be null at t = 0, according to the presupposition made
in (2.59) that the device is not illuminated until some t > 0.

It should be remarked that discretizing the auxiliary differential equations is straightforward
thanks to the absence of spatial derivatives. Hence, it is of no major interest to consider dispersion
in the process of conceiving a suitable semi-discrete counterpart of (2.1) and the phenomenon will
not be included until the task is accomplished.

2.6 Towards a priori energy bounds for the interior problem

In this section we propose a preliminary study on the solutions to the MDD model formulated in an
interior problem, as a potential stepping stone to a future stability analysis on the developed DGTD
scheme. This topic is closely related to the asymptotic behavior of the continuous MDD model and
to the stationary state to which the latter should tend, which is described by a static interior PDD
model. We start by deriving an a priori estimate for the continuous MDD system. The estimated
quantity is the relative energy with respect to the DC operating point, i.e. an equilibrium state that
is generally different from thermodynamic equilibrium and to which the semiconductor is expected
to relax after the illumination window. We shall call such a state (ne, pe, ϕe) and momentarily lift
the heavier DC subscript. Prior to dwelling on energy estimation, it is convenient to highlight some
key points concerning the static PDD model – to which (ne, pe, ϕe) is a solution – and its link to
the MDD one.15

2.6.1 Preliminary observations on the static PDD model

The static PDD model was presented in Section 2.4 as the set of equations (2.50) or (2.51), with
the boundary conditions (2.52).

14Having considered dispersion in metals, ΓD has become to the electromagnetic field a collection of internal edges,
on which to impose the continuity of n̂×E and n̂×H rather than boundary conditions.

15As will be pointed out all along the computations, allowing (ne, pe, ϕe) to be the thermodynamic equilibrium
state would simplify the analysis.
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In that context we referred to the exterior problem set in Figure 2.2, with the computational domain
Ωe strictly containing the semiconductor Ω. Moreover, ∂Ω = ΓD∪ΓN was assumed to be composed
of metallic (ΓD) and electrically insulating (ΓN ) disjoint segments.
Dealing with a theoretically infinite (and artificially truncated) domain was driven by the interest
in physically meaningful simulations – the model was meant to describe the steady state of a
photo-conductive device before and after illumination. In terms of boundary conditions, this led to

• the assignation of φ|ΓD according to an applied voltage,

• an approximate asymptotic condition, e.g. n̂ · ∇φ|∂Ωe = 0, on the artificial boundary (n̂
denoting the outward unit normal vector to ∂Ωe).

From a mathematical standpoint, the interest mostly lies in the coupling between the equations
of electrostatics (or electrodynamics) and those describing charge transport in semiconductors; and
since the coupling only occurs in Ω, it is common to restrict the attention to interior problems,
even if – as pointed out in Section 2.1.1 – these may not have a rigorous physical meaning.

Switching to an interior problem entails a change in the boundary conditions on φ, namely

• the assignation of φ|ΓD ,

• the assignation of εn̂ ·∇φ|ΓN (n̂ denoting this time the outward unit normal vector to ∂ΩN ).16

As to the semiconductor, the conditions (2.52) are retained. The interior PDD model then
reads

∇ · (ε∇φ) = 0,

in Ωe \ Ω,

∇ · (ε∇φ) = −q(p− n+ C),

∇ · Jn − qR′ = 0,

−∇ · Jp − qR′ = 0,

Jn = −qnµn∇φ+ qDn∇n,
Jp = −qpµp∇φ− qDp∇p,

in Ω.

n = nD on ΓD,

p = pD on ΓD,

φ = Vbias + φbi on ΓD,

n̂ · Jn = 0 on ΓN ,

n̂ · Jp = 0 on ΓN ,

n̂ · ∇φ = σ0 on ΓN ,

(2.65)

with nD, pD given by (2.7), φbi = VT log(nD), and Vbias and σ0 to be assigned.

The aforementioned state (ne, pe, ϕe) is by definition a solution to (2.65). Its existence of has
been studied in [Mar86] in the case of σ0 = 0; the detailed derivation is not reported, but it is proven

16Note that when switching to an exterior problem this condition translates to the continuity of εn̂ ·∇φ across ΓN .
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that the system admits at least one solution, under suitable regularity hypotheses on the data. The
uniqueness of the solution is obtained if the applied voltage Vbias is close to zero (i.e. (ne, pe, ϕe)
is close to thermal equilibrium). The strategy of the existence proof is based on a transformation
of the unknowns (from n, p to so-called Slotboom variables) which makes the divergence equations
self-adjoint.

2.6.2 Well-posedness and asymptotic behavior of the MDD model

Let us consider the MDD model for an interior problem, composed of the equations (2.1) and the
initial and boundary conditions (2.2).
Studies on well posedness and asymptotic behavior have been conducted by Jochmann [Joc96,
Joc98, Joc99, Joc01, Joc05], who has established a link between the MDD and the PDD model in
the following setting.

H1: The initial data from (2.2) are such that n0 ≥ 0, p0 ≥ 0 and n0 ∈ L∞(Ω), p0 ∈ L∞(Ω) and
E0,H0 ∈ L2(Ω).

H2: The boundary data are such that nD ∈W 1,∞(∂Ω), pD ∈W 1,∞(∂Ω), and HN ∈W 1,2
loc (R, L2(Ω))

with curl(HN ) ∈ L2
loc(R, L2(Ω)).

H3: A pivotal role in the connection is played by

εn̂ ·E|ΓN = σ. (2.66)

Indeed, it is assumed that there exists σ ∈ W 1,2
loc (R, L2(∂Ω) ∩ L∞(R), Lp0(∂Ω)), with p0 > 2,

such that ∫
Ω

curl(HN ) · ∇φ =
d

dt

∫
ΓN

σ(t) φ, ∀φ ∈ C∞0 (R3 \ ΓD), (2.67)

compatibly with (2.3).

H4: Boundary and initial data must comply with the compatibility conditions (2.8), (2.3). A
compatibility condition is defined for σ as well, which must be such that εn̂ ·E0|ΓN = σ(0).

H5: Mobility and diffusivity are considered as L∞(Ω) positive functions.

H6: It is supposed that ν, ε
µn

and ε
µp

belong to W 1,∞(Ω).

H7: The recombination term R : R3×R2 → R, (x, n1, n2) 7→ R(x, n1, n2) is supposed to be locally
Lipschitz continuous with respect to n = (n1, n2) and is such that R(x, n) ≥ 0, if n1n2 ≥ n2

i

and R(x, n) ≤ 0 if n1n2 ≤ n2
i .

H8: G ≡ 0.

One of the fundamental results obtained by Jochmann is summarized as follows.

Theorem 1 ([Joc99]). The problem (2.1) with the initial and boundary conditions (2.2), supple-
mented by H1 to H8, admits a global weak solution (E,H, n, p), with

n, p ∈ L2
loc([0,+∞[, H1(Ω)) ∩ L∞loc([0,+∞[, L∞(Ω)) ∩ C([0,+∞[, L2(Ω))
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and
(E,H) ∈ C([0,+∞[, L2(Ω)).

The equations for electron and hole densities are to be understood in a weak sense as follows∫ +∞

0

∫
Ω
n∂tϕdxdt =

∫ ∞
0

∫
Ω

[Dn∇n− µnnE]∇ϕdxdt+

∫ +∞

0

∫
Ω
R(x, n, p)ϕdxdt, (2.68)∫ +∞

0

∫
Ω
p∂tϕdxdt =

∫ ∞
0

∫
Ω

[Dp∇p+ µppE]∇ϕdxdt+

∫ +∞

0

∫
Ω
R(x, n, p)ϕdxdt, (2.69)

for all ϕ ∈ C∞0 (]0,+∞[, Y ), where Y is the closure of C∞0 (R3 \ ΓD).17

Uniqueness is also proved in [Joc99] for solutions with the additional regularity

E ∈ L∞loc([0,∞[, Lp(Ω)), (2.70)

for some p > 3 in 3D and p > 2 in 2D.

Theorem 2 ([Joc05]). If (n, p,E,H) is a solution to the Maxwell-drift-diffusion system that has
the regularity n, p ∈ L∞(0, T, L∞(Ω)) and (E,H−HN ) ∈ L∞(0, T, (L2(Ω))6), then

ess inf
(0,T ]×Ω

n(t, x) > 0

and
ess inf

(0,T ]×Ω
p(t, x) > 0.

Moreover, in [Joc05] it is established that if HN and σ(t)− σ0 decay suitably as t→ +∞, then
p and n converge respectively to pe and ne and E converges to ∇ϕe.

Finally, it should be pointed out that similar fundamental results have been obtained for the
asymptotic behavior on the quasi-static PDD system (2.54) (see [GG96], or [Jün95] for more a
general description of diffusion).

2.6.3 Energy principle

On the grounds of the above discussion we are finally at the stage of developing our energy analysis.
We consider the following formal relative energy of the MDD system with respect to the equilibrium
state (ne, pe, ϕe) (see also [Joc05] for a similar definition):

E(t) = ν−1q

∫
Ω

∫ n(t,x)

ne(x)
(ln(s)− ln(ne(x))) dsdx+ ν−1q

∫
Ω

∫ p(t,x)

pe(x)
(ln(s)− ln(pe(x))) dsdx

+
1

2
ε‖E−∇ϕe‖2L2(Ω) +

1

2
µ‖H−HN‖2L2(Ω). (2.71)

17The theorem is stated in [Joc99], but for the proof, the author redirects the reader to an earlier paper [Joc96]
in which µn, µp, Dn, Dp are assumed to be constant. Then, for the general case in which these are space-varying, a
second paper under review is cited – the published result can be found in [Joc01].
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The theorem below proves that (2.71) is bounded in finite time and also provides a first, pre-
liminary a priori estimate on the unknowns.18

Theorem 3. Let us suppose that

• Ω is an open bounded domain;

• Dn, Dp, µn, µp are real positive constants;

• Hypotheses H1-H7 introduced for Theorem 1 hold, along with HN ∈ C0(0, T,H(curl,Ω));

• a non-negative G ∈ L∞(Ω) is introduced in the DD equations;

• The static PDD problem 2.65 admits a solution (ne, pe, ϕe) such that

ϕe ∈ H1(Ω),

ne, pe ∈ L1(Ω),

n−1
e , p−1

e ∈ L∞(Ω),

n−1
e Jen, p

−1
e Jep ∈ L∞(Ω);

• the MDD system (now featuring G) admits a solution (E,H, n, p) such that

E,H ∈ C0(0, T,H(curl,Ω)) ∩ C1(0, T, L2(Ω)),

n, p ∈ C1(0, T, L2(Ω)) ∩ C0(0, T,H1(Ω)) ∩ C0(0, T, L∞(Ω)) and are strictly positive,

n−
1
2 Jn, p

− 1
2 Jp ∈ C0(0, T, L2(Ω));

• R is such that R(x, n1, n2) ≥ 0, if n1n2 ≥ nepe and R(x, n1, n2) ≤ 0 if n1n2 ≤ nepe.

Then, one has for all t ∈ [0, T ],

E(t) ≤ −α+ βCe
β

+

(
E(0) +

α+ βCe
β

)
exp(βt), (2.72)

with

α =
1

2ε
‖curl HN‖2C0(0,T,L2(Ω)) + 2ν−1q‖G‖L∞ |Ω|,

β = q−2

(
D−1
n

∥∥∥∥Jen
ne

∥∥∥∥
L∞

+D−1
p

∥∥∥∥Jep
pe

∥∥∥∥
L∞

+ 1 + q2 max(‖n−1
e ‖L∞ , ‖p−1

e ‖L∞)

)
,

Ce = ν−1q(e− 1)(‖ne‖L1 + ‖pe‖L1).

As a result, the energy is bounded in finite time. Furthermore, one has that for all t ∈ [0, T ]

E(t) ≥ ν−1q‖n‖L1 + ν−1q‖p‖L1 +
1

2
ε‖E−∇ϕe‖2L2(Ω) +

1

2
µ‖H−HN‖2L2(Ω) − Ce. (2.73)

18To the purpose of the theorem, and with particular attention to the forthcoming expression of Ce, we remark
the difference between Euler’s number e and the subscript e, e.g. in expressions like ne, pe, which is a short for
equilibrium.
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Proof. One has
dE
dt

= ν−1q〈∂tn, ln(n)− ln(ne)〉+ ν−1q〈∂tp, ln(p)− ln(pe)〉

+ 〈ε∂tE,E−∇ϕe〉+ 〈µ∂tH,H−HN 〉.

Using the equations in the MDD model, one finds

dE
dt

=ν−1q〈∂tn, ln(n)− ln(ne)〉+ ν−1q〈∂tp, ln(p)− ln(pe)〉+ 〈curl H,E−∇ϕe〉+ 〈−curl E,H−HN 〉

− 〈Jn + Jp,E−∇ϕe〉

=ν−1q〈∂tn, ln(n)− ln(ne)〉+ ν−1q〈∂tp, ln(p)− ln(pe)〉+ 〈H× n̂,E−∇ϕe〉∂Ω + 〈curl E,HN 〉
− 〈Jn + Jp,E−∇ϕe〉

=ν−1〈∇ · Jn + qG− qR, ln(n)− ln(ne)〉 − ν−1〈∇ · Jp − qG+ qR, ln(p)− ln(pe)〉+ 〈H× n̂,E−∇ϕe〉∂Ω

+ 〈curl E,HN 〉 − 〈Jn + Jp,E−∇ϕe〉

=ν−1〈∇ · Jn, ln(n)− ln(ne)〉 − ν−1〈∇ · Jp, ln(p)− ln(pe)〉
+ ν−1〈qG− qR, ln(n)− ln(ne)〉+ ν−1〈qG− qR, ln(p)− ln(pe)〉+ 〈H× n̂,E−∇ϕe〉∂Ω

+ 〈curl E,HN 〉 − 〈Jn + Jp,E−∇ϕe〉

=− ν−1〈Jn,∇(ln(n)− ln(ne))〉+ ν−1〈Jp,∇(ln(p)− ln(pe))〉
+ ν−1〈qG− qR, ln(n)− ln(ne)〉+ ν−1〈qG− qR, ln(p)− ln(pe)〉
+ 〈curl E,HN 〉 − 〈Jn + Jp,E−∇ϕe〉+ 〈H× n̂,E−∇ϕe〉∂Ω

+ ν−1〈Jn · n̂, ln(n)− ln(ne)〉∂Ω − ν−1〈Jp · n̂, ln(p)− ln(pe)〉∂Ω

=−ν−1〈Jn,∇ ln(n)〉+ ν−1〈Jp,∇ ln(p)〉 − 〈Jn + Jp,E〉︸ ︷︷ ︸
=:I(n,p,E)

+ ν−1〈Jn,∇(ln(ne + νϕe)︸ ︷︷ ︸
=D−1

n q−1
Jep
ne

〉 − ν−1〈Jp,∇(ln(pe)− νϕe)︸ ︷︷ ︸
=D−1

p q−1
Jen
pe

〉

+ ν−1〈qG− qR, ln(n)− ln(ne)〉+ ν−1〈qG− qR, ln(p)− ln(pe)〉
+ 〈curl E,HN 〉+ 〈H× n̂,E〉+ ν−1〈Jn · n̂, ln(n)− ln(ne)〉∂Ω − ν−1〈Jp · n̂, ln(p)− ln(pe)〉∂Ω.

But

Jn = qnµnE + qDn∇n,
Jp = qpµpE− qDp∇p.
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Therefore, with n > 0 and p > 0,

Jn
n

= qµnE + qDn∇ ln(n),

Jp
p

= qµpE− qDp∇ ln(p).

This gives

∇ ln(n) = q−1D−1
n

Jn
n
− νE,

∇ ln(p) = νE− q−1D−1
p

Jp
p
.

Thus

I(n, p,E) = −ν−1〈Jn, q−1D−1
n

Jn
n
− νE〉

+ν−1〈Jp, νE− q−1D−1
p

Jp
p
〉 − 〈Jn + Jp,E〉.

We obtain

I(n, p,E) = −ν−1〈Jn, q−1D−1
n

Jn
n
− νE〉

+ν−1〈Jp, νE− q−1D−1
p

Jp
p
〉 − 〈Jn + Jp,E〉.

As a consequence

I(n, p,E) = −ν−1q−1〈Jn, D−1
n

Jn
n
〉 − ν−1q−1〈Jp, D−1

p

Jp
p
〉︸ ︷︷ ︸

−ν−1q−1‖(Dnn)−
1
2 Jn‖2

L2−ν−1q−1‖(Dpp)−
1
2 Jp‖2

L2

≤ 0.

To summarize, we arrive at

dE
dt

= I(n, p,E) + ν−1q〈G−R, ln(n)− ln(ne)〉+ ν−1q〈G−R, ln(p)− ln(pe)〉

+〈curl E,HN 〉+ 〈H× n̂,E−∇ϕe〉
+ν−1〈Jn · n̂, ln(n)− ln(ne)〉∂Ω − ν−1〈Jp · n̂, ln(p)− ln(pe)〉∂Ω

−ν−1D−1
n q−1〈Jn,

Jen
ne
〉 − ν−1D−1

p q−1〈Jp,
Jep
pe
〉.

Let us now take into account the boundary conditions and reintroduce ∇ϕe.

dE
dt

= I(n, p,E) + ν−1q〈G−R, ln(n)− ln(ne)〉+ ν−1q〈G−R, ln(p)− ln(pe)〉

+〈curl (E−∇ϕe),HN 〉+ 〈HN × n̂,E〉ΓN − 〈H× n̂,∇ϕe〉∂Ω

−ν−1D−1
n q−1〈Jn,

Jen
ne
〉 − ν−1D−1

p q−1〈Jp,
Jep
pe
〉.
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Having supposed that ne = nD is constant on each connected component of ΓD, ∇ϕe × n̂ = 0 on
ΓD. 19 Then, using the boundary conditions we obtain that

dE
dt

= I(n, p,E) + ν−1q〈G−R, ln(np)− ln(nepe)〉

+〈E−∇ϕe, curl HN 〉

−ν−1D−1
n q−1〈Jn,

Jen
ne
〉 − ν−1D−1

p q−1〈Jp,
Jep
pe
〉.

We now observe that

dE
dt

= I(n, p,E)︸ ︷︷ ︸
≤0

+ ν−1q〈G, ln(np)− ln(nepe)〉 − ν−1q〈R, ln(np)− ln(nepe)〉︸ ︷︷ ︸
≥0

+〈E−∇ϕe, curl HN 〉 − ν−1D−1
n q−1〈Jn,

Jen
ne
〉 − ν−1D−1

p q−1〈Jp,
Jep
pe
〉.

Since we suppose that Dn (Dp) and µn (µp) are constant functions, the following bound holds:

dE
dt

≤ −ν−1q−1(D−1
n ‖n−

1
2 Jn‖2L2 +D−1

p ‖p−
1
2 Jp‖2L2) + ν−1q〈G, ln(np)− ln(nepe)〉

+‖E−∇ϕe‖L2‖curl HN‖L2 + ν−1D−1
n q−1‖Jn‖L1

∥∥∥∥Jen
ne

∥∥∥∥
L∞

+ ν−1D−1
p q−1‖Jp‖L1

∥∥∥∥Jep
pe

∥∥∥∥
L∞

.

We now use the Cauchy-Schwarz inequality to write ||Jn||L1 = ||n
1
2n−

1
2 Jn||L1 ≤ ||n

1
2 ||L2 ||n−

1
2 Jn||L2

and similarly for Jp obtaining

dE
dt

≤ −ν−1q−1(D−1
n ‖n−

1
2 Jn‖2L2 +D−1

p ‖p−
1
2 Jp‖2L2) + ν−1q〈G, ln(np)− ln(nepe)〉

+‖E−∇ϕe‖L2‖curl HN‖L2 + ν−1D−1
n q−1‖n

1
2 ‖L2‖n−

1
2 Jn‖L2

∥∥∥∥Jen
ne

∥∥∥∥
L∞

+ν−1D−1
p q−1‖p

1
2 ‖L2‖p−

1
2 Jp‖L2

∥∥∥∥Jep
pe

∥∥∥∥
L∞

.

Then, applying Young’s inequality we get

dE
dt

≤ ν−1q−1D−1
n

(
1

2
− 1

)
‖n−

1
2 Jn‖2L2 + ν−1q−1D−1

p

(
1

2
− 1

)
‖p−

1
2 Jp‖2L2

+ν−1q〈G, ln(np)− ln(nepe)〉+ ‖E−∇ϕe‖L2‖curl HN‖L2

+
1

2
ν−1q−1D−1

n ‖n‖L1

∥∥∥∥Jen
ne

∥∥∥∥2

L∞

+
1

2
ν−1q−1D−1

p ‖p‖L1

∥∥∥∥Jep
pe

∥∥∥∥2

L∞
.

19We recall that nD was defined in (2.7) as a function of the net doping concentration C, which is constant on each
connected component of ΓD (contacts are fabricated on uniformly doped regions). Then, ϕe = Vbias + ϕbi on ΓD,
where ϕbi = VT log(nD). Hence, ϕe too is constant along each connected component of ΓD.
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Furthermore, one can find lower bound for (2.71) as follows.20 One has, for a.a. (t, x) ∈ [0, T ]×Ω∫ n(t,x)

ne(x)
ln(s)− ln(ne(x))ds ≥ n(t, x)− ne(x)(e− 1).

We obtain a similar result for p. One has, for a.a. (t, x) ∈ [0, T ]× Ω∫ p(t,x)

pe(x)
ln(s)− ln(pe(x))ds ≥ p(t, x)− pe(x)(e− 1).

To summarize, we obtain that

E(t) ≥ ν−1q‖n‖L1+ν−1q‖p‖L1−ν−1q(e−1)(‖ne‖L1+‖pe‖L1)+
1

2
ε‖E−∇ϕe‖2L2(Ω)+

1

2
µ‖H−HN‖2L2(Ω).

This means that in particular, if we denote by Ce the quantity ν−1q(e − 1)(‖ne‖L1 + ‖pe‖L1),
we obtain

ν−1q‖n‖L1 + ν−1q‖p‖L1 +
1

2
ε‖E−∇ϕe‖2L2 ≤ E(t) + Ce.

Thus

dE
dt

≤ −1

2
ν−1D−1

n q−1‖n−
1
2 Jn‖2L2 −

1

2
ν−1q−1D−1

p ‖p−
1
2 Jp‖2L2︸ ︷︷ ︸

=:Ĩ≤0

+ν−1q〈G, ln(np)− ln(nepe)〉

+q−2

(
D−1
n

∥∥∥∥Jenne
∥∥∥∥
L∞

+D−1
p

∥∥∥∥Jeppe
∥∥∥∥
L∞

+ 1

)
(E(t) + Ce) +

1

2ε
‖curl HN‖2L2 .

Since G ≥ 0 does not depend on the unknowns and is in L∞,

ν−1q〈G, ln(np)− ln(nepe)〉 = ν−1q

∫
Ω
G(ln(np)− ln(nepe)),

≤ ν−1q

∫
Ω
G(|n− ne

ne
+
p− pe
pe
|),

≤ ν−1q‖G‖L∞(2|Ω|+ ‖n‖L1‖n−1
e ‖L∞ + ‖p‖L1‖p−1

e ‖L∞),

≤ 2ν−1q‖G‖L∞ |Ω|+ ‖G‖L∞ max(‖n−1
e ‖L∞ , ‖p−1

e ‖L∞)(E + Ce),

hence

20It can be proven that, for every c0 ∈ R and a ∈ R+, the function

ga : ξ ∈ R+ →
∫ ξ

a

[ln(s)− ln(a)]ds− c0ξ ∈ R, (2.74)

verifies
ga(ξ) ≥ a(1− ec0), ∀ξ ∈ R+. (2.75)

In the proof of the theorem, the above inequality is applied to the triples (ξ, a, c0) = (n(t, x), ne(x), 1), (p(t, x), pe(x), 1)
for (t, x) ∈ [0, T ]× Ω.
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dE
dt

≤ 1

2ε
‖curl HN‖2L2 + 2ν−1q‖G‖L∞ |Ω|︸ ︷︷ ︸

α

+ q−2

(
D−1
n

∥∥∥∥Jenne
∥∥∥∥
L∞

+D−1
p

∥∥∥∥Jeppe
∥∥∥∥
L∞

+ 1 + q2‖G‖L∞ max(‖n−1
e ‖L∞ , ‖p−1

e ‖L∞)

)
︸ ︷︷ ︸

β

(E + Ce) .

Then a Grönwall inequality yields for all t ∈ [0, T ],

E(t) ≤ −α+ βCe
β

+

(
E(0) +

α+ βCe
β

)
exp(βt),

and we conclude that the energy is bounded in finite time.
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2.7 Summary of DD models

To conclude the chapter, we propose a brief summary of the models stated so far.

• Interior problems (Figure 2.1)

– Maxwell-Drift-Diffusion, without dispersion

Equations (2.1), initial/boundary conditions (2.2)

– Static Poisson-Drift-Diffusion

Equations and initial/boundary conditions (2.65)

• Exterior problems (Figure 2.2)

– Maxwell-Drift-Diffusion, without dispersion

Equations (2.1 and 2.10), initial/boundary conditions (2.11)

– Maxwell-Drift-Diffusion, with dispersion

Equations (2.62), initial/boundary conditions (2.11) (excepting n̂×E|ΓD) and (2.63)

– Static Poisson-Drift-Diffusion

Equations (2.51), boundary conditions (2.52)

– Quasi-static Poisson-Drift-Diffusion

Equations (2.54), boundary conditions (2.52) (with Vbias = Vbias(t))
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Chapter 3

Discrete model

In Section 1.2 we pondered several numerical frameworks and highlighted the DG one as an attrac-
tive and credible alternative to conventional approaches (FD, FV, FE).
DG methods were originally conceived for conservation laws, whereas in our applications we are
demanded to handle diffusion. Their extension to elliptic problems has drawn special attention, due
to the discontinuous nature of the numerical solution. A notable reference on this subject and its
historical background can be found in [CKS00]; essentially, two main approaches can be identified,
as described below.

1. Letting space derivatives of the unknown in the numerical formulation (as in continuous finite
elements) but enforcing regularity by compensatory jumps. To that purpose, interior penalty
terms are introduced in the discrete equation. A detailed example on Poisson’s equation in
one dimension can be found in [Riv08].

2. Introducing an auxiliary variable for the gradient of the unknown and therefore an auxiliary
equation. The approach has been extensively explored, with a special focus on Laplace’s
equation – [ABCM02] is a prominent reference on the several schemes offered by the literature
(some of which relying on interior penalties as well) and their mathematical properties.

In the present work, the second approach is followed and this section develops its application to
the MDD system.
As it will appear clear over the course of this chapter, all the challenges can be understood and
overcome by working in a bounded domain. Indeed: a) the coupling takes place inside the semi-
conductor; b) the major change when switching between an interior and an exterior problem is in
initial and boundary conditions; c) such conditions play a minor role in the above-mentioned task;
d) outside the semiconductor the model reduces to source-free Maxwell’s equations.
The forthcoming discussion is organized as follows. In Section 3.1, the local DG formulation is
formally stated in its integral form, and the key task of resolving the discontinuity of the numerical
solution at interfaces between elements is addressed. To this purpose, the advective and diffusive
part of the MDD model are studied separately; in particular, the advective part allows an inter-
esting parallel with FV methods. The semi-discrete formulation is then stated in a matrix form.
In Section 3.1.3, a global integral formulation is derived along the lines of a notable procedure
described in [ABCM02], with the idea of investigating the possibility of a future theoretical sta-
bility study. The chapter is concluded outlining explicit time integration of the MDD model and
identifying a suitable stability condition for our advection-diffusion context.
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3.1 Semi-discrete DG formulation: local form

The starting point is a local weak formulation on a subset K of Ω for suitable test functions τ , v.
We let n̂ denote the outward unit normal vector to ∂K.1∫

K
µ
∂H

∂t
· τ = −

∫
K

E · ∇ × τ +

∮
∂K

E× n̂ · τ ,∫
K
ε
∂E

∂t
· τ =

∫
K

H · ∇ × τ −
∮
∂K

H× n̂ · τ

−
∫
K

(
qµnn+ qµpp

)
E · τ −

∫
K
qDnα · τ +

∫
K
qDpβ · τ ,∫

K

∂n

∂t
v =

∮
∂K

vnµn E · n̂−
∫
K
n µn∇v ·E

+

∮
∂K

vDn α · n̂−
∫
K
Dn∇v ·α+

∫
K

(G−R)v,∫
K

∂p

∂t
v = −

∮
∂K

vpµp E · n̂ +

∫
K
p µp∇v ·E

+

∮
∂K

vDp β · n̂−
∫
K
Dp∇v · β +

∫
K

(G−R)v,∫
K
α · τ =

∮
∂K

n τ · n̂−
∫
K
n∇ · τ ,∫

K
β · τ =

∮
∂K

p τ · n̂−
∫
K
p∇ · τ .

(3.1)

Next, let h > 0 and Th be a discretization of Ω of maximum size h. We set

Vh := {v ∈ L2(Ω) : v|K ∈ Pp(K), ∀K ∈ Th},
Σh := {τ ∈ [L2(Ω)]3 : τ |K ∈ [Pp(K)]3, ∀K ∈ Th},

(3.2)

where p ∈ N0 denotes the desired order for the local polynomial approximation in K and Pp(K) is

the space of polynomial functions defined on K of order less or equal to p.23

The semi-discrete numerical formulation of (2.1) consists in finding Hh,Eh,αh,βh ∈ Σh and
nh, ph ∈ Vh such that for all τ ∈ Σh, v ∈ Vh and K ∈ Th,

1It is convenient for our purposes to let all vector (scalar) test functions be denoted by τ (v), but this is not a
general rule – there may be contexts in which different vector (scalar) equations need to be projected on different
test functions.

2A more rigorous notation for the order would be pK , to stress one of the key advantages of the discontinuous
Galerkin methods with respect to the continuous ones – the ability to be p-adaptive, i.e. to allow different values of
p in different elements. This aspect is implied here to keep the notation light.

3In the present work, space discretization is based on nodal Lagrange polynomials.
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∫
K
µ
∂Hh

∂t
· τ = −

∫
K

Eh · ∇ × τ +

∮
∂K

E∗ × n̂ · τ ,∫
K
ε
∂Eh

∂t
· τ =

∫
K

Hh · ∇ × τ −
∮
∂K

H∗ × n̂ · τ −
∫
K

(
qµnnh + qµpph

)
Eh · τ

−
∫
K
qDnαh · τ +

∫
K
qDpβh · τ ,

∫
K

∂nh
∂t

v =

∮
∂K

v
(
nµn E

)
∗ · n̂−

∫
K
nh µn∇v ·Eh

+

∮
∂K

v
(
Dn α

)
∗ · n̂−

∫
K
Dn∇v ·α+

∫
K

(G−R)v,∫
K

∂ph
∂t

v = −
∮
∂K

v
(
pµp E

)
∗ · n̂ +

∫
K
ph µp∇v ·Eh

+

∮
∂K

v
(
Dp β

)
∗ · n̂−

∫
K
Dp∇v · β +

∫
K

(G−R)v,

∫
K
αh · τ =

∮
∂K

n∗ τ · n̂−
∫
K
nh∇ · τ ,∫

K
βh · τ =

∮
∂K

p∗ τ · n̂−
∫
K
ph∇ · τ ,

(3.3)

where the subscript ∗ attached to a quantity denotes its numerical approximation on ∂K, commonly
named numerical flux.4

A formal definition of numerical flux on the skeleton of the mesh requires a proper functional
setting:

H l(Th) := {w ∈ L2(Ω) : w|K ∈ H l(K), ∀K ∈ Th}, l ∈ N,

Γ :=
⋃
K∈Th

∂K,

Γ0 := Γ \ ∂Ω,

T (Γ) := ΠK∈ThL
2(∂K).

(3.4)

We remark that:

• Vh ⊂ H l(Th), Σh ⊂ [H l(Th)]3 for any l ∈ N;

• functions in H l(Th) have their traces in T (Γ) := ΠK∈ThL
2(∂K);

• for each function in H l(Th), two traces can be defined in T (Γ), one per side of each face of
the mesh; the two differ on Γ0 and coincide on ∂Ω;

• L2(Γ) = {q ∈ T (Γ) : q|+e = q|−e , ∀e internal face}.
4The expression is borrowed from finite volumes, in which an advection equation is integrated over a control

volume, yielding a flux integral of the current. Due to the discontinuous (cell-wise constant) character of the numerical
solution, the integral loses its meaning when switching to discrete quantities; thus, the physical flux is replaced by
an appropriate numerical flux – a function of the two neighboring states that ensures that physical flow across cells
is correctly predicted. This aspect will be illustrated in Section 3.1.1.2.

49



The numerical flux is then defined as:

• a linear mapping H1(Th)→ T (Γ) for each scalar unknown (e.g. nh);

• a linear mapping [H1(Th)]3 → [T (Γ)]3 for each vector unknown (e.g. Eh).

An important role in the numerical formulation is played by average and jump operators on the
generic interior face shared between two mesh elements Ki and Kj . These are defined as

{ · } : q ∈ T (Γ) → 1

2
(qi + qj) ∈ L2(Γ),

{ · } : ϕ ∈ [T (Γ)]2 → 1

2
(ϕi +ϕj) ∈ [L2(Γ)]2,

[[ · ]] : q ∈ T (Γ) → qin̂i + qjn̂j ∈ [L2(Γ)]2,

[[ · ]] : ϕ ∈ T (Γ) → ϕi · n̂i +ϕj · n̂j ∈ L2(Γ),

(3.5)

where qi := q|∂Ki , ϕi := ϕ|∂Ki and n̂i is the outward unit normal vector to ∂Ki. For a boundary
face, (3.5) are re-used, except that q1 = q, ϕ1 = ϕ, q2 = 0, ϕ2 = 0.
The introduction of such operators is motivated by the following observations.
In the local formulation on K, the numerical flux u∗ associated to an unknown u is the trace of the
numerical approximation uh on the interior side of ∂K.
To recover the global properties of the analytical solution while independently solving local prob-
lems, transmission conditions must be imposed on the numerical approximation across different
elements of Th. To this purpose, u∗ is usually chosen to be, on each internal face e, a function of
both traces defined on e.
The interpretation is consistent with the definition of (global) numerical flux given earlier. Indeed,
the global numerical flux is assembled by collecting all the local numerical fluxes; two traces per
internal face are collected, yielding a function belonging in T (Γ).

To proceed towards discretization, it is convenient to update the notation:

• T := {Ki : i = 1, 2, ..., NT };

• ui := uh|Ki for the generic unknown u;

� pi := degree of the polynomial approximation sought for ui;

� di := dimPpi(Ki);

• Φi := {φik ∈ Ppi(Ki) : k ∈ {1, 2, ..., di}};
� φx

ik := [φik 0 0]T , φy
ik := [0 φik 0]T , φz

ik := [0 0 φik]
T ;

• ail := Ki ∩Kl i, l = 1, 2, ..., NT ;

� n̂il := unit normal vector to ail pointing from Ki to Kl;

� Ni := {l : Ki ∩Kl 6= ∅} such that ∂Ki =
⋃
l∈Ni ail.

The set Φi, whose elements are restrictions to Ki of functions in Vh, is used to define the vector
test functions: τ is chosen such that τ |Ki ∈ {φv

ik : v = x, y, z; k = 1, 2, ..., di}.
To simplify matters, the expression ∂Ki =

⋃
l∈Ni ail is also used for boundary elements – it suffices

to assume that if Ki ∩ ∂Ω 6= ∅ then Ki ∈ Ni, i.e. Ki is its own neighbor. So aii = Ki ∩ ∂Ω and n̂ii
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is just the outward unit normal vector to aii.
Boundary conditions on u are imposed by replacing u∗ on each boundary face with the required
value. If no condition is required for u on a particular face then u∗ = ui. On the basis of the new
notation the numerical formulation on the i-th element, i ∈ {1, ..., NT }, with the k-th local test
function, k ∈ {1, ..., di}, and v ∈ {x, y, z}, reads:∫

Ki

µ
∂Hi

∂t
· φv

ik = −
∫
Ki

Ei · ∇ × φv
ik +

∑
l∈Ni

∫
ail

E∗ × n̂il · φv
ik,∫

Ki

ε
∂Ei

∂t
· φv

ik =

∫
Ki

Hi · ∇ × φv
ik −

∑
l∈Ni

∫
ail

H∗ × n̂il · φv
ik

−
∫
Ki

(
qµnni + qµppi

)
Ei · φv

ik −
∫
Ki

qDnαi · φv
ik +

∫
Ki

qDpβi · φv
ik,∫

Ki

∂ni
∂t

φik =
∑
l∈Ni

∫
ail

φik
(
nµn E

)
∗ · n̂il −

∫
Ki

ni µn∇φik ·Ei

+
∑
l∈Ni

∫
ail

φik
(
Dn α

)
∗ · n̂il −

∫
Ki

Dn∇φik ·α+

∫
Ki

(G−R)φik,∫
Ki

∂pi
∂t
φik = −

∑
l∈Ni

∫
ail

φik
(
pµp E

)
∗ · n̂il +

∫
Ki

pi µp∇φik ·Ei

+
∑
l∈Ni

∫
ail

φik
(
Dp β

)
∗ · n̂il −

∫
Ki

Dp∇φik · β +

∫
Ki

(G−R)φik,∫
Ki

αi · φv
ik =

∑
l∈Ni

∫
ail

n∗ φ
v
ik · n̂il −

∫
Ki

ni∇ · φv
ik,∫

Ki

βi · φv
ik =

∑
l∈Ni

∫
ail

p∗ φ
v
ik · n̂il −

∫
Ki

pi∇ · φv
ik.

(3.6)

3.1.1 Defining the numerical flux

We are finally at the point of defining the numerical flux on internal faces. Defining Jn∗,drift :=
q(nµnE)∗ and Jn∗,diff := q(Dnα)∗ (and similarly for holes), we identify two strategies, explored in
Sections 3.1.1.2 and 3.1.1.3 respectively.

• Calculating E∗,H∗,Jn∗,drift,Jp∗,drift in the no-diffusion limit (to this purpose, a preliminary
analysis of the Maxwell-Drift system is proposed in Section 3.1.1.1); follow references on DG
methods for diffusion to choose (n∗, p∗,Jn∗,diff ,Jp∗,diff ).5

• Separately selecting (E∗,H∗), (Jn∗,drift,Jp∗,drift), (n∗, p∗,Jn∗,diff ,Jp∗,diff ) from references
on DG methods for Maxwell’s equations, electrostatics in semiconductors, conservation laws,
diffusion.

5Note that n∗ and p∗ refer to the numerical flux in the auxiliary equations, whereas in the drift currents such
quantities are not handled individually – expressions for the ensembles nµnE and pµpE are defined on the skeleton
of the mesh.
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3.1.1.1 The Maxwell-Drift system as a conservation law

A key aspect in the conception of DG schemes for Maxwell’s equations is the possibility of recasting
these in the form of a conservation law, which allows to handle the discontinuity of the numerical
solution on mesh internal faces - inherent to discontinuous finite elements - with procedures peculiar
to finite volumes. The point will be discussed in more detail in Section 3.1.1.2. Here, the goal is
to seek a form of MDD system paving way for the application of such procedures (bearing in mind
that these do not support the presence of diffusion, as highlighted in the calculations that follow).

To begin, vector equations and differential operators are broken down into their scalar compo-
nents

−µ∂tHx = ∂yEz − ∂zEy,
−µ∂tHy = ∂zEx − ∂xEz,
−µ∂tHz = ∂xEy − ∂yEx,
ε∂tEx = ∂yHz − ∂zHy − qnµnEx − qDn∂xn− qpµpEx + qDp∂xp,

ε∂tEy = ∂zHx − ∂xHz − qnµnEy − qDn∂yn− qpµpEy + qDp∂yp,

ε∂tEz = ∂xHy − ∂yHx − qnµnEz − qDn∂zn− qpµpEz + qDp∂zp,

∂tn = ∂x

(
nµnEx +Dn∂xn

)
+ ∂y

(
nµnEy +Dn∂yn

)
+ ∂z

(
nµnEz +Dn∂zn

)
+G−R,

∂tp = −∂x
(
pµpEx −Dp∂xp

)
− ∂y

(
pµpEy −Dp∂yp

)
− ∂z

(
pµpEz −Dp∂zp

)
+G−R.

(3.7)

Equivalently,

Q



Hx

Hy

Hz

Ex
Ey
Ez
n
p


t

=



0
−Ez
Ey
0
−Hz

Hy

µnnEx +Dn∂xn
−µppEx +Dp∂xp


x

+



Ez
0
−Ex
Hz

0
−Hx

µnnEy +Dn∂yn
−µppEy +Dp∂yp


y

+



−Ey
Ex
0
−Hy

Hx

0
µnnEz +Dn∂zn
−µppEz +Dp∂zp


z

+ q



0
0
0

−nµnEx −Dn
∂n
∂x − pµpEx +Dp

∂p
∂x

−nµnEy −Dn
∂n
∂y − pµpEy +Dp

∂p
∂y

−nµnEz −Dn
∂n
∂z − pµpEz +Dp

∂p
∂z

0
0


+



0
0
0
0
0
0

G−R
G−R


,

(3.8)
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where

Q = diag(−µ,−µ,−µ, ε, ε, ε, 1, 1),

and the symbol
[
·
]
c
, c = t, x, y, z, denotes a partial derivative.

If we define the vectors

u =



Hx

Hy

Hz

Ex
Ey
Ez
n
p


f (1)(u) =



0
−Ez
Ey
0
−Hz

Hy

µnnEx +Dn∂xn
−µppEx +Dp∂xp



f (2)(u) =



Ez
0
−Ex
Hz

0
−Hx

µnnEy +Dn∂yn
−µppEy +Dp∂yp


f (3)(u) =



−Ey
Ex
0
−Hy

Hx

0
µnnEz +Dn∂zn
−µppEz +Dp∂zp



g(u) =



0
0
0

−qnµnEx − qDn
∂n
∂x − qpµpEx + qDp

∂p
∂x

−qnµnEy − qDn
∂n
∂y − qpµpEy + qDp

∂p
∂y

−qnµnEz − qDn
∂n
∂z − qpµpEz + qDp

∂p
∂z

G−R
G−R



(3.9)

the system can be rewritten as

Q ∂tu = ∂xf
(1)(u) + ∂yf

(2)(u) + ∂zf
(3)(u) + g(u)

= ∂uf (1)(u)∂xu + ∂uf (2)(u)∂yu + ∂uf (3)(u)∂zu + g(u).
(3.10)

Two limit cases are considered, with the idea of recovering and superposing the results when
going back to the original picture.

1. No drift (µn = µp = 0), to be addressed by referring to DG schemes for diffusion, discussed
in Section 3.1.1.3.
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2. No diffusion (Dn = Dp = 0), for which f (1−3) and g become purely advective and advective-
reactive respectively. As a result,

Q



Hx

Hy

Hz

Ex
Ey
Ez
n
p


t

=



0
−Ez
Ey
0
−Hz

Hy

µnnEx
−µppEx


x

+



Ez
0
−Ex
Hz

0
−Hx

µnnEy
−µppEy


y

+



−Ey
Ex
0
−Hy

Hx

0
µnnEz
−µppEz


z

+



0
0
0

−qnµnEx − qpµpEx
−qnµnEy − qpµpEy
−qnµnEz − qpµpEz

G−R
G−R


. (3.11)

This diffusion-less version of (3.10) expresses the conservation of u, and it is said to constitute
a hyperbolic conservation law if the matrix

A = −Q−1

(
bx∂uf (1) + by∂uf (2) + bz∂uf (3)

)
(3.12)

is diagonalizable and has a real spectrum for all u and b = (bx, by, bz) ∈ R3 such that ||b|| = 1
[GR91]. Given the Jacobian matrices

Q−1∂uf (1) =



0 0 0 0 0 0 0 0
0 0 0 0 0 µ−1 0 0
0 0 0 0 −µ−1 0 0 0
0 0 0 0 0 0 0 0
0 0 −ε−1 0 0 0 0 0
0 ε−1 0 0 0 0 0 0

0 0 0 ∂µn
∂Ex

nEx + µnn
∂µn
∂Ey

nEx
∂µn
∂Ez

nEx µnEx 0

0 0 0 − ∂µp
∂Ex

pEx − µpp − ∂µp
∂Ey

pEx − ∂µp
∂Ez

pEx 0 −µpEx


, (3.13)

Q−1∂uf (2) =



0 0 0 0 0 −µ−1 0 0
0 0 0 0 0 0 0 0
0 0 0 µ−1 0 0 0 0
0 0 ε−1 0 0 0 0 0
0 0 0 0 0 0 0 0
−ε−1 0 0 0 0 0 0 0

0 0 0 ∂µn
∂Ex

nEy
∂µn
∂Ey

nEy + µnn
∂µn
∂Ez

nEy µnEy 0

0 0 0 − ∂µp
∂Ex

pEy − ∂µp
∂Ey

pEy − µpp − ∂µp
∂Ez

pEy 0 −µpEy


, (3.14)

Q−1∂uf (3) =



0 0 0 0 µ−1 0 0 0
0 0 0 −µ−1 0 0 0 0
0 0 0 0 0 0 0 0
0 −ε−1 0 0 0 0 0 0
ε−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 ∂µn
∂Ex

nEz
∂µn
∂Ey

nEz
∂µn
∂Ez

nEz + µnn µnEz 0

0 0 0 − ∂µp
∂Ex

pEz − ∂µp
∂Ey

pEz − ∂µp
∂Ez

pEz − µpp 0 −µpEz


, (3.15)
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the linear combination (3.12) is

0 0 0 0 −µ−1bz µ−1by 0 0
0 0 0 µ−1bz 0 −µ−1bx 0 0
0 0 0 −µ−1by µ−1bx 0 0 0
0 ε−1bz −ε−1by 0 0 0 0 0

−ε−1bz 0 ε−1bx 0 0 0 0 0
ε−1by −ε−1bx 0 0 0 0 0 0

0 0 0 −∂ b · J̃n,x
∂Ex

−∂ b · J̃n,y
∂Ey

−∂ b · J̃n,z
∂Ez

b · (−µnE) 0

0 0 0
∂ b · J̃p,x
∂Ex

∂ b · J̃p,y
∂Ey

∂ b · J̃p,z
∂Ez

0 b · (µpE)


,

where we have introduced the compact notation

J̃n :=
Jn
q

=
Jn,drift

q
= nµnE,

∂ b · J̃n
∂Ev

= n
∂µn
∂Ev

b ·E + nµnbv v = x, y, z,

(3.16)

and similarly for J̃p.

The eigenvalues are functions of the coefficients, but for ||b|| = 1 they reduce to

{0, 0,− 1
√
εµ
,− 1
√
εµ
,

1
√
εµ
,

1
√
εµ
,b · (−µnE),b · (µpE)}, (3.17)

in which we recognize the speed of light in the semiconductor and electron and hole drift
velocities vn = −µnE, vp = µpE. The eigenspaces are not reported due to their complex
expressions, but Maple symbolic computations [Map21] would show that geometric and alge-
braic multiplicities of (3.17) match, and therefore that (3.10)|Dn=Dp=0 is hyperbolic.

3.1.1.2 Calculating the advective flux

As discussed in Section 3.1.1.1, the MDD system in the no-diffusion limit is a hyperbolic conserva-
tion law of the form

∂u

∂t
+∇ · f(u) = 0. (3.18)

In the framework of finite volume methods, the resolution of such an equation consists in seeking
an element-wise constant function uh whose level on the i-th element Ki is defined as

ui =
1

Vi

∫
Ki

u,

where Vi denotes the volume of Ki. As a result, uh is two-valued at each interface ail = Ki ∩Kl

and therefore in need of being appropriately defined. This is a crucial task – it majorly affects the
properties of the numerical scheme – and is usually based on the resolution of a special initial value
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problem, called a Riemann problem (RP). A notable reference on the formal procedure is [Tor09],
while here the goal is to review a few key points that are essential to our purposes.
First, by means of a suitable rotation of the coordinate system, the original equation is stated in
terms of one spatial dimension in the direction of n̂il. If we call ξ the new coordinate, it can be
shown that the resulting equation has the form

∂u

∂t
+
∂f(u)

∂ξ
= 0, (3.19)

for a suitable f and with u = u(ξ, t). Then, remembering that n̂il points from Ti to Tl in our
conventions and assuming that ail is crossed at ξ = ξil, uh(ξil) is defined as the solution to the RP

∂u

∂t
+
∂f(u)

∂ξ
= 0,

u =

{
ui if ξ < ξil,

ul if ξ > ξil.

(3.20)

The calculation also leads to defining the numerical flux f(u(ξil)) in a way that preserves the
direction of propagation u and that for this reason earns it the appellation upwind flux.
As pointed out earlier in this section, the problem of numerical flux definition exists in DG methods
as well and a similar procedure is employed, justifying our interest in studying (3.10)|Dn=Dp=0,
although an important difference needs to be remarked. Contrarily to (3.20), in the DG framework
the state ui (ul) is not constant and the initial condition is restated in terms of a left (right) limit:

∂u

∂t
+
∂f(u)

∂ξ
= 0,

u =


lim
ξ→ξ−il

ui(ξ) if ξ < ξil,

lim
ξ→ξ+il

ul(ξ) if ξ > ξil.

(3.21)

The steps are illustrated in Figure 3.1. Further details on the topic can be found in [Koe11], [Viq15];
here, we wish to highlight the main difficulty in applying the procedure to the Maxwell-Drift system
and calculating the upwind flux for [E,H, n, p]∗ – the physical flux in (3.10) is non-linear, as it
contains field-concentration products. Indeed, if solving a linear RP is usually feasible, dealing
with a nonlinear conservation law can be quite difficult, so that the general rule is to first linearize
the physical flux, then exactly solve the approximated (linear) RP.

The most notable linearization is Roe’s (see [GR91] for a general introduction, [HW02] for its
application to DG methods). To present it, we set a suitable notation for the advective flow along
n̂il = (n̂x, n̂y, n̂z), with

f := −Q−1

(
n̂xf

(1) + n̂yf
(2) + n̂zf

(3)

)
∈ Rd,

A := ∂uf = −Q−1

(
n̂x∂uf (1) + n̂y∂uf

(2) + n̂z∂uf (3)

)
∈ Rd,d.

(3.22)

The procedure prescribes to replace A : Rd → Rd,d by Ã : Rd × Rd → Rd,d evaluated at (ui,ul),
such that:
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Figure 3.1: The steps of the definition of a RP in the DG framework. The numerical solution uh
is discontinuous on the interface ail between two adjacent elements Ki and Kl. To define it, the
conservation law is restated in one spatial variable ξ along the normal pointing from Ki to Kl, and
closed with an initial condition that is discontinuous at the edge abscissa ξil. The left (right) value
is the left (right) limit of the internal trace of ui = uh|Ki (ul = uh|Kl).

1. f(w)− f(u) = Ã(u,w)(w − u) ∀ u,w ∈ Rd;

2. Ã is diagonalizable and its eigenvalues are real, i.e. the linearized conservation law is still
hyperbolic;

3. Ã(u,u) = A(u);

and Ã is called a Roe’s matrix.

Some additional definitions on the way to the final expression:

Λ = diag

(
λ1, λ2, ... , λd

)
, with λr r-th eigenvalue of Ã(ui,ul),

U = matrix whose columns are the right eigenvectors of Ã(ui,ul), i.e. Ã(ui,ul) = U Λ U−1,

Λ+ = diag

(
max(λ1, 0),max(λ2, 0), ... ,max(λd, 0)

)
,

Λ− = diag

(
min(λ1, 0),min(λ2, 0), ... ,min(λd, 0)

)
,

and |Ã(ui,ul)| = U (Λ+ − Λ−) U−1.
(3.23)

Finally, letting fi = f(ui), we can state Roe’s numerical flux:

f∗ =
fi + fl

2
− |Ã(ui,ul)|

ul − ui
2

. (3.24)

Well-established strategies exist to find a Roe matrix in ideal gas dynamics [GR91], whereas the
task is not straightforward for an arbitrary problem. The simplest choice is Ã(ui,ul) = A(ui+ul

2 ),
on which at least two notable schemes are based.

The first is the Lax-Wendroff scheme [GR91]

f∗ =
fi + fl

2
− λ−1A

(
ui + ul

2

)
fl − fi

2
. (3.25)
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The definition of λ is not immediate and deserves a brief digression on the scalar version of 3.18,
that is

∂u

∂t
+
∂f(u)

∂x
= 0. (3.26)

The Lax-Wendroff scheme is usually introduced alongside a more famous one, namely Lax-Friedrichs,
which will be discussed in the next section. The point here is that, assuming space and time grids
of sizes ∆x and ∆t, the two schemes share the definition

λ =
∆x

∆t
, (3.27)

but also the stability requirement
λ−1 max

u
|f ′(u)| ≤ 1. (3.28)

Hence, in practice, λ is typically identified with (and replaced by) maxu |f ′(u)| when implementing
the numerical flux. Following this philosophy, a generalization to multiple dimensions that is
considered in DG schemes is

λ = max{|λi1|, ..., |λidi |, |λl1|, ..., |λldl |}, (3.29)

with λij = j-th eigenvalue of A(ui) [HW02].6

The second scheme, proposed in [GM01], reads

f∗ =
fi + fl

2
− λ̃ul − ui

2
, (3.30)

where λ̃ is the maximum eigenvalue of A(ui+ul
2 ).

To conclude the subsection we mention a further notable, yet simple strategy, called flux splitting,
which exclusively applies to non-linear conservation laws in which f depends on the unknowns but
is homogeneous: f(au) = a f(u), ∀a ∈ R. The splitting consists in

f∗ = A+(ui)ui +A−(ul)ul, (3.31)

with A±(u) defined along the lines of (3.23), that is

Λ = diag

(
λ1, λ2, ... , λd

)
, with λr r-th eigenvalue of A(u),

U = matrix whose columns are the right eigenvectors of A(u), i.e. A(u) = U Λ U−1,

Λ+ = diag

(
max(λ1, 0),max(λ2, 0), ... ,max(λd, 0)

)
,

Λ− = diag

(
min(λ1, 0),min(λ2, 0), ... ,min(λd, 0)

)
,

A±(u) = U Λ± U−1.

(3.32)

6The Lax-Friedrichs flux is not based on a Roe matrix, this is the reason why it is not reported here. For an
explicit expression, and particularly in application to hole advection, the reader is referred to (3.37).
Moreover, it should be noted for the sake of completeness that (3.27) implies that space and time are uniformly
discretized. However, considering a more general case would not change the conclusion (3.29).
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The primary domain of application of flux splitting is ideal gas dynamics [GR91], while unfortu-
nately (3.10) does not comply with the homogeneity requirement. Nevertheless, (3.31) offers an
insight into the philosophy behind the numerical fluxes for advection presented in the next section,
thanks to its upwind character. Indeed, with reference to the flow along n̂il, i.e. across ail = Ki∩Kl

from Ki to Kl, it is observed that A+ (A−) contains positive (negative) velocities, thus represents
outflow (inflow), and is associated to the internal (external) and thus upstream value of u.

3.1.1.3 Composing the advective flux

Following references on DG methods for linear Maxwell’s equations [HW02], [Koe11], [Viq15], we
report the upwind flux obtained by solving a Riemann problem across ail:

E∗ =
YiEi + YlEl + αn̂il × (Hl −Hi)

Yi + Yl
, H∗ =

ZiHi + ZlHl − αn̂il × (El −Ei)

Zi + Zl
, (3.33)

where Zi =
√
εi/µi and Yi = 1/Zi are the characteristic impedance and admittance of the medium

in the element Ki. The upwind parameter α ∈ [0, 1] is used to control numerical dissipation –
for α = 1 (fully upwind flux) the Riemann problem is solved exactly, while taking α ∈]0, 1[ leads
to approximate solutions; another notable choice is α = 0 (centered flux), which introduces no
dissipation. The resulting scheme is numerically stable and convergent, and enforces continuity of
n̂il ×E and n̂il ×H by penalizing their jumps.

As to drift currents, we focus for example on the hole advection equation

∂p

∂t
+∇ · (p vp) = 0, (3.34)

and review the most interesting options identified in the literature, which are listed below.

• The Lax-Friedrichs flux (considered in [LS04] and [LS07] in one dimension)

(pvp)∗ =
plvp,l + pivp,i

2
− λp

pl − pi
2

, (3.35)

with
λp = max

i
(|vp,i|), (3.36)

as anticipated in the previous subsection when discussing (3.25).7 The maximum is global,
i.e. over the whole mesh; in the case of an explicit time integration scheme, it is computed at
each step.

The extension of (3.35) to multi-dimensional DG methods, with focus on the flow across ail
along n̂il, is [HW02]

(pvp)∗ =
plvp,l + pivp,i

2
− λpn̂il

pl − pi
2

, (3.37)

where
λp = max(|n̂il · vp|). (3.38)

7Note that here u = p and f is a vector field. If we denote it as f(p) = pvp, we notice that it is a homogeneous
function of p, so that f ′(p) = vp.
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A common variant is the local Lax-Friedrichs flux. In one dimension this is [CS89]

λp = max(|vp,i|, |vp,l|). (3.39)

For the extension to multiple dimensions, one possibility is to evaluate the peak velocity on
each side of ail and select the highest of the two values [D18]

λp = max
ail

(|n̂il · vp,i|, |n̂il · vp,l|). (3.40)

Alternatively one can evaluate λn and λp at each node pair on ail [Brd12], but Ki and Kl

will not be allowed to have different interpolation degrees – an important liberty, peculiar to
DG methods, that we would rather not lose.

As remarked in [D18], in the context of nonlinear optics, the local version of the Lax-Friedrichs
flux yields a less dissipative and thus more accurate scheme.

• The Lax-Wendroff flux

(pvp)∗ =
plvp,l + pivp,i

2
− λ−1

p

(
vp,l + vp,i

2
· n̂il

)
plvp,l − pivp,i

2
, (3.41)

defined along the lines of (3.25) with λp given by (3.38).

• Flux splitting, proposed in one dimension in [LS10a], [CC94], [CT92].
It has been already pointed out that flux splitting is not applicable to [H,E, n, p] due to drift
current depending non-linearly on the conserved quantity. Here, on the other hand, we are
isolating charge transport from Maxwell’s equations with the aim of identifying a compatible
numerical flux to be imported back into the coupled system, thus the conserved quantity
consists in charge density and does not include E.
As highlighted in Section 3.1.1.2, the principle of flux splitting is: if electric charge flows
outside Ki, the interior trace is selected for the corresponding carrier density; conversely, if
charge flows into Ki, the exterior trace is selected. So, on the i side of ail the authors take

(n̂il · pvp)∗ = min(0, n̂il · vp) pl + max(0, n̂il · vp) pi. (3.42)

However, a compatibility issue arises: (3.42) requires vp = µpE to have a single trace on
ail. As a matter of fact, the underlying electric field is approximated with continuous finite
elements in the references.
At first glance one might be tempted to derive an expression of vp in terms of E∗ from
(3.33). In fact, it should be noted that (3.42) coincides with the Lax-Friedrichs flux (3.37)
for vi = vl. Hence, the latter has the same upwind character as (3.42) (plus the advantage of
a more elegant and less complex implementation).

3.1.1.4 Handling diffusion

To deal with Jn,diff ,Jp,diff we follow [LS10b]. The idea is to define a ”wind” direction w in the
computational domain, so that an upwind and a downwind side with respect to w can be identified
on each face ail depending on the angle between n̂il and w. Then, n∗ is always taken on the upwind
side and Jn∗,diff on the downwind one, or viceversa. Similarly for p∗ and Jp∗,diff . The criterion is
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Figure 3.2: A two-dimensional illustration of alternate flux computation on the boundary of Ki.
When n̂ ·w < 0 the downwind side for n and the upwind one for Jn,diff are selected. Conversely
when n̂ ·w > 0. Here, for example, w = (1, 1) and the orientation of Ki is such that n∗ = ni on
the catheti, Jn∗,diff = Jnl,diff on the hypotenuse.

illustrated in Figure 3.2. In formulae, on the interface between elements Ki and Kl the alternate
flux is 8

θ =
1

2
+
b

2
sign(n̂il ·w),

b ∈ {−1, 0, 1},

n∗ = (1− θ) ni + θ nl,

Jn∗,diff = θ Jni,diff + (1− θ) Jnl,diff ,

p∗ = (1− θ) pi + θ pl,

Jp∗,diff = θ Jpi,diff + (1− θ) Jpl,diff .

(3.43)

Note that b (thus θ) is fixed prior to the simulation. The setting b = 1 implies θ = 0 for n̂ ·w > 0
and θ = 1 for n̂ ·w < 0, so that n∗ is on the upwind side and Jn∗,diff on the downwind one. The
opposite scenario stems from b = −1. Another notable option is b = 0 (centered fluxes).

3.1.1.5 The final decision

For a system describing light propagation, (3.25) seems inconvenient – dividing the jump term by
the characteristic speed (the speed of light) could make it so small to practically center the flux
and therefore neglect flow direction.

8For simplicity and by virtue of the two equations being identical (up to a sign), the same parameter θ is used for
both electrons and holes.
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As to (3.30), the main drawback regards the difference in magnitude between characteristic speeds
in the Maxwell-Drift system. It is expected that the speed of light lead and that λ̃ = 1√

εµ >> vdrift,

yielding an oversized jump term for the semiconductor part of the flux; in analogy with the Lax-
Friedrichs flux presented in Section 3.1.1.3, we should expect such a large jump term to produce
excessive dissipation.

In the end, consideration of a) the difficulty of finding a Roe matrix that would preserve light
and particle flow at their different speeds, and b) the path traced in the literature on DGTD
methods for semiconductor physics and Maxwell’s equations, has led to the decision of composing
the numerical flux and selecting:

• the upwind flux (3.33) for Maxwell’s equations (in practice, we shall always assume α = 1);

• the alternate flux (3.43) for carrier densities and diffusion currents;

• the Lax-Friedrichs flux (3.37), in its local version, for drift currents.

Before injecting the selected fluxes in the numerical formulation a few considerations on the
drift currents are necessary, to discuss the extension of the Lax-Friedrichs flux to electron transport
as well as the potential impact of an AC-DC decomposition.

3.1.1.6 The Lax-Friedrichs flux for bipolar transport

In terms of velocity, which defines the direction in which particles move, the drift terms of charge
continuity equations have identical forms:

∂n

∂t
+∇ · (nvn) = diffusion and reaction terms,

∂p

∂t
+∇ · (pvp) = diffusion and reaction terms.

(3.44)

Drift velocity is due to an electric field E, and whether its nature be static, optical or a superposition
of the two, negative (positive) charges will move opposite to (in the direction of) it. This is
reproduced by the relations

vn = −µnE,
vp = µpE.

(3.45)

Electric current conventionally has the same direction as the electric field, hence

Jn,drift = −qnvn = qnµnE,

Jp,drift = qpvp = qpµpE,
(3.46)

which explains the sign difference

∂n

∂t
−∇ · Jn,drift = diffusion and reaction terms,

∂p

∂t
+∇ · Jp,drift = diffusion and reaction terms.

(3.47)

As a result, (3.37) should:

• be the same for n and p when stated in terms of v;

62



• have different signs ahead of λ when stated in terms of J or E; the upwind parameter λ is
not affected as it depends on |v|.

The model has been stated in terms of J and E so far and this shall be the rule in the forthcoming
formulae – drift velocity will reappear in Section 4.2.

3.1.1.7 The impact of AC-DC decomposition on the numerical flux

It was observed in (2.55) that AC-DC decomposition yields cancellation of purely static terms and
it can be noticed that the only significant change in the resulting system lies in drift currents. The
hole one, for example, unfolds as:

Jp,drift = q pAC µp(EDC) (EAC + EDC) + q pDC µp(EDC) EAC + q pDC µp(EDC) EDC . (3.48)

The expansion does not affect the way volume integrals are calculated. On the other hand, nu-
merical flux definition requires some care. Letting the opaque terms out, (3.37) should translate
to

Jp∗,drift =
Jpl,drift + Jpi,drift

2
− qλp

pl − pi
2

n̂il

= q

[
pAC µp(EDC) (EAC + EDC)

]
l

+

[
pAC µp(EDC) (EAC + EDC)

]
i

2
− qλp

pAC,l − pAC,i
2

n̂il

+ q

[
pDC µp(EDC) EAC

]
l

+

[
pDC µp(EDC) EAC

]
i

2
− qλp

pDC,l − pDC,i
2

n̂il,

(3.49)
with the local upwind parameter (3.40) becoming

λp = max
ail

( ∣∣∣∣µp(EDC,i) n̂il · (EAC,i + EDC,i)

∣∣∣∣ , ∣∣∣∣µp(EDC,l) n̂il · (EAC,l + EDC,l)

∣∣∣∣ ). (3.50)

The last line features an average term and a penalization term, which demand some remarks.
The penalization term is opaque because it is not rigorous: pDC does not represent a transported
quantity and hence no flux at all should be associated to it; b) the upwind parameter should be
calculated from the velocity appearing in the average term (µpEAC) whereas it actually comes from
the upwind flux of pAC and is therefore based on the velocity µp(EAC + EDC).
The average term is recognized as the centered flux for Jp := q pDC µp(EDC) EAC and has its
right in (3.50) because it is discontinuous – it contains the two-valued EAC . Then, since pDC and
µp(EDC) are continuous in our analysis, the expression leads to the centered flux for EAC itself, and
we might be tempted to rather take EAC from the upwind flux (3.33); in fact, handling the whole
Jp as a discontinuous quantity leaves room for an interesting option: calculating nDC , pDC ,EDC

with another discontinuous Galerkin solver.
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The extension to Jn,drift requires a change in the sign ahead of the upwind parameter, giving

Jn∗,drift =
Jnl,drift + Jni,drift

2
+ qλn

nl − ni
2

n̂il

= q

[
nAC µn(EDC) (EAC + EDC)

]
l

+

[
nAC µn(EDC) (EAC + EDC)

]
i

2
+ qλn

nAC,l − nAC,i
2

n̂il

+ q

[
nDC µn(EDC) EAC

]
l

+

[
nDC µn(EDC) EAC

]
i

2
+ qλn

nDC,l − nDC,i
2

n̂il,

(3.51)
with λn being (3.50)|p=n.

In the end, drift current flux on ∂Ki should be intended as per (3.49) and (3.51). That said,
unfolding such expressions will not be necessary in the numerical formulation itself, but will become
essential when discussing its implementation (Section 4.2). Similarly, the fact that mobility and
diffusivity depend on EDC but not on EAC will be kept implicit.

Before moving forward, a side remark on DC quantities is necessary.
Simplification of the purely static terms in (2.55) was legitimated by the fact of working in the
continuous framework, in which these exactly solve the static PDD model (2.50). This led to our
discrete model featuring EAC ,HAC , nAC , pAC as the unknowns and EDC , nDC , pDC as (space-
varying) coefficients. In fact, the latter also result from a numerical scheme, at least in all practical
applications; thus, we should bear in mind that they carry a numerical error which drives them
away from the exact solution of (2.50) and is inherited by the unknowns of the transient model
(2.55).

3.1.2 Semi-discrete DG formulation: matrix form

With the integral formulation (3.6) and the developments of Section 3.1.1 we write a matrix form
of the semi-discrete DG formulation. Starting with (3.33) we preliminarily note that

[YiEi − α(n̂il ×Hi)]× n̂il = YiEi × n̂il − α[Hi − n̂il(n̂il ·Hi)],

[YlEl + α(n̂il ×Hl)]× n̂il = YlEl × n̂il + α[Hl − n̂il(n̂il ·Hl)],

[ZiHi + α(n̂il ×Ei)]× n̂il = ZiHi × n̂il + α[Ei − n̂il(n̂il ·Ei)],

[ZlHl − α(n̂il ×El)]× n̂il = ZlHl × n̂il − α[El − n̂il(n̂il ·El)].

(3.52)

Now, if we introduce the unit vector v̂ = x̂, ŷ, ẑ and the vectors

Eij = [Exij E
y
ij E

x
ij ]
T Hij = [Hx

ij H
y
ij H

x
ij ]
T , (3.53)

containing the j-th numerical component (with respect to the local basis of Ki) of the Cartesian

64



components of E and H, we can express the integrals as∫
ail

E∗ × n̂il · φv
ik =

di∑
j=1

YiEij × n̂il − α[Hij − n̂il(n̂il ·Hij)]

Yi + Yl
· v̂
∫
ail

φijφik

+

dl∑
g=1

Yl
Elg × n̂il + α[Hlg − n̂il(n̂il ·Hlg])

Yi + Yl
· v̂
∫
ail

φlgφik,

∫
ail

H∗ × n̂il · φv
ik =

di∑
j=1

ZiHij × n̂il + α[Eij − n̂il(n̂il ·Eij ])

Zi + Zl
· v̂
∫
ail

φijφik

+

dl∑
g=1

Zl
Hlg × n̂il − α[Elg − n̂il(n̂il ·Elg)]

Zi + Zl
· v̂
∫
ail

φlgφik.

(3.54)

We take advantage of v̂ to also recast the integrals∫
Ki

Ei · ∇ × φv
ij = −

di∑
j=1

Eij · (v̂ ×
∫
Ki

φij∇φik),

∫
Ki

Hi · ∇ × φv
ij = −

di∑
j=1

Hij · (v̂ ×
∫
Ki

φij∇φik).

(3.55)

Moving to diffusion, (3.43) yields the explicit expressions

∫
ail

n∗φ
v
ik · n̂il = (1− θ)

di∑
j=1

nijv̂ · n̂il
∫
ail

φijφik + θ

dl∑
g=1

nlgv̂ · n̂il
∫
ail

φlgφik,

∫
ail

p∗φ
v
ik · n̂il = (1− θ)

di∑
j=1

pijv̂ · n̂il
∫
ail

φijφik + θ

dl∑
g=1

plgv̂ · n̂il
∫
ail

φlgφik,∫
ail

φik
(
Dnα

)
∗ · n̂il =

∫
ail

φik
[
θ
(
Dnα

)
i
+ (1− θ)

(
Dnα

)
l

]
· n̂il,∫

ail

φik
(
Dpβ

)
∗ · n̂il =

∫
ail

φik
[
θ
(
Dpβ

)
i
+ (1− θ)

(
Dpβ

)
l

]
· n̂il.

(3.56)

At this point we are ready to write the semi-discrete DG formulation. This time, to keep the
notation compact, currents are expanded in separate equations.
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di∑
j=1

∂Hij

∂t
· v̂
∫
Ki

µ φijφik =

di∑
j=1

Eij ·
(
v̂ ×

∫
Ki

φij∇φik
)

+
∑
l∈Ni

( di∑
j=1

YiEij × n̂il − α[Hij − n̂il(n̂il ·Hij ]

Yi + Yl
· v̂
∫
ail

φijφik

+

dl∑
g=1

YlElg × n̂il + α[Hlg − n̂il(n̂il ·Hlg]

Yi + Yl
· v̂
∫
ail

φlgφik

)
,

di∑
j=1

∂Eij

∂t
· v̂
∫
Ki

ε φijφik = −
di∑
j=1

Hij ·
(
v̂ ×

∫
Ki

φij∇φik
)

−
∑
l∈Ni

( di∑
j=1

ZiHij × n̂il + α[Eij − n̂il(n̂il ·Eij ]

Zi + Zl
· v̂
∫
ail

φijφik

+

dl∑
g=1

ZlHlg × n̂il − α[Elg − n̂il(n̂il ·Elg]

Yi + Yl
· v̂
∫
ail

φlgφik

)
−
∫
Ki

(Jni + Jpi) · v̂ φik,

(3.57)

q

di∑
j=1

∂nij
∂t

∫
Ki

φijφik =
∑
l∈Ni

∫
ail

φik Jn∗ · n̂il −
∫
Ki

Jni · ∇φik

− q
∫
Ki

R(ni, pi) φik + q

di∑
j=1

Gij

∫
Ki

φijφik,

q

di∑
j=1

∂pij
∂t

∫
Ki

φijφik = −
∑
l∈Ni

∫
ail

φik Jp∗ · n̂il +

∫
Ki

Jpi · ∇φik

− q
∫
Ki

R(ni, pi) φik + q

di∑
j=1

Gij

∫
Ki

φijφik,

(3.58)

di∑
j=1

αij · v̂
∫
Ki

φijφik =
∑
l∈Ni

(
(1− θ)

di∑
j=1

nijv̂ · n̂il
∫
ail

φijφik + θ

dl∑
g=1

nlgv̂ · n̂il
∫
ail

φlgφik

)

−
di∑
j=1

nij v̂ ·
∫
Ki

φij∇φik,

di∑
j=1

βij · v̂
∫
Ki

φijφik =
∑
l∈Ni

(
(1− θ)

di∑
j=1

pijv̂ · n̂il
∫
ail

φijφik + θ

dl∑
g=1

plgv̂ · n̂il
∫
ail

φlgφik

)

−
di∑
j=1

pij v̂ ·
∫
Ki

φij∇φik.

(3.59)
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The total electron and hole currents appearing in volume integrals are

Jni = Jni,drift + Jni,diff = q

[
n µn E

]
i

+ q

[
Dn α

]
i

,

Jpi = Jpi,drift + Jpi,diff = q

[
p µp E

]
i

− q

[
Dp β

]
i

.

(3.60)

Then, recovering (3.43), (3.49), (3.50) and (3.51), the drift-diffusion numerical flux is assembled
as

Jn∗ =
Jnl,drift + Jni,drift

2
+ qλn

nl − ni
2

n̂il + θ Jni,diff + (1− θ) Jnl,diff ,

Jp∗ =
Jpl,drift + Jpi,drift

2
− qλp

pl − pi
2

n̂il + θ Jpi,diff + (1− θ) Jpl,diff .

(3.61)

To put (3.57-3.59) into a matrix form, a suitable notation is introduced. Let v ∈ {x, y, z},
j ∈ {1, 2, ... di}, g ∈ {1, 2, ... dl}, where as usual i, l ∈ {1, ... NT }. We define the following symbols
for vectors and block vectors of numerical coefficients, as well as stiffness, mass and flux matrices
and block matrices:

Av
i =

A
v
i1
...

Avidi

 , Ai =

Ax
i

Ay
i

Az
i

 , ai =

ai1...
aidi

 , ai =

ai
ai
ai

 ,
(
Kv
i

)
kj

=

∫
Ki

φij
∂

∂v
φik , Ki =

Kx
i

Ky
i

Kz
i

 ,
(
Mµ
i

)
kj

=

∫
Ki

µ φijφik , Mµ
i = diag(Mµ

i ,M
µ
i ,M

µ
i ),(

Mε
i

)
kj

=

∫
Ki

ε φijφik , Mε
i = diag(Mε

i ,Mε
i ,Mε

i),(
Mi

)
kj

=

∫
Ki

φijφik , Mi = diag(Mi,Mi,Mi),(
Sil
)
kj

=

∫
ail

φijφik , Sil = diag(Sil, Sil,Sil),(
S∗il
)
kg

=

∫
ail

φlgφik , S∗il = diag(S∗il, S∗il,S∗il),

(3.62)

n̂il = diag

(
n̂il · x̂ Idi , n̂il · ŷ Idi , n̂il · ẑ Idi

)
,

Idi = di × di identity matrix.

An important point to address is integration of nonlinear terms. We shall opt for a quadrature
method relying on the basis {φik : k = 1, 2, ... , di}, which is assumed to satisfy the fundamental
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property
φij(xk) = δjk, (3.63)

and plug the basis expansion of each unknown in (3.60), (3.61), R(ni, pi). For example, considering
the electron drift current, (3.63) implies that the r-th numerical component in the basis is calculated
as[
q

di∑
j=1

nijφij µn

( di∑
j=1

Eijφij

) di∑
j=1

Eij φij

]
x=xr

= q nir µn
(
Eir

)
Eir ∀r ∈ {1, 2, ... di}, (3.64)

hence∫
Ki

Jni,drift φik =

∫
Ki

q ni µn
(
Ei

)
Ei φik ≈

∫
Ki

q

di∑
j=1

nijφij µn

( di∑
j=1

Eijφij

) di∑
j=1

Eij φij φik

≈
∫
Ki

di∑
r=1

[
q

di∑
j=1

nijφij µn

( di∑
j=1

Eijφij

) di∑
j=1

Eij φij

]
x=xr

φir φik

= q

di∑
r=1

nir µn
(
Eir

)
Eir

∫
Ki

φirφik,

(3.65)
and similarly for the other integrals. In essence, Jni,drift is replaced by its nodal interpolant.
The choice is computationally attractive as no special matrix is introduced for the purpose of
interpolation – the mass matrix is used.

The aforementioned developments lead to the following space discretization of Maxwell’s equa-
tions:

Mµ
i

∂Hi

∂t
= Ki ×Ei +

∑
l∈Ni

Sil(E∗,i × n̂il) +
∑
l∈Ni

S∗il(E∗,l × n̂il),

Mε
i

∂Ei

∂t
= −Ki ×Hi −

∑
l∈Ni

Sil(H∗,i × n̂il)−
∑
l∈Ni

S∗il(H∗,l × n̂il)−MiJni −MiJpi .

(3.66)

with the matrix-vector cross products

Ki ×Ei =

 Ky
iE

z
i −Kz

iE
y
i

−Kx
i E

z
i + Kz

iE
x
i

Kx
i E

y
i −Ky

iE
x
i

 ,
E∗,i × n̂il = −n̂il ×E∗,i .

(3.67)

Note that according to (3.62) the block vectors E∗,i and H∗,i contain the numerical coefficients of
the i part of (3.33). Similarly, E∗,l and H∗,l.
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Moving to the semiconductor equations, we state

qMi
∂ni
∂t

= −Ki · Jni +
∑
l∈Ni

Sil(Jn∗,i · n̂il) +
∑
l∈Ni

S∗il(Jn∗,l · n̂il)− qMiRi + qMiGi,

qMi
∂pi
∂t

= Ki · Jpi −
∑
l∈Ni

Sil(Jp∗,i · n̂il)−
∑
l∈Ni

S∗il(Jp∗,l · n̂il)− qMiRi + qMiGi,

Miαi =
∑
l∈Ni

Sil (n∗,i n̂il) +
∑
l∈Ni

S∗il (n∗,l n̂il)−Kini,

Miβi =
∑
l∈Ni

Sil (p∗,i n̂il) +
∑
l∈Ni

S∗il (p∗,l n̂il)−Kipi,

(3.68)

with the dot products

Ki · Jni = Kx
i J

x
ni + Ky

i J
y
ni + Kz

iJ
z
ni ,

Jn∗,i · n̂il = (n̂il · x̂)Jxn∗,i + (n̂il · ŷ)Jyn∗,i + (n̂il · ẑ)Jzn∗,i,
(3.69)

and similarly for their p counterparts. The i and l terms in the numerical flux are

Jvn∗,i =
1

2
Jvni,drift −

q

2
λnni (n̂il · v̂) + θ Jvni,diff ,

Jvn∗,l =
1

2
Jvnl,drift +

q

2
λnnl (n̂il · v̂) + (1− θ) Jvnl,diff ,

Jvp∗,i =
1

2
Jvpi,drift +

q

2
λppi (n̂il · v̂) + θ Jvpi,diff ,

Jvp∗,l =
1

2
Jvpl,drift −

q

2
λppl (n̂il · v̂) + (1− θ) Jvpl,diff ,

(3.70)

with the electron diffusion part being ”balanced” in the auxiliary equations by

n∗,i = (1− θ) ni,

n∗,l = θ nl,
(3.71)

and similarly for holes.

Inclusion of optical absorption (and dispersion) is straightforward – it suffices to add the po-
larization current to the Ampère-Maxwell law (the second equation of 3.66) the same way as the
drift and diffusion ones:

Mε
i

∂Ei

∂t
= . . . −MiJni −MiJpi −MiJli . (3.72)

Note however that here ε = ε0ε∞ inside Mε
i .

The auxiliary differential equations are discretized in space as

Mi
∂Pi

∂t
= MiJl,i,

Mi
∂Jl,i
∂t

= ε0ω
2
pMiEi − γMiJl,i − ω2

rMiPi,

(3.73)

but they can actually be simplified by applying M−1
i to both sides.
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In the end, the semi-discrete DG formulation on an element Ki ⊂ Ω reads as follows.

Mµ
i

∂Hi

∂t
= Ki ×Ei +

∑
l∈Ni

Sil(E∗,i × n̂il) +
∑
l∈Ni

S∗il(E∗,l × n̂il),

Mε
i

∂Ei

∂t
= −Ki ×Hi −

∑
l∈Ni

Sil(H∗,i × n̂il)−
∑
l∈Ni

S∗il(H∗,l × n̂il)−MiJni −MiJpi −MiJli ,

qMi
∂ni
∂t

= −Ki · Jni +
∑
l∈Ni

Sil(Jn∗,i · n̂il) +
∑
l∈Nl

S∗il(Jn∗,l · n̂il)− qMiRi + qMiGi,

qMi
∂pi
∂t

= Ki · Jpi −
∑
l∈Ni

Sil(Jp∗,i · n̂il)−
∑
l∈Nl

S∗il(Jp∗,l · n̂il)− qMiRi + qMiGi,

Miαi =
∑
l∈Ni

Sil (n∗,i n̂il) +
∑
l∈Ni

S∗il (n∗,l n̂il)−Kini,

Miβi =
∑
l∈Ni

Sil (p∗,i n̂il) +
∑
l∈Ni

S∗il (p∗,l n̂il)−Kipi,

∂Pi

∂t
= Jl,i,

∂Jl,i
∂t

= ε0ω
2
pEi − γJl,i − ω2

rPi.

(3.74)

For the sake of completeness, the case Ki ⊂ ΩM is reported as well:

Mµ
i

∂Hi

∂t
= Ki ×Ei +

∑
l∈Ni

Sil(E∗,i × n̂il) +
∑
l∈Ni

S∗il(E∗,l × n̂il),

Mε
i

∂Ei

∂t
= −Ki ×Hi −

∑
l∈Ni

Sil(H∗,i × n̂il)−
∑
l∈Ni

S∗il(H∗,l × n̂il)−MiJdi ,

∂Jd,i
∂t

= ε0ω
2
dEi − γdJd,i,

(3.75)

with ε = ε0ε∞ inside Mε
i .

9

The case Ki ⊂ Ωe \ (ΩM ∪ Ω) is omitted as it is simply (3.75) with Jd,i = 0 and ε = ε0εr.

3.1.3 Semi-discrete DG formulation: global form

As mentioned in Section 3.1, a notable approach to DG approximation of elliptic problems – which
has been followed in the present work – consists in introducing an auxiliary variable for the gradient
of the unknown and solving the resulting additional equation. The main reference on the topic is
[ABCM02], in which a so-called primal formulation is derived – a global DG formulation condensed
in a single equation.
The purpose of this section is to apply such a procedure to drift-diffusion equations, and then

9It may be worthwhile to recall that the value of ε∞ depends on the material, thus it is expected not to be the
same in Ω and ΩM .
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assemble a global DG formulation of the MDD system, in order to pave the way for future stability
analysis.
With reference to the mathematical framework introduced in Section 3.1 we consider for example
the equations governing n along the following steps.

Step 1 – Summation of the element-wise weak formulation over the whole mesh.
This yields, for all τ ∈ Σh, v ∈ Vh,∫

Ω
αh · τ = −

∫
Ω
nh∇h · τ +

∑
K∈Th

∫
∂K

n∗ n̂ · τ ,∫
Ω

∂nh
∂t

v =
∑
K∈Th

∫
∂K

(
nµnE

)
∗ · n̂ v +

∑
K∈Th

∫
∂K

(
Dnα

)
∗ · n̂ v

−
∫

Ω
nhµnE · ∇hv −

∫
Ω
Dnαh · ∇hv +

∫
Ω

(G−R) v,

(3.76)

where
∫

Ω nh∇h ·τ =
∑

K∈Th
∫
K nh∇·τ , and similarly for the other integrals on Ω involving ∇h.

Step 2 – Rewriting the boundary integrals in terms of jump and average operators.
The step exploits the identity∑

K∈Th

∫
∂K

qKϕK · n̂ =

∫
Γ
[[q]] · {ϕ}+

∫
Γ0

{q}[[ϕ]], ∀q ∈ T (Γ),ϕ ∈ [T (Γ)]2, (3.77)

where qKϕK is the value of qϕ on the interior page of ∂K and n̂ the outward unit normal vector
to ∂K.

By applying (3.77), we obtain for all τ ∈ Σh, v ∈ Vh∫
Ω
αh · τ = −

∫
Ω
nh∇h · τ +

∫
Γ
[[n∗]] · {τ}+

∫
Γ0

{n∗}[[τ ]],

∫
Ω

∂nh
∂t

v =

∫
Γ
[[v]] · {

(
nµnE

)
∗}+

∫
Γ0

{v}[[
(
nµnE

)
∗]]

+

∫
Γ
[[v]] · {

(
Dnα

)
∗}+

∫
Γ0

{v}[[
(
Dnα

)
∗]]

−
∫

Ω
nhµnE · ∇hv −

∫
Ω
Dnαh · ∇hv +

∫
Ω

(G−R) v.

(3.78)

Step 3 – Expressing αh in terms of the sole nh.
Another important identity, that holds for all τ ∈ [H1(Th)]3, v ∈ H1(Th), is

−
∫

Ω
v∇h · τ =

∫
Ω
τ · ∇hv −

∫
Γ
{τ} · [[v]]−

∫
Γ0

[[τ ]]{v}. (3.79)

Taking v = nh in it allows to write∫
Ω
αh · τ =

∫
Ω
τ · ∇hnh −

∫
Γ
{τ} · [[nh]]−

∫
Γ0

[[τ ]]{nh}+

∫
Γ
[[n∗]] · {τ}+

∫
Γ0

{n∗}[[τ ]]

=

∫
Ω
τ · ∇hnh +

∫
Γ
[[n∗ − nh]] · {τ}+

∫
Γ0

{n∗ − nh}[[τ ]].
(3.80)
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If we introduce the lifting operators r : [L2(Γ)]3 → Σh and l : L2(Γ0) → Σh such that for all
τ ∈ Σh ∫

Ω
r(ϕ) · τ = −

∫
Γ
ϕ · {τ},

∫
Ω

l(q) · τ = −
∫

Γ0

q[[τ ]], (3.81)

whose existence is proved in [ABCM02], and recall that ∇hnh ∈ ∇hVh ⊂ Σh, we can state the weak
identity in Σh

αh = αh(nh) := ∇hnh − r([[n∗ − nh]])− l({n∗ − nh}). (3.82)

Step 4 – Substituting (3.82) in the continuity equation.
The volume integral featuring the diffusion current is preliminarily rewritten as:∫

Ω
Dnαh · ∇hv =

∫
Ω
Dn∇hnh · ∇hv −

∫
Ω
Dnr([[n∗ − nh]]) · ∇hv −

∫
Ω
Dnl({n∗ − nh}) · ∇hv

=

∫
Ω
Dn∇hnh · ∇hv +

∫
Γ
[[n∗ − nh]] · {Dn ∇hv}+

∫
Γ0

{n∗ − nh}[[Dn ∇hv]].
(3.83)

Then, we plug the new expression in the continuity equation and obtain∫
Ω

∂nh
∂t

v =

∫
Γ
[[v]] · {

(
nµnE

)
∗}+

∫
Γ0

{v}[[
(
nµnE

)
∗]] +

∫
Γ
[[v]] · {

(
Dnα

)
∗}+

∫
Γ0

{v}[[
(
Dnα

)
∗]]

−
∫

Ω
nhµnE · ∇hv −

∫
Ω
Dn∇hnh · ∇hv −

∫
Γ
[[n∗ − nh]] · {Dn ∇hv}

−
∫

Γ0

{n∗ − nh}[[Dn ∇hv]] +

∫
Ω

(G−R) v.

(3.84)

Grouping integrals and bringing all terms depending on n to the left-hand side leads to the primal
formulation∫

Ω

∂nh
∂t

v −
∫

Ω

(
− nhµnE · ∇hv −Dn∇hnh · ∇hv

)
−
∫

Γ

(
[[v]] · {

(
nµnE

)
∗}+ [[v]] · {

(
Dnα

)
∗} − [[n∗ − nh]] · {Dn ∇hv}

)
−
∫

Γ0

(
{v}[[

(
nµnE

)
∗]] + {v}[[

(
Dnα

)
∗]]− {n∗ − nh}[[Dn ∇hv]]

)
+

∫
Ω
R v =

∫
Ω
G v.

(3.85)

To complete the picture we conceive an analogous equation to (3.85) for holes and assemble the
global formulation of the MDD system.
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∫
Ω
µ
∂Hh

∂t
· τ = −

∫
Ω

Eh · ∇ × τ +
∑
K∈Th

∫
∂K

E∗ × n̂ · τ ,∫
Ω
ε
∂Eh

∂t
· τ =

∫
Ω

Hh · ∇ × τ −
∑
K∈Th

∫
∂K

H∗ × n̂ · τ −
∫

Ω
(qµnnh + qµpph)Eh · τ

−
∫

Ω
qDn∇hnh · τ −

∫
Γ
q[[n∗ − nh]] · {Dn τ} −

∫
Γ0

q{n∗ − nh}[[Dn τ ]]

+

∫
Ω
qDp∇hph · τ +

∫
Γ
q[[p∗ − ph]] · {Dp τ}+

∫
Γ0

q{p∗ − ph}[[Dp τ ]],

∫
Ω

∂nh
∂t

v −
∫

Ω

(
− nhµnE · ∇hv −Dn∇hnh · ∇hv

)
−
∫

Γ

(
[[v]] · {

(
nµnE

)
∗}+ [[v]] · {

(
Dnα

)
∗} − [[n∗ − nh]] · {Dn ∇hv}

)
−
∫

Γ0

(
{v}[[

(
nµnE

)
∗]] + {v}[[

(
Dnα

)
∗]]− {n∗ − nh}[[Dn ∇hv]]

)
+

∫
Ω
R v =

∫
Ω
G v,∫

Ω

∂ph
∂t

v −
∫

Ω

(
+ phµpE · ∇hv −Dp∇hph · ∇hv

)
−
∫

Γ

(
− [[v]] · {

(
pµpE

)
∗}+ [[v]] · {

(
Dpβ

)
∗} − [[p∗ − ph]] · {Dp ∇hv}

)
−
∫

Γ0

(
− {v}[[

(
pµpE

)
∗]] + {v}[[

(
Dpβ

)
∗]]− {p∗ − ph}[[Dp ∇hv]]

)
+

∫
Ω
R v =

∫
Ω
G v.

(3.86)

Note that Maxwell’s equations feature diffusion currents in terms of n∗ and p∗, thanks to the
elimination of the auxiliary unknowns α and β.
Further exploring this path would require to transform the integrals involving E∗ and H∗ into
suitable counterparts defined on the skeleton of the mesh, possibly by means of the average and
jump operators (3.77).

This first global formulation could serve as a basic framework for a possible theoretical stability
study that would complement empirical stability analyses such as the one proposed in Section 4.2.
This deserves a consequent theoretical numerical analysis work that will not be addressed in this
work.

3.1.4 Discrete numerical formulation

With the semi-discrete equations in place it is finally possible to address time discretization. The
presence of nonlinear terms and the aim of exploiting parallel computing suggest to look at the
explicit DGTD methods, as these allow local problems to be solved independently (i.e. in parallel)
at each iteration. The notable price to pay is an upper bound on the time step.
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The choice falls on explicit Runge-Kutta schemes, which offer higher-order convergence than forward
Euler integration, while still having a one-step structure.
The core problem (3.74) is discussed here – the simpler (3.75) can be addressed similarly.

3.1.4.1 Runge-Kutta

For an ordinary differential equation of the kind{
U ′(t) = G(t, U(t)),

U(t0) = U0,
(3.87)

the (explicit) Runge-Kutta scheme of order M ∈ N0, that takes Um as an approximation of U(tm)
and calculates Um+1, is defined by the M steps

ψ1 = G(tm, U
m),

ψj = G( tm + ∆t cj , U
m + ∆t

j−1∑
s=1

ajs ψs ), j = 2, 3, ... ,M,

Um+1 = Um + ∆t
M∑
j=1

bj ψj ,

(3.88)

the sets of coefficients {ajs}, {bj}, {cj} being defined on a per-order basis according to a so-called
Butcher table.10

In fact, (3.74) cannot be represented by (3.87) as it features auxiliary equations with no time
derivatives. The right model is rather

U ′(t) = G(t, U(t),W (t)),

W (t) = F (U(t)),

U(t0) = U0,

(3.89)

or equivalently {
U ′(t) = G(t, U(t), F (U(t)),

U(t0) = U0,
(3.90)

for which (3.88) becomes

ψ1 = G(tm, U
m, F (Um)),

ψj = G( tm + ∆t cj , U
m + ∆t

j−1∑
s=1

ajs ψs , F (Um + ∆t

j−1∑
s=1

ajs ψs) ), j = 2, 3, ... ,M,

Um+1 = Um + ∆t
M∑
j=1

bj ψj .

(3.91)

The cases M = 2, 4 have been implemented in the present work and are detailed below; their
convergence rates for time discretization are 2 and 4 respectively [Qua13].

10Discussing the nature of (3.88) is beyond the scope of the present work; the interested reader can refer to [But87].
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• Runge-Kutta 2:

ψ1 = G(tm, U
m, F (Um)),

ψ2 = G( tm + ∆t , Um + ∆t ψ1 , F (Um + ∆t ψ1) ),

Um+1 = Um +
∆t

2
(ψ1 + ψ2).

(3.92)

• Runge-Kutta 4:

ψ1 = G(tm, U
m, F (Um)),

ψ2 = G( tm +
∆t

2
, Um +

∆t

2
ψ1, F (Um +

∆t

2
ψ1) ),

ψ3 = G( tm +
∆t

2
, Um +

∆t

2
ψ2, F (Um +

∆t

2
ψ2) ),

ψ4 = G( tm + ∆t, Um + ∆t ψ3, F (Um + ∆t ψ3) ),

Um+1 = Um +
∆t

6
(ψ1 + 2ψ2 + 2ψ3 + ψ4).

(3.93)

More generally, as further discussed in [Qua13] and proven in [But87]:

• the convergence rate of an explicit RKM method cannot exceed M ;

• there exists no explicit RKM method converging at rate M if M ≥ 5.

Hence, convergence at rate M requires:

• at least M stages for M = 1, 2, 3, 4;

• more than M stages for M ≥ 5.

To apply explicit RKM algorithms in our context we recall that the local DG formulation on
Ki involves the unknowns on both Ki and its direct neighbors {Kl : l ∈ Ni}; as a consequence,
each of the M steps must be applied in parallel to all mesh elements, K1,K2, ...KNT . To better
highlight this point, (3.74) is synthesized as follows.
Let us first introduce some auxiliary quantities for the local unknowns and for the right-hand sides:
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Ui =

[
Hi Ei ni pi Pi Jl,i

]T
,

Gi =


Gi,H
Gi,E
Gi,n
Gi,p
Gi,l

 =



Mµ,−1
i

[
R.H.S. of the 1st equation of (3.74)

]
Mε,−1
i

[
R.H.S. of the 2nd equation of (3.74)

]
q−1M−1

i

[
R.H.S. of the 3rd equation of (3.74)

]
q−1M−1

i

[
R.H.S. of the 4th equation of (3.74)

]
[
R.H.S. of the Lorentz model

]


,

Fi =


M−1
i

[
R.H.S. of the 5th equation of (3.74)

]
M−1
i

[
R.H.S. of the 6th equation of (3.74)

]
 .

(3.94)

These are assembled into the global vectors

U =


U1

U2
...

UNT

 , G =


G1

G2
...

GNT

 , F =


F1

F2
...

FNT

 . (3.95)

With such notation, the expression U ′(t) = G(t, U(t), F (U(t))) describes a global problem built
by collecting all of the NT semi-discrete local problems like (3.74); to this global problem we shall
apply the Runge-Kutta algorithms (3.91).
In practice, assuming that the initial state includes the auxiliary unknowns α,β, the implementa-
tion consists in the steps below.

1. Calculate ψ1 as an array made of the following 4 blocks (each calculated by a dedicated
subroutine).

(a) {Gi,H(tm, U
m) : i = 1, 2, ... , NT }

(b) {Gi,E(tm, U
m, F (Um)) : i = 1, 2, ... , NT }

(c) {Gi,n(tm, U
m, F (Um)) : i = 1, 2, ... , NT }

(d) {Gi,p(tm, Um, F (Um)) : i = 1, 2, ... , NT }
(e) {Gi,l(tm, Um) : i = 1, 2, ... , NT }

2. Recall such subroutines to calculate ψj , j = 2, 3, ... ,M , with intermediate inputs.

(a) {Gi,H(tm + cj∆t, U
m + ∆t

∑j−1
s=1 ajsψs) : i = 1, 2, ... , NT }

(b) {Gi,E(tm + cj∆t, U
m + ∆t

∑j−1
s=1 ajsψs, F (Um + ∆t

∑j−1
s=1 ajsψs)) : i = 1, 2, ... , NT }
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(c) {Gi,n(tm + cj∆t, U
m + ∆t

∑j−1
s=1 ajsψs, F (Um + ∆t

∑j−1
s=1 ajsψs)) : i = 1, 2, ... , NT }

(d) {Gi,p(tm + cj∆t, U
m + ∆t

∑j−1
s=1 ajsψs, F (Um + ∆t

∑j−1
s=1 ajsψs)) : i = 1, 2, ... , NT }

(e) {Gi,l(tm + cj∆t, U
m + ∆t

∑j−1
s=1 ajsψs) : i = 1, 2, ... , NT }

3. Calculate Um+1 from Um and ψ1, ψ2, ... , ψM .

4. Calculate the auxiliary unknowns, that is F (Um+1), based on the knowledge of Um+1.

3.1.4.2 Low-Storage Runge-Kutta

When mesh elements and degrees of freedom increase, memory consumption can become a severe
issue, as (3.91) requires the storage of M arrays of the dimension of U at each time step. This has
led to the conception of methods known as Low-Storage Runge-Kutta (LSRK) [Wil80] and based
on the algorithm

ψ1 = Um,

ψ2 = Ajψ2 + ∆t G( tm + ∆t Cj , ψ1 , F (ψ1) ),

ψ1 = ψ1 +Bjψ2,

}
j = 1, 2, ... ,M,

Um+1 = ψ1.

(3.96)

The explicit expressions of the new coefficients are omitted – they are derived from those appearing
in (3.91) and can be found in the original paper. The focus here is rather on the fact that the number
of stored arrays per time step is reduced to 2, regardless of M , since ψ1 and ψ2 are overwritten at
each iteration j. The price to pay is a generally lower convergence rate; for example, it has been
proved that RKM , M = 1, 2, 3, 4, is accurate to order M whereas LSRK requires M = 5 to achieve
order 4 [But87], [Wil80].

The application of (3.96) to our system goes as follow.

1. Calculate ψ2 as an array made of the following 4 blocks (each calculated by a dedicated
subroutine).

(a) {Gi,H(tm, ψ1) : i = 1, 2, ... , NT }
(b) {Gi,E(tm, ψ1, F (ψ1)) : i = 1, 2, ... , NT }
(c) {Gi,n(tm, ψ1, F (ψ1)) : i = 1, 2, ... , NT }
(d) {Gi,p(tm, ψ1, F (ψ1)) : i = 1, 2, ... , NT }
(e) {Gi,l(tm, ψ1) : i = 1, 2, ... , NT }

2. Calculate ψ1 based on its current value and ψ2.

3. Repeat the steps until j = M .

4. Store the new ψ1 as Um+1.

5. Calculate the auxiliary unknowns, that is F (Um+1), based on the knowledge of Um+1.
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3.1.4.3 Discussion on stability

In the case of explicit integration schemes, drift and diffusion concur in limiting the time step. To
better understand this, it is convenient to consider the two limiting cases of pure advection and
pure diffusion.

Neglecting diffusion leads to a classical conservation law (as pointed out in Section 3.1.1.1)
which demands to satisfy the notable condition by Courant-Friedrichs-Lewy

∆t ≤ Cap
h

v
. (3.97)

The coefficient Cap depends on the interpolation degree p and is generally determined empirically; v
is the maximum advection velocity in the mesh, to be drawn from the characteristic speeds (3.17).
More specifically

v = max

{
max
Th

1
√
εµ
, max
Th

(µn||E||), max
Th

(µp||E||)
}
. (3.98)

As pointed out in Section 2.1.1, increasing the electric field can increase drift velocity up to a
saturation value, which is smaller than the speed of light. Thus, v = maxTh{ 1√

εµ} and stability is

determined by the electromagnetic part of the Maxwell-Drift system.11

Neglecting drift leads to a coupled pair of diffusion-reaction equations (one for n, one for p).
As for the case of the heat equation, the stability condition is [HW02]

∆t ≤ Cdp
h2

D
, (3.99)

where
D = max{max

Th
Dn,max

Th
Dp} (3.100)

and Cdp is a coefficient depending on the interpolation degree p and, like Cap , is generally determined
empirically. From a practical standpoint, Dn = VTµn, Dp = VTµp are calculated at the beginning
of a simulation, then drift is disabled by setting µn = µp = 0.12

Going back to the original system, one could be tempted to assemble the two constraints as

∆t ≤ min

{
Cap

h

v
, Cdp

h2

D

}
, (3.101)

but it was pointed out in [AD06] that the approach may lead to erroneous results in problems
with mixed boundary conditions and should be therefore waived in favor of a continuous interpo-
lation between the two constraints. The literature offers references on time step selection in linear
advection-diffusion with uniform velocity and diffusivity: in a multidimensional DG framework (e.g.
[AD06]); in a one-dimensional finite-volume framework (e.g. [FLLO89]). Based on these, a sensible
constraint on the time step of the MDD system should be

∆t ≤ h
v

Cap
+

D

Cdph

,
(3.102)

11For example, vn,sat = 0.72× 105 m s−1 in GaAs at 300K [QMPS00].
12Note that physics impose µn > µp and hence D = maxTh Dn.
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with which becomes (3.97) for D = 0 and (3.99) for v = 0.
It is worthwhile to remark the benefit of assuming static µn and µp (hence Dn and Dp). If it were

not the case, the right-hand sides of the stability conditions just presented would be time-varying,
thereby potentially introducing the need of adjusting the time step at each iteration.

3.1.4.4 Optimized time discretization

When physical values are assigned to simulation parameters, the speed of light outnumbers drift
velocity and actually dominates (3.102), even for a mesh size as low as a few nanometers (as it
may be required in applications where optical radiation interacts with a nanoscaled device). In
other words, electromagnetic field propagation sets a stricter constraint on the time step than
drift and diffusion, suggesting to implement two different time grids: one for Maxwell’s equations
(∆t = ∆tEM ), one for the continuity equations (∆t = ∆tnp). The general idea, proposed in [CB20a]
(to which we refer for the detailed algorithm), is to let ∆tnp = Nskip ∆tEM for a suitable integer
Nskip defining the number of electromagnetic iterations to be skipped before the next update of the
n and p. This idea has been tested in the present work, namely in the test case shown in Section
4.4.3, whereas its generalization to real device simulation appears less trivial, as will be discussed
in Section 6.2.

.
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Chapter 4

Implementation

The foundations for the numerical resolution of the MDD model in a three-dimensional DGTD
framework were set in the foregoing sections. Over the course of the project, different avenues have
been pondered as to how to translate such a work into software. Integrating a MDD module into
DIOGENeS [Atl], the in-house DGTD solver of Maxwell’s equations in three dimensions, was the
most fascinating option in the first place. However, it was estimated that this would entail devoting
significant effort to integration itself, at the expense of a key requirement: agile exploration of the
possible strategies for accomplishing the core task of numerically solving the MDD model. Based
on such a requirement, reducing the number of space dimensions has appeared to be a sensible way
forward, considering also that a second, basic in-house DGTD code solving two-dimensional (TM)
Maxwell’s equations, was available.
Working on the latter solver has actually demanded to implement from scratch numerous key
features that were already available in DIOGENeS, such as: the upwind flux (3.33), RK/LSRK
schemes, a Total Field / Scattered Field (TFSF) apparatus (introduced in Section 5.1), Fourier
analysis, and reading an arbitrary unstructured mesh.

In the end, handling the latter task alongside with the core one has been challenging enough
to confine the project to the two-dimensional environment. This might seem a drawback at first
glance, but overall the experience has been quite valuable from an educational standpoint and
has indeed served to the original purpose of setting the guidelines for a future three-dimensional
implementation.

This chapter is organized as follows. The first section introduces the numerical formulation of
the system in two dimensions. The second section presents an itinerary of test cases, from the
elementary building blocks (Maxwell’s equations, advection, diffusion) to the final MDD equations.
Over the course of the project, each test has entailed code verification, e.g. by means of convergence
analysis; the three most relevant and representative cases have been selected, and the respective
simulation results are proposed in the third section along with the criteria behind their designation.1

1A choice has been made to illustrate the whole repertoire of test cases in Section 4.2, rather than restrict the
attention to those selected in Section 4.4, the rationale being to set a reference for an implementation in three
dimensions. Indeed, each case can be easily generalized to the latter framework.
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4.1 Two-dimensional formulation

An important point to discuss when considering dimension reduction is the choice of a TE model
versus a TM one. From a mathematical standpoint, the TE model is preferable because it has
been the object of studies on existence and uniqueness (e.g. [Joc98]) while no references on the
TM counterpart have been found in the literature. From a physical standpoint, having only one
component of the electric field would limit charge transport to one direction and spatial variable,
thereby making it impossible to simulate any geometry of practical interest. For example, it is
apparent that a photo-conductive antenna requires (at least) two-dimensional charge and electric
field distributions.

Having established the importance of the TE model, we proceed to its derivation and numerical
resolution. This section presents the DGTD formulation in two-dimensions, while Section 4.2 is
devoted to verifying the corresponding solver.
The two-dimensional TE version of (2.1) is derived by setting Ez = Hx = Hy = αz = βz = 0,
n̂il = [nxil n

y
il 0].

−µ ∂tHz = ∂xEy − ∂yEx,

ε ∂t

[
Ex
Ey

]
=

[
∂yHz

−∂xHz

]
− qµnn

[
Ex
Ey

]
− qDnα − qµpp

[
Ex
Ey

]
+ qDpβ,

∂tn = ∇ ·
(
µnn

[
Ex
Ey

]
+Dnα

)
+G−R,

∂tp = −∇ ·
(
µpp

[
Ex
Ey

]
−Dpβ

)
+G−R,

α = ∇n,
β = ∇p,

in Ω× [0,+∞[,

(4.1)

where Ω is a two-dimensional set in the (x, y) plane like the one already depicted in Figure 2.1. As
usual, the problem is mathematically closed with initial and boundary conditions:

E(x, y, 0) = E0(x, y) (x, y) ∈ Ω̄,

Hz(x, y, 0) = Hz0(x, y) (x, y) ∈ Ω̄,

n(x, y, 0) = n0(x, y) (x, y) ∈ Ω̄,

p(x, y, 0) = p0(x, y) (x, y) ∈ Ω̄,

n(x, y, t) = nD(x, y) (x, y, t) ∈ ΓD × [0,+∞[,

p(x, y, t) = pD(x, y) (x, y, t) ∈ ΓD × [0,+∞[,

nxEy(x, y, t)− nyEx(x, y, t) = 0 (x, y, t) ∈ ΓD × [0,+∞[,

n̂ ·
(
nµnE(x, y, t) +Dnα(x, y, t)

)
= 0 (x, y, t) ∈ ΓN × [0,+∞[,

n̂ ·
(
pµpE(x, y, t)−Dpβ(x, y, t)

)
= 0 (x, y, t) ∈ ΓN × [0,+∞[,

Hz(x, y, t) = HzN (x, y, t) (x, y, t) ∈ ΓN × [0,+∞[.

(4.2)
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To obtain the semi-discrete DG formulation we can refer to (3.74) and again set Ez = Hx =
Hy = αz = βz = 0, n̂il = [nxil n

y
il 0]. Then, we take v̂ = ẑ in the first equation of (3.57) and

v̂ = x̂, ŷ in the second one, as well as in (3.59).
To ease the task we make use of some preliminary identities.

E · ẑ×∇φ = E ·

−∂yφ∂xφ
0

 = Ey∂xφ− Ex∂yφ,

E× n̂ · ẑ = Exny − Eynx,

(4.3)

−

 0
0
Hz

 · x̂×∇φ = −

 0
0
Hz

 ·
 0
−∂zφ
∂yφ

 = −Hz∂yφ,

 0
0
Hz

× n̂ · x̂ = Hz

−nynx

0

 · x̂ = −Hzny,

(4.4)

−

 0
0
Hz

 · ŷ ×∇φ = −

 0
0
Hz

 ·
 ∂zφ

0
−∂xφ

 = Hz∂xφ,

 0
0
Hz

× n̂ · ŷ = Hz

−nynx

0

 · ŷ = Hznx.

(4.5)

The semi-discrete DG formulation of TE Maxwell’s equations reads

di∑
j=1

∂Hz
ij

∂t

∫
Ki

µ φijφik = +

di∑
j=1

Eyij

∫
Ki

φij
∂

∂x
φik − Exij

∫
Ki

φij
∂

∂y
φik

+
∑
l∈Ni

( di∑
j=1

YiE
x
ijn

y
il − YiE

y
ijn

x
il − αHz

ij

Yi + Yl

∫
ail

φijφik

+

dl∑
g=1

YlE
x
lgn

y
il − YlE

y
lgn

x
il + αHz

lg

Yi + Yl

∫
ail

φlgφik

)
,

(4.6)

di∑
j=1

∂Exij
∂t

∫
Ki

ε φijφik = −
di∑
j=1

Hz
ij

∫
Ki

φij
∂

∂y
φik

+
∑
l∈Ni

( di∑
j=1

−ZiHz
ijn

y
il + α[Exij − nxil(n̂il ·Eij)]

Zi + Zl

∫
ail

φijφik

+

dl∑
g=1

−ZlHz
lgn

y
il − α[Exlg − nxil(n̂il ·Elg)]

Zi + Zl

∫
ail

φlgφik

)
−
∫
Ki

(Jxni + Jxpi) φik,

(4.7)
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di∑
j=1

∂Eyij
∂t

∫
Ki

ε φijφik = +

di∑
j=1

Hz
ij

∫
Ki

φij
∂

∂x
φik

−
∑
l∈Ni

( di∑
j=1

ZiH
z
ijn

x
il + α[Eyij − n

y
il(n̂il ·Eij)]

Zi + Zl

∫
ail

φijφik

+

dl∑
g=1

ZlH
z
lgn

x
il − α[Eylg − n

y
il(n̂il ·Elg)]

Zi + Zl

∫
ail

φlgφik

)
−
∫
Ki

(Jyni + Jypi) φik.

(4.8)

Finally, we write the semi-discrete DG formulation of the whole TE system, including dispersion
(with the abbreviation v = x, y when possible). On an element Ki ⊂ Ω we have

Mµ
i

Hz
i

∂t
= Kx

i E
y
i −Ky

iE
x
i +

∑
l∈Ni

Sil
YiE

x
i n

y
il − YiE

y
i n

x
il − αHz

i

Yi + Yl

+
∑
l∈Ni

S∗il
YlE

x
l n

y
il − YlE

y
l n

x
il + αHz

l

Yi + Yl
,

Mε
i

Ex
i

∂t
= −Ky

iH
z
i −

∑
l∈Ni

Sil
−ZiHz

in
y
il + α[Ex

i − nxil(n̂il ·Ei)]

Zi + Zl

−
∑
l∈Ni

S∗il
−ZlHz

l n
y
il − α[Ex

l − nxil(n̂il ·El)]

Zi + Zl
−MiJ

x
pi −MiJ

x
ni −MiJ

x
li
,

Mε
i

Ey
i

∂t
= Kx

i H
z
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∑
l∈Ni

Sil
ZiH

z
in

x
il + α[Ey

i − n
y
il(n̂il ·Ei)]

Zi + Zl

−
∑
l∈Ni

S∗il
ZlH

z
l n

x
il − α[Ey

l − n
y
il(n̂il ·El)]

Zi + Zl
−MiJ

y
pi −MiJ
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ni −MiJ
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qMi
∂ni
∂t

= −Kx
i J

x
ni −Ky

i J
y
ni +

∑
l∈Ni

Sil (Jn∗,i · n̂il) + S∗il (Jn∗,l · n̂il)− qMiRi + qMiGi,

qMi
∂pi
∂t

= Kx
i J

x
pi + Ky

i J
y
pi −

∑
l∈Ni

Sil (Jp∗,i · n̂il)− S∗il (Jp∗,l · n̂il)− qMiRi + qMiGi,

Miα
v
i =

∑
l∈Ni

Sil (n∗,i n
v
il) +

∑
l∈Ni

S∗il (n∗,l n
v
il)−Kv

ini,

Miβ
v
i =

∑
l∈Ni

Sil (p∗,i n
v
il) +

∑
l∈Ni

S∗il (p∗,l n
v
il)−Kv

ipi,

∂Pv
i

∂t
= Jvl,i,

∂Jvl,i
∂t

= ε0ω
2
pE

v
i − γJvl,i − ω2

rP
v
i .

(4.9)
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On an a metallic element Ki ⊂ ΩM ,

Mµ
i

Hz
i

∂t
= Kx

i E
y
i −Ky

iE
x
i +

∑
l∈Ni

Sil
YiE

x
i n
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y
i n

x
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i

Yi + Yl

+
∑
l∈Ni

S∗il
YlE

x
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y
il − YlE

y
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x
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Ex
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z
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∑
l∈Ni

Sil
−ZiHz

in
y
il + α[Ex

i − nxil(n̂il ·Ei)]

Zi + Zl

−
∑
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l − nxil(n̂il ·El)]
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Mε
i

Ey
i

∂t
= Kx

i H
z
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∑
l∈Ni

Sil
ZiH

z
in

x
il + α[Ey

i − n
y
il(n̂il ·Ei)]

Zi + Zl

−
∑
l∈Ni

S∗il
ZlH

z
l n

x
il − α[Ey

l − n
y
il(n̂il ·El)]

Zi + Zl
−MiJ

y
pi −MiJ

y
ni −MiJ

y
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,

∂Jvd,i
∂t

= ε0ω
2
dE

v
i − γdJvd,i.

(4.10)

We recall the expression ε = ε0ε∞ inside Mε
i in both (4.9) and (4.10), with generally different values.

Finally, Ki ⊂ Ωe \ (ΩM ∪ Ω) is omitted as it is a sub-case of (4.10) with Jvd,i = 0 and ε = ε0εr.
Analogously to the three-dimensional case, the above formulation is meant to be coupled with an
explicit Runge-Kutta time-stepping scheme.

4.2 Code verification

There are three crucial tasks in the development of a DG solver for the MDD model: the imple-
mentation of the semiconductor equations, the coupling with Maxwell’s equations in a bounded
domain, the extension to a scattering problem. The process is broken down into elementary steps,
which are outlined below.2

The sequence begins in the first subsection with test cases admitting analytical solutions: source-free
TE Maxwell’s equations, uniform advection, uniform diffusion, uniform advection-diffusion. The
attention is restricted to electron transport in virtue of the similarity between the two semiconductor
equations. The second subsection features more complex cases, for which manufactured solutions
are considered: electron non-uniform advection-diffusion, unipolar and bipolar MDD in a bounded,
then (ideally) unbounded domain, the inclusion of DC components and a simple field-dependent
Poynting-like model for optical generation. The Maxwell-Lorentz system concludes the verification
flow (the Drude model being a particular case of the Lorentz one).
To keep the notation light, the AC subscript is lifted in this section so that E,H, n, p,α,β denote
the unknowns and are implicitly time-varying. Also, R := R′′. The DC subscript is retained for
the static counterparts, which are assumed to be known a priori.

2The two-dimensional formulation is referenced here but, as anticipated at the beginning of the chapter, all the
steps can be easily adapted into three dimensions.
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4.2.1 Verification with analytical solutions

We present here a sequence of test cases admitting analytical solutions and discuss relevant imple-
mentation details.

4.2.1.1 TE Maxwell’s equations

Figure 4.1: The square bounded domain Ω for the verification of source-free Maxwell’s equations.

The TE version of Maxwell’s equations in a two-dimensional source-free region Ω (Figure 4.1)
reads

∇×E = −µ∂H

∂t
,

∇×H = ε
∂E

∂t
,

H(x, y, t) =

 0
0

Hz(x, y, t)

 ,
E(x, y, t) =

Ex(x, y, t)
Ey(x, y, t)

0

 .
(4.11)

To the purpose of code verification it is assumed that Ω = [0, 1]2 is the cross section of a square
waveguide whose walls are made of a perfect electric conductor. The usual initial and boundary
conditions are

E(x, y, 0) = Ẽ(x, y, 0) (x, y) ∈ Ω̄,

H(x, y, 0) = H̃(x, y, 0) (x, y) ∈ Ω̄,

n̂×E = 0 on ∂Ω× [0,+∞[,

(4.12)

where n̂ denotes the outward unit normal vector to ∂Ω as usual.
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The problem admits analytical solutions, for example the TE11 mode

H̃(x, y, t) =

 0
0

Hnm cos(nπa x) cos(mπb y) cos(ωt)

 ,
Ẽ(x, y, t) =

−mπ
b

1
ωε Hnm cos(nπa x) sin(mπb y) sin(ωt)

nπ
a

1
ωε Hnm sin(nπa x) cos(mπb y) sin(ωt)

0

 ,
ω
√
µε =

√(nπ
a

)2
+
(mπ
b

)2
,

n = m = 1,

a = b = 1 m,

Hnm = 1
A

m
.

(4.13)

In fact, (4.13) is a particular case of the TE11 mode of a square waveguide, in that the general
expression depends on z as well, through factors describing field propagation in the latter direc-
tion. Given our interest in solutions that only depend on x, y, an elegant way to get rid of the z
dependence is by setting ω

√
µε =

√
2π2 (equivalently, f = 2π

ω ≈ 0.212 GHz), which is the cut-off
condition for the mode and hence prevents it from propagating in the waveguide [Bal12].

Noticing that (4.2) requires to enforce n̂×E|ΓD and n̂×H|ΓN , it appears more appropriate to
implement and test the non-standard conditions

E(x, y, 0) = Ẽ(x, y, 0) (x, y) ∈ Ω̄,

H(x, y, 0) = H̃(x, y, 0) (x, y) ∈ Ω̄,

n̂×E = n̂× Ẽ on ΓD × [0,+∞[,

n̂×H = n̂× H̃ on ΓN × [0,+∞[,

(4.14)

which bring the additional advantage of making (Ẽ, H̃) the exact solution even when Ω is an
arbitrary rectangle, rather than the unit square.

4.2.1.2 Diffusion (uniform diffusivity)

Let us consider the heat equation, again in the domain Ω depicted in Figure 4.1. It is known that
the equation admits analytical solutions, e.g. the 11 mode

ñ(x, y, t) = sin(πx) sin(πy) e−2Dnπ2t. (4.15)

Such a solution is imposed via the initial condition as well as Dirichlet and Neumann boundary
conditions on ΓD and ΓN respectively, where ∂Ω = ΓD ∪ ΓN as usual. The problem on which
diffusion is tested is therefore

∂
∂tn = Dn∇2n in Ω× [0,+∞[,

n(x, y, 0) = ñ(x, y, 0) (x, y) ∈ Ω ∪ ∂Ω,

n(x, y, t) = ñ(x, y, t) (x, y, t) ∈ ΓD × [0,+∞[,

n̂ · ∇n(x, y, t) = n̂ · ∇ñ(x, y, t) (x, y, t) ∈ ΓN × [0,+∞[.

(4.16)
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4.2.1.3 Advection (uniform velocity)

Figure 4.2: Test environment for uniform advection. Ω, a portion of a conceptually infinite domain,
is crossed by a Gaussian pulse of particle density. Advected particles enter (leave) from edges on
which the velocity field points inward (outward). Mathematically, an inlet/outlet is identified by
looking at the scalar product between the velocity and the outward normal.

The first test case for advection is the propagation of a Gaussian pulse across the domain Ω
(Figure 4.2) due to a uniform velocity field vn, from an initial position (x0, y0), in formulae

∂n

∂t
= −vn · ∇n in Ω× [0,+∞[,

n(x, y, 0) = ñ(x, y, 0) (x, y) ∈ Ω ∪ ∂Ω,

n(x, y, t) = ñ(x, y, t) (x, y, t) ∈ ∂Ω× [0,+∞[ such that n̂ · vn ≤ 0.

(4.17)

Dirichlet boundary conditions are imposed at inlets, which are identified by the condition n̂·vn < 0.
At outlets (n̂ · vn > 0) the numerical solution is let free, i.e. n = ni is coded on an outlet edge
belonging to element Ki. This ensures that outlets perfectly absorb particles that are set to leave
the computational domain.3

The analytical solution is

ñ(x, y, t) =
1√
2πσ

exp

(
− (x− x0 − vn · x̂ t)2 + (y − y0 − vn · ŷ t)2

2σ2

)
. (4.18)

4.2.1.4 Advection-diffusion (uniform velocity and diffusivity)

To test both advection and diffusion, we let the uniform velocity field vn advect (4.15) and obtain

ñ(x, y, t) = sin(π(x− x0 − vn · x̂ t)) sin(π(y − y0 − vn · ŷ t)) e−2Dnπ2t. (4.19)

3n̂ · vn = 0 is intentionally avoided in the simulation setup, with the idea of allowing it later, in the (more
interesting) advection-diffusion case.
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Figure 4.3: The bounded domain Ω in which uniform advection of the 11 mode of the heat equation
is tested. Dirichlet and Robin boundary conditions define two types of inlets and outlets.

On ΓD, Dirichlet boundary conditions are imposed as in (4.17); on ΓN , Robin and Neumann
boundary conditions are imposed at inlets and outlets respectively [LNX+20]. The resulting prob-
lem reads 

∂n

∂t
= −vn · ∇n+Dn∇2n in Ω× (0,+∞),

n(x, y, 0) = ñ(x, y, 0) (x, y) ∈ Ω ∪ ∂Ω,

n = ñ on ΓD × [0,+∞[ such that n̂ · vn ≤ 0,

−n̂ · vn n+ n̂ ·Dn∇n = gin on ΓN × [0,+∞[ such that n̂ · vn ≤ 0,

n̂ ·Dn∇n = gout on ΓN × [0,+∞[ such that n̂ · vn > 0,

(4.20)

where
gin = −n̂ · vn ñ+ n̂ ·Dn∇ñ,
gout = n̂ ·Dn∇ñ.

(4.21)

It is interesting to exploit this environment to separately simulate the corner cases vn = 0 and
Dn = 0. To this purpose, the eventuality n̂ ·vn = 0 needs to be included in the Dirichlet condition,
so that when vn = 0, n = ñ is imposed everywhere on ΓD and the heat equation is correctly closed.
Note that when vn 6= 0, imposing n = ñ at the points of ΓD where n̂ ·vn = 0 is harmless - it entails
no undesired injection or reflection of particles.
The issue has little relevance when it comes to ΓN , as n̂ · vn = 0 can be indifferently incorporated
at inlets or outlets because inflow and outflow boundary conditions become identical.

To numerically solve (4.20) with a DG method, an auxiliary variable α = ∇ñ is introduced
along with a dedicated equation as in (4.9). Since both the original and the auxiliary equations
feature boundary integrals of n, one could be tempted to employ inflow and outflow concepts for
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all of them; in fact, that would be incorrect in the case of the integrals appearing in the auxiliary
equations, as these stem from the way diffusion is handled in the numerical scheme and thus are
mathematical artifacts with no physical meaning. Hence we shall reason as follows.

• On ΓD, n is assigned at inlets, thus in the transport equation one should code n̂ · Jdrift with
n = ñ on such edges and take n = n|Ki at outlets, for each boundary element Ki touching
ΓD. In the auxiliary equation, the sensible choice is n|ΓD = ñ regardless of n̂ · vn because
a) this allows to have a closed problem when drift is neglected and b) no flow is defined for
diffusion.

• On ΓN , n̂ ·Jdrift is constrained at inlets and let free at outlets, thus in the transport equation
one should code n̂ · Jdrift with n = ñ at inlets and with the numerical n at outlets. There is
no boundary condition on n itself, which is therefore let free in the auxiliary equation.

The reader might have noticed at this point that the boundary conditions implemented for
code verification are flow-dependent, contrarily to the flow-independent conditions required by the
physical model and stated in (2.59). The reason lies in the wish of having the code ready for
possible future works entailing theoretically unlimited (and artificially truncated) semiconductor
devices, as well as non-Ohmic contacts.

4.2.2 Verification with manufactured solutions

We now consider more complex test cases, in which analytical resolution is tricky or unfeasible,
so that it is convenient to manufacture a solution. The procedure consists in fixing the system
of equations under test, in that a designated function is made the exact solution by introducing
fictitious source terms and enforcing suitable initial and boundary conditions.

4.2.2.1 Advection-diffusion (non-uniform velocity, uniform diffusivity)

We start by considering a non-uniform advection velocity, i.e. vn = vn(x, y, t), as depicted in Figure
4.4, while keeping Dn constant. In the test, the system has the following form:

∂n

∂t
= ∇ · (−vn n+Dn∇n) + B̃ in Ω× [0,+∞[,

n(x, y, 0) = ñ(x, y, 0) (x, y) ∈ Ω ∪ ∂Ω,

n = ñ on ΓD × [0,+∞[ such that n̂ · vn ≤ 0,

−n̂ · vn n+ n̂ ·Dn∇n = gin on ΓN × [0,+∞[ such that n̂ · vn ≤ 0,

n̂ ·Dn∇n = gout on ΓN × [0,+∞[ such that n̂ · vn > 0,

(4.22)

where ñ is the manufactured solution, for example

ñ(x, y, t) = sin(π(x− x0 − vun · x̂ t)) sin(π(y − y0 − vun · ŷ t)) e−2Dnπ2t, (4.23)

which is noticeably the analytical solution to the advection-diffusion problem seen in the previous
section with vn = vun (an arbitrary uniform velocity). Then, to make the designated function (4.23)
the exact solution to (4.22), we introduce the fictitious source

B̃ = −
(
∇ · (−vn ñ) + vun · ∇ñ

)
. (4.24)
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Figure 4.4: Test environment for non-uniform advection. The velocity field is derived from mid-
points for purely illustrative purposes – it is space-varying across the whole domain and its bound-
ary.

4.2.2.2 Unipolar Maxwell-Drift-Diffusion

On the ground of the previous case, Maxwell’s equations can be coupled to electron transport by
letting vn(x, y, t) = −µnE(x, y, t). Also, the Einstein relation Dn = VTµn is used. This novelty
is compatible with the existing manufactured solution (4.23), which is therefore retained. For the
electromagnetic field we take (4.13) and (4.14). The resulting system is

∇×E = −µ∂H

∂t
,

∇×H = ε
∂E

∂t
+ qnµnE + qDnα+ Ã,

∂n

∂t
= ∇ · (nµnE) +∇ · (Dnα) + B̃,

α = ∇n,

in Ω× [0,+∞[,

(4.25)
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E(x, y, 0) = Ẽ(x, y, 0) (x, y) ∈ Ω̄,

H(x, y, 0) = H̃(x, y, 0 (x, y) ∈ Ω̄,

n(x, y, 0) = ñ(x, y, 0) (x, y) ∈ Ω̄,

n̂×E = n̂× Ẽ on ΓD × [0,+∞[,

n̂×H = n̂× H̃ on ΓN × [0,+∞[,

n = ñ on ΓD × [0,+∞[ such that n̂ ·E ≥ 0,

n n̂ · µnE + n̂ ·Dnα = ñ n̂ · µnE + n̂ ·Dn∇ñ on ΓN × [0,+∞[ such that n̂ ·E ≥ 0,

n̂ ·Dnα = n̂ ·Dn∇ñ on ΓN × [0,+∞[ such that n̂ ·E < 0,
(4.26)

Ã = −
(
qñµnẼ + qDn∇ñ

)
,

B̃ = −
(
∇ · (µnẼ ñ) + vun · ∇ñ

)
.

(4.27)

A few remarks on (4.25-4.27) are opportune.

• n̂ ·E appears at the right-hand side of the inflow boundary condition, rather than the exact
counterpart n̂ · Ẽ, consistently with the fact that such a condition is meant to constrain n
and not the velocity.

• Inlets and outlets are now stated in terms of E, hence inlets (outlets) are those where E
points outward (inward) from ∂Ω.

• Different notations are used for the gradients of n and ñ respectively: ∇n is denoted by α
while no shorthand is introduced for ∇ñ. The aim is to keep clear that the former is unknown
while the latter is assigned.

• µn and Dn are uniform; they will vary in space when DC components are included and (2.45)
is implemented.

• Manufacturing the exact solution allows to elegantly solve the issue of assigning n̂ ×H on
ΓN , as anticipated in Section 2.1.1.

4.2.2.3 Maxwell-Drift-Diffusion

The code that implements electron transport can be reused for holes by replacing µn with −µp.
With bipolar transport in place, recombination can be introduced to couple the semiconductor
equations and the Maxwell-Drift-Diffusion system can be assembled:4

4Generation is not included here - in the development flow it was decided to test it in a later, physically realistic
picture.
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Figure 4.5: The domain Ω in which the Maxwell-Drift-Diffusion system is tested. To simplify the
figure it is assumed here that vp = E = −vn, i.e. µn = µp = 1. Note that inlets for holes are outlets
for electrons and vice versa.

∇×E = −µ∂H

∂t
,

∇×H = ε
∂E

∂t
+ qnµnE + qDnα+ qpµpE− qDpβ + Ã,

∂n

∂t
= ∇ · (nµnE) +∇ · (Dnα)−R+ B̃,

∂p

∂t
= −∇ · (pµpE) +∇ · (Dpβ)−R+ C̃,

α = ∇n,
β = ∇p,

in Ω× [0,+∞[,

(4.28)
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E(x, y, 0) = Ẽ(x, y, 0) (x, y) ∈ Ω̄,

H(x, y, 0) = H̃(x, y, 0) (x, y) ∈ Ω̄,

n(x, y, 0) = ñ(x, y, 0) (x, y) ∈ Ω̄,

p(x, y, 0) = p̃(x, y, 0) (x, y) ∈ Ω̄,

n̂×E = n̂× Ẽ on ΓD × [0,+∞[,

n̂×H = n̂× H̃ on ΓN × [0,+∞[,

n = ñ on ΓD × [0,+∞[ such that n̂ ·E ≥ 0,

n n̂ · µnE + n̂ ·Dnα = ñ n̂ · µnE + n̂ ·Dn∇ñ on ΓN × [0,+∞[ such that n̂ ·E ≥ 0,

n̂ ·Dnα = n̂ ·Dn∇ñ on ΓN × [0,+∞[ such that n̂ ·E < 0,

p = p̃ on ΓD × [0,+∞[ such that n̂ ·E ≤ 0,

p n̂ · µpE − n̂ ·Dpβ = p̃ n̂ · µpE − n̂ ·Dp∇p̃ on ΓN × [0,+∞[ such that n̂ ·E ≤ 0,

n̂ ·Dpβ = n̂ ·Dp∇p̃ on ΓN × [0,+∞[ such that n̂ ·E > 0,
(4.29)

Ã = −
(
qñµnẼ + qDn∇ñ+ qp̃µpẼ− qDp∇p̃

)
,

B̃ = −
(
∇ · (µnẼ ñ) + vun · ∇ñ− R̃

)
,

C̃ = −
(
−∇ · (µpẼ p̃) + vup · ∇p̃− R̃

)
,

(4.30)

where p̃ = ñ|vun=vup and R̃ := R(ñ, p̃).

4.2.2.4 Immersion in a bounded dielectric

With reference to the realistic environment of Figure 2.2, we introduce a new manufactured solution
for the electromagnetic field, for example a linearly polarized plane wave traveling in vacuum:

Ẽ(x, y, t) =

− sin θ
cos θ

0

E0 cos(ωt− k · r),

H̃(x, y, t) =

0
0
1

 E0

ζ0
cos(ωt− k · r),

k = k0 :=

cos θ
sin θ

0

ω√ε0µ0,

ζ0 =

√
µ0

ε0
,

(4.31)

where r denotes the position vector.
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We retain the manufactured solution to transport equations to let the fictitious sources Ã, B̃, C̃
remain those in (4.30) (up to the new expression of Ẽ).
In such a setting, we solve

∇×E = −µ∂H

∂t
+ F̃,

∇×H = ε
∂E

∂t
+ L̃,

in Ωe \ Ω × [0,+∞[,

∇×E = −µ∂H

∂t
+ F̃,

∇×H = ε
∂E

∂t
+ qnµnE + qDnα+ qpµpE− qDpβ + Ã + L̃,

∂n

∂t
= ∇ · (nµnE) +∇ · (Dnα)−R+ B̃,

∂p

∂t
= −∇ · (pµpE) +∇ · (Dpβ)−R+ C̃,

α = ∇n,
β = ∇p,

in Ω× [0,+∞[,

(4.32)

with

F̃ = ∇× Ẽ + µ
∂H̃

∂t
= µ0(µr − 1)

∂H̃

∂t
,

L̃ = ∇× H̃− ε∂Ẽ

∂t
= ε0(1− εr)

∂Ẽ

∂t
.

(4.33)

The boundary conditions are

n(x, y, 0) = ñ(x, y, 0) (x, y) ∈ Ω̄,

p(x, y, 0) = p̃(x, y, 0) (x, y) ∈ Ω̄,

n = ñ on ΓD × [0,+∞[ such that n̂ ·E ≥ 0,

n n̂ · µnE + n̂ ·Dnα = ñ n̂ · µnE + n̂ ·Dn∇ñ on ΓN × [0,+∞[ such that n̂ ·E ≥ 0,

n̂ ·Dnα = n̂ ·Dn∇ñ on ΓN × [0,+∞[ such that n̂ ·E < 0,

p = p̃ on ΓD × [0,+∞[ such that n̂ ·E ≤ 0,

p n̂ · µpE − n̂ ·Dpβ = p̃ n̂ · µpE − n̂ ·Dp∇p̃ on ΓN × [0,+∞[ such that n̂ ·E ≤ 0,

n̂ ·Dpβ = n̂ ·Dp∇p̃ on ΓN × [0,+∞[ such that n̂ ·E > 0,

E(x, y, 0) = Ẽ(x, y, 0) (x, y) ∈ Ω̄e,

H(x, y, 0) = H̃(x, y, 0) (x, y) ∈ Ω̄e,

n̂×E = n̂× Ẽ on ΓD × [0,+∞[,

n̂×E = n̂× Ẽ or n̂×H = n̂× H̃ on Γe × [0,+∞[.
(4.34)

There are two notable differences with respect to (2.11). Firstly, ΓD has lost its physical meaning
(a perfect electric conductor) due to its incompatibility with the manufactured solution – the exact
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solution is E = Ẽ on Ω̄e and thus the code is expected to produce n̂ × E = n̂ × Ẽ 6= 0 on ΓD.
As a matter of fact this is not really an issue, as the new condition is anyhow compliant with the
fundamental requirement of verifying the code when the exact tangential component of the electric
field is enforced on some internal edges, and whether the value is zero or not is not important.
Secondly, the computational domain Ωe is precisely the physical domain, so the boundary condition
on Γe is not an ABC.
Implementation-wise, (3.33) is enforced on ΓN as this is not a boundary in the electromagnetic
problem. As to ΓD, it can be regarded as the boundary of a collapsed subset of Ωe excluded from
the computational domain – in the original problem, a perfect electric conductor – on which the
tangential component of the electric field is assigned as a boundary condition, while that of the
magnetic field is let free, that is: in the local formulation on elementKi, one takes n̂il×H∗ = n̂il×Hi

on edges that belong to ΓD.

4.2.2.5 Immersion in an infinite dielectric

To simulate electromagnetic scattering, a few adjustments to the last test case are made.
Let Γe from Figure 2.2 become the artificial truncation of a theoretically unbounded propagation
domain. We retain (4.31) as the manufactured solution, thus the fictitious sources just defined, but
under slightly different roles: Ẽ, H̃ now represent the incident field, F̃ and L̃ are meant to cancel
the scattered one.
On Γe the following Silver-Muller ABC is imposed:

n̂×E + n̂×
√
µ0

ε0
(n̂×H) = n̂× Ẽ + n̂×

√
µ0

ε0
(n̂× H̃) on Γe × [0,+∞[. (4.35)

The interpretation of (4.35) is: when the outward normal to Γe is n̂ = −k̂0 the incident plane wave
is injected into the computational domain, while when n̂ = k̂0 it is absorbed, i.e. it leaves with no
reflection.
There are two key differences to remark with respect to a real scenario.

• Since the fictitious sources cancel the scattered field, only the incident plane wave hits Γe. In
a real simulation - no exact solution available - the total field (see (2.9)) would have to be
absorbed by means of the Silver-Muller condition stated in (2.11).

• The impedance of free space
√

µ0
ε0

appears in (4.35) regardless of the medium actually filling

Ωe \ Ω. This is motivated by the fact that the field to be absorbed or injected has the
expression of a plane wave propagating in vacuum. Real ABCs would feature the impedance
of Ωe \ Ω.5

4.2.2.6 Adding DC components

The verification method can be finally applied to the simulation of a biased semiconductor de-
vice. The AC subscript is lifted for simplicity, thus E,H, n, p,α,β denote the unknowns, while
EDC ,HDC , nDC , pDC have the usual meaning. The relations (2.45) imply that µi = µi(EDC),
Di = µi VT , i = n, p, are now space-varying.

5It would be licit of course for (Ẽ, H̃) to be a plane wave traveling in a dielectric medium with ε > ε0 and/or
µ > µ0; then, such constants would appear in (4.35) instead of ε0 and µ0.
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In the expressions of ñ, p̃ used so far, Dn, Dp were uniform by definition. To make the old man-
ufactured solution work in the new picture, arbitrary uniform diffusivities Du

n, D
u
p are introduced,

yielding

ñ(x, y, t) = sin(π(x− x0 − vun · x̂ t)) sin(π(y − y0 − vun · ŷ t)) e−2Dunπ
2t,

p̃(x, y, t) = sin(π(x− x0 − vup · x̂ t)) sin(π(y − y0 − vup · ŷ t)) e−2Dupπ
2t.

(4.36)

Moreover, the simulation data are such that

vun = −µn0E
u, Du

n = µn0 VT ,

vup = µp0E
u, Du

p = µp0 VT ,
(4.37)

with an arbitrary uniform electrostatic field Eu.
The fictitious sources B̃, C̃ have now the role of canceling non-uniform drift and diffusion and
replacing them by their uniform counterparts. Initial and boundary conditions are imposed on the
sole AC quantities and are unaffected by the change in ñ, p̃, thus they retain the form (4.29) and
are not repeated.
In the end the new system is

∇×E = −µ∂H

∂t
+ F̃,

∇×H = ε
∂E

∂t
+ L̃,

in Ωe \ Ω × [0,+∞[,

∇×E = −µ∂H

∂t
+ F̃,

∇×H = ε
∂E

∂t
+ qnµn(E + EDC) + qDnα+ qpµp(E + EDC)− qDpβ

+ q nDC µnE + q pDC µpE + Ã + L̃

∂n

∂t
= ∇ · (nµn(E + EDC)) +∇ · (Dnα) + G−R

+∇ · (nDC µnE) + B̃

∂p

∂t
= −∇ · (pµp(E + EDC)) +∇ · (Dpβ) + G−R

−∇ · (pDC µpE) + C̃

α = ∇n,
β = ∇p,

in Ω× [0,+∞[.

(4.38)
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Ã = −
(
q ñ µn(Ẽ + EDC) + qDn∇ñ+ q p̃ µp(Ẽ + EDC)− qDp∇p̃

+ q nDC µnẼ + q pDC µpẼ

)
,

B̃ = −
(
∇ ·
[
ñ µn(Ẽ + EDC)

]
+∇ · (nDCµnẼ)

+∇ · (Dn∇ñ) + vun · ∇ñ−Du
n∇2ñ + G̃− R̃

)
,

C̃ = −
(
−∇ ·

[
p̃ µp(Ẽ + EDC)

]
−∇ · (pDCµpẼ)

+∇ · (Dp∇p̃) + vup · ∇p̃−Du
p∇2p̃ + G̃− R̃

)
.

(4.39)

The meaning of G and G̃ demands clarification – the point is that (4.39) is common to two
consecutive but quite different stages of the verification flow.

• The one in this section, which concludes a sequence of tests on the MDD system with no
generation, in temporary geometrical and physical frameworks, different from the final ones;
the opaque G’s are set to zero.

• The one in the next section, in which the same equations are tested in a realistic geometrical
and physical environment; the opaque G’s are implemented.

In the end, opacity here simply avoids rewriting long formulae with minor changes.

The DC quantities being known a priori, they should be assigned in order to test the code. For
example, as a simple debug test, Gaussian electrostatic field and linear charge densities have been
considered:

g(x, y) := −
(x− x0,DC)2 + (y − y0,DC)2

2σ2
DC

,

∂g

∂x
= −

x− x0,DC

σ2
DC

,
∂g

∂y
= −

y − y0,DC

σ2
DC

,

EDC =
exp(g)√
2πσ2

DC

[
1
1

]
,

∂

∂x
EDC = EDC

∂g

∂x
,

∂

∂y
EDC = EDC

∂g

∂y
,

nDC(x, y) = pDC(x, y) = x− y + 1,

αDC(x, y) = βDC(x, y) =

[
1
−1

]
,

(4.40)

the rationale being to ensure that the totality of the terms appearing in the unfolded expressions
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of B̃ and C̃ be activated:

B̃ = vun · ∇ñ+Du
n∇2ñ−∇ñ · (E + EDC) µn −∇µn · (E + EDC) ñ−∇ · (E + EDC) µn ñ

−∇Dn · ∇ñ−Dn∇2ñ−∇nDC ·E µn −∇µn ·E nDC −∇ ·E µn nDC − G̃+ R̃,

C̃ = −vup · ∇p̃+Du
p∇2p̃+∇p̃ · (E + EDC) µp +∇µp · (E + EDC) p̃+∇ · (E + EDC) µp p̃

−∇Dp · ∇p̃−Dp∇2p̃+∇pDC ·E µp +∇µp ·E pDC +∇ ·E µp pDC − G̃+ R̃.

(4.41)

The Caughey-Thomas model (2.45) was considered for mobility with βn = βp = 1/2, along with
the Einstein relations to define diffusivity, so that

∇µn = − µ3
n0

v2
n,sat

[
1 +

(
||E|| µn0

vn,sat

)2 ]− 3
2

∇E E,

∇Dn = VT∇µn,
(4.42)

with ∇E denoting the Jacobian matrix of E.

4.2.3 Towards a physically meaningful setting

Figure 4.6: A bounded semiconductor domain Ω = [xsc, xsc+a]× [ysc, ysc+b] surrounded by Ωe, the
truncation of a theoretically infinite dielectric medium. For illustration purposes, the propagation
direction of (Ẽ, H̃) is assumed parallel to the x axis; therefore, the wave is injected from the western
wall of Γe and absorbed by the eastern one.

We wish now to consider a more realistic setting for our tests, with the aim of preparing the
ground for THz PCA simulation. To this purpose, space, time and frequency are scaled, realistic
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values are set for physical parameters and the photo-generation function is finally introduced.
However, the plan may not be fully compatible with the wish to track an exact solution – the issue
is highlighted below.

The geometry under test is depicted in Figure 4.6 with Ω = [xsc, xsc +a]× [ysc, ysc + b], and the
assumption that a, b measure a few µm.
Physical parameters are set in agreement with a typical material of interest, e.g. LT-GaAs [MPG+14]:

µn0 = 8000 cm2 V−1 s−1, µp0 = 400 cm2 V−1 s−1,

Dn0 ≈ 208 cm2 s−1, Dp0 ≈ 10 cm2 s−1,

ni = 9× 106 cm−3, CAn = CAp = 7× 10−30 cm6 s−1,

τn = 0.3 ps, τp = 0.4 ps,

n1 = 4.5× 106 cm−3, p1 = n2
i /n1,

(4.43)

For simplicity, static quantities are assumed uniform and such that nDC = ni = pDC . The
electrostatic field is such that ||EDC || ∼ 106 V m−1 so that carrier mobility can legitimately be
assumed independent of Ẽ. For example, EDC = (−0.5,−1.0, 0)× 106 V m−1.

Given the interest in pulsed excitation, the new manufactured electromagnetic field has the
form

τ = t− t0 −
k0 · r
ω

,

G(τ) = E0 exp

(
− τ2

2σ2
t

)
,

Ẽ(x, y, t) =

− sin θ
cos θ

0

G(τ) cos(ωτ),

H̃(x, y, t) =

0
0
1

 G(τ)

ζ0
cos(ωτ),

(4.44)

with

E0 = 104 V m−1, λ =
2π

ω
= 800 nm,

t0 = 3× 10−13 s, σt = 8× 10−14 s.
(4.45)

Space modulation might be considered as well, but this would add complexity to L̃, F̃ without
making tests any more probative.6 Also, the angle of incidence (the propagation direction k̂) is not
relevant as scattering is still suppressed by the fictitious sources.

Manufactured charge densities (4.36) serve well independently of domain coordinates as long as
they are enforced by initial and boundary conditions; however some scaling is necessary to make
them appreciably evolve in the new spatial and temporal framework. For example we take the 11
mode of the heat equation in [0, a]× [0, b].7

6An advantage of (4.44) is that it still is an analytical solution to Maxwell’s equations in vacuum – it wouldn’t be
if space modulation were introduced.

7For simplicity we set xsc = 0 = ysc in the manufactured solution with no loss of generality – the functions comply
with the key requirement of witnessing evolution in space and time, and they solve the problem thanks to fictitious
sources and to the enforcement exerted by initial and boundary conditions.
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To get closer to the underlying physics it is sensible to let the uniform velocity be proportional to
a uniform static electric field via the low-field mobility; also, the uniform diffusivity is taken equal
to the low-field diffusivity D0 = VTµ0. As a result,

ñ(x, y, t) = sin

(
π

a
(x− x0 + µn0E

u · x̂ t)

)
sin

(
π

b
(y − y0 + µn0E

u · ŷ t)

)
× exp

(
−Dn0

[(π
a

)2
+
(π
b

)2
]
t

)
,

p̃(x, y, t) = sin

(
π

a
(x− x0 − µp0Eu · x̂ t)

)
sin

(
π

b
(y − y0 − µp0Eu · ŷ t)

)
× exp

(
−Dp0

[(π
a

)2
+
(π
b

)2
]
t

)
.

(4.46)

The uniform electric field should be strong enough to make the waveforms ñ, p̃ travel distances
comparable with the device size within the illumination window, which is in the order of 2t0. The
simplest choice is Eu = EDC .

An instantaneous photo-generation model inspired to (2.21) is considered at this stage, in which
dispersion is not yet in the game:

G(x, y, z, t) =
α

~ω
||E(x, y, z, t)||2

2ζ0
. (4.47)

Even if not physically rigorous, such a model is probative – it is instantaneous and field-dependent,
and allows to highlight the core issue of this subsection.
Looking for example at electrons, the transport equation has the form

∂n

∂t
= . . .+G− G̃ = . . .+

α

2 ζ0 ~ ω

(
||E||2 − ||Ẽ||2

)
. (4.48)

Given that ζ0 ≈ 377 Ω and ~ω ∼ 1019 J for λ = 800 nm, if α ∼ µm−1 [MPG+14], it turns out
that a factor as high as 1022 (m J Ω)−1 amplifies the difference between the squared norms of the
numerical and the exact electric field. Hence G− G̃ becomes a gigantic, undesired source term that
a) strongly pulls n away from ñ (and towards overflow) throughout the whole illumination window
and b) is impossible to annihilate with any realistic interpolation order and mesh size.

A spontaneous fix could be to also consider a physically meaningful value for ñ, possibly an
amplitude much larger than max(|G− G̃|), but that would only lift the problem from an equation
to land it into another, namely

∇×H = . . .+ nµnE− ñµnẼ ≈ . . .+ ñµn

(
E− Ẽ

)
, (4.49)

with a new unbearable amplification, this time of E − Ẽ. Alternatively, one could opt for a

normalization like G−G̃
G̃

stemming from a legitimate interest in the relative - rather than absolute
- error on the field, but division by a Gaussian function is not convenient. The same philosophy
actually suggests a simpler, viable option: multiplying G−G̃ by an attenuation factor, i.e. replacing
G− G̃ by ξ (G− G̃) for some ξ.
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To highlight the effects of ξ, let us consider a fixed geometrical and parametric setting, ideally
in the drift-only limit, so that it is possible to monitor the relative error

||n− ñ||L2(Ω)

||ñ||L2(Ω)
, (4.50)

which becomes uninteresting in the presence of diffusion (the denominator asymptotically tends to
zero).8

Figure 4.7: The unstructured mesh used to observe the effects of different orders of magnitude
of the generation function. In green, the semiconductor domain Ω = [−4.8, 4.8] × [−1.6, 1.6] µm,
bounded by ∂Ω = ΓN . In orange, the surrounding dielectric, terminated with ABCs at 0.8 µm
from ∂Ω.

For example, based on the physical setting (4.43-4.45), we let Ω = [−a, a]× [−b, b], a = 4.8 µm
and b = 1.6 µm, ∂Ω = ΓN (electrically insulating boundary).
A non-uniform mesh (Figure 4.7) is generated with h = 0.05 µm inside Ω and h = 0.1 µm at the
boundary of the computational domain Γe, which lies at a distance of one wavelength (0.8 µm)
from the semiconductor.
Time discretization relies on a RK2 scheme with ∆t = 4.5× 10−14 s; linear Lagrange polynomials
are used for discretization in space.

Figure 4.8 illustrates the evolution of the relative error (4.50) throughout the simulation time
[0, 2t0] for different values of an attenuation factor ξ multiplying G−G̃. A strong increase is observed
in the interval [0, t0] in which the electromagnetic field arises and reaches its peak (t = t0); from
this time on, the field fades out and the error settles to a constant value. This suggests that if the
field was still monochromatic, rather than pulsed, the error would keep growing at such a rapid
rate. Tests have led to conclude that with the current set of parameters the generation function
needs to be attenuated by at least 10−19 to keep (4.50) below 5%.

It should be noted that the tests on G were run with DC components switched off, as these
can generate stability issues as well. Indeed, repeating the above analysis for nDC and pDC would
lead to the need for attenuation factors. The details would be redundant and are therefore omitted

8As usual, observing n entails no loss of generality – similar conclusions can be drawn on p.
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Figure 4.8: The electromagnetic pulse (re-scaled for illustration purposes) and the resulting evolu-
tion in [0, t0] of the relative error on electron concentration (4.50) for different orders of magnitude
of ξ(G − G̃), set by means of the attenuation factor ξ. The error settles to a constant value after
the generation peak t = t0.

– the discussion is concluded by elaborating on the nature of such instability. For example, the
electron transport equation has the form

∂n

∂t
= . . .+∇ ·

(
nDCµnE)−∇ ·

(
nDCµnẼ)

= . . .+ ni ∇ ·
(
µnE− µnẼ).

(4.51)

Then, retaining the setting nDC = ni, with a typical value of the order of 106 cm−3 = 1012 m−3 in
GaAs, the divergence of the deviation vn,drift − ṽn,drift is likely to be unbearably amplified unless
artificially attenuated.

Simulation results for this test case, with both drift and diffusion and suitable attenuation
factors for G− G̃, nDC , pDC are shown in Section 4.4.
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4.2.4 Verifying dispersion models

In the context of semiconductor simulation, dispersion logically comes in the game after optical
generation. The polarization current appears as a source in charge continuity equations, but is af-
fected by them via the electric field, hence indirectly. The key point is that the auxiliary differential
equations describe the dielectric response of the medium regardless of its nature (a metal, a semi-
conductor or an insulator). Thus, to embed dispersion in the verification flow, n and p don’t need
to be calculated - it suffices to just simulate Maxwell’s equations and the Lorentz ones. Moreover,
there is no need to consider the Drude model as it is a simpler sub-case of the tested one.

To investigate the interaction of a E,H with Jl,P at optical frequencies, we consider an ar-
tificially truncated dispersive semiconductor regarded as a dielectric (i.e. with no DD equations)
and let the manufactured electromagnetic solution be the monochromatic plane wave (4.31) with
ω = ω̃ = 2π/λ, λ = 800 nm, k0 = ω̃

√
ε0µ0. The computational domain can be as simple as a

square Ωe = [−λ, λ]2, terminated with the ABCs (4.35), and discretized with a uniform structured
mesh.
Fixing an exact solution for E allows to calculate P and Jl analytically; to this purpose it is
convenient to deal in terms of the complex electric susceptibility

χ(ω) =
ω2
p

ω2
r − ω2 + iωγ

= χ′(ω)− jχ′′(ω), (4.52)

with

χ′(ω) = ρ(ω)(ω2
r − ω2), χ′′(ω) = ρ(ω) ωγ, (4.53)

ρ(ω) :=
ω2
p

(ω2
r − ω2)2 + ω2γ2

, (4.54)

and to define
E0 = (− sin θ, cos θ, 0) E0,

E(r, t) = cos(ω̃t− k0 · r),
(4.55)

so that the exact electric field is rewritten as

Ẽ(r, t) = E0E(r, t). (4.56)

The exact polarization density is then:9

P̃(r, t) = F−1

[
P̃(r, ω)

]
= F−1

[
ε0χ(ω) Ẽ(r, ω)

]
= ε0E0 F−1

[
χ(ω) E(r, ω)

]
. (4.57)

Dirac delta function’s properties and hermiticity of χ(ω) allow to easily calculate the inverse Fourier

9For the purpose of readability, in these calculations the initial notation P(r, ω) := F[P](r, ω) is simplified and
the Fourier transform of P(r, t) is implicitly denoted by P(r, ω). Similarly for scalar quantities.
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transform

F−1

[
χ(ω) E(r, ω)

]
= F−1

[
χ(ω) 2π

δ(ω − ω̃) e−ik0·r + δ(ω + ω̃) eik0·r

2

]
= F−1

[
χ(ω̃) 2π

δ(ω − ω̃) e−ik0·r

2

]
+ F−1

[
χ(−ω̃) 2π

δ(ω + ω̃) e+ik0·r

2

]
=

[
χ(ω̃)

ei(ω̃t−k0·r)

2

]
+

[
χ∗(ω̃)

e−i(ω̃t−k0·r)

2

]
= 2Re

{
χ(ω̃)

ei(ω̃t−k0·r)

2

}
= χ′(ω̃) cos(ω̃t− k0 · r) + χ′′(ω̃) sin(ω̃t− k0 · r).

(4.58)

In the end, the analytical solution to the dispersion equations is

P̃(r, t) = ε0E0

[
χ′(ω̃) cos(ω̃t− k0 · r) + χ′′(ω̃) sin(ω̃t− k0 · r)

]
,

J̃l(r, t) =
∂P̃

∂t
= ω̃ ε0E0

[
χ′′(ω̃) cos(ω̃t− k0 · r)− χ′(ω̃) sin(ω̃t− k0 · r)

]
,

(4.59)

and the assembled model reads

∇×E = −µ∂H

∂t
+ F̃,

∇×H = ε
∂E

∂t
+ Jl + L̃− J̃l,

∂P

∂t
= Jl,

∂Jl
∂t

= ε0ω
2
pE− γJl − ω2

rP,

in Ωe × [0,+∞[,

(4.60)

E(x, y, 0) = Ẽ(x, y, 0) (x, y) ∈ Ω̄e,

H(x, y, 0) = H̃(x, y, 0) (x, y) ∈ Ω̄e,

P(x, y, 0) = P̃(x, y, 0) (x, y) ∈ Ω̄e,

Jl(x, y, 0) = J̃l(x, y, 0) (x, y) ∈ Ω̄e,

(4.61)

and is closed with the absorbing condition (4.35) on the boundary of the computational domain
Γe = ∂Ωe. The fictitious sources F̃, L̃ are precisely those in (4.33) and their role is to cancel the
scattered field; however an extra term is needed here to complete the task, namely −J̃l in the
Ampère-Maxwell law. No fictitious sources are needed in the dispersion equations of course, as
these are solved analytically.

Following the discussion from the previous section, the order of magnitude of γ, ωr, ωp is to
be carefully monitored. Looking at ωp, for example the key fact is that (4.59) analytically solves
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the equations as long as E = Ẽ, which is only approximately true. The consequences can be
immediately grasped if ∆E := E− Ẽ is introduced in the last equation of (4.60):

∂Jl
∂t

= ε0ω
2
pẼ− γJl − ω2

rP + ε0ω
2
p∆E. (4.62)

The numerical error on the electric field behaves as an additional, undesired source, and drifts
(4.59) off target – the actual exact solution to the dispersion equations changes (and becomes un-
known). Assigning realistic values to ωp exacerbates the effect, as these can easily be in the order
of 1017 rad/s. Similar effects can be observed when tuning the state terms γJl, and ω2

rP.

It should be noted that the aforementioned effects stem from an inherent pitfall to tests in
which an exact solution needs to be tracked, and will disappear when simulating real scenarios.
The point is further discussed in the Section 4.4.

4.3 Measurement units in the implementation

The implemented DGTD solver follows usual conventions, that can be found for example in [Koe11]
and [Viq18], and are applied in the DIOGENeS software [Atl], which make µ0 and ε0 implicit in
Maxwell’s equations by a suitable change in units. The procedure is outlined below and extended
to the DD model.
Bearing in mind the identities

ζ0 =

√
µ0

ε0
c0 =

√
1

µ0ε0
ζ0c0 =

1

ε0

ζ0

c0
= µ0, (4.63)

and defining
E = E, H = ζ0H, t = c0t, (4.64)

Maxwell’s equations are modified as follows:

∇×E = −µr
ζ0

c0

∂H

∂t
⇐⇒ ∇×E = −µr

∂H

∂t
,

∇×H = εr
1

ζ0c0

∂E

∂t
+ Jn + Jp + Jl ⇐⇒ ∇×H = εr

∂E

∂t
+ ζ0

(
Jn + Jp + Jl

)
,

(4.65)

where as usual
Jn = Jn,drift + Jn,diff = qnµnE + qDnα,

Jp = Jp,drift + Jp,diff = qpµpE− qDpβ.
(4.66)

The transformation is convenient computation-wise as it avoids multiplication by µ0 = 4π × 10−7

H/m and ε0 ≈ 8.854× 10−12 F/m at each iteration, whereas multiplying by ζ0 ≈ 377 Ω is less of a
concern.

To extend the change in units to the DD equations we start by introducing t, which yields

∂n

∂t
=

1

c0

(
1

q
∇ · Jn +G−R

)
= ∇ ·

(
n
µn
c0

E +
Dn

c0
α

)
+
G−R
c0

,

∂p

∂t
=

1

c0

(
− 1

q
∇ · Jp +G−R

)
= −∇ ·

(
p
µp
c0

E +
Dp

c0
β

)
+
G−R
c0

.

(4.67)
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At this point the currents appear divided by c0 (and also by q ≈ 1.602 × 10−19 C) in the DD
equations and multiplied by ζ0 in Maxwell’s equations. Taking advantage of the fact that q does
not play any role in the former, we set

q = ζ0c0 q =
q

ε0
≈ 1.81× 10−8 V m. (4.68)

The resulting system, reads

∇×E = −µr
∂H

∂t
,

∇×H = εr
∂E

∂t
+ qnµnE + qDnα+ qpµpE− qDpβ + Jl,

∂n

∂t
= ∇ ·

(
nµnE +Dnα

)
+G−R,

∂p

∂t
= −∇ ·

(
pµpE−Dpβ

)
+G−R,

α = ∇n,
β = ∇p,

(4.69)

with
E = E, H = ζ0H,

t = c0t, q =
q

ε0
,

µn =
µn
c0
, Dn =

Dn

c0
,

µp =
µp
c0
, Dp =

Dp

c0
,

G =
G

c0
, R =

R

c0
.

(4.70)

The procedure is easily extended to initial and boundary conditions, as well as to the numerical
flux.

When including the fictitious sources encountered in Section 4.2, the equations become

∇×E = −µr
∂H

∂t
+ F̃,

∇×H = εr
∂E

∂t
+ qnµnE + qDnα+ qpµpE− qDpβ + Ã + L̃,

∂n

∂t
= ∇ ·

(
nµnE +Dnα

)
+G−R+ B̃,

∂p

∂t
= −∇ ·

(
pµpE−Dpβ

)
+G−R+ C̃,

α = ∇n,
β = ∇p,

(4.71)
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where
Ã = Ã(q, µn, µp, Dn, Dp)

B̃ = B̃(µn, Dn)

C̃ = C̃(µp, Dp)

F̃ = F̃, as µ0 =
ζ0

c0
,

L̃ = ζ0L̃, as ε0ζ0 =
1

c0
,

(4.72)

and the manufactured solution becomes H̃ = ζ0H̃.
Moving to the Lorentz model (2.29), the introduction of t and Jl yields

ζ0c0
∂P

∂t
= Jl,

∂Jl
∂t

=
ζ0

c0
ε0ω

2
pE−

γ

c0
Jl −

ζ0

c0
ω2
rP,

(4.73)

and therefore
∂P

∂t
= Jl,

∂Jl
∂t

= ω2
pE− γJl − ω2

rP,

(4.74)

with
P = ζ0c0P, ω =

ω

c0
, γ =

γ

c0
, (4.75)

which transform the manufactured solution into P̃ = ζ0c0P̃ and J̃l = ζ0J̃l.
The real-time generation function can be written in the new terms as

G =
γ

ε0ω2
p

||Jl||2

hν0
=

γ

ε0ω2
p

||Jl||2

hν0

1

c0ζ2
0

=
γ

ω2
p

||Jl||2

hν0

1

ζ0
, (4.76)

having used the identity ζ0c0 = ε−1
0 in the last equality. Then, the expression of G is

G =
G

c0
=

γ

ω2
p

||Jl||2

hν0

1

c0ζ0
. (4.77)

The expression of the test generation function is simply:

G =
G

c0
=

α

2ζ0c0

||E||2

hν0
. (4.78)

A comparison between the old and the new units is shown in Table 4.1.
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Quantity Original units Implemented units

t s m
ω rad s−1 rad m−1

γ s−1 m−1

q C V m
E V/m V/m
H A/m V/m
J A m−2 V m−2

P C m−2 V m
n, p m−3 m−3

µn, µp m2 V−1 s−1 m V−1

Dn, Dp m2 s−1 m
R,G m−3 s−1 m−4

Table 4.1: Original and implemented measurement units

4.4 Simulation results

In this section we present simulation results for three milestones identified in the verification process
illustrated in Section 4.2:

• the MDD model (4.28)-(4.29) of Section 4.2.1;

• the Maxwell-Lorentz model of Section 4.2.4;

• the MDD model of Section 4.2.3.

The choices stem from the following considerations.

At the implementation stage, convergence analyses have been run on each test case presented
in Sections 4.2.1 and 4.2.2. Out of all such cases, the MDD model (4.28)-(4.29) of Section 4.2.1 can
be considered the milestone, as it represents the turning point between individual tests on elemen-
tary building blocks (Maxwell’s equations, advection, diffusion) and global ones, on the assembled
system. For this reason, the convergence results obtained in its verification are representative of
those emerged from the elementary bricks, and are proposed in this section.

A similar analysis has been carried out on the Maxwell-Lorentz model of Section 4.2.4, whose
relevance is not only due to the introduction of dispersion but also to the different structure of
the electromagnetic problem – the MDD model (4.28) entails low-frequency stationary waves in
a bounded domain, while in (4.60) the field is a plane wave oscillating at optical frequencies and
propagating in an artificially truncated domain (ABCs are applied).

To the purpose of convergence analysis, uniform structured meshes are considered and multiple
simulations for decreasing values of the mesh size h (and a fixed simulation time [0, tf ]) are per-
formed. With reference to a particular unknown, for each point m in the sequence of meshes, the
evolution of the L2 error E(m) with respect to the exact solution is recorded. Then, between two
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successive simulations m and m+ 1 the numerical order of convergence is evaluated as:

Orderm+1
m

=

log

 max
t∈[0,tf ]

E(m)

max
t∈[0,tf ]

E(m+1)


log

(
hm
hm+1

) .

The time step ∆t is a function of h through the condition (3.102) in the MDD case and through
the classical CFL condition (3.97) in the Maxwell-Lorentz case.

To conclude, we highlight the relevance of the MDD system of Section 4.2.3. With its physically
meaningful time/space scales and model parameters (up to attenuation factors for generation and
DC electron/hole distributions), aiming at reproducing a scattering problem at optical frequencies,
it has paved the way for actual device simulation. In the proposed results, the evolution of the nu-
merical solution is observed throughout the simulation time and compare it to its exact counterpart;
also, the L2 norm of each unknown is monitored to check stability.

4.4.1 Maxwell-Drift-Diffusion at low frequencies

The simulation results related to the model (4.28) of Section 4.2.2.3 are presented below.

This test case does not aim at reproducing a physical meaningful picture, hence it is assumed that
µn = µp = 10, Dn = Dp = 10VT ; similarly, recombination parameters are simply τn = τp = n1 =
p1 = CAn = CAp = 10. In this setting the two drift-diffusion equations are identical up to a sign –
for example, we restrict the attention to electrons.

The computational domain Ω = [0, 1]2 depicted in Figure 4.5 is discretized with a uniform structured
mesh with M points per side and simulations are run for M = 21, 31, 41, 51, 61. For each value,
linear and quadratic interpolation are tested.

An explicit RK2 scheme is considered with the stability condition given by (3.102), which fixes the
maximum stable time step ∆t as a function of h – stable choices of the constants are Cap = 0.26

and Cdp = 0.04 for linear interpolation, Cap = 0.1 and Cdp = 0.01 for quadratic interpolation.

Following Section 3.1.1.5, we take the fully upwind flux (3.33) for Maxwell’s equations, the local
Lax-Friedrichs flux defined in (3.49)-(3.50)-(3.51) for drift currents, and the alternate flux (3.43)
for the diffusive part of the equations with b = 1 and w = [1, 1].

It is important in the simulations to keep track of the electromagnetic energy

WEM =

∫
Ωe

ε||E||2 + µ||H||2, (4.79)

and the norms
Wn = ||n||L2(Ω), Wp = ||p||L2(Ω). (4.80)

Indeed, since the exact solution to Maxwell’s equations (4.13) is a mode of a cavity resonator, a
stable simulation requires the electromagnetic energy (4.79) to be constant. On the other hand,
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Figure 4.9: Evolution of WEM and Wn, normalized to their peak values.

the exact electron concentration is (4.23) and hence stability entails (4.80) to decrease with time
as an effect of diffusion. The two behaviors are compared in Figure 4.9.10

The numerical solution is monitored by means of a probe positioned at the center of Ω; we track
α and n compared to their exact counterparts (Figure 4.10 and 4.11).

Figure 4.10: The evolution of α · x̂, α · ŷ, at the center of the computational domain. The plots
are extracted from the case of linear interpolation and M = 41.

10Note that time is multiplied by the speed of light in vacuum c0 and hence expressed in meters the plots. This
stems from the particular implementation choice outlined in Section 4.3.
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Figure 4.11: The evolution of n, at the center of the computational domain. The plot is extracted
from the case of linear interpolation and M = 41.

Convergence results are reported below, with focus on the electromagnetic field and electron
concentration. In particular, the following errors are monitored:

En = ||n− ñ||L2(Ω),

EEM = ||E− Ẽ||L2(Ω) + ||H− H̃||L2(Ω).
(4.81)

We notice from the results that for a polynomial interpolation of order p, the order of convergence
is p + 1 for the electromagnetic field and p for electron concentration.
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RK2, P1:

h Max(L2 error) Numerical order

5.7× 10−8 0.00268289 1.1016126632202712
3.8× 10−8 0.0017164 1.069410316091575
2.8× 10−8 0.00126185 1.045646079024909
2.3× 10−8 0.00099925 1.036853269407647
1.9× 10−8 0.000827132 −

Table 4.2: Convergence analysis on electron concentration – RK2, P1

Figure 4.12: Convergence rate of En – RK2, P1

Figure 4.13: Evolution of En in the considered meshes – RK2, P1
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h Max(L2 error) Numerical order

5.7× 10−8 0.00208733 2.0206584020586824
3.8× 10−8 0.000919964 2.0132566203923155
2.8× 10−8 0.00051551 2.0096462185890736
2.3× 10−8 0.000329217 2.0076563630666735
1.9× 10−8 0.000228304 −

Table 4.3: Convergence analysis on Maxwell’s equations – RK2, P1

Figure 4.14: Convergence rate of EEM – RK2, P1

Figure 4.15: Evolution of EEM in the considered meshes – RK2, P1
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h Max(L2 error) Numerical order

5.7× 10−8 2.45709× 105 3.0269863702700857
3.8× 10−8 7.20104× 106 3.022302086719277
2.8× 10−8 3.01851× 10−6 3.01867558003563
2.3× 10−8 1.53905× 10−6 3.0160466582968346
1.9× 10−8 8.88052× 10−7 −

Table 4.4: Convergence analysis on electron concentration – RK2, P2

Figure 4.16: Convergence rate of En – RK2, P2

Figure 4.17: Evolution of En in the considered meshes – RK2, P2
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h Max(L2 error) Numerical order

5.7× 10−8 5.12525× 105 3.006671921504037
3.8× 10−8 1.51449× 105 3.0052456859603374
2.8× 10−8 6.37962× 10−6 3.004303857751354
2.3× 10−8 3.26323× 10−6 3.003670332210577
1.9× 10−8 1.88718× 10−6 −

Table 4.5: Convergence analysis on Maxwell’s equations – RK2, P2

Figure 4.18: Convergence rate of EEM – RK2, P2

Figure 4.19: Evolution of EEM in the considered meshes – RK2, P2
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4.4.2 Maxwell-Lorentz at optical frequencies

We now present the results obtained in the setting of Section 4.2.4.
The physical parameters of the dispersion model are set to ωp = γ = ωr = 1, whereas the field is
based on the parameters (4.44)-(4.45).
The dispersive computational domain Ω = [−λ, λ]2, λ = 800 nm, terminated with ABCs, is dis-
cretized with a uniform structured mesh. Convergence analysis is based on four numerical settings,
namely M = 21, 41, 61, 81, where M denotes the number of points per side of the mesh.
Time is discretized with the explicit schemes LSRK2 with linear and quadratic interpolation, and
LSRK45 with quadratic interpolation. The fully upwind flux (3.33) is considered.

At each time step, the following relative errors are recorded:

EJ,rel =
||Jl − J̃l||L2(Ω)

||J̃l||L2(Ω)

,

EEM,rel =
||E− Ẽ||L2(Ω)

||Ẽ||L2(Ω)

+
||H− H̃||L2(Ω)

||H̃||L2(Ω)

.

(4.82)

The analysis that follows show that, with the LSRK2 scheme, the asymptotic order of convergence
equal is 2 for the electromagnetic field in both the linear and the quadratic case. The convergence
order on the polarization current, on the other hand, seems to be 3 in the quadratic case and higher
than 2 in the linear one. In the LSRK45 case, the order is 3 for both the Maxwell and the Lorentz
part of the model.

It is interesting to compare these data to the analysis done in [LSV17], in which the DGTD method
with the fully upwind flux (3.33) is applied to the Maxwell-Lorentz model in a perfectly electric
conducting cavity, with RKn time integration and polynomial interpolation of order p.
The scheme is shown to converge as O(dtn + hp+1), so that, by virtue of the CFL condition (3.97),
the asymptotic order is min(n, p + 1).
The present scenario, in which wave propagation and ABCs are considered, had not been investi-
gated so far, and yields results that are consistent with [LSV17].
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LSRK2, P1:

h maxEEM,rel Numerical order

2.8× 10−8 0.000127389 1.8695707687004095
1.9× 10−8 5.96921× 10−5 1.8893416888236159
1.4× 10−8 3.46629× 10−5 1.9109077783955253
1.1× 10−8 2.6297× 10−5 1.9258384015612429
9.4× 10−9 1.5929× 10−5 −

Table 4.6: Convergence analysis on Maxwell’s equations – LSRK2, P1

Figure 4.20: Convergence rate of EEM,rel – LSRK2, P1

Figure 4.21: Evolution of EEM,rel in the considered meshes – LSRK2, P1
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h maxEJ,rel Numerical order

2.8× 10−8 0.0466027 2.8241991617829427
1.9× 10−8 0.0148284 2.6839112251849624
1.4× 10−8 0.00685125 2.5575290089326312
1.1× 10−8 0.00387186 2.4522538220525743
9.4× 10−9 0.00247598 −

Table 4.7: Convergence analysis on the Lorentz model – LSRK2, P1

Figure 4.22: Convergence rate of EJ,rel – LSRK2, P1

Figure 4.23: Evolution of EJ,rel in the considered meshes – LSRK2, P1
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LSRK2, P2:

h maxEEM,rel Numerical order

2.8× 10−8 7.91896× 10−6 2.322072325595617
1.9× 10−8 3.08867× 10−6 2.1955647319209857
1.4× 10−8 1.64233× 10−6 2.135351083719648
1.1× 10−8 1.01982× 10−6 2.104751411350037
9.4× 10−9 6.94811× 10−7 −

Table 4.8: Convergence analysis on the Maxwell’s equations – LSRK2, P2

Figure 4.24: Convergence rate of EEM,rel – LSRK2, P2

Figure 4.25: Evolution of EEM,rel in the considered meshes – LSRK2, P2
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h Max(L2 error) Numerical order

2.8× 10−8 0.00879235 2.987554564558026
1.9× 10−8 0.00261832 2.989517032342913
1.4× 10−8 0.00110794 2.988341127458159
1.1× 10−8 0.000568743 2.9851169149802104
9.4× 10−9 0.000330028 −

Table 4.9: Convergence analysis on the Lorentz model – LSRK2, P2

Figure 4.26: Convergence rate of EJ,rel – LSRK2, P2

Figure 4.27: Evolution of EJ,rel in the considered meshes – LSRK2, P2

......
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LSRK45, P2:

h maxEEM,rel Numerical order

2.8× 10−8 5.6012× 10−6 2.987187162611704
1.9× 10−8 1.62624× 10−6 2.990932444763642
1.4× 10−8 6.87862× 10−7 2.992299884460887
1.1× 10−8 3.52791× 10−7 2.9929781575903105
9.4× 10−9 2.04423× 10−7 −

Table 4.10: Convergence analysis on the Maxwell’s equations – LSRK45, P2

Figure 4.28: Convergence rate of EEM,rel – LSRK45, P2

Figure 4.29: Evolution of EEM,rel in the considered meshes – LSRK45, P2
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h maxEJ,rel Numerical order

2.8× 10−8 0.00878637 2.990987182986827
1.9× 10−8 0.0026129 2.994445567216772
1.4× 10−8 0.00110408 2.99576830965967
1.1× 10−8 0.000565823 2.997602968109476
9.4× 10−9 2.04423× 10−7 −

Table 4.11: Convergence analysis on the Lorentz model – LSRK45, P2

Figure 4.30: Convergence rate of EJ,rel – LSRK45, P2

Figure 4.31: Evolution of EJ,rel in the considered meshes – LSRK45, P2
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We conclude the analysis with a remark on the behavior of EJ,rel, which appears to indefinitely
grow with time, whereas EEM,rel has a periodic behavior. This difference allows to take up the
discussion from Section 4.2.4 on the influence of ∆E on stability. To appreciate it, we propose a
further convergence analysis, for example with LSRK2 and linear interpolation, in the ideal case
∆E = 0, i.e. when E = Ẽ is enforced. With reference to Figure 4.32, we notice that relative
error on Jl becomes periodic. This confirms that its increasing character in the non-ideal case is a
byproduct of the numerical error on E.

Figure 4.32: Evolution of the relative error EJ,rel for increasing mesh refinement in the ideal case
E = Ẽ.

4.4.3 Maxwell-Drift-Diffusion at optical frequencies

With reference to the test case of Section 4.2.3 and its physically meaningful setting, we report the
results of a simulation of the MDD system with recombination, generation (4.47), DC components.
Suitable attenuation factors are considered, namely 10−19 for G− G̃, 10−10 for nDC and pDC .
The computational domain is the one in Figure 4.7, where h ∈ [0.05, 0.1] µm. An explicit RK2
scheme is considered, with two different time steps for Maxwell’s equations and the semiconductor
ones according to the algorithm mentioned in Section (3.1.4.4). Here, in particular ∆tEM =
3.3×10−5 ps has been calculated with the aid of (3.102); then, ∆tnp = 4∆tEM has been determined
empirically. Space discretization is based on linear Lagrange polynomials.
Following Section 3.1.1.5, the fully upwind flux (3.33) is selected for Maxwell’s equations, the local
Lax-Friedrichs flux defined in (3.49)-(3.50)-(3.51) for drift currents, and the alternate flux (3.43)
for the diffusive part of the equations, with b = 1 and w = [1, 1].

Similarly to Section 4.4.1 a first stability check consists in keeping track of WEM and Wn defined in
(4.79) and (4.80) respectively. Referring to the plots in Figure 4.33, we notice that WEM displays
the pulsed behavior of Ẽ, H̃ as expected. Also, p evolves slowly compared to n, as a result of the
realistic physical setting in which Dn = 20Dp.
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Figure 4.33: Evolution of the electromagnetic energy WEM stored in the computational domain
along with the L2 norms of n and p. The three quantities are normalized to their respective peaks.

The numerical solution is then observed by means of a probe placed at the center of the semicon-
ductor. For example, α · x̂, α · ŷ and n are compared to their exact counterparts throughout the
simulation (Figures 4.34 and 4.35).11

Figure 4.34: The evolution of α · x̂, α · ŷ at the center of the semiconductor, compared to the exact
solution.

11The very large values of the components of the gradient stem from considering (4.46) with a,b ∼ 10−9 m. In
retrospect, this is an important point to consider when coding the MDD equations, especially if this entails integrating
a semiconductor module into an existing electromagnetic one. Indeed, the electromagnetic part can be smoothly tested
at optical frequencies if space is measured in meters, whereas for the transport part microns would be preferable.
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Figure 4.35: The evolution of n at the center of the semiconductor compared to the exact solution.

Moreover, the errors En and EEM are plotted in Figures 4.36 and 4.37, and in the present analysis
we wish to also highlight the behavior of

Eα = ||α− α̃||L2(Ω), (4.83)

which is plotted in Figure 4.38.
We notice that EEM inherits the pulsed behavior of the exact solution. En initially grows but
suggests settlement to a constant value. The convergence of the drift-diffusion part of the system
is more complex.
En starts at a very small value, it sharply increases to 1.3 × 10−10, then increases to 3 × 10−10 at
a much slower rate. Eα behaves the opposite way – it starts at about 0.13 and sharply reduces by
50%, to then very slowly relax towards constant value.

The two behaviors just depicted have been regularly found throughout the present work, at
different space and time scales. In practice, α, which is calculated at the end of each iteration after
n, seems to be much more sensitive to numerical error than n itself. This is not unreasonable if
complemented by a further element: in test simulations on the sole drift-diffusion equations with
E = Ẽ, it has been noticed that the diffusion part dominates in the CFL condition (3.102) and
determines the maximum stable time step.

To conclude, it is pointed out that the monotone decreasing behavior of Eα observed in the
present example has been identified, over the course of the present work, as a distinctive trait of
convergence of the electron drift-diffusion equation. Moreover, all the above considerations can be
extended to the hole equation.
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Figure 4.36: Evolution of the L2 error on the electromagnetic field EEM .

Figure 4.37: Evolution of the L2 error on electron concentration En.

Figure 4.38: Evolution of the L2 error on the gradient of electron concentration Eα.
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Chapter 5

Device simulation

Successful tests make the ground ready for real device simulation, up to a few preliminary consid-
erations. Fictitious sources are removed, so that the scattered field is not canceled anymore. The
practical implementation of (2.58-2.59) requires special attention – the topic is discussed in Section
5.1. The key task of calculating the DC operating point is confronted in Section 5.2. Section 5.3
introduces the devices considered in the work. The rest of the chapter is devoted to simulation
results.

5.1 Field injection and absorption

The initial conditions from (2.58-2.59) require the incident field to not hit the semiconductor until
some t > 0. When excitation is pulsed in time, it can be made practically null on Ω at t = 0 by
retarding it of a suitable t0 – an idea that can be recognized in the definition of Ẽ in Section 4.2.3.
In the new setting with no manufactured solution or fictitious sources, a first-order Silver-Muller
ABC is imposed on Γe:

n̂×E + n̂× ζ(n̂×H) = n̂×Ei + n̂× ζ(n̂×Hi) on Γe × [0,+∞[. (5.1)

Note the difference with (4.35) – here, (5.1) has the two-fold role of injecting the incident field
and absorbing the scattered one. Since in all applications of our interest, vacuum surrounds an
illuminated device, the impedance appearing in (5.1) should be ζ = ζ0 =

√
µ0/ε0.

It can be shown that such a domain truncation technique offers practically perfect absorption for
normal incidence (|n̂ · k̂| = 1) while sensible performance reduction is observed when |n̂ · k̂| falls
away from 1 [AAP+10]. As a compensation strategy, a sufficient distance must be allowed between
the absorbing boundary and the scatterer. Other techniques such as Perfectly Matched Layers
(PMLs) are more attractive in terms of absorption performance and hence computational domain
size, but the price to pay is an increase in implementation effort and computational cost [San07].
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Figure 5.1: An illustration of the TFSF mechanism. Two disjoint regions of the computational
domain are defined: Ωe,TF , in which both the incident and the scattered field exist; Ωe,SF , in which
only the scattered field is present. From the interface between the two, called the TFSF surface,
the incident field is injected and reaches the scatterer, which is contained in Ωe,TF . The resulting
scattered field travels in both Ωe,TF and Ωe,SF , whereas the incident field exists in the former only.

In the presence of PMLs, the computational domain can still be terminated with ABCs, but these
cannot be used anymore to inject the incident field - it would be significantly attenuated before
getting to the scatterer - and the task is accomplished with a Total-Field-Scattered-Field (TFSF)
apparatus (5.1) as follows. A Total-Field (TF) region encloses the scatterer and the incident field
is injected from its boundary, called the TFSF surface; outside, in the Scattered-Field (SF) region,
only the scattered field exists, as the name suggests. With respect to the approach in Figure 4.6, in
which the whole Ωe can be considered TF, some computational cost is saved as the distance traveled
by the injected wave to reach the semiconductor is reduced. Aside from that and more importantly,
it becomes easier to visualize the scattered field around the device and construct near-to-far-field
contours [Sil].
The possibility of adding PMLs to the two-dimensional code has not been considered; nonetheless,
TF and SF regions have been implemented, having in mind either future PML implementation or
the integration of the MDD solver into the DIOGENeS suite.
In the context of DG methods, suitable modification of the numerical flux is required on the faces
composing the TFSF surface:

E∗ = LE(E−,H−,E+,H+),

H∗ = LH(E−,H−,E+,H+),
(5.2)

where − (+) denotes the internal (external) page of a face and LE ,LH are for example the operators
in (3.33). With reference to the interface ail between Ki (TF) and Kl (SF), one operates as follows.
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• In the local formulation on Kl, the incident field is subtracted from i part of the flux:

E∗ = LE(El,Hl,Ei −Einc,Hi −Hinc),

H∗ = LH(El,Hl,Ei −Einc,Hi −Hinc).
(5.3)

• In the local formulation on Ki, the incident field is added to the l part of the flux:

E∗ = LE(Ei,Hi,El + Einc,Hl + Hinc),

H∗ = LH(Ei,Hi,El + Einc,Hl + Hinc).
(5.4)

The computational domain is still closed with (5.1), except that now the condition should be
homogeneous as only the scattered field exists on Γe:

n̂×E + n̂×
√
µ0

ε0
(n̂×H) = 0 on Γe × [0,+∞[. (5.5)

5.2 Calculating the DC operating point

The knowledge of the steady state of the semiconductor has been highlighted as a prerequisite to
solving the MDD system, but so far no route to its acquisition has been mentioned. In fact, the
PhD project was conceived with the idea of importing DC quantities from Silvaco Atlas.

5.2.1 Electrostatic simulation in Silvaco Atlas

Atlas is a two- and three-dimensional simulator of semiconductor devices, supporting DC, AC
small-signal analysis and full time-dependency. Light-semiconductor interaction is simulated along
the steps described in Section 2.3 – Maxwell’s equations are solved on a Cartesian grid with the
FDTD method, and the same grid is further decomposed in triangles to solve the PDD model with
the Box Integration Method (BIM). A plethora of physical models is available for a more refined
description of the semiconductor, regarding (among many others) mobility, recombination, doping
and contacts.
The standard procedure to simulate a device relies on writing a sequence of statements in the
DeckBuild environment, which acts as a common interface between different tools in the Silvaco
TCAD suite. A sequence of interest is illustrated below.

• GO Atlas - Set Atlas as the solver.

• MESH - Control the refinement of the structured Cartesian mesh along x and y.

• REGION - Define dielectric and semiconductor regions, i.e. set boundaries, assign a tag and
specify a material.

• ELECTRODE - Introduce conductors in the mesh.

• DOPING - Assign a doping profile to the semiconductor.
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• CONTACT - Set contacts to the semiconductor, e.g. Ohmic or Schottky, implement electri-
cally floating conductors.

• MODELS - Call physical models, e.g. SRH and Auger models for recombination.

• MOBILITY - Set a particular mobility model for each semiconductor region and assign its
parameters, e.g. the Caughey-Thomas model for field-dependent mobility.

• MATERIAL - Assign user-defined parameters to the called physical models, e.g. the trap level
and the average lifetimes in the SRH function. Create user-defined materials.

• METHOD - Set a non-linear iteration strategy: Gummel, Newton, and block-Newton.

• LOG - Create a file for one-dimensional plots (e.g. light versus current in a photo-diode).

• SOLVE - Start the solver with the selected strategy and with a particular input. Multiple
SOLVE statements are typically required to calculate the target state of the PDD system.
The idea is to sweep on each independent source (e.g. voltage applied at a terminal) and use
the result of the previous SOLVE statement as an initial guess for the next one. Hence, a
first SOLVE statement calculates the steady state at thermodynamic equilibrium; this is the
initial guess for the next steady state in which a small increment has been applied to turn on
an independent source; the new result becomes the initial guess for a new iteration algorithm
in which the independent source is slightly higher; and so on.

• SAVE - Create a file for scalar and vector two-dimensional plots, e.g. electron/hole concen-
tration profile inside the semiconductor, arrow plots of electron/hole drift/diffusion currents.

• EXTRACT - Extract specific quantities for post-processing, e.g. the values of E, n, p at mesh
nodes, so that they can be imported into the DGTD solver and become EDC , nDC , pDC .

• TONYPLOT - Launch Tonyplot visualization tool.

The SAVE statement is meant to create a structure file (.str) containing all the necessary data
to generate two-dimensional plots, including the mesh itself, in the following format.

v ATLAS

j 4 1 2 94 95

k 2 2 0.6721053776586514 1.42

c 1 -2.1 -0.08 0

c 2 -2.1 -0.07 0

c 3 -2.1 -0.06 0

...

e 1 2177 2176 0

e 2 2176 2205 0

e 3 2178 2177 0

...

r 2 8

x 2 63 65

w 0 0

b 557
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b 558

b 559

...

t 1 3 1 30 2 2 -1024 -1024

t 2 3 30 31 2 3 1 57

t 3 3 2 31 3 4 -1024 2

...

s 31 513 115 149 71 72 69 70 100 103 120 121 106 111 211

220 224 107 112 210 221 225 108 524 525 215 222 226 419 420 118 124

n 0 91 3 0.0000000000000000e+00 0.0000000000000000e+00

0.0000000000000000e+00 0.0000000000000000e+00

0 0 -5 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 300

n 1 91 3 0.0000000000000000e+00 0.0000000000000000e+00

0.0000000000000000e+00 0.0000000000000000e+00

0 0 -5 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 300

...

n 12208 8 2 1.2999999999999998e+16 1.2999999999999998e+16

1.2999999999999998e+16 0.0000000000000000e+00 0 0 5.581255187932605

1.3707348 -0.30449534 1.33648662 1.29999972e+16 -4.99990076 21.1657433

-5.09617948 20.543068 0.000381355941 -4.99990076 3.10450511e-20

-7.47487406e-21 3.0131735e-20 21.1657433 -5.09617948 20.543068

21.1657433 -5.09617948 20.543068 3e-13 4e-13 0.00179348178 300

...

p 6 1000000 1001000 1004000 1000001 1001001 1004001

d -5 -5 -7.86706123e-05 5 5 7.86706123e-05

Not all lines are essential to our purposes. Lines beginning by c, e, t contain connectivity in-
formation – they define vertices, edges and triangles respectively. For each node, a number and
three coordinates are stated; each edge is assigned a number and its two endpoints are specified
in terms of vertex numbers; each triangle is characterized by an entity number, a region number,
three vertices and neighbors (-1024 indicates the presence of a boundary edge). The patterns are
highlighted below.

c number x y z

e number vertex1 vertex2 0

t number region vertex1 vertex2 vertex3 neighbor1 neighbor2 neighbor3

Lines beginning by n contain the nodal values of the unknowns of the PDD solver, to be manipulated
to derive further observables (e.g. drift and diffusion currents); this happens when the *.str file
is opened in TonyPlot and, if necessary, when executing the EXTRACT statement. The latter
produces a list of the kind

-2.1 1.6940658945086e-17 0

-2.1 0.01 -0.0469182037

-2.1 0.02 -0.117004635

...

where each line contains the abscissa and the ordinate of a mesh node and the value of the selected
observable at that node.
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5.2.2 Importing the steady state into an unstructured mesh

In order to provide DC arrays to the DGTD code it is necessary to process the *.str file along with
the extracted observables. The code supports standard (unstructured) *.mesh files, which look as
follows.

MeshVersionFormatted 2

Dimension

3

Vertices

3373

-5E-08 1E-07 0 21

5E-08 1E-07 0 22

-2.5E-07 1E-07 0 25

...

Edges

490

1 75 18

75 76 18

76 77 18

...

Triangles

6646

1464 1465 1115 1

1162 1394 745 1

965 1552 1401 1

...

Such information is translated into the following variables/arrays:

• ns,na,nt - number of vertices, edges, triangles;

• coor(1:ns,1:2) - array of vertex coordinates;

• ar(1:na,1:2) - array of edge endpoints;

• logar(1:na) - array of edge tags (used to implement boundary conditions);

• nu(1:nt,1:3) - array of triangle vertices;

• logtr(1:nt) - array of triangle tags (used to identify mesh physical regions).

The *.str file is processed as follows.

The first step consists in using the connectivity information in the .str file to create similar vari-
ables/arrays describing the structured mesh. We shall call these primed to distinguish them from
those introduced earlier and created from the unstructured .mesh file.
In practice, the required new variables/arrays are:

• nsP,ntP - number of vertices and triangles in the semiconductor region;
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• coorP(1:nsP,1:2) - array containing the coordinates of the vertices lying in the semicon-
ductor region;

• nuP(1:ntP,1:3) - array containing the vertices of the triangles constituting the semiconduc-
tor region.

Note that their construction requires to read the *.str file selectively, in that entities lying outside
the semiconductor region must not be counted/collected. In the filtering process, for each node
saved into coorP, the original node number is stored as well (i.e. the number that the node has in
the Atlas mesh).

As a second step, the solution to the PDD system extracted from the Atlas simulation is imported in
the form of arrays of nsP elements referring to coorP. The tricky point in this process is to translate
quantities calculated in the Cartesian mesh to suitable counterparts defined on the unstructured
mesh used in the DG discretization.
The extracted data are based on the *.str file and hence need to be read selectively – lines referring
to vertices lying outside the semiconductor region must be skipped. This is done with the aid of
the map linking the imported node numbers 1,2,...,nsP to the original ones.
We shall refer to the imported quantities as E′DC , n

′
DC , p

′
DC to stress the fact that they ”live” on

the primed mesh and that they are not practically utilizable by the DGTD solver – not yet.

The third and last step interpolates E′DC , n
′
DC , p

′
DC for a migration into the unstructured mesh.

Given u = Ex,DC , Ey,DC , nDC , pDC and u′ = E′x,DC , E
′
y,DC , n

′
DC , p

′
DC , the ultimate goal is to calcu-

late u(xd, yd) for all degrees of freedom (xd, yd) in the unstructured mesh, based on the knowledge
of the corresponding u′. This is done by the following algorithm, whose fundamental concept is
illustrated in Figure 5.2.

• For each triangle jt in nu, locate the nodes {(xj , yj) : j = 1, 2, ..., p} where p is the degree
of interpolation of the local DG discretization.

• For each node (xj , yj) find the triangle jtP in nuP containing it, and retrieve the coordinates
of the three vertices (x′1, y

′
1), (x′2, y

′
2), (x′3, y

′
3) from coorP.

• Interpolate u′(x′1, y
′
1), u′(x′2, y

′
2), u′(x′3, y

′
3) to calculate u(xj , yj) as

u(xj , yj) =

3∑
k=1

u′(x′k, y
′
k) φk(xj , yj), (5.6)

where {φk : k = 1, 2, 3} are the linear Lagrange polynomials defined on the triangle jtP.

Note that the above algorithm operates triangle-wise, hence every node lying on an internal edge of
the mesh is processed twice, which is redundant if u′ is single-valued (as it is in the case of Atlas).
However, the idea behind the current implementation is to leave the door open for importing u′

from another DG solver.
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Figure 5.2: The degree of freedom (xj , yj) of the local DG scheme on T, an element of the unstruc-
tured mesh, is located in the Cartesian mesh. The element T’ containing (xj , yj) is identified in
the latter mesh, along with its vertices (x′1, y

′
1), (x′2, y

′
2), (x′3, y

′
3). To calculate the steady state at

(xj , yj), the values of the Atlas solution at such vertices are interpolated.

5.3 Simulated devices

Following the literature on FDTD simulation of PCAs [MPG+14],[KYI09],[CCSH00], a reasonable
starting point is the classical structure depicted in Figure 1.1, consisting of two electrodes on a
semiconductor, with the in-between gap targeted by incident radiation. This is sometimes referred
to as an Auston switch.1

With respect to such references, in which large devices (of the order of 100 µm) are considered,
here the interest is in structures that approximately fit 10µm. This is the result of a trade-off be-
tween computational load, whose limitation is not the core topic of the present work, and realistic
applications. Indeed, advancements in fabrication technology have led to large antennas with gaps
of a few µm [YHBJ14],[LGK+17] or to assembling antennas of such a small size into large arrays
[YJ17],[ANH+07].
In both cases the point is to exploit plasmon resonance occurring in subwavelength-sized elec-
trodes and/or metal nanoparticles suitably deposited on the gap – this appears to be the route to
acceptable optical-to-THz conversion efficiency [BES17].

The present work aims at analyzing isolated antennas, regarded as potential elementary bricks
of arrays, and at comparing different geometrical and numerical settings. Developing a method to
study and refine a promising isolated antenna can be a precious stepping-stone to future develop-
ments, such as array optimization and investigation of coupling effects between multiple radiating
elements.

It should be noted that large PCAs are typically complemented with a lens that collects and
focuses the radiated field. The literature on arrays is less explicit on this topic, but an insulating
substrate is typically present below the semiconductor. In our analysis the substrate is not essential
– it would be the same for all the compared devices – hence it is omitted. Nevertheless, we look
at its introduction as a reasonable future step towards large device simulation, and suggest two

1After the physicist D.W. Auston, who implemented it in the late ’60s [Sie11], [Aug75].
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configurations (Figure 5.3 and 5.4):

• Periodic array of small antennas
The substrate has theoretically unlimited depth and is artificially truncated at the bottom
of the computational domain. Both the semiconductor and the substrate span the entire
width of the domain, which is terminated with absorbing (periodic) boundary conditions on
horizontal (vertical) segments.

Figure 5.3: A possible computational setting for the element of a periodic array of small antennas.
Infinite replicas of the computational domain are implied along x.

• Single large antenna with a small gap
The idea is to simulate the illuminated portion of a large antenna – much larger than the
gap. The semiconductor and the substrate are assumed have theoretically infinite width;
the left (right) electrode is unlimited in the left (right) direction. Similarly to the previous
case, the substrate has theoretically infinite depth. As a result, the computational domain is
terminated with absorbing boundaries in all directions.2

2In this case, absorbing boundary conditions would have to be defined for electron and hole transport, e.g. the
flow-based conditions seen in Section 4.2. A trickier point would be to calculate the stationary state in presence of
semi-infinite electrodes.
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Figure 5.4: A possible computational setting for the illuminated portion of a large antenna. The
structure is theoretically infinite along x.

For the validation of the developed DGTD solver, the following three topologies are considered
and adapted into suitable two-dimensional representations; to choice is based on their relevance
in applications and on the variety of challenges that they are expected to pose in the numerical
framework.

• The classical Auston switch, downscaled to a few µm. As outlined in Section 1.4, low efficiency
is its main pitfall; this leads to two main enhancements, that are considered in the next two
structures.

• The initial PCA covered with an anti-reflective coating. This feature is implicit and ideal
in the setup of [MPG+14], where ηe > 0.99 is assumed in the predictive photo-generation
function (2.20). Simulation and fabrication of realistic ARC-enhanced PCAs are discussed in
[BFH+19] and [BPK+19]; a similar technique is used in solar cells as well [HYL+20].

• A plasmon-enhanced PCA such as the one illustrated in Figure 1.2. The basic principle is
to introduce a grating of metallic nanoparticles (isles) on the illuminated surface in order
to produce a strong near-field distribution in the underlying semiconductor. This kind of
geometry is simulated in [CB20a] and [BPK+19]. Fabrication is discussed in [LGK+17] and
[BPK+19].

5.3.1 Physical setting

The following physical setting is adopted in the simulations. The designated semiconductor is n-
doped GaAs grown at 199°C, while electrodes/isles are made of gold. Experimental dispersion data
for gold from Johnson and Christy [JC72] is fitted with a single-pole Drude model; a single-pole
Lorentz model is considered to fit data from the Sopra S.A. database in the 600-1000 nm spectrum.3

3The database is available at http://www.sspectra.com/sopra.html
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Both models stem from a simulated annealing algorithm [Viq18] implemented in the DIOGENeS
software suite [Atl]), whose outputs are

ε∞ = 1.0, ωd = 1.39× 107GHz, γd = 3.23× 104 GHz, (5.7)

for gold, and

ε∞ = 6.16, ωp = 1.96× 107GHz, ωr = 4.89× 106 GHz, γ = 0.98× 106 GHz,
(5.8)

for GaAs. The static relative dielectric constant is necessary too, for the electrostatic problem.
It could be drawn from experimental data, but since there is no definitive source – the literature
shows values distributed between 10 and 13.2 [Ada99] – it seems reasonable to rather calculate it
from the dispersion model:

εr(ω)|ω=0 = ε∞ +
ω2
p

ω2
r

≈ 12.15, (5.9)

the obtained value being consistent with the experimental range.

It is assumed that ni = 9 × 106 cm−3 and that doping yields a uniform donor concentration
ND = 1.3× 1016 cm−3. The recombination function is modeled with

n1 = p1 = ni, CAn = CAp = 7× 10−30 cm6 s−1,

τn = 0.3 ps, τp = 0.4 ps,
(5.10)

where n1 = p1 = ni implies that traps are at the Fermi energy level (ET = EF ). For the Caughey-
Thomas model of mobility, we take

µn0 = 8000 cm2 V−1 s−1, µp0 = 400 cm2 V−1 s−1,

Dn0 ≈ 208 cm2 s−1, Dp0 ≈ 10 cm2 s−1,

βn = 1.82, βp = 1.75,

vn,sat = 1.725× 107 cm s−1, vp,sat = 0.9× 107 cm s−1.

(5.11)

The generation function is (2.42) with ηi = 1, while the incident field is a plane wave pulsed in
time and space:

τ = t− t0 −
k · r
ω

,

k = ω
√
εµ

cos θ
sin θ

0

 , r =

xy
0

 ,
G(τ, x) = E0 exp

(
− τ2

2σ2
t

)
exp

(
− (x− x0)2

2σ2
x

)
,

Ei(x, y, t) =

− sin θ
cos θ

0

G(τ, x) cos(ωτ),

Hi(x, y, t) =

0
0
1

 G(τ, x)

ζ0
cos(ωτ),

(5.12)
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with

E0 = 106 V cm−1, λ =
2π

ω
= 800 nm,

t0 = 0.33 ps, σt = 0.08 ps,

σx = 1 µm, θ = −π/2,

(5.13)

where λ is the central wavelength in the spectrum. The laser spot is centered at x0 and varies
depending on specific requirements.
A voltage of 10 V is applied to all devices in a symmetrical way, with −5 V to the left contact
(cathode) and 5 V to the right one (anode), as illustrated in Figure 5.5.

The geometry is defined with the idea of having a device characteristic size of a few microns
and a gap larger than the laser spot size σx defined in (5.13). The other dimensions are inspired by
the orders of magnitude and the proportions considered in references on fabrication and simulation
of plasmon-enhanced PCAs (e.g. [Bur16] and [BPK+19]). In detail, we consider isles measuring
100 × 80 nm with 100-nm center-to-center spacing, electrodes of 750 × 80 nm, and set the GaAs
layer depth to 200 nm.

The device width is then supposed to be 4.2 µm, which allows a gap of 2.7 µm and a maximum
of 13 isles for the device under test.

5.4 Simulation results

This section presents simulation results for the three selected antennas. The analysis starts with
the illustration of the steady-state of the device, complemented by considerations on its influence
on the subsequent photo-generated carrier dynamics.
For relevant observables, one-dimensional time-domain and frequency-domain probes are proposed,
along with two-dimensional plots and sequences of snapshots. The simulated time interval is [0, tf ]
with tf = 4t0 = 1.33 ps in all cases.
Implementation-wise, the developed DGTD solver is coded in Fortran90 and executes sequentially,
yelding computation times of the order of 105 seconds for the considered meshes and distributions
of degrees of freedom. All the meshes have been created in Gmsh 4.8 using its Python API [GR09].
It should be noted that code optimization has not been regarded as a primary goal in the current
work, due to the aim of migrating the developed DGTD solver into an existing optimized three-
dimensional one (DIOGENeS, [Atl]). On the other hand, major attention has been devoted to
performance-improving features of the DG method itself, such as local hp-refinement.

5.4.1 Classical PCA

The classical PCA implemented in Silvaco Atlas is shown in Figure 5.5. The computational domain,
composed of the semiconductor, the two electrodes and the in-between air – no further surroundings
– is discretized with a Cartesian mesh (omitted in the figures) whose size is 10 nm along x, whereas
along y it starts from 10 nm at the electrodes to attain 20 nm at the bottom of the semiconductor.
As outlined in Section 5.2, the static PDD solver is launched multiple times, with the bias voltage
going from zero to the target value (−5 V and 5 V at the left and right contact respectively).
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Figure 5.5: Representation in Atlas of the simulated PCA (axes are in µm). The electrodes have
been labeled as according to the sign of the applied voltage: −5V at the cathode, +5V at the
anode.

• The first computation yields the (uniform) thermodynamic equilibrium concentrations nDC ≈
ND = 1.3× 1016 cm−3 and pDC ≈ n2

i /ND ≈ 6.2× 10−3 cm−3.

• The final one yields the steady state that will undergo illumination. The resulting electrostatic
potential and carrier concentrations are reported in Figure 5.6. With respect to the thermo-
dynamic equilibrium value, we notice that electron concentration experiences an increase by
one order of magnitude close to the air-anode interface, counterbalanced by a comparable
reduction in the underlying region.

Larger electron concentrations corresponds, as expected, to a stronger electrostatic field (Fig-
ure 5.7). Localizing the peak of the electrostatic field is important for optical-to-THz conversion
efficiency – the stronger the field, the larger the amplitude of the photo-generated current pulse.
It is convenient, then to also maximize photo-generation in the same region by pointing the laser
spot closer to the anode. This topic will be investigated later on in the text.

Cutlines are employed to verify that the imported steady state is correctly represented on the
unstructured mesh used for the DGTD simulation (introduced later, in Figure 5.11b). For example,
E′DC,x and n′DC , defined on the Cartesian mesh, are plotted against their interpolated counterparts
(with quadratic Lagrange polynomials) in Figures 5.8 and 5.9.

The illustration of the steady state is completed with a brief insight into the static recombination
function R′(nDC , pDC) introduced in (2.17) (Section 2.3).
According to Figure 5.10, strong thermal generation (negative recombination) permanently occurs
in the bulk of the semiconductor, at the anode side. A comparison with Figure 5.6 suggests that the
phenomenon takes place where electron concentration is reduced by one order of magnitude with
respect to thermodynamic equilibrium, whereas hole concentration is slightly higher; as a result,
overall nDCpDC < n2

i , and R′ < 0.
Having imported the DC quantities it is possible to set up the DGTD simulation of the MDD

system. The computational domain consists in the PCA surrounded by air and is artificially
truncated with ABCs at a distance of at least one wavelength from the device.
As highlighted in Section 3.1.4.3, the maximum stable time step is ultimately determined by the
electromagnetic part of the system. Then, the mesh must be fine enough to resolve spatial variations
of the unknowns. According to the Nyquist-Shannon theorem, within a distance equal to the
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Figure 5.6: Two-dimensional plots of the steady state of the semiconductor. From the top to
the bottom: electrostatic potential (linear scale), electron concentration (logarithmic scale), hole
concentration (logarithmic scale).

minimum wavelength in the spectrum, there cannot be less than two samples (degrees of freedom)
of the electromagnetic field [TH05]. The Nyquist-Shannon theorem holds for any space-varying
function, including carrier concentrations; however, the fact that these obey non-linear advection-
diffusion-reaction equations makes it unfeasible to define a wavelength – a different characteristic
length should be sought.
In advection-diffusion problems it is common to keep track of how the two transport phenomena
concur. A figure of merit is the local Péclet number

Pe =
h

2

||Advection velocity||
Diffusivity

, (5.14)

where h is the local mesh size and ||.|| is the Euclidean norm. The condition Pe > 1 has been
linked to spurious spatial oscillations [Qua13],[Smi80] and lower convergence rates [Led21] in studies
on continuous Galerkin methods applied to simple cases of constant diffusivity and divergent-free
advection velocity, in one dimension. These suggest to use mesh refinement as a counterweight
whenever advection is expected to outnumber diffusion.
Our drift-diffusion model falls into this category – assuming T = 300K, VT ≈ 0.026V and according
to the Einstein relations (Dn = VTµn, Dp = VTµp) mobility is higher than diffusivity by two
orders of magnitude. That said, diffusivity is (potentially strongly) space-varying, the divergence
of electron (hole) drift velocity vn,drift = µn(E + EDC) (vp,drift = µp(E + EDC)) cannot be
neglected, and reaction plays a critical, possibly dominant role (as pointed out in the discussion
on the generation function in Section 4.2). Such high complexity suggests that a suitable figure of
merit should somehow take carrier concentration into account.
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Figure 5.7: The x and y components of the electrostatic field inside the semiconductor.

Figure 5.8: E′DC,x vs EDC,x Figure 5.9: n′DC vs nDC

In [VG06], for example, doping concentration ND is taken into account – the Debye length

LD =

√
ε0εrVT
qND

, (5.15)

is designated as the mesh size limiter in the FDTD resolution of the time-varying PDD model
presented in Section 2.4. Although the same criterion is also found in the MDD context (FDTD
simulation of PCAs in [KYI09], deriving a mathematical relation between ND and nAC , pAC that
justifies its usage seems not trivial.
Nevertheless, before going further, it is interesting to get a rough estimation of the mesh size
required to comply with Péclet- and Debye-based criteria.
Assuming εr ∼ 10 and ND ∼ 1016 cm−3, the Debye length is LD ≈ 40 nm.
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Figure 5.10: The spatial profile of the static recombination function R′(nDC , pDC) defined in Section
2.3 allows to recognize a region of steady-state thermal generation (R′ < 0) below the anode, in
the bulk of the semiconductor.

As to the Péclet number, reasoning for example on electrons, using the Einstein relation with
VT ≈ 0.026V and the approximation ||EAC || << ||EDC ||, we write

Pe

h
=
||vn,drift||

2Dn
=
||µn (EAC + EDC)||

2Dn
=
µn ||EAC + EDC ||

2Dn

=
||EAC + EDC ||

2VT
≈ ||EDC ||

2VT
≈ 20 ||EDC ||.

(5.16)

Note that reasoning on holes would yield the same result since VT = Dn/µn = Dp/µp. We conclude
that

Pe < 1 ⇐⇒ h <
(
20 ||EDC ||

)−1
. (5.17)

So, if ||EDC || = 106 V m−1, hmax = 50 nm, whereas if ||EDC || = 107 V m−1, the constraint
becomes much more severe: hmax = 5 nm.

In the end, given

• the ultimate goal of every estimation – making the spatial discretization robust enough to
resolve sharp spatial variations of nAC and pAC ,

• the difficulty to derive a rigorous formula that quantifies the maximum the mesh size (apart
from the Nyquist-Shannon theorem),

over the course of the present work, it has appeared sensible to opt for a semi-empirical approach:

• tailoring the mesh for the electromagnetic field with a certain number of samples per wave-
length;

• identifying regions where spatial variations of carrier concentrations are likely to be sharpest
(e.g. on the basis of the steady state and the illumination type);
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• locally refining the mesh, if such variations are not correctly resolved.

The effect of refining the mesh is to reduce the distance between two samples of the solution;
one alternative consists in leaving the mesh unchanged while increasing the interpolation degree.
The point can be better appreciated by checking tracing a cutline intercepting the region where
photo-generation has its spatial peak, i.e. where carrier concentration gradients are expected to be
highest.
If x0 = 0 (centered laser spot), a good candidate is the neighborhood of (x, y) = (0, 0), as will
be confirmed a posteriori by the two-dimensional plots proposed later on. To take the worst case,
the observation should take place when carrier concentration has reached its highest value, which
is expected to happen slightly after the illumination peak t = t0. Simulations have proven that a
suitable choice is t = t̄ := 1.3 t0.

For the sake of completeness, the analysis should also ponder the effectiveness of Péclet- and
Debye-based criteria. Since h required by Pe < 1 is the same for electrons and holes, we can begin
by considering the latter. With reference to the coordinates of Figure 5.5, the horizontal cutline

{p(x, y, t) : y = 0, t = t̄},

is observed in the following two scenarios.

(a) The mesh used in (a), with h = 21 nm inside the semiconductor and the electrodes (green) and an
increasing size until h = 157 nm in the rest of the computational domain (orange).

(b) The coarser mesh used in (b), with h = 42 nm inside the semiconductor and the electrodes.

Figure 5.11: The two levels of refinement considered in the present test.
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(a) The mesh size is h = 21 nm inside the semiconductor and in the vicinity of inner electrode
wedges; it then increases to reach h = 157nm at the boundary of the computational domain.
Linear Lagrange interpolation is used. The maximum stable time step is ∆t = 0.33×10−5 ps
(Figure 5.11a).
The triangulation is such that at least 10 samples per wavelength are ensured inside the
semiconductor and at least 5 at the boundary of the computational domain.4

(b) The minimum mesh size is doubled (h = 42 nm) but quadratic Lagrange interpolation is
used. The maximum stable time step is now ∆t = 10−5 ps (Figure 5.11b).

The cuts are juxtaposed in Figure 5.12. In (a) with h = 21 nm and linear interpolation, spatial
oscillations arise. Case (b) shows a doubling the interpolation degree has a stabilizing effect, in
spite of the coarser mesh, and allows a larger time step as a plus.

Figure 5.12: Superposition of two plots of {p(x, y, t) : y = 0, t = t̄} in the cases (a), (b).

4The maximum size is chosen with the idea of representing the minimum wavelength in the incident spectrum
carrying 10% of the power, which is λmin ≈ 788nm. Then, this reduces to about 211 nm inside GaAs by virtue of
εGaAs(λmin) ≈ 13.9 + i1.0 (as per the dispersion data used in this work).
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Figure 5.13: The line {n(x, y, t) : y = 0, t = t̄} calculated with quadratic and cubic interpolation,
revealing the inadequacy of the former.

Let us see where the two settings stand with respect to Debye- and Péclet-based criteria.
We have already noted that LD ∼ 40 nm with our physical input data. On the other hand, from
Figures 5.7 and 5.8 we estimate max ||EDC || ≈ 1.6× 104 V cm−1, which imposes h < 30 nm.
Now, we need to estimate the average distance between two solution samples in (b). Since h = 42 nm
and the interpolation degree is 2, we can roughly assume that such a distance is h/2 = 21 nm. The
effective value is perhaps lower, as 21 nm is the mesh size of (a), which (b) outperforms. Regardless,
it can be concluded that both configurations are such that h < LD and Pe < 1.

Since the two criteria are the same for electron and hole transport equations, the above dis-
cussion might seem sufficient to designate (b) as an appropriate numerical setting. Yet, contrarily
to expectations, a check on electron concentration calculated in (b), along the same cutline traced
earlier, exhibits abrupt oscillations (Figure 5.13). We must conclude that h = 42 nm and quadratic
interpolation do not constitute an appropriate setting. The verdict is confirmed by the second
cutline in the figure; this is obtained by increasing the interpolation order, which yields appreciable
stabilization.

The drastically different behavior of n with respect to p can be understood as follows.5

Recollecting the expressions of the (time-varying) drift currents

Jn,drift = q n µn (EDC + E) + q nDC µn E,

Jp,drift = q p µp (EDC + E) + q pDC µp E,
(5.18)

it seems reasonable to expect

||∇ · (q nDC µn E)|| >> ||∇ · (q pDC µp E)||, (5.19)

because, as depicted in Figure 5.6, nDC >> pDC while their spatial variations are similar (as they
stem from the same source – the electrostatic field); so, electrons are solicited by an enormously
larger source term and thus demand special surveillance in the numerical framework.

5Up to a few exceptions where the time-varying character of a particular quantity needs to be stressed, we shall
keep the convention of implying the AC subscript, so that static quantities are explicitly marked as DC, while those
with no subscript are time-varying.
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Figure 5.14: The magnetic field at the illumination peak (t = t0) observed along the line y = 0.
In the grey areas, which lie outside the device, quadratic interpolation is used. Inside the device,
quadratic and cubic interpolation are compared.

A further important remark is necessary. The abrupt character of n that is recognized in
Figure 5.13 at the endpoints of the device (the vertical walls of the semiconductor), which might be
qualified at first glance as a byproduct of numerical instability, is rather a mathematically expected
behavior.
First, the laser is polarized along x, so inside the semiconductor |Ex| >> |Ey|, implying also
|q nDC µn Ex| >> |q nDC µn Ey|. Then, the insulating boundary condition stated in (2.59)
becomes, at vertical walls, n̂ ·Jn = x̂ ·Jn = 0. We conclude that strong diffusion and a consequently
large gradient (x̂ · Jn,diff = qDnx̂ · ∇n) must arise along x to keep the total current tangential to
the walls.
We recognize at this point a crossroad – we can try to fully capture such space variations with a
tighter discretization, or move forward and only reconsider the first way if such higher-order effects
come to majorly affect device simulation. In the present work, the latter option has been chosen.

It is natural to wonder whether the increase in the interpolation degree in (b) is required by
the field too, since the wavelength (significantly) shortens inside the semiconductor. Figure 5.14
answers the question with a cutline on Hz at the illumination peak t = t0:

{Hz(x, y, t) : y = 0, t = t0}.

Outside the device (shadowed areas), the original (quadratic) interpolation is retained, whereas
inside, quadratic and cubic approximations are compared. The juxtaposition manifests no major
issues with the lower order, contrarily to Figure 5.13. This is an interesting result – it suggests to
orient future research towards a local DG formulation with different interpolation degrees for light
propagation and charge transport.

An important remark concerns field approximation inside the electrodes – conductors are not
perfect – and in the proximity of metallic wedges, where higher gradients are expected with respect
to the shadowed areas of Figure 5.14. This is the reason why the minimum mesh size is imposed
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in the semiconductor and in such regions (Figure 5.11b), as a mean of support to quadratic inter-
polation.

In the end, the designated numerical setting consists in a locally adaptive DG scheme in the
mesh of Figure 5.11b (3246 elements) with

• Lagrange interpolation of order 3 and h = 42 nm inside the semiconductor (985 elements),

• Lagrange interpolation of order 2 and h = 42 nm inside the electrodes (172 elements),

• Lagrange interpolation of order 2 and 42 < h < 157 nm in the rest of the computational
domain (2089 triangles),

• explicit LSRK2 time stepping with ∆t = 10−5 ps.

The ground is ready at this stage to proceed and analyze the physics of the transient simulation.
We start with a sequence of parallel snapshots (Figure 5.15) of the photo-generation function

(2.42) and electron concentration n in the illuminated box (x, y) ∈ [−1.35, 1.35] × [−0.1, 0.1] µm,
throughout a relevant time interval, namely [0.21, 1.04] ps. 67

The highest photo-generation occurs around (x, y) = (0, 0), confirming the relevance of the
cutlines traced earlier. The peak time, around t = t0 = 0.33 ps, triggers a sharp rise of electron
concentration, which attains its own plateau about 10 ps later, at t = t̄ = 42 ps. At t = 50 ps the
light pulse is on its way out and recombination takes the lead, drastically reducing n. Reduction
occurs slightly faster on the left side, as this is depleted not only by recombination but also by the
electric field, which accelerates negative charges to the right.
As a result of centered illumination, the majority of photo-generated carriers recombines on its way
to the electrode, so that the latter won’t be able to significantly contribute to THz radiation. This
point will be further discussed at the end of this section. The full evolution of n(0, 0, t), t ∈ [0, tf ],
is shown in 5.16, with G(0, 0, t) on the background.

The emergence of a THz pulse can be appreciated by means of a probe on the total electric
current

J = Jdrift + Jdiff ,

Jdrift = q
[
nµn(EDC) + pµp(EDC)

]
(EDC + E) + q

[
nDCµn(EDC) + pDCµp(EDC)

]
E,

Jdiff = qDn∇n− qDp∇p.
(5.20)

As just highlighted, photo-generated carriers are mostly accelerated along x. This is owed to at
least two facts: the incident field is polarized along x; comparing Figures 5.15 and Figure 5.7,
EDC,x >> EDC,y where G is highest. Therefore, THz emission is mostly ascribed to Jx.

The probe Jx(0, 0, t), t ∈ [0, tf ] is proposed in Figure 5.17, in two variants. One is (5.20), which
essentially displays the character of the optical pulse due to the large term ∝ nDC E. The other
is a much slower pulse, obtained by cutting off the optical spectral components of (5.20) with a
Hamming window. The relevant portion of the resulting spectrum is shown in Figure 5.18, where
it a −3 dB cut-off frequency is marked to highlight that at least 70% of the radiated power lies in
the range f < 10 THz.

6The regions beneath the electrodes are excluded for reasons of page layout and visibility, but also because they
are shielded from light if compared to the central aperture and hence inessential to the analysis.

7For a better appreciation of spatial profiles the amplitude axes have been capped at slightly lower values than
the actual peaks, which were measured to be 7.8× 1015cm−3s−1 for G and 1.8× 1011cm−3s−1 for n. This scale will
be retained when comparing this antenna to its plasmon-enhanced version.
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Figure 5.15: Concurrent snapshots of photo-generation (G, cm−3 s−1) and electron concentration
(n, cm−3) at relevant times in [0.21, 1.04] ps, in the illuminated region of the semiconductor. Times
are marked in ps, in ascending order, from the top to the bottom.

At this stage, a remark on the emitted electromagnetic field is necessary. The literature on
FDTD simulation of PCAs typically relies on a near-to-far-field transformation to observe the
radiated THz pulse [MPG+14], [KYI09], [CCSH00], [JJK96].
A simple but well-established model, based on arguments of classical electrodynamics, prescribes
[Lee08], [ST05]

E ∝ ∂J

∂t
, (5.21)

suggesting that THz spectral components in the scattered field stem from J, and making the latter
a legitimate and convenient observable. For instance, in [MPG+14] the spectrum and the time-
domain shape of the current are observed along with the scattered field.
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Figure 5.16: The evolution of generation and electron concentration throughout the simulation
window t ∈ [0, tf ], observed at the center of the semiconductor (x, y) = (0, 0).

To conclude the analysis, we get back to the suggestion of intelligently pointing the laser so
that photo-generation and the bias field are maximum in the same region.
Figure 5.19 shows two-dimensional plots of the magnitude of the total current (5.20) at the illumi-
nation peak time t = t0 for different values of x0, from the center of the gap towards the anode. As
x0 increases, the current density becomes more localized in the region underlying the anode (and
more intense).
It is important in this test to monitor ||J|| rather than just |Jx|; indeed, if |Ex,DC | >> |Ey,DC | at
the center of the device, |Ey,DC | is comparable to |Ex,DC | in the proximity of the anode. Thus, as
the illuminated spot moves to the right, both components of EDC shape the trajectory of photo-
generated carriers.8

It has been experimentally observed that asymmetric excitation improves optical-to-THz con-
version efficiency [UFB+07]. The current analysis provides one reason, but there is a second, less
evident one – the increase in the probability that photo-generated electrons attain the metal con-
tact before recombining, which allows to exploit the electrode as a radiating element [Bur16]. This
effect is not visible in the current model, where charge flow across semiconductor-metal interfaces
is not quantified (an interesting discussion on the topic can be found in [ZHA+15]).

8It should be noted that the represented values in Figure 5.19 actually refer to
J

c0 q
=
[
A C m−1 s−1

]
as a result

of a convenient choice of physical dimensions in the code.
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Figure 5.17: Filtered and unfiltered Jx(0, 0, t) throughout the simulated interval [0, tf ].

Figure 5.18: The magnitude of the Fourier transform of Jx(0, 0, t) after filtering out the optical
components.

152



Figure 5.19: The effect of different illumination targets x0 ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 1.2} µm. As the
laser spot (depicted in yellow) moves towards the anode, the current appears to be significantly
enhanced. Interestingly, the effect is maximum when the beam is diffracted by the anode (x0 ≥
0.8µm) and hence does not reach the semiconductor.

5.4.2 Classical topology with anti-reflective coating

An important pitfall in the previous antenna is the poor power matching between the laser and
the semiconductor. Indeed, under radiation at λ = 800 nm, the semiconductor exhibits a re-
fractive index nGaAs ≈ 3.71 + i 0.13, so that the resulting Fresnel’s reflection coefficient at the
air-semiconductor interface is

R =
1.0− nGaAs
1.0 + nGaAs

≈ −0.58− i 0.01, (5.22)

implying that almost 60% of the incident power is reflected back to the source.
As a possible workaround is to grow an Anti-Reflective Coating (ARC) on top of the illuminated
surface – a layer of intermediate refractive index interposed between air and GaAs. A natural
option is silicon dioxide, since this is a standard material for integrated circuit passivation, and
nSiO2 ≈ 1.45 at λ = 800 nm [Mal65]. As outlined earlier, such a practice is common in solar cells
[HYL+20] and has been adopted in PCA fabrication as well [BFH+19].9

9Passivation is the process of covering an integrated circuit with dielectric layers (typically made of silicon dioxide
and silicon nitride) that protect it from impurities, moisture and scratches [SN06],[RCN02].
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Figure 5.20: PCA with SiO2 Anti-Reflective Coating (ARC) of variable thickness N × ∆, with
∆ = 0.08 nm (i.e. the height of the electrodes)

The implemented ARC is shown in Figure 5.20. A simplifying assumption is to let the thickness
d = N × ∆ be a multiple of that of the electrodes (∆ = 0.08 nm), while the requirement on the
width is to be large enough to cover the gap, e.g. with 50-nm margins.

The aim here is to investigate the effect of different design choices, such as N = 0, 1, 2, 3, 4.
These are summarized in Figure 5.21, where the spatial profiles of the generation function G and
electron concentration n are compared for each value of N . As usual, the two are monitored at their
respective peak times, which occur around the incident pulse delay t0 for G and around t̄ ≈ 1.1t0
for n. For each frame, the maximum value of the spatial distribution is recorded and collected in
Table 5.1. The options N = 1, 4 appear promising at first glance, but unexpectedly that is the case
of the initial configuration too (N = 0, i.e. no ARC). The table fosters N = 4 but does not make
things much clearer and reveals quite interestingly, that the link between G and n is not trivial.

Figure 5.21: The spatial distribution of G (cm−3 s−1) and n (cm−3) at their respective peak times
for N = 0, 1, 2, 3, 4.
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N max(G) (cm−3 s−1) max(n) (cm−3)

0 4.7× 1023 1.0× 1011

1 2.5× 1023 2.0× 1011

2 2.3× 1023 1.6× 1011

3 2.6× 1023 1.4× 1011

4 4.6× 1023 1.8× 1011

Table 5.1: Peak values of photo-generation and electron density for different depths of the ARC.

In fact, the values are too close to infer a definitive conclusion from the observation of just one
time sample. Indeed, another important datum in the picture is how long the generation peak
persists, which depends on the multiple reflections that light undergoes inside the device and hence
should be affected by the introduction of the ARC.
This additional element can be taken into account by looking at the evolution of the L2 norm of n
throughout the simulated interval [0, tf ] (Figure 5.22).

Figure 5.22: The evolution of ||n||L2(Ω) throughout the simulations run for different values of the
ARC thickness N∆, N = 0, 1, 2, 3, 4.

From norm analysis we infer that N = 1 is the best option. The resulting geometry is illustrated
in Figure (5.23).

Figure 5.23: The designated ARC implementation with a SiO2 layer of the same thickness as the
electrodes.
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5.5 Plasmon-enhanced photo-conductive antenna

A more sophisticated enhancement to the basic antenna consists in fabricating electrically floating
gold isles at the semiconductor-air interface between the two charged electrodes. Ohmic contacts
are assumed at the interfaces between such new metal regions and the semiconductor [LGK+18].
The geometry is depicted in 5.24.

Figure 5.24: The computational domain for the electrostatic simulation of the considered plasmon-
enhanced PCA.

In Silvaco Atlas, an electrically floating conductor in (Ohmic) contact with a semiconductor is
implemented by including the CURRENT attribute the CONTACT statement. This enforces the
following boundary condition on the total electric current of the static PDD system:∑

(x̄,ȳ)∈V

n̂(x̄, ȳ) · J(x̄, ȳ) = 0, (5.23)

where n̂ is the outward unit normal vector to the semiconductor’s boundary and V is the set of
the mesh vertices lying on the considered semiconductor-conductor interface. In essence, the net
current density flux across the interface is null – to see it from a circuit perspective, the contact is
open, i.e. no electric current flows across it.

The calculated steady state variables are plotted in Figure 5.25. With respect to Figure 5.6,
we notice that the isles (and electric charge distribution inside them) yield small wells of accumu-
lation and reduction of electrons (with respect to the thermodynamic equilibrium value of about
1016 cm−3).
In the same regions, Figure 5.26 highlights local peaks of the electrostatic field. As discussed for
the basic PCA, peaks in electron distribution and the electrostatic field play a relevant role in the
transient operation of the device. For example, we notice that such peaks becomes more significant
as x increases, suggesting that this device as well, like the previous ones, is best exploited when the
laser spot is close to the anode. That said, we remark that the main motivation for this topology
lies in plasmon resonance occurring in the isles during the illumination time window, which is re-
sponsible for boosting optical field transmission inside the device and thus optical absorption. The
effect is shown in the results that follow.
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Figure 5.25: From the top to the bottom: the electrostatic potential (linear scale), electron con-
centration (logarithmic scale), hole concentration (logarithmic scale) calculated in Atlas.

Figure 5.26: Ex,DC , Ey,DC and ||EDC || deduced from the electrostatic potential.
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From a numerical standpoint, introducing the isles also brings the requirement of a finer mesh
inside and around them, where sharp field variations are expected. Refinement is necessary in the
semiconductor too, due to the stronger photo-generation and the above-mentioned peaks in nDC ,
EDC , that enhance Jn,drift near semiconductor-conductor interfaces. Therefore, at such interfaces
and not only in the central part of the device we should expect sharp spatial variations. Beside
mesh refinement, the possibility of locally adapting the interpolation degree is exploited as well.
An analysis similar to the one carried out in Section 5.4.1 has led to the following setting, with
reference to the mesh in Figure 5.27. The mesh size is h = 27 nm inside the semiconductor, metallic
regions and their proximities, to increases up to h = 157 nm as the boundary of the computational
domain is approached. Interpolation is based on Lagrange polynomials of

• order 4 inside the semiconductor (10510 elements),

• order 3 inside the isles and the electrodes (5436 elements),

• order 2 in the rest of the computational domain (9306 elements)

Figure 5.27: The mesh used in the simulation of the plasmon-enhanced PCA.

To appreciate the effect of plasmon resonance we propose in Figure 5.28 a sequence of snapshots
along the lines of 5.15. In the scale tailored to the previous PCA, the plasmon-enhanced generation
function now shows the presence of a strong near-field distribution in the proximity of the isles; as
a result, electron concentration increases in such region. Farther from the isles, the peak value of
the initial geometry can be recognized again, but the area in which this value is attained is larger.
This phenomenon is consistent with what is observed in a similar structure in [CB20a].

As pointed out when introducing Figure 5.15, a slightly reduced amplitude axis is considered
in the snapshots for optimized visualization. To quantify the enhancement due to the introduction
of the nanoparticles it is convenient to compare the actual generation peaks (Figure 5.29). The
basic PCA allows a photo-generation rate of 7.8 × 1015 cm−3 s−1 whereas the value reaches 1.2 ×
1016 cm−3 s−1 in the enhanced structure. Hence, G is increased by a factor of about 1.5, which
is consistent with the empirically measured enhancement (1.5 to 2) reported in [LGK+17] for a
similar structure.

We conclude the discussion with a final remark. Looking at such simulation results, performance
comparison between the ARC-enhanced and the plasmon-enhanced antennas might be tempting.
In fact, we have considered one possible geometry out of a huge variety that has been fabricated
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Figure 5.28: Concurrent snapshots of photo-generation (G, cm−3 s−1) and electron concentration
(n, cm−3), at relevant times in [0.21, 0.50] ps, in the illuminated region of the plasmon-enhanced
antenna. Times are marked in ps, in ascending order, from the top to the bottom.

Figure 5.29: Comparison between the distribution of G in the classical (top) and the plasmon-
enhanced (top) antenna, evaluated at its peak time.

and proposed in the literature (as documented in [LGK+17]), whereas there is plenty of room for
optimization of nanostructures compared to a simple dielectric layer. As a matter of fact, the two
methods are compatible and it is not uncommon to find ARCs on the top of a nanoparticle arrays
in solar cells [HYL+20]. Regardless, the great deal of research on the subject suggests to consider
plasmon resonance as the primary phenomenon to look at for THz PCA optimization.
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Chapter 6

Conclusions and perspectives

In this dissertation we have illustrated the conception, the design and the verification of a DGTD
solver for the MDD system.

We have started by formally defining the model in interior and exterior problems, detailing its
physical meaning, with particular attention to the task of choosing an appropriate photo-generation
function. We have coupled the initial system to Drude and Lorentz dispersion models to describe
plasmon resonance in nanoparticle-enhanced PCAs and light absorption in the semiconductor. Also,
the concept of device biasing has been outlined and has led to elaborating on static and quasi-static
PDD models.

Some further mathematical aspects have been investigated, such as the possibility of a prelim-
inary, a priori energy bound, based on existing results on the well-posedness and the asymptotic
behavior of the MDD model. The latter has been cast in a form allowing an interesting connection
with FV methods and a discussion on handling the numerical flux of the advective part of the
equations.

The DG numerical formulation has been extensively developed, in its local/global weak form
and matrix form. Major attention has been devoted to the concept of numerical flux and to the
exploration of possible routes to define it, such as calculating the advective part along procedures
peculiar to FV methods. The resulting semi-discrete formulation has been the object of explicit
time integration with Runge-Kutta and Low-Storage Runge-Kutta schemes. To that purpose, a
formula generalizing the CFL condition to advection-diffusion problems has been proposed – this
kind of analysis has not been found in the literature on optoelectronic simulation.

We have presented an itinerary through the winding route of code verification (tailored to the
MDD-Lorentz equations), in which we have confronted the difficulty of considering a physically
meaningful setting in tests and provided simulation results that calculate the numerical order
of convergence. This is a significantly different approach with respect to the literature on PCA
simulation, which typically restricts the attention to design-related topics.

The implemented two-dimensional code has been used for the simulation of realistic geometries:
the classical Auston switch and two possible ways to optimize it, namely a dielectric anti-reflective
coating and a grating of gold nanoparticles. As a prerequisite, the steady state of a PCA has been
calculated in Silvaco Atlas (by solving the static PDD system) and imported into an unstructured
mesh for the subsequent DGTD simulation.

We have derived an appropriate numerical setting for PCA simulation, that applies to the MDD
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model in general. The proposed procedure appears uncommon with respect to the literature on
photo-conductive devices, and essentially relies on the two points: 1) a concrete verification of the
applicability of usual characteristic lengths considered in the process of determining the maximum
mesh size in a semiconductor; 2) the exploitation of local hp-refinement to tackle the different space
scales of the underlying physics.

Finally, simulation results have been shown for the three selected PCAs; their behavior has
been illustrated through sequences of snapshots and probes, an optimization study on the anti-
reflective case, and the observation of the beneficial effects of plasmon resonance occurring in the
nanograting. The latter has proved to significantly enhance photo-generation, consistently with
results available in the literature.

Throughout the work we have regularly envisaged future research directions. These are sum-
marized below in more detail, along with further propositions.

6.1 Independent interpolation of Maxwell’s and semiconductor
equations

When seeking a suitable numerical setting for PCA simulation in Chapter 5.4.1, it was apparent
that refinement in the space discretization was ultimately driven by charge carrier dynamics –
the same mesh, with quadratic polynomials, was found to suit the electromagnetic field whereas
cubic polynomials were required to correctly resolve electron concentration. In consideration of
such a difference in space scales, a natural way forward would be to seek different and independent
interpolation orders in the local DG formulation, namely pEM for (E,H) and pSC for (n, p,α,β) –
an aspect that has not been considered in the literature on MDD equations so far.
Implementation-wise, the cost of the necessary re-interpolation at each time step would have to
be evaluated. Indeed, the total current Jn + Jp calculated in the pSC-representation would have
to be represented in pEM degrees of freedom before being injected into Maxwell’s equations. The
reverse process would be necessary to inject E and the polarization current density Jl (originally
calculated in the pEM -representation) into the DD equations.

6.2 Independent time integration of Maxwell’s and semiconductor
equations

In the context of DGTD resolution of the MDD model, and particularly of PCAs, the authors in
[CB20a] adopt two separate explicit time-integration schemes: Total-Variation-Diminishing (TVD)
RK3 for the DD equations with step ∆tSC and LSRK45 for the electromagnetic field with ∆tSC =
N∆tEM for some integer N . As mentioned at the end of Section 3.1.4, a similar setting was tested
in the present work in a test case (Section 4.4.3) but with a RK2 scheme for the whole MDD system.
The extension to real device simulation, in which no exact solution is available and the original
equations (without fictitious sources) are solved, should require further investigation. The crucial
point is how to handle the field-dependent terms (Jn,drift,Jp,drift, G) in the DD equations.
In [CB20a], G is calculated at the rate ∆tEM and averaged over the skipped iterations to compensate
for the missed updates. Drift terms are not averaged, which practically means that the electric field
undergoes a low-pass filter before drifting electrons and holes. In principle, this might be consistent
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with some higher-order effects described by hydro-dynamic semiconductor models [GDI+22], which
show that n and p may lag behind E, thereby confirming a fundamental difference in the two
concerned time scales; however, assigning a value to N in a way that rigorously reproduces such
physical behavior appears non-trivial.

6.3 Three-dimensional implementation

The verification process proposed in Section 4.2 can be easily extended to the three-dimensional
framework. Integrating a DD module in the DIOGENeS suite would allow to exploit interesting
features such as PMLs and near-to-far-field transformation to evaluate the emitted electromagnetic
field as usually done in the FDTD literature on PCA simulation. On the other hand, calculating
the DC operating point of a device would require a three-dimensional solver for the static PDD
model. An interesting option would be to consider a full-wave formulation of the electromagnetic
problem based on the wave equation for electric field and the electric potential, which would allow
to calculate the steady state asymptotically. The approach is followed in [GSML19] to calculate
the step response of a PN junction with continuous finite elements in one dimension.

6.4 Applications

It was pointed out in Section 5.3 that a typical PCA setup entails a large substrate, to be artificially
truncated in simulations. This enhancement of the numerical setting would allow to consider arrays
of antennas and deploy the developed DGTD solver in the field of optimization. The main obstacle
would be to calculate the steady state in a theoretically periodic (infinite) physical domain.
Another interesting step forward would be to increase (e.g. double) the bias voltage to consider
high-power scenarios in which the DD model ceases to be acceptable and higher-order moments of
the Boltzmann equations need to be taken into account.
Aside from PCAs, solar cells are a natural application of the developed solver; these demand to
conceive a broadband generation function G based on multiple Lorentz oscillators (as suggested for
example in [CB21b]).
In all the above-mentioned cases, the code could be integrated in an optimization. For example,
the nanostructure deposited on the illuminated surface of a PCA has several degrees of freedom –
the number of isles, their height, but also the material, which for instance could be dielectric (see
[BFH+19]).

6.5 Alternative DGTD schemes

As outlined in (5.18), the steady state of the device introduces terms in drift current that are
proportional to the time-varying electric field, but do not depend on the time-varying charge con-
centration: nDCµnEAC , pDCµpEAC . These act as source terms in the DD equations and introduce
optical oscillations in nAC , pAC , which may pull nAC (pAC) below zero in regions of low photo-
generation. The is analyzed in the present section, referring with no loss of generality to a classical
PCA – the conclusions hold for ARC- and plasmon-enhanced devices.
Figure 6.1 shows a snapshot of nAC at its peak time t = 0.42 ps in PCA of Section 5.4.1. Negative
values at segments of ΓN (electrically insulating boundary) are revealed; here, n̂ ·Jn = 0 is required,
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that is
nACµnn̂ · (EDC + EAC) +Dnn̂ · ∇nAC = nDCµnn̂ ·EAC , (6.1)

hence nAC must oscillate in accordance with the right-hand side to fulfill the boundary condition.
A comparison with Figure 5.6 suggests that the remaining points where nAC < 0 belong to areas
where∇nDC is particularly large (near electrode wedges and below the anode). Note that restricting
the represented range of values would attest that nAC > 0 in the illuminated region represented in
Figure 5.15, thereby legitimating the positive range used therein.

Figure 6.1: Snapshot of nAC at t = 0.42 ps. The condition nAC < 0 is observed outside the
illuminated region, in particular at segments of electrically insulating interfaces, as well as in areas
where spatial variations of nDC are sharpest. Values are expressed in cm−3.

Physically, nAC , pAC represent transient deviations from steady-state concentrations and it is
therefore licit for them to be negative, as long as the total concentrations remain positive:

nAC + nDC > 0,

pAC + pDC > 0.
(6.2)

It can be verified that nAC + nDC > 0 is preserved all throughout the simulation (nDC > 1015

cm−3). On the other hand, with pDC lying between 10−4 and 10−2 cm−3, pAC + pDC < 0 occurs.
The phenomenon is shown in a snapshot at the peak time t = 0.42 ps in Figure 6.2, which spots
pAC < −min

Ω
pDC at Ohmic contacts. This condition is more restrictive than necessary but allows

to clearly identify the interested areas. A more rigorous check on a per-node basis would show that
((6.2)) is actually violated at a subset of points of such interfaces (this will become apparent in the
forthcoming Figure 6.4).

Figure 6.2: Snapshot of pAC at t = 0.42 ps. The scale is adapted to highlight regions where
pAC < −min

Ω
pDC . Values are expressed in cm−3.

In practice, it doesn’t seem unreasonable to neglect this effect:

• device behavior and performance are almost totally determined by electrons, for which nAC +
nDC > 0 is preserved;

• pAC < 0 occurs where G is lowest, hence in areas that do not significantly contribute to THz
radiation, which results from conductivity modulation and hence from photo-generation.
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Nevertheless, the phenomenon is interesting from a numerical standpoint and several tests have
been conducted to understand it, with the aim of setting guidelines for future research. The three
most relevant ones are summarized below.

• A different dynamic recombination function, R′′

The adopted model (2.18) is defined in [MPG+14], in which a FDTD scheme for the MDD
system simulates a conventional PCA in a particular setting: there is no incident field, and
optical excitation is buried inside the predictive Gaussian generation function (2.20). As a
consequence, no optical oscillation exists in the DD equations, and Maxwell’s equations only
describe the THz field.
In this paper, the sign of pAC + pDC is not monitored, but it seems plausible that if EAC is
purely THz and optical-to-THz efficiency is low enough, the term ∇· (pDCµpEAC) in the hole
transport equation will be too weak to entail any violation of (6.2).
In the first place, in the present work, the condition pAC + pDC < 0 was ascribed to the
absence of nDC and pDC in (2.18), which led to considering the alternative model

R′′ = R(nAC + nDC , pAC + pDC)−R(nDC , pDC), (6.3)

with R from (2.13). However, the new R′′ has not significantly changed the behavior of Figure
6.2.

• A purely electromagnetic simulation (Maxwell’s equations with no DD equations)

This has revealed a crucial effect: spikes in the electromagnetic field at (x, y) = (±1.35, 0.1) µm,
i.e. at the two points of the top semiconductor surface where air, metal and the semiconduc-
tor meet. Further investigation has led to conclude that three sources of instability exist at
such points in MDD simulations:

– the above-mentioned spikes in E,H;

– strong spatial variations of nDC , pDC ,EDC ;

– spikes in nAC , pAC due to the change in the boundary conditions – from nAC = 0
(pAC = 0) on ΓD (semiconductor-metal interfaces) to n̂ · Jn = 0 (n̂ · Jp = 0) on ΓN
(air-semiconductor interfaces).

For example, Figure 6.4 shows a cutline along the top surface of the semiconductor:

{pAC(x, y, t) : y = 0.1µm, t = 0.42ps}.

In the scale tailored to the peak value (the same considered in Figure 5.12), the boundary
condition pAC = 0 at Ohmic contacts seems fulfilled. However, a zoom reveals that spikes exist
at (x, y) = (±1.35, 0.1)µm as well as spatial oscillations around 0 along the Ohmic contacts.
The key point is the following. The amplitude of such oscillations around 0 is negligible with
respect to the values of pAC along ΓN , i.e. the air-semiconductor interface highlighted in
transparent red; however, it largely outnumbers the orders of magnitude spanned by pDC .
This observation has inspired the stabilization test that follows.

165



Figure 6.3: The cutline {pAC(x, y, t) : y =
0.1 µm, t = 0.42 ps} in a scale tailored to the
peak value. The boundary condition pAC = 0
at Ohmic contacts seems satisfied.

Figure 6.4: The same cutline, under a
more suitable scale, shows spikes at (x, y) =
(±1.35, 0.1) µm and oscillations along Ohmic
contacts. The amplitude is negligible with re-
spect to the values of pAC in the highlighted
region (air-semiconductor interface), but very
large compared to pDC .

• A different time-integration scheme: Total-Variation-Diminishing (TVD) Runge-Kutta 3
[SO88]. Known for its property of preventing spurious spatial oscillations, the scheme is
considered in [CB20a] for the DGTD resolution of the MDD system, to simulate PCAs. The
authors consider the same recombination model (2.18) as [MPG+14], but contrarily to the
latter reference the incident field is contemplated and G is calculated from it.
In [CB20a], however, no formal justification is provided for using this kind of scheme. Also,
the sign of nAC , pAC is not discussed. One possible reason is the potential neglect/miss of
optical oscillations in nAC , pAC due to considering multi-rate time stepping, with the semi-
conductor updated every five time steps of the electromagnetic field, i.e. ∆tSC = 5∆tEM .
In the present work, the TVD RK3 option has not yielded significantly different results with
respect to the initial LSRK2 implementation – the same spatial oscillations as Figure 6.4 were
observed.

In conclusion, the above analysis should suggest to consider device simulation to be minorly
affected by the undesired behavior of pAC at Ohmic contacts, but it should also set guidelines
for further research. For example, in Section 1.2 we outlined a basic principle behind notable FV
schemes for the PDD model: the preservation of physical properties of the continuous problem.
Similar criteria would deserve to be investigated in MDD-DG framework. To force (6.2) at all
times, a bound-preserving time-integration scheme might be an interesting option. Alternatively,
an attempt to reduce the spatial oscillations highlighted in Figure 6.4 might be done by means of
an interior penalty or a slope limiter.
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