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Titre : Autour des modèles en mécanique statistique du point de vue de la théorie du potentiel
Mots clés : Marches aléatoires, Evolutions de Schramm-Loewner, Ensembles de boucles, Holomorphi-
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Résumé : Cette thèse porte sur certains modèles de mécanique statistique et de leurs limites à grande
échelle, en utilisant principalement l’analyse asymptotique de la fonction de Green apparaissant dans
ces modèles. Dans la première partie, nous nous intéressons aux marches aléatoires. Nous établissons la
convergence des marches aléatoires massives à boucles effacées vers les SLE2 massifs. Ceci généralise
le résultat célèbre de Lawler, Schramm et Werner pour les marches aléatoires à boucles effacées. Nous
avons ensuite étudié les marches aléatoires branchantes, en obtenant l’asymptotique de leur capacité
au-dessus et à la dimension critique. Dans un deuxième temps, nous nous intéressons au modèle d’Ising
et de dimères bipartites, qui sont étroitement liés. En perturbant la température du modèle d’Ising de la
criticité, nous lui associons une famille de poids massifs de dimères et obtenons la convergence pour les
corrélations de densité d’énergie dans le modèle d’Ising et les corrélations des gradients des fluctuations
des fonctions de hauteurs dans le modèle de dimères. Nous avons également prouvé une décroissance
super-exponentielle des probabilités de croisement pour les ensembles de boucles conformes simples.
Il s’agissait d’un ingrédient manquant dans la preuve de la convergence des ensembles de boucles
double-dimères vers CLE4 en termes de probabilités d’événements topologiques macroscopiques.

Title : Statistical mechanics models via the lens of potential theory
Keywords : Random walks, Schramm-Loewner evolutions, Loop ensembles, Massive holomorphicity.

Abstract : This thesis contributes to the understanding of some statistical mechanics models and their
large-scale limits, mainly using asymptotic analysis of Green’s function appearing in these models. In
the first part, we are interested in random walks. We establish the convergence for the loop-erasure
of two-dimensional random walks with killing to the so-called massive SLE2 curves. This generalizes
the celebrated result of Lawler, Schramm and Werner for standard loop-erased random walks. Then
we investigated the branching random walks, obtaining the asymptotics of its capacity above and at
the critical dimension. Another direction of our research is the closely related planar Ising and bipartite
dimer models. By perturbing the temperature for the Ising model away from the criticality, we associate
to it a family of massive dimer weights and obtain the convergence of correlations of the Ising energy
density field and the gradient field of the height functions in the dimer model on hedgehog domains. We
also proved a super-exponential decay of the crossing probabilities for simple conformal loop ensembles.
This was a missing ingredient in the proof of convergence of the double-dimer loop ensembles to CLE4

in terms of probabilities of macroscopic topological events, hence our result implies such convergence.
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1 - Introduction générale en français

Cette thèse porte sur l’analyse de certains modèles de mécanique statistique, dans le
cadre probabiliste, pour étudier le comportement macroscopique de grands ensembles à
partir de leurs descriptions microscopiques. Les techniques principales que nous utilisons
dans cette thèse proviennent de la théorie du potentiel, c’est-à-dire des propriétés des
fonctions harmoniques, que ce soit en discret ou en continu, du point de vue probabiliste
ou analytique. Plus précisément, dans cette thèse, nous étudions

— les limites d’échelle des marches aléatoires massives à boucles effacées en dimension
deux ;

— la capacité des marches aléatoires branchantes au-dessus ou à la dimension cri-
tique ;

— estimations de croisements pour des ensembles de boucles conformes simples ;

— convergence de densités d’énergie dans le modèle d’Ising proches de la critique et
de fluctuations de la hauteur des dimères.

L’étude de chacun des points mentionnés ci-dessus correspond à un chapitre de la thèse.
Dans le présent chapitre, nous introduisons les modèles susmentionnés, discutons leurs
propriétés et présentons nos principaux résultats.

1.1 . Les limites d’échelle, l’universalité et l’invariance conforme

La limite d’échelle concerne le comportement d’un modèle de grilles dans la limite
où la taille de la grille tend vers zéro. Comparés à la complexité de la structure microsco-
pique des systèmes du monde réel, les modèles mathématiques sont inévitablement des "
modèles-jouets " : des simplifications et des approximations importantes sont nécessaires
pour les études théoriques. Néanmoins, le principe d’universalité observé suggère que les
détails microscopiques n’influencent pas le comportement macroscopique des systèmes
de mécanique statistique. Par conséquent, il est raisonnable d’utiliser des modèles de
mécanique statistique pour décrire et approximer des systèmes du monde réel. Prenons
le mouvement brownien comme exemple illustratif. D’après le théorème de Donsker, la
somme partielle échelonnée d’une séquence de variables aléatoires i.i.d. de moyenne 0 et
de variance 1 se rapprocherait du mouvement brownien. En fait, le théorème de Donsker
ne révèle pas seulement l’universalité de la limite d’échelle des modèles discrets, il inspire
également l’étude des limites d’échelle dans différentes classes d’universalité. En outre,
diverses estimations de la marche aléatoire ou du mouvement brownien s’appliquent éga-
lement à d’autres modèles : la fonction de Green, le noyau de Poisson, l’estimation de
Beurling, etc.

Une grande partie de cette thèse est consacrée à l’étude des limites d’échelle de
plusieurs modèles de physique statistique, ce qui constitue un projet global à la fois
dans les communautés de physique et de mathématiques. Par conséquent, nous sommes
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obligés de nous concentrer sur certains sujets spécifiques, constituant des contributions
à la compréhension du comportement d’échelle et des transitions de phase en mécanique
statistique. Il est intéressant de noter que ces modèles admettent une limite d’échelle
conforme à la criticité, ce qui permet d’utiliser la théorie des champs conforme (CFT)
ou les techniques d’évolution de Schramm-Loewner (SLE), même dans le régime quasi-
critique. La CFT fournit des prédictions pour des quantités telles que les fonctions de
corrélation de certaines observables, qui peuvent en principe être liées à des descriptions
géométriques du système continuum limite comme les SLEs.

L’approche probabiliste de la mécanique statistique sur le grille fait appel à l’analyse
complexe discrète, qui est accessible au traitement des domaines rugueux et du grille
sous-jacent non-régulier, conduisant ainsi à l’universalité des déformations géométriques.
Dans cette direction, on commence par une grille finie, en approchant un domaine donné
comme la maille allant vers zéro. Contrairement à l’approximation de domaine, on peut
aussi prendre d’abord la limite thermodynamique lorsque la taille d’un système fini tend
vers l’infini, puis mettre à l’échelle le système entier. Néanmoins, il n’est pas toujours
vrai que la limite thermodynamique et la limite d’échelle se commutent.

Les limites de volume infini des modèles discrets sont invariantes par rotation [DCKK+20].
À la criticité, les limites d’échelle présentent une invariance d’échelle, en raison du fait
que les longueurs de corrélation des modèles critiques divergent. On peut également
s’attendre à ce que les limites d’échelle des modèles critiques ne comportant que des
interactions à courte portée soient invariantes par rapport aux mises à l’échelle et aux
rotations locales : considérées dans des domaines de grille s’approchant d’un domaine
continu Ω, lorsque l’espacement de la grille tend vers 0, elles convergent vers des objets
invariants du point de vue de la conformité.

Sous perturbation des paramètres critiques, la longueur de corrélation est finie. Pour
obtenir une limite significative du continuum, il faut faire passer le modèle à la criticité
à une vitesse appropriée si l’espacement des grilles tend vers 0. Dans cette thèse, nous
ne traitons que la température, c’est-à-dire la perturbation thermique, qui entraîne une
perturbation de l’harmonicité et de la relation de Cauchy-Riemann.

La présente introduction est structurée de la manière suivante : nous présentons
ci-dessous le contexte et nos contributions à certains modèles discrets. Les articles cor-
respondants avec les preuves détaillées constituent les chapitres suivants comme une
partie importante de la thèse.

1.2 . Les modèles discrets

Soit G = (V,E) un graphe fini, où V est l’ensemble des sommets (fini ou infini)
et E l’ensemble des arêtes. Chaque arête e peut être vue comme une paire de sommets
e = (wv), w, v ∈ E. Ici, w et v sont deux points d’extrémité de e. On dit que w ∼ v

s’il existe e ∈ E tel que e = (wv). On définit (µw,v)w,v∈E comme étant la matrice
d’adjacence de G, où
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µw,v =

{
1 si w ∼ v
0 si w ̸∼ v

et µw :=
∑
v∼w

µwv.

La marche aléatoire simple sur G associée à P est un processus aléatoire X =

(Xn)n∈N tel que

P(Xn+1 = y|Xn = x) = µxy/µx.

Marche aléatoire à boucles effacées

La marche aléatoire à boucles effacées (LERW) a été introduite par Lawler pour étu-
dier un modèle de polymère auto-évitant, la marche aléatoire avec la contrainte supplé-
mentaire que le chemin ne doit pas se frapper lui-même. Bien que Lawler ait rapidement
découvert que les deux objets sont intrinsèquement différents, le modèle LERW était
intéressant avec de nombreux attributs d’autres modèles dans les phénomènes critiques :
par exemple, il existe une dimension critique supérieure d = 4 (au-dessus de laquelle la
limite d’échelle est le mouvement brownien) et la limite des petites mailles est conforme
invariante en dimension deux.

Soit γ = (x0, x1, . . . , xn)n≥1 un chemin fini dans G, tel que xi ∼ xi+1 pour tout
i = 0, . . . , n − 1. On dit que γ est auto-évitant si les points x0, . . . , xn sont distincts.
L’effacement de boucle de γ, noté par L(γ), est défini en effaçant les boucles de γ dans
l’ordre chronologique :

1. Soit γ0 = (x0).

2. Pour tout k = 0, . . . , n − 1, définissez récursivement l’effacement de boucle du
chemin (x0, . . . , xk+1). Si γk+(xk+1) est auto-évitant, définir γk+1 = γk+(xk+1).
Sinon, on définit

j = min{i : yi = xk+1} et γk+1 = (y0 . . . yj).

3. L’élément L(γ) est défini par γn.

On peut également définir de manière similaire l’effacement de boucle arrière de γ
en effectuant la procédure ci-dessus sur le chemin (xn, xn−1, . . . , x0). Nous introduisons
maintenant la marche aléatoire à boucles effacées : l’effacement de boucle (un chemin
aléatoire auto-évitant) de la marche aléatoire simple X0 = x,X1, X2, . . . sur G à par-
tir de x. Pour tout sous-ensemble A ⊂ V , on désigne également par LERW(x,A)

la marche aléatoire à boucles effacées de x à A, qui est l’effacement de boucle de
(X0, X1, . . . , XTA), avec TA le temps de première atteinte de A. LERW satisfait égale-
ment la propriété de Markov de domaine comme d’autres modèles de physique statistique,
bien que la preuve ne soit pas complètement triviale, pour laquelle nous devons attacher
des boucles dans des domaines propres au chemin simple pour obtenir le poids du chemin
sous la mesure de LERW [LJ08, Theorem 4].

LERW représente le premier succès dans l’établissement rigoureux de l’invariance
conforme de certains modèles de physique statistique, pour lesquels la limite SLEκ, κ =

2, 8, sera définie dans la section 1.3.
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Theorem 1.2.1 (Lawler, Schramm et Werner). Étant donné un domaine borné sim-
plement connexe Ω contenant 0, on considère γδ la mesure de boucle d’une marche
aléatoire simple dans Ω ∩ δZ2, démarrée de 0 et arrêtée au premier temps de sortie de
Ω. Nous dotons l’ensemble des chemins de la métrique uniforme modulo la reparamé-
trisation temporelle :

d(γ, γ̃) = inf
φ

sup
t≥0
|γ(t)− γ̃(φ(t))|

où le inf est sur tous les homéomorphismes croissants de [0,∞). Alors, γδ converge
faiblement comme δ → 0 vers une limite ayant la loi de la SLE2 dans Ω.

Dans le chapitre 3, nous étudions la marche aléatoire à boucles effacées massives
(mLERW), qui est l’effacement de boucles d’une marche aléatoire symétrique sur la grille
carrée δZ2 avec un taux de meurtre m, m ≥ 0. En suivant la stratégie proposée par
Makarov et Smirnov [MS10], nous prouvons le résultat suivant.

Theorem 1.2.2. Soit (Ωδ; aδ, bδ) des approximations discrètes d’un domaine borné sim-
plement connexe (Ω; a, b) avec deux points limites marqués a, b. Pour chaquem > 0, la
limite d’échelle γ de mLERW sur (Ωδ; aδ, bδ) existe, donnée par une évolution chordale
de Schramm–Loewner dont le terme moteur ξt satisfait la SDE

dξt =
√
2dBt + 2λtdt, λt =

∂

∂(gt(at))
log

P
(m)
Ωt

(at, z)

PΩt(at, z)

∣∣∣
z=b

, (1.2.1)

où P (m)
Ωt

(at, ·) et PΩt(at, ·) désignent les noyaux de Poisson massif et classique dans le
domaine Ωt := Ω \ γ[0, t], et la dérivée logarithmique par rapport à at est prise dans le
graphe de Loewner gt : Ωt → H.

Remark 1.2.3. La SDE (1.2.1) possède une solution faible unique dont la loi est absolu-
ment continue par rapport à

√
2Bt. En d’autres termes, ces limites d’échelle sont ab-

solument continues par rapport à l’évolution classique de Schramm-Loewner avec
κ = 2.

Marches aléatoires branchantes
Les marches aléatoires branchées sont indexées par les processus de Galton-Watson

(GW), décrivant la croissance de la population si chaque individu donne naissance indé-
pendamment à un nombre aléatoire de enfants avec la même distribution de descendance
µ sur N et meurt à la génération suivante.

Definition 1.2.4. Un processus de Galton-Watson (Zn)n≥0 est défini de manière récur-
rente par

Z0 = 1, Zn+1 =

Zn∑
i=1

ξ
(n)
i ,

où {ξ(n)i : n, i ∈ N} est une famille de variables aléatoires évaluées par des nombres
naturels, indépendantes et identiquement distribuées selon µ.
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Soit L une variable aléatoire suivant la loi µ et

m := Eµ[L] =
∑
k∈N

kµ(k)

est le nombre moyen d’enfants de chaque particule. Le fait le plus fondamental et le
plus connu concernant les processus de branchement est que la probabilité d’extinction
limn→∞ P[Zn = 0] est égale à 1 si et seulement si m < 1 ou m = 1, µ(1) < 1.

Pour chaque processus GW, on peut associer un arbre généalogique à cette croissance
de population, que l’on appelle l’arbre de Galton-Watson. Nous rappelons le formalisme
de Neveu [Nev86] pour les arbres enracinés ordonnées T ⊂

⋃
n≥0Nn+ :

— la racine ∅ ∈ T avec la convention que N0
+ = {∅} ;

— pour une séquence u = (u1, . . . , un−1, un) ∈ T , son parent (u1, . . . , un−1) ∈ T ;

— pour chaque séquence (noeud) u = (u1, . . . , un) ∈ T , il existe un entier ku(T ) ≥ 0

qui est appelé son nombre de descendants, tel que pour chaque j ∈ N, (u1, . . . , un, j) ∈
T si et seulement si 1 ≤ j ≤ ku(T ).

Pour une suite u = (u1, . . . , un) ∈ T , nous fixons |u| = n la distance de u à la racine dans
T avec la convention |{∅}| = 0. Nous désignons un ordre partiel pour u = (u1, . . . , un) ∈
T et w = (w1, . . . , wn

′
) ∈ T appelé ordre généalogique par u ≺ w si n < n′ et

ui = wi, 1 ≤ i ≤ n. On considère l’ordre lexicographique sur T : pour u, v ∈ T , on pose
v < u si soit v ≺ u, soit u = (u1, . . . , uk), v = (v1, . . . , vk), ui < vi pour la première
position i où les deux séquences se distinguent. Désignons par

u0 = ∅, u1, u2, . . . , u#(T )−1

les éléments de T énumérés dans l’ordre lexicographique, où #(T ) est la taille de l’arbre.
Si l’on considère chaque nœud de l’arbre T comme un sommet, et que l’on ajoute

une arête entre un nœud et son parent, alors on peut voir T comme un graphe abstrait.
Si nous attachons un vecteur du dans Zd à chaque arête, fixons la position de la racine à
X∅ = 0 et laissons Xu =

∑
u′⪯u du′ , alors (Xu)u∈T fournit une structure arborescente

spatiale. Étant donné une loi de descendance µ sur N et une loi θ sur Zd, la marche
aléatoire branchante (BRW), dont la loi de probabilité est notée Pµ,θ, est définie par la
relation suivante

ku
i.i.d.∼ µ, du

i.i.d.∼ θ.

Il est naturel d’étudier les sites de la grille visités par une marche aléatoire branchante,
que l’on appelle la range de la BRW. L’asymptotique de la cardinalité (nombre de sites
distincts) de la range de la BRW a été étudiée récemment.

Theorem 1.2.5 (Le Gall et Lin (2014)). La dimension critique pour la range de BRW est
d = 4. Conditionnée à la taille n de l’arbre indexé sous Pµ,θ, soit Rn le nombre de sites
distincts visités par la marche aléatoire branchante. Si µ est critique avec une variance
finie, et θ est symétrique avec un support fini et n’est pas supporté sur un sous-groupe
strict de Zd, alors comme n→∞,
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— si d ≥ 5, il existe cµ,θ > 0 tel que 1
nRn → cµ,θ en probabilité ;

— si d = 4, logn
n Rn

L2

−→ 8π2σ4, où σ2 = (detMθ)
1/4, avecMθ étant la matrice de

covariance de θ ;

— if d ≤ 3, n−d/4Rn
(d)−−→ 2d/4

√
detMθ λd(suppI), où λd représente la mesure de

Lebesgue du support de la mesure aléatoire I sur Rd connue sous le nom d’Ex-
cursion Super-Brownienne Intégrée.

Dans cette direction, nous étudions la BRW du point de vue de la théorie du potentiel
par la capacité, qui peut être vue comme une probabilité d’échappement pour les marches
aléatoires, dépendant fortement de sa géométrie Étant donné une loi de probabilité η sur
Zd, d ≥ 3, la capacité d’un ensemble fini A ⊆ Zd par rapport à η est définie par

capηA :=
∑
x∈A

Pηx(τ
+
A =∞) = lim

|y|→∞

Pηy(τA <∞)

Gd(0, y)
,

où Pηx désigne la loi d’une marche aléatoire (Sn)n∈N issue de x avec probabilités de
transition η, τA := inf{n ≥ 0 : Sn ∈ A} et τ+A := inf{n ≥ 1 : Sn ∈ A}. Pour la
capacité de une SRW sur Zd, il existe une étude systématique par Asselah, Schapira et
Sousi (voir [ASS18, ASS19] pour d’autres références et les motivations des interlacements
aléatoires).

Dans le chapitre 4, nous étudions la capacité de la range de telles marches aléatoires.
En se basant sur la configuration introduite par Le Gall et Lin [LGL15a], nous établissons
le résultat suivant en introduisant une nouvelle mesure pour le processus de Galton-
Watson infini et en utilisant les probabilités d’intersection des marches aléatoires. En
gros, conditionné par l’arbre de Galton-Watson indexé T avec une loi de descendance µ
ayant exactement n nœuds, sous certaines hypothèses techniques sur µ, η, θ, nous avons

Theorem 1.2.6. 1. En dimension d ≥ 7, il existe une constante C(d, µ, θ, η) > 0

telle que sous Pµ,θ(·|#T = n), si n→∞,

capηR

n
→ C(d, µ, θ, η) en probabilité.

2. En dimension d = 6, sous Pµ,θ(·|#T = n), si n→∞,

log n

n
capηR→ 2(CG)

−1 en probabilité,

où

CG =
1

4π6
√
det Γη det Γθ

( ∞∑
k=0

(k − 1)kµ(k)

)
Cf ,

Cf = E
[∫ e

1
dt

∫
R6

dx · Jη(Bθ
t + x)−4Jθ(x)

−4

]
,

Γη,Γθ sont lesmatrices de covariance de η, θ respectivement,J(·)(x) =
√
x · Γ−1

(·) x,
et Bθ

t est le mouvement brownien dans R6 avec la matrice de covariance Γθ.
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Le modèle d’Ising et de dimères
Le modèle Ising avec interaction ferromagnétique entre les plus proches voisins est

l’un des modèles de grille les plus étudiés dans le contexte des mathématiques et de la
physique. Étant donné un graphe fini, planaire encastré G = (V,E, F ), avec ou sans
frontière, la fonction de partition du modèle d’Ising (avec des spins situés sur les faces)
avec des constantes de couplage (Je)e∈E est définie par

ZIsing(G, J) :=
∑

σ∈{−1,1}F
exp

(
β
∑
u∼w

J(uw)◦σuσw

)
,

où la somme à l’intérieur de l’exponentielle est prise sur toutes les faces adjacentes de G
et (uw)◦ désigne le bord dual correspondant de G. La loi de probabilité sur l’ensemble
des configurations de spin {−1, 1}F est donc définie par la mesure de Boltzmann

PG,J [σ] = exp

(
β
∑
u∼w

J(uw)◦σuσw

)
· (ZIsing(G, J))

−1, ∀σ ∈ {−1, 1}F .

Il a été introduit par Lenz [Len20], et résolu par son doctorant Ising en dimension
un [Isi25], suggérant l’absence de transition de phase dans ce cas. Une décennie plus
tard, Peierls [Pei36] a confirmé l’existence d’une transition de phase en deux dimensions,
contrairement à la croyance commune de l’époque selon laquelle le modèle d’Ising plan
n’admet pas de transition de phase. Étant l’un des modèles de grille les plus simples pré-
sentant une transition de phase ordre-désordre, le modèle d’Ising planaire est exactement
solvable dans un sens très fort. À savoir, en l’absence de champ magnétique externe, sa
fonction de partition peut être écrite comme le Pfaffien d’une matrice antisymétrique.

Un autre modèle de physique statistique possédant une caractéristique de solvabilité
exacte similaire est le modèle dimère des couplages parfaits sur des graphes biparties
planaires G, qui représente l’adsorption de molécules diatomiques sur des surfaces cris-
tallines. Étant donné une fonction de poids positive ν = (νe) attribuée aux arêtes de G,
la loi de probabilité sur l’ensemble des configurations de dimèresM est définie par

Pdimer(M) =

∏
e∈M νe

Zdimer(G, ν)
, M ∈M,

où Zdimer(G, ν) =
∑

M

∏
e∈M νe avec la somme sur tous les couplages parfaits de

G. Outre sa signification physique, le modèle du dimère est populaire en raison de ses
correspondances avec le modèle d’Ising planaire et les arbres couvrants uniformes. Pour les
graphes planaires, Kasteleyn a montré que la fonction de partition du modèle du dimère
peut être exprimée comme le Pfaffien d’une matrice d’adjacence proprement signée et
pondérée pour le graphe, c’est-à-dire la matrice de Kasteleyn. Pour une fonction de poids
générale (c’est-à-dire pas nécessairement positive) ν = (νe), on peut également définir
la fonction de partition

Zdimer(G
Q, ν) =

∑
M

∏
e∈M

νe,

bien que dans ce cas, on ne puisse pas obtenir une mesure de probabilité.
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1.3 . L’évolution de Schramm-Loewner et l’ensemble de boucles conforme

L’évolution de Schramm-Loewner
L’évolution de Schramm-Loewner (SLEκ)κ≥0 est une famille à un paramètre de me-

sures de probabilité sur des courbes à croissance continue dans des domaines simplement
connectés du plan complexe, avec un point d’arrivée prescrit sur la frontière. Le point
d’arrivée peut se trouver soit à l’intérieur, soit sur la frontière, ce qui correspond aux
versions radiale et chordale de SLE. La SLE a été introduite de manière révolutionnaire
(en changeant la façon dont les mathématiciens et les physiciens voient les phénomènes
critiques en deux dimensions) par Oded Schramm en tant que candidat pour les limites
d’échelle des interfaces des modèles planaires discrets en physique statistique, parmi les-
quels les modèles LERW/SLE2 mentionnés ci-dessus. On sait également que les interfaces
du modèle d’Ising et du modèle FK-Ising convergent vers SLE3 et SLE 18

3
[CDCH+14] ;

les lignes de niveau du champ libre gaussien discret convergent vers SLE4 [SS09] et les
interfaces de la percolation convergent vers SLE6 [Smi01]. De plus, en se basant sur la
propriété de localité de la marche auto-évitante, si l’existence et l’invariance conforme de
sa limite d’échelle sont vraies, elle devrait être décrite par le modèle SLE8/3 [LSW04b].
Ces modèles présentent la propriété de Markov de domaine et l’invariance conforme à
grande échelle à la criticité, prédite précédemment par les physiciens, ce qui inspire et
peut être traité comme la définition de SLE. Rappelons qu’une transformation conforme
est une bijection entre domaines dans le plan complexe qui préserve les angles. Le théo-
rème de cartographie de Riemann nous dit qu’il existe une carte conforme entre tout
domaine non vide et simplement connecté et le demi-plan supérieur H. Elle est unique
en spécifiant l’image d’un point intérieur et d’un point sur la frontière.

L’invariance conforme : Étant donné un domaine simplement connecté Ω, et ϕ : Ω→
H conforme, alors la loi de SLEΩ

κ le processus SLE défini sur Ω est préservée sous
la transformation :

ϕ(SLEΩ
κ )

(d)
= SLEH

κ .

Propriété de Markov de domaine : SLEκ sur H possède la propriété de Markov de
domaine si, conditionnellement à γ[0, t], γ[t,∞)

d
= γ̃ où γ̃ est la SLE sur H\γ[0, t].

Une définition rigoureuse de SLE consiste à encoder les courbes qui croissent à partir
de la frontière par l’équation de Loewner, inventée par Loewner pour résoudre la conjec-
ture de Bieberbach sur les cartes conformes (fonctions holomorphes non équivalentes).
Par invariance conforme de la SLE, il suffit de la définir sur le demi-plan supérieur H, et de
l’appliquer de manière conforme à tout domaine simplement connexe du plan complexe
par le théorème d’uniformisation de Riemann. La courbe SLEκ γ s’accroissant à partir
de 0 peut être paramétrée par la capacité du demi-plan

hcap(γ[0, t]) = 2 lim
y→∞

yEiy[Im(Bτ(γ[0,t])],

où τ(γ[0, t]) est le temps de première atteinte du mouvement brownien parti de iy avant
d’atteindre la ligne réelle. Soit gt la "fonction de sortie" de γ[0, t]. de γ[0, t], c’est-à-dire
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l’unique transformation conforme gt : Ht → H, où Ht est la composante connexe infinie
de H \ γ[0, t], avec gt(z) = z + 2t

z + o(1t ) comme z →∞. Alors gt satisfait

ġt(z) =
2

gt(z)−
√
κBt

,

où
√
κ(Bt)t≥0, appelée la fonction de moteur de SLEκ, est une mise à l’échelle par

√
κ

du mouvement brownien standard.
La définition de la SLE dépend de l’orientation du tracé de la courbe. Cependant, les

modèles discrets suggèrent qu’elle devrait être réversible. Ce fait non trivial a été prouvé
pour la première fois par Zhan pour κ ≤ 4 [Zha08a], plus tard Miller et Sheffield l’ont
étendu à κ ∈ (0, 8) en considérant les courbes SLE comme des lignes de flux du champ
libre gaussien [MS16a, MS16b, MS16c] .

Les courbes SLE sont fractales. Pour la limite d’échelle d’un modèle discret à la cri-
ticité, le système présente un comportement auto-similaire : la configuration est similaire
si l’on "zoome". Remarquablement, si κ < 8, les trajectoires SLEκ ont une dimension
de Hausdorff d = 1+κ/8 presque sûrement [Bef08]. La mesure de Hausdorff et d’autres
propriétés géométriques des courbes SLE peuvent être mesurées par leurs exposants de
bras (exposants exponentiels de la probabilité qu’il existe n traversées disjointes de l’an-
neau Az(r,R) := {w ∈ C : r < |w − z| < R} lorsque r → 0), calculés rigoureusement
par Wu et Zhan [WZ17] via des martingales locales fondamentales associées aux SLE.

Ensemble de boucles conforme

L’ensemble de boucles conforme CLEκ, κ ∈ (8/3, 8), est une famille de la mesure
invariante par des transformations conformes sur des collections dénombrables de boucles
de type SLEκ dans un domaine simplement connexe. Comme expliqué dans [SW12], si
ces boucles sont simples, ce qui correspond à κ ∈ (8/3, 4), CLEκ peut être construit en
termes de limites extérieures des amas de boucles les plus extérieurs dans une soupe de
boucles browniennes à intensité sous-critique. Une autre construction est due à Sheffield
qui utilise des variantes des processus CLEκ(κ− 6) pour 8/3 < κ < 8.

Le CLE décrit, dans la limite d’échelle, des modèles de physique statistique à la
température critique, qui peuvent être interprétés comme des collections aléatoires de
boucles disjointes et non autocroisées. Rappelant les modèles discrets, elle est caractérisée
par la propriété de Markov conforme : considérons CLEκ(U) sur le disque unitaire U, et
pour un sous-ensemble U ⊂ U, obtenons Ũ en retirant de Ω toutes les boucles CLE(Ω)
(et leur intérieur) qui ne restent pas entièrement dans U . Alors dans chaque composante
connexe C de Ũ , pour la carte conforme ϕC : C → U, il s’avère que

ϕC(CLEκ(U))
(d)
= CLEκ(C)

Observez que prendre U = ∅ donne l’invariance sous transformation de Möbius pour le
CLE, ce qui nous permet de définir le CLE sur tout domaine simplement connexe Ω par

CLEκ(Ω)
(d)
= ϕ−1

Ω (CLEκ(U)),
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où ϕΩ est la carte conforme de Ω à U quitte à prendre transformations de Möbius du
disque unitaire.

Il est démontré que CLEκ est la limite d’échelle du modèle critique d’Ising κ = 3

[BH19], de la percolation de FK-Ising κ = 16/3 [KS16], et de la percolation de site
critique sur le treillis triangulaire κ = 6 [CN06]. Pour le modèle Ising/FK-Ising, le couplage
Edwards-Sokal est un outil important qui les relie, et qui correspond à CLE3/CLE 16

3

dans le continuum. Ce couplage a été généralisé pour κ ∈ (8/3, 4) par Miller, Sheffield et
Werner pour CLEκ/CLEκ′ , κ′ = 16/κ purement dans le contexte des CLEs [MSW20].

Alors que la SLE, encodée par une fonction motrice unidimensionnelle, est accessible
au calcul d’Ito, le CLE permet des calculs précis en imposant un champ libre gaussien
(GFF) indépendant sur le CLE. Il en résulte une surface de gravité quantique de Liouville
(dotée d’une métrique et d’une mesure données par le GFF) décorée de CLE, ce qui
rappelle les cartes planaires aléatoires décorées du modèle à boucles O(n), voir [AS21]
pour les études concernées.

Dans le chapitre 5, nous obtenons la décroissance super-exponentielle pour le nombre
de croisements de CLE. Les outils principaux que nous utilisons sont la propriété de
Markov conforme via la construction de la soupe de boucles browniennes des CLEs.

Nos résultats
Dans le chapitre 6, après une analyse des conditions aux bords de type Riemann

pour les fonctions holomorphes massives dans des domaines rugueux, nous étendons les
résultats de convergence obtenus dans [Par21] pour les observables fermioniques de base à
des observables générales. Du point de vue du modèle d’Ising, cela nous permet également
de prouver la convergence des corrélateurs de densité d’énergie dans le cas massif. Du
point de vue du modèle de dimère associé, les observables fermioniques ne sont rien
d’autre que les entrées de la matrice inverse de Kasteleyn (2.5.4). Cela implique que les
corrélations des gradients des fluctuations des fonctions de hauteur correspondantes dans
les domaines de hérissons peuvent être écrites en termes de corrélateurs fermioniques issus
du modèle d’Ising massif. Cela révèle le formalisme de la correspondance de Coleman au
point de fermion libre (par exemple, voir [BW21]) et suggère que la limite des fonctions
de hauteur en question est donnée par une théorie de sinus-Gordon dans le domaine limite
avec des conditions au bord de Dirichlet.
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2 - Introduction

This thesis is dedicated to the analysis of some statistical mechanics models, within
the probability framework to study macroscopic behavior of large ensembles starting from
their microscopic descriptions. The main techniques that we use in this thesis come from
the potential theory, i.e., from the properties of harmonic functions, both in discrete and
in continuum, from the probabilistic or analytic point of view. More precisely, in this
thesis we investigate

— the scaling limits of massive loop-erased random walks in dimension two;

— the capacity of branching random walks above or at the critical dimension;

— crossing estimates for simple conformal loop ensembles;

— convergence of near-critical Ising energy densities and dimer height fluctuations.

The study of each of the items mentioned above corresponds to one chapter of the thesis.
In the current chapter, we introduce the aforementioned models, discuss their properties
and present our main results.

2.1 . Scaling, universality and conformal invariance

The scaling limit concerns the behavior of a lattice model in the limit as the mesh
size goes to zero. Compared with the complexity of microscopic structure of real-world
systems, the mathematical models are inevitably "toy-models": significant simplifications
and approximations are needed for theoretical studies. Nevertheless, the observed univer-
sality principle suggests that microscopic details do not influence macroscopic behavior
of statistical mechanics systems. Therefore, it is reasonable to use statistical mechan-
ics models to describe and approximate real-world systems. Take Brownian motion as
an illustrative example. According to Donsker’s theorem, the scaled partial sum of a
sequence of i.i.d. random variables with mean 0 and variance 1 would approach the
Brownian motion. As a matter of fact, Donsker’s theorem not only reveals universality in
the scaling limit of discrete models, it also inspires the study of scaling limits in different
universality class. Beyond that, various random walk or Brownian motion estimates also
apply to other models: Green’s function, Poisson kernel, Beurling’s estimate, etc..

A large part of this thesis is devoted to the study of the scaling limits of several statis-
tical physics models, which is a comprehensive project both in physics and mathematics
communities. Therefore we are forced to concentrate ourselves on some specific topics,
constituting contributions to the understanding of the scaling behavior and phase transi-
tions in statistical mechanics. It is worth noting that those models admit a conformally
invariant scaling limit at criticality, which allows to use Conformal Field Theory (CFT) or
Schramm-Loewner evolution techniques, even in the near-critical regime. CFT provides
predictions for quantities like the correlation functions of certain observables, which in
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principle can be related to geometric descriptions of the limiting continuum system like
SLEs.

The probabilistic approach to statistical mechanics on the lattice involves discrete
complex analysis, which is accessible to the treatment of rough domains and non-regular
underlying lattice, thus leading to the universality of geometric deformations. In this
direction, we start with a finite lattice, approximating a given domain as the mesh size
going to zero. Contrast to domain approximation, one can also take first the thermody-
namic limit as the size of a finite system goes to infinity and then scale the whole system.
Nevertheless, it is not always true that thermodynamic limit and scaling limit commute.

The infinite-volume limits of discrete models are rotationally invariant [DCKK+20].
At criticality, the scaling limits exhibit scaling-invariance, due to the fact that the cor-
relation lengths of critical models diverge. One may also expect that the scaling limits
of critical models with only short-range interactions enjoy invariance under local scalings
and rotations: considered in lattice domains approximating a continuous domain Ω as
the lattice spacing goes to 0, they converge to conformally invariant objects.

Under perturbation of the critical parameters, the correlation length is finite. To
obtain a meaningful continuum limit, one needs to send the model to criticality at a
proper rate if the lattice spacing goes to 0. In this thesis we only tune the temperature,
namely the thermal perturbation, which results in a perturbation of the harmonicity and
the Cauchy-Riemann relation.

The present introduction is structured as follows: below, we shall provide backgrounds
and our contributions to some discrete models. The corresponding papers with detailed
proofs constitute the following chapters as a major part of the thesis.

2.2 . Loop-erased random walks and uniform spanning trees

Let G = (V,E) be a finite graph, where V is the set of vertices (finite or countably
infinite) and E is the set of edges. Each edge e can been seen as a pair of vertices
e = (wv), w, v ∈ E. Here w and v are two endpoints of e. We say w ∼ v if there exists
e ∈ E such that e = (wv). Set (µw,v)w,v∈E to be the adjacency matrix of G, where

µw,v =

{
1 if w ∼ v
0 if w ̸∼ v

and µw :=
∑
v∼w

µwv.

The simple random walk on G associated with P is a random process X = (Xn)n∈N
such that

P(Xn+1 = y|Xn = x) = µxy/µx.

Loop-erased random walk
Loop-erased random walk (LERW) was introduced by Lawler to study a self-avoiding

polymer model, the random walk with the additional constraint that the path must not
hit itself [Law80]. Although Lawler soon discovered that the two objects are intrinsically
different, LERW was interesting itself with many of the attributes of other models in crit-
ical phenomena: for instance, there was an upper critical dimension d = 4 (above which
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the scaling limit is Brownian motion) and the small-mesh limit is conformals invariant in
dimension two.

Let γ = (x0, x1, . . . , xn)n≥1 be a finite path in G, such that xi ∼ xi+1 for all
i = 0, . . . , n − 1. We say that γ is self-avoiding if the points x0, . . . , xn are distinct.
The (forward) loop erasure of γ, denoted by L(γ), is defined by erasing loops of γ in
chronological order:

1. Set γ0 = (x0).

2. For all k = 0, . . . , n−1, define recursively the loop erasure of the path (x0, . . . , xk+1).
If γk + (xk+1) is self-avoiding, set γk+1 = γk + (xk+1). Otherwise set

j = min{i : yi = xk+1} and γk+1 = (y0 . . . yj).

3. L(γ) is set to be γn.

One can also define similarly the backward loop erasure of γ by performing the pro-
cedure above to the path (xn, xn−1, . . . , x0). Now we introduce the loop-erased ran-
dom walk: the loop-erasure (a random self-avoiding path) of the simple random walk
X0 = x,X1, X2, . . . on G started from x. For any A ⊂ V , denote also by LERW(x,A)

the loop erased random walk from x to A, which is the loop erasure of (X0, X1, . . . , XTA),
with TA to be the first hitting time of A. LERW also satisfies the domain Markov prop-
erty like other statistical physics models, although the proof is not completely trivial, for
which we need to attach loops in proper domains to the simple path to get the path
weight under the LERW measure [LJ08, Theorem 4].

The loop-erased random walk is quantitatively related to the simple random walk. Let
G be a subgraph of Z2. Denote by ∂G the boundary vertices ofG. Given x1, . . . , xk, y1 . . . , yk ∈
∂G, denote by LERWG(x

i, yi) the loop erasure of a SRW, independent of each other,
started from xi, taking its first step into G and then leaving G at yi. The following
Fomin’s identity expresses a “crossing probability” for loop-erased random walks as the
determinant of simple random walk probabilities:

P[LERWG(x
i, yi), i = 1, . . . , k are disjoint] = det


h∂G(x1,y1)
h∂G(x1,y1)

· · · h∂G(x1,yk)
h∂G(x1,y1)

...
. . .

...
h∂G(xk,y1)
h∂G(xk,yk)

· · · h∂G(xk,yk)
h∂G(xk,yk)

,


where h∂G(x, y) denotes the probability that a simple random walk starting at x takes
its first step into G and then leaves G at y.

Wilson’s algorithm
Wilson’s algorithm, generating a random spanning tree using loop-erased random

walks, proceeds as follows:

1. Choose an ordering of {v0, v1, . . . , vm} of V .

2. Let V0 = {v0}.
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3. Given Vk, run LERW(vk+1,Vk) independently of everything before, and let

Vk+1 = Vk ∪ LERW(vk+1,Vk),

with the convention that Vk+1 = Vk if vk+1 ∈ Vk.
4. Stop when there are no vertices left to add, that is Vk = V .

It is clear that Wilson’s algorithm generates a random spanning tree. In the simple
random walk case, it is well known that Wilson’s algorithm returns a spanning tree
chosen uniformly at random. In fact, Wilson’s algorithm can be used to generate random
spanning trees following any reversible random walks for a given family of positive edge
weights {we, e ∈ E}, whose transition probability is defined similarly for y ∼ x:

P(Xn+1 = y|Xn = x) = w(xy)/wx, where wx :=
∑
x′∼x

w(xx′).

Then Gibbs weight of the resulting random tree T is given by

P(T ) =
1

Z

∏
e∈T

we,

where Z =
∑

T :spanning tree
∏
e∈T we is the partition function (the normalizing constant).

Convergence results
LERW and UST represent the the first success in establishing rigorously the conformal

invariance of certain statistical physics model, for which the limiting SLEκ, κ = 2, 8, shall
be defined in Section 2.3.

Theorem 2.2.1 (Lawler, Schramm and Werner). Given a bounded simply connected
domainΩ containing 0, consider γδ the loop-erasure of a simple randomwalk inΩ∩δZ2,
started from 0 and stopped at the first exit time ofΩ. We endow the set of paths with the
uniform metric modulo time-reparametrization:

d(γ, γ̃) = inf
φ

sup
t≥0
|γ(t)− γ̃(φ(t))|

where the inf is over all increasing homeomorphisms of [0,∞). Then, γδ converges
weakly as δ → 0 to a limit having the law of the radial SLE2 in Ω.

The description of the convergence for UST contour curves to SLE8 requires more
effort, for which we refer interested readers to [LSW04a].

Since the Hausdorff dimension of the limiting SLE2 curve is 5/4, which can be
parametrized by 5/4-dimensional Minkowski content (called the natural parametrization
of SLE2), it is natural to consider the convergence of curves, parametrized so that each
edge is traversed in time a universal constant č (allowed to be lattice dependent) times
δ−5/4. Fix a bounded simply connected domain Ω with distinct boundary points a, b and
for each δ, we take Ωδ to be an appropriate simply connected component of δZ2 ∩ Ω

with boundary edges aδ, bδ approximating a, b.
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Theorem 2.2.2 (Lawler and Viklund). For each δ, let (γδ(t))t∈[0,T
γδ

], be LERW in Ωδ

from aδ to bδ viewed as a continuous curve parametrized so that each edge is traversed
in time čδ5/4. Let (SLE2(t))t∈[0,TSLE2

] be chordal SLE2 in Ω from a to b parametrized by
5/4-dimensional Minkowski content. Then there is an explicit sequence ϵδ → 0 as δ → 0

and a coupling of SLE2 and γδ such that

P[ρ(γδ,SLE2) > ϵδ] < ϵδ,

where ρ is the distance between parametrized curves: if γ : [s1, t1] → C and γ̃ :

[s2, t2]→ C are continuous curves, then

ρ(γ, γ̃) = inf
φ

{
sup

s1≤t≤t1
|φ(t)− t|+ sup

s1≤t≤s2
|γ̃(φ(t))− γ(t)|

}
.

where the infimum is over all increasing homeomorphisms φ : [s1, t1] → [s2, t2]. In
particular, γδ converges to SLE2 weakly with respect to the metric ρ.

In Chapter 3, we studied the massive loop-erased random walk model (mLERW),
which is the loop-erasure of a symmetric random walk on the square lattice δZ2 with
killing rate m, m ≥ 0. Following the strategy proposed by Makarov and Smirnov [MS10],
on the identification of the limit by judiciously choosing an observable that forms a
martingale when the curve grows, we proved the following result. The main technicalities
consist in controlling this observable and showing its convergence in the massive case
when the boundary of the domain is very rough, for which discrete harmonic analysis and
estimates for Green’s functions are indispensable.

Theorem 2.2.3. Let (Ωδ; aδ, bδ) be discrete approximations to a bounded simply con-
nected domain (Ω; a, b) with two marked boundary points (prime ends) a, b. For each
m > 0, the scaling limit γ of mLERW on (Ωδ; aδ, bδ) exists and is given by a chordal
Schramm–Loewner Evolution whose driving term ξt satisfies the SDE

dξt =
√
2dBt + 2λtdt, λt =

∂

∂(gt(at))
log

P
(m)
Ωt

(at, z)

PΩt(at, z)

∣∣∣
z=b

, (2.2.1)

where P (m)
Ωt

(at, ·) and PΩt(at, ·) denote the massive and the classical Poisson kernels in
the domain Ωt := Ω \ γ[0, t], and the logarithmic derivative with respect to at is taken in
the Loewner chart gt : Ωt → H.

Remark 2.2.4. The SDE (2.2.1) has a unique weak solution whose law is absolutely
continuous with respect to

√
2Bt. In order words, these scaling limits are absolutely

continuous with respect to the classical Schramm-Loewner Evolution with κ = 2.
We refer the reader to Section 2.3 for a precise definition of Schramm-Loewner Evo-

lutions, and to [CW21] for the driving function (3.1.1) and the mode of convergence.
The framework employed in [CW21] is based upon a convolution formula for identifying
sub-sequential limits via martingale observables and comparison estimates between con-
tinuous functions and their appropriate discrete approximations. It is also amenable to
other open questions in [MS10].
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2.3 . Schramm-Loewner evolution and Conformal loop ensemble

Schramm-Loewner evolution
The Schramm-Loewner evolution (SLEκ)κ≥0 is a one-parameter family of probability

measures on continuously growing curves in simply-connected domains of the complex
plane, with prescribed endpoint on the boundary. The target point can be either in the
interior or on the boundary, corresponding to the radial and the chordal versions of SLE.
SLE was introduced revolutionally (changing the way mathematicians and physicists see
critical phenomena in two dimensions) by Oded Schramm as a candidate for the scaling
limits of interfaces of discrete planar models in statistical physics, among which the above-
mentioned LERW/SLE2, UST/SLE8. It is also known that interfaces of the Ising model
and of the FK-Ising model converge to SLE3 and SLE 18

3
[CDCH+14]; the level lines of

the discrete Gaussian free field converge to SLE4 [SS09] and interfaces of the percolation
converge to SLE6 [Smi01]. Besides, based on the locality property of the self-avoiding
walk, if the existence and conformal invariance of its scaling limit is true, it should be
described by the SLE8/3 [LSW04b]. Those models exhibit domain Markov property and
conformal invariance in large scale at criticality, predicted earlier by physicists, which
inspires and can be treated as the definition of SLE. Recall that a conformal map is
a bijection between domains in the complex plane which preserves angles. Riemann’s
mapping theorem tells us that there exists a conformal map from any non-empty, simply
connected domain to the upper half-plane H. It is unique by specifying the image of one
interior point and a point on the boundary.

Conformal invariance: Given a simply connected domain Ω, and ϕ : Ω → H confor-
mal, then the law of SLEΩ

κ the SLE process defined on Ω is preserved under the
transformation:

ϕ(SLEΩ
κ )

(d)
= SLEH

κ .

Domain Markov property: Formally, SLEκ on H has the domain Markov property if
conditional on γ[0, t], γ[t,∞)

d
= γ̃ where γ̃ is the SLE on H \ γ[0, t].

A rigorous definition of SLE involves encoding curves growing from the boundary by
Loewner’s equation, invented by Loewner to solve Bieberbach’s conjecture on confor-
mal maps (univalent holomorphic functions). By conformal invariance of the SLE, it is
sufficient to define it on the upper half-plane H, and conformally map it to any simply
connected domain of the complex plane by Riemann’s mapping theorem. The SLEκ
curve γ growing from the 0 can be parametrised by the half-plane capacity, that is

hcap(γ[0, t]) = 2 lim
y→∞

yEiy[Im(Bτ(γ[0,t])],

where τ(γ[0, t]) is the first hitting time of the Brownian motion started from iy before
hitting the real line. Let gt be the “mapping-out function” of γ[0, t], that is, the unique
conformal transformation gt : Ht → H, where Ht is the infinite connected component of
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H \ γ[0, t], with gt(z) = z + 2t
z + o(1t ) as z →∞. Then gt satisfies

ġt(z) =
2

gt(z)−
√
κBt

,

where (
√
κBt)t≥0, called the driving function of SLEκ, is a scaling by

√
κ of the standard

Brownian motion.
The definition of SLE depends on the orientation of tracing the curve. However

discrete models suggest that it should be reversible. This non-trivial fact was first proven
by Zhan for κ ≤ 4 [Zha08a], later Miller and Sheffield extended it to κ ∈ (0, 8) by
considering SLE curves as flow lines of the Gaussian free field [MS16a, MS16b, MS16c] .

The SLE curves are fractal. For the scaling limit of a discrete model at criticality,
the system exhibits self-similar behavior: the configuration is similar if one “zooms in”.
Remarkably, if κ < 8, the SLEκ paths have Hausdorff dimension d = 1 + κ/8 almost
surely [Bef08]. The Hausdorff measure and other geometric properties of SLE curves can
be measured by its arm exponents (exponential exponents of the probability that there
exist n disjoint crossings of the annulus Az(r,R) := {w ∈ C : r < |w − z| < R} as
r → 0), calculated rigorously by Wu and Zhan [WZ17] via fundamental local martingales
associated to SLEs.

Conformal loop ensemble

Conformal loop ensemble CLEκ, κ ∈ (8/3, 8), is a family of the canonical conformally
invariant measure on countable collections of SLEκ-type loops in a simply connected
domain. As explained in [SW12], if those loops are simple, corresponding to κ ∈ (8/3, 4],
CLEκ can be constructed in terms of outer boundaries of outmost clusters of loops in
a Brownian loop soup with subcritical intensity. Another construction is due to Sheffield
using variants of SLEκ(κ− 6) processes for 8/3 < κ < 8.

The CLE describes in the scaling limit statistical physics models at critical tempera-
ture, which can be interpreted as random collections of disjoint, non-self-crossing loops.
Reminiscent of discrete models, it is characterised by the conformal Markov property :
consider CLEκ(U) on the unit disc U, and for a subset U ⊂ U, obtain Ũ by removing
from Ω all the CLE(Ω) loops (and their interior) that do not entirely stay in U . Then in
each connected component C of Ũ , for any conformal map ϕC : C → U, it holds that

ϕC(CLEκ(C))
(d)
= CLEκ(U)

Observe that taking U = ∅ gives the invariance under Möbius transformation for the
CLE, which allows us to define the CLE on any simply connected domain Ω by

CLEκ(Ω)
(d)
= ϕ−1

Ω (CLEκ(U)),

where ϕΩ is the conformal map from Ω to U up to Möbius transformations of the unit
disk.
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CLEκ is shown to be the scaling limit of: critical Ising model κ = 3 [BH19], FK-Ising
percolation κ = 16/3 [KS16], and critical site percolation on the triangular lattice κ = 6

[CN06]. For the Ising/FK-Ising model, the Edwards-Sokal coupling is an important tool
relating them, which corresponds to CLE3/CLE 16

3
in the continuum. This coupling was

generalized to κ ∈ (8/3, 4) by Miller, Sheffield and Werner for CLEκ/CLEκ′ , κ′ = 16/κ

purely in the context of the CLEs [MSW20].
While the SLE, encoded by a one-dimensional driving function, is amenable to Ito’s

calculus, CLE admits precise calculations by imposing an independent Gaussian free field
(GFF) on top of the CLE. This results in a Liouville quantum gravity surface (equipped
with random metric and measure given by the GFF) decorated with CLE, which is rem-
iniscent of random planar maps decorated with the O(n) loop model, see [AS21] for
relevant studies.

In Chapter 5, we obtained the super-exponential decay for the crossing number of non-
nested CLEs, which allows us to deduce the convergence of probabilities of topological
events of a classical statistical mechanics model - the double-dimer model. The main
tools we use is the conformal Markov property via the Brownian loop soup construction
of CLEs, and the upper bounds are not sharp.

2.4 . Branching random walks

Galton-Watson processes
A Galton-Watson (GW) process is a discrete stochastic process describing the popu-

lation growth if each individual gives birth independently to a random number of children
with the same offspring distribution µ on N and die in the next generation.

Definition 2.4.1 (Galton-Watson process). A Galton-Watson process (Zn)n≥0 is de-
fined recurrently by

Z0 = 1, Zn+1 =

Zn∑
i=1

ξ
(n)
i ,

where {ξ(n)i : n, i ∈ N} is a family of natural number-valued random variables, indepen-
dent and identically distributed according to µ.

Let L stand for a random variable with distribution µ and

m := Eµ[L] =
∑
k∈N

kµ(k)

be the mean number of children per particle. The most basic and well-known fact about
branching processes is that the extinction probability

q := lim
n→∞

P[Zn = 0]

is equal to 1 if and only if m < 1 or m = 1, µ(1) < 1. Moreover, the Athreya-Ney
theorem provides us the exact value of q.
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Theorem 2.4.2 (Athreya and Ney). Let f(x) = Eµ[xL] be the generating function of
the GW process with offspring distribution µ. If µ(0) + µ(1) < 1 and m < ∞, then the
extinction probability q is the smallest non-negative solution of f(x) = x. In particular,
the casem > 1 (therefore q < 1) is called supercritical; the casesm = 1 andm < 1 are
called critical and subcritical respectively, in these cases the population becomes extinct
almost surely (q = 1).

For the rate of growth of a supercritical branching process, the Kesten-Stigum theo-
rem is a fundamental criterion showing that an L logL condition is decisive, which implies
that

— in the supercritical case, the mean E[Zn] = mn gives the growth rate up to a
random factor;

— in the subcritical case, the first moment estimate P[Zn > 0] ≤ E[Zn] = mn gives
the decay rate up to a random factor;

— in the critical case, P[Zn > 0], 1/n gives the decay rate up to a constant.

For any positive x, write log+ x = log(max(1, x)).

Theorem A: Supercritical Processes (Kesten and Stigum (1966)).
Suppose that 1 < m <∞, then

Mn :=

(
Xn

mn

)
n≥0

is a non-negative martingale converging almost surely to a limit M∞. Besides, the fol-
lowing are equivalant:

(i) P[M∞ = 0] = q ; (ii) E[M∞] = 1 ; (iii) E[L log+ L] <∞ .

Theorem B: Subcritical Processes (Heathcote, Seneta and Vere-Jones (1967)).
Suppose thatm < 1, then the sequence {P[Zn > 0]/mn} is decreasing and the following
are equivalent:

(i) lim
n→∞

P[Zn > 0]/mn > 0 ; (ii) supE[Zn | Zn > 0] <∞ ; (iii)E[L log+ L] <∞ .

Theorem C: Critical Processes (Kesten, Ney and Spitzer (1966)).
Suppose thatm = 1 and let σ2 := Var(L) = E[L2]− 1 ≤ ∞. Then we have

(i) Kolmogorov’s estimate:
lim
n→∞

nP[Zn > 0] =
2

σ2
;

(ii) Yaglom’s limit law: if σ < ∞, then the conditional distribution of Zn/n given
Zn > 0 converges as n → ∞ to an exponential law with mean σ2/2 . If σ = ∞,
then this conditional distribution converges to infinity.
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Galton-Watson trees
For each GW process, one can associate a genealogical tree to this population growth,

which is called the Galton-Watson (GW) tree. We recall Neveu’s formalism [Nev86] for
ordered rooted trees T ⊂

⋃
n≥0Nn+:

— the root ∅ ∈ T with the convention that N0
+ = {∅};

— for a sequence u = (u1, . . . , un−1, un) ∈ T , its parent (u1, . . . , un−1) ∈ T ;

— for each sequence (also called node) u = (u1, . . . , un) ∈ T , there exists an integer
ku(T ) ≥ 0 which is called its number of offsprings, such that for every j ∈ N,
(u1, . . . , un, j) ∈ T if and only if 1 ≤ j ≤ ku(T ).

For a sequence u = (u1, . . . , un) ∈ T , we set |u| = n the distance from u to the root in
T with the convention |{∅}| = 0. We denote a partial order for u = (u1, . . . , un) ∈ T
and w = (w1, . . . , wn

′
) ∈ T called the genealogical order by u ≺ w if n < n′ and

ui = wi, 1 ≤ i ≤ n. We consider the lexicographic order on T : for u, v ∈ T , we set
v < u if either v ≺ u or u = (u1, . . . , uk), v = (v1, . . . , vk), ui < vi for the first position
i where the two sequences differ from each other. Let us denote by

u0 = ∅, u1, u2, . . . , u#(T )−1,

the elements of T listed in lexicographical order, where #(T ) is the size of the tree.
It is useful to encode trees in terms of functions since they are slightly awkward

objects to manipulate mathematically. We can reconstruct the GW tree directly from the
following exploration processes.

Definition A: Lukasiewicz path.
The Lukasiewicz path is the function l : {0, 1, . . . , #(T )} → {−1, 0, 1, . . .} defined by

l(0) = 0 and for 0 ≤ i ≤ #(T )− 1, l(i+ 1) = l(i) + kui(T )− 1.

Note that l(#(T )) =
∑#(T )−1

i=0 (kui(T ) − 1) = −1. Moreover, l(i) ≥ 0 for 0 ≤ i ≤
#(T )− 1.

Definition B: height function.
The height function h : {0, 1, . . . #(T )− 1} → N is defined by

h(i) = |ui|, 0 ≤ i ≤ #(T )− 1,

recall that |ui| is the distance from ui to the root in T .

Definition C: contour function.
The contour function c : {0, 1, . . . , 2(#(T ) − 1)} → N is obtained by tracing (started
from the root) the “contour” of the tree from left to right at speed 1, see Figure 2.4, such
that the value c(i) of the contour function at time i ∈ [0, 2(#(T )− 1)] is the distance to
the root at time s.
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Figure 2.1 – A Galton-Watson tree and its contour function.

In the context of scaling limits, rather than a critical Galton-Watson tree of random
size, we would like to consider a critical Galton–Watson tree conditioned to have size n,
such that those contour functions of Galton-Watson trees can be rescaled properly to
approximate a Brownian excursion. The convergence suggests the existence of a limiting
object, encoded by the Brownian excursion, which is known as the Brownian continuum
random tree.

Branching random walks
If we consider each node on the tree T as a vertex, and add an edge between a node

and its parent, then one can see T as an abstract graph. If we attach a vector du in
Zd to each edge, fix the position of the root at X∅ = 0 and let Xu =

∑
u′⪯u du′ , then

(Xu)u∈T gives a spatial tree structure. Given an offspring distribution µ on N and a
distribution θ on Zd, the branching random walk (BRW), whose probability distribution
is denoted by Pµ,θ, is defined by setting

ku
i.i.d.∼ µ, du

i.i.d.∼ θ.

It is natural to study the lattice sites visited by a branching random walk, which is called
the range of the BRW. Asymptotics for the cardinality (number of distinct sites) of the
range of BRW has been studied recently.

Theorem 2.4.3 (Le Gall and Lin (2014)). The critical dimension for the range of BRW is
d = 4. Conditioned on the size n of the indexed tree under Pµ,θ, let Rn be the number
of distinct sites visited by the branching random walk. If µ is critical with finite variance,
and θ is symmetric with finite support and is not supported on a strict subgroup of Zd,
then as n→∞,

— if d ≥ 5, there exists cµ,θ > 0 such that 1
nRn → cµ,θ in probability;

— if d = 4, logn
n Rn

L2

−→ 8π2σ4, where σ2 = (detMθ)
1/4, with Mθ denoting the

covariance matrix of θ;

— if d ≤ 3, n−d/4Rn
(d)−−→ 2d/4

√
detMθ λd(suppI), where λd stands for the Lebesgue

measure of the support of the random measure I on Rd known as Integrated
Super-Brownian Excursion.
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In this direction, let us study the BRW from the potential theory point of view by
the capacity, which can be viewed as an escape probability for random walks, heavily
depending on its geometry. Given a probability distribution η on Zd, d ≥ 3, the capacity
of a finite set A ⊆ Zd with respect to η is defined as

capηA :=
∑
x∈A

Pηx(τ
+
A =∞) = lim

|y|→∞

Pηy(τA <∞)

Gd(0, y)
,

where Pηx refers to the law of a random walk (Sn)n∈N started at x with transition
probabilities η, τA := inf{n ≥ 0 : Sn ∈ A}, τ+A := inf{n ≥ 1 : Sn ∈ A} and

Gd(0, y) :=
∞∑
n=0

Pηy(Sn = 0)

. For the capacity of a SRW on Zd, there is a systematic study by Asselah, Schapira
and Sousi (see [ASS18, ASS19] for further references and motivations from the random
interlacements).

In Chapter 4, we studied the capacity of the range of such random walks. Based
on the setup introduced by Le Gall and Lin [LGL15a], comparing the critical branching
walk to a branching process conditioned to be doubly infinite with translation invariance,
we establish the following result using intersection probabilities of random walks. The
technicalities consist in estimating judiciously quantities related to Green’s function for
random walks. Loosely speaking, conditioned on the index Galton-Watson tree T with
offspring distribution µ having exactly n nodes, under some technical assumptions on
µ, η, θ, we prove that

Theorem 2.4.4. 1. In dimension d ≥ 7, there is a (non-explicit) constantC(d, µ, θ, η) >
0 such that under Pµ,θ(·|#T = n), as n→∞,

capηR

n
→ C(d, µ, θ, η) in probability.

2. In dimension d = 6, under Pµ,θ(·|#T = n), as n→∞,

log n

n
capηR→ 2(CG)

−1 in probability,

where

CG =
1

4π6
√
det Γη det Γθ

( ∞∑
k=0

(k − 1)kµ(k)

)
Cf ,

Cf = E
[∫ e

1
dt

∫
R6

dx · Jη(Bθ
t + x)−4Jθ(x)

−4

]
,

Γη,Γθ are the covariance matrices of η, θ respectively, J(·)(x) =
√
x · Γ−1

(·) x, and
Bθ
t is the Brownian motion in R6 with covariance matrix Γθ.
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2.5 . Planar Ising and dimer models

The Ising model (or Lenz-Ising model) with nearest-neighbor ferromagnetic interac-
tion is one of the lattice models most studied in both the mathematics and the physics
contexts. Given a finite, planar embedded graph G = (V,E, F ), with or without bound-
ary, the partition function of the Ising model (with spins located on faces) with coupling
constants (Je)e∈E is defined as follows

ZIsing(G, J) :=
∑

σ∈{−1,1}F
exp

(
β
∑
u∼w

J(uw)◦σuσw

)
,

where the sum inside the exponential is taken over all adjacent faces of G and (uw)◦

denotes the corresponding dual edge of G. The probability distribution on the set of spin
configurations {−1, 1}F is thus defined by the Boltzmann measure

PG,J [σ] = exp

(
β
∑
u∼w

J(uw)◦σuσw

)
· (ZIsing(G, J))

−1, ∀σ ∈ {−1, 1}F .

It was introduced by Lenz [Len20], and solved by his PhD student Ising in dimension one
[Isi25], suggesting the absence of phase transition in this case. A decade later, Peierls
[Pei36] confirmed a phase transition in two dimensions, contrary to the common belief
at that time that the planar Ising model also does not admit phase transition. Being
one of the simplest lattice models undergoing an order-disorder phase transition, the
planar Ising model is exactly solvable in a very strong sense. Namely, in absence of the
external magnetic field, its partition function can be written as the Pfaffian of a related
skew-symmetric matrix (signed and weighted adjacency matrix of an auxiliary graph).

Another statistical physics model sharing a similar exact solvability feature is the
dimer model of perfect matchings on planar graphs, which represents the adsorption of
diatomic molecules on crystal surfaces. Except for its own physical meaning, the dimer
model is popular due to its correspondences with the planar Ising model and uniform
spanning trees. For planar graphs, Kasteleyn showed that the partition function of the
dimer model can be expressed as the Pfaffian of a properly signed and weighted adjacency
matrix for the graph, a.k.a. the Kasteleyn matrix.

In the following, we introduce these two models, discuss correspondences between
them and briefly present some remarkable convergence results proved at the critical point
within the past decade. The discussion of the massive regime is postpoined until Chapter
6. We first introduce the classical Kadanoff-Ceva spin-disorder formalism [KC71] of the
Ising model, which allows to define correlations of fermions, spins, disorders and energy-
densities i.e., of the primary fields of the corresponding CFT, which is known under the
name Ising CFT [CHI21].

Definition 2.5.1 (Kadanoff-Ceva spin-disorder correlation). Given n,m ∈ N and a
collection of vertices v1, . . . , v2m of G, let us fix a collection ofm loop-free edge-disjoint
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paths γ[v1,...,v2m] linking v1, . . . , v2m pairwise, whose set of edges is denoted by Γ. Let us
define the modified coupling constant (J [v1,...,v2m]

e )e∈E

J [v1,...,v2m]
e =

{
− Je if e ∈ Γ;

Je otherwise.

Let
⟨µv1 . . . µv2m⟩ =

ZIsing(G, J
[v1,...,v2m])

ZIsing(G, J)
,

and the Ising order-disorder correlator be defined as follows

⟨σu1 . . . σunµv1 . . . µv2m⟩(G,J) := EG[v1,...,v2m] [σu1 . . . σun ] · ⟨µv1 . . . µv2n⟩,

where σu1 , . . . , σun are spins of the Ising model (with the edge weights Je′ = Je/2, where
e is the projecting edge of e′ onG) defined on faces of u1, . . . , un ofG[v1...v2m], the double
cover of the graph G with branch set v1, . . . , v2m, endowed with the involution u 7→ u♯

such that σu♯ = −σu.

We list the following observations.

— By the Kramers-Wannier duality of the partition function, ⟨µv1 . . . µv2m⟩ is noth-
ing but the high-temperature expansion (up to a multiplicative constant) of the
corresponding spin correlation in the Ising model defined on G∗ with spins lying
on vertices of G, which implies immediately that ⟨µv1 . . . µv2m⟩ does not depend
on the choice of disorder lines γ[v1,...,v2m].

— The Ising order-disorder correlator changes sign when one of uk is replaced by
u♯k. Besides, monodromy may also arise based on the choice of disorder lines
γ[v1,...,v2m].

— Repeated µ or σ are allowed in the Ising order-disorder correlator with the cancel-
lation effect.

For any planar, simply connected graph G, a dimer configuration of G (also called a
perfect matching), is a subset of edges such that each vertex is incident to exactly one
edge. To define the dimer model associated with the Ising model, let us introduce the
bipartite graph GQ = (V Q, EQ) on which the dimer model lives. On top of each edge
of G (including boundary edges), put a quadrangle such that none of them intersects.
Then GQ is obtained by adding legs connecting those quadrangles cyclically inside each
face and along the boundary outside of G.

Remark 2.5.2. GQ is indeed bipartite: on both sides of each corner, there are exactly
a pair of black and white vertices. One can therefore identity the corner with the
nearest black/white vertex of GQ.

Definition 2.5.3 (Dimer model on GQ). Given a positive weight function ν = (νe)

assigned to edges of GQ, the probability distribution on the set of dimer configurations
M is defined by

Pdimer(M) =

∏
e∈M νe

Zdimer(GQ, ν)
, M ∈M,
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Figure 2.2 – The graph G in grey with its associated bipartite graph GQ.

where Zdimer(G
Q, ν) =

∑
M

∏
e∈M νe with the sum taken over all perfect matchings of

GQ.

Remark 2.5.4. For general (i.e., not necessarily positive) weight function ν = (νe),
one can also define the partition function

Zdimer(G
Q, ν) =

∑
M

∏
e∈M

νe,

although in such case one may not obtain a probability measure.

Dubédat’s bosonization identities

At the combinatorical level, the Ising model on the primal graph G and the dimer
model on GQ can be related by Dubedat’s bosonization identities, which mimic the notion
of the bosonization appearing in the Conformal Field Theory (e.g., see [ZI77]). These
identities express the squares of Ising correlators in terms of a certain bipartite dimer
model. Under this correspondencs, if one starts with the critical Ising model on Z2, then
then height function of the dimer model converges to the GFF (i.e. to the bosonic free
field), hence the name. Let us associate the bipartite graph GQ with edge weights ν(J),
defined as a function of the Ising coupling constants (Je)e∈E

ν(J)e =


1 if e is a leg;

tanh(2Je) if e is “parallel" to a primal edge e of G;

cosh−1(2Je) if e “intersects" a primal edge e of G.

Given positive intergers n,m, let u1, . . . u2n be 2n vertices of G∗ and v1, . . . , v2m be 2m

vertices of G. Then Dubedat’s bosonization identity is the following

⟨σu1 . . . σu2nµv1 . . . µv2m⟩2(G,J) =

∣∣∣∣∣Zdimer(G
Q, ν(J [u1,...,u2n,v1,...,v2m]))

Zdimer(GQ, ν(J))

∣∣∣∣∣ ,
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where J [u1,...,u2n,v1,...,v2m] is the modified weight function defined similarly as in Definition
2.5.1 by assigning disjoint n loop-free paths γ∗1 , . . . , γ

∗
n on G∗ linking u1, . . . , u2n pairwise

and m loop-free paths γ1, . . . , γm on G linking v1, . . . , v2m pairwise:

J [u1,...,u2n,v1,...,v2m]
e =


Je + i

π

2
if e∗ ∈ ∪ni=1γ

∗
i ;

− Je if e ∈ ∪mi=1γi;

Je otherwise .

Note that the choice of sheets for spins on the double cover G[v1,...,v2m] makes no dif-
ference and the absolute value on the right-hand side does not depend on the choice
of path once u1, . . . , u2n and v1, . . . , v2m are fixed. It is worth saying that the identity
above is not a correspondence on the level of configurations. Nevertheless, it is known
that a planar Ising configuration can be represented by a dimer configuration on a related
decorated graph. For example, a Fisher graph or a corner graph, etc. We refer interested
readers to [CCK17] for a detailed discussion.

Correspondence of fermionic observables
It is well known (at least in the folklore) that planar dimers are closely related to

families of Cauchy-Riemann operators [Dub15]. Besides, certain type of discrete holo-
morphicity (s-holomorphicy) also arises in the fermionic observables of the planar Ising
model. Recently, this point of view has been generalized to the near-critical setup via
the propagation equation [CHM19]. Being flexible enough, proper dimer weights can
be assigned according to the coefficients in the propagation equation such that dimer
observables satisfy the same algebraic identity as the Ising fermionic observables. More-
over, there exists a class of finite domains on Z2, on which boundary conditions of these
observables also match. These domains are introduced in [Rus20] under the name hedge-
hog domains in the dimer model context, the corresponding setup for the Ising model is
domains whose boundary turns at each step.

Denote by G⋄ the quad-graph, whose vertices are V ∪F , those of G and of G∗. Edges
of G⋄ are also called corners of the primal graph G, each of which connects (corresponds
to) an adjacent vertex-face pair of G. Those edges are embedded such that they do not
intersect the edges of G and G∗.

Definition 2.5.5 (Kadanoff-Ceva fermionic variable). For edges c of the quad-graph
G⋄, denote by v(c), u(c) vertices of G,G∗ adjacent to c respectively. Then the Kadanoff-
Ceva fermionic variableχc (evaluatedwhen plugging into a correlator) is formally defined
as

χc := µv(c)σu(c).

Given n faces u1, . . . , un−1 and 2m − 1 vertices v1, . . . , v2m−1, one can define a
formal correlation function

F (c) := ⟨χcσu1 . . . σun−1µv1 . . . µv2m−1⟩.
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which has monodromy (gaining a −1 factor when making a loop around a singularity)
everywhere on vertices of both G and G∗ except u1, . . . , un−1, v1, . . . , v2m−1.

It is well-known that the values F (c) of a discrete spinor at any three of the four
corners surrounding a given edge e of G satisfy the so-called propagation equation. In
the following, we consider the Ising model with wired boundary condition. This fits the
formalism presented above since a single outer face uout is equivalent to declaring that all
the spins located at outer faces are equal to each other. Let us introduce the following
parametrization of the interaction constant Je by θe, which also admits a geometric
interpretation in the context of rhombic lattices and the related Z-invariant Ising model
on them [BdT10, BdT11, CS12]:

xe = exp(−2βJe) and θe := 2 arctanxe.

Proposition 2.5.6. For any (directed) edge e ofG disjoint from {u1, . . . , un−1, v1, . . . , v2m−1},
denote by v±(e) the two vertices of e oriented from v−(e) to v+(e), and u±(e) the two
faces adjacent to e with u−(e) being to the left and u+(e) to the right of e (including
the boundary faces). Write four corners around e (consecutively adjacent on the double
cover) as c1 = v−(e)u+(e), c2 = v+(e)u+(e), c3 = v+(e)u−(e) and c4 = v−(e)u−(e).
Then we have the following three-term relation

F (c2) = cos θeF (c3) + sin θeF (c1) and F (c3) = cos θeF (c2) + sin θeF (c4). (2.5.2)

Proof. E.g., see [DD83]. Denote εe = σu+(e)σu−(e) = ±1. By the definition of disorder
insertions, we have

F (c1) sin θe = ⟨µv−(e)µv+(e)µv+(e)σu+(e)σu1 . . . σun−1µv1 . . . µv2m−1⟩ sin θe
= ⟨xεeµv+(e)σu+(e)σu1 . . . σun−1µv1 . . . µv2m−1⟩ sin θe.

Since xεee sin θe = 1− εe cos θe, we have

F (c1) sin θe = F (c2)− cos θe⟨σu+(e)σu−(e)µv+(e)σu+(e)σu1 . . . σun−1µv1 . . . µv2m−1⟩
= F (c2)− F (c3) cos θe,

which gives us the first identity. The second one follows similarly.
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Remark 2.5.7. The three-term relation agreeswith thebranching structure of spinors:
the value of F at the corner differs by a sign when writing down the relation around
anedge. In our case, admitting (2.5.2) implies thatF (c1) = −F (c4) cos θe+F (c2) sin θe.

Since F (c) branches over all vertices of G,G∗ except u1, . . . , un−1, v1, . . . , v2m−1,
the real-valued function F (c) is sophisticated for tracking and making sense of its scaling
limit. Let us introduce another factor which branches literally everywhere to compensate
the monodromies.

Definition 2.5.8 (Dirac spinor). For any planar embedding of the graph G together
with its dualG∗, the Dirac spinor (defined as the square root of the corner vector) which
branches over all vertices of G and G∗ is defined as

ηc := exp (iπ/4) exp

(
− i
2
arg(v(c)− u(c))

)
.

As indicated in the previous paragraph, ηcF (c) is defined on the double cover of G⋄

which branches over u1, . . . , un−1, v1 . . . , v2m−1.
Let us introduce complex edge weights to the bipartite graph GQ based on the

propogation equation to relate the weighted adjacency matrix with Ising fermionic ob-
servables.

Following Remark 2.5.2, for any corner c = (ucvc), uc ∈ G∗ and vc ∈ G, denote by
wc, bc the white, black vertices of GQ on two sides of c. The entries of the Kasteleyn
matrix associated to GQ, which is Hermitian are defined by setting

K̃bcwc′ =


− ηcηc′ sin(θ) if uc = uc′ , c ̸= c′;

− ηcηc′ cos(θ) if vc = vc′ , c ̸= c′;

1 if c = c′.

Note that in the definition of the Kasteleyn matrix, η takes consecutive values on
the double cover when going from one corner to adjacent ones; arg(ηcηc′) is one half
the oriented angle from c to c′. It is univalent even though the Dirac spinor η is not. If
equivalently, ηF is viewed as a function defined on the black vertices of GQ by identifying
each black vertex with its nearest corner, then the relation (2.5.2) can be written matrix-
wise as

(K̃ηF )ba =
∑
wc∼ba

K̃(ba, wc)ηcF (wc) = 0.

Moreover, Proposition 2.5.9 tells us that

K̃−1(wc, bd) =
1

2
ηc⟨χcχd⟩ηd (2.5.3)

Proposition 2.5.9. If we set ⟨χdχd⟩ = 1, then

∑
wc∼ba

K̃(ba, wc)ηc⟨χcχd⟩ηd =

{
0 if d ̸= a;

2 if d = a.
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Proof. If d ̸= a, then the expression
∑

wc∼ba K̃(ba, wc)ηc⟨χcχd⟩ηd vanishes due to
(2.5.2).

If d = a, one sees that
∑

wc∼ba K̃(ba, wc)ηc⟨χcχd⟩ηd differs from (2.5.2) by

K̃(bd, wd)ηd⟨χdχd⟩ηd + ηd⟨χdχd⟩ηd = 2.

Remark 2.5.10. Compared to ηc⟨χxχd⟩ηd, the inverse Kasteleynmatrix is single-valued.
The monodromy of the spinor F (c) = ηc⟨χcχd⟩ηd when going across d can be re-
solved by fixing F (d) = ηd⟨χdχd⟩ηd to be 1, which introduces a singularity at d of the
Kasteleyn operator K̃.

In the following, let G be a subgraph of the square grid Cδ := δZ2 and equip all edges
with spin interaction parameter x = tan(θ/2); note that we do not assume x = xcrit.
Write λ = ei

π
4 . We now explain how to transform GQ and the Kasteleyn matrix K̃ to

a bipartite graph GB with proper dimer weights and the associated Kasteleyn matrix K
such that K−1 is nothing but the restriction of K̃−1 to GB in a certain sense.

Assume that G has wiggling lattice path boundary: the boundary makes a ±π
2 -turn

at each boundary vertex. Divide each face of δZ2 into four squares with checkerboard
coloring such that each square is the dual face of a corner in G. One can then construct a
discrete simply connected domain by taking the union of such squares adjacent to G with
black/white vertices corresponding to black/white squares, while the boundary being the
outer boundary of the δ-neighborhood of ∂G. Note it has slits inside concave angles
of ∂G and belongs to the family of so-called hedgehog domains considered in [Rus20].
Denote by GB the dual graph of this checkerboard domain, with white/black vertices
located at the center of white/black squares, and they are connected by an edge of GB

if and only if the corresponding squares touch each other.

Figure 2.3 – The red loop depicts the boundary of a graph G. The checker-
board domain represents the dual of the associated bipartite graph GB:
black/white squares correspond to black/white vertices.

Denote by W/B the set of white/black vertices of GB. One can associate periodic
dimer weights to GB as follows: edges intersecting primal edges of G are of weight cos θ,
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while others are of weight sin θ. The associated Kasteleyn matrix K : B ×W → C of
the dimer model on GB, whose determinant gives the partition function, is defined such
that for b ∈ B, w ∈W,

K(b,w) =


λ sin θ if bw is horizontal and does not intersect G;

− λ cos θ if bw is horizontal and intersects G;

− λ sin θ if bw is vertical and does not intersect G;

λ cos θ if bw is vertical and intersects G.

(2.5.4)

It is not hard to check that the complex signs of K satisfy Kasteleyn condition.
The reason for the assignment of signed weights in (2.5.4) is as follows. Let b1, b2, b̃1, b̃2

be the black vertices of GQ surrounding a horizontal edge of G as shown in Figure 2.5.
For w not adjacent to any of b1, b2, b̃1, b̃2, it holds for the inverse of K̃ that{

K̃−1(w, b̃1) = λ sin θ · K̃−1(w, b1) + λ cos θ · K̃−1(w, b2);

K̃−1(w, b̃2) = λ cos θ · K̃−1(w, b1) + λ sin θ · K̃−1(w, b2).
(2.5.5)

Figure 2.4 – An illustration of the signed Kasteleyn weights K̃(b, w) on GQ

andK(b,w) on GB.

If we identify vertices of GB with one of the vertices of GQ with the same color as
in Remark 2.5.2, for w0 not on ∂GB,∑

b∼w0

K̃−1(w,b)K(b,w0) = δw,w0 . (2.5.6)

To obtain similar local relations near the boundary, one can split each leg on ∂GB

opposite to a convex angle into three legs with weights 1, cos θ, cos θ, connected by a
pair of additional white and black vertices, as shown in Figure 2.5. Correspondingly, the
values of K̃−1(w, ·) at additional black vertices b̃1, b̃2 should satisfy

K̃−1(w, b̃1) = iK̃−1(w, b1), K̃−1(w, b̃2) = λ(cos θ)−1K̃−1(w, b2).

36



Figure 2.5 – Boundary modification for GQ and entries of K̃(b, w) around
convex angles of ∂G.

Then one can write down (2.5.6) around horizontal edges of ∂G. It follows from (2.5.5)
and the boundary modification that K̃−1, when restriced to GB, is the inverse of K.
Together with (2.5.3), this implies that if w ∈W, b ∈ B correspond to corners c, d, then

K−1(w, b) = K̃−1(wc, bd) =
1

2
ηc⟨χcχd⟩ηd (2.5.7)

Remark 2.5.11. From the perspective of probability measures, the transformations
above also describe equivalent dimer weights on the square lattice of the dimer
weights on GQ: one can find a correspondence of dimer configurations which pre-
serves the probability measure, see e.g. [KLRR18] for more detailed illustrations.

Convergence results for the Ising model
In this paragraph, we review briefly the literature on the convergence of the Ising cor-

relations/interfaces and the dimer height functions. This topic is vast and the exposition
given below is by no means exhaustive.

Starting with the seminal papers of Belavin, Polyakov and Zamolodchikov [BPZ84a,
BPZ84b], it has been conjectured that small mesh size limits of critical lattice models
possess the conformal invariance provided the phase transition if continuous. It was only
until mid-2000s that substantial progress on the rigorous analysis of the two-dimensional
Ising model at criticality has been achieved since the pioneering work of Smirnov [Smi10].
In particular, Smirnov introducted and analyzed the scaling limit of fermionic observables,
also known as discrete holomorphic fermions. Later the convergence of such observables
for the whole class of critical Z-invariant Ising models on isoradial graphs was proven by
Chelkak and Smirnov [CS12]. Expressed explicitly via martingale observables, the driving
functions of interfaces in the Loewner evolution therefore converge. In order to obtain
convergence of curves, certain crossing (RSW-type) estimates are sufficient following the
framework proposed by Kemppainen and Smirnov [KS17]. For the arguments to conclude
the convergence of interfaces, see [CDCH+14] and references therein. The convergence
of the full collection of interfaces requires that of single ones as an input, and one still
needs to control the behavior of its double points in the FK-Ising model, which split
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the current domain into smaller pieces to be explored using some iterative procedure.
This was justified by Kemppainen and Smirnov [KS16], showing the convergence of the
full branching tree of interfaces in the FK-representation to CLE16/3. In parallel, an
exploration process based on the coupling between the Ising model and its FK represen-
tation to discover the Ising loops was suggested in [HK13]. Later, via the convergence
of the so-called free arc ensemble established in [BDCH16], this convergence to CLE3

was justified by Benoist and Hongler [BH19].
From the CFT perspective, the conformal symmetry of the 2D Ising model at criti-

cality is understood via the scaling limits of correlation functions. In the past decade, a
number of results was obtained in the direction of rigorously establishing these CFT pre-
dictions. On the square lattice in bounded simply connected domains, the energy density
correlations with locally monochromatic boundary conditions were studied by Hongler
and Smirnov [HS13], and the scaling limits of spin correlations were justified by Chelkak,
Hongler and Izyurov [CHI15]. This program was complemented by the same authors
[CHI21], obtaining a general results concerning scaling limits of all possible correlations
of primary fields in the Ising model. Recently, the convergence of spin correlations have
been generalized to isoradial graphs and to the near-critical temperature by Chelkak,
Mahfouf and Izyurov [CIM21]. In this direction, fermionic observables appearing in the
near-critical FK-Ising model were investigated by Park [Par21]. It is also worth men-
tioning that the convergence of the properly renormalized Ising magnetization field in a
certain Sobelev space was shown by Camia, Garban and Newman [CGN15]. The scaling
limit is constructed via the so-called conformal measure ensembles that appear as the
limits of properly renormalized counting measures in FK-Ising clusters. The analysis of
the Ising model at critical temperature with the presence of the magnetic field (introduc-
ing a bias for the alignment of the spins) is also an active area of research, for which the
magnetization field in this setup was obtained by the same authors [CGN16]. Although
the external field breaks down the integrability of the model, Camia, Jiang and Newman
[CJN20] proved that the resulting field theory has a mass gap, which confirms the ex-
istence of at least one particle with strictly positive mass in Zamolodchikov’s scattering
theory [Zam89].

Convergence results for the dimer model
Dimer configurations can be described by the so-called Thurston height functions.

Given a bipartite graph G, fix a reference perfect matching P0 of vertices of G. Loosely
speaking, a perfect matching of G vertices is in correspondence with the height profile
associated to the contour lines formed by P and P0, see e.g., the lecture notes [FL].

The investigation of the convergence of height fluctuations of the uniform dimer
model on rescaled square grids to the Gaussian Free Field goes back to works of Kenyon
[Ken00, Ken01], in the setup of approximating planar domains by the so-called Temper-
leyan discretizations. The result of Kenyon is based on the observation that entries of
the inverse Kasteleyn matrix (also known as the coupling function) for the dimer model
on the square grid satisfy a discrete version of the Cauchy-Riemann equation. Later,
discrete complex analysis techniques (e.g. s-holomorphicity) originally developped for
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the Ising model were successfully employed in the dimer setup to obtain convergence
with more general discretizations, within the framework proposed by Chelkak, Laslier and
Russkikh [CLR20], see also [CR20, CLR21]. In parallel, universality of the fluctuations of
the height function associated to the dimer model was demostrated by Berestycki, Laslier
and Ray [BLR20] following Temperley’s bijection, which relates the height function of a
dimer configuration to the winding of branches in an associated uniform spanning tree
subject to Temperleyan boundary conditions. The idea is that for any general planar
graph, if the simple random walk converges to the Brownian motion, combined with a
Russo–Seymour–Welsh type crossing estimate, the windings of the spanning tree gener-
ated by Wilson’s algorithm converge to the GFF. However, it is worth emphasizing that
the convergence to the GFF does not hold away from criticality, e.g., for the dimer model
obtained from the near-critical Ising model as explained above. It was shown by Chhita
that the height fluctuations on the full-plane in the scaling limit do not satisfy Wick’s
rule for Gaussian variables, hence not Gaussian [Chh12].

Our results
In Chapter 6 following an analysis of the Riemann-type boundary conditions for mas-

sive holomorphic functions in arbitrary rough domains, we extend the convergence results
obtained in [Par21] for basic fermionic observables to general ones. From the Ising model
perspective this also allows us to prove the convergence of energy density correlators in
the massive context. From the perspective of the associated dimer model, the fermionic
observables are nothing but the entries of the inverse Kasteleyn matrix (2.5.4). This
implies that correlations of the gradients of the fluctuations of the corresponding height
functions in hedgehog domains can be written in terms of fermionic correlators coming
from the massive Ising model. This reveals the formalism of Coleman’s correspondence
at the free fermion point (e.g., see [BW21]) and suggests that the limit of height func-
tions in question is given by a sine-Gordon theory in the limiting domain with Dirichlet
boundary conditions.
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3 - Massive loop-erased random walk

3.1 . Introduction

The classical loop-erased random walk (LERW) in a discrete domain Ωδ ⊂ δZ2 is a
curve obtained from a simple random walk trajectory by erasing the loops in chronological
order. In the famous paper [LSW04a] the convergence of such trajectories to the so-
called SLE(2) curves (see [Law05, Kem17, BN16] and references therein) was proved by
Lawler, Schramm and Werner. Namely, let Ωδ be discrete approximations to a simply
connected domain Ω such that 0 ∈ Ω. Then, LERW obtained from simple random
walks on Ωδ started at 0 and stopped when hitting ∂Ω converge (in law) to the so-called
radial SLE(2) process in Ω. This result was generalized by Zhan [Zha08b] for multiply
connected domains Ω and also for the chordal setup when the random walks are started
at a (discrete approximation of) boundary point a ∈ ∂Ω and are conditioned to exit Ωδ

through another boundary point b ∈ ∂Ω. Later on, another generalization appeared
in [YY11]: instead of δZ2 one can consider any sequence of graphs Γδ such that the
simple random walks on Γδ converge to the Brownian motion. Since then, variants of
the LERW model have become standard examples of lattice systems for which one can
rigorously prove the convergence of interfaces to SLE and the Conformal Field Theory
(CFT) predictions for correlation functions, e.g. see [AKE20].

In parallel with a great success of studying the (conjectural) conformally invariant
limits of critical 2D lattice models achieved during the last two decades, a program to
study their near-critical perturbations was advocated by Makarov and Smirnov in 2009,
with massive LERW (mLERW) being one of the cases most amenable for the rigorous
analysis, see [MS10]. On square lattice with mesh size δ, given m > 0, the massive
random walk is defined as follows: at each step, the walk moves to one of the four
neighboring vertices with probability 1

4(1 −m
2δ2) or dies with probability m2δ2 (which

is called the killing rate). Then, mLERW in Ωδ is defined by applying the same loop
erasing procedure as above to massive random walks, conditioned to exit from Ωδ through
a fixed boundary point bδ and not to die before this moment. The following result is
given in [MS10, Theorem 2.1]:

Theorem 3.1.1. Let (Ωδ; aδ, bδ) be discrete approximations to a bounded simply con-
nected domain (Ω; a, b) with two marked boundary points (more accurately, degener-
ate prime ends of Ω; see Remark 3.1.2(i) below). For each m > 0 the scaling limit γ
of mLERW on (Ωδ; aδ, bδ) exists and is given by a chordal stochastic Loewner evolution
process (3.2.12) whose driving term ξt satisfies the SDE

dξt =
√
2dBt + 2λtdt, λt =

∂

∂(gt(at))
log

P
(m)
Ωt

(at, z)

PΩt(at, z)

∣∣∣
z=b

, (3.1.1)

where P (m)
Ωt

(at, ·) and PΩt(at, ·) denote the massive and the classical Poisson kernels in
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the domain Ωt := Ω∖ γ[0, t] and the logarithmic derivative with respect to at is taken in
the Loewner chart gt : Ωt → H; see Remark 3.1.2(ii). Moreover, (3.1.1) has a unique weak
solution whose law is absolutely continuous with respect to

√
2Bt. In other words, these

scaling limits (known under the name mSLE(2)) are absolutely continuous with respect to
the classical Schramm–Loewner Evolutions with κ = 2.

Remark 3.1.2. (i) We refer the reader to [Pom92, Chapter 2] for basic notions of the
geometric function theory in what concerns the boundaries of planar domains and
the correspondence between them induced by conformal maps. Loosely speak-
ing, a degenerate prime end of Ω should be thought of as an equivalence class of
sequences of inner points converging to a point on the (topological) boundary of
Ω. Although we only consider the chordal setup in this paper, the convergence of
radial mLERW follows from almost the same lines and requires less effort since the
normalization of the martingale observable near the target point becomes a trivial
statement.
(ii) We write the formula (3.1.1) for the drift term 2λtdt in the same (slightly informal)
form as it appeared in [MS10]. The rigorous definition of the quantity

∂

∂(gt(at))
log

P
(m)
Ωt

(at, z)

PΩt(at, z)

∣∣∣∣
z=b

:=
Q

(m)
Ωt

(at, z)

P
(m)
Ωt

(at, z)

∣∣∣∣
z=b

(3.1.2)

is given in Section 3.4. The functionQ(m)
Ωt

(at, ·) (defined by (3.4.9)) can be thought of
as the derivative of the massive Poisson kernel P (m)

Ωt
(at, ·) (defined by (3.4.8)) with

respect to the source point at (after performing the uniformization gt : Ωt → H). If
m = 0, then QΩt(at, z)/PΩt(at, z) → 0 as z → b (see (3.4.1) and (3.4.2)); this is why
only the massive term remains in the right-hand side of (3.1.2).

When the article was written, no follow up of [MS10] appeared since then. The goal
of this paper is to provide technical details required for the proof of Theorem 3.1.1 as
we believe that this might be of interest to the community and as we intend to pursue a
rigorous understanding of further steps in the Makarov–Smirnov program (notably, those
related to the near-critical Ising model; see [MS10, Sections 2.3 and 2.5] as well as [MS10,
Question 4.12] for κ = 3). It is worth emphasizing that the paper [MS10] contains a
lot of intriguing questions and conjectures which remain mostly unexplored since then,
some of them most probably being very hard. One of the questions posed in [MS10] is
to understand which massive perturbations of the classical SLE(κ) curves are absolutely
continuous and which are mutually singular with respect to the unperturbed ones (e.g.,
see [MS10, Question 4.5]). In this regard, recall that

— The scaling limit of the near-critical percolation is known to be singular with
respect to the classical SLE(6) curves; see [NW09].

— The scaling limits of the mLERW and of the massive Harmonic Explorer paths are
absolutely continuous with respect to SLE(2) and to SLE(4), respectively. (As
mentioned in [MS10, Section 3.2], the latter case can be analyzed using the same
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type of arguments. Though in this case the absolute continuity is less clear a priori
from the discrete model, it can be derived a posteriori from the analysis of the
driving process ξt; see also [Sha17].)

— However, the heuristics is controversial already for the scaling limit of the near-
critical Ising model interfaces. For a while, this research direction was blocked by
the lack of techniques allowing to prove the convergence of massive fermionic ob-
servables in rough domains (to the best of our knowledge, [MS10, Sections 2.4, 2.5]
had no follow-up). Such techniques were suggested in a recent work of Park [Par18,
Par21] (see also an alternative approach to convergence theorems developed in [Che20a,
Section 4]); we hope that they will allow to analyze this case in more detail.

We now move back to the main subject of this paper and discuss the setup in which
we prove Theorem 3.1.1.

— Ωδ are assumed to converge to Ω in the Carathéodory topology (see Section 3.2.2
for more details). We do not assume any regularity of Ω (or Ωδ) near degenerate
prime ends a, b, except that aδ, bδ are supposed to be close discrete approxima-
tions of a, b in the sense of the recent paper of Karrila [Kar18]. It is worth noting
that in [Zha08b] it was assumed that the boundary of Ω is ‘flat’ near the target
point b, a technical restriction which was removed in [Uch17] in the general setup
of [YY11]. Our approach to this technicality is based upon the tools from [Che16]
(see Section 3.3.2 for details), similar uniform estimates were independently ob-
tained by Karrila [Kar20, Appendix A] basing upon the conformal crossing estimates
developed for the random walk in [KS17].

— The mode of convergence of discrete random curves γδ to continuous ones is pro-
vided by the framework of Kemppainen and Smirnov [KS17] (with a recent addition
of Karrila [Kar18] in what concerns the vicinities of the endpoints a and b), see
Section 3.2.3 for details. Namely, the weak convergence of the law of mLERW
to that defined by (3.1.1) holds with respect to each of the following topologies:
uniform convergence of curves γδ to γ after a reparametrization, convergence of
conformal images γδH := ϕ

Ω̂δ(γ
δ) to γH := ϕΩ(γ) under the half-plane capacity

parametrization, convergence of the driving terms ξδt in the Loewner equations
describing γδH to ξt. Using the result of Lawler and Viklund [LV21] on the conver-
gence of classical LERWs to SLE(2) in the so-called natural parametrization, one
can easily deduce the same convergence for massive LERWs from our proof.

There are several known strategies to prove the convergence of discrete random
curves to classical SLEs, most of them relying upon the convergence of discrete martin-
gale observables M δ

(Ωδ;aδ,bδ)
(z) to M(Ω;a,b)(z) as (Ωδ; aδ, bδ)→ (Ω; a, b); see (3.2.6) for

the definition of these observables in the LERW case. The approach used in the original
papers [LSW04a, Zha08b] on the subject (see also [Izy17] for similar considerations in the
Ising model context) relies upon the Skorohod embedding theorem and an approximate
version of the Lévy characterization of the Brownian motion. A different viewpoint was
advocated by Smirnov in [Smi06]: once the tightness framework of [KS17] is set up,
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one gets the martingale property of ξt and its quadratic variation from coefficients of
the asymptotic expansion of M(Ωt;at,b)(z) near the target point b, e.g. see [Smi06, Sec-
tion 4.4] or [DCS12, Section 6.3] for sample computations. (Note however that [Zha08b]
and [Izy17] rely upon asymptotics of M(Ωt;at,b)(z) near the source point at, which are
known to be more useful in the multiple SLE context.)

In the massive setup, one does not have conformal invariance, which makes these
asymptotics of MΩt(at, z) rather sensitive to the local geometry of Ωt near b or at.
Moreover, even if we assume that the boundary of Ω is flat near b, these asymptotics are
written in terms of Bessel functions instead of powers of (z−b). In this paper we use a
combination of the two strategies: we do rely upon the tightness framework of [KS17] but
analyze the stochastic processes M(Ωt;at,b)(z) at fixed points z ∈ Ωt instead of discussing
their asymptotics; cf. [HK13] or [Izy17, Section 3.1].

In conformally invariant setups, it is known (e.g., see [Wer09] or [HK13]) that one can
easily derive the fact that the process ξt is a continuous semi-martingale directly from the
fact that M(Ωt;at,b)(z) are continuous (local) martingales, using explicit representations
of those via ξt. We illustrate this idea in Section 3.2.4 when discussing the convergence
of the classical LERW to SLE(2). Despite the lack of explicit formulas, similar arguments
can be used in the massive setup though being more involved. Nevertheless, we prefer
to follow a more conceptual approach suggested in [BBK08, BBC09] and [MS10], which
relies upon the Girsanov theorem and the fact that mLERW can (and, arguably, should)
be viewed as the classical LERW weighted by an appropriate density caused by the killing
rate; in this approach the fact that ξt is a semi-martingale does not require any special
proof (see Section 3.2.6).

Certainly, the idea of weighting SLE curves by martingales dates back to the very
first developments in the subject, e.g. see [Dub07, SW05] or [Wu16, KS18] for more
recent examples. Nevertheless, there exist an important difference between the ‘crit-
ical/critical’ and ‘the ‘massive/critical’ contexts. In the setup of Theorem 3.1.1, the
density of mSLE(2) with respect to the classical SLE(2) does not coincide with the ratio
of regularized partition functions P (m)

Ωt
(at, b)/PΩt(at, b) in Ωt := Ω∖ γ[0, t]. The reason

is that the total mass of massive RW loops attached to the tip at is strictly smaller
than the mass of the critical ones, which results in a (positive) drift of this ratio; see
also [BBK08, Section 4] for a discussion of this effect from the theoretical physics per-
spective. Nevertheless, the expression for the drift term 2λtdt in (3.1.1) has exactly the
same structure as in ‘critical/critical’ setups, see Remark 3.4.11 for additional comments.

The rest of the article is organized as follows. In Section 3.2 we collect preliminaries
and discuss the absolute continuity of mLERW with respect to LERW and that of their
scaling limits. In Section 3.3 we prove the convergence of discrete martingale observables
as δ → 0. Section 3.4 is devoted to a priori estimates and computations in continuum.
The proof of Theorem 3.1.1 is given at the end of the paper.

3.2 . Preliminaries
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3.2.1 . Discrete domains, partition functions and martingale observables

Let Ω ⊂ C be a bounded simply connected domain with two marked degenerate prime
ends a, b. We approximate (Ω; a, b) by simply connected subgraphs Ωδ of the square
grids δZ2 and their boundary vertices aδ, bδ. More precisely, to each simply connected
graph Ωδ ⊂ δZ2 we associate an open simply connected polygonal domain Ω̂δ ⊂ C
by taking the union of all open 2δ × 2δ squares centered at vertices of Ωδ. Note that
the boundary of Ω̂δ consists of edges of δZ2; see Fig. 3.1 for an illustration. We set
IntΩδ := V (Ωδ) and define the boundary ∂Ωδ of Ωδ as

∂Ωδ := {(v; (vint, v)) : v /∈ IntΩδ, v ∼ vint, vint ∈ IntΩδ}, (3.2.3)

here and below the notation v ∼ v′ means that the vertices v, v′ ∈ Z2 are adjacent to each
other. (The reason for this definition of ∂Ωδ is that the same vertex v may be connected
to several points vint ∈ IntΩδ. When talking about exiting events of random walks, all
such edges (vint, v) correspond to different possibilities to exit Ωδ.) Usually, we slightly
abuse the notation and treat ∂Ωδ as a set of v ∈ δZ2 without indicating the outgoing
edges (vint, v) if no confusion arises. Sometimes we also use the notation Ωδ := Ωδ∪∂Ωδ.

Given 0 < δ < m−1 ≤ +∞, a discrete domain Ωδ ⊂ δZ2, and two interior or bound-
ary vertices wδ, zδ, we define the partition function of massive random walks running
from wδ to zδ in Ωδ as

Z
(m)

Ωδ (wδ, zδ) :=
∑

πδ∈S
Ωδ (wδ;zδ)

(
1
4(1−m

2δ2)
)#πδ

, wδ, zδ ∈ Ωδ, (3.2.4)

where SΩδ(wδ; zδ) denotes the set of all lattice paths connecting wδ and zδ inside Ωδ,
and #πδ is the number of interior edges of Ωδ in πδ. (In other words, we do not count
the edges (wδ, wδint) and (zδint, z

δ) in #πδ if wδ ∈ ∂Ωδ and/or zδ ∈ ∂Ωδ.) To simplify
the notation, we drop the superscript (m) when speaking about random walks without
killing (i.e., m = 0). Below we often rely upon the following identity, which relates the
partition functions Z

(m)

Ωδ and ZΩδ .

Lemma 3.2.1. Given a discrete domain Ωδ , two points zδ, wδ ∈ Ωδ , and m ∈ (0, δ−1),
we have

(1−m2δ2) · Z(m)

Ωδ (wδ, zδ) = ZΩδ(wδ, zδ)

−m2δ2
∑

vδ∈IntΩδ
ZΩδ(wδ, vδ)Z

(m)

Ωδ (vδ, zδ). (3.2.5)

Proof. Recall that both Z
(m)

Ωδ (wδ, zδ) and ZΩδ(wδ, zδ) are defined as sums over ran-
dom walk trajectories πδ ∈ SΩδ(wδ; zδ) running from wδ to zδ inside Ωδ. Also, by
splitting πδ into two parts (from wδ to vδ and from vδ to zδ) and summing over all
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Figure 3.1 – Discrete domainΩδ, an example of a boundary vertex (v; (vint, v)),
and a slit γδ[0, n]. The shaded area is the polygonal representation of the
subgraph Ωδ ∖ γδ[0, n] ⊂ δZ2. Though this polygonal domain does not co-
incide with Ω̂δ ∖ γδ[0, n], these two domains are close to each other in the
Carathéodory sense (with respect to inner points of Ω̂δ lying near b).

#πδ+1 possible choices of vδ , one easily sees that

∑
vδ∈IntΩδ

ZΩδ(wδ, vδ)Z
(m)

Ωδ (vδ, zδ) =
∑

πδ∈S
Ωδ (wδ,zδ)

#πδ∑
k=0

(
1
4

)k(1
4(1−m

2δ2)
)#πδ−k

=
∑

πδ∈S
Ωδ (wδ,zδ)

(
1
4

)#πδ

· 1− (1−m2δ2)#π
δ+1

m2δ2
.

Thus, the identity (3.2.5) directly follows from the definition (3.2.4).

Let γδ be a sample of the (massive or massless) LERW path from aδ to bδ in Ωδ.
We denote by Ωδ ∖ γδ[0, n] the connected component of this graph containing bδ; see
Fig. 3.1. Let a sequence of vertices oδ∈ IntΩδ be fixed so that oδ → 0 as δ → 0. A
classical argument (e.g., see [LSW04a, Remark 3.6]) implies that, for each vδ ∈ IntΩδ,
the function

M
(m),δ

Ωδ∖γδ[0,n](v
δ) :=

Z
(m)

Ωδ∖γδ[0,n](γ
δ(n), vδ)

Z
(m)

Ωδ∖γδ[0,n](γ
δ(n), bδ)

· ZΩδ(oδ, bδ), (3.2.6)

is a martingale with respect to the filtration Fn := σ(γδ[0, n]) generated by first n
steps of γδ, until vδ is hit by γδ or disconnected from bδ. The additional normalization
factor ZΩδ(oδ, bδ) does not depend neither on γδ nor on m and is introduced for further
convenience. Note that the behavior of this factor (which is nothing but the harmonic
measure of bδ in Ωδ viewed from oδ) as δ → 0 can be very irregular as we do not require
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much about the behavior of the boundary ∂Ωδ near bδ; the role of this normalization
is to compensate the similar irregularity in the behavior of the denominator of (3.2.6).
As in the notation for partition functions, we drop the superscript (m) in (3.2.6) when
speaking about classical (m = 0) LERW.

3.2.2 . Carathéodory convergence of Ωδ and reparametrization by capacity

Throughout this paper we assume that all domains under consideration are uniformly
bounded (that is, are contained in some B(0, R) for a fixed R > 0) and that 0 is
contained in all domains. Let ϕΩ : Ω→ H be a conformal uniformization of Ω onto the
upper half-plane H such that

ϕΩ(a) = 0, ϕΩ(b) =∞, and ImϕΩ(0) = 1, (3.2.7)

note that these conditions define ϕΩ uniquely and that one has

GΩ(0, z) =
1

2π
log

∣∣∣∣ϕΩ(z)− ϕΩ(0)ϕΩ(z)− ϕΩ(0)

∣∣∣∣ ∼ − 1

π
Im

1

ϕΩ(z)
as z → b. (3.2.8)

We assume that discrete approximations (Ω̂δ; aδ, bδ), with bδ = b, converge to (Ω; a, b)

in the Carathéodory sense, which means that (e.g., see [Pom92, Chapter 1])

— each inner point z ∈ Ω belongs to Ω̂δ for small enough δ;

— each boundary point ζ ∈ ∂Ω can be approximated by ζδ ∈ ∂Ω̂δ as δ → 0.

Further, we require that a and b are degenerate prime ends of Ω and that aδ (resp., bδ)
is a close approximation of a (resp., of b) as defined by Karrila [Kar18]:

— aδ → a as δ → 0 and, moreover, the following is fulfilled:

— Given r > 0 small enough, let Sr be the arc of ∂B(a, r)∩Ω disconnecting (in Ω)
the prime end a from 0 and from all other arcs of this set; in other words, Sr is
the last arc from a (possibly countable) collection ∂B(a, r)∩Ω to cross for a path
running from 0 to a inside Ω. We require that, for each r small enough and for all
sufficiently (depending on r) small δ, the boundary point aδ of Ωδ is connected to
the midpoint of Sr inside Ω̂δ ∩B(a, r).

We fix a uniformization ϕ
Ω̂δ : Ω̂δ → H similarly to (3.2.7) so that

ϕ
Ω̂δ(a

δ) = 0, ϕ
Ω̂δ(b

δ) =∞, and Imϕ
Ω̂δ(0) = 1,

note that the Carathéodory convergence of Ω̂δ to Ω can be reformulated as

ϕ
Ω̂δ → ϕΩ uniformly on compact subsets of Ω,
ϕ−1

Ω̂δ
→ ϕ−1

Ω uniformly on compact subsets of H. (3.2.9)

From now onwards we assume (without loss of generality) that the discrete approxi-
mations Ω̂δ are shifted slightly so that the target point bδ = b is always the same. Inside
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all polygonal domains Ω̂δ (and similarly inside Ω), one can define the inner distance to
the prime end b and the r-vicinities of b as follows:

ρ
Ω̂δ(b, z) := inf{r > 0 : z and b are connected in Ω̂δ ∩BC(b, r)},

B
Ω̂δ(b, r) := {z ∈ Ω̂δ : ρ

Ω̂δ(b, z) < r}. (3.2.10)

Note that ρΩ(b, z) is a continuous function of z ∈ Ω. Moreover,

ρΩ(b, z) < r ⇒ ρ
Ω̂δ(b, z) < r for small enough δ (3.2.11)

since a path connecting z to b inside Ω ∩ BC(b, r) eventually belongs to Ω̂δ except,
possibly, a tiny portion near b. As we assume that bδ is a close approximation of the
prime end b, the implication (3.2.11) follows.

Let γδH := ϕ
Ω̂δ(γ

δ) be the conformal images of LERW trajectories γδ, considered
as continuous paths in the upper half-plane H. These continuous simple curves can be
canonically parameterized by the so-called half-plane capacity of their initial segments.
Namely, a uniformization map gt : H∖ γδH[0, t]→ H normalized at infinity is required to
have the asymptotics gt(z) = z + 2tz−1 +O(|z|−2) as |z| → ∞.

Given t > 0 we define a random variable nδt to be the first integer such that the
half-plane capacity of ϕ

Ω̂δ(γ
δ[0, n]) is greater or equal than t. Further, given a small

enough r > 0 we define nδt,r to be the minimum of nδt and the first integer such
that γδ(n) ∈ B

Ω̂δ(b, r). Clearly, both nδt and nδt,r are stopping times with respect
to the filtration Fn := σ(γδ[0, n]). We set Ωδt (resp. Ωδt,r) to be the connected com-
ponent of Ωδ ∖ γδ[0, nδt ] (resp. Ωδ ∖ γδ[0, nδt,r]) including b and aδt := γδ(nδt ) (resp.
aδt,r := γδ(nδt,r)).

The following lemma guarantees that the change of the parametrization from in-
tegers nδt to the half-plane capacity t does not create big jumps. The proof given
below is based upon compactness arguments though one can use standard estimates
(e.g., see [BN16, Proposition 6.5]) of capacity increments in the upper half-plane H in-
stead. However, it is worth noting that one does not have an immediate a priori bound
of diam(γδH[0, n

δ
t,r]) in the situation when the curve γδ approaches b along the boundary

of Ωδ, which might require to introduce additional stopping times to handle this scenario
explicitly.

Lemma 3.2.2. Let (Ω̂δ; aδ, bδ) approximate (Ω; a, b) as described above. Then, for each
r > 0, the increments of the half-plane capacities of the slits ϕ

Ω̂δ(γ
δ[0, n]) are uniformly

(in both γδ andn) small as δ → 0 provided that γδ[0, n] do not enter the vicinitiesB
Ω̂δ(b, r)

of the target point b. In particular, the capacities of the slits ϕ
Ω̂δ(γ

δ[0, nδt,r]) are uniformly
bounded by t+o(1) as δ → 0.

Proof. The set of all simply connected domains Ω̂δ ∖ γδ[0, n] under consideration is
precompact in the Carathéodory topology (with respect to points near b). Suppose
on the contrary that the one-step increments of the half-plane capacities ofϕ

Ω̂δ(γ
δ[0, n])

do not vanish as δ → 0 for a sequence of curves γδ[0, nδ] such that γδ[0, nδ−1] ∩
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B
Ω̂δ(b, r) = ∅. By compactness, one can find a subsequence along which Ω̂δ ∖

γδ[0, nδ] converge in the Carathéodory sense (with respect to points near b). Clearly,
Ω̂δ∖γδ[0, nδ−1] converge to the same limit and hence one can find conformal home-
omorphisms

Ω̂δ ∖ γδ[0, nδ] → Ω̂δ ∖ γδ[0, nδ−1]

that become arbitrary close to the identity on each compact subset K ⊂ BΩ(b, r),
note that one necessarily hasK ⊂ B

Ω̂δ(b, r) for small enough δ due to (3.2.11). Due
to (3.2.9), this implies that the conformal maps

H∖ϕ
Ω̂δ(γ

δ[0, nδ])
ϕ−1

Ω̂δ−→ Ω̂δ ∖ γδ[0, nδ] → Ω̂δ ∖ γδ[0, nδ−1]
ϕ
Ω̂δ−→ H∖ϕ

Ω̂δ(γ
δ[0, nδ−1])

become (as δ → 0) arbitrary close to the identity on compact subsets of the fixed
vicinity ϕΩ(BΩ(b, r)) of∞ in the upper half-plane. This contradicts to the assump-
tion that the half-plane capacities of ϕ

Ω̂δ(γ
δ[0, nδ−1]) and ϕ

Ω̂δ(γ
δ[0, nδ]) differ by a

constant amount as δ → 0.

3.2.3 . Chordal SLE(2) and topologies of convergence
We now discuss a few basic facts on the construction of SLE curves, the interested

reader is referred to [BN16, Kem17, Law05] for more details. Let γH be a continuous non-
self-crossing curve in the upper half-plane H := {z ∈ C : Imz > 0}, growing from 0 to∞.
Let H∖Kt denote the connected component of H∖ γH[0, t] containing ∞ (if γH is not
only non-self-crossing but also non-self-touching, then Kt = γH[0, t]). Assume that γH
is parameterized by half-plane capacity so that the conformal map gt : H ∖ Kt → H
(normalized at ∞) has the asymptotics gt(z) = z + 2tz−1 + O(|z|−2) as |z| → ∞.
Then there exists a unique real-valued function ξt, called the driving term, such that the
following equation, called the Loewner evolution equation, is satisfied:

∂tgt(z) =
2

gt(z)− ξt
for all z ∈ H∖Kt, (3.2.12)

where we use the shorthand notation ∂t for the partial derivative in t. Vice versa, given
a nice function ξt one can reconstruct the growing family Kt and, further (under some
assumptions on ξt), the curve γH by solving (3.2.12) with g0(z) = z.

Classical SLEH(2) curves in the upper half-plane correspond to random driving terms
ξt =

√
2Bt, where (Bt)t≥0 is a standard Brownian motion. It is known that

— almost surely, SLEH(2) is a simple curve in the upper half plane H, see [RS05];

— almost surely, the Hausdorff dimension of SLEH(2) is equal to 5
4 , see [Bef08].

Moreover, one can use the corresponding Minkowski content of the initial segments
of SLEH(2) to introduce the so-called natural parametrization of these curves,
see [LR15].

Generally, given a simply connected domain Ω with boundary points (prime ends)
a, b ∈ Ω, chordal SLEΩ curves from a to b in Ω are defined as preimages of SLEH under
a conformal uniformization ϕΩ : Ω→ H satisfying ϕΩ(a) = 0 and ϕΩ(b) =∞. Note that
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this definition does no require to fix a normalization of ϕΩ due to the scale invariance of
the law of SLEH curves.

When speaking about the tightness of random curves in (Ωδ; aδ, bδ) we rely upon a
powerful framework developed by Kemppainen and Smirnov in [KS17] as well as upon a
recent work of Karrila [Kar18] (in which the behaviour in vicinities of the endpoints a, b is
discussed). Let ξδ be a random driving term corresponding via (3.2.12) to the conformal
images γδH := ϕ

Ω̂δ(γ
δ) of LERWs in (Ωδ; aδ, b). It is known since the work [AB99] of

Aizenman and Burchard (see also [LSW04a]) that appropriate crossing estimates imply
that

1. the family of random curves γδ (except maybe in vicinities of endpoints) is tight in
the topology induced by the metric minψ1,ψ2 ∥γ1 ◦ψ1− γ2 ◦ψ2∥∞, with minimum
taken over all parametrizations ψ1, ψ2 of two curves γ1, γ2.

The results of Kempainen and Smirnov (see [KS17, Theorem 1.5 and Corollary 1.7] as
well as [KS17, Section 4.5] where the required crossing estimates are checked for the
loop-erased random walks) give much more:

2. the driving terms ξδ are tight in the space of continuous functions on [0,∞) with
topology of uniform convergence on compact intervals [0, T ];

3. the curves γδH are tight in the same topology as in (1);

4. the curves γδH, parameterized by capacity, are tight in the space of continuous
functions on [0,∞) with topology of uniform convergence on [0, T ].

Moreover, a weak convergence in one of the topologies (2)–(4) imply the convergence in
two others. Furthermore, provided that (Ω̂δ; aδ, b) converge to (Ω; a, b) in the Carathéodory
sense so that aδ and bδ = b are close approximations of degenerate prime ends a and b
of Ω, the following holds:

5. if a sequence of random curves γδH converges weakly in the topologies (2)–(4) to a
random curve γH then γδ also converges weakly to a random curve which, almost
surely, is supported on the limiting domain Ω due to [KS17, Corollary 1.8], and
has the same law as ϕ−1

Ω (γH) due to [Kar18, Theorem 4.4].

3.2.4 . Convergence of classical LERW to chordal SLE(2)
To keep the presentation self-contained, in this section we sketch (a variant of the

strategy used in [HK13, Wer09]) a proof of the classical result: convergence of the usual
loop-erased random walks to SLE(2), in the setup of Theorem 3.1.1 discussed in the
introduction.

As discussed above, the family of LERW probability measures on (Ωδ; aδ, b) is tight,
provided that the curves γδ are parameterized by the half-plane capacities of their confor-
mal images ϕ

Ω̂δ(γ
δ) in (H; 0,∞). Since the space of continuous functions is metrizable

and separable, by Skorokhod representation theorem, we can suppose that for each weakly
convergent subsequence of these measures we also have γδ → γ almost surely.

Let τr := inf{t > 0 : γ(t) ∈ BΩ(b, r)} and τ δr be the similar stopping times (in the
half-plane capacity parametrization) for the discrete curves γδ. It is not hard to see that
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for each (as for now, unknown) law P of γ on the set of continuous parameterized curves,
the following statement holds:

for almost all r > 0 one almost surely has τ δr → τr. (3.2.13)

To prove (3.2.13), let us consider a continuous process t 7→ ρt := ρΩ(b, γ(t)). Since the
curves γδ converge to γ in the capacity parametrization, one has τ δr → τr unless ρt has a
local minimum at level r. (Indeed, note that the inequality lim supδ→0 τ

δ
r ≤ τr is trivial:

if γ enters the open set BΩ(b, r), then so γδ (with small enough δ) do; no later than
approximately at the same time. On the other hand, if ρt does not have a local minimum
at level r, then for each ε > 0 one can find η(ε) > 0 such that ρt ≥ r + η(ε) for all
t ≤ τr − ε, which gives lim infδ→0 τ

δ
r ≥ τr − ε.) The set of locally minimal values of a

continuous function ρt is at most countable since each such a value r is the minimum of
ρt over a rational interval. In particular,

µLeb({r > 0 : ρt has a local minimum at level r}) = 0,

for each continuous function t 7→ ρt and thus (almost) surely in the context of random
processes under consideration. Therefore,

P[ the process ρt has a local minimum at level r ] = 0 for almost all r > 0,

due to the Fubini theorem for the product measure P× µLeb, which implies (3.2.13).
Let t > 0 and assume that r > 0 is chosen according to (3.2.13) so that, almost

surely, τ δs,r := s ∧ τ δr → s ∧ τr and hence γδ[0, nδs,r] → γ[0, s ∧ τr] for all s ∈ [0, t]; see
Lemma 3.2.2. Let

v ∈ BΩ(b,
1
2r).

The martingale property of the discrete observables (3.2.6) gives

E
[
M δ

Ωδ
t,r
(vδ)f(γδ[0, nδs,r])

]
= E

[
M δ

Ωδ
s,r
(vδ)f(γδ[0, nδs,r])

]
, (3.2.14)

where f is a bounded continuous test function on the space of curves. We now pass to
the limit (as δ → 0) in this identity using the following two facts:

— If γδ[0, nδt,r]→ γ[0, t ∧ τr], then

M δ
Ωδ

t,r
(vδ) → PΩ∖γ[0,t∧τr](v) := −

1

π
Im

1

gt∧τr(ϕ(v))− ξt∧τr
(3.2.15)

as δ → 0. We discuss such convergence results in Section 3.3 (see Proposi-
tion 3.3.14 for this concrete statement).

— The martingale observables are uniformly (with respect to δ and all possible reali-
sations of γδ[0, nδt,r]) bounded. Indeed, Lemma 3.2.4 implies that

M δ
Ωδ

s,r
(vδ) =

ZΩδ
s,r
(aδs,r, v

δ)

ZΩδ
s,r
(aδs,r, b)

· ZΩδ(oδ, b) ≤ const · ZΩδ(oδ, b)

ZΩδ
s,r
(vδ, b)
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with a universal multiplicative constant and

ZΩδ(oδ, b)

ZΩδ
s,r
(vδ, b)

≤ ZΩδ(oδ, b)

ZB
Ωδ (b,r)(v

δ, b)
→ GΩ(0, b)

GBΩ(b,r)(v, b)
< +∞

as δ → 0 due to Corollary 3.3.8 (which allows one to replace b by an inner point bεr
lying close enough to b, cf. the proof of Proposition 3.3.5) and Corollary 3.3.3
(which provides the convergence of Green’s functions); see also (3.3.7) for a dis-
cussion of the ratio of two harmonic functions GΩ(0, ·) and GBΩ(b,r)(v, ·) at/near
the (degenerate) prime end b.

Passing to the limit δ → 0 in (3.2.14) we are now able to conclude that, for each r > 0,
the (continuous, uniformly bounded) process

PΩ∖γ[0,t∧τr](v) is a martingale for each v ∈ BΩ(b,
1
2r). (3.2.16)

We now claim that the real-valued process ξt∧τr is a continuous local semi-martingale
since it can be uniquely reconstructed as a certain deterministic function(

ImZ1 − ξ
|Z1 − ξ|2

,
ImZ2 − ξ
|Z2 − ξ|2

, Z1 , Z2

)
7→ ξ

of continuous martingales (3.2.15) evaluated at two distinct points v1, v2 ∈ BΩ(b,
1
2r)

and differentiable (complex-valued) processes Z1 :=gt∧τr(ϕ(v1)), Z2 :=gt∧τr(ϕ(v2)).
In particular, we can apply the Itô calculus to observables (3.2.15). Using the Loewner

equation (3.2.12) and Itô’s lemma, one gets the following formula:

dPΩ∖γ[0,t∧τr](v) = − 1

π
d Im

1

gt∧τr(ϕ(v))− ξt∧τr

= − 1

π
Im

[
dξt∧τr

(gt∧τr(ϕ(v))− ξt∧τr)2
+

d⟨ξ, ξ⟩t∧τr − 2d(t ∧ τr)
(gt∧τr(ϕ(v))− ξt∧τr)3

]
(here and below we use the sign d for the stochastic differential). As this process should
be a martingale for each v ∈ BΩ(b,

1
2r), the only possibility is that

both processes ξt∧τr and ⟨ξ, ξ⟩t∧τr − 2d(t ∧ τr) are (local) martingales.

Since τr → +∞ almost surely, one concludes that ξt
(d)
=
√
2Bt by the Lévy theorem.

Remark 3.2.3. The martingale property (3.2.16) can be directly generalized to the
massive setup. Namely, for each subsequential limit (in the same topologies as
above) of massive LERW on (Ωδ; aδ, bδ) and each v ∈ BΩ(b,

1
2r) the following holds:

the process t 7→ P
(m)
Ω∖γ[0,t∧τr](v) ·N

(m)
Ω∖γ[0,t∧τr] is a martingale, (3.2.17)

where the massive Poisson kernels P (m)(·) are defined by (3.3.12) and the additional
(random) normalization factors N (m) are given by (3.3.18). In order to prove (3.2.17)
one mimics the arguments given above basing upon
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— the convergence, as δ → 0, of massive martingale observables (3.2.6) to mul-
tiplies of massive Poisson kernels P (m)

Ω∖γ[0,t∧τr](·); this convergence is provided
by Proposition 3.3.16;

— the uniform boundedness of massive observables (until time t ∧ τr), which
follows from Corollary 3.2.8 and the uniform boundedness of massless ones.

We identify the law of ξt in the massive setup in Section 3.4.3 using (3.2.17) in the
same spirit as discussed above in the classical situation; see Lemma 3.4.9.

3.2.5 . The density of mLERW with respect to the classical LERW
Given a discrete domain (Ωδ; aδ, bδ) and m < δ−1, denote by P(Ωδ;aδ,bδ)[γ

δ] and

P(m)

(Ωδ;aδ,bδ)
[γδ] the probabilities that a simple lattice path γδ running from aδ to bδ in-

side Ωδ appears as a classical (m = 0) or a massive LERW trajectory, respectively.

Lemma 3.2.4. Let Ωδ be a simply connected discrete domain, aδ, bδ ∈ ∂Ωδ (where the
boundary ∂Ωδ of Ωδ is understood as in (3.2.3)), and vδ ∈ IntΩδ . Then, the following
estimate holds:

ZΩδ(aδ, vδ)ZΩδ(vδ, bδ)

ZΩδ(aδ, bδ)
≤ const,

with a universal (i.e., independent of Ωδ , aδ , bδ , and vδ) constant.

Proof. E.g., see [Che16, Proposition 3.1] which claims that the left-hand side is uni-
formly comparable to the probability that the random walk trajectory started at aδ
and conditioned to exit Ωδ at bδ intersects the ball B(vδ, 13dist(v

δ, ∂Ωδ)).

Proposition 3.2.5. There exists a universal constant c0 > 0 such that, for each discrete
domain Ωδ⊂B(0, R), boundary points aδ, bδ∈ ∂Ωδ andm ≤ 1

2δ
−1, one has

Z
(m)

Ωδ (aδ, bδ)/ZΩδ(aδ, bδ) ≥ exp(−c0m2R2), (3.2.18)

where the massive random walk partition function Z
(m)

Ωδ is defined by (3.2.4).

Proof. By Jensen’s inequality,

Z
(m)

Ωδ (aδ, bδ)

ZΩδ(aδ, bδ)
= ESRW(Ωδ;aδ,bδ)[(1−m2δ2)#π

δ
] ≥ (1−m2δ2)

E
SRW(Ωδ ;aδ,bδ)

[#πδ]
,

where the expectation is taken over simple randomwalks (SRW) πδ started at aδ and
conditioned to exit Ωδ at bδ , whereas Lemma 3.2.4 gives

ESRW(Ωδ;aδ,bδ)[#π
δ] + 1 =

∑
vδ∈IntΩδ

ZΩδ(aδ, vδ)ZΩδ(vδ, bδ)

ZΩδ(aδ, bδ)
≤ const · δ−2R2.

The desired uniform estimate (3.2.18) follows easily.
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Corollary 3.2.6. LetD(m)

(Ωδ;aδ,bδ)
(γδ) := P(m)

(Ωδ;aδ,bδ)
(γδ)/P(Ωδ;aδ,bδ)(γ

δ). Then,

(i) D(m)

(Ωδ;aδ,bδ)
(γδ) ≤ exp(c0m

2R2), for each simple path γδ from aδ to bδ in Ωδ ;

(ii) E(Ωδ;aδ,bδ)

[
logD

(m)

(Ωδ;aδ,bδ)
(γδ)

]
≥ −c0m2R2, where the expectation is taken over the

classical LERW measure P(Ωδ;aδ,bδ).

Proof. (i) By definition,

D
(m)

(Ωδ;aδ,bδ)
(γδ) =

∑
πδ:LE(πδ)=γδ(

1
4(1−m

2δ2))#π
δ∑

πδ:LE(πδ)=γδ(
1
4)

#πδ · ZΩδ(aδ; bδ)

Z
(m)

Ωδ (aδ; bδ)
,

where LE denotes the loop-erasure procedure applied to the simple random walk
trajectory πδ. The estimate (3.2.18) gives the desired uniform upper bound.
(ii) By Jensen’s inequality and since ZΩδ(aδ, bδ)/Z

(m)

Ωδ (aδ, bδ) ≥ 1, one has

E(Ωδ;aδ,bδ)

[
logD

(m)

(Ωδ;aδ,bδ)
(γδ)

]
≥ log(1−m2δ2) · ESRW(Ωδ;aδ,bδ)[#π

δ],

where the first expectation is taken with respect to the LERW measure while the
second is with respect to the simple random walk measure on the set SΩδ(aδ, bδ).
The proof is completed in the same way as the proof of Proposition 3.2.5.

Below we also need the following extension of Lemma 3.2.4 and Proposition 3.2.5.

Lemma 3.2.7. Let Ωδ be a discrete domain, zδ, wδ ∈ Ωδ and vδ ∈ IntΩδ . Then,

ZΩδ(wδ, vδ)ZΩδ(vδ, zδ)

ZΩδ(wδ, zδ)
≤ const · (1 + ZΩδ(wδ, vδ) + ZΩδ(vδ, zδ)), (3.2.19)

with a universal (i.e., independent of Ωδ , wδ , zδ , and vδ) constant.

Proof. Denote dΩδ(vδ) := dist(vδ, ∂Ωδ). Standard estimates imply that

ZΩδ(wδ, vδ) ≤ const · ZΩδ(wδ, zδ) if |zδ − vδ| ≤ 1
3dΩδ(vδ) and |zδ − vδ| ≤ |wδ − vδ|.

(Indeed, if |wδ−vδ| ≥ 2
3dΩδ(vδ), then both sides are comparable due to the Harnack

principle, otherwise one hasZΩδ(wδ, vδ) ≤ const·ZΩδ(zδ, vδ) ≤ const·ZΩδ(zδ, wδ)). In
particular, this proves the desired estimate in the situationwhen zδ (or, similarly,wδ)
is within 1

3dΩδ(vδ) distance from vδ.
To handle the casewhen bothwδ and zδ are at least 1

3dΩδ(vδ) apart from vδ , note
that the ratio of two positive discrete harmonic functions satisfies the maximum
principle: if the inequality H1 ≤ CH2 holds at all neighbors of a given vertex, then
it also holds at this vertex since the functionH1 − CH2 is discrete harmonic.

Therefore, the left-hand side of (3.2.19) satisfies the maximum principle in both
variables wδ and zδ; is uniformly bounded due to Lemma 3.2.4 if both wδ, zδ ∈
∂Ωδ; and is also uniformly bounded if at least one of these two vertices is at dis-
tance 1

3dΩδ(vδ) from vδ due to the argument given above.
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Corollary 3.2.8. There exists a universal constant c0 > 0 such that, for each discrete
domain Ωδ ⊂ B(0, R), two vertices wδ, zδ ∈ Ωδ andm ≤ 1

2δ
−1, one has

Z
(m)

Ωδ (wδ, zδ)/ZΩδ(wδ, zδ) ≥ exp(−c0m2R2).

Proof. The proof mimics the proof of Proposition 3.2.5. Indeed, one has

ESRW(Ωδ;zδ,wδ)[ #π
δ ] ≤ const ·

∑
vδ∈IntΩδ

(1 + ZΩδ(wδ, vδ) + ZΩδ(vδ, zδ)) ≤ const · δ−2R2

due to Lemma 3.2.7 and standard estimates of the discrete Green functions.

3.2.6 . Absolute continuity of mSLE(2) with respect to SLE(2)
As discussed in Section 3.2.3, the classical LERW probability measures P(Ωδ;aδ,bδ) on

curves in discrete approximations (Ωδ; aδ, bδ) are tight. Moreover (see Section 3.2.4),
the only possible weak limit of P(Ωδ;aδ,bδ), as δ → 0, is given by the SLE(2) measure on
curves in (Ω; a, b), which we denote by P(Ω;a,b). Due to Corollary 3.2.6(i), the densities

D
(m)

(Ωδ;aδ,bδ)
(γδ) = P(m)

(Ωδ;aδ,bδ)
(γδ)/P(Ωδ;aδ,bδ)(γ

δ)

of the massive LERW measures on curves in (Ωδ; aδ, bδ) with respect to the classical ones
are uniformly bounded from above by exp(c0m

2R2). Therefore, the measures P(m)

(Ωδ;aδ,bδ)

are also tight in the topologies discussed in Section 3.2.3.

Lemma 3.2.9. (i) Each subsequential weak limit P(m)
(Ω;a,b) of the massive LERW mea-

sures P(m)

(Ωδ;aδ,bδ)
is absolutely continuous with respect to the SLE(2) measure P(Ω;a,b).

The Radon–Nikodym derivativeD(m)
(Ω;a,b) := dP(m)

(Ω;a,b)/dP(Ω;a,b) is (almost surely) bounded
from above by exp(c0m2R2), with the same constant c0 as in Corollary 3.2.6.
(ii) Moreover, one has E(Ω;a,b)[ logD

(m)
(Ω;a,b) ] ≥ −c0m

2R2. In particular, the measures
P(m)
(Ω;a,b) and P(Ω;a,b) are mutually absolutely continuous.

Proof. Denote C := exp(c0m
2R2). Both results can be easily deduced from Corol-

lary 3.2.6 by passing to the limit δ → 0. As probability measures on metrizable
spaces are always regular, each Borel setA can be approximated by a compact sub-
set F ⊂ A. In its turn, F can be approximated by its open ε-neighborhood F ε that
can be without loss of generality assumed to be a continuity set for both measures
under consideration. The first claim easily follows since

P(m)
Ω [F ε] = lim

δ→0
P(m)

Ωδ [F ε] ≤ C · lim
δ→0

PΩδ [F ε] = C · PΩ[F
ε]

for such approximations ofA, here and below we writeΩ instead of (Ω; a, b) andΩδ

instead of (Ωδ; aδ, bδ) for shortness. Therefore, P(m)
Ω [A] ≤ C · PΩ[A] for each Borel

set A. To prove (ii), note that

EΩ[ logD
(m)
Ω ] = inf

Ak−disjoint :PΩ(∪n
k=1Ak)=1

{ n∑
k=1

PΩ[Ak] log
P(m)
Ω [Ak]

PΩ[Ak]

}
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and approximate each Ak by F εk as explained above. Provided that ε > 0 is small
enough (depending on the choice of Fk), the sets F εk are still disjoint and hence

EΩδ [ logD
(m)

Ωδ ] ≤
n∑
k=1

PΩδ [F εk ] log
P(m)

Ωδ [F εk ]

PΩδ [F εk ]
+ (1− PΩδ

[
∪nk=1F

ε
k

]
) · logC.

The proof is completed by applying the uniform estimate EΩδ [ logD
(m)

Ωδ ] ≥ − logC

provided by Corollary 3.2.6(ii), passing to the limit δ → 0, and then passing to the
limit in the choice of approximations F εk of a given disjoint collection Ak.

We now discuss how the law of the driving term ξt =
√
2Bt of SLE(2) changes when

the measure P(Ω;a,b) is replaced by P(m)
(Ω;a,b). Let

D
(m)
t := E[D(m)

(Ω;a,b) | Ft ],

where Ft denotes the (completed) canonical filtration of the Brownian motion Bt.
Since D(m)

(Ω;a,b) > 0 almost surely, D(m)
t is a continuous martingale taking (strictly) pos-

itive values (e.g., see [LG13, p. 107]). Therefore (see [LG13, Proposition 5.8]), there
exists a unique continuous local martingale L(m)

t such that

D
(m)
t = exp

(
L
(m)
t − 1

2⟨L
(m), L(m)⟩t

)
(3.2.20)

and the Girsanov theorem (see [LG13, Theorem 5.8]) implies that

ξt =
√
2 · (Bt + ⟨B,L(m)⟩t) under P(m)

(Ω;a,b) . (3.2.21)

Let τn →∞ be stopping times that localize L(m)
t . Jensen’s inequality (which can be

applied due to Lemma 3.2.9(i)) and Lemma 3.2.9(ii) imply that

E[12⟨L
(m), L(m)⟩∞] = lim

τn→∞
E[− logD(m)

τn ] ≤ E[− logD
(m)
(Ω;a,b)] ≤ c0m

2R2. (3.2.22)

In particular, ⟨L(m), L(m)⟩∞ < +∞ a. s. In fact, a posteriori one can deduce from
Theorem 3.1.1 that ⟨L(m), L(m)⟩∞ ≤ const(m,R) < +∞ a. s. (see Remark 3.4.10).
Note however that we need some a priori information on L(m) to prove this theorem.

Remark 3.2.10. Bydefinition, the process (D(m)
t )−1 is a localmartingale underP(m)

(Ω;a,b).
Assume that, for an adapted process λt, one has

d(D
(m)
t )−1 = −

√
2λt · (D(m)

t )−1 · dBt under P(m)
(Ω;a,b) . (3.2.23)

Due to (3.2.20), this implies that the martingale part of the process Lt (which is a
semi-martingale under P(m)

(Ω;a,b)) is
√
2λtdBt and hence

dξt =
√
2dBt + 2λtdt under P(m)

(Ω;a,b).
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Therefore, in order to find the law of ξt it is enough to identify λt in (3.2.23). It is
worth noting that in themassive setup

(D
(m)
t )−1 ̸= lim

δ→0

(
ZΩδ

t
(aδt , b

δ)/Z
(m)

Ωδ
t
(aδt , b

δ)
)
=: N

(m)
t ,

a standard identity, e.g., in themultiple SLE context. The reason is that the totalmass
of massive RW loops attached to the tip aδt is strictly smaller than the mass of the
critical ones. Because of that, the process N (m)

t actually has a negative drift (which
can be computed explicitly, see (3.4.20)) and one cannot easily deduce Theorem3.1.1
relying only upon the analysis of this process; cf. Remark 3.4.11.

3.3 . Convergence of martingale observables

3.3.1 . Convergence of discrete harmonic functions

In this section we recall two useful results from [CS11]: convergence of the discrete
Green functions ZΩδ(uδ, vδ) and of the discrete Poisson kernels ZΩδ(aδ, uδ)/ZΩδ(aδ, vδ)

as Ω̂δ → Ω, where u, v are inner points and a is a boundary point (more accurately, a
prime end) of Ω. Recall that we denote by Ω̂δ the polygonal representation of a discrete
domain Ωδ.

Definition 3.3.1. LetΩ ⊂ C be a simply connected bounded domain and r > 0. We say
that points u, v ∈ Ω are jointly r-inside Ω if they can be connected by a path Luv ⊂ Ω

such that dist(Luv, ∂Ω) > r. In other words, u and v belong to the same connected
component of the r-interior of Ω.

In what follows, we assume that all domains under considerations are uniformly
bounded. This assumption is mostly technical; in particular, it slightly simplify the dis-
cussion of subsequential limits of Ω̂δ in the Carathéodory topology, which is useful when
speaking about uniform (with respect to Ω̂δ) estimates; cf. [CS11].

Proposition 3.3.2. Let 0 < r < R be fixed. There exists a function ε(δ) = ε(δ, r, R),
defined for small enough δ ≤ δ0(r,R), such that ε(δ) → 0 as δ → 0 and that the
following is fulfilled for all simply connected discrete domains Ω̂δ ⊂ B(0, R) and all
pairs of points uδ, vδ lying jointly r-inside Ω̂δ and such that |uδ − vδ| ≥ r:

|ZΩδ(uδ, vδ)−GΩ̂δ(u
δ, vδ)| ≤ ε(δ). (3.3.1)

Proof. This follows from (a more general in several aspects) uniform convergence
result provided by [CS11, Corollary 3.11] and the convergence of the discrete full-
plane Green function on the rescaled grid δZ to − 1

2π log |u
δ − vδ| (up to a constant)

for r ≤ |uδ − vδ| ≤ 2R and δ → 0, the latter being a standard fact of the discrete
potential theory on the square grid.
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Corollary 3.3.3. Let Ω ⊂ B(0, R) be a simply connected planar domain and u, v ∈ Ω

be two distinct points of Ω. Assume that discrete domains Ω̂δ ⊂ B(0, R) approximate Ω
(in the Carathéodory topology with respect to u or v) as δ → 0. Then,

ZΩδ(uδ, vδ) → GΩ(u, v) as δ → 0. (3.3.2)

Moreover, for each r > 0 this convergence is uniform provided that u and v are jointly r-
inside Ω and |u− v| ≥ r.

Proof. Let Luv ⊂ Ω be a path connecting u and v inside Ω and r := 1
2dist(Luv, ∂Ω).

It follows from the Carathéodory convergence of Ω̂δ to Ω that uδ and vδ are jointly
r-inside ofΩδ provided that δ is small enough. Since (the continuous) Green function
is conformally invariant,G

Ω̂δ(u
δ, vδ)→ GΩ(u, v) as δ → 0 uniformly for such u and v

and thus the claim trivially follows from (3.3.1).

Remark 3.3.4. In Section 3.3.3 we prove an analogue of (3.3.2) in the massive setup
along the lines of [CS11] though do not discuss an analogue of (3.3.1). Note that
in [CS11] the uniform estimate (3.3.1) is actually deduced from (3.3.2) by compactness
arguments; cf. the proofs of Proposition 3.3.5 and Corollary 3.3.6 discussed below.

Proposition 3.3.5. Let 0 < r < R be fixed. There exists a function ε(δ) = ε(δ, r, R),
defined for small enough δ ≤ δ0(r,R), such that ε(δ) → 0 as δ → 0 and that the fol-
lowing is fulfilled for all simply connected discrete domains Ω̂δ ⊂ B(0, R), all boundary
points aδ , and all inner points uδ, vδ ∈ Ωδ lying jointly r-inside Ω̂δ :∣∣∣∣ ZΩδ(aδ, uδ)

ZΩδ(aδ, vδ)
−
P
Ω̂δ(a

δ, uδ)

P
Ω̂δ(aδ, vδ)

∣∣∣∣ ≤ ε(δ), (3.3.3)

where P
Ω̂δ(a

δ, ·) denotes the Poisson kernel in the polygonal representation Ω̂δ with
mass at the point aδ ∈ ∂Ω̂δ , note that its normalization is irrelevant for (3.3.3).

Proof. This result is provided (again, in a stronger form) by [CS11, Theorem 3.13]. For
completeness of the exposition we sketch the key ingredients of this proof, which
goes by contradiction. If the uniform estimate (3.3.3) was wrong, it would fail (for
a fixed ε0 > 0) along a sequence of configurations (Ωδ; aδ, uδ, vδ) with δ → 0. As
the set of all simply connected domains Λ satisfying B(u, r) ⊂ Λ ⊂ B(0, R) is com-
pact in the Carathéodory topology, we could pass to a subsequence and assume
that (Ω̂δ; aδ, uδ, vδ) → (Ω; a, u, v) as δ → 0 in the Carathéodory sense, with u and v
being jointly r-insideΩ. The ratio of Poisson kernelsPΛ(a, u)/PΛ(a, v) is conformally
invariant and so is stable under this convergence. Thus, it is enough to prove that

ZΩδ(aδ, uδ)

ZΩδ(aδ, vδ)
→ PΩ(a, u)

PΩ(a, v)
as (Ω̂δ; aδ, uδ, vδ)

Cara−→ (Ω; a, u, v) (3.3.4)

in order to obtain a contradiction, where u, v ∈ Ω and a is a prime end of Ω.
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Let d > 0 be small enough and let a point ad be chosen so that the circle
∂B(ad,

1
2d) separates the prime end a from u and v in Ω. Since (Ωδ; aδ) converges

to (Ω; a), the circle ∂B(ad, d) then separates aδ from uδ and vδ in Ω̂δ , for all suffi-
ciently small δ. Let Lδd ⊂ ∂B(ad, d) denote the arc separating uδ and vδ from aδ and
all the other arcs forming the set ∂B(ad, d) ∩ Ω̂δ , in other words this is the first arc
of ∂B(ad, d) ∩ Ω̂δ to cross for a path running from, say, uδ to aδ; see [CS11, Fig. 4].

Denote byΩδ3d the connected component ofΩδ∖B(ad, 3d) that contains vδ. The
key argument of the proof is the following uniform (for small enough δ) estimate:

max
uδ∈Ωδ

3d

ZΩδ(aδ, uδ)

ZΩδ(aδ, vδ)
≤ C(3d; Ω, a). (3.3.5)

We refer the reader to [CS11, pp. 26–27] for the proof of this statement which is
basedon the fact that the discrete harmonicmeasureωδ(vδ;Kδ

3d; Ω
δ
d)of eachpathKδ

3d

started in Ωδ3d and running to Lδd is uniformly bounded from below due to [CS11,
Theorem 3.12] and [CS11, Lemma 3.14]; note that uδ is not assumed to be located in
the r-interior of Ωδ in (3.3.5).

The proof can be now completed in a standard way. The (uniform in δ) weak-
Beurling estimate (see Lemma3.3.11) allows one to improve theuniformbound (3.3.5)
near the boundary of Ωδ:

ZΩδ(aδ, uδ)

ZΩδ(aδ, vδ)
≤ const · (dist(uδ, ∂Ωδ)/d)β · C(3d; Ω, a) for uδ ∈ Ωδ4d.

Since uniformly bounded discrete harmonic functions are also equicontinuous (cf.
Lemma 3.3.10), one can pass to a subsequence once again to get the (uniform on
compact subsets) convergence

ZΩδ(aδ, uδ)

ZΩδ(aδ, vδ)
→ h(u), u ∈

⋃
d>0

Ω4d = Ω.

Each subsequential limith is a positive harmonic function inΩnormalized so thath(v) =
1 and satisfies, for each d > 0, the same estimate

h(u) ≤ const · (dist(u, ∂Ω)/d)β · C(3d; Ω, a) for u ∈ Ω4d.

Thus, h has Dirichlet boundary conditions, except at the prime end a. These prop-
erties characterize the Poisson kernel h(u) = PΩ(a, u)/PΩ(a, v) uniquely.

Corollary 3.3.6. Let Ω ⊂ B(0, R) be a simply connected planar domain, a ∈ ∂Ω be
its prime end, and u, v ∈ Ω be two, not necessarily distinct, inner points. Assume that
discrete domains Ω̂δ ⊂ B(0, R) with marked boundary points aδ ∈ ∂Ωδ approximate
(Ω; a) in the Carathéodory topology with respect to u or v. Then,

ZΩδ(aδ, uδ)

ZΩδ(aδ, vδ)
→ PΩ(a, u)

PΩ(a, v)
as δ → 0. (3.3.6)

Moreover, for each r > 0 this convergence is uniform if u, v are jointly r-inside Ω.
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Proof. For a fixed pair u, v of points of Ω, this result is given by (3.3.4) and is a key
step of the proof of Proposition 3.3.5. The fact that the convergence is uniform pro-
vided that u and v are jointly r-inside Ω can be, for instance, deduced from (3.3.3)
and the conformal invariance of the Poisson kernel. Indeed, the Carathéodory con-
vergence of (Ω̂δ; aδ) to (Ω; a) implies that P

Ω̂δ(a, u)/PΩ̂δ(a, v) → PΩ(a, u)/PΩ(a, v)

as δ → 0, uniformly for such u and v.

3.3.2 . Boundary behavior of discrete harmonic functions
Since we work in the chordal setup, in order to prove the convergence of the martingale

observables (3.2.6) we need convergence results for (both classical and massive) Poisson
kernels normalized at the boundary. To make the exposition self-contained and accessible
to readers who are not familiar with the classical potential theory in 2D, we start this
section with a remark on the boundary behavior of continuous harmonic functions defined
in a vicinity BΩ(b, r) ⊂ Ω of its degenerate prime end b and satisfying the zero Dirichlet
boundary conditions on ∂BΩ(b, r) ∩ ∂Ω.

Given two such (positive) functions h1, h2 : BΩ(b, r) → R+, we claim that their
ratio h1/h2 is always continuous at b and we slightly abuse the notation by writing

h1(b)

h2(b)
:= limρΩ(b,z)→0

h1(z)

h2(z)
, (3.3.7)

Indeed, let ϕ : BΩ(b, r) → H be a conformal uniformization of BΩ(b, r) onto the upper
half-plane H such that ϕ(b) = 0. Both functions h1,2◦ϕ−1 are harmonic in the upper half-
plane H and have Dirichlet boundary values near 0. By the Schwarz reflection principle,
these functions must behave like c1,2 Im z+O(|z|2) as z → 0, which implies the existence
of the limit c1/c2 in (3.3.7). Below we prove a similar statement in discrete, uniformly
over all possible shapes of discrete domains Ωδ near b. To do this, we need additional
notation.

Let Ωδ be a simply connected discrete domain, o ∈ Ω̂δ, b ∈ ∂Ωδ, and r > 2δ be such
that o ̸∈ B

Ω̂δ(b, r). Consider a collection of arcs ∂B(b, r)∩Ω̂δ and denote by So(b, r) one
of these arcs that separates o from b in Ω̂δ; if there are several such arcs, then we take the
closest to b among them as So(b, r). (More precisely, we require that So(b, r) separates b
from all the other arcs from this sub-collection.) Let Ωδo(b, r) be the connected component
of Ωδ ∖ B(b, r) that contains the point o. Further, let Sδo(b, r

+), Sδo(b, r
−) ⊂ Ωδ be

the sets of vertices that are adjacent to the arc So(b, r) from outside and from inside,
respectively; see Fig. 3.2.

Lemma 3.3.7. There exists a universal constant k < 1 such that the following is ful-
filled. In the setup described above, for each pair of positive discrete harmonic func-
tionsH1, H2 : Ω

δ → R+ satisfying theDirichlet boundary conditions on ∂Ωδ ∖ ∂Ωδo(b, r),
one has

maxu,v∈Ωδ∖Ωδ
o(b,

1
2
r)

∣∣∣∣H1(u)H2(v)−H1(v)H2(u)

H1(u)H2(v) +H1(v)H2(u)

∣∣∣∣
≤ k ·maxx,y∈Sδ

o(b,r
+)

∣∣∣∣H1(x)H2(y)−H1(y)H2(x)

H1(x)H2(y) +H1(y)H2(x)

∣∣∣∣ .
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Figure 3.2 – Notation used in Lemma 3.3.7 and Corollary 3.3.8.

Proof. For shortness, denote Θδ(r) := Ωδ \ Ωδo(b, r) and Λδ(r) := Θδ(r) ∖ Θδ(12r);
see Fig. 3.2. Given a discrete harmonic functionH : Ωδ → R+ satisfying the Dirichlet
boundary conditions on ∂Ωδ ∖ ∂Ωδo(b, r) and a point u ∈ Ωδ ∖ Ωδo(b,

1
2r), one can

write

H(u) =
∑

x∈Sδ
o(b,r

+)

ZΘδ(r)(u, x)H(x) =
∑

x∈Sδ
o(b,r

+)

u′∈Sδ
o(b,

1
2
r−)

ZΘδ(r)(u, u
′)ZΛδ(r)(u

′, x)H(x),

where u′ stands for the last point in Θδ(12r) visited by a random walk trajectory
running from u to x. Applying this identity four times (for both functions H1, H2 as
well as for both points u, v) and rearranging terms one sees that

H1(u)H2(v)∓H1(v)H2(u)

=
1

2

∑
x,y∈Sδ

o(b,r
+)

u′,v′∈Sδ
o(b,

1
2
r−)

ZΘδ(r)(u, u
′)ZΘδ(r)(v, v

′)

× (ZΛδ(r)(u
′, x)ZΛδ(r)(v

′, y)∓ ZΛδ(r)(u
′, y)ZΛδ(r)(v

′, x))

× (H1(x)H2(y)∓H2(x)H1(y)).

LetM := maxx,y∈Sδ
o(b,r

+) |H1(x)H2(y) −H2(x)H1(y)|/(H1(x)H2(y) +H2(x)H1(y)).
Therefore, in order to derive the desired estimate

|H1(u)H2(v)−H1(v)H2(u)| ≤ kM · (H1(u)H2(v) +H1(v)H2(u)),

it is enough to prove that (uniformly in all the parameters involved)∣∣∣∣ZΛδ(r)(u
′, x)ZΛδ(r)(v

′, y)− ZΛδ(r)(u
′, y)ZΛδ(r)(v

′, x)

ZΛδ(r)(u
′, x)ZΛδ(r)(v

′, y) + ZΛδ(r)(u
′, y)ZΛδ(r)(v

′, x)

∣∣∣∣ ≤ k . (3.3.8)
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By construction, Λδ(r) is a simply connected domain. Without loss of generality,
assume that the boundary points u′, v′, y, x of Λδ(r) are listed in the counterclock-
wise order. Then, (3.3.8) is equivalent to the following uniform lower bound for the
discrete cross-ratio of the quadrilateral (Λδ(r);u′, v′, y, x):

XΛδ(r)(u
′, v′; y, x) :=

[
ZΛδ(r)(u

′, y)ZΛδ(r)(v
′, x)

ZΛδ(r)(u
′, x)ZΛδ(r)(v

′, y)

]1/2
≥
[
1− k
1 + k

]1/2
.

Due to [Che16, Proposition 4.5] and [Che16, Theorem 7.1], this estimate (with some
universal constant k < 1) follows from the following uniform lower bound on the
discrete extremal length (aka effective resistance) between the arcs [u′v′] and [xy]

in Λδ(r):

LΛδ(r)([u
′v′]Λδ(r); [xy]Λδ(r)) ≥ LΛδ(r)(S

δ
o(b,

1
2r

−), Sδo(b, r
+))

≥ const · 1
2π log 2 > 0,

which holds true since the discrete and the continuous extremal lengths are uni-
formly comparable to each other (e.g., see [Che16, Proposition 6.2]) and one can
replace the quadrilateral (Λδ(r);u′, v′, x, y) by the annulus B(b, r) ∖ B(b, 12r) using
monotonicity properties of the extremal length.

Corollary 3.3.8. In the same setup, let q ∈ N and r > 2qδ be such that o ̸∈ B
Ω̂δ(b, r).

Let H1, H2 : Ωδ → R+ be positive discrete harmonic functions satisfying the Dirichlet
boundary conditions on ∂Ωδ \ ∂Ωδo(b, r). Then, one has

maxu,v∈Ωδ\Ωδ
o(b,2

−qr)

H1(u)/H2(u)

H1(v)/H2(v)
≤ 1 + kq

1− kq
,

with the same universal constant k < 1 as in Lemma 3.3.7.

Proof. This estimate follows easily by iterating q times the result of Lemma 3.3.7,
(note that the ratio inside the absolute value is always less than 1), which gives
|H1(u)H2(v)−H2(u)H1(v)| ≤ kq · (H1(u)H2(v) +H2(u)H1(v)).

3.3.3 . Convergence of the massive Green function
In this section we prove an analogue of the uniform convergence (3.3.2) for massive

Green functions Z
(m)

Ωδ (uδ, vδ). To prove this result, Proposition 3.3.12, we need several
preliminary facts.

Lemma 3.3.9. Let (Xn)n∈N be a simple random walk with killing ratem2δ2 on δZ2. For
an annulusA = A(v0, r1, r2), denote byE(A) the event thatXn, started at v ∈ A∩δZ2,
makes a non-trivial loop around v0 before exiting A, that is, there exists 0 ≤ s < k <

τC∖A such thatXs = Xk andX|[s,k] is not null-homotopic in A. There exists a universal
constant such that one has

P(m)
v [E(A(v0, r, 2r)) ] ≥ const > 0

for all δ ≤ r ≤ m−1 and all v ∈ δZ2 such that 3
2r − δ ≤ |v − v0| ≤

3
2r + δ.
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Proof. The desired event can be easily constructed from a few events of a type that
a randomwalk started at the center u of a rectangle [u− 1

4r, u+
1
4r]× [u− 1

8r, u+
1
8r]

exists it through a prescribed side not dying along the way. As we require that the
killing ratem2δ2 is scaled accordingly to the mesh size and that r ≤ m−1, standard
estimates imply that the probability of each of these events is uniformly bounded
from below by a universal constant, independent of δ and r.

Given m > 0, we say that a function H is massive discrete harmonic at a vertex v ∈
δZ2 if

H(v) =
1−m2δ2

4

∑
v1∈δZ2:v1∼v

H(v1). (3.3.9)

Trivially, if H is positive, then it satisfies the maximum principle: H(v) cannot be bigger
than all four values H(v1) at v1 ∼ v. Using Lemma 3.3.9 one can easily prove a priori
regularity of massive discrete harmonic functions on δZ2.

Lemma 3.3.10. There exists universal constantsC, β > 0 such that the following holds:
for each positivemassive discrete harmonic functionH defined in the discB(v0, 2r)∩δZ2

with r ≤ m−1 and for each v1, v2 ∈ B(v0, r) ∩ δZ2 one has

|H(v2)−H(v1)| ≤ C · (|v2 − v1|/r)β ·maxv∈B(v0,2r)∩δZ2 H(v).

Proof. Without loss of generality, assume that |v2 − v1| ≤ 1
4r. The maximum princi-

ple yields the existence of a path γ connecting v2 to the boundary of B(v0, 2r) such
that the values of H along γ are larger than H(v2). Consider a family of concentric
annuli

Ak := A(v1, 2
k|v2 − v1|, 2k+1|v2 − v1|), k = 0, . . . , ⌊12 log2(r/|v2 − v1|)⌋.

Due to Lemma 3.3.9, for each k the probability that the random walk with killing
rate m2δ2 started from v1 is killed or does not hit γ while crossing Ak is uniformly
bounded away from 1. At the same time, standard estimates imply that the prob-
ability that this random walk is killed before crossing all Ak is uniformly bounded
from above by const·m2r|v2−v1| ≤ const·|v2−v1|/r. Hence, the probability that this
random walk hits γ before dying or exiting B(v0, 2r) is at least 1 − C(|v2 − v1|/r)β .
Therefore,

H(v1) ≥ [1− C(|v2 − v1|/r)β] ·H(v2),

with universal constants C, β > 0.

We also need the so-called weak-Beurling estimate which applies to both discrete
massive harmonic and usual (m = 0) discrete harmonic functions.

Lemma 3.3.11. Let Ωδ ⊂ δZ2 be a simply connected discrete domain, cδ ∈ ∂Ωδ be a
boundary point, and r ≤ m−1. Let H be discrete massive harmonic function defined
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in the r-vicinity BΩδ(c, r) of c in Ωδ and let H satisfy the Dirichlet boundary conditions
on ∂BΩδ(c, r) ∩ ∂Ωδ . There exist universal constants C, β > 0 such that one has

|H(v)| ≤ C · (ρΩδ(c, v)/r)β ·maxu∈B
Ωδ (c,r) |H(u)|

for all v ∈ BΩδ(c, r), where ρΩδ(c, v) and BΩδ(c, r) are defined by (3.2.10).

Proof. The proof is similar to the proof of Lemma 3.3.10: the simple random walk
with killing ratem2δ2 started at v hits ∂Ωδ or dies before reaching ∂BΩδ(c, r)∖ ∂Ωδ

with probability at least 1− C · (ρΩδ(c, v)/r)β .

We are now ready to prove an analogue of Proposition 3.3.2 for massive Green
functions. Given a simply connected domain Λ ⊂ C we denote by G(m)

Λ (u, v) the integral
kernel of the operator (−∆Λ + m2)−1, where ∆Λ stands for the Laplacian in Λ with
Dirichlet boundary conditions. In other words, the massive Green function G(m)

Λ (u, ·) is
the unique solution to the equation (−∆ + m2)G

(m)
Λ (u, ·) = δu(·), understood in the

sense of distributions, with Dirichlet boundary conditions at ∂Λ.

Proposition 3.3.12. Let Ω ⊂ B(0, R) be a simply connected planar domain and u, v ∈
Ω be two distinct points of Ω. Assume that discrete domains Ωδ ⊂ B(0, R) approximate
Ω (in the Carathéodory topology with respect to u or v). Then,

Z
(m)

Ωδ (uδ, vδ) → G
(m)
Ω (u, v) as δ → 0. (3.3.10)

Moreover, for each r > 0 this convergence is uniform provided that u and v are jointly r-
inside Ω and |u− v| ≥ r.

Proof. The functions Hδ(·) :=Z
(m)

Ωδ (uδ, ·) are uniformly (in δ) bounded on compact
subsets of Ω∖ {u} as

0 ≤ Z
(m)

Ωδ (uδ, vδ) ≤ ZΩδ(uδ, vδ) ≤ 1
2π (logR− log |uδ−vδ|) +O(1). (3.3.11)

Moreover, Lemma 3.3.10 implies that these functions are also equicontinuous and
hence one can find a subsequential limit h : Ω∖ {u} → R+ such that

Hδ(·) → h(·) as δ = δk → 0,

uniformly on compact subsets ofΩ∖{u}. Furthermore, it follows fromLemma3.3.11
that the function h(·) has Dirichlet boundary conditions everywhere at ∂Ω.

It remains to check that [(−∆ + m2)h](·) = δu(·) in the sense of distributions.
Let ϕ ∈ C∞

0 (Ω) be a smooth function such that suppϕ ⊂ Ω and hence suppϕ ⊂ Ω̂δ

provided that δ is small enough. For vδ ∈ IntΩδ , denote

[∆δϕ](vδ) :=
1

4δ2

∑
vδ1∈Ωδ:vδ1∼v

(ϕ(vδ1)− ϕ(vδ)).
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Recall that the function Hδ(vδ) = Z
(m)

Ωδ (uδ, vδ) satisfies the massive harmonicity
equation (3.3.9) everywhere in Ωδ except at the vertex uδ and that the mismatch
in (3.3.9) equals to 1 if vδ = uδ. The discrete integration by parts gives the identity

ϕ(uδ) = δ2
∑

vδ∈IntΩδ
ϕ(vδ) ·

(
m2Hδ(vδ)− (1−m2δ2)[∆δHδ](vδ)

)
= δ2

∑
vδ∈IntΩδ

Hδ(vδ) ·
(
m2ϕ(vδ)− (1−m2δ2)[∆δϕ](vδ)

)
.

Wenow pass to the limit δ → 0 in this identity; note that the prefactor δ2 in the right-
hand side is nothing but the area of a unit cell on the grid δZ2. Clearly, [∆δϕ](vδ) =

[∆ϕ](vδ) + O(δ ·maxv∈Ω |D3ϕ(v)|). The upper bound (3.3.11) implies that the sums
over ρ-vicinities of u are uniformly (in δ) small as ρ → 0. Hence, the convergence
ofHδ to h away from u implies that

ϕ(u) =

∫
Ω
h(v)

(
m2ϕ(v)− [∆ϕ](v)

)
dA(v).

Therefore, each subsequential limit of the functionsHδ coincideswithG(m)
Ω (u, ·),

which proves (3.3.10) for fixed u and v. The fact that the convergence is uniform
follows from the equicontinuity of functions Z(m)

Ωδ (uδ, vδ) discussed above and the
compactness of the set of pairs (u, v) under consideration.

Remark 3.3.13. It follows from the convergence (3.3.10) that, for u, v ∈ Ω ⊂ B(0, R),
one has

exp(−c0m2R2) ·GΩ(u, v) ≤ G
(m)
Ω (u, v) ≤ GΩ(u, v)

due to the similar uniform estimate in discrete provided by Corollary 3.2.8.

3.3.4 . Convergence of martingale observables
Recall that (Ωδ; aδ, b) are discrete approximations on scale δ of (Ω; a, b) in the

Carathéodory sense. It follows from the absolute continuity of massive LERW with
respect to the massless one (see Section 3.2.6) that the family of mLERW probabil-
ity measures in (Ωδ; aδ, b) is tight, when parameterized by the half-plane capacities of
their conformal images (under the mappings ϕ

Ω̂δ) in (H; 0,∞). Using the Skorokhod
representation theorem as in Section 3.2.4, we can always assume that, almost surely,

(Ω̂δt,r; a
δ
t,r)

Cara−→ (Ωt,r; at,r) as δ → 0,

where Ωδt,r = Ωδ∖γδ[0, nδt,r] and aδt,r = γδ(nδt,r). The goal of this section is to show that
in this situation the martingale observables (3.2.6), evaluated in the 1

2r-vicinity of b, also
converge almost surely to their continuous analogues. In other words, Proposition 3.3.14
(for m = 0) and Proposition 3.3.16 (for m ̸= 0) are deterministic statements, which
we later apply for all possible limiting curves. For shortness, below we drop the second
subscript r and simply say that t ≤ τr instead.

We start by proving the convergence result for the classical (i.e., massless) LERW
observable normalized at the boundary point b.
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Proposition 3.3.14. In the setup described above, let t ≤ τr and v ∈ BΩ(b,
1
2r). Then

MΩδ
t
(vδ) =

ZΩδ
t
(aδt , v

δ)

ZΩδ
t
(aδt , b)

· ZΩδ(oδ, b) → PΩt(at, v) as δ → 0,

where the Poisson kernelPΩt(at, ·) in the domainΩt is normalized so that one hasPΩt(at, z) ∼
PΩ(a, z) ∼ GΩ(0, z) as z → b, see (3.2.8) and Section 3.4.1.

Proof. Given a small ε > 0, pick a point bεr ∈ BΩ(b, εr). Corollary 3.3.8 implies that

ZΩδ
t
(aδt , v

δ)ZΩδ(oδ, b)

ZΩδ
t
(aδt , b)

=
ZΩδ

t
(aδt , v

δ)ZΩδ(oδ, bδεr)

ZΩδ
t
(aδt , b

δ
εr)

· (1 +O(εβ)),

with auniversal exponentβ > 0 andauniversal (in particular, uniform in δ)O-bound.
For each ε > 0, it follows from Corollary 3.3.6 and Corollary 3.3.3 that

ZΩδ
t
(aδt , v

δ)

ZΩδ
t
(aδt , b

δ
εr)
→
δ→0

PΩt(at, v)

PΩt(at, bεr)
and ZΩδ(oδ, bδεr) →

δ→0
GΩ(0, bεr).

Since we also know that

PΩt(at, v)GΩ(0, bεr)

PΩt(at, bεr)
→
ε→0

PΩt(at, v)
GΩ(0, b)

PΩt(at, b)
= PΩt(at, v),

the claim follows by first sending δ → 0 and then ε→ 0.

We now move on to the convergence of the martingale observable in the massive
setup. In order to formulate an analogue of Proposition 3.3.14 in this situation, we need
to introduce the massive Poisson kernel

P
(m)
Ωt

(at, z) := PΩt(at, z)−m2

∫
Ωt

PΩt(at, w)G
(m)
Ωt

(w, z)dA(w). (3.3.12)

We refer the reader to Section 3.4.1 (more precisely, to Remark 3.4.3(i)), where the
convergence of this integral is discussed; note that no regularity assumptions on Ωt are
required for this fact.

Proposition 3.3.15. In the setup described above, let z ∈ Ωt (note that we do not need
to assume that this point is close to b). Then, as δ → 0, one has

Z
(m)

Ωδ
t
(aδt , z

δ)

ZΩδ
t
(aδt , z

δ)
→

P
(m)
Ωt

(at, z)

PΩt(at, z)
= 1−m2

∫
Ωt

PΩt(at, w)

PΩt(at, z)
G

(m)
Ωt

(w, z)dA(w).

Proof. It follows from Lemma 3.2.1 that

1−
(1−m2δ2)Z

(m)

Ωδ
t
(aδt , z

δ)

ZΩδ
t
(aδt , z

δ)
= m2δ2

∑
wδ∈IntΩδ

t

ZΩδ
t
(aδt , w

δ)

ZΩδ
t
(aδt , z

δ)
Z
(m)

Ωδ
t
(wδ, zδ). (3.3.13)
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Figure 3.3 – Four parts in the summation (3.3.13) over wδ ∈ IntΩδ
t : the white

region inside the domain is Iδ; the shaded vicinities of z and aδt are IIδ and IIIδ,
respectively; the gray region is IVδ.
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We now want to pass to the limit as δ → 0 in this expression. For this purpose, we
fix small parameters ρ, ρa > 0 and split the sum into the following four parts Iδ–IVδ;
see Fig. 3.3 for an illustration:

Iδ: sum over wδ lying jointly ρ-inside Ωδt with z but not in B(z, ρ) ∪ B(aδt , ρa). First,
note that for wδ ̸∈ B(z, ρ) the summands are uniformly bounded from above due
to Lemma 3.2.7 since Z(m)

Ωδ
t
(wδ, zδ) ≤ ZΩδ

t
(wδ, zδ) and the right-hand side of (3.2.19)

is O(1) provided that vδ = aδt and |wδ − zδ| ≥ ρ. Thus, on these parts of Ωδ one can
use Corollary 3.3.6 and Proposition 3.3.12 to deduce the convergence

Iδ → m2

∫
Ω

(ρ)
t ∖(B(z,ρ)∪B(at,ρa))

PΩt(at, w)

PΩt(at, z)
G

(m)
Ωt

(w, z)dA(w) as δ → 0, (3.3.14)

whereΩ(ρ)
t denotes the connected component of the ρ-interior ofΩt that contains z.

IIδ: sum over wδ in the ρ-vicinity of z. Due to the Harnack principle for discrete
harmonic functions, the ratios ZΩδ

t
(aδt , w

δ)/ZΩδ
t
(aδt , z

δ) are uniformly bounded if wδ

is close to zδ. Therefore, the summands of this part of (3.3.13) are majorated by the
Green function ZΩδ

t
(wδ, zδ) since Z

(m)

Ωδ
t
(wδ, zδ) ≤ ZΩδ

t
(wδ, zδ). Standard estimates

give
IIδ = O(ρ2 log ρ) uniformly in δ. (3.3.15)

IIIδ: sum over the ρa-vicinity of at. As already mentioned above, Lemma 3.2.7
implies that on these parts ofΩδ the summands are uniformly bounded. Therefore,

IIIδ = O(ρ2a) uniformly in δ. (3.3.16)

IVδ: sum over wδ that are neither jointly ρ-inside Ωδt with z, nor in the ρa-vicinity at,
nor in the ρ-vicinity of z. It is worth noting that these parts of Ωδt can be in principle
rather big as we require only the Carathéodory convergence of Ωδ to Ω (and so Ωδ

might contain big fjords that disappear in the limit). Nevertheless, one can easily
see that the summands in this part of (3.3.13) are uniformly (in δ) small as ρ → 0.
Indeed, due to (3.3.5) we have a uniform (provided that δ is small enough) upper
bound

ZΩδ
t
(aδt , w

δ)

ZΩδ
t
(aδt , z

δ)
≤ C(ρa; Ωt, at) for wδ /∈ BΩδ

t
(aδt , ρa).

At the same time, since wδ is not ρ-jointly inside Ωδt with z, there exists a ball of
radius ρ which intersects the boundary of Ωδt and separates these two points in Ωδt .
Therefore, the weak-Beurling estimate (see Lemma 3.3.11) gives that

Z
(m)

Ωδ
t
(wδ, zδ) = O(ρβ),

which allows us to conclude that

IVδ ≤ Area(Ωδt) · C(ρa; Ωt, at) ·O(ρβ) uniformly in δ. (3.3.17)
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Combining (3.3.14)–(3.3.17) together and sending first ρ→ 0 and then ρa → 0we get

Iδ + IIδ + IIIδ + IVδ → m2

∫
Ωt

PΩt(at, w)

PΩt(at, z)
G

(m)
Ωt

(w, z)dA(w) as δ → 0

since the domainsΩ(ρ)
t ∖(B(z, ρ)∪B(at, ρa)) exhaustΩt. The proof is completed.

We now introduce the quantity

N
(m)
Ωt

= N
(m)
Ωt

(at, b) :=

[
P

(m)
Ωt

(at, b)

PΩt(at, b)

]−1

=

[
lim
z→b

P
(m)
Ωt

(at, z)

PΩt(at, z)

]−1

, (3.3.18)

which keeps track of the normalization of the massive observable at the point b. The
existence of this limit (as z → b) is discussed in Section 3.4.1; see (3.4.12). The
next proposition is the main result of this section. It is worth noting that the con-
vergence (3.3.19) discussed below and Corollary 3.2.8, in particular, imply the uniform
estimates 1 ≤ N (m)

Ωt
(at, b) ≤ exp(c0m

2R2).

Proposition 3.3.16. In the setup of Proposition 3.3.14 (i.e., t ≤ τr and v ∈ BΩ(b,
1
2r)),

the following convergence holds true as δ → 0:

M
(m)

Ωδ
t
(vδ) =

Z
(m)

Ωδ
t
(aδt , v

δ)

Z
(m)

Ωδ
t
(aδt , b)

· ZΩδ(oδ, b) → P
(m)
Ωt

(at, v) ·N (m)
Ωt

(at, b) =:M
(m)
Ωt

(v),

where the quantities in the right-hand side are defined by (3.3.12) and (3.3.18).

Proof. We start by generalizing the result of Proposition 3.3.15 to z = b:

Z
(m)

Ωδ
t
(aδt , b)

ZΩδ
t
(aδt , b)

→
P

(m)
Ωt

(at, b)

PΩt(at, b)
= (N

(m)
Ωt

(at, b))
−1 as δ → 0. (3.3.19)

We use the same argument as in the proof of Proposition 3.3.14. Given ε > 0 we
pick a point bεr ∈ BΩ(b, εr) and note that due to Lemma 3.2.1 and Corollary 3.3.8
one has

1−
(1−m2δ2)Z

(m)

Ωδ
t
(aδt , b)

ZΩδ
t
(aδt , b)

= m2δ2
∑

wδ∈IntΩδ
t

Z
(m)

Ωδ
t
(aδt , w

δ)ZΩδ
t
(wδ, b)

ZΩδ
t
(aδt , b)

= m2δ2
∑

wδ∈IntΩδ
t

Z
(m)

Ωδ
t
(aδt , w

δ)ZΩδ
t
(wδ, bδεr)

ZΩδ
t
(aδt , b

δ
εr)

· (1 +O(εβ))

=

[
1−

(1−m2δ2)Z
(m)

Ωδ
t
(aδt , b

δ
εr)

ZΩδ
t
(aδt , b

δ
εr)

]
· (1 +O(εβ)),

with a universal (and, in particular, uniform in δ) error term O(εβ). Since ε > 0 can
be chosen arbitrary small, Proposition 3.3.15 applied to z = bε implies (3.3.19).
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It remains to note that

M
(m)

Ωδ
t
(vδ) =

Z
(m)

Ωδ
t
(aδt , v

δ)

ZΩδ
t
(aδt , v

δ)
·
[Z(m)

Ωδ
t
(aδt , b)

ZΩδ
t
(aδt , b)

]−1

·
ZΩδ

t
(aδt , v

δ)ZΩδ(oδ, b)

ZΩδ
t
(aδt , b)

→
P

(m)
Ωt

(at, v)

PΩt(at, v)
·N (m)

Ωt
(at, b) · PΩt(at, v) as δ → 0

due to Proposition 3.3.15, convergence (3.3.19), and Proposition 3.3.14, respectively.

3.4 . Estimates and computations in continuum

For shortness, from now onwards we drop a boundary point a from the notation of
Poisson kernels since there is only one point at (tip of the slit) that we are interested in
when speaking about domains Ωt = Ω∖ γ[0, t].

3.4.1 . A priori estimates and massive Poisson kernels

Given a simply connected domain Λ ⊂ B(0, R) and its uniformization ϕΛ : Λ→ H,
we set

PΛ(z) := −
1

π
Im

1

ϕΛ(z)
, QΛ(z) := −

1

π
Im

1

(ϕΛ(z))2
. (3.4.1)

It is worth emphasizing that this definition heavily relies upon the choice of ϕΛ (namely,
on the choice of a = ϕ−1

Λ (0) and the normalization of ϕΛ at b = ϕ−1
Λ (∞)), which is not

mentioned explicitly in the notation. In particular, one has

QΛ(b)

PΛ(b)
= lim

z→b

QΛ(z)

PΛ(z)
= 0 (3.4.2)

(see Section 3.3.2 for the discussion of the existence of the limit). Recall that by GΛ(w, z)

we denote the positive Green function in Λ and that G(m)
Λ (w, z) stands for the massive

Green function discussed in Section 3.3.3, i.e. the integral kernel of the operator (−∆Λ+

m2)−1, where ∆Λ denotes the Laplacian in Λ with Dirichlet boundary conditions. As
mentioned in Remark 3.3.13, for all w, z ∈ Λ one has

exp(−c0m2R2) ·GΛ(w, z) ≤ G
(m)
Λ (w, z) ≤ GΛ(w, z) ≤

1

2π
log

2R

|w − z|
. (3.4.3)

Since −∆G(m)
Λ (w, ·) = δw(·)−m2G

(m)
Λ (w, ·), one has the identity

G
(m)
Λ (w, z) = GΛ(w, z)−m2

∫
Ω
GΛ(w,w

′)G
(m)
Λ (w′, z)dA(w′). (3.4.4)

Note that the identity (3.4.4) is nothing but a continuous counterpart of the similar
identity (3.2.5) for the partition functions of random walks discussed in Section 3.2.1.
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Lemma 3.4.1. There exists an absolute constant C > 0 such that, for each simply
connected domain Λ ⊂ C, its uniformization ϕΛ : Λ → H, and z, w ∈ Λ, the following
estimates are fulfilled:∣∣∣∣PΛ(w)

PΛ(z)
− 1

∣∣∣∣ ·GΛ(w, z) ≤ C,
∣∣∣∣QΛ(w)

PΛ(w)
− QΛ(z)

PΛ(z)

∣∣∣∣ · GΛ(w, z)

PΛ(z)
≤ C. (3.4.5)

Proof. It is easy to see that both expressions are invariant under Möbius automor-
phisms of H preserving the point 0. Therefore, one can assume ϕΛ(z) = i without
loss of generality. In this situation, the required estimates (3.4.5) are nothing but
the claim that both functions

| ImϕΛ(w)
−1 + 1| ·GH(ϕΛ(w), i) and

| ImϕΛ(w)
−2|

| ImϕΛ(w)−1|
·GH(ϕΛ(w), i) =

2|ReϕΛ(w)|
|ϕΛ(w)|3

·GH(ϕΛ(w), i),

are bounded in the upper half-plane, which is clearly true since both of them are
continuous in ϕ = ϕΛ(w) ∈ H (including at the point i) and decay as |ϕ| → ∞.

Remark 3.4.2. For later purposes, it is useful to rewrite (3.4.5) as

PΛ(w)GΛ(w, z) ≤ PΛ(z)GΛ(w, z) + CPΛ(z), (3.4.6)
|QΛ(w)|GΛ(w, z) ≤ CPΛ(z)PΛ(w) + PΛ(w)GΛ(w, z)(PΛ(z))

−1|QΛ(z)|
≤ CPΛ(z)PΛ(w) + |QΛ(z)|GΛ(w, z) + C|QΛ(z)|. (3.4.7)

We now introduce massive counterparts of the functions (3.4.1) as follows:

P
(m)
Λ (z) := PΛ(z)−m2

∫
Λ
PΛ(w)G

(m)
Λ (w, z)dA(w), (3.4.8)

Q
(m)
Λ (z) := QΛ(z)−m2

∫
Λ
QΛ(w)G

(m)
Λ (w, z)dA(w). (3.4.9)

Remark 3.4.3. (i) The estimate (3.4.6) ensures that themassive Poisson kernelP (m)
Λ (z)

is well-defined since the only possible pathology in the integral is at w = z, where
the integrand is bounded from above by a multiple of the Green functionGΛ(w, z).
Moreover, one easily sees that

exp(−c0m2R2)Pt(at, z) ≤ P (m)
t (at, z) ≤ Pt(at, z) (3.4.10)

due to Proposition 3.3.15 and similar uniform bounds provided by Corollary 3.2.8.
(ii) On the contrary, (3.4.7) only guarantees that the function Q(m)

Λ is well-defined
under the additional assumption

∫
Λ PΛ(w)dA(w) < +∞. Though this is not always

true in general, it follows from Corollary 3.4.6(i) given below that this assumption
holds for almost all (in t) domains Λ = Ωt generated by a Loewner evolution in Ω.
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Lemma 3.4.4. The following identity is fulfilled for all z ∈ Λ:

P
(m)
Λ (z) = PΛ(z)−m2

∫
Λ
P

(m)
Λ (w)GΛ(w, z)dA(w). (3.4.11)

Proof. Note that the integral converges due to (3.4.6) and since P (m)
Λ (w) ≤ PΛ(w).

Moreover, one has∫
Λ
P

(m)
Λ (w)GΛ(w, z)dA(w)

=

∫
Λ

[
PΛ(w)−m2

∫
Λ
PΛ(w

′)G
(m)
Λ (w′, w)dA(w′)

]
GΛ(w, z)dA(w)

=

∫
Λ
PΛ(w)

[
GΛ(w, z)−

∫
Λ
G

(m)
Λ (w,w′)GΛ(w

′, z)dA(w′)

]
dA(w)

=

∫
Λ
PΛ(w)G

(m)
Λ (w, z)dA(w) = P

(m)
Λ (z),

where the application of the Fubini theorem in the second equality is based upon
the uniform estimate

PΛ(w)G
(m)
Λ (w,w′)GΛ(w

′, z) ≤ PΛ(z)(GΛ(w,w
′) + C)(GΛ(w

′, z) + C)

which follows from (3.4.6).

Assume now that b := ϕ−1
Λ (∞) is a degenerate prime end of Λ. The representa-

tion (3.4.11) together with the discussion given in Section 3.3.2 allows one to define the
following quantity (note that here and below we abuse the notation in a way similar to
Section 3.3.2 when writing the ratio of two functions, both satisfying Dirichlet boundary
conditions, at a boundary point b):

P
(m)
Λ (b)

PΛ(b)
:= lim

z→b

P
(m)
Λ (z)

PΛ(z)
= 1−m2

∫
Λ
P

(m)
Λ (w)

GΛ(w, b)

PΛ(b)
dA(w). (3.4.12)

Indeed, one can exchange the limit z → b and the integration over w ∈ Λ due to the
uniform estimate (3.4.6), which provides a majorant

P
(m)
Λ (w)

GΛ(w, z)

PΛ(z)
≤ PΛ(w)GΛ(w, z)

PΛ(z)
≤ GΛ(w, z) + C,

and the fact that maxz∈BΛ(b,r)

∫
BΛ(b,2r)

GΛ(w, z)dA(w) → 0 as r → 0, which follows
from (3.4.3) and allows one to neglect the contributions of vicinities of the point b (where
the Green function blows up and thus no uniform in z majorant is available).

3.4.2 . Hadamard’s formula
We now move to the Loewner equation setup and assume that a decreasing family

of subdomains Ωt ⊂ Ω is constructed according to (3.2.12) and that their uniformizations
onto the upper half-plane are fixed as

ϕt := (gt − ξt) ◦ ϕΩ : Ωt → H

72



so that, in particular, ϕt(at) = 0 and ϕt(b) = ∞. For shortness, from now onwards we
replace the subscript Ωt by t, thus we write Gt(w, z) instead of GΩt(w, z), Pt(z) instead
of PΩt(z) = PΩt(at, z), etc. The following lemma is classical.

Lemma 3.4.5 (Hadamard’s formula). For each z, w ∈ Ω the function Gt(z, w) is dif-
ferentiable in t (until the first moment when either z ̸∈ Ωt or w ̸∈ Ωt) and

∂tGt(w, z) = −2πPt(w)Pt(z). (3.4.13)

Proof. Let wH := ϕΩ(w) and zH := ϕΩ(z), note that one has

Gt(w, z) = −
1

2π
log

∣∣∣∣gt(wH)− gt(zH)
gt(wH)− gt(zH)

∣∣∣∣.
Since both gt(wH) and gt(zH) satisfy the Loewner equation (3.2.12), one easily obtains

∂tGt(w, z) = −
1

2π
Re

[
∂tgt(wH)− ∂tgt(zH)
gt(wH)− gt(zH)

− ∂tgt(wH)− ∂tgt(zH)
gt(wH)− gt(zH)

]
=

1

π
Re

[
1

(gt(wH)−ξt)(gt(zH)−ξt)
− 1

(gt(wH)−ξt)(gt(zH)−ξt)

]
= − 2

π
Im

[
1

gt(wH)− ξt

]
Im

[
1

gt(zH)− ξt

]
= −2πPt(w)Pt(z).

As pointed out in [MS10], it immediately follows from the Hadamard formula that
the integrals

∫
Ωt
Pt(w)dA(w) converge for almost all t, see the next corollary. In our

analysis we also need a stronger estimate which guarantees the convergence of inte-
grals

∫
Ωt
(Pt(w))

2dA(w) for almost all t provided that γ is an SLE(2) curve.

Corollary 3.4.6. (i) In the same setup, one has∫ ∞

0

[∫
Ωt

Pt(w)dA(w)

]2
dt ≤ 1

2π

∫
Ω

∫
Ω
G0(w, z)dA(w)dA(z) < +∞.

(ii) Moreover, if γ is an SLE(κ), κ ≤ 4, curve running from a to b in Ω, then∫ ∞

0

∫
Ωt

(Pt(w))
2dA(w)dt < +∞ almost surely.

Proof. (i) Given a point z ∈ Ω, let τz := inf{t > 0 : z ̸∈ Ωt} be the time when z is hit
or swallowed by the curve γ (as usual, we set τz := +∞ if this does not happen). By
integrating the Hadamard formula (3.4.13) in t one easily sees that

2π

∫ τw∧τz

0
Pt(w)Pt(z)dt ≤ G0(w, z).

The claim follows by integrating this inequality over w, z ∈ Ω since∫
Ω×Ω

∫ τw∧τz

0
Pt(w)Pt(z)dtdA(w)dA(z) =

∫ ∞

0

∫
Ωt×Ωt

Pt(w)Pt(z)dA(w)dA(z)dt.
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(ii) Given a planar (simply connected) domain Λ and w ∈ Λ, let

G∗
Λ(w,w) := lim

z→w

(
GΛ(w, z) +

1
2π log |z−w|

)
= 1

2π log cradΛ(w),

where cradΩ(w) denotes the conformal radius of the point w inΩ. A straightforward
generalization of Lemma 3.4.5 implies that ∂tG∗

t (w,w) = −2π(Pt(w))2 for w ∈ Ωt.
Since SLE(κ) curves with κ ≤ 4 are not self-touching, for all w ∈ Ω one almost

surely has w ∈ Ωt = Ω∖ γ[0, t] for all t ≤ ∞. Applying the Fubini theorem as above,
we obtain the identity∫ ∞

0

∫
Ωt

(Pt(w))
2dA(w)dt =

1

2π

∫
Ω
log

cradΩ(w)

cradΩ∖γ[0,∞](w)
dA(w),

where we slightly abuse the notation in the denominator: cradΩ∖γ[0,∞](w) stands
for the conformal radius of w in one of the two components of Ω∖ γ[0,∞] to which
this point belongs. Standard estimates (e.g., see [Kem17, Section 5.3.6.2]) for the
SLE(κ) curves ϕΩ(γ) in the upper half-plane H imply

E
[
log

cradΩ(w)

cradΩ∖γ[0,∞](w)

]
= E

[
log

cradH(ϕΩ(w))

cradH∖ϕΩ(γ[0,∞])(ϕΩ(w))

]
≤ const,

uniformly over w ∈ Ω. Therefore,

E
[ ∫ ∞

0

∫
Ωt

(Pt(w))
2dA(w)dt

]
≤ const ·Area(Ω)

and, in particular, this integral is finite almost surely.

We now derive a counterpart of Lemma 3.4.5 in the massive setup.

Lemma 3.4.7 (massive Hadamard’s formula). In the same setup, the massive Green
function G(m)

t (w, z) is differentiable in t (until the first moment when either z ̸∈ Ωt
or w ̸∈ Ωt) and

∂tG
(m)
t (w, z) = −2πP (m)

t (w)P
(m)
t (z), (3.4.14)

where the massive Poisson kernels P (m)
t (w), P (m)(z) in Ωt are given by (3.4.8).

Proof. It is easy to see that the increments of G(m)
t (w, z) are bounded by those

of Gt(w, z): e.g., this follows from Proposition 3.3.10, Corollary 3.3.3 and the sim-
ilar inequality in discrete which is trivial. Therefore,G(m)

t (w, z) is an absolutely con-
tinuous function of t, the derivative ∂tG(m)

t (w, z) exists (given w, z) for almost all t
and

0 ≤ −∂tG(m)
t (w, z) ≤ −∂tGt(w, z) ≤ 2πPt(w)Pt(z). (3.4.15)

Due to the Tonelli theorem, for almost all t the derivative ∂tG(m)
t (w, z) also ex-

ists simultaneously for almost all w, z ∈ Ω. Moreover, note that it is sufficient to
prove (3.4.14) for almost all t, w, z: if this is done, the same claim for all t, w, z (and,
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in particular, the existence of ∂tG(m)
t (w, z) for all t, w, z) follows from the continuity

of the massive Green function and massive Poisson kernels in (t, w, z).

Differentiating in t the resolvent identity (see (3.4.4))

G
(m)
t (w, z) = Gt(w, z)−m2

∫
Ω
Gt(w,w

′)G
(m)
t (w′, z)dA(w′)

(since both Gt(w,w′) and G(m)
t (w′, z) are monotone in t, this differentiation can be

justified by the Tonelli theorem) and using Lemma 3.4.5 one obtains

∂tG
(m)
t (w, z) = −2πPt(w)Pt(z) + 2πm2

∫
Ω
Pt(w)Pt(w

′)G
(m)
t (w′, z)dA(w′)

−m2

∫
Ω
Gt(w,w

′)∂tG
(m)
t (w′, z)dA(w′)

= −2πPt(w)P (m)
t (z)−m2

∫
Ω
Gt(w,w

′)∂tG
(m)
t (w′, z)dA(w′).

Denote byGt = (−∆)−1 andG
(m)
t = (−∆+m2)−1 integral operators acting on test

function h : Ωt → R as follows:

(Gth)(w) :=

∫
Ωt

h(w′)Gt(w
′, w)dA(w′),

(G
(m)
t h)(w) :=

∫
Ωt

h(w′)G
(m)
t (w′, w)dA(w′).

In this notation, we can rewrite the equation for the derivative ∂tG(m)
t (w, z)obtained

above as
(Id +m2Gt)(∂tG

(m)
t (·, z)) = −2πPt(w)P (m)

t (z).

The resolvent identity (see (3.4.4)) reads asG(m)
t = Gt−m2G

(m)
t Gt, provided that the

integrals under consideration converge and that the Fubini theorem can be applied.
Therefore,

(Id−m2G
(m)
t )(Id +m2Gt)h = h, h = ∂tG

(m)
t (·, z),

where theuse of the Fubini theoremcanbe justified via the estimates (3.4.15) and (3.4.6).
Therefore, for almost all t (and, given t, for almost all w, z), one has

∂tG
(m)
t (w, z) = −2π

[
(Id−m2G

(m)
t )Pt

]
(w)P

(m)
t (z) = −2πP (m)

t (w)P
(m)
t (z),

which is nothing but the identity (3.4.14). As already mentioned above, the similar
claim for all t, w, z follows from the continuity of the massive Green function and
massive Poisson kernels in all the variables t, w, z.
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3.4.3 . Driving term of mSLE(2)

With the above estimates and Hadamard’s formula, we are now prepared to compute
the driving term of massive SLE(2) such that the normalized massive Poisson kernel
is a martingale. Recall that under each probability measure P(m)

(Ω;a,b) (obtained as a
subsequential weak limit of mLERWs) we have

dξt =
√
2(dBt + d⟨B,L(m)⟩t) =

√
2dBt + 2λtdt ,

where Bt is a standard Brownian motion and the process L(m)
t comes from the Girsanov

theorem as explained in Section 3.2.6. Our goal is to identify the drift term 2λtdt; note
that we will do this using the martingale property of the processes t 7→M

(m)
t (z), z ∈ Ω,

and not through identifying the process L(m)
t ; cf. Remark 3.2.10 and Remark 3.4.11.

More precisely, following the strategy indicated in [MS10] we

— analyze the random processes t 7→ P
(m)
t (z), z ∈ BΩ(b,

1
2), relying upon the

convolution formula (3.4.8), the massive Hadarmard formula (Lemma 3.4.7), and
a version of the stochastic Fubini theorem (see Lemma 3.4.8 below);

— use the martingale property of the process t 7→M
(m)
t (z) = P

(m)
t (z)N

(m)
t for each

z ∈ BΩ(b,
1
2r) in order

— to analyze the process t 7→ N
(m)
t (this is done in Lemma 3.4.9(i)) and

— to identify the drift term 2λtdt of the process ξt (see Lemma 3.4.9(ii)).

Recall that we use the notation d in the stochastic calculus/SDE context and the
notation dA for the Lebesque measure in Ω, over which we often integrate in the fol-
lowing computations. For each w ∈ Ω, the process t 7→ gt(ϕΩ(w)) satisfies the Loewner
equation (3.2.12), thus one has

dPt(w) = − 1

π
Im

[
dξt

(gt(ϕΩ(w))− ξt)2
+

d⟨ξ, ξ⟩t − 2dt

(gt(ϕΩ(w))− ξt)3

]
= Qt(w)dξt . (3.4.16)

We want to substitute this expression (together with the massive Hadamard for-
mula (3.4.14)) into the definition (3.4.8) of the massive Poisson kernel. The following
lemma handles the question of interchanging the stochastic integration over the contin-
uous semi-martingale ξt with the Lebesgue integration over w ∈ Ω.

Lemma3.4.8. The process
∫
ΩQt(w)G

(m)
t (w, z)dA(w) is a local semi-martingale. More-

over, almost surely, for all T > 0 the following identity is fulfilled:∫
Ω

[ ∫ T

0
Qt(w)G

(m)
t (w, z)dξt

]
dA(w) =

∫ T

0

[ ∫
Ω
Qt(w)G

(m)
t (w, z)dA(w)

]
dξt.

Proof. Weuse a version of the stochastic Fubini theorem given in [Ver12]. In order to
apply this result, one needs to check that the following two conditions hold almost
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surely (recall that dξt =
√
2(dBt + d⟨B,L(m)⟩t); in particular, d⟨ξ, ξ⟩t = 2dt):∫

Ω

[∫ T

0

∣∣Qt(w)G(m)
t (w, z)

∣∣2dt]1/2dA(w) < +∞, (3.4.17)∫
Ω

[∫ T

0

∣∣Qt(w)G(m)
t (w, z)d⟨B,L(m)⟩t

∣∣]dA(w) < +∞. (3.4.18)

The first estimate (3.4.17) can be easily derived from Corollary 3.4.6(ii) (and from
the absolute continuity of mSLE(2) with respect to SLE(2) discussed in Section 3.2.6)
since the uniform bound (3.4.7) implies

|Qt(w)G(m)
t (w, z)|2 ≤ (CPt(z)Pt(w) + |Qt(z)|Gt(w, z) + C|Qt(z)|)2

≤ C(z)(Pt(w)
2 +Gt(w, z)

2 + 1),

where C(z) := 3C2maxt∈[0,T ]{(Pt(z))2 + |Qt(z)|2} < +∞ almost surely. In its turn,
the second estimate (3.4.18) follows from (3.4.17) and the Kunita–Watanabe inequal-
ity (see [LG13, Proposition 4.5]) as ⟨L(m), L(m)⟩T < +∞ almost surely; see (3.2.22).

Using (3.4.16), the massive Hadamard formula (3.4.14) and Lemma 3.4.8, we conclude
that, for each z ∈ Ω, the random process P (m)(z) is a local semi-martingale and

dP
(m)
t (z) = dPt(z)−m2

∫
Ωt

(
G

(m)
t (w, z)dPt(w) + Pt(w)dG

(m)
t (w, z)

)
dA(w)

= Qt(z)dξt −m2

∫
Ωt

(
Qt(w)G

(m)
t (w, z)dξt − 2πPt(w)P

(m)
t (w)P

(m)
t (z)dt

)
dA(w)

= Q
(m)
t (z)dξt + 2πm2P

(m)
t (z)

[∫
Ωt

Pt(w)P
(m)
t (w)dA(w)

]
dt. (3.4.19)

We now move to the key part of the computation. Recall that

N
(m)
t = Pt(b)/P

(m)
t (b) = M

(m)
t (z)/P

(m)
t (z), z ∈ Ωt

and note that the process N (m)
t is a semi-martingale since M (m)

t (z) is a martingale and
P

(m)
t (z) is a (strictly positive) semi-martingale.

Lemma 3.4.9. (i) The positive semi-martingale N (m)
t satisfies the following SDE:

dN
(m)
t = −N (m)

t

[
Q

(m)
t (b)

P
(m)
t (b)

√
2dBt + 2πm2

[∫
Ωt

Pt(w)P
(m)
t (w)dA(w)

]
dt

]
. (3.4.20)

(ii) The following identity for the drift term of the driving process ξt holds:

2λtdt = −d⟨ξ,N (m)⟩t
N

(m)
t

= 2
Q

(m)
t (b)

P
(m)
t (b)

dt. (3.4.21)
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Proof. (i) Applying the Itô lemma to the product M (m)
t (z) = P

(m)
t (z)N

(m)
t and us-

ing (3.4.19), one obtains

dM
(m)
t (z) = P

(m)
t (z)dN

(m)
t +N

(m)
t dP

(m)
t (z) + d⟨P (m)(z), N (m)⟩t

= P
(m)
t (z)

[
dN

(m)
t + 2πm2N

(m)
t

[∫
Ωt

Pt(w)P
(m)
t (w)dA(w)

]
dt

]
(3.4.22)

+ Q
(m)
t (z)

[
N

(m)
t dξt + d⟨ξ,N (m)⟩t

]
. (3.4.23)

Recall (see Remark 3.2.3) that the process dM (m)
t∧τr(z) should be a martingale for

each z ∈ BΩ(b,
1
2r) and it is obvious that the functions P

(m)
t∧τr(·), Q

(m)
t∧τr(·) are linearly

independent. Thus, the only possibility is that

both terms (3.4.22) and (3.4.23) are local martingales

(until the stopping time τr which almost surely grows to infinity as r → 0). The
bounded variation (drift) part ofN (m)

t can be easily identified from (3.4.22). To iden-
tify the martingale part, recall (see (3.3.18) and (3.4.12)) that

N
(m)
t =

Pt(b)

P
(m)
t (b)

=

[
1−m2

∫
Ωt

Pt(w)
G

(m)
t (w, b)

Pt(b)
dA(w)

]−1

,

where, as usual, we use the shorthand notation

G
(m)
t (w, b)

Pt(b)
:= lim

w→b

G
(m)
t (w, z)

Pt(z)
.

As Qt(b)/Pt(b) = 0 (see (3.4.2)), the massive Hadamard formula (3.4.14) gives

d
G

(m)
t (w, b)

Pt(b)
= −Xt(w)dt, where Xt(w) := 2πP

(m)
t (w)(N

(m)
t )−1 ≤ 2πPt(w).

Therefore,

d

[
Pt(w)

G
(m)
t (w, b)

Pt(b)

]
= Qt(w)

G
(m)
t (w, b)

Pt(b)
dξt − Pt(w)Xt(w)dt.

It follows from (3.4.7) that |Qt(w)|G(m)
t (w, b)/Pt(b) ≤ CPt(w), thus one can apply

the stochastic Fubini theorem as in the proof of Lemma 3.4.8 and conclude that

d
1

N
(m)
t

= −m2

[∫
Ωt

Qt(w)
G

(m)
t (w, b)

Pt(b)
dA(w)

]
dξt +m2

[∫
Ωt

Pt(w)Xt(w)dA(w)

]
dt.

Since, due to (3.4.9) and (3.4.2), we have

−m2

∫
Ωt

Qt(w)
G

(m)
t (w, b)

Pt(b)
dA(w) =

Q
(m)
t (b)

Pt(b)
=

Q
(m)
t (b)

P
(m)
t (b)

(N
(m)
t )−1,
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the martingale part of the process N (m)
t coincides with that in the formula (3.4.20).

Recall that the bounded variation part of N (m)
t is already identified by (3.4.22).

(ii) Recall that we know that the martingale part of the process ξt is given by
√
2Bt.

Therefore, we can use the fact that (3.4.23) is a local martingale together with the
identification of the (martingale part of the) process N (m)

t made above in order to
identify the drift λtdt of the process ξt. This gives the required formula (3.4.21).

3.4.4 . Proof of Theorem 3.1.1
For convenience of the reader, we now briefly summarize the proof of Theorem 3.1.1,

which consists of the following two parts:

1. The results of Section 3.2.5 imply that the Radon–Nikodym derivatives of massive
LERW measures P(m)

(Ωδ;aδ,bδ)
with respect to the classical (m = 0) ones are uni-

formly bounded. Therefore, the discussion of tightness given in Section 3.2.3 also
applies to these measures. Moreover, as argued in Section 3.2.5, each subsequen-
tial limit P(m)

(Ω;a,b) of those is necessarily absolutely continuous with respect to the
classical SLE(2) measure P(Ω;a,b). This justifies the application of the Girsanov
theorem and implies that the driving term ξt of the Loewner evolution (3.2.12) is
a semi-martingale

dξt =
√
2dBt + 2λtdt under P(m)

(Ω;a,b).

2. Due to Remark 3.2.3, the scaling limits of martingale observables (3.2.6) (provided
by Proposition 3.3.16, which is the main result of Section 3.3) are martingales
under P(m)

(Ω;a,b). As shown in Lemma 3.4.9, this property is sufficient to identify
the drift term 2λtdt via brute force computations indicated in [MS10] and a priori
estimates from Sections 3.4.1 and 3.4.2.

Remark 3.4.10. As mentioned in [MS10], the a priori (weak) uniqueness of a solution
to the SDE dξt =

√
2dBt + 2λtdt with λt := Q

(m)
t (b)/P

(m)
t (b) follows from the fact

that
∫ +∞
0 λ2tdt ≤ const(m,R) <∞ almost surely (which clearly implies the standard

Novikov condition E[exp(12
∫ T
0 λ2tdt)] <∞ for all T > 0). Indeed,

λt = −m2

[∫
Ωt

Qt(w)
G

(m)
t (w, b)

Pt(b)
dA(w)

]
N

(m)
t ,

the factor N (m)
t = Pt(b)/P

(m)
t (b) is uniformly bounded due to (3.4.10) and hence∫ +∞

0
|λt|2dt ≤ const(m,R) ·

∫ +∞

0

[∫
Ωt

Pt(w)dA(w)

]2
dt ≤ const(m,R) < ∞

due to the uniform estimate (3.4.7) and the result of Corollary 3.4.6(i).

Remark 3.4.11. We conclude the paper by coming back to the parallel, already men-
tioned in Remark 3.2.10, of the ‘massive/critical’ setup discussed in this paper and
more standard ‘critical/critical’ ones. Though the process N (m)

t does not coincide
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with the density (D(m)
t )−1 and hence one cannot find λt directly from (3.2.23), only

its martingale part plays a role in the identification of ξt via the martingale property
of the process N (m)

t dξt + d⟨ξ,N (m)⟩t; see (3.4.23). This is the reason why the drift
term 2λtdt in Theorem 3.1.1 has exactly the same form as, e.g., in [Zha08b, Izy17,
Wu16, KS18].
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4 - Capacity of the range of tree-indexed random
walk

4.1 . Introduction

Given a probability distribution η on Zd (d ≥ 3), the capacity of a finite set A ⊂ Zd

with respect to η is defined as

capηA:=
∑
x∈A

Pηx(τ
+
A =∞),

where Pηx refers to the law of a (discrete) random walk (Sn) started at x with transition
probability η, and τ+A := inf{n ≥ 1 : Sn ∈ A} is (Sn)’s first returning time to A.

Let µ be a probability distribution on N, and θ be a probability distribution on Zd.
Consider the process that starts with a particle at 0 ∈ Zd. At each step, the particles die
after generating a random number of new particles independently according to the law
µ, then these new particles drift away from their precursor independently according to
the law θ. This process is called branching random walk, whose distribution is denoted
by Pµ,θ. The branching random walk is called critical if µ has mean 1, in which case, it
is well-known that the process dies out in finite time almost surely (except for the trivial
case that µ is the Dirac measure at {1}). The range R of this process, i.e. the set of
points in Zd visited by the branching random walk, is then almost surely finite. Moreover,
we denote by {#T = n} the event that the branching random walk generates exactly n
particles in total before dying out. The notation T actually stands for the genealogy tree
of the process, see Section 4.2 for details.

In this paper, we study the capacity of the range of critical branching random walks in
dimensions larger or equal to 6, denoted by capηR, conditioned on the event {#T = n}
as n→∞.

Throughout the paper, we shall consider distributions µ on N and θ, η on Zd with
the assumptions

µ has mean 1 and finite variance, and µ ̸≡ δ1,
θ is symmetric, aperiodic and irreducible such that Eθ0

[
e
√

|S1|
]
<∞,

η is aperiodic, irreducible with mean 0 and finite (d+ 1)-th moment ,

 (4.1.1)

where Eθ0 refers to taking expectation with respect to the random walk (Si) started at 0
with transition probability θ.

Theorem 4.1.1. Let µ, θ, η be probability distributions with the conditions in (4.1.1).
1. In dimension d ≥ 7, there is a constantC(d, µ, θ, η) > 0 such that underPµ,θ(·|#T =

n), as n→∞,
capηR

n
→ C(d, µ, θ, η) in probability.
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2. In dimension d = 6, if µ has finite 5-th moment, then under Pµ,θ(·|#T = n), as
n→∞,

log n

n
capηR→ 2C−1

G in probability,

where

CG =
1

4π6
√

det Γη det Γθ

( ∞∑
k=0

(k − 1)kµ(k)

)
Cf ,

Cf = E
[∫ e

1
dt

∫
R6

dx · Jη(Bθ
t + x)−4Jθ(x)

−4

]
,

Γη,Γθ are the covariance matrices of η, θ respectively, J(·)(x) =
√
x · Γ−1

(·) x, and
Bθ
t is the Brownian motion in R6 with covariance matrix Γθ.

Remark 4.1.2. 1. Aperiodicity and irreducibility for θ and η are assumed for con-
venience of the proofs. In fact the same results in Theorem 4.1.1 hold for η
and θ without those assumptions.

2. For d ≥ 7, the constant C(d, µ, θ, η) is implicit. We refer the reader to Re-
mark 4.3.4 for more details.

3. The finite variance of the offspring distribution µ is required in Lemma 4.3.2
for the high dimensions d ≥ 7, and the finite 5-th moment of µ is required in
Proposition 4.4.5 for the critical dimension d = 6.

4. For the displacement law θ, themoment assumption is required for the dyadic
coupling in Lemma 4.2.10, and the symmetry is required for the conversion
from our infinite model to finite trees, see Remark 4.2.5 for details. (We use
the symmetry of θ a few times elsewhere for convenience, but they are not
essential.)

5. For the random walk distribution η, the moment assumptions are required
for the asymptotic estimates of Green’s functions in Lemma 4.2.7.

6. If µ is the geometric distribution with parameter 1
2 , i.e. µ(k) = 2−k−1, then

Pµ,θ(·|#T = n) is the law of the random walk indices by a uniformly chosen
tree of n nodes considered in [LGL16]. In this case, by Lemma 4.4.10 and the
methods developed in [LGL16, Section 3.1], the convergence in probability for
dimension 6 holds in L2-sense.

7. If µ is the geometric distribution with parameter 1
2 , θ and η are one-step dis-

tributions of independent simple random walks, then CG = 9π−3. We refer
the reader to Proposition 4.4.7 for explicit calculations.

Historically, the study of the capacity of the range of simple random walks dates back
to Jain and Orey [JO68], where a law of large numbers was established for d ≥ 3. Then
useful tools were developed in the book of Lawler [Law13]. Recently, numerous studies
for the sharper estimates of the capacity appear in Chang [Cha17] for d = 3 (scaled
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convergence in distribution), Asselah, Schapira and Sousi [ASS18] for d ≥ 6, [ASS19] for
d = 4, and Schapira [Sch20] for d = 5 (central limit theorem).

If, in the definition of capacity, we simply replace the escape probability by 1, then it
gives us (the size of) the range #R, which is a classical object for random walks, widely
studied since the work of Dvoretzky and Erdös [DE51], in which a law of large numbers
was given for random walks in dimension d ≥ 1. The corresponding central limit theorem
was given by Jain and Orey [JO68] for d ≥ 5, Jain and Pruitt [JP71] for d ≥ 3, and
Le Gall [LG86] for d ≥ 2. See also [LGR91] for a general study of random walks in the
domain of attraction of a stable distribution (i.e. without finite variance) by Le Gall and
Rosen.

For branching random walks, the law of large numbers for (the size of) its range #R

was given by Le Gall and Lin in [LGL16],[LGL15b] for every d ≥ 1, where in the critical
dimension d = 4 they restrict to the geometric offspring distribution case. This result (in
d = 4) was then generalized by Zhu in [Zhu21] for general distributions. See also [LZ10],
[LZ11] for a related topic of local times of branching random walks.

We summarize that, in view of law of large numbers, the critical dimension (the
largest dimension with sublinear growth) is d = 2 for the range of the simple random
walk (SRW) [DE51], d = 4 for the range of the branching random walk (BRW) [LGL16],
also d = 4 for the capacity of the SRW [JO68], and d = 6 for the capacity of the BRW.

Indeed, the SRW or the BRW can be seen as a sequence of vertices, and one can
establish corresponding infinite models for them with translational invariance property,
which for the SRW started at 0 is simply

(Si)i∈Z
d
= (Sm+i − Sm)i∈Z.

Intuitively, this property shows that the SRW (or the BRW) is homogeneous in time.
Moreover, either the range or the capacity can be decomposed into the sum over i of the
contribution of Si, therefore, it boils down to a one-point estimate and a second moment
estimate for its concentration property. One can express this one-point estimate in terms
of Green’s functions, and study Green’s functions by moment estimates with a careful
analysis of the tree (in the case of BRW) and the underlying random walk.

The rest of the chapter is organised as follows. In Section 4.2 we introduce the
models and some preliminary results regarding the capacity, the Green’s functions and the
Brownian motion. The study of capacities of BRWs in high dimensions d ≥ 7 is discussed
in Section 4.3, and the case of critical dimension d = 6 is discussed in Section 4.4.
In particular, the main model with translational invariance property is established in
Section 4.2.2, and the strategy for relating the Green’s functions to the capacity is
showed in Section 4.2.4. The behavior of the Green’s functions is mainly summarized
in Lemma 4.3.2 and Corollary 4.4.6. The two parts of Theorem 4.1.1 are proved in
Theorem 4.3.7 and Theorem 4.4.12 respectively.

In the sequel, with a slight abuse of notations, each time we write a constant C(∗),
where ∗ is the set of parameters that this constant depends, it is only used in the current
paragraph.
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4.2 . Preliminaries

In this section, we present systematically the definitions and models in this paper.

4.2.1 . Trees and spatial trees
A tree is a set T ⊂ ∪n≥0Nn+, such that

— The root ∅ ∈ T , where by convention we denote N0
+ = {∅}.

— If a node u = (u1, . . . , un) ∈ T , then its parent ←−u := (u1, . . . , un−1) ∈ T .

— For each node u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0, the
number of offspring of u in T , such that for every j ∈ N, (u1, . . . , un, j) ∈ T if
and only if 1 ≤ j ≤ ku(T ).

We say that u = (u1, . . . , un) ∈ T is an ancestor of u′ = (u′1, . . . , u
′
n′) ∈ T if n < n′

and ui = u′i, 1 ≤ i ≤ n, and if this is the case, we will write u ≺ u′. We also define the
height (generation) of a node to be its length as a word, i.e. if u = (u1, . . . , un), then
|u| = n. Moreover, we denote by #T the total number of nodes. In the following, we
will omit T if it is clear that to which tree the nodes belong from the context.

Since nodes of T are sequences of natural numbers, there exists a natural lexico-
graphical order for them. We can therefore explore T in lexicographic order

u0 = ∅, u1, u2, . . . .

We remark that each node appears exactly once in this sequence if the tree is finite, thus
if #T = n, the sequence terminates at un−1.

Consider each node as a vertex, and add an edge between a node u and its parent
←−u , then one can see T as an abstract graph. If we attach a vector du in Zd to each
directed edge (←−u , u), fix the position of the root at X∅ = 0 and let Xu =

∑
u′⪯u du′ ,

then (Xu)u∈T gives a spatial tree tructure.
Given a distribution µ on N and a distribution θ on Zd, we can define a probability

measure on (spatial) trees, denoted by Pµ,θ, under which we have that

ku
i.i.d.∼ µ, du

i.i.d.∼ θ.

The abstract tree T under this law is called the Galton-Watson tree, while the spatial
tree (Xu)u∈T is called the branching random walk.

4.2.2 . The infinite model
In this section, we construct an infinite model based on the Galton-Watson tree that

will be used throughout this article and may be of independent interests to other problems.
Intuitively, it can be seen as the discrete limit of critical Galton-Watson trees conditioned
to be large ([Ald91, Section 2.6]), and our construction generalises the one-sided version
of infinite Galton-Watson trees in [LGL16, Section 2.2].

We define a forest indexed by a spine to be a sequence of trees, (here Ti are standard
trees as in Section 4.2.1),

T = ((0, T0), (1, T1), (1, T−1), (2, T2), (2, T−2) . . .),
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where the roots (±i,∅) of Ti and T−i (i > 0) are identified (glued together) as one single
point on the spine. We write k(i,u)(T ) = ku(Ti) for the number of offspring of node
u ∈ Ti, and in particular, k+(i,∅)(T ), k

−
(i,∅)(T ) are the numbers of offspring of (±i,∅) in

the two trees Ti, T−i, respectively. We call the set of points {(i,∅), i ∈ N} the spine of
T , and (0,∅) the base point. Notice that by adding edges between consecutive points
on the spine, the forest can also be seen as an abstract tree but the base point does not
always play the role of the ‘root’, see Remark 4.2.5.

We embed this forest in Zd, by taking d(i,u)(T ) = du(Ti) as the spatial displacement
from its parent, and letting X(i,u)(T ) be the spatial position of u by summing over all
displacements along the path from the base point (0,∅) to (i, u).

On the set of forests, we define the following probability measure Pµ,θ:

— Offspring distributions are independent, except for the two offspring distributions
of the same node, k±(i,∅)(T ). For each i ≥ 0, u ̸= ∅,

k(i,u)(T )
i.i.d.∼ µ,

moreover,
k(0,∅)(T )∼µ,

while for other nodes (±i,∅) (i > 0) on the spine

Pµ,θ(k
+
(i,∅)(T ) = i, k−(i,∅)(T ) = j) = µ(i+ j + 1).

— Displacements d(i,u)(T ) are i.i.d. distributed as θ on each directed edge including
edges on the spine, with the base point fixed at the origin, X(0,∅)(T ) = 0.

Remark 4.2.1. The law of the spine is indeed well-defined as a probability measure,
because

∑
i,j≥0 µ(i+ j + 1) =

∑
k≥0 kµ(k) = 1 for a critical distribution µ.

The lexicographical order of nodes on the forest is illustrated in Figure 4.1. We
denote this sequence by

. . . , u−1(T ), u0(T ) = (0,∅), u1(T ), . . . , un(T ), . . . ,

and the corresponding spatial positions (Xui(T )) by

. . . , v−1(T ), v0(T ) = 0, v1(T ), . . . , vn(T ), . . . . (4.2.2)

The range is defined as

R[i, j](T ) = {vi(T ), vi+1(T ), . . . , vj(T )}.

On the set of spine-indexed forests, we can then establish a shift transformation σ
defined by (see Figure 4.2):

ui(σ(T )) = ui+1(T ), vi(σ(T )) = vi+1(T )− v1(T ). (4.2.3)
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Figure 4.1 – Lexicalgraphical order on the forest indexed by spine.

Figure 4.2 – The transform σ on the tree. Base points (0,∅) are marked with
bigger circles.

One can easily check that (ui(σ(T )))i∈Z is the same sequence as (ui+1(T ))i∈Z, and
(vi(σ(T )))i∈Z = (vi+1(T )− v1(T ))i∈Z is the corresponding positions of (ui(σ(T )))i∈Z
in Zd, translated such that the base point (0,∅) stays at the origin. Moreover, the
transformation is invariant under Pµ,θ. In other words, for any measurable set A of
spine-indexed forests,

Pµ,θ(T ∈ A) = Pµ,θ(σ(T ) ∈ A).

Proposition 4.2.2. Given the assumption (4.1.1), the probability measurePµ,θ is invari-
ant and ergodic under σ. Consequently, we have that

(vi, . . . , vn+i)− vi
d
= (v0, . . . , vn) under Pµ,θ, ∀i ∈ Z, n ∈ N. (4.2.4)

In other words,

R[i, n+ i]− vi
d
= R[0, n] under Pµ,θ, ∀i ∈ Z, n ∈ N.
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Proof. Since θ is symmetric, it suffices to study themarginal distributionPµ,θ on the
space of infinite trees.

As shown in Figure 4.3, take any node u: if it is the base point or some point
not on the spine, then it has k children (thus degree k + 1) with probability µ(k) =
µ(deg(u)− 1); otherwise, it has i children on the left and j children on the left (thus
degree i+ j + 2) with probability µ(i+ j + 1) = µ(deg(u)− 1).

Figure 4.3 – Neighborhood of a single node. Degree means the number of
adjacent nodes as in an abstract graph.

Therefore, Pµ,θ can be seen as a probability measure on spine-indexed forests
such that each node u has degree k + 1 with probability µ(k). That is to say, Pµ,θ

only takes into account the abstract tree structure, regardless of the base point. For
example, denote by t and t′ the structures depicted in Figure 4.4, and by A and A′

the cylinder sets of forests whose first two or three subtrees are identical to t and
t′ respectively, then

Pµ,θ(T ∈ A) =
∏
u∈t

µ(deg(u)− 1) =
∏
u∈t′

µ(deg(u)− 1) = Pµ,θ(T ∈ A′).

Figure 4.4 – Finite trees t and t′ that are only different in the position of base
points.

Since σ only changes the base point, it is then invariant with respect to Pµ,θ.
Ergodicity is also clear by construction.
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Then (4.2.4) follows easily by applying the invariant transform as illustrated be-
low:

Pµ,θ(v2(T )− v1(T ) = x)

=Pµ,θ(v1(σ(T ))− v0(σ(T )) = x)

=Pµ,θ(v1(T )− v0(T ) = x),

where we use the invariance property of σ with respect to Pµ,θ in the last line.

Remark 4.2.3. If one is only interested in the positive side,

((0, T0), (1, T1), (2, T2), . . .),

then the spine has offspring distribution

Pµ,θ(k(i,∅)(T ) = i) =
∞∑
j=0

Pµ,θ(k
+
(i,∅)(T ) = i, k−(i,∅)(T ) = j) =

∞∑
j=0

µ(i+ j + 1),

which is consistent with the construction in [LGL16, Section 2.2], for which the invari-
ant transformation can be also induced by the transformation σ defined in (4.2.3).
Remark 4.2.4. If we are interested in trees with n nodes instead of infinite nodes,
with the same spirit as in the proof of Proposition 4.2.2, one has the equivalence
between Galton-Watson trees conditioned on the total population size and simply
generated trees in [Ald91, Section 2.1]. For a tree with n nodes, one has to specify
a root, while in the infinite case, the ’root’ is naturally set at infinity, and the ’base
point’ is actually redundant.
Remark 4.2.5. If we replace edges in our model by directed edges of distribution θ
pointing towards infinity, then Proposition 4.2.2 still holds without assuming that θ
is symmetric.

In contrast, the standard branching random walk with asymmetric displace-
ment is constructed by attaching displacements to the directed edges of the Galton-
Watson tree pointing towards the root.

Therefore, for asymmetric θ, the role of the base point (0,∅) here and the role
of the root in the standard branching random walk are different, and we can no
longer compare them by identifying the base point of the infinite model as the root
of a standard finite model, which is the method in Lemma 4.3.6. The displacement
distribution θ is thus assumed symmetric.

4.2.3 . Estimates on random walks and Green’s functions
In this section, we present a few estimates on random walks and Green’s function.

We denote by Pηx the law of the random walk started at x with transition probability η,
and by (Sn) the random walk under Pηx (or S(i)

n for its i.i.d. copies). Then the η-Green’s
function is defined as

Gη(x, y) = Gη(x− y) =
∞∑
n=0

Pη0(Sn = x− y).
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Figure 4.5 – Directed edges for the infinite and finite models. Directions of
edges are different on the ’spine’.

Lemma 4.2.6. [LL10, p.24] Let η be an aperiodic and irreducible distribution on Zd (d ≥
1) with mean 0 and finite third moment. Denote by Γη the covariance matrix of η. Then
there exists a constant C(d, η) > 0 such that, uniformly for all x ∈ Zd,∣∣∣∣∣Pη0(Sn = x)− 1

(2πn)d/2
√
det Γη

e−
x·Γ−1

η x

2n

∣∣∣∣∣ ≤ C(d, η)n− d+1
2

Lemma 4.2.7. [LL10, Theorem 4.3.5] Given an aperiodic and irreducible distribution η
on Zd(d ≥ 3) with mean 0 and covariance matrix Γη , if it has finite (d + 1)-th moment
Eη0(|S1|d+1) <∞, then

Gη(x) =
Cd,η

Jη(x)d−2
+O(|x|1−d),

whereCd,η =
Γ( d

2
)

(d−2)πd/2
√

det Γη
,Γ(·) refers to theGamma function andJη(x) =

√
x · Γ−1

η x.

Lemma 4.2.8. Let η be an aperiodic and irreducible distribution on Zd (d ≥ 3) with
mean 0 and finite third moment and 1 ≤ m ≤ d−1. There exists a constantC(d, η) > 0

such that uniformly on the starting point x0 ∈ Zd,

Eηx0(|Sn| ∨ 1)−m ≤ C(d, η)n−
m
2 .

Proof. Due to irreducibility of η, we haveJη(x)2 ≥ C1(d, η)|x|2. Thenby Lemma4.2.6,
we can find C2(d, η) > 0 such that

Eηx0(|Sn| ∨ 1)−m ≤ C2(d, η)
∑
x∈Zd

(|x0 + x| ∨ 1)−mn−
d
2 e−

C1(d,η)|x|
2

2n +O(n−
d+1
2 )

≤ C2(d, η)n
−m

2

∑
x∈Zd/

√
n

(∣∣∣∣ x0√n + x

∣∣∣∣ ∨ 1√
n

)−m
n−

d
2 e−

C1(d,η)|x|
2

2 +O(n−
d+1
2 ).
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Moreover, denote by B(y; r) the ball centered at y with radius r, then

n−
d
2

∑
x∈Zd/

√
n

(∣∣∣∣ x0√n + x

∣∣∣∣ ∨ 1√
n

)−m
e−

C1(d,η)|x|
2

2

≤ n−
d
2

 ∑
x∈(Zd/

√
n)∩B(−x0/

√
n;1)

(∣∣∣∣ x0√n + x

∣∣∣∣ ∨ 1√
n

)−m
+

∑
x∈(Zd/

√
n)\B(−x0/

√
n;1)

e−
C1(d,η)|x|

2

2


−→
n→∞

∫
B(0;1)

|x|−mdx+

∫
Rd

e−
C1(d,η)|x|

2

2 dx.

which is a constant depending only on d and η.

Corollary 4.2.9. Let η be an aperiodic and irreducible distribution on Zd (d ≥ 3) with
mean 0 and finite third moment, then for anym ≥ 1,

1. there exists a constant C(d, η,m) > 0 such that uniformly for x0 ∈ Zd,

Eηx0

[(
n∑
i=0

(|Si| ∨ 1)−2

)m]
≤ C(d, η,m)(log n)m;

2. for any 2 < k ≤ d − 1, there exists a constant C ′(d, η,m, k) > 0 such that
uniformly for x0 ∈ Zd,

Eηx0

[(
n∑
i=0

(|Si| ∨ 1)−k

)m]
≤ C ′(d, η,m, k).

Proof. The cases m = 1 for both k = 2 and k > 2 are clear by Lemma 4.2.8. For
m ≥ 2, applying Markov’s property inductively gives that

Eηx0

[(
n∑
i=0

(|Si| ∨ 1)−k

)m]

≤C ′(d, η,m, k)Eηx0

 n∑
i=0

(
(|Si| ∨ 1)−k

)
· EηSi

n−i∑
j=0

(
|S′
j | ∨ 1

)−km−1,
where

(
S′
j

)
denotes a random walk independent of (Si).

Lemma 4.2.10. [Ein89, Theorem 4] Let η be a probability distribution in Rd with mean
0 and covariance matrix Γη. If Eη0

[
e
√

|S1|
]
< ∞, then one can construct on the same

probability space a Brownian motion (Bt) with covariance matrix Γη such that there
exists C,C ′ > 0 depending on d, η such that

Pη0

(
max
1≤k≤n

|Sk −Bk| ≥ x
)
≤ Cn

eC′√x .
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4.2.4 . Capacity

Given a distribution η on Zd (d ≥ 3) and a finite set A ⊆ Zd, recall that the η-capacity
is defined as

capηA =
∑
x∈A

Pηx(τ
+
A =∞). (4.2.5)

In this section, we give two estimates relating the η-capacity to the η-Green’s function,
which is defined as

Gη(x, y) = Gη(x− y) = Eη0

[ ∞∑
i=0

1(Si=x−y)

]
=

∞∑
i=0

Pη0(Si = x− y), x, y ∈ Zd.

Lemma 4.2.11. Let d ≥ 3 and η be any probability distribution on Zd. For any finite set
A ⊂ Zd and k ∈ N+,

capηA ≥
#A

k + 1
−
∑

x,y∈AGη(x, y)

k(k + 1)
.

Proof. We define local times LA :=
∑∞

n=1 1(Sn∈A) ∈ N ∪ {∞} for any finite set
A ⊂ Zd, then by definition, capηA =

∑
x∈A

Pηx(LA = 0).

For any integers a > 0 and b ≥ 0,∑
x∈A

Pηx(LA = a)P−η
x (LA = b) =

∑
x,y∈A

Pηx(Sτ+A
= y)Pηy(LA = a− 1)P−η

x (LA = b)

=
∑
x,y∈A

P−η
y (Sτ+A

= x)Pηy(LA = a− 1)P−η
x (LA = b)

=
∑
y∈A

Pηy(LA = a− 1)P−η
y (LA = b+ 1),

where −η refers to the distribution with (−η)(x) := η(−x), ∀x ∈ Zd.
Thus by induction we have that∑

x∈A
Pηx(LA = a)P−η

x (LA = b) =
∑
x∈A

Pηx(LA = 0)P−η
x (LA = a+ b).

By summing over a ≤ k and b ≥ 0, it follows that

∑
x∈A

Pηx(LA ≤ k) =
∑
y∈A

Pηy(LA = 0)

(
k∑
a=0

P−η
y (LA ≥ a)

)
≤ (k + 1)

∑
y∈A

Pηy(LA = 0).

(4.2.6)
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Therefore

#A−
∑
x∈A

Pηx(LA > k) =
∑
x∈A

(1− Pηx(LA > k))

=
∑
x∈A

Pηx(LA ≤ k)

≤ (k + 1)
∑
y∈A

Pηy(LA = 0) = (k + 1)capηA.

To conclude, it suffices to notice that Pηx(LA > k) ≤
∑

y∈AGη(x,y)

k , which follows
directly from Markov’s inequality.

Moreover, in our situation, the set An = {X0, . . . , Xn} is the trajectory of a station-
ary process (Xn)n∈Z up to translation (under some probability space (Ω,F ,P)), in the
sense that

X0 = 0, {X0, . . . , Xn}
d
= {Xi, . . . , Xn+i} −Xi, ∀i ∈ Z,∀n ∈ N, (4.2.7)

where A − x := {a − x : a ∈ A} for any set A ⊆ Zd and x ∈ Zd. We can thus rewrite
(4.2.5) as

capηAn =
n∑
i=0

1{Xi ̸∈{Xi+1,...,Xn}}P
η
Xi
(τ+An

=∞). (4.2.8)

and take expectation to get

EcapηAn =
n∑
i=0

E
[
1{Xi ̸∈{Xi+1,...,Xn}}P

η
Xi
(τ+{X0,...,Xn} =∞)

]
=

n∑
i=0

E
[
1{X0 ̸∈{X1,...,Xn−i}}P

η
X0

(τ+{X−i,...,Xn−i} =∞)
]
.

This sum may be approximated (with a second moment method, for instance) by n times

E
[
1{X0 ̸∈{X1,...,Xξrn

}}P
η
X0

(
τ+{X−ξln

,...,Xξrn
} =∞

)]
, (4.2.9)

where ξln and ξrn are geometric killing times with parameter 1
n .

The following lemma inspired by [Law13, Theorem 3.6.1] then allows us to establish
a relation between (4.2.9) and Green’s functions. Recall that ξ is a geometric variable
with parameter λ if

P(ξ = k) = λ(1− λ)k, k ∈ N.

Lemma 4.2.12. Let (Xn)n∈Z in Zd be a stationary process up to translation in (4.2.7).
Let d ≥ 3, n ≥ 1, and let ξln, ξrn, ξn be independent geometric random variables with
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parameter 1
n . If we set

In = 1{X0 ̸=Xi,0<i≤ξrn},

En = PηX0

(
τ+{X−ξln

,...,Xξrn
} > ξn

)
,

Gn =

ξrn∑
i=−ξln

G
(1− 1

n
)

η (X0, Xi),

where G(λ)
η (x) =

∑
k≥0 λ

kPη0(Sk = x) denotes the Green’s function with killing rate λ,
then

E[EnGnIn] = 1.

Proof. Form ∈ N and x1, . . . , xm in Zd, we consider the event

B = B(m;x1, . . . , xm) := {ξln + ξrn = m,Xi−ξln = X−ξln + xi, ∀0 ≤ i ≤ m}

with the convention that x0 = 0. Whenm runs through N and (xi) runs through all
possible finite sequences of Zd, we have that∑

m≥0

∑
x1,...,xm∈Zd

1B(m;x1,...,xm) = 1.

Therefore, it suffices to prove that for any B = B(m;x1, . . . , xm),

E[1BEnGnIn] = P(B).

Moreover, on a fixed B, we can define

Bj = {ξln = j, ξrn = m− j,Xi = X0 + xi, ∀0 ≤ i ≤ m}, 0 ≤ j ≤ m,

then sinceEn, In, Gn are all invariant under the translation (Xi)→ (Xi−X−ξln), we
have that

E[1BEnGnIn] =
m∑
j=0

E[1BjEnGnIn]

=
m∑
j=0

P(Bj)1{xj ̸=xi,j<i≤m}P
η
xj

(
τ+{x0,...,xm} > ξn

) m∑
k=0

G
(1− 1

n
)

η (xj , xk).

By the stationary property (4.2.7), we have that

P(Bj) =
P(B)

m+ 1
, ∀0 ≤ j ≤ m,

thus we can further simplify the equation above to

E[1BEnGnIn] =
P(B)

m+ 1

m∑
k=0

m∑
j=0

1{xj ̸=xi,j<i≤m}P
η
xj

(
τ+{x0,...,xm} > ξn

)
G

(1− 1
n
)

η (xj , xk).

(4.2.10)

93



For any A ⊆ Zd, z ∈ A, by decomposing the random walk (Sn) started at z at
the last time it hits A ⊆ Zd, it is not hard to see that ([Law13, Proposition 2.4.1 (b)])∑

x∈A
Pηx(τ

+
A > ξn)G

(1− 1
n
)

η (z, x) = 1.

Take A = {x0, x1, . . . , xm}, then we have that

m∑
j=0

1{xj ̸=xi,j<i≤m}P
η
xj (τ

+
A > ξn)G

(1− 1
n
)

η (z, xj) = 1, z ∈ {x0, x1, . . . , xm}.

Put this into (4.2.10), then

E[1BEnGnIn] =
P(B)

m+ 1

m∑
k=0

1 = P(B).

The conclusion follows by adding up all choices of B(m;x1, . . . , xm).

4.2.5 . Strong mixing property for functions of the Brownian motion

The calculation for Green’s functions will lead to some estimates of the following
form, for which we give a concentration result in advance. This part is inspired partially
by [LGL16, Lemma 18, Lemma 19].

In this section, let d ≥ 3, and we consider a continuous homogeneous functions on
Rd\{0} of degree 2, f : Rd\{0} → R+ such that

f(λz) = λ−2f(z), z ∈ Rd\{0}, λ ∈ R\{0}. (4.2.11)

Then in particular, f is bounded on the unit sphere, and

f(z) ≍ |z|−2, z →∞. (4.2.12)

Consider the trajectory w of a d-dimensional Brownian motion. Let

F (w) =

∫ e

1
f(w(t))dt

and

Tw(t) =
w(et)√

e
.

Then one can easily deduce that:

1. F is almost surely finite;

2. T is invariant and ergodic in the Wierner space equipped with the probability
measure of the Brownian motion;

3.
∫ en
1 f(w(t)) = F (w) + F (Tw) + · · ·+ F (Tn−1w).
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Thus by Birkhoff’s ergodic theorem, for the Brownian motion (Bt) in Rd, the following
integral converges almost surely to its expectation,∫ en

1 f(Bt)dt

n
→ E

[∫ e

1
f(Bt)dt

]
. (4.2.13)

Moreover, we can improve it to a concentration property,

Proposition 4.2.13. Let (Bt) be the Brownianmotion inRd (d ≥ 3)with non-degenerate
covariance matrix Γ. Then for any ϵ > 0, m > 0 and f satisfying (4.2.11), there exists a
constant C(d, ϵ,m,Γ) > 0 such that

P
(∣∣∣∣
∫ n
1 f(Bt)dt

log n
− E

[∫ e

1
f(Bt)dt

]∣∣∣∣ > ϵ

)
≤ C(d, ϵ,m,Γ)(log n)−m, ∀n ≥ 1. (4.2.14)

To prove this, we need the following moment estimate,

Lemma 4.2.14. [Yok80, Theorem 1] Let (Xn)n∈Z be a (strictly) stationary sequence, i.e.
a sequence of random variables such that for any k ∈ N and t, t1, . . . , tk ∈ Z

(Xt1 , . . . , Xtk)
d
= (Xt1+t, . . . , Xtk+t).

LetMj
i be the σ-field generated by {Xi, Xi+1, . . . , Xj}, and let

α(n) = sup
A∈M0

−∞,B∈M∞
n

|P(A ∩B)− P(A)P(B)|.

For r > 2, δ > 0, if EX1 = 0, E|X1|r+δ <∞ and

∞∑
n=0

(n+ 1)
r
2
−1α(n)

δ
r+δ <∞,

then there exists a constant C(r, δ) > 0 such that

E|X1 + · · ·+Xn|r ≤ C(r, δ)n
r
2 , ∀n ≥ 1.

Proof of Proposition 4.2.13. It suffices to prove (4.2.14) for the Brownian motion with
covariance Id. Let

Xn =

∫ en

en−1

f(Bt)dt− E
[∫ e

1
f(Bt)dt

]
= F (Tn−1Bt)− E

[∫ e

1
f(Bt)dt

]
,

thenby a change variable fromn to en, it suffices to show that there existsC(d, ϵ,m) >

0 with
P(|X1 + · · ·+Xn| > ϵn) ≤ C(d, ϵ,m)n−m.

By (4.2.12), (Xn) is a stationary sequencewithmean 0. Moreover, by applying the
same trick as in Corollary 4.2.9, we can easily show that it also satisfies the moment
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assumption E|X1|r+δ < ∞ for all r, δ. Therefore, to apply Lemma 4.2.14, it suffices
to prove that for (Xn) we have α(n) = O(e−cn) for some c > 0.

Since (Xn) only depends on the trajectory of the Brownian motion, which is a
Markov process, we have that α(n) is comparable uniformly in n to

sup
A,B⊆R6

|P(B1 ∈ A,Ben ∈ B)− P(B1 ∈ A)P(Ben ∈ B)|.

Clearly, P(|B1| > n) = P(|Ben | > nen/2) = O(e−cn), so we may consider the
supreme restricted to bounded balls in Rd, A ⊆ Ball(0;n), B ⊆ Ball(0;nen/2). Then
we expand α(n) by definition,

sup
A⊆Ball(0;n)

B⊆Ball(0;nen/2)

|P(B1 ∈ A,Ben ∈ B)− P(B1 ∈ A)P(Ben ∈ B)|

≤ 1

(2π)d
sup

A⊆Ball(0;n)
B⊆Ball(0;nen/2)

∫
A
dx

∫
B
dy ·

∣∣∣∣ 1√
en − 1

e
− |x|2

2
− |y−x|2

2(en−1) − 1√
en
e−

|x|2
2

− |y|2
2en

∣∣∣∣
≤ 1

(2π)d
sup

A⊆Ball(0;n)
B⊆Ball(0;nen/2)

∫
A
dx

∫
B
dy · 1√

en

∣∣∣∣e− |x|2
2

− |y−x|2
2(en−1) − e−

|x|2
2

− |y|2
2en

∣∣∣∣
+

1

(2π)d
sup

A⊆Ball(0;n)
B⊆Ball(0;nen/2)

∫
A
dx

∫
B
dy ·

∣∣∣∣ 1√
en − 1

− 1√
en

∣∣∣∣e− |x|2
2

− |y−x|2
2(en−1)

≤ 1

(2π)de
n
2

sup
A⊆Ball(0;n)

B⊆Ball(0;nen/2)

∫
A
e−

|x|2
2 dx

∫
B
e−

|y|2
2en dy ·O

(∣∣∣∣ |y − x|22(en − 1)
− |y|

2

2en

∣∣∣∣)+O(e−n)

=O(n2e−n),

where in the last line, we upper bound the integrals by 1 and use the fact that |x| ≤
n, |y| ≤ nen/2.

In conclusion, we have α(n) = O(e−cn) for some c > 0, thus the conditions in
Lemma 4.2.14 are satisfied. Therefore, let δ = 1

2 , then for any r > 2, there exists a
constant C(r) such that

E|X1 + · · ·+Xn|r ≤ C(r)n
r
2 , ∀n ≥ 1,

then by a Chebyshev-type inequality,

P
(
|X1 + · · ·+Xn| ≥ k(C(r)n

r
2 )

1
r

)
≤ k−r.

The conclusion follows by taking r = 2m and k = ϵn
1
2 (C(r))−

1
r .

Corollary 4.2.15. Let η be a distribution satisfying the conditions in Lemma 4.2.10, and
recall that f is a function satisfying (4.2.11). Set f(0) = 0 so that it is defined on Rd, then
for any ϵ > 0 andm > 0, there exists a constant C(d, η, ϵ,m) > 0

Pη0

(∣∣∣∣∑n
i=0 f(Si)

log n
− E

[∫ e

1
f(Bt)dt

]∣∣∣∣ > ϵ

)
≤ C(d, η, ϵ,m)(log n)−m, ∀n ≥ 0.
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Proof. Extend the discrete process (Sn)n∈N to a continuous-time process (S⌊t⌋)t≥0.

Using Lemma 4.2.10 and some basic estimates on the Brownianmotion, we can find
a Brownian motion with the same covariance matrix as S on the same probability
space, a constant C(d, η) > 0, and k ∈ N large enough, such that the event

Fn :=

{
max
0≤t≤n

|St −Bt| < C(d, η)(log n)2
}
∩
{

inf
t>(logn)k

|Bt| > (log n)3
}

happens with probability 1−O((log n)−m).
Recall that f is continuous on Rd\{0} and homogeneous of degree 2, we can

easily get that for any δ > 0, when n is large enough, for any x, y ∈ Rd such that
|y| > (log n)3, |x− y| < (log n)2,

|f(x)− f(y)| ≤
∣∣|x|−2 − |y|−2

∣∣f( x

|x|

)
+ |y|−2

∣∣∣∣f( x

|x|

)
− f

(
y

|y|

)∣∣∣∣
= |y|−2 |x|+ |y|

|x|
|x| − |y|
|x|

f

(
x

|x|

)
+ |y|−2

∣∣∣∣f( x

|x|

)
− f

(
y

|y|

)∣∣∣∣
≤ δ|y|−2.

Therefore, conditioned on the event Fn, if we write Cf = E
[∫ e

1 f(Bt)dt
]
for simplic-

ity, we have that∣∣∣∣∣
n−1∑
i=0

f(Si)− Cf log n

∣∣∣∣∣
≤

⌈(logn)k⌉∑
i=0

f(Si) +

∣∣∣∣∣
∫ n

(logn)k
f(Bt)dt− Cf log n

∣∣∣∣∣+
∫ n

(logn)k
|f(Bt)− f(St)| dt

≤
⌈(logn)k⌉∑

i=0

f(Si) +

∣∣∣∣∣
∫ n

(logn)k
f(Bt)dt− Cf log n

∣∣∣∣∣+ δ

∫ n

(logn)k
|Bt|−2dt.

For the first term, by Corollary 4.2.9, we have that

P

⌈(logn)k⌉∑
i=0

f(Si) > ϵ log n

 ≤ C1(d, η, ϵ,m)(log n)−m.

Similar bounds for the second and the third term follows from Proposition 4.2.13.
This complets the proof.

4.3 . The super-critical dimensions

In this section, we prove Theorem 4.1.1 for d ≥ 7 via the infinite model defined
in Section 4.2.2. The main strategy is to establish a lower bound for the expectation
of capacity using Lemma 4.2.11 and estimates on Green’s functions. Then the desired
convergence can be obtained for the infinite model with the help of its ergodicity under
transformation (4.2.3). Finally extend it to a similar convergence for the branching random
walk indexed by the critical Galton-Watson tree conditioned to be large.
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4.3.1 . Estimates on Green’s functions
Lemma 4.3.1. If d ≥ 3 and η, θ are distributions onZd satisfying (4.1.1), then as n→∞,
there exists a constant C(d, η, θ) > 0 such that

Eθ0[Gη(Sn)] ≤ C(d, η, θ)n1−d/2.

Proof. Recall that according to Lemma 4.2.7, there exists C ′(d, η, θ) such that

(C ′(d, η, θ))−1Gθ(x) ≤ Gη(x) ≤ C ′(d, η, θ)Gθ(x) uniformly for all x ∈ Zd,

then it suffices to show that

Eθ0[Gθ(Sn)] ≤ C(d, θ)n1−d/2.

In fact since θ is symmetric,

Eθ0[Gθ(Sn)] =
∑
x∈Zd

Pθ0(Sn = x)Gθ(x)

=
∑
x∈Zd

∑
m≥0

Pθ0(Sn = x)Pθ0(Sm = x)

=
∑
m≥0

Pθ0(Sm+n = 0) ≤ C(d, θ)n1−d/2,

where the last line follows by taking x = 0 in Lemma 4.2.6 and this completes the
proof.

Lemma 4.3.2. In dimension d ≥ 7, recall that µ, θ, η are probability distributions satis-
fying (4.1.1), and (vi) is the sequence of vertices of the infinite model is defined in (4.2.2).
Then there exists a constant C(d, µ, θ, η) > 0 such that

Eµ,θ

[ ∞∑
i=−∞

Gη(vi)

]
≤ C(d, µ, θ, η).

Proof. Recall that (vi) run through all subtrees denoted by T±n = Tn ∪ T−n, thus

Eµ,θ

[ ∞∑
i=−∞

Gη(vi)

]

=Eµ,θ ⊗ Eθ0

[ ∞∑
n=0

∞∑
i=0

#{u ∈ T±n : |u| = i}Gη(Sn+i)

]

=
∞∑
n=0

∞∑
i=0

Eµ,θ[#{u ∈ T±n : |u| = i}]Eθ0[Gη(Sn+i)].

If µ has finite variance, then for all n and i ,

Eµ,θ[#{u ∈ T±n : |u| = i}] = Eµ,θ[#{u ∈ T±n : |u| = 1}] =
∑
i,j≥0

(i+ j)µ(i+ j + 1),
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thus we have that

Eµ,θ

[ ∞∑
i=−∞

Gη(vi)

]
≤ C(µ)

∞∑
n=0

∞∑
i=0

Eθ0[Gη(Sn+i)]

= C(µ)
∞∑
m=0

(m+ 1)Eθ0[Gη(Sm)] ≤ C(µ, d, η, θ),

where the last line follows from Lemma 4.3.1.

4.3.2 . Limit theorem for the infinite model
Proposition 4.3.3. In dimension d ≥ 7, µ, θ, η are supposed to satisfy (4.1.1) and recall
the rangeR[0, n] defined in Section 4.2.2. Then there is a constant C(d, µ, θ, η) > 0 such
that

capη(R[0, n])

n
→ C(d, µ, θ, η) Pµ,θ-almost surely.

Proof. By the definition of the capacity, for any finite sets A,B ⊂ Zd,

capη(A ∪B) ≤ capηA+ capηB.

Recall the ergodic measure-preserving shift σ defined by (4.2.3). In particular we
have that

capη(R[0, n+m]) ≤ capη(R[0, n]) + capη(R[n, n+m])

= capη(R[0, n]) + capη(σ
n ◦R[0,m]).

Thus Kingman’s subadditive ergodic theorem suggests that there exists a constant
C(d, µ, θ, η) such that

lim
n→∞

capη(R[0, n])

n
→ C(d, µ, θ, η) Pµ,θ-almost surely.

Then it remains to prove that the constant

C(d, µ, θ, η) = lim
n→∞

1

n
Eµ,θ

[
capη(R[0, n])

]
(4.3.15)

is strictly positive.
In fact by Lemma 4.2.11, for any k ≥ 1,

1

n
Eµ,θ[capη(R[0, n])] ≥

1
nEµ,θ[#R[0, n]]

k + 1
−

1
nEµ,θ

[∑
x,y∈R[0,n]Gη(x, y)

]
k(k + 1)

.

The first term 1
nEµ,θ[#R[0, n]] converges to a strictly positive constant by [LGL16,

Proposition 5], and the second

1

n
Eµ,θ

 ∑
x,y∈R[0,n]

Gη(x, y)

 ≤ 1

n
Eµ,θ

 n∑
i,j=0

Gη(vi, vj)

 ≤ Eµ,θ

[ ∞∑
i=−∞

Gη(vi)

]

is also finite by Lemma 4.3.2. Then (4.3.15) is strictly positive by taking k sufficiently
large.
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Remark 4.3.4. The limiting constant here is implicit. In fact, in the languageof Lemma4.2.12,
for high dimensions d ≥ 7, both EnIn and Gn will converge by monotonicity (to
some random variables). If we denote by E∞I∞ and G∞ their limits, then the de-
sired constant is

E[E∞I∞] = Pµ,θ ⊗ P0
η

(
v0 ̸∈ {v1, v2, . . .}, τ+{...,v−1,v0,v1,...} =∞

)
.

However, the equation E[E∞I∞ ·G∞] = 1 does not contain enough information to
determine this constant, since G∞ is a non-trivial random variable for d ≥ 7.

4.3.3 . Proof of Theorem 4.1.1 (1)
In this section, we establish an intermediate structure, via which we can compare the

infinite model with large Galton-Watson trees via this new structure as in [Zhu21, p. 19].
To study R[0, n], it suffices to look at (vi) for i ≥ 0, thus we consider the model in

Remark 4.2.3, i.e. we attach one subtree Ti to each node (i,∅) on the spine and set

k(0,∅)∼µ, Pµ,θ(k(i,∅) = n) = µ[n+ 1,∞) =
∞∑

j=n+1

µ(j), i > 0.

Now we construct a new probability measure PI
µ,θ such that all nodes on the spine,

including the base point (0,∅), have offspring distribution

PI
µ,θ(k(i,∅) = n) = µ[n+ 1,∞), i ≥ 0,

while all other properties (independence, offspring distribution for nodes not on the spine,
and displacements) coincide with Pµ,θ. Recall that PI

µ,θ and Pµ,θ are different only in
the first subtree, it follows that

Corollary 4.3.5. In dimension d ≥ 7, let µ, θ, η be distributions satisfying the conditions
in (4.1.1). There is a constant C(d, µ, θ, η) > 0 such that under PI

µ,θ,

capη(R[0, n])

n
→ C(d, µ, θ, η) in probability.

Moreover, for the measure PI
µ,θ we have

Lemma 4.3.6 ([Zhu21]). In dimension d ≥ 3, let µ, θ, η be distributions with the con-
ditions in (4.1.1). Recall that Pµ,θ is the law of the Galton-Watson tree (cf. Section 4.2.1).
Let a ∈ (0, 1) and let (fn) be any uniformly bounded sequence of functions on Z⌊an⌋+1.
Then (with an abuse of the notation (vi) for positions of nodes under both Pµ,θ andPI

µ,θ)

lim
n→∞

∣∣∣∣Eµ,θ(fn((vi)0≤i≤⌊an⌋
) ∣∣#T = n

)
−EIµ,θ

(
fn
(
(vi)0≤i≤⌊an⌋

)
ga

(
L⌊an⌋

σn

))∣∣∣∣ = 0,

where ga(x) = (1 − a)−
3
2 exp

(
− x2

2(1−a)

)
, σ2 is the variance of µ, and (Li) is the corre-

sponding Lukasiewicz path defined by (recall that ku denotes the number of children of
u)

L0 = 0, Li+1 − Li = kui − 1.
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Proof. See (5.3), (5.4) and the display that follows in [Zhu21].

Theorem 4.3.7. In dimension d ≥ 7, let µ, θ, η be distributions with the conditions in
(4.1.1), and let R[0, n] be the range constructed in Section 4.2.2 (abused to denote the
range of other trees as well). There is a constant C = C(d, µ, θ, η) > 0 such that under
the law of a (standard) Galton-Watson tree conditioned to have n+1 nodes, Pµ,θ(·|#T =

n+ 1),
capη(R[0, n])

n
→ C in probability.

Proof. For any ϵ > 0, take

fn = 1| 1ncapηR[0,an]−aC|>ϵ

in Lemma 4.3.6. Then by Corollary 4.3.5, we have that

lim
n→∞

Pµ,θ

(∣∣∣∣ 1ncapηR[0, an]− aC
∣∣∣∣ > ϵ

∣∣∣∣#T = n+ 1

)
= 0, (4.3.16)

Moreover, since∣∣∣∣ 1ncapη(R[0, n])− C
∣∣∣∣

≤
∣∣∣∣ 1ncapη(R[0, n])− 1

n
capη(R[0, ⌊an⌋])

∣∣∣∣+ ∣∣∣∣ 1ncapη(R[0, ⌊an⌋])− aC
∣∣∣∣+ |aC − C|

≤(1− a) +
∣∣∣∣ 1ncapη(R[0, ⌊an⌋])− aC

∣∣∣∣+ (1− a)C,

we have that

lim
n→∞

Pµ,θ

(∣∣∣∣ 1ncapη(R[0, n])− C
∣∣∣∣ > ϵ

∣∣∣∣#T = n+ 1

)
≤ lim
n→∞

Pµ,θ

(∣∣∣∣ 1ncapη(R[0, ⌊an⌋])− aC
∣∣∣∣ > ϵ− (1− a)(1 + C)

∣∣∣∣#T = n+ 1

)
= 0,

where the last line holds by (4.3.16) if a is taken sufficiently close to 1.

4.4 . The critical dimension

In this section, we consider the critical dimension d = 6 in Theorem 4.1.1. The main
strategy is to estimate Green’s functions for the infinite model introduced in Section 4.2.2,
so that we can use Lemma 4.2.12 and a second moment method to get the desired
convergence. Similar argument as in Theorem 4.3.7 allows us to prove the convergence
result of the capacity for RWs indexed by large Galton-Watson trees.
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4.4.1 . Estimates on Green’s functions
Proposition 4.4.1. In dimension d = 6, let µ, θ, η be distributions with assumptions in
(4.1.1). Let Pµ,θ be the law of a (standard) branching random walk (Xu)u∈T indexed by
a (standard) Galton-Watson tree T (cf. Section 4.2.1). Then

1. As z →∞, we have that

Eµ,θ

[∑
u∈T

Gη(z +Xu)

]
= Fη,θ(z) +O(|z|−3),

where the function

Fη,θ(z) := C6,ηC6,θ

∫
R6

Jη(z + x)−4Jθ(x)
−4dx,

is a continuous function defined on R6\{0} with Fη,θ(λz) = λ−2F (z) for all λ >
0, with C6,(·) and J(·) defined in Lemma 4.2.7.

2. For anym ≥ 2, ifµ has finitem-thmoment, then there exists a constantC(m,µ, θ, η) >
0, so that for any z ̸= 0,

Eµ,θ

[(∑
u∈T

Gη(z +Xu)

)m]
≤ C(m,µ, θ, η)|z|−2.

Proof. Because µ is critical, we have Eµ,θ[#{u ∈ T : |u| = n}] = 1 for all n ≥ 1. Then

Eµ,θ

[∑
u∈T

Gη(z +Xu)

]
= Eµ,θ

[ ∞∑
n=0

#{u ∈ T : |u| = n}Eθ0[Gη(z + Sn)]

]

=
∞∑
n=0

Eθ0[Gη(z + Sn)]

=

∞∑
n=0

∑
x∈Z6

Gη(z + x)Pθ0(Sn = x)

=
∑
x∈Z6

Gη(z + x)Gθ(x).

By Lemma 4.2.7, we then have∑
x∈Z6

Gη(z + x)Gθ(x)

=C6,ηC6,θ

∑
x∈Z6

Jη(z + x)−4Jθ(x)
−4 +O

∑
x∈Z6

|z + x|−5|x|−4

,
and it is elementary to show that (by approximating the sum by an integral)

O

∑
x∈Z6

|z + x|−5|x|−4

 = O(|z|−3).
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Moreover, the difference between C6,ηC6,θ
∑

x∈Z6 Jη(z+x)
−4Jθ(x)

−4 and Fη,θ(z) is
of the same order as O

(∑
x∈Z6 |z + x|−5|x|−4

)
by the mean value theorem. There-

fore,

Eµ,θ

[∑
u∈T

Gη(z +Xu)

]
= Fη,θ(z) +O(|z|−3).

The asymptotic and the scaling relation for Fη,θ are easy to check by using J·(x) ≍
|x|, J·(λx) = λJ·(x).

As for Part (2), let (S(i)
n )(1 ≤ i ≤ k) be independent θ-random walks started at

0. Given any z ∈ Z6, k ≥ 2, by Part (1) and Lemma 4.2.7,

Eθ0

 k∏
i=1

∞∑
j=0

Gη(z + S
(i)
j )

 ≤ C1(θ, η)
k∏
i=1

(|z| ∨ 1)−2 ≤ C2(θ, η)Gη(z)
k/2. (4.4.17)

To deal with the second moment,m = 2, we need to study the positions of two
nodes u, u′. Given that |u ∧ u′| = k, |u| = k + i, |u′| = k + j, where u ∧ u′ denotes
their youngest common ancestor), then their contribution to the secondmoment is

Eθ0Gη(z + Sk + S
(1)
i )Gη(z + Sk + S

(2)
j ).

Summing up all possible tree-structures, we have that

Eµ,θ

(∑
u∈T

Gη(z +Xu)

)2


=
∞∑

i,j,k=0

Eθ0

[
Gη(z + Sk + S

(1)
i )Gη(z + Sk + S

(2)
j )
]
Eµ,θ[N(k; i, j)],

where

N(k; i, j) = #
{
u, u′ ∈ T : |u ∧ u′| = k, |u| = k + i, |u′| = k + j

}
.

Figure 4.6 – N(k; i, j)

We can then countN(k; i, j) as illustrated in Figure 4.6 on critical Galton-Watson
trees. Set Zn := #{u ∈ T : |u| = n}), then

Eµ,θ[N(k; i, j)] = Eµ,θ[Zk]Eµ,θ[Z1(Z1 − 1)]Eµ,θ[Zi−1]Eµ,θ[Zj−1] = Eµ,θ[Z1(Z1 − 1)]
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for i, j ≥ 1, which is finite as long as µ has finite secondmoment (the case i or j = 0

can be easily treated alone). Then we apply (4.4.17) with k = 2,

Eµ,θ

(∑
u∈T

Gη(z +Xu)

)2


≤Eµ,θ[Z1(Z1 − 1)]
∞∑

i,j,k=0

Eθ0

[
Gη(z + Sk + S

(1)
i )Gη(z + Sk + S

(2)
j )
]

≤C(θ, η)Eµ,θ[Z1(Z1 − 1)]
∞∑
k=0

Eθ0[Gη(z + Sk)] ≤ C(µ, θ, η)|z|−2,

where the last inequality follows from Part (1).
Similar argument works form ≥ 3, by counting all possible hierarchy structures

of m vertices as for N(k; i, j), and perform (4.4.17) recursively on those structures.

Remark 4.4.2. By (4.4.17), one may expect an O(|z|−m) result in Part (2), however,
O(|z|−2) is in fact optimal for all m ≥ 3. Take m = 3 for instance. To estimate the
contribution of ’binary’ branching structure u(i)(i = 1, 2, 3) with (see Figure 4.7)

Figure 4.7 – ’binary’ branching structures for k = 3

|u(1) ∧ u(2) ∧ u(3)| = i, |u(2) ∧ u(3)| = i+ j > i,

we need to perform (4.4.17) with k = 2 twice, instead of the equation with k = 3:
∞∑

i,j,k,l,h=0

Eθ0

[
Gη(z + Si + S

(1)
j + S

(2)
k )Gη(z + Si + S

(1)
j + S

(3)
l )Gη(z + Si + S

(4)
h )
]

≤C1(µ, θ, η)

∞∑
i,j,h=0

Eθ0

[
Gη(z + Si + S

(1)
j )Gη(z + Si + S

(4)
h )
]

≤C2(µ, θ, η)
∞∑
i=0

Eθ0[Gη(z + Si)] ≤ C3(µ, θ, η)|z|−2.
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It is only when u(1), u(2), u(3) all branch at the same node (i.e. j = 0 in Figure 4.7)
that one can apply (4.4.17) with k = 3. Thus our method gives the bound O(|z|−2)

for allm-th moment form ≥ 2.

Since on the spine the infinite model has offspring distributions different from µ, we
include the following corollary, whose proof is clear by that of Proposition 4.4.1.

Corollary 4.4.3. In the setting of Proposition 4.4.1, take an arbitrary distribution µ∗ on
N. Consider a random tree whose offspring distribution of the first generation is µ∗, with
the rest remains the same as Pµ,θ. Denote by P ∗

µ,θ the law of the RW associated with this
tree, then

1. As z →∞, we have that

E∗
µ,θ

[∑
u∈T

Gη(z +Xu)

]
= E[µ∗]Fη,θ(z) +O(|z|−3).

2. For anym ≥ 2, if µ∗ and µ have finitem-th moment, then there exists a constant
C(m,µ, µ∗, θ, η) > 0

E∗
µ,θ

[(∑
u∈T

Gη(z +Xu)

)m]
≤ C(m,µ, µ∗, θ, η)|z|−2.

Before going to the main estimate, we include here a moment estimate for indepen-
dent random variables.

Lemma 4.4.4. [FN71, Corollary 4.4] Let t ≥ 2, and (Xi), i = 1, . . . , n be independent
random variables such that

EXi = 0, and E|Xi|t <∞,

then

P

(
n∑
i=1

Xi ≥ x

)
≤ C1x

−t
n∑
i=1

E|Xi|t + exp

(
−C2x

2/

n∑
i=1

E|Xi|2
)
,

where C1 = (1 + 2/t)t, C2 = 2(t+ 2)−1e−t.

We are now ready to treat Green’s functions for the infinite model.

Proposition 4.4.5. In dimension d = 6, let µ, θ, η be distributions with assumptions in
(4.1.1). Recall the infinite model in Section 4.2.2. Let ζ−n, ζn be indexes such that

R[ζ−n, ζn] = {vζ−n , . . . , vζn}

is the range formed by the displacement of all nodes in

{(0, T0), (1, T±1), . . . , (n, T±n)}.

105



1. If µ has finite 5-th moment, then for any fixed ϵ > 0, as n→∞,

Pµ,θ

∣∣∣∣∣∣
ζn∑

i=ζ−n

Gη(vi)− CG log n

∣∣∣∣∣∣ > ϵ log n

 = o((log n)−2)

whereCG =
∑∞

k=1(k−1)kµ(k) ·E
[∫ e

1 Fη,θ(B
θ
t )dt

]
,Bθ

t is a Brownianmotion with
covariance matrix Γθ, and Fη,θ is the function defined in Proposition 4.4.1.

2. For anym ≥ 2, if µ has finite (m+ 1)-th moment, then as n→∞,

Eµ,θ

 ζn∑
i=ζ−n

Gη(vi)

m = O((log n)m).

Proof. Wemerge the two subtrees (n, T±n) into a single tree, whose first generation
has offspring distribution µ∗(k) :=

∑
{i,j : i+j=k} µ(i+ j+1) = (k+1)µ(k+1). Then

since µ to has finite (m+ 1)-th moment, µ∗ has finitem-th moment. For simplicity,
we denote byGη(T±n) the sum of Green’s functions over the range of (n, T±n), and
we denote by S0 = 0,S1, . . . ,Sn the spatial positions of the spine (0,∅), . . . , (n,∅).
Clearly,

ζn∑
i=ζ−n

Gη(vi) = Gη(T0) +
n∑
i=1

Gη(T±i),

and (Gη(T±i)) are independent conditioned on (Si).
For Part (1), we have that

∣∣∣∣∣∣
ζn∑

i=ζ−n

Gη(vi)− CG log n

∣∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=0

Gη(T±i)−
n∑
i=0

Eµ,θ[Gη(T±i) | (Si)0≤i≤n]

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=0

Eµ,θ[Gη(T±i) | (Si)0≤i≤n]− E[µ∗]
n∑
i=1

Fη,θ(Si)

∣∣∣∣∣
+

∣∣∣∣∣E[µ∗]
n∑
i=1

Fη,θ(Si)− CG log n

∣∣∣∣∣
(4.4.18)

and it suffices to estimate each of the three terms on the right-hand side.
Indeed, for the third term in (4.4.18), by Corollary 4.2.15,

Pµ,θ

(∣∣∣∣∣E[µ∗]
n∑
i=1

Fη,θ(Si)− CG log n

∣∣∣∣∣ > ϵ log n

)
= o((log n)−2),

For the second term in (4.4.18), by Corollary 4.4.3 we have that∣∣∣∣∣
n∑
i=0

Eµ,θ[Gη(T±i) | (Si)0≤i≤n]− E[µ∗]
n∑
i=1

Fη,θ(Si)

∣∣∣∣∣ = O

(
n∑
i=0

(|Si| ∨ 1)−3

)
,
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which is in turn deducedbyCorollary 4.2.9 (2) with k = 3, m = 1, 2, 3 (and aChebyshev-
type inequality for the 3rd moment),

Pµ,θ

(
n∑
i=0

(|Si| ∨ 1)−3 > ϵ log n

)
= o((log n)−2).

As for the first term in (4.4.18), by Corollary 4.4.3 withm = 2, 4 (here we need finite
fourth moment for µ∗, thus finite fifth moment for µ), we have that

n∑
i=0

Eµ,θ
[
(Gη(T±i))2

∣∣ (Si)0≤i≤n] ≤ C1(µ, θ, η)
n∑
i=0

(|Si| ∨ 1)−2,

n∑
i=0

Eµ,θ
[
(Gη(T±i))4

∣∣ (Si)0≤i≤n] ≤ C2(µ, θ, η)
n∑
i=0

(|Si| ∨ 1)−2,

so

n∑
i=0

Eµ,θ
[
(Gη(T±i)−Eµ,θ[Gη(T±i) | (Si)0≤i≤n])2

∣∣ (Si)0≤i≤n] ≤ C3(µ, θ, η)
n∑
i=0

(|Si| ∨ 1)−2,

n∑
i=0

Eµ,θ
[
(Gη(T±i)−Eµ,θ[Gη(T±i) | (Si)0≤i≤n])4

∣∣ (Si)0≤i≤n] ≤ C4(µ, θ, η)
n∑
i=0

(|Si| ∨ 1)−2.

Then we apply Lemma 4.4.4 with Xi = Gη(T±i)−Eµ,θ[Gη(T±i) | (Si)0≤i≤n], t = 4,
and P = Pµ,θ(· | (Si)0≤i≤n),

Pµ,θ

(∣∣∣∣∣
n∑
i=0

Gη(T±i)−Eµ,θ[Gη(T±i) | (Si)0≤i≤n]

∣∣∣∣∣ ≥ ϵ log n
∣∣∣∣∣ (Si)0≤i≤n

)

≤C5(µ, θ, η)
n∑
i=0

(|Si| ∨ 1)−2(ϵ log n)−4 + exp

(
−C6(µ, θ, η)(ϵ log n)

2/
n∑
i=0

(|Si| ∨ 1)−2

)

≤C5(µ, θ, η)
n∑
i=0

(|Si| ∨ 1)−2(ϵ log n)−4 + e−C6(µ,θ,η)ϵ2 logn/ log logn + 1∑n
i=0(|Si|∨1)−2>logn log logn,

If we take expectation Eµ,θ on both sides, all these terms are o((log n)−2) by Corol-
lary 4.2.9, then we have that

Pµ,θ

(∣∣∣∣∣
n∑
i=0

Gη(T±i)−Eµ,θ[Gη(T±i) | (Si)0≤i≤n]

∣∣∣∣∣ ≥ ϵ log n
)

= o((log n)−2).

The conclusion follows by combining the estimates for the three terms on the
right-hand side of (4.4.18) individually.

For the second part, we illustrate the m = 2 case, since the proof for m other
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than 2 is similar. Indeed,

Eµ,θ

 ζn∑
i=ζ−n

Gη(vi)

2 ∣∣∣∣∣∣ (Si)0≤i≤n


=Eµ,θ

( n∑
i=0

Gη(T±i)

)2
∣∣∣∣∣∣ (Si)0≤i≤n


=

n∑
i=0

Eµ,θ
[
Gη(T±i)2

∣∣ (Si)0≤i≤n]+
2

∑
0≤i<j≤n

Eµ,θ[Gη(T±i) | (Si)0≤i≤n]Eµ,θ[Gη(T±j) | (Si)0≤i≤n].

By Corollary 4.4.3, if µ has finite 3rd moment, then this sum is of the order

n∑
i=0

(|Si| ∨ 1)−2 + 2
∑

0≤i<j≤n
(|Si| ∨ 1)−2(|Sj | ∨ 1)−2

≍
n∑
i=0

(|Si| ∨ 1)−2 +

(
n∑
i=0

(|Si| ∨ 1)−2

)2

,

We conclude by taking expectation w.r.t. Eµ,θ and Corollary 4.2.9.

Corollary 4.4.6. Under the same setting of Proposition 4.4.5 (1),

Pµ,θ

(∣∣∣∣∣
n∑

i=−n
Gη(vi)−

1

2
CG log n

∣∣∣∣∣ > ϵ log n

)
= o((log n)−2).

Proof. By standard tools of Kemperman’s formula (see e.g. [Dwa69, Section 3]),
denote by ζ ′n the total population of n Galton-Watson trees of offspring distribution
µ, and by (Yi) an i.i.d. sequence distributed as µ− 1, then

Pµ,θ(ζ
′
n = m) =

n

m
P(Y1 + · · ·+ Ym = −n).

Applying Lemma 4.2.6 with d = 1 and the random walk with displacements (Yi), we
have that ∣∣∣∣Pµ,θ(ζ

′
n = m)− n

m

C1(µ)√
m

e−
C2(µ)n

2

m

∣∣∣∣ ≤ n

m

C3(µ)

m
.

Sum overm, then
Pµ,θ

(
ζ ′n ≥ n2(log n)5

)
= o((log n)−2).
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Moreover, by [LL10, Proposition 2.1.2 (a)] with k = 2 (guaranteed by the finite fifth
moment in Proposition 4.4.5 (1)),

Pµ,θ

(
ζ ′n ≤ n2(log n)−2

)
≤
n2(logn)−2∑

m=1

n

m
P(Y1 + · · ·+ Ym = −n)

≤

n2(logn)−2∑
m=1

n

m

 · P( min
1≤j≤n2(logn)−2

Y1 + · · ·+ Yi ≤ −n
)

=o((log n)−2).

In summary,

Pµ,θ

(
n2(log n)−2 < ζ ′n < n2(log n)5

)
= 1− o((log n)−2).

Moreover, recall the probability distribution µ∗ in the proof of Proposition 4.4.5.
Take an i.i.d. sequence (Xi) distributed according to µ∗, then

ζn
d
= ζ ′1+X1+···+Xn

.

Apply [LL10, Proposition 2.1.2 (a)] again for the sequence (Xi − EXi), we can show
that for any constants 0 < C4(µ) < EXi < C5(µ),

P(C4(µ)n < 1 +X1 + · · ·+Xn < C5(µ)n) = 1− o((log n)−2).

Thus for any 0 < C6(µ) < (E[Xi])
2 < C7(µ),

Pµ,θ

(
C6(µ)n

2(log n)−2 < ζn < C7(µ)n
2(log n)5

)
= 1− o((log n)−2). (4.4.19)

The same estimate holds for ζ−n, thus we conclude by Proposition 4.4.5.

Before ending this section, we give a brief calculation of CG for the simplest case:

Proposition 4.4.7. If µ is the geometric distribution with parameter 1
2 , i.e. µ(k) =

2−k−1, and θ and η are one-step distributions of independent simple random walks in
R6, then CG = 9π−3.

Proof. Recall from Proposition 4.4.5 that

CG =

∞∑
k=1

(k − 1)kµ(k) · E
[∫ e

1
Fη,θ(B

θ
t )dt

]
.

The first term is just the variance of the geometric distribution,
∞∑
k=1

(k − 1)kµ(k) = 2.
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For the second term, we first determine Fη,θ. Denote by (Sn), (S̃n) two independent
simple random walks in R6 started from 0, then by Proposition 4.4.1, for |z| → ∞,

Fη,θ(z) = Eµ,θ

[∑
u∈T

Gη(z +Xu)

]
+O(|z|−3)

= E

[ ∞∑
n=0

Gη(z + Sn)

]
+O(|z|−3)

=
∞∑
n=0

∞∑
m=0

P(S̃m = z + Sn) +O(|z|−3)

=

∞∑
k=0

(k + 1)P(Sk = z) +O(|z|−3).

Then simplify the sum by Lemma 4.2.6, we have

Fη,θ(z) = 9π−3|z|−2 +O(|z|−3).

By definition, Fη,θ(λz) = λ−2Fη,θ(z) for any z ̸= 0, so

Fη,θ(z) = 9π−3|z|−2, z ̸= 0.

We can then conclude by the fact that for a 6-dimensional Brownian motion with
covariance matrix 1

6I6,

E
[∫ e

1
|Bθ

t |−2dt

]
=

1

2
.

4.4.2 . Limit theorem for the infinite model
In this section, we apply the estimates of Green’s functions to deduce the estimates for

the capacity using Lemma 4.2.12. We begin by estimating the term Gn in Lemma 4.2.12.

Lemma 4.4.8. In dimension d = 6, let η be a distribution with conditions in (4.1.1), and
let G(1− 1

n
)

η (x) =
∑

i≥0(1 −
1
n)
iPη0(Si = x) as in Lemma 4.2.12. There exists C(η) > 0

such that for all x ∈ Z6 and n ≥ 1,

Gη(x)−G
(1− 1

n
)

η (x) ≤ C(η)

n
.

Proof. Since (1− k
n) ∨ 0 ≤ (1− 1

n)
k, we have that

G
(1− 1

n
)

η (x) ≥
n∑
k=0

(1− k

n
)Pη0(Sk = x) ≥ Gη(x)−

∑
k∈N

k ∧ n
n

Pη0(Sk = x).

Then the desired estimate follows because there exists C(η) > 0 such that Pη0(Sk =
x) ≤ C(η)k−3 uniformly in x ∈ Z6 by Lemma 4.2.6.
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Lemma 4.4.9. In dimension d = 6, let µ, θ, η be distributions with assumptions in (4.1.1)
and recall the infinite model in Section 4.2.2. In the setting of Lemma 4.2.12, apply Gn to
the sequence (vi). If µ has finite 5-th moment, then as n→∞,

Pµ,θ

(∣∣∣∣Gn − 1

2
CG log n

∣∣∣∣ > ϵ log n

)
= o((log n)−2),

where CG is the constant in Proposition 4.4.5. If µ has finite (m + 1)-th moment for
m ≥ 2, then as n→∞,

Eµ,θ[(Gn)
m] = O((log n)m).

Proof. If ξn is a geometric random variable with parameter 1
n , it is not hard to see

that
P(n(log n)−3 ≤ ξn < n log n) = 1− o((log n)−2).

Therefore,

Pµ,θ

(
Gn >

1

2
CG log n+ ϵ log n

)
=Pµ,θ

(
Gn >

1

2
CG log n+ ϵ log n, ξln, ξ

r
n < n log n

)
+ o((log n)−2)

≤Pµ,θ

 n logn∑
i=−n logn

Gη(vi) >
1

2
CG log n+ ϵ log n

+ o((log n)−2) = o((log n)−2),

where the last line follows from Corollary 4.4.6. For the other side, we have that

Pµ,θ

(
Gn <

1

2
CG log n− ϵ log n

)
=Pµ,θ

(
Gn <

1

2
CG log n− ϵ log n, ξln, ξrn ≥ n(log n)−3

)
+ o((log n)−2)

≤Pµ,θ

 n(logn)−3∑
i=−n(logn)−3

Gη(vi) <
1

2
CG log n− ϵ log n+ 2C(η)(log n)−3

+ o((log n)−2)

=o((log n)−2),

where C(η) is the constant in Lemma 4.4.8.
Moreover, by Proposition 4.4.5, them-th moment is bounded by

Eµ,θ[(Gn)
m] ≤ Eµ,θ

 ξrn∑
i=−ξln

Gη(vi)

m
≤ C1(µ, θ, η)

∑
k≥0

P(max(ξln, ξ
r
n) = k)(log k)m ≤ C2(µ, θ, η)(log n)

m.
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We are now ready to go from Green’s functions to (the contribution of the origin of)
the capacity.

Lemma 4.4.10. In dimension d = 6, let µ, θ, η be distributions with assumptions in
(4.1.1) and that µ has finite 5-th moment. Recall the infinite model in Section 4.2.2,

lim
n→∞

(log n)Pη0 ⊗Pµ,θ

(
0 ̸∈ R[1, n], τ+R[−n,n] =∞

)
= 2C−1

G ,

where CG is the constant in Proposition 4.4.5.

Proof. We apply Lemma 4.2.12 to (the displacements of) the infinite model (vi). For
any fixed ϵ > 0 sufficiently small, let

An,ϵ =

{∣∣∣∣Gn − 1

2
CG log n

∣∣∣∣ ≤ ϵ log n},
which, by Lemma 4.4.9, happens with probability 1− o((log n)−2).

By Cauchy-Schwarz, we have that

Eµ,θ[EnIGn1Ac
n,ϵ

] ≤
√
Pµ,θ(Acn,ϵ)Eµ,θ(G

2
n) = o(1),

because 0 ≤ En, In ≤ 1 (by definition), Pµ,θ(A
c
n,ϵ) = o((log n)−2), and Eµ,θ(G

2
n) =

O((log n)2) by Lemma 4.4.9. This together with Lemma 4.2.12 then shows that

Eµ,θ[EnInGn1An,ϵ ] = 1− o(1).

Moreover since 0 ≤ En, In ≤ 1, we have that(
1

2
CG − ϵ

)
(log n)Eµ,θ[EnIn] ≤ Eµ,θ[EnInGn1An,ϵ ] ≤

(
1

2
CG + ϵ

)
(log n)Eµ,θ[EnIn],

thus

lim sup
n→∞

(
1

2
CG − ϵ

)
(log n)Eµ,θ[EnIn] ≤ 1

lim inf
n→∞

(
1

2
CG + ϵ

)
(log n)Eµ,θ[EnIn] ≥ 1.

Since this holds for any ϵ, we have 1
2CG(log n)Eµ,θ[EnIn] = 1 + o(1). That is to say

Pη0 ⊗Pµ,θ

(
0 ̸∈ R[1, ξrn], τ+R[−ξln,ξrn]

> ξn

)
=

2 + o(1)

CG log n
.

Moreover, apply the standard estimate

P(n(log n)−3 ≤ ξn < n log n) = 1− o((log n)−2)

for all three random variables ξn, ξln, ξrn, by monotonicity we have that

Pη0 ⊗Pµ,θ

(
0 ̸∈ R[1, n], τ+R[−n,n] ≥ n

)
=

2 + o(1)

CG log n
.
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The statement of Lemma 4.4.10 now follows since

Pη0 ⊗Pµ,θ

(
n < τ+R[−n,n] <∞

)
≤
∑
k>n

Pη0 ⊗Pµ,θ(Sk ∈ R[−n, n])

≲
∑
k>n

n sup
z∈Z6

Pη0(Sk = z) ≍ n−1

is negligible, where in the last line we use Lemma 4.2.6.

Finally, we conclude for the capacity of the infinite model by a second moment
method, analogue to [LGL16, Theorem 14].

Proposition 4.4.11. In dimension d = 6, let µ, θ, η be distributions with assumptions
(4.1.1) and that µ has finite 5-th moment. Recall the infinite model in Section 4.2.2. As
n→∞, under Pµ,θ,

log n

n
capηR[0, n]

L2

−→ 2C−1
G ,

where CG is that in Proposition 4.4.5.

Proof. Decompose the capacity as discussed in (4.2.8). By (4.2.4) and Lemma 4.4.10
we have that

log n

n
Eµ,θ[capηR[0, n]]

=
log n

n

n∑
i=0

Eµ,θ

[
1vi ̸∈R[i+1,n]P

η
vi

(
τ+R[0,n] =∞

)]
=
log n

n

n∑
i=0

Eµ,θ

[
10̸∈R[1,n−i]P

η
0

(
τ+R[−i,n−i] =∞

)]
≥(log n)Pη0 ⊗Pµ,θ

(
0 ̸∈ R[1, n], τ+R[−n,n] =∞

)
n→∞−→ 2C−1

G .

Then it suffices to show that

lim sup
n→∞

(
log n

n

)2

Eµ,θ
[
(capηR[0, n])

2
]
≤
(
2C−1

G

)2
. (4.4.20)

In fact, for any α ∈ (0, 14), set

D(α) = {(i, j) : 0 < i < j < n and i, j − i, n− j > n1−α},

then

Eµ,θ[(capηR[0, n])
2]

=

n∑
i,j=0

Eµ,θ

[
1vi /∈R[i+1,n]1vj /∈R[j+1,n]P

η
vi

(
τ+R[0,n] =∞

)
Pηvj

(
τ+R[0,n] =∞

)]
=2

∑
D(α)

Eµ,θ

[
1vi /∈R[i+1,n]1vj /∈R[j+1,n]P

η
vi

(
τ+R[0,n] =∞

)
Pηvj

(
τ+R[0,n] =∞

)]
+ o

(
n2

(log n)2

)
.
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Moreover, write k = j − i for simplicity, then for (i, j) ∈ D(α), by (4.2.4),

Eµ,θ

[
1vi /∈R[i+1,n]1vj /∈R[j+1,n]P

η
vi

(
τ+R[0,n] =∞

)
Pηvj

(
τ+R[0,n] =∞

)]
≤Eµ,θ

[
10/∈R[1,n1−3α]1vk /∈R[k+1,k+n1−3α]×

Pη0

(
τ+
R[−n1−3α,n1−3α]

=∞
)
Pηvk

(
τ+
R[k−n1−3α,k+n1−3α]

=∞
)]

By (4.4.19), with probability 1− o((log n)−2), one has
∣∣∣ζ

±n
1
2−α

∣∣∣ ∈ [2n1−3α, n1−α]. And
under this condition, the range R[−n1−3α, n1−3α] and R[k − n1−3α, k + n1−3α] cor-
respond to disjoint subtrees in T , thus by strong Markov property applied at the
node (n

1
2
−α,∅), we can bound the probability above by(
Pη0 ⊗Pµ,θ(0 /∈ R[1, n1−3α], τ+

R[−n1−3α,n1−3α]
=∞)

)2
+ o((log n)−2)

=
((

2C−1
G (1− 3α)−1

)2
+ o(1)

)
(log n)−2

using Lemma 4.4.10. Then (4.4.20) follows by summing over all indices in D(α) and
let α→ 0+.

4.4.3 . Proof of Theorem 4.1.1 (2)
We use the same treatment as for high dimensions to extend the result on the infinite

model to that of a standard branching process.

Theorem 4.4.12. In dimension d = 6, let µ, θ, η be distributions with the conditions
in (4.1.1) and that µ has finite 5-th moment, and let R[0, n] be the range constructed
in Section 4.2.2 (abused to denote the range of other trees as well). Under the law of a
(standard) Galton-Watson tree conditioned to have n+ 1 nodes, Pµ,θ(·|#T = n+ 1),

log n

n
capη(R[0, n])→ 2C−1

G in probability,

where CG is the constant in Proposition 4.4.5.

Proof. As in the proof of Theorem 4.3.7, we can prove by Lemma 4.3.6 that for any
a ∈ (0, 1), ϵ > 0,

lim
n→∞

Pµ,θ

(∣∣∣∣ log nn capη(R[0, an])− 2aC−1
G

∣∣∣∣ > ϵ

∣∣∣∣#T = n+ 1

)
= 0

Take a→ 1−, then we have a lower bound for capηR[0, n],

lim
n→∞

Pµ,θ

(
log n

n
capη(R[0, n])− 2C−1

G < −ϵ
∣∣∣∣#T = n+ 1

)
= 0

If we reverse the order for nodes on a tree T , and set the range of its last an
nodes by R[0, an]−, then R[0, an]− will satisfy the same estimate as R[0, an]. More-
over, R[0, n/2], R[0, n/2]− will cover all the tree expect for a negligible number of
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nodes ([Zhu21, p. 20]), thus

lim
n→∞

Pµ,θ

(
log n

n
capη(R[0, n])− 2C−1

G > ϵ

∣∣∣∣#T = n+ 1

)
= lim
n→∞

Pµ,θ

(
log n

n
capη(R[0, n/2] ∪R[0, n/2]−)− 2C−1

G > ϵ

∣∣∣∣#T = n+ 1

)
≤ lim
n→∞

Pµ,θ

(
log n

n
(capηR[0, n/2] + capηR[0, n/2]

−)− 2C−1
G > ϵ

∣∣∣∣#T = n+ 1

)
= 0.
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5 - Crossing estimates for simple conformal loop
ensembles

5.1 . Introduction

In statistical physics, crossing-type estimates or regularity properties of the continuum
limiting objects can be instrumental to study the scaling limits of certain models. In our
paper, we are interested in the crossing numbers of simple conformal loop ensembles
CLEκ, 8

3 < κ ≤ 4. Let Ω be a simply connected subdomain of the upper half-plane H
and CLEκ(Ω) be a non-nested simple conformal loop ensemble in Ω with 8

3 < κ ≤ 4.
The main result of the present paper is on the super-exponential decay, as n → ∞, of
the probability of finding n crossings of a fixed annulus A(r,R) (Ω ∩A(r,R) needs not
to be connected, see Figure 5.1) or of a fixed quad Q with two opposite sides attached
to ∂Ω for CLEκ(Ω) (see Figure 5.2).

Figure 5.1 – In this illustration, crossings connect the opposite blue arcs of
∂A(r, R), and we have 6 crossings given by the red paths.

5.1.1 . Background on CLEs
Conformal loop ensemble, CLEκ for 8

3 < κ < 8, is a random countable collection of
loops in a (simply connected) planar domain Ω ̸= C, which can be viewed as the full-
picture version of the Schramm-Loewner evolution (SLE). It was introduced by Sheffield
in [She09] as candidates for the scaling limits of certain statistical physics models at
critical temperature, which can be interpreted as random collections of disjoint, non-
self-crossing loops. CLEκ is shown to be the scaling limit of : critical Ising model
κ = 3 [BH19], FK-Ising percolation κ = 16/3 [KS16], and critical site percolation on
the triangular lattice κ = 6 [CN06]. Beyond these, CLEκ, 83 < κ ≤ 4, is conjectured
to describe the scaling limit of the loop O(n) model if n = −2 cos(4π/κ) ∈ (0, 2] while
CLEκ, 4 < κ < 8, is conjectured to be the scaling limit of the FK(q)-percolation model
if q = 4 cos2(4π/κ).

CLE is characterized by a parameter κ ∈ (8/3, 8), describing the density of loops
in it. All loops of a sample of CLEκ are simple, do not intersect each other, and do
not intersect the domain boundary when κ ∈ (83 , 4]. When κ ∈ (4, 8), the loops are

117



self-intersecting (but not self-crossing) and may touch (but not cross) other loops and
the domain boundary.

Since such critical models are expected to be conformally invariant on large distance
scales, CLEs are defined to be conformally invariant: if φ : Ω → Ω′ is a conformal map
and Γ is a CLEκ in Ω, then φ(Γ) is a CLEκ in Ω′.

For each κ, there are two versions of CLEs: non-nested and nested, the latter is
obtained from the former by recursively iterating the construction inside each loop con-
structed in the previous step. In this article, we are mainly interested in the non-nested
CLEκ for κ ∈ (83 , 4] (except for Section 5.6, where we consider nested CLEs). CLEs can
be constructed using one of the two natural conformally invariant probability measures
on curves, the Brownian motion (BM) and the Schramm-Loewner evolution (SLE). The
BM-based construction is the main tool that we will use in this paper, see Section 5.2.2
and Section 5.2.3 below. In this approach, the non-nested simple CLEκ, 8

3 < κ ≤ 4, is
obtained as the collection of outermost boundaries of clusters appearing in a Poisson pro-
cess of Brownian loops. It is worth noting that this construction admits a discretization:
the scaling limit of outer boundaries of outermost clusters of random walk loop-soup is a
CLE. Such convergence was first discovered in [vdBCL16], focusing on the scaling limit of
outermost boundaries of clusters of loops with some microscopic loops neglected. Then
the convergence of outermost boundaries of clusters of the full loop ensemble was proved
in [Lup18], by considering the special case κ = 4, using its connection to the Gaussian
free field (GFF): CLE4 loops are the “level lines” of the GFF [WW19].

5.1.2 . Super-exponential decaying crossing estimates for non-nested simple CLE

The main result in this paper is the following.

Theorem 5.1.1. Given a simply connected domain Ω of the upper half-plane H = {z ∈
C : Im z > 0}, let CLEκ(Ω) be a non-nested simple conformal loop ensemble with
κ ∈ (83 , 4] in Ω. Let 0 < r < R, denote by CrossA(r,R)(CLEκ(Ω)) the number of disjoint
arcs in CLEκ(Ω) joining the two boundaries of A(r,R) := {z ∈ C : r < |z| < R}, see
Figure 5.1. Then for any s > 0,

sup
Ω⊆H

P[CrossA(r,R)(CLEκ(Ω)) ≥ n] = O(sn),

where the supremum is taken over all simply connected domains Ω ⊆ H, and the con-
stant in O(sn) depends on κ, s and R/r.

Remark 5.1.2. — By the BK’s inequality [vdB96], it is not hard to see that

P[CrossA(r,R)(CLEκ(Ω)) ≥ n]

decays at least exponentially fast, see e.g. [SW12, Lemma 9.6].
— The domain Markov property of CLEs requires conditioning on entire loops,

from which we can only obtain a super-exponential decay of probabilities on
the cluster number (of a Brownian loop soup) defined in Section 5.2.1, see
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Proposition 5.3.5. Nevertheless, Theorem 5.1.1 can be deduced from Proposi-
tion 5.3.5 by our estimates of the component number, see Lemma 5.3.3 and
Proposition 5.4.2.

— The arm exponents for SLE discussed in [WZ17] cannot be applied in our cir-
cumstance since the asymptotic regime in [WZ17] is different, sending R

r →∞
rather than n → ∞. Using certain martingales for SLEs and the conformal
domain Markov property, the methods in [WZ17] involves distortion when
conformally mapping the slit domain to the half-plane during each iteration,
which gives rise to a super-exponential growing multiplicative factor for the
crossing estimates of a fixed quad as the number of crossings goes to infinity.

— We conjecture that the analogue of Theorem 5.1.1 for nested CLEs is valid as
well. However, our argument fails in that case because nested CLEs cannot
be constructed from a single Brownian loop-soup; besides, the estimates in
Theorem 5.1.1 are not enough to deduce that the total crossing number re-
sulted from the branching structure of nested CLEs has super-exponential
decay (the expectation of the crossing number for a simple non-nested CLE
may be simply larger than one, resulting in a supercritical branching process).

Though the result of Theorem 5.1.1 does not yet have applications to the convergence
of loop representations of statistical physics models other than double-dimers to CLE4

(see Section 5.1.3), it could be used in the same vein if a relevant topological observables
framework is developed for κ ≤ 4. It would be also interesting to study similar crossing
estimates in the case κ > 4, which probably should rely upon the branching SLEκ
techniques instead of the Brownian loop-soup. See also [HS01] for a study on similar
crossing events of the critical site percolation on the triangular lattice, whose scaling limit
is known to be the nested CLE6.

Moreover, one can extend the result for the crossing event of A(r,R) to more general
quads on any proper domain Ω ⊂ C. We define a crossing-quad of Ω, denoted by
Q = (V ;Sk, k = 0, 1, 2, 3), to be a simply connected subset V inside Ω, whose boundary
consists of four arcs Sk, k = 0, 1, 2, 3 listed in the counterclockwise order, such that
S1, S3 ⊂ ∂Ω (see e.g. Figure 5.2). A natural conformally invariant measurement of the
width of a quad Q is the conformal modulus m(Q), defined as the unique number for
which Q can be conformally mapped onto a rectangle [0, 1] × [0,m(Q)], such that Sk
are mapped to the four sides of the rectangle with S0 mapped to [0, 1]× {0}. We refer
interested readers to [Ahl] for more details about properties of these concepts.

We can deduce from Theorem 5.1.1 that

Corollary 5.1.3. Let Q = (V ;Sk, k = 0, 1, 2, 3) be a crossing-quad in a proper subdo-
mainΩ ofC, and denote byCrossQ(CLEκ(Ω)) the number of (disjoint) arcs inCLEκ(Ω)
joining S0 and S2 inside V . Then for any s > 0 andm0 > 0,

sup
Ω⊆H

P[CrossQ(CLEκ(Ω)) ≥ n] = O(sn)
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Figure 5.2 – A crossing-quad (V ;S0, S1, S2, S3) inΩ and an (dotted) arc cross-
ing it.

uniformly over the quadQ such thatm(Q) > m0, where the constant inO(sn) depends
on κ,m0 and s.

Remark 5.1.4. The proof of Corollary 5.1.3 (see Section 5.5) also applies to estimating
the crossing number of an annulus contained inside the domain, see e.g. Lemma
5.5.1.

5.1.3 . Convergence of probabilities of cylindrical events for double-dimers
Besides studying regularity properties of CLEκ(Ω), this paper also serves as a com-

plement to the papers [BC21] and [Dub19] regarding the convergence of double-dimer
loop ensembles to CLE4. Developing the ideas of Kenyon [Ken14], Dubédat proved
the convergence of the so-called topological observables of double-dimer loop ensembles
in Temperleyan domains to an appropriately defined Jimbo-Miwa-Ueno isomonodromic
tau function, see [Dub19]. Later on, based on an analysis of expansions of entire func-
tions (defined on the moduli space of SL2(C)-representations of the fundamental group
of a punctured domain) with respect to the Fock-Goncharov lamination basis, Basok
and Chelkak [BC21] proved the convergence of probabilities of cylindrical events for the
double-dimer loop ensemble to the coefficients of the (infinite series) expansion of the
isomonodromic tau-function via the lamination basis. On the other hand, it was shown
by Dubédat [Dub19, Theorem 1] that this tau-function can be obtained by taking the
expectation of the product of the traces of loop monodromies over CLE4 provided that
the monodromy is close enough to the identity. By definition, this provides another ex-
pansion of the tau-function via the lamination basis, where the coefficients are equal to
probabilities of cylindrical events evaluated for CLE4. It follows from [BC21, Theorem
1.4] that the equality of two infinite series expansions via the lamination basis implies
the equality of their coefficients, provided that the coefficients of both expansions decay
super-exponentially. Therefore, if one knows that the probabilities of cylindrical events
evaluated for CLE4 decay super-exponentially, then the results of [BC21] and [Dub19]
imply the convergence of probabilities for the double-dimer loop ensembles to those of
CLE4, see [BC21, Corollary 1.7] and Corollary 5.1.5 below.

Given a Temperlean simply connected approximation Ωδ ⊆ δZ2 of Ω, the double-
dimer loop ensemble on Ωδ is obtained by superimposing two independent uniform dimer
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configurations on Ωδ. This produces a number of loops and double-edges, with the latter
withdrawn. Obtained in this manner, we denote by Θδ

Ω the random collection of nested
simple pairwise disjoint loops on Ωδ.

Given a collection of pairwise distinct punctures in a simply connected domain,
λ1, . . . , λN ∈ Ω, a macroscopic lamination on Ω \ {λ1, . . . , λN} is a finite collection
of disjoint simple loops surrounding at least two punctures considered up to homotopies.
We fix once and forever a triangulation of Ω \ {λ1, . . . , λN} with vertices at λ1, . . . , λN ,
∂Ω (see [BC21] for more details) and define the complexity |Γ| of a lamination Γ to be
the number of intersections of loops in Γ with the edges of the triangulation (computed
after resolving all unnecessary intersections). Note that the complexity Γ cannot be esti-
mated via the number of loops in Γ if N ≥ 3: one can construct a lamination consisting
of one loop but having arbitrary large complexity, see Figure 5.3.

Figure 5.3 – One loop (the bold one) with complexity 24 (the minimal num-
ber of crosses of a loop within this homotopy class with the edges of the
triangulation).

Corollary 5.1.5 (Convergence of probabilities of cylindrical events of double-dimer
configuration). Let ΘΩ be a nested CLEκ in a simply connected domain Ω, κ ∈ (83 , 4].
Let Γ be a macroscopic lamination, and denote by ΘΩ ∼ Γ the event that ΘΩ is homo-
topic to Γ after one removes all loops surrounding at most one puncture. Then for any
s > 0,

PCLEnested
κ

[ΘΩ ∼ Γ] = O(s−|Γ|) as |Γ| → ∞.

Furthermore, for all macroscopic laminations Γ,

Pdouble-dimer[Θδ
Ω ∼ Γ]→ PCLEnested

4
[ΘΩ ∼ Γ] as δ → 0. (5.1.1)

It is worth mentioning that the estimate provided in Corollary 5.1.5 is weaker than
the super-exponential decay of crossing numbers of nested CLEs. However, it is sufficient
for the analysis performed in [BC21].

The rest of the paper is organized as follows: Section 5.2 discusses several quantities
related to the crossing number, presents the Brownian loop-soup construction of CLEs,
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and gives a proof outline for our main results. Section 5.3 is around some preliminary
deterministic results and the technical proof of Proposition 5.3.5. The readers not in-
terested in these details may skip Section 5.3. In the end, the proofs of Theorem 5.1.1,
Corollary 5.1.3 and Corollary 5.1.5 are given in Section 5.4, Section 5.5 and Section 5.6
respectively.

5.2 . Notations and Preliminaries

In this section, we fix and discuss some notations for loop ensembles and introduce
the Brownian loop-soup construction of the simple CLE.

5.2.1 . Clusters, crossing and component number

Given a simply connected domain Ω, a loop ensemble L in Ω is a countable collection
of loops (not necessarily simple or pairwise disjoint) in Ω. Two loops l and l′ are in the
same cluster if and only if one can find a finite chain of loops l0, . . . , ln in L such that
l0 = l, ln = l′ and lj ∩ lj−1 ̸= ∅ for all j = 1, . . . , n. Given a cluster C, we denote by
C the closure of the union of all loops in C. Denote by F (C) the filling of C, which
is the complement of the unbounded connected component of C \ C. (Note that F(C)
is simply connected). A cluster C is called outermost is there exists no cluster C ′ such
that C ⊂ F (C ′). Denote by F (L) the family {F (C) :C is a outermost cluster of L}.

A loop ensemble L can be divided into two parts by restriction to a subdomain
Ω′ ⊂ Ω,

L(Ω′) := {l ∈ L : l ⊂ Ω′}, L(Ω′)⊥ := L\L(Ω′),

One can also divide L by considering the loop diameter:

L<a := {l ∈ L : diam(l) < a}, L≥a := {l ∈ L : diam(l) ≥ a},

where diam(l) := supx,y∈l dist(x, y).
For all 0 < r < R and point z0 ∈ C, denote by Az0(r,R) the annulus of inner and

outer radii r and R centered at z0,

Az0(r,R) = {z ∈ C, r < |z − z0| < R}, (5.2.2)

and denote by Br(z0) the disk of radius r centered at z0,

Br(z0) = {z ∈ C, |z − z0| ≤ r}. (5.2.3)

For the sake of simplicity, we will write A(r,R) and Br if z0 is the origin 0 of the
complex plane.

We say that a connected set crosses A = A(r,R), if it intersects both boundaries of
∂A(r,R) = ∂BR ⊔ ∂Br. For a loop ensemble L, the crossing number CrossA(L) is the
maximum number of disjoint arcs of loops in L that cross A, see Figure 5.4. From the
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Figure 5.4 – In this configuration, we have CrossA(L) = 7 with the 7 paths
marked in red. Notice that one can choose only one among the two paths in
the top-right part because they intersect each other. Since loops in CLE do
not self-intersect, this will never happen for a CLE.

definition, one can easily observe that the crossing number is monotone and subadditive,
that is

CrossA(L1) ≤ CrossA(L1 ∪ L2) ≤ CrossA(L1) + CrossA(L2). (5.2.4)

The component number CompA(L) is defined as the number of path-connected
components of ∪C∈{outermost clusters of L}F (C) ∩ A that cross A. In particular, if L
is a non-nested simple loop ensemble with disjoint loops, for instance the non-nested
CLEκ,

8
3 < κ ≤ 4, then

CrossA(L) = 2CompA(L). (5.2.5)

In general, we no longer have monotonicity and subadditivity as in (5.2.4) for the com-
ponent number: adding a new loop may connect two crossing components, resulting in
CompA(L1∪L2) < CompA(L1); they may also create new components by collaboration,
causing CompA(L1 ∪ L2) > CompA(L1) + CompA(L2), see Figure 5.5.

The cluster number ClusA(L) is defined as the number of outermost clusters of L
which cross A, see e.g. Figure 5.6. It is immediate that for any loop ensemble L,

CompA(L) ≥ ClusA(L),

and that the cluster number does not have monotonicity and subadditivity with respect
to loop ensembles neither.

Finally, if we fix an arbitrary loop ensemble L, then all three quantities have mono-
tonicity with respect to annuli, i.e. for A′ ⊂ A,

(CrossA′(L),CompA′(L),ClusA′(L)) ≥ (CrossA(L),CompA(L),ClusA(L)).
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Figure 5.5 – We have 4 crossing components marked in gray, therefore
CompA(L) = 4. Adding the red dotted loop would connect two existing
crossing connected components, so CompA(L ∪ {lred}) = 3 < CompA(L).
Adding the blue dotted loop would create a new crossing connected com-
ponent, so CompA(L ∪ {lblue}) = 5 > CompA(L) + CompA({lblue}).

5.2.2 . The Brownian loop measure
Consider a simply connected domain Ω ⊆ C. The Brownian loop measure in Ω was

introduced by Lawler and Werner in [LW04], and employed to construct CLE in [SW12].
Let µtx,Ω be the sub-probability measure on the set of paths in Ω started from x ∈ Ω,
defined from the probability distribution of a Brownian motion started at x on the time
interval [0, t], which is killed upon hitting ∂Ω. From this we obtain by disintegration the
measures µtx→y,Ω on paths from x to y inside Ω,

µtx,Ω =

∫
Ω
µtx→y,Ωd

2y,

where d2y denotes the Lebesgue measure. Then the Brownian loop measure on Ω

is defined by the following integration: (here we choose the same normalization as in
[SW12], which is one half of the Brownian loop measure defined in [LW04] considering
the orientation)

µloop
Ω =

∫ ∞

0

dt

2t

∫
Ω
µtx→x,Ωd

2y.

Notice that it induces a measure on the traces of unrooted loops by forgetting the root
x and the time-parametrization. Considering the fact that Brownian motion is invariant
under conformal isomorphism up to a time change, the Brownian loop measure is also
conformally invariant because of the time weight which appears in µloop

Ω . It is not hard to
see from the definition that the Brownian loop measure satisfies the restriction property:
if Ω′ ⊂ Ω, then µloop

Ω′ is the restriction of µloop
Ω to the set of loops in Ω′.

Under the Brownian loop measure, the total mass of loops in the whole complex
plane C is infinite (for all positive R, both the mass of loops of diameter greater than R
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Figure 5.6 – There are 2 crossing clusters in gray, and ClusA(L) = 2.

and the mass of loops of diameter smaller than R are infinite), which can be viewed as
a consequence of the conformal (scaling) invariance. However, for all r < R, the mass
of the set of loops which stay in H intersecting both rD and C \RD is finite, where D is
the unit disk, see the proof of Lemma 13 in [LW04]. This is also true for the Brownian
loop measure on any subdomain of H by the restriction property (see eg. p.5 [LW04]).

5.2.3 . Loop-soup construction of CLE
Nested conformal loop ensemble CLEκ(Ω) for κ ∈ (8/3, 4] defined on a simply

connected domain Ω is a random collection of disjoint simple loops in Ω characterized
by the following properties:

— (Conformal invariance) If φ : Ω → Ω′ is a conformal map from Ω onto Ω′, then
φ(CLEκ(Ω)) has the same distribution as CLEκ(Ω

′).

— (Restriction) If U is a simply connected subset of Ω and Ũ is obtained by removing
from Ω all the CLEκ(Ω) loops and their interior that do not entirely stay in U ,
then in each connected component U ′ of the interior of Ũ , the conditional law of
the set of loops that lie entirely in U ′ is distributed as CLEκ(U

′).

— (Locally finiteness) For each ϵ > 0, only finitely many loops have a diameter
greater than ϵ.

— (Nesting) Conditioned on a loop γ in CLEκ(Ω) and all loops outside γ, the set
of loops inside γ is an independent CLEκ(Ωγ), where Ωγ is the interior (finite)
domain bounded by Jordan curve γ.

A Brownian loop soup Bλ(Ω) with intensity λ is a Poissonian sample on the set
of loops with intensity λµloop

Ω for λ ∈ (0, 1], which is characterized by the following
properties:

— The loop cluster is not unique and not boundary-touching, i.e. C∩∂Ω = ∅ almost
surely.
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— For any two disjoint measurable sets of loops L1 and L2, Bλ(Ω)∩L1 and Bλ(Ω)∩
L2 are independent. In particular, if Ω′ is a subdomain of Ω, then Bλ(Ω) can
be decomposed into two independent parts: Bλ(Ω′) (the set of loops staying in
Ω′, which is again a Brownian loop soup in Ω′) and Bλ(Ω′)⊥ (the set of loops
intersecting Ω \ Ω′).

— If φ : Ω → Ω′ is a conformal isomorphism between two domains Ω and Ω′, then
φ(Bλ(Ω)) = {φ(l) : l ∈ Bλ(Ω)} is distributed as Bλ(Ω′).

— For any measurable set L such that λµloop
Ω (L) < ∞, the law of the number of

elements in Bλ(Ω) ∩ L satisfies the Poisson law with mean λµloop
Ω (L).

For a sample of Brownian loop soup Bλ(Ω) with intensity λ, as in Section 5.2.1,
denote by

∂F (Bλ(Ω)) = {∂F (C) : C is a cluster and there exists no cluster C ′ such that C ⊆ F (C ′)}

the set of boundaries of fillings (the complement of the unbounded connected component
of C \ C) of all outermost clusters C of Bλ(Ω). Then it is showed in [SW12, Section
1.3] that ∂F (Bλ(Ω)) has the same distribution as the non-nested CLEκ(Ω) with λ =

(3κ− 8)(6− κ)/2κ. In particular, we have that for κ ∈ (83 , 4],

CrossA(CLEκ(Ω)) = 2CompA(CLEκ(Ω))
d
= 2CompA(Bλ(Ω)) (5.2.6)

for any annulus A and simply connected domain Ω.

5.2.4 . Outline of the proof
Here we present the intuition behind the proof of Theorem 5.1.1. To begin with,

by (5.2.5) and (5.2.6), it suffices to study CompA(r,R)(Bλ(Ω)). Then we divide L =

Bλ(Ω) into L1 = Bλ<a(Ω) (loops with diameter less than a) and L2 = Bλ≥a(Ω) (loops
with diameter larger or equal to a), and reduce the problem to CompA(r,R)(L1) and
CompA(r,R)(L2) by Lemma 5.3.2.

Intuitively, loops with small diameter cannot appear in many different crossing con-
nected components of A(r,R), which inspired us to bound Comp(L1) by Clus(L1) in
Lemma 5.3.3. The main technicality in this paper consists of dealing with Clus(L1),
which will be discussed in Section 5.3.3 and Section 5.3.4 by establishing a recursive
inequality using the conformal invariance of the Brownian loop soup.

Moreover, the probability distribution on the number of loops in L2 has super-
exponential tail since it is a Poisson distribution. Combined with Fomin’s identity for
non-intersection probabilities for the Brownian paths, we obtain the probabilistic super-
exponential decay of Cross(L2) in Proposition 5.4.2.

In conclusion, the desired upper bound for Comp(Bλ(Ω)) = Comp(L1 ∪L2) follows
from estimates of Clus(L1) and Cross(L2). We remark that the annuli subscripts in the
above notions of crossing/component/cluster numbers are deliberately omitted, because
we need to change the annuli slightly in each step.

Finally, in Section 5.5, we prove Corollary 5.1.3 based on the estimates established in
Theorem 5.1.1. In the last Section 5.6, we carefully apply Corollary 5.1.3 to the setup of
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the complexity for the convergence of probabilities of cylindrical events for double-dimer
configurations.

5.3 . Component Number and Cluster Number

The goal of this section is to explore some deterministic properties and relations
of CompA(L) and ClusA(L) and present the proof of the super-exponential decay of
supU⊆HP

[
ClusA(r,R)(Bλ<a(U)) ≥ n

]
, λ ≤ 1, a > 0, see Proposition 5.3.5. Here we

assume the annuli to be centered at 0 without loss of generality but keep in mind that
those relations are translationally invariant. Besides, we only consider loop ensembles
with the following properties: for any fixed r > 0,

— all loops in L do not touch (i.e., do not intersect without crossing) ∂Ω, ∂Br or
any other loop in L;

— outermost boundaries of clusters of L do not touch ∂Ω, ∂Br or any other loop in
L

It is known that L = Bλ satisfies (5.3) almost surely [SW12]. The assumptions (5.3)
also holds for Bλ<a,Bλ≥a, since there is a positive probability that Bλ = Bλ<a, and Bλ<a is
independent of Bλ≥a.

5.3.1 . Component number

Recall that the component number CompA(L) is the number of connected com-
ponents of ∪C∈{outermost clusters of L}F (C) ∩ A connecting ∂B(r) and ∂B(R). We first
show that for any crossing connected component of F (C)∩A, there is a finite collection
of loop arcs whose union crosses A inside D.

Lemma 5.3.1. Let L be a loop ensemble satisfying (5.3). For each annulus A(r,R) and
crossing connected componentD, there exists a path γ ⊂ D comprised of finitely many
arcs of loops in L, such that γ crosses A(r,R). This sequence of loops will be denoted
by Lγ .

Proof. Denote by C the cluster such that D ⊂ F (C). By (5.3), clusters and loops
cannot touch ∂A(r,R). Thus there exist loops l, l′ ∈ C such that l, l′ intersect ∂B(r)∩
D and ∂B(R) ∩D respectively.

Since l, l′ are in the same cluster C , there exists a finite chain of loops l0 =

l, l1, l2, . . . , ln = l′ inL such that li and li+1 are adjacent. We conclude that∪ni=1li∩D
crosses A(r,R) since F (C) is simply connected (otherwise the union of D with all
fillings of chains of loops connecting l and l′ encircles a hole). Thus we can draw a
crossing path γ out of a crossing chain of finite loops.

Using Lemma 5.3.1 for the decomposition of the loop ensemble, the component
number can be bounded above by the component number of a smaller annulus as follows.
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Lemma 5.3.2. Let L1,L2 be two disjoint loop ensembles satisfying (5.3). Take 0 < r <

r′ < R′ < R, then

CompA(r,R)(L1 ∪ L2) ≤CompA(r′,R′)(L1) + CrossA(r,r′)(L2) + CrossA(R′,R)(L2)
+ #{l ∈ L2 : l ∩A(r′, R′) ̸= ∅, l ⊂ A(r,R)}.

(5.3.7)
In particular, if L is inside H, L1 = L(Ω) and L2 = L(Ω)⊥ for some domain A(r,R) ∩
H ⊂ Ω, then

CompA(r,R)(L) ≤ CompA(r′,R′)(L(Ω)) + CrossA(r,r′)(L(Ω)⊥) + CrossA(R′,R)(L(Ω)⊥).

Proof. For each component D that contributes to CompA(r,R)(L1 ∪ L2) which also
crossesA(r′, R′), it follows from Lemma 5.3.1 that there is a path γ crossingA(r′, R′)

withinD∩A(r′, R′) constituted by finitely many arcs of loops in Lγ , contained inD.
IfLγ is a subset ofL1, then it stays in a connected component which contributes

to CompA(r′,R′)(L1). Otherwise, there exists l ∈ L2 such that l ∩ γ ̸= ∅. In such
cases, if l ⊂ A(r,R), then it contributes to the term #{l ∈ L2 : l ∩ A(r′, R′) ̸=
∅, l ⊂ A(r,R)}. If l ̸⊂ A(r,R), then l intersects ∂Br or ∂BR, which contributes
to CrossA(R,R′)(L2) or CrossA(r,r′)(L2) since γ ⊂ A(r′, R′) and l ∩ γ ̸= ∅. The de-
sired upper bound (5.3.7) is thus proved since for distinctive crossing components
D1, . . . , Dn contributing to the left-hand side of (5.3.7), one can find different cross-
ing components or loops contributing to the right-hand side of (5.3.7) contained in
D1, . . . , Dn, respectively.

5.3.2 . Cluster number

For any loop ensemble whose loops have diameter less than a, the component number
in A(r,R) can be bounded by the cluster number with respect to an annulus which is
a-smaller than A(r,R).

Lemma 5.3.3. For 0 < r < r+a < R−a < R, let L be a loop ensemble such that L<a
satisfies (5.3). we have

CompA(r,R)(L<a) ≤ ClusA(r+a,R−a)(L<a(A(r,R))).

Proof. By Lemma 5.3.1, for each componentD that contributes toCompA(r,R)(L<a),
we can find a path γ inD ∩A(r + a,R− a) from loops in Lγ ⊂ L<a. Since all loops
in L<a have diameter less than a, Lγ is contained in A(r,R). Therefore, Lγ is a sub-
set of a cluster which contributes to ClusA(r+a,R−a)(L<a(A(r,R))). Conversely, this
cluster is connected and stays within A(r,R), thus it is contained in D, which gives
the injectivity of themapping fromCompA(r,R)(L<a) toClusA(r+a,R−a)(L<a(A(r,R))).

Similarly as Lemma 5.3.2, we obtain the following upper bound for the cluster number.
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Lemma 5.3.4. Let 0 < r ≤ r′ < R′ ≤ R, and L1,L2 be two disjoint loop ensembles
satisfying (5.3), then

ClusA(r,R)(L1 ∪ L2) ≤ClusA(r′,R′)(L1) + #{l ∈ L2 : l ∩A(r′, R′) ̸= ∅, l ⊂ A(r,R)}
+#{l ∈ L2 : l crosses A(r, r′) or A(R′, R)}.

In particular,

ClusA(r,R)(L1 ∪ L2) ≤ ClusA(r,R)(L1) + #{l ∈ L2 : l ∩A(r,R) ̸= ∅}

in the degenerate case r′ = r,R′ = R.

Proof. As in the proof of Lemma 5.3.2, if in the beginning we take any cluster C in
ClusA(r,R)(L1 ∪L2), we can decompose the cluster number depending on whether
L1 restricted to C gives a crossing of A(r′, R′) or not. Then the argument follows
the same line as the proof of Lemma 5.3.2.

Let us briefly mention how results in this section will be used in the probabilistic
setting for Poissonnian Brownian loops to prove the quasi-multiplicativity of crossing
probabilities. Recall that Bλ(A(r,R)) is a Brownian loop soup with intensity λ ∈ (0, 1]

in A(r,R), and for simplicity, we will write Bλ(r,R) = B(A(r,R)). Let ρ < r < r′ <

ρ′ < R′ < R < P and ϵ, s > 0. In the next paragraph, we give an upper bound on
ClusA(r,R)(Bλ(ρ, P )).

Firstly, we can upper-bound this cluster number of A(r,R) by the cluster number of
A(r, r′) and A(R′, R), which follows from Lemma 5.3.4 that

ClusA(r,R)(Bλ(ρ, P )) ≤min{ClusA(r,r′)(Bλ(ρ, ρ′)),ClusA(R′,R)(Bλ(ρ′, P ))}
+#{l ∈ Bλ(ρ, P ) : l crosses A(r′, ρ′) or A(ρ′, R′)}.

By the independence of Bλ(ρ, ρ′), Bλ(ρ′, P ) and the Poisson tail of

#{l ∈ Bλ(ρ, P ) : l crosses A(r′, ρ′) or A(ρ′, R′)},

we have that

P
[
ClusA(r,R)

(
Bλ(ρ, P ))

)
≥ n

]
≤P
[
ClusA(r,r′)

(
Bλ(ρ, ρ′)

)
≥ (1− ϵ)n

]
(5.3.8)

× P
[
ClusA(R′,R)

(
Bλ(ρ′, P )

)
≥ (1− ϵ)n

]
+O(sn).

The inequality (5.3.8) is a key component for proving the recursive relation (5.3.11), which
will result in the desired super-exponential decay.

5.3.3 . Super-exponential decay of the cluster number
In this subsection, we prove that the probability distribution on the cluster number

has a super-exponentially tail. It is intuitively not hard to see that crossing clusters occur
“disjointly” in a loop ensemble, therefore the probability of finding two crossing clusters
should be smaller than the product of their probabilities.
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Proposition 5.3.5. Let 0 < a < r < 1 < R. Denote by Bλ<a(U) the set of loops with
diameter less than a in a Brownian loop soup with intensity λ ∈ (0, 1] in any open set
U ⊆ H. Then for each s > 0, we have

sup
U⊆H

P
[
ClusA(r,R)(Bλ<a(U)) ≥ n

]
= O(sn) as n→∞, (5.3.9)

where the supremum is taken over all open subsets of H, and the constant in O(sn)

depends on a,R/r, λ and s.

Remark 5.3.6. Different fromTheorem5.1.1 and Corollary 5.1.3, the supremum taken
in Proposition 5.3.5 is not restricted to simply connected domains. This is validated
by the flexibility of the construction of the Brownian loop soup, and it helps to sim-
plify the discussion on the distortion in conformal mappings used in the proof of
Proposition 5.3.5.

Strategy of the proof of Proposition 5.3.5. Let us define

f(n) := sup
U⊆H

P
[
ClusA(r,R)(Bλ<a(U)) ≥ n

]
. (5.3.10)

We estimate f(n) inductively, where the step of induction can be described as fol-
lows. Note that intuitively, conditioned on having n crossing clusters, one can ex-
pect two scenario. In the first one, the space remaining to accommodate one more
crossing cluster becomes less and less, leading to a multiplying factor tending to 0.
In the second scenario, all n crossing clusters cross A(r,R) inside a strictly smaller
subset

A(η)(r,R) := {z ∈ A(r,R) : 0 < arg z < η < π}
for some fixed η, depending only on s. Then, we can conformally map A(η)(r,R) to
the annulus A(r′, R′) with r′ < r < 1 < R < R′ and, by conformal invariance, get a
sample of the Brownian loop soup having n clusters crossing A(r′, R′). A technical
analysis shows that the probability to have such a sample can be upper-bounded
by cqn · f((1− ϵ)n) +O(s2n). As a result we find out that for all s, ϵ ∈ (0, 1), we can
find some c > 0, q < 1 and any ϵ > 0, the following holds:

f(n+ 1) ≤ s

2
f(n) + cqn · f((1− ϵ)n) +O(s2n). (5.3.11)

Let us mention again here the constants in O(s2n) depend on ϵ and s. We claim
that (5.3.11) is sufficient for deducing Proposition 5.3.5. In fact, if (5.3.11) holds, we
can take ϵ small enough such that s2ϵ > q. Note that for n large enough, cqn

sϵn+1 <
1
2 .

Then (5.3.11) divided by sn+1 gives that
f(n+ 1)

sn+1
≤ 1

2

f((1− ϵ)n)
s(1−ϵ)n

+
1

2

f(n)

sn
+O(sn−1),

which implies that f(n)sn is bounded for all n, hence the super-exponential decay of
f(n).

Together with (5.3.11) and (5.3.10), this completes the proof of Proposition 5.3.5
modulo the technical proof of (5.3.11), which is postponed to Section 5.3.4.
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The following result on the probability of the existence of a crossing cluster inside a
(conformally) thin tube will be used in Section 5.3.4.

Figure 5.7 – An illustration for (Q; a, b, c, d) in Lemma 5.3.7.

Lemma 5.3.7. For any ϵ > 0 and 0 < r < R, there exists δ > 0 such that uniformly
for all crossing-quads inside A(r,R) of the form (Q; a, b, c, d) with b = −R and c = −r,
such that

(ab) ⊂ ∂BR, (bc) ⊂ R−, (cd) ⊂ ∂Br and inf
z∈(bc),w∈(ad)

|z − w| < δ,

we have

P[(ab) and (cd) are connected by a chain of loops in Bλ(H) not touching (bc) and (ad)] < ϵ.

(5.3.12)

Proof. Suppose the contrary, then there exists a sequence of quads (Qδ; aδ, bδ, cδ, dδ) ⊂
A satisfying the same conditions as in the statement, such that the probability that
(aδbδ) and (cδdδ) are connected by a chain of loops in Bλ(H) not touching (bδcδ) and
(aδdδ) is uniformly away from 0. By Kochen-Stone lemma, with positive probability,
we can find a sequence of clusters of Bλ(H) arbitrarily close to R−. These clusters
are of diameter larger than R− r, which is not possible in the sub-critical regime of
the Brownian loop soup with intensity λµloopΩ , λ ∈ (0, 1], see e.g. [SW12, Lemma 9.7].
Thus by contradiction we have (5.3.12).

5.3.4 . Proof of the recursive inequality (5.3.11).
Throughout this section, we fix the intensity of the Brownian loop soup in (5.3.11) to

be some λ ∈ (0, 1] and omit it. Before diving into the technical details of the proof, let
us first explain the choice of parameters. For all A(r,R), denote the sector of angle η by

A(η)(r,R) := A(r,R) ∩ {z ∈ H : 0 < arg z < η}.

For any open subset U ⊂ H, denote the Brownian loop soup on top of it by

B(η)(U) = B(A(η)(0,∞) ∩ U),

with the mnemonics

A(r,R) = A(π)(r,R), B(U) = B(π)(U).
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For each fixed s, we first choose η sufficiently close to π such that the probability of
having a cluster in B(H) which crosses A(r,R) inside a quad (Q; a, b, c, d) with the arc
(ab) ⊂ ∂BR, (bc) ⊂ ∂Br, (cd) ⊂ ∂Br and (ad) not contained in A(η)(r,R) is less than
s
2 by Lemma 5.3.7. For all n ∈ N, conditioned on the event that n crossing clusters cross
A(r,R) inside A(η)(r,R), a family of radii is required for applying Lemma 5.3.4.

Due to the scaling invariance of the Brownian loop soup, we suppose without loss of
generality that 0 < r < 1 < R. Define

rβ = r
(1−β)π+βη

η , Rβ = R
(1−β)π+βη

η if β ∈ [0, 1]

rβ = r
(2−β)π+(β−1)η

π , Rβ = R
(2−β)π+(β−1)η

π if β ∈ [1, 2].
(5.3.13)

Note that r1 = r, R1 = R, rβ is increasing in β and Rβ is decreasing in β. Therefore,
A(rβ1 , Rβ1) ⊂ A(rβ2 , Rβ2) if β1 > β2. See Figure 5.9 for an illustration.

For each open subset U ⊆ H, conditioned on the event that ClusA(r,R)(B<a(U)) ≥
n, we can order the clusters counterclockwise by their rightmost crossing connected
components, and denote by D1, . . . , Dn the first n components, from right to left in
A(r,R), see e.g. Figure 5.8. Denote by En,η(U), Ẽn,η(U) the events that

En,η(U) := {B<a(U) has n crossing clusters and Dn is inside A(η)(r,R)}.
Ẽn,η(U) := {B<a(U) has n crossing clusters and Dn is not contained in A(η)(r,R)}.

(5.3.14)
Note that

Ẽn,η(U) ∪ En,η(U) = {ClusA(r,R)(B<a(U)) ≥ n}, sup
U⊆H

P[Ẽn,η(U)] ≤ f(n)

and conditioned on En,η(U), it may happen that the n-th cluster is not contained in
A(η)(r,R). Now we can embark on the proof of the recursive inequality (5.3.11).

Figure 5.8 – An illustration of the rightmost components (Di) of crossing
clusters. On the event Ẽn,η, Dn must intersect A(r, R)\A(η)(r, R). If Dn+1

exists, then it must live in the shaded area.

Step 1: Decompose the crossing probability. Let us decompose f(n+1) with respect to

En,η(U) and Ẽn,η(U). Assume that ClusA(r,R)(B<a(U)) ≥ n+1 and Ẽn,η(U) happens.
By definition, this means that the rightmost crossing connected component Dn of the
n-th cluster is not within A(η)(r,R), which implies that the (n + 1)-th cluster crosses
A(r,R) inside some crossing quad that satisfies the assumptions of Lemma 5.3.7 with
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ϵ = s
2 (by the choice of η), as illustrated in Figure 5.8. Conditioned on the event Ẽn,η,

the loops outside the clusters to which D1, . . . , Dn belong is an independent Brownian
loop soup. Then if in addition Dn intersects A(r,R)\A(η)(r,R), it follows from Lemma
5.3.7

sup
U⊆H

P
[
ClusA(r,R)(B<a(U)) ≥ n+ 1|Ẽn,η

]
≤ s

2
.

Therefore,

f(n+ 1) = sup
U⊆H

P
[
ClusA(r,R)(B<a(U)) ≥ n+ 1

]
≤ sup
U⊆H

(
P
[
Ẽn,η,ClusA(r,R)(B<a(U)) ≥ n+ 1

]
+ P [En,η(U)]

)
≤ sup
U⊆H

P
[
ClusA(r,R)(B<a(U)) ≥ n+ 1|Ẽn,η(U)

]
P[Ẽn,η(U)] + sup

U⊆H
P [En,η(U)]

≤s
2
· f(n) + sup

U⊆H
P [En,η(U)] ,

(5.3.15)
Step 2: Decompose the cluster number in P [En,η(U)] . In this step we aim to show the
following alternative: if En,η happens, either the restricted Brownian loop soup B(η)

<a(U)

has at least (1 − ϵ)n clusters crossing a slightly thinner annulus A(η)(r1.5, R1.5), or we
are in the setup to apply a Poisson tail estimate.

Similarly to the proof of Lemma 5.3.4, for any crossing cluster C from B<a(U) whose
rightmost crossing component D stays in A(η)(r,R), it follows from Lemma 5.3.1 that
D contains a path γ crossing A(η)(r1.5;R1.5) comprised of finitely many arcs of loops in
C. If the loops in Lγ (which give the arcs that constitute γ) are part of B(η)<a(U), then C
contains a crossing cluster of A(r1.5, R1.5). Otherwise, we can find a loop lC in C that
intersects both A(η)(r1.5, R1.5) and U\U (η), where U (η) = {z ∈ U : 0 < arg z < η}.
Recall that D is contained A(η)(r,R), therefore lC crosses A(η)(r, r1.5) or A(η)(R1.5, R)

to reach U\U (η).
Under En,η(U), all components D1, . . . , Dn lie in A(η)(r,R). Applying this argument

to each cluster that Di, i = 1, . . . , n belongs to, we get that for all ϵ′ ∈ (0, 1),

P [En,η(U)]

≤P
[
#
{
l ∈ B<a(U) : l crosses A(η)(r, r1.5) or A(η)(R1.5, R)

}
+ClusA(η)(r1.5,R1.5)

(
B(η)<a(U)

)
≥ n

]
≤P
[
#
{
l ∈ B<a(U) : l crosses A(η)(r, r1.5) or A(η)(R1.5, R)

}
≥ ϵ′n

]
+ P

[
ClusA(η)(r1.5,R1.5)

(
B(η)<a(U)

)
≥ (1− ϵ′)n

]
≤P
[
ClusA(η)(r1.5,R1.5)

(
B(η)<a(U)

)
≥ (1− ϵ′)n

]
+O(s2n),

(5.3.16)
where the last line follows from the fact that the term

#
{
l ∈ B<a(U) : l crosses A(η)(r, r1.5) or A(η)(R1.5, R)

}
≤#

{
l ∈ B(H) : l crosses A(η)(r, r1.5) or A(η)(R1.5, R)

}
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has a super-exponentially decaying Poisson tail independent of U .

Figure 5.9 – The relation of radii defined in (5.3.13) and corresponding annuli.

The recursive relation (5.3.11) then reduces to

sup
U⊆H

P
[
ClusA(η)(r1.5,R1.5)

(
B(η)<a(U)

)
≥ (1− ϵ′)n

]
≤ cqn· sup

U⊆H
P[ClusA(r,R)(B<a(U)) ≥ (1−ϵ)n]+O(s2n).

(5.3.17)
We will prove (5.3.17) in the next two steps. In fact, it follows from (5.3.13) that

the conformal modulus of the quad A(η)(r1.5, R1.5) is strictly bigger than the conformal
modulus of A(r,R)∩H, which is the main reason for the factor qn to appear on the right-
hand side, see (5.3.22). This argument requires a careful justification because B<a(U) is
not conformally invariant, which requires the constant c (see (5.3.20)) and the correction
term O(s2n) on the right-hand side of (5.3.17).

Step 3: Transform A(η)(r1.5, R1.5) to A(r0.5, R0.5). Define the conformal map from
H(η) = {z ∈ H : 0 < arg z < η} to H

ϕη : z = reiθ 7→ r
π
η e

i θπ
η for r > 0, θ ∈ (0, η),

then
ϕη(A

(η)(r1.5, R1.5)) = A(r0.5, R0.5),

hence,
ClusA(η)(r1.5,R1.5)

(
B(η)<a(U)

)
= ClusA(r0.5,R0.5)

(
ϕη(B(η)<a(U))

)
.

Only loops in U ∩BR+a contribute to the left-hand side of the above relation, therefore
we assume without loss of generality that U ⊆ BR+a. Then the conformal invariance of
the Brownian loop measure and a simple computation on the distortion of ϕη give that
there exist constants 0 < c1 < 1 < c2 depending on a, η, r, R such that almost surely

B<c1a(ϕη(U (η))) ⊆ ϕη
(
B(η)<a(U)

)
⊆ B<c2a(ϕη(U (η))), (5.3.18)
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where U (η) = {z ∈ U : 0 < arg z < η}. Let L′ := B[c1a,c2a[(ϕη(U (η))), a sample of
Brownian loops within ϕη(U (η)) whose diameters are in [c1a, c2a[. Then by Lemma 5.3.4
and the Poissonian tail of #L′, we have that for all ϵ′ ∈ (0, 1),

P
[
ClusA(η)(r1.5,R1.5)

(
B(η)<a(U)

)
≥ (1− ϵ′)n

]
=P
[
ClusA(r0.5,R0.5)

(
ϕη(B(η)<a(U))

)
≥ (1− ϵ′)n

]
≤P
[
#{l ∈ L′ : l ∩A(r0.5, R0.5) ̸= ∅}+ClusA(r0.5,R0.5)

(
B<c1a(ϕη(U (η)))

)
≥ (1− ϵ′)n

]
.

≤P
[
#{l ∈ L′ : l ∩A(r0.5, R0.5) ̸= ∅} ≥ ϵ′n

]
+ P

[
ClusA(r0.5,R0.5)

(
B<c1a(ϕη(U (η)))

)
≥ (1− 2ϵ′)n

]
≤P
[
ClusA(r0.5,R0.5)

(
B<c1a(ϕη(U (η)))

)
≥ (1− 2ϵ′)n

]
+O(s2n).

(5.3.19)
Moreover, we claim that there exists a constant c = c(a, r,R, η) (independent of U)
such that

P
[
ClusA(r0.5,R0.5)

(
B<c1a(ϕη(U (η))

)
≥ n

]
≤

c · P
[
ClusA(r0.5,R0.5)

(
B<a(ϕη(U (η))))

)
≥ n

]
.

(5.3.20)

In fact, the independence of B≥c1a(ϕη(U (η))) and B<c1a(ϕη(U (η))) gives that

P[ClusA(r0.5,R0.5)(B<a(ϕη(U
(η)))) ≥ n]

≥P[ClusA(r0.5,R0.5)(B<c1a(ϕη(U
(η)))) ≥ n, B≥c1a(ϕη(U (η))) = ∅]

=P[ClusA(r0.5,R0.5)

(
B<c1a(ϕη(U (η)))

)
≥ n] · P

[
B≥c1a(ϕη(U (η))) = ∅

]
≥P[ClusA(r0.5,R0.5)

(
B<c1a(ϕη(U (η)))

)
≥ n] · P [B≥c1a(H) = ∅] ,

and (5.3.20) follows by taking c−1 = P [B≥c1a(H) = ∅] > 0. Therefore by (5.3.19),
(5.3.20) and taking the supremum, we have

sup
U⊆H

P
[
ClusA(r1.5,R1.5)

(
B(η)<a(U)

)
≥ (1− ϵ′)n

]
≤ c· sup

U⊆H
P[ClusA(r0.5,R0.5)(B<a(U)) ≥ (1−2ϵ′)n]+O(s2n).

(5.3.21)

Step 4: Compare the crossing cluster number in A(r0.5, R0.5) and A(r,R). In this step,

we will show that for any ϵ′ ∈ (0, 1), there exists 0 < q < 1 such that

sup
U⊆H

P
[
ClusA(r0.5,R0.5) (B<a(U)) ≥ (1−2ϵ′)n

]
≤ qn· sup

U⊆H
P
[
ClusA(r,R) (B<a(U)) ≥ (1− 3ϵ′)n

]
+O(s2n).

(5.3.22)
Recall that rθ is increasing in θ, Rθ is decreasing in θ (see (5.3.13)), r = r1, R = R1,
and A(r,R), A(R0.6, R0.5) ⊆ A(r0.5, R0.5). Therefore we have

P
[
ClusA(r0.5,R0.5) (B<a(U)) ≥ n

]
≤ P

[
ClusA(r,R) (B<a(U)) ≥ n,ClusA(R0.6,R0.5) (B<a(U)) ≥ n

]
.

135



By Lemma 5.3.4, if we write U ′ := {z ∈ U : |z| < R0.8}, we have that

ClusA(r,R)

(
B<a(U)

)
≤ ClusA(r,R)

(
B<a(U ′)

)
+#{l ∈ B<a(U) : l crosses A(R,R0.8)},

and

ClusA(R0.6,R0.5)

(
B<a(U)

)
≤ ClusA(R0.6,R0.5)

(
B<a(U\U ′)

)
+#{l ∈ B<a(U) : l crosses A(R0.8, R0.6)}.

Combined with the fact that A(r,R) ∩A(R0.6, R0.5) = ∅, we have

P
[
ClusA(r0.5,R0.5) (B<a(U))) ≥ (1− 2ϵ′)n

]
≤P
[
ClusA(r,R)

(
B<a(U ′)

)
≥ (1− 3ϵ′)n and ClusA(R0.6,R0.5)

(
B<a(U\U ′)

)
≥ (1− 3ϵ′)n

]
+ P

[
#{l ∈ B<a(H) : l crosses A(R,R0.8) or A(R0.8, R0.6)} ≥ ϵ′n

]
≤P
[
ClusA(r,R)

(
B<a(U ′)

)
≥ (1− 3ϵ′)n

]
× P

[
ClusA(R0.6,R0.5)

(
B<a(U\U ′)

)
≥ (1− 3ϵ′)n

]
+O(s2n),

where the last inequality follows from the independence of Brownian loop soup in disjoint
domains and the super-exponential tail of distribution on the number of loops in B<a(H)

which cross A(R,R0.8) or A(R0.8, R0.6). Also note that once ϵ′, η are fixed, there exists
0 < q < 1 (the smaller ϵ′ is, the smaller q is) such that

sup
U⊆H

P
[
ClusA(R0.6,R0.5) (B<a(U)) ≥ (1− 3ϵ′)n

]
≤ qn (5.3.23)

due to BK’s inequality [vdB96] (as in Lemma 9.6 of [SW12]) for disjoint-occurrence event
of a Poissonnian sample. This completes the proof of (5.3.22).

Conclusion. To summarize, we deduce (5.3.17) from (5.3.21) and (5.3.22). Then combin-

ing (5.3.15), (5.3.16) and (5.3.17), we have that for any ϵ′ ∈ (0, 1),

f(n+ 1) ≤ s

2
f(n) + P [En,η]

≤ s

2
f(n) + sup

U⊆H
P
[
ClusA(η)(r1.5,R1.5)

(
B(η)<a(U)

)
≥ (1− ϵ′)n

]
+O(s2n)

≤ s

2
f(n) + c · sup

U⊆H
P[ClusA(r0.5,R0.5)(B<a(U)) ≥ (1− 2ϵ′)n] +O(s2n)

≤ s

2
f(n) + cqn · sup

U⊆H
P[ClusA(r,R)(B<a(U)) ≥ (1− 3ϵ′)n] +O(s2n),

which is exactly (5.3.11) if we take ϵ to be 3ϵ′.

5.4 . Proof of Theorem 5.1.1

Denote by L(r,R) the set of all loops in H crossing A(r,R). Recall that the mass
of L(r,R) under the Brownian loop measure is finite, and in the following we denote by
µL the Brownian loop measure µ restricted to L(r,R). To deal with single loops, we
abuse the notation CrossA(l) to denote the maximum number of non-overlapping time
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Figure 5.10 – For the loop captured from the top-right corner of Figure 5.4,
we have Cross(l) = 4 and Cross({l}) = 3.

intervals whose image under l cross A. In particular, the crossings of a single loop are
not necessarily disjoint, and CrossA({l}) ≤ CrossA(l), see Figure 5.10 for an illustration,
and see (5.4.25) for the reason to define CrossA(l). We start with a coarse estimate on
the crossing number of an annulus by a single loop in the Brownian loop soup.

Lemma 5.4.1. Let B(H) be the Brownian loop soup with intensity λ ∈ (0, 1] onH. Then
there exists q = q(r,R, λ) such that

P

 ∑
l∈B(H)

CrossA(r,R)(l) ≥ n

 = O(qn).

Proof. Denote by µ#L the normalized probability measure on L(r,R) on the trace of
an unrooted loop. For the sake of tracing the loop, we can assume that it takes root
inside the annulus A(R, 2R) almost surely .

Figure 5.11 – Conditioned on the solid line from the root v to some point u
on ∂BR, we study the remaining (dotted) path in (5.4.24). In particular, since
there are already 2 crossings on the solid path, we need n− 2 crossings for
the dotted path.

Conditioned on the trajectory before first returning to ∂BR = {z : |z| = R} after
hitting ∂Br = {z : |z| = r}, the remaining part is an independent Brownian motion
on H from the landing point on ∂BR conditioned on coming back to the root, see
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Figure 5.11. Applying the strong Markov property recursively, we have

P
µ#L

[CrossA(r,R)(l) ≥ n] ≤ sup
u∈∂BR

v∈A(R,2R)

Pu→v[W crosses A(r,R) at least n− 2 times ]

≤

 sup
u∈∂BR

v∈A(R,2R)

Pu→v[W hits ∂Br before returning to v]


⌈n
2
−1⌉

≤p
n
2
−1,

(5.4.24)
where Pu→v denotes the normalized (Brownian) interior to interior measure on H
from u to v,W is the trajectory under Pu→v and

p := sup
u∈∂BR

v∈A(R,2R)

Pu→v[W hits ∂Br before returning to v] < 1.

Then Campbell’s second theorem tells that for any ϵ > 0,

E

exp
−(1

2
log p+ ϵ

)
·
∑
l∈B(H)

CrossA(r,R)(l)


=E

exp
−(1

2
log p+ ϵ

)
·

∑
l∈B(H)∩L(r,R)

CrossA(r,R)(l)


=exp

(
−
∫
L(r,R)

[
1− exp

(
−
(
1

2
log p+ ϵ

)
· CrossA(r,R)(l)

)]
dµ(l)

)

≤ exp

(
|µL| · Eµ#L

[
exp

(
−
(
1

2
log p+ ϵ

)
· CrossA(r,R)(l)

)])
≤p−1 · exp

(
|µL|/(1− e−ϵ)

)
.

This implies that

P

 ∑
l∈B(H)

CrossA(r,R)(l) ≥ n

 = exp
(
|µL|/(1− e−ϵ)

)
p

n
2
−1enϵ.

Then Lemma 5.4.1 follows by taking ϵ sufficiently small such that q = √peϵ < 1.

Further, we show in the next lemma that, the probability on the total crossings of
single loops in B(Ω) also has super-exponential decay. Notice that CrossA(r,R)(B(Ω)) ̸=
CrossA(r,R)(CLE(Ω)), because for CrossA(r,R)(B(Ω)) we only count crossings formed
by single loops, not clusters.

Proposition 5.4.2. Let B(Ω) be a Brownian loop soup with intensity λ ∈ (0, 1] inside a
simply connected subdomain Ω ⊆ H, then

sup
Ω⊆H

P[CrossA(r,R)(B(Ω)) ≥ n] decays super-exponentially.
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Proof. By monotonicity of the crossing number (5.2.4), it suffices to show that

P[CrossA(r,R)(B(H)) ≥ n] decays super-exponentially.

We can decompose the traces of each loop in L(r,R) into pieces of crossings
(from ∂Br to ∂BR or from ∂BR to ∂Br) and Brownian excursions connecting con-
secutive crossings by Ito’s excursion theory [PY07]. For each crossing, conditioned
on its starting point and end point, it is distributed according to the normalized
Brownian excursion measure inA(r,R) independent of other parts of the loop. For
the purpose of estimatingCrossA(r,R)(B(H)), by summing over the number of cross-
ings (not necessarily disjoint) of loops in the Brownian loop soup the upper bounds
in 5.4.1 and then selecting n disjoint crossings out of them, we have

P[CrossA(r,R)(B(H)) ≥ n] ≤
∑
k≥n

P[
∑
l∈B(H)

CrossA(r,R)(l) = k] ·
(
k

n

)
· un(r,R)

≤ C · un(r,R) ·
∑
k≥n

qk ·
(
k

n

)
,

(5.4.25)
where un(r,R) := sup

x1,...,xn∈∂Br
y1,...,yn∈∂BR

P[Brownian excursions from x1, . . . , xn to y1, . . . , yn

inside A(r,R) are disjoint] and by Lemma 5.4.1, there exists C > 0 and q < 1 such
that

P

 ∑
l∈B(H)

CrossA(r,R)(l) = k

 ≤ C · qk.
We first look at the factor vn :=

∑∞
k=n q

k ·
(
k
n

)
in (5.4.25). In fact,

(1− q)vn =

∞∑
k=n

qk ·
(
k

n

)
−

∞∑
k=n

qk+1 ·
(
k

n

)
= qn +

∞∑
k=n+1

qk
((

k

n

)
−
(
k − 1

n

))
= qvn−1,

i.e. vn grows exponentially with exponent q
1−q . Therefore to prove the desired

super-exponential decay for (5.4.25), it suffices to prove that un(r,R) decays super-
exponentially. To this end, one can apply the Fomin’s identity (for example, see
[KL05]) for the non-intersection probability of a random walk excursion and loop-
erased randomwalks (which is obviously larger than the non-intersection probabil-
ity of randomwalk excursions). By conformal invariance of the Brownian excursion,
we choose a conformal map φ : A(r,R) ∩ H → D such that φ(∂BR) = {eiθ : θ ∈
]− θ1, θ1[} and φ(∂Br) = {eiθ : θ ∈]− θ2 + π, θ2 + π[} for some θ1 + θ2 < π. Then

un(r,R) ≤ sup
1≤k≤n,xk∈]−θ1,θ1[,
yk∈]−θ2+π,θ2+π[

det

[
1− cos(xj − yj)
1− cos(xj − yl)

]
1≤j,l≤n

≤ 2 sup
1≤k≤n,xk∈]−θ1,θ1[,
yk∈]−θ2+π,θ2+π[

det

[
1

1− cos(xj − yl)

]
1≤j,l≤n

.
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Among the choice xj , 1 ≤ j ≤ n, there exist a pair of indices i1 ̸= i2 such that
|xi1 − xi2 | ≤ 2π

n . By subtracting the i1-th row from the i2-th row, the i2-th row is the
vector [

cos(xi2 − yl)− cos(xi1 − yl)
(1− cos(xi1 − yl))(1− cos(xi2 − yl))

]
1≤l≤n

,

whose modulus (L2-norm) is less than 2π√
n(1−cos(π−θ1−θ2))2

. By performing the same
procedure on the remaining n− 1 rows, we have

un(r,R) ≤
(

4π

(1 + cos(θ1 + θ2))2

)n−1

· (n!)−
1
2 ,

which implies that un(r,R) decays super-exponentially fast. The conclusion then
follows by (5.4.25).

Proof of Theorem 5.1.1. By (5.2.5) and (5.2.6), it suffices to show that for all s ∈ (0, 1),

sup
Ω⊆H

P
[
CompA(r,R)(B(Ω)) ≥ n

]
= O(sn).

Introduce a := (R − r)/8 to divide the Brownian loop soup into two parts ac-
cording to their diameters, then by Lemma 5.3.2,

CompA(r,R)(B(Ω)) ≤CompA(r+a,R−a)(B<a(Ω)) + #{l ∈ B≥a(Ω) : l ⊂ A(r,R))}
+CrossA(r,r+a)(B≥a(Ω)) + CrossA(R−a,R)(B≥a(Ω)).

Besides, Lemma 5.3.3 implies that

CompA(r+a,R−a)(B<a(Ω)) ≤ ClusA(r+2a,R−2a)(B<a(A(r + a,R− a) ∩ Ω)).

Then the conclusion follows by combining Proposition 5.3.5, Proposition 5.4.2 and
the Poisson tail of#{l ∈ B≥a(H) : l ⊂ A(r,R))}.

5.5 . Proof of Corollary 5.1.3

In this section, we prove Corollary 5.1.3, which generalizes Theorem 5.1.1 to the
crossing estimates of arbitrary quads, with the same spirit as in [KS17]. By conformal
invariance of CLEs, without loss of generality, we will assume in the whole section that
Ω = H. First, let us extend the crossing estimated in Theorem 5.1.1 to hold for inner
annuli uniformly on their mudulus.

Lemma 5.5.1. Given a non-nested simple CLEκ(H), κ ∈ (83 , 4], we have that for all
s ∈ (0, 1), z0 ∈ C and 0 < r < R,

P
[
CrossAz0 (r,R)(CLEκ(H)) ≥ n

]
= O(sn)

where the constant in O(sn) depends on κ and R/r.
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Proof. It readily follows from Theorem 5.1.1 that the result holds for Im z0 ≤ 0. If
Im z0 > 0, by theBrownian loop-soup construction of CLEs and the conformal invari-
ance of Brownian loop soup onH, it suffices to prove that for λ = (3κ−8)(6−κ)/2κ
and for all y ≥ 0, 0 < r < 1 and s ∈ (0, 1),

P
[
CompAiy(r,1)(B

λ(H)) ≥ n
]
= O(sn). (5.5.26)

For each y > 2 and ϵ sufficiently small, it holds by Lemma 5.3.2 that

P
[
CompAiy(r,1)(B

λ(H)) ≥ n
]

≤P
[
CompAiy( 3r+1

4
, r+3

4 )(B
λ(H+ i(y − 2))) ≥ (1− 2ϵ)n

]
+ P

[
CrossAiy(r, 3r+1

4 )

(
Bλ(H+ i(y − 2))⊥

)
≥ ϵn

]
+ P

[
CrossAiy( r+3

4
,1)

(
Bλ(H+ i(y − 2))⊥

)
≥ ϵn

]
≤P
[
CompA2i( 3r+1

4
, r+3

4 )(B
λ(H)) ≥ (1− 2ϵ)n

]
+O(sn),

by shiftingH+i(y−2) downwards by the distance i(y−2), where the termO(sn) fol-
lows fromProposition 5.4.2 because any crossing arc ofAiy

(
r+3
4 , 1

)
(orAiy

(
r, 3r+1

4

)
)

must intersect both R+ i(y−2) andAiy
(
r+3
4 , 1

)
, and these arcs are bound to cross

one of the annuli in the left picture of Figure 5.12. Similarly, the probability of the
event {CompA2i( 3r+1

4
, r+3

4 ) (Bλ(H)) ≥ n} can be bounded by the probability of a
union crossing events of annuli centered at the origin, see the left picture of Figure
5.12, which completes the proof of (5.5.26) for y > 2.

1

Figure 5.12 – Each crossing is bound to cross one of the shaded annulus sec-
tors.

For y ∈ [0, 2], we are going to establish (5.5.26) uniformly in y by finding a finite
number of annuli A1, . . . , Ak such that for any Aiy(r, 1), there exists at least one
Aj ⊆ Aiy(r, 1), j = 1, . . . , k, therefore it is not hard to see that

P
[
CompAiy(r,1)(B

λ(H)) ≥ n
]
≤ max

1≤j≤k
P
[
CompAj

(Bλ(H)) ≥ n
]
= O(sn), y ∈ [0, 2],

where theO(sn) term for j = 1, . . . , k can be bounded similarly by the probability of
a union of crossing events as illustrated in the right picture of Figure 5.12. Effectively,
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if we choose yj := (j − 1) · 1−r2 for j = 1, . . . , k, where k = ⌈ 4
1−r⌉+ 1, then

Aiyj (r,
r + 1

2
) ⊆ Aiy(r, 1) for all y ∈ [yj−1, yj ].

This completes the proof of (5.5.26).

The proof of Corollary 5.1.3 for generic quads Q = (V ;Sk, k = 0, 1, 2, 3) with
S1, S3 ⊂ R proceeds by connecting S1 and S3 by a chain of annuli of fixed radii ratio,
for which the number of annuli needed depends only on m(Q). To analyze m(Q), we
need the concept of the extremal length, which also gives the conformal modulus. Let
Γ be a family of locally rectifiable curves in an open set D in the complex plane. If
ρ : D → [0,∞] is square-integrable on D, then define

Aρ(D) =

∫∫
D
ρ2(z)d2z and Lρ(Γ) = inf

γ∈Γ

∫
γ
ρ(z)|dz|,

where d2z denotes the Lebesgue measure on the complex plane and |dz| denotes the
Euclidean element of length. Then the extremal length of Γ is defined by

m(Γ) := sup
ρ∈P

Lρ(Γ)
2

Aρ(D)
.

From the definition it is clear that the extremal length satisfies a simple monotonicity
property: if Γ1 ⊆ Γ2, then m(Γ1) ≥ m(Γ2). Moreover, it also agrees with the conformal
modulus m(Q) we introduced in Section 5.1.2 as the unique number for which Q can be
conformally onto a rectangle [0, 1]× [0,m(Q)] with Sk mapped to the four sides of the
rectangle and S0 mapped to [0, 1]× {0}, i.e. (cf. eg. [Ahl])

m(Γ) = m(Q),

where Γ is the family of all curves joining S0 and S2 inside Q = (V ;Sk, k = 0, 1, 2, 3).
We begin with an estimate on the extremal length following [KS17, pages 719-720].

Lemma5.5.2. Suppose thatQ = (V ;Sk, k = 0, 1, 2, 3) has conformalmodulusm(Q) ≥
36. Then there exist z0 ∈ C and r > 0 such that any curve connecting S0 and S2 inside
V must cross an annulus Az0(r, 2r).

Proof. Let
d1 = inf{length(γ) : γ joining S1, S3 inside V }

be the distance between S1 and S3 in the inner Euclidean metric ofQ, and let γ∗ be
a curve of length ≤ 2d1 joining S1 and S3 inside V . We are going to show that any
crossing γ (joining S0 and S2 inside V ) of Q has diameter d ≥ 4d1. Indeed, working
with the extremal length of the dual family of curves

Γ∗ = {γ∗ : γ∗ connects S1 and S3 inside V },
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take a metric ρ equal to 1 in the d1-neighborhood of γ and zero outside the d1-
neighborhood of γ. Then its area integral is at most (d+2d1)

2, and any γ∗ ∈ Γ∗ has
length at least d1 since γ ∩ γ∗ ̸= ∅must run through the support of ρ for a length of
at least d1. Therefore 1/m(Q) = m(Γ∗) ≥ d21/(d+ 2d1)

2, hence

d ≥ (
√
m(Q)− 2)d1 ≥ 4d1.

Now if we take an annulusA centered at themiddle point of γ∗ with inner radius
d1 and outer radius 2d1, every crossing γ of Q contains a crossing ofA because γ has
to intersect γ∗, which is contained inside the inner circle ofA, and γ has to intersect
the outer circle of A if its diameter is larger than 4d1.

Proof of Corollary 5.1.3. Let us decompose the set of crossings curves (from S0 to S2
or from S2 to S0 inside V ) of the quad Q = (V ;Sk, k = 0, 1, 2, 3). In fact, if we map
conformally Q onto a rectangle [0, 1]× [0,m(Q)] by ϕQ, we can chooseK > 0 large
enough, which depends only onm(Q), such that for any 0 ≤ i, j ≤ K − 1, the set of
curves Γi,j connecting [ iK ,

i+1
K ]× {0} and [ jK ,

j+1
K ]× {m(Q)} inside Ω has extremal

length larger than 36. Then by Lemma 5.5.2, any curve in ϕ−1
Q (Γi,j) has to cross an

annulus Azi,j (ri,j , 2ri,j) for some zi,j ∈ C and ri,j > 0. In other words, any curve
crossing Q has to cross one of theK2 annuli (Azi,j (ri,j , 2ri,j))0≤i,j≤K−1.

Therefore, our crossing event is included in the union of events

{CompAzi,j (ri,j ,2ri,j)
(CLEκ(H)) > n/K2},

and we can finish the proof by Lemma 5.5.1.

5.6 . Proof of Corollary 5.1.5

Let us now illustrate why our result implies the assumption of [BC21, Corollary
1.7]. Let Ω be a planar simply-connected domain and λ1, . . . , λN ∈ Ω be a collection of
pairwise distinct punctures in Ω. Given a loop ensemble in Ω\{λ1, . . . , λN}, we delete all
loops surrounding zero or one puncture, and consider the collection of homotopy classes of
loops that surround at least two punctures, which is called a macroscopic lamination. We
are interested in the complexity |Γ|TΩ of a macroscopic lamination for a fixed triangulation
TΩ = ({λ1, . . . , λN , ∂Ω, E ,F}) of Ω\{λ1, . . . , λN} whose N+1 vertices are λ1, . . . , λN
and the boundary of Ω. Roughly speaking, |Γ|TΩ is the minimal possible (in the free
homotopy class) number of intersections of loops in Γ with the edges of TΩ. We refer
interested readers to [BC21] for detailed discussions and pictures therein. The definition
of the complexity depends on the choice of the triangulation TΩ, but for each two such
choices, the complexities differ by no more than a multiplicative factor independent of Γ.
For a fixed triangulation TΩ of Ω \ {λ1, . . . , λN}, the laminations on Ω \ {λ1, . . . , λN}
are parametrized by multi-indices n = (ne) ∈ NE (satisfying certain conditions), where
ne := #{Γ ∩ e}. Then the complexity |Γ|TΩ (with respect to triangulation TΩ) can be
expressed as

|Γ|TΩ = min
Γ′: Γ′ is homotopic to Γ

#{Γ′ ∩ TΩ},
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where #{Γ′ ∩ TΩ} denotes the number of intersections of all loops in Γ′ with edges of
TΩ.

We can assume by the conformal invariance of CLEs that Ω = H and |λ1| < |λ2| <
. . . < |λN | up to a re-ordering of punctures. We choose a triangulation TH of H \
{λ1, . . . , λN} such that for any i < j, each edge of TH connecting λi, λj is a path
between λi and λj inside A(|λi|, |λj |), and any edge between a puncture λi and ∂Ω is
an arc of ∂Bλi . It is not hard to see that the complexity of any macroscopic lamination
is bounded by the sum of crossings up to a multiplicative constant.

Figure 5.13 – An illustration of the triangulation we adopt and the complexity
of a loop. Note that the cross (intersection with segment (λ3λ4)) inside A3

corresponds to a crossing of A2 in the proof of Lemma 5.6.1

Lemma 5.6.1. Let Ω′ be a simply connected subdomain of H. For each macroscopic
lamination Γ in Ω′, we have

|Γ|TH ≤ 6(N − 1)
N−1∑
i=1

CrossAi(Γ).

Proof. Suppose that
Γ′ ∈ argmin

Γ̃: homotopic to Γ

#{Γ̃ ∩ TH},

such that

|Γ|TH =
∑
e∈TH

#{Γ′ ∩ e} and CrossAi(Γ
′) ≤ CrossAi(Γ) for each i ≤ N − 1.

For any e ∈ TH and x ∈ Γ′∩ e, denote by lx the loop in Γ′ that x belongs to. Suppose
that lx is rooted at x and lx is parametrized by R, denote by

t− := inf{t ≥ 0 : lx(−t) ∈ ∪Ni=1∂B|λi|}

and
t+ := inf{t ≥ 0 : lx(t) ∈ ∪Ni=1∂B|λi|, |lx(t)| ≠ |lx(t−)|}.

It is not hard to see that t+ exists and by the minimality of Γ′, there is at most one
another intersection (if x lies on one of the arcs ∂Bλi ) of lx((−t−, t+]) and e except
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x. Therefore there exists i ≤ N − 1 such that lx((−t−, t+]) crosses Ai. By summing
over all possibilities of i, we have

#(lx ∩ e) ≤ 2

N−1∑
i=1

CrossAi(lx).

Since TH has 3(N − 1) edges, we further get

∑
e∈TH

#(lx ∩ e) ≤ 6(N − 1)
N−1∑
i=1

CrossAi(lx).

Sum over all the loops in Γ, notice that they are disjoint by definition, then

|TH| =
∑
e∈TH

#(Γ′ ∩ e) ≤ 6(N − 1)
N−1∑
i=1

CrossAi(Γ
′) ≤ 6(N − 1)

N−1∑
i=1

CrossAi(Γ).

Using Lemma 5.6.1 and Theorem 5.1.1, we obtain without difficulty the following
super-exponential decay of the probability of the complexity.

Corollary 5.6.2. For any simply connected subdomain of H, let CLEκ(Ω) be a non-
nested conformal loop ensemblle with κ ∈ (83 , 4] in Ω. Then for any s > 0,

sup
Ω⊆H

P [|CLEκ(Ω)|TH > n] = O(sn).

Now we are ready to conclude the main application of Theorem 5.1.1. We will add
superscripts to distinguish non-nested CLEn-nested

κ and nested CLEnested
κ .

Corollary 5.1.5. Let ΘΩ be a random sample of the nested CLEκ, 83 < κ ≤ 4, in Ω and
let Θδ

Ω be the double-dimer loop ensemble on a Temperlean discretization Ωδ ⊂ δZ2 of
Ω. Denote by Θ ∼ Γ the event that the macroscopic lamination of a loop ensemble Θ is
Γ. Then

PCLEnested
κ

[ΘΩ ∼ Γ] = O(R−|Γ|) as |Γ| → ∞ for all R > 0.

Therefore by [BC21, Corollary 1.7], Pdouble-dimer[Θδ
Ω ∼ Γ] → PCLEnested

4
[ΘΩ ∼ Γ] as δ → 0

for all macroscopic laminations Γ.

Proof. We can upper-bound the complexity of the nested CLEκ by looking sepa-
rately at the collection of loops ΓΛ = {γ1, . . . , γN} surrounding the same subset
Λ ⊆ {λ1, . . . , λN} which contains at least two punctures. In addition, we order
loops in ΓΛ such that γi+1 lies inside γi. By abusing the notation slightly we denote
by P[|γ1| = n1, . . . , |γi| = ni] the quantity

sup
Ω⊆H

P[γ1, . . . , γi ∈ CLEn-nested
κ (Ω) : γ1, . . . , γi encircles Λ

and |γ1|TH = n1, . . . , |γi|TH = ni].
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Note that the loops in ΓΛ are homotopic to each other since they do not intersect.
In particular, their complexities coincide. Therefore

P[|γ1| = n1, · · · , |γj | = nj ] is non-zero only if n1 = . . . = nj .

Using independence of the loop ensemble inside γ⌊j/2⌋, for any C > 0, we have

P [|γ1| = . . . = |γj | = n] · eCjn

≤P
[
|γ1| > 0, . . . , |γ⌊j/2⌋| > 0

]
·

j∏
i=⌊j/2⌋+1

(
P [|γi| = n] · e2Cn

)
≤ exp(−c(j/2)3/2) ·

j∏
i=⌊j/2⌋+1

(
P [|γi| = n] · e2Cn

)
,

where the exponential term is due to [Dub19, Lemma 21] on the tail of the distribu-
tion of the number of loops surrounding two points.

Because the complexity of γi+1 is less than the complexity of the non-nested
CLEκ inside γi, this implies that

E [exp (C · |ΓΛ|TH))] ≤
∑
j≥0

e−c(j/2)
3/2

sup
U⊆Ω

E
[
exp

(
2C · |CLEn-nested

κ (U)|TH
)]j/2+1

,

which is finite due to Theorem 5.1.1 and Lemma 5.6.1. In particular P [|ΓΛ|TH > n]

decays super-exponentially by Markov’s inequality. Then Corollary 5.1.5 follows by
taking the sum of |ΓΛ| for all Λ ⊆ {λ1, . . . , λN} containing at least two punctures..
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6 - Massive fermions and their bosonization in
rough planar domains

6.1 . Notations and basic facts

Given a scale factor δ, we work on the graph or subgraphs of the scaled square lattice
rotated by 45◦,

Cδ :=
√
2e

iπ
4 δZ2.

Let us denote by (Cδ)∗ = Cδ + δ the dual graph of Cδ. Interested in s-holomorphic
functions (belonging to the vast category of discrete complex functions), let us introduce
the graph carrying them:

— s-holomorphic functions are defined on the edges of Cδ, which will be denoted
by E(Cδ);

— the projections of s-holomorphic functions (fake complex-valued functions) are
defined on the vertices of the corner graph C(Cδ) = 1

2C
δ + 1

2 ;

— square integrations are defined on the quad-graph Λ(Cδ) = Cδ ∪ (Cδ)∗, which is
the dual to C(Cδ).

By writing Ωδ, we mean a closed simply connected polygon domain such that ∂Ωδ is
a closed lattice path ∂Ωδ on Cδ (it is possible that ∂Ωδ is self-touching). From Ωδ, we
obtain a subgraph of Cδ by taking the intersection of Ωδ with Cδ. That is to say, the
vertex set, edge set, corner set and its dual are respectively

Γ(Ωδ) := Ωδ ∩ Cδ, Γ∗(Ωδ) := Ωδ ∩ (Cδ)∗, and ⋆ (Ωδ) := Ωδ ∩ ⋆(Cδ) for ⋆ = E , C,Λ.

By the boundaries ∂Γ(Ωδ), ∂Γ∗(Ωδ), ∂E(Ωδ) and ∂C(Ωδ), we mean those outside
Ωδ but adjacent to Ωδ (can be connected to Ωδ by one edge from their corresponding
full-plane graphs).

Remark 6.1.1. Each corner c from C(Cδ) can be identified with a segment connecting
a vertex v(c) from the primal graph Cδ and a vertex u(c) from the dual graph (Cδ)∗,
i.e. an edge of Λ(Cδ). One can also associate to each corner a complex phase of the
projected s-holomorphic functions by setting

τc := ζ exp

(
− i
2
arg(v(c)− u(c))

)
with ζ = exp(iπ/4) and arg(·) ∈ (−π, π].

We say that a corner c ∈ C(Cδ) is incident to an edge e ∈ E(Cδ) if it corresponds to
an edge of Λ(Cδ) adjacent to e.
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Figure 6.1 – The graph carrying s-holomorphic functions; the bold edge in the
graph represents an edge e ∈ E(Ωδ), together with the corners surrounding
it satisfying (6.1.3).

6.1.1 . Massive s-holomorphicity
In this section, we will introduce and collect some facts about massive s-holomorphic

functions without referring to any specific discrete models. The s-holomorphicity cri-
teria for functions on the square lattice relies on the orthogonal projection operator
ProjeiΘR[x] :=

1
2

[
x+ e2iΘx̄

]
, which projects a complex number x to the line eiΘR.

Definition 6.1.2. We say that F : E(Ωδ)→ C is massive s-holomorphic at c ∈ C(Cδ) if

e−iΘProjτceiΘ

[
F

(
c− δ

2
τ−2
c

)]
= eiΘProjτce−iΘ

[
F

(
c+

δ

2
τ−2
c

)]
. (6.1.1)

F is massive s-holomorphic in a domain Ωδ if it is massive s-holomorphic at all corners
inside Ωδ .

Remark 6.1.3. If the relation (6.1.1) holds at c ∈ C(Ωδ), one can extend the function
F to c by setting

F (c) = e−iΘProjτceiΘ

[
F

(
c− δ

2
τ−2
c

)]
.

By definition, the value F (c) belongs to the line τcR. Since two distinct projections
determine a complex value, we may alternatively consider the values on corners
as fundamental and view the existence of suitable edge values satisfying (6.1.1) as
precisely the definition of massive s-holomorphicity. Considering instead real val-
uesX(c) := τ−1

c F (c) introduces a natural−1monodromy around every vertex and
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Figure 6.2 – Projection sense in the definition of s-holomorphicity.

face; then (6.1.1) is equivalent to the so-called propagation equation (see e.g. [CIM21,
(2.6)]).

Massive s-holomorphic functions behave like the continuous massive holomorphic
functions, to be introduced in Section 6.2. The crucial tool to study its boundary condi-
tion and regularity properties (for both discrete and continuous functions) is by taking the
real-valued square integral of them. Given a massive s-holomorphic function F , one can
construct locally a function H by setting for adjacent u ∈ (Cδ)∗, v ∈ Cδ and c = (uv),

H = Im

∫
F 2dzδ satisfying H(u)−H(v) = 2δ|F (c)|2. (6.1.2)

It is well-defined locally since around an edge e ∈ E(Cδ), the values of F evaluated at
four adjacent corners defined by (6.1.1), see Figure 6.1, satisfy

|F (e)|2 = |F (cn)|2 + |F (cs)|2 = |F (ce)|2 + |F (cw)|2. (6.1.3)

Now we present the discrete Riemann-type boundary value problem well adapted to
s-holomorphic functions via its square integral. The continuous analogue will be used
extensively in Section 6.2 to handle the Riemann boundary value problem for functions
on rough domains. It can are also intuitively phrased in terms of boundary phases of
the massive s-holomorphic functions, nevertheless this fails in the case of continuous
boundary value problems if the domain boundary is not smooth.

Definition 6.1.4. A massive s-holomorphic function F has a discrete (wired) Riemann
boundary value at e ∈ ∂E(Ωδ) if

F (e)νtan(e)
1/2 ∈ R, (6.1.4)

where νtan(e) is the (counterclockwise) tangent of Ωδ at e, i.e. orthogonal direction to e
with Ωδ on the left.

Remark 6.1.5. Note that (6.1.4) implies that the integral of the squareH := Im
∫
F 2dzδ

stays constant across e, i.e. on the two boundary faces in ∂Γ∗(Ωδ) having e in the

149



middle. This may be extended to a whole boundary arc along which F (on edges)
has Riemann boundary values.

Accordingly, constant boundary condition forH , in addition to a ‘discrete outer
normal derivative’ condition, has been used throughout the literature as an robust
form of (6.1.4) for the scaling limit process. We replace the latter part with a pairing
with other auxiliary function (see Definition 6.2.5); here we will simply note that
the constant boundary condition extends to the pairing Im

∫
F1F2dz

δ for any two
massive s-holomorphic functions F1, F2 satisfying (6.1.4).

6.1.2 . Regularity estimates of s-holomorphic functions
We recall the preliminaries in the analysis of massive s-holomorphic functions.

Proposition 6.1.6 ([Par21, Proposition 4.4]). The integral of the squareH = Im
∫
F 2dzδ

of a massive s-holomorphic function F on Ωδ satisfies maximum/minimum principles,
i.e.

max
Λ(Ωδ)

H = max
∂Λ(Ωδ)

H; min
Λ(Ωδ)

H = min
∂Λ(Ωδ)

H.

Near a boundary arc where H is constant thanks to Riemann boundary values, we
have a following Hölder continuity up to boundary.

Proposition 6.1.7 ([Par21, Proposition 4.8]). If H = Im
∫
F 2dzδ has constant value

(set to 0) on a boundary arc Sδ ⊂ ∂Γ∗(Ωδ) thanks to Riemann boundary values of a
massive s-holomorphic function F , the following estimate holds: for some β > 0,

|H(z)| ≤ const. · max
∂Λ(Ωδ)

|H| ·
(

dist(z, Sδ)

dist(z, ∂Γ∗(Ωδ) \ Sδ)

)β
, (6.1.5)

where const. > 0 depends only onm and the diameter of Ω.

Integral of the square H provides the following estimates for its derivative-square F ;
we have the continuum counterpart in Proposition 6.2.2.

Proposition 6.1.8 ([Par21, Proposition 4.6]). If F is massive holomorphic in a dis-
crete ball Bδ

r := Br ∩ Cδ of radius r < 1 and H = Im
∫
F 2dzδ , the following holds

(oscΛ(Bδ
r )
H := maxΛ(Bδ

r )
H −minΛ(Bδ

r )
H): for z, z′ ∈ E(Bδ

r/2),

|F (z)| ≤ const.

√
oscΛ(Bδ

r )
H

r
; |F (z)− F (z′)| ≤ const. |z − z′|

√
oscΛ(Bδ

r )
H

r3
, (6.1.6)

where const. > 0 depends only onm.

6.2 . Continuous Spinors and Convergence

6.2.1 . Massive holomorphic functions

150



A (locally Lipschitz continuous) function f : Ω→ C is massive holomorphic if

∂z̄f = imf̄ in Ω, (6.2.7)

in the sense that
∮
∂C f = 2i

∫∫
C imf̄d

2z for (say) any ball C ⋐ Ω. The regularity
assumption for f may be relaxed and (6.2.7) may be stated in terms of weak derivatives
in local Sobolev spaces, but we note that in any case it turns out that f is locally smooth:
see [Par21, Corollary 3.8].

The classical Green-Riemann’s theorem implies that the (imaginary part of the) in-
tegral of its square h may be defined by

h(z) := Im

∫ z

z0

f2dz,

whose value is independent of the chosen path from z0 to z and the choice of the starting
point z0 simply determines a global additive constant. In fact, we may define the integral
g(z) = Im

∫ z
f1f2dz of the product of any pair f1, f2 of massive holomorphic functions.

As may be verified directly from ∆ = 4∂z̄∂z, these real functions have explicit Lapla-
cian

∆h = 4m|f |2 = 4m|∇h|; ∆g = 4mRe(fḡ). (6.2.8)

The following maximum principle for g is of crucial importance:

Proposition 6.2.1. Suppose the integral g(z) = Im
∫ z
f1f2dz of the product of massive

holomorphic functions f1, f2 is continuous up to the boundary of its domain Ω. Then g
enjoys the following maximum principle:

max
Ω

g = max
∂Ω

g; min
Ω
g = min

∂Ω
g.

Equivalently, a comparison principle for the integral of the squares h hold: if two
integrals h1, h2 satisfy h1 ≥ h2 on ∂Ω, they hold in all of Ω.

Proof. The comparison principle for the integral of the squares h1, h2 is proved in
[Par21, Lemma 3.6]. For their equivalence simply note that g may be expressed as

g(z) =
1

4

[
Im

∫ z

(f1 + f2)
2dz − Im

∫ z

(f1 − f2)2dz
]
.

We may also consider a conformal map φ : D → Ω in order to pullback f onto a
smooth bounded domain D (usually fixed to be the unit disk D). We use the covariance
rule

fD(z) := f(φ(z)) · (φ′(z))1/2, (6.2.9)

under which we have gD(z) := g ◦ φ(z) = Im
∫ z
fD1 f

D
2 dz, etc. Consequently, we have

m→ m|φ′(z)|,
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in (6.2.7) and (6.2.8). Note that the L2(D)-norm of φ′ is equal to the area of Ω, and
is therefore finite. Therefore fD satisfies a Vekua equation with L2 mass, for whose
analysis we will refer to the extensive treatment of [BBC16].

We close by giving estimates of our massive holomorphic function f , especially in
terms of its square integral h. In small scales, massive holomorphic functions (and their
pullbacks) satisfy the same estimates as their holomorphic (or harmonic) counterparts,
independent of the mass.

Proposition 6.2.2 ([Par21, Proposition 3.9]). Suppose f is massive holomorphic in
the ball Br of radius r < 1 and h = Im

∫ z
f2dz is its square integral. Then we have

(oscBr h := maxBr h−minBr h)

|f(0)| ≤ const.

√
oscBr h

r
(6.2.10)

with universal constants.
In addition, fD := (f ◦φ) · (φ′)1/2 satisfies estimates of the same form in its domain

of definition.

Proof. The proof of [Par21, Proposition 3.9] also establishes the estimate in terms
of the L2-norm. Then Koebe distortion (after restricting to a smaller ball) yields the
analogous estimate for the domain pullback.

6.2.2 . Boundary value problem and uniqueness
This section is devoted to the study of the so-called (continuous) Riemann-Hilbert

boundary value problem for massive holomorphic functions f . Naively, this condition says

f(z)νtan(z)
1/2 ∈ R for z ∈ ∂Ω, (6.2.11)

where νtan(z) is the (counterclockwise) tangent vector (in C) to Ω at z. This definition
clearly breaks if the boundary ∂Ω is not smooth or f does not continuously extend to
∂Ω; our need to treat these settings prompts the analysis of this section.

One strategy is to consider h = Im
∫ z
f2dz, in which case (6.2.11) (naively) implies

constant boundary value for h. Evidently, this condition is more stable under general-
ization to non-smooth ∂Ω, and will be used in the scaling limit process. In any case,
we need a (possibly stronger) condition which is closed under real linear combinations:
the main goal of this section is Proposition 6.2.7, which will be used in the convergence
proof of Proposition 6.2.11 to uniquely fix the scaling limit of discrete observables.

As defined above in (6.2.9), We may also consider the pullback fD onto a smooth
bounded domain D. Note that (6.2.11) is preserved under (6.2.9). In particular in the crit-
ical case (m = 0) the observables are conformally covariant: we may define observables
in rough domains simply by this covariance rule.

Roughly speaking, what we do is showing that constant boundary condition for h
translates to a form of (6.2.11) for fD; this was also the viewpoint of [Par21] in dealing
with observables coming from the so-called FK-Ising model. However, in contrast to
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[Par21] which used specific global properties of those observables, we give a fully local
form of the boundary condition which is suitable in more general settings, such as ours.
This also eliminates the need for the standard ’outer derivative’ condition in distinguishing
the wired and free boundary condition.

Nevertheless, these observables coming from the FK representation of the model
are crucial in defining this augmented condition. The precise ingredient we need is the
following:

Proposition 6.2.3. For any given simply connected domainΩ and prime ends a, b ∈ ∂Ω,
there exists a massive holomorphic function fFKma,b(Ω) onΩ (the 2-point massive FK-Ising
observablewith wired boundary condition on (ab) and free boundary condition on (ba))
such that

fFKma,b(Ω)(z) = exp[sFKma,b(Ω)(z)] · fFK0a,b(Ω)(z), (6.2.12)

where fFK0a,b(Ω) is the critical FK-Ising observable from [CS12, Theorem A] with the same
boundary condition, and sFKma,b(Ω) is in the Sobolev spaceW

1,2
R (Ω) (see below) with purely

real trace on ∂Ω.
This observable is uniquely characterized by the fact that its square integral hFK =

Im
∫ z
f2FKdz continuously takes the value 0 on the boundary arc (ab) and 1 on (ba).

Proof. This is the function defined in [Par21, Definition 5.2]. [Par21, Theorem 1.1]
establishes its existence (see also [Par21, Definition 3.4]).

Remark 6.2.4. Given that we consider rough domains Ω together with conformal
pullback φ : D → Ω to smooth domains D, we collect here some easily verified
facts related to the pullback procedure defined by (6.2.9).

1. As mentioned before, the critical observable fFK0a,b(Ω) is conformally covari-
ant under the transformation (6.2.9). In particular, values on rough domains
Ω are transformed to regular (e.g. continuous up to boundary away from
φ−1({a, b}) values.

2. It is easy to see that s ◦ φ ∈ W 1,2(D) if and only if s ∈ W 1,2(Ω); so we may
define the real trace subspaceW 1,2

R (Ω) as the pullback ofW 1,2
R (D).

3. Accordingly, the pulled-backmassive observable fDFKma,b(Ω) has the factorization
analogous to (6.2.12) into the critical observable on the smooth domainD and
the exponential of sDFKma,b(Ω) := sFKma,b(Ω) ◦ φ ∈W

1,2
0 (D).

Now we give two forms of the Riemann-type boundary condition on a boundary
arc (B1B2) ⊂ ∂Ω. Without loss of generality, we will restrict to a strictly smaller arc
[b1b2] ⊂ (B1B2) where there exist z1, z2 ∈ Ω and r > 0 such that Br(z1), Br(z2) ⊂ Ω

and |z1− b1| = |z2− b2| = r. Clearly, we may find such arcs around any given prime end
in ∂Ω.

Given (b1b2), we cut out a domain Ω′ ⊂ Ω which is bounded by [b1b2] and a smooth
arc γ = (b2z2) ∪ [z2z1] ∪ (z1b1) ⊂ Ω, where (b2z2), (z1b1) are straight. Then we may
define the FK-observable fFK := fFKm

z1,z2
(Ω′) on Ω′.
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Definition 6.2.5. A massive holomorphic function f onΩ satisfies the (wired) Riemann
boundary value problem on (B1B2) if either of the following equivalent conditions
holds:
(h) The integral of the square h := Im

∫ z
f2dz extends continuously to (B1B2) as a

constant. In addition, for each [b1b2] ⊂ (B1B2) as above, g := Im
∫ z
ffFKdz

extends continuously to (b1b2) as a constant.
(f) The pullback to the unit disk fD defined by (6.2.9) with some fixed φ : D → Ω′

satisfies a Hardy space type bound on the concentric circular arcs:

sup
r<1

∫
r[φ−1(b1)φ−1(b2)]

∣∣∣fD∣∣∣2 |dz| <∞.
The boundary condition (6.2.11) is also satisfied in L2 sense (or more preciselyH2

sense), i.e. ∫
r[φ−1(b1)φ−1(b2)]

∣∣∣Im [(iz)1/2fD]∣∣∣2 |dz| → 0 as r ↑ 1. (6.2.13)

Remark 6.2.6. The comparison principle (Proposition 6.2.1) immediately implies that
any massive holomorphic f satisfying Definition 6.2.5(h) along the entire boundary
∂Ω is identically zero.

In addition, it may be used to derive the following uniform estimate (the con-
stant in the big O notation may depend on the domain) by comparing with hFK ,
etc.: with boundary constant value set to zero, there is a constant β > 0 such that

h(z) = O(dist(z, ∂Ω)β) for z ∈ Ω′ ∪ ∂Ω′. (6.2.14)

For functions coming themselves fromdiscrete setting, (the analog of) (6.1.5) directly
establishes it.

Proposition 6.2.7. In Definition 6.2.5, the two conditions are equivalent. In particular,
Riemann boundary values are preserved under real linear combinations since (f) is.

Proof. The direction (f)⇒(h) for h in Definition 6.2.5 is rather straightforward to
check on D using the fact that h transforms into h ◦ φ and massive holomorphic
function satisfying Hardy space type bound has non-tangential limit on ∂D [BBC16,
Theorem 5.1].

For the continuous extension of g on ∂D, note that under the assumption fFK
satisfies (f) on any subarc [b′1b′2] ⊂ ∂D\{z1, z2}, by Remark 6.2.4, in the factorization
on D

fDFK(z) = exp[sDFK(z)] · fFK0
φ−1(b1),φ

−1(b2)
(D)(z),

the critical observable extends continuously to [φ−1(b′1)φ
−1(b′2)] with boundary val-

ues satisfying (6.2.11). Since sDFK ∈ W
1,2
R (D) has trace on all Lp(r · ∂D) for p ∈ (1,∞)

with real values for r = 1, it is straightforward to check (6.2.13) (e.g. see [BBC16],
especially Section 5 and end of Section 2).

The direction (h)⇒(f) is proved by Park [Par].
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6.2.3 . Convergence of discrete massive s-holomorphic observables
To present the main convergence statement, we shall need standard massive s-

holomorphic functions for which we already have convergence statements. To this end,
we assume that Θ ∼ mδ

2 in Definition 6.1.2.
We say that a family of massive s-holomorphic functions Fδ converges locally uni-

formly to a continuous (massive holomorphic) function f if |Fδ − f | is uniformly small
as δ ↓ 0 on any compact neighborhood C. We note that a simple sufficient condition for
the existence of local uniform subsequential limits is boundedness of its square integral
Hδ:

Lemma 6.2.8. Let {Fδj} be a sequence of massive s-holomorphic functions onΩδj con-
verging as δj ↓ 0 in Caratheodory sense to Ω ⊂ C. Suppose their square integrals
Hδj := Im

∫
F 2
δj
dzδ is uniformly bounded: supj max

Λ(Ωδj )
|Hδj | <∞.

Then there is a subsequence δjk ↓ 0 such that Fδjk converges locally uniformly to a
massive holomorphic function f on Ω.

Proof. Note that, by (6.1.6) and applying Arzelà-Ascoli on (say) piecewise linear ex-
tentions of Fδj restricted to edges, we may establish a uniform subsequential limit
for any compact subdomain of Ω. Then the theorem follows by considering a se-
quence of growing compact subdomains which exhaust Ω.

By [Par21, Lemma A.2], such limit of massive s-holomorphic functions is massive
holomorphic.

We first introduce the massive s-holomorphic function on the full plane Cδ which
has a single 1/z-type singularity and decays (exponentially) at infinity. It is a discrete
and massive analog of the Cauchy kernel 1/(z − c), and it has an explicit scaling limit
in terms of the modified Bessel functions of the second kind K0,K1 (cf. e.g. [DLMF,
Section 10.25]).

Recall from Definition 6.1.2 that a corner c has an associated phase τc.

Proposition 6.2.9. Given a corner c ∈ C(Cδ) there is a function F(c) on E(Cδ) ∪ C(Cδ)
such that:

— massive s-holomorphicity relation (6.1.1) holds on C(Cδ) \ {c};
— at c, eiΘProjτce−iΘ

[
F
(
c+ δ

2τ
−2
c

)]
= −e−iΘProjτceiΘ

[
F
(
c− δ

2τ
−2
c

)]
= δ−1τc.

If a sequence of corners cδ → c with fixed τcδ =: τc and Θ ∼ mδ
2 , F(cδ) converges

locally uniformly, away from c and∞, to the massive holomorphic (or rathermeromor-
phic) function

f(c)(z) :=
1

π

[
4τc|m|e−i arg zK1(2|mz|)− 4iτcmK0(2|mz|)

]
.

In particular, near c, f(c)(z) ∼ 2
π
τc
z−c .

Proof. See [CIM21, Proposition 5.8] and [CIM21, (5.30)]. The fact that real data on
corners satisfying these two conditions is equivalent to a massive s-holomorphic
function has been discussed under Definition 6.1.2.
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Now we introduce the discrete FK-Ising observables, which encode probabilistic in-
formation about the FK-Ising model but utilized here primarily as a family of auxiliary
discrete functions used to establish the condition Definition 6.2.5(h). Instead of our usual
setup where the boundary of the discrete domain Ωδ is composed of boundary faces (on
which Ising plus boundary condition is imposed), consider discrete domains Ω′δ which has
two boundary segments, wired (aδbδ) composed of boundary faces (i.e. as in our original
domain Ωδ) and free (bδaδ) of boundary vertices (that is, aδ, bδ are boundary corners
and the two segments run between the incident faces and vertices to these corners; see
[Par21, Section 1.1] for a precise definition).

Lemma 6.2.10 ([Par21, Theorem 1.1]). There is a massive s-holomorphic discrete func-
tion FFK

aδ,bδ
on Ω′δ characterized by the fact that its integral of the square HFK

aδ,bδ
sat-

isfies (after a choice of the additive constant):

HFK
aδ,bδ

=

{
0 on boundary faces on (aδbδ);

1 on boundary vertices on (bδaδ),

and 0 ≤ HFK
aδ,bδ

≤ 1 globally. In particular, it satisfies the discrete Riemann boundary
value problem on (aδbδ).

If Ω′δ → Ω′ and (aδ, bδ) → (a, b) in Caratheodory sense as δ ↓ 0, FFK
aδ,bδ

→ fFKma,b
locally uniformly in Ω′.

We now show convergence of discrete massive s-holomorphic observables to con-
tinuous massive holomorphic functions. To elaborate, we show that discrete observables
satisfying the discrete Riemann boundary value problem converge to continuous functions
satisfying the continuous version of the problem.

We adopt the usual strategy of showing precompactness of the discrete functions
then uniqueness of the subsequential limit, the latter following directly from the boundary
condition thanks to the analysis of the previous section.

Given a simply connected domain Ωδ and a corner cδ, we consider massive s-holomorphic
functions FΩδ satisfying the two conditions

(1) FΩδ satisfies discrete Riemann boundary value problem on the boundary of Ωδ;

(2) FΩδ − F(cδ) is massive s-holomorphic in Ωδ.
(6.2.15)

The uniqueness (which we do not need) of such function is easy to see by square inte-
gration (see Remark 6.1.5); existence follows from explicit constructions from the Ising
and dimer models in the next section, which also clarifies its physical significance.

Proposition 6.2.11. If Ωδ → Ω in Caratheodory sense, cδ → c as δ ↓ 0, FΩδ − F(cδ) →
fΩ − fc locally uniformly in Ω, where fΩ is the unique (continuous) function in Ω which
satisfies:

— fΩ satisfies Riemann boundary value problem on the boundary of Ω;
— fΩ − f(c) is massive s-holomorphic in Ω.

156



In particular, FΩδ → fΩ locally uniformly away from c.

Proof. We first claim that {FΩδ}δ is precompact in Ω \ {c}, i.e. exhibit a subse-
quential limit. Consider the integral of the square HΩδ , whose constant boundary
value is set to zero. Suppose for contradiction that on the discrete circle Sδr :=

Ωδ ∩
(
Br+4δ(c

δ) \Br−4δ(c
δ)
)
of small enough radius r > 0 the square integral blows

up, i.e.Mδ := maxSδ
r
|HΩδ | → ∞ along some sequence of δ ↓ 0.

Then renormalize F̃Ωδ := (Mδ)
−1/2 FΩδ , i.e. set maxSδ

r

∣∣∣H̃Ωδ

∣∣∣ = 1. By the maxi-
mum principle (Proposition 6.1.6) this bounds H̃Ωδ in Ωδ \ Br−4δ(c

δ). In particular,
by (6.1.6), away from Bδ

r and ∂Ωδ , F̃Ωδ is bounded.
Consider this time F̃ †

Ωδ = (Mδ)
−1/2

(
FΩδ − F(cδ)

)
and its square integral H̃†

Ωδ

From bulk boundedness of F̃Ωδ , Proposition 6.2.9 andMδ
δ↓0−−→ ∞, it is easy to see

that H̃†
Ωδ − H̃Ωδ

δ↓0−−→ 0 uniformly on Sδ2r (since (Mδ)
−1/2 F(cδ)

δ↓0−−→ 0 away from c). In
particular,maxSδ

2r

∣∣∣H̃†
Ωδ

∣∣∣ is bounded away from∞.

Therefore, H̃Ωδ is bounded in Ωδ \Br−4δ(c
δ) and H̃†

Ωδ is bounded in Ωδ ∩B2r−4δ.
Using Lemma 6.2.8, we can extract a subsequential limit f̃Ω on Ω such that

(1) F̃Ωδ → f̃Ω locally uniformly in Ω \Br(c);
(2) F̃ †

Ωδ → f̃Ω locally uniformly in B2r(c).
Also note from (6.1.5) the uniform a priori bound

H̃Ωδ(z) = O(dist(z, ∂Ωδ)β) in Ωδ \Br−4δ(c
δ). (6.2.16)

Then f̃Ω is a massive holomorphic function on Ω whose square integral (approxi-
mating continuum line integral by discrete line integrals) h̃ := Im

∫ z
f2dz extends

continuously to ∂Ω by zero; this contradictsmaxSδ
r

∣∣∣H̃Ωδ

∣∣∣ = 1 by themaximum prin-
ciple.

Therefore,Mδ stays bounded away from∞. This means that wemay repeat the
above argument, not with the renormalized function F̃Ωδ but with the original FΩδ .
This yields almost the same result, except that the term F(cδ) survives: there is a
subsequential limit fΩ such that

— FΩδ → fΩ locally uniformly in Ω \Br(c),
— FΩδ − F(cδ) → fΩ − f(c) locally uniformly B2r(c).

Since we already know F(cδ) converges locally uniformly away from c, we have the
desired modes of convergence along subsequences.

It remains to check theboundary condition (h) inDefinition 6.2.5 to showunique-
ness of the limit and therefore convergence. In fact, suppose that there are two
such limits fΩ and f̃Ω, then the linearity of the Riemann boundary value condition
implies that fΩ − f̃Ω is s-holomorphic in Ω, satisfying the Riemann boundary value
problem. It should be identically zero due to Remark 6.2.6. For the Dirichlet bound-
ary value of hΩ, we already have (6.2.16) and it survives when passing to the limit.
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On the other side, suppose a subdomain Ω′ and b1, b2, z1, z2 as in Definition 6.2.5(h)
is chosen. Define discretizations Ω′δ , etc. using restriction from Ωδ such that the
boundary segment (zδ1zδ2) is wired and (zδ2z

δ
1) is free as in Lemma 6.2.10. Consider

the FK observable FFK := FFK
zδ1,z

δ
2

, which converges locally uniformly to fFK = fFKmz1,z2
in Ω′.

In addition, the discrete integralGΩδ := Im
∫
FΩδFFKdz

δ has constant boundary
condition along bδ1, bδ2. For strict subintervals [b′1b′2] ⊂ (b1b2), estimates of type (6.2.16)
forHΩδ , HFK yield

FΩδ(z), FFK(z) = O(dist(z, [b′1b
′
2])

−1/2+β/2).

So we may derive GΩδ(z) = O(dist(z, [b′1b
′
2])

β), which survives for the continuum
gΩ. This completes the verification of (h) in Definition 6.2.5.

6.3 . From fermionic observables to energy densities and dimer height
fluctuations

In this section we use the convergence of fermionic observables discussed above to
prove the convergence of energy density correlations in the Ising model on Ωδ in the
near-critical regime and those of the gradients of the height fluctuations in the dimer
model on a particular class of weighted graphs, see Remark 6.3.2.

The planar Ising model without external magnetic field for spins on faces of the square
grid is defined by associating to each configuration (σu)u∈Γ∗(Ωδ) a weight

∏
e∈E(Ωδ) x

−ξ(e)

with ξ(e) := σe+σe− being the product of two nearby spins of e for some Ising interaction
factor x = exp(−βJ) ∈ (0, 1), such that the probability measure on the set of spin
configurations is proportional to their weights. We rely upon the Definitions 2.5.1 and
2.5.5 of fermionic observables in the Ising model through the Kadanoff-Ceva spin-disorder
formalism (we refer readers to [CCK17] for more details, and also [Che20b] as notations
therein coincide). Generally speaking, it consists in associating a "disorder" variable to
v ∈ Γ(Ωδ) which amounts to applying the Kramers-Wannier transformation to the Ising
spin variable.

Given d ∈ C(Ω), the real-valued correlation function X(c) := ⟨χcχd⟩ branches (gain-
ing a −1 factor when making a loop) around all vertices of both Γ(Ωδ) and Γ∗(Ωδ)

except v(d), u(d), making it sophisticated for tracking and making sense of its scaling
limit. Note that the square root of the corner vector, known under the name Dirac spinor
and defined as

ηc := exp(iπ/4) exp

(
− i
2
arg(v(c)− u(c))

)
,

branches over all vertices of Γ(Ωδ), Γ∗(Ωδ) (the phase τc at a corner c in Remark 6.1.1
is nothing but a representative of ηc by fixing the sign). Therefore, the complex-valued
product

F (c) = ηcX(c), X(c) = ⟨χcχd⟩ (6.3.17)
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branches over v(d) and u(d) only. Following trigonometric calculations based upon the
propagation equation discussed in (2.5.2), F (c) is s-holomorphic on C(Ωδ) \ {d}.

In the following, we consider the Ising model with wired boundary condition, which
is to say that the sign of the spins located at the outer face (which is unique because Ωδ

is simply connected) have the same value. Clearly ηaF (a) = ηbF (b) for a, b ∈ ∂C(Ωδ) if
v(a) = v(b) and the signs of ηa and ηb are taken by rotating a towards b around v(a) =
v(b) outside Ωδ (since spins located near a, b satisfy σu(a) = σu(b)). One can check
without difficulty that the boundary values of F on ∂E(Ωδ) satisfy Definition 6.1.4.

Let us send the square of the interaction parameter x of the Ising model to
√
2−1 such

that in the propagation equation (2.5.2) which (6.3.17) satisfies, θ−π/4 = 2 arctan(x2)−
π/4 ∼ mδ/2. The fermionic observable (6.3.17) satisfies the conditions (6.2.15), and in
this regime, it converges to the limit given in Proposition 6.2.11 when δ → 0.

Following notations for continuous fermionic observables as in [CHI21], denote by
f
[η]
Ω (a, z) the unique massive holomorphic function on Ω \ {a} with Riemann boundary

values on ∂Ω such that
f
[η]
Ω (a, z) ∼ η

z − a
as z → a.

Set up accordingly the notation f [η](a, z) = 1
2(η ·f(a, z)+ηf

⋆(a, z)) (here we rely upon
the real linearity of f [η] with respect to η) and

⟨ψz2ψz1⟩ := f(z1, z2), ⟨ψz2ψ⋆z1⟩ := f⋆(z1, z2),

⟨ψ⋆z2ψ
⋆
z1⟩ := f(z1, z2), ⟨ψ⋆z2ψz1⟩ := f⋆(z1, z2).

The same analysis as in [CHI21] for the critical Ising model (see also Remark 1.4(i)
and the discussion at the end of Section 3.6 in [CCK17]) allows us to deduce from
Proposition 6.2.11 the following:

Theorem6.3.1 (Convergence of energy densities in themassive Isingmodel). Define
the energy density at an edge e ∈ E(Ωδ) as εe =

√
2σe+σe− − 1, where e+ and e− are

two faces adjacent to e. Then,

δ−n · E[εz1 . . . εzn ] →
(
i
π

)n⟨ψz1ψ⋆z1 . . . ψznψ⋆zn⟩ = ( iπ)n · Pf[Aij ]2ni,j=1

as δ → 0, where the (i, j)-entries, i ̸= j, of the antisymmetric matrix

Aij =


⟨ψzkψzl⟩ if i = 2k − 1 and j = 2l − 1;

⟨ψzkψ
∗
zl
⟩ if i = 2k − 1 and j = 2l;

⟨ψ∗
zk
ψzl⟩ if i = 2k and j = 2l − 1;

⟨ψzkψzl⟩ if i = 2k and j = 2l

are the corresponding two-point fermionic correlators defined above.

The second corollary of Proposition 6.2.11 is the convergence of the gradients of the
fluctuations of height functions associated with dimer configurations introduced in Sec-
tion 2.5. One can deduce this result via the classical arguments of Kenyon [Ken00,
Proposition 20] following the identification of the inverse Kasteleyn matrix of the mas-
sive dimer model on hedgehog domains and the fermionic observable (2.5.7).
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Remark 6.3.2. Recall that the edge weights on the square grid alternate between
cos θ and sin θ along vertical and horizontal lines with θ = 2arctan(x); the edges
along convex boundary angles or opposite to concave boundary angles are with
weight cos θ.

Theorem 6.3.3 (Convergence of height gradients field correlations in the massive
dimer model on hedgehog domains). The correlations of two-step increments of the
height function fluctuations

E[dhδ(z1) . . . dhδ(zn)]

converge uniformly on all compact subsets of Ω to

(1/4iπ)n ·
∑

s1,...,sn∈{±}

det[1j ̸=kf
[sj ,sk](zj , zk) ]

n
j,k=1

n∏
k=1

dz
[sk]
k ,

where f [++](zj , zk) = f [−−](zj , zk) := ⟨ψzkψzj ⟩ ∼ 2/(zk − zj) and f [−+](zj , zk) =

f [+−](zj , zk) := ⟨ψzkψ∗
zj ⟩ are the fermionic correlators as in the massive Ising model.

Remark 6.3.4. In a recent work [BW21], Bauerschmidt and Webb have rigorously
shown that the fermions correlations equal the truncated correlation function of the
gradient fields associated with the infinite-volume limit of the sine-Gordon model
(non-Gaussian) on the plane, known as bosonization. Our result provides an exam-
ple of bosonization in finite domains, where the bosonic theory describes the limit
of height fluctuations of the massive dimer model. In particular, this sheds light
on an observation of Chhita [Chh12] that the height fluctuations for massive dimer
models are not Gaussian.
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