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Background: Ischemic heart diseases are a major cause of death worldwide. Different

animal models, including cardiac surgery, have been developed over time. Unfortunately,

the surgery models have been reported to trigger an important inflammatory response

that might be an effect modifier, where involved molecular processes have not been fully

elucidated yet.

Objective: We sought to perform a thorough characterization of the sham effect in

the myocardium and identify the interfering inflammatory reaction in order to avoid

misinterpretation of the data via systems biology approaches.

Methods and Results: We combined a comprehensive analytical pipeline of mRNAseq

dataset and systems biology analysis to characterize the acute phase response of

mouse myocardium at 0 min, 45 min, and 24 h after surgery to better characterize

the molecular processes inadvertently induced in sham animals. Our analysis showed

that the surgical intervention induced 1209 differentially expressed transcripts (DETs).

The clustering of positively co-regulated transcript modules at 45 min fingerprinted the

activation of signalization pathways, while positively co-regulated genes at 24 h identified

the recruitment of neutrophils and the differentiation of macrophages. In addition, we

combined the prediction of transcription factors (TF) regulating DETs with protein-

protein interaction networks built from these TFs to predict the molecular network which

have induced the DETs. By mean of this retro-analysis of processes upstream gene

transcription, we revealed a major role of the Il-6 pathway and further confirmed a

significant increase in circulating IL-6 at 45 min after surgery.

Conclusion: This study suggests that a strong induction of the IL-6 axis occurs in

sham animals over the first 24 h and leads to the induction of inflammation and tissues’

homeostasis processes.

Keywords: heart damage, inflammation, transcriptomics, kinetical analysis, interleukin 6
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INTRODUCTION

In the widely used mouse or rat in vivo models of acute
myocardial infarction, access to the heart requires chest opening
usually following either sternotomy or rib breaking. These
surgery interventions, as well as the time delay up to the end of
the experiment, trigger local and systemic reaction that might act
as a confounding factor when exploring the pathophysiology of
ischemia-reperfusion injury. Michael et al. (1985) reported that
surgical trauma induces the release of glycogen phosphorylase
and creatine kinase enzymes in the lymph of dogs subjected to
open-chest surgery. Nossuli et al. (2000) showed that surgical
procedure induces significant variations in the expression
profiles of inflammatory cytokines, such as IL-6 and TNF-α,
in mouse heart. Genomic profiling of the mouse blood cells at
6 h post-surgery displayed a noteworthy change in the gene
expression profiles (Coon et al., 2010). More recently, a study
by Hoffmann et al. (2014) showed that sham-operated and MI
animals display a similar monocyte and granulocyte circulation
pattern over time, resulting in a background inflammatory
response which prohibited the assessment of the MI-induced
inflammatory response.

Unfortunately, myocardial transcriptomic studies seldom
analyzed the gene modifications induced by the surgery
procedure itself (Harpster et al., 2006; Roy et al., 2006) and to
the best of our knowledge the influence of the “cytokine storm”
on the modification of genes expression in cardiac cells has not
been deciphered.

Therefore, we combined freely available R packages and
databases in order to analyze a kinetic dataset of sham
animals in order (1) to identify immune cells recruitment
and differentiation in the acute phase (within first 24 h after
surgery), and, (2) to identify the main cytokine/signalization
pathways/transcription factors controlling the modifications in
DETs. Our pipeline includes sorting out differential expressed
transcripts, gene ontology analysis, time-dependent clustering
of co-regulated transcripts, cross-identification of transcription
factors (TFs) involved in the expression of transcript
clusters and finally prediction of TFs-based protein-protein
interaction (PPI) networks.

In one hand, we took advantage of the gene clustering achieved
by weighted gene co-expression network analysis WGCNA
(Langfelder and Horvath, 2008) to isolate the different temporal
groups of transcripts prior to analyzing their GO terms and
comparing them to the ones predicted from the whole list of
DETs. We identified inflammation and immune responses as
major biological processes that involved neutrophil, monocyte
and macrophage cell markers. In the other hand, we figured out
the history of DETs by retrieving the TFs most likely involved
in DETs regulation prior to predicting the most probable PPI
networks that could rule the activity of the highly enriched TFs.
As a result, we identified a group of highly similar networks
whose main characteristic was to predict a master role of
interleukine-6 (IL-6) as a regulator of the selected TFs and
DETs. We validated these numerical predictions by measuring
IL-6 in the plasma of mice subjected to the transcriptomic
analysis where a strong induction 45 min post-surgery was

detected. Throughout our transcriptomic analysis and functional
validation, we confirmed that surgery per se induces a strong
inflammatory response. It also induces the recruitment of
neutrophils to the myocardium and macrophages’ phenotypic
changes at 24 h through the IL-6 signalization pathway.

MATERIALS AND METHODS

Mouse Surgery Model
Male C57BL/6J mice, aged 8–12 weeks and weighing 20–
30 g were obtained from Charles River Laboratories (L’arbresle,
France). Mice were housed in the animal facility of the laboratory
in a controlled environment with standard cycle of 12 h
light/12 h dark and had free access to water and standard diet.
Animals were anesthetized with pentobarbital (73 mg/kg) intra-
peritoneally accompanied with (0.075 mg/kg) of buprenorphine
as an analgesic. Mice were intubated orally and ventilated via
a rodent ventilator. Rectal thermometer was used to monitor
body temperature that was maintained within normal range by
means of a heating pad. Left thoracotomy was performed and
a small curved needle with an 8-0 polypropylene suture was
passed, under a Euromex microscope, around the left anterior
descending coronary artery. The suture was not tied and was
removed after 0 or 45min. A third group ofmice underwent chest
closure after 45 min and were kept alive for 24 h post-surgery.

This study was approved by the Ethics Committee of the
Université Claude Bernard Lyon 1 (Approval number DR2017-
48) in compliance with NIH Guide on the Use of Laboratory
Animals (NIH Publication No. 85-23, revised 1996).

Tissue Collection and RNA Extraction
Animals (n = 8 per time point) were randomly assigned to each
group. At t = 0, 45 min, and 24 h post-surgery, mice were
anesthetized and euthanized, hearts were harvested and the left
ventricle was dissected to maximally provide the myocardium
known to be at risk in ischemic hearts. Myocardium samples were
placed in RNAlater stabilizing solution (Ambion, Thermo Fisher
Scientific) and stored at −80◦C until use.

RNA was extracted by Tripure reagent solution (Roche),
treated with Proteinase K (Qiagen) and purified by RNeasy
Mini kit (Qiagen) where DNase I (Qiagen) is treated on
column. RNA purity, quantity and integrity were assessed
both by spectrophotometry (NanoDrop ND-1000, NanoDrop
Technologies) and nanoelectrophoresis (2100 Bioanalyzer,
Agilent Technologies). RNA purity: A260/280 ∼ 1,8 and A260/230
∼ 2 and RNA integrity number: 8–10.

RNA Sequencing
Purified RNA samples were provided to ProfileXpert, Inc., for
library construction and sequencing. Quality and quantity checks
were performed by means of Fragment Analyzer (Agilent) and
QuantiFluor RNA dye (Promega). Library construction was
carried out using NextFlex Rapid Directional mRNA-Seq (Bioo-
Scientific, PerkinElmer Company) following the manufacturer
protocol. Libraries were applied to an Illumina flow cell High and
run on the Illumina Nextseq 500 as a single end read for 76 pb.
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On average, 12 samples were loaded to each flow cell. Image
analysis and base calling was carried out using the NCS 2.0.2 and
RTA 2.4.11 Illumina software suite implemented on the Illumina
sequencing machine. Final file formatting, demultiplexing, and
fastq generation were carried out using Bcl2fastq v2.17.1.14.

Bioinformatic Analysis
Trimming of reads was performed using cutadapt v1.9.1 software
(Martin, 2011). Then the reads were mapped to the mm10
genome using TopHat v2.1.0 (Kim et al., 2013) software
with default parameters (bowtie 2.2.9; Langmead and Salzberg,
2012). Reads were counted using htseq-count v0.6.0 software to
generate raw counts.

Several pipelines and software packages have been developed
to aid in the management and analysis of the high throughput
data. These packages differ considerably in their analytical
pipeline, statistical model (Robinson and Smyth, 2007; Tarazona
et al., 2015) and normalization tool (Bullard et al., 2010; Robinson
et al., 2010; Trapnell et al., 2012; Rapaport et al., 2013; Love et al.,
2014; Evans et al., 2017). The choice between the normalization
methods strongly influences the differential expression analysis
(Burden et al., 2014), where EdgeR and DESeq2 are the most
frequently used ones (Lamarre et al., 2018). In our study,
differentially expressed transcripts (DET) were computed with
DESeq2 (Love et al., 2014) package version 1.20.0 supplied by
R software (version 3.4.4) (R Core Team, 2019) via a likelihood
ratio test implemented in DESeq function. For all the analysis,
we kept transcripts with FDR less than 0.05 corrected via the
Benjamini–Hochberg method (Benjamini and Hochberg, 1995).

Transformed counts by DESeq2 were visualized with a
principal component analysis (PCA) [prcomp()] in R. PCA is a
dimensionality reduction method that maximizes the variability
explained by the newly formed dimensions. 1–3 dimensions
known by principal components (PC) can be chosen to represent
the data, where each PC is orthogonal to the other (Abdi and
Williams, 2010; Lever et al., 2017).

To construct transcript co-expression network, we ran the
cutreeDynamic function of the (WGCNA) R package (version
1.63) (Langfelder and Horvath, 2008) on the matrix of
normalized counts for the DETs identified with DESeq2.

The matrix of normalized counts was computed with
the varianceStabilizingTransformation function of the DESeq2
package. WGCNA applies PCA where the first PCs of each
formed module are called eigengenes. Soft threshold (beta) that
represents the exponential parameter for power law distribution
was chosen based on a scale free topology criterion. Adjacency
matrix was constructed and then transformed into a topological
overlap matrix. Transcripts were hierarchically clustered using
the flashClust function and clusters of transcripts having similar
profiles, referred to as modules, were formed.

Gene Ontology Analysis
Differentially expressed transcripts were subjected to functional
enrichment analysis by STRING software version 10.51
(Franceschini et al., 2013). Hypergeometric tests are used

1https://string-db.org/

to identify enriched terms that are sorted by their FDR. GO
terms with FDR < 10−4 were kept for further analysis. We have
proposed a score, named z-score (z), to measure the enrichment
of the GO terms in modules as follows:

z =
(
x − 0.5 − B×n

N
)

2
√
n × B

N× (
1 − ( B

N
)) (1)

x: count of observed transcripts in each GO term of module.
B: count of observed transcripts in each GO term of DETs.
n: total count of observed transcripts in module.
N: count of DETs.
Our z-score estimates whether a given GO term is enriched

in a gene module compared to all DETs and is thus assessing
whether a module is clustering genes involved in a common
biological process. We assumed that a GO term is enriched in a
certain module if z-score > 2.

Transcription Factor Enrichment Analysis
oPOSSUM 3.0 (Kwon et al., 2012), a freely available web
accessible software was used to identify enriched transcription
factors binding sites (TFBSs) in the 5000 bp upstream and
downstream sequence of the DETs. Default search parameters
of the single site analysis were kept as they are originally set
in the software. oPOSSUM performs an exact Fisher test which
measures the probability of a non-random association between
the co-expressed gene/transcript set and the TFBS of interest
and calculate a F-score as equal to −ln(p-value). F-score is
thus assessing the probability that at least one TFBS would be
significantly associated with the observed transcript list. Besides,
a z-score is calculated using the normal approximation to the
binomial distribution to compare the rate of occurrence of a
TFBS in the target set of genes/transcripts to the expected rate
estimated from the pre-computed background set. Thus, the
z-score is estimating the specific enrichment of given TFBS in the
gene/transcript set compared to background gene set. TFs were
ranked by F-score and z-score, respectively and were clustered
into five groups.

Functional Network Inference
Protein-protein interaction (PPI) networks were generated using
the freely available STRING database version 10.5 (Franceschini
et al., 2013). Clustered TFs were inputted separately in STRING
to generate background networks based on the predicted
associations between these TFs (curated or experimentally
determined interactions). Resulting TF-PPI networks were
expanded into several layers (shells) via sequentially adding
predicted associated proteins (nodes) until networks of five
layers were generated as explained in Supplementary Figure S6.
During each step, GO terms with FDR < 10−4 were assigned to
major biological processes. The major biological processes were
then normalized to the total number of identified GO terms in
each network. To find out how similar is the processes’ prediction
to that of DETs, shared biological processes between TF-PPI
network and DET were sorted out and then were normalized
by the total number of shared GO terms. TF-PPI networks
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that recapitulated the greatest number of biological processes
obtained from the DETs were selected as being the best putative
TFs-regulated networks.

Isolation of Cardiac Resident Cells
Zero minutes and 24 h post-surgery, mice (4 per time point)
were injected intra-peritoneally with 50 UI/kg heparin sodium
for 10 min. Mice were euthanized and heart was harvested
and cannulated through the aorta. Afterward, a small clip was
attached to the aorta’s end and a thread beneath it was tied to
prevent the heart from falling (O’Connell et al., 2007). The heart
was firstly perfused for 3 min with the perfusion buffer [NaCl
120.4 mM, KCl 14.7 mM, KH2PO4 0.6 mM, Na2HPO4 0.6 mM,
MgSO4-7H2O 1.5 mL, Na-HEPES 10 mM, NaHCO3 4.6 mM,
Taurine 30 mM, 2,3-butanedione monoxime (BDM) 10 mM, and
Glucose 5.5 mM, pH 7.0]. The latter was replaced by digestion
buffer (50 mL of perfusion buffer and Collagenase II 2.4 mg/mL)
for 2 min 30 s. 100 mM CaCl2 (final concentration 40 μM) were
then added. Perfusion was continued for 6 min and 30 s. During
the entire procedure, the heart was perfused at 4 mL/min rate and
the solutions were maintained at 37◦C to mimic physiological
conditions. After 12 min, the heart was removed and placed in
a 100-mm dish. It was then cut into small pieces that were placed
in a tube containing myocyte digestion buffer. Small pieces were
gently pipetted several times to ensure the complete myocardium
digestion. Digestion stop buffer [45 mL of perfusion buffer, 5 mL
of fetal bovine serum (10%), and 6.25 μM of 100 mM CaCl2
(12.5 μM)] was then added up to a final volume of 10 mL. The
tube was then centrifuged for 3 min at 20 g at room temperature
(Eppendorf 5810R). Supernatant was collected and centrifuged
for 5 min at 500 g. Cells pellet was used for labeling protocol.

Flow Cytometry Analysis
Labeling Protocol
Cell pellets were re-suspended in phosphate buffer saline (PBS)
and divided in two tubes: Labeling and isotypic control. PBS was
added in each tube and tubes were centrifuged 5 min at 500 g and
the supernatant was discarded. FCR blocking solution (diluted
FCR: 1:10 in PBS; 100 μl/tube of dilute FCR solution; FCR
blocking mouse reagent, Miltenyi biotec, 130-092-575) was then
added for 10 min at 4◦C. Following incubation, PBS 0.5% BSA
(Bovine Serum Albumin) was added and tubes were centrifuged
5 min at 500 g. The two tubes were incubated for 30 min at 4◦C
in dark with the isotopic or the labeling solution. Incubation was
stopped with the addition of PBS 5% BSA followed by a 5 min
centrifugation at 500 g. Supernatants were discarded and pellets
re suspended in PBS before flow cytometry analysis.

Samples’ Processing and Data Analysis
Flow cytometry experiments were conducted using Fortessa
X-20 equipped with four lasers and 16 fluorescent detectors.
Markers of macrophages (CD11B, F4/80, CD206, and CD86)
and neutrophils (Ly6g) were analyzed after immunostaining
(antibodies are listed in Supplementary Table S1) in order
to estimate the proportion of each population. 100,000 of
total events were acquired for each condition. Data were
analyzed by DIVA Software (BD Biosciences). The percentage

of each cell subtype was calculated after the multiple gating of
the different fluorescent markers. The sorting of macrophage
subtypes was performed as followed: CD11b+ and/or F4/80+
positive cells were gated and represented the total macrophage
population. Within this cell population, the percentages of type
1 macrophages (M1) (CD206−/CD86+), type 2 macrophages
(M2) (CD206+/CD86−), M1 + M2 (CD206+/CD86+) and
negative M1 + M2 (CD206−/CD86−) macrophages population
were figured out. Percentage of M1, M2, and double M1 + M2
phenotypes were normalized by the sum of these three population
to assess the shift in differentiation.

Plasma Preparation and IL-6 Assay by

ELISA
After anesthesia and prior to euthanasia, blood samples were
collected from the inferior vena cava. Blood was centrifuged at
500 g for 5 min at room temperature to isolate plasma. The latter
samples were stored at −80◦C for later use. Interleukin 6 (IL-6)
concentrations were measured in plasma samples by the enzyme
like immunofluorescent assay (ELISA) using theMice IL-6 ELISA
Kit (R&D Systems,Minneapolis, MN, United States) based on the
manufacturer instructions. The sensitivity test was 1.8 pg/mL.

Statistics
In order to determine the number of mice per group, a power
analysis was performed with G∗Power (version 3.1.9.2) (Faul
et al., 2007) with the following conditions: One-way ANOVA
parameters with alpha = 0.05, beta = 0.2, and effect size = 0.7 with
three groups (0 min, 45 min, 24 h).

Statistical analysis were performed with One-way Anova
(Tukey’s multicomparison test and Kruskal–Wallis non-
parametric test), student t-test, two-way anova tests and
spearman correlation analysis were performed with Graphpad
Prism (version 7.0a) (GraphPad Software, La Jolla, CA,
United States)2.

Data Availability
All sequencing datasets used in this study are submitted in
international public repository, Gene Expression Omnibus,
under accession identification as GSE127244.

RESULTS AND DISCUSSION

Experimental Design
A methodical issue to assess the sham effect relies on the
complexity of the analysis of OMICs dataset. These latter are very
sensitive to the statistical power of the study, the experimental
design and the accuracy of the analytical pipeline of OMIC
studies. The experimental design of dynamic transcriptomic
studies is largely affected by factors as the precision of measures,
ethical rules, expenses’ constraints and statistical power. The
precision of measures is, however, highly dependent on the
biological variability of the studied system and the experimental

2www.graphpad.com
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error introduced by the surgery effect or the RNA-seq protocol
(Conesa et al., 2016). Another type of errors originates from
static comparisons between “pretreatment” and “post-treatment”
samples which can neither correctly recapitulate the dynamic
of a pathology nor enable the characterization of the molecular
cascade ruling the modification of gene/transcripts expression
(Kim et al., 2012; Chang et al., 2015). Unlike static analysis,
kinetical analysis permits the identification and clustering of
gene/transcripts based on their expression profile. This list of
DETs must be thought as temporal signature which can be used
to predict the future evolution of the cellular systems or to infer
the molecular mechanisms which controlled and induced these
modifications in DETs expression level.

We profiled the associated effects of anesthesia, thoracotomy,
removal of the epicardium and suture passed under the left
anterior descending artery on the change of gene expression
profiles in mouse myocardium. Dynamics of transcripts
expression were quantified by mRNA sequencing at three
different time points post-surgery (0 min, 45 min, and 24 h).
This procedure is similar to the “Sham” procedure used in
mouse model of myocardial infarction explained by Harisseh
et al. (2017). Unlike blood, temporal analysis in organs
requires sacrificing different animals to cover all time points.
Consequently, the variance of gene/transcripts expression over
time is mixed with the inter-individual variance. Therefore, the
sensitivity of the analytical pipeline to detect DETs is highly
affected by the statistical power of the study. The experimental
design considered a total of 24 animals (eight mice per time
point) to meet the statistical parameters which are presented in
the section “Materials and Methods.” Surprisingly, in several
recent dynamic transcriptomic studies that are involved in
ischemia reperfusion (Roy et al., 2006; Kim et al., 2012, 2018;
Prat-Vidal et al., 2013; Andreeva et al., 2014; Khan et al., 2017),
no power test was carried out to optimize the number of samples,
which may have led to the underestimation of the number
of DETs. Analytical comparison studies have estimated that a
minimum of five and six replicates per condition is required
to obtain stable significant results in microarray and RNA
sequencing experiments, respectively (Pavlidis et al., 2003;
Schurch et al., 2016; Lamarre et al., 2018).

Considering the studies which compared analytic tools for
transcriptomic (Rapaport et al., 2013; Soneson and Delorenzi,
2013; Burden et al., 2014; Seyednasrollah et al., 2015) and seeking
a method with the highest sensitivity for controlling the false
discovery rate (FDR) (Love et al., 2014) and compatible for
the analysis of kinetics, we have decided to work with DESeq2
analysis method. The analytical pipeline followed in this study is
presented in Supplementary Figure S1.

RNA-Seq Data Processing and Analysis
DESeq2 uses a generalized linear model (GLM) with a Negative
Binomial distribution to model the counts associated with a given
gene. Compared to the classical Poisson count distribution the
Negative Binomial distribution can account for over dispersion in
the data (variance higher than the mean). To be able to estimate
both parameters of the distribution for each gene, the variance
distribution is computed from a mean variance function fitted

across all genes. DESeq2 takes raw reads as input but uses a
sequencing depth offset parameter (Love et al., 2014). Firstly,
we assessed the different possible sources of experimental error:
different surgeons and different cDNA libraries in the mRNA seq
process (defined as “Batch effect”). Data visualization by PCA
in Figures 1A–C clearly shows that our samples were clustered
neither by the surgeons nor by the batch. Samples were actually
clustered by their variation over time, where “24 h post-surgery”
condition was responsible for the highest variation in the data.
0 and 45 min samples were grouped together indicating no
major effect of the surgery after 45 min in comparison to 24 h.
Noteworthy, the three groups were scattered along PC1 and
PC2, what suggested at least two different sources of variance.
In addition, PCA plot did not show any outlier samples that
might affect the analysis, noting that samples are spread out along
PC1 and display a large within-group variability that might be
of biological and technical origin we cannot control. Among
the 27,661 non-zero transcripts, DESeq2 yielded 1209 DETs
over time with FDR <0.05 (List of transcripts is available in
Supplementary Table S2).

To identify the major biological processes affected in response
to surgical intervention, functional enrichment analysis was
performed using STRING software. We first proceeded with
the GO analysis of the complete DET list that had generated
a list of more than 700 significantly enriched GO terms. To
reduce their dimensionality, we arbitrarily selected a cut-off
for the FDR of GO terms below 10−4 and then kept 228 GO
terms for the rest of the analysis. We next classified them into
bigger biological processes in order to understand what were
the consequences of the surgery. As summarized in Figure 1D,
we identified the major biological processes as: cell signalization
(24% of GO terms), tissue regeneration (including mechanisms
of cell homeostasis, tissue organization, embryogenesis-related
processes, wound healing and representing 24% of GO terms),
inflammatory and immune response (11% of GO terms), cell
migration (9% of GO terms), metabolism (9% of GO terms), cell
death (5% of GO terms) and processes involved in vasculature
remodeling (6% of GO terms).

In summary, the 1209 identified DETs were associated with
biological processes among which some were expected like
inflammation and immune response. Although, this coarse-
grained strategy is broadly used to investigate gene network
response to stimuli, it is highly dependent on the quality of
GO annotation, the rationality of GO selection and clearly
lacks understanding of both the cell network (including gene
and protein) organization and its modification over time. We
therefore aimed to temporally and phenotypically organize
the DETs in order to isolate different regulation waves
of gene network.

Weighted Gene Co-expression Network

Analysis
First, we looked for co-varying transcript signatures and aimed
to predict their associated biological processes. Weighted gene
co-expression network analysis (WGCNA) is an unsupervised
analysis that aims to construct modules (clusters) of highly
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FIGURE 1 | Differential analysis and gene ontology analysis. (A–C) represent principal component analysis (PCA) plots of the data clustered by surgeon (S1 and S2),

batch (B1–B5), and time (0 min, 45 min, and 24 h), respectively. Batch corresponds to the different pools of library construction during sequencing. (D) Pie chart

showing the major biological processes expressed as the percentage of GO terms detected in the gene ontology analysis of the differentially expressed transcripts

list.

correlated transcripts according to the similarity in their
expression profiles (Langfelder and Horvath, 2008). WGCNA
was performed on the1209 DETs. Prior to analysis, we checked
for outliers’ samples to exclude, but none was detected as
displayed in Supplementary Figure S2A. The soft threshold
was set to 30 based on the scale free topology criterion
(Supplementary Figures S2B,C). Transcripts were hierarchically
clustered (Figure 2A) and nine clusters of transcripts with
similar profiles were formed. List of transcripts assigned to
each module is available in Supplementary Table S3. For
a better understanding, a color code was assigned for each
module of transcripts. The size of these modules ranged from
27 to 210 transcripts and 300 (24.8% of DETs) were not
assigned to any module, colored in gray. As examples of
the different profiles obtained in these modules, heatmaps
representing the expression profiles of the transcripts assigned to
the magenta (M[1]), red (M[4]) and blue (M[7]) modules were
displayed in Figure 2B, where remaining modules’ expression
profiles are displayed in Supplementary Figure S2D. WGCNA
summarizes the distribution of transcripts expression via PCA
and the first PC is called “eigengene.” Eigengene values of
transcripts modules were calculated for each sample and
eigengene means were plotted for each module over time
in order to summarize the average variation in transcript
expression (Figure 2C). Interestingly, we identified three major

time profiles: the magenta module (M[1]) was clustering
transcripts transiently induced at 45 min, modules 2–4 clustering
transcripts with a decrease at 24 h and modules 5–9 with
an increase at 24 h. We hypothesized that, since modules
have been clustered with positively co-varying transcripts,
they could unlikely predict non-linear biological processes
spanning a broader range of time. We thus tested whether the
different combinations of the three modules with the greater
number of GO terms: [M1], [M6], and [M7] could enhance
the predictions.

In order to predict the biological processes related to these
modules and assess the strength of this prediction, we first
studied the distribution of transcript counts as a function of
GO term counts for all groups of transcripts modules and for
all DETs as well (Supplementary Figure S3). Expectedly, the
high transcripts counts in the DETs were correlated with the
greatest number of GO terms. However, a strong discrepancy
was observed for the groups of modules. For instance, M[2]
including 210 transcripts (Supplementary Figure S3) had no
significant predicted GO terms whereas group M[1;6] including
83 transcripts had 240 predicted GO terms and group. This
firstly suggested that a greater number of transcripts did not
mandatorily mean a great count of GO terms and thus no
size artifact occurred in the comparison between modules and
combinations of modules. We next quantified to which extent
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FIGURE 2 | Weighted gene co-expression network analysis. (A) Gene dendrogram representing the hierarchical clustering of transcripts based on their similarity in

the expression profiles. Tree branches correspond to transcripts and colors underneath the tree corresponds to the modules assignment by Dynamic Tree Cut of the

WGCNA package. (B) Heatmaps of the level of expression of transcripts assigned to examples of the three main time profile of transcripts expression: the magenta

(M[1]), red (M[4]), and blue (M[7]) modules. Red color corresponds to higher expression and green color corresponds to lower expression. (C) Line graph

representing the variation of the expression profiles in the different modules over time. Values represent the mean eigengenes figured out by WGCNA. The color code

used is the same as in (A,B).
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modules or combinations of modules may be strong predictors
of the DETs-based GO terms. This feature, defined as GO term
enrichment (see the section “Materials and Methods”), reflects
the fact that modules might sort out transcripts related to similar
biological processes. All GO terms of all modules or combination
of modules were first filtered with FDR < 10−4 and then
selected if their enrichment factor was >2 (Figure 3A). List of
enriched GO terms and their FDR for the different modules
and combinations are available in Supplementary Table S4. The
count of the selected GO terms for each modules or combination
of modules is presented in Figure 3B. Next, we sorted out
the groups of modules having the highest enrichment factor
for each and every GO term (Figure 3C) in order to estimate
which module or combination of modules achieved the strongest
predictions of GO terms. Six groups of modules were sorted
out and were considered as the best predictors based on their
shared GO terms with the DET-derived ones, where among
them group M[1;6;7] had the highest count of the highest-
enriched GO terms.

Filtered GO terms were classified into bigger biological
processes (Figure 3D). M[1], which was transiently induced at
45 min (Figure 2C), was mainly involved in cell signalization
process what we interpreted as a transcriptional response
following the surgery to maintain cells’ homeostasis via
the shift in the state of different signalization pathways.
Combinations of modules M[1;6], and M[6;7] looked similar
and predicted the induction of signalization pathways,
cell migration and inflammatory/immune response, while
combinations M[1;7], and M[1;6;7] predicted the induction of
signalization pathways, cell migration, tissue regeneration and
inflammatory/immune response (Figure 3D). As anticipated
from the calculation of the highest-enriched GO terms, the
combination of modules M[1;6;7] was the one recapitulating
the highest predictions from the DETs: signalization pathways
(46 vs. 54 GO terms, respectively), cell migration (17 vs.
21 GO terms, respectively), cell death (5 vs. 12 GO terms,
respectively) and inflammatory/immune response (24 vs. 26 GO
terms, respectively). However, tissue regeneration was poorly
recapitulated (11 vs. 54 GO terms, respectively) while neither
metabolism nor vasculature were detected. This suggested that
this method was efficient for classified and enriched transcripts
associated with some of the DETs features but not all.

Eventually, looking at the transcripts of M[1;6;7], we
found many inflammatory markers including chemokines
(CCL6, CCL9, CCL12, CXCL1, CXCL3), chemokine receptors
(CXCR2 and CCR2), adhesion markers of endothelial cells
(ICAM-1 and Sele) in addition to markers of neutrophils and
macrophages (LCN2 and ARG-1, respectively) (Frangogiannis,
2002; Sadik et al., 2011; De Filippo et al., 2013; Arango
Duque and Descoteaux, 2014). We then checked the occurrence
of each of these transcripts in the GO terms associated
with inflammation/immune response, cell signalization and cell
migration biological processes of M[1;6;7], we found that most
of them were actively involved in these three main processes
(Figure 3E). In this regard, we hypothesized that transcripts
related to inflammatory/immune response, cell migration and
transcripts involved in cell signalization could have fingerprinted

the recruitment and/or the differentiation of immune cells
within the myocardium.

We assessed the quantification of macrophages and
neutrophils in mouse heart subjected to surgery by FACS
analysis. A significant 9.3-fold increase of the percentage of high
LY6g-positive cells was found in non-myocytes cell extract from
the myocardium 24 h post-surgery, this suggested an increase in
the population of neutrophils (Figure 3F and Supplementary
Figure S4A). We observed a shift in the phenotypes of F4/80+
and CD11b+ macrophages 24 h post-surgery. First, an increase
in CD206−/CD86− cells was observed (from 41.2 ± 2.9
to 59.3 ± 6.3% of F4/80+/CD11b+ macrophages; adjusted
p-value < 0.0001) as reported in Figure 3F. This suggested
the recruitment of monocytes to the myocardium. Second,
excluding the double negative population of macrophages
(CD206−/CD86−), a transition of double CD206+/CD86+
(from 70.6 ± 4.0 to 48.8 ± 9.5%; adjusted p-value: 0.0013) to
either type M1 (from 10.0 ± 1.8 to 17.4 ± 3.6%; adjusted p-value:
0.2778) or type M2 (from 19.4 ± 2.9 to 33.9 ± 7.0%; adjusted
p-value: 0.0181) was detected (Figure 3F and Supplementary
Figure S4B). This double CD206+/CD86+ phenotype was
previously reported in the heart (Walter et al., 2018); however,
it was not shown whether these cells could evolve to single
CD206+ or CD86+ phenotype over time.

Altogether, our results confirmed the recruitment
of neutrophils and F4/80+/CD11b+/CD206−/CD86−
macrophages/monocytes and showed a possible differentiation
of CD206+/CD86+ macrophages into type2 macrophages (M2)
to the mouse heart within the first 24 h post-surgery. Tissue
regeneration, metabolism, phosphorylation processes which
were major components of the DETs-based GO terms were
only found, and at low percentage, in the groups M[6;7] and
M[1;6;7] (Figure 3D). We thus looked for a complementary
strategy in order to predict the biological pathways involved in
the regulation of these biological processes.

Transcription Factor Enrichment

Analysis and Gene Network Inference
Transcriptomic signature could be considered as the outcome of
a response to a stimulus carried by molecular pathways. Retro-
analysis could thus be used to delve into the molecular history of
the biological system. We started assessing which transcription
factors could have likely regulated DETs and transcripts’ modules.
Over-represented transcription factor binding site (TFBS) in
the promoter sets of the DETs using oPUSSUM software was
calculated by the mean of z-scores and fisher exact test scores.
Z-score measures the change in the TF motifs of the target
set compared to the background set, whereas the fisher score
assesses whether the genes associated with the TF is greater
than what would be expected by chance (Kwon et al., 2012).
We first found that transcripts modules were mainly able to
predict the TF outliers predicted from all DETs like Klf4, SP1,
STAT3, and NFKB1 (Supplementary Figure S5). Noteworthy,
Klf4 and SP1 are two transcription factors which have been
reported to play an inflammatory role, more specifically a role
in macrophage activation and polarization (Feinberg et al., 2005;
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FIGURE 3 | Continued
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FIGURE 3 | Analysis of GO terms enrichment and characterization of immune cells. (A) Scatter plot of z-score and FDR of GO terms predicted from different

transcripts modules (reported as [module number]) and combination of modules (reported as [module number; module number]). Values were filtered for FDR < 10-4

and enrichment factor (z-score) > 2. (B) Bar graphs displaying the count of the filtered GO terms for different groups of transcripts modules and which are shared in

the list of GO terms from DETs. Blue and green colors represent the enrichment score of the terms present in the DET’s GO terms list and the red color represents

the unassigned terms (UA). (C) Bar graph showing which transcripts’ modules recapitulate the best GO terms observed in DETs. Each GO terms accounting in (B)

were counted only once in the module showing the highest z-score value for this GO term. (D) Histogram plot representing the count of GO terms classified into

bigger processes displayed by colors for all DETs and the different groups of modules. (E) Histogram plot representing the count of inflammation/immune response,

cell signalization, and cell migration processes’ GO terms constituting some inflammatory transcripts of M[1;6;7] group of modules displayed by colors. (F) Dot plots

showing the percentage of different cell populations: LY6g + neutrophils (top panel), CD206-/CD86-macrophages (middle panel) and M1, M2, and M1 + M2

macrophages (lower panel) at 0 min and 24 h post-surgery (∗P ≤ 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001).

Lee et al., 2005; Liao et al., 2011; Karpurapu et al., 2014).
This could mean that these two transcription factors reported
mainly modifications in cell subtype rather than changes in the
genotype of resident cells. Besides, we noticed that both F-score
and z-score values of TF enrichment dropped to low values for
transcripts’ modules as compared to those predicted from all
DETs (Supplementary Figure S5). In order to keep the strongest
TFs prediction possible, we thus chose to work only with TF
enrichment from all DETs. Since no objective threshold can be
applied to z-score and F-score, transcription factors were filtered
for F-score below 20 (p-value = 2.06 × 10−9) and thus sorted out
by z-score in five groups cumulating more and more TFs with
lower z-score values (Figure 4A). The next step of our retro-
analysis considered that TFs activity was driven by a response
to stimuli via signalization pathways. We thus took advantage
of the protein-protein interaction (PPI) networks simulated with
STRING which used the different TFs groups as inputs. The first
TF-PPI network was defined as the initial network and it only
relied on the interplay between the TFs.

In the second step, STRING added a first layer of either 5
(+5N) or 10 (+10N) neighboring proteins being the most likely
interactors of the TFs and thus it built the first layer PPI network
(+5N), named first layer of growth. This operation was repeated
consecutively five times. An example of the initial, first layer
and second layer PPI networks performed for TFs group 3 are
displayed in Supplementary Figures S6A–C. TF-PPI networks
were built on an increasing number of proteins from the initial
layer to the fifth layer (+40N) (Supplementary Figure S7) which,
however, depending on the count of initial proteins represented
different growth of the network (Figure 4B). We considered
that a useful network added enough information (neighbors)
to predict the mechanism upstream TFs (receptor, signalization
pathways). In the third step, GO terms predicted for each TF-PPI
network (simulated GO) were retrieved, filtered (FDR < 10−4)
and compared with GO terms of DETs (experimentally derived
GO) to determine the shared GO terms between simulated
data and experimental data. First, we figured out the sensitivity
of the TF-PPI network built by measuring the proportion of
all DETs-predicted GO terms shared in the different TF-PPI
networks. The correlation matrix reported that TF-PPI network
set with a too great input (TFs group 5) saturated between
49 and 61% of all DETs-predicted GO terms regardless of the
addition of neighbor proteins (Figure 4C). This made this kind
of TF-PPI network unable to predict mechanisms upstream of
TFs activation. Conversely, TF-PPI networks set with a too low
input (TFs group 1 and 2) only found 16% all DETs-predicted

GO terms and were thus unable to simulate a network that
could be thought to predict the mechanisms leading to DETs.
However, TFs groups 3 and 4 were able to retrieve between 8
and 58% of all DETs-predicted GO terms. This highlighted that a
correct balance between input and growth of TF-PPI network was
required to gradually find simulated GO terms in DETs-derived
ones. We next figured out the specificity of TF-PPI-networks by
calculating the proportion of GO terms predicted in the TF-PPI
network which were shared with all DETs-predicted GO terms.
The correlation matrix shown in Figure 4D demonstrated that
the growth of TF-PPI networks decreased their specificity. An
optimal specificity was reached at the first growth for TFs group 1
and 2, was almost stable from initial network to the third growth
of the networks for TFs group 3 and 4 and was low for any growth
of the TFs group 5. Altogether, these results demonstrated that
the highest specific TF-PPI networks were TFs group 3 and 4
with growth from the initial to the third layer (Figure 4D). The
most dynamic sensitive networks having percentage of sharedGO
terms above 40% were found for TFs group 3 and 4 with growth
from the third to the fifth layer (Figure 4C) and that the network
growth was above 150% for conditions below a diagonal starting
from first layer of growth TFs group first to fourth layer of growth
TFs group 4 (Figure 4B). From these parameters, we found that
third layer of growth TFs group 3 shown the balance between
specificity, sensitivity and network growth and was selected for
the further analysis.

A branched network representation of third layer of growth
TFs group 3 PPI network is displayed in Figure 5A. K-means
clustering was used to highlight three different portions in
this network (Figure 5A): core network in green which shares
maximum connections with the other part of the network,
secondary network in blue and peripheral network in red. GO
terms associated to this network were filtered (FDR < 10−4) and
then clustered in biological process expressed as percentage of the
total of GO terms (Figure 5B). Cell signalization (36%), tissue
regeneration (27%), metabolism (19%), inflammatory/immune
response (7%), and cell death (5%), and vasculature (2%)
were the main processes supported by the shared GO terms.
Interestingly, these functions could support wound healing and
tissue homeostasis in response to stress and thus could involve
the cardiac resident cells. This first revealed that both metabolism
and tissue regeneration were highly represented, conversely to
what was found with the co-variance analysis, and that the
overall pattern was similar to the pattern obtain from all DETs
(Figure 1D). Comparisons with less sensitive networks, first
layer of growth TFs group 2 PPI network and initial network
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FIGURE 4 | Transcription factor analysis and PPI networks simulation. (A) Scatter plot of z-score and F-score of the over-represented transcription factor binding

site (TFBS) detected in genes of the DET list and generated by oPOSSUM. Only TFs with F-score above 20 are considered. TFs were classified by their z-score as

depicted in the legend. (B) Heat map showing the growth of TF-PPI network size as calculated by the percentage of increase in the number of proteins at each step

of network growth: +5, +10, +20, +30, and +40 neighbors (+5 N; +10 N; +20 N; +30 N; +40 N). TF-PPI networks were simulated from each different TFs groups as

input. TFs group were: group 1 (z-score > | 35|), group 2 (z-score > | 25|), group 3 (z-score > | 15|), group 4 (z-score > | 10|), and group 5 (z-score > | 2|). (C) Heat

map displaying the sensitivity of the networks based on the growth (increase in number of neighbors) and the input (groups of TFs) of TF-PPI. Color gradient displays

the percentage of GO terms of all DETs shared with GO terms derived from TF-PPI network and values indicates the percentage. (D) Correlation matrix between the

growth (increase in number of neighbors) and the input (groups of TFs) of TF-PPI networks reporting the specificity of the networks. Color gradient displays the

percentage of GO terms of TF-PPI network shared with the DET-based GO terms and values indicates the percentage.

of TFs group 4, are depicted in Supplementary Figure S8. The
prediction of biological processes regulated by these networks
failed to recapitulate the ones derived from DETs. This showed
that a careful selection and control of the predicted networks
should be performed.

We concluded that this third layer of growth TFs group 3
PPI network could be a good model of changes induced in cell
networks after surgery and which led to the shift in expression
of DETs. A deeper analysis of this network showed that the
composition of the core network relied on STATs signalization
pathways and was suggested to be highly dependent on Il-6

stimulation. Indeed, the induction of several major TFs regulating
DETs such as STAT3, NFKB1, KLF4, SP1, SOCS3, STAT5a,
STAT5b, REL, REL were linked to the Il-6 axis. In addition, Il-
6 is known to stimulate immune cells recruitment to the injured
tissue via the activation of signalization pathways like the PI3K
and JAK/STAT pathways (Hartman et al., 2016; Tang et al., 2018).
We thus assessed whether and when Il-6 was induced in the
plasma of the same mice on which transcriptomic analysis was
performed. As shown in Figure 5C, a significant and transient
increase in blood Il-6 was detected 45 min post-surgery. These
results suggest that Il-6 is very likely a major and early stimulus
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FIGURE 5 | Transcription factor analysis and PPI networks simulation. (A) TF-PPI network simulated by STRING from TFs group 3 and expanded for three layers

(+20 neighbors). Line connections between proteins displaying the type of interaction. Red circle reports the central position of interleukin 6 in the network. (B) Pie

chart showing the major biological processes expressed as the percentage of GO terms. GO terms predicted from the TF-PPI network shown in (A) and shared in

the list of GO terms derived from were taken for this analysis. (C) Plot representing IL-6 concentration in the plasma of mice at 0 min, 45 min, and 24 h post-surgery

(n = 6 per time point) (∗∗P ≤ 0.05).

induced by the surgery stress at 45 min and which activates
signalization pathways leading to the gene responses.

In conclusion, we propose an analytical pipeline for dynamic
transcriptomic dataset which can be divided into two parts. First
is the use of co-variance analysis of transcript expression leading
to transcript clustering, combination of best transcripts modules
prior to performing GO predictions. This method was efficient

in discriminating modification of cell subtypes in the tissue like
the one caused by immune cell infiltration or differentiation.
Second, we used a retro-analysis strategy which starts with the
prediction of the most potent TFs response elements from the all
DETs and is followed by the simulation of TFs-based PPI network
to predict the major biological processes upstream the TFs
induction. We explained a way to test and select the most specific
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and sensitive predicted networks by comparing the GO terms
predicted from simulated data (TFs) with the experimentally
derived GO terms (from DETs).

By means of FACS analysis and ELISA assay measuring the
level of circulating cytokines, we validated the main hypothesis
raised from the predictions done from the transcriptomic dataset.
Altogether, our results suggest that (i) Il-6 was induced by the
surgery stress and likely initiated the tissue/cell responses and
(ii) the surgery stress induced the recruitment of neutrophils
and monocytes and the differentiation of hybrid M1/M2
macrophages as well. Since it was shown that Il-6 plays a
major role in the neutrophils’ trafficking to the inflammation
site (Kaplanski, 2003; Fielding et al., 2008), it is likely that
Il-6 is activating the immune response in the sham hearts.
Finally, this study demonstrates that the so-called “Sham”
condition must be performed with a similar timing than the
experimental conditions in order to be able to assess the surgery-
based effects and discriminate it from the specific experimental
effect. Indeed, both Il-6 involvement and inflammatory cells
(neutrophils, monocytes/macrophages) recruitment have been
reported in myocardial infarction, making the sham controls
crucial to be performed for each and every time point. Once not
considered, this could have led to an over-estimation of the effect
of ischemia-reperfusion.
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Paccalet A, Tessier N, Paillard M, Païta L, Gomez L, Gallo-
Bona N, Chouabe C, Léon C, Badawi S, Harhous Z, Ovize M,
Crola Da Silva C. An innovative sequence of hypoxia-reoxygenation
on adult mouse cardiomyocytes in suspension to perform multilabel-
ing analysis by flow cytometry. Am J Physiol Cell Physiol 318:
C439–C447, 2020. First published December 25, 2019; doi:10.1152/
ajpcell.00393.2019.—Cardiovascular diseases remain the leading
cause of death worldwide. Although major therapeutic progress has
been made during the past decades, a better understanding of the
underlying mechanisms will certainly help to improve patient’s prog-
nosis. In vitro models, particularly adult mouse cardiomyocytes, have
been largely used; however, their fragility and large size are major
obstacles to the use of flow cytometry. Conventional techniques, such
as cell imaging, require the use of large numbers of animals and are
time consuming. Here, we described a new, simple, and rapid one-day
protocol using living adult mouse cardiomyocytes in suspension
exposed to hypoxia-reoxygenation that allows a multilabeling analysis
by flow cytometry. Several parameters can be measured by fluorescent
probes labeling to assess cell viability (propidium iodide, calcein-AM,
and Sytox Green), mitochondrial membrane potential [DilC1(5) and
TMRM], reactive oxygen species production (MitoSOX Red), and
mitochondrial mass (MitoTracker Deep Red). We address the robust-
ness and sensitivity of our model using a cardioprotective agent,
cyclosporine A. Overall, our new experimental set-up offers a high-
speed quantitative multilabeling analysis of adult mouse cardiomyo-
cytes exposed to hypoxia-reoxygenation. Our model might be inter-
esting to investigate other cellular stresses (oxidative and inflamma-
tion) or to perform pharmacological screening.

cardiomyocytes; flow cytometry; myocardial infarction

INTRODUCTION

Coronary artery diseases are among the leading causes of
death worldwide. Despite major progress made during the past
three decades, the incidence of mortality and heart failure after
a prolonged myocardial ischemia-reperfusion remains way too

high. Despite very encouraging experimental data and proof-
of-concept clinical studies, most protective intervention, e.g.,
“conditioning strategies” have failed so far to bring significant
clinical benefit (6, 12, 13). Obviously, insufficient understand-
ing of the mechanisms of ischemia-reperfusion injury of car-
diomyocytes (CM) exposed to a prolonged hypoxia-reoxygen-
ation (H/R) precludes the development of successful therapies.

To decipher these molecular mechanisms, various cellular
models have been developed over the years. Several cardiac
cell lines are available, and many studies have been performed
using newborn mouse or rat primary CM culture (1, 16). A
more relevant model for studying cardiac function would
however be the isolated adult CM, owing to the preservation of
the contractile apparatus and cellular electrophysiological
properties. However, resistance of adult CM to ischemia-
reperfusion injury varies according to species and the duration
of the experiment, in part because of the inability to detach
them after plating. These cells are not easily transfectable by
lipofection methods and the required adenovirus strategy is not
compatible with their conservation time. Despite reports men-
tioning the possibility of preserving mouse CM several days,
studies have shown that they differentiate after 24 h (2, 21).

As a matter of fact, these cells are mainly used with con-
ventional techniques, including single-cell imaging or fluorom-
etry. As opposed to flow cytometry, these techniques are
time-consuming and necessitate a large sample size to achieve
sufficient statistical power and reproducibility. Flow cytometry
has been performed in mouse heart cells suspensions for
different goals like sorting nonmyocyte cardiac lineage (2, 26,
27, 31), assessing the size of rabbit fixed CM (20), and
evaluating the purification yield or one labeling function per-
formed in mouse and rat CM (9, 17, 27). These studies did not
take advantage of flow cytometry to perform a wide array of
cellular functions under a cellular stress.

In the present study, we describe how an innovative se-
quence of hypoxia-reoxygenation applied to CM in suspension
combined with flow cytometry provides a high-speed quanti-
tative multilabeling analysis. We have built a one-day se-
quence to study key factors of the adaptation to in vitro
ischemia-reperfusion injury. We propose, for example, the use
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of various fluorescent probes to measure several intracellular
physiological parameters such as mitochondrial membrane
potential, reactive oxygen species production, cell viability,
and cell death pathways. Our new protocol sequence holds
promise for a better understanding of the underlying mecha-
nisms of ischemia-reperfusion damages in CM, together with a
more efficient screening of protective treatments.

METHODS

Animals

Eight- to twelve-week-old C57Bl/6J mice (Charles River) were
housed in our laboratory animal facility under controlled-temperature
(23°C) conditions, with a 12:12-h light-dark cycle and free access to
water and food (Standard Diet/SAFE). All mice used in this study
were males. All procedures were applied in accordance with the
principles and guidelines established by the European Convention for
the Protection of Laboratory Animals and were approved by the Lyon
1 Claude Bernard University Committee for Animal Research. In all
experimental protocols, the n value indicates one CM preparation
from one mouse.

All reagents, buffers, culture media, and the troubleshooting con-
cerning the following protocols are described in Supplemental Meth-
ods sections SI, SII, and SIII (all Supplemental Materials are available
at https://doi.org/10.6084/m9.figshare.9852221.v2).

The first objective was to keep CM in suspension, a prerequisite
step for flow cytometry. We propose a methodological chain to allow

the multilabeling of cardiomyocytes to investigate physiological func-
tions under hypoxia-reoxygenation stress conditions (Fig. 1).

Isolation of Adult Cardiomyocytes

Following the protocol of O’Connell et al. (23), the mouse heart
was perfused using the Langerdorff technique for 3 min with the
perfusion buffer at 37°C. Then, the perfusion buffer was replaced by
myocyte digestion buffer for a duration of 2 min. CaCl2 (final
concentration 40 �M) was added to the myocyte digestion buffer, and
digestion was continued for 6 min. Once the digestion was completed,
the heart was removed and placed in a 100-mm dish and cut into small
pieces with myocyte digestion buffer. Pipetting was repeated for
optimal dissociation of the heart.

To check cell viability at the end of the isolation, 250 �L of this
suspension were collected into a cytometry tube containing 250 �L of
stopping buffer. CM morphology was also checked under the micro-
scope using a single drop of cellular suspension. The cell suspension
was then centrifuged for 3 min at 20 g at room temperature. The pellet
was resuspended in 10 mL of stopping buffer containing 200 mM
ATP before calcium reintroduction. Calcium lifts were realized by
successive centrifugations (3 min, 20 g) and changing buffer with
increased calcium concentrations until reaching a final calcium con-
centration at 0.9 mM.

Adult Cardiomyocyte Quantification

At this step, CM were already placed in 900 �M calcium solution.
The supernatant was removed, and 1 mL of complete medium [42.5

30 min 20 min 2 min up to 5 hours 10 min up to 30min

Adult
cardiomyocytes 

isolation
Ca2+ lift

Cell viability
by FACS

(propidium iodide
staining)

Hypoxia-
reoxygenation in 

suspension
Cell

Multilabeling FACS Analysis

Fig. 1. Combining in-suspension hypoxia-reoxygenation protocol with multilabeling flow cytometry analysis to unravel new protective strategies using mouse
adult cardiomyocytes. Schematic representation of the one-day sequence from adult mouse cardiomyocyte isolation to acquisition by flow cytometry.
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mL of MEM, 5 mL of fetal bovine serum (10%), 10 mM 2.3-
butanedione monoxime (BDM), 100 U/mL penicillin/streptomycin, 2
mM glutamine, and 2 mM Na-ATP] was added to the pellet (Fig. 2).

Two microliters of the cellular suspension were diluted 25 times
and used to quantify the protein concentration of this solution. This
quantification was repeated in triplicates to ensure its accuracy.
Standard curve was done with bovine serum albumin at the following
concentrations: 0, 0.2, 0.4, 0.6, 0.8, and 1 mg/mL. Bio-Rad DC
Protein Assay Kit 2 was used to quantify the protein concentration.
Following quantification, 9 mL of complete medium were added to
the previous tube to adjust the final calcium concentration to 1.8 mM.

To check cell viability by flow cytometry at the end of calcium
gradient, 250 �L of this suspension were collected in a cytometry tube
containing 250 �L of complete medium. Of note, a mortality rate
�30% at the end of the Ca2� lifts was necessary to proceed with the
H/R sequence.

Sequence of Hypoxia-Reoxygenation

The suspension of CM was divided into two tubes (Fig. 2): 3.3 mL
in the first tube for the normoxia group and 6.6 mL in the second for
the hypoxia group. These two tubes were centrifuged for 3 min at 20
g. The cell pellets were either rinsed with 5 mL of complete medium

or 5 mL of hypoxia buffer (HB) (in mM: 140 NaCl, 5 KCl, 1 MgCl2,
10 HEPES, and 2 CaCl2) in the hypoxia group to remove any
nutrients. They were then centrifuged for 3 min at 20 g. Eventually,
the volume of hypoxia buffer or CM complete medium was adjusted
to get 1 mg/mL of CM in each tube following the protein quantifica-
tion.

Hypoxia. Isolated CM (250 �g proteins) were put on a glass petri
dish according to the number of experimental groups. Importantly,
glass petri dishes combined with gentle shaking were used to avoid
fixation of the CM to the plate during the experiment. Hypoxic cells
were incubated with 2 mL hypoxia buffer and then transferred into a
hypoxia incubator (Eppendorf Galaxy 48R) on a rocking platform
(Grant-bio PS-M3D: 50 rpm orbital 360° reciprocal 0° vibro) at 37°C.
The O2 percentage was set to 0.5%. Cells were exposed to different
durations of hypoxia (from 45 to 90 min).

Reoxygenation. At the end of the hypoxia phase, the medium was
replaced step-by-step by complete medium. A volume of 500 �L was
replaced by 500 �L of complete medium. This step was repeated three
times to gently change the medium after hypoxia. At the end of the
series of medium changing, 500 �L of complete medium were added
to adjust the final volume at 2 mL of complete medium. Cells were
then placed in an incubator at 37°C (atmospheric O2 without CO2) to

Fig. 2. Experimental design of the cardiomyocyte (CM) preparation for the hypoxia-reoxygenation (H/R) sequence. While the protein content of CM was
quantified, based on the Lowry method, the CM suspension was separated into two tubes according to the experimental groups: in this study, 2/3 for hypoxia
and 1/3 for basal normoxia. One rinsing step was performed to remove any nutrients contamination from the complete medium in the hypoxic group. Finally,
based on the protein quantification obtained, CM were resuspensed in the desired volume to be at 1 mg/mL to be dispensed at 250 �g per glass petri dish. HB,
hypoxia buffer.
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explore a range of reoxygenation durations (from 1 to 3 h). In the
treated group, 1 �M cyclosporine A (CsA) was added at the onset of
the reoxygenation.

Probes Multilabeling

Description of fluorescent probes. We focused our attention on
variables commonly assessed during H/R. MitoSOX was used to
measure the production of the superoxide anion. The MitoTracker
Deep Red evaluated the total mitochondrial mass. To address cell
viability, we used three different probes: propidium iodide (PI), the
gold standard for dead cell labeling acting as an intercalating and
impermeable agent; Sytox Green, comparable to PI, allows the use of
other probes which are not compatible with the optical properties of
PI; and calcein, often used to assess the opening probability of the
mitochondrial permeability transition pore. In the present study, calcein
was considered as a viability index since it is retained by living cells.
Mitochondrial membrane potential was measured using tetramethylrho-
damine methyl ester (TMRM), the gold standard for membrane potential
measurement, or with DilC1(5), according to their emission wavelength
specificity (Table 1). The list and reference of all probes are described in
Supplemental Methods SV.

Probe loading. Ten minutes before the end of the reperfusion
phase, cells were loaded for 10 min at 37°C with one of the labeling
panels (Table 1), except for PI, which was added directly in the FACS
tube right before the acquisition.

One-hundred microliters of concentrated probe were added to the
petri dish with the loading being performed under gentle agitation.
Cells were then collected and transferred into cytometer tubes. Tubes
were centrifuged for 3 min at 20 g: this step was used to wash away
the dyes from the cells. Cells were then resuspended into 500 �L of
complete medium and immediately analyzed by flow cytometry.

Flow Cytometry Acquisition

Flow cytometry experiments were conducted using a BD Fortessa
X-20 flow cytometer with the configuration described in the online
Supplemental Methods Section IV. The flow cell size of the BD
Fortessa X-20 was 430 � 180 �m, i.e., compatible with the adult
mouse cardiomyocyte size. Because the size of the flow cell is stan-
dardized for any flow cytometer in any company (see table in Supple-
mental Methods Section IV), our approach can be applied to all flow
cytometers. Because the CM size varies between 80 and 120 �m, the
488-nm laser needs to be set at 25 mW and the “HIGH” speed was
chosen to ensure a better fluidity of the sample but not to acquire more
events. Data were analyzed by DIVA Software (BD Biosciences). The
population of interest was gated in P1. A threshold of forward scatter
(FSC; 5,000) allowed to eliminate debris and non-CM cells. We decided
to record 1,000 events in triplicates to ensure the quality of the CM. The
viability was checked at the beginning of the H/R sequence by PI
staining. Acquisitions were performed according to the fluorescent chan-
nel corresponding to each fluorescent probe in histogram plots.

As shown in Fig. 1, our goal was to provide an easy and fast
protocol sequence to assess CM main functions following H/R. A
prerequisite of this method was to proceed to the settings of the
population of interest and to the cytometer parameters.

Gating of events. To confirm that our analysis was specific for CM,
the gating of the cardiomyocytes was based on two combined param-
eters. First, the removal of cellular debris due to the primary cell
preparation was done by threshold of population, based on both side
scatter (SSC) and FSC, leading to the P1 gating (in red in Supple-
mental Fig. S1A). Second, to check the enrichment of the CM
population after isolation, we performed an immunostaining of the
cells by flow cytometry with an antibody against troponin T as a
CM-specific marker. Cells in the P1 gate were positive for troponin T,
which reflects an enrichment of pure CM population after isolation
and calcium lifts (Supplemental Fig. S1A). Thus the combination of
these two gating strategies allowed us to proceed for acquisition on
our population of interest, i.e., CM. Cell viability was checked
throughout the experiment by PI staining (Supplemental Fig. S1B).

Settings of flow cytometer parameters to perform multilabeling
analysis of CM: control with unstained cells. The settings of each
photomultiplying tube (PMT) for each fluorescent channel were done
using unstained versus stained cardiomyocytes. The unstained CM
were arbitrarily set to the low logarithmic scale by adjusting the PMT
to better discriminate the stained cells. The goal of the experiment was
to compare the effect of H/R in a control (placebo) versus a treated
(CsA) group. To perform our multilabeling panels, settings for panel
1 [calcein, DilC1(5), and propidium iodide; Fig. 3A], for panel 2
(MitoSOX Red and MitoTracker Deep Red; Fig. 3B), and for panel 3
(Sytox Green and TMRM; Fig. 3C) were realized according to the
configuration of the Fortessa X-20 flow cytometer (emission filters for
each fluorescent channel: Table 1). Some probes were read on the
same channel, and for MitoTracker Deep Red (MTR) and DilC1(5),
the same unstained control was used (data not shown). As for the
subsequent analysis, results were expressed as a percentage of posi-
tively stained population (PI, Sytox Green, and MitoSOX) or nega-
tively stained population corresponding in that case to the loss of
fluorescence intensity [DilC1(5), TMRM, and calcein]. MTR varia-
tions were analyzed by the median of fluorescence intensity since the
mitochondrial mass gives a global fluorescence intensity.

Statistical Analysis

The nonparametric statistical test of Kruskal-Wallis with Dunn’s
post hoc test was used in Fig. 4, which presents nonranked data sets.
The nonparametric statistical test of Friedman, for ranked data, fol-
lowed by Student-Newman-Keuls post hoc test was used in Fig. 5.
Data are expressed as median of relative fluorescent intensity or of
percentage of population � interquartile (25%–75%). All statistical
analyses were done with Sigma Plot software. Differences were
considered significant at P � 0.05. The sample size for each experi-
ment is reported in the figure legends.

Table 1. Fluorescent probes used in adult CM exposed to hypoxia-reoxygenation

Probe Extracted Information Concentration Loading Time Excitation/Emission Maximum, nm

Panel 1
Propidium iodide Viability 1 �g/mL Extemporarily (before acquisition) 535/620
DilC1(5) Mitochondrial membrane potential 15 nM 10 min 638/658
Calcein AM Viability 1 �M 10 min 488/520

Panel 2
MitoSOX red Superoxide indicator 2 �M 10 min 510/580
MitoTracker Deep Red FM Mitochondrial mass 50 nM 10 min 644/665

Panel 3
TMRM Mitochondrial membrane potential 20 nM 10 min 548/574
Sytox Green Viability 1 �M 10 min 504/523

The probes were separated into 3 panels according to their optical properties (excitation and emission wavelengths). CM, cardiomyocytes; TMRM,
tetramethylrhodamine methyl ester.
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RESULTS

Optimization of the H/R Sequence in Suspension by Flow
Cytometry Analysis in CM

Our primary goal was to design a new and innovative 1-day
long protocol to explore the mechanisms of the tolerance of
CM to H/R and screen protective treatments. We set up a
modified version of the routinely used protocols of H/R. Since
plated CM cannot be detached without affecting their viability
and functions, we decided to perform the H/R sequence in a
suspension of CM, under gentle shaking. Light shaking was
effectively required to avoid potential plating of CM on the

dish and glass petri dishes were also used to decrease cell
adhesion. The time duration of the H/R stress sequence was
optimized to induce cell death yet still enabled the evaluation
of the protective effect. Based on our previous H/R protocols
(10, 24), we first considered three durations of hypoxia at 0.5%
O2: 45, 60, and 90 min (Fig. 4A). Flow cytometry analysis of
PI-positive CM revealed that 60 and 90 min of hypoxia
induced high levels of cell death (60 min: 87 � 4%, 90 min:
84 � 8%), leading to a very narrow window to reverse cell
damage or create additional reoxygenation injury. Cell death
averaged 63 � 7% after 45 min of hypoxia (Fig. 4B);
therefore, we chose 45 min as the hypoxia duration. Then,

Fig. 3. Validation of the settings of each fluorescent channel.
Left histograms represent the basal normoxic (BN) conditions.
Right histograms display the peak distribution of stained cells
after hypoxia-reoxygenation (H/R). A: for panel 1, probes:
calcein, DilC1(5) and propidium iodide. B: for panel 2, probes:
MitoTracker Deep Red (MTR) and MitoSOX Red. C: for panel
3, probes: tetramethylrhodamine methyl ester (TMRM) and
Sytox Green. Note that the same unstained cells were used for
MTR and DilC1(5).

C443INNOVATIVE HYPOXIA-REOXYGENATION SEQUENCE IN SUSPENSION

AJP-Cell Physiol • doi:10.1152/ajpcell.00393.2019 • www.ajpcell.org
Downloaded from journals.physiology.org/journal/ajpcell at INSERM (193.054.110.061) on March 1, 2021.



we selected the optimal time of reoxygenation to obtain a
major reoxygenation damage (Fig. 4C). There was a signif-
icant 28% increase in CM death between 1 and 3 h of
reoxygenation, depicting the reoxygenation injury. Impor-
tantly, the percentage of dead CM in each group was
comparable to that previously obtained in a plated model
(10). Eventually, we set our H/R protocol in suspension to
45 min of hypoxia followed by 3 h of reoxygenation. This
sequence was the optimal to induce CM death and to define
the potential window for protective strategies.

Multilabeling Flow Cytometry Analysis of CM Allows
Assessment of Protection Against H/R

We designed this new methodology both for screening
putative protective interventions and for investigating the po-
tential role of proteins in cardiovascular diseases using trans-
genic animals. To test the ability of our model to evaluate
protective interventions (Fig. 5), we used CsA that has previ-
ously been shown to attenuate ischemia-reperfusion injury in
various animal models (15, 29). We designed three comple-
mentary panels to simultaneously assess the effect of the
administration at the time of reoxygenation of 1 �M CsA, on
both cell viability and mitochondrial functions, including 1) PI,
DilC1(5), and calcein; 2) MitoSOX and MitoTracker Deep
Red; and 3) TMRM and Sytox Green. The baseline normoxia
controls were used to address cells before exposure to H/R.
The effect of CsA on reperfusion injury was evaluated by
comparing groups exposed to H/R with or without CsA.

CsA significantly and consistently decreased cell death as
measured either by PI or Sytox Green (i.e., due to the permea-
bilization of damaged cells) and calcein (Fig. 5A). Because
CsA was added at the time of reoxygenation, the observed
13–15% decrease in cell death in the CsA-treated CM suggests
a near 50% attenuation of the reoxygenation injury (Fig. 4.), in
agreement with the well-known protective effect of this drug.
TMRM and DilC1(5) were used to measure mitochondrial
membrane potential in two different panels. No significant
change in mitochondrial membrane potential was observed
with DilC1(5). In contrast, TMRM detected a decrease of
negatively stained cells, suggesting a mild recovery of H/R-
reduced mitochondrial membrane potential in CM after CsA
treatment (Fig. 5B). CsA did not prevent the H/R-induced
increase in superoxide anion production (MitoSOX) and did
not modify the mitochondrial mass (MitoTracker Deep Red)
(Fig. 5C). Overall, our multilabeling analysis by flow cytom-
etry was able to confirm that CsA can attenuate CM cell death
following H/R and further showed that this protection is not
mediated by oxidative stress and does not involve any change
in mitochondrial morphology. Data supplements can be found
at https://doi.org/10.6084/m9.figshare.11416749.

DISCUSSION

Up to now, the use of flow cytometry for mechanistic studies
in adult mouse CM has been limited by the high fragility and
large size of these cells. Multilabeling analysis by flow cytom-
etry allows an individual, qualitative, and quantitative unbiased
characterization of cells. We here report and validate a new
protocol that overcomes the cellular size and fragility issues.

There have been many attempts during the past three de-
cades to develop new therapies that would attenuate ischemia-
reperfusion injury and improve clinical outcomes in patients
with acute ischemic heart disease (3, 19, 25, 30). Unfortu-
nately, most studies were neutral or negative (7, 8, 11, 28, 32,
33). Part of the explanation might be due to insufficient
in-depth understanding of the mechanisms of CM cell death
after a prolonged ischemic insult. Although the adult mouse
CM is recognized as a fragile cell model, it remains the most
relevant for in vitro cardiac analysis when compared with
cell lines or neonatal CM (4). Isolation of adult mouse CM
has not been standardized, and there is still no reference
method. A major challenge is to keep cells viable with

Fig. 4. Optimization of the sequence of hypoxia-reoxygenation on adult mouse
cardiomyocytes. A: design of experimental procedure to optimize both hypoxia
and reoxygenation (H/R) times. B: cell viability was evaluated by propidium
iodide (PI) staining at the end of the different hypoxia durations (45, 60, and
90 min). Data were collected from 4 to 6 independent mice. C: cell viability
was also evaluated by PI staining at the end of the different reoxygenation
times (1, 2, and 3 h) following 45-min hypoxia. Data are from 8 independent
mice. All data are expressed as a percentage of PI-positive cells. The nonpara-
metric statistical test of Kruskal-Wallis with Dunn’s post hoc test was per-
formed. *P � 0.05. Data are expressed as median of percentage of popula-
tion � interquartile (25%–75%).
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preserved morphological and metabolic characteristics. In-
vestigation of adult CM functions remains complex and is
usually done using spectrophotometry, spectrofluorometry,
and microscopy. These techniques are time and material

consuming, have low statistical power, and carry a risk of
biased analysis, notably in single-cell imaging.

We endeavored to adapt the powerful analytic potential of
flow cytometry to isolated adult mouse CM. The originality of

Fig. 5. Cyclosporine A (CsA) postconditioning (PostC) as a typical example of drug effect on cardiomyocytes (CM) after hypoxia-reoxygenation (H/R) by
multilabeling flow cytometry analysis. Results are presented for the 3 experimental groups: basal normoxia (BN), H/R, and H/R � CsA. A: cell viability was
assessed by staining with three fluorescent probes: propidium iodide (PI), calcein, and Sytox Green. Data are from 8 independent mice. B: impact of CsA on
mitochondrial membrane potential, assessed by DilC1(5) and tetramethylrhodamine methyl ester (TMRM) probes. Data are from 6 independent mice. C:
MitoSOX and MitoTracker Deep Red allowed to measure reactive oxygen species production and mitochondrial mass, respectively. Data are from 8 independent
mice. The nonparametric statistical test of Friedman followed by Student-Newman-Keuls post hoc test was performed. *P � 0.05. Data are expressed as median
of percentage of population � interquartile (25%–75%) except for MitoTrackerDeep Red, where results are represented as median of fluorescence inten-
sity � interquartile (25%–75%).
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our protocol sequence comes from the ability to keep the CM
in suspension, to validate the gating of CM by flow cytometry,
and to combine a hypoxia-reoxygenation stress to a multila-
beling analysis. A disadvantage of the suspension method is
that it leads to some extra cell death when compared with the
plating model in which dead cells are washed away and only
living cells stay attached to the matrix coating.

The constant development of new analytical tools and new
fluorescent probes allowed us to perform multilabeling analysis
in one single sample. We used H/R and a known protective
treatment, CsA, to examine the sensitivity of our methodology.
In line with previous in vitro and in vivo studies (5, 18, 22, 29),
our new model was able to show the protective effect of CsA
on cell death, as assessed by three different markers with a
limited variability and a good sensitivity. PI and Sytox Green,
working as intercalating agents, showed comparable results to
the cell-permeant fluorescent probe calcein, i.e., validating the
combination of these probes in different panels. Currently
available fluorescent probes allow assessment of other cell
death pathway (apoptosis and autophagy) as well as various
functions such as calcium fluxes (Fluo 4 and Rhod 2) or
intracellular pH variations (SNARF indicators).

Our protocol can be applied with all existing and to-be-
developed fluorescent probes. It can also be extended to com-
pare transgenic animals for proteins supposedly involved in
cardiovascular diseases. This method is particularly suitable
for studying valuable samples, with limited amount of tissue,
such as cardiomyocytes isolated from patient left ventricle
biopsies during cardiac surgery.

In conclusion, we expect that this new method will expand
and accelerate innovative research in the field of cardiac
biology. It could be applied to studies of other stresses, such as
oxidative stress and inflammation, which are two major pro-
cesses involved into irreversible tissue damage during acute
myocardial infarction.

Strengths and Limitations

Strengths. We set up a new original method to keep the adult
mouse CM in suspension and allow multilabeling analysis by
flow cytometry. We used a sequence of hypoxia-reoxygenation
as a stress to demonstrate the possibility to measure cellular
parameters after a combined stress and pharmacological treat-
ment (CsA). This new approach not only enables the measure-
ments of several physiological parameters from a single prep-
aration of primary cardiac cells, but it also represents a time-
saving method, limiting the number of animals used to achieve
the required statistical power, in line with the 3R rules of the
applicable regulations of animal experimentation.

Compared with routinely used sequences of plated H/R
followed by microscopy analysis, our new approach provides
several advantages: 1) it enables the measurements of several
physiological parameters from a single preparation of primary
cardiac myocytes; 2) it represents a time-saving method; 3) it
limits the number of animals used to achieve the required
statistical power, in agreement with the 3R rules imposed by
the applicable regulations of animal experimentation, and 4) it
decreases the risk of biased data.

Limitations. This method has been set up based on the
material available in our laboratory and according to the CM
isolation protocol described in this article. Depending on the

animal species (mouse, rat, pig, human�), the isolation method
(Langendorff, syringe, enzyme type�), and the material used to
realize the sequence (incubator, shaking platform) may be
adjusted. Our in vitro proposed method should be considered
as a first step in a screening strategy to eliminate the toxic and
noneffective candidates and should be used in combination
with in vivo cardiac ischemia-reperfusion models in mice to
validate the in vivo efficiency of potential candidates (14). The
demonstrated dedifferentiation of mouse CM after 24 h unfor-
tunately precludes a longer reoxygenation time to assess long-
term effect of H/R.
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Heat Shock Protein
70 as a Biomarker of
Clinical Outcomes
After STEMI

Inflammation is a major component of tissue repair
after acute myocardial infarction (MI). Excessive
inflammation exacerbates myocardial injury in
some circumstances. Little is known regarding the
modulators of the inflammatory response after MI.
Damage-associated molecular patterns (DAMPs), also
known as alarmins, are molecules released by injured
cells that contribute to the initiation of the inflam-
matory response after MI. Heat shock protein
70 (HSP70) is a 70-kd stress-inducible protein whose
intracellular increased expression improves the
tolerance of cardiomyocytes to ischemia/reperfusion
injury (I/R) (1). Alternatively, when released from
injured cardiomyocytes during acute MI, HSP70
may behave as a DAMPs and trigger detrimental
pro-inflammatory effects (2–4). However, its release
kinetics and potential relationship with clinical
outcome are unknown. Our objective was to deter-
mine the kinetics of HSP70 release within the first
month after acute MI in a population of patients
admitted for ST-segment elevation myocardial
infarction (STEMI) and its relationship with infarct
size, left ventricular (LV) remodeling, and clinical
prognosis.

From 2016 to 2018, we prospectively enrolled in
our hospital 251 consecutive patients with STEMI who
underwent percutaneous coronary intervention (PCI)
revascularization into a prospective cohort. Blood
samples were collected at 5 time points: admission
and 4 h, 24 h, 48 h, and 1 month after admission (H0,
H4, H24, H48, M1). Samples were stored at �80�C.
HSP70 serum levels were assessed using an enzyme-
linked immunosorbent assay (R&D Systems, Minne-
apolis, Minnesota) according to the manufacturer’s
instructions. Patients underwent cardiac magnetic
resonance imaging at 1 month for infarct size and LV
ejection fraction assessment. Clinical outcomes were
prospectively recorded. We used GraphPad Prism
version 8.2.1 (GraphPad, La Jolla, California) for

statistical analysis. Wilcoxon matched-pairs signed
rank test was used to compare HSP70 levels at
different time points. Comparison of survival curves
was made using the log-rank (Mantel-Cox) test.
A p value <0.05 was considered to be statistically
significant.

The mean age of the study population was 59 �
12 years, and 48.5% patients exhibited anterior MI.
Serum HSP70 significantly increased at H4 with a
median of 133.7 pg/ml (95% confidence interval:
99.2 to 175.6 pg/ml) and was back to near baseline
level at H24 (Figure 1A).

We compared patients with HSP peak level over
versus under the median value of the study popula-
tion. Patients with an HSP70 peak level greater than
the median displayed a significantly larger final
infarct size (17.2% [interquartile range (IQR): 11.0% to
29.3%] of LV mass vs. 9.1% [IQR: 4.5% to 20.0%];
p < 0.0001), a significantly larger indexed LV end-
systolic volume (45.0 ml/m2 [IQR: 35.1 to 55.0 ml/m2]
vs. 37.3 ml/m2 [IQR: 29.7 to 47.1 ml/m2]; p ¼ 0.001),
and a significantly lower LVEF (50.0% [IQR: 41.3% to
57.0%] vs. 55.0% [IQR: 48.0% to 59.0%]; p ¼ 0.001) on
cardiac magnetic resonance imaging.

A total of 27 patients experienced a clinical adverse
event during the median 18-month follow-up (5 all-
cause deaths, 4 MIs, 4 strokes, and 14 hospitaliza-
tions for heart failure). Patients with peak levels of
HSP70 over the median value of the population were
more likely to have an adverse clinical event during
the first 18 months after STEMI (hazard ratio: 2.6; 95%
confidence interval: 1.2 to 5.8; p ¼ 0.02) (Figure 1B).

Although the role of HSP70 as DAMPs remains
debated, it is admitted that extracellular HSP70 is a
modulator of the inflammatory response (5). We
report that MI is associated with a significant early
and transient increase of HSP70 release. Importantly,
patients exhibiting high HSP70 levels have larger in-
farcts, increased LV dilatation, and worse clinical
outcome at 18 months after MI. This suggests that
serum HSP70 might be an early prognosis biomarker
in patients with STEMI.

*Thomas Bochaton, MD, PhD
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FIGURE 1 HSP70 Release Kinetics and Adverse Clinical Events in Patients With STEMI
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Safely Ruling Out
Myocardial Infarction
Using a Single Cutoff
Troponin Measurement

We congratulate Sandoval et al. (1) for their important
study confirming, for the first time in a U.S.-based
study, the safety and efficacy of using a single high-
sensitivity cardiac troponin I (hs-cTnI) measurement
strategy for stratifying patients with suspected
myocardial infarction (MI). May we kindly ask the

investigators to provide some additional information
to help put their findings into clinical perspective?

First, adjudication of MI performed at each study
site included concentrations of cTn measured by
different contemporary and not hs-cTn assays
(except for 1 site). Please estimate the percentage of
missed MIs using these less sensitive assays and the
resulting drop in sensitivity if applied in clinical
practice using hs-cTnI. Previous studies found a
relative increase in the prevalence of MI of 22% (2).
Second, please quantify the time from chest pain
onset and time from presentation to the first study-
specific blood draw. We are highly concerned that
due to major delays in getting the first sample, your
findings related to early presenters may not apply to
clinical practice. Please provide the sensitivity for
early presenters defined as time from chest pain onset
to study blood draw <3 h (3,4). Clinicians obviously
need this information. Third, 20% of patients did not
have chest pain. Could such a high proportion of non-
chest pain patients have overestimated the overall
safety, because in patients with chest pain, sensitivity
decreased to 98%?
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Abstract

Introduction
Myocardial hemorrhage (IMH) and persistent microvascular obstruction (MVO) are associ-

ated with impaired myocardial recovery and adverse clinical outcomes in STEMI patients.

However, their relationship with circulating inflammatory biomarkers is unclear in human

patients.

Methods and results
Twenty consecutive patients referred for primary percutaneous coronary intervention of first

STEMI were included in a prospective study. Blood sampling was performed at admission,

4, 12, 24, 48 hours, 7 and 30 days after reperfusion for inflammatory biomarker (C reactive

protein, fibrinogen, interleukin-6 (IL-6) and neutrophils count) assessment. At seven days,

cardiovascular magnetic resonance (CMR) was performed for infarct size, MVO and IMH

assessment. Median infarct size was 24.6% Interquartile range (IQR) [12.0–43.5] of LV

mass and edema was 13.2% IQR [7.7–36.1] of LV mass. IL-6 reached a peak at H24 (5.6

pg/mL interquartile range (IQR) [2.5–17.5]), CRP at H48 (11.7 mg/L IQR [7.1–69.2]), fibrino-

gen one week after admission (4.4 g/L IQR [3.8–6.7]) and neutrophils at H12 (9.0 G/L IQR

[6.5–12.7]). MVO was present in 11 patients (55% of the study population) and hemorrhage

in 7 patients (35%). Patients with IMH had significantly higher IL-6, CRP, fibrinogen, and

neutrophils levels compared to patients without IMH. Patients with persistent MVO had
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significantly higher CRP, fibrinogen and neutrophils level compared to patients without

MVO, but identical IL-6 kinetics.

Conclusion
In human patients with acute myocardial infarction, intramyocardial hemorrhage appears to

have a stronger relationship with inflammatory biomarker release compared to persistent

MVO. Attenuating myocardial hemorrhage may be a novel target in future adjunctive STEMI

treatments.

Introduction
Cardiovascular disease, including acute myocardial infarction (MI), is the leading cause of

death in Western countries [1,2]. Early reperfusion is currently the most effective treatment to

reduce infarct size (IS) resulting fromMI [3]. Although reperfusion reduces IS, it causes addi-

tional myocardial damage by itself. This process is called ischemia-reperfusion (I/R) injury [4].

Among, the different mechanisms involved in I/R injury, inflammation plays a significant part

in the final damage to the ischemic myocardium [5]. The necrosis of ischemic cardiomyocytes

triggers an intense inflammatory reaction releasing several mediators, including cytokines [6].

An excessive inflammatory response can cause adverse effects, leading to left ventricular

remodeling (LV) and heart failure [5]. Inflammation is assessed through several biomarkers.

C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen and neutrophils count are key

inflammatory biomarkers and have been widely studied. They are all related to infarct size and

long-term prognosis following MI [7–13]. However, the release kinetics of these biomarkers in

reperfused human patients and their relationship with specific components of myocardial

injury is poorly known [5,14,15].

Contrast-enhanced cardiovascular magnetic resonance (CMR) is a non-invasive technique

that allows the accurate assessment of infarct size, edema, and areas with persistent microvas-

cular obstruction (MVO) or intramyocardial hemorrhage (IMH) [16]. MVO and IMH are

independent predictors of adverse LV remodeling and major adverse cardiovascular events

(MACE) [16]. In experimental models of ischemia-reperfusion, it was shown that hemoglobin

extravasation occurring during MVO and IMH induce a deposit of ferric iron crystals within

the infarcted myocardium [17]. These iron crystals induce a sustained pro-inflammatory

response [17]. The relationship between post-MI inflammation and the presence of MVO and

IMH are not known.

The primary objective of our study was to assess the relationship between markers of CMR

severity (IMH and persistent MVO) and the kinetics of the main pro-inflammatory biomark-

ers (CRP, fibrinogen, IL-6 and neutrophils count) in patients with a first acute ST-elevation

myocardial infarction (STEMI) referred for primary percutaneous coronary intervention.

Methods

Study population

Consecutive patients admitted with a STEMI and referred for primary percutaneous coronary

intervention (PCI) were prospectively enrolled at a single tertiary university hospital. STEMI

was defined by the presence of clinical symptoms associated with an ST-elevation of more

than 2 mm in two contiguous leads on a standard 12-lead electrocardiogram, or recent Left
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Bundle Branch Block (LBBB), and presentation within 12-hours of symptom onset according

to the European Society of Cardiology [18].

Only patients with a single occluded infarct-related artery (Thrombolysis in Myocardial

Infarction grade�1) and optimal reperfusion (final TIMI flow�2) were included. To obtain a

broad sample of infarct size, half of the patient population had a STEMI in the anterior terri-

tory and the other half in the inferior territory (LAD and RCA culprit coronary respectively).

These selection criteria were set before patient enrollment.

Patients were included if they had: (i) no previous MI, (ii) demonstrated acute single-vessel

occlusion; right coronary artery or left coronary artery, (iii) underwent optimal revasculariza-

tion with TIMI flow� 2 post PCI (iv) had no contraindications to CMR imaging.

Reasons for non-inclusion were as follow: history of prior myocardial infarction, cardio-

genic shock, prior cardiac arrest, any contraindication to cardiac CMR (claustrophobia, pace-

maker or cardiac defibrillator, known allergy to gadolinium), presence of permanent atrial

fibrillation, unconscious patient, severe renal insufficiency (creatinine clearance� 30 ml/min/

m2 or renal replacement therapy), long-term immunosuppressive therapy or chronic

immunosuppression.

Our institutional review board and Ethics Committee approved this prospective mono-

centric study. All patients gave written informed consent. The trial design and protocol have

been registered ClinicalTrials.gov Identifier: NCT02823886.

Blood sampling protocol

Seven blood samples were collected for each patient. Venous blood samples were collected at

admission to the hospital immediately before PCI and 4 hours, 12 hours, 1 day, 2 days, one

week and one month following successful revascularization (H0 H4, H12, H24, H48, 1 week,

and 1 month). Each blood sample was centrifuged and treated carefully and stored at the Neu-

roBioTec Biological Resource Center at -80˚ C within 4 hours of blood sampling. All samples

from our study population were thawed only once to avoid cytokine alteration.

Biomarkers measurements

IL-6 concentrations were measured by the Human IL-6 Quantikine ELISA Kit (R&D Systems,

Minneapolis MN, USA). The limit of detection was 0.7 pg/mL. C-reactive protein (CRP) was

determined using immunoturbidimetric methods. Fibrinogen levels was measured in plasma

using the Clauss method. Leucocytes and neutrophils count were assessed using fluorescence-

activated cell sorting (XN-9000 SYSMEX) at the Hospices Civils de Lyon laboratory.

Cardiac magnetic resonance protocol

All patients were scanned on a 1.5T CMRMAGNETOM Avantofit system (Siemens, Erlangen,

Germany). An intravenous bolus of gadolinium (0.2 mmol/kg body weight; Dotarem, Guerbet,

France) was injected by a power injector (Medrad Spectris, Vol-kach, Germany) flushed by 15

ml of saline serum. Late gadolinium enhancement (LGE) was evaluated 10 minutes after con-

trast injection using a 3D-gradient spoiled TurboFLASH sequence with a selective 180˚ inver-

sion recovery pre-pulse, in the short axis covering the whole ventricle. LV function at rest was

assessed with retrospective ECG-gated steady-state free precession pulse cine sequences (cine

TrueFISP) in long and short axis views in the true heart axis. Left ventricular ejection fraction

(LVEF), LV end-diastolic volume (EDV), LV end-systolic volume (ESV) and myocardial mass

were calculated for each patient with the post-processing software CMR42 (Circle Cardiovas-

cular Imaging Inc., Calgary Canada).
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Infarct size was assessed on the 3D data sets by manual planimetry of the LGE images using

the post-processing software Osirix (OsiriX Foundation, Geneva, Switzerland). Thus, for all

slices infarct absolute mass in grams was measured according to the following formula:

Infarct mass (g) = ∑ (hyper enhanced area(cm2)) ×slice thickness (cm)×myocardial specific
density (1,05 g/cm3). Relative infarct size (%) was obtained by the ratio of (absolute infarct

mass (g)/ LV myocardial mass (g)) ×100.
Edema was quantified in T2 map images using the full-width at half maximum method.

(FWHM). Edema was expressed as a percentage of the LV myocardial mass.

Persistent microvascular obstruction was detected on LGE images as hypointense regions

in the core of the infarct.

Intramyocardial hemorrhage was identified using T2�-weighted imaging as a hypointense

region of reduced signal intensity within the infarcted area, with a T2� value of<20 ms. Delin-

eation of IMH and MVO was performed by two experienced readers (N.M and C.D.B).

Statistical analysis

Levels of inflammatory biomarkers were identified as not normally distributed. Therefore,

those variables were expressed as medians, and interquartile range (IQR) or 95% confident

interval and non-parametric tests were used for comparison between groups. At each time-

point, comparisons between groups were performed using a Mann-Whitney test. Categorical

variables were analyzed using Fisher’s exact test. Correlations were done using Pearson corre-

lation method. We used GraphPad Prism 8.4.2. A p-value<0.05 was considered significant.

Results

Baseline characteristics

Twenty consecutive patients referred for primary percutaneous coronary intervention of first

anterior or inferior STEMI were included. Patient characteristics at baseline are presented in

Table 1. Briefly, they were 55±15 years old with 85% males. There were 55% of anterior MI

Table 1. Baseline characteristics of the study population. Values are mentioned as mean ± SD, median with [inter-
quartile range], or absolute number (with percentage).

Age (yr) 55 ± 15

Male Genders no. (%) 17 (85)

Body Mass Index (kg/m2) 27 ± 4

Systolic Blood Pressure (mmHg) 122±20
Diastolic Blood Pressure (mmHg) 73±20
Heart Rate (bpm) 74±15
Current Smoker no. (%) 11 (55)

Diabetes mellitus no. (%) 3 (15)

Dyslipidemia no. (%) 4 (20)

Hypertension no. (%) 4 (20)

Ischemia time (min) 163 [129–402]

Killip class at admission no. (%)

Killip = 1 18 (90)

Killip� 2 2 (10)

Infarct-related artery no. (%)

Left anterior descending coronary artery no. (%) 11 (55)

Right coronary artery no. (%) 9 (45)

https://doi.org/10.1371/journal.pone.0245684.t001
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and 45% of inferior MI. CMR imaging was performed for all the patients at a median of 8 days

(interquartile range IQR [6–8] days) following PCI. A representative case of a patient with

images of myocardial infarction, MVO and IMH is reported in Fig 1. Median infarct size was

24.6% of LV mass IQR [12.0–43.5], and edema was 13.2% of LV mass IQR [7.7–36.1]. Intra-

myocardial hemorrhage, as defined by T2� imaging was present in 7 patients (35% of the study

population). Microvascular obstruction with late gadolinium enhancement CMR was present

in 11 patients (55%). CMR infarct parameters are presented in Table 2.

All patients underwent blood sampling at seven-time points (n = 136, n missing = 4): before

PCI, 4 hours (H4), 12 hours, 1 day, 2 days, 1 week and 1 month following successful

revascularization.

Global kinetics of the four biomarkers is presented on Fig 2. In our cohort we observed that

IL-6 reached a peak at 5.6 pg/mL IQR [2.5–17.5] twenty-four hours after admission (p = 0.002

compared with admission, Fig 2A). C-reactive protein reached a peak forty-eight hours after

admission at 11.7 mg/L IQR [7.1–69.2] (p<0.0001 compared with admission level, Fig 2B).

Fibrinogen reached a delayed peak seven days after admission at 4.4 g/L IQR [3.8–6.7]

(p<0.0001 compared with admission, Fig 2C). Neutrophils reached an early peak twelve hours

after admission at 9.0 G/L IQR [6.5–12.7] (p<0.0001 compared with baseline level at one

month, Fig 2D). The peak of each biomarker was significantly correlated with IS assessed by

CMR (r = 0.55, p = 0.01 for CRP, r = 0.64, p = 0.003 for IL-6, r = 0.78, p<0.0001 for fibrinogen

and r = 0.67, p = 0.001 for neutrophils). Furthermore, the peak of each biomarker was inversely

Fig 1. Cardiac magnetic resonance in a patient with an inferior ST-elevation myocardial infarction, treated by
primary percutaneous coronary intervention. A. Late gadolinium enhancement (LGE) imaging shows the area of
microvascular obstruction (red arrow) in the core of inferior transmural infarction (blue arrow). Contrast fails to
penetrate the areas of microvascular obstruction and appears as pseudonormal myocardium. B. T2� mapping shows an
area of intra-myocardial hemorrhage (red arrow).

https://doi.org/10.1371/journal.pone.0245684.g001

Table 2. Cardiac magnetic resonance parameters. Values are mentioned as median with [interquartile range], or
absolute number (with percentage).

LV end-diastolic volume (mL) 177.0 [168.0–191.3]

LV end-systolic volume (mL) 90.0 [69.5–105.0]

LV mass (g) 150.0 [123.8–167.3]

LV ejection fraction (%) 53.0 [44.5–57.8]

Infarct Size (% of LV) 24.6 [12.0–43.5]

Edema (% of LV) 13.2 [7.7–36.1]

Presence of MVO no. (%) 11 (55)

Presence of IMH no. (%) 7 (35)

https://doi.org/10.1371/journal.pone.0245684.t002
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correlated with LVEF assessed by CMR (r = -0.71, p = 0.0005 for CRP, r = -0.68, p = 0.0009 for

IL-6, r = -0.80, p<0.0001 for fibrinogen and r = -0.58, p = 0.007 for neutrophils).

Association between IMH and inflammatory biomarkers

The association between inflammatory biomarkers kinetics and IMH are reported in Fig 3.

Patients were divided into two groups according to the presence (n = 7/17) or absence

(n = 10/17) of IMH. IMH was undetermined for 3 patients. Patients with IMH had signifi-

cantly higher IL-6 peak levels (at H24) compared to patients without IMH (18.2 pg/mL IQR

[5.82–66.5] versus 3.8 pg/mL IQR [1.3–8.0] respectively, p = 0.04) (Fig 3A). Patient with IMH

had higher CRP and fibrinogen levels one week after the admission for MI compared to

patients without IMH (3.4 mg/L IQR [2.5–5.1] versus 29.8 mg/L IQR [5.7–75.8] for CRP,

p = 0.01 and 4.0 g/L IQR [3.3–4.5] versus 7.1 g/l [4.6–9.3] for fibrinogen, p = 0.002) (Fig 3B

and 3C). Patients with IMH had significantly higher neutrophils count levels from H4 to 1

week following MI with a peak at H4 (13.8 G/L IQR [10.9–15.6] versus 7.5 [5.9–8.6],

p = 0.0006) (Fig 3D).

Fig 2. Interleukin-6 (IL-6), C-reactive protein (CRP), fibrinogen and neutrophils count kinetics according within the first month after STEMI.Data
are expressed as median with interquartile range (IQR). H4: four hours after admission, H12: twelve hours after admission, H24: twenty-four hours after
admission, H48: forty-eight hours after admission. �p<0.05, ��p<0.01, ���p<0.001, ����p<0.0001 in comparison with admission level.

https://doi.org/10.1371/journal.pone.0245684.g002
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Association between persistent MVO and inflammatory biomarkers

The association between inflammatory biomarkers and MVO is reported in Fig 4.

Patients were divided into two groups according to the presence (n = 11/20) or absence

(n = 9/20) of MVO. Patients with MVO had similar IL-6 kinetics compared to patients without

IMH (Fig 4A). However, patients with MVO had higher CRP level at H24 and H48 compared

to patients without IMH (respectively 24.3 mg/L IQR [8.6–49.2] versus 6.6 mg/L IQR [4.8–6.9]

at H24, p = 0.005 and 34.5 mg/L [11.8–120.7] versus 8.2 mg/L IQR [5.5–11.6] et H48,

p = 0.006 (Fig 4B). Patients with MVO had higher fibrinogen levels 1 week after MI compared

to patients without MVO (5.8 mg/L IQR [4.2–7.4] versus 4.3 mg/L IQR [3.5–4.4], p = 0.045)

(Fig 4C). They also showed higher neutrophils level count from H4 to H24 following MI with

a peak at H4 (11.8 G/L IQR [8.6–14.5] versus 7.3 G/L IQR [5.9–8.5], p = 0.006) (Fig 4D).

Discussion
In a prospective study performed in human patients with reperfused STEMI with inflamma-

tion biomarker kinetics over 30 days, our study had three main findings: 1) intramyocardial

Fig 3. Association between intra-myocardial-hemorrhage (IMH) and inflammatory biomarkers kinetics levels. IL-6 (A), CRP (B), fibrinogen (C) and
neutrophils count (D) kinetics according to the presence of IMH or no IMH on cardiac magnetic imaging 1 week after STEMI. Data are expressed as
median with interquartile range (IQR). IL-6: Interleukin-6, CRP: C-reactive protein. �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0245684.g003
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hemorrhage is significantly related to systemic inflammation with a strong association with

pro-inflammatory biomarkers (IL-6, fibrinogen, neutrophils count, CRP); 2) persistent micro-

vascular obstruction was also associated with greater levels of inflammatory biomarkers but

this association seemed to be weaker.

Inflammatory biomarkers at the acute phase of MI

Our study assessed kinetics levels of inflammatory biomarkers within 1 month and to date, it

is the most detailed kinetics after STEMI. Liebetrau et al. showed an accurate kinetics of

inflammatory biomarkers but this kinetics was limited to the first 24 hours and it was evalu-

ated in patient undergoing transcoronary ablation of septal hypertrophy whose pathophysiol-

ogy differs from STEMI [19]. We observed that all four studied biomarkers had a different

peak time point: H4 for neutrophils, H24 for IL-6, H48 for CRP and 1 week for fibrinogen.

These results highlight the fact that the knowledge of the precise peak time point is important

when studying biomarkers in order not to lose information.

Fig 4. Association betweenmicrovascular obstruction (MVO) and inflammatory biomarkers kinetics levels. IL-6 (A), CRP (B), fibrinogen (C) and
neutrophils count (D) kinetics according to the presence of MVO or noMVO on cardiac magnetic imaging 1 week after STEMI. Data are expressed as
median with interquartile range (IQR). IL-6: Interleukin-6, CRP: C-reactive protein. �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0245684.g004
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Association between MVO/IMH and systemic inflammation

This is the first study to systematically study the relationship between different CMRmarkers

(hemorrhage, persistent microvascular obstruction, and edema) with inflammation biomark-

ers at the acute phase of reperfused ST-elevation myocardial infarction (STEMI). The results

of our study show that IMH is significantly associated with a pro-inflammatory pattern.

In patients with STEMI, MVO represents a failure to restore optimal myocardial reperfu-

sion despite re-permeabilization of the epicardial artery by PCI [20]. It is secondary to severe

impairment of myocardial microcirculation involving several mechanisms; distal embolization

of thrombotic debris, leukocyte infiltration, vasoconstriction, activation of inflammatory path-

ways and cellular edema [20]. IMH is secondary to the destruction of micro vascularization

secondary to hypoxia, inducing extravasation and aggregation of erythrocytes into the tissue

extra-vascular space [16,21]. Also, reperfusion is thought to increase leakage from the endothe-

lial junction and damage, thus causing extravasation of red blood cells in the tissue extra-vas-

cular space. MVO is an independent predictive factor of LV adverse remodeling and the

occurrence of major cardiovascular adverse events in several clinical and preclinical studies

[16,22]. Recent studies have shown that MVO could occur alone but was also frequently asso-

ciated with IMH [16,21]. The association of these two phenomena in patients appears to carry

the worst clinical prognosis with an increased risk of adverse ventricular remodeling, and

major cardiac events such as re-hospitalization, heart failure, and death [16,23]. The pathologi-

cal relationship between these two phenomena is poorly understood. A hypothesis recently

suggested by Kali et al. [17] in a pre-clinical study is that the degradation products of hemoglo-

bin are transformed into iron ferric crystals in the infarcted myocardium. These iron crystals

cause a deleterious prolonged pro-inflammatory burden. Indeed, persistent and excessive

inflammation, independent of the size of the infarction, has been suggested to contribute to

adverse LV remodeling and an increased risk of future cardiovascular events after MI [5].

Following myocardial infarction, the increased IL-6 synthesis and signaling by myocytes

lead to the preservation of heart tissue, in which damage is limited by reducing cell contractil-

ity and inducing an anti-apoptotic program [24–26]. However, pre-clinical and clinical studies

have shown that excessive IL-6 production is deleterious. Indeed, by inducing an anti-apopto-

tic program and reducing long-term contractility, the excessive IL-6 secretion may finally lead

to adverse LV remodeling and heart failure [27,28]. Also, IL-6 is a major mediator of CRP liver

synthesis [29]. Post-STEMI, CRP elevation has been associated with the acute and chronic

phase with an increased risk of mortality and cardiovascular events [29,30]. In our study, we

found higher CRP levels in patients with IMH. Furthermore, we found a significant association

between the presence of IMH and the neutrophil peak level. Neutrophils are involved early in

the healing process following reperfusion [31]. However, their excessive recruitment and

increased release of ROS (Reactive Oxygen Species) and proteases can be deleterious [31]. The

neutrophil rate in post-STEMI is known to be associated with infarct size, adverse LV remod-

eling, and mortality [32,33]. Finally, we found a significant association between the fibrinogen

peak levels, a pro-inflammatory marker associated with infarct size [34,35] and the presence of

IMH.

Concerning the presence of MVO, we found a significant association with the CRP peak

level. This result is in agreement with the results ofØrn et al. [36] showing a significant associ-
ation between the CRP level at 48 hours and the presence of MVO. Carrick et al. [16] recently
showed that MVO is a necessary condition for the occurrence of IMH but that MVO can

occur alone. Our results suggest that the presence of MVO alone (without IMH) is associated

with a less pro-inflammatory response than MVO associated with IMH. However, this
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hypothesis must be confirmed by larger studies comparing systemic inflammation between

MVO without IMH and MVO with IMH infarctions.

Taken together, our results show that IMH detected by CMR is associated with a systemic

pro-inflammatory reaction potentially involved in the poor prognosis associated with this

marker. The link between MVO and systemic inflammatory response appears to be weaker.

Clinical perspective

The clinical perspectives of our study are important. Indeed, the detection of myocardial hem-

orrhage by CMRmay allow targeting patients with the highest inflammatory burden. These

patients would be the most likely to benefit from the anti-inflammatory therapies under

investigation.

Limitation

A significant limitation of our study is related to the small sample size of our population. How-

ever, our population was homogeneous with infarct sizes, and a frequency of occurrence of

MVO and IMH comparable with recent studies [16]. This limited sample size affects the statis-

tical power to demonstrate significant associations between MVO or IMH and biomarkers.

Despite the high number of blood samples taken, considering the short half-life of different

markers measured, it is possible we missed the peak values of its marker. Another important

limitation is that the biomarkers used to evaluate inflammation are not specific (e.g., CRP,

fibrinogen). They reflect the subsequent consequences of the inflammatory activity but do not

provide information on local tissue inflammation. Furthermore, if we have identified a rela-

tionship between IMH and systemic inflammation, the absence of anatomopathological com-

parison makes it difficult to describe a causal relationship.

Finally, although the detection of myocardial hemorrhage by T2� sequences is currently the
gold standard [16], T2� acquisition was associated with imaging artifacts that limited the quan-

tification of hemorrhage in some patients, and only 85% of the cohort had analyzable T2� data.
However, these results are consistent with recent studies evaluating IMH by T2� sequences
[16].

Conclusion
In human patients with acute myocardial infarction, myocardial hemorrhage appears to have

the strongest relationship with inflammatory biomarker release compared to persistent MVO

or myocardial edema. Attenuating myocardial hemorrhage-induced inflammation may be a

novel target in future adjunctive STEMI treatments.

Supporting information
S1 Fig. Association between intra-myocardial-hemorrhage (IMH) and other inflammatory

biomarkers kinetics levels. ST2 (A), IL-18 (B), IL-10 (C), TGF- (D), IL-8 (E), MCP1 (F)

kinetics according to the presence of IMH or no IMH on cardiac magnetic imaging 1 week

after STEMI. Data are expressed as median with interquartile range (IQR). ST2: Interleukin 1

receptor-like 1, IL-18: Interleukin-18, IL-10: Interleukin-10, TGF- : Transforming Growth

Factor- , IL-8: Interleukin-8, MCP1: Monocyte Chemoattractant Protein 1. Differences

between curves were assessed using a mixed-effect model.

(TIF)

S2 Fig. Association between microvascular obstruction (MVO) and other inflammatory

biomarkers kinetics levels. ST2 (A), IL-18 (B), IL-10 (C), TGF- (D), IL-8 (E), MCP1 (F)
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kinetics according to the presence of MVO or no MVO on cardiac magnetic imaging 1 week

after STEMI. Data are expressed as median with interquartile range (IQR). ST2: Interleukin 1

receptor-like 1, IL-18: Interleukin-18, IL-10: Interleukin-10, TGF- : Transforming Growth

Factor- , IL-8: Interleukin-8, MCP1: Monocyte Chemoattractant Protein 1. Differences

between curves were assessed using a mixed-effect model.

(TIF)

S3 Fig. ST2 (A), IL-18 (B), IL-10 (C), TGF- (D), IL-8 (E), MCP1 (F) kinetics within the first

month after STEMI. Data are expressed as median with interquartile range (IQR). H4: four

hours after admission, H12: twelve hours after admission, H24: twenty-four hours after admis-

sion, H48: forty-eight hours after admission.

(TIF)
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Abstract

Background: Soluble vascular cell adhesion molecule‐1 (sVCAM‐1) is a bio-

marker of endothelial activation and inflammation. There is still controversy

as to whether it can predict clinical outcome after ST‐elevation myocardial

infarction (STEMI). Our aim was to assess the sVCAM‐1 kinetics and to

evaluate its prognostic predictive value.

Method: We prospectively enrolled 251 consecutive STEMI patients who

underwent coronary revascularization in our university hospital. Blood

samples were collected at admission, 4, 24, 48 h and 1 month after admission.

sVCAM‐1 serum level was assessed using ELISA assay. All patients had

cardiac magnetic resonance imaging at 1‐month for infarct size (IS) and left

ventricular ejection fraction (LVEF) assessment. Clinical outcomes were

recorded over 12 months after STEMI.

Results: sVCAM‐1 levels significantly increased from admission up to

1 month and were significantly correlated with IS, LVEF, and LV end‐systolic
and diastolic volume. (H48 area under curve (AUC)≥H48 median) were as-

sociated with an increased risk of adverse clinical events during the 12‐month

follow‐up period with a hazard ratio (HR) = 2.6 (95% confidence interval [CI]

of ratio = 1.2–5.6, p= .02). The ability of H48 AUC for sVCAM‐1 to
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discriminate between patients with or without the composite endpoint was

evaluated using receiver operating characteristics with an AUC at 0.67

(0.57–0.78, p= .004). This ability was significantly superior to H48 AUC

creatine kinase (p= .03).

Conclusions: In STEMI patients, high sVCAM‐1 levels are associated with a

poor clinical outcome. sVCAM‐1 is an early postmyocardial infarction

biomarker and might be an interesting target for the development of future

therapeutic strategies.
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1 | INTRODUCTION

In recent decades, new concepts of the pathogenesis of
acute myocardial infarction (MI) have emerged.1 It is
now well recognized that in the aftermath of a MI, an
inflammatory response occurs and that its importance is
associated with larger infarct size (IS) and increased
mortality. The long‐term consequence is the onset of
myocardial fibrosis and cardiac remodeling, which
compromise survival and increase clinical heart failure.
Leukocyte adhesion end endothelial transmigration are
considered to be the main component of inflammation
post‐acute coronary syndrome (ACS).2,3 This mechanistic
phenomenon is possible through cell adhesion molecules
(CAM),4 leading to endothelial activation. In 1996, Shyu
et al. reported increased levels of soluble CAM (sCAM),
which are released from leukocyte and endothelial sur-
face probably by enzymatic cleavage, in ACS patients.5–7

Vascular cell adhesion molecule 1 (VCAM‐1) is one of
the most important CAM. VCAM‐1 plays an important role
in the recruitment of inflammatory cells and thus the de-
velopment of atherosclerotic plaques.8 Its levels have been
shown to increase following ACS, and it is upregulated by
tumor necrosis factor‐α and interleukin (IL)‐1β or other
mediators including reactive oxygen species (ROS).9–12

VCAM‐1 is a cell surface glycoprotein present in the en-
dothelium but there is also a soluble form of VCAM‐1
(sVCAM‐1), resulting from the release of VCAM‐1 ectodo-
main, which is regulated by thrombin and metalloproteinase
inhibitor 3 (TIMP‐3).10,13 Several studies found sVCAM‐1 to
be a predictor of cardiovascular events.14,15 Yet, the prog-
nostic value of sVCAM‐1 levels after ACS has come under
scrutiny and there is controversy as to whether it can predict
clinical outcome.16–19 Lino et al. found that elevated
VCAM‐1 levels were predictive of heart failure after
ST‐segment elevation myocardial infarction (STEMI) while
Tekin et al. showed that blood levels of sVCAM‐1 at pre-
sentation, in non‐STEMI patients, were not predictive of any

adverse cardiac event.20,21 Therefore, the objectives of our
study were to describe sVCAM‐1 kinetics in patients within
the first month of STEMI and to assess its prognostic value.

2 | METHODS

2.1 | Study design and blood sample
collection

The HIBISCUS cohort is composed of consecutive pa-
tients admitted to our institution (a tertiary referral
university hospital) with an acute STEMI from 2016 to
2019. Our institution Review Board and Ethics Com-
mittee approved the study. All patients gave written in-
formed consent and the study protocol conforms to the
ethical guidelines of the 1975 Declaration of Helsinki.
STEMI was defined according to the European Society of
Cardiology guidelines by the presence of clinical symp-
toms (chest pain) associated with an ST‐segment eleva-
tion of more than 2mm in two contiguous leads on a
standard 12‐lead electrocardiogram, and significant
troponin‐I elevation.22 Urgent reperfusion was achieved
in all patients by primary percutaneous intervention
(PCI) at admission. All patients underwent contrast‐
enhanced cardiac magnetic resonance (CMR) at 1 month
after STEMI.

All individual clinical treatment and outcome data
were collected prospectively in the database of the Centre
for Clinical Investigation (CIC) of Hospices Civils de
Lyon. Adverse clinical events were registered during
follow‐up visits scheduled at 1 month, 1 year, and 2 years
after the index hospitalization. A primary endpoint was
defined as the composite of all‐cause death, acute MI,
stroke, and rehospitalization for heart failure.

Sera from HIBISCUS patients cohort were collected at
five time‐points: admission, 4 h (H4), 24 h (H24), 48 h
(H48), and 1 month (M1) after reperfusion. Samples were
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frozen at −80°C and stored at the local hospital biobank
(NeuroBioTec Biological Resource Center, Hospices
Civils de Lyon). All sera from our study population were
thawed only once to avoid biomarker alteration.

2.2 | Biomarker measurement

We assessed soluble VCAM‐1 concentration using an
ELISA kit (R&D systems ELISA kit). The minimum
detectable dose in our conditions was 30.0 pg/ml.
IL‐6 assessed using ELISA Ready‐SET‐Go (eBioscience)
with a sensitivity of 2 pg/ml. Routine biomarkers were
assessed in the central laboratory of the Hospices Civils
de Lyon. C‐reactive protein was assessed using im-
munoturbidimetry (architect Abbott) (Hospices Civils de
Lyon laboratory). Troponin I (Immunoassay Access1
AccuTnI Troponin I Assay) and total creatine kinase le-
vels (Beckman Coulter Inc, expressed in IU/L) were
measured at admission, at 4, 24, and 48 h after PCI.
Leukocytes were collected at admission, 24, 48 h, and
1 month after admission and assessed using fluorescence‐
activated cell sorting (XN‐9000 SYSMEX).

2.3 | CMR analysis

Patients underwent CMR 1 month after admission for
STEMI. All patients were scanned in a supine position using
a 1.5T MAGNETOM Avanto TIM system (Siemens) as
previously described.23 Cine free precession sequences in
two‐chamber, four‐chamber, and ventricular short‐axis
planes were used for quantitative ventricular measure-
ments. Myocardial delayed enhancement sequences were
assessed in short and long‐axis planes with a nonselective
180° inversion recovery 10–15min after the injection of
0.2mmol/kg gadolinium‐based contrast agent. IS was mea-
sured using CMRSegTools segmentation plugin (CREATIS)
with OsiriX software (Pixmeo). Late gadolinium enhance-
ment regions were quantified with a Full Width at Half
Maximum algorithm and IS was expressed as a percentage of
left ventricular (LV) mass. LV ejection fraction (LVEF), LV
end‐diastolic volume index (LVEDVi), LV end‐systolic
volume index (LVESVi), and LV mass were measured
offline on all short‐axis views in the cine images (Philips
View Forum, Philips Healthcare). LVEF, LVEDVi, and
LVESVi assessment helped define ventricular remodeling.

2.4 | Statistical analysis

Data are expressed as median and 95% confidence in-
terval (CI) or interquartile range (IQR) or mean and SD

according to their distribution. Comparisons between the
different time points were performed using a paired t‐test
with Wilcoxon matched‐paired signed‐rank test for con-
tinuous variables with the nonparametric distribution.
Mann–Whitney test was used for group comparisons of
continuous variables. Associations between sVCAM‐1
and clinical variables were assessed by correlation ana-
lyses (nonparametric Spearman). The ability of sVCAM‐1
to discriminate between patients with or without a clin-
ical event was also assessed by the area under (AUC) the
receiver‐operating curve (ROC). ROC curves comparison
was done using DeLong et al. test. A p< .05 was con-
sidered significant. Multivariate analysis was performed
using Cox proportional‐hazard regression. Statistical
analyses were performed using GraphPad Prism 8.01.
DeLong et al. test and multivariate analysis were
performed using MedCalc Version 12.4.0.0.

3 | RESULTS

3.1 | Baseline demographics

We included 251 patients. Characteristics of the study
population are presented in Table 1. Briefly, the median
age was 59 ± 12 years with 79.2% male. There were
132 anterior MI (52.8%), 166 patients (66.4%) had TIMI
flow grade 0–1 before and 241 (96.4%) had TIMI flow
grade greater than or equal to 2 after PCI. Two hundred
and sixteen patients (86.4%) were Killip 1 at admission
and median LVEF at admission was 52% (interquartile
range (IQR) [46–58]).

3.2 | Soluble VCAM‐1 kinetics after
STEMI

The temporal profile of sVCAM‐1 after STEMI is pre-
sented in Figure 1A, illustrating a significant and constant
increase since admission up to 1 month. Median admis-
sion sVCAM‐1 level was 328.7 ng/ml (IQR [269.3–413.3])
with a continuous increase and reached 386.1 ng/ml (IQR
[309.0–471.0]) at 1 month (p< .0001 between admission
and 1‐month). sVCAM‐1 kinetics were also presented
according to IS, localization of MI, and HS troponin
(Figure S1). Patients with an IS higher than 25% had
higher levels of sVCAM‐1 when comparing to patients
with an IS lower than 25% (p= .03). Patients with an
anterior MI had a slight tendency for higher levels of
sVCAM‐1 when compared to nonanterior MI (Figure S1).

Other main inflammatory markers were also as-
sessed. We found a rise in IL‐6 with a peak at H24
(5.5 pg/ml IQR [2.2–11.0]) and in C‐reactive protein
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(CRP) at H48 (18.1 mg/L IQR [7.6–52.0]). AUC sVCAM‐1
level at H48 was correlated with IL‐6 peak (r= .17,
p= .01) and with CRP peak (r= .19, p= .003).

3.3 | Soluble VCAM‐1 levels, IS, and
ventricular remodeling

Wa assessed the area under curve for sVCAM‐1 within the
first 48 h (H48 AUC for sVCAM‐1). We observed a sig-
nificant correlation between IS (assessed by cardiac mag-
netic resonance imaging) and H48 AUC for sVCAM‐1
(r= .20, p= .007) (Figure S2A). We also found a sig-
nificant correlation between H48 AUC for sVCAM‐1 and
ventricular remodeling. H48 AUC for sVCAM‐1 was cor-
related with left ventricular end‐diastolic volume (LVEDV,
r= .18, p= .02) and left ventricular end‐systolic volume

(LVESV, r= .22, p= .003) and was inversely correlated
with LVEF (r=−0.17, p= .02) (Figure S2B–D).

3.4 | sVCAM‐1 and clinical outcomes

Twenty‐seven patients experienced an adverse clinical
event during the 12‐month follow‐up period (four all‐
cause deaths, six MI, three strokes, and 14 hospitalizations
for heart failure). As shown in Figure 1B, The AUC for
sVCAM‐1 release within the first 48 h was significantly
increased in the group of patients with a clinical adverse
event as compared with patients without clinical event,
with a median of 1248 arbitrary units IQR [993–1491]
versus 991 arbitrary units IQR [832–1225] (p= .003).

Furthermore, we divided the study population into
two groups according to the H48 AUC for sVCAM‐1: a
group with H48 AUC for sVCAM‐1 below the median
value and a group with H48 AUC for sVCAM‐1 equal to
or above the median value. Patients with H48 AUC for
sVCAM‐1 equal to or above the median value were more
likely to experiment an adverse clinical event within the
12 months of follow‐up compared to patients with H48
AUC for sVCAM‐1 below the median value with a ha-
zard ratio (HR) = 2.6 (95% CI of ratio = 1.2–5.6, p= .02)
(Figure 1C). The ability of H48 AUC for sVCAM‐1 to
discriminate between patients with or without the com-
posite endpoint was also evaluated. The area under the
curve was assessed at 0.67 (0.57–0.78) p= .004. This
ability to discriminate between patients with or without
the composite endpoint was significantly superior to that
of H48 AUC creatine kinase (p= .03) but not to that of
H48 AUC troponin (Figure 1D).

3.5 | Level of sVCAM‐1 is associated
with adverse clinical events upon
admission

The sVCAM‐1 level was significantly increased upon ad-
mission in the group presenting an adverse clinical event
within the 12 first months, reaching 407.1 ng/ml IQR
[330.0–453.7] compared to 326.1 ng/ml IQR [262.4–404.8]
in the group without clinical event in the follow‐up period
(p= .003) (Figure 2A). Patients with an sVCAM‐1 level at
admission equal to or above the median value were more
likely to experiment an adverse clinical event during the
first 12 months of follow‐up (HR= 3.3; 95% CI of
ratio = 1.5–7.1, p= .008) (Figure 2B). In multivariable Cox
regression analyses with models including age, gender,
hypertension, renal dysfunction (eGFR< 60ml/min/
1.73m2), creatine kinase peak, and TIMI flow grade before

TABLE 1 Baseline characteristics of the study population

Baseline characteristics (n= 251 patients)

Age, years 59 ± 12

Male sex, no (%) 199 (79.3)

BMI, kg/m2 26.8 ± 4.4

Hypertension, no (%) 70 (27.9)

Hypercholesterolemia, no (%) 70 (27.9)

Diabetes mellitus, no (%) 37 (14.7)

Current smoker, no (%) 126 (50.2)

Clinical characteristics

Time from symptoms to PCI, min 200 [145–315]
Anterior MI, no (%) 132 (52.6)

Killip status = 1, no (%) 216 (86.1)

TIMI at admission = 0–1 167 (66.5)

LVEF at 1 month (%) 52 [46–58]

Biochemical analyses

Peak troponin I, ng/L 43,904 [15,731–114,083]
Peak creatine kinase, mUI/L 1561 [686–3666]
CRP at admission, mg/L 2.6 [1.4–6.2]
Peak CRP, mg/L 17.9 [7.1–47.1]
Admission BNP, nmol/L 31 [15–80]
Admission creatinine, mmol/L 71 [61–83]
Admission hemoglobin, g/L 140 [130–150]
Leukocytes count at admission, g/L 11.8 [9.3–14.5]
Total cholesterol, g/L 1.98 [1.70–2.36]
LDL cholesterol, g/L 1.26 [1.01–1.57]
HbA1c (%) 5.7 [5.5–6.0]

Note: Date are expressed as mean ± SD or median and interquartile range.

Abbreviations: BMI, body mass index; BNP, brain natriuretic peptide;
CRP, C‐reactive protein; HbA1c, glycated hemoglobin; LDL, low density
lipoprotein; LVEF, left ventricular ejection fraction; TIMI, thrombolysis in
myocardial infarction.
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PCI, sVCAM‐1 remained associated with an increased risk
of experiencing the composite endpoint during the 12
months of follow‐up (adjusted HR=2.9 [1.0–8.2], p= .046).

4 | DISCUSSION

The main findings in the present study were that (1)
there is a sustained endothelial activation evaluated by
sVCAM‐1 release, which lasts at least one month fol-
lowing MI, and (2) sVCAM‐1 level upon admission is an
early prognosis biomarker following STEMI, correlated
with IS, cardiac remodeling, and adverse clinical events.

MI is generally the result of an atherosclerotic plaque
rupture resulting in thrombus formation. CAM is in-
volved in the thrombus formation through the coagula-
tion pathway and platelet adhesion.2 Inflammation plays

a pivotal and consequent role with cytokine, thrombin,
and sCAM overproduction. Soluble CAM allows
recruitment of circulating leukocyte cells to the
inflammatory site and therefore maintains the in-
flammatory process.24 VCAM‐1 is a CAM mediating the
adhesion mainly of leukocytes to the endothelium. Our
study highlights the concept of endothelial activation
post‐STEMI since sVCAM‐1 levels significantly increase
during the first month. Our results are in accordance
with previous observations that found a change in
sVCAM‐1 levels related to endothelial activation and
release after MI reperfusion.25 Mulvihill et al.26 found a
sustained sVCAM‐1 increase up to 6 months following an
ACS. Furthermore, the time course of VCAM‐1 release
was evaluated by Uitterdijk et al. on swine.27 They re-
ported a significant increase in sVCAM‐1 expression
during the first week after MI followed by a decrease up

FIGURE 1 (A) sVCAM‐1 kinetics in STEMI patients within the first month (n= 251 patients). (B) Level of sVCAM‐1 in patients with or
without adverse clinical events (all‐cause death, MI, stroke, and hospitalization for heart failure) during the first 12 months after MI (n= 251
patients). (C) Adverse clinical events according to AUC for sVCAM‐1 secretion within 48 h (n= 251 patients). (D) ROC for discriminating
patients with or without a composite endpoint (adverse clinical event). ***p< .001, ****p< .0001. AUC, area under curve; CK, creatine
kinase; MI, myocardial infarction; ROC, receiver operating characteristic; sVCAM‐1, soluble VCAM‐1; STEMI, ST‐segment elevation
myocardial infarction
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to 1 month. We can hypothesize that this sustained ac-
tivation of VCAM‐1 within the first month may partici-
pate in the LV remodeling process.

Here, we demonstrated that sVCAM‐1 is an early
biomarker of severity after STEMI and is correlated with

IS, LVEF, and LV remodeling. sVCAM‐1 appeared as an
efficient predictor of negative clinical outcome as illu-
strated by the ROC curve, superior to a classic marker of
IS such as creatine kinase. We already demonstrated that,
besides IS, several variables contribute strongly to the

FIGURE 2 (A) Violin plot of sVCAM‐1 serum level at admission in STEMI patients. **p< .01. (B) Adverse clinical events (all‐cause
death, myocardial infarction, stroke and hospitalization for heart failure) according to sVCAM‐1 at admission. STEMI, ST‐segment elevation
myocardial infarction; sVCAM‐1, soluble vascular cell adhesion molecule‐1

FIGURE 3 Central illustration: Graphical presentation summarizing the putative key role of sVCAM‐1 after ST‐elevation segment
myocardial infarction. MI, myocardial infarction; MMP, matrix metalloproteinase; oxLDL, oxidized low‐density lipoprotein;
sVCAM‐1, soluble vascular cell adhesion molecule 1
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clinical outcomes of STEMI patients and inflammation
has probably an important role to play.28

Our data highlight the importance of sVCAM‐1 at
the acute phase of MI (Figure 3). Few studies on
STEMI patients have been published in this setting,
with the majority of them including non‐STEMI
patients.16,19,21 The largest study prospectively en-
rolled all‐coming acute MI and showed that elevated
levels of sVCAM‐1 associated with a reduced level of
IL‐17A at the time of admission for acute MI were
associated with an increased risk of death and re-
current MI during the first year of follow‐up, in line
with our results.18

Soluble VCAM‐1 has been reported to be higher in
patients with LV dysfunction and is associated with a
reduced prognosis. In a prospective study of 48 patients
with acute MI, Lino et al. found that patients with heart
failure had higher values of sVCAM‐1.20 Postadzhiyan
et al.16 suggested that CAM serum levels may be more
powerful than other inflammatory markers in predicting
increased risk for cardiovascular events in patients after
ACS. IS, as well as heart failure, involves physiological
and pathological pathways that lead to an increase in
several biomarkers.29 In a clinical setting, troponin and
creatinin phosphokinase are established biomarkers and
correlate with IS and clinical outcomes. Our results
support sVCAM‐1 as a possible early prognosis bio-
marker. Alongside other markers, it could play a role in
the assessment and management of STEMI patients at
the acute phase and in identifying patients with a higher
risk in the early stage. Postadzhiyan et al.16 also sug-
gested that VCAM‐1 release precedes myocardial injury
and can hence identify patients with unstable athero-
sclerotic plaque formation even before complete micro-
vascular obstruction.

The role of inflammation in the pathogenesis of MI
leads to consider therapeutic strategies that target in-
flammation mediators.30 This has been especially the
case in atherosclerosis with the use of AGI‐1067 therapy
as an inhibitor of VCAM‐1 gene expression.31 Cybuslky
et al.32 demonstrated that this drug significantly reduced
the extent of atherosclerotic lesions in a murine model of
accelerated atherosclerosis, with decreased VCAM‐1 ex-
pression. However, there is no available data regarding
VCAM‐1 inhibition during MI and it might be of interest
to study the effect of sVCAM‐1 inhibition in a preclinical
model of MI. Also, as sVCAM‐1 plays a key role in the
onset of inflammation in a MI setting with a strong
correlation with poor outcomes, it raises the question
whereas these patients would be good candidates for
anti‐inflammatory therapeutic pathways such as colchi-
cine and IL‐1 inhibitors that recently showed promising
results.33–35

4.1 | Limitation of our study

There are a couple of limitations in our study. Blood
samples were collected at the acute stage of STEMI and at
1 month after. Our cohort may lack an intermediate point
of sampling (e.g., 1 week) and a late point of sampling
(e.g., 1 year) to assess more accurately the kinetics of
sVCAM‐1 and to evaluate if it is back to baseline at 1 year.
Furthermore, our study is descriptive and our data do not
allow us to establish a cause‐to‐effect relationship. We
assessed the soluble form of VCAM‐1 that may differ from
the cell surface form. This may question the representa-
tiveness of sVCAM‐1 for endothelial activation. However,
the study from Nakai et al. may help to answer this
question. They showed that sVCAM‐1 was correlated with
the expression of VCAM‐1 messenger RNA in patients
with atherosclerotic aorta.36 Thus, by extrapolating their
results, we suppose that sVCAM‐1 at the acute phase of
MI may be representative of the cell surface form.

5 | CONCLUSION

sVCAM‐1 serum levels increase within the first month
following STEMI and are associated with IS, LV
remodeling, and adverse clinical events at 1‐year. These
observations are of major clinical relevance as they
warrant consideration around sVCAM‐1 as an early
biomarker of poor prognosis in STEMI patients.
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In front of the failure to translate from bench to bedside cardioprotective drugs against

myocardial ischemia-reperfusion, research scientists are currently revising their animal

models. Owing to its growing incidence nowadays, type 2 diabetes (T2D) represents one

of the main risk factors of co-morbidities in myocardial infarction. However, discrepancies

exist between reported animal and human studies. Our aim was here to compare

the impact of diabetes on cell death after cardiac ischemia-reperfusion in a human

cohort of ST-elevation myocardial infarction (STEMI) patients with a diet-induced mouse

model of T2D, using a high-fat high-sucrose diet for 16 weeks (HFHSD). Interestingly,

a small fraction (<14%) of patients undergoing a myocardial infarct were diabetic,

but treated, and did not show a bigger infarct size when compared to non-diabetic

patients. On the contrary, HFHSD mice displayed an increased infarct size after an

in vivo cardiac ischemia-reperfusion, together with an increased cell death after an in

vitro hypoxia-reoxygenation on isolated cardiomyocytes. To mimic the diabetic patients’

medication profile, 6 weeks of oral gavage with Metformin was performed in the HFHSD

mouse group. Metformin treatment of the HFHSDmice led to a similar extent of lower cell

death after hypoxia-reoxygenation as in the standard diet group, compared to the HFHSD

cardiomyocytes. Altogether, our data highlight that due to their potential protective effect,

anti-diabetic medications should be included in pre-clinical study of cardioprotective

approaches. Moreover, since diabetic patients represent only a minor fraction of the

STEMI patients, diabetic animal models may not be the most suitable translatable model

to humans, unlike aging that appears as a common feature of all infarcted patients.

Keywords: diabetes mellitus, myocardia infarction, human, animal model, medication

INTRODUCTION

In front of the failure of cardioprotective approaches against myocardial infarction (MI) in
several clinical studies (1–3), reconsidering animal models by taking into account all the patients’
confounding factors may become inevitable for researchers. Aging, gender, co-morbidities,
accompanying diseases and medications are underestimated factors that disrupt the translation
of basic research into humans (4). Among them, diabetes appears as one of the most relevant due
to its growing rise in prevalence and incidence nowadays.
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The World Health Organization reports 422 million people
living currently with diabetes worldwide. Diabetes increases
the risk of mortality compared with non-diabetic patients and
mainly cardiovascular diseases such as stroke and acute coronary
syndromes (5, 6). Indeed, diabetes slightly increases the risk of
mortality in all type of acute coronary syndromes (7). However,
patients with type 2 diabetes (T2D) are often followed and
treated with medications to regulate their metabolic dysfunction
and these treatments may have an impact on the response to
other injury such as an ischemic stress. While a higher risk to
develop MI for a diabetic patient is recognized, the effect of
diabetes on post-MI infarct size is still not clear. In fact, some
studies, focusing on ST-segment elevation myocardial infarction
(STEMI), have showed that diabetic patients may develop a
larger infarct size, as demonstrated in both clinical trials CORE
and EMERALD (8, 9). On the contrary, De Luca et al. have
indicated no changes in infarct size between non-diabetic and
diabetic patients after primary angioplasty (10). Similar infarct
size was also observed in a clinical study comparing diabetic
patients with and without insulin treatment (11). Interestingly,
these discrepancies among clinical trials mirror the results in
diabetic animal studies (12). For example, using the high-fat
insulin resistant rat, bigger infarct sizes were reported after in vivo
cardiac ischemia-reperfusion (13), while the recent study using
the T2D Zucker rats showed no difference in infarct size between
lean and fatty animals (14).

In the diabetic animal models, the heterogeneity in findings
may be related to the diabetic inducers (genetic, treatment,
diet. . . ) and/or to the timing (early diabetic cardiomyopathy
vs. late heart failure stage); while in patients, the intra- and
inter-variabilities between humans, as well as their companion
medications schedule could have an impact. It should be noted
that in vivo cardiac ischemia-reperfusion animal protocols rather
represent STEMI patients. In this context, infarct size remains an
important determinant of the post-MI outcome and is used as an
endpoint in both animal and clinical studies of cardioprotective
strategies. Therefore, we ought to investigate further the
effect of T2D on myocardial infarct size by confronting
the results of STEMI patients to a mouse model of early
diabetic cardiomyopathy (15) in order to question the relevance
of diabetic animal models in studies of cardioprotection
against MI.

METHODS

Human Cohort and Consent Information
The study was approved by our institution Review Board and
Ethics Committee and is registered with the ClinicalTrials.gov
identifier NCT03070496. Patients have given their written
consent. From the previously described cohort composed of
250 consecutive patients admitted to the Louis Pradel Hospital
for a suspected ST-elevation myocardial infarction (STEMI)
from 2016 to 2020 (16), all patients underwent coronary
angiography at admission with subsequent reperfusion by
primary percutaneous intervention (PCI); but only 177 patients
underwent contrast enhanced Cardiac Magnetic Resonance

(CMR) at one month after MI for infarct size and LV
function measurements.

Type 2 Diabetes Animal Model and in vivo

Ischemia-Reperfusion Protocol
All animal procedures performed conform to the guidelines
from Directive 2010/63/EU of the European Parliament on
the protection of animals used for scientific purposes and
were approved by the institutional animal research committee
from Université Claude Bernard Lyon 1 and the French
ministry (#15,627–2018062118508398 and BH2012-65). Male
C57BL/6JOlaHsd (Envigo, France) mice were from the same
cohort as characterized previously (15): they were subjected to
either a standard diet (SD: LASQC diet Rod16-A, Genobios:
16.9% proteins, 4.3% lipids) or a high-fat high-sucrose diet
(HFHSD: 260HF U8978 version 19, from SAFE: 20% proteins,
36% lipids, and 35% carbohydrates) for 16 weeks (Figure 1B).
For the last 6 weeks of the feeding protocol, metformin gavage
(200 mg/kg) was performed daily for half of the HFHSD mice,
with the other control group being given the vehicle (0.5%
methylcellulose) (17).

For the in vivo ischemia-reperfusion (Figure 1C), mice
were anesthetized with ketamine (100 mg/kg body weight,
intraperitoneal injection) and xylazine (5 mg/kg body weight,
intraperitoneal injection) and were orally intubated and
ventilated via a rodent ventilator (Physiosuite R© system from
Kent Scientific). Body temperature was monitored by a rectal
thermometer and maintained within the normal range by
using a heating pad. A left thoracotomy was performed and
the pericardium was opened to expose the heart. An 8-0
polypropylene suture was passed around the left anterior
descending artery, under an Euromex microscope, for further
creating ischemia. Ischemia was confirmed by ST segment
shift on the ECG and appearance of epicardial pallor. After
45min of coronary artery occlusion, the snare was loosened, and
reperfusion was confirmed by visual inspection and reduction
of ST segment shift on the ECG. The chest wall was closed with
a 5-0 vicryl suture and the endotracheal tube was removed once
spontaneous breathing had resumed. Themice were then allowed
to recover from the anesthesia in a temperature-controlled area
enriched with O2. At the end of the 24-h reperfusion, the mice
were deeply anesthetized to allow reocclusion of the artery (the
suture material was still in place from the previous surgery) and
Unisperse blue pigment (0.5 mg/kg i.v.; Ciba-Geigy) was injected
in the inferior vena cava. With this technique, the non-ischemic
myocardium appears blue, whereas the ischemic myocardium
[area at risk (AR)] remains unstained. The heart was then
excised and the atrial and right ventricular tissues were removed.
The left ventricle was then cut into four 1mm thick transverse
slices. The basal surface of each slice was photographed for later
measurement of the area at risk. Slices were then incubated for
15min in a 1% solution of 2,3,5-triphenyltetrazolium chloride
(TTC) at 34◦C.With this technique, the viable myocardial tissues
appear brick red, whereas the infarcted tissues remain pale. The
slices were then photographed for later measurement of the area
of necrosis (AN). The extent of the area at risk and the infarcted

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 March 2021 | Volume 8 | Article 660698
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FIGURE 1 | Effect of diabetes on infarct size and cardiomyocyte cell death in humans and mice. (A) Measurement of infarct size (IS) as a percentage of the left

ventricle (LV), assessed by MRI one month post-MI in patients (155 non-diabetics vs. 22 diabetics). p = ns. (B) Study design of the diet groups SD and HFHSD

together with the oral gavage of Metformin (MET) or Vehicle for the last six weeks of feeding. (C) in vivo model of myocardial infarction in mice consists in 45min of

ischemia induced by ligation of the left descending coronary artery followed by 24 h of reperfusion before assessment of infarct size. Representative images of infarct

size are depicted for each group. (D) Measurement of the area at risk (AR/LV), expressed as a percentage of area at risk (AR) over left ventricle (LV), and of the infarct

size (AN/AR), calculated as a percentage of area of necrosis over (AN) area at risk. n = 9 SD and 8 HFHSD, *p < 0.05. (E) Timeline of the hypoxia-reoxygenation

protocol: hypoxia is induced for 70min at 0.5% O2 followed by reoxygenation at 19% O2 for 2 h before assessment of cell death. (F) Representative images of

combined white light and propidium-iodide (in blue) cardiomyocytes from SD, HFHSD, and HFHSD+MET mice, in normoxic condition (TC) and after

hypoxia-reoxygenation (HR). (G) Assessment of cell death by propidium iodide (PI) staining after hypoxia-reoxygenation in cardiomyocytes from SD, HFHSD, and

HFHSD+MET mice (n = 4-5/group). *p < 0.05.

area was quantified by computerized planimetry and corrected
for the weight of the tissue slices.

Adult Cardiomyocyte Isolation
Mice were heparinized and euthanized by cervical dislocation.
Cardiomyocytes were then isolated using O’Connell’s protocol
(18) and plated for 2 h on glass bottom 35mm dishes (MatTek)
with complete plating medium (MEM Eagle’s w/HBSS, FBS 10%,
BDM 10mM, penicillin 100 U/ml, Glutamine 2mM, ATP 2mM)
prior to the sequence of hypoxia-reoxygenation.

In vitro Hypoxia-Reoxygenation Protocol
Cardiomyocytes were washed twice to remove serum and
nutrients with 1mL Hypoxia Buffer at 37◦C (HRB: 0.14M NaCl,
5mM KCl, 1mM MgCl2, 10mM HEPES, 2mM CaCl2, pH 7.4).
Hypoxia was performed in 1mL of HRB solution for 70min
at 0.5% O2 / 37◦C (including a stabilization period of 25min
to reach the desired level of O2 in an hypoxic incubator New
Brunswick, Eppendorf). Reoxygenation at 19%O2/120min/37◦C
was next achieved by quickly but gently replacing the hypoxic
medium with 1.5mL plating medium. At the end of the 2 h of
reoxygenation, counting of propidium iodide-positive cells (PI

at 1μg/ml) and of morphologically dead cardiomyocytes (loss of
rod-shape) was performed by confocal microscopy (Nikon) and
subsequent analysis was done on ImageJ software.

Statistics
All data were subjected to normality test. Mann-Whitney was
applied for the ones which failed the normality test and data were
presented as median [Interquartile range]. However, parametric
tests were applied for normally distributed data, presented as
mean ± SD. For the three groups comparison, a Kruskal-
Wallis test followed by a Dunn’s multiple comparison test
was performed. A p-value < 0.05 was considered statistically
significant. Analysis was performed on GraphPad Prism.

RESULTS

Treated Diabetic Patients Exhibit Similar

Infarct Size as the Non-diabetics
Patients were included with a median age of 59 ± 12 years.
Among the 250 patients, 37 patients suffered from type 2 diabetes,
giving a proportion of 14.8% diabetic patients suffering from MI
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TABLE 1 | Characteristics of the study population.

Non-diabetic

patients

(n = 213)

Diabetic patients

(n = 37)

p value

Age, years 57 ± 11 63 ± 10 0.02

Male sex, nb (%) 168 (78.9) 30 (81.1) 0.83

Body Mass Index (BMI), kg/m² 26.3 [23.9-29.4] 25.9 [23.7-29.6] 0.69

Dyslipidemia, nb (%) 50 (23.5) 23 (62.1) <0.0001

Hypertension, nb (%) 52 (24.4) 22 (59.5) <0.0001

Current smoker, nb (%) 150 (70.4) 21 (56.8) 0.12

Time from symptoms to PCI, min 205 [145-334.0] 200.0[120.0-251.3] 0.46

Anterior MI, nb (%) 113 (53.3) 19 (51.4) 0.86

Killip status = 1, nb (%) 193 (90.5) 31 (79.5) 0.05

TIMI flow grade at admission = 0-1, nb (%) 140 (72.5) 28 (75.7) 0.84

Post-PCI TIMI flow grade >2 (%) 207 (98.1) 34 (91.9) 0.07

LVEF at baseline (%) 55.0 [46.0-61.3] 50.0 [44.0-62.0] 0.2957

Peak troponin I, ng/L 43907 [16642-107843] 46466 [14353-144943] 0.55

Peak creatine kinase, mUI/L 1529 [684.3-3542.0] 1815 [641.0-4076.0] 0.68

Peak CRP, mg/L 16.1 [7.1-40.5] 42.6 [11.7-74.3] 0.02

Aspirin, nb (%) 24 (11.3) 10 (27.0) 0.02

Betablockers, nb (%) 17 (8.0) 9 (24.3) <0.0001

ACEi / ARB, nb (%) 27 (12.7) 17 (45.9) 0.006

Statins, nb (%) 21 (9.9) 13 (35.1) 0.0002

Values are expressed as Mean ± SD, Median [interquartile range] or number with percentage (%). PCI, percutaneous coronary intervention; MI, myocardial infarction; TIMI, thrombolysis

in myocardial infarction; LVEF, left ventricular ejection fraction; CRP, C-reactive protein. ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor blockers.

in this cohort. The characteristics of the study population are
presented in Table 1. Type 2 diabetic patients were significantly
older than non-diabetic patients with a median age of 62 ±

11 vs. 57 ± 12 years (p < 0.05), and were more prone to
hypertension (Table 1). Diabetic patients had a higher percentage
of medications taken, including aspirin, statins, betablockers,
and angiotensin-converting enzyme inhibitors/angiotensin II
receptor blockers (ACEi/ARB) (Table 1). All diabetic patients
were treated with antidiabetics, mainly Metformin and 9 were
under insulin, therefore being considered as treated diabetic.
Based on the analysis of the Killip Status, we observed a higher
rate of patients with sign of heart failure development in the
treated-diabetic patients group compared to the non-diabetic
patients (Table 1). No differences were observed between the two
population regarding the coronary flux evaluated with the TIMI
flow grade. Treated-diabetic patients displayed a higher level of
C-reactive protein compared to non-diabetic patients (42.6 mg/L
interquartile range (IQR): [11.7-74.3] compare to 16.1 mg/L IQR
[7.1-40.5], p = 0.02). In our cohort population, dyslipidemia
affected more patients with treated diabetes than non-diabetic
patients (23.5% compare to 62.1%, p < 0.001).

No differences were observed neither on the infarct size
measurement between treated-diabetic and non-diabetic patients
(Figure 1A) (respectively, 14.5% [6.8-24.2] of the left ventricle
mass compared to 15.6% [IQR: 8.1-29.1]), nor on the left
ventricular ejection fraction assessed at one month (treated-
diabetic, 53% [IQR: 46.0-58.5] compared to non-diabetic, 50.5
[IQR: 41.5-57.0]).

Increased Cell Death After

Hypoxia-Reoxygenation in Diabetic

Cardiomyocytes Is Prevented by

Metformin Treatment
The mice used in this study were from the same cohort in which
we previously characterized the diet-induced T2D mouse model
recapitulating the early stage of diabetic cardiomyopathy in
human, notably glucose, and insulin intolerance, hyperglycemia,
and hyperlipidemia (15). We thus investigated the effect of T2D
on infarct size after an in vivo ischemia-reperfusion sequence in
the 16 weeks diet-fed mice, at the age of 21 weeks (Figure 1C).
While the areas at risk were comparable between SD and
HFHSD mice, HFHSD displayed a significant bigger infarct size
compared to the SD mice (Figure 1D: HFHSD, 47.8 [43.5, 49.0]
vs. SD, 37.3 [33.5, 43.6] % AR/AN, n = 8-9 mice/group, p <

0.05). Similarly, cardiomyocytes freshly isolated from HFHSD
diabetic mice displayed a significant increased cell death upon
simulated ischemia-reperfusion, namely hypoxia-reoxygenation,
compared to the SD cardiac cells (Figures 1E–G, HFHSD, 60.9
[57.1, 61.8] vs. SD, 47.8 [38.8, 51.4] % of PI-positive cells,
n= 5/group, p < 0.05).

One could wonder whether the difference in diabetes-induced
cell death after an ischemic event between the patients and the
mouse model could rely on the antidiabetic medication regimen
taken by the diabetic patients of the cohort, notably Metformin.
To this end, the HFHSD mice received an oral gavage with
Metformin for the last 6 weeks of the feeding. As previously
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described, Metformin did not decrease the body weight of the
HFHSD mice but partially rescued the sensitivity to insulin
and glucose (17) (data not shown). Interestingly, Metformin
treatment of theHFHSDmice led to a reduction of cell death after
hypoxia-reoxygenation compared to the HFHSD cardiomyocytes
(HFHSD+MET, 49.7 [46.4, 54.2] % of PI-positive cells, n = 4-
5/group, p = 0.078 vs. HFHSD), reaching a similar extent as in
the standard diet group (p= ns vs. SD) (Figures 1F,G).

DISCUSSION

The goal of our study was to compare the impact of diabetes
on cell death after cardiac ischemia-reperfusion in a human
cohort of STEMI patients with a diet-induced mouse model of
T2D. In our human study population, no differences have been
observed regarding the infarct size between treated-diabetic and
non-diabetic patients. The baseline characteristics of our study
populations are in line with the literature. Indeed, dyslipidemia is
a common feature of diabetes (19) and diabetic patients displayed
a higher level of C-reactive protein (20). Our population cohort
displayed a small proportion of diabetic patients (14.8 %), which
may be explained by the selection of only STEMI patients. Indeed,
the proportion of diabetic patients in non-STEMI population is
more important than in STEMI, as previously reported in the
FAST-MI study (21) (16.5% of STEMI patients are diabetic while
27% of non-STEMI patients are diabetic) and in a larger database
study (7) (28.8% of non-STEMI patients were diabetic compared
to 18.2% in the STEMI group). Interestingly, a temporal study
between 1995 and 2003 also highlighted that the diabetic patients
are now more prompt to non-STEMI events (5).

As to our results in the HFHSD mice, they revealed an
increased infarct size in an in vivo model of myocardial
infarction as well as an increased cell death following a simulated
ischemia-reperfusion, which was prevented by aMetformin daily
treatment, as usually performed in diabetic patients. Importantly,
Metformin has been shown to exert a cardioprotection through
activating the AMPK pathway and upregulating PGC-1α, which
improves mitochondrial organization and function (22, 23).
Metformin is used as a first line antidiabetic drug, not only due
to its glucose lowering potential, but also to its cardiovascular
safety and protective contribution. Altogether, our data suggest
that the similar infarct size seen between all STEMI patients
regardless of their diabetic history may be mainly due to the
protective effect afforded by their antidiabetic medication, such
as Metformin, insulin, and sulfonylurea drugs, as previously
described (13, 24). Therefore, evaluation of the protective effect
of new therapeutic drugs in diabetic animal models is effectively
of interest but should be combined with the routinely used
antidiabetic medications, such as Metformin, to rule out any
confounding action between the pre-existing medications and
the potential protective therapy. However, while similar results
were observed after in vivo and in vitro ischemia-reperfusion,
i.e., increased infarct size/cell death in the HFHSD group
vs. SD group, thus validating the relevance of the in vitro
experiments, one limitation of our study relies on the absence of
in vivo measurement of infarct size in the HFHSD+MET group.

Moreover, besides their antidiabetic treatments, diabetic patients
were significantly receiving more treatments than non-diabetic
patients, i.e., aspirin, betablockers, and ACEi, which may also
have cardioprotective effects not directly on infarct size but on
the major adverse cardiovascular events (25). Therefore, taking
into consideration also the current medications used routinely
by the patients and at the time of reperfusion in the clinical
settings would be an invaluable asset in assessing the relevance
of cardioprotective drugs in in vivo animal studies.

However, as shown by our human cohort of STEMI patients
and by others, diabetic patients only represent a minor fraction
(around 15%) of the STEMI patients while closer to 30% in
the non-STEMI population. Since the current animal models of
in vivo ischemia-reperfusion usually rely on a coronary artery
occlusion, thus representing the STEMI population, diabetes
may not be the best co-morbidities to be taken into account
to evaluate new cardioprotective strategies. While aging and
hypertension were significantly more present in the diabetic
patients and could also explain a form of cardioprotection by
favoring coronary collateral circulation (26), one main common
factor of all patients is aging (4). Although this factor is more
complicated to pursue in animal models, future studies are
required to assess the relevance of aging in our animal models
to study cardioprotection against MI.

Finally, it has been recently shown that infarct size is not the
only factor to take into consideration regarding the patient post-
MI clinical outcome (25), therefore highlighting the importance
to evaluate the effect of cardioprotective strategies not only on
infarct size but on the contractile function and the survival
notably. Indeed, the higher rate of mortality observed in diabetic
patients after MI may not be due to the infarct size but to several
confounding factors observed in diabetic patients such as the
diabetic cardiomyopathy and dyslipidemia.

All these discrepancies between studies, whether among
animal models or clinical testing, have raised a lot of questioning
about scientists’ attempt to translate their fundamental research
into clinics. Here, we provide some advices for translational
research in the field of cardioprotective strategies against MI by:
(1) considering comorbidities, such as diabetes, together with
their daily medication, into the animal models; (2) evaluating
the relevance of each comorbidity in the protective approaches,
notably between diabetes and aging; and (3) extending our
experimental endpoints beyond infarct size, i.e., contractile
function and survival study.
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Abstract
Objective
To assess whether interleukin-6 (IL-6) level is a marker of futile reperfusion in patients with
acute ischemic stroke (AIS) with large vessel occlusion treated with mechanical thrombectomy
(MT).

Methods
The Cohort of Patients to Identify Biological and Imaging Markers of Cardiovascular Out-
comes in Stroke (HIBISCUS-STROKE) includes patients with AIS treated withMT after MRI.
We performed a sequential assessment of IL-6 (admission, 6 hours, 24 hours, 48 hours and 3
months from admission). Among patients with successful reperfusion (Thrombolysis in Ce-
rebral Infarction scale 2b/3), reperfusion was considered effective if 3-month modified Rankin
Scale (mRS) score was 0 to 2 and futile if 3-month mRS score was 3 to 6. Our model was
adjusted for the main confounding variables.

Results
One hundred sixty-four patients represent the study population. One hundred thirty-three
patients had successful reperfusion (81.1%), while in 46 (34.6%), reperfusion was classified as
futile. In single-variable analyses, high IL-6 levels at 6, 24, and 48 hours in combination with a
higher age, a prestroke mRS score >2, a history of hypertension or diabetes, lack of current
smoking, a higher baseline NIH Stroke Scale score, the absence of associated intravenous
thrombolysis, an intracranial internal carotid artery or a tandem occlusion, and an increased
infarct growth were associated with futile reperfusion. After multivariable analyses, a high IL-6
level at 24 hours (odds ratio 6.15, 95% confidence interval 1.71–22.10) remained associated
with futile reperfusion.

Conclusions
IL-6 is a marker of futile reperfusion in the setting of MT.
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The rate of futile reperfusion after mechanical thrombec-
tomy (MT) for acute ischemic stroke (AIS) with large
vessel occlusion (LVO) would be ≈54%.1 The no-reflow
phenomenon involving both thrombotic and inflammatory
pathways contributes to futile reperfusion.2,3 Interleukin-6
(IL-6) plays a key role in this process.4 Consistently,
several observational studies have shown a relationship
between IL-6 levels and stroke severity and outcome, but
its role in clinical practice remains controversial.5 How-
ever, the relationship between IL-6 and futile reperfusion
remains undocumented in patients with AIS treated with
MT. In this context, we assessed whether IL-6 level is a
marker of futile reperfusion.

Methods
Study Population
The Cohort of Patients to Identify Biological and Imaging
Markers of Cardiovascular Outcomes in Stroke
(HIBISCUS-STROKE) is an ongoing cohort study that
started in October 2016 and includes patients with AIS
with LVO treated with MT after brain MRI assessment in
the Lyon Stroke Center. Patients with known in-
flammatory disease, active malignancy, vasculitis, antibi-
otics at admission, myocardial infarction, or major surgery
in the 30 previous days were excluded. Peripheral blood
samples were collected from each patient at admission
before IV thrombolysis administration and 6 hours, 24
hours, 48 hours, and 3 months from admission. A CT scan
was performed at day 1 and a follow-up MRI at day 6.

Baseline data on demographic characteristics and medical
history, including risk factors, were collected at admission.
Baseline neurologic status was assessed by board-certified
neurologists using NIH Stroke Scale (NIHSS) score. The
modified Rankin Scale (mRS) score was assessed at 3 months
during a face-to-face follow-up visit. Among patients with
successful reperfusion defined as Thrombolysis in Cerebral
Infarction (TICI) score ≥2b, reperfusion was considered ef-
fective if 3-month mRS score was 0 to 2 and futile if 3-month
mRS score was 3 to 6.

Standard Protocol Approvals, Registrations,
and Patient Consents
The study was approved by the local ethics committee, and all
participants or their relatives signed an informed consent
form (Institutional Review Board No. 00009118).

Neuroimaging
All MRI studies were performed with 1.5T Intera or 3T
Achieva scanners (Philips, Best, the Netherlands). The ad-
mission protocol included fluid-attenuated inversion recovery
(FLAIR), T2 gradient echo, diffusion-weighted imaging, time-
of-flight magnetic resonance angiography, and perfusion-
weighted imaging. A CT scan was performed at day 1 to
classify any hemorrhagic transformation according to the
European Cooperative Acute Stroke Study II classification. A
final MRI was performed at 1 month to map the final infarct
on FLAIR. The follow-up MRI protocol at day 6 included a
FLAIR sequence. A stroke neurologist with expertise in
neuroradiology who was blinded to clinical data and follow-up
independently reviewed MRI using a dedicated postprocess-
ing workstation (3-dimensional slicer software). Alberta
Stroke Program Early CT score and baseline volume on the
diffusion-weighted imaging sequence and final volumes on the
FLAIR sequence were measured. Infarct growth corresponds
the difference between final and baseline volumes. Pre-
treatment collateral status was categorized into poor (Higa-
shida score 0–2) and good (Higashida score 3–4).

Blood Sampling Protocol
White blood cell (WBC) count and high-sensitivity C-reactive
protein (hsCRP) were routinely measured at admission. IL-6
wasmeasured with an ELISA kit fromThermo Fisher Scientific
(Invitrogen, Carlsbad, CA). Sensitivity was 2 pg/mL. Sera were
stored at −80°C within a 3-hour delay at the NeuroBioTec
biobank (CRB-HCL: BB-0033-00,046, France). All samples
were thawed only once for study measurements.

Statistical Analysis
Descriptive statistics are presented are expressed as mean ± SD
or median (interquartile range) for continuous variables and as
absolute number (percentages) for categorical variables. Cor-
relations between IL-6 levels and MRI parameters were per-
formed with the Spearman rank. Single-variable then
multivariable logistic regression using a backward selection
procedure with a p threshold of 0.20 was performed to assess
independent markers of futile reperfusion among patients with
successful reperfusion. Baseline covariates with a significant
association with futile reperfusion in the single-variable model
were included in the multivariable model along with other
potential predictors independently of their p value in the single-
variable model, selected a priori as age, baseline NIHSS score,
and baseline lesion volume.6,7 Normality of distributions was
assessed graphically and with the Shapiro-Wilk test. Because IL-
6, hsCRP, and WBC did not have a normal distribution, we

Glossary
AIS = acute ischemic stroke; CI = confidence interval; FLAIR = fluid-attenuated inversion recovery; HIBISCUS-STROKE =
Cohort of Patients to Identify Biological and Imaging Markers of Cardiovascular Outcomes in Stroke; hsCRP = high-sensitivity
C-reactive protein; ICA = internal carotid artery; IL-6 = interleukin-6; LVO = large vessel occlusion; mRS = modified Rankin
Scale; MT = mechanical thrombectomy; NIHSS = NIH Stroke Scale; OR = odds ratio; TICI = Thrombolysis in Cerebral
Infarction; WBC = white blood cell.
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Table 1 Characteristics of the Study Population

No or Partial Reperfusion (n = 31)

Successful Reperfusion

Effective (n = 87) Futile (n = 46)

Age, y 68 ± 17 66 ± 15 75 ± 13

Male 18 (58.1) 55 (63.2) 25 (54.4)

Prestroke mRS score >2 2 (6.5) 1 (1.2) 7 (15.2)

Hypertension 13 (41.9) 31 (35.6) 36 (78.3)

Diabetes 4 (12.9) 10 (11.5) 13 (28.3)

Hyperlipidemia 5 (16.1) 21 (24.1) 16 (34.8)

Current smoking 7 (22.6) 23 (26.4) 4 (8.7)

Baseline NIHSS score 15 (9–19) 14 (8–18) 17 (13–21)

SBP, mm Hg 139.1 ± 23.5 138.7 ± 20.5 144.8 ± 24.4

DBP, mm Hg 77.0 ± 15.2 78.6 ± 15.8 75.2 ± 20.9

Glucose level, mmol/L 6.8 (5.8–8.0) 6.0 (5.4–7.0) 6.8 (5.9–8.7)

WBC count at admission, 109/La 8.7 (6.6–11.6) 8.4 (6.5–10.0) 8.1 (6.9–10.4)

hsCRP at admission, mg/Lb 3 (1.7–8.2) 3.3 (1.4–7.7) 3.3 (1.9–9.7)

Etiology

Cardioembolism 14 (45.2) 45 (51.7) 25 (54.4)

LAA 7 (22.6) 10 (11.5) 9 (19.6)

Other 4 (12.9) 9 (10.3) 4 (8.7)

Undetermined 6 (19.3) 23 (26.4) 8 (17.4)

IV thrombolysis 15 (48.4) 54 (62.1) 19 (41.3)

Thrombus location

M1 MCA segment 24 (77.4) 68 (78.2) 39 (84.8)

M2 MCA segment 7 (22.6) 20 (23.0) 5 (10.9)

Intracranial ICA 9 (29.0) 21 (24.1) 23 (50.0)

Tandem occlusion 6 (19.4) 15 (17.2) 17 (37.0)

ASPECT score 7 (5–8) 7 (7–9) 7 (5–8)

Baseline lesion volume, cm3c 23.3 (11.7–48.5) 13.2 (4.1–30.2) 23.1 (10.4–54.3)

Poor collateralsd 14 (58.3) 26 (38.2) 11 (36.7)

Onset to groin puncture, min 307 (175–540) 187 (146–301) 246 (176–382)

Onset to reperfusion, mine 377 (276–1,035) 238 (184–352) 285 (208–467)

Final lesion volume, mLf 49.5 (20.7–150.3) 13.7 (4.7–37.6) 41.5 (16.3–76.2)

Infarct growth, mLf 20.4 (2.9–98.1) 1.0 (−4.4 to 6.2) 12.7 (−0.1 to 35.5)

Any hemorrhagic transformation 12/30 (25.5) 18/85 (21.2) 17/45 (37.8)

PH type 1 or 2 1/30 (3.3) 1/85 (1.2) 3/45 (6.7)

SAH 1/30 (3.3) 2/85 (2.4) 2/45 (4.4)

IL-6 level at admission, pg/mLg 1.3 (0.3–3.6) 1.3 (0.7–3.4) 2.0 (0.7–4.5)

High IL-6 level at admission 13/28 (46.4) 37/78 (47.4) 25/43 (58.1)

IL-6 level at 6 h, pg/mLh 3.1 (2.0–6.0) 2.1 (1.1–4.4) 3.3 (2.2–6.2)

Continued
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dichotomized them according to their median. To prevent
expected collinearity between intracranial internal carotid ar-
tery (ICA) and tandem occlusion and between baseline lesion
volume and infarct growth, only intracranial ICA occlusion and
infarct growth were entered into the multivariable analysis. We
performed receiver operating curves for the prediction of futile
reperfusion in the clinicoradiologic model that included po-
tential predictors independently of their p value in the single-
variable model, selected a priori (age, baseline NIHSS score,
and baseline lesion volume) with and without IL-6 level at 24
hours, and compared the 2 areas under the curve using the
DeLong test. We performed a sensitivity analysis using impu-
tation methods of missing data: last and next method for IL-6
level at 24 hours and last observation carried forward for final
lesion volume when data were available; otherwise, we used the
median. The data were analyzed with Stata version 15 (Stata-
Corp, College Station, TX).

Data Availability
Further anonymized data can be made available to qualified
investigators on request to the corresponding author.

Results
Study Population
A total of 643 consecutive patients with AIS were treated with
MT in our institution from October 2016 to April 2019.
Among them, 138 patients with CT at admission, 46 with
posterior circulation stroke, 241 without scheduled follow-up

visit in our stroke center (secondary transfers from primary
stroke center), 34 without informed consent, and 9 without
available blood samples were excluded. Of the remaining 175
patients included in the HIBISCUS-STROKE cohort, 11
were excluded due to active disease resulting in systemic in-
flammation. The remaining 164 patients represent the study
population. Excluded patients were less likely to be male (223
[46.5%] vs 98 [59.8%]), had a higher baseline NIHSS score
(17 [12–21] vs 15 [9–19]), and were less likely to have anM1
segment middle cerebral artery occlusion (336 [70.1%] vs 131
[79.9%]). Mean age was 69 ± 15 years. Median baseline
NIHSS score was 15 (9–19). Successful reperfusion was
obtained in 133 patients (81.1%); of them, 46 (34.6%)
showed a futile reperfusion. No patient was lost at the
3-month follow-up. The main characteristics of the study
population are shown in table 1.

IL-6 Levels in the Whole Study Population
Il-6 levels were significantly lower in patients with effective
reperfusion compared to patients with futile and no or partial
reperfusion at several time points. Kinetics of IL-6 in different
subgroups are presented in the figure.

IL-6 levels did not correlate with baseline MRI parameters. In
contrast, we found a slight but significant correlation between
IL-6 levels at 48 hours and infarct growth (ρ = 0.22). No
association was found between IL-6 levels at admission and
collateral status (odds ratio [OR] 0.82, 95% confidence in-
terval [CI] 0.39–1.74).

Table 1 Characteristics of the Study Population (continued)

No or Partial Reperfusion (n = 31)

Successful Reperfusion

Effective (n = 87) Futile (n = 46)

High IL-6 level at 6 h 13/25 (52.0) 34/82 (41.5) 26/40 (65.0)

IL-6 level at 24 h, pg/mLi 5.0 (3.3–7.3) 2.7 (1.7–5.5) 4.3 (2.6–9.0)

High IL-6 level at 24 h 20/28 (71.4) 30/81 (37.0) 26/43 (60.5)

IL-6 level at 48 h, pg/mLj 5.2 (2.9–15.9) 2.5 (1.2–5.2) 5.3 (2.5–8.2)

High IL-6 level at 48 h 19/28 (67.9) 28/81 (34.6) 28/42 (66.7)

IL-6 level at 3 mo, pg/mLk 1.2 (0.3–2.0) 0.6 (0.3–1.1) 1.0 (0.4–2.6)

High IL-6 level at 3 mo 12/20 (60.0) 29/70 (41.4) 17/26 (65.4)

Abbreviations: ASPECT = Alberta Stroke Program Early CT; DBP = diastolic blood pressure; hsCRP = high-sensitivity C-reactive protein; ICA = internal carotid
artery; IL-6 = interleukine-6; LAA = large artery atherosclerosis; MCA = middle-cerebral-artery segment; mRS = modified Rankin scale; NIHSS = NIH Stroke
Scale; PH = parenchymal hematoma; SAH = subarachnoid hemorrhage; SBP = systolic blood pressure; WBC = white blood cell.
Variables are displayed as absolute number/total number (percentage), mean ± SD, or median (25th–75th percentiles) as appropriate.
a Eleven patients missing data.
b Fourteen patients missing data.
c Nineteen patients missing data.
d Forty-two patients missing data.
e Three patients with available data in the group with no or partial reperfusion.
f Thirty-seven patients missing data.
g Fifteen patients missing data.
h Seventeen patients missing data.
i Twelve patients missing data.
j Thirteen patient missing data.
k Forty-eight patients missing data.
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Factors Associated With Futile Reperfusion
Single-variable analyses showed that high IL-6 levels at 6 (OR
2.49, 95% CI 1.14–5.46) and 24 and 48 hours (OR 3.24, 95%
CI 1.47–7.15) were associated with futile reperfusion in
combination with a higher age, a prestroke mRS score >2, a
history of hypertension or diabetes, lack of current smoking, a
higher baseline NIHSS score, the absence of associated IV
thrombolysis, and an intracranial ICA or tandem occlusion
(table 2). WBC count (OR 0.77, 95% CI 0.36–1.62) and
hsCRP level (OR 1.03, 95% CI 0.48–2.19) at admission were
not associated with futile reperfusion. We did not find any
association between poor collateral status and futile reperfu-
sion (OR 1.07, 95% CI 0.44–2.60). Among follow-up imaging
data, an increased infarct growth was significantly associated
with futile reperfusion.

The multivariable analysis confirmed that high IL-6 levels
at 6 (OR 3.06, 95% CI 0.88–10.61) and 24 and 48 hours
(OR 3.38, 95% CI 1.05–10.89) were associated with futile
reperfusion together with a history of hypertension, a
higher baseline NIHSS score, the absence of associated IV
thrombolysis, and an increased infarct growth (table 2).
The addition of IL-6 level at 24 hours to the clinicor-
adiologic model resulted in a slight but nonsignificant
improvement in discriminatory accuracy for distinguishing
futile from effective reperfusion (area under the curve 0.78
vs 0.72).

Sensitivity Analysis
The same covariates were retained in the multivariable model
when an upward selection (p < 0.5) was used as an alternative
variable selection procedure. After imputation of missing data,
a high IL-6 level at 24 hours remained associated with futile
reperfusion (OR 4.47, 95% CI 1.69–11.84).

Discussion
In our study, early high levels of IL-6 were independently
associated with futile reperfusion in patients with AIS with
LVO treated with MT. In this context, IL-6 seems a key factor
of thromboinflammation and infarct growth.2,3,8

A single study conducted in the setting ofMT showed that IL-
6 levels were not independently associated with poor out-
come, defined as a 3-monthmRS score of 5 to 6, in 41 patients
with AIS involving anterior or posterior circulation, without
adjustment for reperfusion status.9

The relationship between IL-6 levels and futile reperfusion
does not necessarily imply a causal relationship. IL-6 may
merely reflect ischemic core progression regardless of reper-
fusion status. Nevertheless, IL-6 may also contribute to infarct
growth as reported with other systemic markers in the context
of thrombectomy.4,6,10

The major strength of our study lies in the sequential as-
sessment of IL-6 coupled with MRI data within a homoge-
neous cohort of patients with AIS with LVO in the context of
MT. We acknowledge some limitations. First, due to re-
strictive inclusion criteria, only one-quarter of patients treated

Figure Kinetics of IL-6

H0 = admission; H6 = hour 6; H24 = hour 24; H48 = hour 48; IL-6 = interleukin-
6; M3 = month 3. *p < 0.05 when testing effective reperfusion vs futile
reperfusion; *p < 0.05 when testing effective reperfusion vs no or partial
reperfusion.

Table 2 Factors Associated With Futile Recanalization in
Single-Variable and Multivariable Analyses

Single-Variable
Analyses
Crude OR (95% CI)

Multivariable
Analysis
Adjusted OR
(95% CI)

High vs low IL-6 level at
H24

3.01 (1.39–6.55) 6.15 (1.71–22.10)

Agea 1.54 (1.17–2.03) —

Prestroke mRS score >2 15.44 (1.84–129.78) —

Hypertension 6.50 (2.85–14.86) 7.99 (2.03–31.42)

Diabetes 3.03 (1.21–7.61) —

Current smoking 0.27 (0.09–0.82) —

Baseline NIHSS scoreb 1.10 (1.03–1.17) 1.12 (1.02–1.24)

IV thrombolysis 0.43 (0.21–0.89) 0.21 (0.06–0.77)

Intracranial ICA
occlusion

3.14 (1.47–6.71) 2.77 (0.76–10.11)

Tandem occlusion 2.81 (1.24–6.37) —

Infarct growthc 3.79 (1.25–11.47) 7.24 (1.28–41.08)

Abbreviations: CI = confidence interval; H24 = hour 24; ICA = internal carotid
artery; IL-6 = interleukine-6; NIHSS = NIH Stroke Scale; OR = odds ratio.
Model was adjusted for age, NIHSS score, hypertension, IV thrombolysis,
intracranial ICA occlusion, and infarct growth (prestroke modified Rankin
Scale score, diabetes, and current smoking were not retained by the back-
ward procedure).
a Per 10-year increase.
b Per 1-unit increase.
c Per a log + 1 increase.
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with MT in our institution were included, and they differed
from excluded patients in terms of sex, baseline NIHSS score,
and thrombus location, which may limit generalization. A
propensity-weighted analysis would have been relevant as an
additional sensitivity analysis, but the variables of interest (IL-
6 levels and 3-month mRS score) were not collected in ex-
cluded patients. Second, the limited sample size and the
subsequent limited precision with which the identified asso-
ciation is estimated call for further studies. In addition, the
lack of follow-up vascular imaging may prevent the assess-
ment of arterial reocclusion and downstream embolization
after the index event, which may distort the true incidence of
futile reperfusion.

We found that high IL-6 levels at 24 hours were associated
with futile reperfusion in patients with AIS with LVO treated
with MT.
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Objective: To assess the relationship between matrix metalloproteinase 9 (MMP-9),

a proteolytic enzyme involved in the breakdown of the blood-brain barrier, and infarct

growth and hemorrhagic transformation in acute ischemic stroke (AIS) with large vessel

occlusion (LVO) in the era of mechanical thrombectomy (MT) using the kinetics of MMP-9

and sequential magnetic resonance imaging (MRI).

Methods: HIBISCUS-STROKE is a cohort study including AIS patients with LVO treated

with MT following admission MRI. Patients underwent sequential assessment of MMP-9,

follow-up CT at day 1, and MRI at day 6. The CT scan at day 1 classified any hemorrhagic

transformation according to the European Co-operative Acute Stroke Study-II (ECASS II)

classification. Infarct growth was defined as the difference between final Fluid-Attenuated

Inversion Recovery volume and baseline diffusion-weighted imaging volume. Conditional

logistic regression analyses were adjusted for main confounding variables including

reperfusion status.

Results: One hundred and forty-eight patients represent the study population. A high

MMP-9 level at 6 h from admission (H6) (p = 0.02), a high glucose level (p = 0.01), a

high temperature (p = 0.04), and lack of reperfusion (p = 0.02) were associated with

infarct growth. A high MMP-9 level at H6 (p = 0.03), a high glucose level (p = 0.03) and

a long delay from symptom onset to groin puncture (p = 0.01) were associated with

hemorrhagic transformation.

Conclusions: In this MT cohort study, MMP-9 level at H6 predicts infarct growth and

hemorrhagic transformation.

Keywords: stroke, matrix metalloproteinase 9, MRI, thrombectomy, thrombolytic therapy
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INTRODUCTION

Ischemia-reperfusion injury in stroke is defined as a biochemical
cascade causing a deterioration of ischemic brain tissue that
parallels and antagonizes the beneficial effect of reperfusion
(1). A key feature of this process is the proteolytic breakdown
of the blood-brain barrier (BBB) vasculature. The increase
of BBB permeability is mediated by activation of matrix
metalloproteinase (MMP), and especially MMP-9 (2, 3).

So far, the importance of MMP-9 on infarct growth and risk of
hemorrhagic transformation has not been explored in relation to
mechanical thrombectomy (MT). In the context of intravenous
(IV) thrombolysis, early increase of MMP-9 expression may
promote hemorrhagic transformation but also infarct growth
with subsequent influence on neurological disability (4–12).
Since restoration of the blood supply following MT might be
more abrupt and potentially cause greater BBB damage despite
a timely and successful reperfusion, an appropriate assessment of
MMP-9 activity in this settingmay provide additional insight into
reperfusion injury related to MT (13). We sought to determine
whether early MMP-9 level is associated with infarct growth
and hemorrhagic transformation. For this purpose, a sequential
assessment of MMP-9 and ischemic damage using MRI was
implemented in the setting of MT.

METHODS

Study Population
HIBISCUS-STROKE is an ongoing cohort study including all
patients admitted since October 2016 in the Lyon Stroke
Department for an acute ischemic stroke (AIS) with large vessel
occlusion (LVO) treated either within 0–6 h or 6–24 h time
window with MT following brain magnetic resonance imaging
(MRI) assessment. Patients with Computed-Tomography at
admission, with posterior circulation stroke, without follow-up
planned in our institution (secondary transfers to primary stroke
center), without informed consent and without available blood
samples were excluded from the HIBISCUS-STROKE cohort.
Among patients included in the HIBISCUS-STROKE cohort,
those with known inflammatory disease, active malignancy,
vasculitis, antibiotics at admission, myocardial infarction, or
major surgery in the 30 previous days were excluded in order
not to skew the results of the biomarkers analysis. All patients
underwent a sequential assessment of systemic MMP-9 level.
Peripheral blood samples were collected from each patient: at
admission (H0), 6 h (H6), 24 h (H24), and 48 h (H48) from
admission. A CT scan was performed at day 1 in order to rule out
any hemorrhagic transformation. Final infarct size was assessed
on follow-up MRI at day 6 (Figure 1).

Baseline data on demographic characteristics, lifestyle risk
factors, medical history, and use of medications were collected
at hospital admission. Neurological status was assessed by board
certified neurologists using National Institute of Health Stroke
Scale (NIHSS) score at admission, and the modified rankin scale
(mRS) score at 3 months during a face-to-face follow-up visit.
Poor outcome was defined as 3-month mRS score > 2. Stroke

subtype was classified according to the Trial of Org 10,172 in
Acute Stroke Treatment (TOAST) criteria (14).

The study was approved by the local ethics committee and all
subjects or their relatives signed an informed consent form.

Neuroimaging
All MRIs were performed with 1.5-Tesla Intera or 3-Tesla
Achieva scanners (Philips, Best, Netherlands). The admission
MRI protocol included fluid-attenuated inversion recovery
(FLAIR), T2-gradient echo, diffusion-weighted imaging (DWI),
time-of-flight MRA, and perfusion-weighted imaging. The
CT scan at day 1 classified any hemorrhagic transformation
according to the European Co-operative Acute Stroke Study-II
(ECASS II) classification (15). The follow-upMRI protocol at day
6 included FLAIR sequence. A stroke neurologist (T-H. C.) with
expertise in neuroradiology, blinded to clinical and laboratory
data, independently reviewed both admission and follow-up
MRI using a dedicated post-processing work station (3D slicer
software). The acute ischemic lesion was segmented from the
baseline DWI with a semi-automated method (3D Slicer: https://
www.slicer.org/) by using both a validated ADC threshold (ADC
<620 × 10−6 mm2/s) and visual assessment of b1000 images.
The final infarct was identified on day-6 FLAIR images using
3D Slicer. Lesion volumes were subsequently calculated from
the segmentation masks. Infarct growth was defined as the
difference between final volume on the FLAIR-sequence and
baseline volume on the DWI-sequence. Alberta Stroke Program
Early CT score (ASPECTS) was measured on baseline DWI (16).
Successful reperfusion was defined as thrombolysis in cerebral
infarction score (TICI) ≥2b (17).

Blood Sampling Protocol
White blood cells (WBC) count and high sensitivity C-reactive
protein (hsCRP) were routinely measured at admission. MMP-
9 level was measured using DuoSet R© ELISA Development
Kits (R&D Systems). Sera were prepared and stored at −80◦C
within a 3 h delay at the NeuroBioTec biobank (CRB-HCL: BB-
0033-00046, France). All samples were thawed only once for
study measurements. Serum samples were diluted at 1/2,000.
Sensitivity was 12.2 pg/mL.

Statistical Analysis
Continuous variables are expressed as means (standard deviation
[SD]) or medians (interquartile range [IQR]), and categorical
variables as percentages. Medians were compared using the
Mann–Whitney or Kruskall–Wallis test for independent samples.
The Wilcoxon signed rank test was performed for matched
samples. Percentages were compared using the Fishers exact test.
Spearman correlation coefficients (r) were calculated between
variables. Analyses were focused on the early MMP-9 peak at
H6. Normality of distributions was assessed graphically and with
the Shapiro–Wilk test. As MMP-9, infarct growth, WBC count,
and hsCRPwere not normally distributed, we dichotomized them
according to their median. The association between MMP-9 level
at H6 and infarct growth and hemorrhagic transformation was
measured by calculating crude odds ratios (ORs) and 95% CIs
using conditional logistic regression analyses. A multiple logistic
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regression model was performed to detect independent markers
of infarct growth or any hemorrhagic transformation. Covariates
with a significant univariate association with infarct growth or
hemorrhagic transformation were included in each multivariate
model along with other potential predictors independent of
their univariate p-value, selected a priori. A backward selection
procedure was chosen. The models were adjusted for:

– infarct growth: age, sex, glucose level, temperature, baseline
volume on the DWI-sequence, stroke onset to groin puncture
time, IV thrombolysis, and reperfusion status (NIHSS
score and systolic blood pressure not retained by the
backward selection),

– hemorrhagic transformation: sex, glucose level, stroke onset
to groin puncture time, IV thrombolysis, and baseline volume
on the DWI-sequence (age, NIHSS score, and systolic blood
pressure not retained by the backward selection).

Two-tailed p < 0.05 was considered to be statistically significant.
The data were analyzed with Stata Version 15TM (STATACORP,
COLLEGE STATION, TEXAS 77845 USA).

Data Availability Statement
Further anonymized data can be made available to qualified
investigators on request to the corresponding author.

RESULTS

HIBISCUS-STROKE Cohort
Between October 2016 to April 2019, 148 patients met the
inclusion criteria (Figure 1). Baseline and follow-up MRI were
available and interpretable for 127 (77.4%) patients. The main
clinical and imaging characteristics are shown in Table 1. Mean
age was 69 ± 15. Sixty percent of patients were men. Median
NIHSS score on admission was 15 [9–19]. Median infarct growth
was 3.4 cc [−1.3 to 24.6]. Hemorrhagic transformation occurred
in 40 patients (27.6%). Ninety-one (61.5%) patients had a good
outcome (mRS score 0–2) at 3 months. No patient was lost at the
3-month follow-up.

In our population, MMP-9 levels peaked early at 6 h from
admission (p= 0.04; Figure 2).

FIGURE 1 | Flow-chart of patient selection (A) and timeline of HIBISCUS-STROKE cohort from admission (B) (H0, admission; H6, hour 6; H24, hour 24; H48, hour

48; M3, month 3; IV, intravenous; MRI, magnetic resonance imaging; CT, computed tomography; mRS, modified Rankin Scale).
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TABLE 1 | Characteristics of the study population.

MMP-9 level at H6

All

(n = 148)

Low-level

(MMP-9 H6 ≤

775ng/mL)

(n = 74)

High-level

(MMP-9 H6 >

775ng/mL)

(n = 74)

p-value

Age, years 69 ± 15 70 ± 14 67 ± 16 0.15

Male, n (%) 89 (60.1) 46 (62.2) 43 (58.1) 0.74

Prestroke mRS

score > 2

8 (5.4) 3 (4.1) 5 (6.8) 0.72

Hypertension 69 (46.6) 37 [50] 32 [43.2] 0.51

Diabetes 25 (16.9) 11 [14.9] 14 [18.9] 0.66

Hyperlipidemia 38 (25.7) 20 [27] 18 [24.3] 0.71

Current smoking 29 (19.6) 12 [16.2] 17 [23.0] 0.41

Baseline NIHSS

score

15 [9–19] 13 [7–19] 16 [12–19] 0.05

SBP, mmHg 140.1 ± 22.2 141.9 ± 23.8 138.3 ± 20.6 0.39

DBP, mmHg 77.6 ± 17.4 78.0 ± 18.4 77.2 ± 16.6 0.91

Baseline

temperature

36.5 ± 0.6 36.5 ± 0.5 36.5 ± 0.7 0.46

Glucose level,

mmol/L

6.27

[5.61–7.59]

6.00 [5.56–6.99] 6.44 [5.78–7.92] 0.28

hsCRP at

admission, mg/L

3.3 [1.6–7.8] 3 [1.3–5.9] 3.5 [1.8–11.4] 0.13

WBC count at

admission, 109/L

8.3 [6.6–10.0] 7 [5.9–9.0] 9.2 [8.0–11.1] <0.01

Etiology 0.25

Cardioembolism 79 (53.4) 39 (52.7) 39 (52.7)

LAA 24 (16.2) 9 (12.2) 12 (16.2)

Other 16 (10.8) 11 (14.9) 4 (5.4)

Undetermined 29 (19.6) 15 (20.3) 19 (25.7)

IV thrombolysis 78 (52.7) 37 (50) 41 (55.4) 0.62

Thrombus location

M1 MCA 118 (79.7) 57 (75.7) 62 (83.8) 0.31

segment

M2 MCA 28 (18.9) 17 (23.0) 11 (14.9) 0.29

segment

Intracranial ICA 44 (29.7) 21 (28.4) 23 (31.1) 0.86

Tandem occlusion 30 (20.3) 15 (20.3) 15 (20.3) 1

ASPECTS 7 [6–8] 8 [6–9] 7 [6–8] 0.13

DWI lesion

volume, cc

17.4

[5.7–44.2]

13.3 [4.9–34.8] 23.0 [8.0–46.2] 0.18

Reperfusion

(TICI2b-3)

123 (83.1) 63 (85.1) 60 (81.1) 0.66

Onset to

admission, min

117 [70–282] 124 [73–302] 115 [70–245] 0.72

Onset to groin

puncture, min

222 [155–373] 230 [156–403] 218 [155–320] 0.57

Onset to

reperfusion, min

255 [195–378] 256 [195–414] 247 [195–358] 0.67

FLAIR lesion

volume, cc

26.1

[7.8–61.1]

16.7 [5.1–41.4] 38.7 [13.6–85.7] 0.01

Infarct growth, cc 3.3 [−1.3 to

22.7]

0.8 [−4.4 to

14.8]

4.9 [0.5 to 36.2] 0.02

(Continued)

TABLE 1 | Continued

MMP-9 level at H6

All

(n = 148)

Low-level

(MMP-9 H6 ≤

775ng/mL)

(n = 74)

High-level

(MMP-9 H6 >

775ng/mL)

(n = 74)

p-value

Any hemorrhagic

transformation

40 (27.6) 14 (18.9) 26 (36.6) 0.03

PH type 1 or 2 3 (2.1) 2 (2.7) 1 (1.4) 1

SAH 4 (2.8) 1 (1.4) 3 (4.2) 0.36

mRS score 0–2 91 (61.5) 46 (62.2) 45 (60.8) 1

MMP-9, matrix metalloproteinase 9; H6, hour 6; NIHSS, National Institute of Health

Stroke Score; SBP, systolic blood pressure; DBP, diastolic blood pressure; hsCRP, High

sensitivity C-reactive protein; WBC, white blood cells; LAA, Large-artery atherosclerosis;

IV, intravenous; mRS, modified rankin scale; MCA, middle-cerebral-artery segment; ICA,

intracranial carotid artery; ASPECTS, Alberta Stroke Program Early CT score; DWI,

diffusion-weighted sequence; TICI, thrombolysis in cerebral infarction score; FLAIR,

Fluid Attenuated Inversion Recovery; PH, Parenchymal hematoma; SAH, Subarachnoid

hemorrhage. Variables are displayed as absolute number (percentage of column total);

mean ± SD; or median (25th−75th percentiles) as appropriate. Significant values are

shown in bold.

FIGURE 2 | Median matrix metalloproteinase 9 (MMP-9) levels in patient’s sera

at admission, 6, 24, and 48 h from admission [H0, admission; H6, hour 6;

H24, hour 24; H48, hour 48; Wilcoxon test for matched samples comparing

MMP-9 levels at each time with the time before (*p < 0.05)].

MMP-9 and Infarct Growth
In univariate analyses, a high glucose level [OR = 1.25 (1.02–
1.54); p = 0.03], a long delay from symptom onset to groin
puncture [OR = 1.05 (1.00–1.11) per 30min increase; p = 0.04),
lack of IV thrombolysis [OR = 0.42 (0.20–0.88); p = 0.02] and
lack of reperfusion [OR = 0.27 (0.09–0.79); p = 0.02] were
associated with infarct growth. A high WBC count [OR = 1.30
(0.53–3.17); p = 0.56] and a high hsCRP level [OR = 0.69
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(0.28–1.69); p = 0.42] at admission were not associated with
infarct growth. After adjustment for main confounding variables,
a high MMP-9 level at H6 [3.43 (1.23–9.55); p = 0.02], a high
glucose level [1.43 (1.08–1.90); p = 0.01], a high temperature
[2.55 (1.03–6.29); p = 0.04], and lack of reperfusion [0.16 (0.03–
0.77); p = 0.02] were independently associated with infarct
growth (Table 2).

MMP-9 and Hemorrhagic Transformation
A high MMP-9 level at H6 [OR = 2.48 (1.16–5.27); p =

0.02] was associated with hemorrhagic transformation. A high
WBC count [OR = 1.96 (0.91–4.25); p = 0.09] and a high
hsCRP level [OR = 0.57 (0.28–1.27); p = 0.17] at admission
were not associated with hemorrhagic transformation. After
adjustment for main confounding factors, a high MMP-9 level
at H6 [2.91 (1.14–7.42); p = 0.03], a high glucose level
[1.20 (1.02–1.42); p = 0.03] and a long delay from symptom
onset to groin puncture [OR = 1.08 (1.02–1.14) per 30min
increase; p = 0.02] remained significantly associated with
hemorrhagic transformation.

DISCUSSION

Our study assessed the association between MMP-9 level and
outcome in AIS patients with LVO treated with MT. The study
design stands apart from earlier works due to a sequential
assessment of bothMMP-9 and ischemic damage onMRI. MMP-
9 level at 6 h from admission was associated with infarct growth
and hemorrhagic transformation.

We observed an early peak at 6 h from admission. Previous
studies assessing kinetics of MMP-9 in AIS patients whether or
not they are treated with IV thrombolysis with heterogeneous
delays from the stroke onset have shown an early increase in the
first 24 h (4, 10, 11, 18–22).

Pathological data show the presence of high MMP-9 levels not
only in infarct tissue but also in the peri-infarct areas, suggesting
MMP-9 involvement in the process of infarct growth (23, 24).
A previous study conducted in 24 patients with middle cerebral
artery (MCA) occlusion treated with IV thrombolysis found that
MMP-9 level was associated with infarct growth at 24 h, but they
did not report reperfusion status, which is a major confounding
factor when interpreting their results (12). Our study confirms
that MMP-9 level at H6 and infarct growth remains associated in
the setting of MT after adjustment for reperfusion status.

Numerous studies have documented an increase in MMP-
9 levels following AIS, associated with disruption of the BBB,
thus promotion of hemorrhagic complications (2, 3, 25). This
aspect has received special attention in patients treated with
IV thrombolysis (4–9). Indeed, in addition to its thrombolytic
action, tissue plasminogen activator (tPA), via activation of
MMP-9, may also damage the basal lamina and tight junctions
of the cerebral blood vessels, resulting in increased permeability
of the BBB and hemorrhagic complications (26). We add to
these existing data of MMP-9 activity and hemorrhage risk in
AIS patients treated with tPA by examining AIS patients with
LVO treated with MT, a therapy with much higher reperfusion
rates and one which allows the recording of reperfusion status

TABLE 2 | Predictors of infarct growth and any hemorrhagic transformation in

univariate and multivariate analyses.

crude OR p-value adjusted OR p-value

[95% CI] [95% CI]

Infarct growth

High vs low

MMP-9 level at H6

1.93

(0.92–4.01)

0.08 3.43

(1.23–9.55)

0.02

Glucose level1 1.25

(1.02–1.54)

0.03 1.43

(1.08–1.90)

0.01

Temperature2 1.78

(0.93–3.41)

0.08 2.55

(1.03–6.29)

0.04

Reperfusion

(TICI 2b-3)

0.27

(0.09–0.79)

0.02 0.16

(0.03–0.77)

0.02

Any hemorrhagic transformation

High vs. low

MMP-9 level at H6

2.48

(1.16–5.27)

0.02 2.91

(1.14–7.42)

0.03

Glucose level1 1.10

(0.97–1.24)

0.14 1.20

(1.02–1.42)

0.03

Onset to groin

puncture time3
1.04

(1.00–1.09)

0.06 1.08

(1.02–1.14)

0.01

OR, odds ratio; MMP-9, matrix metalloproteinase 9; H6, hour 6; IV, intravenous; TICI,

thrombolysis in cerebral infarction score; ICA, internal carotid artery.
1per 1 mmol/L increase.
2per 1◦C increase.
3per 30min increase.

Significant values are shown in bold.

after treatment. We found an association between MMP-9 level
at H6 and the risk of hemorrhagic transformation, mainly
minor. The clinical relevance of this minor bleeding is still
debated (27).

The observed association between MMP-9 level at H6
and infarct growth and hemorrhagic transformation do not
necessarily imply a cause-effect relationship. Nevertheless, the
experimental data currently available on the role of MMP-
9 and on the effect of MMP-9 inhibition may be consistent
with a causal relationship (28–32). Preclinical animal studies
suggest that MMP-9 inhibition can be of therapeutic importance
in ischemic stroke although a small pilot study conducted in
humans did not show efficacy of this drug on 3-months mRS
score in the setting of IV thrombolysis (28–33). Insofar as we
have now entered into a new era of highly effective reperfusion,
a new approach investigating the potential benefit of compounds
which can directly inhibit MMP-9 activity should be considered
in future MT trials (34).

We recognize some limitations of our study. First, although
the limited sample size and the monocentric design may
be considered as a limitation, its major strength lies in
sequential assessment of MMP-9 coupled with MRI data
within a homogeneous cohort of stroke patients with LVO
in the context of MT. Secondly, imaging was performed
either on 1.5 or 3 T according to MRI magnets availability.
However, overall differences in the DWI and FLAIR imaging
are usually subtle between both fields strengths as previously
documented (35–37). Thirdly, final FLAIR-volume on day 6
may include a significant amount of edema instead of true
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infarction although previous studies have reported that it
likely reflects final infarct size (38–40). The edema component
could be further assessed using non-linear co-registration
methods (41). Edema component should be further assessed
using post-processing analysis as the nonlinear registration
method (41). Fourthly, susceptibility-weighted imaging (SWI)
or T2∗-weighted gradient echo (GRE) imaging were not
performed at day 6. These sequences would have been more
sensitive than CT, and might have revealed minor hemorrhagic
transformation (Hemorrhage infarction type 1 and 2) consistent
with delayed reperfusion damage following blood brain
barrier injury. Lastly, a comprehensive imaging assessment
of BBB disruption assessing subarachnoid hemorrhage,
gadolinium sulcal enhancement [hyperacute injury marker
(HARM)], or microvascular permeability (K2) would have been
a more direct measure of MMP-9 action and deserves further
investigation (42–44).

In this MT cohort study using sequential assessment of MMP-
9 levels and MRI, a high MMP-9 level at H6 predicts infarct
growth and hemorrhagic transformation.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/
supplementary material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the study was approved by the local ethics

committee and all subjects or their relatives signed an informed

consent form. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

LM and TB: major role in the acquisition of data, analysis of the
data, drafting the manuscript for intellectual content, AP, CC,
MBo, LD, EO, YB, OE, and ND: major role in the acquisition
of data, revised the manuscript for intellectual content, MBu:
major role in the acquisition of data, analysis of the data, revised
the manuscript for intellectual content, CA: analysis of the data,
revised the manuscript for intellectual content, NM, MO: design
of the study, revised the manuscript for intellectual content, TC:
major role in the acquisition of data, analysis of the data, revised
the manuscript for intellectual content, NN: design of the study,
major role in the acquisition of data, drafting the manuscript for
intellectual content.

FUNDING

This work was supported by the RHU MARVELOUS (ANR-
16-RHUS-0009) of Université de Lyon, within the program
Investissements d’Avenir operated by the French National
Research Agency (ANR) and the CASDEN prize from
CASDEN/Fondation de l’Avenir awarded to LM.

ACKNOWLEDGMENTS

We acknowledge Karen Reilly for editing assistance.

REFERENCES

1. Bai J, Lyden PD. Revisiting cerebral postischemic reperfusion injury: new
insights in understanding reperfusion failure, hemorrhage, and edema. Int J
Stroke. (2015) 10:143–52. doi: 10.1111/ijs.12434

2. Pfefferkorn T, Rosenberg GA. Closure of the blood-brain barrier by
matrix metalloproteinase inhibition reduces rtPA-mediated mortality in
cerebral ischemia with delayed reperfusion. Stroke. (2003) 34:2025–30.
doi: 10.1161/01.STR.0000083051.93319.28

3. Barr TL, Latour LL, Lee K-Y, Schaewe TJ, Luby M, Chang GS, et al.
Blood-brain barrier disruption in humans is independently associated
with increased matrix metalloproteinase-9. Stroke. (2010) 41:e123–8.
doi: 10.1161/STROKEAHA.109.570515

4. Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribó M,
et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial
hemorrhagic complications after thrombolysis in human stroke. Circulation.
(2003) 107:598–603. doi: 10.1161/01.CIR.0000046451.38849.90

5. Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J,
et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic
transformation in acute ischemic stroke. Stroke. (2003) 34:40–6.
doi: 10.1161/01.STR.0000046764.57344.31

6. Castellanos M, Sobrino T, Millán M, García M, Arenillas J, Nombela F,
et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening
biomarkers for the prediction of parenchymal hematoma after thrombolytic
therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke.
(2007) 38:1855–9. doi: 10.1161/STROKEAHA.106.481556

7. Rodríguez JA, Sobrino T, Orbe J, Purroy A, Martínez-Vila E, Castillo J,
et al. proMetalloproteinase-10 is associated with brain damage and clinical

outcome in acute ischemic stroke. J Thromb Haemost. (2013) 11:1464–73.
doi: 10.1111/jth.12312

8. Inzitari D, Giusti B, Nencini P, Gori AM, Nesi M, Palumbo V, et al.
MMP9 variation after thrombolysis is associated with hemorrhagic
transformation of lesion and death. Stroke. (2013) 44:2901–3.
doi: 10.1161/STROKEAHA.113.002274

9. Wang L, Wei C, Deng L, Wang Z, Song M, Xiong Y, et al. The accuracy
of serum matrix metalloproteinase-9 for predicting hemorrhagic
transformation after acute ischemic stroke: a systematic review
and meta-analysis. J Stroke Cerebrovasc Dis. (2018) 27:1653–65.
doi: 10.1016/j.jstrokecerebrovasdis.2018.01.023

10. Ning M, Furie KL, Koroshetz WJ, Lee H, Barron M, Lederer M,
et al. Association between tPA therapy and raised early matrix
metalloproteinase-9 in acute stroke. Neurology. (2006) 66:1550–5.
doi: 10.1212/01.wnl.0000216133.98416.b4

11. Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, et al.
Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke:
the biomarker evaluation for antioxidant therapies in stroke (BEAT-
stroke) study. Stroke. (2008) 39:100–4. doi: 10.1161/STROKEAHA.107.
488189

12. Rosell A, Alvarez-Sabín J, Arenillas JF, Rovira A, Delgado P, Fernández-
Cadenas I, et al. A matrix metalloproteinase protein array reveals a
strong relation between MMP-9 and MMP-13 with diffusion-weighted
image lesion increase in human stroke. Stroke. (2005) 36:1415–20.
doi: 10.1161/01.STR.0000170641.01047.cc

13. Mizuma A, You JS, Yenari MA. Targeting reperfusion injury in
the age of mechanical thrombectomy. Stroke. (2018) 49:1796–802.
doi: 10.1161/STROKEAHA.117.017286

Frontiers in Neurology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 473



Mechtouff et al. MMP-9 in Stroke Thrombectomy

14. Adams HP Jr, Bendixen BH, Biller J, Love BB, Gordon DL, Marsh EE.
Classification of subtype of acute ischemic stroke. Stroke. (1993) 24:35–41.
doi: 10.1161/01.str.24.1.35

15. Hacke W, Kaste M, Toni D, Lesaffre E, von Kummer R, et al.
Intravenous thrombolysis with recombinant tissue plasminogen
activator for acute hemispheric stroke. JAMA. (1995) 274:1017–25.
doi: 10.1001/jama.1995.03530130023023

16. Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability
of a quantitative computed tomography score in predicting outcome of
hyperacute stroke before thrombolytic therapy. Lancet. (2000) 355:1670–4.
doi: 10.1016/S0140-6736(00)02237-6

17. Higashida RT, Furlan AJ. Trial design and reporting standards for intra-
arterial cerebral thrombolysis for acute ischemic stroke. Stroke. (2003) 34:
e109–e37. doi: 10.1161/01.STR.0000082721.62796.09

18. Worthmann H, Tryc AB, Goldbecker A, Ma YT, Tountopoulou A, Hahn A,
et al. The temporal profile of inflammatory markers and mediators in blood
after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc
Dis. (2010) 30:85–92. doi: 10.1159/000314624

19. Demir R, Ulvi H, Özel L, Özdemir G, Güzelcik M, Aygül R. Relationship
between plasma metalloproteinase-9 levels and volume and severity of infarct
in patients with acute ischemic stroke. Acta Neurol Belg. (2012) 112:351–6.
doi: 10.1007/s13760-012-0067-4

20. Sobrino T, Pérez-Mato M, Brea D, Rodríguez-Yáñez M, Blanco M, Castillo
J. Temporal profile of molecular signatures associated with circulating
endothelial progenitor cells in human ischemic stroke. J Neurosci Res. (2012)
90:1788–93. doi: 10.1002/jnr.23068

21. Brouns R, Wauters A, De Surgeloose D, Mariën P, De Deyn PP. Biochemical
markers for blood-brain barrier dysfunction in acute ischemic stroke
correlate with evolution and outcome. Eur Neurol. (2011) 65:23–31.
doi: 10.1159/000321965

22. Montaner J, Rovira A, Molina CA, Arenillas JF, Ribó M, Chacón P, et al.
Plasmatic level of neuroinflammatory markers predict the extent of diffusion-
weighted image lesions in hyperacute stroke. J Cereb Blood FlowMetab. (2003)
23:1403–7. doi: 10.1097/01.WCB.0000100044.07481.97

23. Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M,
Molina CA, et al. Increased brain expression of matrix metalloproteinase-9
after ischemic and hemorrhagic human stroke. Stroke. (2006) 37:1399–406.
doi: 10.1161/01.STR.0000223001.06264.af

24. Amantea D, Russo R, Gliozzi M, Fratto V, Berliocchi L, Bagetta G, Bernardi
G, Corasaniti MT. Early upregulation of matrix metalloproteinases following
reperfusion triggers neuroinflammatory mediators in brain ischemia in rat.
Int Rev Neurobiol. (2007) 82:149–69. doi: 10.1016/S0074-7742(07)82008-3

25. Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption
by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus. (2007)
22:1–9. doi: 10.3171/foc.2007.22.5.5

26. Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis-
associated hemorrhagic transformation after embolic focal ischemia in rats.
Stroke. (2002) 33:831–6. doi: 10.1161/hs0302.104542

27. Kaesmacher J, Kaesmacher M, Maegerlein C, Zimmer C, Gersing AS,
Wunderlich S, et al. Hemorrhagic transformations after thrombectomy: risk
factors and clinical relevance. Cerebrovasc Dis Basel Switz. (2017) 43:294–304.
doi: 10.1159/000460265

28. Jiang X-F, Namura S, Nagata I. Matrix metalloproteinase inhibitor KB-R7785
attenuates brain damage resulting from permanent focal cerebral ischemia in
mice. Neurosci Lett. (2001) 305:41–4. doi: 10.1016/S0304-3940(01)01800-6

29. Nagel S, Su Y, Horstmann S, Heiland S, Gardner H, Koziol J, et al. Minocycline
and hypothermia for reperfusion injury after focal cerebral ischemia in
the rat-effects on BBB breakdown and MMP expression in the acute and
subacute phase. Brain Res. (2008) 1188:198–206. doi: 10.1016/j.brainres.2007.
10.052

30. Switzer JA, Hess DC, Ergul A, Waller JL, Machado LS, Portik-Dobos V,
et al. Matrix metalloproteinase-9 in an exploratory trial of intravenous
minocycline for acute ischemic stroke. Stroke. (2011) 42:2633–5.
doi: 10.1161/STROKEAHA.111.618215

31. Fan F, Yang J, Xu Y, Guan S. MiR-539 Targets MMP-9 to regulate the
permeability of blood-brain barrier in ischemia/reperfusion injury of brain.
Neurochem Res. (2018) 43:2260–7. doi: 10.1007/s11064-018-2646-0

32. Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix
metalloproteinase expression increases after cerebral focal ischemia in rats:
inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke. (1998)
29:1020–30. doi: 10.1161/01.STR.29.5.1020

33. Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden
J, et al. Intravenous minocycline in acute stroke: a randomized,
controlled pilot study and meta-analysis. Stroke. (2013) 44:2493–9.
doi: 10.1161/STROKEAHA.113.000780

34. Savitz SI, Baron J-C, Yenari MA, Sanossian N, Fisher M. Reconsidering
neuroprotection in the reperfusion era. Stroke. (2017) 48:3413–9.
doi: 10.1161/STROKEAHA.117.017283

35. Rosso C, Drier A, Lacroix D, Mutlu G, Pires C, Lehericy S, et al. Diffusion-
weighted MRI in acute stroke within the first 6 hours: 1.5 or 3.0 Tesla?
Neurology. (2010) 74:1946–53. doi: 10.1212/WNL.0b013e3181e396d1

36. Kosior RK, Wright CJ, Kosior JC, Kenney C, Scott JN, Frayne R, Hill
MD. 3-Tesla versus 1.5-Tesla magnetic resonance diffusion and perfusion
imaging in hyperacute ischemic stroke. Cerebrovasc Dis. (2007) 24:361–8.
doi: 10.1159/000106983

37. Kuhl CK, Textor J, Gieseke J, von Falkenhausen M, Gernert S, Urbach H, et al.
Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-
weighted MR imaging: intraindividual comparative study. Radiology. (2005)
234:509–16. doi: 10.1148/radiol.2342031323

38. Krongold M, Almekhlafi MA, Demchuk AM, Coutts SB, Frayne R, Eilaghi A.
Final infarct volume estimation on 1-week follow-up MR imaging is feasible
and is dependent on recanalization status. NeuroImage Clin. (2015) 7:1–6.
doi: 10.1016/j.nicl.2014.10.010

39. Tourdias T, Renou P, Sibon I, Asselineau J, Bracoud L, Dumoulin M, et al.
Final cerebral infarct volume is predictable by MR imaging at 1 week. Am J

Neuroradiol. (2011) 32:352–8. doi: 10.3174/ajnr.A2271
40. Lu M, Mitsias PD, Ewing JR, Soltanian-Zadeh H, Bagher-Ebadian H, Zhao Q,

et al. Predicting final infarct size using acute and subacute multiparametric
MRI measurements in patients with ischemic stroke. J Magn Reson Imaging.

(2005) 21:495–502. doi: 10.1002/jmri.20313
41. Harston GWJ, Carone D, Sheerin F, Jenkinson M, Kennedy J.

Quantifying infarct growth and secondary injury volumes: comparing
multimodal image registration measures. Stroke. (2018) 49:1647–55.
doi: 10.1161/STROKEAHA.118.020788

42. Luby M, Hsia AW, Nadareishvili Z, Cullison K, Pednekar N, Adil MM,
et al. Frequency of Blood-brain barrier disruption post-endovascular therapy
and multiple thrombectomy passes in acute ischemic stroke patients. Stroke.
(2019) 50:2241–4. doi: 10.1161/STROKEAHA.119.025914

43. Renú A, Laredo C, Lopez-Rueda A, Llull L, Tudela R, San-Roman L, et al.
Vessel wall enhancement and blood-cerebrospinal fluid barrier disruption
after mechanical thrombectomy in acute ischemic stroke. Stroke. (2017)
48:651–7. doi: 10.1161/STROKEAHA.116.015648

44. Latour LL, Kang D-W, Ezzeddine MA, Chalela JA, Warach S. Early blood-
brain barrier disruption in human focal brain ischemia. Ann Neurol. (2004)
56:468–77. doi: 10.1002/ana.20199

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Mechtouff, Bochaton, Paccalet, Crola Da Silva, Buisson, Amaz,

Bouin, Derex, Ong, Berthezene, Eker, Dufay, Mewton, Ovize, Nighoghossian and

Cho. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 473



2.3.Matrix Metalloproteinase-9 and Monocyte Chemoattractant 

Protein-1 Are Associated With Collateral Status in Acute Ischemic 

Stroke With Large Vessel Occlusion. 

a� Introduction  



b� Publication 

Stroke is available at www.ahajournals.org/journal/str

Stroke

2232  July 2020 Stroke. 2020;51:2232–2235. DOI: 10.1161/STROKEAHA.120.029395

 

Correspondence to: Laura Mechtouff, MD, Stroke Department, Hospices Civils de Lyon, 59 Blvd Pinel, 69677 Bron. Email laura.mechtouff@chu-lyon.fr

The Data Supplement is available with this article at https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.120.029395.

For Sources of Funding and Disclosures, see page 2235

© 2020 American Heart Association, Inc. 

BRIEF REPORT

Matrix Metalloproteinase-9 and Monocyte 
Chemoattractant Protein-1 Are Associated With 
Collateral Status in Acute Ischemic Stroke With 
Large Vessel Occlusion
Laura Mechtouff , MD; Thomas Bochaton, MD, PhD; Alexandre Paccalet; Claire Crola Da Silva, PhD; Marielle Buisson, PhD; 
Camille Amaz; Laurent Derex, MD, PhD; Elodie Ong, MD; Yves Berthezene, MD, PhD; Omer Faruk Eker, MD, PhD;  
Nathalie Dufay, PhD; Nathan Mewton, MD, PhD; Michel Ovize, MD, PhD; Tae-Hee Cho, MD, PhD; Norbert Nighoghossian, MD, PhD

BACKGROUND AND PURPOSE: In ischemic stroke, inflammatory status may condition the development of collateral circulation. 
Here we assessed the relationship between systemic inflammatory biomarkers and collateral status in large vessel occlusion 
before mechanical thrombectomy.

METHODS: HIBISCUS-STROKE is a cohort study including acute ischemic stroke patients with large vessel occlusion treated with 
mechanical thrombectomy following admission magnetic resonance imaging. MMP-9 (matrix metalloproteinase-9) and MCP-1 
(monocyte chemoattractant protein-1) were measured on blood sampling collected at admission. Collateral status was assessed 
on pretreatment Digital subtraction angiography and categorized into poor (Higashida score, 0–2) and good (Higashida score, 
3–4). A multiple logistic regression model was performed to detect independent markers of good collateral status.

RESULTS: One hundred and twenty-two patients were included, of them 71 patients (58.2%) had a good collateral status. In 
univariate analysis, low MMP-9 levels (P=0.01), high MCP-1 levels (P<0.01), a low National Institute of Health Stroke Score 
(P=0.046), a high diastolic blood pressure (P=0.049), the absence of tandem occlusion (P=0.046), a high Alberta Stroke 
Program Early CT Score (P<0.01) and a low volume on the diffusion-weighted imaging (P<0.01) were associated with good 
collateral status. Following multivariate analysis, low MMP-9 levels (P=0.02) and high MCP-1 levels (P<0.01) remained 
associated with good collateral status.

CONCLUSIONS: Low MMP-9 and high MCP-1 levels were associated with good pretreatment collateral status in patients with 
acute ischemic stroke with large vessel occlusion. These results might suggest a relationship between collateral status and 
inflammation.

Key Words: brain edema ■ collateral circulation ■ digital subtraction angiography ■ matrix metalloproteinase 9 ■ monocyte chemoattractant proteins

The functional status of collaterals may impact the 
timing of tissue loss and response to reperfusion 
therapies in acute ischemic stroke (AIS).1

Collateral development in ischemic stroke depends on 
a number of factors, including genetic profile, hemody-
namic, metabolic and neural mechanisms, and patency 
of ipsilateral posterior circle of Willis.2

The contribution of inflammation to collateral failure 
has been suggested through different mechanisms. Early 

brain edema which is partly mediated by inflammatory 
pathways may increase the resistance of collateral arte-
rioles thus contributing to collateral failure.3,4 In contrast, 
some experimental data deriving from cardiovascular 
research claimed for a beneficial role of inflammation in 
arteriogenesis that is triggered by fluid shear stress after 
a sudden occlusion.5

Considering all these factors, we assess the rela-
tionship between 2 systemic markers of inflammation, 
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MMP-9 (matrix metalloproteinase-9) and MCP-1 
(monocyte chemoattractant protein-1), and collateral 
circulation status in the setting of AIS with large ves-
sel occlusion from the HIBISCUS-STROKE (Cohort of 
Patients to Identify Biological and Imaging Markers of 
Cardiovascular Outcomes in Stroke) cohort data.

METHODS
The data that support the findings of this study are available 
from the corresponding author upon reasonable request.

HIBISCUS-STROKE is an ongoing cohort study including 
all patients admitted since October 2016 in the Lyon Stroke 
Center for an AIS with large vessel occlusion treated with 
mechanical thrombectomy following brain magnetic resonance 
imaging assessment. The study was approved by the local 
ethics committee, and all subjects or their relatives signed an 
informed consent form. MMP-9 and MCP-1 were measured 
on blood sampling collected at admission before intravenous 
thrombolysis administration using ELISA test. Pretreatment 
collateral status on digital subtraction angiography was cat-
egorized into poor (Higashida score, 0–2) and good (Higashida 
score, 3–4).6 A multiple logistic regression model was per-
formed using a backward selection procedure. Detailed meth-
ods are available in the Data Supplement.

RESULTS
Study Population
Between October 2016 to April 2019, 122 patients 
were included (Figure I in the Data Supplement). No 
significant imbalance was observed for the main crite-
ria between included and excluded patients except for 
baseline National Institute of Health Stroke Scale score 
and the rate of intracranial internal carotid artery or tan-
dem occlusion (P<0.05; Table I in the Data Supplement).

Among included patients, 71 (58.2%) had good col-
lateral status. The main baseline characteristics accord-
ing to collateral status are shown in Table 1.

Factors Associated With Collateral Status
In univariate analysis, low MMP-9 and high MCP-1 lev-
els at admission were significantly associated with good 
collateral status as well as a low National Institute of 
Health Stroke Scale score, a high diastolic blood pres-
sure, the absence of tandem occlusion, a high Alberta 
Stroke Program Early CT Score and a lower volume on 
the diffusion-weighted imaging (both P<0.01; Figure 
and Table 2).

In multivariate analysis, low MMP-9 levels, high MCP-1 
levels, a high National Institute of Health Stroke Scale 
score, and a low diastolic blood pressure were signifi-
cantly associated with good collateral status (Table 2). We 
did not find any interaction between diffusion-weighted 

imaging lesion volume or diabetes mellitus and MMP-9 
or MCP-1 levels.

DISCUSSION
The novelty of this study lies in the baseline assessment 
of biomarkers and collateral status in patients with AIS 
with large vessel occlusion. We found that low MMP-9 

Table 1. Baseline Characteristics of the Study Population 
According to the Collateral Status

Collateral Status

P ValuePoor (n=51) Good (n=71)

Age, y 69±16 69±16 0.92

Male 29 (56.9) 40 (56.3) 1.00

Prestroke mRS score >2 2 (3.9) 6 (8.5) 0.47

Hypertension 22 (43.1) 32 (45.1) 0.86

Diabetes mellitus 6 (11.8) 14 (19.7) 0.32

Hyperlipidemia 7 (13.7) 20 (28.2) 0.08

Current smoking 9 (17.7) 14 (19.7) 0.82

Statin use 11 (21.6) 17 (23.9) 0.83

Baseline NIHSS score 17 [12–19] 13 [7–19] 0.03

SBP, mm Hg 138.6±19.5 139.1±23.2 0.96

DBP, mm Hg 74.1±15.7 80.3±17.9 0.08

Glucose level, mmol/L 6.1 [5.6–7.5] 6.5 [5.7–7.9] 0.50

Etiology 0.11

 Cardioembolism 27 (52.9) 45 (63.4)  

 LAA 6 (11.8) 9 (12.7)  

 Other 7 (13.7) 1 (1.4)  

 Undetermined 11 (21.6) 16 (22.5)  

IV thrombolysis 30 (58.8) 35 (49.3) 0.36

Thrombus location

 M1 MCA segment 40 (78.4) 57 (80.3) 0.82

 M2 MCA segment 12 (23.5) 15 (21.1) 0.83

 Intracranial ICA 14 (27.5) 10 (14.1) 0.11

Tandem occlusion 11 (21.6) 6 (8.5) 0.06

ASPECTS 6 [4–7] 8 [7–9] <0.01

DWI lesion volume, cc 37.0 [23.0–66.2] 7.2 [2.1–15.9] <0.01

Onset to admission, min 107 [75–233] 158 [70–275] 0.52

Onset to groin puncture, 
min

196 [155–313] 240 [167–378] 0.32

MMP-9, ng/mL 759.0  
[508.8–1218.7]

522.4  
[367.4–1001.8]

0.05

High MMP-9 level 30 (63.8) 24 (39.3) 0.02

MCP-1, pg/mL 54.4 [37.9–81.8] 76.7 [58.3–112.9] <0.01

High MCP-1 level 16 (33.3) 39 (61.9) <0.01

Variables are displayed as absolute number (percentage of column total), 
mean±SD, or median (25th–75th percentiles) as appropriate. ASPECTS 
indicates Alberta Stroke Program Early CT Score; DBP, diastolic blood 
pressure; DWI, diffusion-weighted imaging; ICA, intracranial carotid artery; 
IV, intravenous; LAA, Large-artery atherosclerosis; MCA, middle-cerebral-
artery segment; MCP-1, monocyte chemoattractant protein-1; MMP-9, matrix 
metalloproteinase 9; NIHSS, National Institute of Health Stroke Score; and 
SBP, systolic blood pressure.
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and high MCP-1 levels at admission were associated 
with good collateral status.

MMP-9 compromises blood-brain-barrier integrity by 
degrading components of the tight junctions and extra-
cellular matrix, thereby promoting cerebral edema.7,8 The 
resulting higher interstitial pressure may lead to increase 
of arterioles resistance with subsequent collateral fail-
ure.3,4 This should deserve further explorations as our 
preliminary data suggest a relationship between MMP-9 
levels and collateral status.

In contrast to MMP-9, MCP-1 levels, in spite of its 
contribution to ischemia-reperfusion injury, were asso-
ciated with good collateral status. As a counterpart 
to the preceding mechanism, experimental data from 
cardiovascular research have shown that inflamma-
tory reaction is also involved in arteriogenesis. This 
process is initially triggered by fluid shear stress act-
ing on the collateral endothelium.5 After endothelial 
activation, the recruitment of circulating monocytes is 
an important step toward proliferation of vascular wall 
cells and remodeling processes. MCP-1, a chemokine 
expressed by endothelial cells seems to be actively 
involved in this process through its chemoattractant 
effect on monocytes. Indeed MCP-1−/− mice have been 

shown to have a reduced monocyte recruitment and 
collateral artery formation after femoral artery occlu-
sion while local infusion of MCP-1 seems to accelerate 
even to promote arteriogenesis in rabbits.9,10 Although 
the arteriogenesis process is thought to require several 
days to be effective, data derived from in vitro study 
revealed immediate early gene activation in response 
to fluid shear stress.11 However, it remains an open 
question as to whether these data can be applied to 
patients with AIS.

Although pathophysiological and experimental data 
call for a causal relationship between biomarkers and 
collateral status, these changes might also be consid-
ered as a consequence of AIS.

CONCLUSIONS
In our study conducted in patients with AIS with large 
vessel occlusion, low MMP-9 and high MCP-1 levels 
were associated with good pretreatment collateral 
status. These results suggest a complex intertwined 
relationship between collateral status and inflamma-
tory process from ischemic-reperfusion injury to arte-
riogenesis. Our data call for trials assessing whether 

Figure. Biomarkers levels according 
to collateral status. 
MMP-9 (matrix metalloproteinase 9; 
A), MCP-1 (monocyte chemoattractant 
protein-1; B).

Table 2. Factors Associated With Good Collateral Status in Univariate and Multivariate Analysis

Crude OR (95% CI) P Value Adjusted OR (95% CI) P Value

High vs low MMP-9 level 0.37 (0.17–0.81) 0.01 0.34 (0.14–0.87) 0.02

High vs low MCP-1 level 3.25 (1.48–7.14) <0.01 4.12 (1.61–10.53) <0.01

NIHSS score* 0.93 (0.88–0.99) 0.046 0.91 (0.84–0.98) 0.01

DBP† 1.02 (1.00–1.05) 0.049 1.03 (1.01–1.06) 0.02

Tandem occlusion 0.34 (0.12–0.98) 0.046 0.40 (0.10–1.59) 0.19

DBP indicates diastolic blood pressure; MCP-1, monocyte chemoattractant protein-1; MMP-9: matrix metalloproteinase 9; NIHSS, 
National Institute of Health Stroke Score; and OR, odds ratio.

*Per 1-unit increase.
†Per 1 mm Hg increase.
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regulation of these markers might supplement the ben-
efit of reperfusion treatment in enhancing collateral 
status.
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Abstract

Background: Embolic stroke of undetermined source (ESUS) account for up to 25% of ischemic 

strokes. Identification of biomarkers that could improve the prediction of stroke subtype and 

subsequently of stroke prevention still remains a major issue.

Methods: HIBISCUS-STROKE cohort includes ischemic stroke patients with large vessel 

occlusion treated with mechanical thrombectomy following admission magnetic resonance 

imaging. Presence and length of SVS were assessed on gradient recalled echo T2*-weighted 

imaging. MMP-9 was measured on sera collected at admission. A multiple logistic regression 

model was performed to detect independent markers to distinguish cardioembolic (CE) from large 

artery atherosclerosis (LAA) subtype.

Results: A total of 147 patients were included, of them the etiology was distributed as follows: 86 

(58.5%) CE, 26 (17.7%) LAA and 35 (23.8%) ESUS. The optimal cutoff for differentiating CE 

from LAA subtype was 14.5 mm for SVS length (sensitivity, 79.7%; specificity, 72.7%) and 1110 

ng/mL for admission MMP-9 level (sensitivity, 85.3%; specificity, 52.2%). Multivariate analysis 

revealed that current smoking (odds ratio (OR) 0.07, 95% confidence interval (CI) 0.01-0.93), 

tandem occlusion (OR 0.01, 95% CI 0.01-0.21), SVS length (OR 0.78, 95% CI 0.63-0.97) and 

admission MMP-9 level (OR 0.99, 95% CI 0.99-1.00) were inversely associated with CE subtype. 

SVS length and MMP-9 level did not differ between ESUS and CE subtypes.
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Introduction

Effective prevention of ischemic stroke requires an appropriate etiological diagnosis [1]. However 

the reported frequency of embolic stroke of undetermined source (ESUS) which designates 

patients with non-lacunar cryptogenic ischemic strokes in whom embolism is the likely stroke 

mechanism ranges from 9% to 25% of ischemic strokes [2]. In this context, blood and imaging 

biomarkers could contribute to determine the stroke subtype thereby reducing the proportion of 

ESUS. 

The susceptibility vessel sign (SVS) is classically defined as a dark blooming artifact visible on 

gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) [3,4]. Although the association 

between SVS and stroke subtype remains controversial, some studies suggest a clear relationship  

between SVS and  cardioembolic (CE) subtype [5–9] . The characteristics of the SVS such as its 

diameter and length are also debated in terms of their ability to predict stroke subtype [6,8]. 

The addition of biomarkers would also increase the prediction of stroke subtype. Matrix 

metalloproteinase-9 (MMP-9) is a marker of blood-brain barrier damage and hemorrhagic 

transformation risk at the acute stage of ischemic stroke [10,11]. This biomarker is also associated 

with atherosclerosis progression and plaque vulnerability [12–15]. 

In light of these observations, we aimed to assess whether SVS and admission MMP-9 level may 

help to predict stroke subtype.

Methods

Study population

HIBISCUS-STROKE is an ongoing cohort study including all patients admitted since October 

2016 in the Lyon Stroke Center for an acute ischemic stroke with large vessel occlusion (LVO) 

treated with mechanical thrombectomy (MT) following brain magnetic resonance imaging (MRI) 

assessment. We excluded patients with stroke of other determined etiology to focus our analyses 

on the major subtypes in patients with LVO: CE, large-artery atherosclerosis (LAA), and ESUS. 

Patients with known inflammatory disease, active malignancy, vasculitis, antibiotics at admission, 

myocardial infarction, or major surgery in the 30 previous days were also excluded in order not to 

skew the results of the biomarkers analysis. Baseline data on demographic characteristics, lifestyle 

risk factors, medical history, and use of medications were collected at hospital admission. 

Neurological status was assessed by a board certified neurologists using National Institute of 

Health Stroke Scale (NIHSS) score at admission. Etiological workup systematically included 
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routine blood tests, a 12-lead electrocardiography (ECG) and cardiac monitoring ≥ 24 hours, 

echocardiography, and vascular imaging in line with current guidelines [1]. In addition, a 24 to 72-

h Holter ECG monitoring was performed in the absence of a clear etiology. Stroke subtype was 

classified according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification 

[16]. TOAST diagnosis was made by 2 stroke neurologists blinded to the laboratory and imaging 

findings, and discrepancies were settled by a third stroke neurologist. Cryptogenic strokes were 

considered as ESUS in this cohort of ischemic stroke with LVO [17].

Neuroimaging

All MRIs were performed with 1.5-Tesla Intera or 3-Tesla Achieva scanners (Philips, Best, 

Netherlands). The admission MRI protocol included fluid-attenuated inversion recovery (FLAIR), 

GRE T2*WI, diffusion-weighted imaging (DWI), time-of-flight MRA, contrast-enhanced MRA, 

and perfusion-weighted imaging. Alberta Stroke Program Early CT score (ASPECTS) was 

measured on baseline DWI [18]. The acute ischemic lesion was segmented from the baseline DWI 

with a semi-automated method (3D Slicer: https://www.slicer.org/) by using both a validated ADC 

threshold (ADC <620x10-6 mm2/s) and visual assessment of b1000 images. SVS was defined as 

the presence of hypo-intensity in the artery with a blooming artifact on GRE T2*WI imaging 

(figure 1). Two observers (H.A. and A.B-S.) blinded to clinical and laboratory data, independently 

reviewed GRE T2*WI, and rated the presence and length of SVS based on previously published 

methodology [19]. SVS lengths obtained from the two observers were averaged. Successful 

reperfusion was defined as thrombolysis in cerebral infarction score (TICI) 2b/3 [20]. 

Blood Sampling Protocol

White blood cells (WBC) count and high sensitivity C-reactive protein (hsCRP) were routinely 

measured at admission. Admission MMP-9 level was measured using DuoSet® ELISA 

Development Kits (R&D Systems). Sera were prepared and stored at -80°C within a 3 hour delay 

at the NeuroBioTec biobank (CRB-HCL : BB-0033-00046, France). All samples were thawed 

only once for study measurements. Serum samples were diluted at 1/2000. Sensitivity was 12.2 

pg/mL.
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Statistical analysis

Continuous variables are expressed as means (standard deviation [SD]) or medians (interquartile 

range [IQR]), and categorical variables as percentages. Medians were compared using the Mann-

Whitney test for independent samples. Percentages were compared using the Fishers exact test. 

Association between quantitative covariates was assessed using the Spearman correlation 

coefficient. Inter-observer reliability was assessed using intraclass coefficient correlation (ICC). 

We compared first CE and LAA subtype patients. We used the Youden index to select the cutoff 

values of SVS length and admission MMP-9 level offering the best sensitivity and specificity for 

differentiating CE from LAA subtype. The association between each variable and CE subtype was 

measured by calculating crude odds ratios (ORs) and 95% CIs using conditional logistic 

regression analyses. A multiple logistic regression model was performed to detect independent 

markers of CE subtype. Covariates with a significant univariate association with CE subtype were 

included in the multivariate model. A backward selection procedure was chosen. Model was 

consequently adjusted for age, gender, current smoking, and intracranial internal carotid artery 

(ICA) occlusion. Receiving operating curve (ROC) for distinguishing CE from LAA subtype was 

performed using clinicoradiological covariates with a significant univariate association with CE 

subtype, with and without SVS length and admission MMP-9 level. Areas under the curve (AUC) 

were compared using DeLong’s method. Thereafter, we compared SVS length and admission 

MMP-9 levels in ESUS versus 1/ LAA subtype and 2/ CE subtype using the Mann-Whitney test. 

Two-tailed p<0.05 was considered to be statistically significant.

The data were analyzed with Stata Version 15™ (STATACORP, COLLEGE STATION, TEXAS 

77845 USA).

Results

Study population

From October 2016 to April 2019, 147 patients met the inclusion criteria (figure 2). Mean age was 

71 +/- 15 years and 60 (40.8%) patients were male. Eighty-six (58.5%) patients were classified as 

CE, 26 (17.7%) as LAA and 35 (23.8%) as ESUS. Median NIHSS score on admission was 15 [9-

19]. SVS occurred in 122 (83.0%) patients, in whom the median SVS length was 11.5 mm (8.0-

16.0). Median admission MMP-9 level was 647.1 ng/mL [401.8-1106.6]. Inter-observer reliability 
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was substantial for measuring SVS length (ICC=0.886, 95% CI, 0.833–0.923). The main clinical 

and imaging characteristics according to stroke subtypes are shown in table 1. 

MMP-9 level and SVS  

Admission MMP-9 level was not significantly associated with SVS presence (647.1 ng/mL 

[385.8-1012.7] versus 636.4 ng/mL [441.6-1443.3]; p=0.27) and was not correlated with SVS 

length (Spearman's rho 0.15; p=0.10). 

Factors associated with CE compared to LAA subtype

Stroke patients with CE subtype were more likely to be older and female. In contrast, current 

smoking, intracranial internal carotid artery (ICA), and tandem occlusion were more frequent in 

patients with LAA subtype (tables 1 and 2). No association was observed between stroke subtype 

and presence of SVS (odds ratio (OR) 1.12, CI 0.33-3.83; p=0.86) (table 1). In contrast, SVS 

length was shorter and admission MMP-9 level was lower in CE than in LAA subtype (figure 3, 

table 2). The ROC curves identified a cutoff value that offered the best sensitivity and specificity 

for differentiating CE from LAA subtype for the SVS length (14.5 mm (sensitivity, 79.7%; 

specificity, 72.7%)) and admission MMP-9 level (1110 ng/mL (sensitivity, 85.3%; specificity, 

52.2%)). In multiple logistic regression analysis, SVS length and admission MMP-9 level as well 

as current smoking, and tandem occlusion were inversely associated with CE subtype (table 2).

The addition of both SVS length and admission MMP-9 level to the other covariates with a 

significant univariate association with CE subtype resulted in a slight increase of discriminatory 

accuracy for distinguishing CE from LA subtype (AUC 0.97 vs. 0.91; p=0.45) (figure 3).

Comparison of ESUS to CE and LAA stroke 

SVS length and admission MMP-9 level differed between ESUS and LAA subtypes (11.3 mm 

[7.5-13.5] versus 18.3 mm [13.5-23.5]; p<0.01; 687.7 ng/mL [430.1-1218.7] versus 1136.8 ng/mL 

[602.5-1641.3]; p=0.05 respectively) but not between ESUS and CE subtypes (11.3 mm [7.5-13.5] 

versus 11.0 mm [8.0-14.0]; p=0.82; 687.7 ng/mL [430.1-1218.7] versus 571.0 ng/mL [378.1-

965.8]; p=0.57 respectively) (figure 4).
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Discussion

Our key finding is that SVS length and MMP-9 level may help to distinguish CE from LAA 

subtype whereas their profile did not differ between ESUS and CE subtypes.

Although SVS on GRE T2*WI was reported to be associated with CE subtype, it is also detected 

in patients with LAA [5–9].  Several studies showed that MRI characteristics of SVS, such as 

diameter, overestimation ratio, or the presence of two layers on 3T- GRE T2*WI are associated 

with CE subtype [6,8,9]. Data about SVS length are more scarce and conflicting, one study out of 

two showing an association between SVS length and CE subtype [6,8]. In contrast with these 

previous studies that differed from ours due to over-representation of intracranial atherosclerotic 

disease and use of susceptibility-weighted imaging, we found a strong inverse association between 

SVS length and CE subtype. This result is in line with a recent CT study conducted in ischemic 

stroke patients before MT that reported lower thrombus length in CE subtypes compared to non 

CE subtypes [21]. The higher rate of spontaneous thrombus lysis previously observed in CE 

compared to LAA subtypes may account for our finding [22]. However, it is unclear whether the 

thrombus length comes from a single proximal source (CE, LAA) or reflects an additional 

thrombus extension due to low flow effects on coagulation and thrombosis [23,24]. This latter 

phenomenon may also have played a role in our study as most of LAA subtype patients have an 

upstream occlusion of the internal carotid artery. 

Atherosclerosis is a chronic inflammatory process in the arterial wall involving MMPs [12,15]. 

MMP-9 levels are typically higher in patients with an unstable carotid plaque and localized into 

the plaque with histological markers of plaque instability and rupture [12–14]. However, its value 

in predicting stroke subtype in ischemic stroke patients is still debated [25–28]. Baek et al. study 

demonstrates in clots retrieved from human intracranial arteries that MMP-9 expression was 

significantly higher in clots with a negative SVS than in those with a positive SVS regardless of 

stroke subtype [29]. The discrepancy with our study is probably related to the fact that systemic 

assessment of MMP-9 may limit the accurate analysis of the relationship between MMP-9 and 

SVS presence as this marker is not only linked to the clot-bound component but also to ischemic 

damage. 
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Interestingly, ESUS did not differ from CE subtype in terms of SVS length and admission MMP-9 

level. These results are in line with previous studies showing similar histological and CT thrombus 

features in strokes of undetermined etiology (UDE) and CE subtypes [21,30]. Thus, it may be 

worthwhile in further studies to investigate how the use of SVS length and MMP-9 level may help 

to manage etiological workup, especially optimal duration of cardiac monitoring in patients with 

large vessel ESUS, although atrial fibrillation is not the only potential cardioembolic source in 

these patients [31]. Given the burden of stroke, this issue involved not only stroke specialists but 

all neurologists.

Study limitations

This study faces classic limitations such as its monocentricity and its small sample size, especially 

in LAA subtype, and the lack of analysis of other MRI criteria. Moreover, our results apply only 

to centers that use MRI as first-line imaging workup in acute stroke. It can also be considered that 

the lack of length measurement on digital subtraction angiography limits the conclusions even 

though GRE provides reliable measurement [19]. Last, imaging was performed either on 1.5 T or 

3 T according to MRI magnets availability. Although the diagnostic accuracy of SVS to determine 

thrombus composition varies significantly among MRI scanners, the interscanner agreement was 

moderate to good [32].

Conclusion

SVS length and admission MMP-9 level may improve the prediction of CE subtype. Moreover, 

our study reinforce the hypothesis that many ESUS strokes may have a CE cause. These results 

need to be confirmed by a validation cohort.
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Figure legends

Figure 1: Axial gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) showing the 

presence of susceptibility vessel sign (arrow) in the M1 segment of the right middle cerebral artery 

(MCA).

Figure 2: Study flow-chart.

Figure 3: Receiving operating curve (ROC) of different models for distinguishing 

cardioembolism from large-artery atherosclerosis subtype (AUC: area under the curve).

Figure 4: SVS length and admission MMP-9 level according to stroke subtype (* indicates p-

value<0.05).
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Table 1: Main clinical and imaging characteristics according to stroke subtypes
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Table 2: Predictors of cardioembolism versus large-artery atherosclerosis subtype

OR: odds ratio, CI: confidence interval, ICA: internal carotid artery, SVS: susceptibility vessel 

sign, MMP-9: Matrix metalloproteinase-9. Model was adjusted for age, gender, current smoking, 

onset to imaging time and tandem occlusion. Bold values indicate p-value < 0.05.
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Current smoking 0.22 (0.08-0.64) <0.01 0.05 (0.01-0.76) 0.03

Onset to imaging ‡ 0.92 (0.88-0.98) <0.01 0.89 (0.78-1.02) 1.00
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SVS length 0.84 (0.77-0.92) <0.01 0.78 (0.63-0.97) 0.01

Admission MMP-9 level 0.99 (0.99-1.00) <0.01 0.99 (0.99-1.00) 0.01
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Abstract: During myocardial infarction, dysregulation of Ca2+ homeostasis between the reticulum,
mitochondria, and cytosol occurs in cardiomyocytes and leads to cell death. Ca2+ leak channels are
thought to be key regulators of the reticular Ca2+ homeostasis and cell survival. The present study
aimed to determine whether a particular reticular Ca2+ leak channel, the translocon, also known
as translocation channel, could be a relevant target against ischemia/reperfusion-mediated heart
injury. To achieve this objective, we first used an intramyocardial adenoviral strategy to express
biosensors in order to assess Ca2+ variations in freshly isolated adult mouse cardiomyocytes to show
that translocon is a functional reticular Ca2+ leak channel. Interestingly, translocon activation by
puromycin mobilized a ryanodine receptor (RyR)-independent reticular Ca2+ pool and did not affect
the excitation–concentration coupling. Second, puromycin pretreatment decreased mitochondrial
Ca2+ content and slowed down the mitochondrial permeability transition pore (mPTP) opening
and the rate of cytosolic Ca2+ increase during hypoxia. Finally, this translocon pre-activation also
protected cardiomyocytes after in vitro hypoxia reoxygenation and reduced infarct size in mice
submitted to in vivo ischemia-reperfusion. Altogether, our report emphasizes the role of translocon
in cardioprotection and highlights a new paradigm in cardioprotection by functionally uncoupling
the RyR-dependent Ca2+ stores and translocon-dependent Ca2+ stores.

Keywords: Ca2+ leak channel; translocon; reticulum; cardioprotection; ischemia-reperfusion

1. Introduction

During cardiac infarction, ischemia triggers a molecular disaster comprising drop in ATP
concentration [1], acidosis [2], reactive oxygen species (ROS) accumulation [3], and Ca2+ homeostasis

Cells 2020, 9, 1319; doi:10.3390/cells9051319 www.mdpi.com/journal/cells



Cells 2020, 9, 1319 2 of 17

perturbations [4–6]. This leads to irreversible cellular damage [7] that can ultimately end by
cardiomyocytes (CM) death [8]. In this molecular storm, Ca2+ ion, a preponderant second messenger,
behaves as key inducer of ischemia/reperfusion (I/R)-mediated cell death. Indeed, the concomitant
massive Ca2+ leak from internal stores overloads mitochondrial matrix and triggers the mitochondrial
permeability transition pore (mPTP) opening [9,10], driving mitochondria to its terminal fate. In resting
cardiac muscle, reticular Ca2+ concentration is finely tuned by calcium-binding proteins [11] and by the
dynamic balance between Ca2+ uptake and Ca2+ release. Sarco-endoplasmic reticulum Ca2+ ATPase
(SERCA) is the only known Ca2+ uptake pump, whereas Ca2+ release channels are divided into two
categories: (1) channels activated by signalization pathways such as inositol-tri-phosphate receptors
(IP3R) and ryanodine receptors (RyR), activated by IP3 and the Ca2+-induced Ca2+-release (CICR)
mechanism, respectively, and (2) the Ca2+ leak channels, which generate reticular Ca2+ leak as a side
effect of their own activity [12,13]. The physiological role of reticular Ca2+ channels from the first
category is already well established, whereas the functionality of the leak channels in cardiomyocytes
and their involvement in I/R-mediated mechanisms remain poorly understood. Over the last decade [14],
most of the cardioprotective strategies have targeted calcium-mediated cyclophilin D activation in
mitochondria [9,15] or the Ca2+ transfer from the sarco-endoplasmic reticulum (SR/ER) via IP3R2 [9,16]
or RyR2 [4] to the mitochondria. Related preclinical in vitro studies were promising. Unfortunately,
they have led to disappointing results in clinical trials [17]. There is thus an urgent need to find out
new targets to prevent CM cell death and deleterious consequences of myocardial infarction.

Remarkably, the translocon (TLC), a component of the translation machinery, contributes to the
SR/ER Ca2+ leak; meanwhile, it serves as the major entry site of newly synthesized polypeptides in the
reticular membrane [18]. Reticular transmembrane proteins Sec61, Sec62, and Sec63 comprise the key
component of the protein translocation machinery [19], and trimers of Sec61 α, β, and γ subunits form
an aqueous central pore ranging from 2.6 nm to 6 nm [20]. As it represents one of the largest pores in
the reticular membrane, its aperture should be tiny controlled to maintain reticular Ca2+ homeostasis.
To compare, RYR channel shows a narrower diameter, from 0.7 nm to 1 nm [21–23]. In absence of
translation, GRP78/BiP, a luminal ATP-binding partner of the heat shock protein 70 (HSP70) family
of chaperones, binds to the channel to fold neosynthetized proteins and seals the pore [24] to avoid
Ca2+ leakage [25]. During translation, the nascent polypeptidic chain may trigger a Ca2+ leak. In fact,
a gap between Sec61 and the ribosomes has been suggested [26,27], allowing Ca2+ to cross the channel.
In addition, at the end of translation, the polypeptidic chain is no longer in the pore. At that time,
ribosomes are still bound and a physiological Ca2+ leak occurs [28].

Research on the TLC complex is made difficult by its imperative requirement for life, explaining
why not so long ago most of the studies to investigate the role of TLC in physiopathology have relied
on a tightly adjusted pharmacological modulation [29]. Several works, including ours, have thus
demonstrated that TLC is a crucial passive Ca2+ leak channel [25,30–37]. More recently, gene silencing
experiments have clarified the relative roles of the different Sec proteins, which are described in detail
elsewhere [38]. In particular, Linxweiler et al. showed that SEC62 silencing intensifies the reticular
Ca2+ efflux [39]. Moreover, Lu et al. have observed a diminished cell viability and an extended rate of
apoptosis in the human glioblastoma cells when silencing the SEC61G gene (coding for Sec61γ) [40].
Not surprisingly, the term “Sec61 channelopathies” has newly emerged to design diseases directly
affecting Sec61 subunits or components implicated in the pore gating (for a review, see [41]).

Given that TLC is ubiquitously expressed [18] and can contribute to cellular fate, we wondered
whether this channel could be an effective target to minimize CM cell death during myocardial infarction.
Our hypothesis was that acute pharmaceutical activation of TLC could pre-drain reticular Ca2+ stores
before ischemia. This could prevent the massive cytoplasmic Ca2+ overload at reperfusion, as well as
the subsequent mitochondrial Ca2+ overload, and consequently curtail I/R-mediated cell death.
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2. Materials and Methods

All chemicals and fluorescent probes were purchased from Sigma-Aldrich and Life Technologies
unless otherwise specified.

2.1. Animals

Experiments were carried out on 118 male C57BL/6J mice, aged between 8 to 12 weeks, which were
obtained from Charles River laboratories. They received human care conformed to the Guide for the
Care and Use of Laboratory Animals in our platform (agreement number C-693880502).

All our procedures were approved by the local institutional animal research committee
(N◦BH2012-65 for the chirurgical procedure and N◦BH2012-64 for heart collection; date of approval:
3 December 2012). Animals were randomly distributed towards different experiments and surgical
procedures (Ca2+ measurements: 45; H/R: 4; flow cytometry: 15; I/R: 38; heart rate and blood pressure:
12; protein expression: 4).

2.2. CM Isolation

As described previously [9], mice were first injected intraperitoneally by 100 μL of 50 UI/kg
heparin sodium and then anesthetized with 70 mg/kg pentobarbital sodium. Once pedal pinch reflexes
were completely inhibited, a thoracotomy was performed, and the heart was collected and cannulated
by the aorta in a Langendorff system. Blood was washed out with perfusion buffer (in mM: 113 NaCl,
4.7 KCl, 0.6 KH2PO4, 0.6 Na2HPO4, 1.2 MgSO4-7H2O, 0.032 phenol red, 12 NaHCO3, 10 KHCO3,
10 HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 30 taurine, 10 mM 2.3-butanedione
monoxime, 5.5 mM glucose) and pH was adjusted to 7.4. The heart was washed out with this buffer
for 5 min at 37 ◦C.

Then, the heart was perfused at 37 ◦C with a digestion buffer (perfusion buffer 1×, 0.167 mg/mL
Liberase Research Grade (Roche), 0.14 mg/mL trypsine 2.5% 10×, 12.5 μM CaCl2) at a constant rate.
At the end of digestion, the enzymatic activity was interrupted by a stopping buffer 1 (Perfusion Buffer
1×, 10% bovine calf serum, 12.5 μM CaCl2) at 4 ◦C. The left ventricle was isolated in order to detach
CM. The solution was then filtered (SEFAR Nitex 102 cm, Zurich Dutsher) in a 10 mL tube. After CM
sedimentation, the medium was carefully replaced and cells were re-suspended in stopping buffer 2
(same composition of stopping buffer 1 but with only 5% bovine calf serum). This step was repeated
in stopping buffer 2 containing gradually increased Ca2+ concentration (stopping buffer 2 + 0.05, 0.1,
0.5, and 1 mM CaCl2 by increasing order). At the end of the final incubation, cells were suspended in
a M199 medium (Gibco) supplemented with 100 U/mL penicillin, 100 μg/mL streptomycin, and ITS
(insulin 1 μg/mL, transferin 0.55 μg/mL, selenium 0.5 ng/mL).

CM were then seeded on 35 mm Ibidi dishes (Ibidi Biovalley; for Ca2+ measurements and H/R
experiments) or Lab-tek chamber slides (Merck Millipore; for immunostaining), or else on glass
coverslips (for Ca2+ transients) precoated with 10 μg/mL laminin (Corning), and then incubated for 2 h
at 37 ◦C. Experiments were realized at the same day of the isolation with a 70–80% living CM estimated
by observation.

2.3. Adenovirus Injection for Reticular and Mitochondrial Ca2+ Measurements

Seven- to nine-week-old C57BL/6J mice were anesthetized with isoflurane 2% and buprenorphine
(IP, 0.075 mg/kg). Mice oral intubation was performed using a 22-gauge vinyl catheter and ventilated via
a mice ventilator (model 687, Harvard Apparatus) with the following parameters: 0.2 mL tidal volume
and 160 breaths/min breathe rate. Monitoring of body temperature was realized thanks to a rectal
thermometer and maintained at 37 ◦C using a heating pad. A left thoracotomy was performed in the
fourth left intercostal space. When the pericardium was opened, the heart was exposed to perform 4–5
intramyocardiac injections of 5 × 108 PFU (Plaque Formation Unit) of the adenoviruses D4ER (reticular
Ca2+ sensor) or 4mtD3CPV (mitochondrial Ca2+ sensor) in a total volume of 20μL. After surgery, animals
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were allowed to recover from anesthesia, and once spontaneous breathing resumed, we removed
the endotracheal tube. Seven days after recovery, mice were premedicated intraperitoneally with
heparin (100 USP (United States Pharmacopeia) units per mouse). Anesthesia was induced with
sodium pentobarbital (70 mg/kg). A thoracotomy was performed and the heart was collected. Adult
ventricular cardiomyocytes were isolated using enzymatic digestion as described above.

2.4. Ca2+ Measurements

After the 2 h incubation in Ibidi dishes at 37 ◦C, the culture medium was replaced by a
Ca2+-containing buffer (CCB; in mM: 140 NaCl, 5 KCl, 10 HEPES, 1 MgCl2, 2 CaCl2, 10 glucose;
adjusted to pH 7.4). Cardiomyocytes were loaded in CCB containing 5 μM of fura-2-acetoxymethyl
ester (fura2-AM) (for cytosolic Ca2+ imaging) for 30 min at room temperature.

After the fura2-AM loading, cells were washed twice for 5 min with a Ca2+-free buffer (CFB)
(same as CCB but without CaCl2) containing 0.1 mM EGTA (ethylene glycol tetraacetic acid).

Pretreatment protocol: CM were pretreated with 200 μM puromycin for 30 min while being
loaded with the probe, and in the case of double pretreatment with emetine, 20 μM of the latter
was added 30 min before CM probe loading. In both cases, once the drug was added, it remained
present during the whole experiment. The TLC inhibitor (emetine) was applied 5 minutes before its
activator (puromycin) to ensure prior TLC inhibition and to avoid concomitant opposite effects of these
compounds on TLC Ca2+ leakage [31,32]. After signal stabilization, CM were stimulated by either 5 μM
ionomycin, 25 μM FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone), or 10 mM caffeine.

An ischemia-like hypoxia experiment was performed in a hypoxic chamber (Okolab-Bold line)
where temperature and oxygen levels were monitored. Fura2-AM-loaded CM were washed with CCB,
then, after fluorescence signal stabilization, we replaced the medium to hypoxic buffer (CCB without
glucose) deprived from any supplementation or growth factor necessary for CM survival and normal
function, and ventilated it with 99% N2 in order to replace all oxygen traces in the medium. Oxygen
level was decreased in the chamber to 1%. After 30 min of ischemia-like hypoxia, CM were stimulated
by 10 mM caffeine.

Measurements were performed using a wide-field LeicaDMI6000B microscope equipped with
an Orca-Flash4.0 digital camera (HAMAMATSU). Using a Lambda DG-4+ filter (Sutter instruments),
fura-2 AM was excited at 340 and 380 nm and their respective emitted fluorescence lights were measured
at wavelength 510 nm. D4ER and 4mtD3CPV (Förster resonance energy transfer (FRET)-based sensors)
were excited at 477 nm (CFP: Cyan Fluorescent Protein) and 514 nm (YFP: Yelllow Fluorescent Protein).
Their emitted fluorescent lights were assessed at wavelength 540 nm. Images (2048 × 2048 pixels) were
taken at 3 second intervals. Free Ca2+ content was estimated by the YFP to CFP fluorescence ratio,
which was figured out as described in [42].

All experiments were performed at room temperature in a calcium-free buffer to prevent
capacitative Ca2+ entry that would then add to the emptying of intracellular Ca2+ stocks, except for
in vitro H/R and paced experiments.

2.5. Ca2+ Transients

For Ca2+ transients experiments, CM were plated on 24 mm glass coverslips. Coverslips were
mounted on a Quick Change Chamber (RC-47FSLP Warner Instruments) and stimulation was delivered
by a MyoPacer Field Stimulator (IonOptix). CM were loaded at 37 ◦C with fluo5-AM (5 μM) for 30 min.
After loading, cells were washed in CCB, then the medium was replaced by a field stimulation buffer
(FSB; in mM: 150 NaCl, 5.4 KCl, 10 HEPES, 2 MgCl2, 1 glucose, 2.5 pyruvate, 5 creatine, 5 taurine,
2 CaCl2). Cytosolic Ca2+ transients were recorded in fluo5-AM-loaded CM, field-stimulated at 1 Hz
with a current pulse delivered via 2 platinum electrodes at RT for 0.5 ms and at 40 V amplitude.
To measure mitochondrial Ca2+ transients, we injected mice with 4mtD3cpv adenovirus, as described
previously. Isolated mice CM expressing the probe were field-stimulated for 1 min successively at 0.5,
1, and 2 Hz in FSB.
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were allowed to recover from anesthesia, and once spontaneous breathing resumed, we removed
the endotracheal tube. Seven days after recovery, mice were premedicated intraperitoneally with
heparin (100 USP (United States Pharmacopeia) units per mouse). Anesthesia was induced with
sodium pentobarbital (70 mg/kg). A thoracotomy was performed and the heart was collected. Adult
ventricular cardiomyocytes were isolated using enzymatic digestion as described above.

2.4. Ca2+ Measurements

After the 2 h incubation in Ibidi dishes at 37 ◦C, the culture medium was replaced by a
Ca2+-containing buffer (CCB; in mM: 140 NaCl, 5 KCl, 10 HEPES, 1 MgCl2, 2 CaCl2, 10 glucose;
adjusted to pH 7.4). Cardiomyocytes were loaded in CCB containing 5 μM of fura-2-acetoxymethyl
ester (fura2-AM) (for cytosolic Ca2+ imaging) for 30 min at room temperature.

After the fura2-AM loading, cells were washed twice for 5 min with a Ca2+-free buffer (CFB)
(same as CCB but without CaCl2) containing 0.1 mM EGTA (ethylene glycol tetraacetic acid).

Pretreatment protocol: CM were pretreated with 200 μM puromycin for 30 min while being
loaded with the probe, and in the case of double pretreatment with emetine, 20 μM of the latter
was added 30 min before CM probe loading. In both cases, once the drug was added, it remained
present during the whole experiment. The TLC inhibitor (emetine) was applied 5 minutes before its
activator (puromycin) to ensure prior TLC inhibition and to avoid concomitant opposite effects of these
compounds on TLC Ca2+ leakage [31,32]. After signal stabilization, CM were stimulated by either 5 μM
ionomycin, 25 μM FCCP (Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone), or 10 mM caffeine.

An ischemia-like hypoxia experiment was performed in a hypoxic chamber (Okolab-Bold line)
where temperature and oxygen levels were monitored. Fura2-AM-loaded CM were washed with CCB,
then, after fluorescence signal stabilization, we replaced the medium to hypoxic buffer (CCB without
glucose) deprived from any supplementation or growth factor necessary for CM survival and normal
function, and ventilated it with 99% N2 in order to replace all oxygen traces in the medium. Oxygen
level was decreased in the chamber to 1%. After 30 min of ischemia-like hypoxia, CM were stimulated
by 10 mM caffeine.

Measurements were performed using a wide-field LeicaDMI6000B microscope equipped with
an Orca-Flash4.0 digital camera (HAMAMATSU). Using a Lambda DG-4+ filter (Sutter instruments),
fura-2 AM was excited at 340 and 380 nm and their respective emitted fluorescence lights were measured
at wavelength 510 nm. D4ER and 4mtD3CPV (Förster resonance energy transfer (FRET)-based sensors)
were excited at 477 nm (CFP: Cyan Fluorescent Protein) and 514 nm (YFP: Yelllow Fluorescent Protein).
Their emitted fluorescent lights were assessed at wavelength 540 nm. Images (2048 × 2048 pixels) were
taken at 3 second intervals. Free Ca2+ content was estimated by the YFP to CFP fluorescence ratio,
which was figured out as described in [42].

All experiments were performed at room temperature in a calcium-free buffer to prevent
capacitative Ca2+ entry that would then add to the emptying of intracellular Ca2+ stocks, except for
in vitro H/R and paced experiments.

2.5. Ca2+ Transients

For Ca2+ transients experiments, CM were plated on 24 mm glass coverslips. Coverslips were
mounted on a Quick Change Chamber (RC-47FSLP Warner Instruments) and stimulation was delivered
by a MyoPacer Field Stimulator (IonOptix). CM were loaded at 37 ◦C with fluo5-AM (5 μM) for 30 min.
After loading, cells were washed in CCB, then the medium was replaced by a field stimulation buffer
(FSB; in mM: 150 NaCl, 5.4 KCl, 10 HEPES, 2 MgCl2, 1 glucose, 2.5 pyruvate, 5 creatine, 5 taurine,
2 CaCl2). Cytosolic Ca2+ transients were recorded in fluo5-AM-loaded CM, field-stimulated at 1 Hz
with a current pulse delivered via 2 platinum electrodes at RT for 0.5 ms and at 40 V amplitude.
To measure mitochondrial Ca2+ transients, we injected mice with 4mtD3cpv adenovirus, as described
previously. Isolated mice CM expressing the probe were field-stimulated for 1 min successively at 0.5,
1, and 2 Hz in FSB.
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Fluo5-AM images were acquired with a Nikon A1Rplus confocal microscope equipped with a
×40 oil-immersion objective (line-scan mode = 256 lines per ms). Scanning was performed along the
long axis of the cell. Fluo5-AM was excited at 488 nm by argon-ion laser. The respective emitted
fluorescent light was collected at wavelength 525/50 nm using one high sensitive GaAsp detector.
Cytoplasmic Ca2+ signal analysis was performed using custom-written [43] for the amplitude and
the rate of decay, and the rising slope was obtained with an exponential fit (Origin Pro 8 software).
4mtD3cpv fluorescence was acquired as above.

2.6. Calcein Cobalt Protocol

Calcein method with cobalt quenching was used in order to evaluate mitochondrial mPTP
opening [44,45]. Kinetics of mPTP opening were measured in live CM. Briefly, 1 μM calcein-AM was
used for cell loading in CCB for 15 min at room temperature. After two washes, cells were additionally
incubated for 30 min with 2 mM cobalt chloride and 200 μM sulfinpyrazon in CCB. Using a Nikon
confocal microscope, cells were imaged every 5 seconds under resting conditions for 2 min before
application of 2 μM ionomycin, which triggered the mPTP opening. Calcein-AM was excited at 488 nm
by argon-ion laser. The respective emitted fluorescent light was collected at wavelength 525/50 nm
using one high sensitive high sensitive GaAsp detector. A decrease in mitochondrial calcein-AM
fluorescence reflects the opening of mPTP. For data analysis, background was subtracted and curves
were normalized with the basal fluorescence.

2.7. In Vivo Model of Acute myocardial I/R Injury

As described previously, after anesthesia with 0.075 mg/kg of buprenorphine and 70 mg/kg of
pentobarbital, C57BL/6 J (male, 8–10 weeks old) mice were intubated and put under assisted respiration.
Heart rate was monitored by an electrocardiogram. A thoracotomy was performed, allowing access to
the heart after cutting the fifth rib, as well as upper and lower intercostal muscles. The pericardium
was then opened in order to place a knot around the anterior interventricular artery (IVA). Ischemia
was affirmed on the electrocardiogram by the shift of the ST-segment (flat isoelectric section on
electrocardiography between the end of the S wave and the beginning of the T wave) and lasted
45 min. Preconditioning was performed by IV injection of puromycin in the jugular vein 10 min before
ischemia, whereas control mice were injected with the same volume of saline solution at 0.9%. At the
end of the ischemia, the knot was loosened to reestablish blood circulation and the wound was stitched.
Animal state and recovery were monitored for 24 h.

After 24 h of reperfusion, the animal was again anesthetized following the same protocol and then
intubated with the rib cage being re-opened. The knot placed around the anterior inter-ventricular
artery was recovered, and was then constricted to occlude the artery again. Evans blue dye was then
injected through the vena cava, thus allowing the healthy zone to be colored in blue, leaving the
ischemic area in pink, the area-at-risk (AR). The diffusion of Evans blue made it possible to discriminate
the healthy zone (non-ischemic) of the AR.

Slices of the left ventricle that were 1mm thick were cut from the apex and delicately covered by a
glass plate to be photographed. The slices were then incubated for 15 min in triphenyltetrazolium
chloride (TTC) in order to discriminate the necrosis area (AN). Slices were weighed and sizes of
different areas were determined by computer in planimetry (SigmaScanPro5). Myocardial infarct size
was expressed as percentage of the ratio of the necrosis area (AN) over the area-at-risk (AR). Sham
mice that underwent surgery without I/R were used as controls.

2.8. CM Mortality

Adult mouse cardiomyocytes (250 μg protein) were kept in suspension according to the two
experimental groups: hypoxia-reoxygenation group (HR) and preconditioning by puromycine (PreC
Puro, 200 μM, 30 min prior to hypoxia reoxygenation sequence), as previously described [46]. HR cells
were incubated with 1.5 mL hypoxia buffer (140 mM NaCl, 5 mM KCl,1 mM MgCl2, 10 mM HEPES,
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2 mM CaCl2). Hypoxia cells were transferred into a hypoxia incubator on the rocking platform at 37 ◦C
with 0.5% O2. Cells were submitted to hypoxia for 1 h 30 min. In terms of reoxygenation, at the end of
hypoxia, medium was changed for plating medium (MEM (Minimal Essential Medium) supplemented
with 10% FBS, 1% penicillin/streptomycin, 10 mM butanedione monoxime, 2 mM glutamine, 200 mM
ATP) and replaced into the incubator at 37 ◦C for 1 h. After the total sequence of hypoxia reoxygenation,
a Fortessa X-20 instrument (BD Biosciences) was immediately used for flow cytometry measurements.
To evaluate the cell viability, cardiomyocytes were loaded with propidium iodide (1 μg/mL) and analyzed
extemporaneously. DIVA Software (BD Biosciences) was employed for data analysis by acquisition of 1000
events, and results were expressed as percentage of propidium iodide-positive cells (dead cells).

2.9. Statistical Analysis

Data are presented as medians. For small datasets (n < 10), data are represented as scatter plots
that also show median. For larger datasets, data are represented as box and whisker plots where the line
in the middle of the box is the median, the whiskers are drawn down to the 10% quartile value and up
to the 90% quartile value, and additionally a “+” appears at the mean. For comparison between two
groups, the Mann–Whitney non-parametric test was used, whereas the non-parametric Kruskal–Wallis
test followed by the Dunn’s multiple comparisons test was used to analyze differences between multiple
groups (unless otherwise specified). For flow cytometry analysis, Wilcoxon matched-pairs signed rank
tests were performed. In the two-way ANOVA, one factor was the effect of puromycin pretreatment and
the other factor was the effect of the frequency stimulation; values were matched and Bonferroni post-hoc
test was used. Experiments were performed at least three times or more. Statistical analysis was performed
with GraphPad Prism 6 software (La Jolla, CA, USA). p < 0.05 was considered significant.

3. Results and Discussion

3.1. TLC Is a Functional Reticular Ca2+ Leak Channel in Isolated Mouse CM: Its Activation Mobilized a
RyR-Independent Ca2+ Reticular Pool and Did Not Affect Excitation–Contraction (E-C) Coupling

First, TLC expression in mouse CM was confirmed by Western blot (Figure S1). We then
investigated the functionality of TLC as a reticular Ca2+ leak channel by monitoring the evolution of
the reticular Ca2+ concentration ([Ca2+]r). To this end, we used an in vivo adenoviral delivery strategy
based on an intramyocardial injection of an adenovirus encoding a FRET-based reticular Ca2+ sensor,
D4ER (Figure 1A). One week after the injection, adult mouse CM were freshly isolated. These primary
cells provided us with a powerful model for heart research at the cellular level. Unfortunately,
their lifetime is not compatible with transgenic modulation of TLC component expression, as both
require transfection and a significant period of expression. Therefore, our present investigation was
based on the use of TLC pharmacological agents. Puromycin mimics the 3’ end of aminoacetylated
tRNA (transfer ribonucleic acid), releases the nascent peptidic chain, and allows Ca2+ to leak through
the pore from the lumen to the cytoplasm [25,31,32]. On the other hand, emetine prevents ribosome
binding to TLC and then avoids Ca2+ leak [47]. When cardiomyocytes were treated with puromycin
(200μM) for 30 min, we observed a significant and progressive [Ca2+]r decrease (Figure 1B,C; fluorescent
ratio: −0.4334 vs. −0.2197) showing that TLC is a functional reticular Ca2+ leak channel in this model.
The reticular RyR-dependent Ca2+ pool was then determined by a treatment with caffeine and was
similar in control and in puromycin-treated CM (Figure 1D). Interestingly, these findings indicate that
the caffeine-sensitive Ca2+ stores could be independent of the puromycin-sensitive Ca2+ stores, that
is, RyR and TLC activation would mobilize two different Ca2+ pools. With a comparable approach
using an angiotensin II treatment, we found no impact of TLC activation on the IP3R-dependant Ca2+

reticular stocks (Figure S2).



Cells 2020, 9, 1319 7 of 17

Figure 1. Translocon (TLC) activation by puromycin induces a decrease in reticular Ca2+ stock.
(A) Illustration of the in vivo adenoviral strategy to express a reticular Ca2+ sensor, D4ER, in adult
mouse cardiomyocytes, presenting a typical reticular pattern of the fluorescent sensor as displayed
on the representative confocal image. Scale bar: 50 μm. (B) Graphical representation of the D4ER
fluorescence ratio evolution with time in control condition (black line) and in response to 30 min of
200 μM puromycin treatment (red line), both stimulated with 5 mM caffeine; representative curve of
reticular fluorescence evolution in control (Ctrl) condition and under puromycin treatment. (C) Scatter
plots of reticular Ca2+ decreased at the end of 30 min perfusion with or without puromycin. (D) Scatter
plots of the ryanodine receptor (RyR)-dependent reticular Ca2+ stock after puromycin or Ctrl treatment
estimated by caffeine stimulation, calculated as difference between fluorescence level at stimulation
time and final fluorescence. n = cell count. Statistics: ++ p < 0.01 vs. Ctrl.

Next, we analyzed whether puromycin treatment could modify the cytosolic Ca2+ concentration
([Ca2+]cyto) using fura-2 loaded cells. Because acute puromycin perfusion failed to trigger a significant
increase in [Ca2+]cyto, we submitted CM to a 30 min puromycin pretreatment, combined or not with
emetine (as a control in order to inhibit puromycin activity). Steady-state [Ca2+]cyto was unchanged
after puromycin-pretreatment (fluorescent ratio: 0.4583 vs. 0.4577 in control (Ctrl)), but was slightly
decreased after a pretreatment with emetine prior to puromycin (fluorescent ratio: 0.4453; Figure 2A,B).
No change in total cell Ca2+ content, quantified thanks to ionomycin treatment, was observed in CM
pretreated with puromycin or concomitantly pretreated by puromycin and emetine (Figure 3A–C).
To explain these results, one should note that the time-course of the puromycin response via TLC is
slower than the caffeine time-course (Figure 1B). Moreover, one should be reminded that cytosolic Ca2+

elevations are counteracted by the combined action of Ca2+ reuptake by SERCA pumps, extrusion by
the plasma membrane Ca2+ ATPase (PMCA) and the plasma membrane Na+/Ca2+ exchanger (NCX),
and absorption by the mitochondria [48]. Thus, Ca2+ leakage triggered by puromycin treatment did
not change the global [Ca2+]cyto at rest, even if TLC participated in its regulation (as shown by its
inhibition by emetine prior to puromycin application).
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Figure 2. The reticular puromycin-mediated Ca2+ stock release was independent of the one stimulated
by caffeine and did not affect excitation–contraction (E-C) coupling. (A,D) Time traces showing cytosolic
Ca2+ concentration assessed by fura2-AM (acetoxymethyl ester) cytosolic probe, in Ctrl condition and
after 30 min of 200 μM puromycin pretreatment or 20 μM emetine +200μM puromycin pretreatment.
Effect of puromycin and emetine + puromycin was measured after cardiomyocyte (CM) pretreatment
in Ca2+-containing buffer (CCB) for 30 min (see the Materials and Methods section). Ca2+ content was
figured out by the maximum amplitude of fura2-AM fluorescence ratio (Δmax Ratio(340/380)) after the
addition of different stimulations in a Ca2+-free buffer (CFB). (B) Box blots representing the steady-state
cytosolic Ca2+ concentration and (C) total cell Ca2+ content assessed by 5 μM of ionomycin stimulation.
(E) RyR2-dependent Ca2+ stores assessed by 10 mM of caffeine stimulation and (F) remaining cell
Ca2+ content after caffeine stimulation assessed by ionomycin stimulation. (G–J) Cytoplasmic Ca2+
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transients were recorded using fluo5-AM–loaded intact CM electrically stimulated at 1 Hz.
(G) Representative cytoplasmic Ca2+ transients in the absence or after 30 min of puromycin pretreatment;
ΔF/F0 = normalized change fluorescence. (H) Scatter blots representing cytoplasmic Ca2+ transients
amplitude, (I) Ca2+ transients rising slope (calculated from the relative amplitude and time to peak of
the electrical induced Ca2+ transient), and (J) Ca2+ transients rate of decay. (K) Time traces displaying
cytosolic Ca2+ concentration (measured by the fura2-AM fluorescence ratio) in a Ctrl CM and in a 200μM
puromycin preconditioned CM subjected to a 30 min ischemia-like hypoxia. At the end of the 30 min,
10 mM caffeine was added to the medium. CCB means Ca2+-containing buffer. (L) Average increase in
the cytosolic Ca2+ concentration [Ca2+]cyto was figured out as masses of fura2-AM fluorescence signal
over time in CM treated as explained in (K). Data are from at least three independent experiments. n =
cell count. Statistics: + p < 0.05, +++ p < 0.001, ++++ p < 0.0001 vs. Ctrl, * p < 0.05, **** p < 0.0001 vs.
Puro (puromycin).

Figure 3. Puromycin pretreatment modified mitochondrial Ca2+ content in beating CM
and delays mitochondrial permeability transition pore (mPTP) opening. (A) Representative
time traces of mitochondrial Ca2+ concentration (expressed as the 340/380 fluorescent ratio of
fura2-AM cytosolic probe)) from Ctrl and CM pretreated with 200 μM of puromycin for 30 min.
(B) Boxplots represent mitochondrial calcium content assessed by 25 μM of FCCP (Carbonyl cyanide
4-(trifluoromethoxy)phenylhydrazone) stimulation (expressed by the delta max of the 340/380
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fluorescent ratio of fura2-AM cytosolic probe) in Ctrl condition and after 30 min of 200 μM puromycin
pretreatment. (C,D) Mitochondrial Ca2+ rises recorded in 4mtD3cpv-positive CM electrically stimulated
successively at 0.5, 1, and 2 Hz. (C) Representative time traces of mitochondrial Ca2+ concentration
in Ctrl and after 30 min of puromycin pretreatment, expressed as YFP/CFP fluorescent ratio with
a time binning of 4 (every 2.12 sec). (D) Corresponding averaged mean increase of mitochondrial
Ca2+ concentrations at the same range of stimulation frequencies. (E) Representative time traces of
calcein fluorescence from Ctrl, and 1 μM cyclosporin A (CsA)-pretreated and puromycin-pretreated
CM. (F) Boxplots representing the slope of the mitochondrial calcein fluorescence decay induced by
ionomycin stimulation. Data are represented as medians (except in E, mean ± SEM) from at least three
independent experiments. n = cell count. Statistics: ++ p < 0.01, +++ p < 0.001 vs. Ctrl.

To complete the study of the putative dichotomy between the TLC Ca2+ store (activated by
puromycin) and the RyR-dependent Ca2+ store (sensitive to caffeine) and to evaluate their relative
size, we first perfused caffeine to deplete the RyR-dependent stores, and consecutively we applied
ionomycin to reveal the residual reticular Ca2+ pool (Figure 2D–F). The caffeine response was similar
in each condition: control, puromycin, and puromycin + emetine (Figure 2D,E), corroborating our
previous [Ca2+]r results (Figure 1). The size of the remaining caffeine-insensitive stores was smaller in
puromycin-treated cells (fluorescent ratio: 0.005) than in controls (fluorescent ratio: 0.021; Figure 2F),
proof of a prior depletion of TLC-dependent store. Conversely, emetine pretreatment not only abolished
the effect of puromycin, but also triggered a larger increase (fluorescent ratio: 0.056) in the remaining
Ca2+ stock compared to control CM (Figure 2F). This suggests that the inhibition of the reticular Ca2+

leak via TLC enhanced the concentration of this Ca2+ pool. Interestingly, we have previously shown
similar results using human cancerous prostatic cells where the chronic inhibition of TLC caused an
increase in the reticular Ca2+ concentration [25]. In order to sustain our results, we alternatively used
pactamycin, another pharmacological Ca2+ leak inducer via TLC, and showed comparable effects on
SR Ca2+ content (Figure S3).

It is common knowledge that reticular Ca2+ content is crucial for CM contraction, and changes in
internal reticular Ca2+ stock could impair the excitation–contraction coupling mechanism. In order
to evaluate whether TLC modulation could affect this parameter, we measured cytoplasmic Ca2+

transient in paced control and puromycin-pretreated CM (Figure 2G). Neither the rising slope (0.0033
vs. 0.0032 ΔF/F0.ms−1; Figure 2H), nor the amplitude (0.2923 vs. 0.3221 ΔF/F0; Figure 2I), nor the rate
of decay (0.0102 vs. 0.0105 ΔF/F0.ms−1; Figure 2J) of Ca2+ transients were modified by puromycin
pretreatment compared to the control, which goes along the line of two independent Ca2+ stores.

In summary, our data illustrated that the well-known caffeine store cohabits with the brand new
puromycin-sensitive store in primary mouse CM, which is in agreement with the work of Sleiman
and colleagues [49], showing a dichotomy between cardiac endoplasmic reticulum (where protein
synthesis takes place) and sarcoplasmic reticulum. Indeed, it would then be possible to have a
fine [Ca2+]r modulation independently of RyR pathways and by extension without modifying the
excitation–contraction coupling. In future studies, it would also be interesting to look closer at the
perinuclear level, a particular region enriched in both IP3R and ribosomes, and discover how TLC
activation modulates the nuclear Ca2+ concentration.

During ischemia, the decline of ATP synthesis impairs SERCA activity. The consequences are
cytosolic Ca2+ oscillations due to transient release of Ca2+ from the reticulum. We thus investigated
whether puromycin preconditioning could attenuate cytosolic Ca2+ overload occurring during hypoxia
in non-paced cells (Figure 2K). The average increase in the cytosolic Ca2+ concentration over hypoxia
was figured out as the integrate of erratic Ca2+ transients above the basal cytosolic Ca2+ concentration.
First, we visualized autonomous but erratic Ca2+ rises in cytosol of CM during hypoxia. Second,
as reported in Figure 2L, the average increase in the cytosolic Ca2+ concentration due to hypoxia
was found to be about two times higher than the one induced by caffeine (0.7783 s−1 and 0.4199
s−1, respectively). Third, the increase in the cytosolic Ca2+ concentration over a 30 min hypoxia was
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lowered by ≈64% in CM pretreated with puromycin compared to control CM (0.2829 s−1 and 0.7783 s−1,
respectively). Lastly, caffeine-dependent Ca2+ stores after the 30 min hypoxia were similar between
control and puromycin-preconditioned CM (Figure 2K,L). In addition, steady-state caffeine-dependent
Ca2+ fluxes, estimated by the average increase in the cytosolic Ca2+ concentration after caffeine
treatment, were significantly increased after 30 min of hypoxia (Figure S4).

Taken together, our findings showed no effect of puromycin pretreatment on caffeine-dependent
Ca2+ pool, nor, more importantly, on the excitation–contraction coupling. Furthermore,
we demonstrated that the puromycin-mediated decrease in the Ca2+ stores was accompanied by a
threefold lower increase in the cytosolic Ca2+ concentration during hypoxia. Finally, we found that the
caffeine-sensitive Ca2+ store after hypoxia was similar in non-treated cells and in puromycin-treated
CM, which substantiated our previous observations.

3.2. Pharmacological Modulation of TLC with Puromycin Pretreatment Affected Mitochondrial Ca2+ Content
in Beating (But Not in Resting) CM and Slowed down the mPTP Opening

As mitochondria buffer cytoplasmic Ca2+ increase and as mitochondrial Ca2+ uptake is faster
than its release [50], there is probably a progressive enhancement of Ca2+ into the matrix during
ischemia because the threshold of mPTP opening is reached, leading to apoptosis. We then looked at
whether TLC activation could modify mitochondrial Ca2+ homeostasis. We thus wondered whether the
puromycin pretreatment could shift the steady-state Ca2+ content in mitochondria of CM expressing
the 4mtD3cpv FRET-based sensor (Figure S5A,B). No difference could be detected when comparing
the control and puromycin-pretreated CM in the resting mitochondrial Ca2+ concentration ([Ca2+]mito;
fluorescent ratio: 5.185 vs. 5.087, p = 0.1436; Figure S5B). However, the small decrease in the ratio
of fluorescence after ionomycin treatment in the absence of external Ca2+ (Figure S5C) revealed that
the steady-state Ca2+ concentration was at the edge of the dynamic range of 4mtD3cpv biosensor
(Kd = 0.6 μM). This could have impaired the detection of significant differences in the mitochondrial
Ca2+ content in control and puromycin-treated CM. We therefore performed an indirect measurement
of the mitochondrial Ca2+ content. FCCP, an ionophore used to decouple ATP synthesis from the
mitochondrial respiratory chain, induced the leak of mitochondrial Ca2+ content, which was measured
by the cytosolic fura2-AM probe (Kd = 140nM). Puromycin pretreatment significantly decreased
mitochondrial Ca2+ stores by ≈31% (fluorescent ratio: 0.0536 vs. 0.0781; Figure 3A,B), highlighting the
role of TLC in the modulation of Ca2+ exchange between the reticulum and mitochondria.

We then measured mitochondrial Ca2+ fluxes in paced CM and assessed the effect of a puromycin
pre-treatment (Figure 3C,D). Quantitatively, the increase of the frequency of stimulation was correlated
to a steady-state mitochondrial Ca2+ elevation both in control and in puromycin-pretreated CM
(two-way ANOVA, frequency stimulation affected the results with a p-value < 0.0001). Moreover,
although [Ca2+]mito rose with the pacing frequency in control CM, interestingly this rise was shifted
to higher frequencies of pacing in CM treated with puromycin (two-way ANOVA, p = 0.0035;
frequency–pretreatment interaction was F = 4.9, p = 0.0121). Because no difference could be detected in
cytosol (Figure 2G–J), the apparent decrease in [Ca2+]mito in beating cells could be explained by a direct
effect of puromycin decreasing Ca2+ influx from reticulum to mitochondria. To test this hypothesis,
we performed a Ca2+ retention capacity assay (CRC is the amount of Ca2+ that can be sequestered by
mitochondria until the permeability transition occurs) in isolated mitochondria of CM and did not
find any effect of puromycin pretreatment on either the Ca2+ intake or mPTP opening (Figure S6).
These results suggest that puromycin neither directly challenged Ca2+ intake by MCU nor directly
opened mPTP.

We next questioned if the puromycin-mediated decrease in mitochondrial Ca2+ content could retard
mPTP opening in living CM. We valued mPTP opening by the “calcein/cobalt” method (Figure 3E,F).
Cyclosporin A (CsA), known for slowing down mPTP opening, was used as a positive control [51].
We found that mPTP opening was significantly delayed in puromycin-pretreated (0.6665 compared to
control 0.8559), whereas we only observed a tendency in CsA-pretreated CM (0.7287; p = 0.08).
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Jointly, our results point out that pharmaceutical activation of TLC enhances mitochondrial
tolerance to handle Ca2+ by decreasing both steady-state mitochondrial Ca2+ content and the average
Ca2+ level in mitochondria of beating CM. This may explain how puromycin pretreatment slowed down
mPTP opening by decreasing reticular Ca2+ leak during ischemia and augmenting the tolerance to Ca2+

of mitochondria by reducing the average mitochondrial Ca2+ concentration. An enhanced tolerance of
mitochondria to Ca2+ load has been revealed to be crucial to evade mPTP opening and in triggering
cell death [51]. A similar proof-of-concept has been previously reported by Petrovski et al. [52], as they
described the beneficial effects of thapsigargin (a SERCA pump inhibitor that induces reticular Ca2+

leak at low doses) in a preconditioning protocol in rats by decreasing infarct size and improving left
ventricular function. However, it is obvious that SERCA inhibition will also lead to inhibition of CICR
and thus prevent CM contraction [19].

3.3. Pharmacological Modulation of TLC with Puromycin Pretreatment Protected CM after In Vitro H/R, and
Reduced Infarct Size in Mice Submitted to In Vivo I/R

To our knowledge, nothing is known about modulation of TLC activity during hypoxia or ischemia.
First, one can assume that translation is reduced during hypoxia and it should be the same for the
associated Ca2+ leak via TLC. Second, hypoxia triggers an increase in cytosolic Ca2+ concentration,
partly due to a decline of ATP synthesis necessary for SERCA pumps to reuptake Ca2+ into the
lumen. An interesting study characterized a calmoduline (CaM)-binding motif in Sec61α [36]. Using
microsomes, the authors showed that CaM closes the channel in a Ca2+-dependent manner. Then,
in the context of hypoxia, we may hypothesize that Ca2+ permeability of TLC is reduced.

In the following, we examined whether puromycin pretreatment (i.e., prior to hypoxia or ischemia)
might be an effective cardioprotective strategy. CM death after hypoxia/reoxygenation (H/R) was
appraised by a multilabeling flow cytometry analysis. Propidium iodide quantification was performed
after 1 h 30 min hypoxia and 1 h reoxygenation with or without puromycin 200 μM pretreatment.
Results highlighted a protective effect of puromycin by reducing cell mortality by ≈6% compared to
control H/R (56% vs. 62%; Figure 4A,B). Concomitantly, CM were loaded with DilC1(5), MitoSOX
Red, and MitoTracker Deep Red in order to respectively check the mitochondrial potential membrane,
the production of ROS (reactive oxygen species), and the mitochondrial mass. No significant difference
was observed between Ctrl and puromycin-treated cardiomyocytes submitted to H/R (Figure S7).
This absence of effect on mitochondrial function meant that TLC activation did not worsen mitochondrial
damage due to H/R but also did not improve it either, reinforcing our conclusions that TLC-conferred
protection does not act directly on mitochondria but rather it is due to the modification of the reticular
Ca2+ homeostasis.
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Figure 4. In vitro and in vivo CM protection by puromycin pretreatment after ischemia/reperfusion.
(A) Experimental design representing ischemia-like hypoxia/reoxygenation (H/R) protocols achieved in
isolated adult mouse CM. (B) Scatter plots showing mortality of CM subjected to H/R (Ctrl H/R) or CM
concomitantly subjected to H/R and a 200 μM puromycin pretreatment (puro H/R). Evaluation of CM
mortality was assessed via propidium iodide (PI) staining. (C) Experimental design showing the I/R
protocols performed in mice by a blind test comparing different concentration of puromycin. (D) Scatter
plots representing individual I/R mouse by the percentage of necrosis area (AN) over area-at-risk (AR).
n = number of animals. Statistics: + p < 0.05, ++ p < 0.01 vs. Ctrl H/R. (E) Representative images of
Evan’s blue- and triphenyltetrazolium chloride (TTC)-stained hearts from Ctrl I/R and Puro I/R mice.

Because TLC stimulation by puromycin enhanced cell survival when submitted to H/R, we assessed
its putative protective action in an in vivo mouse model of myocardial I/R preconditioned or not with
puromycin. In order to optimize the treatment efficiency, we performed dose–effect experiments.
Infarct size estimation was figured out after 45 min ischemia and 24 h reperfusion (Figure 4C). Optimal
preconditioning was obtained with a 0.8 mg/kg puromycin treatment and showed a reduction of
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≈34.5% in infarct size compared to control mice (Figure 4D,E). Higher puromycin concentrations failed
to protect mouse heart. It is important to notice that neither blood pressure nor heart frequency were
modified at the optimal dose of 0.8 mg/kg puromycin (Figure S8).

In brief, these last results underlined the fact that CM death can be partly prevented during
ischemia by a moderate reticular Ca2+ depletion via TLC activation, which in turn might decrease
Ca2+ toxicity in both cytosol and mitochondria. One can easily imagine that TLC activation, prior to
ischemia, increases the reticular Ca2+ leak. In turn, it might cause a mild ER stress, from which there is
growing evidence that it contributes to protect CM from cell death [53].

4. Conclusions

Our results showed for the first time that the modulation of TLC-dependent reticular Ca2+

store is correlated with the modulation of several processes involved in cell fate—mitochondrial
tolerance for cytoplasmic Ca2+ increase, mPTP opening, and tilting the cell balance on the side of cell
survival. In fact, most studies on CM protection during ischemia/reperfusion relied on avoidance of
mitochondria death and emphasized the concept of direct inhibition of mPTP. We believe that the
multiple consequences of the decrease in reticular Ca2+ content could induce a robust cardioprotective
effect, less prone to individual fluctuations. Even though our results rely on pre-activation of TLC,
that is, I/R preconditioning, and cannot be used during myocardial infarction, this study opens new
perspectives on Ca2+ modulation that could be useful for further investigations on postconditioning,
thus broadening future therapeutic possibilities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/5/1319/s1,
Figure S1: TLC expression in CM. Figure S2: TLC activation by puromycin did not modify the IP3R-dependant
reticular Ca2+ stock. Figure S3: Similar effect for puromycin and pactamycin of cellular Ca2+ concentration.
Figure S4: Cytosolic Ca2+ caffeine-induced release in control condition and after hypoxia. Figure S5: Mitochondrial
Ca2+ concentration measured with 4mtD3cpv. Figure S6: CRC measurement. Figure S7: Puromycin pretreatment
did not modify the mitochondrial function in CM after in vitro hypoxia/reoxygenation (H/R) protocol. Figure S8:
Puromycin treatment at 0.8mg/kg had no effect on blood pressure and heart frequency.
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Background. Previous studies have suggested the role of microcalcifications in plaque
vulnerability. This exploratory study sought to assess the potential of hybrid positron-emission
tomography (PET)/magnetic resonance imaging (MRI) using 18F-sodium fluoride (18F-NaF) to
check simultaneously 18F-NaF uptake, a marker of microcalcifications, and morphological
criteria of vulnerability.

Methods and results. We included 12 patients with either recently symptomatic or
asymptomatic carotid stenosis. All patients underwent 18F-NaF PET/MRI. 18F-NaF target-to-

Electronic supplementary material The online version of this

article (https://doi.org/10.1007/s12350-020-02400-0) contains sup-

plementary material, which is available to authorized users.

The authors of this article have provided a PowerPointfile, available for

download at SpringerLink, which summarises thecontents of the

paper and is free for re-use at meetings andpresentations. Search for

the article DOI on SpringerLink.com.

Theauthors have also provided an audio summary of the article, which

isavailable to download as ESM, or to listen to via the JNC/

ASNCPodcast.

Reprint requests: Laura Mechtouff, Stroke Department, Pierre Wer-

theimer Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel,

69677 Bron, France; laura.mechtouff@chu-lyon.fr

1071-3581/$34.00

Copyright � 2020 American Society of Nuclear Cardiology.



background ratio (TBR) was measured in culprit and nonculprit (including contralateral
plaques of symptomatic patients) plaques as well as in other arterial walls. Morphological
criteria of vulnerability were assessed on MRI. Mineral metabolism markers were also col-
lected. 18F-NaF uptake was higher in culprit compared to nonculprit plaques (median TBR 2.6
[2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) but was not associated with morphological criteria of vul-
nerability on MRI. We found a positive correlation between 18F-NaF uptake and calcium
plaque volume and ratio but not with circulating tissue-nonspecific alkaline phosphatase
(TNAP) activity and inorganic pyrophosphate (PPi) levels. 18F-NaF uptake in the other arterial
walls did not differ between symptomatic and asymptomatic patients.

Conclusions. 18F-NaF PET/MRI may be a promising tool for providing additional insights
into the plaque vulnerability. (J Nucl Cardiol 2020)

Key Words: Carotid stenosis ÆÆ Positron-Emission Tomography-Computed Tomography Æ
Hybrid MR/PET Æ Sodium Fluoride Æ Stroke

Abbreviations
18F-NaF 18F-sodium fluoride

AP Alkaline phosphatase

BMI Body mass index

BW Bandwidth

CE-MRA Contrast-enhanced

CRP C-reactive protein

CT Computed tomography

DUS Doppler ultrasound

FC Fibrous cap

FLASH Fast-low angle shot

FOV Field of view

IPH Intraplaque hemorrhage

IQR Interquartile range

LDL Low-density lipoprotein

LRNC Lipid-rich necrotic core

MR Angiography

MRI Magnetic resonance imaging

NA Number of averages

NASCET North American Symptomatic Carotid

Endarterectomy Trial

NIHSS National institutes of health stroke

scale

PET Positron-emission tomography

PPi Inorganic pyrophosphate

ROI Region of interest

SD Standard Deviation

SPAIR Spectral attenuated inversion recovery

SUVmax Maximum standard uptake value

TE Echo time

TBR Target-to-background ratio

TIA Transient ischemic attack

TNAP Tissue-nonspecific alkaline

phosphatase

TOF Time-of-flight angiography

TR Repetition time

VSMC Vascular smooth muscle cell

INTRODUCTION

Atherosclerotic stenosis of the extracranial carotid

artery accounts for 15 to 20% of ischemic strokes.1

Beyond the degree of stenosis, plaque vulnerability and

subsequent thromboembolic events are related to a

combination of factors that include a large lipid-rich

necrotic core (LRNC), a thinning/ruptured fibrous cap

(FC), an intraplaque hemorrhage (IPH), and inflamma-

tory processes.2,3 Identifying high-risk plaques is

therefore critical for improving both risk prediction

and prevention of ischemic stroke.

The formation and progression of atherosclerotic

plaques are a dynamic process that includes macro-

phage-driven inflammation and calcifications, two

related but distinct processes. Until now, in vivo explo-

ration of plaque inflammatory processes has been mostly

explored by the use of 18F-fluorodesoxyglucose (18F-

FDG), a known marker of vascular macrophage bur-

den.4–9 18F-sodium fluoride (18F-NaF) positron-emission

tomography (PET) has recently been proposed as a

technique to detect microcalcifications, a key component

of the inflammatory process within plaques.10 The use of

this latter radiotracer adds additional information as

evidenced by the fact that arterial 18F-FDG retention is

not correlated with arterial 18F-NaF uptake.11–13 Studies

on coronary arteries have shown that 18F-NaF uptake

was higher in culprit lesions of acute myocardial

infarction than in nonculprit lesions.14,15 Other studies

found that 18F-NaF uptake localized high-risk plaques in

asymptomatic patients using optical coherence tomog-

raphy, intravascular ultrasound, and coronary computed

tomography angiography.16,17 In carotid arteries, results

of preliminary studies using 18F-NaF-PET/computed

tomography (CT) have suggested an association

between 18F-NaF uptake and the symptomatic nature

of carotid plaques.11,14,15,18–21

Among the noninvasive imaging techniques avail-

able today, carotid plaque MRI is able to detect
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morphological changes underlying plaque vulnerability

with moderate-to-good sensitivity and specificity com-

pared to histological findings.22,23 Thus, hybrid 18F-NaF

PET/MRI is able to simultaneously assess 18F-NaF

uptake, a marker of microcalcifications, and morpho-

logical criteria of vulnerability and may therefore

provide additional insights into plaque vulnerability.

Experimental studies have demonstrated that tissue-

nonspecific alkaline phosphatase (TNAP) is a key

determinant of tissue calcification.24 In hydrolyzing

inorganic pyrophosphate (PPi), one of the main inhibi-

tors of calcification, it contributes to the formation of

hydroxyapatite crystals. Higher levels of serum alkaline

phosphatase (AP) are associated with the increased risk

of all-cause and cardiovascular mortality among sur-

vivors of myocardial infarction or stroke and in a

general population sample.25,26

The aim of this study was to investigate if 18F-NaF

uptake—assessed using hybrid 18F-NaF PET/MRI—

differed between culprit and nonculprit carotid plaques.

Secondary aim ignored the symptomatic nature of the

plaque and compared TBR and morphological criteria of

vulnerability on MRI or mineral metabolism markers

(TNAP and PPi). We also compared 18F-NaF uptake in

other arterial walls in symptomatic and asymptomatic

patients.

MATERIALS AND METHODS

Study Population

Patients were prospectively recruited between Jan-

uary 2016 and December 2017 from the stroke

department and the department of vascular surgery in

Lyon, France. Patients with carotid stenosis (C 50%

according to the North American Symptomatic Carotid

Endarterectomy Trial (NASCET) criteria) were included

and classified as symptomatic (transient ischemic attack

(TIA) or minor stroke B 15 days) or asymptomatic.27

Culprit plaques were plaques recently responsible for

ipsilateral transient ischemic attack or minor stroke

B 15 days. Nonculprit plaques were contralateral pla-

ques of symptomatic patients and plaques of

asymptomatic patients. Indication for carotid endarterec-

tomy was decided by a surgeon expert panel according

to current guidelines.28 Exclusion criteria were ongoing

pregnancy, severe renal failure (estimated glomerular

filtration rate by the Cockroft-Gault formula\ 50 ml/

min), metallic implants, and severe claustrophobia.

Clinical history, common risk factors, Doppler

ultrasound (US), CT angiography data including cal-

cium volume and ratio into the plaque, and routine

biological markers drawn the same day including

calcemia, phosphoremia, and C-reactive protein (CRP)

Figure 1. Study flow diagram (NASCET: North American Symptomatic Carotid Endarterectomy
Trial, 18F-NaF PET/MRI PET: 18F-sodium fluoride positron-emission tomography/magnetic
resonance).
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were collected. When carotid endarterectomy was indi-

cated, histological analyses of the plaques were

performed.

The study protocol was registered at the Clini-

calTrials.gov online database (NCT02726984), with the

approval of the local research ethics committee in

accordance with the declaration of Helsinski. All

patients provided written informed consent before

enrollment.

18F-NaF PET–MRI

PET/MRI Protocol All patients underwent PET/

MRI. The 15 min PET acquisition was centered on the

carotid arteries and was performed 60 min after injec-

tion of 3 MBq/kg of 18F-NaF.

The 3T MR multi-contrast protocol consisted of a

3D time-of-flight angiography (TOF), a 3D T1-weighted

variable flip angle turbo spin echo (SPACE) sequence,

and a 3D contrast-enhanced angiography (CE-MRA)

performed during the first passage of 30 cm3 of a

Gadolinium-based contrast agent (DOTAREM�, Guer-

bet, France), administered at 2 cm3/s, followed by a

10 cm3 saline flush.

The following TOF sequence was performed: rep-

etition time/echo time (TR/TE) 21.0/3.60 ms, flip angle

25�, field of view (FOV) 200 9 150 9 30 mm, slice

thickness 0.7 mm, in-plane resolution 0.7 9 0.6 mm,

number of averages (NA) 1, acquisition bandwidth

(BW) 252 Hz/pixel, parallel imaging (GRAPPA) accel-

eration factor in the phase-encoding direction: 2, and

scan time: approximately 3 min.

The 3D SPACE sequence was performed in the

coronal orientation using a spectral attenuated inversion

recovery (SPAIR) fat suppression pulse with the fol-

lowing parameters: TR/TE 800/22 ms, voxel 0.7 mm

Figure 2. 18F-sodium fluoride positron-emission tomography/magnetic resonance (18F-NaF PET/
MRI) PET/MRI from a 59-year-old patient (No. 11) who experienced right hemiparesis and aphasia
related to left middle cerebral artery territory infarct. Axial, coronal, and sagittal views of PET (A–
C) showing 18F-NaF uptake into the left carotid plaque (black arrow). Axial, coronal, and sagittal
views of merged PET/MRI (E–G) images showing 18F-NaF uptake overlayed on the T1-w images
(black arrow); Axial, coronal, and sagittal views of contrast-enhanced angiography (I–K) showing
an eccentric plaque of the left carotid artery causing a luminal stenosis; Coronal T1-weighted MR
images pre- and post-gadolinium showing a macrocalcification and a focal enhancement of the
plaque (D, H).
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isotropic, turbo factor 55, TSE echo spacing/shot dura-

tion 4.32/238 ms, BW 630 Hz/pixel, NA 1.4, GRAPPA

acceleration factor in the phase-encoding direction: 2,

and scan time of 6.16 min.

CE-MRA coronal images were acquired in the

coronal orientation using a 3D T1-weighted fast low-

angle shot (FLASH) sequence with the following

parameters: TR/TE 3.13/1.16 ms, Field of view (FOV)

480 9 427 mm, fractional anisotropy (FA) 25�, 88

slices of 1 mm, in-plane resolution: 1.1 9 0.9 mm,

GRAPPA acceleration factor in the phase-encoding

direction: 2, BW 650 Hz/pixel, 3D- centric reordering

with time to center of k-space: 1 s, NA 1, and scan time

of 31 s. The 3D T1-weighted SPACE acquisition was

repeated after contrast injection to evaluate contrast

uptake in the plaque.

Image Analysis MRI was assessed for morpho-

logical criteria of vulnerability, only for plaque with

stenosis C 50%. The maximum standard uptake value

(SUVmax) (the decay-corrected tissue concentration of

the tracer divided by the injected dose per body weight)

was measured using 3 regions of interest (ROI) centered

on the area of highest uptake in the plaque identified on

coregistered PET/MRI fusion images. If there was no

plaque, on the contralateral carotid, the 18F-NaF uptake

in the proximal 1 cm of internal carotid artery, just distal

to the bifurcation was quantified. 18F-NaF uptake was

also quantified in other artery walls as aortic arch,

ostium of brachiocephalic trunk, left subclavian artery,

and left common carotid artery using MRI data. Blood-

pool SUV was estimated as the mean of five ROIs in the

mid lumen of the superior vena cava. The target-to-

background ratio (TBR) was calculated by dividing

SUVmax by the blood-pool SUV. Two experienced

raters reviewed PET/MRI and estimated the 18F-NaF

TBR blinded to clinical data (J. T. and A. B-S.).

Blood Sampling Protocol

A peripheral blood sample was collected from each

patient the same day as the 18F-NaF PET/MRI. Sera

were prepared and stored at - 80�C within a 3-h delay

at the NeuroBioTec biobank (CRB-HCL: BB-0033-

00046, France). All samples were thawed only once for

Table 1. Patient baseline characteristics

Symptomatic patients
(n = 6)

Asymptomatic patients
(n = 6)

P
value

Age, y 72 [59-78] 72 [63-75] 0.94

Male 5 (83.3) 4 (66.7) 1.00

Qualifying event

TIA 2 (33.3) – –

Ischemic stroke 4 (66.7) – –

Baseline NIHSS 2 [0-4] – –

Hypertension 5 (83.3) 3 (50) 0.55

Diabetes 1 (16.7) 1 (16.7) 0.77

Hyperlipidemia 4 (66.7) 2 (33.3) 0.57

Current smoking 1 (16.7) 1 (16.7) 1.00

BMI, kg/m2 28.2 [25.0-29.4] 25.1 [23.0-26.9] 0.11

Coronary artery disease 1.0 (0.7) 2 (33.3) 1.00

Atrial fibrillation 2 (33.3) 0 0.45

LDL-cholesterol, g/L 1.2 [0.8-1.2] 1.3 [0.4-1.5] 0.87

CRP, mg/L 3.8 [1.2-15.0] 1.7 [0.8-3.1] 0.17

Calcemia, mmol/L 2.3 [2.1-2.3] 2.4 [2.3-2.4] 0.03

Phosphoremia, mmol/L 1.1 [0.9-1.1] 1 [1.0-1.1] 0.75

TNAP activity, nmol/min/

mg

0.08 [0.06-0.15] 0.08 [0.07-0.12] 0.75

PPI, lM 9.1 [6.8-12.2] 10.6 [7.2-14.7] 0.42

TIA transient ischemic attack; NIHSSNational Institutes of Health Stroke Scale; BMI body mass index; LDL low-density lipoprotein;
CRP C-reactive protein; TNAP tissue-nonspecific alkaline phosphatase; PPi inorganic pyrophosphate
Variables are displayed as absolute number (percentage of column total), mean ± SD, or median (25th–75th percentiles) as
appropriate
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study measurements. Serum samples were diluted at 1/

25. TNAP activity (nmol/min/mg) was quantified by the

absorbance of para-nitrophenol generated by TNAP

hydrolysis of para-nitrophenylphosphate. PPi levels

(lM) were determined by luminescence using the PPi

light inorganic pyrophosphate assay kit from Lonza.

Sensitivity was 0.02 lM.

Histological Analyses

Vessels were fixed in buffered formalin and embed-

ded in paraffin after decalcification. Transverse sections

of 3 lm were cut using a rotary microtome (Leica

Microsystems GmbH, Wetzlar, Germany) and stained

with hematoxylin, phloxine, and saffron in order to

analyze the following elements: lipid core, plaque

hemorrhage, cap fibroatheroma (thin or thick), micro-

calcifications, inflammation, thrombi, and

neoangiogenesis.

Statistical Analysis

This study was designed as a pilot transversal

investigation. The primary analysis was the comparison

of 18F-NaF TBR in carotid culprit plaques and noncul-

prit plaques. Secondary analysis ignored the

symptomatic nature of the plaque and compared 18F-

NaF TBR and morphological criteria of vulnerability on

MRI as well as mineral metabolism markers. We also

compared 18F-NaF TBR in the other artery walls in

symptomatic and asymptomatic patients. Categorical

Table 2. Plaque imaging and histological characteristics in culprit and nonculprit plaques

Culprit plaques
(n = 6)

Non culprit
plaques (n = 18) P value

CT angiography

Calcium volume, mm3 462 [88-843] 105 [0-474] 0.19

Calcium volume, % 35.6 [5.3-78.9] 21.9 [0-59] 0.51

MRI

Intraplaque hemorrhage 2 (50) 2 (11.1) 0.14

Lipid-rich necrotic core 2 (50) 3 (16.7) 0.21

Thinning and/or ruptured fibrous cap 1 (25) 5 (27.8) 1.00
18F-NaF uptake

SUV max, g/mL 4.2 [1.8-5.9] 2.3 [1.8-3.1] 0.18

TBR 2.6 [2.2-2.8] 1.7 [1.3-2.2] 0.03

Histological exam

Intraplaque hemorrhage 3 (100) 2 (66.7) 1.00

Lipid-rich necrotic core 3 (100) 3 (100) –

Thinning and/or ruptured fibrous cap 3 (100) 3 (100) –

Microcalcifications 3 (100) 3 (100) –

Inflammatory cells 2 (66.7) 3 (100) 1.00

Neoangiogenesis 1 (33.3) 3 (100) 0.4

18F-NaF 18F-sodium fluoride; SUV standard uptake value; TBR target-to-background ratio
Variables are displayed as absolute number (percentage of column total), mean ± SD, or median (25th–75th percentiles) as
appropriate

Figure 3. 18F-sodium fluoride (18F-NaF) uptake in culprit
(N = 6) vs nonculprit (N = 18) plaques. Box and Whisker Plot.
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variables are presented as numbers and relative frequen-

cies (percentages), and continuous variables as medians

with interquartile ranges (IQR). Normality of distribu-

tions was assessed graphically and with the Shapiro–

Wilk test. All probability values were 2 sided, and

values of P\ 0.05 were considered statistically signif-

icant. Fisher’s test was used to analyze categorical

variables and the Mann–Whitney U test for continuous

variables. Correlation was undertaken with Spearman’s

q. Inter-observer reproducibility of 18F-NaF uptake

measurements was determined using intraclass correla-

tion coefficient. All analyses were performed using

Stata/IC (ACADEMIC/L, SCIC, L1Wi0H,E).

RESULTS

Baseline Characteristics of Patients
and Plaques

Fifteen patients were included between 15/01/2016

and 11/12/2017. Three patients were excluded because

of incomplete or uninterpretable PET/MRI (Figure 1).

Two others had PET imaging but incomplete or unin-

terpretable MRI. The final sample included 6

symptomatic and 6 asymptomatic patients. Their mean

age was 68 years (± 10), and seventy-five percent of the

patients were men. Among the six symptomatic patients,

4 had minor ischemic stroke and 2 had TIA. The main

characteristics of the symptomatic and asymptomatic

patients and the main characteristics of culprit and

nonculprit plaques are presented in Tables 1 and 2 and

Online Resource 1. Calcemia was slightly higher in

asymptomatic patients compared to symptomatic

patients (median calcemia 2.4 mmol/L [2.3-2.4] vs

2.3 mmol/L [2.1-2.3]; P = 0.03). Six patients, 3 symp-

tomatic and 3 asymptomatic, underwent carotid

endarterectomy through the eversion procedure. All

retrieved plaques contained microcalcifications and their

histological results are detailed in Table 2.

Figure 4. 18F-sodium fluoride uptake with respect to calcium volume (A) and calcium ratio (B)
(18NaF, 18sodium fluoride; TBR, target-to-background ratio). Scatter Plot.

Table 3. 18F-sodium fluoride (18F-NaF) uptake in other arterial walls in symptomatic and asymptomatic
patients

Symptomatic patients
(n = 6)

Asymptomatic patients
(n = 6)

P
value

Aorta 1.0 [0.5-1.4] 1.0 [0.7-1.2] 0.81

Brachiocephalic trunk 1.4 [1.1-1.8] 1.3 [1.1-1.4] 0.52

Left subclavian artery 1.2 [1.2-1.5] 1.2 [1.0-1.3] 0.75

Left common carotid

artery

1.1 [0.7-1.2] 1.0 [0.7-1.2] 0.75

Variables are displayed as median (25th–75th percentiles) Target-to-background ratio
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18F-NaF UPTAKE IN CULPRIT AND NONCULPRIT
PLAQUES

The mean delay between symptoms and PET–MRI

was 9.2 days (± 6.2). 18F-NaF uptake was higher in

culprit plaques compared to nonculprit plaques (median

TBR 2.6 [2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) (Figs. 2, 3

and Table 2). Intraclass correlation coefficient was 0.98.

18F-NaF UPTAKE COMPARED
WITH MORPHOLOGICAL CRITERIA OF PLAQUE

VULNERABILITY ON MRI AND MINERAL
METABOLISM MARKERS

18F-NaF uptake was not associated with morpho-

logical criteria of plaque vulnerability on MRI (TBR

1.80 [1.42-2.18] in plaques with IPH vs 1.93 [1.32-2.37]

in plaques without IPH; P = 1.00; TBR 1.46 [1.45-2.14]

in plaques with LRNC vs 1.93 [1.32-2.37] in plaques

without LRNC; P = 0.78; TBR 1.45 [1.39-1.53] in

plaques with thinning and/or ruptured FC vs 2.12 [1.37-

2.45] in plaques without thinning and/or ruptured FC;

P = 0.18). 18NaF uptake was correlated with calcium

plaque volume (q = 0.82; P\ 0.01) and ratio (q = 0.66;

P = 0.04) but was not correlated with circulating TNAP

activity or PPi levels (Figure 4).

18F-NaF UPTAKE IN OTHER ARTERY WALLS
IN SYMPTOMATIC AND ASYMPTOMATIC

PATIENTS

There was no increase of 18F-NaF uptake in the

other arterial walls in symptomatic patients compared to

asymptomatic patients (Table 3).

BRAIN 18F-NaF UPTAKE

In the 4 patients with stroke, intense 18F-NaF uptake

was observed (median TBR = 6.2 [3.8-12.2] vs median

TBR = 0.2 [0.1-0.2] for contralateral not infarcted brain;

P = 0.02).

DISCUSSION

This pilot study was designed to evaluate for the

first time the added value of 18F-NaF PET/MRI in the

carotid plaques assessment, in checking simultaneously
18F-NaF uptake, a marker of microcalcifications, and

morphological criteria of vulnerability on MRI. 18F-NaF

uptake was higher in culprit plaques compared to

nonculprit plaques in a decoupled way from morpho-

logical MRI criteria of vulnerability.

Our results confirm previous results from PET/CT

studies in showing a higher 18F-NaF uptake in culprit

plaques compared to nonculprit plaques.11,19 Recent

studies also suggested an association between 18F-NaF

uptake in carotid plaque and the severity of white matter

lesions on brain MRI.29,30 In contrast, other studies

reported different results likely linked to delayed acqui-

sition (180 min after 18F-NaF injection) or delay between

symptoms and imaging longer than one month.18,20,21

It is increasingly recognized that the type and

location, rather than the extent, of calcifications are

important in determining atherosclerotic plaque stabil-

ity. Microcalcification represents the early stages of

intimal calcium formation and greatly amplifies

mechanical stresses on the surface of the fibrous plaque

that may directly contribute to its rupture.31,32 Simulta-

neous carotid plaque MRI acquisition appears to be an

effective method for assessing their particular impact on

plaque vulnerability. In our study, 18F-NaF uptake was

decoupled from morphological MRI criteria of vulner-

ability. That could be linked to the fact that

microcalcifications occurred earlier in human plaque

development.2,33 Conversely studies performed with

PET/CT for carotid and coronary arteries showed that
18F-NaF uptake was higher in ruptured and high-risk

atherosclerotic plaques.11,16,17 This discrepancy could

be explained by the use of different methodological

options to define vulnerable plaque.

Histological studies documented that 18F-NaF can

detect vascular microcalcification activity and binds

only at the surface of large macrocalcifications while CT

is able to detect advanced macrocalcification deposits

with a diameter of approximately 200-500 lm.10,11,21 As

other authors, we found that 18F-NaF uptake was

associated with CT calcium volume and ratio.10,11,34

By contrast, TNAP activity in the serum was not

associated with 18F-NaF uptake, suggesting that circu-

lating TNAP was not involved in the deposition of

microcalcifications. This conclusion is strengthened by

the fact that circulating TNAP activity was not inversely

correlated with PPi levels. We hypothesize that TNAP

expressed locally in plaque vascular smooth muscle cells

rather than circulating TNAP that participates in plaque

calcification. Experiments in mice showed that whereas

TNAP overexpression in vascular smooth muscle cells

(VSMCs) induced lethal vascular calcification, liver-

targeted TNAP overexpression that resulted in strong

circulating TNAP activity had no effect.35,36

PET–MRI has the added benefit of checking simul-

taneously neck and thorax arteries. As atherosclerosis is

considered as a global inflammatory disease and gener-

alized vulnerability may be more important overall than

characterizing the individual sites of vulnerability in the

individual patient, we assessed whether 18F-NaF uptake

in other arteries may reflect global atherosclerotic

activity and if this latter was higher in symptomatic
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than in asymptomatic patients.37,38 This preliminary

analysis failed to show any difference between symp-

tomatic and asymptomatic patients but may be biased by

the absence of coronary artery tree assessment.

As a previous study using PET/CT, we observed a
18F-NaF uptake within the cerebral infarction.11 Mech-

anisms are not completely understood. A recent study

has identified an overlap between the pathophysiology

of atherosclerosis and liquefactive necrosis related to

ischemia in the brain, a lipid-rich organ.39 Another

hypothesis is the passive transfer across the blood–brain

barrier.

We recognize some limitations of our study. First,

the small sample size in this exploratory study would

have prevented us from drawing any statistically signif-

icant conclusions regarding the relationship between
18F-NaF uptake and morphological MRI criteria of

vulnerability or circulating TNAP and PPi levels, as well

as for histological data. Whether 18F-NaF PET/MRI

provide additional insights on plaque vulnerability from

morphological MRI criteria needs further explorations.

Second, the 18F-NaF signal in the plaque may be

contaminated by spillover from the spine. To limit this

phenomenon, we performed a reconstruction including a

point spread function model in the iterative process,

which is known to enhance resolution and reduce

spillover effects.40 Furthermore, the attenuation correc-

tion with the MRI images is potentially suboptimal since

the spine is not present in the computed attenuation

maps.41

In our preliminary study using hybrid 18F-NaF PET/

MRI, 18F-NaF uptake was higher in culprit compared to

nonculprit plaques, in a decoupled way from morpho-

logical MRI criteria of vulnerability. Thus, 18F-NaF

uptake may provide additional insights into the plaque

vulnerability and should be considered as a potential

surrogate marker of early atherosclerosis.2,33 The rele-

vance of a risk score combining stenosis and plaque 18F-

NaF uptake in predicting clinical events as proposed

with 18F-FDG needs further explorations.42 This study

further outlined the complex relationship between

plaque activity and circulating biomarkers, confirming

the importance of molecular imaging at the lesion site. It

could be a relevant tool if new drugs that target

microcalcifications process become available, for exam-

ple, TNAP inhibitors.43

NEW KNOWLEDGE GAINED

In this pilot transversal study conducted in symp-

tomatic and asymptomatic patients with carotid stenosis,
18F-NaF uptake was higher in culprit compared to

nonculprit plaques, in a decoupled way from morpho-

logical MRI criteria of vulnerability, suggesting that

hybrid 18F-NaF PET/MRI approach may be a promising

tool for providing additional insights into the atheroscle-

rotic plaque vulnerability.
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Bonilla JF, Banzo I, Rebollo M, et al. Contribution of 18F-sodium

fluoride PET/CT to the study of the carotid atheroma calcification.

Rev Esp Med Nucl E Imagen Mol. 2013;32:22–5.

19. Cocker MS, Spence JD, Hammond R, Wells G, deKemp RA, Lum

C, et al. [18 F]-NaF PET/CT identifies active calcification in

carotid plaque. JACC Cardiovasc Imaging. 2017;10:486–8.

20. Zhang Y, Li H, Jia Y, Yang P, Zhao F, Wang W, et al. Nonin-

vasive assessment of carotid plaques calcification by 18 F-sodium

fluoride accumulation: Correlation with pathology. J Stroke

Cerebrovasc Dis. 2018;27:1796–801.

21. Hop H, de Boer SA, Reijrink M, Kamphuisen PW, de Borst MH,

Pol RA, et al. 18F-sodium fluoride positron emission tomography

assessed microcalcifications in culprit and non-culprit human

carotid plaques. J Nucl Cardiol. 2019;26:1064–75.

22. den Hartog AG, Bovens SM, Koning W, Hendrikse J, Luijten PR,

Moll FL, et al. Current status of clinical magnetic resonance

imaging for plaque characterisation in patients with carotid artery

stenosis. Eur J Vasc Endovasc Surg. 2013;45:7–21.
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