
HAL Id: tel-04138899
https://theses.hal.science/tel-04138899

Submitted on 23 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enriching large language models with semantic lexicons
and analogies
Georgios Zervakis

To cite this version:
Georgios Zervakis. Enriching large language models with semantic lexicons and analogies. Document
and Text Processing. Université de Lorraine, 2023. English. �NNT : 2023LORR0039�. �tel-04138899�

https://theses.hal.science/tel-04138899
https://hal.archives-ouvertes.fr

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de
soutenance et mis à disposition de l'ensemble de la
communauté universitaire élargie.

Il est soumis à la propriété intellectuelle de l'auteur. Ceci
implique une obligation de citation et de référencement lors de
l’utilisation de ce document.

D'autre part, toute contrefaçon, plagiat, reproduction illicite
encourt une poursuite pénale.

Contact bibliothèque : ddoc-theses-contact@univ-lorraine.fr
(Cette adresse ne permet pas de contacter les auteurs)

LIENS

Code de la Propriété Intellectuelle. articles L 122. 4
Code de la Propriété Intellectuelle. articles L 335.2- L 335.10
http://www.cfcopies.com/V2/leg/leg_droi.php
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm

Thèse de Doctorat

Georgios Zervakis

École doctorale : IAEM

Unité de recherche : Laboratoire Lorrain de Recherche en Informatique et ses Applications
UMR 7503

Thèse N◦:

Présentée et soutenue publiquement le 8 mars 2023 pour l’obtention du
Doctorat de l’Université de Lorraine
Mention Informatique

Enriching large language models with semantic
lexicons and analogies

Enrichir des modèles de langue de grande taille avec des lexiques
sémantiques et des analogies

Composition du jury

Rapporteurs : Salvatore Ruggieri, Professeur, Università di Pisa

Christian Müller, Principal Researcher, DFKI

Présidente du jury : Elisa Fromont, Professeur, Université Rennes 1

Directeurs de thèse : Miguel Couceiro, Professeur, Université de Lorraine

Emmanuel Vincent, Directeur de Recherche, Inria Nancy – Grand Est

Co-encadrant : Marc Schoenauer, Directeur de Recherche, Inria Saclay – Île-de-France

Résumé

Les progrès récents de l’apprentissage profond et des réseaux de neurones ont permis
d’aborder des tâches complexes de traitement du langage naturel, qui sont appliquées à
une pléthore de problèmes réels allant des assistants intelligents dans les appareils mobiles
à la prédiction du cancer. Néanmoins, les systèmes modernes basés sur ces approches
présentent plusieurs limitations qui peuvent compromettre leurs performances et leur fia-
bilité, les rendre injustes envers les minorités ou exposer des données personnelles. Nous
sommes convaincus que l’intégration de connaissances et de raisonnement symboliques
dans le cadre de l’apprentissage profond est une étape nécessaire vers la résolution de
ces limitations. Par exemple, les ressources lexicales peuvent enrichir les réseaux de neu-
rones profonds avec des connaissances sémantiques ou syntaxiques, et les règles logiques
peuvent fournir des mécanismes d’apprentissage et de raisonnement. Par conséquent,
l’objectif de cette thèse est de développer et d’évaluer des moyens d’intégrer différents
types de connaissances et de raisonnement symboliques dans un modèle de langage large-
ment utilisé, le Bidirectional Encoder Representations from Transformers (BERT).

Dans un premier temps, nous considérons le retrofitting, une technique simple et popu-
laire pour raffiner les plongements lexicaux de mots grâce à des relations provenant d’un
lexique sémantique. Nous présentons deux méthodes inspirées par cette technique pour
incorporer ces connaissances dans des plongements contextuels de BERT. Nous évaluons
ces méthodes sur trois jeux de données biomédicales pour l’extraction de relations et un
jeu de données de critiques de films pour l’analyse des sentiments, et montrons qu’elles
n’ont pas d’impact substantiel sur les performances pour ces tâches. En outre, nous
effectuons une analyse qualitative afin de mieux comprendre ce résultat négatif.

Dans un second temps, nous intégrons le raisonnement analogique à BERT afin d’amé-
liorer ses performances sur la tâche de vérification du sens d’un mot, et de le rendre plus
robuste. Pour cela, nous reformulons la vérification du sens d’un mot comme une tâche
de détection d’analogie. Nous présentons un modèle hybride qui combine BERT pour
encoder les données d’entrée en quadruplets et un classifieur neuronal convolutif pour
décider s’ils constituent des analogies valides. Nous testons notre système sur un jeu de
données de référence et montrons qu’il peut surpasser les approches existantes. Notre
étude empirique montre l’importance de l’encodage d’entrée pour BERT, et comment
cette dépendance est atténuée en intégrant les propriétés axiomatiques des analogies lors
de l’apprentissage, tout en préservant les performances et en améliorant la robustesse.

Abstract

Recent advances in deep learning and neural networks have made it possible to address
complex natural language processing tasks, which find application in a plethora of real-
world problems ranging from smart assistants in mobile devices to the prediction of
cancer. Nonetheless, modern systems based on these frameworks exhibit various limita-
tions that may compromise their performance and trustworthiness, render them unfair
towards minorities, or subject them to privacy leakage. It is our belief that integrating
symbolic knowledge and reasoning into the deep learning framework is a necessary step
towards addressing the aforementioned limitations. For example, lexical resources can
enrich deep neural networks with semantic or syntactic knowledge, and logical rules can
provide learning and reasoning mechanisms. Therefore, the scope of this thesis is to
develop and evaluate ways of integrating different types of symbolic knowledge and rea-
soning into a widely used language model, Bidirectional Encoder Representations from
Transformers (BERT).

In a first stage, we consider retrofitting, a simple and popular technique for refining dis-
tributional word embeddings based on relations coming from a semantic lexicon. Inspired
by this technique, we present two methods for incorporating this knowledge into BERT
contextualized embeddings. We evaluate these methods on three biomedical datasets
for relation extraction and one movie review dataset for sentiment analysis, and show
that they do not substantially impact the performance for these tasks. Furthermore, we
conduct a qualitative analysis to provide further insights on this negative result.

In a second stage, we integrate analogical reasoning with BERT as a means to improve
its performance on the target sense verification task, and make it more robust. To do
so, we reformulate target sense verification as an analogy detection task. We present
a hybrid model that combines BERT to encode the input data into quadruples and a
convolutional neural classifier to decide whether they constitute valid analogies. We test
our system on a benchmark dataset, and show that it can outperform existing approaches.
Our empirical study shows the importance of the input encoding for BERT, and how this
dependence gets alleviated by integrating the axiomatic properties of analogies during
training, while preserving performance and improving robustness.

Acknowledgements

This work is dedicated to my family for giving me the opportunity to fulfill my goals and
the courage to overcome any difficulties in the process. To my father for making sure I
had everything I needed, to my brother for giving me the most valuable advice, and to
my dearest mother for teaching me to never give up.

In the following, I would like to thank all individuals without whom I would not have
reached this outcome in my life. My deepest appreciation to my math teacher Kon-
stantinos Perakis, whose passion and dedication made me love the subject and pursue
a degree in the field. Many thanks to Konstantinos Fergadakis, whose pedagogical ap-
proach shaped my way of learning Math during the university. I am also grateful to
Stylianos Kiagias, for his unconditional support and valuable advice which boosted my
motivation and helped me grow as a person. Thanks should also be given to Alexandros
Ferles, whose assistance greatly accelerated my transition from theoretical to applied sci-
ences. Words cannot express my gratitude to Guilherme Alves Da Silva, for the fruitful
discussions and feedback as a research colleague, but also his willingness and dedication
as a person that greatly smoothed my integration to France, especially during the hard
times of the pandemic. I am truly grateful to Hee-Soo Choi, whose advice and support
greatly boosted my motivation and productivity, particularly towards the end of the
thesis. I am deeply indebted to my doctoral supervisors, Miguel Couceiro, Emmanuel
Vincent and Marc Schoenauer, whose diverse backgrounds, expertise and guidance made
this outcome possible. It has been a great honour being under their supervision, and I
am sincerely grateful for all the valuable skills and experiences that I have acquired from
our collaboration. I would like to extend my sincere thanks to Elisa Fromont for being
the head of the jury, as well as Salvatore Ruggieri and Christian Müller for reviewing my
thesis and providing valuable feedback.

I would equally like to give thanks to my professors, colleagues and friends, namely,
Amedeo Napoli, Bobby Lee Townsend Sturm JR, Pawel Herman, George Costakis, Mi-
halis Kolountzakis, Takis Benos, Giouli Dolapsaki, Laura Zanella, Alexandre Bazin,
Nacira Abbas, Laurine Huber, Athénaïs Vaginay, Noémie Gonnier, Esteban Marquer,
Diego Amaya-Ramirez, Tatiana Makhalova, Claire Theobald, Hans-Jörg Schurr, Priyansh
Trivedi, Gabriel Sauger, Vincent Tourneur, Siyana Pavlova, Chuyuan Li, Valentin Richard,
Prerak Srivastava, Vinícius Ribeiro, Nicolas Furnon, Paul Magron, Efstahia Vlassopoulou,
Iliana Koutani, Sotirios Lekkas, Panteleimon Myriokefalitakis, Christos Matsoukas, An-
tonios Katsarakis, Nikolaos Xenakis, Harra Ailamaki, Iosif Charkiolakis, Antonios Tsife-
takis, and the rest, for their great advice, collaboration and support throughout these
years.

v

vi

Experiments presented in this research were partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under Grant Agreement No. 952215 TAI-
LOR and by the Inria Project Lab HyAIAI. Experiments presented in this thesis were
carried out using the Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities as well as other orga-
nizations (see https://www.grid5000.fr).

https://www.grid5000.fr

Contents

Abbreviations x

1. Introduction 1
1.1. Context . 3
1.2. Research questions & contributions . 4

1.2.1. Refining BERT embeddings using semantic lexicons 5
1.2.2. Integrating analogical reasoning into a BERT based architecture . 5

1.3. Thesis overview . 5

2. State of the art 7
2.1. Deep learning based NLP . 7

2.1.1. Deep Learning . 7
2.1.2. Word embeddings . 8
2.1.3. Bidirectional Encoder Representations from Transformers 9

2.1.3.1. Input formatting . 9
2.1.3.2. The Transformer architecture 10
2.1.3.3. Pretraining and finetuning 13

2.1.4. Example usages of BERT . 13
2.1.4.1. Biomedical relation extraction 13
2.1.4.2. Sentiment analysis of movie reviews 14
2.1.4.3. Target sense verification 15
2.1.4.4. Fact completion . 16

2.2. Symbolic Knowledge . 17
2.2.1. Why external knowledge can be useful? 17
2.2.2. Knowledge graphs . 17

2.2.2.1. Formalization of knowledge graphs 17
2.2.2.2. Review of existing knowledge graphs 18

2.2.3. Graph embeddings . 24
2.3. Incorporation of symbolic knowledge into neural networks 25

2.3.1. Joint and post-hoc methods . 25
2.3.2. Enforcement of logical constraints into neural networks 27
2.3.3. Learning and reasoning via analogies 28
2.3.4. Transformer knowledge-aware large language models 31

3. On refining BERT contextualized embeddings using semantic lexicons 35
3.1. Proposed contextualized embedding refinement methods 36

3.1.1. Method A . 36

vii

viii Contents

3.1.2. Method B . 37
3.2. Experimental setup . 38

3.2.1. Biomedical relation extraction . 38
3.2.2. Sentiment analysis of movie reviews 39
3.2.3. Retrofitting and BERT architecture 39
3.2.4. Technical details . 40
3.2.5. Grid search optimization . 41
3.2.6. Alternative classification strategies 41

3.3. Results and qualitative study . 44
3.3.1. Grid search experimental results 44
3.3.2. Neighborhood based hyperparameter selection 44
3.3.3. Euclidean distance ranking of retrofitted vectors 46
3.3.4. Neighbouring word filtering . 49
3.3.5. How does averaging compare to majority voting? 51
3.3.6. Further remarks . 51

3.4. Summary . 53

4. An analogy based approach for solving target sense verification 54
4.1. Problem formulation . 55
4.2. AB4TSV architecture . 56

4.2.1. Choice of analogical relation . 57
4.2.2. Input encoding selection . 58

4.3. Experimental setup . 59
4.3.1. Data . 59
4.3.2. Analogical proportion optimization 60
4.3.3. Assessing and promoting permutation invariance of analogical pro-

portions . 61
4.3.4. Technical details . 61

4.4. Results . 62
4.4.1. Impact of the input encoding . 62
4.4.2. Comparison with other methods for TSV 65
4.4.3. Invariance to the permutations of analogical proportions 69
4.4.4. Interpreting AB4TSV via explanation methods 69

4.5. Summary . 74

5. Conclusion and perspectives 75
5.1. Synopsis . 75
5.2. Perspectives . 77

5.2.1. Retrofitting with large language models 77
5.2.1.1. Word importance . 78
5.2.1.2. Linking BERT word embeddings and the classifier output 78
5.2.1.3. Towards lexical systems 79

5.2.2. Analogical reasoning with pretrained language models 79
5.2.2.1. Elimination of contextualized dependence 80

Contents ix

5.2.2.2. Beyond target sense verification 80
5.2.3. Towards a unified knowledge and reasoning integration architecture 81

5.3. Epilogue . 81

Appendices 83

A. Supplementary material from Chapter 3 84
A.1. Grid search visualizations . 84

B. Supplementary material from Chapter 4 107
B.1. Input encoding visualizations . 107
B.2. Feature attribution maps . 108

C. Résumé étendu 114
C.1. Introduction . 114
C.2. Adaptation des plongements contextuels de BERT grâce à des lexiques

sémantiques . 116
C.2.1. Méthodes proposées d’adaptation des plongements lexicaux con-

textuels . 117
C.2.1.1. Méthode A . 117
C.2.1.2. Méthode B . 117

C.2.2. Protocole expérimental . 118
C.2.2.1. Retrofitting et architecture de BERT 118
C.2.2.2. Optimisation de la recherche sur la grille 119
C.2.2.3. Stratégies de classification alternatives 119

C.2.3. Résultats et étude qualitative . 119
C.3. Vérification du sens d’un mot par une approche basée sur l’analogie 121

C.3.1. Formulation du problème . 121
C.3.2. Architecture AB4TSV . 121
C.3.3. Choix de la relation analogique et du codage d’entrée 122
C.3.4. Configuration expérimentale . 124
C.3.5. Évaluer et promouvoir l’invariance de permutation des proportions

analogiques . 124
C.3.6. Résultats . 125

C.4. Conclusion . 126

Bibliographie 127

Abbreviations

AB4TSV Analogy and BERT for target sense verification
AI artificial intelligence
ANN artificial neural network
BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long Short-Term Memory
CNN convolutional neural network
DNN deep neural network
FOL first-order logic
GPT Generative Pre-trained Transformer
KG knowledge graph
LSTM Long Short-Term Memory
NLP natural language processing
LLM large language model
TSV target sense verification

x

1. Introduction

Automated processes that rely on artificial intelligence (AI) have gained an increased
popularity over the past years, due to their ability to solve complex tasks and advance
the state of the art in various fields. The most prominent ones among these methods
rely on deep learning and neural networks, which greatly benefit from today’s access to
large amounts of labeled data and computational resources.

The main challenge in natural language processing (NLP) is to create models that
are able to process and accurately represent natural language, whereas natural under-
standing or natural language interpretation focus on the understanding of the text, e.g.,
syntax, semantics, sentiment, intent, etc. Recent advancements on the field made it
possible to facilitate real-world problems by automating intermediate processes, which
previously required domain expertise, human labor and vast amount of time. Consider
the example of hiring and recruiting personnel for a company with thousands of appli-
cants for a single position. Manually assessing each and every candidate can be very
time-consuming. Instead, an AI can make a first pass and filter those that are relevant
for the position, or even recommend others for a different role. This is done by perform-
ing information extraction and named-entity recognition, which allow to automatically
extract useful information from the application form such as names, locations, skills,
education, etc. Another example is that of language translators. Earlier approaches
used to rely on dictionaries or rule-bases systems to translate a piece of text from one
language to another. Nowadays, a neural network can be specifically trained to per-
form machine translation, using pairs of texts corresponding to the source and the target
language as input. Furthermore, a plethora of applications such as smart assistants,
dialogue systems and chatbots, consist of a complex of units that perform several NLP
tasks in a sequence. For example, automatic speech recognition can be used to recognize
and convert the user’s request into text. Then, a subsequent component is responsible
for parsing the generated text, e.g., to perform part-of-speech tagging in order to identify
the function of each particular word or phrase in the text (verb, noun, etc.). After the
necessary preprocessing steps, a natural language generation model is used to output
an answer depending on the input request, which is usually followed by a text-to-speech
engine for translating it back to an utterance. Last but not least, being able to answer
a question posed by a user is a really common and challenging application of NLP. This
type of problem is frequently encountered in search engines, customer service automa-
tion, phone conversational interfaces and more. In such cases, a common approach is
to train a dedicated neural network for question-answering using data from the domain
of interest, e.g., phone call recordings between clients and automated banking service
bots. All of the aforementioned tasks benefit from the upgrowth of deep learning but
how exactly are they addressed by modern NLP systems?

1

2 Chapter 1. Introduction

Deep learning makes it easier to address NLP tasks compared to traditional approaches
that require a lot of feature engineering. In principle, the training schema is more or less
the same between various approaches, and it can be briefly described as follows. First of
all, the initial and most important step is the data acquisition. Good quality and large
amount of data are highly responsible for the actual performance of the end system.
Next, a training algorithm (model) is selected depending on the task at hand and the
nature of the data. The training process consists of an optimization problem in which the
goal is to optimize an objective function. During training, the parameters of the network
are adjusted as the output of the model gets compared with a ground truth value. Once
training is completed, the model’s parameters can be directly applied on new data. In
the previous example of hiring and recruiting process, we can imagine that the training
data consist of thousands of application forms from various job positions, along with
entity-level annotations of important features such as location, organization, etc. An
end-to-end neural network for named-entity recognition is then trained to learn vectorial
representations of the entities of interest, also referred to as embeddings, by trying to
predict the correct label out of a set of entity types. Similarly for machine translation,
the data consist of pairs of sentences corresponding to the source and the target language.
Typically, the models starts by encoding the source sentence and produces embeddings
for each token in that sentence. Then, the model tries to generate the target sentence
word by word, based on the generated tokens so far and the embeddings from the source
sentence. In the same manner, natural language generation systems are usually trained
to predict the next word based on previously seen words. To this end, the training data
are split into pairs of input-target words, e.g., “my name is” becomes “my name”-“name
is”, where the goal is to generate the target based on the input. At generation time, the
model outputs a probability distribution over a vocabulary of words, and selects the one
with the highest probability based on the processed words so far. Finally, for question-
answering the data consist of paragraphs of texts, different questions related to these
texts, along with the respective answers which always lie inside the paragraphs. During
training, the model identifies the passage corresponding to the answer of a question, by
trying to predict the start and end tokens of that answer.

However, despite their success these approaches face some serious limitations. First
of all, they operate as a black-box meaning that it is unclear how the system arrives
at a certain conclusion for the task at hand, and why it follows a specific pattern of
decision-making. According to Ras et al. (2022), any piece of information that assists
in the understanding of these concepts and is conveyable to others is considered an ex-
planation. There exist several methods that enhance the explainability of deep models
by providing evidence that justify or support their behaviour (Simonyan et al., 2014;
Ribeiro et al., 2016; Lundberg and Lee, 2017; Shrikumar et al., 2017). This is different
from interpretability that points to the intrinsic properties of the model measuring the
extent to which the prediction is easily understood by humans (Li et al., 2022). These
qualities are crucial for establishing trust between humans and AI, since in many appli-
cations the risk is too high, e.g., medical domain, law enforcement and autonomous cars.
Yet another issue is related to the fairness of deep neural networks. There have been

1.1. Context 3

many reports where automated systems are biased against specific social groups, e.g.,
they discriminate women during the hiring process for a working position, or associate
black people with higher future criminal rates compared to white. The main cause of this
behaviour is hidden in the collection of data used to train a particular algorithm. Often
the data are imperfect in the sense that they might contain erroneous measurements,
missing and unbalanced samples that are not representative of the intended target popu-
lation, or even sensitive features that should not be taken into account at inference time,
e.g., ethnicity, race, age, etc (Pessach and Shmueli, 2022). Moreover, a lot of attention is
centered on how deep learning models deal with security and privacy issues. Many orga-
nizations utilize sensitive data from users, e.g., images, voice recordings, conversational
texts, in order to improve their AI systems. However, is it shown that these models can
be breached through various attacks that aim to steal the parameters of the network,
infer private data from users, compromise the performance or manipulate the model’s de-
cisions (Liu et al., 2020b). For instance, adversarial examples is a typical situation where
small perturbations in the data can lead to wrong predictions with high confidence. This
phenomenon is also related to the model’s robustness which is measured as the expected
performance on unseen data which are typically generated by synthetically perturbing
the input, or drawn from a different distribution (Wang et al., 2022). In addition, the
evolution of deep learning requires more and more computational resources, making it
impractical for practitioners to develop their own models. Finally, their performance
is poor in the absence of sufficient training data and often overspecialized to particular
target groups present in the data. This is an issue considering that the collection of good
quality data is both costly and time-consuming, and comes in contrast to how human
beings reason and learn — by treating concepts in relation with each other instead of
separate units — which allows to grasp new knowledge with just a few examples, and
little supervision.

1.1. Context

A step towards addressing the aforementioned limitations, is to exploit existing knowl-
edge by integrating it in the deep learning framework. Following the categorization by
Deng et al. (2020), knowledge is divided in two broad classes, general knowledge and
domain knowledge. The former includes the fields of computer science, statistics, neuro-
science, physics and others that founded or motivated the development of many known
concepts and algorithms in deep learning such as neural networks, backpropagation and
dropout. The latter is bounded to specific fields, e.g., biology, sociology, linguistics, is
usually gathered by experts in those fields, and is often accompanied with domain-specific
applications. Moreover, domain knowledge comes in various forms depending on the level
of structure it possesses: from plain language to specialized formats. For the remainder
of the thesis we focus on domain-symbolic knowledge, as it is more applicable for in-
tegration with deep learning models compared to general knowledge, due to the formal
representation (symbols) of its contents. For example using the formalism from proposi-
tional logic we can model binary relationships between objects in the form of logic rules.

4 Chapter 1. Introduction

For instance, if we know that the relation between objects A and B is either equivalence,
implication, conjunction, or disjunction we can denote it as A → B, A ←→ B, A ∨ B
or A∧B, respectively. More complex relations can be constructed from simpler ones us-
ing the parenthesis association, or even further extended by adding quantified variables,
such as ∀x∃y(house(x)→ owns(y, x)) which translates to “every house has an owner ”.
The latter is considered a first-order logic (FOL) formula decomposition where x, y are
variables and house(x), owns(x,y) are predicates denoting the relations “x has a house”
and “y owns house x ”, respectively. In a similar way, knowledge can be represented in the
form of mathematical expressions such as equations, inequalities and so on. Newton’s
second law of motion (F = m ·a) is an example of knowledge that is constant. Typically,
this kind of equations can be incorporated in the training objective of a deep learning
model, as some sort of constraint, e.g., a regularization term that enforces the model to
exhibit or avoid a particular behaviour. Another category is that of probabilistic knowl-
edge. This is closely related to Bayesian theory of probabilities, where Bayes’ rule models
our beliefs regarding certain events based on priors and new knowledge (also referred to
as evidence). Knowledge here takes the form of probabilities from observed data over
a population, which can better help to estimate target distributions, infer probabilities
for events or even impose constraints. Finally, the most popular structure for domain
knowledge in deep learning is represented as a graph whose nodes encode concepts of
interest, and its edges denote their attributes and relations. In its most general form, a
knowledge graph (KG) constitutes a set of triples that follow a “subject-relation-object”
pattern. This is different from ontologies that aim to describe what we know of a cer-
tain domain, by providing definitions, rules, relationships for concepts without getting
too specific, e.g., generally define the concept of “dog” without focusing on the different
breeds. In that regard, knowledge graphs can be viewed as instantiated ontologies.

1.2. Research questions & contributions

We believe that the integration of domain knowledge and reasoning with deep learning
models is a good step towards addressing the various limitations that modern AI sys-
tems exhibit. For example, in the context of image recognition, the fact that “cats have
whiskers and fur” and “sea lions have whiskers but no fur” should help the system recog-
nize whiskers even if the training images are only labeled in terms of “cat” and “sea lion”.
Then, training a “whisker” classifier on images of various animals is expected to increase
the recognition performance for these two, and also enable the discovery of other animals
that are neither a cat nor a sea lion. To this end, this thesis project aims to develop
and evaluate ways of integrating different types of symbolic knowledge and reasoning
into BERT based large language models (LLMs) (Devlin et al., 2019), in an attempt to
address the following questions:

• How does one reformat domain knowledge to be compatible with BERT based
LLMs?

• How to effectively incorporate domain knowledge and reasoning into BERT based

1.3. Thesis overview 5

LLMs?

• Is the use of domain knowledge and reasoning beneficial in terms of performance
for a particular task?

• Could domain knowledge and reasoning help increase the robustness of BERT based
LLMs?

A summary of the contributions is listed bellow.

1.2.1. Refining BERT embeddings using semantic lexicons

Retrofitting is a simple technique for modifying distributional word embeddings based on
relations coming from a semantic lexicon. Building upon the work of Faruqui et al. (2015),
we extend retrofitting to operate with contextualized-based systems such as BERT. We
propose two methods for refining BERT embeddings that incorporate knowledge coming
from both general and domain specific semantic lexicons. We evaluate these methods on
three biomedical datasets for relation extraction, and one movie review dataset for sen-
timent analysis. Our qualitative analysis shows that although such source of knowledge
contains too much noise, restricting the lexicons to relevant neighbouring words could
help boost performance.

1.2.2. Integrating analogical reasoning into a BERT based architecture

In this work, we focus on the problem of target sense verification (TSV) (Breit et al.,
2021). Given a target word in a context along with a definition and a set of hypernyms
for that word, we wish to determine whether their senses match or not. In order to solve
this task, we translate TSV into analogy detection, and propose a hybrid architecture
based on BERT and a specific convolutional neural network (CNN) previously used for
solving semantic and morphological analogies. After optimizing the input encodings of
BERT, and promoting analogical reasoning by using the axiomatic properties of ana-
logical proportions explicitly during training, we achieve state-of-the-art results on the
WiC-TSV evaluation benchmark Breit et al. (2021) along with a more robust model.

1.3. Thesis overview

The remainder of the thesis is organized as follows.

Chapter 2 starts with some background information with respect to NLP tasks, knowl-
edge bases and neural networks. Then, it summarizes various approaches that integrate
symbolic knowledge and reasoning with deep learning frameworks.

Chapter 3 introduces an extension of the retrofitting algorithm for injecting symbolic
knowledge into BERT embeddings. An extensive evaluation of the proposed methods

6 Chapter 1. Introduction

along with a qualitative analysis of the results are provided.

Chapter 4 presents Analogy and BERT for target sense verification (AB4TSV), a
framework for solving target sense verification through analogies. The proposed method
takes advantage of the axiomatic theory of analogical proportions to integrate analogi-
cal reasoning into the model, which in turn maintains its performance and increases its
robustness.

Chapter 5 concludes with the main outcomes of the thesis and points out future
directions for research.

2. State of the art

The scope of this chapter is to familiarize the reader with the topic of integration of
symbolic knowledge and reasoning in neural networks. In Section 2.1 we explain how
deep learning is employed in modern NLP with a primary focus on large language models
(LLMs) and the NLP tasks that will be tackled in the following chapters. In Section 2.2
we review on some external knowledge sources that are publicly available. Finally, in
Section 2.3 we briefly survey various approaches that combine symbolic knowledge and
reasoning with deep learning methods.

2.1. Deep learning based NLP

NLP has drastically evolved through the years — from the development of rule-based
algorithms for grammar checking, to the deployment of applications that facilitate ev-
eryday life tasks such as search engines and automatic translation. Taking advantage of
the vast amount of data that are currently available, the learning process now aims to
learn optimal features from the data and correlate them with the desired output.

2.1.1. Deep Learning

Inspired from biology, the first artificial neural networks (ANNs) were designed to simu-
late the perceptual process of human brain cells (McCulloch and Pitts, 1943; Rosenblatt,
1958). Essentially, ANNs can be viewed as an approach to automatically extract useful
features from the data, i.e., create a mapping from the inputs to the outputs directly from
data. This is accomplished by learning simple, non-linear transformations of the inputs
by means of parametric functions called neurons, which are gradually combined within
layers in the network, to shape more complex representations at different levels of ab-
straction (LeCun et al., 2015; Goodfellow et al., 2016). Deep learning has emerged from
increasing the number of layers in ANNs. The resulting deep neural networks (DNNs)
capture more sophisticated relations in the data, which are not explicitly designed by
humans. In the most general case, i.e., supervised learning, training a DNN requires a
loss function that measures, in terms of a performance metric, how far the outputs of the
model are from the desired output. The goal is to find the optimal set of parameters that
minimizes the expected loss on the training data. Backpropagation solves this problem
by computing the gradient of the loss with respect to the learnable parameters of the
DNN, and using the chain rule to update them accordingly following existing optimiza-
tion algorithms, such as stochastic gradient descent (Kiefer and Wolfowitz, 1952).

7

8 Chapter 2. State of the art

2.1.2. Word embeddings

Prior to deep learning, statistical approaches to NLP were based on other statistical
machine learning methods that heavily depend on hand-crafted features (Cortes and
Vapnik, 1995; Zhang, 2004). A typical example is the encoding of a text document as a
bag-of-words, where the representation is constructed based on the frequency of unique
words in a given corpus. Similarly, term frequency-inverse document frequency is an-
other popular technique which measures how important a word is to a document within
a corpus. However, such features are often high-dimensional and sparse, and result in
a series of problems that is referred to as curse of dimensionality, making the learning
process inefficient in practice. To deal with the curse of dimensionality Bengio et al.
(2003) proposed to learn distributional word representations in low-dimensional spaces.
Following the distributional hypothesis — words that appear in the same context tend
to be semantically similar — every word in the vocabulary is now viewed as a point or
vector in a high-dimensional space, called word embedding. This representation is able
to capture various linguistic properties from text (syntax, word similarity/relatedness,
analogy), according to the training objective that is being optimized by a given algo-
rithm. The prominence of word embeddings was well recognized when word2vec was
introduced by Mikolov et al. (2013). It was shown that word2vec outperformed previous
methods on a variety of language tasks like semantic relatedness, synonym detection,
clustering and analogy completion (Baroni et al., 2014). Most importantly, a learnt set
of word embeddings can be transferred to other domains such as knowledge discovery
in scientific literature (Tshitoyan et al., 2019) and recommendation systems (Grbovic
and Cheng, 2018). Following works (Pennington et al., 2014; Bojanowski et al., 2017)
aimed at improving known limitations of word2vec, such as handling out-of-vocabulary
words or dealing with word morphology. However, the biggest disadvantage of distribu-
tional representations is their inability to model word polysemy. For example the word
mouse will always have a single embedding regardless of its meaning (animal or computer
hardware). Various methods that take into account context have been proposed to ad-
dress this issue, but in reality, contextualized representations already implicitly existed
in recurrent neural networks, such as in the famous Long Short-Term Memory (LSTM)
architecture (Hochreiter and Schmidhuber, 1997). One of the first dedicated approaches
to generate context based embeddings was TagLM (Peters et al., 2017), that built on the
idea of concatenating conventional word embeddings with context-sensitive representa-
tions from a neural language model trained on a large amount of unlabeled data. A year
later Peters et al. (2018) introduced ELMo, a successor of TagLM that uses the contex-
tual representations of all layers of the model, instead of the top layers as in TagLM. The
intuition is that different types of information about a word may be encoded at different
layers of the model, hence some could be more useful than others depending on the task.
ULMFiT (Howard and Ruder, 2018) is another model that promoted the concept of
transfer learning, i.e., training a large model on a lot of a data, and then applying it for
particular NLP tasks. ULMFiT reuses the same network architecture and simply trains
the model by changing the top layer according to the underlying task. Nowadays, there
exist a plethora of approaches that effectively deal with contextuality, namely, BERT

2.1. Deep learning based NLP 9

(Devlin et al., 2019), Generative Pre-trained Transformer (GPT) (Radford et al., 2019),
XLNET (Yang et al., 2019), T5 (Raffel et al., 2020) and more. These are based on the
Transformer architecture (Vaswani et al., 2017) that greatly advanced the state of the art
in NLP. Below we briefly explain this concept by focusing on a particular Transformer
model that will be extensively used throughout this thesis.

2.1.3. Bidirectional Encoder Representations from Transformers

Released by Devlin et al. (2019), BERT was a breakthrough in NLP since it greatly
advanced the state of the art in the field. Unlike its ancestors that processed the input
text in a sequential manner – either left-to-right or right-to-left – BERT is bidirectional,
allowing the token representations to depend on the full surrounding context. Moreover,
it can serve as a basis to solve many NLP tasks with minimal architecture modifications.

2.1.3.1. Input formatting

BERT utilizes the WordPiece tokenizer (Wu et al., 2016) to convert the input text into
tokens, using a vocabulary V that consist of ∼ 30K concrete words, subwords and individ-
ual characters. Consider the example “BERT produces contextualized representations.”.
The tokenizer begins by checking whether each word is part of the vocabulary or not.
If not, it tries to decompose the word into the largest possible subword in the vocabu-
lary, and if that is not sufficient, it ends up splitting the word into individual characters.
This way the model can generate representations for out-of-vocabulary words. In this
example, all words apart from “contextualized ” belong to V, thus the tokenization is the
following: [‘bert’, ‘produces’, ‘context’, ‘##ual’, ‘##ized’, ‘representations’]. All words
are lower-cased, punctuations are removed and “contextualized ” is decomposed into “con-
text”, “##ual ” and “##ized ”. If a subword occurs at the front of the original word it
remains unchanged, whereas if it appears later like in this example, the “##” symbol is
used to differentiate. Depending on the downstream task, BERT can either process a
single sentence or a pair of sentences that it respectively encodes in the following format:

S = [CLS], t1, . . . , tM , [SEP]

or
S = [CLS], t1, . . . , tN , [SEP], tN+1, . . . , tM , [SEP]

where S is a sequence of M discrete tokens. The classification token ([CLS]) and the
separation token ([SEP]) are added at the start and end of each sentence respectively.
The former is useful for classification tasks, while the latter helps the model to differ-
entiate between the two sentences in the input pair. Next, the input sequence length
is fixed to a constant value, thus S is padded or truncated to meet this requirement.
In the case of padding, a special [PAD] token is repeatedly appended to the end of the
input sequence until the specified length is met. For truncation, tokens are sequentially
removed either from the end of the first, the second or the longest sentence. Once the
input is fully tokenized, it is converted from a list of tokens into a list of indices (input

10 Chapter 2. State of the art

ids), each mapped to the corresponding token in the vocabulary. Next, a list of zeroes
and ones (segment ids) is created to indicate whether an input token belongs to the first
(id = 0) or the second sentence (id = 1). Additionally, a list of integers with values
from 0 to M (position ids) is used to inform the model of the position of each token
in S. For each input, segment and position id the model generates the corresponding
token, segment and position embedding vector via WTE ∈ RdV×d, WSE ∈ R2×d and
WPE ∈ RM×d respectively, where dV is the vocabulary size and d is the embedding di-
mensionality. All three types of embeddings are summed element-wise to produce the
final input representation X ∈ RM×d. This is depicted in the example of Figure 2.1.

Figure 2.1.: Input representation of BERT as an element-wise sum of the token, segment and
position embeddings (Devlin et al., 2019).

2.1.3.2. The Transformer architecture

The original Transformer as proposed by Vaswani et al. (2017) is composed of an encoder
and a decoder part as shown in Figure 2.2. The former is useful for creating meaningful
representations of text, while the latter makes use of these to perform language gener-
ation. BERT only employs the encoder part. This is a stack of L Transformer encoder
blocks of the same structure but with different parameters. Each block is broken down
into two sub-layers. It starts off with a self-attention layer that computes a score for each
token in the input sequence S, against all tokens in S. Intuitively, this score reflects the
importance that each token assigns to individual tokens in the input, and thus, allows for
contextualized token representations. In practice, self-attention is essentially a mapping
from a query and a set of key-value pairs to an output. For each token in S the following
steps are applied:

1. A query vector qi and a key vector ki of dimension dk, and a value vector ui of
dimension dv are created by multiplying the embedding xi ∈ Rd of token i with
trainable weight matrices WQ ∈ Rd×dk , WK ∈ Rd×dk , WV ∈ Rd×dv respectively:

2.1. Deep learning based NLP 11

qi = xiWQ

ki = xiWK

ui = xiWV .

(2.1)

2. Then, the i-th token is scored against all tokens j in S by taking the dot product
of the query vector for i and the key vector for j:

sij = qik
T
j , ∀j ∈ [1,M]. (2.2)

3. The obtained score is divided by the square root of dk for numerical stability during
training, and then it is normalized by a softmax operation:

s′ij =
sij√
dk

(2.3)

s′′ij =
es

′
ij∑M

j=1 e
s′ij

. (2.4)

4. Next, the normalized score is multiplied by each value vector of all j-tokens:

u′
ij = s′′ijuj , ∀j ∈ [1,M]. (2.5)

5. Finally, the output of self-attention for token i is a sum of weighted value vectors:

zi =
N∑
j=1

u′
ij . (2.6)

At implementation time the self-attention is applied simultaneously on the whole input
sequence, by packing all queries, keys and values into corresponding matrices Q ∈ RM×dk ,
K ∈ RM×dk , V ∈ RM×dv :

Attention(Q, K, V) = Softmax
(QKT

√
dk

)
V = Z. (2.7)

This concept is further expanded to multi-headed attention with the queries Q, keys
K and values V being linearly projected h times using different WQ ∈ Rd×dk ,WK ∈
Rd×dk ,WV ∈ Rd×du projection matrices, where dk = dv = d/h. The resulting heads are
concatenated and multiplied by a weight matrix WO ∈ Rd×d to produce a single matrix
Ẑ that contains information from all attention heads:

MultiHead(Q, K, V) = Concat(Z1, . . . ,Zh)WO = Ẑ

where Zi = Attention(QWQ
i ,KWK

i ,VWV
i), ∀i ∈ [1, h].

(2.8)

Effectively, multi-headed attention allows the model to have multiple representation sub-
spaces through the use of the h different Q,K,V matrices, resulting in various attention

12 Chapter 2. State of the art

patterns associated with each Transformer block and head (Vig, 2019). Examples of
these include the delimiter-focused attention pattern, where a lot of attention is centered
on the [SEP] token since the attention head is unable to associate it with anything else
in the input sequence. Next-word attention pattern is another example where each token
is focusing on the subsequent one, excluding [CLS] and [SEP]. The intuition behind this
pattern is that adjacent words are often the most relevant for understanding the meaning
of a word in context. The second sub-layer in the Transformer block of BERT applies
a point-wise, fully connected feed-forward neural network of two linear transformations
with a GELU (Hendrycks and Gimpel, 2016) activation function in between them:

FFNN(x) = GELU(xW1 + b1)W2 + b2

where GELU(x) = 0.5x
(
1 + tanh

(√
2/π(x+ 0.044715x3)

))
.

(2.9)

The output of this serves as input to the subsequent block, where W1 ∈ Rd×4d,b1 ∈ R4d

and W2 ∈ R4d×d,b2 ∈ Rd are learnable weights. Furthermore, a residual connection (He
et al., 2016) followed by Dropout (Srivastava et al., 2014) and a layer normalization (Ba
et al., 2016) is applied after each sub-layer, such that output is:

LayerNorm(x + Dropout(Sublayer(x))) (2.10)

where Sublayer(x) is the function implemented by the sub-layer itself. An illustration of
a Transformer block is shown in Figure 2.2. Throughout this work, we experiment with
the BERTBASE version of the model, that utilizes 12 Transformer blocks and 12 multi-
attention heads. The input sequence length is fixed to 512. We make use of the uncased
vocabulary of dV = 28, 996. Finally the model’s hidden dimension is set to d = 768.

Figure 2.2.: The Transformer encoder block architecture (Alammar, 2018).

https://jalammar.github.io/illustrated-transformer/

2.1. Deep learning based NLP 13

2.1.3.3. Pretraining and finetuning

BERT is originally pretrained on documents (∼ 3.3M words) from the BookCorpus (Zhu
et al., 2015) and the English Wikipedia. The pretraining objective consists of two unsu-
pervised tasks: masked language modeling and next sentence prediction. Typically, when
building a language model the objective is at each step to predict a target word, based on
either previously observed words (left-to-right) or words that come after it (right-to-left).
In standard conditional language modelling, looking simultaneously on both sides of the
context can be problematic, since the model could trivially predict the target word as
it has already seen it while predicting a previous word. To deal with this issue, Devlin
et al. (2019) randomly replace 15% of the input tokens with a [MASK] token, and try to
predict those instead. In next sentence prediction, the model takes as input a pair of
sentences from the training corpus, and it must decide whether one follows the first one
in the original text. Doing so, the model learns how to capture relationships between
successive sentences, which is crucial for downstream tasks such as question-answering
and natural language inference. The finetuning process allows to BERT to be adapted
to a particular downstream task with minimal architecture modifications. More specifi-
cally, once the task-specific inputs and the output layer are specified, the entire model is
trained end-to-end for a few epochs on labeled data for the downstream task. This is also
called finetuning. As previously described, the input consists of either a single sentence
or a sentence-pairs, e.g., movie reviews for sentiment analysis or question-answer pairs
for question-answering. The output layer is commonly a simple feed-forward layer used
to generate the prediction for the downstream task. The inputs to this layer usually de-
pend on the nature of the task. For token-level tasks such as word sense disambiguation
and question-answering, the BERT encoder representations of the tokens of interest are
fed into the output layer, while for classification tasks like relation extraction or next
sentence prediction, the [CLS] token representation is used.

2.1.4. Example usages of BERT

As of late, deep learning models tend to replace classical machine learning systems since
they require less feature engineering and generally perform better in many NLP tasks.
Below we showcase examples of deep learning based NLP applications/problems, and
how they are addressed with BERT, discussing at the same time existing limitations of
the model.

2.1.4.1. Biomedical relation extraction

Biomedical relation extraction is the task of identifying relations between pairs of entities
in a biomedical corpus. Typically, the data consist of individual sentences with anno-
tated relations of named entities, such as drug-to-protein interactions. The objective is
to assign to each sentence a relation type from a predefined set. Performance is measured
in terms of precision, recall and F1-score. Peng et al. (2019) pretrained their own BERT
variant on approximately 4B words from PubMed abstracts (Fiorini et al., 2018) and

14 Chapter 2. State of the art

500M words from clinical notes from MIMIC-III database (Johnson et al., 2016). They
treated biomedical relation extraction as a sentence classification task, where they masked
the named entities with custom tags, e.g., “Proto-oncogene PIM-1 is a novel estrogen re-
ceptor target associated with high grade breast tumors.” becomes “@CHEMICAL$ PIM-1
is a novel @GENE$ receptor target associated with high grade breast tumors.”. Then,
they finetuned their model for sentence classification using the [CLS] token embedding
of the last encoder layer as input to a feed-forward layer, that produces an estimated
posterior probability for each relation type. The relation type with the highest poste-
rior probability is selected as the final estimate. Similarly, Lee et al. (2020) released
BioBERT, BERT model pretrained on 4.5B words from PubMed abstracts and 13.5B
words of PubMed full-text articles. They used the same finetuning procedure as Peng
et al. (2019), however they experimented with different masking strategies for the named
entities. SciBERT (Beltagy et al., 2019) is yet another BERT model pretrained on 1.14M
biomedical and computer science papers from Semantic Scholar (Ammar et al., 2018).
Unlike the previous variants that are pretrained using the standard BERT vocabulary,
SciBERT comes with its own WordPiece vocabulary. The authors experimented with
standard finetuning and frozen BERT embeddings. For the former, they used the final
embedding of the [CLS]-token as input to a linear layer. For the latter, they used BERT
encoder embeddings of all tokens in the sentence as input to a 2-layer Bidirectional Long
Short-Term Memory (BiLSTM) (Schuster and Paliwal, 1997), and then they fed the con-
catenated first and last BiLSTM vectors to a feed-forward layer. Although these BERT
variants achieve better results than the previous state-of-the-art models, there still suffer
from several limitations. Direct comparison of these models is not always possible, as
for example SciBERT uses the gold-standard annotations of entities for relation extrac-
tion, whereas BioBERT performs named entity recognition and relation extraction jointly
(hence the use of masking for the named entities). Furthermore, Peng et al. (2019) report
that their base version of BlueBERT is less efficient than the large one (12 vs. 24 Trans-
former encoder blocks) potentially due to the bigger average sequence length in relation
extraction tasks. Handling long sequences is a known problem of Transformers related
to the attention mechanism (Zaheer et al., 2020). This comes in agreement with the
findings of Alimova et al. (2021), showing that BioBERT has a limited capacity to model
relations between pairs of entities in a given text span, with an average performance drop
of 34.2% in F1-score in cross-domain evaluation.

2.1.4.2. Sentiment analysis of movie reviews

Sentiment analysis is the task of deciding whether the intended sentiment of a piece of text
is positive or negative. Given a collection of movie reviews in the form of sentences along
with human annotations of their sentiment, Devlin et al. (2019) treats the problem as a
binary sentence classification task. Taking for example the review “Rarely has so much
money delivered so little entertainment.” BERT is finetuned to predict either 0 for the
negative class or 1 for the positive. This is done by feeding the [CLS] token representation
of the last encoder layer of BERT in a feed-forward layer classifier to output a posterior
probability of the review being positive or negative. The class with the highest score

2.1. Deep learning based NLP 15

is selected. The overall performance is measured in terms of classification accuracy.
Jiang et al. (2020a) argue that standard finetuning tends to harm the generalization
ability of large pretrained models such as BERT, due to overfitting on the limited data
resources for the downstream task. Instead, they propose a modified finetuning method
that accounts for the model complexity via regularization, and Bregman proximal point
optimization to avoid aggressive updating of the weights at each epoch. Their BERT
based model shows improvements on a series of tasks from the GLUE benchmark (Wang
et al., 2018), including sentiment analysis. Aghajanyan et al. (2021) introduce a multi-
task, pre-finetuning approach that combines gradient optimization of multiple tasks, loss
scaling and task sampling schemes, and leads to representations that generalize better
across different tasks. They tested their method with RoBERTa (Liu et al., 2019b)
showing improvements in sentiment analysis among other tasks.

2.1.4.3. Target sense verification

TSV is a word sense disambiguation task in which the system is provided with a target
word in context on the one hand, and a definition and a set of hypernyms of that word
on the other hand. The system must decide whether their senses match or not. Consider
for instance the context “home is where the heart is”, the definition “where you live at
a particular time” and the set of hypernyms “residence, abode”, all corresponding to the
target word “home”. To disambiguate the meaning of “home” in that specific context,
one must compare and reason about the underlying relations between these concepts,
e.g., infer that “home” in this context refers to an environment rather than a place
as conveyed by the definition and the hypernyms. Performance is measured in terms
of precision, recall and F1-score. The standard approach of solving TSV with BERT
is to patch the inputs into a pair of sentences (context, definition; hypernyms) (Breit
et al., 2021). Then, either the [CLS] token representation of the last encoder layer of
BERT, or a concatenation of the representations of the [CLS] token, the target word
and the average of all words in the definition and all hypernyms, can be fed as input
to a feed-forward network classifier. If the output score is a above a fixed threshold
(typically 0.5), the senses are estimated to match, otherwise they are estimated to be
distinct. Unlike classical neural networks that use their own training schema, BERT-
like architectures are pretrained on generic tasks making it difficult to inject additional
features as re-training of the full model is highly expensive. To deal with this effect,
Moreno et al. (2021) introduced start and end marker tokens to highlight the target
word in context e.g., “home is where the heart is” becomes “[E1] home [/E1] is where the
heart is”, a strategy that helps the model focus on important parts of the input. They
finetuned two distinct BERT models on the hypernyms and the definition, using the
[CLS] token embedding for classification, and they aggregated the two classifier outputs
at inference time. Vandenbussche et al. (2021) ran an extensive study of BERT for TSV,
including data augmentation, freezing the model parameters during finetuning, applying
different pooling strategies to obtain the classifier input, or masking the target word in
the context. In contrast to Moreno et al. (2021) that emphasized the target word in
context with markers, they set the segment ids of the target word to match those of the

16 Chapter 2. State of the art

definition showing a slight improvement in accuracy. Additionally, their error analysis
shows that BERT often struggles to disambiguate the senses when the context provided
for the target word is limited. Liu et al. (2021) argued that off-the-shelf contextualized
representations of LLMs are usually dominated by the ones obtained from the finetuned
version of the same model. In order to improve on this aspect, they proposed a more
generic approach called MIRROWIC, and tested it on various lexical semantic tasks
including TSV. This fully unsupervised approach based on contrastive learning aims
to extract improved word embeddings from LLMs such as BERT. Specifically, they
created positive and negative pairs for a target word by making use of augmentation,
masking and dropout techniques, as well as raw samples from Wikipedia. Then, they
trained the embeddings such that positive pairs are pulled closer, while negative pairs
are pushed apart. To evaluate their method on TSV, they constructed manual templates
involving the target word, the definition and/or the hypernyms, and compared the cosine
similarities of the target word embeddings in the original context and the template.

2.1.4.4. Fact completion

Fact completion is the task of testing the ability of language models to fill-in missing
information about facts of the world. Typically, facts are represented as subject-relation-
object triples, e.g., (Joe Biden, president of, United States) or question-answer pairs, e.g.,
Who is the president of United States? Joe Biden. At test time, the model has to infer the
missing entry of a cloze-type statement concerning a specific fact. In the previous example
that could be “The president of United States is ”. Converting a fact into a cloze
statement requires a prompt, i.e., a template that transforms the fact into a sentence.
There is no standard way of selecting a prompt but the choice significantly impacts the
performance of the model. It can be manually created, automatically generated for a
specific task (Bouraoui et al., 2020; Jiang et al., 2020b; Gao et al., 2021; Haviv et al.,
2021) or optimized for a given task (Shin et al., 2020; Liu et al., 2022). Following the
masked language modeling pretraining objective for BERT, Petroni et al. (2019) replaced
the relation object in the fact’s prompt with the [MASK] token. Then, the representation
of the last BERT encoder layer corresponding to the [MASK] token is fed into a softmax
output layer, to produce a probability score over a unified vocabulary. Performance is
measured in terms of mean precision at k (P@k), meaning that if the generated token
is ranked among the top-k predictions then it is assigned a value of 1, and 0 otherwise.
In their work, they only considered single token objects as answers, since multi-token
generation greatly complexifies the setting. Generally, compared to language generation
models, BERT is limited when it comes to multi-token generation as the exact number
of [MASK] tokens have to be specified beforehand. Moreover, their findings suggest
that although BERT might correctly recall a fact, sometimes the generated answer may
be produced by memorization of the information during training rather than factual
“understanding”.

2.2. Symbolic Knowledge 17

2.2. Symbolic Knowledge

Most often, the only source of information that is given to a deep learning system is data
only tailored for the task at hand. However, this specification can be problematic since
the data alone only provide a partial specification of the task to be performed.

2.2.1. Why external knowledge can be useful?

External knowledge sources can enrich the information present in the data as they provide
better coverage of the concepts of interest. For example, they can provide complemen-
tary information when the training data are sparse, or help improve the expressivity of
a language generation model by pointing to semantically equivalent concepts, e.g., para-
phrases. Moreover, they can be used for training data augmentation such that the deep
learner becomes more robust to input variations. In addition, symbolic knowledge can
also help design more interpretable architectures that take into account specific rules to
be respected by the model (Camacho-Collados and Pilehvar, 2018). At the same time,
being able to impose such constraints to the model is a step towards protecting privacy,
e.g., ensuring that the predictions of the model do not contain sensitive information from
the training data, and towards eliminating biases that the system reproduces due to errors
during the data collection process. Finally, the integration of knowledge graphs (KGs)
with deep learning motivates the development of systems that learn concepts in relation
with each other rather than treating them independently. Exploiting various relations in
the KG could allow the discovery of new concepts, while requiring less training data.

2.2.2. Knowledge graphs

As the availability of data is increasing, so is the necessity of extracting, storing and
organizing the important information in the data. However, there is no unified approach
for doing so since knowledge can be general or tied to specific domains, and typically
comes in different types and formats, e.g., from plain text to specialized symbols. In the
following subsections, we review existing symbolic knowledge resources in the form of
KGs that are generally considered in deep learning based NLP, with a particular focus
on the ones used throughout this work.

2.2.2.1. Formalization of knowledge graphs

Broadly speaking, a KG is a graph whose nodes encode knowledge about concepts or
entities, and whose edges represent semantic relationships between them. Concepts typ-
ically refer to general instances, while entities point to physical objects in the real world,
such as a person or a location. There is no standard formal way to define a KG (Ji et al.,
2021). In its most general form, a KG is a directed, labeled graph that comprises a set
of “subject-relation-object” triples:

G = {(s, r, o)|s ∈ E , r ∈ R, o ∈ E} (2.11)

18 Chapter 2. State of the art

where instances s and o are related by r, with E being the set of all concepts or entities
and R the set of all relations.

2.2.2.2. Review of existing knowledge graphs

WordNet (Miller, 1995) is among the most popular and widely used public knowledge
resources used in NLP. It is a human-constructed lexical database that groups nouns,
verbs, adjectives and adverbs based on their meanings (or senses). Synonymous words
which refer to the same concept and are interchangeable in many contexts, are clustered
together into unordered sets called synsets. Each synset comes with its own definition
(gloss), and sometimes a few sentence examples that showcase the usage of each synset
member. Moreover, polysemous word forms are grouped in as many distinct synsets
as their different meanings. For example, the word bass has nine senses in WordNet
including synsets like {bass, deep} for the adjective, or {bass, bass voice, basso}, {bass,
sea bass} for the noun. Statistics such as the number of words, synsets, and senses as
well as polysemy information are display in Table 2.1. The graph structure of WordNet
(Figure 2.3) interlinks synsets with various semantic relations including but not limited
to:

• Hypernymy or superordinate: when a synset is a superclass of another synset, e.g.,
travel → fly.

• Hyponymy or subordinate: when a synset is a subclass of another synset, e.g.,
mango → fruit.

• Meronymy or has-part: when a synset is a constituent part or member of another
synset, e.g.,
wheel → car.

• Holonymy or part-of: when a synset pertains to another synset, e.g.,
chair → leg.

• Antonymy: when two synsets have opposite meanings, e.g.,
increase ←→ decrease.

• Troponymy: when the event characterized by a verb synset is included in that of
another verb synset, e.g.,
walk → stroll or communicate → talk → whisper.

• Entailment: when the event described by a verb synset entails that of another, e.g.,
snore → sleep.

2.2. Symbolic Knowledge 19

Figure 2.3.: Graph representation snippet of WordNet (Navigli, 2016).

Table 2.1.: Statistics of WordNet 3.0 database.

POS Unique Synsets Total
strings word-sense pairs

Noun 117,798 82,115 146,312
Verb 11,529 13,767 25,047
Adjective 21,479 18,156 30,002
Adverb 4,481 3,621 5,580
Total 155,287 117,659 206,941

POS Monosemous Polysemoys Polysemoys
words and senses words senses

Noun 101,863 15,935 44,449
Verb 6,277 5,252 18,770
Adjective 16,503 4,976 14,399
Adverb 3,748 733 1,832
Total 128,391 26,896 79,450

POS Average polysemy Average polysemy
incl. monosemous words excl. monosemous words

Noun 1.24 2.79
Verb 2.17 3.57
Adjective 1.40 2.71
Adverb 1.25 2.50

20 Chapter 2. State of the art

FrameNet (Baker et al., 1998) is a lexical database that is based on the theory of
Frame Semantics (Fillmore and Baker, 2001) — a description of a type of event, entity
or relation, also called semantic frame, constitutes a good basis for understanding the
meaning of most words that occur in it. Consider the example “He was born in 1961”. In
FrameNet, this sentence is an instance of the [Being_born] frame along with additional
semantic information like “He” marked as [Child] and “in 1961” marked as [Time], referred
to as frame elements. Words or lemmas that evoke a particular frame are called lexical
units, e.g., born, come into the world for [Being_born]. FrameNet consists of over 1, 200
semantic frames, 13, 000 lexical units and 202, 000 example sentences. Statistics are pro-
vided in Table 2.2. Figure 2.4 depicts a graph representation of [Being_born] along with
its relations to existing frames. An explanation of the frame relations is provided below.

• Inheritance or is-a: when the child frame inherits all the features of the parent
frame, e.g.,
[Revenge] → [Rewards_and_punishments].

• Subframe: when the child frame is part of a complex event represented by the
parent frame, and it can be separately described as a frame, e.g.,
[Criminal_process]→ {[Arrest], [Arraignment], [Trial], [Sentencing], [Appeal]}.

• Perspective on: indicates the presence of at least two different possible perspectives
on the neutral parent frame, e.g.,
[Get_a_job] and [Hiring] → [Begin_employment]
from the perspectives of the employer and employee, respectively.

• Using: when the child frame refers to the parent frame as background, e.g.,
[Volubility] → [Communication].

• Causative of and Inchoative of: systematic, non-inheritance relationships between
stative frames, e.g.,
“She had a high salary.” — [Position_on_a_scale],
“Her salary increased.” — [Change_position_on_a_scale]
and
“She raised his salary.” — [Cause_change_position_on_a_scale].

• See Also: relates groups of frames that are similar and should be carefully distin-
guished, e.g.,
[Scrutiny] → [Seeking].

• Precedes: captures a temporal order that holds between child subframes of a com-
plex event represented by the parent frame, e.g.,
[Sleep_wake_cycle] → {[Being_awake], [Fall_asleep], [Sleep], [Waking_up],
[Getting_up], [Being_awake]}
in which all subframes of [Sleep_wake_cycle] precede each other in a cycle.

• Metaphor: relation between a source and a target frame where lexical units in the
target frame are at least partially explained by the source frame, e.g.,
[Hostile_encounter] → [Firefighting].

2.2. Symbolic Knowledge 21

Figure 2.4.: Visualization of the Being_born frame of FrameNet using FrameGrapher.

Table 2.2.: Statistics of FrameNet database.

Frames Lexical units
(LUs) In FrameNet Finished

Lexical Frames 1,075 Nouns 5,575 2,698
Non-Lexical Frames 149 Verbs 5,214 2,852
FE Relations 10,749 Adjectives 2,407 1,368
Frame Relations 1,878 Other POS 490 67
FEs/Lexical Frame 9.7 LUs/Lexical Frame 12.7 —
FEs in Lexical Frames 10,478 — — —
Total Frames 1,224 Total LUs 13,686 6,985

The paraphrase database (PPDB) (Ganitkevitch et al., 2013) is a lexical database
with millions of paraphrases automatically extracted from bilingual parallel corpora. It
is available in XXXL, XXL, XL, L, M and S sizes with 77M, 23.1M, 7.8M, 3.4M, 1.4M
and 0.7M pairs of paraphrases, respectively. The acquisition of paraphrases is based
on bilingual pivoting method of Bannard and Callison-Burch (2005) — if two strings
from the same language translate to the same string in another language, then they are
assumed to be synonymous. Paraphrase pairs in PPDB fall into lexical (single word to
single word), phrasal (multi-word to single/multi-word) and syntactic (paraphrase rules
containing non-terminal symbols) types. Furthermore, each pair (e1, e2) is assigned with
entailment relations based on the theory of natural logic defined between pairs of natural
language expressions, such as:

https://framenet.icsi.berkeley.edu/fndrupal/FrameGrapher

22 Chapter 2. State of the art

• Equivalence: when e1, e2 are semantically equivalent, e.g.,
distant ≡ remote.

• Forward Entailment or Hyponymy: when e1 entails e2, e.g.,
glasses ⊏ sunglasses.

• Reverse Entailment or Hypernymy: when e2, entails e2, e.g.,
sneaker ⊐ footwear.

• Exclusion or Contradiction: when e1, e2 are either opposite or represent alteration,
e.g.,
close ¬ open or cat ¬ dog.

• Other relation: when e1, e2 are related by something other than entailment, e.g.,
swim ∼ water.

• Unrelated: when e1, e2 are independent, e.g,
car # family.

BioVerbNet (Majewska et al., 2021) is a specialized semantic lexicon of verbs, that aims
to accurately represent their meaning when found in biomedical texts, and to improve the
performance on biomedical NLP tasks. Initially, the verbs were automatically assigned
into groups using a neural classification approach (Chiu et al., 2019b), and then they
were further verified and annotated by domain experts. Following VerbNet’s (Kipper
et al., 2008) guidelines 693 verbs were organized in 22 top-level classes and 117 subclasses
(Figure 2.5) based on shared semantic and syntactic properties. Moreover, each subclass
is provided with syntactic frames that showcase the possible surface realizations of the
member verbs’ arguments via usage example sentences. The sentences are annotated
with semantic roles. Table 2.3 displays the semantic and syntactic annotations of the
subclass verb repair, that is part of the creation and destruction class.

Table 2.3.: Semantic and syntactic annotations of the subclass verb repair in BioVerbNet. Verb
class members are underlined.

Example sentences Semantic Role Syntactic Frame
Newts can regenerate their
organs

Agent <+plural> {can} V
Patient <+plural>

NP.AGENT V NP

Adult zebra fish regenerate
their caudal fin following
partial amputation

Agent <+plural> V Patient
{following} Source

NP V NP PP

2.2. Symbolic Knowledge 23

Figure 2.5.: Visualization of BioVerbNet semantic classes (Majewska et al., 2021).

We point to Yan et al. (2018) for an extensive review of existing KGs.

24 Chapter 2. State of the art

2.2.3. Graph embeddings

To date, encoding information related to the structure of a graph into a machine learning
model is an open challenge. Traditional approaches often lean on user-defined heuristics
such as kernel functions (Vishwanathan et al., 2010) or graph summary statistics, e.g.,
node degrees or clustering coefficients (Bhagat et al., 2011). However, these approaches
are quite limited as the features they provide cannot be adjusted during training, and
their design process can be expensive and time-consuming. Similarly to word embed-
dings (Section 2.1.2), modern data-driven approaches attempt to embed nodes, relations,
sub-graphs or entire graphs as points in a low-dimensional vector space, namely graph
embeddings, such that geometric relationships in the latent space reflect the structure
of the original graph, e.g, node position in the graph or local graph neighborhood struc-
ture. According to Hamilton et al. (2017) node embedding methods can generally be
viewed from the encoder-decoder perspective, i.e, an encoder function that embeds nodes
into low-dimensional vectors, and a decoder function that utilizes these vectors in order
to generate information about the graph. Besides the encoder-decoder functions, what
makes the difference between these methods is the definition of a pairwise node similar-
ity measure, and a loss function to train the underlying model. Premature techniques
are based on matrix-factorization for dimensionality reduction. One of the most pop-
ular among these is Laplacian eigenmaps (Belkin and Niyogi, 2001), where the goal is
to preserve the local geometry such as nearby nodes in the graph remain close — in
terms of Euclidean distance — in the latent space. Follow up works have attempted to
learn representations of nodes such that the inner product between node embeddings is
approximately close to some deterministic node similarity measure, e.g, the adjacency
matrix (Ahmed et al., 2013; Cao et al., 2015) or neighborhood overlap (Ou et al., 2016).
Another family of approaches to learn node representations rely on the idea of ran-
dom walks, i.e., if nodes appear frequently on short random walks over the graph, they
should have similar embeddings. In contrast to factorization-based methods, random
walks employ a stochastic node similarity measure, e.g., the probability of visiting node
j starting from node i on a fixed length random walk, like in Deepwalk (Perozzi et al.,
2014) and node2vec (Grover and Leskovec, 2016). However, all of the previous methods
share certain limitations. More specifically, the resulting node embeddings are unique
and independent of each other, thus there is no parameter sharing between nodes. The
encoder part is simply an embedding lookup matrix, which can lead to scaling issues
as the size of the graph grows. Furthermore, graph node attribute information, such as
node position or description, is not taken into account. Lastly, the encoder is limited in
the sense that it cannot generate embeddings for nodes that were not encountered during
training. DNN based approaches (Cao et al., 2016; Wang et al., 2016) were introduced
to deal with some of these drawbacks, by compressing local neighborhood information of
nodes into low-dimensional vectors with the use of autoencoders (Hinton and Salakhut-
dinov, 2006). A more effective family of approaches, called convolutional, learns node
representations by aggregating the information from a node local neighborhood. The
embeddings are trained in an iterative fashion by incorporating information from neigh-
bouring nodes at each iteration. These include graph convolutional neural networks

2.3. Incorporation of symbolic knowledge into neural networks 25

(Kipf and Welling, 2017, 2016; Su et al., 2021a; Schlichtkrull et al., 2018). Graph neu-
ral networks (Scarselli et al., 2008; Li et al., 2016; Gilmer et al., 2017) learn sub-graph
embeddings, i.e., low-dimensional vector representations over a set of nodes and edges.
Finally, there exist approaches for decoding the relations of a graph, which is particularly
useful in predicting new edges in the graph. We refer to Hamilton et al. (2017), Nickel
et al. (2015), and Dai et al. (2020) for comprehensive reviews on embedding graph nodes
and relations/edges.

2.3. Incorporation of symbolic knowledge into neural
networks

Although training a deep learning based NLP system on data specific to a domain of
interest allows us to obtain representations of concepts that are informative about certain
tasks, encoding symbolic knowledge or imposing constraints in the model is not trivial.
There is no standard recipe on how to incorporate external symbolic knowledge into
a neural network. Examples vary from injecting knowledge at the input level, e.g.,
by replacing target words in the input sentence with related ones in a given graph,
modifying the training objective function to constrain the embedding space, to adapting
the architecture of the model or aggregating the embeddings of different types of learners.

2.3.1. Joint and post-hoc methods

We begin by reviewing approaches that integrate knowledge into distributional word
embeddings by retraining the model from scratch using a modified training objective.
We refer to these approaches as joint methods. For example, Levy and Goldberg (2014)
proposed to replace the classical bag-of-words contexts in the word2vec skip-gram model
by dependency-based contexts, and showed that the resulting embeddings better reflect
the syntactic similarities between words. Similarly, Boag and Kané (2017) added pairs of
contexts between words and unique concept identifiers taken from the UMLS biomedical
ontology (Bodenreider, 2004), to enforce a connection between the embeddings of clinical
concepts that are known to be related to each other. Liu et al. (2015, 2018) learned
semantic word embeddings by combining word2vec with rank or hierarchical structure
rules mined from WordNet. Dict2vec (Tissier et al., 2017) is another extension of the
skip-gram model, that builds pairs of contexts between words from word definitions
in dictionaries, showing improvements on word similarity and text classification tasks.
In another approach, Yang and Mitchell (2017) modified a BiLSTM recurrent neural
network (Schuster and Paliwal, 1997) to take into account information coming from the
WordNet and NELL (Mitchell et al., 2018) knowledge bases. To this end, they employed
an attention mechanism that computes the relevance of candidate concepts from the
knowledge base to the current input, and a second component that decides whether to
exploit this information or not, and they reported improvements on both entity and event
extraction tasks. Jiang et al. (2018) learned word embeddings for readability assessment,
i.e., evaluation of readability of texts in terms of scores or levels, by optimizing a hybrid

26 Chapter 2. State of the art

loss function. One the one hand, the model predicts reading difficulty contexts from
a KG, and on the other hand it predicts bag-of-words contexts from a corpus, using
the skip-gram model with negative sampling. Nonetheless, joint methods come with
the downside that they are model-specific, and often time-consuming since they require
retraining the system afresh.

Post-hoc methods surpass these limitations, since knowledge is inserted in the word
embeddings after training, regardless of the embedding approach used to obtain them.
The most popular technique among these is retrofitting (Faruqui et al., 2015). This
is a graph-based approach that, given a semantic lexicon, i.e., a KG whose nodes rep-
resent words and edges represent relations between them, tries to reposition the word
embeddings in such a way that they become closer — under some distance metric — to
neighborhood embeddings in the graph. More formally, given an initial set of distribu-
tional word embeddings Q̂ = (q̂1, . . . , q̂n), the objective is to obtain new distributional
embeddings Q = (q1, . . . , qn) for the same words that minimize the following function:

L(Q) =
n∑

i=1

[
ai||qi − q̂i||2 +

∑
(i,j)∈E

bij ||qi − qj ||2
]

(2.12)

where E is the set of all related word pairs (i, j) in the graph, and ai and bij control the
strength of the corresponding terms in L. Equating to zero the partial derivative of L
with respect to qi results in the following update rule:

qi =
aiq̂i +

∑
j:(i,j)∈E bijqj

ai +
∑

j:(i,j)∈E bij
. (2.13)

Initially, Faruqui et al. (2015) considered a single type of relation between words, namely
“similarity”. Subsequent approaches have extended retrofitting to account for “dissimi-
larity” relations (Mrkšić et al., 2016, 2017; Lengerich et al., 2018) and ordering (ranking)
between the relations (Ferret, 2017). Along these lines, Vulić et al. (2018) proposed a
method that exploits lexical resources to improve the embeddings of all words in the vo-
cabulary, including those which do not appear in the semantic lexicon. Their embeddings
showed improvements in dialogue state tracking and lexical text simplification tasks in
three different languages. We refer to Roy and Pan (2021) for a comprehensive review
of approaches that integrate symbolic knowledge into distributional word embedding
systems.

By default, all of the above retrofitting methods can only be applied to distributional
word embeddings, i.e., a single representation vector per word. When we shift to con-
textualized embeddings, each word in the vocabulary can have a different representation
in each sentence. An attempt to retrofit contextualized embeddings coming from ELMo
(Peters et al., 2018) is presented in the Paraphrase-aware Retrofitting (PAR) (Shi et al.,
2019) method. More specifically, PAR learns an orthogonal transformation matrix that
pulls closer the embeddings of words in paraphrased contexts, and separates those in un-
related contexts. However, this approach is limited to pairs of paraphrased contexts and
cannot benefit from different sources of linguistic information. More recently, Bihani and

2.3. Incorporation of symbolic knowledge into neural networks 27

Rayz (2021) utilized retrofitting (Faruqui et al., 2015) to inject word sense information
into the contextualized embeddings of BERT, among others. Although they empirically
show improved word sense disambiguation capabilities, their framework is only appli-
cable to intrinsic evaluation tasks. To our knowledge, there is no existing method for
contextualized embeddings that takes full advantage of the benefits of retrofitting. In
Chapter 3, we will present our work on refining BERT contextualized embeddings using
semantic lexicons, that constitutes a first step to bridging the gap between contextualized
embeddings and retrofitting.

2.3.2. Enforcement of logical constraints into neural networks

Neural-symbolic computation is a research field that deals with the integration of logic
and symbolic reasoning into neural networks, and has lately received a lot of attention
due to the prominence of deep learning (Raedt et al., 2020). In particular, a number
of approaches focus on integrating knowledge expressed as logical rules, which can act
as a form of regularization, or assist in limited data settings. These approaches can be
further categorized based on the type of logic that is being employed.

For example, Hu et al. (2016) adopted a meta-learning approach by simultaneously
training a student network to imitate the predictions of a teacher network that are
expressed in terms of explicitly first-order logic (FOL) rule constraints as regularization
terms in the training loss. Their framework showed improvements applied on sentiment
analysis and named-entity recognition tasks. Rocktäschel and Riedel (2017) introduced
Neural Theorem Provers, an automated knowledge base completion approach that is able
to induce FOL rules using gradient descent, which provide an interpretable representation
of what the model has learned, and enable the neural network to perform multi-hop
reasoning over facts in various knowledge bases, e.g., if Abe is the father of Homer
and Homer is a parent of Bart, infer that Abe is a grandfather of Bart. Similarly,
Neural LP Yang et al. (2017) learns FOL rules for knowledge base reasoning building
upon a differentiable probabilistic logic framework called TensorLog (Cohen et al., 2020),
where inference tasks are compiled into sequences of matrix numerical operations. They
employed an LSTM with a differentiable memory component for learning to compose such
operations, and computed confident scores for each logical rule via attention. Neural LP
shows improvements on knowledge base completion and question-answering tasks. The
aforementioned approaches are limited to knowledge base reasoning and do not scale to
a large number of complex rules.

Dong et al. (2019) address those limitations in Neural Logic Machines, a more gen-
eral framework that combines inductive learning and logic reasoning. Tensors are used
to represent logic predicates, while neural networks are used as function approximators
of logic operations, e.g. logical AND and OR. The resulting system displays promising
results in a plethora of tasks ranging from family tree and general graph reasoning, to
decision making such as sorting arrays and finding shortest paths. Along the same lines,
Dai et al. (2019) proposed Abductive Learning, a system that tries to integrate symbolic
domain knowledge as FOL clauses via logical abduction, in order to provide feedback
and correct possible mistakes in the predictions of the neural model. Their approach

28 Chapter 2. State of the art

outperformed the Transformers network and BiLSTM on resolving unknown mathemat-
ical operations from image data of hand-written equations, and can be further adapted
to more complex problems such as the n-queens task. Moving on from purely logic, there
exist probabilistic approaches to integrate knowledge into neural networks. Perhaps one
of the most prominent among these is Markov Logic Networks (Richardson and Domin-
gos, 2006), where probabilistic logic determines the strength of the available knowledge
in a given domain expressed as FOL formulas. The logic is used as constraints mapped to
an undirected graphical model, and the weights indicate how important the constraints
are. Rocktäschel et al. (2015) jointly learned embeddings of relations and entity-pairs by
casting facts and logical background knowledge as FOL formulas, and then optimized a
loss function based on the marginal probabilities that a given formula holds under the
model. In the same manner, Demeester et al. (2016) learned distributed representations
of relations of facts, used for knowledge base completion, by incorporating implications
rules based on the hypernymy relation of WordNet, e.g., professorAt → employeeAt, into
the loss function of the model. In another approach, Xu et al. (2018) focused on multi-
class classification with neural networks subject to logic constraints. They defined a
semantic loss based on the probability that the constraints are satisfied, and used that as
a regularizer whenever the logical theory or constraints were violated. A general frame-
work that integrates logic, neural networks and probability is DeepProbLog (Manhaeve
et al., 2018). It supports both symbolic and sub-symbolic reasoning, program induction
and probabilistic logic programming by extending the probabilistic logic programming
language ProbLog (De Raedt et al., 2007) with neural predicates. Relational Neural
Machines (Marra et al., 2020) combine supervised learning with deep neural networks
and FOL symbolic reasoning as in Markov Logic Networks into a single graphical model.

Although probabilistic approaches provide fast inference once the training is completed,
they often suffer from slow optimization. Therefore, there exist alternative approaches
that reside on fuzzy logic, where the logical operators are converted into real valued
functions, and the Boolean truth values are translated into confidence values in the
continuous [0, 1] interval. However, some properties from probabilistic logic are not
necessarily preserved in fuzzy logic, e.g., the transitivity property A → B,B → C ⇒
A→ C may not be guaranteed. Examples of such frameworks include Probabilistic Soft
Logic (Bach et al., 2017), Logic Tensor Networks (Serafini and Garcez, 2016; Donadello,
2018), Semantic based Regularization (Diligenti et al., 2017), LYRICS (Marra et al.,
2019a,c), Deep Logic Models (Marra et al., 2019b), or the framework by Roychowdhury
et al. (2021).

2.3.3. Learning and reasoning via analogies

As discussed in Section 1, symbolic knowledge exists in scientific theory, taking the
form of e.g., axioms, theorems or lemmas, and it is usually expressed with mathematical
symbols and formulas. In the case of analogies, such theories can be exploited in different
ways in order to teach deep learning models how to reason, adapt, and deal with tasks
that require analogy-making. Evidence of analogical reasoning with distributional word
embeddings was provided by Mikolov et al. (2013); Levy and Goldberg (2014). It was

2.3. Incorporation of symbolic knowledge into neural networks 29

shown that these embeddings can model relations in the data through vector differences
such that if the objects A, B, C, D are in analogical proportion, then the differences of
their respective embeddings (denoted by boldface), i.e., (B−A) and (D−C) ought to
be similar. A famous example where this was proven to hold true is the analogy “man is
to woman as king is to queen”. What is really striking about this is that word2vec was
not explicitly instructed to model analogies, yet this property came out as a side product
of the training.

Sadeghi et al. (2015) attempted to solve visual analogy questions of the form “image
A is to image B as image C is to ?” or equivalently A : B :: C : ?, where the goal
is to find an image D that respects the analogy. More specifically, given an analogy
quadruple (A,B,C,D) of images, a CNN (LeCun et al., 1998) with Siamese quadruple
architecture is used to embed each image. Then, a transformation between image pairs
(A,B) and (C,D) learns to map each pair to a vector representation. This is computed
using the normalized differences of the image embeddings in the respective pair. The
optimization problem utilizes a margin-based contrastive loss function, that encourages
the transformations of pairs that are in analogy to be close in the embeddings space, and
pulls apart those that are dissimilar. Unlike Sadeghi et al. (2015) who only considered
visual inputs, Peyre et al. (2019) developed a system that is able to detect relations in
images represented in the form of (subject, predicate, object) triplets, e.g., (person, ride,
dog). To do so, they learned both visual and language representations of the subject,
predicate, object and the whole triplet, using pre-computed appearance features from
a CNN object detector, and pretrained word2vec embeddings respectively. These were
projected into a common d-dimensional visual-semantic embedding space, where the
training objective was to pull together visual-language representation pairs that match,
and pull apart those that do not. At inference time, based on a query (target) triplet
which has not been seen during training, the model has to retrieve an image described by
that triplet. This is done by first finding similar training (source) triplets based on the
cosine similarity of their corresponding subject, predicate, and object embeddings. Then,
given a source triplet, an estimate of the target triplet is computed using an analogy
transformation, inspired by Reed et al. (2015), that indicates how to obtain a latent
representation of the target triplet that is analogous to the source triplet. Intuitively,
this is similar to the idea of arithmetic operations with word embeddings, e.g., “king”
- “man” + “woman” = “queen”. But in this case “person ride horse" - “horse" + “dog"
= “person ride dog". Essentially, the analogy transformation is a two layer feed-forward
network that it is optimized in a similar fashion as the visual-language representations; by
pulling closer the visual representation of the target image to its corresponding language
representation obtained via analogy transformation, but pushing away pairs that do not
match. In a similar line of work, Lu et al. (2019) combined visual and language input
representations to solve analogy completion. Given a set of four possible images the
system must select an image D that turns the relation A : B :: C : D into a valid
analogy. To do so, they used ResNet (He et al., 2016) to embed A,B,C and all four
candidate images, and picked the one that results in minimum cosine distance between
the differences (B−A) and (D−C). Then, a BART model (Lewis et al., 2020) trained to

30 Chapter 2. State of the art

capture semantic relations using word pairs of pretrained word2vec embeddings, is used
to generate a posterior probability vector that a word-pair constitutes a relation given a
set of 258 learned relations during training. Using this vector as a representation of the
relations A : B and C : D respectively, BART selects the candidate D that minimizes the
cosine distance between A : B and C : D for all available candidates D. In the end, the
final answer is a weighted average between the similarity measures provided by ResNet
and BART.

In another work, Lim et al. (2019) proposed a CNN architecture for detecting semantic
analogies, where they framed the task as an image classification problem. CNNs are good
at capturing high level features in pictures, hence they detect analogical proportions by
stacking the embeddings of A, B, C and D into an image and feeding it in the CNN. In
the same spirit, Alsaidi et al. (2021a) adapted the previous model to detect morphological
analogies in different languages. Training a character-based CNN with data augmentation
using the properties of analogical proportions, they outperformed results of state-of-the-
art symbolic approaches (Murena et al., 2020; Fam and Lepage, 2018). Moreover, they
highlighted the effect of transfer learning using analogy between languages that share
commonalities, e.g., the same alphabet. However, these works are restricted to solving
analogies of word-pairs using distributional word embeddings. Afantenos et al. (2021) at-
tempted to identify analogical proportions between sentences. To this end, they proposed
a more relaxed definition of analogical proportions that is better suited for sentences by
substituting the central permutation property (A : B :: C : D → A : C :: B : D) with
that of internal reversal (A : B :: C : D → B : A :: D : C). However, they leave LLMs for
future work. More recently, Ushio et al. (2021a) distilled relation embeddings between
word pairs directly from BERT. To that end, they finetuned BERT such that the embed-
dings of word pairs belonging to the same relation class are closer than those belonging to
different classes. Their method outperformed state-of-the-art methods on several analogy
and relation classification benchmarks. In a following study, Ushio et al. (2021b) assessed
the extent to which LLMs are capable of solving analogies without further finetuning.
Their results demonstrate that LLMs can detect analogies but are sensitive to the choice
of the hyperparameters. Furthermore, they show that such models are limited when it
comes to more complex relations, and often perform worse than traditional word embed-
ding systems. Although both works consider the use of contextualized embeddings, the
training datasets consist of pairs of words and thus, manually or automatically gener-
ated templates (prompts) are required to transform them into sentences. Garneau et al.
(2021) attempted to use analogical reasoning as means to measure global consistency of
multilingual BERT (mBERT) (Conneau et al., 2018; Devlin et al., 2019) embeddings,
where global consistency is defined as the extent to which the embeddings reflect seman-
tic relations independently of scale. They introduced WiQueen, a multilingual analogy
dataset across 11 languages with 78, 000 analogies extracted from Wikipedia, and used it
to train a four-way Siamese BERT architecture with a contrastive loss function in order
to impose global consistency for cross-lingual transfer. They reported improvements on
analogy retrieval intrinsic task, and bilingual dictionary induction and sentence retrieval
extrinsic tasks. We refer to (Mitchell, 2021) for a comprehensive survey on prominent

2.3. Incorporation of symbolic knowledge into neural networks 31

AI approaches that attempt to model analogies.
To our knowledge, there is no existing method that combines analogies with contextu-

alized embeddings to address word disambiguation tasks. In Chapter 4, we will combine
BERT with the proposed architecture by Lim et al. (2019) to solve target sense veri-
fication (TSV) via analogy detection. Unlike previous works that only solve analogies
of word-pairs, our setting will be more challenging as we will consider more complex
structures such as special tokens, words in context, list of words, full sentences or their
combinations.

2.3.4. Transformer knowledge-aware large language models

Transformer based language models have become the norm in NLP, achieving state-
of-the-art performance in several benchmarks. An interesting property of such models
is that they possess a great amount of unstructured knowledge due to pretraining on
large volumes of unlabeled text. However, their ability to reason over that knowledge
is quite limited, and they lack interpretability. Therefore, to address those limitations
there exist various approaches that try to incorporate structured, symbolic knowledge
into Transformer based architectures. Following the categorization by Colon-Hernandez
et al. (2021), approaches to inject knowledge into Transformer-based pretrained language
models are mainly divided into four types, namely, input, architecture, output based, or
their combination, as illustrated in Figure 2.6.

Figure 2.6.: Schematic illustration of the different types of knowledge injection approaches in
Transformer-based LLMs by Colon-Hernandez et al. (2021).

Input based approaches typically inject knowledge at the preprocessing stage by modi-
fying the structure or the data themselves, or the layers that come before the Transformer.
For example, AMS (Ye et al., 2019) creates a dataset for question-answering by align-
ing triples from the ConceptNet (Speer and Havasi, 2012) KG, with relevant sentences
from Wikipedia. The head or tail entity in each sentence is masked with a special to-
ken ([QW]), and possible answers are generated by looking at neighbouring triples that
share the same masked token and relationship. Next, the sentences are transformed into

32 Chapter 2. State of the art

questions which are then concatenated with all possible answers to create multi-choice
question-answering samples. For example, considering the triple (population, AtLocation,
city) and the sentence “The largest city by population is Birmingham, which has long been
the most industrialized city.” the resulting sample is question: The largest [QW] by pop-
ulation is Birmingham, which has long been the most industrialized city? candidates:
city, Michigan, Petrie dish, area with people inhabiting, country, where the correct an-
swer is underlined. The knowledge which is encoded in the data as question-answer pairs
is then injected into BERT by means of standard pretraining on the particular dataset.
COMET (Bosselut et al., 2019) is a GPT based model that is able to perform KG com-
pletion on commonsense KGs. The model is trained on subject-relation-object triples
from ConceptNet and ATOMIC (Sap et al., 2019), where the subject and object entities
are represented as natural language phrases, e.g, (throwing a party, causes, having fun).
The training objective consists of generating the tokens corresponding to the object en-
tity in the training triples, given the concatenation of the subject and relation tokens
as input. According to human evaluation, COMET attains KG completion of novel and
high quality commonsense knowledge even on nodes and relations that were not encoun-
tered during training. In a follow up work, Hwang et al. (2021) introduced ATOMIC20

20 a
KG meant to be challenging for language models with better coverage of relations com-
pared to existing commonsense KGs. They instantiated COMET with GPT-2 or BART
(Lewis et al., 2020), trained it on different commonsense KGs and compared it against
GPT-3 and GPT2-XL. The results demonstrate that models trained on ATOMIC20

20 can
generate accurate knowledge on unseen entities and events based on common metrics for
text generations and through human evaluation. Along the same lines, Bosselut et al.
(2021) used COMET to dynamically build a KG of commonsense answers given some
context, that can be used for reasoning in a commonsense question-answering scenario.
Poerner et al. (2020) introduced E-BERT, a model that injects factual knowledge into
BERT by aligning Wikipedia2Vec (Yamada et al., 2016) entity vectors with BERT word-
piece vectors, without requiring to change the architecture of the encoder nor pretrain
the model. Taking for example the BERT tokenized input sentence “The native lan-
guage of Jean Mara ##is is [MASK].”, they either concatenate “The native language
of Jean_Marais / Jean Mara ##is is [MASK].” or replace “The native language of
Jean_Marais is [MASK].” the wordpiece entity tokens with the corresponding entity
ID from Wikipedia (highlighted in bold). E-BERT demonstrates improvements on fact
completion on LAMA dataset compared to more sophisticated knowledge-enhanced pre-
trained language models, such as KnowBert (Peters et al., 2019) and ERNIE (Zhang
et al., 2019).

The next type of knowledge injection approaches focuses on architecture modifications
of the language model, e.g., modifying existing or adding extra layers to combine knowl-
edge with the contextual representations of the Transformer. For instance, KnowBERT
(Peters et al., 2019) incorporates WordNet and part of Wikipedia into BERT, showing
the ability of the model to recall facts from the databases, improving downstream relation
extraction, entity typing and word sense disambiguation tasks at the same time. This is
done by inserting a knowledge attention and recontextualization module in between two

2.3. Incorporation of symbolic knowledge into neural networks 33

middle Transformer blocks, that is able to enhance entity-span representations in the
input text with retrieved graph entity embeddings from the knowledge bases via entity
linking. In another approach Lauscher et al. (2020a) introduced Retrograph, a model
that incorporates knowledge into BERT using the adapter-based finetuning paradigm,
i.e., introducing a set of additional parameters into the encoder and only tuning these,
while keeping all the original transformer parameters fixed. To do so, they trained the
adapter-augmented BERT using the standard masked language modeling pretraining
objective on data from ConceptNet and the Open Mind Common Sense corpus (Singh
et al., 2002), showing improvements on natural language inference tasks that require
commonsense knowledge.

Moving on, output based approaches integrate knowledge via modifications of the
output structure, or by introducing custom loss functions. An example of such model
is SemBERT (Zhang et al., 2020), that combines word-level contextual representations
from BERT with embeddings of predicate-argument structures derived from a semantic
role labelling system. Both types of embeddings are concatenated and fed into a linear
projection layer to form a semantics-enriched joint representation used for downstream
tasks. Similarly, KEPLER (Wang et al., 2021b) encodes textual entity descriptions
and entities from WordNet and Wikidata into the same space, by jointly optimizing
a knowledge base completion objective and the standard masked language modeling
objective from BERT pretraining.

However, the vast majority of methods fall into the combination of input, architecture,
and output based approaches. Shen et al. (2020) integrate relational structured knowl-
edge into BERT and RoBERTa by modifying the masked language modeling pretraining
objective to an entity-level masking strategy. Informative entities are selected and then
masked following an entity masking scheme guided by ConceptNet. Moreover, an auxil-
iary training objective based on negative sampling of entities from the KG is employed, in
order for the model to learn to distinguish between positive and negative entities. Both
tasks are combined to jointly train the model. Similarly, in LIBERT (Lauscher et al.,
2020b) the external knowledge is encoded in BERT with the addition of lexical relation
classification as a third pretraining objective. The knowledge is represented as word pairs
of synonyms or hyponym-hypernym from WordNet and BabelNet (Navigli and Ponzetto,
2012) lexical resources. Positive and negative examples of these pairs are preprocessed
by standard wordpiece tokenization and then fed into BERT, e.g., (mended, regenerated)
takes the form [CLS] men #ded [SEP] reg #ener #ated [SEP]. Then, a softmax classifier
is trained to predict whether the given pair constitutes a valid relation or not, using the
embedding of the [CLS] token as input. BERT-MK (He et al., 2020) integrates graph
contextualized medical knowledge from the UMLS (Bodenreider, 2004) thesaurus into
BERT. The knowledge is preprocessed such that subgraph entities and relations are con-
verted into sequences of nodes, that serve as input to a Transformer based model to learn
node embeddings by minimizing a margin loss function. The resulting node embeddings
are aggregated with language representations from another Transformer, using the same
integration method as ERNIE. K-BERT (Liu et al., 2020a) injects triples from a KG into
sentences to construct sentence trees that serve as input to BERT. For example, given

34 Chapter 2. State of the art

the sentence “Tim Cook is currently visiting Beijing now.” and the set of triples (Apple,
CEO, Tim Cook), (China, capital, Beijing), and (Beijing, is_a, City), the sentence tree
becomes “Tim Cook CEO Apple is visiting Beijing capital China is a City now.”. Since
the structural information of the sentence is altered, the authors utilize soft-position em-
beddings to define the position of each token in the Transformer block. Furthermore, they
use a visible matrix to control where each token can attend to, as a means to incorporate
only relevant knowledge and prevent semantic deviations of the original sentence, e.g., in
the previous example ensure that [Apple] and [China] would not interfere as the latter is
only meant to modify the representation of [Beijing]. Another approach to dynamically
select relevant knowledge of entities from Wikidata is CokeBERT (Su et al., 2021b). The
model uses a semantic-driven graph neural network that, given an entity mention, filters
out irrelevant information from the KG by assigning scores to neighbouring nodes and
relations via an attention mechanism. The resulting entity embeddings are then fused
with BERT token embeddings, and the system is trained using an additional denois-
ing entity auto-encoder objective on top of the standard next sentence prediction and
masked language modeling objectives. We refer to Colon-Hernandez et al. (2021) for a
more extensive survey on knowledge-enriched Transformer based approaches, highlight-
ing limitations and possible future avenues. We also point to Yang et al. (2021) for an
in-depth review of knowledge-enhanced LLMs from the point of view of the granularity
of knowledge, the method of knowledge injection, and the degree of symbolic knowledge
parameterization.

3. On refining BERT contextualized
embeddings using semantic lexicons

As discussed in Chapter 2 the introduction of word embeddings was a breakthrough
in NLP. Early approaches based on the distributional hypothesis (see Section 2.1.2)
provide a fixed embedding for each word. Recently, contextualized embedding systems
like BERT (Devlin et al., 2019) have allowed the generation of context-dependent word
representations, which substantially improve the performance on many downstream NLP
tasks.

As discussed in Section 2.3.1, retrofitting (Faruqui et al., 2015) is a popular technique
that modifies any set of pretrained distributional word embeddings to account for rela-
tional information encoded by a semantic lexicon. This is done as a post-processing step
using the graph of relations obtained from the lexicon to update the word vectors. This
method was proven to improve performance on various intrinsic and extrinsic evaluation
tasks (Mrkšić et al., 2016, 2017; Ferret, 2017; Lengerich et al., 2018; Chiu et al., 2019a).
However, these works only deal with non-contextualized word embeddings.

In this chapter, we aim to extend retrofitting to operate with contextualized word
embeddings. More specifically, we propose two different methods that, as in the original
retrofitting approach, make use of similarity relations between words in order to move the
respective embeddings closer to each other in the latent space. The first method combines
the embedding of a given test sentence with the embeddings of sentences involving similar
words in the training set, while the second method replaces a word in the test sentence
by all possible similar words and combines the resulting embeddings. We evaluate the
proposed methods with BERT embeddings on three biomedical datasets for a relation
extraction task and one movie review dataset for sentiment analysis, and compare them
with an oracle topline and two baselines based on weighted majority voting and class
posterior averaging respectively. We show that both methods do not substantially impact
the performance for this task, and conduct a qualitative analysis to provide further
insights on this negative result.

Consequently, the contributions of this chapter are:
1. the development of two approaches that extend the classical retrofitting algorithm

to operate with contextualized embeddings,
2. exhaustive experiments with BERT embeddings on three biomedical datasets for

relation extraction and one movie review dataset for sentiment analysis,
3. a qualitative study of the obtained results, that gives us some intuition on why the

proposed methods do not significantly alter the performance of the overall system
for that task on these datasets.

The chapter is organised as follows. We present the proposed methods in Section 3.1.

35

36 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

We describe the experimental evaluation setup in Section 3.2, and we present and analyze
the obtained results in Section 3.3. We provide conclusions and discuss future work in
Section 3.4.

3.1. Proposed contextualized embedding refinement
methods

As in the conventional retrofitting approaches discussed in Section 2.3.1, we assume a
vocabulary of words V = {w1, . . . , wn} and an ontology Ω of semantic relations between
words in V. We can then represent Ω in the form of an undirected graph (V, E), where
nodes correspond to words in V and edges (wi, wj) ∈ E ⊆ V × V to semantic relations
between nodes. Suppose that we have a contextualized word representation model M,
along with a training corpus Dtrain on which it is finetuned, and a test corpus Dtest on
which it is evaluated for a particular task.

3.1.1. Method A

The first proposed embedding refinement method, which we refer to as Method A, com-
bines the contextualized embedding of a given word in the test set with the contextualized
embeddings of all occurrences of all similar words in the training set. For example, as-
sume that the given word is better, which has three neighbours in Ω: best, improve and
ameliorate. By iterating over the training set, we identify all the examples for which a
neighbouring word occurs and store the corresponding embeddings. Then, the retrofitting
operation combines the original embedding for better and the embeddings of all occur-
rences of all the neighbouring words in a form of a weighted average.

More formally, let q̄i ∈ Rd be the contextualized embedding of word wi ∈ V coming
from M for a given test instance1. Let us further denote by Ji the set of words wj

which are adjacent to wi according to Ω, and by Kj the set of training instances where
wj occurs. Then we define q̂jk ∈ Rd to be the contextualized embedding computed for
all occurrences of wj in Dtrain, with index k ∈ Kj . The index sets Ji and Kj vary
dynamically for every word.

The goal is to learn a new embedding qi that is close to q̄i and to adjacent nodes in Ω
under the L2 norm, by minimizing

L(qi) = ||qi − q̄i||2 +
∑
j∈Ji

∑
k∈Kj

bijk||qi − q̂jk||2. (3.1)

The weights bijk should naturally depend on the number of neighbours |Ji| of wi, and
on the number of occurrences |Kj | of each neighbor wj in Dtrain. To this end, we define
them as bijk = cij×djk = 1

|Ji|α ·
1

|Kj |β
, α, β ∈ [0,∞) where cij controls the contribution of

each neighbour and djk controls the contribution of each of its occurrences. For example,

1For simplicity, q̄i does not have a superscript for the test sentence as we only process one test sentence
at a time.

3.1. Proposed contextualized embedding refinement methods 37

α = β = 0 results in equal weights bijk = 1 for all occurrences, while α = β = 1 results
in weights bijk that sum up to 1.

Equating the derivative of L with respect to qi to zero and expressing the
∑

k bijkq̂jk
in terms of the mean µq̂j of all q̂jk results in the following update rule:

qi =
q̄i +

∑
j

∑
k bijkq̂jk

1 +
∑

j

∑
k bijk

=
q̄i + |Ji|−α

∑
j |Kj |1−βµq̂j

1 + |Ji|−α
∑

j K
1−β
j

. (3.2)

The retrofitting operation therefore takes the form of a weighted average of the original
embedding and the embeddings of all occurrences of all similar words in the training set.

3.1.2. Method B

The second proposed method, which we refer to as Method B, does not involve Dtrain

at all. Instead, everything happens at test time. Using the same example as in Method
A, we now check if the given word, e.g., better, is present in the test instance. If so, we
replace it by a neighbouring word, one at a time, and compute the embedding for each
new instance. The original embedding and the embeddings of all neighbouring words are
aggregated by a weighted average operation.

Again, we utilise M to obtain the embedding q̄i of word wi for a specific sentence in
Dtest. In addition, we derive one embedding q̂j for every word wj which is adjacent to wi

according to Ω. To do so, we create a new sentence by replacing wi with wj in the test
sentence, and repeat for every adjacent node of wi in Ω. The objective is once again to
learn a new vector qi that is close to both q̄i and all q̂j under the L2 norm by minimizing

L(qi) = ||qi − q̄i||2 +
∑
j∈Ji

bij ||qi − q̂j ||2. (3.3)

Similarly to the above, we define the weights as bij =
1

|Ji|α , α ∈ [0,∞).

Equating the derivative of L with respect to qi to zero and expressing the
∑

j bij q̂j in
terms of the mean µq̂j of all q̂j results in the following update rule:

qi =
q̄i +

∑
j bij q̂j

1 +
∑

j bij
=

q̄i + |Ji|1−αµq̂j

1 + |Ji|1−α
. (3.4)

Again, the retrofitting operation takes the form of a weighted average of the original
embedding and the embeddings of all neighbouring words.

The main difference between both methods lies in the way we exploit the information
coming from Ω. Method A typically results in a large number of neighbouring vectors q̂ik
that contain noise, since the context around the corresponding words differs from that of
the test sentence in general. In contrast, Method B generates fewer neighbouring vectors
q̂j that share exactly the same context as the test sentence being processed.

38 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

3.2. Experimental setup

In this section, we first provide information about the data, the semantic lexicons and
the contextual word embedding model we used. We then evaluate the proposed methods
on two tasks: relation extraction from biomedical data and sentiment analysis of movie
reviews. For comparison and consistency purposes, we chose these particular tasks as they
have been previously used for evaluating retrofitting (Faruqui et al., 2015; Chiu et al.,
2019a). Finally, we describe the experimental evaluation and suggest three alternative
strategies for comparison.

3.2.1. Biomedical relation extraction

For the biomedical relation extraction task, we use the two semantic verb lexicons in-
troduced by Chiu et al. (2019a), referred to as annotated and expanded clusters.
The former contains 192 verbs that appear frequently in a corpus of 2, 230 biomedical
journal articles. It was annotated by domain experts and linguists that hierarchically
classified the verbs into 16, 34 and 50 classes to reflect the different granularities of their
semantics (Korhonen et al., 2006). The latter is an extended version of the previous that
maintains the same hierarchy, but enriches the 50 classes to obtain 1, 149 verbs in total.
Furthermore, it consists the starting point for the construction of BioVerbNet (Majew-
ska et al., 2021) as discussed in Section 2.2.2.2. We refer to each different version of the
verb lexicons simply by adding the number of the verb classes next to its name, e.g.,
annotated-34.

ChemProt is a manually annotated corpus of relations between drugs/chemical com-
pounds and genes/proteins mentions found in PubMed abstracts. The relations are
categorized into ten classes from which only five are used during evaluation. The task is
to predict whether a pair of such entities is related or not, and if so, output the type of
relation.

The DDI corpus aims in the development of systems that can automatically detect
drug entities and drug-to-drug interactions in biomedical text. The corpus itself consists
of texts from the DrugBank database and abstracts from the MedLine database. Anno-
tations were provided by domain experts that classified drug-drug interactions into four
DDI types.

The i2b2 2010 corpus promotes the study of extraction/classification/relations of med-
ical problems, tests, and treatments. The data consist of discharge summaries collected
from Partners Healthcare, Beth Israel Deaconess Medical Center, and the University of
Pittsburgh Medical Center, where relations of medical problems-treatments were grouped
into eight classes.

All three biomedical datasets are included in the Biomedical Language Understanding
Evaluation benchmark (Peng et al., 2019), as well as the preprocessing codes for creating
the training, development and test sets2. Furthermore, both the annotated and the
expanded clusters are derived from biomedical texts, which makes them applicable to

2https://github.com/ncbi-nlp/BLUE_Benchmark

https://github.com/ncbi-nlp/BLUE_Benchmark

3.2. Experimental setup 39

these data.

3.2.2. Sentiment analysis of movie reviews

For the sentiment analysis of movie reviews, we use the exact same semantic lexicons as
Faruqui et al. (2015), namely, FrameNet, PPDB and two variants of WordNet which
we refer to as WordNetsyn and WordNetall (more details in Section 2.2.2.2). The size
of these lexicons is relatively large, since they are general and contain knowledge about
words which do not convey any sentiment, e.g., pronouns, prepositions, etc.. In order to
focus on relevant words for the task, in conjunction with the semantic lexicons we utilize
the Bing Liu Sentiment Lexicon (Hu and Liu, 2004), a domain-independent list of
6, 786 adjectives that is manually created and that categorizes words as either positive
or negative according to their sentiment.

SST-2 (Socher et al., 2013) is a collection of 11, 855 sentences from movie reviews
including human annotations of their sentiment. The goal is to classify a given sentence
as either positive or negative. Since the test labels are not publicly available, we split
the training set such that 13% of the sentences are used for testing and the remaining
are used for training. The resulting test set has 462 positive and 438 negative reviews,
while the training set has 3, 148 positive and 2, 872 negative reviews. Finally, we use the
development set provided by the authors.

We report the performance for each dataset in terms of micro F1-score for relation
extraction, and accuracy for sentiment analysis, as Peng et al. (2019) and Wang et al.
(2018), respectively. Some key statistics of all datasets are summarised in Table 3.1.

3.2.3. Retrofitting and BERT architecture

There are different locations within the architecture of BERT where retrofitting transfor-
mations can be applied. As described in Section 2.1.3.2, the model consists of 12 Trans-
former blocks followed by a pooling layer, i.e., a fully connected layer with a dropout
layer and a tanh activation. Each block contains a sequence of transformations that is
divided into layers. The output layer of each block consists of a linear transformation,
followed by dropout and layer normalization. For both approaches we experiment with
four different settings:

1. Retrofitting before layer normalization at Transformer block 11
2. Retrofitting after layer normalization at Transformer block 11
3. Retrofitting before layer normalization at Transformer block 12
4. Retrofitting after layer normalization at Transformer block 12
The motivation behind these choices is related to the complex architecture of the

model. We hypothesize that the impact of any change into the embeddings would be
more noticeable as we get closer to the output space, rather than in earlier layers of the
model. Thus, we start experimenting at the pooling layer, which is the closest to the
output space, but the results were not promising. Consequently, we move one step back
at the output layer of the last Transformer block, and further back to the same place of
the preceding Transformer block.

40 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

Table 3.1.: Summary statistics of all datasets. (*: corresponds to the non-relational case and it
is not considered during evaluation).

Relations Train Dev Test Relations Train Dev Test
ChemProt i2b2
CPR:3 768 550 665 PIP 659 96 1,448
CPR:4 2,251 1,094 1,661 TeCP 149 17 338
CPR:5 173 116 195 TeRP 903 90 2,060
CPR:6 235 199 293 TrAP 800 85 1,732
CPR:9 727 457 665 TrCP 171 13 342
False* 15,306 9,404 13,485 TrIP 49 2 152
Total 19,460 11,820 16,943 TrNAP 52 10 112
DDI TrWP 24 0 109
DDI-advise 663 193 221 False* 17,226 1,910 36,707
DDI-effect 1,212 396 360 Total 20,033 2,223 43,000
DDI-int 146 42 96 SST-2
DDI-mechanism 946 373 302 Positive 3,148 444 462
False* 15,842 6,240 4,782 Negative 2,872 428 438
Total 18,779 7,244 5,761 Total 6,021 872 900

In the retrofitting equations (3.1) or (3.3), we initially consider as q̄i the embedding
corresponding to the word token in the test sentence, but preliminary experiments show
that this does not have an impact on the final performance. To verify this, we replace
the embeddings of these individual words with random numbers, or even zeroes. Both
cases do not affect the performance, indicating that the output classifier is not very much
dependent on single word embeddings. Instead, we focus on the [CLS] token embedding
which is a weighted linear average of all word embeddings in the test sentence, it is
closer to the output space, and has a bigger impact on the final result. All q̂jk in (3.1)
correspond to the activations of the word token in training sentences, whereas all q̂j in
(3.3) correspond to the activations of the [CLS] token in modified test sentences.

3.2.4. Technical details

For the biomedical relation extraction, we choose BlueBERT (Peng et al., 2019) a specific
variant of BERT that is further pretrained on PubMed abstracts (Fiorini et al., 2018) and
clinical notes from the MIMIC-III database (Johnson et al., 2016), while for sentiment
analysis of movie reviews, we experiment with the classical BERT (Devlin et al., 2019).
In particular, for both tasks we select the BERTBASE release of the model, which makes
use of the exact same configurations as in the original BERT, and we further finetune it
on the downstream task for each dataset. We treat both tasks as sentence classification
problems. The input sentence is fed into BERT which makes use of the [CLS] token

3.2. Experimental setup 41

of that sentence to perform the classification. In particular, the [CLS] representation
of the last Transformer block is passed into a feed-forward output layer that produces
an estimation for each class. For biomedical relation extraction, the named entities are
anonymized with predefined tags (e.g., @GENE, @CHEMICAL for ChemProt) as done by Lee
et al. (2020). Regarding the process of selecting the appropriate verbs to retrofit, if
the same verb appears more than once in the input sentence, we randomly select one.
Since we have no way of knowing which instance of the verb is more appropriate given a
sentence, we prefer the stochastic choice. Alternatively, we could have selected all verbs
in a sentence but for consistency we simply pick one. Moreover, by default, BERT treats
out-of-vocabulary words by splitting them into wordpiece sub-tokens, e.g., [‘hemorrhage’]
→ [‘hem’, ‘##or’, ‘##rh’, ‘##age’], resulting into multiple representations for a single
verb. Favouring a particular sub-token over the others, or selecting a specific pooling
strategy to obtain a single representation of the verb is ambiguous, therefore we choose
to ignore such cases. Finally, all verbs in the lexicons are present in their infinitive
form, meaning that alternative forms of the verbs are not considered, e.g., activate ̸=
activated. This could be treated by either expanding the lexicon to include other forms,
or performing some sort of stemming to fuse all variations into a single word. However,
questioning the lexicon resource is out of the scope of this work.

3.2.5. Grid search optimization

In order to find a good set of values for the retrofitting hyperparameters α, β, we perform
a grid search using the development sets. For biomedical relation extraction, we use both
annotated and expanded clusters, and we search for α and β in [0, 2] with a step of 0.2.
We do not proceed on testing Method A for SST-2, as it turns out to be inferior to
Method B. A grid search plot of micro F1-scores for Method A is provided in Figure 3.1.
The white colour corresponds to the baseline score and the red asterisk indicates the best
(α, β)-pair performance on the development set.

For sentiment analysis of movie reviews, we use all four lexicons in conjunction with
Bing Liu’s sentiment lexicon (see Section 3.2.2), while for relation extraction, we only
used the annotated-34 and annotated-50 versions of the annotated clusters. This is due
to the extensive amount of neighbouring verbs on the annotated-16 and the expanded
clusters, which significantly increases the computational cost. Once again, we perform a
grid search on the development sets, where we search for α in [0, 2] with a step of 0.2.
A grid search plot of accuracy scores for Method B is provided in Figure 3.2. The green
colour bar indicates the best α-values on the development set, while the horizontal lines
show the top performance of all proposed strategies (see Section 3.2.6).

3.2.6. Alternative classification strategies

In order to assess the ability of our method to leverage the information in the seman-
tic lexicons, we perform the following experiment. First, we augment each dataset by
adding all modified sentences that are generated by replacing the underlying word in the
original sentence, with a neighbouring one from the semantic lexicon. This results to a

42 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

Figure 3.1.: Grid search plot of micro F1-scores for Method A while retrofitting after layer nor-
malization at Transformer block 11 using the expanded-16 clusters on ChemProt.

Figure 3.2.: Grid search plot of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 12 using the PPDB semantic lexicon on SST-2.
The horizontal lines indicate the top accuracy score for Method B and the alternative
classification strategies.

3.2. Experimental setup 43

number of augmented versions of the original datasets, equal to the number of semantic
lexicons per task. Then, we use the originally finetuned BERT on the downstream task
— BlueBERT for biomedical relation extraction or vanilla BERT for sentiment analysis
of movie reviews (Section 3.2.4) — and score both original and modified sentences in the
augmented dataset. Once we obtain a probability score for each sample in the augmented
dataset, we compare it with the following alternative strategies:

• Topline: Always selecting the true class of a test sentence as the final prediction,
if it was predicted by at least one of the original or the modified sentences.

• Weighted majority vote (WMV): Picking the predicted class with the most oc-
currences as the final prediction out of the original and the modified test sentences.
Here, we assigned a weight of 1 to the original and a weight of 1

|S|δ , δ ∈ [0, 1] to
each modified sentence, where |S| is the total number of sentences for the current
test input. We experimentally noticed that choices of δ outside [0, 1] did not affect
the final prediction.

• Class posterior averaging (CPA): Averaging the probabilities of the predicted
classes for both the original and the modified test sentences, and taking the class
with the maximum probability as the final prediction.

To further clarify the dataset augmentation process and the use of the alternative
strategies, we give the following example. Assume we are tackling sentiment analy-
sis of movie reviews on the SST-2 dataset, and that we make use of WordNet as our
semantic lexicon. Given the original sentence S0: “A sometimes tedious film.” that con-
veys negative sentiment, we first identify that tedious has 4 neighbouring words in the
lexicon, namely, wordy, long-winded, verbose, and windy. After replacing tedious with
every neighbour one by one, we construct a set of 4 modified sentences, S01, . . . , S04,
corresponding to S0. We repeat the same process for each sentence in SST-2. Once
the augmented dataset is built, we use the finetuned BERT on SST-2 to score each
sentence in it. Since each label can be either positive or negative, the model out-
puts a set of binary probability scores (ppos, pneg) for each sentence. In the example
above, we obtain S0 : (0.9997, 0.0003), S01 : (0.9979, 0.0021), S02 : (0.9992, 0.0008),
S03 : (0.9997, 0.0003), and S04 : (0.4072, 0.5928). Based on these scores, topline will
correctly select the negative class since it was predicted by at least one of the orig-
inal or the modified sentences, i.e., S04. However, weighted majority vote will out-
put the positive class for all δ ∈ [0, 1] since on average it appears more frequently in
the original and the modified sentences (4/5 times). Similarly, class posterior averag-
ing will predict the same as weighted majority vote since the maximum mean aver-
age score per class (0.9997+0.9979+0.9992+0.9997+0.4072

5 , 0.0003+0.0021+0.0008+0.0003+0.5928
5) =

(0.88074, 0.11926) belongs to the positive class.

44 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

3.3. Results and qualitative study

In this section we present the results obtained from the grid search, and conduct addi-
tional experiments that give further insights on the reasons why the proposed methods
yield a similar performance to the baseline model.

3.3.1. Grid search experimental results

After finding the best performing set of hyperparameters amongst all combinations of
lexicons, Transformer blocks, and positions that were tested on the development set,
we evaluate the corresponding model on the test set. The results for both retrofitting
approaches are displayed in Table 3.2.

At first sight, both approaches seem to have no significant impact compared to the
baseline performance. More specifically, Method A results in a decrease of performance
on all datasets, while Method B slightly improves it for ChemProt and SST-2. We assume
that the poor performance is related to the way we selected the best hyperparameters
α and β for the final model. Based on the grid search results, we observe that quite
frequently the overall highest score is too localized on a specific selection of α and β, even
though neighbouring points significantly worsen the performance. This is an indication
that generalization over the test data is not likely. Furthermore, we notice that in many
cases the alternative strategies we propose work better than our retrofitting approaches.
This suggests that i) the use of the lexicons is meaningful, but ii) we have not yet found the
correct way of exploiting this knowledge. It is also worth highlighting the abrupt decrease
in dev and test performances on the i2b2-2010 dataset for class posterior averaging. After
manually inspecting the output probability scores of the model, we sometimes observe
that while initially the predictions for the original sentences are correct, many of the
modified sentences favour the same class, which is different from the one predicted in
the original sentence. Since averaging equally favours each class, the final prediction
will then be wrong. This is also evident when we compare with the score obtained from
weighted majority vote for low values of δ. In that case, every sentence gets a weight of
∼ 1 ending up in standard majority voting. This indicates that the original sentence is
more important for the classification on this dataset than the modified ones, implying
in turn that we should assign it a higher weight. Furthermore, it suggests that many
neighbouring words are not relevant.

3.3.2. Neighborhood based hyperparameter selection

Since performance may be too localized on a single hyperparameter value, a slightly
intuitive way is to examine the behaviour over a neighborhood of points instead. More
specifically, in the whole [0, 2] × [0, 2] grid, we consider a square window of width 2, 4
and 6 respectively. For example, for a width of 4, the neighborhood contains 5× 5 = 25
(α, β)-pairs for approach A and 5 α-points for approach B. We then move around this
window to cover the whole grid area, while we average across all F1-scores within the
neighborhood to obtain a single estimate for all settings on the validation data. Finally,

3.3. Results and qualitative study 45

Table 3.2.: Performance achieved by Methods A and B and some retrofitting approaches for static
word embeddings on all datasets. Baseline corresponds to BERT base finetuned on
each dataset for the specific task. Method A, B denote the proposed retrofitting
approaches. Topline, class posterior averaging and weighted majority vote were dis-
cussed in Section 3.2.6, where for the last we select the weight (δ) based on the best
performance on the validation set.

Corpus Model Semantic Dev set Test set
lexicon miF1/Acc (%) miF1/Acc (%)

Baseline — 74.47 72.61
Method A expanded-16 74.86 72.56
Method B annotated-50 74.59 72.63

ChemProt Topline annotated-50 75.54 73.67
CPA annotated-50 72.92 72.07
WMV (δ = 1.0) annotated-50 74.47 72.61
Chiu et al. (2019a) expanded-34 — 71.00
Baseline — 71.34 80.11
Method A expanded-34 79.35 78.78

DDI Method B annotated-34 72.33 79.43
Topline annotated-34 73.04 80.97
CPA annotated-34 71.97 79.40
WMV (δ = 0.1) annotated-34 72.02 79.60
Baseline — 71.34 72.69
Method A expanded-16 72.92 72.52

i2b2-2010 Method B annotated-34 71.83 72.63
Topline annotated-34 73.71 74.18
CPA annotated-34 60.79 58.50
WMV (δ = 1.0) annotated-34 71.34 72.69
Baseline — 91.86 92.00
Method B WordNetsyn 92.09 92.11

SST-2 Topline WordNetsyn 94.95 94.55
CPA WordNetsyn 90.37 90.11
WMV (δ = 1.0) WordNetsyn 91.86 92.00
Faruqui et al. (2015) WordNetsyn — 82.40

we select the center of the sliding window that yielded the maximum overall score, and
evaluate the model on the test data. The results are displayed in Table 3.3.

Overall, we notice that our hyperparameter heuristic selection can sometimes improve
the performance compared to the baseline, but it can also degrade it. More specifically,
for every selection of width, Method A results in a better performance on ChemProt,
whereas Method B degrades it. Furthermore, both approaches perform poorer than the

46 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

baseline on DDI, while for i2b2-2010, the results are contrasted. It is worth mentioning
that our heuristic slightly improves over the original scores for Method A in Table 3.2,
across all datasets. This also holds true for Method B on DDI and i2b2-2010 datasets,
but not on ChemProt.

Ideally, we would hope for a single choice of parameters (hyperparameters α and β,
lexicon, before or after layer normalization and Transformer block) that would generalize
on any dataset. To test if such setting exists, we repeat the previous procedure for
Method A, but we additionally average, each time, the scores obtained from each distinct
setting of retrofitting parameters (lexicon, layer, etc.) across all datasets, to pick a
single (α, β)-pair. We do not conduct the same experiment for Method B, since we
only use annotated-34 and annotated-54 clusters as semantic lexicons. Taking a look at
those results – marked as Global in Table 3.2 – we can observe that the performance
consistently improves for ChemProt, however it degrades for all other datasets compared
to the baseline.

3.3.3. Euclidean distance ranking of retrofitted vectors

In order to deeper understand how our proposed methods change the embeddings in
space, let us focus on a single test case: Method A on ChemProt, using the expanded-16
clusters, and retrofitting after layer normalization at Transformer block 12, with α = 0.4
and β = 1.4 (second row of Table 3.2) — where the proportion of disagreements between
the baseline model and the test case model is statistically significant based on McNemar’s
test. This statistical test is particularly useful in the presence of limited amount of
data, and it is suited for large deep learning networks whose training is time consuming
(Dietterich, 1998).

Looking at the contingency Table 3.4, we observe that the proportion of errors for the
baseline and the proposed approach are different. In particular, the baseline model made
134 predictions that the learned model got wrong, and similarly 85 correctly predicted
samples from the learned model were wrongly classified by the baseline model.

This points out that both models behave differently, but on average they result in
similar performances. To further analyse how Method A affects the embeddings in the
latent space, we randomly select 5, 000 (out of 18, 014) test sentences where we apply
our method, and we compute the corresponding activation of the [CLS] token before and
after retrofitting. Next, we compute the Euclidean distance between every retrofitted
vector and every [CLS] vector before retrofitting. This results in a 5, 000×5, 000 matrix,
where each row contains the distances of one retrofitted vector to all original vectors
(before retrofitting). We then rank from 1–5,000 each retrofitted embedding by sorting
each row in the matrix in ascending order. By doing so, we can check how far our method
is moving the embeddings in the latent space. The distribution of the resulting rankings
across all vectors is summarized in Figure 3.3.

In this plot, we observe that a large proportion of vectors has a relatively low ranking
(around [0, 80]), but there is also a considerable amount of vectors with high ranking
(around [950, 1000]), suggesting that potentially the vectors do not move as far as they
should, or sometimes they move too far. We can take a closer look by visualizing the

3.3. Results and qualitative study 47

Table 3.3.: Performance of the model for both retrofitting approaches on each dataset after apply-
ing our heuristic hyperparameter selection with a neighbourhood width of 6. Global
corresponds to the maximum average (α, β)-pair across all datasets for Method A.

Corpus Model Semantic Neighbourhood Dev set Test set
lexicon width Acc (%) Acc (%)

Baseline — — 74.47 72.61
Method A annotated-16 2 74.69 72.66
Method A annotated-16 4 74.69 72.63
Method A annotated-16 6 74.64 72.63

ChemProt Method B annotated-50 2 74.57 72.59
Method B annotated-50 4 74.58 72.54
Method B annotated-50 6 74.58 72.60
Global annotated-34 2 74.47 72.77
Global annotated-34 4 74.55 72.99
Global annotated-34 6 74.64 73.00
Baseline — — 71.34 80.11
Method A annotated-16 2 79.16 79.18
Method A annotated-16 4 79.16 79.27
Method A expanded-34 6 78.45 78.79

DDI Method B annotated-34 2 72.21 79.47
Method B annotated-34 4 72.21 79.47
Method B annotated-34 6 72.12 79.79
Global annotated-34 2 75.81 75.96
Global annotated-34 4 71.10 79.29
Global annotated-34 6 71.27 79.64
Baseline — — 71.34 72.69
Method A expanded-16 2 72.42 72.80
Method A expanded-16 4 72.18 72.74
Method A expanded-16 6 72.31 72.65

i2b2-2010 Method B annotated-34 2 71.64 72.64
Method B annotated-34 4 71.54 72.73
Method B annotated-34 6 71.54 72.67
Global annotated-34 2 71.85 71.48
Global annotated-34 4 71.54 72.46
Global annotated-34 6 71.43 72.60

embeddings (before/after retrofitting) and focusing on a single update. For the test case
model parameters, we visualize in Figure 3.4 all vectors before and after retrofitting as
well as the respective neighbouring embeddings and their mean using t-SNE (van der

48 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

Table 3.4.: Contingency table of the predictions of the baseline and the test case model on the
ChemProt test data.

Test case
Correct

Baseline
Correct 15,095

Baseline
Wrong 85

Test case
Wrong

134

1,629

Figure 3.3.: Histogram of the ranking across [CLS] token retrofitted vectors for all 5, 000
ChemProt test sentences where Method A is applied.

Maaten and Hinton, 2008), for 30 sentences from the development set. More specifically,
the highlighted vectors correspond to the verb “study” with the initial activation of the
[CLS] token before retrofitting qi (red cross), its 897 neighbouring embeddings q̂jk (blue
points) and their mean µq̂j (yellow cross), and the retrofitted vector qi (green point).
According to Method A’s update rule in Equation (3.2), since α = 0.4 and β = 1.4, we
expect qi to end up closer to q̄i than µq̂j which is the case. However, it is clear that q̂jk

3.3. Results and qualitative study 49

are too many in size, and distributed in several places across the latent space. This is an
indication that there is a lot of variation in the neighbouring embeddings, and therefore
not all words in the lexicon are relevant for the task at hand.

Figure 3.4.: T-SNE visualization for Method A while retrofitting after normalization at Trans-
former block 12 using the expanded-16 clusters on ChemProt.

3.3.4. Neighbouring word filtering

Bing Liu’s list of adjectives allows us to focus on appropriate words in the semantic
lexicons for the task of sentiment analysis. The next question we want to answer is: which
neighbouring words are relevant for the underlying word, and which are not? It is obvious
that not all neighbouring words for a given word in the lexicons are actual synonyms in
the context of movie reviews. Replacing single words in the input sentence in Method B
forces the same context between the original and the modified sentence. Consequently, we
restrict the lexicons to the domain by selecting neighbours that are “good” replacements
instead of using the whole list. This is done by inspecting the predictions of BERT
for every original and modified sentence on the augmented development set for a given
lexicon (see Section 3.2.6). Then, we can distinguish between the following cases:

50 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

Table 3.5.: Results for the best performing lexicons derived from our neighbouring word selection
strategy for Method B and the proposed alternative strategies. Baseline corresponds
to BERT base finetuned on SST-2 for sentiment analysis.

Lexicon Model
— Baseline

Method B
FrameNet10% Topline

CPA
WMV (δ = 0)

Method B
WordNetsyn10%

Topline
CPA
WMV (δ = 0)

Dev Acc (%) Test Acc (%)
91.86 92.00
92.09 92.00
92.09 92.11
92.09 92.00
92.09 92.00
92.09 92.00
92.66 92.00
92.09 91.89
92.09 92.00

A) the original sentence was wrongly classified but the modified sentence was correctly
classified (good case),

B) the original and the modified sentence were both correctly or wrongly classified
(neutral case),

C) the original sentence was correctly classified but the modified sentence was wrongly
classified (bad case).

Next, we compute the counts that correspond to good, neutral and bad cases for every
pair of original-neighbouring words. These show on average whether a neighbour is a
good replacement or not for a given word. Then, using McNemar’s statistical test, we
create three reduced versions, one for each semantic lexicon, by selecting a neighbour for
a given word with a 10%, 50% and 90% confidence level3. The higher the confidence
level the more certain we are about replacing a word by another one, but the smaller the
lexicon becomes (and vice versa). Finally, we repeat the grid search optimization (see
Section 3.2.5) and present in Table 3.5 the results for the best settings.

Overall, there is some gain in performance compared to the baseline on the development
set as expected. For example, Method B reaches topline performance for FrameNet10%,
which suggests that retrofitting in the sense of averaging embeddings can be meaningful.
Moreover, we can see that the topline performance is almost identical to that of the
baseline model on the test data. This is due to the limited size of the reduced lexicons.
For example, FrameNet originally consists of 1, 700 words and 90, 140 relations, while
its largest reduced version, FrameNet10%, has only 1 word and 5 relations, as shown
analytically in Table 3.6. Ideally, if the dataset were bigger, we would have selected
lexicons with higher confidence level that would also be large enough to improve over the
baseline, i.e., the topline score would significantly outperform the baseline.

3We use the confidence level percentage as a subscript to denote the reduced lexicon, e.g., FrameNet90%.

3.3. Results and qualitative study 51

Table 3.6.: Approximate size of the graphs obtained from the original four lexicons intersected
with Bing Liu’s sentiment lexicon (top left) along with their 10%, 50% and 90%
reduced versions we created.

Lexicon # Words # Edges
FrameNet 1,700 90,140
PPDB 4,893 44,829
WordNetsyn 5,481 29,848
WordNetall 5,481 113,792
FrameNet10% 1 5
PPDB10% 1 6
WordNetsyn10%

4 6
WordNetall10% 6 9
FrameNet50% — —
PPDB50% 1 1
WordNetsyn50%

2 2
WordNetall50% 1 1
FrameNet90% — —
PPDB90% — —
WordNetsyn90%

1 1
WordNetall90% — —

3.3.5. How does averaging compare to majority voting?

A simple way of assessing whether averaging is a good way of combining the knowledge
coming from the semantic lexicons is to analyze if it behaves similarly, better, or worse,
than majority voting. To answer this question, we count how many times Method B yields
the correct answer, when the predictions of the modified sentences are 0–10% correct, up
to 90–100% correct. For example, we can see the distribution of these counts for our best
performing lexicons on the development set in Figure 3.5. For both systems, Method B
gives exactly the same answers as majority voting, which in their largest portion fall into
the 90–100% interval of the correct answers. Therefore, averaging preserves the majority
vote so there is hope in retrofitting provided the lexicon can help.

3.3.6. Further remarks

Impact of the hyperparameters (α, β). The neighbourhood based selection experi-
ments discussed in Section 3.3.2, are contrasted across datasets, meaning that this strat-
egy can sometimes help but other times be harmful as well. This leads to the conclusion
that the choice of the hyperparameters α, β, is dependent on each dataset. Therefore, we
cannot find a single pair that globally results in a good performance, as in the original
retrofitting Equation (3.1), where α and β are fixed.

52 Chapter 3. On refining BERT contextualized embeddings using semantic lexicons

Figure 3.5.: Histogram of the cases where Method B yields the correct (blue) and incorrect (or-
ange) answer compared to the percentage of correctly classified modified sentences
for Framenet10% (top) and WordNetsyn10%

(bottom). Top bins (0.5 – 1.0) indicate
when majority voting succeeds while lower bins (0 – 0.5) show when it fails.

3.4. Summary 53

Impact of BERT parameters. Based on the results obtained from the grid search
for Method A, the behaviour of the system with respect to the choice of retrofitting before
or after layer normalization in the output layer of BERT, is different for each biomedical
dataset. However, we could consistently observe that after layer normalization at the
last Transformer block, the majority of (α, β)-pairs lead to bad performances on the
validation data across all datasets. Another interesting point is that we come across
multiple best scores when we retrofit before layer normalization at Transformer block 11,
which is the farthest position from the output layer. As we move closer to the output
layer, performance starts to be more localized around individual hyperparameters α and
β. The same behaviour is observed for Method B. Illustrations of such cases can be found
in Appendix A.1.

Annotated vs. expanded clusters. The results from grid search experiments show,
in most cases, a similar distribution of F1-scores if we compare lexicons with the same
number of classes, e.g., annotated-16 vs. expanded-16, with the difference that the ex-
panded comes with more points of worse performance. Consequently, and based on our
neighborhood based hyperparameter selection, the annotated clusters are favoured. It is
worth mentioning that the amount of verbs contained in the expanded clusters is consid-
erably larger than the one in the annotated, resulting in a less precise knowledge overall.
This may also be the reason why the performance drops for more (α, β)-pairs.

Alternative strategies. As expected, topline yields the best score across tasks,
datasets, and lexicons, implying that the use of semantic lexicons can help in improving
performance. In contrast, class posterior averaging is the worst among the alternative
classification strategies, mainly because it equally favours the predictions derived from
the original and the modified sentences. Based on the grid search results, a better
alternative is weighted majority vote with a weight δ = 1, which essentially means that
the predictions on the modified sentences have less impact on the final outcome than the
prediction on the original sentence.

3.4. Summary

In this chapter, we have proposed two approaches that extend the original retrofitting
technique to operate with contextualized embedding systems. More precisely, the pro-
posed technique incorporates external knowledge coming from semantic lexicons into
BERT contextualized representations. After conducting a large-scale series of experi-
ments on three biomedical datasets for relation extraction, and one movie review dataset
for sentiment analysis, we observed that both approaches do not substantially affect the
performance on these downstream tasks. Our test results show that the lexicons can be
a useful source of information to further improve the results. However, the current ex-
perimental setting did not make it viable. This is demonstrated in our qualitative study,
where we show that, when we improve the quality of the semantic lexicons by select-
ing only relevant neighbours for a given word, the resulting lexicons are not sufficiently
large to be able to generalize at test time. Future work and perspectives are provided in
Chapter 5.

4. An analogy based approach for
solving target sense verification

Recent efforts have focused in understanding how semantic and syntactic knowledge could
be encoded in large language models (LLMs) (Peters et al., 2018; Tenney et al., 2019; Liu
et al., 2019a; Reif et al., 2019; Hernandez and Andreas, 2021). Despite their great success
in a plethora of downstream tasks, the ability of these models to perform reasoning is
limited and understudied (Talmor et al., 2020; Rogers et al., 2020). Designing LLMs
that are able to reason over the knowledge they possess may not necessarily translate
into better performance, however it is a prerequisite for interpretability (Zhou et al.,
2020). The type of reasoning varies depending on the task at hand, e.g., answering
chronological questions and summarizing events (temporal reasoning), selecting the most
plausible explanation given a set of observations and hypotheses (abductive reasoning),
understanding whether the meaning of a given text entails that of another (semantic
inference), or finding common relations between pairs of words or phrases (analogical
reasoning).

In this chapter, we tackle target sense verification (TSV) in terms of analogical reason-
ing by combining BERT with a CNN architecture that models analogical proportions by
design and that is used for detecting analogies (Lim et al., 2019; Alsaidi et al., 2021a).
Our experiments demonstrate that the position of the definition and hypernyms in the
BERT input sequence, as well as the emphasis on the hypernyms, significantly impact the
final performance. Moreover, we achieve competitive results on the WiC-TSV evaluation
benchmark (Breit et al., 2021). Finally, promoting analogical reasoning by using the ax-
iomatic properties of analogical proportions explicitly during training yields comparable
performance and alleviates the dependence on the input encoding of BERT, which makes
our model more robust.

The main contributions of this work are the following:
• we reformulate TSV as an analogy detection problem,
• we propose AB4TSV, a hybrid approach for solving TSV,
• we optimize the input encodings for AB4TSV,
• we demonstrate that AB4TSV achieves competitive performance on the WiC-TSV

evaluation benchmark,
• we show empirically that enforcing the axiomatic properties of analogies during

training yields a more robust model.
The chapter is organized as follows. The problem formulation is presented in Sec-

tion 4.1. The model architecture is described in Section 4.2, and the experimental setup
in Section 4.3. In Section 4.4 we analyze the results, and we discuss conclusions and
perspectives for future work in Section 4.5.

54

4.1. Problem formulation 55

4.1. Problem formulation

Analogical reasoning is one of the most used inference approaches in everyday life since
it can be easily adapted to many common-sense applications involving reasoning: prob-
lem solving, modeling, planification, etc. Analogies also constitute a natural approach
to modeling medical reasoning as practiced by physicians and medical staff. Further
applications are found in natural language processing in tasks such as machine transla-
tion (Langlais et al., 2009), visual question-answering (Peyre et al., 2019), semantic (Lim
et al., 2019) and morphological (Alsaidi et al., 2021a) problems.

Solving analogy-based problems requires the system to learn how to reason over re-
lations of the form A : B :: C : D, which reads as “A is to B as C is to D”. Following
the axiomatization from Lepage (2004), a quaternary relation constitutes an analogical
proportion if and only if the following properties hold true: ∀A, B, C, D,

1. A : B :: C : D ⇒ C : D :: A : B (symmetry)
2. A : B :: C : D ⇒ A : C :: B : D (central permutation)

Analogies combined with data-driven methods were proven to be beneficial in a variety
of tasks, ranging from transfer learning to data augmentation and explainable AI (Keane
and Smyth, 2020; Hüllermeier, 2020; Alsaidi et al., 2021b; Afantenos et al., 2021; Ushio
et al., 2021a). However, to the best of our knowledge, they have not yet been applied to
word sense disambiguation tasks.

Target sense verification (TSV) (Breit et al., 2021) is a word sense disambiguation task
in which the system is provided with a target word in context on the one hand and a
definition and a set of hypernyms of that word on the other hand, and it must decide
whether their senses match or not. Consider for instance the context “home is where the
heart is”, the definition “where you live at a particular time” and the set of hypernyms
“residence, abode”, all corresponding to the target word home, as shown in Figure 4.1.
To disambiguate the meaning of home in that specific context, one must compare and
reason about the underlying relations between these concepts, e.g., infer that home in
this context refers to an environment rather than a place as conveyed by the definition
and the hypernyms.

Although TSV is not originally viewed as an analogy problem, analogical reasoning
can be applied to solve it. To illustrate this, let us focus on two contexts — in the
first one, the target word home matches the target sense given by the definition and
the hypernyms, whereas in the second one it does not (Figure 4.1). Observe that the
definition and the hypernyms always correspond to the same sense ST (target sense).
We denote this relation by R′. Solving TSV requires us to find whether the sense of
home in context SI (intended sense) corresponds to ST . Let R be the relation that home
points to SI and hypernyms1 point to ST . We can now reformulate the problem in the
form of analogical proportions such as home : hypernyms :: definition : hypernyms, and
check whether it constitutes a valid analogy in each context or not (analogy detection).
If R is approximately the same as R′, then their senses match and we output True,
otherwise we output False. This modification essentially allows us to reuse LLMs that

1Or the definition, but for the sake of this example we use the hypernyms.

56 Chapter 4. An analogy based approach for solving target sense verification

are suitable for solving TSV, and at the same time it gives us access to existing tools
for tackling analogies. This way we can test if the combination of both is beneficial
in terms of performance on the task and/or in terms of robustness of the hybrid model.
Furthermore, we focus on TSV because it is more complex than classical word analogy or
lexical relation classification tasks (Ushio et al., 2021a). Indeed, TSV does not compare
isolated words but words in context, lists of words and full sentences.

Figure 4.1.: Illustration of translating TSV into analogy detection.

4.2. AB4TSV architecture

Following Lim et al. (2019); Alsaidi et al. (2021a) we use a CNN classifier that explicitly
models the relations “is to” and “as” in the analogy, as an interpretable alternative to the
black-box classifier of Breit et al. (2021). The architecture of the model is composed of
two main parts. First, we encode the words or sentences to be compared (target word,
context, definition, hypernyms, etc.) into 4 embeddings A, B, C, D using BERT final
encoder layer. Then we stack them into an n× 4 matrix, where n is the embedding size.
This matrix serves as input to a CNN classifier that consists of the following layers:

• A convolutional layer with 128 filters of size 1 × 2 with stride (1, 2) with ReLU
activation. The output of this operation is an 128× n× 2 matrix. Intuitively, this
layer models “is to” in “A is to B” and “C is to D”.

• A convolutional layer with 64 filters of size 2 × 2 with stride (2, 2) with ReLU
activation. The output of this operation is flattened into a vector of length 64 ×
(n− 1). Intuitively, this layer models the relation “as” in “A is to B as C is to D”.

• A fully-connected layer with sigmoid activation, resulting in a scalar output.
The main difference with Lim et al. (2019) and Alsaidi et al. (2021a) is the shifting

from static to contextualized embeddings. While they use pretrained GloVe vectors or
train a character-based CNN to extract word representations, we utilize BERT to extract
A, B, C, D. Together with our original input encoding optimization (Section 4.3.2), this

4.2. AB4TSV architecture 57

allows us to efficiently compare objects of different structure such as words, list of words,
full sentences and/or their combinations, rather than just isolated words. The proposed
Analogy and BERT for target sense verification (AB4TSV) architecture is depicted in
Figure 4.2.

Figure 4.2.: Overview of AB4TSV. In this example we want to test whether A : B :: C : D is a
valid analogy when A = target, B = definition, C = context and D = hypernyms.
The inputs are patched into a pair of sentences (context, definition-hypernyms) and
fed into BERT. The embeddings of A, B, C, D are extracted from the last encoder
layer of BERT and stacked into an n × 4 matrix and input to the CNN classifier.
Here, the classifier outputs True since the output value s = 0.95 > δ, where the
decision threshold δ is set to 0.5.

4.2.1. Choice of analogical relation

Tackling TSV based on analogical reasoning requires us to select A, B, C, D ∈ S
such that the relation A : B :: C : D yields good classification performance. Let S =
{cls, tgt, ctx, def, hyps, descr} be the set of set of tokens that can be obtained from
BERT as follows: cls corresponds to the [CLS] token, tgt denotes the target word in
the context, ctx includes all tokens in the context, def represents all tokens in the
definition, hyps contains all tokens in the hypernyms, and descr is the concatenation of
all tokens in the definition and the hypernyms. There are numerous pooling strategies
for obtaining a fixed representation for every set of tokens in S, such as summing the
corresponding hidden states of all 12 Transformer blocks of BERT, selecting the hidden
states of the second-to-last Transformer block, concatenating the hidden states of the last
four Transformer blocks, and others (Devlin et al., 2019). Typically, the choice is related
to the performance on the downstream task and is empirically justified (Devlin et al.,
2019). However, exploring different pooling strategies is outside the scope of this work,

58 Chapter 4. An analogy based approach for solving target sense verification

hence we stick to the standard selection for this task as proposed by Breit et al. (2021).
Accordingly, we denote by cls the embedding of the [CLS] token, tgt the embedding
of the target word, ctx the average of the embeddings of all words in the context, def
the average of the embeddings of all words in the definition, hyps the average of the
embeddings of all hypernyms, and descr the average of the embeddings of all words in
the definition and all hypernyms, where each embedding is the corresponding hidden
state of the last BERT Transformer block. The selection of tgt, ctx, def, hyps as possible
candidates for A, B, C, D is essential, since these are the main components that carry
the senses to be compared according to the task. Additionally, the embedding of cls
can generally be seen as a representation of the whole input, therefore it may capture
key information both from context, and definition/hypernyms. Finally, inspired by the
authors of WiC-TSV (Breit et al., 2021) we also test for descr, which essentially treats
definition and hypernyms as a whole rather than separate units. As said, this selection
of S allows us to compare relevant instances of different structure (special tokens, words
in context, list of words, full sentences or their combinations), and thus, makes the task
more challenging than typical word analogy or lexical relation classification.

4.2.2. Input encoding selection

The order in which the context, definition, and hypernyms are fed into BERT has a
direct impact on the embeddings of the A, B, C, D candidates in S. The default
input encoding format (Breit et al., 2021) structures the BERT input sequence into
a pair of sentences, such that the context comes first, and the concatenation of the
definition and the hypernyms in the second sentence, as illustrated at the top left of
Figure 4.2. Preliminary experiments using the default input encoding format show that
most relations seem to work except when hyps is included. This may be due to the way
hypernyms are encoded: they are simply a set of words separated by commas, appended
to the definition. BERT was originally trained on syntactically correct sentences, hence
it might find such definition/hypernyms “sentence” difficult to interpret. Therefore, we
introduce alternative ways of encoding the definition and the hypernyms into embeddings
based on the following operations:

• swap: exchanging the position of the definition and the hypernyms in the default
input encoding;

• fc: enclosing the hypernyms with focus characters, e.g., residence, abode becomes
$ residence, abode $;

• em: enclosing the hypernyms with entity markers, e.g., residence, abode becomes
[H] residence, abode [/H].

Following Breit et al. (2021) we always apply fc to the target word in the context. The
use of focus characters/entity markers works as a form of weak supervision, pointing out
important terms in the sentence (Huang et al., 2019; Baldini Soares et al., 2019; Zhang
et al., 2019; Wang et al., 2021a; Zhou and Chen, 2022). This does not directly address the
syntactic correctness issue caused by the hypernyms, however it instructs BERT to treat
them in a special way. That is, all hypernyms will now share a common characteristic
in the data that will, ideally, alter their embeddings in such a way that they become

4.3. Experimental setup 59

more meaningful for solving the task. Moreover, as shown by Baldini Soares et al. (2019)
part of the properties of employing such strategies can be captured in the embeddings
of the focus characters/entity markers themselves. Therefore, we include them in the
computation of hyps, as a means to explicitly transfer these properties directly to the
representation of hypernyms.

Based on these three operations, we test the following 6 input encodings:
1. default:

[CLS] context [SEP] definition; hypernyms [SEP]
2. default+fc:

[CLS] context [SEP] definition; $ hypernyms $ [SEP]
3. default+em:

[CLS] context [SEP] definition; [H] hypernyms [/H] [SEP]
4. swap:

[CLS] context [SEP] hypernyms; definition [SEP]
5. swap+fc:

[CLS] context [SEP] $ hypernyms $; definition [SEP]
6. swap+em:

[CLS] context [SEP] [H] hypernyms [/H]; definition [SEP]

4.3. Experimental setup

In this section, we first present the data used to train and evaluate AB4TSV. Then,
we describe the experimental procedure along with some technical details concerning
implementation, evaluation and baselines for comparison.

4.3.1. Data

We use the WiC-TSV (Word in Context - Target Sense Verification) dataset, which
was designed specifically for TSV (Breit et al., 2021). The data are pairs of context
and definition-hypernyms, where the definition and hypernyms correspond to the same
sense of the target word. General-domain instances are extracted from WordNet and
Wiktionary (WNT/WKT). Domain-specific instances for Cocktails (CLT) and Medical
Subjects (MSH) were taken from “All about cocktails”2 and MeSH3 thesauri respec-
tively, while Computer Science (CPS) examples were manually constructed. The training
and development sets include general-domain sentences only, while the test set includes
domain-specific sentences too (see Tables 4.1 & 4.2). The task is divided into three
sub-problems taking into account only the definition (sub-task 1), only the hypernyms
(sub-task 2), or both (sub-task 3). In the following we focus on sub-task 3 only, since we
are interested in comparing the underlying relations between combinations of instances
of different structure, including that of the definition with the hypernyms.

2http://vocabulary.semantic-web.at/cocktails
3https://www.nlm.nih.gov/mesh/meshhome.html

http://vocabulary.semantic-web.at/cocktails
https://www.nlm.nih.gov/mesh/meshhome.html

60 Chapter 4. An analogy based approach for solving target sense verification

Table 4.1.: Statistics of the WiC-TSV dataset. The P+ column refers to the proportion of positive
examples.

Total P+
Train WNT/WKT 2137 0.56

Dev WNT/WKT 389 0.51

Test

WNT/WKT 717 0.54
Domain-specific 589 0.47

MSH 205 0.52
CTL 216 0.43
CPS 168 0.46
All 1306 0.51

Table 4.2.: WiC-TSV samples taken from the development set. The target word in the context
is highlighted in bold. Notice that in some examples the meaning of the target word
can be easily disambiguated solely from the context, whereas in others the definition
and/or hypernyms are necessary.

Context Definition Hypernyms Label

A marriage of ideas. A close and intimate
union.

union, unification True

A fight broke out at the
hockey game.

The act of fighting; any
contest or struggle.

conflict, struggle, battle True

My neighbor was the
lead role in last year’s
village play.

The actions and activ-
ities assigned to or re-
quired or expected of a
person or group.

duty False

They went bankrupt
during the economic
crisis.

A crucial stage or turn-
ing point in the course
of something.

juncture, occasion False

4.3.2. Analogical proportion optimization

Regarding the number of combinations of A, B, C, D ∈ S, there are |S|4 = 64 = 1, 296
possible relations in total. To ensure that we test whether the intended sense of the tar-
get word in the context corresponds to the target sense in the definition/hypernyms, we
first distinguish between two sets: S1 = {cls, tgt, ctx} and S2 = {cls, def, hyps, descr}
where S1 ∪ S2 = S. The former set includes embeddings which primarily contain infor-
mation coming from the context, while the latter involves embeddings which reflect the

4.3. Experimental setup 61

information found in the definition-hypernyms. cls belongs to both since it represents
the whole input. Next, we define the following rules: For all A, B, C, D in S,

1. A ̸= B ∨ C ̸= D

2. ¬
[[
(A ∈ S1 \ S2) ∧ (B,C,D ∈ S1)

]
∨
[
(A ∈ S2 \ S1) ∧ (B,C,D ∈ S2)

]]
The first rule ensures that we avoid relations where embeddings on either side are

identical, e.g., A is to A as C is to D. The second rule makes sure that each relation
contains embeddings from both sources of information. In other words, A, B, C, D
cannot be instantiated from S1 or S2 exclusively. These rules reduce the number of
relations to be tested to 768. For each choice of input encoding and relation, we train
our system 4 times using different random seeds, resulting in 6× 768× 4 = 18, 432 runs.
A single run takes approximately 35 minutes on 1 Nvidia GTX 1080 Ti 11GB.

4.3.3. Assessing and promoting permutation invariance of analogical
proportions

A key part of our experiments is to employ the permutation invariance properties of ana-
logical proportions (see Section 4) to assess (i) whether analogical reasoning is beneficial
in terms of performance on the task, and (ii) whether the model naturally learns to be
invariant to these permutations or they must be explicitly enforced at training time. To
assess whether the model is invariant, we compute the embeddings A, B, C, D of the
given relation to be tested, and simply compare the performance achieved when feeding
the initial relation vs. the relations obtained by permuting analogical proportions to the
classifier. To promote permutation invariance at training time, we include both the ini-
tial and the permuted relations in each minibatch. We distinguish training without/with
permutation invariance by adding a subscript “pi”, i.e., AB4TSV and AB4TSVpi, respec-
tively.

4.3.4. Technical details

We finetune our model for a maximum of 5 epochs using a binary cross-entropy loss. We
use bert-base checkpoint weights, the Adam optimizer with a learning rate of 0.00005,
a linear warmup scheduler, and gradient clipping with norm 1 using Hugging Face’s
Transformers library (Wolf et al., 2020).

As baselines we consider the BERT variants published by Breit et al. (2021), namely
HyperBertCLS and HyperBert3. Both models are composed of BERT with a linear layer
on top as a classifier. The key difference between them is that the former takes the
embedding of the [CLS] token as input to the classifier, while the latter takes not only
the embedding of [CLS] but also the embedding of the target word and the average of
all words in the definition and all hypernyms.

Performance is measured in terms of accuracy and F1-score. Unless otherwise stated,
all tables report statistics (mean and standard deviations) of these two measures over
several independent runs (exact number stated in the text for each experiment). Since
the test set labels of WiC-TSV are not publicly available, all reported scores on the test
set are computed by the organizers (Breit et al., 2021).

62 Chapter 4. An analogy based approach for solving target sense verification

The WiC-TSV data, scripts for tranining/evaluating AB4TSV and the baseline models,
and source code for reproducing our experimental results are available at our GitHub
repository4.

4.4. Results

In this section we present the results obtained from the optimization of the input encoding
and the analogical relation, compare those with the baselines on the development set,
and with existing approaches on the test set. Next, we discuss the effects of utilizing (or
not) the analogical properties explicitly during the training process.

4.4.1. Impact of the input encoding

Figure 4.3 shows the mean accuracy achieved across all 4 runs sorted in ascending order
for each input encoding and each analogical relation (Section 4.3.2). Overall, for all input
encodings there exist some A, B, C, D combinations that result in good performance.
However, looking at the general trend of these curves, we can observe that some are
more sensitive than others to the selection of the analogical relation. More specifically,
fc/em outperform the default/swap encodings, showing that enclosing the hypernyms
with focus characters or entity markers reduces the sensitivity to the selection of the
A, B, C, D, and improves performance. In addition, entity markers appear to be
consistently better than focus characters. One possible explanation is that the same
focus characters are also enclosing the target word in the context. For example, in
“[CLS] ... $ tgt $... [SEP] def; $ hyps $ [SEP]” part of the context and the
definition are enclosed with $, while in “[CLS] ... $ tgt $... [SEP] $ hyps $;
def [SEP]” part of the context is enclosed with $. Hence, the part of the input that
comes after the target word and before the hypernyms is also enclosed in these special
characters, possibly bringing some confusion to the model. Moreover, swapping or not
the position of the definition and the hypernyms in the sentence (plain lines), results in
a large amount of bad accuracies for several A, B, C, D combinations (0 ∼ 400 on the
x-axis). Taking a closer look at these particular combinations — highlighted in bold in
Figure 4.3 — we observe that they all share a common characteristic. That is, at least one
of the A, B, C, D in the analogical relation is instantiated as hyps. This demonstrates
that BERT is struggling to make sense out of the hypernyms probably because of their
structure — a list of words that comes before or after the definition, and does not form
a syntactically correct sentence. However, this effect is not present when we apply the
fc/em strategies (dashed and dotted lines).

4https://github.com/gonconist/ab4tsv

https://github.com/gonconist/ab4tsv

4.4. Results 63

Figure 4.3.: Mean accuracy achieved on the development set. Each curve represents one pos-
sible input encoding, and the horizontal axis represents the 768 possible relations
A : B :: C : D sorted in order of increasing accuracy. The highlighted area shows the
portion of analogical relations that result in bad performance for default and swap
input encodings.

To further investigate this phenomenon we attempt to apply fc/em strategies only at
the input level, without including the embeddings of the focus characters/entity markers
in the averaging of hyps. We define these operations as ⟨fc⟩ and ⟨em⟩ respectively.
Consequently, this results in the following 4 new input encodings:

1. default+⟨fc⟩:
[CLS] context [SEP] definition; $ hypernyms $ [SEP]

2. default+⟨em⟩:
[CLS] context [SEP] definition; [H] hypernyms [/H] [SEP]

3. swap+⟨fc⟩:
[CLS] context [SEP] $ hypernyms $; definition [SEP]

4. swap+⟨em⟩:
[CLS] context [SEP] [H] hypernyms [/H]; definition [SEP]

We relaunch the exact same experiment (Section 4.3.2) for these input encodings, and we
plot the new curves in Figure 4.4. Based on the results, we notice that simply enclosing

64 Chapter 4. An analogy based approach for solving target sense verification

the hypernyms with focus characters or entity markers at the input level is not sufficient to
alleviate this problem. What really makes a difference, is the inclusion of the embeddings
of these special characters when computing the vector representation of the hypernyms.
Furthermore, ⟨em⟩ is superior to ⟨fc⟩ showing once again that the use of entity markers
is more instructive for BERT on this particular task. Additional figures showing how the
focus characters compare to entity markers are provided in Appendix B.1.

Figure 4.4.: Comparison between including the embeddings of the focus characters (fc) or not
(⟨fc⟩) in the averaging of hyps. The vertical axis represents the mean accuracy
achieved on the development set, and the horizontal axis represents the 768 possible
relations A : B :: C : D sorted in order of increasing accuracy.

Finally, one of the encoding strategies presented by Baldini Soares et al. (2019) is to
represent the relation between two marked entities in the text, using the concatenation of
their respective start entity marker token embeddings. Inspired by this, we introduce em†

where we choose the embedding of the last entity marker, [/H], is used as a representation
for the hypernyms. Notice that the concatenation of both entity markers is not feasible in
our case, as the CNN classifier expects a fixed length representation for each A, B, C, D.
This modification results in 2 additional input encodings:

1. default+em†:

4.4. Results 65

[CLS] context [SEP] definition; [H] hypernyms [/H] [SEP]
2. swap+em†:

[CLS] context [SEP] [H] hypernyms [/H]; definition [SEP]
We repeat the same experiment and plot the results in Figure 4.5. Overall, this strategy
works similarly to em which suggests that the last entity marker embedding alone con-
tains enough information to help BERT disambiguate the hypernyms. Additional figures
showing how default+em† compares to swap+em† are provided in Appendix B.1.

Figure 4.5.: Comparison between including the embeddings of the entity markers (em) or not
(⟨em⟩) in the averaging of hyps or just using the embedding of the first entity
marker (em†) to represent hyps. The vertical axis represents the mean accuracy
achieved on the development set, and the horizontal axis represents the 768 possible
relations A : B :: C : D sorted in order of increasing accuracy.

4.4.2. Comparison with other methods for TSV

We retrain the AB4TSV models with the best relation for each selected encoding, and
report the results over 10 runs, as well as those of the baselines, in Table 4.3. The
results clearly show that AB4TSV outperforms the baseline models. This holds true
even for one-to-one comparisons on the respective encodings, further demonstrating the
importance of the input encoding for BERT. Specifically, exchanging the position of the
definition and the hypernyms (swap) and using focus characters/entity markers (fc/em)

66 Chapter 4. An analogy based approach for solving target sense verification

yields the best performance in terms of accuracy. Note also that cls is present in all
analogical relations. This suggests that the [CLS] token is particularly important for
solving this task.

Table 4.3.: Accuracy and F1-score achieved on the development set by the proposed method
and the two baselines. The Analogy column shows the relation that yielded the best
performance for a given encoding.

Encoding Analogy Dev Acc Dev F1

default cls : descr :: cls : ctx 74.5 ± 0.015 77.0 ± 0.016
default+fc cls : def :: ctx : cls 74.9 ± 0.010 77.3 ± 0.006
default+em tgt : descr :: cls : def 75.4 ± 0.027 77.8 ± 0.023
swap def : cls :: cls : ctx 75.4 ± 0.016 77.7 ± 0.016
swap+fc def : ctx :: cls : hyps 75.8 ± 0.013 77.7 ± 0.013
swap+em hyps : def :: cls : ctx 75.8 ± 0.017 77.7 ± 0.012

Baselines

default 74.4 ± 0.014 77.2 ± 0.009
default+fc 73.5 ± 0.027 75.2 ± 0.035
default+em HyperBertCLS 74.0 ± 0.022 76.1 ± 0.019
swap 72.6 ± 0.028 74.4 ± 0.031
swap+fc 73.1 ± 0.028 75.2 ± 0.031
swap+em 74.6 ± 0.024 76.6 ± 0.022

default 74.0 ± 0.014 76.9 ± 0.007
default+fc 73.9 ± 0.018 76.3 ± 0.018
default+em HyperBert3 73.1 ± 0.031 75.2 ± 0.032
swap 73.8 ± 0.015 76.3 ± 0.015
swap+fc 73.5 ± 0.011 75.6 ± 0.013
swap+em 74.4 ± 0.011 75.7 ± 0.024

Based on the results of the previous experiment we select the relation that performs
best for each encoding, and train the AB4TSV model 10 times by promoting invariance
to the permutations of analogical proportions at training time. The reported results
in Table 4.4 show a slight decrease in performance compared to the systems trained
without the permutations of analogical proportions in Table 4.3, in the order of 1%
absolute. However, notice that after integrating analogical reasoning, the results are
consistent across all encodings. This suggests that the model learns to be less dependent
on the input encoding, and thus, is more robust.

4.4. Results 67

Table 4.4.: Accuracy and F1-score achieved on the development set by promoting invariance to
the permutations of analogical proportions at training time. The Analogy column
shows the relation that yielded the best performance for a given encoding in the
previous experiment.

Encoding Analogy Dev Acc Dev F1

default cls : descr :: cls : ctx 74.3 ± 0.016 76.1 ± 0.014
default+fc cls : def :: ctx : cls 74.6 ± 0.008 76.6 ± 0.008
default+em tgt : descr :: cls : def 75.1 ± 0.014 77.3 ± 0.013
swap def : cls :: cls : ctx 74.2 ± 0.010 76.1 ± 0.011
swap+fc def : ctx :: cls : hyps 74.8 ± 0.012 75.9 ± 0.024
swap+em hyps : def :: cls : ctx 75.0 ± 0.009 76.4 ± 0.011

To assess the generalization capabilities of AB4TSV, we evaluate the performance of
the best systems of the previous experiments on the test set. The results in Table 4.5 show
that AB4TSV can outperform previously reported results on WiC-TSV both in terms of
accuracy and F1-score, according to whether the axiomatic properties of analogies are
enforced at training time or not. This illustrates the usefulness of analogical reasoning to
solve the task, even on specific instances that lie outside the training domain. Interest-
ingly, swap+em that was one of the most dominant strategies (see Figure 4.3) results
in poorer performance compared to other approaches.

The WiC-TSV test set includes general-domain instances from WordNet and Wik-
tionary (WNT/WKT) as well as domain-specific examples about cocktails (CLT), med-
ical subjects (MSH) and Computer Science (CPS). According to Breit et al. (2021) this
data formation aims at testing the generalization capabilities of the underlying system on
unseen instances and incomplete data, and evaluating transfer learning from general into
specific domains. To get a better insight of how AB4TSV behaves on those instances,
we report the detailed per-domain results for all AB4TSV configurations on the test set
in Table 4.6. For clarity, we refer to AB4TSV using swap+em as input encoding and
hyps : def :: cls : ctx as the relation to be tested as system 1, AB4TSV using swap+fc
as input encoding and def : ctx :: cls : hyps as the relation to be tested as system 2,
and AB4TSVpi using default+em as input encoding and tgt : descr :: cls : def as the
relation to be tested as system 3. Overall, system 1 is the least performing of the three
and its decrease in performance is present both in general and domain-specific test ex-
amples. This could possibly mean that the particular selection of entity markers for the
hypernyms does not generalize well on the test set. However, notice that system 3 us-
ing the same entity markers outperforms existing approaches, demonstrating once more
that when trained using the axiomatic properties of analogies, AB4TSV becomes less
dependent on the input encoding selection, and thus more robust. In addition, system 2
achieves the highest total F1-score with system 3 being really close. The main differ-
ence is that system 2 scores better on general domain instances, while system 3 is more
accurate on CTL. Interestingly, all systems exhibit similar performance on CPS.

68 Chapter 4. An analogy based approach for solving target sense verification

Table 4.5.: Test set results of our best performing systems trained with and without the permu-
tations of analogical proportions, compared to previously reported results. All results
are calculated by the authors of WiC-TSV benchmark (Breit et al., 2021).

Approach Test Acc Test F1

Supervised
CTLR (Moreno et al., 2021) 78.3 78.5
Vandenbussche et al. (2021) 71.9 76.2
BERT-B (Breit et al., 2021) 76.6 78.2
BERT-L (Breit et al., 2021) 76.3 77.8
FastText (Breit et al., 2021) 53.4 63.4
AB4TSV+swap+em 75.7 77.5
AB4TSV+swap+fc 78.6 79.8
AB4TSVpi+default+em 78.6 79.4

Unsupervised

U-dBERT (Breit et al., 2021) 61.2 51.3
U-BERT (Breit et al., 2021) 60.5 51.9
MIRRORWIC (Liu et al., 2021) 73.7 —

Table 4.6.: Per domain performance of our AB4TSV models on the test set. Results are reported
in terms of accuracy, precision, recall and F1-score, and are calculated by the authors
of WiC-TSV benchmark (Breit et al., 2021).

Test Acc Test Pre Test Rec Test F1

AB4TSV+swap+em

WNT/WKT 72.7 75.5 72.8 74.1

MSH 73.7 67.3 95.3 78.9

CTL 81.0 70.3 96.8 81.4

CPS 84.5 77.1 94.9 85.1

Total 75.7 73.2 82.4 77.5

AB4TSV+swap+fc

WNT/WKT 75.0 78.1 74.6 76.3

MSH 79.5 73.5 94.3 82.6

CTL 84.7 76.3 93.6 84.1

CPS 85.1 77.3 96.2 85.7

Total 78.6 76.8 83.0 79.8

AB4TSVpi+default+em

WNT/WKT 74.5 77.4 74.4 75.8

MSH 79.5 74.6 91.5 82.2

CTL 87.0 84.2 86.0 85.1

CPS 84.5 77.1 94.9 85.1

Total 78.6 77.8 81.2 79.4

4.4. Results 69

4.4.3. Invariance to the permutations of analogical proportions

In order to measure the invariance of the model w.r.t. permutations, we focus on the
relation that yields the best accuracy on the analogical proportion optimization exper-
iment (5th row of Table 4.3). In this case, we compare the performance obtained using
the initial and the permuted analogical relations as input to the classifier, depending on
whether we explicitly promote invariance or not. Table 4.7 reports the results over 4
runs. As expected, the model is less dependent on both permutations when we explicitly
enforce them during training. Conversely, when we train on a single non-permuted rela-
tion, the performance for symmetry greatly degrades at test time, while that of central
permutation decreases by a smaller margin. This makes sense for the specific relation
(def : ctx :: cls : hyps) since central permutation (def : cls :: ctx : hyps) resembles more
the original than symmetry (ctx : hyps :: def : cls).

Table 4.7.: Results on the development set for the swap+fc encoding and the relation def :
ctx :: cls : hyps. Permute column refers to promoting (✓) or not (✗) invariance to
the permutations of analogical proportions at training time.

Property Permute Dev Acc Dev F1

✗ 76.2 ± 1.927 78.0 ± 1.932
base ✓ 75.1 ± 1.611 76.8 ± 1.891

✗ 53.2 ± 17.10 61.4 ± 18.53
sym ✓ 74.5 ± 1.949 76.4 ± 2.210

✗ 72.9 ± 3.596 73.4 ± 5.760
cp ✓ 74.7 ± 2.104 76.5 ± 2.315

4.4.4. Interpreting AB4TSV via explanation methods

For our last experiment we aim to get an intuition of how AB4TSV is making sense
of the different parts of the input text to solve TSV. Specifically, we employ a set
of feature attribution methods using the Captum library (Kokhlikyan et al., 2019) to
measure the importance of each token in the input sequence, and in all 12 Transformer
blocks of BERT. For the former, we utilize Input X Gradient (Shrikumar et al., 2017)
an extension of Saliency (Simonyan et al., 2014), that computes input attribution based
on the gradients of the output w.r.t. the input multiplied by the input feature values.
Intuitively, given a linear model the gradients represent the coefficients of each input, and
the input × coefficient product gives the total contribution of the feature w.r.t. the output
of the linear model. For the latter, we utilize Layer Gradient X Activation — which is
the equivalent of the Input X Gradient for hidden layers — that performs element-wise
multiplication of the activation of the layer with the gradients of the output w.r.t. the
given layer. In both cases, the input is the final representation for each token in the
input sequence of BERT, i.e., the element-wise sum of the token, segment and position

70 Chapter 4. An analogy based approach for solving target sense verification

embeddings (see Section 2.1.3.1), while the output corresponds to the unnormalized
prediction score (logit) of the model for that input sequence.

We visualize the token attributions obtained from Input X Gradient in a saliency
map, and attributions across all tokens and Transformer blocks obtained from Layer
Gradient X Activation in a heat map, as shown in the example in Figure 4.6. In the top
left corner, the saliency map provides the true label, the predicted label of the model
along with the logit, the attribution label, and the attribution score. The explanation
methods answer the question of how important each input token is towards the model’s
prediction. Therefore, the attribution label sets the target class for which we want to
compute attributions based on the model’s prediction. In this case it is set to None, since
for TSV the model always outputs a scalar value per example. If instead the output of
the model was binary, i.e., two confidence scores for predicting True or False, respectively,
then we would have to specify the attribution label for which we would like to compute
attributions, i.e., the one corresponding to the True or the False class. The attribution
score corresponds to the normalized sum of all attributions of all tokens in the input.
The colours of each token in the saliency map are associated with the importance of each
token, i.e., red/white/green means that they are unimportant/neutral/important for that
specific prediction, or in other words they are negatively/not/positively correlated with
the predicted score. The meaning of importance can be interpreted as how much each
token is contributing/steering the model towards producing this particular score. The
heat map summarizes the attributions of all tokens across all 12 Transformer blocks
of BERT. Higher colour intensity means higher importance, while darker means the
opposite.

As our test models we choose HyperBertCLS and AB4TSV with def : ctx :: cls : hyps
as analogical relation and swap+fc as input encoding. After manually inspecting the
WiC-TSV development set, we select a few examples for which we apply the explanation
methods. For the sake of clarity, we display the results for the examples presented in
Table 4.8, while we list the rest in Appendix B.2. To facilitate the interpretation, we
focus on examples where the context clearly assists in the disambiguation of the target
word, since otherwise the surrounding words do not contribute in understanding the sense
of the target word. Furthermore, we restrict ourselves to examples where HyperBertCLS
correctly predicts the sense for the target word while AB4TSV does not, and vice versa.

Table 4.8.: Samples from the WiC-TSV development set for which we apply the explanation
methods. The target word in the context is highlighted in bold.

Context Definition Hypernyms Label

They went bankrupt dur-
ing the economic crisis.

A crucial stage or turning
point in the course of some-
thing.

juncture, occasion False

My neighbor was the lead
role in last year’s village
play.

The actions and activities
assigned to or required or
expected of a person or
group.

duty False

4.4. Results 71

In the first example of Table 4.8, HyperBertCLS correctly predicts that the sense are
unrelated, while AB4TSV fails to verify them. The saliency map in Figure 4.6 illustrates
that HyperBertCLS relies a lot on the hypernym occasion to make the decision. More-
over, the heat map below shows that the [CLS] token gains high attribution in early
Transformer blocks but it diminishes in the last block. In general, most activity is con-
centrated in the hypernyms, and a few tokens from the context such as the target word
crisis and the token during. In contrast, the saliency map in Figure 4.7 shows that
AB4TSV puts a lot of emphasis in token bankrupt and sub-token ##cture of the hyper-
nym juncture. Furthermore, the heat map again reveals high attribution for the [CLS]
token that gets eliminated in the last Transformer block. Moreover the tokens bankrupt,
during and the sub-token jun have high contribution throughout various Transformer
blocks. In both cases, the hypernyms seem to be more dominant for making the decision
followed by a few tokens in the context, while the definition seems not to be so useful.

In the second example of Table 4.8, HyperBertCLS falsely verifies the senses, while
AB4TSV succeeds in distinguishing them. The saliency map in Figure 4.8 shows that
HyperBertCLS is focusing on seemingly irrelevant tokens for making the prediction, such
as the separation tokens [SEP]. In addition, the heat map does not reveal a lot of high
activity across the tokens and the Transformer blocks, possibly meaning that the model is
having trouble at reasoning on that particular example. Looking at the equivalent picture
for AB4TSV in Figure 4.9, we clearly see that the model is heavily relying on more useful
tokens to disambiguate the sense of role in the context, such as the hypernym duty,
and the tokens village, play. Regarding the attributions inside the BERT-part of the
model, we observe that duty gains high attribution in the first four Transformer blocks
that gets reduced as we proceed to later blocks. Therefore, we hypothesize that the
hypernym duty is what guides AB4TSV to correctly verify the senses on that particular
example.

Overall, and in the absence of recognized general explainability quality metric, it is not
an easy task to arrive in conclusive findings concerning the interpretation of BERT-like
models, as they are highly complex with many parameters that affect the final prediction.
Nonetheless, the explanation methods can provide some useful insights. More specifically,
based on the heat maps we notice that the [CLS] token always gets assigned with high or
low attributions throughout the Transformer blocks, especially in the last, whereas the
rest of the tokens in the last block get zero attribution. This makes sense particularly
for HyperBertCLS as it was finetuned using the [CLS] token embedding of the last
Transformer block as input to a linear classifier. This pattern is also true for AB4TSV,
with the important difference that the respective objects in the analogical relation, i.e.,
def : ctx :: cls : hyps also get assigned with non-zero attribution.

72 Chapter 4. An analogy based approach for solving target sense verification

Figure 4.6.: Saliency map of input token attributions (top) and heat map of attributions across all
12 Transformer blocks (bottom) of HyperBertCLS on a correctly predicted example.

Figure 4.7.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of AB4TSV on a falsely predicted example.

4.4. Results 73

Figure 4.8.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of HyperBertCLS on a falsely predicted example.

Figure 4.9.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of AB4TSV on a correctly predicted example.

74 Chapter 4. An analogy based approach for solving target sense verification

4.5. Summary

In this chapter, we have proposed an alternative formulation for TSV based on analog-
ical reasoning. More precisely, we directly compared the underlying relations between
several components of the input text (target, context, definition, hypernyms), by devel-
oping a Transformer-based architecture combined with a CNN classifier previously used
for detecting analogies. The experimental results demonstrate the importance of the
input encoding, suggesting that BERT is better at handling well-structured sentences or
text that is specifically marked with special characters. Moreover, promoting invariance
w.r.t. the permutations of analogical proportions during training result in a more ro-
bust system, that behaves consistently irrespective of the input encoding, and performs
comparably to its initial version (without promoting permutation invariance). Both ap-
proaches achieve competitive results on the WiC-TSV evaluation benchmark, displaying
some generalization capabilities even for domain-specific examples outside of the training
data. Future work and perspectives are provided in Chapter 5.

5. Conclusion and perspectives

The general scope of the thesis is the integration of symbolic knowledge and reasoning
with large language models (LLMs), in an attempt to address several limitations that
such systems exhibit. More precisely, we designed methods for incorporating semantic
knowledge and analogical reasoning within BERT based architectures, and evaluated
both their impact in terms of performance on various downstream tasks and the robust-
ness of the resulting models. This last chapter concludes the thesis with a summary of
our contributions, in Section 5.1, and a discussion of future directions and perspectives,
in Section 5.2.

5.1. Synopsis

Word vector representations play a fundamental role in many NLP applications. Exploit-
ing symbolic knowledge was proven to improve the quality of word embeddings and their
performance on many downstream tasks (Mrkšić et al., 2016, 2017; Ferret, 2017; Vulić
et al., 2018; Lengerich et al., 2018). Retrofitting (Faruqui et al., 2015) is a simple and
popular technique for refining distributional word embeddings based on relations coming
from a semantic lexicon. Inspired by this technique, in Chapter 3 we present two methods
for incorporating knowledge stored in semantic lexicons into BERT contextualized em-
beddings. Both methods are designed in order to encourage the learnt word embedding
not to deviate too much from its original position in the latent space, while getting closer
to the embeddings of its neighbouring words in the semantic lexicon. However, the main
difference between both proposed methods lies in the way that the neighbouring infor-
mation is encoded — by storing the contextualized embeddings of all occurrences of all
similar words in the training set, or by replacing the underlying word in the sentence with
every neighbouring word, one-by-one, and computing the contextualized embeddings on
these new instances. In practice, both operations are applied within the architecture
of BERT and take the form of a weighted average of the original and the neighbouring
embeddings. After optimizing the hyperparameters of the retrofitting operations via grid
search, we evaluate them on three biomedical datasets for relation extraction, and one
movie review dataset for sentiment analysis. The retrofitted vectors do not substantially
impact the performance for these tasks, so we conduct a qualitative analysis to provide
further insights on this negative result. The grid search results indicate that the optimal
choice of the hyperparameters becomes more localized as we retrofit closer to the output
layer of BERT. After implementing a neighbourhood-based hyperparameter heuristic,
we observe that performance is contrasted across datasets, suggesting that the optimal
choice of these parameters is dataset-dependent. In addition, the proposed alternative

75

76 Chapter 5. Conclusion and perspectives

classification strategies point out that the use of the lexicons can significantly improve
the performance across all tasks and datasets. Furthermore, ranking the Euclidean dis-
tances between a subset of vectors before and after the retrofitting operation reveals that
a large proportion of these vectors either do not substantially move, or move too far
with respect to their original position in the latent space. Consequently, there is a lot of
variation in the neighbouring embeddings and therefore, not all words in the lexicon are
relevant for the tasks at hand. To address this issue, we rely on McNemar’s statistical
test and reduce the size of the lexicons by selecting only relevant neighbours for a given
word, with varying levels of confidence. This experiment shows that retrofitting in the
sense of averaging embeddings can be meaningful, yet the size of the resulting reduced
lexicons is not sufficiently large to be able to generalize at test time. Finally, we demon-
strated that our method preserves the majority vote, which implies that retrofitting has
potential provided that the lexicon can help.

LLMs such as BERT acquire a vast amount of knowledge during pretraining. Nonethe-
less, their ability to solve tasks that require reasoning over this knowledge is limited
(Talmor et al., 2020; Rogers et al., 2020). Certain tasks can be improved by analogical
reasoning over concepts (Keane and Smyth, 2020; Hüllermeier, 2020; Afantenos et al.,
2021; Ushio et al., 2021a), e.g., understanding the underlying relations in “man is to
woman as king is to queen”. Solving target sense verification (TSV) requires to decide
whether the sense of a given a target word in a context matches or not that of a def-
inition and a set of hypernyms for that particular word. In Chapter 4, we propose a
way to formulate TSV as an analogy detection task, by transforming the input data
into quadruples of the form A : B :: C : D. We present Analogy and BERT for target
sense verification (AB4TSV), a model that uses BERT to represent the objects in these
quadruples combined with a CNN classifier (Lim et al., 2019; Alsaidi et al., 2021a) to de-
cide whether they constitute valid analogies. After motivating the set of possible choices
for A,B,C,D, and introducing alternative ways to encode the input of BERT, we per-
form a grid search to find the best combinations A : B :: C : D in terms of performance.
The results demonstrate that for some input encodings, the representation of the hyper-
nyms can degrade the end performance. However, this problem is not present when we
enclose the hypernyms with focus characters or entity markers. Repeating the optimiza-
tion experiment with additional input encodings shows that it is not sufficient to enclose
the hypernyms with focus characters or entity markers at the input level. What really
makes a difference is the inclusion of the embedding of these special characters in the
computation of the hypernyms embedding. In fact, using solely one of the embeddings
of these special characters to represent the hypernyms is sufficient to alleviate this issue.
Following the axiomatization of Lepage (2004), we further incorporate symmetry and
central permutation properties of analogies during training to assess whether analogical
reasoning is beneficial in terms of performance on the task, and whether the AB4TSV
naturally learns to be invariant to these properties, or if this must be explicitly enforced
at training time. The results show a slight decrease in performance compared to the
model trained without the axiomatic properties of analogies in the order of 1% absolute.
However, they are consistent across all input encodings. Therefore, AB4TSV gains in ro-

5.2. Perspectives 77

bustness as it becomes less dependent on the choice of the input encoding. Furthermore,
after giving as input the symmetry and central permutation quadruples to the analogy
classifier, we notice that AB4TSV is not naturally invariant w.r.t. these properties, but
they must be explicitly enforced during training. Next, we test our system on the WiC-
TSV evaluation benchmark, and show that it can outperform existing approaches both
in terms of accuracy and F1-score, irrespectively of whether the axiomatic properties of
analogies are enforced at training time or not. Finally, feature attribution methods reveal
that the [CLS] token embedding always gets assigned with extremely positive or negative
attribution, meaning that it is a decisive factor for the final prediction. Although the
rest of the tokens get nearly zero attribution for our BERT baseline model, AB4TSV
assigns non trivial attributions to the components defined by the input quadruple.

In summary, throughout this thesis, we attempted to incorporate symbolic knowledge
and reasoning with BERT-like models in order to boost their performance on down-
stream tasks and increase their robustness. For the former objective, we designed two
retrofitting methods that inject information from semantic lexicons into BERT embed-
dings, and evaluated them on biomedical relation extraction and sentiment analysis of
movie reviews. The qualitative analysis results demonstrate that the retrofitting opera-
tions have potential in improving the results, however more sophisticated mechanisms of
selecting relevant neighbours for a given word in the semantic lexicons are needed, in or-
der to avoid integrating noisy information in the embeddings. For the latter objective, we
formulated TSV as an analogy detection problem, and we proposed AB4TSV, a hybrid
architecture that achieved competitive results on the WiC-TSV evaluation benchmark.
After including the axiomatic properties of analogies in the training phase of the model,
we showed that it maintains a good performance, and nevertheless gains in robustness,
as it becomes less dependent on the selection of the input encoding. We firmly believe
that combining symbolic knowledge and reasoning with LLMs is the way forward for
addressing the various limitations that modern AI systems exhibit, and we hope that
this thesis provides useful material and encourages further research into this topic.

5.2. Perspectives

There are still many open research questions and challenges within the topic of symbolic
knowledge and reasoning integration with LLMs. In this Section, we highlight a few of
them, and provide future directions in the light of the contributions presented in this
thesis.

5.2.1. Retrofitting with large language models

Below we pinpoint existing challenges with respect to the contributions presented in
Chapter 3, and propose research avenues as a first step to addressing them.

78 Chapter 5. Conclusion and perspectives

5.2.1.1. Word importance

One of the main challenges when incorporating symbolic knowledge with LLMs is to
decide what piece of information is relevant for the task at hand. As shown in Chapter 3,
considering off-the-shelf semantic lexicons may result in neighbouring words that are
unrelated under that particular domain. To deal with this issue, we proposed to reduce
the size of the lexicons by keeping words based on some level of statistical confidence.
However, it turns out that this approach is limited as it heavily relies on word statistics,
and requires that words in the lexicon appear several times in the dataset.

Alternatively, techniques for measuring word importance could be a research avenue
worth exploring to address this phenomenon. Specifically, in Section 4.4.4, we employed
feature attribution methods, e.g., Saliency (Simonyan et al., 2014), in order to compute
how much each token in the input sequence contributes to the final prediction of the
model. Therefore, at test time, someone could compute the attribution scores for all
tokens in the input, and choose to retrofit the embeddings of the ones that are assigned
a high score and are present in the semantic lexicons.

Attention (Bahdanau et al., 2015) is another form of measuring word importance.
Specifically, for Transformer architectures, as explained in Section 2.1.3.2, the normalized
attention scores in equation (2.5) — also referred to as attention weights — intuitively
express the importance that each token assigns to every individual token in the input
sequence. Furthermore, based on the study of Vig (2019), multi-headed attention shows
various attention patterns across the different attention heads and Transformer blocks of
BERT. Therefore, using Method B that sequentially replaces the underlying word with
neighbouring words from the semantic lexicons, it could be worth exploring how attention
is distributed for each neighbour across the different heads and Transformer blocks. For
example, we could imagine that we observe a delimiter-focused attention pattern, i.e.,
the attention is mostly concentrated in the separation tokens [SEP], which, according to
Vig (2019), indicates that the model cannot find any meaningful tokens to focus on in
the input sequence. After replacing the word of interest with a neighbouring word, we
might observe that attention gets distributed to other parts of the input, meaning that
most likely this replacement is meaningful.

5.2.1.2. Linking BERT word embeddings and the classifier output

Early experiments in Chapter 3 indicate that retrofitting BERT embeddings at the word
level does not impact the performance of the downstream task. Since BERT is finetuned
using the [CLS] token representation as input to the classifier, we chose to retrofit this
token instead. However, the link that finetuning creates between the [CLS] embedding
and the final prediction is not explicit enough, as it is not clear how the trained system
encodes relevant information in [CLS].

A different approach would be to entirely avoid finetuning, which is possibly one of the
reasons why there is no strong link between word embeddings and the classifier outcome.
However, the pre-finetuning [CLS] token embedding of BERT is not a good proxy of
the input sequence, meaning that most likely the downstream task performance will be

5.2. Perspectives 79

poor. One possible solution to this would be to retrofit word embeddings using pretrained
BERT variations that were tuned for text/sentence embedding generation (Kapočiūtė-
Dzikienė et al., 2021). The [CLS] token embedding of such models can provide a reliable
generic sentence representation.

Besides the effects of finetuning, one probable cause of failing to retrofit BERT word
embeddings may be related to the representation degeneration problem in contextual
word representations (Gao et al., 2019). Unlike static word representations that are uni-
formly distributed, contextualized word vectors tend to only occupy a narrow cone in the
embedding space (anisotropy), which can limit their representational power. Mu et al.
(2018) propose a postprocessing method that creates more isotropic distributional word
representations, by removing their top principal directions. To deal with representation
degeneration, Bihani and Rayz (2021) apply this technique with BERT contextualized
embeddings and then retrofit (Faruqui et al., 2015) in order to bring representations of
same word senses closer in the embedding space. Their intrinsic evaluation reveals that
the resulting representations are more isotropic with increased word sense disambigua-
tion capabilities. It would be worth exploring whether isotropic BERT contextualized
embeddings are a better fit for our proposed methods, both in the presence or the absence
of finetuning.

5.2.1.3. Towards lexical systems

As previously described, a source of error in the proposed retrofitting methods is associ-
ated with the semantic lexicons themselves. Lexical databases, such as WordNet, mainly
organize information in a hierarchical fashion and are usually centered around a specific
relation, e.g., synonymy, while ignoring others like paradigmatic and syntagmatic that
are also present in natural language (Mel’cuk, 1996). In contrast, non-ontological lexi-
cal systems emphasize the relational nature of lexicons where nodes represent complex
entities of well specified word senses, and links between them are provided through lex-
ical functions (Polguère, 2009). An interesting research avenue would be to assess how
retrofitting methods can be integrated with lexical systems such as the French Lexical
Network (Polguère, 2014), in more fine-grained tasks, e.g. anaphora/co-reference resolu-
tion, where we are certain that the symbolic knowledge is useful and we would not need
to heavily rely on word statistics. This would require to account for multiple type of
relations, thus the works of Mrkšić et al. (2016, 2017), Ferret (2017) and Lengerich et al.
(2018) could be a good starting point.

5.2.2. Analogical reasoning with pretrained language models

Below we pinpoint existing challenges with respect to the contributions presented in
Chapter 4, and propose some research avenues that could serve as a first step to address-
ing them.

80 Chapter 5. Conclusion and perspectives

5.2.2.1. Elimination of contextualized dependence

In Chapter 4, we formulated TSV as an analogy detection task and developed a hybrid
architecture that uses BERT to represent the objects in the relation A : B :: C : D,
and a CNN classifier to detect the absence or presence of the analogy. The model is
finetuned for the task by processing all sources of information — context, definition and
set of hypernyms for a given target word — at once in a single input sequence. This
choice implies that the embeddings of all objects in A : B :: C : D will share a lot
of common information due to contextualization. We hypothesize that this dependence
may not fully allow the classifier to model the underlying relations between the different
objects, thus limiting its analogical reasoning capabilities. To verify this assumption, we
propose to eliminate the contextual dependence of the objects of interest by disjoining
the input sequence into separate subsequences and feeding them to BERT independently.
For example, to extract the desired representations, one could input the context into
BERT, and then feed it with the definition and the set of hypernyms in two individual
runs. Alternatively, the use of a siamese network structure like SBERT (Reimers and
Gurevych, 2019) could serve this purpose as well. It is interesting to notice that splitting
the input sequence into distinct subsequences allows us to deal with TSV sub-tasks 1
and 2 (Breit et al., 2021), where either the definition or the set of hypernyms is given
as source of information for the target sense, respectively. Particularly for sub-task 2,
since hypernyms are simply a set of words separated by commas, feeding them solely
into BERT might be problematic, as it was pretrained on well structured sentences.
A possible workaround could be to replace the target word in the context by a single
hypernym, and use the generated sentence as input to the model.

5.2.2.2. Beyond target sense verification

Analogical reasoning is key in designing AI systems that can generalize, learn efficiently
in the absence of large amounts of training data, and perform sophisticated transfer
learning across domains (Mitchell, 2021). In Chapter 4, we empirically demonstrated the
benefits of combining LLMs and analogies by solving TSV. A natural extension would be
to adapt our methodology to the more general task of word sense disambiguation. The
main difference lies in that the latter requires the model to select the relevant sense for
the target word in context, based on a set of possible candidates from a sense inventory,
e.g., WordNet. For example, Huang et al. (2019) address this problem by finetuning
BERT using positive and negative context-gloss pairs. Given that the information about
the gloss and the hypernyms is already provided by the sense inventory, AB4TSV is
directly applicable on this task.

Overall, the use of analogies with LLMs is an understudied area in AI. It would be
worth investigating the potential of teaching analogical reasoning to LLMs, and evaluat-
ing it on different types of problems like recent works do on relation classification (Ushio
et al., 2021a) and bilingual dictionary induction and sentence retrieval (Garneau et al.,
2021).

5.3. Epilogue 81

5.2.3. Towards a unified knowledge and reasoning integration architecture

In a realistic scenario, the required type of symbolic knowledge and reasoning needed to
guide the model into making the right decision for the task at hand, varies depending
on the context, e.g., commonsense, encyclopedic, grammar, etc. Therefore, the ultimate
goal is to design a single joint approach that could correctly exploit various knowledge
bases and employ different reasoning mechanisms at the same time.

Towards this goal we focus on the editability of factual knowledge in LLMs. Petroni
et al. (2019) claim that LLMs acquire factual knowledge as they are exposed to large
amounts of text during pretraining. This is evident from their ability to recall facts
— by probing them for world knowledge via cloze-type queries — without having to
explicitly tailor them for this particular task. However, facts can change over time and
retraining the whole model in order to reflect those changes is often prohibited. Moreover,
the factual knowledge stored in the parameters of the black-box LLM is hard to identify,
interpret, and modify. Finding clever ways to edit the knowledge inside LLMs would allow
us to fix mistakes due to factual knowledge stored by the model becoming stale over time,
overwrite unintentionally memorized sensitive information, eliminate biases to ensure a
fair application of such models in real-world, and make a step towards understanding
huge opaque neural networks. We categorize existing approaches to updating the factual
knowledge in LLMs into finetuning (Chen et al., 2021; Zhu et al., 2020), meta-learning
(Sinitsin et al., 2020; De Cao et al., 2021; Mitchell et al., 2022), causal intervention (Dai
et al., 2022; Meng et al., 2022) and end-to-end (Logan et al., 2019).

To this end, our starting point is KGLM (Logan et al., 2019) a language generation
model that maintains a dynamically growing local knowledge graph, from which it can
select and copy information at inference time using COPYNET (Gu et al., 2016). Giving
an example on factual completion, the authors claim that KGLM is directly controllable
via modifications to the knowledge graph. Encoding the fact (Barack Obama, birthDate,
1961-08-04) to “Barack Obama was born on ” leads to “August”, “4” and “1961”
as top-3 predictions of KGLM. After manually changing the birthDate to “2013-03-21”
the top-3 predictions of the model automatically changed to “March” and “21”, “2013”.
Although this approach changes the final prediction instead of the parameters of the
model, its hybrid architecture and copying mechanism constitutes a good starting point
towards a unified knowledge and reasoning integration approach. In the future, we would
like to integrate the dynamic local knowledge graph and copying mechanisms from KGLM
with LLMs such BERT or GPT, and explore the capabilities of the hybrid model on fact
completion.

5.3. Epilogue

Large language models may currently be at the forefront of technological advancements,
however they are far from reaching human-like perception when it comes to understand-
ing, learning, and reasoning with natural language. Their lack of transparency, fairness,
and privacy renders them unreliable for certain applications, and consequently makes it

82 Chapter 5. Conclusion and perspectives

hard to enable trust from humans. Natural language text is discrete, and therefore there
is a lot of missing information in the data used to train these models, from syntacti-
cal and grammatical rules to knowledge about words/concepts of interest. Knowledge
bases are typically rich with that type of information. Designing hybrid approaches that
incorporate symbolic knowledge with LLMs not only bridges the gap between symbolic
and subsymbolic AI, but also encourages the development of novel reasoning mechanisms
that can exploit this knowledge and advance the state of the art in NLP. Through this
thesis, we position in favour of the hybridization of symbolic knowledge and reasoning
with LLMs, as we believe it to be key towards a more powerful and transparent AI.

Appendices

83

A. Supplementary material from Chapter
3

A.1. Grid search visualizations

Here we provide the grid search plots for the proposed retrofitting approaches across all
different settings and datasets. The white colour corresponds to the baseline score and
the red asterisk indicates the best (α, β)-pair performance on the development set for
Method A. The green colour bar indicates the best α-values on the development set for
Method B, while the horizontal lines show the top performance of all proposed strategies
(see Section 3.2.6).

84

A.1. Grid search visualizations 85

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.1.: Grid search plots of micro F1-scores for Method A while retrofitting before layer
normalization at Transformer block 11 on ChemProt.

86 Appendix A. Supplementary material from Chapter 3

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.2.: Grid search plots of micro F1-scores for Method A while retrofitting after layer
normalization at Transformer block 11 on ChemProt.

A.1. Grid search visualizations 87

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.3.: Grid search plots of micro F1-scores for Method A while retrofitting before layer
normalization at Transformer block 12 on ChemProt.

88 Appendix A. Supplementary material from Chapter 3

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.4.: Grid search plots of micro F1-scores for Method A while retrofitting after layer
normalization at Transformer block 12 on ChemProt.

A.1. Grid search visualizations 89

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.5.: Grid search plots of micro F1-scores for Method A while retrofitting before layer
normalization at Transformer block 11 on DDI.

90 Appendix A. Supplementary material from Chapter 3

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.6.: Grid search plots of micro F1-scores for Method A while retrofitting after layer
normalization at Transformer block 11 on DDI.

A.1. Grid search visualizations 91

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.7.: Grid search plots of micro F1-scores for Method A while retrofitting before layer
normalization at Transformer block 12 on DDI.

92 Appendix A. Supplementary material from Chapter 3

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.8.: Grid search plots of micro F1-scores for Method A while retrofitting after layer
normalization at Transformer block 12 on DDI.

A.1. Grid search visualizations 93

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.9.: Grid search plots of micro F1-scores for Method A while retrofitting before layer
normalization at Transformer block 11 on i2b2-2010.

94 Appendix A. Supplementary material from Chapter 3

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.10.: Grid search plots of micro F1-scores for Method A while retrofitting after layer
normalization at Transformer block 11 on i2b2-2010.

A.1. Grid search visualizations 95

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.11.: Grid search plots of micro F1-scores for Method A while retrofitting before layer
normalization at Transformer block 12 on i2b2-2010.

96 Appendix A. Supplementary material from Chapter 3

annotated-16 annotated-34

annotated-50

expanded-16 expanded-34

expanded-50

Figure A.12.: Grid search plots of micro F1-scores for Method A while retrofitting after layer
normalization at Transformer block 12 on i2b2-2010.

A.1. Grid search visualizations 97

annotated-34 annotated-50

Figure A.13.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 11 on ChemProt.

annotated-34 annotated-50

Figure A.14.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 11 on ChemProt.

98 Appendix A. Supplementary material from Chapter 3

annotated-34 annotated-50

Figure A.15.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 12 on ChemProt.

annotated-34 annotated-50

Figure A.16.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 12 on ChemProt.

A.1. Grid search visualizations 99

annotated-34 annotated-50

Figure A.17.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 11 on DDI.

annotated-34 annotated-50

Figure A.18.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 11 on DDI.

100 Appendix A. Supplementary material from Chapter 3

annotated-34 annotated-50

Figure A.19.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 12 on DDI.

annotated-34 annotated-50

Figure A.20.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 12 on DDI.

A.1. Grid search visualizations 101

annotated-34 annotated-50

Figure A.21.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 11 on i2b2-2010.

annotated-34 annotated-50

Figure A.22.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 11 on i2b2-2010.

102 Appendix A. Supplementary material from Chapter 3

annotated-34 annotated-50

Figure A.23.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 12 on i2b2-2010.

annotated-34 annotated-50

Figure A.24.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 12 on i2b2-2010.

A.1. Grid search visualizations 103

FrameNet PPDB

WordNetsyn WordNetall

Figure A.25.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 11 on SST-2.

104 Appendix A. Supplementary material from Chapter 3

FrameNet PPDB

WordNetsyn WordNetall

Figure A.26.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 11 on SST-2.

A.1. Grid search visualizations 105

FrameNet PPDB

WordNetsyn WordNetall

Figure A.27.: Grid search plots of accuracy scores for Method B while retrofitting before layer
normalization at Transformer block 12 on SST-2.

106 Appendix A. Supplementary material from Chapter 3

FrameNet PPDB

WordNetsyn WordNetall

Figure A.28.: Grid search plots of accuracy scores for Method B while retrofitting after layer
normalization at Transformer block 12 on SST-2.

B. Supplementary material from Chapter
4

B.1. Input encoding visualizations

Here we provide some visualizations related to the the impact of the input encoding for
BERT as discussed in Section 4.4.1. All displayed results correspond to the mean accu-
racy achieved across 4 runs sorted in ascending order for each input encoding and each
analogical relation (Section 4.3.2). In particular, Figure B.1 compares the focus charac-
ters with the entity markers and, Figure B.2 illustrates the cases where the embedding
of the first entity marker is used to represent the hypernyms.

Figure B.1.: Comparison between enclosing the hypernyms with a focus character (⟨fc⟩) versus
entity markers (⟨em⟩). The vertical axis represents the mean accuracy achieved on
the development set, and the horizontal axis represents the 768 possible relations
A : B :: C : D sorted in order of increasing accuracy.

107

108 Appendix B. Supplementary material from Chapter 4

Figure B.2.: Comparison between swapping or not the hypernyms when the embedding of the
first entity marker is used to represent them (⟨em⟩). The vertical axis represents the
mean accuracy achieved on the development set, and the horizontal axis represents
the 768 possible relations A : B :: C : D sorted in order of increasing accuracy.

B.2. Feature attribution maps

Here we provide some visualizations produced by the explanation methods related to
the the importance of each token in the input sequence, and all 12 BERT Transformer
blocks as discussed in Section 4.4.4. The visualizations correspond to the examples listed
in Table B.1, where our HyperBertCLS baseline model correctly verifies the senses of the
target word in the context, and the definition and the hypernyms, while AB4TSV fails,
and vice versa.

B.2. Feature attribution maps 109

Table B.1.: Samples from the WiC-TSV development set for which we apply the explanation
methods. The target word in the context is highlighted in bold.

Context Definition Hypernyms Label

A fight broke out at the
hockey game.

The act of fighting any
contest or struggle.

conflict, struggle, battle True

The floats and the
horses in the parade
were impressive, but
the marching bands
were really amazing.

A visible display. display, exhibit, show-
ing

False

She felt a tremor in her
stomach before going on
stage.

A small earthquake. earthquake, quake, tem-
blor, seism

False

He had the gem set in
a ring for his wife.

A person who is as bril-
liant and precious as a
piece of jewelry.

person, individual,
somebody, mortal, soul

False

110 Appendix B. Supplementary material from Chapter 4

Figure B.3.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of HyperBertCLS on a falsely predicted example.

Figure B.4.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of AB4TSV on a correctly predicted example.

B.2. Feature attribution maps 111

Figure B.5.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of HyperBertCLS on a falsely predicted example.

Figure B.6.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of AB4TSV on a correctly predicted example.

112 Appendix B. Supplementary material from Chapter 4

Figure B.7.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of HyperBertCLS on a correctly predicted ex-
ample.

Figure B.8.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of AB4TSV on a falsely predicted example.

B.2. Feature attribution maps 113

Figure B.9.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of HyperBertCLS on a falsely predicted example.

Figure B.10.: Saliency map of input token attributions (top) and heat map of attributions across
all 12 Transformer blocks (bottom) of AB4TSV on a correctly predicted example.

C. Résumé étendu

C.1. Introduction

Le principal défi du traitement automatique des langues (TAL) est de créer des modèles
capables de traiter et de représenter avec précision le langage naturel. Les progrès récents
dans ce domaine ont permis de résoudre des problèmes du monde réel en automatisant
des processus intermédiaires qui nécessitaient auparavant une expertise du domaine, du
travail humain et beaucoup de temps. Par exemple, l’embauche et le recrutement de
personnel pour une entreprise avec des milliers de candidats pour un seul poste, la tra-
duction d’un texte d’une langue à une autre, la reconnaissance et la conversion de la
demande de l’utilisateur en texte, la réponse à une question posée par un utilisateur, ne
sont que quelques applications de TAL qui bénéficient de cet essor.

L’apprentissage profond permet d’aborder plus facilement les tâches de TAL par rap-
port aux approches traditionnelles qui nécessitent beaucoup d’ingénierie des caractéris-
tiques. En principe, les ingrédients les plus importants sont l’acquisition de données et la
sélection d’un algorithme d’apprentissage (modèle) approprié pour la tâche à accomplir.
En général, le processus d’apprentissage est un problème d’optimisation dans lequel le
but est d’optimiser une fonction objective. Pendant l’apprentissage, les paramètres du
réseau sont ajustés tandis que la sortie du modèle est comparée à une valeur de référence.
Une fois l’apprentissage terminé, les paramètres du modèle peuvent être directement ap-
pliqués à de nouvelles données. Dans l’exemple précédent du processus d’embauche et
de recrutement, nous pouvons imaginer que les données d’apprentissage sont des milliers
de formulaires de candidature pour différents postes, accompagnés d’annotations de car-
actéristiques importantes telles que le lieu, l’entreprise, etc. Un réseau de neurones de
bout-en-bout pour la reconnaissance d’entités nommées est ensuite appris afin d’obtenir
des représentations vectorielles des mots, également appelées plongements, et de prédire
la classe d’entité correcte pour chaque mot parmi un ensemble de classes fixé.

Cependant, malgré leur succès, ces approches présentent de sérieuses limitations. Tout
d’abord, elles fonctionnent en boîte noire : on ne sait pas comment le système arrive
à une certaine conclusion pour la tâche à accomplir, ni pourquoi il suit un modèle spé-
cifique de prise de décision. De plus, la capacité d’explication et d’interprétation est
cruciale pour établir la confiance entre les humains et les systèmes, car dans de nom-
breux secteurs d’application tels que la santé, la justice ou les voitures autonomes, le
risque est élevé. Il existe plusieurs méthodes qui améliorent l’explicabilité des modèles
profonds en fournissant des preuves qui justifient leur comportement (Simonyan et al.,
2014; Ribeiro et al., 2016; Lundberg and Lee, 2017; Shrikumar et al., 2017). Cette notion
est différente de celle d’interprétabilité qui met en avant les propriétés intrinsèques du

114

C.1. Introduction 115

modèle en mesurant à quel point la prédiction est facilement comprise par les humains
(Li et al., 2022). Une autre question encore est liée à l’équité des réseaux de neurones
profonds, comme la discrimination des femmes lors du processus d’embauche pour un
poste de travail, ou l’association des personnes noires à un taux de criminalité futur
plus élevé que celui des personnes blanches. Ce problème est lié à des erreurs dans le
processus de collecte des données (Pessach and Shmueli, 2022). En outre, une attention
particulière est accordée à la manière dont les modèles d’apprentissage profond traitent
les questions de sécurité et de confidentialité. Il a été démontré que ces modèles peuvent
être violés par diverses attaques visant à voler les paramètres du réseau, à déduire les
données privées des utilisateurs, à compromettre les performances ou à manipuler les
décisions du modèle (Liu et al., 2020b). Par exemple, les exemples adverses sont une
situation typique où de petites perturbations dans les données peuvent produire des pré-
dictions erronées avec un degré de confiance élevé. Ce phénomène est également lié à la
robustesse du modèle, qui est mesurée comme la performance attendue sur des données
inédites qui sont généralement générées en perturbant synthétiquement l’entrée, ou tirées
d’une distribution différente (Wang et al., 2022). En plus, l’évolution de l’apprentissage
profond nécessite de plus en plus de ressources informatiques, ce qui rend peu pratique
le développement de leurs propres modèles par les praticiens. Enfin, leurs performances
sont faibles en l’absence de données d’apprentissage suffisantes et souvent sur-spécialisées
à des groupes cibles particuliers présents dans les données. C’est un problème si l’on con-
sidère que la collecte de données de bonne qualité est à la fois coûteuse et longue, et qu’elle
contraste avec la façon dont les êtres humains raisonnent et apprennent — en traitant les
concepts en relation les uns avec les autres plutôt que comme des unités séparées — ce
qui permet d’appréhender de nouvelles connaissances avec seulement quelques exemples
et peu de supervision.

Une étape vers la résolution des limitations susmentionnées consiste à exploiter les
connaissances existantes en les intégrant dans le cadre de l’apprentissage profond. Selon
la catégorisation de Deng et al. (2020), les connaissances sont divisées en deux grandes
classes : les connaissances générales et les connaissances du domaine. Pour le reste de la
thèse, nous nous concentrons sur les connaissances symboliques du domaine, car elles sont
plus faciles à intégrer avec des modèles d’apprentissage profond que les connaissances
générales, en raison de leur représentation formelle (symbolique). Quelques exemples
sont les règles logiques, la logique du premier ordre, les expressions mathématiques telles
que les équations et les inégalités, les règles probabilistes, etc. La structure la plus
populaire pour la connaissance du domaine dans l’apprentissage profond est représentée
sous la forme d’un graphe dont les nœuds codent les concepts d’intérêt et dont les arêtes
désignent leurs attributs et leurs relations. Dans sa forme la plus générale, un graphe
de connaissances constitue un ensemble de triplets qui suivent un modèle sujet-relation-
objet.

Nous pensons que l’intégration de la connaissance du domaine et du raisonnement
dans le cadre de l’apprentissage profond est un bon pas vers la résolution des diverses
limitations que présentent les systèmes d’intelligence artificielle (IA) modernes. Par
exemple, dans le contexte de la reconnaissance d’images, le fait que « les chats ont des

116 Appendix C. Résumé étendu

moustaches et de la fourrure » et que « les otaries ont des moustaches mais pas de
fourrure » devrait aider le système à reconnaître les moustaches, même si les images
d’apprentissage ne sont étiquetées qu’en termes de « chat » et d’« otarie ». Ensuite,
l’apprentissage d’un classifieur « moustaches » sur des images d’animaux divers devrait
permettre d’augmenter les performances de reconnaissance de ces deux animaux, mais
aussi de découvrir d’autres animaux qui ne sont ni des chats ni des otaries. À cette fin,
ce projet de thèse vise à développer et à évaluer des moyens d’intégrer différents types de
connaissances et de raisonnements symboliques dans des systèmes de classification basés
sur le modèle de langue pré-entraîné BERT (Devlin et al., 2019), dans le but de répondre
aux questions suivantes :

• Comment reformater les connaissances du domaine pour les rendre compatibles
avec les modèles de langue pré-entraînés basés sur BERT ?

• Comment incorporer efficacement les connaissances du domaine et le raisonnement
dans les modèles de langue pré-entraînés basés sur BERT ?

• L’utilisation des connaissances du domaine et du raisonnement est-elle bénéfique
en termes de performance pour une tâche particulière ?

• Les connaissances du domaine et le raisonnement pourraient-ils aider à augmenter
la robustesse de modèles de langue pré-entraînés basés sur BERT ?

La suite de ce résumé est organisée comme suit. Les Parties C.2 et C.3 décrivent
respectivement les Chapitres 3 et 4, et la Partie C.4 conclut ce résumé.

C.2. Adaptation des plongements contextuels de BERT
grâce à des lexiques sémantiques

Les plongements lexicaux jouent un rôle fondamental dans de nombreuses applications du
TAL. Il a été prouvé que l’exploitation de connaissances symboliques améliore la qualité
des plongements et la performance de nombreuses tâches qui en découlent (Mrkšić et al.,
2016, 2017; Ferret, 2017; Vulić et al., 2018; Lengerich et al., 2018).

Le retrofitting (Faruqui et al., 2015) est une technique pour adapter les plongements
lexicaux distributionnels grâce aux relations issues d’un lexique sémantique. Étant donné
un premier ensemble de plongements lexicaux distributionnels Q̂ = (q̂1, . . . , q̂n), l’objectif
est d’obtenir de nouveaux plongements lexicaux Q = (q1, . . . , qn) pour les mêmes mots
qui minimisent la fonction suivante :

L(Q) =

n∑
i=1

[
ai||qi − q̂i||2 +

∑
(i,j)∈E

bij ||qi − qj ||2
]

(C.1)

où E est l’ensemble des paires (i, j) de mots associés dans le graphe, et ai et bij contrôlent
la force des termes correspondants dans L.

Dans le cadre de ce travail, nous visons à étendre le retrofitting aux plongements
lexicaux contextuels.

C.2. Adaptation des plongements contextuels de BERT grâce à des lexiques
sémantiques 117

C.2.1. Méthodes proposées d’adaptation des plongements lexicaux
contextuels

Supposons un vocabulaire de mots V = {w1, . . . , wn} et une ontologie Ω de relations
sémantiques entre les mots de V. On peut alors représenter Ω sous la forme d’un graphe
non orienté (V, E), où les nœuds correspondent aux mots de V et les arêtes (wi, wj) ∈
E ⊆ V × V aux relations sémantiques entre les nœuds. Supposons de plus que nous
disposons d’un modèle de représentation contextuelle des motsM, ainsi que d’un corpus
d’apprentissage Dtrain sur lequel il est adapté et d’un corpus de test Dtest sur lequel il est
évalué pour une tâche particulière.

C.2.1.1. Méthode A

La méthode A combine le plongement contextuel d’un mot donné dans Dtest avec les
plongements contextuels de toutes les occurrences de tous les mots similaires dans Dtrain.

Soit q̄i ∈ Rd le plongement contextuel du mot wi ∈ V provenant de M pour une in-
stance de test donnée1. On désigne par Ji l’ensemble des mots wj qui sont adjacents
à wi selon Ω, et par Kj l’ensemble des instances d’apprentissage où wj apparaît. Nous
définissons alors q̂jk ∈ Rd comme le plongement contextuel calculé pour toutes les occur-
rences de wj dans Dtrain, avec l’indice k ∈ Kj . Les ensembles d’indices Ji et Kj varient
dynamiquement pour chaque mot.

Le but est d’apprendre un nouveau plongement qi qui est proche de q̄i et des nœuds
adjacents dans Ω au sens de la norme L2 en minimisant

L(qi) = ||qi − q̄i||2 +
∑
j∈Ji

∑
k∈Kj

bijk||qi − q̂jk||2. (C.2)

Les coefficients bijk doivent naturellement dépendre du nombre de voisins |Ji| de wi, et du
nombre d’occurrences |Kj | de chaque voisin wj dans Dtrain. À cet effet, nous les définis-
sons comme bijk = cij × djk = 1

|Ji|α ·
1

|Kj |β
, α, β ∈ [0,∞) où cij contrôle la contribution

de chaque voisin et djk contrôle la contribution de chacune de ses occurrences.
En mettant à zéro la dérivée de L par rapport à qi et en exprimant la somme

∑
k bijkq̂jk

en fonction de la moyenne µq̂j de tous les q̂jk, on obtient la règle de mise à jour suivante :

qi =
q̄i +

∑
j

∑
k bijkq̂jk

1 +
∑

j

∑
k bijk

=
q̄i + |Ji|−α

∑
j |Kj |1−βµq̂j

1 + |Ji|−α
∑

j K
1−β
j

. (C.3)

C.2.1.2. Méthode B

La méthode B n’utilise pas du tout Dtrain. Au lieu de cela, tout se passe au moment du
test.

Là encore, nous utilisonsM pour obtenir le plongement q̄i du mot wi pour une phrase
spécifique dans Dtest. En outre, nous dérivons un plongement q̂j pour chaque mot wj qui

1Pour simplifier, q̄i n’a pas d’exposant pour la phrase de test car nous ne traitons qu’une phrase de
test à la fois.

118 Appendix C. Résumé étendu

est adjacent à wi selon Ω. Pour ce faire, nous créons une nouvelle phrase en remplaçant
wi par wj dans la phrase test, et nous répétons l’opération pour chaque nœud adjacent
de wi dans Ω.

L’objectif est d’apprendre un nouveau vecteur qi qui est proche à la fois de q̄i et de
tous les q̂j au sens de la norme L2 en minimisant

L(qi) = ||qi − q̄i||2 +
∑
j∈Ji

bij ||qi − q̂j ||2. (C.4)

De la même manière que ci-dessus, nous définissons les coefficients comme bij = 1
|Ji|α , α ∈

[0,∞).
En mettant à zéro la dérivée de L par rapport à qi et en exprimant la somme

∑
j bij q̂j

en fonction de la moyenne µq̂j de tous les q̂j , on obtient la règle de mise à jour suivante :

qi =
q̄i +

∑
j bij q̂j

1 +
∑

j bij
=

q̄i + |Ji|1−αµq̂j

1 + |Ji|1−α
. (C.5)

C.2.2. Protocole expérimental

Tout d’abord, nous évaluons nos méthodes avec BlueBERT (Peng et al., 2019) pour
l’extraction de relations biomédicales sur trois jeux de données biomédicales (ChemProt,
DDI, i2b2 2010) issus du Biomedical Language Understanding Evaluation benchmark
(Peng et al., 2019), à l’aide des deux lexiques sémantiques de verbes (annotated et ex-
panded clusters) de Chiu et al. (2019a). Ensuite, nous les évaluons pour l’analyse du
sentiment de critiques de films avec BERT (Devlin et al., 2019) sur le jeu de données
SST-2 (Socher et al., 2013), en utilisant les mêmes lexiques semantiques (FrameNet,
PPDB, WordNet, WordNetall) que Faruqui et al. (2015), et le lexique de sentiments de
Bing Liu (Hu and Liu, 2004) afin de réduire la portée des mots non pertinents.

Nous rapportons les performances pour chaque jeu de données en termes de F1-score
micro pour l’extraction de relations et de précision pour l’analyse des sentiments, comme
Peng et al. (2019) et Wang et al. (2018), respectivement.

C.2.2.1. Retrofitting et architecture de BERT

BERT se compose de 12 blocs Transformer suivis d’une couche totalement connectée
avec dropout et une fonction d’activation tanh. Chaque bloc contient une séquence de
transformations divisée en couches. La couche de sortie de chaque bloc est constituée
d’une transformation linéaire, suivie d’un dropout et d’un layer normalization. Nous
supposons que l’impact de tout changement dans les plongements de BERT augmente à
mesure que nous nous rapprochons de la sortie. Par conséquent, pour les deux approches,
nous expérimentons quatre choix différents :

1. retrofitting avant layer normalization au bloc Transformer 11,
2. retrofitting après layer normalization au bloc Transformer 11,
3. retrofitting avant layer normalization au bloc Transformer 12,
4. retrofitting après layer normalization au bloc Transformer 12.

C.2. Adaptation des plongements contextuels de BERT grâce à des lexiques
sémantiques 119

C.2.2.2. Optimisation de la recherche sur la grille

Afin de trouver les bonnes valeurs des hyperparamètres du retrofitting α, β, nous effec-
tuons une recherche sur une grille de valeurs en utilisant les ensembles de développement.
Pour l’extraction de relations biomédicales nous utilisons les annotated et expanded clus-
ters, et nous recherchons α et β dans [0, 2] avec un pas de 0,2 pour la méthode A, et
α dans [0, 2] avec un pas de 0,2 pour la méthode B. Pour l’analyse des sentiments des
critiques de films, nous utilisons les quatre lexiques sémantiques en conjonction avec le
lexique de sentiments de Bing Liu, et nous recherchons α dans [0, 2] avec un pas de 0,2
pour la méthode B.

C.2.2.3. Stratégies de classification alternatives

Afin d’évaluer la capacité de notre méthode à exploiter les informations contenues dans
les lexiques sémantiques, nous réalisons l’expérience suivante. Tout d’abord, nous aug-
mentons chaque ensemble de données en ajoutant toutes les phrases modifiées qui sont
générées en remplaçant le mot sous-jacent de la phrase originale par un mot voisin du
lexique sémantique. Il en résulte un nombre de versions augmentées des ensembles de
données originaux égal au nombre de lexiques sémantiques par tâche. Ensuite, nous
utilisons BERT affiné sur la tâche en aval — BlueBERT pour l’extraction de relations
biomédicales ou BERT pour l’analyse du sentiment de critiques de films — et évaluons les
phrases originales et modifiées dans l’ensemble de données augmenté. Une fois que nous
avons obtenu un score de probabilité pour chaque échantillon de l’ensemble de données
augmenté, nous le comparons aux stratégies alternatives suivantes :

• Topline : Toujours sélectionner la vraie classe d’une phrase test comme prédiction
finale, si elle a été prédite pour au moins une des phrases originales ou modifiées.

• Weighted majority vote (WMV) : Sélectionner la classe prédite ayant le plus
d’occurrences comme prédiction finale parmi les phrases de test originales et mod-
ifiées. Ici, nous attribuons un poids de 1 à la phrase originale et un poids de
1

|S|δ , δ ∈ [0, 1] à chaque phrase modifiée, où |S| est le nombre total de phrases pour
l’entrée de test actuelle.

• Class posterior averaging (CPA) : Calculer la moyenne des probabilités des
classes prédites pour les phrases de test originales et modifiées, et prendre la classe
avec la probabilité maximale comme prédiction finale.

C.2.3. Résultats et étude qualitative

Après avoir trouvé l’ensemble d’hyperparamètres le plus performant sur l’ensemble de
développement, nous évaluons le modèle correspondant sur les données de test. Les
résultats des deux méthodes sont affichés dans le Tableau C.1.

Les méthodes proposées n’ont pas d’impact substantiel sur les performances de ces
tâches, nous effectuons donc une analyse qualitative pour mieux comprendre ce résultat
négatif. Les résultats de la recherche sur grille indiquent que la performance est plus
sensible au choix des valeurs des hyperparamètres lorsque nous rétrofittons plus près de

120 Appendix C. Résumé étendu

Table C.1.: Performances obtenues par les méthodes A et B, les stratégies de classification al-
ternatives, et d’autres approches de retrofitting. La méthode Baseline correspond à
BERT affiné sur chaque ensemble de données pour la tâche visée.

Corpus Modèle Lexique Développement Test
sémantique miF1/Acc (%) miF1/Acc (%)

Baseline — 74,47 72,61
Méthode A expanded-16 74,86 72,56
Méthode B annotated-50 74,59 72,63

ChemProt Topline annotated-50 75,54 73,67
CPA annotated-50 72,92 72,07
WMV (δ = 1, 0) annotated-50 74,47 72,61
Chiu et al. (2019a) expanded-34 — 71,00
Baseline — 71,34 80,11
Méthode A expanded-34 79,35 78,78

DDI Méthode B annotated-34 72,33 79,43
Topline annotated-34 73,04 80,97
CPA annotated-34 71,97 79,40
WMV (δ = 0, 1) annotated-34 72,02 79,60
Baseline — 71,34 72,69
Méthode A expanded-16 72,92 72,52

i2b2-2010 Méthode B annotated-34 71,83 72,63
Topline annotated-34 73,71 74,18
CPA annotated-34 60,79 58,50
WMV (δ = 1, 0) annotated-34 71,34 72,69
Baseline — 91,86 92,00
Méthode B WordNetsyn 92,09 92,11

SST-2 Topline WordNetsyn 94,95 94,55
CPA WordNetsyn 90,37 90,11
WMV (δ = 1, 0) WordNetsyn 91,86 92,00
Faruqui et al. (2015) WordNetsyn — 82,40

la couche de sortie de BERT. Après avoir mis en œuvre une heuristique de choix des des
valeurs des hyperparamètres basée sur la performance au voisinage des valeurs choisies,
nous observons que les performances sont contrastées entre les ensembles de données, ce
qui suggère que le choix optimal de ces paramètres dépend de l’ensemble de données. En
plus, les stratégies de classification alternatives proposées montrent que l’utilisation des
lexiques peut améliorer de manière significative les performances pour toutes les tâches et
tous les ensembles de données. En outre, le classement des distances euclidiennes entre un
sous-ensemble de vecteurs avant et après l’opération de retrofitting révèle qu’une grande
partie de ces vecteurs ne se déplacent pas de manière substantielle ou se déplacent trop

C.3. Vérification du sens d’un mot par une approche basée sur l’analogie 121

loin par rapport à leur position initiale dans l’espace latent. Par conséquent, il y a
beaucoup de variation entre les plongements des mots voisins et donc tous les mots du
lexique ne sont pas pertinents pour les tâches à accomplir. Pour résoudre ce problème,
nous nous appuyons sur le test statistique de McNemar et réduisons la taille des lexiques
en sélectionnant uniquement les voisins pertinents pour un mot donné, avec des niveaux
de confiance variables. Cette expérience montre que le retrofitting peut être significatif,
mais que la taille des lexiques réduits qui en résultent n’est pas suffisamment grande pour
pouvoir être généralisée au moment du test. Enfin, nous démontrons que notre méthode
préserve le vote majoritaire, ce qui implique que le retrofitting a du potentiel à condition
que le lexique puisse aider.

C.3. Vérification du sens d’un mot par une approche basée
sur l’analogie

Malgré leur grand succès pour une pléthore de tâches, la capacité des modèles de langue
pré-entraînés à effectuer des raisonnements est limitée et peu étudiée (Talmor et al., 2020;
Rogers et al., 2020). Le raisonnement analogique est l’une des approches d’inférence les
plus utilisées dans la vie quotidienne et on le retrouve dans de nombreuses applications
du TAL telles que la traduction automatique (Langlais et al., 2009), la réponse à des
questions visuelles (Peyre et al., 2019), la résolution de problèmes sémantiques (Lim
et al., 2019) et morphologiques (Alsaidi et al., 2021a).

Pour résoudre les problèmes basés sur l’analogie, le système doit apprendre à raisonner
sur des relations de la forme A : B :: C : D, ce qui se traduit par « A est à B ce que
C est à D ». En suivant l’axiomatisation de Lepage (2004), une relation quaternaire
constitue une proportion analogique si et seulement si les propriétés suivantes sont vraies :
∀A, B, C, D,

1. A : B :: C : D ⇒ C : D :: A : B (symétrie)
2. A : B :: C : D ⇒ A : C :: B : D (permutation centrale).

C.3.1. Formulation du problème

La tâche de vérification du sens d’un mot (target sense verification ou TSV) (Breit
et al., 2021) est une tâche de désambiguïsation dans laquelle le système dispose d’un
mot cible en contexte d’une part et d’une définition et d’un ensemble d’hypernymes de
ce mot d’autre part, et doit décider si leurs sens correspondent ou non. Nous proposons
une manière de formuler la tâche de TSV comme une tâche de détection d’analogie, en
transformant les données d’entrée en quadruplets de la forme A : B :: C : D, comme le
montre la Figure C.1.

C.3.2. Architecture AB4TSV

Suivant Lim et al. (2019) et Alsaidi et al. (2021a), nous utilisons un classifieur par
réseau de neurones convolutif (CNN) qui modélise explicitement les relations « est à »

122 Appendix C. Résumé étendu

Figure C.1.: Illustration de la traduction de TSV en détection d’analogie.

et « ce que » dans l’analogie. L’architecture du modèle est composée de deux parties
principales. Tout d’abord, nous encodons les mots ou les syntagmes à comparer (mot
cible, contexte, définition, hypernymes, etc.) en 4 plongements A, B,C,D en utilisant
la couche d’encodage finale de BERT. Ensuite, nous les concaténons en une matrice de
taille n× 4, où n est la taille de plongement. Cette matrice sert d’entrée à un classifieur
CNN qui se compose des couches suivantes :

• Une couche convolutive avec 128 filtres de taille 1 × 2 avec stride (1, 2) et acti-
vation ReLU. La sortie de cette opération est une matrice de taille 128 × n × 2.
Intuitivement, cette couche modélise le « est à » dans « A est à B » et « C est à
D ».

• Une couche convolutive avec 64 filtres de taille 2× 2 avec stride (2, 2) et activation
ReLU. La sortie de cette opération est aplatie en un vecteur de longueur 64×(n−1).
Intuitivement, cette couche modélise la relation « ce que » dans « A est à B ce que
C est à D ».

• Une couche totalement connectée avec une activation sigmoïde, résultant en une
sortie scalaire.

L’architecture Analogy and BERT for TSV (AB4TSV) proposée est représentée sur la
Figure C.2.

C.3.3. Choix de la relation analogique et du codage d’entrée

Pour résoudre la tâche de TSV en se basant sur le raisonnement analogique, il faut
sélectionner A, B, C, D ∈ S de sorte que la relation A : B :: C : D donne de bonnes
performances de classification. On définit S = {cls, tgt, ctx, def, hyps, descr} l’ensemble
des tokens2 qui peuvent être obtenus à partir de BERT comme suit : cls correspond au
token [CLS], tgt désigne le mot cible dans le contexte, ctx inclut tous les tokens dans le

2Nous indiquons en gras les plongements correspondants.

C.3. Vérification du sens d’un mot par une approche basée sur l’analogie 123

Figure C.2.: Vue d’ensemble de AB4TSV.

contexte, def représente tous les tokens dans la définition, hyps contient tous les tokens
dans les hypernymes, et descr est la concaténation de tous les tokens dans la définition
et les hypernymes.

Le format d’encodage d’entrée par défaut (Breit et al., 2021) structure la séquence
d’entrée de BERT en une paire de phrases, de sorte que le contexte vient en premier,
et la concaténation de la définition et des hypernymes dans la deuxième phrase, comme
illustré en haut à gauche de la Figure C.2. En outre, nous présentons des méthodes
alternatives d’encodage de la définition et des hypernymes dans des plongements basés
sur les opérations suivantes :

• swap : échange de la position de la définition et des hypernymes dans l’encodage
d’entrée par défaut ;

• fc : en entourant les hypernyms de caractères de focus, par exemple, résidence,
domicile devient $ résidence, domicile $;

• em : en entourant les hypernymes de marqueurs d’entité, par exemple, résidence,
domicile devient [H] résidence, domicile [/H].

Sur la base de ces trois opérations, nous testons les 6 encodages d’entrée suivants :
1. default :

[CLS] contexte [SEP] définition ; hypernymes [SEP].
2. default+fc :

[CLS] contexte [SEP] définition ; $ hypernymes $ [SEP]
3. default+em :

[CLS] contexte [SEP] définition ; [H] hypernymes [/H] [SEP].
4. swap :

[CLS] contexte [SEP] hypernymes ; définition [SEP]
5. swap+fc :

124 Appendix C. Résumé étendu

[CLS] contexte [SEP] $ hypernymes $; définition [SEP]
6. swap+em :

[CLS] contexte [SEP] [H] hypernymes [/H] ; définition [SEP]

C.3.4. Configuration expérimentale

Nous évaluons AB4TSV sur le jeu de données WiC-TSV (Word in Context - Target Sense
Verification), qui a été conçu spécifiquement pour la tâche de TSV (Breit et al., 2021).

Il y a |S|4 = 64 = 1296 combinaisons possibles de A : B :: C : D au total. Pour
s’assurer que nous testons si le sens du mot cible dans le contexte correspond au sens
cible dans la définition et les hypernymes, nous distinguons d’abord deux ensembles :
S1 = {cls, tgt, ctx} et S2 = {cls, def, hyps, descr} où S1 ∪ S2 = S. Le premier ensemble
comprend les plongements qui contiennent principalement des informations provenant
du contexte, tandis que le second contient les plongements qui reflètent les informations
trouvées dans la définition et les hypernymes. cls appartient aux deux puisqu’il représente
la totalité de l’information d’entrée. Ensuite, nous définissons les règles suivantes : pour
tous les A, B, C, D dans S,

1. A ̸= B ∨ C ̸= D

2. ¬
[[
(A ∈ S1 \ S2) ∧ (B,C,D ∈ S1)

]
∨
[
(A ∈ S2 \ S1) ∧ (B,C,D ∈ S2)

]]
La première règle garantit que nous évitons les relations où les plongements de chaque

côté sont identiques, et la deuxième règle garantit que A, B, C, D ne peuvent pas être
obtenus à partir de S1 ou S2 exclusivement. Ces règles réduisent le nombre de relations à
tester à 768. Pour chaque choix d’encodage d’entrée et de relation, nous entraînons notre
système 4 fois en utilisant différentes graines aléatoires, ce qui donne 6×768×4 = 18 432
exécutions. Une seule exécution prend environ 35 minutes sur une Nvidia GTX 1080 Ti
11GB.

C.3.5. Évaluer et promouvoir l’invariance de permutation des proportions
analogiques

Une partie essentielle de nos expériences consiste à utiliser les propriétés d’invariance de
permutation des proportions analogiques pour évaluer (i) si le raisonnement analogique
est bénéfique en termes de performance dans la tâche, et (ii) si le modèle apprend na-
turellement à être invariant à ces permutations ou si elles doivent être explicitement
appliquées au moment de l’apprentissage. Pour (ii), nous calculons les plongements
A,B,C,D de la relation donnée à tester, et comparons simplement les performances
obtenues en alimentant le classifieur avec la relation initiale par rapport aux relations
obtenues en permutant les proportions analogiques. Pour (i), nous incluons à la fois les
relations initiales et les relations permutées dans chaque minibatch. Nous distinguons
les apprentissages sans et avec invariance de permutation en ajoutant l’indice « pi »,
c’est-à-dire AB4TSV et AB4TSVpi, respectivement.

C.3. Vérification du sens d’un mot par une approche basée sur l’analogie 125

Figure C.3.: Précision moyenne obtenue sur l’ensemble de développement. Chaque courbe
représente un codage d’entrée possible, et l’axe horizontal représente les 768 re-
lations possibles A : B :: C : D triées par ordre de précision croissante. La zone en
surbrillance montre la partie des relations analogiques qui donnent de mauvaises
performances pour les codages d’entrée default et swap.

C.3.6. Résultats

Les résultats de la Figure C.3 montrent que pour certains encodages d’entrée, la représen-
tation des hypernymes peut dégrader la performance finale. Cependant, ce problème
n’est pas présent lorsque nous entourons les hypernymes avec des caractères de focus ou
des marqueurs d’entité. La répétition de la même expérience d’optimisation avec des
encodages d’entrée supplémentaires, montre qu’il n’est pas suffisant d’inclure les hyper-
nymes avec des caractères de focus ou des marqueurs d’entité au niveau de l’entrée. Ce
qui fait vraiment la différence, c’est l’inclusion du plongement de ces caractères spéciaux
dans le calcul du plongement des hypernymes.

Après avoir incorporé la symétrie et la permutation centrale avec AB4TSV, les résul-
tats montrent une légère diminution des performances par rapport au modèle entraîné
sans elles, de l’ordre de 1% dans l’absolu. Cependant, ils sont cohérents pour tous les
encodages d’entrée. Par conséquent, AB4TSV gagne en robustesse puisqu’il ne dépend

126 Appendix C. Résumé étendu

plus du choix de l’encodage d’entrée. De plus, après avoir donné en entrée les quadruplets
de symétrie et de permutation centrale au classifieur d’analogie, nous remarquons que
AB4TSV n’est pas naturellement invariant par rapport à ces propriétés, mais qu’elles
doivent être explicitement appliquées pendant l’apprentissage.

Ensuite, nous testons notre système sur le benchmark d’évaluation WiC-TSV, et nous
montrons qu’il peut surpasser les approches existantes en termes de précision et de score
F1, sans tenir compte de l’application ou non des propriétés axiomatiques des analogies
soient appliquées ou non au moment de l’apprentissage. Les résultats sont affichés dans
le Tableau C.2.

Table C.2.: Résultats des tests de nos systèmes les plus performants entraînés avec et sans les
permutations des proportions analogiques, comparés aux résultats précédemment
rapportés. Tous les résultats sont calculés par les auteurs du benchmark WiC-TSV
(Breit et al., 2021).

Approach Test Acc Test F1

Supervised
CTLR (Moreno et al., 2021) 78,3 78,5
Vandenbussche et al. (2021) 71,9 76,2
BERT-B (Breit et al., 2021) 76,6 78,2
BERT-L (Breit et al., 2021) 76,3 77,8
FastText (Breit et al., 2021) 53,4 63,4
AB4TSV+swap+em 75,7 77,5
AB4TSV+swap+fc 78,6 79,8
AB4TSVpi+default+em 78,6 79,4

Unsupervised

U-dBERT (Breit et al., 2021) 61,2 51,3
U-BERT (Breit et al., 2021) 60,5 51,9
MIRRORWIC (Liu et al., 2021) 73,7 —

Enfin, les méthodes d’attribution des caractéristiques révèlent que le plongement [CLS]
reçoit toujours une attribution extrêmement positive ou négative, ce qui signifie qu’il
s’agit d’un facteur décisif pour la prédiction finale. Bien que le reste des tokens obtiennent
une attribution quasi-nulle pour notre modèle de base BERT, AB4TSV attribue des
attributions non triviales aux composants définis par le quadruplet d’entrée.

C.4. Conclusion

En résumé, dans cette thèse, nous avons tenté d’incorporer des connaissances et des
raisonnements symboliques aux modèles de type BERT afin d’améliorer leurs perfor-
mances sur des tâches en aval et d’augmenter leur robustesse. Pour le premier objectif,

C.4. Conclusion 127

nous avons conçu deux méthodes de retrofitting qui injectent des informations provenant
de lexiques sémantiques dans les plongements de BERT, et nous les avons évaluées sur
l’extraction de relations biomédicales et l’analyse de sentiments de critiques de films. Les
résultats de l’analyse qualitative montrent que les opérations de retrofitting ont le po-
tentiel d’améliorer les résultats, cependant des mécanismes plus sophistiqués de sélection
des voisins pertinents pour un mot donné dans les lexiques sémantiques sont néces-
saires, afin d’éviter d’intégrer des informations bruitées dans les plongements. Pour ce
dernier objectif, nous avons formulé la tâche de TSV comme un problème de détection
d’analogie, et nous avons proposé AB4TSV, une architecture hybride qui a obtenu des
résultats compétitifs sur le benchmark d’évaluation WiC-TSV. Après avoir inclus les pro-
priétés axiomatiques des analogies dans la phase d’apprentissage du modèle, nous avons
montré qu’il conserve une bonne performance, et gagne néanmoins en robustesse, car il
devient moins dépendant de la sélection de l’encodage d’entrée. Nous croyons fermement
que la combinaison de la connaissance et du raisonnement symboliques avec les mod-
èles de langue pré-entraînés est la voie à suivre pour répondre aux diverses limitations
que présentent les systèmes d’IA modernes, et nous espérons que cette thèse fournira du
matériel utile et encouragera la poursuite des recherches sur ce sujet.

Bibliography

Afantenos, S., Kunze, T., Lim, S., Prade, H., and Richard, G. (2021). Analogies be-
tween sentences: theoretical aspects - preliminary experiments. In Proceedings of the
16th European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU), pages 3–18.

Aghajanyan, A., Gupta, A., Shrivastava, A., Chen, X., Zettlemoyer, L., and Gupta, S.
(2021). Muppet: Massive multi-task representations with pre-finetuning. In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 5799–5811.

Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., and Smola, A. J.
(2013). Distributed large-scale natural graph factorization. In Proceedings of the 22nd
International Conference on the World Wide Web (WWW), pages 37–48.

Alimova, I., Tutubalina, E., and Nikolenko, S. I. (2021). Cross-domain limitations of
neural models on biomedical relation classification. IEEE Access, 10:1432–1439.

Alsaidi, S., Decker, A., Lay, P., Marquer, E., Murena, P.-A., and Couceiro, M. (2021a).
A neural approach for detecting morphological analogies. In Proceedings of the 2021
IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA),
pages 1–10.

Alsaidi, S., Decker, A., Lay, P., Marquer, E., Murena, P.-A., and Couceiro, M. (2021b).
On the transferability of neural models of morphological analogies. In Proceedings of
ECML PKDD Workshop on Advances in Interpretable Machine Learning and Artificial
Intelligence (AIMLAI), pages 76–89.

Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D.,
Dunkelberger, J., Elgohary, A., Feldman, S., Ha, V., Kinney, R., Kohlmeier, S., Lo, K.,
Murray, T., Ooi, H.-H., Peters, M., Power, J., Skjonsberg, S., Wang, L. L., Wilhelm,
C., Yuan, Z., van Zuylen, M., and Etzioni, O. (2018). Construction of the literature
graph in semantic scholar. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pages 84–91.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. In Proceedings of
NIPS 2016 Deep Learning Symposium.

Bach, S. H., Broecheler, M., Huang, B., and Getoor, L. (2017). Hinge-loss Markov random
fields and probabilistic soft logic. Journal of Machine Learning Research (JMLR),
18(109):1–67.

128

Bibliography 129

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR).

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet project.
In Proceedings of the 36th Annual Meeting of the Association for Computational Lin-
guistics and the 17th International Conference on Computational Linguistics (ACL-
COLING), pages 86–90.

Baldini Soares, L., FitzGerald, N., Ling, J., and Kwiatkowski, T. (2019). Matching the
blanks: Distributional similarity for relation learning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 2895–2905.

Bannard, C. and Callison-Burch, C. (2005). Paraphrasing with bilingual parallel cor-
pora. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 597–604.

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t count, predict! A systematic
comparison of context-counting vs. context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL),
pages 238–247.

Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Proceedings of the 14th International Conference on
Neural Information Processing Systems (NIPS), pages 585–591.

Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: A pretrained language model for
scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3615–3620.

Bengio, Y., Ducharme, R., and Vincent, P. (2003). A neural probabilistic language model.
Journal of Machine Learning Research (JMLR), 13:1137–1155.

Bhagat, S., Cormode, G., and Muthukrishnan, S. (2011). Node classification in social
networks. In Social Network Data Analytics, pages 115–148. Springer US.

Bihani, G. and Rayz, J. (2021). Low anisotropy sense retrofitting (LASeR) : Towards
isotropic and sense enriched representations. In Proceedings of Deep Learning Inside
Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep
Learning Architectures, pages 81–95.

Boag, W. and Kané, H. (2017). AWE-CM vectors: Augmenting word embeddings with a
clinical metathesaurus. In Proceedings of NIPS 2017 Workshop on Machine Learning
for Health (ML4H).

Bodenreider, O. (2004). The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Research, 32(suppl_1):D267–D270.

130 Bibliography

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vec-
tors with subword information. Transactions of the Association for Computational
Linguistics (TACL), 5:135–146.

Bosselut, A., Bras, R. L., , and Choi, Y. (2021). Dynamic neuro-symbolic knowledge
graph construction for zero-shot commonsense question answering. In Proceedings of
the 35th AAAI Conference on Artificial Intelligence (AAAI), pages 4923–4931.

Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., and Choi, Y. (2019).
COMET: Commonsense Transformers for automatic knowledge graph construction. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics (ACL), pages 4762–4779.

Bouraoui, Z., Camacho-Collados, J., and Schockaert, S. (2020). Inducing relational
knowledge from BERT. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI), pages 7456–7463.

Breit, A., Revenko, A., Rezaee, K., Pilehvar, M. T., and Camacho-Collados, J. (2021).
WiC-TSV: An evaluation benchmark for target sense verification of words in context.
In Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pages 1635–1645.

Camacho-Collados, J. and Pilehvar, M. T. (2018). From word to sense embeddings: A
survey on vector representations of meaning. Journal of Artificial Intelligence Research
(JAIR), 63(1):743–788.

Cao, S., Lu, W., and Xu, Q. (2015). GraRep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management (CIKM), pages 891–900.

Cao, S., Lu, W., and Xu, Q. (2016). Deep neural networks for learning graph representa-
tions. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI),
pages 1145–1152.

Chen, W., Wang, X., and Wang, W. Y. (2021). A dataset for answering time-sensitive
questions. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1 (NeurIPS Datasets and Benchmarks).

Chiu, B., Baker, S., Palmer, M., and Korhonen, A. (2019a). Enhancing biomedical
word embeddings by retrofitting to verb clusters. In Proceedings of the 18th BioNLP
Workshop and Shared Task (BioNLP), pages 125–134.

Chiu, B., Majewska, O., Pyysalo, S., Wey, L., Stenius, U., Korhonen, A., and Palmer,
M. (2019b). A neural classification method for supporting the creation of BioVerbNet.
Journal of Biomedical Semantics, 10(1):1–12.

Bibliography 131

Cohen, W., Yang, F., and Mazaitis, K. R. (2020). Tensorlog: A probabilistic database
implemented using deep-learning infrastructure. Journal of Artificial Intelligence Re-
search (JAIR), 67:285–325.

Colon-Hernandez, P., Havasi, C., Alonso, J., Huggins, M., and Breazeal, C. (2021).
Combining pre-trained language models and structured knowledge. arXiv preprint
arXiv:2101.12294.

Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman, S., Schwenk, H., and
Stoyanov, V. (2018). XNLI: Evaluating cross-lingual sentence representations. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 2475–2485.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and Wei, F. (2022). Knowledge neurons in
pretrained Transformers. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 8493–8502.

Dai, W.-Z., Xu, Q., Yu, Y., and Zhou, Z.-H. (2019). Bridging machine learning and logical
reasoning by abductive learning. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems (NeurIPS), pages 2815–2826.

Dai, Y., Wang, S., Xiong, N. N., and Guo, W. (2020). A survey on knowledge graph
embedding: Approaches, aplications and benchmarks. Electronics, 9(5):750–778.

De Cao, N., Aziz, W., and Titov, I. (2021). Editing factual knowledge in language models.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 6491–6506.

De Raedt, L., Kimmig, A., and Toivonen, H. (2007). ProbLog: A probabilistic Prolog
and its application in link discovery. In Proceedings of the 20th International Joint
Conference on Artifical Intelligence (IJCAI), pages 2468–2473.

Demeester, T., Rocktäschel, T., and Riedel, S. (2016). Lifted rule injection for relation
embeddings. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1389–1399.

Deng, C., Ji, X., Rainey, C., Zhang, J., and Lu, W. (2020). Integrating machine learning
with human knowledge. Iscience, 23(11):101656–101682.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of
deep bidirectional Transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), pages 4171–4186.

132 Bibliography

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classi-
fication learning algorithms. Neural computation, 10(7):1895–1923.

Diligenti, M., Gori, M., and Saccà, C. (2017). Semantic-based regularization for learning
and inference. Artificial Intelligence, 244:143–165.

Donadello, I. (2018). Semantic Image Interpretation-Integration of Numerical Data and
Logical Knowledge for Cognitive Vision. PhD thesis, University of Trento.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D. (2019). Neural logic ma-
chines. In Proceedings of the 7th International Conference on Learning Representations
(ICRL).

Fam, R. and Lepage, Y. (2018). Tools for the production of analogical grids and a resource
of n-gram analogical grids in 11 languages. In Proceedings of the 11th International
Conference on Language Resources and Evaluation (LREC), pages 1060–1066.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2015).
Retrofitting word vectors to semantic lexicons. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational Linguistics
(NAACL), pages 1606–1615.

Ferret, O. (2017). Turning distributional thesauri into word vectors for synonym ex-
traction and expansion. In Proceedings of the 8th International Joint Conference on
Natural Language Processing (IJCNLP), pages 273–283.

Fillmore, C. J. and Baker, C. F. (2001). Frame semantics for text understanding. In
Proceedings of NAACL 2001 WordNet and Other Lexical Resources Workshop.

Fiorini, N., Leaman, R., Lipman, D. J., and Lu, Z. (2018). How user intelligence is
improving pubmed. Nature biotechnology, 36:937–945.

Ganitkevitch, J., Van Durme, B., and Callison-Burch, C. (2013). PPDB: The paraphrase
database. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL), pages 758–764.

Gao, J., He, D., Tan, X., Qin, T., Wang, L., and Liu, T.-Y. (2019). Representation
degeneration problem in training natural language generation models. In Proceedings
of the 7th International Conference on Learning Representations (ICRL).

Gao, T., Fisch, A., and Chen, D. (2021). Making pre-trained language models better
few-shot learners. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP), pages 3816–3830.

Garneau, N., Hartmann, M., Sandholm, A., Ruder, S., Vulić, I., and Søgaard, A. (2021).
Analogy training multilingual encoders. In Proceedings of AAAI Conference on Arti-
ficial Intelligence (AAAI), pages 12884–12892.

Bibliography 133

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neu-
ral message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 1263–1272.

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press,
Cambridge, MA, USA.

Grbovic, M. and Cheng, H. (2018). Real-time personalization using embeddings for
search ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 311—-320.

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 855–864.

Gu, J., Lu, Z., Li, H., and Li, V. O. (2016). Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1631–1640.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation learning on graphs:
Methods and applications. IEEE Data Engineering Bulletin, 40(3):52–74.

Haviv, A., Berant, J., and Globerson, A. (2021). BERTese: Learning to speak to BERT.
In Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pages 3618–3623.

He, B., Zhou, D., Xiao, J., Jiang, X., Liu, Q., Yuan, N. J., and Xu, T. (2020). BERT-
MK: Integrating graph contextualized knowledge into pre-trained language models.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2281–2290.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv
preprint arXiv:1606.08415.

Hernandez, E. and Andreas, J. (2021). The low-dimensional linear geometry of contextu-
alized word representations. In Proceedings of the 25th Conference on Computational
Natural Language Learning (CoNLL), pages 82–93.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, 9(8):1735–1780.

134 Bibliography

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classifica-
tion. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 328–339.

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of
the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 168–177.

Hu, Z., Ma, X., Liu, Z., Hovy, E., and Xing, E. (2016). Harnessing deep neural networks
with logic rules. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 2410–2420.

Huang, L., Sun, C., Qiu, X., and Huang, X. (2019). GlossBERT: BERT for word sense dis-
ambiguation with gloss knowledge. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 3509–3514.

Hüllermeier, E. (2020). Towards analogy-based explanations in machine learning. In
Proceedings of the 17th International Conference on Modeling Decisions for Artificial
Intelligence (MDAI), pages 205–217.

Hwang, J. D., Bhagavatula, C., Bras, R. L., Da, J., Sakaguchi, K., Bosselut, A., and Choi,
Y. (2021). COMET-ATOMIC 2020: On symbolic and neural commonsense knowledge
graphs. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI),
pages 6384–6392.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip, S. Y. (2021). A Survey on
knowledge graphs: Representation, acquisition, and applications. IEEE Transactions
on Neural Networks and Learning Systems, 33(2):494–514.

Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Zhao, T. (2020a). SMART: Robust
and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 2177–2190.

Jiang, Z., Gu, Q., Yin, Y., and Chen, D. (2018). Enriching word embeddings with
domain knowledge for readability assessment. In Proceedings of the 27th International
Conference on Computational Linguistics (COLING), pages 366–378.

Jiang, Z., Xu, F. F., Araki, J., and Neubig, G. (2020b). How can we know what language
models know? Transactions of the Association for Computational Linguistics (TACL),
8:423–438.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Anthony Celi, L., and Mark, R. G. (2016). MIMIC-III, a
freely accessible critical care database. Scientific Data, 3(1):1–9.

Bibliography 135

Kapočiūtė-Dzikienė, J., Salimbajevs, A., and Skadin, š, R. (2021). Monolingual and cross-
lingual intent detection without training data in target languages. Electronics, page
1412.

Keane, M. T. and Smyth, B. (2020). Good counterfactuals and where to find them:
A case-based technique for generating counterfactuals for Explainable AI (XAI). In
Proceedings of the 28th International Conference on Case-Based Reasoning Research
and Development (ICCBR), pages 163–178.

Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics, 23(3):462–466.

Kipf, T. N. and Welling, M. (2016). Variational graph auto-encoders. In Proceedings of
NeurIPS 2016 Workshop on Bayesian Deep Learning.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convo-
lutional networks. In Proceedings of the 5th International Conference on Learning
Representations (ICLR).

Kipper, K., Korhonen, A., Ryant, N., and Palmer, M. (2008). A large-scale classification
of English verbs. Language Resources and Evaluation, 42(1):21–40.

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Reynolds, J., Melnikov, A., Lunova,
N., and Reblitz-Richardson, O. (2019). Pytorch captum. In Proceedings of ICRL
Workshop on Responsible AI (RAI).

Korhonen, A., Krymolowski, Y., and Collier, N. (2006). Automatic classification of verbs
in biomedical texts. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics (COLING-ACL), pages 345–352.

Langlais, P., Yvon, F., and Zweigenbaum, P. (2009). Improvements in analogical learn-
ing: Application to translating multi-terms of the medical domain. In Proceedings of
the 12th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pages 487–495.

Lauscher, A., Majewska, O., Ribeiro, L. F. R., Gurevych, I., Rozanov, N., and Glavaš,
G. (2020a). Common sense or world knowledge? Investigating Adapter-based knowl-
edge injection into pretrained Transformers. In Proceedings of Deep Learning Inside
Out (DeeLIO): The 1st Workshop on Knowledge Extraction and Integration for Deep
Learning Architectures, pages 43–49.

Lauscher, A., Vulić, I., Ponti, E. M., Korhonen, A., and Glavaš, G. (2020b). Specializing
unsupervised pretraining models for word-level semantic similarity. In Proceedings
of the 28th International Conference on Computational Linguistics (COLING), pages
1371–1383.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

136 Bibliography

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of IEEE, 86(11):2278–2324.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2020). BioBERT:
a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Lengerich, B., Maas, A., and Potts, C. (2018). Retrofitting distributional embeddings to
knowledge graphs with functional relations. In Proceedings of the 27th International
Conference on Computational Linguistics (COLING), pages 2423–2436.

Lepage, Y. (2004). Analogy and formal languages. In Proceedings of the Joint Meeting
of the 6th Conference on Formal Grammar and the 7th Conference on Mathematics of
Language (FG-MOL), pages 180–191.

Levy, O. and Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL),
pages 302–308.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov,
V., and Zettlemoyer, L. (2020). BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics (ACL), pages
7871–7880.

Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian, J., and Dou, D. (2022). Inter-
pretable deep learning: interpretation, interpretability, trustworthiness, and beyond.
Knowledge and Information Systems, 64(12):3197–3234.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S. (2016). Gated graph sequence
neural networks. In Proceedings of the 4th International Conference on Learning Rep-
resentations (ICLR).

Lim, S., Prade, H., and Richard, G. (2019). Solving word analogies: A machine learning
perspective. In Proceedings of the 15th European Conference on Symbolic and Quanti-
tative Approaches to Reasoning with Uncertainty (ECSQARU), pages 238–250.

Liu, N. F., Gardner, M., Belinkov, Y., Peters, M. E., and Smith, N. A. (2019a). Linguistic
knowledge and transferability of contextual representations. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), pages 1073–1094.

Liu, Q., Huang, H., Zhang, G., Gao, Y., Xuan, J., and Lu, J. (2018). Semantic structure-
based word embedding by incorporating concept convergence and word divergence. In
Proceedings of the 32th AAAI Conference on Artificial Intelligence and 30th Innova-
tive Applications of Artificial Intelligence Conference and 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (AAAI-IAAI-EAAI), pages 5261–5268.

Bibliography 137

Liu, Q., Jiang, H., Wei, S., Ling, Z.-H., and Hu, Y. (2015). Learning semantic word
embeddings based on ordinal knowledge constraints. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (ACL-IJCNLP), pages 1501–1511.

Liu, Q., Liu, F., Collier, N., Korhonen, A., and Vulić, I. (2021). MirrorWiC: On eliciting
word-in-context representations from pretrained language models. In Proceedings of
the 25th Conference on Computational Natural Language Learning (CoNNL), pages
562–574.

Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., and Wang, P. (2020a). K-
BERT: Enabling language representation with knowledge graph. In Proceedings of
AAAI Conference on Artificial Intelligence (AAAI), pages 2901–2908.

Liu, X., Ji, K., Fu, Y., Tam, W., Du, Z., Yang, Z., and Tang, J. (2022). P-tuning: Prompt
tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (ACL), pages
61–68.

Liu, X., Xie, L., Wang, Y., Zou, J., Xiong, J., Ying, Z., and Vasilakos, A. V. (2020b).
Privacy and security issues in deep learning: A survey. IEEE Access, 9:4566–4593.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,
L., and Stoyanov, V. (2019b). RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Logan, R., Liu, N. F., Peters, M. E., Gardner, M., and Singh, S. (2019). Barack’s wife
Hillary: Using knowledge graphs for fact-aware language modeling. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 5962–5971.

Lu, H., Liu, Q., Ichien, N., Yuille, A. L., and Holyoak, K. J. (2019). Seeing the meaning:
Vision meets semantics in solving pictorial analogy problems. In Proceedings of the
41st Annual Conference of the Cognitive Science Society (CogSci), pages 2201–2207.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model pre-
dictions. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS), pages 4768–4777.

Majewska, O., Collins, C., Baker, S., Björne, J., Brown, S. W., Korhonen, A., and
Palmer, M. (2021). Bioverbnet: a large semantic-syntactic classification of verbs in
biomedicine. Journal of Biomedical Semantics, 12(1):1–13.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., and De Raedt, L. (2018).
DeepProbLog: Neural probabilistic logic programming. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems (NIPS), pages
3753–3763.

138 Bibliography

Marra, G., Diligenti, M., Giannini, F., Gori, M., and Maggini, M. (2020). Relational
neural machines. In Proceedings of the 24th European Conference on Artificial Intel-
ligence and the 10th Conference on Prestigious Applications of Artificial Intelligence
(ECAI-PAIS), pages 1340–1347.

Marra, G., Giannini, F., Diligenti, M., and Gori, M. (2019a). Constraint-based visual
generation. In Proceedings of the 28th International Conference on Artificial Neural
Networks (ICANN), pages 565–577.

Marra, G., Giannini, F., Diligenti, M., and Gori, M. (2019b). Integrating learning and rea-
soning with deep logic models. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD), pages 517–532.

Marra, G., Giannini, F., Diligenti, M., and Gori, M. (2019c). LYRICS: A general inter-
face layer to integrate logic inference and deep learning. In Proceedings of the Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases (ECML
PKDD), pages 283–298.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

Mel’cuk, I. (1996). Lexical functions: A tool for the description of lexical relations in the
lexicon. In Lexical Functions in Lexicography and Natural Language Processing, pages
37–102. John Benjamins Publishing Company.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2022). Locating and editing fac-
tual associations in GPT. In Proceedings of the 36th Annual Conference on Neural
Information Processing Systems (NeurIPS).

Mikolov, T., Yih, W.-t., and Zweig, G. (2013). Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), pages 746–751.

Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the
ACM, 38(11):39–41.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning, C. D. (2022). Fast model
editing at scale. In Proceedings of the 10th International Conference on Learning
Representations (ICRL).

Mitchell, M. (2021). Abstraction and analogy-making in artificial intelligence. Annals of
the New York Academy of Sciences, 1505(1):79–101.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carlson,
A., Dalvi, B., Gardner, M., Kisiel, B., et al. (2018). Never-ending learning. Commu-
nications of the ACM, 61(5):103–115.

Bibliography 139

Moreno, J. G., Pontes, E. L., and Dias, G. (2021). CTLR@WiC-TSV: Target sense
verification using marked inputs and pre-trained models. In Proceedings of the 6th
Workshop on Semantic Deep Learning (SemDeep-6), pages 1–6.

Mrkšić, N., Ó Séaghdha, D., Thomson, B., Gašić, M., Rojas-Barahona, L. M., Su, P.-
H., Vandyke, D., Wen, T.-H., and Young, S. (2016). Counter-fitting word vectors to
linguistic constraints. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (NAACL), pages 142–148.

Mrkšić, N., Vulić, I., Ó Séaghdha, D., Leviant, I., Reichart, R., Gašić, M., Korhonen,
A., and Young, S. (2017). Semantic specialization of distributional word vector spaces
using monolingual and cross-lingual constraints. Transactions of the Association for
Computational Linguistics (TACL), 5:309–324.

Mu, J., Bhat, S., and Viswanath, P. (2018). All-but-the-top: Simple and effective post-
processing for word representations. In Proceedings of the 6th International Conference
on Learning Representations (ICRL).

Murena, P.-A., Al-Ghossein, M., Dessalles, J.-L., and Cornuéjols, A. (2020). Solving
analogies on words based on minimal complexity transformation. In Proceedings of the
29th International Joint Conference on Artificial Intelligence (IJCAI), pages 1848–
1854.

Navigli, R. (2016). Ontologies. In The Oxford Handbook of Computational Linguistics,
pages 518–546. Oxford University Press, 2nd edition.

Navigli, R. and Ponzetto, S. P. (2012). BabelNet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic network. Artificial
Intelligence, 193:217–250.

Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2015). A review of relational
machine learning for knowledge graphs. Proceedings of IEEE, 104(1):11–33.

Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. (2016). Asymmetric transitivity pre-
serving graph embedding. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 1105–1114.

Peng, Y., Yan, S., and Lu, Z. (2019). Transfer learning in biomedical natural language
processing: An evaluation of BERT and ELMo on ten benchmarking datasets. In
Proceedings of the 18th BioNLP Workshop and Shared Task (BioNLP), pages 58–65.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

140 Bibliography

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pages 701–710.

Pessach, D. and Shmueli, E. (2022). A review on fairness in machine learning. ACM
Computing Surveys (CSUR), 55(3):1–44.

Peters, M. E., Ammar, W., Bhagavatula, C., and Power, R. (2017). Semi-supervised
sequence tagging with bidirectional language models. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 1756–1765.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettle-
moyer, L. (2018). Deep contextualized word representations. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL), pages 2227–2237.

Peters, M. E., Neumann, M., Logan, R., Schwartz, R., Joshi, V., Singh, S., and Smith,
N. A. (2019). Knowledge enhanced contextual word representations. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 43–54.

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., and Miller, A.
(2019). Language models as knowledge bases? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473.

Peyre, J., Sivic, J., Laptev, I., and Schmid, C. (2019). Detecting unseen visual relations
using analogies. In Proceedings of the 2019 International Conference on Computer
Vision (ICCV), pages 1981–1990.

Poerner, N., Waltinger, U., and Schütze, H. (2020). E-BERT: Efficient-yet-effective entity
embeddings for BERT. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 803–818.

Polguère, A. (2009). Lexical systems: graph models of natural language lexicons. Lan-
guage resources and evaluation, pages 41–55.

Polguère, A. (2014). From writing dictionaries to weaving lexical networks. International
Journal of Lexicography, 27(4):396–418.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9–32.

Raedt, L. d., Dumančić, S., Manhaeve, R., and Marra, G. (2020). From statistical rela-
tional to neuro-symbolic artificial intelligence. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI), pages 4943–4950.

Bibliography 141

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-
text Transformer. Journal of Machine Learning Research (JMLR), 21(140):1–67.

Ras, G., Xie, N., van Gerven, M., and Doran, D. (2022). Explainable deep learning: A
field guide for the uninitiated. Journal of Artificial Intelligence Research, 73:329–397.

Reed, S., Zhang, Y., Zhang, Y., and Lee, H. (2015). Deep visual analogy-making. In
Proceedings of the 28th International Conference on Neural Information Processing
Systems (NIPS), page 1252–1260.

Reif, E., Yuan, A., Wattenberg, M., Viégas, F. B., Coenen, A., Pearce, A., and Kim, B.
(2019). Visualizing and measuring the geometry of BERT. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems (NIPS), pages
8592–8600.

Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using
Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 3982–3992.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should I trust you?: Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), pages 1135–1144.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine Learning,
62(1):107–136.

Rocktäschel, T. and Riedel, S. (2017). End-to-end differentiable proving. In Proceedings of
the 31st International Conference on Neural Information Processing Systems (NIPS),
pages 3791–3803.

Rocktäschel, T., Singh, S., and Riedel, S. (2015). Injecting logical background knowledge
into embeddings for relation extraction. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL),
pages 1119–1129.

Rogers, A., Kovaleva, O., and Rumshisky, A. (2020). A primer in BERTology: What
we know about how BERT works. Transactions of the Association for Computational
Linguistics, 8:842–866.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408.

Roy, A. and Pan, S. (2021). Incorporating extra knowledge to enhance word embedding.
In Proceedings of the 29th International Conference on International Joint Conferences
on Artificial Intelligence (IJCAI), pages 4929–4935.

142 Bibliography

Roychowdhury, S., Diligenti, M., and Gori, M. (2021). Regularizing deep networks
with prior knowledge: A constraint-based approach. Knowledge-Based Systems,
222:106989–106998.

Sadeghi, F., Zitnick, C. L., and Farhadi, A. (2015). Visalogy: Answering visual analogy
questions. In Proceedings of the 28th International Conference on Neural Information
Processing Systems (NIPS), pages 1882–1890.

Sap, M., Le Bras, R., Allaway, E., Bhagavatula, C., Lourie, N., Rashkin, H., Roof, B.,
Smith, N. A., and Choi, Y. (2019). ATOMIC: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI), pages 3027–3035.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and Welling, M.
(2018). Modeling relational data with graph convolutional networks. In Proceedings of
the 15th European Semantic Web Conference (ESWC), pages 593–607.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, pages 2673–2681.

Serafini, L. and Garcez, A. (2016). Logic tensor networks: Deep learning and logical
reasoning from data and knowledge. In Proceedings of the 11th International Workshop
on Neural-Symbolic Learning and Reasoning co-located with the Joint Multi-Conference
on Human-Level Artificial Intelligence (NeSy-HLAI), pages 23–34.

Shen, T., Mao, Y., He, P., Long, G., Trischler, A., and Chen, W. (2020). Exploiting
structured knowledge in text via graph-guided representation learning. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 8980–8994.

Shi, W., Chen, M., Zhou, P., and Chang, K.-W. (2019). Retrofitting contextualized word
embeddings with paraphrases. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 1198–1203.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and Singh, S. (2020). AutoPrompt:
Eliciting knowledge from language models with automatically generated prompts. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 4222–4235.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features
through propagating activation differences. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 3145–3153.

Bibliography 143

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep inside convolutional net-
works: Visualising image classification models and saliency maps. In Proceedings of
the International Conference on Learning Representations Workshop (ICLR).

Singh, P., Lin, T., Mueller, E. T., Lim, G., Perkins, T., and Zhu, W. L. (2002). Open
mind common sense: Knowledge acquisition from the general public. In Confederated
International Conferences CoopIS, DOA, and ODBASE Proceedings, pages 1223–1237.

Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S., and Babenko, A. (2020). Editable
neural networks. In Proceedings of the 8th International Conference on Learning Rep-
resentations (ICLR).

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts,
C. (2013). Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1631–1642.

Speer, R. and Havasi, C. (2012). Representing general relational knowledge in Concept-
Net 5. In Proceedings of the 8th International Conference on Language Resources and
Evaluation (LREC), pages 3679–3686.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research (JMLR), 15(1):1929–1958.

Su, C., Chen, M., and Xie, X. (2021a). Graph convolutional matrix completion via rela-
tion reconstruction. In Proceedings of the 10th International Conference on Software
and Computer Applications (ICSCA), pages 51–56.

Su, Y., Han, X., Zhang, Z., Lin, Y., Li, P., Liu, Z., Zhou, J., and Sun, M. (2021b).
CokeBERT: Contextual knowledge selection and embedding towards enhanced pre-
trained language models. AI Open, 2:127–134.

Talmor, A., Elazar, Y., Goldberg, Y., and Berant, J. (2020). oLMpics-on what lan-
guage model pre-training captures. Transactions of the Association for Computational
Linguistics (TACL), 8:743–758.

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy, R. T., Kim, N., Durme,
B. V., Bowman, S. R., Das, D., and Pavlick, E. (2019). What do you learn from
context? probing for sentence structure in contextualized word representations. In
Proceedings of the 7th International Conference on Learning Representations (ICLR).

Tissier, J., Gravier, C., and Habrard, A. (2017). Dict2vec : Learning word embeddings
using lexical dictionaries. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 254–263.

144 Bibliography

Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Persson,
K. A., Ceder, G., and Jain, A. (2019). Unsupervised word embeddings capture latent
knowledge from materials science literature. Nature, 571(7763):95–98.

Ushio, A., Camacho-Collados, J., and Schockaert, S. (2021a). Distilling relation em-
beddings from pretrained language models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 9044–9062.

Ushio, A., Espinosa Anke, L., Schockaert, S., and Camacho-Collados, J. (2021b). BERT
is to NLP what AlexNet is to CV: Can pre-trained language models identify analogies?
In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing
(ACL-IJCNLP), pages 3609–3624.

van der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. Journal of
Machine Learning Research (JMLR), 9(86):2579–2605.

Vandenbussche, P.-Y., Scerri, T., and Daniel Jr, R. (2021). Word sense disambiguation
with Transformer models. In Proceedings of the 6th Workshop on Semantic Deep
Learning (SemDeep-6), pages 7–12.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st
International Conference on Neural Information Processing Systems (NIPS), pages
5998–6008.

Vig, J. (2019). A multiscale visualization of attention in the Transformer model. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics
(ACL), pages 37–42.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. (2010).
Graph kernels. Journal of Machine Learning Research (JMLR), 11:1201–1242.

Vulić, I., Glavaš, G., Mrkšić, N., and Korhonen, A. (2018). Post-specialisation:
Retrofitting vectors of words unseen in lexical resources. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics (NAACL), pages 516–527.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. (2018). GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP (EMNLP), pages 353–355.

Wang, D., Cui, P., and Zhu, W. (2016). Structural deep network embedding. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 1225–1234.

Bibliography 145

Wang, R., Tang, D., Duan, N., Wei, Z., Huang, X., Ji, J., Cao, G., Jiang, D., and Zhou,
M. (2021a). K-Adapter: Infusing knowledge into pre-trained models with Adapters.
In Proceedings of the Joint Conference of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (ACL-IJCNLP), pages 1405–1418.

Wang, X., Gao, T., Zhu, Z., Zhang, Z., Liu, Z., Li, J., and Tang, J. (2021b). KEPLER:
A unified model for knowledge embedding and pre-trained language representation.
Transactions of the Association for Computational Linguistics (TACL), 9:176–194.

Wang, X., Wang, H., and Yang, D. (2022). Measure and improve robustness in NLP
models: A survey. In Proceedings of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies
(NAACL), pages 4569–4586.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M.
(2020). Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 38–45.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao,
Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L.,
Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang,
W., Young, C., Smith, J. R., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G. S.,
Hughes, M., and Dean, J. (2016). Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den Broeck, G. (2018). A semantic
loss function for deep learning with symbolic knowledge. In Proceedings of the 35th
International Conference on Machine Learning (ICML), pages 5502–5511.

Yamada, I., Shindo, H., Takeda, H., and Takefuji, Y. (2016). Joint learning of the
embedding of words and entities for named entity disambiguation. In Proceedings of
The 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL),
pages 250–259.

Yan, J., Wang, C., Cheng, W., Gao, M., and Zhou, A. (2018). A retrospective of
knowledge graphs. Frontiers of Computer Science, 12(1):55–74.

Yang, B. and Mitchell, T. (2017). Leveraging knowledge bases in LSTMs for improving
machine reading. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1436–1446.

Yang, F., Yang, Z., and Cohen, W. W. (2017). Differentiable learning of logical rules
for knowledge base reasoning. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS), pages 2316–2325.

146 Bibliography

Yang, J., Xiao, G., Shen, Y., Jiang, W., Hu, X., Zhang, Y., and Peng, J. (2021). A
survey of knowledge enhanced pre-trained models. arXiv preprint arxiv:2110.00269.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., and Le, Q. V. (2019). XL-
Net: Generalized autoregressive pretraining for language understanding. In Proceed-
ings of the 33rd International Conference on Neural Information Processing Systems
(NIPS), pages 5753–5763.

Ye, Z.-X., Chen, Q., Wang, W., and Ling, Z.-H. (2019). Align, mask and select: A
simple method for incorporating commonsense knowledge into language representation
models. arXiv preprint arXiv:1908.06725.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti, C., Ontanon, S., Pham,
P., Ravula, A., Wang, Q., Yang, L., and Ahmed, A. (2020). Big Bird: Transformers
for longer sequences. In Proceedings of the 34th International Conference on Neural
Information Processing Systems (NIPS), page 17283–17297.

Zhang, H. (2004). The optimality of naive Bayes. In Proceedings of the 17th International
Florida Artificial Intelligence Research Society Conference (FLAIRS), pages 562–567.

Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., and Liu, Q. (2019). ERNIE: Enhanced
language representation with informative entities. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 1441–1451.

Zhang, Z., Wu, Y., Zhao, H., Li, Z., Zhang, S., Zhou, X., and Zhou, X. (2020). Semantics-
aware BERT for language understanding. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence (AAAI), pages 9628–9635.

Zhou, M., Duan, N., Liu, S., and Shum, H.-Y. (2020). Progress in neural NLP: Modeling,
learning, and reasoning. Engineering, 1505(1):275–290.

Zhou, W. and Chen, M. (2022). An improved baseline for sentence-level relation extrac-
tion. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics and the 12th International Joint Conference on
Natural Language Processing (AACL-IJCNLP), pages 161–168.

Zhu, C., Rawat, A. S., Zaheer, M., Bhojanapalli, S., Li, D., Yu, F., and Kumar, S. (2020).
Modifying memories in Transformer models. arXiv preprint arXiv:2012.00363.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fidler,
S. (2015). Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of IEEE International Conference
on Computer Vision (ICCV), pages 19–27.

	Abbreviations
	Introduction
	Context
	Research questions & contributions
	Refining BERT embeddings using semantic lexicons
	Integrating analogical reasoning into a BERT based architecture

	Thesis overview

	State of the art
	Deep learning based NLP
	Deep Learning
	Word embeddings
	Bidirectional Encoder Representations from Transformers
	Input formatting
	The Transformer architecture
	Pretraining and finetuning

	Example usages of BERT
	Biomedical relation extraction
	Sentiment analysis of movie reviews
	Target sense verification
	Fact completion

	Symbolic Knowledge
	Why external knowledge can be useful?
	Knowledge graphs
	Formalization of knowledge graphs
	Review of existing knowledge graphs

	Graph embeddings

	Incorporation of symbolic knowledge into neural networks
	Joint and post-hoc methods
	Enforcement of logical constraints into neural networks
	Learning and reasoning via analogies
	Transformer knowledge-aware large language models

	On refining BERT contextualized embeddings using semantic lexicons
	Proposed contextualized embedding refinement methods
	Method A
	Method B

	Experimental setup
	Biomedical relation extraction
	Sentiment analysis of movie reviews
	Retrofitting and BERT architecture
	Technical details
	Grid search optimization
	Alternative classification strategies

	Results and qualitative study
	Grid search experimental results
	Neighborhood based hyperparameter selection
	Euclidean distance ranking of retrofitted vectors
	Neighbouring word filtering
	How does averaging compare to majority voting?
	Further remarks

	Summary

	An analogy based approach for solving target sense verification
	Problem formulation
	AB4TSV architecture
	Choice of analogical relation
	Input encoding selection

	Experimental setup
	Data
	Analogical proportion optimization
	Assessing and promoting permutation invariance of analogical proportions
	Technical details

	Results
	Impact of the input encoding
	Comparison with other methods for TSV
	Invariance to the permutations of analogical proportions
	Interpreting AB4TSV via explanation methods

	Summary

	Conclusion and perspectives
	Synopsis
	Perspectives
	Retrofitting with large language models
	Word importance
	Linking BERT word embeddings and the classifier output
	Towards lexical systems

	Analogical reasoning with pretrained language models
	Elimination of contextualized dependence
	Beyond target sense verification

	Towards a unified knowledge and reasoning integration architecture

	Epilogue

	Appendices
	Supplementary material from Chapter 3
	Grid search visualizations

	Supplementary material from Chapter 4
	Input encoding visualizations
	Feature attribution maps

	Résumé étendu
	Introduction
	Adaptation des plongements contextuels de BERT grâce à des lexiques sémantiques
	Méthodes proposées d'adaptation des plongements lexicaux contextuels
	Méthode A
	Méthode B

	Protocole expérimental
	Retrofitting et architecture de BERT
	Optimisation de la recherche sur la grille
	Stratégies de classification alternatives

	Résultats et étude qualitative

	Vérification du sens d'un mot par une approche basée sur l'analogie
	Formulation du problème
	Architecture AB4TSV
	Choix de la relation analogique et du codage d'entrée
	Configuration expérimentale
	Évaluer et promouvoir l'invariance de permutation des proportions analogiques
	Résultats

	Conclusion

	Bibliographie

