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Effects of fluctuations in active matter : a few examples across scales

Introduction

In this introductory chapter, we succinctly introduce what is active matter in Section 1, before brieĆy recalling in Section 2 how statistical physics helps to provide insights about collective effects in this Ąeld. In Section 3, we highlight some of minimal models for collective behavior in active matter, which are used throughout the manuscript, and we detail in Section 4 the contents of the different chapters of the manuscript.

A brief overview of active matter

The Ąeld of active matter investigates the physical properties of systems made of elementary active units. These units are active because they transform nonthermal energy from their environment to exert forces or motion [START_REF] Marchetti | Hydrodynamics of soft active matter[END_REF]. In this manuscript, we consider active particles which dissipate energy essentially through self-propulsion.

There are countless examples of active systems in the physical world, which can be found on very different scales: from the smallest enzymes to the largest animals, almost 10 orders of magnitude are spanned. In fact most of the biological systems can be seen as active agents, be they full organisms (bacteria, cell, ant, bird) or only some of their molecular components (molecular motor, mitochondria). It is thus not surprising that historically the Ąrst examples of active systems were idealizations of biological systems such as swarms of birds [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. Since then, scientists succeeded in designing synthetic active units, such as selfpropelled granular [3,4], self-phoretic colloids [5], Janus particle [START_REF] Walther | Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications[END_REF] or robots [START_REF] Rubenstein | Kilobot: A low cost scalable robot system for collective behaviors[END_REF].

One of the particularity of active systems is their nonequilibrium nature: activity breaks time-reversal-symmetry (TRS) and it does so at the level of the single active unit. This qualitatively differs from more ŞclassicalŤ out-of-equilibrium systems where, for instance, external driving is applied to the boundaries. This tends to suggest that active systems are most of the time intrinsically far from equilibrium and that the phenomenology observed in these systems might be radically different with respect to the one at equilibrium. 1Many works in the active matter literature deal with collective properties of large assemblies of active particles, which display phenomenology impossible in equilibrium systems. Active matter indeed provides a privileged playground to investigate out-of-equilibrium collective phenomena ; well-known examples are microtubule assemblies [START_REF] Ndlec | Self-organization of microtubules and motors[END_REF][START_REF] Sanchez | Spontaneous motion in hierarchically assembled active matter[END_REF], bacteria suspensions or Şbacterial turbulenceŤ [20Ű23], tissues [START_REF] Basan | Homeostatic competition drives tumor growth and metastasis nucleation[END_REF] but also assemblies of Quincke rollers [START_REF] Bricard | Emergence of macroscopic directed motion in populations of motile colloids[END_REF], (human) crowds [26Ű29] or robotics swarms [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF]. Dry active matter, where interactions between the agents and the medium they evolve in are negligible, is usually distinguished from wet active matter, where hydrodynamic interactions have to be taken into account. We provide few examples of active systems in Fig. 0.1. This very diverse list of examples might convey the feeling that i) it is a bit vain to look for general principles underlying all these complex phenomena and ii) if there is understanding beyond this intricacy, it should be gained rather by a detailed study of each system. One of the lesson of equilibrium statistical physics however is that systems made out of many interacting entities may in fact display fairly predictable (although not necessarily trivial) emergent properties at large scales. Moreover, these collective properties are most of the time relatively less sensitive to the variations of microscopic details of the system, meaning that much physics can be understood studying few paradigmatic systems, reasoning in terms of symmetries and conservation laws. This statistical reduction property will hopefully become clearer in Section 2, where some of the main concepts and tools of statistical physics are brieĆy detailed. Bacillus subtilis, adapted from [START_REF] Zhou | Living liquid crystals[END_REF]. Size of picture: 100 µm. (b) A crowd of kilobots [START_REF] Rubenstein | Kilobot: A low cost scalable robot system for collective behaviors[END_REF], 3cm-tall programmable robots. Reproduced from [START_REF]Kilobot is a thousand robot swarm developed at[END_REF]. (c) Herds of wildebeests in the Serengeti National Park [START_REF] Mcnaughton | Serengeti Migratory Wildebeest: Facilitation of Energy Flow by Grazing[END_REF]. Reproduced from [START_REF]Wildebeest herding and following a few leading zebra in the Masai Mara[END_REF]. (d) Microtubule active nematics, displaying four defects, reproduced from [START_REF] Decamp | Orientational order of motile defects in active nematics[END_REF]. Scale bars: 50 µm. Microtubules are one of the constituent of the cytoskeleton. The dynamics of the microtubules comes from molecular motors which convert ATP into inter-microtubule sliding. (e) Snapshot of an epithelial monolayer with its superimposed velocity Ąeld, 4 hours after the structure constraining the tissue had been removed. Scale bar: 50 µm. Adapted from [START_REF] Poujade | Collective migration of an epithelial monolayer in response to a model wound[END_REF]. (f) Murmurmation of starlings [START_REF]A murmuration of starlings at Gretna[END_REF]. (g) Chlamydomonas, a 5-µm swimming algae, observed under scanning electron microscope.

Adapted from [START_REF]SEM image of flagellated Chlamydomonas[END_REF]. (h) An active emulsion made of a passive phase (black region) embedded in a microtubule-rich active phase [START_REF] Adkins | Dynamics of active liquid interfaces[END_REF]. Scale bars: 75 µm. (i) A ŞJanusŤ particle: due to the bicephalic coating, the spherical symmetry is broken and different chemical reactions can occur on each side of the particle, which results ultimately in net propulsion. Adapted from [START_REF] Erb | Towards Holonomic Control of Janus Particles in Optomagnetic Traps[END_REF]. Typical radius: 5 µm.

Statistical physics of active matter thus aims at unveiling emergent universal properties of assemblies of active particles as well as identifying what are the paradigmatic systems of active matter. 2 Within the rich phenomenology of active systems, two collective effects received much attention: phase separation and Ćocking. They constitute the main subjects of study of the manuscript and we introduce them below.

Phase separation

Phase separation is generically observed in many systems of active particles. It refers to the fact that, in many instances, particles spontaneously form aggregates, which yields a phase separation between a dense (or liquid) phase and a more dilute (or gas) one. Within active matter, phase separation mainly stems from three different mechanisms. The Ąrst one is to have attractive forces as in equilibrium; this can arise at bare level (such as adhesion among particles) or via mediated interactions (mediated, for example, by chemicals [START_REF] Keller | Model for chemotaxis[END_REF]), as in equilibrium. The second one is the shock waves mechanism, which leads to the formation of bands [START_REF] Solon | From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations[END_REF] in the Vicsek model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. The third one is a consequence of the motility of the particles and is termed Motility Induced Phase Separation (MIPS): purely repulsive particles can nonetheless aggregate, typically where they move slowly, namely in the high density regions [START_REF] Cates | Motility-Induced Phase Separation[END_REF]. Several realizations of phase separation are shown in Fig. The particles are self-propulsing but their interactions are purely repulsive. Extracted from [5]. (b) Steady-state of numerical simulations of active brownian particles, displaying phase separation. Contrary to the bulk phase separation observed at equilibrium, a bubbly phase separation is seen in this active context. The colormap reĆects the relative density (the lighter, the denser). Extracted from [START_REF] Stenhammar | Phase behaviour of active Brownian particles: the role of dimensionality[END_REF]. (c) Dark-Ąeld microscopy image of Einstein made out of millions of photocontrolled bacteria. These bacteria can be morphed into tunable complex patterns on time scales of the order of the minute. Reproduced from [START_REF] Frangipane | Dynamic density shaping of photokinetic E. coli[END_REF].

Ącities within the active matter context, as suggested by the presence of ŞbubblesŤ of particles [START_REF] Fily | Athermal Phase Separation of Self-Propelled Particles with No Alignment[END_REF] or of dense clusters [START_REF] Buttinoni | Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles[END_REF], even in the steady state. We come back on this point in Section 3.1.

Flocking

Among emergent phenomena in active matter, Ćocking is maybe the better known to the public, be it swarm of insects [START_REF] Kelley | Emergent dynamics of laboratory insect swarms[END_REF][START_REF] Attanasi | Finite-Size Scaling as a Way to Probe Near-Criticality in Natural Swarms[END_REF], murmuration of starlings and in general Ćocks of birds [START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[END_REF], Ąsh schools [41Ű43] or herd behavior [START_REF] Banerjee | A Simple Model of Herd Behavior[END_REF][START_REF] Gueron | Self-organization of Front Patterns in Large Wildebeest Herds[END_REF]. The self-propulsion of the disks stems from their their polar asymmetry [4]. (b) One of the Ąrst simulations of the ordered phase for the ŞĆying XY spinsŤ of the Vicsek model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. (c) Schooling predators size up schooling anchovies [START_REF]An underwater picture taken in Moofushi Kandu, Maldives, showing predator bluefin trevally sizing up schooling anchovies[END_REF].

Flocking occurs in assemblies of self-propelling agents, where the dominant interactions among particles are the alignment of their direction of motion, due for instance to reaction to sensing or to collision of particles of anisotropic shape. It corresponds to a spontaneous ordered state, in which all particles move in average along the same direction without any leader. This continuous-symmetry-broken state takes place even in dimension d = 2, a notable fact given the Mermin-Wagner theorem [START_REF] Mermin | Absence of Ferromagnetism or Antiferromagnetism in One-or Two-Dimensional Isotropic Heisenberg Models[END_REF][START_REF] Hohenberg | Existence of Long-Range Order in One and Two Dimensions[END_REF], and it is a direct consequence of broken detailed balance. Understanding Ćocking has spurred active matter, notably via the development of some paradigmatic active models, which we detail in Section 3.2.

We tried to convey the idea that collective behaviors play a central role in the phenomenology of active systems. In the next section, we brieĆy present some tools and concepts to study them.

Concepts and tools to investigate collective effects

The section is devoted to few classical concepts and tools of statistical mechanics, useful to study collective phenomena. This review is not meant to be exhaustive but it rather introduce the tools further used in the different chapters of the manuscript.

Stochasticity and fluctuations

Statistical physics describes, via the use of probabilities and statistics, the behavior of Şcom-plexŤ systems made of a large number of degrees of freedom. In this section, we try to convince the reader that a stochastic formalism is a very useful framework to describe complex systems and that Ćuctuations are the key link to study their behavior across the scales.

A gas of particles is one of the historical and paradigmatic examples of a complex system. First it is made of a large number of particles interacting together, so that it is a many-body problem with ŞmanyŤ being of the order of the Avogadro number N A ∼ 10 23 . Since there is no closed-form solution already for the 3-body problem, attempts to solve exactly the dynamics of such many-body problems are doomed to fail. Second a gas is a system which displays a chaotic behavior with strong sensitivity to the initial conditions; for instance, due to the gravitational interaction, an electron located on the other side of the observable universe at a distance r ∼ 10 26 m totally perturbs the trajectory of a gas particle in less than a dozen of nanoseconds after the ŞsignalŤ from the electron has reached the gas particle [START_REF] Diu | Eléments de Physique Statistique[END_REF]. It is thus vain to pretend to solve the dynamics of a single mole of gas as the total amount of information to take into account is prohibitive and unreachable.

On the other hand, it is well-known that the N A degrees of freedom of the classical gas are not needed to account for its macroscopic behavior, because only few state parameters matter in practice (temperature, pressure etc.). 3 It is in fact one of the aim of statistical physics to Ąnd emergent macroscopic theories with only few relevant parameters to describe the collective behavior of a huge number of microscopic degrees of freedom.

To achieve this program, a conceptual leap forward is needed: it consists in replacing large many-body deterministic systems by a stochastic representation of it, in which physical observables becomes Ćuctuating quantities, i.e. random variables. By giving up the ambition to access the individual properties of particles, it is possible to capitalize on the gigantic Avogadro number in order to perform averages. These averaged stochastic observables do escape the chaoticity of the particle-level to converge towards deterministic quantities as the number of degrees of freedom in the system increases.

A simple example of such observable is the pressure in a gas, which converges to a deterministic quantity in the thermodynamic limit, while the total forces exerted by the gas on a wall, not properly rescaled by the surface, Ćuctuates increasingly. More generally, sums of random variables properly rescaled often behave quasi deterministically in the thermodynamic limit ; statistical physics aims at characterizing the statistics of these quantities, exploiting what Gnedenkov and Kolmogorov have termed as ŞAll epistemological value of the theory of probability is based on this: the large scale random phenomena in their collective action create strict, nonrandom regularityŤ.

Switching for a stochastic description of complex system might be surprising, at least within the context of classical physics, where the laws of physics are deterministic. 4 It is usually argued that this stochasticity results from the integration over some irrelevant internal degrees of freedom of the model and the classical example of the brownian motion is invoked: the stochastic force to which the brownian particle is subjected appears because deterministic degrees of freedom of the bath have been traced out. In this case, stochasticity is somehow the consequence of a (deliberate) lack of knowledge on the system. Although true, this argument should not hide the fact that, even for systems perfectly isolated from the rest of the world in a thought-experiment, a stochastic description is still appropriate for this deterministic system, as shown via time-reversible numerical simulations in [START_REF] Levesque | Molecular dynamics and time reversibility[END_REF]. Such stochastic description is in fact valid for times of observations which are much smaller than Poincaré's recurrence time [START_REF] Poincaré | Sur le problème des trois corps et les équations de la dynamique[END_REF], which is always the case for any practical purpose in statistical physics. 5The two previous examples show that, in practice, there is no other way around than using a stochastic formalism to bridge the gap between the microscopic and macroscopic scales. It is moreover the fact that, Ćuctuations at microscopic level either average themselves or conversely add up coherently, which determines whether the large-scale phenomenology obeys the law of large numbers and the central limit theorem (which we detail in Section 2.4.1) or if something different occurs. This highlights the need to keep track of Ćuctuations across the scales, especially within an active matter context, where Ćuctuations are less constrained than at equilibrium, as we explain next.

Out-of-equilibrium concepts

Out-of-equilibrium statistical physics investigates the properties of nonequilibrium complex systems and notably the evolution in time and space of their collective behavior.

Two classes of nonequilibrium systems have to be distinguished, near-and far-fromequilibrium systems, but we need Ąrst to characterize equilibrium. By deĄnition it corresponds to a stationary state which is time-reversible or equivalently which obeys detailed balance: the probability to go through the cycle of states A → B → C → A is equal to the one of the reversed cycle A → C → B → A, for any states A, B, C (Kolmogorov's criterion). 6This for instance implies that there is no net circulation or Ćux in the phase space. This symmetry has important physical consequences for near-equilibrium systems. It notably implies that these systems necessarily converge towards an equilibrium invariant probability measure, independently from initial conditions or the exact microscopic dynamics to reach it. This equilibrium measure is the Boltzmann weight ∝ e -βH , where β = 1/(k B T ) is the Boltzmann factor and H the Hamiltonian of the equilibrium stationary state. This property is very useful for the physicists for two reasons. First, it is possible to get an intuition about the macroscopic physics via the Boltzmann weight, which reĆects the competition between energy and entropy, where temperature plays the role of a control parameter. Second, it is possible to choose arbitrary dynamics to study the static properties of the equilibrium state, with the certainty that physics is unchanged. This is for instance often used in Monte Carlo simulations to design faster algorithms (Metropolis-Hastings acceptance rate [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF][START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF], clustering algorithm [START_REF] Wang | Cluster Monte Carlo algorithms[END_REF] or Wang-Landau dynamics [START_REF] Wang | Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States[END_REF]). Near-equilibrium systems have also to satisfy to certain theorems or relations, such as the Ćuctuation-dissipation theorem (FDT) [57Ű59], Onsager reciprocal relation [START_REF] Onsager | Reciprocal Relations in Irreversible Processes. I[END_REF][START_REF] Miller | Thermodynamics of Irreversible Processes. The Experimental Verification of the Onsager Reciprocal Relations[END_REF], Green-Kubo relation [START_REF] Green | Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II. Irreversible Processes in Fluids[END_REF][START_REF] Kubo | Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems[END_REF], which are part of the so-called Linear Response Theory. All of them provide quantitative relations between responses/Ćuctuating Ćows and external applied forces/perturbations of the system.

If we now focus on far-from-equilibrium systems, much less is known compared to their (near-)equilibrium counterparts: we for instance ignore in general their stationary measure, if any. We thus lack so far generic guiding principles analogous to the classical laws of statistical mechanics. This might be not surprising since far-from-equilibrium systems encompass very different realities: from driven diffusive systems [START_REF] Schmittmann | Statistical mechanics of driven diffusive systems[END_REF] to directed percolation [START_REF] Hinrichsen | Non-equilibrium critical phenomena and phase transitions into absorbing states[END_REF], including self-organized-criticality [START_REF] Bak | Self-organized criticality: An explanation of the 1/f noise[END_REF], interface roughening [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF], active matter and many more. Hence all previous properties or theorems applying to near-equilibrium systems are a priori no longer guaranteed: response Ćuctuations to external perturbations are not anymore constrained by TRS and any property of the system (including static properties of a possible stationary state) is a priori dependent of its explicit dynamics. 7As active systems are usually far-from-equilibrium, the classical tools of out-of-equilibrium statistical mechanics are commonly used. Conversely however, active matter offers an ideal platform to probe and develop a better understanding of out-of-equilibrium, as it allows to design minimal and explicit nonequilibrium systems (be they experimental, numerical, analytical, particle-based, Ąeld theories), where energy can be dissipated in a number of different ways. It shows for instance that while some concepts of equilibrium physics are relevant to describe nonequilibrium phenomena (phase separation, effective temperature [START_REF] Loi | Effective temperature of active matter[END_REF]), others intrinsically escape from the equilibrium intuition and formalism. This is for instance the case of pressure which is not a state function in active systems [START_REF] Solon | Pressure is not a state function for generic active fluids[END_REF], unlike in equilibrium systems. Such phenomena thus need to be addressed per se and independently from any equilibrium approach. In the manuscript, we illustrate this point on four examples: i) the interface roughening of nonequilibrium phase-separated systems in 2d does not belong to the same universality class as their equilibrium counterpart (Chapter 1), ii) the noise entering in the hydrodynamics of active aligning particle does depend on particle-particle interaction and escape to FDT (Chapter 2), iii) a unique universality class is expected to describe quenched disordered Ćocks, while disordered equilibrium systems usually belong to different universality classes depending on the nature of disorder (Chapter 3), iv) the foam state replacing the ordered phase in the hydrodynamics of uniform-density active Ćocks is phenomenologically different than its passive limit, the XY model (Chapter 4).

Quenched disorder

Another class of statistical systems is considered in the manuscript: those subject to quenched disorder, i.e. to nonthermal Ćuctuations, frozen in time. The study of quenched disorder is motivated by the fact that physical systems inevitably display some static heterogeneities on top of more classical ŞdynamicalŤ Ćuctuations. 8 Assessing whether this modiĄes the phenomenology known in the pure case (i.e, in the idealized homogeneous system) is therefore of importance. Examples of quenched degrees of freedom are for instance impurities or irregularities in a crystal, random interactions or forces etc. If the study of quenched disorder has its own (and rich) peculiarities compared to thermal Ćuctuations, it can still be conceptually studied within the frame of statistical physics.

First, quenched disorder has to be contrasted with annealed disorder, in which heterogeneities evolve in time (on much slower scales than the thermal degrees of freedom though). Usually the inĆuence of annealed disorder on pure systems is weaker than the one of quenched disorder and it is also easier to treat as the classical tools from statistical mechanics do apply. In the manuscript, we only consider the inĆuence of quenched disorder in active matter.

Studying the physical properties of a given disordered system (i.e, for one speciĄc realization of the quenched disorder) is usually a hard problem to tackle, since translation-invariance is broken. Because each real sample is a different realization of the disorder, what makes sense to study is to perform an average over many realizations of the quenched disorder. This has moreover the advantage to effectively restore translation-invariance in the system. Experimentally however, this average cannot be performed in general, as often only one given disordered realization of the system is observed. It nonetheless remains possible in this case to divide the full system into smaller macroscopic independent subsystems and to compute the (quenched) average as if the subsystems were independent realizations of the same source of disorder. This approach might seem innocuous in the thermodynamic limit, but it does not systematically work; more precisely it depends on the physical quantities of interest. Quantities for which the quenched average is representative of its typical value are called self-averaging. The issue of self-averaging is of prime concern, since it determines whether the value of an observable which is measured on a given disordered sample is typical or whether it is expected to strongly Ćuctuate from sample-to-sample. Fortunately at equilibrium, many observables derive from the free energy or are obtained by performing averages over the whole system: this usually ensures that a single but sufficiently large sample is enough to compute meaningful quantities. This is however not necessarily the case for correlation functions, which might be non self-averaging [START_REF] Cardy | Scaling and renormalization in statistical physics[END_REF].

On the theoretical side, one of the tools commonly used to compute the quenched average is known as the replica trick [START_REF] Edwards | The statistical mechanics of polymerized material[END_REF][START_REF] Edwards | Theory of spin glasses[END_REF]. Roughly speaking, it consists in introducing n independent copies of the system to average the free-energy ln Z over disorder. If the average over disorder is more conveniently performed this way, it is at the price of introducing couplings over the replicas. The replica trick is used in Chapter 3 and is further detailed in Appendix D.

There are numerous physical examples where quenched disorder substantially alters the physics of the pure system and cannot be neglected to understand the phenomenology at stake: from wave localization [START_REF] Anderson | Absence of Diffusion in Certain Random Lattices[END_REF] to the random pinning in superconductor [START_REF] Larkin | Pinning in type II superconductors[END_REF] or to the depinning of charge density waves [START_REF] Lee | Electric field depinning of charge density waves[END_REF], and from Ąrst-order phase transitions in magnetic systems [START_REF] Bean | Magnetic Disorder as a First-Order Phase Transformation[END_REF] to the physics of disordered surfaces [START_REF] Radzihovsky | Anisotropic and Heterogeneous Polymerized Membranes[END_REF]. Since we are mainly interested by collective effects in the manuscript, we brieĆy review in Chapter 3 the effects of quenched disorder on critical phenomena at equilibrium, more speciĄcally within the frame of the O(N ) model.

A few tools of statistical physics

We have previously seen that one of the difficult challenges in statistical physics is to extract good macroscopic observables from large number of degrees of freedom, in order to provide physical insights into the phenomenology of complex systems and to make predictions.

Fortunately some methods to tackle this issue do exist. We brieĆy describe in the next sections those we use in the manuscript: from convergence theorems of probability measures to renormalization group, going through mean-Ąeld, kinetic theories, hydrodynamic limits and stochastic Ąeld theories and Ąnishing with numerical techniques.

Many of these techniques do however rely on the idea of coarse-grainings, which consists in accepting to loose most of the information on the system to focus only on some large-scale observables ; this is the price to pay to improve our understanding on the problem. Doing so however, the macroscopic phenomenology which is obtained is usually quite robust to the variations of microscopic details of the system. More concretely, coarse-graining generically consists in summing microscopic stochastic variables (positions of particles, spins etc.) to integrate out fast degrees of freedom (whose Ćuctuations tend to cancel each other). The zoo of the microscopic random variables is often very diverse: their probability density function (PDF) are almost always different, their mean or variance can be Ąnite or inĄnite, they are inevitably correlated in space and time, over short or long ranges... However, from the jungle at microscopic level, only few stereotyped degrees of freedom survives the passage to the largest scales: going progressively through the mill of coarse-graining, the random variables loose progressively their diversities, a fact which is known as universality.

Many tools have been developed to tackle the behavior of complex many-body systems, recast under the form of sums of (interacting) random variables. Almost all of them are approximate procedures, at the notable exception of integrable systems (rather rare but useful). We present below some of these approximation techniques employed in the manuscript.

Convergences in probability

A Ąrst set of tools to deal with sums of random variables are theorems formalizing the notion of the convergence of probability measures. For the sake of simplicity, we consider sums of random variables which are independent and identically distributed (i.i.d.) with a Ąnite variance. The following theorems can be generalized by weakening the previous assumptions, as detailed in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. We moreover stay deliberately vague on the exact deĄnition of the notion of convergence.

Maybe the Ąrst of these convergence theorems is the Law of Large Numbers (LLN): it ensures that the average of random variables converges towards its expected value. Some Ćuctuations around the mean are however expected for each realization of these random variables and they can be characterized via the Central Limit Theorem (CLT). More precisely, upon a proper shift and rescaling of the average, Ćuctuations around the mean are shown to be all distributed according to the same gaussian distribution, regardless of what are the probability distributions of the microscopic random variables. This interesting fact explains why normal distributions are generically observed for most experimental measurements and it is maybe the Ąrst result of (super-)ŞuniversalityŤ in statistical physics: for some speciĄc large-scale observables, microscopic details turn out to be irrelevant. Extension of the CLT to random variables which do not have Ąnite variance have been proven [START_REF] Gnedenko | Limit distributions for sums of independent random variables[END_REF], but the limiting probability distribution of the Ćuctuations is in this case not gaussian anymore (it belongs to the so-called set of stable distributions).

The CLT concerns only ŞsmallŤ Ćuctuations around the mean, while the statistics of ŞlargeŤ Ćuctuations is addressed within the frame of Large Deviations Principle (LDP). 9The Large Deviations Theory essentially shows that the asymptotic behavior of the PDF of these large deviations decays as an exponential of a certain rate function

P(S n ∈ dx) ∼ e -n I(x) dx, (0.1) 
where typically S n is a real random variable which is the average of n microscopic variables of the system (n being large) and I is the rate function. The rate function is not necessarily quadratic/gaussian and it is sensitive to the exact form of the PDF of the microscopic variables, showing that only few observables are in fact universal. Universality is of course recovered in the small Ćuctuations limit (via an harmonic approximation of the rate function) due to the fact that the LDP generalizes the CLT. We use this large deviations formalism to determine a Ćuctuating kinetic theory for active aligning particles in Chapter 2.

Most of these theorems critically rely on the hypothesis of independent microscopic random variables, which are in the real world often correlated. In practice, the CLT is still relevant to describe many collective effects in physics, because the actual correlations are rather weak. More precisely, beyond a certain typical correlation length ξ, random variables are effectively decoupled from each other, and, upon deĄning new variables as the average over blocks of size ξ, the CLT does apply. Nevertheless, in few important cases, random variables appear to be strongly correlated, the CLT does not hold anymore and different approximation techniques have to be used.

Mean Field Theory

An important tool to study systems of correlated random variables is Mean-Field Theory (MFT). There are many ways to perform mean-Ąeld approximation for a given system but MFT generically relies on the assumption that a random variable feels forces due to its neighbors which can be approximated by a single mean Ąeld. It becomes thus possible to replace the correlated many-body system by a one-body problem together with a selfconsistency equation.

The mean-Ąeld picture typically gives (although not always) the correct qualitative behavior. Intuitively, this approximation is expected to work well when the number of neighbors in the system is Şlarge enoughŤ, for instance for high-dimensional systems or systems with long-range interactions [START_REF] Campa | Statistical mechanics and dynamics of solvable models with long-range interactions[END_REF]. This argument must be however qualiĄed: in the Ising model in dimension d = 1 on the square lattice, no matter how many neighbors one spin is interacting with (next-to-nearest or next-to-next-to-nearest neighbors etc.), MFT predicts incorrectly a phase transition at Ąnite temperature, while there is none. 10 In fact, MFT is expected to be exact only in very few speciĄc case: either in inĄnite dimension or on speciĄc graphs wihtout Şinteraction cyclesŤ (Bethe lattices [START_REF] Bethe | Statistical theory of superlattices[END_REF] or Cayley trees).

In practice however, even for low-dimensional systems, MFT often yields qualitatively correct results and its ŞcorrectnessŤ much depends on the observable at stake. In many instances, MFT correctly predicts the existence of phases and the gaussian nature of the Ćuctuations in these phases. As regards phase transition, it predicts for example the existence of a phase transition in the Ising model but the predicted critical exponents are quantitatively correct only above the so-called critical dimension d c = 4.11 However nonuniversal quantities, even above d c , are a priori incorrectly estimated.

In some systems, notably those displaying scale-invariance, MFT fails to predict largescale behavior of Şbasic observableŤ, such as the roughness in KPZ models [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF]. It is often the sign that Ćuctuations play a determining role and physicists have to resort to different tools (renormalization group etc.) to get insight of what is happening.

Kinetic theories

Another cornerstone of statistical mechanics are kinetic theories, as they provide an essential conceptual link to bridge the gap between microscopic, mesoscopic and macroscopic physics.

A common tool used in this context are master equations, because many systems upon coarse-graining can be described as Markov chains. Roughly speaking a Markov chain is a collection of mesoscopic conĄgurations, for which the probability to reach a given conĄguration only depends on the immediate past conĄguration. The evolution equation in time of the probability distribution of these conĄgurations is called the master equation and can be symbolically written

∂ t P(C ) = C ′ ̸ =C P(C ′ )W [C ′ → C ] -P(C )W [C → C ′ ], (0.2)
where the C 's denote the state conĄgurations, P(C ) the probability of a given conĄguration and W [C → C ′ ] the transition rate for C to C ′ , i.e. the probability to change from C to C ′ in a single step. We use in Chapter 4 a master equation to determine the hydrodynamics of uniform-density active Ćocks.

Another important kinetic theory is the Boltzmann equation [START_REF] Boltzmann | Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen[END_REF], which has been originally derived to model the time evolution of classical Ćuids. The underlying idea is again to switch from a deterministic description of particles to a stochastic description in terms of probability distributions (of positions and momenta). The equation describing how the one-particle probability distribution f evolves in time is called the Boltzmann equation and generically writes

∂ t f + v • ∇f = I col [f ], (0.3) 
where v • ∇f accounts for the transport of particles occurring in the system (v is the local velocity of the particles described by f ). I col accounts for the collisions occurring between the particles and is called the two-body collision kernel (n-body collisions, n > 2, are less probable and thus neglected). This kernel cannot be a priori expressed only using f as it involves an inĄnite hierarchy of k-particle probability densities, called the BBGKY hierarchy [84Ű87]. One of the major contribution of Boltzmann was to propose an Ansatz, based on the molecular chaos hypothesis 12 , to factorize the two-particle probability density f 2 and the collision kernel in terms of only the one-particle probability distribution:

f 2 (r, v 1 , v 2 , t) ≈ f (r, v 1 , t)f (r, v 2 , t), (0.4) I col [f ](r, v, t) = v 2 ,v ′ 1 ,v ′ 2 K(v 1 , v 2 , v ′ 1 , v ′ 2 ) f (r, v ′ 1 , t)f (r, v ′ 2 , t) -f (r, v, t)f (r, v 2 , t) , (0.5)
where K is called the collision kernel. This Ansatz thus offers a simple closure to the many-body hierarchy arising from the particle interactions and can be formalized within the Boltzmann-Grad limit [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF]. 13 The resulting Boltzmann equation turns out to be a versatile tool to describe dilute systems of particles interacting via binary collisions. It has thus been used in a large number of different contexts [90Ű92] and notably in active matter [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF] as it is well-suited to study nonequilibrium models (by deĄnition). This is the formalism we use in Chapter 2 to write down the Ćuctuating kinetic theory of active aligning particles.

Kinetic theory is however only the Ąrst step to bridge the gap from the microscopic scales (e.g. the gas of hard-spheres) to macroscopic scales (e.g. the Euler or Navier-Stokes equations). The logical continuation of writing a Ćuctuating kinetic theory is thus to take an hydrodynamic limit.

Hydrodynamic limits

Hydrodynamic limits usually refer to the process of obtaining equations of motion for the ŞslowŤ Ąelds of the problem, namely the Ąelds which are expected to be the macroscopic observables describing the system on large scales and long times. These slow Ąelds usually correspond to the Ąrst moments of one-particle probability distribution (the zero-th mode corresponds to density, the Ąrst one to momentum...). There are often several ways to perform an hydrodynamic limit, depending on which terms are considered as essential, and this does not necessarily yield the same physics ; the spirit stays however the same.

Within the context of the master equation, taking the hydrodynamic limit usually consists in calculating the Ąrst moments of the probability distribution by averaging over the conĄguration space and in performing a rescaling of space and time to obtain equations in the continuum. Most of the time, the evolution equations of the Ąrst moments are coupled to the higher moments in an inĄnite hierarchy and a closure Ansatz is thus assumed to obtain self-consistent equations of motion for the Ąrst modes. This is for instance the line of reasoning we use in Chapter 4 by making a dynamical mean-Ąeld hypothesis, to obtain the hydrodynamics of the velocity Ąeld.

As regards Boltzmann-like kinetic theories, the hydrodynamic limit is usually done via a rescaling of space and time, which allows to perform a perturbative expansion in term of a small parameter (the Knudsen number) around the conserved quantities of the problem, whose Ąrst orders yield the hydrodynamic equations of the problem. In the context of the gas of hard spheres, this derivation is known as the Chapman-Enskog expansion [START_REF] Chapman | On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas[END_REF][START_REF] Enskog | Kinetische Theorie der Vorgänge in mässig verdünnten Gasen. I. Allgemeiner Teil[END_REF] and yields the macroscopic equation for standard Ćuids, the Euler and Navier-Stokes equations. This is the hydrodynamic limit which is used in Chapter 2.

Fluctuating kinetic theories and their hydrodynamic limits are powerful tools to obtain hydrodynamics to describe the large-scale and long-time physics. It notably offers the advantage compared to other techniques that macroscopic quantities of interest can be explicitly related to the microscopic parameters of the problem. This is particularly useful to determine the noise terms in nonequilibrium hydrodynamics, as the FDT does not constrain them anymore (c.f. Chapter 2). 14It should be nevertheless noted that relating the macroscopic and microscopic parameters is particularly useful when the microscopic systems are known from Ąrst principles, e.g. the gas of hard spheres, whose evolution is given by Netwon's laws. However, for the vast majority of active systems, only plausible (although relevant) phenomenological evolution models are postulated, hence the relevance of descriptions in terms of Ąeld theories based on symmetries, as we detail next.

Stochastic field theories

We describe in the previous sections methods to obtain explicitly the hydrodynamics of a given system. An alternative approach does however exist: it consists in carefully assessing what are the symmetries of the problem at stake and in writing down all the terms allowed by symmetries in a stochastic field theory. 15 It is an efficient method as it allows to cut short explicit but sometimes cumbersome coarse-grainings. Moreover, the allowed and most relevant terms are systematically obtained with this symmetry-based method, while it is not necessarily the case in some coarse-grainings (as it turns out to be in Chapter 1). Last it should be noted than in many cases (especially in active matter) microscopic models are not fundamental laws of physics but rather phenomenological and simpliĄed models assumed to describe reality. They are thus often not better justiĄed than models derived on the basis of symmetries, which the system obeys. This top-down approach comes nevertheless at a price. First, in hydrodynamics derivation on the basis of symmetries, it is a priori not obvious how to relate macroscopic parameters entering in the Ąeld theory to microscopic ones. Second, the use of Ąeld theories (be they derived upon symmetries or from coarse-grainings) rely on the hypothesis that there exists an effective micro-macro separation scales in the system, i.e. that most of the variables, but a few, relax exponentially fast. This hypothesis is however rigorously veriĄed in few cases, notably critical systems (c.f. Section 2.4.6). It is only assumed to hold in the other cases but it turns out to work qualitatively well in most cases.

Mathematically speaking, Ćuctuating hydrodynamics and stochastic Ąeld theories are stochastic partial differential equations (SPDE) with their own differential calculus rules [START_REF] Itô | On stochastic differential equations[END_REF][START_REF] Cugliandolo | Building a path-integral calculus: a covariant discretization approach[END_REF]. They are also called Langevin equations by physicists. Since stochastic equations are pervasive out-of-equilibrium, there have been various attempts to cast them into a path-integral or action formalism. This resulted into new frameworks: the Doi-Peliti formalism [START_REF] Doi | Second quantization representation for classical many-particle system[END_REF][START_REF] Peliti | Path integral approach to birth-death processes on a lattice[END_REF] to represent discrete master equations and the Onsager-Machlup [START_REF] Onsager | Fluctuations and irreversible processes[END_REF] or the Martin-Siggia-Rose-Janssen-de Dominicis (MSRJdD) [102Ű104] formalisms for Langevin equations. In the manuscript, we mainly use the MSRJdD formalism, which we further detail in Appendix B and that we call response-Ąeld formalism. These frameworks are useful because they allow the use of efficient tools from Ąeld theory, such as renormalization group (RG).

Renormalization Group

By writing stochastic Ąeld theories on the basis of symmetries, inĄnitely many terms are in general allowed. However, what makes Ąeld theories tractable for physicists is the fact that they are interested in the large-scale and long-time physics: under a rescaling of space and time (also called scale transformation), only few terms (or operators) generally dominate the physics, which are the Ąrst terms of a Taylor expansion in powers of gradients and Ąelds. This argument can be made more quantitative in scale-invariant systems characterized by scale-free correlations, namely systems in which ξ Ű the correlation length over which microscopic variables are correlated Ű is inĄnite. In this case, a power-counting or rescaling argument performed in the mean-Ąeld theory yields the canonical dimension of the operators and sort them into (usually few) relevant, marginal and irrelevant couplings (hopefully the vast majority of them).

Scale-free correlations are rather the exception than the rule in equilibrium physics: in most of the cases, correlations are relatively weak, so that, beyond typical lengths of order ξ, Ćuctuations can be effectively described as gaussian. 16 In some speciĄc cases however, ξ is inĄnite, reĆecting the fact all degrees of freedom of the system are strongly correlated. This gives birth to critical Ćuctuations across the system, which alter the macroscopic phenomenology in a nontrivial way. Such phenomena notably happen in the vicinity of second-order phase transitions, where ξ grows unbounded when the system approaches the critical temperature. It is also the case in some theories which are de facto generically scale-free, because for instance some symmetries impose it (e.g. the KPZ equation [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF] and the shift symmetry).

These critical systems are worth investigating because they allow exact predictions for real systems studying minimal models, a rather exceptional situation. This stems from the fact that these systems are often minimal models which capture well the physics associated with a small number of couplings. Because these couplings appear to be generically the few relevant degrees of freedom at large scales for numerous real systems, these critical theories are ŞuniversalŤ and prototypical of the phenomenology of large ŞclassesŤ of complex systems.

The proper tool to handle these Ćuctuations is the Renormalization Group (RG). RG can be seen as a sort of machine to handle Ćuctuations and compute their effects: Ćuctuating microscopic degrees of freedom (a.k.a. the bare theory) are given as an input, some processing occurs and, as an output, the Ćuctuating macroscopic degrees of freedom are provided. Many different practical ways to implement RG have been developed over the years, as well as interpretations of it: from the early concepts of renormalization [START_REF] Stueckelberg Von Breidenbach | La normalisation des constantes dans la theorie des quanta[END_REF] to nonperturbative renormalization group [START_REF] Berges | Controlled nonperturbative dynamics of quantum fields out of equilibrium[END_REF][START_REF] Delamotte | An Introduction to the Nonperturbative Renormalization Group[END_REF], going through the works of Gell-ManŰ Low [START_REF] Gell-Mann | Quantum Electrodynamics at Small Distances[END_REF], Kadanoff [START_REF] Kadanoff | Scaling laws for Ising models near T c[END_REF], Callan-Symanzik [110Ű112], Wilson [113Ű116] and many others... For a physicist in statistical physics, they all implement in spirit Wilson's idea to Şdivide and conquerŤ: Ćuctuations are mastered scale by scale, in order to disentangle the effects of strong correlations across the scales.

As we argued, Ąeld theories are made of (few) operators whose relative strength is characterized by their coupling constants. The space of all the coupling constants is called parameter space and it is usually of inĄnite dimension. In practice however large amounts of the large-scale physics lies in a Ąnite and low-dimensional subspace. RG consists in determining the trajectory (or the Ćow) of a Ąeld theory in the parameter space, as its coupling constants evolve under scale transformations. Most of the time, once the change in the scales is large enough, all coupling constants have a trivial RG-Ćow yielding to a free theory. However in some systems, the physics is scale invariant, namely it is self-similar and it stays unchanged under scale transformations. Such scale-invariant systems are fixed points (FP) of the RG Ćow in the parameter space and correspond either to ideal phases (ξ = 0) or to phase transitions and phases characterized by generic scaling (ξ = ∞). The FP of the RG Ćow can be classiĄed into stable or unstable FP under the dynamics generated by RG and the unstable directions of a FP can be practically seen as (the number of) physical parameters to be tuned in the theory to reach criticality.

As for standard dynamical systems (except that time is replaced by RG-time), the stable FP are attractors of the dynamics: under successive scale transformations, microscopic (or bare) theories belonging to the basin of attraction of the FP are driven to it. This means by deĄnition that the large-scale limit of all these models is asymptotically given by the Ąxed point theory. In this context, relevant couplings correspond to directions along which the RG Ćow escapes the basin of attraction of a FP.

The low-energy physics (or at least its most salient features) of many microscopic models is thus encoded in the RG-Ćow linearized around the FP and more precisely in the eigenvalues Figure 0.4: Sketch of a typical perturbative RG Ćow (3d version). The critical hypersurface (ξ = ∞) is drawn in blue. The green dot represents the Gaussian FP, while the nontrivial FP is in red. They are connected by a single RG trajectory, in green, along which the perturbative RG calculations are performed. The red trajectories correspond to unstable RG directions of the nontrivial FP (i.e. the mass in a massive theory), which are driven towards fully attractive and noncritical FP (ξ = 0). The orange dot represents an initial condition belonging to the critical surface, which thus quickly collapses on the green RG trajectory and converges to the critical FP. The black dot is however generic, i.e. it has not been Ąne-tuned to belong to the critical surface. Because it is close to the critical surface, it Ąrst follows the orange RG trajectory, inheriting its critical properties. It is then repelled from the critical hypersurface once the exponential growth of the component corresponding to the unstable direction (red line) starts to be visible. of the stability matrix describing how the Ćow escapes the Ąxed point along the directions of the relevant coupling constants. These eigenvalues indeed deĄnes critical exponents characteristic of how the system behaves near criticality. Most importantly, these critical exponents are ŞuniversalŤ because many a priori different microscopic systems do in fact display the same behavior near criticality (e.g. near a continuous phase transition). This legitimates physicists i) to only study paradigmatic systems representative of few universality classes and ii) to hope to give insights about the real world without studying all possible microscopic models (which are in any case only models assumed to describe reality).

RG handles well the passage to nonequilibrium, since the only difference is the fact that a symmetry, TRS, is broken. The effect of Ćuctuations Ű be they equilibrium or not Ű can a priori still be tamed within RG and the distinction betweeen relevant and irrelevant operators is still operating. 17 . Besides, generic scale-invariance (i.e. criticality without the need of tuning any parameter) might be more widespread out-of-equilibrium than at equilibrium, where it is rather the exception. This further motivates the use of RG to study nonequilibrium systems. Known examples, that are both far-from-equilibrium and critical, are the KPZ equation [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF], turbulence [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF] or Zipf laws [START_REF] Zipf | Human behavior and the principle of least effort[END_REF].

Numerical simulations

Last but not least, numerics is an indispensable tool in statistical physics and active matter. Indeed, by emulating idealized models thought to describe in a simpliĄed way some aspects of reality, numerical simulations are very helpful to study given phenomena in the absence of experiments or when controlled experiments are hard to design. Besides the amount of data which can be analyzed in numerical simulations is usually much bigger than in experiments.

Numerics also provides an ideal platform to get insights into what can be the macroscopic behavior of a complex system. As the macroscopics results from the effects of the interactions between the many internal degrees of freedom, it is in general not easy to apprehend a priori or analytically. This is especially the case in low dimensions (the physical world being in low dimensions) where many of the techniques previously mentioned might fail, such as MFT, RG etc. This is also the case far from equilibrium such as in active matter: the thermodynamic intuition relying on the free-energy is lacking and the precise microscopic dynamics determines the stationary state.

In fact, in some cases, numerical simulations bear some surprises with respect to what is expected a priori, as it can unveil nontrivial (collective) effects. This is for instance the case of the foam phase found in uniform-density Ćocks in Chapter 4. Complex macroscopic effects raise the question of the effective theory with the right (and a priori not obvious) macroscopic variables, which are best suited to account for the phenomenology at stake. Numerical simulations, besides revealing the existence of peculiar macroscopic phases, are also valuable to investigate quantitatively their properties.

In the manuscript, different active systems are studied numerically, either via particlebased simulations (in Chapter 4) or through simulations of Ąeld theories (in Chapters 1 and 4) by direct numerical integration of the SPDE using pseudospectral codes.

Summary of the steps of reduction

We have presented in this section different techniques useful to better understand the phenomenology of complex systems and we emphasized that they operate at different scales, some of them allowing actually to pass and make the link across these scales. We try to summarize this in Fig. 0.5.

All these tools are approximate and often only capture some aspects of reality. Fortunately though they are complementary, hence the need to make them communicate. Arrows correspond to reduction methods, which allows to bridge the gap between the scales and examples are provided in parenthesis. Typical lengths are measured in terms of the wavenumber k. The colormap expresses the amount of information or the number degrees of freedom (dof) present at each scale (red: many dof, blue: less dof), which also reĆects the expected diversity of models at each scale (microscale: ŞmanyŤ models, macroscale: only few universality classes). The larger-scale models are a caricature of the ones at smaller scales but they are at least common to many of them. Going from smaller to larger scales is an irreversible process as information is progressively lost in each of the reduction methods. From a RG point of view, it means that reversing the RG time for a real system does not make sense because of the sensitivity of the reversed RG Ćow to initial conditions (i.e. volume in the parameter space along the RG trajectory is not preserved). The type of models or methods which are used in the different chapters of the manuscript are marked with a ⋆ , while the circled number of each chapter is represented in its corresponding k-region.

k = 0 k = ∞ 1 

Few paradigmatic models of active matter

We rapidly describe in this section some of the minimal models we further use in the manuscript and which have been developed in active matter to account either for active phase-separation or for Ćocking.

Field theories for phase separation

The study of phase-separated systems in active matter Ąrst began with microscopic models, be they run-and-tumble particles [START_REF] Tailleur | Statistical Mechanics of Interacting Run-and-Tumble Bacteria[END_REF], active brownian particles [START_REF] Romanczuk | Active Brownian particles[END_REF] or self-propelled disks [START_REF] Fily | Athermal Phase Separation of Self-Propelled Particles with No Alignment[END_REF][START_REF] Redner | Structure and Dynamics of a Phase-Separating Active Colloidal Fluid[END_REF]. Since then, phase separation turned out to be a fairly generic phenomenon in active matter and many mechanisms have been proposed to explain the spontaneous formation of clusters of active particles [33, 122Ű124].

However, one of the shortcomings of inferring physics from (phenomenological) microscopic models stems from the fact it does not provide a systematic way to explain common and universal behavior under the apparent diversity of models. Equally annoying is the fact that some of the phenomenology might be missed if by misfortune the proper microscopic models have not been picked out. A telling example is the quorum-sensing particle model [START_REF] Tailleur | Statistical Mechanics of Interacting Run-and-Tumble Bacteria[END_REF]: due to MIPS, the system phase-separates into two fully separated bulk states without signiĄcant difference w.r.t. equilibrium phase separation, while qualitatively different features emerge in systems with two-body repulsion [START_REF] Stenhammar | Phase behaviour of active Brownian particles: the role of dimensionality[END_REF][START_REF] Shi | Self-Organized Critical Coexistence Phase in Repulsive Active Particles[END_REF], as we detail next.

In order to describe the generic and universal feature of active phase separation, it is natural to work at Ąeld theoretical level. In Section 3.1.1, we Ąrst recap the main properties of Model B, a paradigmatic Ąeld theory for equilibrium phase separation. In Section 3.1.2, these properties are then contrasted with the one observed in Active Model B +, a nonequilibrium generalization of Model B and a Ąrst Ąeld theory for active phase separation.

Model B

We Ąrst describe Model B [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF], which is the standard Ąeld theory for phase separation at equilibrium and for diffusive systems (i.e. without momentum conservation). 18Model B is a Langevin equation used to describe the relaxational dynamics towards equilibrium of systems in which density is conserved and the only slow Ąeld of the problem. It thus rules how the local density ϕ evolves spatially throughout time according to

∂ t ϕ = -∇ • J + √ 2DM Λ  , (0.6) J/M = -∇ δF δϕ , (0.7)
where M is called the mobility and is most of the time set to 1 19 , F is a free energy functional of the form

F = r f (ϕ) + K 2 (∇ϕ) 2 , f (ϕ) = a 2 ϕ 2 + b 4! ϕ 4 , b, K > 0, (0.8)
and Λ is a zero-mean, unit-variance, delta-correlated in space and time, Gaussian white noise.

The density ϕ corresponds rather to the reduced density or the liquid fraction: it is generally mapped onto the real line ] -∞, ∞[ and it can thus have negative values. Higher order terms in the potential f (ϕ) could be considered but, since model B is introduced to study the critical dynamics of phase-separated systems, only the terms up to quartic order ϕ 4 are relevant in the RG sense. Moreover f (ϕ) is assumed to be Z 2 -symmetric without loss of generality (it is always possible to perform an additive shift in the energy, a redeĄnition of the mass term and of the reduced density). The mass term a is usually taken to be proportional to T -T c , where T c models a critical temperature beyond which the system is disordered and homogeneous due to thermal Ćuctuations. This model can be derived either on a microscopic basis [START_REF] Cates | Active Field Theories[END_REF] or on the basis of symmetries.

Model B notably obeys TRS, which ensures that the system reaches a unique steadystate, whose equilibrium measure is given by the Boltzmann distribution e -β F , where F corresponds to the convex envelop of F and whose associated potential is drawn in blue in Fig. 0.6a. The phase diagram of model B is summarized in Fig. 0.6 and it can be understood via mean-Ąeld arguments [START_REF] Cates | Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions[END_REF]. There are two important curves: the binodal Ű resp. spinodal Ű line deĄned as the locus of the minima of f (ϕ) Ű resp. of the points of vanishing curvature of f (ϕ) Ű as a function of temperature.

Static phase diagram.

Above the binodal line in Fig. 0.6b, only an homogeneous disordered mixed state is observed. Below, a phase-separated state is thermodynamically more favorable, notably in the thermodynamic limit where the cost of an interface is negligible compared to the energy of the bulk. At equilibrium once the system has relaxed, its free energy has to be convex (in blue in Fig. 0.6a) and any global reduced density φ = r ϕ(r) in the binodal region is equally favorable. This implies that the system is separated into two homogeneous binodal states, whose relative fraction is compatible with φ. As the sphere is the surface which minimizes energy at constant volume, the minority binodal phase forms a spherical bubble into the bulk of the majority phase (in a Ąnite-size system). This phenomenon is illustrated in Fig. 0.7 for different liquid fractions: starting from an initial disordered state and waiting sufficiently long time for the stationary state to settle down, a complete separation between the liquid and the vapor occurs. The colormap reĆects the density: the denser, the lighter. From left to right, the liquid density progressively increases, starting from a purple vapor phase till reaching a yellow liquid phase. In between, the minority phase forms a spherical bubble (up to Ćuctuations) in the bulk of the majority phase.

The density proĄle across the interface between the binodal phases can be determined analytically [START_REF] Cates | Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions[END_REF][START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF] by minimizing the free-energy at Ąxed boundary conditions (i.e. those of the binodals phase). In the case of a Ćat interface, the centered interfacial proĄle reads

ϕ(y) = ±ϕ b tanh y ξ , (0.9)
where y is the coordinate normal to the interface and ξ = (-K/2a) 1/2 is the typical width of the interface. We come back to these interfacial proĄles in Chapter 1.

Dynamic phase diagram.

The dynamic properties of Model B are slightly more complex than its static counterparts: an initially disordered system of reduced density φ converges at late times towards the equilibrium state described in Below the spinodals line (in dotted line in Fig. 0.6b), it can be shown [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF] that the initial homogeneous state of reduced density φ is linearly unstable to perturbations of small wavelength. Thus some heterogeneities of the initial state grow exponentially fast, which results in the formation of so-called spinodals decomposition patterns, as exempliĄed in [START_REF] Gameiro | Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation[END_REF].

In between the binodal and spinodal curves, the coarsening process is quite different because the initial disordered state is only metastable. Fluctuations have thus to overcome a thermodynamic barrier in order to locally nucleate sufficiently large bubbles of one of the stable binodal phase (Fig. 0.8a). Out of these many nucleated bubbles, only the biggest ones grow at the expense of the smallest ones, because of molecular diffusion. This mechanism is known under the name of Ostwald ripening [START_REF] Ostwald | Studien über die Bildung und Umwandlung fester Körper[END_REF][START_REF] De Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls[END_REF]. In fact, many other processes occur during the coarsening (coalescence of bubbles, Marangoni effects) depending on the value of φ but we refer to [START_REF] Cates | Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions[END_REF] for a detailed discussion.

Criticality in Model B. Model B displays a second-order phase transition, located at the critical point, when a (renormalized) changes sign. Near this speciĄc point, large Ćuctuations take place and are responsible for tangible physical phenomena such as powerlaw relaxing times in the system or critical opalescence [START_REF] Chaikin | Principles of Condensed Matter Physics[END_REF], which is illustrated in Fig. 0.9.

Due to TRS, the static exponents of this phase transition belongs to the Ising universality class, while the dynamic ones deĄne the Model B universality class. 21 More precisely, the dynamical exponent is equal to its mean-Ąeld value z = 4 above the upper-critical dimension d c = 4. Below d c , the b-nonlinearity in Eq. (0.8) is found relevant in the RG sense and it modiĄes the dynamic exponent to z = 4η, where η is the Wilson-Fisher anomalous dimension (a static exponent of the Ising universality class). These well-studied properties of Model B are contrasted in the next sections with the phenomenology observed in some of its active generalizations. They are nonetheless useful Figure 0.9: Critical opalescence is observed in the middle picture (milky aspect) by heating a mass of ethane from a state where liquid and gas coexist (left picture) to a Ćuid state (right picture). Adapted from [START_REF]Left-to-right sequence of heating a mass of ethane in a constant volume[END_REF].

to provide up to a certain extent some guidelines into nonequilibrium phase separation.

Active Model B +

We describe in this section the main properties of Active Model B + (AMB+) [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF][START_REF] Wittkowski | Scalar ϕ 4 field theory for active-particle phase separation[END_REF], a minimal Ąeld theory describing active phase separation.

Definition of the model. As it is the case for Model B, AMB+ is derived on the basis of symmetries and it can be substantiated on microscopic ground via coarse-grainings of particle-based models [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF]. The starting point of this top-down approach is the fact that, from a symmetry point of view, active phase separation corresponds to phase separation in which TRS is broken. The corresponding Ąeld theory thus corresponds to Model B plus all the terms which are breaking TRS.

As usual, only the lowest order terms obtained by a Taylor expansion in Ąelds and gradients are retained. Stopping at order O(ϕ 2 , ∇ 4 ), we obtain by deĄnition Active Model B+:

∂ t ϕ = -∇ • J + √ 2DM Λ  , (0.10) J/M = -∇µ λ + ζ(∇ 2 ϕ)∇ϕ, (0.11) µ λ [ϕ] = δF δϕ + λ♣∇ϕ♣ 2 , (0.12)
where we use the same notations as for Model B in Eqs. (0.6) to (0.8). The λ-and ζ-terms explicitly break TRS. In particular, the ζ-term allows net circulating currents in the steady state (its divergence is nonvanishing contrary to the λ-term) and thus plays an important role in the physics of AMB+. Model B is recovered in the limit of vanishing activity (λ = ζ = 0). In the manuscript, we retain the choice M = 1 and constant D.

It should be noted that AMB+ is obtained from a gradient expansion so that higher order terms in µ λ and J might as well be included. It is nonetheless not expected to change the phenomenology known from [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF] nor the one discussed in Chapter 1.

Binodals and spinodals.

As for Model B, the binodals and spinodals curves play an important role in the physics of AMB+ and can be derived using a mean-Ąeld argument [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF] in an inĄnitely large phase-separated system in the steady state and in the zero-noise limit. In this case, the interface between the two phases is Ćat (Fig. 0.10a) and the binodals ϕ 1,2 are, by deĄnition, the coexisting densities on both sides of the interface. 

µ = f ′ (ϕ) -Kϕ ′′ + (λ - ζ 2 )ϕ ′2 (0.14)
with ϕ ′ = ∂ y ϕ and ϕ(±∞) = ϕ 1,2 . For the interface proĄle to be in steady-state, two conditions have to be met, namely bulk chemical potentials and pseudopressures have to balance on both sides of the interface. These two conditions are best rewritten introducing the pseudo-variables ψ and g [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF][START_REF] Solon | Generalized thermodynamics of motility-induced phase separation: phase equilibria, Laplace pressure, and change of ensembles[END_REF], which solve

K ∂ 2 ψ ∂ϕ 2 = (ζ -2λ) ∂ψ ∂ϕ , ∂g ∂ψ = ∂f ∂ϕ ≡ µ, whence ψ = K ζ -2λ e (ζ-2λ)ϕ/K -1  . (0.15)
In terms of them, the equilibrium conditions

µ 1 = µ 2 and (µψ -g) 1 = (µψ -g) 2 (0.16)
which select the binodals ϕ 1,2 still hold [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF][START_REF] Solon | Generalized thermodynamics of motility-induced phase separation: phase equilibria, Laplace pressure, and change of ensembles[END_REF]. This change of variables is primarily a mathematical device for constructing the phase equilibria and ψ and g do not have any direct physical signiĄcance beyond this. This pseudovariable formalism is later used in Chapter 1 to determine the effective interface equation between the two binodal phases.

The binodal curves can be obtained by solving numerically Eq. (0.16) together with Eq. (0.15). The spinodal densities are again deĄned as the uniform densities ±ϕ s such that f ′′ (ϕ s ) = 0 and both curves are drawn in Fig. 0 ). Contrary to the binodals, the spinodals do not depend on λ. Reproduced from [START_REF] Cates | Active Field Theories[END_REF]. In between the binodals, the system is globally unstable, while it is locally unstable in between the spinodals.

The same formalism can be extended to curved interfaces and we refer to [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF] for a detailed discussion. The main result is the possibility to deĄne a pseudosurface tension σ L , which plays the role of a Laplace pressure but in a nonequilibrium context:

σ L = K ξ -2λ (ζS 0 -2λS ∞ ), (0.17) 
where

S 0 = e ϕ 2 (ζ-2λ)/K ∞ 0 ϕ ′2 , (0.18) S 1 = ∞ 0 ϕ ′2 (y)e ϕ(y)(ζ-2λ)/K . (0.19)
Importantly σ L can become negative, which causes the standard Ostwald ripening to be reversed (without making the interface unstable) as we detail next.

Phase diagram of the stationary state. The phase diagram of AMB+ qualitatively differs from the purely passive model B, as Fig. 0.12a shows it.

In the Ąrst row of Fig. 0.12a, the already commented long-time dynamics of Model B is displayed, showing a complete phase separation. However, on the second row which corresponds to a long-time simulation of AMB+ for nonvanishing activity, we see a qualitative change of behavior in the phase separation. Instead of full separation, microphase separation is observed, meaning that numerous gas bubbles do exist in the liquid phase, even in the long-time limit. This stabilization of the gas bubbles in the liquid phase is a pure nonequilibrium phenomenon: due to activity, the pseudosurface tension σ L can become negative, which yields to the reversal of the Ostwald ripening for one of the two phases (the vapor in the case of Fig. 0.12) while it remains normal for the liquid phase. Consequently the smaller bubbles of the minority phase grow at the expense of the larger ones, which yields a microphaseseparated state of vapor bubbles. This state can coexist with a macroscopic vapor region if the vapor is the majority phase or span the all system if the vapor is the minority phase [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF], as illustrated in Fig. 0.12a. The mean-Ąeld phase diagram in which microphase separation is expected to occur is shown in Fig. 0.12b. This peculiar microphase separation predicted at Ąeld theory level is for instance observed in large-scale simulations of active brownian particles [START_REF] Stenhammar | Phase behaviour of active Brownian particles: the role of dimensionality[END_REF][START_REF] Shi | Self-Organized Critical Coexistence Phase in Repulsive Active Particles[END_REF] (Fig. 0.2b).

Capillary interfacial tension.

Another quantity of interest in phase-separated systems is the capillary tension σ cw , which determines the relaxation in time of the interface, separating the bulk phases, subjected to thermal Ćuctuations. Since a pseudosurface tension σ L (setting the rate of Ostwald ripening and akin to the equilibrium Laplace pressure) could be deĄned in AMB+ in Eq. (0.17), it is tempting to equate σ L and σ cw . There is however no guarantee that it should be the case out-of-equilibrium, where thermodynamics does not a priori hold. In AMB+, it is for instance not the case.

The prove of this fact relies on the effective dynamics for small Ćuctuations ĥ(x, t) of the almost Ćat interface of Fig. 0.10a in AMB+ [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF], whose deterministic part reads in the Fourier space

∂ t h(q, t) = - 1 τ (q) h(q, t) + O(h 2 ) (0.20)
where h is the Fourier transform of ĥ(x, t) w.r.t. x and τ (q) ∝ σ cw ♣q♣ 3 , (0.21)

σ cw = K y φ ′ (y)ψ ′ (y) -ζ y  ψ(y) - ψ 1 + ψ 2 2  φ ′2 (y) . (0.22)
σ L and σ cw are thus not equal, and importantly, can change sign and not simultaneously. The sign of σ L decides whether the Ostwald ripening is reversed or not, while the sign of σ cw > 0 sets the stability of the interface. When it is negative, the interface is unstable, yielding to new phase-separated phases [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF].

In Chapter 1, we come back in details on the effective interface equation (0.20) in phaseseparated systems and notably in Model B (assuming that σ cw is positive).

Critical point in AMB+. The physics close to the critical point in AMB+ (approached by tuning a and crossed by varying the liquid fraction) is rather intriguing and poorly understood. In Model B a second-order phase transition is found but in AMB+ a one-loop RG calculation [START_REF] Caballero | From bulk to microphase separation in scalar active matter: a perturbative renormalization group analysis[END_REF] To conclude AMB+ has proven to be a minimal model, explaining some of the unusual features of active phase separation observed in experiments or numerical simulations. All these effects highlight the existence of irreducible differences between active and equilibrium phase separation. In Chapter 1 we additionally show that the roughening properties of interfaces in phase-separated systems are different depending whether the system is out-ofequilibrium or not.

Flocking models

We present some of the paradigmatic models of collective motion, from microscopic to macroscopic scales.

Vicsek model

The Vicsek model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] is one of the Ąrst minimal model of active matter and it is thought to describe collective motion in biological systems. It consists in pointlike particles of density ρ 0 which travel at constant speed in a box with periodic boundary conditions and align at each time step with their closest neighbors, with some misalignment modeled by a noise. More precisely, at each time step, the headings θ i , 1 ≤ i ≤ N , of all N particles are updated in parallel according to [START_REF] Solon | From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations[END_REF] 

θ i (t + 1) = ⟨θ j (t)⟩ j∈N i + η ξ i (t) (0.23)
where ⟨•⟩ N i denotes the average over the disk of unit radius around particle i, ξ i (t) is a random angle drawn uniformly in [-π, π] and η sets the noise intensity.

This model displays an ordered (or liquid) phase either when the density ρ 0 is large enough or the noise strength η low enough, as presented in Fig. 0 [START_REF] Solon | From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations[END_REF]. The binodals curves ρ ℓ and ρ h delimit a microphase region, which is detailed in the next section. estingly, the Ćocking transition between the ordered and disordered state was predicted to be continuous in [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF], while it was shown few years later not to be the case in dimension d = 2 for sufficiently large system sizes [START_REF] Grégoire | Onset of collective and cohesive motion[END_REF]. The Ćocking transition is now better understood at the hydrodynamic level, as it is explained in Section 3.2.2.

Hydrodynamics of compressible active fluids

An hydrodynamic description of Ćocking was Ąrst proposed on the basis of symmetries in [START_REF] Toner | Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together[END_REF]. It describes the dynamics of a conserved density Ąeld ρ and a velocity Ąeld:

∂ t ρ + ∇ • (ρv) = 0, (0.24) ∂ t v + λ 1 (v • ∇)v + λ 2 (∇ • v)v + λ 3 ∇v 2 = (a -bv 2 )v -∇P + D 0 ∇ 2 v + D 1 ∇(∇ • v) + D 2 (v • ∇) 2 v + f , (0.25)
where all coupling constants are positive, except the λ i 's and a. The sign of a determines the state of the system (if ordered, a > 0). λ 1 , λ 2 , λ 3 corresponds to advective terms (λ 2 , λ 3 are forbidden in Navier-Stokes equations because microscopic collisions respects momentum conservation), while a and b are potential terms which accounts for the alignment between particles and enforces a nonvanishing local Ąeld in the ordered phase. P is the pressure, expressed as a series in ρ, D 0 , D 1 and D 2 are diffusion terms and f is an additive white noise delta-correlated in space and time. All coefficients are a priori functions of ρ and ♣v♣ (because of rotational invariance).

A liquid-state in the high density Ű low noise region is found, which is known as the Ćocking phase. Surprisingly, this ferromagnetic-like state takes place even in dimension d = 2, at odds with the Mermin-Wagner theorem, which stipulates that a continuous symmetry, in an equilibrium system, cannot be spontaneously broken at Ąnite temperature in dimension d ≤ 2. The two-dimensional Ćocking phase is thus a direct consequence of the nonequilibrium nature of the active Ćocks. Scaling relations for the correlation functions of the density and velocity Ąeld (notably for the modes transverse to the direction of the order) were successfully predicted in d = 2 [START_REF] Toner | Flocks, herds, and schools: A quantitative theory of flocking[END_REF] and the exact values of the critical exponents is still under investigation [START_REF] Toner | Reanalysis of the hydrodynamic theory of fluid, polar-ordered flocks[END_REF][START_REF] Mahault | Quantitative Assessment of the Toner and Tu Theory of Polar Flocks[END_REF].

We mentioned in Section 3.2.1 that the Ćocking transition in the Vicsek model was found to be discontinuous. In fact, an intermediate state arises between the disordered and ordered states, where microphase separation is observed: in this region of parameters, density bands spontaneously arise as shown in Fig. 0.15. This band instability is in fact expected to be The warmer the color, the higher the density. Figure taken from [START_REF] Solon | From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations[END_REF].

generic in Ćocking model, due to the ρ-dependence acquired by the mass term a in Eq. (0.24) upon renormalization [START_REF] Martin | Fluctuation-induced phase separation in metric and topological models of collective motion[END_REF]. The Ćocking transition is now better reinterpreted as a phaseseparation Ćuctuation-induced Ąrst-order transition [START_REF] Solon | From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations[END_REF][START_REF] Martin | Fluctuation-induced phase separation in metric and topological models of collective motion[END_REF]. Recently it has been shown that a continuous Ćocking transition is expected at the multi-critical point of the hydrodynamics of compressible active Ćuids (reached upon Ąne-tuning) and it is predicted to obey a new universality class below the upper critical dimension d c = 6 [START_REF] Jentsch | Novel critical phenomena in compressible polar active fluids: A functional renormalization group approach[END_REF].

If the hydrodynamics of compressible active Ćuids was Ąrst written on the basis of symmetry, it was later derived at deterministic level from a direct coarse-graining of explicit particle-based models in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF], using a Boltzmann equation and a Fourier mode expansion. In Chapter 2, we extend the procedure developed in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF] to derive the noise term in Eq. (0.24).

To further progress in the analytical understanding of Ćocking, two additional limiting cases were considered: the incompressible limit and the Malthusian Ćocks. In both cases, the density Ąeld becomes trivial and decouples from the velocity Ąeld, which is known to simplify the problem, as many of the analytical difficulties encountered comes from the complex coupling between the density and velocity Ąelds.

Hydrodynamics of incompressible active fluids

The hydrodynamics of incompressible polar active Ćuids [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF] is derived from the one of compressible active Ćuids in Eq. (0.24), by assuming an incompressible limit, i.e. that ∇•v = 0. It writes Only few numerical studies of incompressible active Ćuids have been carried out so far, mostly concentrating on the coarsening dynamics in dimensions 2 and 3 [START_REF] Rana | Coarsening in the two-dimensional incompressible Toner-Tu equation: Signatures of turbulence[END_REF][START_REF] Rana | Phase ordering, topological defects, and turbulence in the three-dimensional incompressible Toner-Tu equation[END_REF]. If from a Ąeld theory point of view, imposing incompressibility is a well-deĄned assumption ∇•v = 0, it is yet far less clear what would be the particle-based or microscopic counterpart. It has been argued [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF] that some systems can be considered as incompressible active Ćuids, notably at high density or when conĄned to a channel, and whether the large-scale properties of these not-exactly-incompressible Ćuids is indeed described by the previous universality class remains an interesting question.

∂ t v + λ(v • ∇)v = (a -bv 2 )v -∇P + D∇ 2 v + f , (0.26) ∇ • v = 0, ( 0 
The model of incompressible active Ćuids is particularly appealing for its simplicity and its possible analytical treatments. We use back to this model in Chapter 3, to study using RG the inĆuence of quenched disorder on the Ćocking transition.

Hydrodynamics of Malthusian flocks

Malthusian Ćocks [151Ű153] correspond to compressible active Ćuids, in which particles are permanently created and annihilated on a fast time-scale and in any point of the system. This phenomenon breaks mass conservation and yields to the decoupling of the density and velocity Ąelds. This translates into the following effective hydrodynamics, derived from Eq. (0.24) by a proper enslaving of the density Ąeld [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF],

∂ t v + λ 1 (v • ∇)v + λ 2 (∇ • v)v + λ 3 ∇v 2 = (a -bv 2 )v + D 0 ∇ 2 v + D 1 ∇(∇ • v) + D 2 (v • ∇) 2 v + f , (0.28)
where we keep the same notations as in Eq. (0.24). A Ćocking phase was shown to exist in this model and endowed with scaling laws, whose exponents can be determined, either exactly in d = 2 [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF] or perturbatively in the dimension in d > 2 [START_REF] Chen | Moving, Reproducing, and Dying Beyond Flatland: Malthusian Flocks in Dimensions d ≥ 2[END_REF]. 23 It has been recently argued on a Ąeld-theory basis (near the upper critical dimension d c = 4) that the Ćocking transition in this model is not continuous, suggesting a Ćuctuation-induced Ąrst-order transition, as in the standard compressible case [START_REF] Carlo | Evidence of fluctuation-induced first-order phase transition in active matter[END_REF].

We come back to Malthusian Ćocks in Chapter 4, to investigate numerically (the stability of) its Ćocking phase in d = 2.

Contents of the manuscript

The manuscript contains four chapters, which illustrate the large-scale effects of Ćuctuations on different minimal models of active matter introduced in the previous section. In Chapter 1, we study the roughening of interfaces in nonequilibrium phase-separated systems and notably in AMB. In Chapter 2, starting from self-propelled particles, we derive the Ćuctuating kinetic theory and hydrodynamics of compressible active Ćuids in a dilute limit. In Chapter 3, we show that quenched Ćuctuations change the universality class describing the Ćocking transition in incompressible active Ćuids. In Chapter 4, we highlight how Ćuctuations render metastable Ćocking at uniform density.

The Ąrst chapter of the manuscript is concerned with phase-separated active systems, while the other chapters deal with active systems displaying Ćocking behavior.

Chapter 1 is devoted to the characterization of the long-time and large-scale properties of interfaces in nonequilibrium phase-separated systems. Interfaces in these systems roughen in time Ű i.e. becomes fractal in a certain extent Ű due to capillary waves. Because of diffusive Ćuxes in the bulk of both phases, their dynamics is nonlocal in real space and is not described by the Edwards-Wilkinson or Kardar-Parisi-Zhang equations, nor their conserved counterparts. We show in Section 2 that in the absence of detailed balance, the phaseseparated interface is described by a new universality class that we term ♣q♣KPZ. We compute the associated critical exponents via one-loop RG, and corroborate in Section 3 the results by numerical integration of the ♣q♣KPZ equation. By deriving in Section 4 the effective interface dynamics from a minimal Ąeld theory of active phase separation, we Ąnally argue that the ♣q♣KPZ universality class generically describes liquid-vapor interfaces in active systems.

Chapter 2 addresses the issue of the derivation of Ćuctuating terms in hydrodynamic theory, more particularly in systems of active aligning particles. The derivation is performed in the dilute limit, which is the relevant regime to describe particles interacting via alignment by collisions. It yields contrasted results with respect to what is usually obtained in the Şmean-ĄeldŤ limit, which is the other regime analytically accessible. Starting from a model of self-propelled particles, we derive in Section 2 the fluctuating kinetic theory in the limit of dilute systems. The fluctuating hydrodynamics is then derived in two limits: deep in the ordered phase in Section 3 and in the vicinity of the Ćocking transition in Section 4. Interestingly, Ćuctuations at kinetic level are not gaussian and do depend on the interactions among the particles, but only their gaussian part survives in the hydrodynamic limit. At variance with Ćuctuating hydrodynamics for weakly interacting particles, we Ąnd that the noise variance at hydrodynamic level depends on the interaction rules among particles and is proportional to the square of the density, reĆecting the binary nature of the aligning-bycollision process.

Chapter 3 deals with the interplay between quenched disorder and activity, in the well-studied theory of incompressible active Ćuids. More precisely, by adding in Section 2 quenched random forces to the hydrodynamics of the pure system, we show, using one-loop RG in Sections 3 and 4, that the disordered system still displays a second-order Ćocking transition. However its universality class is different than the pure one: different critical exponents are indeed found and it is characterized in terms of an incompressible quenched Navier-Stokes theory, for which we try to give some interpretation. We conclude by a discussion on the symmetry content of quenched disordered models of incompressible Ćocks in Section 5. We notably highlight the fact that a unique universality class is expected to describe these models, irrespectively of the nature of disorder, which is at odds with respect to equilibrium. Quenched disorder is thus shown to have quantitative and qualitative effects on the (nonequilibrium) Ćocking transition and its corresponding universality class.

Last, Chapter 4 investigates the hydrodynamics of Ćocking systems in the limit of uniform density. To do so, we introduce in Section 2 a particle-based model of active aligning particles on a lattice, the Swapping XY (SXY), which has the particularity to be of uniform density. Numerical simulations of the SXY model uncover a seemingly ordered phase (for ordered initial condition) but also a puzzling evolving phase (for disordered initial conditions) whose transient status remains unclear. To overcome numerical limitations, we derive in Section 3 the hydrodynamic description of the SXY model, which is closely related to the one of Malthusian Ćocks. Numerical simulations of the Ćuctuating hydrodynamics in Section 4 reveal that the Ćocking state, whose scale-free structure can be characterized, is in fact only metastable to the emergence of an ever evolving foam state, that we further study. This theory provides an example of the substantial effects that Ćuctuations can yield at large scales.

The contents of the chapters largely rely on materials from the preprints listed in Appendix E.

Chapter 1

Interface roughening in phase-separated systems

This chapter is adapted from [START_REF] Besse | Interface Roughening in Nonequilibrium Phase-Separated Systems[END_REF] and aims at determining the universality class describing the roughening of liquid-vapor interfaces arising in phase-separated active systems, summarized in Eqs. (1.16) and (1.31). Interfaces, i.e. the boundary between two phases, are rather common in many different Ąelds of physics and their properties have been studied for long: from growing surfaces of crystals [START_REF] Burton | The growth of crystals and the equilibrium structure of their surfaces[END_REF] to the shape of cell colonies [START_REF] Eden | A probabilistic model for morphogenesis[END_REF], going through Ćame front propagation [START_REF] Maunuksela | Kinetic Roughening in Slow Combustion of Paper[END_REF], liquid-vapor interface [START_REF] Wertheim | Correlations in the liquid-vapor interface[END_REF][START_REF] Weeks | Structure and thermodynamics of the liquid-vapor interface[END_REF], random deposition process [START_REF] Jullien | Proceedings of the Workshop on Surface Disordering: Growth, Roughening, and Phase Transitions[END_REF] or pinning of charge density waves [START_REF] Fukuyama | Dynamics of the charge-density wave. I. Impurity pinning in a single chain[END_REF], Ćuxes in type II superconductors [START_REF] Larkin | Pinning in type II superconductors[END_REF] or domain walls in random magnets [START_REF] Huse | Pinning and Roughening of Domain Walls in Ising Systems Due to Random Impurities[END_REF].

The standard description of interfaces (be they free or constrained) is usually in term of a height Ąeld ĥ(x, t), which describes the height of the interface above a d-dimensional base hyperplane, as schematically shown in Fig. 1.1b. This parametrization (x, ĥ(x, t)) assumes the absence of overhangs in the interface and is called the Monge parametrization. A standard observation about interfaces is the fact that they appear either smooth or rough depending on the observation scale. To better characterize this phenomenon, the concept of interface roughening has been developed, which consists in determining how the morphology of the interface changes under space and time rescaling.

More precisely the roughness of an interface is deĄned as the standard deviation of the height proĄle

W 2 (t, L) = 1 L x δ ĥ2 (x, t), ( 1.1) 
where δ ĥ is the height proĄle shifted by its space-averaged value. It is generically expected to obey a Family-Vicsek scaling [165]

W 2 (L, t) ≈ L 2χ f (t/L z ), (1.2) 
where z is by deĄnition the dynamical critical exponent, χ is the roughness exponent and f is a universal scaling function verifying

f (u) ∝ u 2χ/z , u ≪ 1, 1, u ≫ 1. (1.3)
This scaling thus accounts for the typical behavior which is observed while an interface roughens: starting from a random initial conĄguration and after a short transient regime, the roughness of the interface increases as a universal power-law of time ; for Ąnite-size systems, the roughness can not grow indeĄnitely and eventually saturates to a threshold value, which again scales universally with the system size. 1 The interface is said to be smooth if χ ≤ 0 (height Ćuctuations decay at large scales) and rough otherwise, χ = 0 being the marginal case where logarithmic growth is expected.

The roughening of interfaces has already been thoroughly studied in statistical mechanics. As it is customary, only few universality classes stand out, depending on the symmetries at stake [START_REF] Krug | Origins of scale invariance in growth processes[END_REF][START_REF] Barabási | Fractal concepts in surface growth[END_REF]. In the next sections, we go through the KPZ universality class [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF] describing the roughening of free interfaces and through the conserved KPZ universality class [START_REF] Sun | Dynamics of driven interfaces with a conservation law[END_REF], characterizing interfaces whose height proĄle is conserved.

EW and KPZ universality class

The Edwards-Wilkinson (EW) and the Kardard-Parisi-Zhang (KPZ) equations [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF][START_REF] Edwards | The surface statistics of a granular aggregate[END_REF] describes the roughening statistics of free interfaces, which are the ones generically observed in nature.

These equations can be derived either from explicit derivations in models of driven domain walls and surface growth [START_REF] Täuber | Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior[END_REF] or on the basis of symmetries. In the latter case, it corresponds to the simplest nonlinear scalar Ąeld theory satisfying to the so-called shiftsymmetry,2 ĥ(x, t) → ĥ(x, t) + C for all C ∈ R, which reads

∂ t ĥ = ν∇ 2 ĥ + λ 2 (∇ ĥ) 2 + η, (1.4) 
where η is a Gaussian white noise whose correlator reads

⟨η(x 1 , t 1 )η(x 2 , t 2 )⟩ = 2Dδ(x 1 -x 2 )δ(t 1 -t 2 ) . (1.5)
A rescaling of Eq. (1.4) shows that the equation only depends of a single dimensionless parameter, g = Dλ 2 /ν 3 , which is called the reduced coupling constant.

At linear order (corresponding to λ = 0), Eq. (1.4) is called the EW equation and it describes how the interface relaxes due to the surface tension ν. Its statistics is described by the mean-Ąeld critical exponents z = 2 and χ = (zd)/2, and interfaces falling into the EW universality class are thus expected to be smooth above the dimension d > 2 and rough below.

When the λ-nonlinearity is present, Eq. (1.4) is called the KPZ equation and it deĄnes a universality class distinct from the EW one. The λ-term is interpreted as a lateral growth of the interface, because the interface grows normally with respect to the local surface, while the height Ąeld is deĄned along the y-axis in Fig. 1.1b. In fact Eq. (1.4) satisĄes to another symmetry related to λ, which is called the tilt-or galilean symmetry [START_REF] Mathey | Galilean invariance/scale invariance of KPZ[END_REF] ĥ(x, t) → ĥ(xtu, t) -1

λ x • u + 1 2λ tu 2 , ∀u ∈ R d , (1.6)
which further constrains the renormalization of z and χ into z + χ = 2.

More importantly, the λ-term is found to be relevant for dimensions smaller than the naive upper-critical dimension d c = 2 given by a power-counting argument. However, it turns out that a one-loop RG calculation close to the upper-critical dimension d c [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF] gives a diverging Ćow without any perturbatively accessible Ąxed point, suggesting the presence of a strong coupling Ąxed point. This is further conĄrmed by several numerical and analytical works, whose conclusions are partially summarized in Fig. 1.2. The rough phase is ruled by a strong-coupling Ąxed point, whose existence is conĄrmed via RG calculations [172] for 1 ≤ d ≤ 3 (dashed line) and via numerics even in higher dimensions [START_REF] Alves | Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension[END_REF] (blue points). The rough phase is generically scale-invariant (i.e. no Ąne-tuning is required for the theory to be critical).

At and below the dimension d = 2, a generically scale-invariant rough phase is numerically observed for any nonvanishing coupling constant g and indications of the presence of a strong coupling Ąxed point, with good agreement on scaling functions, have been found in [172]. Due to the fact that the KPZ equation obeys additionally to TRS in dimension d = 1, the critical exponents are exactly given by z = 3/2 and χ = 1/2. Above the dimension d = 2, two phases coexist depending on the value of g: for g < g c , the physics is dominated by a gaussian Ąxed point describing a smooth phase ; otherwise, the physics is described by the strong coupling Ąxed point, at least in d = 3 [172]. Interestingly, it has been conjectured there might be no critical dimension [START_REF] Tu | Absence of Finite Upper Critical Dimension in the Spherical Kardar-Parisi-Zhang Model[END_REF] and numerical simulations [START_REF] Alves | Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension[END_REF] suggest that if an upper critical dimension does exist, it should be greater than d = 6.

The genericity of the KPZ equation (it describes a priori all the interfaces ŞsimplyŤ characterized by the shift-symmetry), and the fact that its physics is dominated in many relevant dimensions by a strong coupling Ąxed point, makes it a paradigmatic model for nonequilibrium physics. Its universality class moreover encompasses numerous physical systems, due to the many connections the KPZ equation has with domains as diverse as: directed polymers in random media [START_REF] Halpin-Healy | Kinetic roughening phenomena, stochastic growth, directed polymers and all that[END_REF][START_REF] Johansson | Shape Fluctuations and Random Matrices[END_REF], interacting particle systems and random matrix theory [START_REF] Kriecherbauer | A pedestrian's view on interacting particle systems, KPZ universality and random matrices[END_REF], traffic Ćows [START_REF] Sasvári | Cellular automata models of single-lane traffic[END_REF], nonequilibrium hydrodynamics [START_REF] Spohn | Fluctuating Hydrodynamics Approach to Equilibrium Time Correlations for Anharmonic Chains[END_REF] or exciton polariton physics [START_REF] Altman | Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy[END_REF].

In practice however, clear observation of KPZ scaling are scarce, excepts in some well-deĄned experiments of turbulent liquid-crystals [START_REF] Takeuchi | Universal Fluctuations of Growing Interfaces: Evidence in Turbulent Liquid Crystals[END_REF] or of Bose-Einstein condensates of exciton polaritons [START_REF] Fontaine | Kardar-Parisi-Zhang universality in a onedimensional polariton condensate[END_REF]. This is probably due to long crossovers from the EW to the KPZ scalings in real-life, which require many decades of observation. Adapted from [START_REF] Provatas | Flame propagation in random media[END_REF].

It also turns out that some physical interfaces do satisfy to other symmetries than the mere shift-symmetry, hence escaping the KPZ universality class. We detail one of these important universality classes in the next section.

Conserved KPZ universality class

Some interfaces have the particularity to display conserved height proĄles (i.e, the number of atoms on the interface is conserved), as in the context of molecular beam epitaxy (MBE) [START_REF] Krim | Experimental observations of self-affine scaling and kinetic roughening at sub-micron lengthscales[END_REF], where the physics is dominated by the surface tension (Fig. 1.4).

Conjugated to the shift-symmetry, this conservation symmetry makes these interfaces escape to the KPZ universality class to fall into the one of conservative roughening. 3 The simplest hydrodynamics respecting the conservation of height can be written [START_REF] Sun | Dynamics of driven interfaces with a conservation law[END_REF] 

∂ t ĥ = -∇ 2  ν∇ 2 ĥ + λ 2 (∇ ĥ) 2 + η, (1.7)
where η is a Gaussian white noise whose correlator reads

⟨η(x 1 , t 1 )η(x 2 , t 2 )⟩ = -2D∇ 2 δ(x 1 -x 2 )δ(t 1 -t 2 ) . (1.8)
It is dubbed as the conserved KPZ equation (cKPZ). A one-loop RG calculation close to the upper-critical dimension d c = 2 yields this time a well-deĄned RG Ćow with a perturbativelyaccessible Ąxed point, whose linearization around this Ąxed point gives the critical exponents Adapted from [START_REF] Sone | Epitaxial growth of silicene on ultra-thin Ag(111) films[END_REF].

z = 4 -ε/3, χ = ε/3, with ε = 2 -d.
A rough phase is thus found below d c , while it is smooth above.

If the cKPZ equation is self-consistent, it is not the most general hydrodynamics for conservative roughening which can be rewritten on the basis of symmetries. Several other nonlinearities (relevant below d c ) can indeed be added to Eq. (1.7) and, contrary to the cKPZ equation, their roughening behavior is not accessible via a one-loop RG calculation. Simulations suggest instead the presence of a strong coupling Ąxed point [START_REF] Caballero | Strong Coupling in Conserved Surface Roughening: A New Universality Class?[END_REF][START_REF] Škultéty | Fixed-dimension renormalization group analysis of conserved surface roughening[END_REF].

In the next section, we address the issue of roughening in phase-separated systems, which is a third instance of roughening universality classes (at least at equilibrium).

Interface roughening in phase-separated systems

In phase-separated systems, be they at equilibrium or active, an interface separates the dense phase from the dilute phase, as shown in Fig. 1.5. This interface roughens due to thermally activated capillary waves [159, 160, 188Ű190], namely waves propagating at the phase boundary between liquid and vapor and whose physics is mainly determined by the surface tension. 4Due to the presence of diffusive Ćuxes of matter in the bulk of both phases, the dynamics at the interface has a nonlocal dynamics in real space [192Ű195]. At equilibrium, the Ćuctuating hydrodynamics for the diffusive interface in phase-separated systems reads [START_REF] Bray | Interface fluctuations, Burgers equations, and coarsening under shear[END_REF] 

∂ t h(q, t) = -σ♣q♣ 3 h(q, t) + 2D♣q♣η(q, t), ( 1.9) 
where h(q, t) corresponds to the Fourier transform with respect to x of the Ąeld ĥ(x, t) from Fig. 1.1b, σ is the interfacial tension which sets both the capillary Ćuctuations of the interface and the rate of Ostwald ripening, and D is the strength of the centered gaussian white noise η, whose correlator reads

⟨η(q 1 , t 1 )η(q 2 , t 2 )⟩ = δ(t 1 -t 2 )δ(q 1 + q 2 ) . (1.10) (a) (b)
Figure 1.5: (a) Droplets of oil into water [START_REF] Silke | A Different Perspective, Oil into water[END_REF]. The coarsening to bulk phase separation is still not complete. (b) Simulation of the liquid-vapor interface in AMB+ taken from [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF].

The colormap corresponds to the relative density: the lighter, the denser.

This equation notably implies that capillary waves traveling along the interface are damped on typical time scales τ ∼ 1/(σ♣q♣ 3 ). This equation can be rewritten in the real space under the form

∂ t ĥ = G ⋆ ∇ 2 ĥ + η R , (1.11)
where G is a long-range kernel decaying as ♣x♣ -d-1 at large distances reĆecting the nonlocal character of the dynamics, ⋆ stands for the spatial convolution and η R is a gaussian noise in real space, whose correlator reads

⟨η R (x 1 , t 1 )η R (x 2 , t 2 )⟩ = 2D G(x 1 -x 2 ) δ(t 1 -t 2 ) . (1.
12)

The hydrodynamics of liquid-vapor interface in passive Ćuids in Eq. (1.9) must be described, at least in the stationary state, by an equation that respects detailed balance. In this case the interface is a subset of degrees of freedom within a thermally equilibrated state of the full, phase-separated, system and hence is itself in equilibrium. The Ćuctuation-dissipation theorem then means that any nonlinearity that enters Eq. (1.9) is of the form ♣q♣ δF I /δh(q) for some free energy functional F I [h]. A simple dimensional analysis argument then shows that there exists no nonlinearity correcting Eq. (1.9) which is relevant in the renormalization group (RG) sense, for interfaces of dimension d = 1, 2. Hence the stationary dynamics of diffusive (i.e., without momentum conservation) interfaces between phase-separated passive liquids is described by mean-Ąeld critical exponents. 5 Dimensional analysis [START_REF] Täuber | Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior[END_REF] of Eq. (1.9) gives z = 3 and χ = (zd -1)/2, in terms of which spatial and temporal correlations scale as

lim t→∞ ⟨ ĥ(x, t) ĥ(x ′ , t)⟩ = ♣x -x ′ ♣ 2χ , (1.13) lim ♣x♣→∞ ⟨ ĥ(x, t) ĥ(x, t ′ )⟩ = ♣t -t ′ ♣ 2χ/z . (1.14)
For nonequilibrium phase-separated systems, TRS breaks down and the previous reasoning does not hold anymore. The roughening properties of nonequilibrium liquid-vapor interface are thus different from the equilibrium ones.

In fact, already at linear level, nonequilibrium liquid-vapor interfaces display a peculiar phenomenology compared to equilibrium. In the context of active matter, it has been for instance shown [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF] for the liquid-vapor interfaces in AMB+ that the surface tension characterizing the damping of capillary waves σ cw and the rate of Ostwald ripening differ, which is at odds with what is known at equilibrium. Moreover σ cw can become negative in some parameter regime, meaning that the liquid-vapor interface is locally unstable. In the rest of the chapter, we abusively denotes σ cw , the capillary-wave tension, by σ.

In this chapter, we address more precisely the roughening of interfaces in nonequilibrium phase-separated systems, one instance being displayed in Fig. 1.5b. Beyond the KPZ and cKPZ universality classes, it does not seem that there is much place for additional universality classes, except if extra symmetries are imposed, and interfaces in phase-separated systems should thus be legitimately described by the cKPZ universality class (or variants of it). This turns however not to be the case for the following reason: hydrodynamics and thus universality classes are not merely deĄned by their symmetry content but also by the functional space in which they live, which is determined by the physics at stake. Inspection of the linear equation for liquid-vapor interfaces (1.9) shows that it lives in a larger functional space than the KPZ or cKPZ one, due to the presence of the nonanalytic mobility term ♣q♣. Within this functional space, a new nonlinearity turns out to be relevant below the upper-critical dimension d c = 2 and it yields critical exponents which are not the ones of cKPZ nor KPZ. The roughening of interfaces in (nonequilibrium) phase-separated systems thus belongs to a different universality class than KPZ or cKPZ and the chapter is devoted to its study.

In Section 2, we Ąrst introduce on the basis of symmetries an hydrodynamic equation thought to describe the roughening of nonequilibrium interfaces, which we term ♣q♣KPZ. Its roughening exponents are calculated via one-loop perturbative RG. In Section 3, the RG predictions are compared against direct numerical integration of the ♣q♣KPZ and show a good agreement. We Ąnally derive explicitly from AMB+ the effective interface equation and we show that it belongs to the ♣q♣KPZ universality class in Section 4.

♣q♣KPZ universality class

In this section, we Ąrst determine on the basis of symmetries the Ćuctuating hydrodynamics describing interfaces in nonequilibrium phase-separated systems, including nonlinear terms (Section 2.1). We then determine in Section 2.2 the associated roughening properties at large scales, via a controlled one-loop perturbative RG calculation at the upper-critical dimension d c = 2, which yields the critical exponents of the ♣q♣KPZ universality class. In Section 2.3, we verify that the ♣q♣KPZ equation is stable under one-loop RG.

♣q♣KPZ equation

To derive the hydrodynamics describing the roughening of interfaces in phase-separated systems on the basis of symmetries, we need to determine which nonlinearities might modify Eq. (1.9). These potential nonlinearities have to respect the following symmetries:

1. invariance under rotations and translations, 2. invariance under a shift in the origin of the reference frame, that is under the shiftsymmetry ĥ(x, t) → ĥ(x, t) + C for any C ∈ R, or equivalently in the Fourier space, under h(q, t) → h(q, t) + (2π) d δ(q)C, 3. conservation of the total amount of liquid and vapor during the roughening, which implies that x ĥ is constant or equivalently lim q→0 ∂ t h(q) = 0, 4. invariance under x → -x, i.e. that the chiral symmetry is not broken.

Due to the conservation of ĥ, the interface dynamics cannot belong to the EW nor the KPZ universality class. A priori, nonlinearities entering in models of conserved surface growth, such as the cKPZ [START_REF] Krug | Origins of scale invariance in growth processes[END_REF][START_REF] Sun | Dynamics of driven interfaces with a conservation law[END_REF] and cKPZ+ [START_REF] Caballero | Strong Coupling in Conserved Surface Roughening: A New Universality Class?[END_REF], could satisfy the previous symmetries but dimensional analysis performed from Eq. (1.9) shows that these nonlinearities are irrelevant in this context.

If symmetries strongly constrain the content of a Ąeld theory, it does not determine it completely, as the functional form in which the Ąeld theory is expressed still needs to be speciĄed. It turns out to be crucial here: inspecting Eq. (1.9), it appears that the hydrodynamics for ĥ is not a regular Taylor expansion in powers of Ąelds and gradients. Instead a nonanalytic term ♣q♣ is present and plays the role of a mobility. It is thus natural to consider nonlinearities which could modify Eq. (1.9) in the form

♣q♣ n i=1 q i =q g(q♣q 1 , ..., q n )h(q 1 )...h(q n ), (1.15) 
where the integral is over q 1 , ..., q n with the constraint n i=1 q i = q. Nonlinearities depending on the frequencies ω, ω 1 , ..., ω n could be considered as well without changing any conclusion. The prefactor ♣q♣ automatically ensures the conservation of the total interface height.

Assuming that g is an analytic function of all its arguments and imposing the symmetries mentioned above, the most relevant nonlinearity that can modify Eq. (1.9) is g(q♣q 1 , q 2 ) = λ 1 iq 1 •iq 2 . This term is relevant for d < d c = 2 and it breaks time-reversal-symmetry (TRS), as it does not derive from a free-energy. No other compatible nonlinearities are found to be relevant in any physical dimension d ≥ 1. In the following, we thus investigate the following hydrodynamics

∂ t h(q, t) = -σ♣q♣ 3 h(q, t) + λ 1 2 ♣q♣F[♣∇ ĥ♣ 2 ](q, t) + 2D♣q♣η(q, t), (1.16) 
which we term ♣q♣KPZ. F[•] stands for the Fourier transform and the same conventions as in Appendix A are used.

One-loop RG flow and critical exponents

In this section, we determine how the λ 1 -nonlinearity introduced in Eq. (1.16) might modify the roughening properties of the interface. To do so, we perform a one-loop RG calculation, perturbatively in ε = 2d > 0.

Within the response-Ąeld formalism detailed in Appendix B, the action S associated with Eq. (1.16) reads

S = Q h(-Q)  G -1 0 (Q)h(Q) + A(Q) -D♣q♣ h(Q)  , (1.17)
where h is response Ąeld, Q is the 4-vector (ω, q) and

G 0 (Q) = 1 -iω + σ♣q♣ 3 , (1.18) A(Q) = λ 1 2 ♣q♣ Q 1 +Q 2 =Q q 1 • q 2 h(Q 1 )h(Q 2 ) . (1.19)
We draw in Fig. 1.6 the one-particle-irreducible (1PI) diagrams to one loop associated with the action (1.17). The diagram in Fig. 1.6a gives a nonvanishing contribution that renormal- izes σ, while the one in Fig. 1.6d only gives irrelevant contributions to the renormalization of the noise. Diagrams in Figs. 1.6b and 1.6c exactly cancel out, as suggested by generalizing the argument of [START_REF] Janssen | On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion[END_REF] and conĄrmed by an explicit computation of the diagrams. The calculation of the different diagrams is detailed in the next sections, which can be skipped in Ąrst lecture to go directly to Section 2.2.5.

Perturbation theory

From the bare action in Eq. (1.17), we deĄne the propagator

G 0 (q, ω) = h h = 1 -iω + σ♣q♣q 2 , (1.20)
and the vertices as

V (q 1 , q 2 , q 3 ) = h(q 1 ) h(q 2 ) h(q 3 ) (1.21) = λ 1 2 ♣q 1 ♣q 2 • q 3 δ(q 1 + q 2 + q 3 ), N (q, ω) = h h (1.22) = G 0 (q, ω)(-D♣q♣)G 0 (-q, -ω) .

Renormalization of the propagator

Renormalization of ω and σ stems from the correction of diagram in Fig. 1.6a. For the renormalization of ω, only terms proportional to ω at vanishing external momentum p matter. However, since the 3-leg vertex is proportional to the momentum carried on the h-leg, this contribution vanishes.

For the correction to σ, we have to extract from Fig. 1.6a the terms proportional to ♣p♣ 3 at vanishing external frequencies. It reads

I = 8 q,ω V (p, q, -p -q)N (q, ω)V (p + q, -q, -p)G 0 (p + q, ν + ω) ν=0 .
(

The integral over the internal frequency in I is calculated with the residue theorem, choosing the pole in the upper-left plane ω = iσ♣q♣ 3 :

I = Dλ 2 1 σ 2 q ♣p♣q • (p + q)♣p + q♣p • q♣q♣ ♣q♣ 3 (♣q♣ 3 + ♣p + q♣ 3 ) . (1.24)
To retrieve the contribution to the renormalization of σ, a Taylor expansion in small p is performed up to terms of order ♣p♣ 3

I = Dλ 2 1 σ 2  1 2 q ♣p♣p • q q 2 + 1 4 q ♣p♣(p • q) 2 q 4  . (1.25)
The Ąrst term disappears by parity; Wilson's regularization up to a cutoff Λ then gives at the upper-critical dimension d c = 2

I = σ♣p♣ 3 Dλ 2 1 8σ 3 K 2 Λ d-2 , (1.26)
where K 2 is the geometric angular factor of the momentum integration deĄned as

K d = S d /(2π) d and S d = 2π d/2 /Γ(d/2).

Nonrenormalization of the nonlinearity to one loop

λ 1 is renormalized by two graphical corrections, in Figs. 1.6b and 1.6c. Their sum, at order 3 in the external momenta and after integration over frequencies, reads

I 1 + I 2 ∝ Dλ 3 1 σ 3 (2A 1 -A 2 )♣p 1 ♣ q q • p 2 q • (p 1 + p 2 ) q 4
where A 1 Ű resp. A 2 Ű is the combinatoric factor of the diagram in Fig. 1.6b Ű resp. Fig. 1.6c. Due to the symmetry of the diagrams, A 2 = 2A 1 ; hence, λ 1 does not get renormalized in the RG Ćow to one loop.

Nonrenormalization of the noise

From the diagram of Fig. 1.6d, corrections to the bare noise vertex are proportional to p 2 (p is the external momentum). This is due to the fact that the 3-leg interaction vertex is proportional to the momentum carried by its h-leg. Thus there is no correction to the noise vertex, which is nonanalytic and of order O(♣p♣).

Resulting RG flow

Given the previous graphical corrections, the RG Ćow for the unrescaled variables σ, λ 1 and 

D reads Λ dσ dΛ = (z -3 + 1 8 Dλ 2 1 σ 3 K 2 )σ, (1.27) Λ dλ 1 dΛ = (z -3 + χ)λ 1 , (1.28) 
Λ dD dΛ = (z -2χ -d -1)D . (1.29) Logarithmic differentiation of g = Dλ 2 1 /σ
z = 3 - ε 3 , χ = ε 3 . (1.31)
Eq. (1.31) describes the ♣q♣KPZ universality class perturbatively to one loop.

Self-consistency of the ♣q♣KPZ to one-loop RG

In this section we show that, although the ♣q♣KPZ equation (1.16) contains the singular mobility ♣q♣, it is stable to one loop under Wilson RG. More precisely, this means that no term that is more relevant (in RG sense) than those already included in the ♣q♣KPZ equation can be generated by Ćuctuations to one loop. We show this by i) proving in Section 2.3.1 that symmetries constrain the operators generated along the RG Ćow and ii) by showing in Section 2.3.2 that any nonlinearity generated to one loop is in the form of Eq. (1.15) with g analytic in its arguments.

Two Ward identities for ♣q♣KPZ

The bare action is invariant under two time-dependent (also called time-gauged) shiftsymmetries, which write in Fourier space h′ (q, t) = h(q, t)+c 0 (t)δ(q) and h ′ (q, t) = h(q, t)+ c 0 (t)δ(q), where c 0 (t) is an arbitrary real function of time. From these symmetries, two identities for the effective action Γ are inferred in the limit of inĄnitesimal c 0 (t)

q,t  δΓ δ h(q, t) -∂ t h(q)  c 0 (t)δ(-q) = 0, (1.32) q,t
 δΓ δh(q, t)

+ ∂ t h(q)  c 0 (t)δ(-q) = 0 . (1.33)
Functional derivatives of these identities yield two Ward identities for the (m, n)-point vertices, m, n ≥ 1,

Γ (m,n) (ω 1 , q 1 = 0, ..., Q m ♣Q m+1 , ..., Q n+m ) = iω 1 δ m,1 δ n,1 , Γ (m,n) (Q 1 , ..., Q m ♣ω m+1 , q m+1 = 0, ..., Q n+m ) = -iω m+1 δ m,1 δ n,1 . (1.34)
where Γ (m,n) is deĄned as the m-th derivative with respect to h and the n-th derivative with respect to h, the conservation of the total frequency and momentum being intended.

These two identities imply that, apart from the term h∂ t h which is not renormalized, all Γ (m,n) vanish upon setting one of their momenta to 0. This is true in any diagrammatic correction in the RG Ćow generated from the bare action in Eq. (1.17), to any loop-order.

Functional form of the nonlinearities in the perturbative RG-flow of ♣q♣KPZ

In this section, we show that the functional form of the nonlinearities which is assumed in Eq. (1.15) is stable under one-loop corrections, as long as Eq. (1.17) is taken as the initial action of the RG Ćow.

Let us assume that, at the RG-scale Λ, the only nonanalytic terms in the Γ (m,n) (P 1 , ..., P m ♣P m+1 , ..., P m+n ) are those attached to the h(P i )-legs and are of the form ♣p i ♣. Therefore in any one-loop correction to the Γ (m,n) 's

h(P 1 ) h(P m ) h(P m+1 ) h(P m+n ) . .... . .... (1.35)
the nonanalytic terms within the loop integral have the form ♣q + i∈J p i ♣, J being a subset of ¶1, ..., m + n♢ and q the internal momentum. The momentum structure of the one-loop diagrams results from a Taylor expansion at small p i , hence is fully analytic in the external momenta p i . Therefore, at the RG scale Λ -dΛ, the nonanalytic structure of the Γ (m,n) is the same as at scale Λ. Since the bare action satisĄes to the assumption above about the momentum structure of the Γ (m,n) , it stays true all along the Ćow.

As a consequence of appendix 2.3.1 and of the argument above, nonlinearities have to be analytic in the momenta associated with the external h-legs. Moreover in any vertex of the RG Ćow (but h∂ t h), each h(Q) Ű resp. h(Q) Ű is at least proportional to ♣q♣ Ű resp. to q. The lowest order linear terms allowed by symmetries and satisfying to the Ansatz in Eq. (1.15) are thus ∂ t h(q) and ♣q♣q 2 h(q), while the lowest order nonlinear term is λ 1 ♣q♣F[♣∇ ĥ♣ 2 ](q). This implies that the ♣q♣KPZ equation is stable under one-loop RG Ćow.

Sensitivity of the flow to the Ansatz in Eq. (1.15)

We could wonder whether additional relevant nonlinearities can be found if the Ansatz in Eq. (1.15) is relaxed, for instance by allowing nonanalytic terms in the momenta associated with the h-leg.

It turns out to be possible with for instance the two following nonlinearities entering in Eq. (1.16)

λ 2 2 ♣q♣ q 1 +q 2 =q (♣q♣ -♣q 1 ♣ -♣q 2 ♣) h(q 1 , t)h(q 2 , t), (1.36) λ 3 2 ♣q♣ q 1 +q 2 =q ♣q 1 ♣♣q 2 ♣h(q 1 , t)h(q 2 , t) . (1.37)
However, if nonanalytic terms in the momenta associated with the h-leg are considered, the linear term ♣q♣ 2 h(q) is now a priori allowed and compatible with the Ward identities in Eq. (1.34): it is thus generically expected in the RG Ćow. This is conĄrmed via a one-loop RG calculation (following mutatis mutandis the derivation of Section 2.2) in which the λ 1 -term of Eq. (1. [START_REF] Adkins | Dynamics of active liquid interfaces[END_REF]) is replaced by one of the nonlinearities in Eqs. (1.36) and (1.37). A Laplacian term, more relevant than the ♣q♣ 3 h(q) term is indeed generated (even if not present at the bare level) when the nonlinearities in Eqs. (1.36) and (1.37) are included at bare level.

Consequently, considering nonanalytic terms in the momenta associated with the h-leg is expected to change the linear theory of capillary waves and thus to substantially alter the physics at stake. However, no footprint of such breaking of capillary wave theory has been observed in [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF]: there is a priori no physical reason to consider a different Ansatz than in Eq. (1.15) and we do not consider the nonlinearities in Eqs. (1.36) and (1.37) as physically relevant. This is further supported by the derivation via explicit coarse-grainings of the effective interface equation in standard models of active phase-separation in Section 4.

The critical exponents characterizing the ♣q♣KPZ universality class predicted via oneloop RG can be compared against the ones found via numerical integration of the SPDE Eq. (1.16), which we detail in the next section.

Numerical assessment of the RG predictions

We present in this section the results of the numerical integration of the ♣q♣KPZ equation in d = 1 using a pseudospectral code with 2/3 dealiasing procedure. The use of a pseudospectral code is particularly convenient for the ♣q♣KPZ equation because it has computational complexity O(L log L), where L is the system size, while, given its nonlocality in real space, a Ąnite difference code would have complexity O(L 2 ). The results presented are obtained with spatial discretization ∆x = 1, time discretization ∆t = 10 -2 . We quantify the interfacial width via

W 2 (t, L) = 1 L x ĥ2 (x, t), (1.38)
starting from a Ćat interface and averaging it over noise realizations. The RG analysis predicts that, while roughening, W 2 ∼ t 2χ/z and that, for a system of Ąnite size L, W 2 eventually saturates in time to a value

W 2 ∞ (L) ≡ W (∞, L) 2 ∼ L 2χ .
Measuring the interfacial width as a function of time and its saturated value as a function of L allows to retrieve both critical exponents, z and χ.

To do this, we plot, in Fig. 1.7, W 2 (t, L) as a function of time and various system-sizes both in log-log and in a redressed plot (inset). In the case of the linear theory (λ 1 = 0) we measure in Fig. 1.7a 2χ/z = 1/3 as expected. However, as soon as λ 1 ̸ = 0, we Ąnd in Fig. 1 In fact, the two previous scalings can be written within the Family-Vicsek scaling for the roughness in Eqs. (1.2) and (1.3). The honest data collapse is conĄrmed in Fig. 1.9 both for g = 0 and for g = 0.4 and show the universal scaling function f in Eq. (1.3) for ♣q♣KPZ. The agreement between numerical and analytical predictions is good considering that the RG predictions are obtained to one loop perturbatively in ε. These numerical results conĄrm the presence of a perturbatively accessible Ąxed point described by the ♣q♣KPZ equation.

Effective interface equation obtained from AMB+

We show in this section that the ♣q♣KPZ nonlinearity is expected to generically arise when describing interfaces of phase-separated active systems. To do so, we start from AMB+, a minimal continuum model describing phase-separated active systems detailed in the introduction of the manuscript in Section 3.1.2, and we derive the effective equation which the liquid-vapor interface obeys.

We recall that AMB+ generalizes Model B by including all terms that break detailed balance up to order O(∇ 4 ϕ 2 ) in a gradient expansion [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF]:

∂ t ϕ = -∇ • J + √ 2DM Λ  , (1.39) J/M = -∇µ λ + ζ(∇ 2 ϕ)∇ϕ, (1.40) µ λ [ϕ] = δF δϕ + λ♣∇ϕ♣ 2 , ( 1.41) 
where notations are the same as in Section 3.1.2. In the rest of the chapter, we assumes that the interfacial tensions determining the Ostwald process [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF] and the relaxation of capillary waves [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF] are both positive so that the system undergoes bulk phase separation.

The linear description of capillary waves, Eq. (1.9), has been obtained for passive Ćuids starting from Model B [START_REF] Bray | Interface fluctuations, Burgers equations, and coarsening under shear[END_REF] and recently for active Ćuids starting from AMB+ [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF]. This procedure is extended in this chapter to obtain the nonlinear terms correcting Eq. (1.9) and is detailed in Section 4.1. The effective interface equation is obtained assuming that the density Ąeld ϕ evolves quasistatically with respect to Ćuctuations of the interfacial height, i.e. using the Ansatz ϕ = φ(y -ĥ(x, t)). It reads

∂ t h(q) = 2♣q♣ A 0 (q) -σ q 2 h(q) + N [h](q) + χ(q) , (1.42) 
with We give in the next section technical details to derive Eq. (1.42) but we draw before some conclusions from this effective interface equation.

N [h](q) = ∞ n=1 q 1 ,x,x 1 e -iq•x 1 -iq 1 •x 1 +iq 1 •x (-1) n+1 ( ĥ(x) -ĥ(x 1 )) n 2n! ♣q 1 ♣ n (1.43)  A n (q 1 ) ♣q 1 ♣ ∂ t ĥ(x) + ζD n (q 1 )∇ 2 x ĥ(x) ,
First, to leading order in h and q, Eq. (1.42) reduces to Eq. (1.9), where the interfacial tension σ is proportional to the capillary-waves interfacial tension σ cw [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF]. Second, the λ 1 -term of Eq. (1.16) is not present in Eq. (1.42) at bare level and the effective interface equation evens contains nonlinearities in the form of Eq. (1.15) with g singular. However, it turns out that these singular nonlinearities are irrelevant from dimension analysis: each ĥ in Eq. (1.43) is at least associated either with a ♣q 1 ♣ or a ∂ t or a ∇ x . Moreover, as shown in Section 4.3, the λ 1 -term of ♣q♣KPZ is generated upon renormalization from Eq. (1.42), even in the presence of the singular nonlinearities. All this suggests that the liquid-vapor interface belongs to the ♣q♣KPZ universality class.

Explicit derivation within Stratonovich convention

This section only provides technical details on how to derive Eq. (1.42) and can be skipped in Ąrst lecture. Any calculation in this section has to be understood within the Stratonovich convention.

To derive the effective interface equation, we assume the absence of overhangs. On a rapid time-scale, we expect diffusion to quasistatically relax ϕ(r, t) to a value that depends only on the distance to the interface. For small amplitude, long-wavelength perturbations, the vertical direction and the one normal to the interface are equivalent and we thus can assume that ϕ(r, t) = φ(y -ĥ(x, t)), (1.44) where φ is the interfacial proĄle. This Ansatz is exact at leading order in h and q [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF]. For the derivation it is useful to use the pseudo-variables ψ and g detailed in the introduction of the manuscript. They solve

K ∂ 2 ψ ∂ϕ 2 = (ζ -2λ) ∂ψ ∂ϕ , ∂g ∂ψ = ∂f ∂ϕ ≡ µ, whence ψ = K ζ -2λ e (ζ-2λ)ϕ/K -1  . (1.45)
In terms of them, the equilibrium conditions µ 1 = µ 2 and (µψg) 1 = (µψg) 2 which select the binodals ϕ 1,2 still hold [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF][START_REF] Solon | Generalized thermodynamics of motility-induced phase separation: phase equilibria, Laplace pressure, and change of ensembles[END_REF]. This change of variables is primarily a mathematical device for constructing the phase equilibria and simplify the calculations to obtain the equation for h; ψ and g have no direct physical signiĄcance beyond this. While the Ansatz in Eq. (1.44) is rigorously justiĄed for deriving the linear (in h) terms at leading order in ♣q♣, a curvature dependence in φ can affect higher orders. Given that we were only interested in showing that a λ 1 -term emerges in the effective equation for the interface of AMB+ and not in Ąnding the exact amplitude of these nonlinearities, we disregard the curvature dependence in φ.

Following [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF], we proceed by plugging Eq. (1.44) into Eqs. (1.39) to (1.41) and inverting the Laplace operator. The ensuing equation is then multiplied by ∂ y ψ, integrated across the interface, Fourier transformed along the x-direction and expanded in powers of h to give Eq. (1.42). To simplify these calculations, the deterministic part of Eqs. (1.39) to (1.41) is rewritten under the following form

∂ t ϕ(x, y) = ∇ 2 L(x, y) + R(x, y), (1.46) L(x, y) = f ′ (ϕ) -κ∇ 2 ϕ + (λ -ζ/2)(∇ϕ) 2 , (1.47) R(x, y) = 2ζ  (∂ 2 x,y ϕ) 2 -∂ 2 x ϕ∂ 2 y ϕ  .
(1.48)

∇ -2 (1.46) is then projected on the interface ŞproĄleŤ ∂ y ψ F x→q  y ψ ′ (y -ĥ(x))∇ -2 ∂ t ϕ(x, y)  = F x→q  y ψ ′ (y -ĥ(x))L(x, y)  + F x→q  y ψ ′ (y -ĥ(x))∇ -2 R(x, y)  . (1.49)
The calculations of the different terms of Eq. (1.49) are detailed in the next subsections.

L-term

Using the Ansatz in Eq. (1.44), L reads

L(x, y + ĥ(x)) = f ′ (φ(y)) -κφ (2) (y) + (λ - ζ 2 )φ ′2 (y) + κφ ′ (y)∇ 2 x h (1.50) +  -κφ (2) (y) + (λ - ζ 2 )φ ′2 (y)  (∇ x h) 2 .
A change of variables and a Fourier transform with respect to x yield to

F x→q  y ψ ′ (y -ĥ(x))L(x, y)  = δ(q) u ψ ′ (u)  f ′ (φ(u)) -κφ (2) (u) + (λ - ζ 2 )φ ′2 (u)  + κF[∇ 2 x h](q) u ψ ′ (u)φ ′ (u) + F[(∇ x h) 2 ](q) u ψ ′ (u)  (λ - ζ 2 )φ ′2 (u) -κφ (2) (u)  (1.51)
Terms proportionnal to δ(q) vanish when multiplied by an overall factor ♣q♣, coming from the ∂ t h term later derived in Section 4.1.2. Moreover, since ψ is the pseudo-density, the term ∝ F[(∇ x h) 2 ](q) vanishes because of the identity

u ψ ′ (u)  (λ - ζ 2 )φ ′2 (u) -κφ (2) (u)  = 0. (1.52) Hence F x→q  y ψ ′ (y -ĥ(x))L(x, y)  = κF[∇ 2 x h](q) u ψ ′ (u)φ ′ (u) . (1.53)

∂ t ϕ-term

Using the Ansatz in Eq. (1.44), ∂ t ϕ(x, y) = -∂ t ĥ(x)φ ′ (yĥ(x)). Moreover

A = F x→q  y ψ ′ (y -ĥ(x))∇ -2 ∂ t ϕ(x, y)  =
x,y g q (x, y)∂ t ϕ(x, y), (1.54) where g q (x, y) solves ∇ 2 g q (x, y) = e -iq•x ψ ′ (yĥ(x)). g q can be represented in the Fourier space as

g q (q 1 , y) = - 1 2 y 1 ,x 1 e -♣q 1 ♣♣y-y 1 ♣ ♣q 1 ♣ e -iq•x 1 -iq 1 •x 1 ψ ′ (y 1 -ĥ(x 1 )), (1.55) 
and thus

g q (x, y) = - 1 2 q 1 ,x 1 ,y 1 e -♣q 1 ♣♣y-y 1 ♣ ♣q 1 ♣ e -iq•x 1 -iq 1 •x 1 +iq 1 •x ψ ′ (y 1 -ĥ(x 1 )) . (1.56)
Up to a change of variable, A =x,y g q (x, y + ĥ(x))∂ t ĥ(x)φ ′ (y). To go further a Taylor expansion in powers of ĥ is performed

A = 1 2 ∞ n=0 q 1 ,x,y,x 1 ,y 1 e -iq•x 1 -iq 1 •x 1 +iq 1 •x A n (q 1 ) ♣q 1 ♣ ∂ t ĥ(x) ( ĥ(x) -ĥ(x 1 )) n n! , (1.57) Ãn (q 1 ) = y,y 1 φ ′ (y)ψ (1+n) (y 1 )e -♣q 1 ♣♣y-y 1 ♣ . (1.58)
Performing in Ãn (q 1 ) n integrations by part on y 1 gives the identity Ãn (q 1 )

♣q 1 ♣ = -2 ⌊n/2⌋-1 k=0 ♣q 1 ♣ 2k Ãn-2k-2 (0) + (-1) n ♣q 1 ♣ n A n (q 1 ) ♣q 1 ♣ , ( 1.59) 
A n (q 1 ) = y,y 1 sgn(yy 1 ) n φ ′ (y)ψ ′ (y 1 )e -♣q 1 ♣♣y-y 1 ♣ .

(1.60)

Inserting the previous identity in A, Fourier transforming with respect to q 1 the polynomial terms in ♣q 1 ♣ 2k and integrating them by parts 2k times to make them vanish, Ąnally gives

A = 1 2 ∞ n=0 q 1 ,x,x 1 e -iq•x 1 -iq 1 •x 1 +iq 1 •x (-1) n ( ĥ(x) -ĥ(x 1 )) n n! ♣q 1 ♣ n A n (q 1 ) ♣q 1 ♣ ∂ t ĥ(x) .
(1.61)

R-term

Using the Ansatz in Eq. (1.44), R(x, y + ĥ(x)) = ζ∂ y φ ′2 (y)∇ 2 x ĥ(x). Following the same line of calculations as in Section 4.1.2, we obtain

F x→q  y ψ ′ (y -ĥ(x))∇ -2 R(x, y)  = x,y g q (x, y)R(x, y) (1.62) = ζ 2 ∞ n=0 q 1 ,x,x 1 e -iq•x 1 -iq 1 •x 1 +iq 1 •x (-1) n+1 ( ĥ(x) -ĥ(x 1 )) n n! ♣q 1 ♣ n D n (q 1 )∇ 2 x ĥ(x),
where

D n (q 1 ) = y,y 1 sgn(y -y 1 ) n+1 φ ′2 (y)ψ ′ (y 1 )e -♣q 1 ♣♣y-y 1 ♣ . (1.63)

Noise term in the effective interface equation

Last, we derive the noise term of the effective interface equation following the same lines as in [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF]. If ξ is deĄned as

ξ(x, y, t) = ∇ -2 Λ(x, y, t), (1.64)
it is a Gaussian noise (as a linear transform of Λ) whose correlation reads

C ξ (x, y, t) = -2Dδ(t)δ(y)∇ -2 x δ(x) (1.65)
and its Fourier transform along x

C ξ (q, y, t) = D ♣q♣ e -♣q♣♣y♣ δ(t) .
(1.66)

The hydrodynamic noise χ deĄned as

χ(q, t) = F  y ψ ′ (y -ĥ(x))ξ(x, y, t)  (q, t) (1.67)
is again Gaussian, has zero average and its correlator reads, up to a shift of internal variables,

⟨χ(q 1 , t 1 )χ(q 2 , t 2 )⟩ = D δ(t 1 -t 2 ) x 1 ,x 2 ,q,y 1 ,y 2 e -♣q♣♣y 1 -y 2 ♣ ♣q♣ e iq•(x 1 -x 2 ) e -iq 1 •x 1 -iq 2 •x 2 (1.68)
ψ ′ (y 1 )ψ ′ (y 2 + ĥ(x 1 ) -ĥ(x 2 )) .

Expanding the previous expression in powers of ĥ in the same spirit as in appendix 4.1.2 yields

⟨χ(q 1 , t 1 )χ(q 2 , t 2 )⟩ = D δ(t 1 -t 2 ) ∞ n=0 x 1 ,x 2 ,q (-1) n ( ĥ(x 1 ) -ĥ(x 2 )) n n! ♣q♣ n B n (q) ♣q♣ (1.69) e -i(-q+q 1 )•x 1 -i(q+q 2 )•x 2 ,
where To leading order in h and q, Eq. (1.42) reduces to Eq. (1.9), where the interfacial tension σ is replaced by 2σ cw /A, with the capillary-waves interfacial tension σ cw writing

B n (q) = y 1 ,y 2 sgn(y 1 -y 2 ) n ψ ′ (y 1 )ψ ′ (y 2 )e -♣q♣♣y 1 -y 2 ♣ . ( 1 
σ cw = σ λ + ζ 2 y 1 ,y 2 sgn(y 1 -y 2 )ψ ′ (y 1 )φ ′2 (y 2 ), (1.71) 
and A = y 1 ,y 2 φ ′ (y 1 )ψ ′ (y 2 ) [START_REF] Fausti | Capillary Interfacial Tension in Active Phase Separation[END_REF]. Since the noise is additive, Stratonovich and Itô conventions are equivalent.

Interface equation within Itô convention

Usually RG calculations are conveniently performed on stochastic equations written within the Itô convention. In order to study the RG Ćow associated with Eq. (1.42), we thus rewrite it into the Itô convention.

To do so, we Ąrst represent the noise χ in Eq. (1.67) as a sum of Gaussian noises ξ n (q, t), by performing a Taylor expansion in powers of ĥ such that

χ(q, t) = ∞ n=0 q 1 g n (q, q 1 )ξ n (q 1 , t),
(1.72)

g n (q, q 1 ) = 1 n! x ĥn (x)e i(q 1 -q)•x , (1.73)
where ξ n have zero average and correlations ⟨ξ n (q

1 , t 1 )ξ m (q 2 , t 2 )⟩ = C n,m (q 1 )δ(q 1 +q 2 )δ(t 1 - t 2 ), with C n,m (q 1 ) = (2π) d D ♣q 1 ♣ y 1 ,y 2 ψ ′ (y 1 )ψ ′ (y 2 )∂ n y 1 ∂ m y 2 e -♣q 1 ♣♣y 1 -y 2 ♣ , if n + m is even, 0, otherwise. (1.74)
Equation (1.42) can thus be rewritten as

∂ t h(q) + q 1 L -1 q,q 1 ζM q 1 + σ λ q 2 1 h(q 1 ) = ∞ n=0 q 1 ,q 2 L -1 q,q 1 g n (q 1 , q 2 )ξ n (q 2 ) (1.75)
where

L q,q 1 = ∞ n=0 q 2 ,x,x 1 (-1) n ( ĥ(x) -ĥ(x 1 )) n 2n! ♣q 2 ♣ n A n (q 2 )e -iq•x 1 -iq 2 •x 1 +iq 2 •x+iq 1 •x , (1.76) M q 1 = ∞ n=0 q 2 ,x,x 1 (-1) n ( ĥ(x) -ĥ(x 1 )) n 2n! ♣q 2 ♣ n D n (q 2 )∇ 2 x ĥ e -iq 1 •x 1 -iq 2 •x 1 +iq 2 •x .
(1.77)

The operator L -1 is deĄned as the inverse operator of L by

q 1 L -1 q,q 1 L q 1 ,p = δ(q 1 -p) . (1.78)
Following the standard procedure [START_REF] Gardiner | Handbook of stochastic methods[END_REF][START_REF] Cates | Stochastic Hydrodynamics of Complex Fluids: Discretisation and Entropy Production[END_REF] we obtain the effective equation for the interface of AMB+ within the Itô convention

∂ t h(q) + q 1 L -1 q,q 1 ζM q 1 + σ λ q 2 1 h(q 1 ) = ∞ n=0 q 1 ,q 2 L -1 q,q 1 g n (q 1 , q 2 )ξ n (q 2 ) + I S→I (q), (1.79) 
with

I S→I (q) = 1 2
∞ n,m=0 q 1 ,...,q 4 ,x δ δ ĥ(x) L -1 q,q 1 g n (q 1 , q 2 ) e iq 3 •x L -1 q 3 ,q 4 g m (q 4 , -q 2 )C n,m (q 2 ) .

(1.80)

The new terms of Eq. (1.80) generated by the passage from Itô to Stratonovich convention can be shown to be irrelevant close to d = 2 from RG viewpoint. Indeed, if we denote by Λ the momentum scale, we have the following scalings δ/δ ĥ(x) ∼ Λ d ĥ-1 , g (n) ∼ Λ -d ĥn , ĥ ∼ Λ (d-2)/2 and t -1 ∼ Λ 3 . Moreover, the leading order in L is Λ -d-1 so that, from Eq. (1.78), the leading order in L -1 is Λ -d+1 . This allows to show that:

-for n ≥ 1, C n,m scales at least as Λ 0 and thus nonlinearities with n ≥ 1 are irrelevant close to d = 2 ; -for n = 0, the functional derivative must act on L -1 . Performing the functional derivative of Eq. (1.78) with respect to ĥ(x) and using Eq. (1.76), it can be shown that the contribution of O( ĥm-1 ) in δL -1 q,p /δ ĥ(x) scales at least as Λ m+1 ĥm-1 with m ≥ 1. This allows to infer that also the nonlinearities with n = 0 are irrelevant close to d = 2 and conclude the argument.

Generation of the λ 1 -term

The derivation of the interface equation from AMB+ does not give rise in Eq. (1.42) to any λ 1 -term term at bare level. We however argue in this section that such a term is generically generated upon renormalization.

Given the implicit form of Eq. (1.79) we do not perform a full one-loop RG analysis to show that a λ 1 -term is generated. Instead we restrict ourselves to Ąnd a one-loop diagram that generates such a term.

Since the passage from the Stratonovich to the Itô convention is only expected to generate new nonlinearities in the deterministic part of the interface equation, we rather consider the nonlinearities present in Eq. (1.42), whose form simpliĄes the calculations. To show that a λ 1 -term is generated along the one-loop RG Ćow we need to take into account nonlinearities of order O(h 3 ). Indeed, [START_REF] Janssen | On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion[END_REF] suggests that quadratic nonlinearities cannot produce, upon renormalization to one loop, nonvanishing diagrammatic contribution to quadratic nonlinearity. Nonvanishing corrections to quadratic nonlinearities can instead be produced contracting a cubic with a quadratic nonlinearities.

For instance, taking into account the nonlinearities of order O(h∂ t h) and O(h 2 ∂ t h) in Eq. (1.42), the one-loop diagrams that can generate corrections to λ 1 are those in Fig. 1.10. The diagram in Fig. 1.10a gives corrections proportional to ♣q♣ 3 F[(∇ x ĥ) 2 ] and to ♣q♣ Q+Q 2 +Q 3 =0 q • q 2 q • q 3 h(Q 2 )h(Q 3 ), while the diagram in Fig. 1.10b yields a correction proportional to ♣q♣F[(∇ x ĥ) 2 ]. This thus means that the ♣q♣KPZ-nonlinearity is indeed generated in AMB+. It should be Ąnally observed that in the speciĄc case of equilibrium Model B, the same argument for generating the ♣q♣KPZ-nonlinearity does not apply due to the presence of an additional symmetry. Indeed in this case, ζ = 0 and hence ψ = φ, which implies that A 2n+1 (q) = 0 and also that C n,m = 0 for n + m odd. Consequently, the effective interface equation Eq. (1.79) is invariant under the symmetry h → -h and thus forbids the ♣q♣KPZnonlinearity to be generated by Ćuctuations.

Partial RG analysis of the effective interface equation

Equation (1.42) shows that singular nonlinearities, which do not satisfy to the Ansatz of Eq. (1.15), are generated at bare level in effective interface equation. Although these nonlinearities are irrelevant and generate a λ 1 -term upon renormalization, this only suggests that Eq. (1.42) belongs to the ♣q♣KPZ universality class. Indeed a complete proof entails to show that the effective interface equation within the Itô convention, Eq. (1.79), does not generate upon renormalization relevant nonlinearities which escape to the Ansatz of Eq. (1.15). Given the implicit form of Stratonovich-to-Itô terms of Eq. (1.80), we are not able yet to carry a one-loop RG analysis of Eq. (1.79). We however show in this section that this reasoning can be done if we omit these Stratonovich-to-Itô terms, namely if we abusively consider the effective interface equation within Stratonovich convention Eq. (1.42) as being written within Itô convention. We therefore consider Eq. (1.42) and we argue that, at least perturbatively close to d = 2 and to one loop, the associated RG Ćow do not produce any other relevant nonlinearity else than λ 1 or any linear term more relevant ♣q♣ 3 h(q). First, nonlinearities of order O(h n ) in the deterministic part of Eq. (1.42), if included in the action (1.16), would consist in terms proportional to

Q h(-Q) ♣q♣ A 0 (q) (-1) n-1 2(n -1)! n-1 k,l=0 k+l=n-1 (-1) l C   n j=1 h(Q j )   ♣q 0 ♣ n-1 (1.81)  ζq 2 k+1 D n-1 (q 0 ) + iω k+1 A n-1 (q 0 ) ♣q 0 ♣  ,
where n ≥ 1 and C denotes integration over Q

0 , Q 1 , ...Q n under the constraints k+1 j=1 Q j = -Q 0 and n j=k+2 Q j = Q + Q 0 .
The functional form of Eq. (1.81) thus implies that the bare (n+1)-point vertices Γ (1,n) (P 0 ♣P 1 , ..., P n ) contain nonanalytic terms in P 0 , ..., P n , proportional to ♣p 0 ♣♣ i∈J p i ♣ n-1 where J is any subset of ¶1, ..., n♢ and P i = (ν i , p i ).

Second, one-loop diagrams, being the product of these vertices, are thus a linear combination of analytic and nonanalytic terms. Analytic terms belong to the ♣q♣KPZ universality class. Nonanalytic terms can be separated into two groups: either the loop-momentum enters systematically in any of ♣ i∈J p i ♣ n-1 or it does not. We call G 1 the Ąrst group and G 2 the second one. Contributions in G 1 fall into the ♣q♣KPZ universality class, since they write under the form of Eq. (1.15), once Taylor series in the external momenta have been performed similarly as in Section 2.3.2. Contributions in G 2 are irrelevant by dimensional analysis.

Last, the same reasoning holds about the noisy nonlinearities of Eq. (1.42).

We conclude this section on the effective interface equation arising in AMB+ by summarizing its main results. First, in Section 4.1, the effective liquid-vapor interface equation is derived starting from AMB+ and within Stratonovich convention. This equation is then rewritten within Itô convention in Section 4.2. In both these conventions, the ♣q♣KPZnonlinearity is not present at the bare level but is shown to generically arise upon renormalization in Section 4.3.

These results suggest that the liquid-vapor interface of AMB+ belongs to the ♣q♣KPZ universality class. A complete proof would require to derive the analogous of Eq. (1.42) allowing for a curvature dependence in the Ansatz of Eq. (1.44) and to show that no singular and relevant nonlinearity is generated upon renormalization from the effective interface equation within Itô convention, Eq. (1.79) ; this goes beyond the scope of the manuscript.

Conclusion

In conclusion, we introduce a minimal Ąeld theory, termed ♣q♣KPZ equation, to describe the roughening of interfaces in nonequilibrium phase-separated systems lacking momentum conservation (that is, dry in the terminology of the introduction). The ♣q♣KPZ equation differs from the standard description of roughening interfaces (either EW, KPZ or their conserved counterparts) because diffusive Ćuxes in the bulk cause the interfacial dynamics to be nonlocal in real space and because the total density has to be conserved. New critical exponents characterizing the roughening of these interfaces are found via a one-loop RG analysis below d c = 2 and deĄne the ♣q♣KPZ universality class. A good agreement is found with numerical results obtained from simulations of the ♣q♣KPZ equation in d = 1. By explicitly deriving the effective interface equation from a generic continuum model for phase separation in active systems, we Ąnally argue that the ♣q♣KPZ universality class indeed describes the roughening of interfaces in these systems.

Previous attempts at describing the roughening of the liquid-vapor interface in models of active particles concluded that it belongs to the Edwards-Wilkinson universality class [START_REF] Lee | Interface stability, interface fluctuations, and the Gibbs-Thomson relationship in motility-induced phase separations[END_REF][START_REF] Patch | Curvature-dependent tension and tangential flows at the interface of motility-induced phases[END_REF]. A possible reason for such disagreement is that these particle systems undergo bubbly phase separation [START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF] instead of bulk phase separation (this hypothesis is corroborated by the fact that, in [START_REF] Patch | Curvature-dependent tension and tangential flows at the interface of motility-induced phases[END_REF], vapor bubbles are indeed clearly visible in the liquid phase). If this is the case the interface displays frequent overhangs and escapes our description. More work is needed to clarify this point. Beyond active systems, our results might be signiĄcant to describe the roughening of interfaces in other nonequilibrium phase separating systems, such as in granular materials [START_REF] Oyarte | Phase transition in an out-ofequilibrium monolayer of dipolar vibrated grains[END_REF].

Chapter 2

Fluctuating hydrodynamics of active aligning particles

This chapter is adapted from [START_REF] Feliachi | Fluctuating kinetic theory and fluctuating hydrodynamics of aligning active particles: the dilute limit[END_REF]. It aims at deriving the fluctuating kinetics and the fluctuating hydrodynamics of active aligning particles in the dilute limit, both deep in the ordered phase or close to the order-disorder transition, which are respectively expressed in Eq. (2.32), Eq. (2.47) and Eq. (2.65). 

1 Introduction

Fluctuating hydrodynamic theories are one of the main tools used to investigate collective behavior of active systems and notably Ćocking. If these Ąeld theories can be efficiently derived on the basis of symmetries, this approach has two shortcomings: Ąrst, symmetries do not allow to relate microscopic parameters to those entering in the Ćuctuating hydrodynamics. Second, in active systems the noise term is not constrained by the Ćuctuation-dissipation theorem, and it is unclear how to specify it a priori, except when dealing with critical systems (cases in which RG arguments allow to discard irrelevant nonlinearities). It should be noted that this feature is at variance not only with equilibrium systems, but also with nonequilibrium ones weakly driven by the boundaries; in these, at least for weak coupling, the noise term is constrained by linear response theory [START_REF] Bertini | Macroscopic fluctuation theory[END_REF]. Hence there is something to learn from linking the microscopic and macroscopic descriptions of active systems even if the starting point are phenomenological particle models often chosen only on the basis of simplicity, and several works in the literature have been indeed focused on this program [93, 204Ű206].

Broadly speaking, controlled kinetic theory description can be derived in two opposite limits: when the system is very dilute, the classical Botzmann-Grad limit where the Boltzmann equation is derived [START_REF] Cercignani | The Boltzmann Equation, in The Boltzmann Equation and Its Applications[END_REF][START_REF] Balescu | Statistical dynamics: matter out of equilibrium[END_REF], or when each particle interacts weakly with many others so that the typical force exerted on each of them is of order unity [START_REF] Balescu | Statistical dynamics: matter out of equilibrium[END_REF][START_REF] Villani | Chapter 2 -A Review of Mathematical Topics in Collisional Kinetic Theory[END_REF]. This latter class comprises systems with long-range interactions (plasmas or self-gravitating systems) [START_REF] Balescu | Statistical dynamics: matter out of equilibrium[END_REF]210] and polymers [START_REF] Doi | [END_REF]. Kinetic descriptions, describing the evolution of the one-particle distribution function in phase space, is often too complex to be studied either analytically or numerically. The hydrodynamic limit is then often employed, in which only the slow macroscopic Ąelds, such as the density and momenta of particles are retained in the description. A classical example is the derivation of the Navier-Stokes equation from the Boltzmann equation via the ChapmanŰEnskog expansion in the small Knudsen number limit α = ℓ/L ≪ 1, where ℓ is the mean free path of particles and L a macroscopic length scale [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF].

Classically, kinetic and hydrodynamic theories have been developed at the Śmean-Ąeld' level, i.e. discarding Ćuctuations at the large-scales. The derivation of kinetic and hydrodynamic theories at the Ćuctuating level, properly deriving the noise term that induces the Ćuctuations of the relevant mesoscopic Ąelds, has seen signiĄcant developments in the last 30 years. One of the most widely employed methods was initially developed by Dean [START_REF] Dean | Langevin equation for the density of a system of interacting Langevin processes[END_REF] and Kawasaki [START_REF] Kawasaki | Stochastic model of slow dynamics in supercooled liquids and dense colloidal suspensions[END_REF] to describe overdamped diffusing particles, whose formal derivation can be precisely justiĄed in the limit of weak interactions among particles [START_REF] Bouchet | Perturbative Calculation of Quasi-Potential in Non-equilibrium Diffusions: A Mean-Field Example[END_REF][START_REF] Barré | Motility-Induced Phase Separation of Active Particles in the Presence of Velocity Alignment[END_REF]. In this approach, the noise at hydrodynamic level is independent of the particles interactions, and equal to the one of freely diffusing particles. Recently, a technique to derive the Ćuctuating kinetic theory of perfect gases Ű in the BoltzmannŰGrad limit, was introduced in the mathematical [START_REF] Rezakhanlou | Large Deviations from a Kinetic Limit[END_REF] and physics [START_REF] Bouchet | Is the Boltzmann Equation Reversible? A Large Deviation Perspective on the Irreversibility Paradox[END_REF] literature. So far, however, no derivation of the ensuing Ćuctuating hydrodynamics has been proposed. Kinetic and hydrodynamic theories has been widely employed for describing systems of self-propelled particles interacting via alignment. This route has indeed been followed both within the weak-interactions limit [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] and within the Boltzmann-like framework of dilute systems [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF][START_REF] Bertin | Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis[END_REF][START_REF] Chaté | Dry, aligning, dilute, active matter: A synthetic and selfcontained overview[END_REF]. The Dean-Kawasaki approach has been widely employed to derive the Ćuctuating kinetic theory and Ćuctuating hydrodynamics of microscopic active matter models. This is justiĄed when interactions are long-ranged, as it happens for dilute microswimmer suspensions in which the primary source of interactions are low-Reynolds Ćuid Ćows created by the motion of the swimmers [218Ű220]. Yet, the fact that hydrodynamics noise is independent of interactions within the Dean approach motivated some authors to use it even for short-ranged aligning particles [START_REF] Bertin | Mesoscopic theory for fluctuating active nematics[END_REF], even if these systems are clearly out of the regime of applicability of the method. For dilute systems, indeed, although particle diffusion will give rise to a Dean-like noise, one can expect another contribution from particle-particle collisions.

In this chapter, we describe how to derive the Ćuctuating kinetic theory and the corresponding Ćuctuating hydrodynamics of active particles that interact by aligning. The Ćuctuating kinetic theory is obtained in the dilute limit, analogous to the BoltzmannŰGrad limit of perfect gases. This leads to a noise term at kinetic level that is not Gaussian. We then derive the corresponding Ćuctuating hydrodynamics close to the order-disorder transition, extending at the Ćuctuating level the deterministic hydrodynamic theory developed in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF][START_REF] Bertin | Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis[END_REF]. Interestingly, the noise entering at the Ćuctuating level is Gaussian, and we explicitly compute its variance. The latter turns out to be proportional to the square of the density Ąeld and to depend explicitly on the interactions among particles; both these facts differentiate our conclusion from the results obtained in the Dean-Kawasaki approach, where the noise variance is linear in the density and independent from particle-particle interactions [START_REF] Bertin | Mesoscopic theory for fluctuating active nematics[END_REF].

The chapter is organized as follows. In Section 2 we specify the particle-based model we consider and, under an extended molecular chaos type hypothesis, derive its kinetic theory and the associated Ćuctuating kinetic theory, described as a dynamical Large Deviation Principle (LDP). As a warm-up problem we Ąrst derive it for independent Run-and-Tumble particles in Section 2.4, and then for the interacting case in Section 2.5. The large deviation rate function we obtain is not quadratic, which corresponds to a Ćuctuating kinetic theory with a non Gaussian noise. In Section 3, we start from the Ćuctuating kinetic theory to derive Ćuctuating hydrodynamic equations at leading order in the Knudsen number α, deep in the ordered phase. In particular, we show that in this limit α → 0, the noise becomes Gaussian. Finally, in Section 4, we start again from the Ćuctuating kinetic theory and present the derivation of the Ćuctuating hydrodynamics close to the order-disorder transition, both for polar and nematic particles. We show that also in this case the noise becomes Gaussian, and discuss the links with Section 3.

Definition of the particle-based model and Boltzmann-Vicsek equation

We start by introducing the particle-based model we consider, that we term the BoltzmannŰ Vicsek particle model, in Section 2.1; in Section 2.2 we describe its well-known kinetic description at the deterministic level (known as BoltzmannŰVicsek equation). We then introduce a suited nondimensional system of units that allows to investigate Ćuctuations at the kinetic level in Section 2.3. 

Boltzmann-Vicsek particle model

We consider N particles evolving in a periodic two-dimensional box of size L × L. We denote (r n , θ n ) 1≤n≤N their positions and orientations according to some arbitrary axis. The dynamics is the one Ąrst introduced in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF]. Particles move ballistically with constant speed v 0 : dr i /dt = v 0 (cos θ i , sin θ i ), until they collide. When two particles i and j are close enough (i.e. ♣r i -r j ♣ ≤ 2R, R being the interaction radius) a collision occurs with a rate (v 0 /R)K(θ i -θ j ) where K is a cross-section chosen to mimic hard-sphere collisions. This rate is furthermore chosen so that when two particles meet, they have a probability to interact of order 1. When a collision occurs, particles update their orientation according to the following rule

θ out i = θ + ζ i , θ out j = θ + ζ j ,
where θ = arg e iθ in i + e iθ in j  and the superscript ŞinŤ (resp. ŞoutŤ) denotes incoming (resp. outcoming) orientations. ζ i and ζ j are independent random variables distributed according to P σ (θ) over [-π, π) with variance σ 2 . At low variance of the noise, this interaction favors the alignment of particles.

It should be observed that in the model, at variance with the standard Vicsek model that is often considered in computational works [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Chaté | Dry Aligning Dilute Active Matter[END_REF], only binary collisions are considered. The collision process is schematically presented in Fig. 2.1. In the following, this model is called the BoltzmannŰVicsek particle model.

Boltzmann-Vicsek equation

The deterministic kinetic description associated with the BoltzmannŰVicsek particle model was derived in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF] and reads

∂ t f e (r, θ, t) + v 0 e θ • ∇f e (r, θ, t) = v 0 RI col [f e ](r, θ, t) (2.1)
where f e (r, θ, t) is the one-particle distribution function in the phase-space (representing the number of particles at a position r, with orientation θ at a certain time t) normalized such that drdθ f e = N . In Eq. (2.1) the collision term is given by

I col [f e ](r, θ, t) = dθ 1 dθ 2 f e (r, θ 1 , t)f e (r, θ 2 , t)K(θ 2 -θ 1 )× (2.2) ¶P σ (θ -Ψ(θ 1 , θ 2 )) -δ(θ -θ 1 )♢ , K(θ 2 -θ 1 ) is the scattering cross-section, (2.3) 
Ψ(θ 1 , θ 2 ) = arg e iθ 1 + e iθ 2 = θ 1 + H(θ 2 -θ 1 ) is the outgoing mean-angle, (2.4) 
H encodes the symmetries of the particles' interactions.

(2.5)

More precisely, we consider in this chapter two classes of particles: polar particles which are deĄned through their collision kernels and symmetries

K(θ 2 -θ 1 ) = 2 sin  θ 2 -θ 1 2  , ( 2.6 
)

H(∆) = ∆ 2 , ∀∆ ∈ ] -π, π], H is 2π-periodic, (2.7) 
and nematic particules deĄned through

K(θ 2 -θ 1 ) = sin  θ 2 -θ 1 2  + cos  θ 2 -θ 1 2  , ( 2.8 
)

H(∆) = ∆ 2 , ∀∆ ∈ ] - π 2 , π 2 ], H is π-periodic (2.9)
The BoltzmannŰVicsek equation (2.1) relies on the molecular chaos hypothesis and it is expected to be a valid description of the particle system in the limit of a large number of particles in the BoltzmannŰGrad limit, as is made explicit in the next section.

The rescaled Boltzmann-Vicsek equation

We introduce a set of units that are suited to investigate the kinetic limit: space is measured in units of the mean free path ℓ = 1/(Rρ 0 ), where ρ 0 = N/L 2 is the mean density, and time in units of ℓ/v 0 , which is the average time between two collisions. We also deĄne ε = ρ 0 ℓ 2 -1 , the inverse of the number of particles in a region of surface ℓ 2 . By performing a spacetime rescaling r ′ = r/ℓ, t ′ = tv 0 /ℓ and by rescaling the distribution function f (r ′ , θ, t ′ ) = εf e (r ′ , θ, t ′ ) (primes are dropped afterwards), the BoltzmannŰVicsek equation reads

∂ t f + e θ • ∇f = I col [f ].
(2.10)

As we shall see below, the BoltzmannŰVicsek equation is a valid description of the microscopic model in the limit ε → 0 (and under the molecular chaos hypothesis). It should be noticed that ε = R/ℓ = N R 2 /L 2 , meaning that the limit yielding a Boltzmann-type kinetic description is opposite to a mean-Ąeld limit for which the number of particles in an interaction radius goes to inĄnity.

In the next section, we go beyond this law of large numbers, taking into account Ćuctuations by determining the LDP for the empirical distribution. Before addressing the derivation of a LDP for the BoltzmannŰVicsek equation (i.e. the Ćuctuating kinetic theory), we show in the next section how the LDP can be obtained for noninteracting Run-and-Tumble particles; this minimal problem bears technical similarities with the problem we address and it is thus instructive to consider it Ąrst.

Large deviations for the empirical distribution of N Run-and-Tumbling particles

In this section, we derive a LDP that describes the probability of any evolution path of the empirical distribution f N (r, θ, t) = N -1 n δ (r n -r) δ (θ nθ) of N noninteracting particles undergoing a Run-and-Tumble dynamics. The LDP reads

P ¶f N (t)♢ 0≤t<T = ¶f (t)♢ 0≤t<T ≍ N ↑∞ exp -N T 0 dt sup p  drdθ p∂ t f -H RT [f, p]   , (2.11) where p(r, θ) is the ŞmomentumŤ conjugated to ∂ t f , the symbol ≍ N ↑∞ is the logarithm equiv- alence φ N ≍ N ↑∞ exp(N ψ) ⇐⇒ lim N ↑∞ N -1 log φ N = ψ (2.12)
and H RT is called the large deviation Hamiltonian, a functional of both f and p. H RT encodes all the dynamical statistical properties of the empirical distribution f N . In Section 2.4.1, we introduce the Run-and-Tumble particle dynamics. In Section 2.4.2, we explain how to compute H RT in the case of Run-and-Tumble particles.

Particle dynamics and kinetic description.

We consider N particles in a two-dimensional periodic domain traveling at a constant speed v 0 . A particle changes its orientation from θ to θ ′ with a rate λ following a distribution P t on [0, 2π) which is symmetric with respect to θ. At the kinetic level the distribution function f (r, θ, t) of the position and orientation of the N particles satisĄes

∂ t f + v 0 e θ • ∇f = -λf + λ dθ ′ P t θ ′ -θ f θ ′ ,
where f is normalized to 1. We deĄne the mean free path for the Run-and-Tumble particles ℓ = v 0 /λ and we rescale space and time r ′ = r/ℓ, t ′ = tv 0 /ℓ. Dropping the primes, it yields

∂ t f + e θ • ∇f = -f + dθ ′ P t θ ′ -θ f θ ′ . (2.13)
Equation (2.13) can be seen as a law of large numbers for the empirical distribution f N : in the limit of a large number of particles, the random object f N concentrates on the distribution function f which is a solution of Eq. (2.13).

Large deviations for the empirical distribution.

We now assess the probability of any evolution path for the empirical distribution. As shown in [START_REF] Freidlin | Random Perturbations, in Random Perturbations of Dynamical Systems[END_REF], a way to compute the large deviation Hamiltonian H associated with Eq. (2.13) is to compute the inĄnitesimal generator of the Markov process describing the evolution of the empirical distribution f N . Then, from the inĄnitesimal generator G f , the large deviation Hamiltonian is deduced through the following formula

H RT [f, p] = lim N ↑∞ 1 N G f e N drdθ pf N e -N drdθ pf , (2.14)
where the deĄnition of the inĄnitesimal generator is

G f [ϕ] = lim t→0 E f [ϕ [f N (t)]] -ϕ [f ] t , ( 2.15) 
where ϕ is a test functional of the empirical distribution. In Eq. (2.15), E f denotes an expectation over the stochastic process f N conditioned by f N (t = 0) = f . The generator can be split into two terms

G f = G f,T + G f,tumb ,
where G f,T is due to free transport, and G f,tumb to tumbling events. A Taylor expansion of ϕ [f N (t)] at small times allows to compute the transport part of the generator

G f,T [ϕ] = -drdθ e θ • ∇f δϕ δf (r, θ) . ( 2 

.16)

To compute G f,tumb , we need to evaluate the effect of tumbling events on the empirical distribution. If f is the empirical distribution, the rate of tumbling events that change the orientation of a particle from θ 1 to θ ′ 1 in the volume element dr 1 centered at point r 1 is:

N f (r 1 , θ 1 , t)P t θ 1 -θ ′ 1 dθ 1 dθ ′ 1 dr 1 .
(2.17)

Each tumbling event of this type changes the empirical distribution from f (r, θ) to f (r, θ) -

N -1 δ (r -r 1 ) δ (θ -θ 1 ) + N -1 δ (r -r 1 ) δ (θ -θ ′ 1 )
. Therefore, from Eqs. (2.15) and (2.17), we deduce the part of the inĄnitesimal generator due to tumbling events

G f,tumb [ϕ] = N dθ 1 dθ ′ 1 dr f (r, θ 1 , t)P t θ 1 -θ ′ 1 ×  ϕ  f (• 1 , • 2 , t) + N -1 δ(• 1 -r) -δ(• 2 -θ 1 ) + δ(• 2 -θ ′ 1 )  -ϕ[f ] .
(2.18)

We can then apply (2.14) to deduce the large deviation Hamiltonian

H RT [f, p] = H T [f, p] + H tumb [f, p] , (2.19) 
where

H T [f, p] = -dθdr p(r, θ, t)e θ • ∇f (r, θ, t), (2.20) H tumb [f, p] = dθ 1 dθ ′ 1 dr f (r, θ 1 , t)P t θ 1 -θ ′ 1  e -p(r,θ 1 ,t)+p(r,θ ′ 1 ,t) -1 . (2.21)
The most probable evolution for the empirical distribution is the one that maximizes the right hand side of the LDP in Eq. (2.11). This maximization condition is simply the Hamilton equation associated with the large deviation Hamiltonian in Eq. (2.19), which gives: ∂ t f = δH RT δp [f, p = 0] or, explicitely, Equation (2.13). Tumbling events conserve locally the number of particles. This is can be shown by the fact that drdθ∂ t f = drdθ δH RT /δp(r, θ) = 0, where the Ąrst equality follows from the Hamilton's equations, and for the second we have used Eq. (2.21). The large deviation Hamiltonian H RT is nonquadratic in the conjugated momentum p. This means that, if we wanted to write a stochastic partial differential equation for the empirical distribution, it would contain nongaussian noise.

Time-reversibility

The absence of interactions implies that the stationary probability for the empirical distribution is

P S (f N = f ) ≍ N ↑∞ exp (N S [f ]) , ( 2.22) 
where S [f ] =dθdr f log f is the entropy. Indeed, a necessary condition for the compatibility of Eq. (2.22) and the LDP in Eq. (2.11) is provided by the HamiltonŰJacobi equation:

H RT  f, - δS δf  = 0 (2.23)
which can be explicitly checked to hold. This fact is related to the presence of the generalised time-reversal symmetry θ → θ + π, t → -t. DeĄning S [f ](r, θ, t) = f (r, θ + π, -t), this symmetry translates into the following identity for the large deviation Hamiltonian [START_REF] Bouchet | Is the Boltzmann Equation Reversible? A Large Deviation Perspective on the Irreversibility Paradox[END_REF]:

H RT S [f ] , -S [p] = H RT  f, p - δS δf  . ( 2 

.24)

Time-reversal symmetry breaks down for the BoltzmannŰVicsek model and the solution of Eq. (2.23), which would play the role of the entropy, is unknown.

Large deviations from the Boltzmann-Vicsek equation

We now aim at deriving the Ćuctuating kinetic theory associated with the microscopic model introduced in Section 2.1, along the same lines as Section 2.4. We expect a LDP for the rescaled empirical distribution

f ε (r, θ, t) = ε N n=1 δ (r n (t) -r) δ (θ n (t) -θ) , ( 2.25) 
in the form

P ¶f ε (t)♢ 0≤t<T = ¶f (t)♢ 0≤t<T ≍ ε↓0 exp  - 1 ε J T [f ]  , ( 2.26) 
where

J T [f ] = T 0 dt sup p  drdθ ∂ t f p -H BV [f, p]  , ( 2.27 
)

H BV [f, p] = lim ε↓0 εG f e 1 ε
drdθ pfε e -1 ε drdθ pf .

(2.28)

We start from the deĄnition of the inĄnitesimal generator in Eq. (2.15). This time, the expectation E f denotes an expectation over the stochastic process of the rescaled empirical distribution f ε of N particles submitted to the BoltzmannŰVicsek dynamics conditioned by f ε (t = 0) = f . As previously, we can decompose the inĄnitesimal generator in two terms

G f = G f,T + G f,col ,
where G f,T is the inĄnitesimal generator accounting for free transport, already computed in Eq. (2.16), and G f,col accounts for two-body collisions. To evaluate G f,col , we need the rate of two-body collisions, which change the orientation of two particles from (θ 1 , θ 2 ) to (θ ′ 1 , θ ′ 2 ) in the volume element dr centered at point r. If f is the rescaled empirical distribution, this rate writes

1 2ε K(θ 2 -θ 1 )f (r, θ 1 , t)f (r, θ 2 , t)P σ θ ′ 1 -Ψ(θ 1 , θ 2 ) P σ θ ′ 2 -Ψ(θ 1 , θ 2 ) dθ 1 dθ 2 dθ ′ 1 dθ ′ 2 dr.
(2.29) As for tumbling events, collisions change the empirical distribution; f (r, θ) is changed into

f (r, θ) -εδ (r -r 1 ) δ (θ -θ 1 ) -εδ (r -r 1 ) δ (θ -θ 2 ) + εδ (r -r 1 ) δ θ -θ ′ 1 + εδ (r -r 1 ) δ θ -θ ′ 2 .
(2.30)

The inĄnitesimal generator term accounting for collisions thus reads

G f,col [ϕ] = 1 2ε dθ 1 dθ 2 dθ ′ 1 dθ ′ 2 dr K(θ 2 -θ 1 ) × f (r, θ 1 , t)f (r, θ 2 , t)P σ (θ ′ 1 -Ψ(θ 1 , θ 2 )) P σ (θ ′ 2 -Ψ(θ 1 , θ 2 )) ×  ϕ  f (• 1 , • 2 , t) + εδ(• 1 -r)  -δ(• 2 -θ 1 ) -δ(• 2 -θ 2 ) + δ(• 2 -θ ′ 1 ) + δ(• 2 -θ ′ 2 )  -ϕ[f ] . (2.31)
and the large deviation Hamiltonian is deduced using Eq. (2.14)

H BV [f, p] = H T [f, p] + H col [f, p] , (2.32) 
where H T is given by Eq. (2.20) and the collision term of the Hamiltonian writes

H col [f, p] = 1 2 dθ 1 dθ 2 dθ ′ 1 dθ ′ 2 dr K(θ 2 -θ 1 )f (r, θ 1 , t)f (r, θ 2 , t)× P σ θ ′ 1 -Ψ(θ 1 , θ 2 ) P σ θ ′ 2 -Ψ(θ 1 , θ 2 )  e -p(r,θ 1 ,t)-p(r,θ 2 ,t)+p(r,θ ′ 1 ,t)+p(r,θ ′ 2 ,t) -1 . (2.33)
Equation (2.32) along with Eqs. (2.20) and (2.33) is the Ćuctuating kinetic theory for the BoltzmannŰVicsek model. The most probable evolution path satisĄes the deterministic evolution equation given by the Hamilton equation associated with

H BV ∂ t f (r, θ, t) = δH BV δp(r, θ, t) [f, 0] = -e θ • ∇f (r, θ, t) + I col [f ](r, θ, t) (2.34)
which is the deterministic BoltzmannŰVicsek equation (2.10).

Just as in the Run-and-Tumble case, collisions conserve locally the number of particles, and this is reĆected in the fact that drdθ δH col /δp(r, θ) = 0. Furthermore, H BV is again nonquadratic in the conjugated momentum p. This means that dynamical large deviations of the empirical distribution are nongaussian. Contrary to the tumbling Hamiltonian in Eq. (2.21), the Hamiltonian for collisions is quadratic in f , because collisions considered in the BoltzmannŰVicsek dynamics are binary. The Hamiltonian H BV share some similarities with the one derived in [START_REF] Bouchet | Is the Boltzmann Equation Reversible? A Large Deviation Perspective on the Irreversibility Paradox[END_REF] for the Boltzmann equation describing the dynamics of a passive dilute gas: quadraticity in the distribution function f and exponential dependence on the conjugated momentum. At variance with that case, however, the collision rules of the BoltzmannŰVicsek model break time-reversal symmetry, and does not conserve momentum nor kinetic energy.

Fluctuating hydrodynamics deep in the ordered phase

In this section, we derive the Ćuctuating hydrodynamics from the BoltzmannŰVicsek LDP given in Eqs. (2.26) and (2.32). This is done as a perturbative expansion in a small parameter, the Knudsen number α = ℓ/L, where ℓ is the mean free path and L is the system size. α is also the time scale to reach a local equilibrium. As a Ąrst step, we introduce in Section 3.1 the macroscopic scaling with the Knudsen number, and associate a Ćuctuating BoltzmannŰ Vicsek equation with the BoltzmannŰVicsek LDP. From there we adapt to the Ćuctuating case the framework developed in a deterministic setting in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. In Section 3.2 we discuss the local equilibria of the BoltzmannŰVicsek equation. These local equilibria are characterized by two slow modes: the density Ąeld, and the orientational order Ąeld. Then, in Section 3.3 we obtain Ćuctuating hydrodynamic equations for these two slow modes. Further, we show that at leading order in the Knudsen number α, the noise appearing in these hydrodynamic equations is Gaussian.

Macroscopic scaling and rephrasing of the Large Deviation Principle as a Stochastic PDE

Since we are interested in large scales and long times, we introduce the macroscopic variables t = αt, r = αr, and deĄne f (r, θ, t) = f (α -1 r, θ, α -1 t), p(r, θ) = p(α -1 r, θ). Then

H T [f, p] = 1 α HT [ f , p] (2.35) H col [f, p] = α -2 Hcol [ f , p], drdθ p∂ t f = 1 α drdθ p∂ t f ; (2.36)
we remove the tildes in the following. Isolating the linear part in p (which contributes to the deterministic evolution), the collision Hamiltonian can be written

H col [f, p] = p(r, θ)I col [f ](r, θ)drdθ + H col,stoch ,
where H col,stoch gathers all terms of order at least 2 in p. The empirical distribution then satisĄes a large deviation principle with speed ε -1 and rate function

J T [f ] = 1 α 3 T 0 dt sup p  drdθ p(r, θ) α∂ t f + αe θ • ∇f -I col [f ] -H col,stoch [f, p] . (2.37)
Notice the overall factor α -3 coming from the change of time and space variables; the Ąnal time T and the system size have also been rescaled. Formally, this LDP can be recast as a stochastic PDE:

α ∂ t f + e θ • ∇f -I col [f ] = ξ(r, θ, t), ( 2.38) 
where the left hand side is the deterministic BoltzmannŰVicsek equation, and the right hand side is a noise whose distribution satisĄes the LDP

P ¶ξ(t)♢ 0≤t<T = ¶u(t)♢ 0≤t<T ≍ ε↓0 exp  - 1 
εα 3 J f [u]  , ( 2.39) 
with

J f [u] = T 0 dt dr sup p  2π 0 pu dθ -H col,stoch [f, p]  .
(2.40)

A consequence of Eq. (2.39) is that we can express the variance of ξ through the large deviation Hamiltonian

E ξ [f ] (r, θ, t) ξ [f ] r ′ , θ ′ , t ′ = εα 3 δ 2 H BV δp(r, θ, t)δp(r ′ , θ ′ , t ′ ) [f, p = 0] . (2.41)
Note that only H col,stoch contributes to the second functional derivative of H BV with respect to p. From the original LDP, which is a statement on the probability distribution of f , to the above statement about the probability distribution of ξ, there is a change of variable, which should introduce a Jacobian factor. At the large deviations level however, this factor is negligible. We stress that the noise ξ bears several features that are in stark contrast with the Ćuctuating kinetic theories derived in the weak-interaction limit [START_REF] Bertini | Macroscopic fluctuation theory[END_REF][START_REF] Dean | Langevin equation for the density of a system of interacting Langevin processes[END_REF]: it is multiplicative at the kinetic level (since its distribution depends on f ), it is nongaussian (this is encoded in the fact that H BV is not quadratic in p), and it depends explicitly on the particle-particle interactions.

Finally, the local conservation of the number of particles implies that whenever u(r, θ)dθ ̸ = 0, J f [u] = +∞. Indeed, take any momentum Ąeld p(r) independent of θ; then H col,stoch [f, p] = 0 and u(r, θ)p(r)dθ = p(r) udθ ̸ = 0. A good choice of p(r) then makes the supremum in Eq. (2.40) as large as we wish. In the stochastic PDE (2.38), this translates in the fact that the noise conserves the number of particles:

ξ(t, r, θ)dθ = 0.
(2.42)

Contrary to the case of passive dilute gases (where also momentum and energy are conserved), there is no other conservation law, reĆecting the absence of these conservation laws at the level of the microscopic collisions.

Local equilibria

We now discuss the local equilibria of the BoltzmannŰVicsek equation, i.e. distributions f that make the collision kernel vanish I col [f ] = 0. This is the crucial ingredient to derive the Ćuctuating hydrodynamics deep in the ordered state because any initial condition should relax fast (over time scales of order α -1 ) towards these local equilibria. For clarity, we choose the noise distribution P σ in the collision kernel in Eq. (2.2) to be a Von Mises distribution P σ (θ) = V s (θ) = (2πI 0 (s)) -1 exp (s cos θ), but any other choice for P σ with similar qualitative characteristics would be admissible. This distribution has a circular variance σ 2 (s) = 1 -I 1 (s)/I 0 (s), where I j is the modiĄed Bessel function of order j. The variance σ 2 is a decreasing function of s.

The local equilibria are the solutions of the integral equation

I col [f ] (θ) = 0 ⇐⇒ f (θ) = dθ 1 dθ 2 f (θ 1 ) f (θ 2 ) K (θ 2 -θ 1 ) V s (θ -Ψ (θ 1 , θ 2 )) dθ 1 f (θ 1 ) K (θ 1 -θ) . (2.43)
The homogeneous isotropic state (f independent of the angle) is always a solution. This is the unique one when σ > σ c : here the system is described by a single hydrodynamic variable, the density ρ(r, t). We are interested in the regime σ < σ c , when non isotropic local equilibria emerge. By rotation invariance, they are indexed by a local angle φ(r, t); the local equilibria are then of the form ρ(r, t)M φ(r,t) and there are two hydrodynamic Ąelds: ρ and φ. By rotational symmetry, the dependence on φ is simple: there exists a function m such that M φ (θ) = m(θφ).

Although M φ(r,t) cannot be found analytically when σ < σ c , Ąnding it numerically is straightforward using the Ąxed-point formulation in Eq. (2.43). We did this by implementing a Ąxed-point iteration method. For σ > σ c , our algorithm correctly converges towards a constant solution, while for σ < σ c , we obtain a solution for Eq. (2.43) which carries a preferential orientation. Our numerical solutions for M φ(r,t) as a function of σ is provided in Fig. 2.2. As it should be, the weaker this noise is, the narrower the local equilibrium M φ is around the local orientation φ. Obtaining M φ(r,t) with this method is very fast computationally, requiring only a few iterations unless σ is set very close to σ c . The value of σ c can be computed analytically [START_REF] Bertin | Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis[END_REF]. To do so, one has to assess the linear stability of the collision operator I col linearized close to a uniform in angle distribution f (r, θ, t) = ρ(r, t). With the speciĄc choice of a Von Mises distribution for the microscopical noise distribution P σ , we have σ c = √ 3/3 ≈ 0.58.

Chapman-Enskog expansion close to a local equilibrium

In order to get the Ćuctuating hydrodynamics, we now want to compute evolution equations for the density ρ and the orientation Ąeld φ that specify the local equilibria. To do so, we look for solutions to the kinetic equation (2.38) as a ChapmanŰEnskog expansion close to a local equilibrium. This amounts to expand f for small α as

f (r, θ, t) = ρ (r, t) M φ(r,t) (θ) + αg (r, θ, t) + O α 2  .
At leading order in α, we obtain from Eq. (2.38) that

(∂ t + e θ • ∇) (ρM φ ) -ρL φ [g] = 1 α ξ [ρM φ ] , (2.44) 
where L φ is the linearization of I col close to ρM φ :

L ϕ [g](θ) = dθ 1 dθ 2 M ϕ (θ 1 ) g (θ 2 ) K (θ 2 -θ 1 ) ¶2V s (θ -Ψ (θ 1 , θ 2 )) -δ (θ -θ 1 ) -δ (θ -θ 2 )♢ .
Classically, the ChapmanŰEnskog expansion then proceeds integrating Eq. (2.44) against conserved quantities, over the velocity variables (here the angle θ). Each conserved quantity then yields an evolution equation for a hydrodynamic mode.

A difference with respect to the classical case arises here: we only have a single conserved quantity (density) and want to obtain evolution equations for both the density ρ and the orientation Ąeld φ. Such problem was already discussed and solved in [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] noting that, to obtain the evolution equation for the slow modes, we only need to integrate against quantities χ that are in the kernel of L † φ , the adjoint operator of L φ . The elements of the kernel of L † φ which do not correspond to conservation laws are known as Generalized Collisional Invariant (GCI).

Equation for the density field.

We observe that constants are in the kernel of L † φ . Hence, integrating the Ćuctuating kinetic equation (2.44) over θ yields the hydrodynamic equation for the density Ąeld

∂ t ρ + c 1 ∇ • (ρe φ ) = 0, (2.45) 
where c 1 = dθ cos (θφ) m (θφ) , and e φ = (cos φ, sin φ) is the orientational order Ąeld.

We have used the density preserving property of the noise in Eq. (2.42).

Equation for the orientational order field.

In order to obtain a second hydrodynamic equation for the orientation Ąeld, we need to Ąnd another element of ker L † φ to integrate Eq. (2.44) against. In the classical kinetic theory of passive gases, this second element is usually the velocity variable [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF], which is a manifestation of momentum conservation at the level of the kinetic equation. For active particles, momentum conservation is broken and a GCI is needed.

Since I col [M φ ] = 0 for all φ, I col [M φ+δφ ] = 0 for any perturbation δφ. This implies that not only M φ ∈ ker L φ but also ∂Mφ ∂φ = -m ′ (θφ) ∈ ker L φ , which provides two elements in ker L φ as soon as the system is locally ordered. Hence ker L † φ is also two-dimensional, spanned by the constants and another element which we call ψ φ : this is the GCI.

As it was the case for M φ , ψ φ cannot be found analytically, but it can be determined numerically. In order to compute ψ φ , we numerically solve the equation L † φ [ψ φ ] = 0 by discretizing [0, 2π). Then, L † φ [ψ φ ] = 0 is a simple matrix equation that one can solve for ψ φ . Observe that by rotational symmetry, the generalized collision invariant satisĄes ψ φ (θ) = -ψ -φ (-θ). In Fig. 2.3, we plot ψ φ for φ = π and for several values of σ.

Integrating Eq. (2.44) over θ and against ψ φ and using that L † φ [ψ φ ] = 0 yields the hydrodynamic equation for the orientation Ąeld

α dθ ψ φ (∂ t + e θ • ∇ r • ρM φ ) = dθ ψ φ ξ [ρM φ ] ,
(2.46)

We see that for a smooth evolution of the orientation Ąeld φ(r, t), the left hand side is of order α, which corresponds to the noise αη = dθ ψ φ ξ [ρM φ ] to be of order α as well.

Contracting the probability distribution of ξ given in Eqs. (2.38) and (2.39) to obtain the distribution of αη, and expanding for small α, it is easy to see that only the quadratic part of the distribution of αη contributes to leading order in α. This is equivalent to saying that the noise becomes Gaussian in the hydrodynamic limit at leading order in α.

The explicit computation of the different terms in Eq. (2.46) yields the Ćuctuating hydrodynamic equation for the orientational order:

ρ (∂ t e φ + c 2 e φ • ∇e φ ) + c 3 ∇ ⊥ ρ = ηe ⊥ + O(α), (2.47) 
where the O(α) term represents the error committed in neglecting the higher order terms in the ChapmanŰEnskog expansion. In Eq. (2.47), e ⊥ = e φ+π/2 , ∇ ⊥ = (e ⊥ • ∇)e ⊥ is the gradient along the direction which is orthogonal to e φ and

c 4 = -1 dθ ψ φ (θ) m ′ (θ -φ) , c 2 = -c 4 dθ ψ φ (θ) cos (θ -φ) m ′ (θ -φ) ,
and

c 3 = c 4 dθ ψ φ (θ) sin (θ -φ) m (θ -φ) .
Using the two-point correlations for ξ in Eq. (2.41), we can characterize the Gaussian noise

η E η (r, t) η r ′ , t ′ = αεCρ 2 (r, t) δ r -r ′ δ t -t ′ + O(α 2 ) , ( 2.48) 
and

C = c 2 4 (C 1 + C 2 + C 3 + C 4 + C 5 ) , with C 1 = dθdθ ′ ψ ϕ (θ) 2 M ϕ (θ) M ϕ (θ ′ ) K (θ -θ ′ ) , C 2 = dθdθ ′ ψ ϕ (θ) ψ ϕ (θ ′ ) M ϕ (θ) M ϕ (θ ′ ) K (θ -θ ′ ) , C 3 = dθdθ ′ 1 dθ ′ 2 ψ ϕ (θ) 2 M ϕ (θ ′ 1 ) M ϕ (θ ′ 2 ) K (θ ′ 1 -θ ′ 2 ) V s (θ -Ψ (θ ′ 1 , θ ′ 2 )) , C 4 = dθdθ ′ dθ ′ 1 dθ ′ 2 ψ ϕ (θ) ψ ϕ (θ ′ ) M ϕ (θ ′ 1 ) M ϕ (θ ′ 2 ) K (θ ′ 1 -θ ′ 2 ) V s (θ -Ψ (θ ′ 1 , θ ′ 2 )) V s (θ ′ -Ψ (θ ′ 1 , θ ′ 2 )) , C 5 = -4 dθdθ ′ dθ 1 ψ ϕ (θ) ψ ϕ (θ ′ ) M ϕ (θ) M ϕ (θ 1 ) K (θ 1 -θ) V s (θ ′ -Ψ (θ, θ 1 )) .
Although it is not apparent from the above expressions, we have checked numerically that C is positive and an increasing function of σ, as expected.

The structure of the Ćuctuating equation for the local orientation Ąeld in Eq. (2.48) is not usual. In relation with the lack of momentum conservation, Eq. (2.48) contains a noise term but no diffusive terms. These would give corrections at O(α) in Eq. (2.47) and we expect that they can be obtained by similar lines as in [START_REF] Degond | Diffusion in a continuum model of self-propelled particles with alignement interaction[END_REF] where they were derived for the Vicsek model within the weak-interaction limit; we leave this for future investigations. We should however observe that Eq. (2.47) allows already to obtain the path probability for e φ to Ąrst order in α, which is the central result of this Section.

The two main novelties of our results are the following. First, we obtain the hydrodynamics of self-propelled aligning particles for dilute systems, deep in the ordered phase, which was not even known at the deterministic level, since the results of [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF] were derived in the weak-interaction limit. Second, we obtained also the hydrodynamics at the Ćuctuating level. The fact that we work in the dilute regime implies that the hydrodynamic noise variance is proportional to ρ 2 , and that the noise depends explicitly on the collision rules (interactions) among particles. Both of these facts are at variance with the Ćuctuating hydrodynamics obtained in the weak-interaction regimes [START_REF] Bertin | Mesoscopic theory for fluctuating active nematics[END_REF].

Fluctuating hydrodynamics close to order-disorder transition

In this last section we derive the Ćuctuating hydrodynamics with the same starting point Ű the Ćuctuating BoltzmannŰVicsek equation Ű but in a different regime: close to the orderdisorder transition. We follow the route Ąrst introduced in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF]. This relies on an expansion close to the instability threshold σ c obtained via a moment expansion and a closure. This method has since been widely used in the literature [START_REF] Chaté | Dry Aligning Dilute Active Matter[END_REF]. Yet it should be noticed that its quantitative regime of validity is unclear: the order-disorder transition is generically Ąrst order in the Vicsek model and σ c is well deĄned only at mean-Ąeld level [START_REF] Martin | Fluctuation-induced phase separation in metric and topological models of collective motion[END_REF][START_REF] Grégoire | Onset of collective and cohesive motion[END_REF].

The Ćuctuating hydrodynamics derived close to the instability threshold was previously obtained (for nematic systems) adding a Dean-like noise to the BoltzmannŰVicsek kinetic equation [START_REF] Bertin | Mesoscopic theory for fluctuating active nematics[END_REF]. Here, starting from our Ćuctuating kinetic theory in Eqs. (2.26) and (2.32), we derive the noise term close to the instability threshold both for polar particles in Section 4.1 and nematic particles in Section 4.2.

Polar particles

The derivation of the deterministic hydrodynamics for polar particles can be found in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF][START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF] and we only sketch it here in Section 4.1.1, after performing a proper hydrodynamic rescaling in Section 3.1. In Section 4.1.2, we use the same Ansatz as in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF] to show that a Gaussian approximation for the noise is justiĄed, and to Ąnd the Ćuctuating evolution equations for the slow hydrodynamic modes. We then check that there exists a scaling regime (in terms of microscopic parameters) in which both the hydrodynamic limit and the noise terms are controlled. Last, in Section 4.1.3, we show that both hydrodynamic derivations from Sections 3 and 4 can be connected at leading order.

Moment expansion

Our starting point is the same as in Section 3: after rescaling time and space with the Knudsen number α we work with the Ćuctuating BoltzmannŰVicsek equation (2.38) together with the LDP for the noise in Eq. (2.39).

As customary [START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF], we introduce the complex derivatives ∇ = ∂ x + i ∂ y , ∇ ⋆ = ∂ xi ∂ y , ∆ = ∇∇ ⋆ and the following notations for the Fourier transforms

f k (r, t) = 2π 0 dθ e ikθ f (r, θ, t), ( 2.49) 
and a similar notation for ξ. Taking the Fourier transform of Eq. (2.38) we thus obtain

α ∂ t f k + 1 2 (∇f k-1 + ∇ ⋆ f k+1 ) = +∞ q=-∞ (P k I k,q -I 0,q )f q f k-q + ξ k (2.50) with P k (σ) = 2π 0 dθ P σ (θ)e ikθ , I k,q = 1 2π 2π 0 d∆ K(∆)e -iq∆+ikH(∆) .
(2.51)

The noise terms ξ k are Fourier transforms of ξ, which is nongaussian, and in particular satisĄes a nonquadratic LDP given by Eqs. (2.39) and (2.40). However, since we are actually interested in the small ξ limit, in which the large deviation function can be considered quadratic, ξ k is approximated by a Gaussian noise.

Boltzmann-Ginzburg-Landau scaling for polar particles

We now aim at Ąnding the evolution equation for the Fourier modes of the distribution function in the hydrodynamic limit, where usually only the Ąrst few Fourier modes matter, by truncating the inĄnite hierarchy of stochastic partial differential equations in Eq. (2.50).

Since mass is a conserved quantity, we already know that the density Ąeld ρ(r, t) = f 0 (r, t) is a relevant hydrodynamic Ąeld. Following [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF] and assuming a scaling Ansatz (Eq. (2.55) below), we show that the polarity Ąeld f 1 (r, t) is the second slow Ąeld of the problem while the other modes f k>1 are fast Ąelds.

The equations for the Ąrst k modes, k ∈ ¶0, 1, 2♢, write

∂ t f 0 + 1 2 ∇ ⋆ f 1 = 0, (2.52 
)

α ∂ t f 1 + 1 2 (∇f 0 + ∇ ⋆ f 2 ) = µ 1 [ρ]f 1 + (J 1,2 + J 1,-1 )f ⋆ 1 f 2 + ... + ξ 1 , (2.53) α ∂ t f 2 + 1 2 (∇f 1 + ∇ ⋆ f 3 ) = µ 2 [ρ]f 2 + J 2,1 f 2 1 + ... + ξ 2 , ( 2.54) 
where ... denotes the other terms coming from the collision kernel in equation (2.50), J k,q = P k (σ)I k,q -I 0,q and µ k [ρ] = (J k,0 + J k,k ) ρ 0 . If noises in the hierarchy of equations (2.52)Ű (2.54) are switched off, the system of equations admits a solution ¶f 0 (r, t) = ρ 0 , f k>0 = 0♢, which corresponds to the homogeneous disordered state. It turns out that, at Ąxed density ρ 0 , this solution is linearly stable only when σ is greater than a threshold value σ c , in which case all the µ k [ρ 0 ]'s are negative. Below σ c , an instability of the disordered state is triggered because µ 1 [ρ 0 ] changes sign while the µ k>1 [ρ 0 ] do not [START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF]. This is the regime in which we work in the rest of this section and it is drawn in red in Fig. In order to decouple the evolution of the slow hydrodynamic modes from the fast ones, we work at the onset of instability. Indeed by tuning σ, it is possible to control at will the size of µ 1 [ρ] (as it changes sign continuously) and we choose to work in a scaling regime such that µ

1 [ρ] = α 2 µ ′ 1 [ρ]
. We moreover assume an Ansatz à la BoltzmannŰGinzburgŰLandau in this scaling regime which writes

f 0 = ρ 0 + αδρ, f 1 = αf ′ 1 , f k>1 = α 2 f ′ k . (2.55)
To alleviate notations, we drop the primes. Introducing this scaling into Eqs. (2.53) and (2.54), we see that we are actually interested in a regime where the noise terms ξ k , and hence ξ itself, are small. We conclude that the large deviation rate function in Eq. (2.39) has to be considered only for small values of the variable u and, expanding it for small u, we see that only the quadratic part of the distribution matters. It is thus legitimate to use a Gaussian approximation and, as a consequence, we shall from now on use a Gaussian approximation for the noise ξ. In particular, it is characterized by its Ąrst two moments, which can be computed, for any integers k, l

E[ξ k (r, t)] = 2π 0 dθ e ikθ E[ξ(r, θ, t)] = 0, (2.56 
)

E[ξ k (r, t)ξ ⋆ l (r ′ , t ′ )] = 2π 0 dθdθ ′ e ikθ e -ilθ ′ E[ξ(r, θ, t)ξ(r ′ , θ ′ , t ′ )] (2.57) = εα 3 V col δ(r -r ′ )δ(t -t ′ ), (2.58) 
with

V col = ∞ q=-∞ ν k,l,q (σ) f k-l+q (r, t)f ⋆ q (r, t), (2.59) ν k,l,q (σ) = 1 2  I 0,k-l+q + I 0,k+q + I 0,q-l + I 0,q -2  P k (σ)I k,k+q + P -l (σ)I -l,q-l  (2.60) -2  P k (σ)I k,k-l+q + P -l (σ)I -l,k-l+q  + 2  P k-l (σ) + P k (σ)P -l (σ)  I k-l,k-l+q  . (2.61)
If we look at self-correlations, we have

E[ξ k (r, t)ξ ⋆ k (r ′ , t ′ )] = δ(r -r ′ )δ(t -t ′ ) ∞ q=0 γ k,q (σ) ♣f q (r, t)♣ 2 , (2.62) with γ k,q (σ) = ν k,k,-q (σ) + ν k,k,q (σ) if q ̸ = 0, (2.63 
)

γ k,0 (σ) = ν k,k,0 (σ) . (2.64)
Now, given the fact that µ 2 [ρ] < 0 close to the (Ąrst) instability line, we assume ∂ t f 2 ≈ 0. We then collect only the terms of lowest order in α in the equations for the modes 0, 1, 2, including noise terms and their cross-correlations. We end up with the following equations

∂ t δρ + Re ¶∇f ⋆ 1 ♢ = 0, (2.65 
)

∂ t f 1 = - 1 2 ∇δρ + α  µ 1 f 1 -βf 1 ♣f 1 ♣ 2 + ν∆f 1 + κ 1 f 1 ∇ ⋆ f 1 + κ 2 f ⋆ 1 ∇f 1 + η 1 , (2.66)
whose deterministic part is derived in [START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF]. η 1 is a Gaussian white noise whose correlations write at lowest order in α

E[η 1 (r, t)η ⋆ 1 (r ′ , t ′ )] = ε α γ 1,0 ρ 2 0 δ(t -t ′ )δ(r -r ′ ), (2.67 
)

E[η 1 (r, t)η 1 (r ′ , t ′ )] = 0 . (2.68) R L/N L/N 2/3 L/N 2/3
α large, no hydrodynamic limit α small, hydrodynamic limit ε/α small, weak noise ε/α large, large noise

Ćuctuating hydrodynamics for active polar Ćuids Figure 2.5: Scaling limit for active polar Ćuids γ 1,0 is deĄned in Eq. (2.63) and can be checked to be positive once a speciĄc form for the collision kernel K has been chosen. The other coefficients are given by

ν = 1 4♣µ 2 ♣ , κ 1 = 1 µ 2 (P 2 I 2,1 -I 0,1 ), κ 2 = 1 2µ 2  P 1 (I 1,-1 + I 1,2 ) -I 0,-1 -I 0,2  , ( 2.69 
)

β = P 2 I 2,1 -I 0,1 µ 2  P 1 (I 1,-1 + I 1,2 ) -I 0,-1 -I 0,2  . ( 2.70) 
We work in the scaling limit where α → 0. However, in this scaling limit, we additionally want the strength of hydrodynamic noise to be small, i.e. ε/α → 0. It turns out that

α = L RN → 0 =⇒ L N ≪ R, (2.71) ε α = N 2 R 3 L 3 → 0 =⇒ R ≪ L N 2/3 , (2.72)
where L, R, N were deĄned in Section 2.1. As N is large, N ≫ N 2/3 and there exists a scaling region in which both α and ε/α can be arbitrary small, as shown in Fig. 2.5. This is the scaling limit we choose.

The Langevin equations (2.65Ű2.67) are consistent at the deterministic level with the one studied in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF][START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF][START_REF] Toner | Flocks, herds, and schools: A quantitative theory of flocking[END_REF]. However the noise acting on the orientation Ąeld differs from the ones previously considered in the literature for two reasons. First, it is proportional to ρ 2 0 ; second, it explicitly depends on the particle interactions via γ 1,0 . Both these facts are generically expected in the Ćuctuating hydrodynamic description of dilute active systems.

It should be further observed that different sources of noises add up linearly within this framework. In particular, if we had included translational diffusion of active particles, this would generate at the hydrodynamic level the deterministic diffusion terms which are discussed in [START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF] and noise terms η D respecting mass conservation in the equation for δρ and

f 1 , with correlations E[η D (r, t)η D (r ′ , t ′ )] ∝ δ(t -t ′ )∇ 2 δ(r -r ′ ).
In particular, this noise term η D is less relevant (unless a speciĄc scaling for its magnitude is chosen) in the hydrodynamic limit than noise terms steming from collisions, due to the presence of a Laplacian term in the correlator.

Connection between hydrodynamics equation deep in the ordered phase and close to the phase transition

We conclude comparing the hydrodynamics obtained deep in the ordered phase (Section 3) with the one close to the instability threshold (Section 4). Following [START_REF] Mahault | Outstanding problems in the statistical physics of active matter[END_REF], we express Eq. (2.65) in terms of density and polarity Ąelds, by deĄning f 1 (r, t) = p x + ip y , where p = (p x , p y ) is the polarity Ąeld. They write

∂ t δρ + ∇ • p = 0, (2.73) 
∂ t p + λ 1 (p • ∇) p + λ 2 (∇ • p) p - λ 2 2 ∇ p 2  = a -b p 2  p -c 3 ∇δρ + D T ∆p + η, (2.74)
where

λ 1 = α(κ 1 + κ 2 ), λ 2 = α(κ 1 -κ 2 ), a = αµ 1 , b = αξ, c 3 = 1 2 , D T = αν, ( 2.75) 
and η = (η i ) i=1,2 is an isotropic Gaussian white noise whose correlations read We recognize in Eq. (2.77) all the terms present in (2.47). However these two equations differ for two reasons. First, the dependence of the parameters entering in the hydrodynamic description on the microscopic ones differs in the two cases, both at deterministic and Ćuctuating level. Second, the Laplacian term in Eq. (2.77) is of the same order as transport terms, while these Laplacian terms were subdominant (and hence neglected) in Eq. (2.47).

E[η i (r, t)η j (r ′ , t ′ )] = 1 2 ε α δ ij γ 1,0 ρ 2 0 δ(t -t ′ )δ(r -r ′ ). ( 2 

Nematic particles

In this section, we derive the hydrodynamics for nematic particles with nematic interactions, going through the same steps as in Section 4.1.2. The main difference with respect to the polar case is the additional π-periodicity of the one-particle distribution, which implies that odd Fourier modes f 2k+1 in the hierarchy of Eq. (2.50) vanish, and a different macroscopic scaling has to be chosen. Again only the Ąrst Fourier modes do matter and self-consistent equations of motion for these modes are found by a truncation of the inĄnite hierarchy in Eq. (2.50). Density is a relevant hydrodynamic Ąeld due to mass conservation but, this time, it is the nematic Ąeld f 2 (r, t) which is the second slow Ąeld of the problem, due to the fact that the polarity Ąeld f 1 (r, t) vanishes.

In contrast with the case of polar particles, diffusion is needed to avoid a trivial decoupling of the density and velocity Ąeld. Diffusion should thus be taken into account at the Ćuctuating kinetic level, by adding to the large deviation Hamiltonian in Eq. (2.32), the appropriate large deviation Hamiltonian associated with diffusion, H D . However, as already pointed out in Section 4.1.2, we anticipate that the noise contribution coming from diffusion is less relevant at the hydrodynamic level than the noise due to collisions, because of the Laplacian in the correlator of the diffusion noise. We thus only retain diffusion terms entering at the deterministic level of the equation of motion, as already done in [START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF].

Macroscopic scaling of the stochastic PDE

Again, we are interested in the large-scale and long-time behavior of Eq. (2.38). However, due to the π-periodicity if the one-particule distribution in the nematic case, there is no transport term at the hydrodynamic level, but diffusion. Hence, contrary to the polar case, we choose a diffusive scaling t = α 2 t, r = αr and we remove the tildes in the following.

Adding isotropic diffusion (D 0 ) and anisotropic diffusion (D 1 and g σ,τ is the nematic tensor) to the deterministic part of BoltzmannŰVicsek equation and following the same line of reasoning as in Section 3.1, we end up with the following rescaled stochastic PDE

α 2 ∂ t f + D 0 ∇ 2 f + D 1 g σ,τ ∇ σ ∇ τ f  + αe θ • ∇f -I col [f ] = ξ(r, θ, t), (2.78)
where the distribution of noise ξ[f ] has been also rescaled

P ¶ξ(t)♢ 0≤t<T = ¶u(t)♢ 0≤t<T ≍ ε↓0 exp  - 1 εα 4 J f [u]  .
(2.79)

Moment expansion

We now derive the evolution equation for the Ąrst Fourier modes of the distribution function, by truncating the inĄnite hierarchy of stochastic partial differential equations in Eq. (2.50).

Mass is still a relevant hydrodynamic Ąeld, while f 1 vanishes. The second slow Ąeld of the problem is thus the nematic mode, f 2 , while the other modes f k>2 are fast Ąelds.

The equations for the Ąrst k modes, k ∈ ¶0, 2, 4♢, write

α 2  ∂ t f 0 -D 0 ∇ 2 f 0 - D 1 4 Re(∇ ⋆2 f 2 )  = 0 (2.80) α 2  ∂ t f 2 -D 0 ∇ 2 f 2 - D 1 4 ∇ 2 f 0 + ∇ ⋆2 f 4   = µ 2 [ρ]f 2 + (J 2,-2 + J 2,4 )f ⋆ 2 f 4 + ... + ξ 2 α 2  ∂ t f 4 -D 0 ∇ 2 f 4 - D 1 4 ∇ 2 f 2 + ∇ ⋆2 f 6   = µ 4 [ρ]f 4 + J 4,2 f 2 2 + (J 4,-2 + J 4,6 )f ⋆ 2 f 6 + ... + ξ 4
where ... denotes the other terms coming from the collision kernel in Eq. (2.50), J k,q = P k (σ)I k,q -I 0,q and µ k [ρ] = (J k,0 + J k,k ) ρ 0 . If noises in the hierarchy of equations (2.80) are switched off, the system of equations admits a solution ¶f 0 (r, t) = ρ 0 , f k>0 = 0♢, which corresponds to the homogeneous disordered state. It turns out that, at Ąxed density ρ 0 , this solution is linearly stable only when σ is greater than a threshold value σ c , in which case all the µ 2k [ρ 0 ]'s are negative. Below σ c , an instability of the disordered state is triggered because this time µ 2 [ρ 0 ] changes sign while the µ 2k>2 [ρ 0 ] do not. This is the regime in which we work in the rest of this section and it is drawn in red in Fig. 2.6. 

Boltzmann-Ginzburg-Landau scaling for nematic particles

To again decouple the evolution of the slow hydrodynamic modes from the fast ones, we work at the onset of the instability by tuning σ, which allows to control the size of µ ′ 2 [ρ]. We choose to work in a scaling regime µ 2 [ρ] = α 2 µ 2 [ρ] and we assume an Ansatz à la BoltzmannŰGinzburgŰLandau

f 0 = ρ 0 + αδρ, f 2 = αf ′ 2 , f k>2 = α 2 f ′ k . (2.81)
We further drop the primes for convenience. This scaling along with the same reasoning as in Section 4.1.2 justiĄes the use of a Gaussian approximation for the noises, which are characterized by their Ąrst two moments, which writes for any integers k, l

E[ξ k (r, t)] = 2π 0 dθ e ikθ E[ξ(r, θ, t)] = 0, (2.82) E[ξ k (r, t)ξ ⋆ l (r ′ , t ′ )] = 2π 0 dθdθ ′ e ikθ e -ilθ ′ E[ξ(r, θ, t)ξ(r ′ , θ ′ , t ′ )] (2.83) = εα 4 V col δ(r -r ′ )δ(t -t ′ ), (2.84) 
where V col is deĄned in Eq. (2.59).

Close to the Ąrst instability line, we assume ∂ t f 4 ≈ 0, because µ 4 [ρ] ≤ 0. Collecting terms of lowest order in α in the equations for the modes 0, 2, 4 including noise terms and their cross-correlations, it yields

∂ t δρ = D 0 ∇ 2 δρ + D 1 2 Re(∇ ⋆2 f 2 ), (2.85) ∂ t f 2 = µ 2 f 2 + ν∆f 2 + χ∇ 2 δρ -ξf 2 ♣f 2 ♣ 2 + η 2 , (2.86)
whose deterministic part is derived in [START_REF] Peshkov | Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models[END_REF]. The coefficients ν, χ, ξ write

ν = D 0 , χ = D 1 4 , ξ = P 4 I 4,2 -I 0,2 µ 4  P 2 (I 2,4 + I 2,-2 ) -I 0,4 -I 0,-2  , (2.87)
and η 2 is a Gaussian noise whose correlations write

⟨η 2 (r, t)η ⋆ 2 (r ′ , t ′ )⟩ = ε α 2 γ 2,0 ρ 2 0 δ(t -t ′ )δ (2) (r -r ′ ), (2.88) ⟨η 2 (r, t)η 2 (r ′ , t ′ )⟩ = 0 . (2.89)
γ 2,0 is deĄned in Eq. (2.63) and can be checked to be positive once a speciĄc form for the collision kernel K and a given symmetry H have been chosen, as for instance in Eq. (2.8). We again work in the scaling limit α → 0 and we need to ensure that in this scaling limit the strength of the hydrodynamic noise is small, meaning ε/α 2 → 0. However

α = L RN → 0 =⇒ L N ≪ R, (2.90) ε α 2 = N 3 R 4 L 4 → 0 =⇒ R ≪ L N 3/4 , (2.91)
where L, R, N were deĄned in Section 2.1. As N is large, N ≫ N 3/4 and there exists a scaling region in which both α and ε/α 2 can be arbitrary small, as shown in Fig. 2.7. This is the scaling limit we choose. The observations about the Ćuctuating hydrodynamic equations for polar particules in Section 4.1.2 still hold for nematic particles. We however notice here that all the terms are of the same hydrodynamics order, unlike in the polar case. This is due to the absence of advection term in the nematic case.

R L/N L/N

Conclusion

We focused on active matter systems where polar alignment is the dominant interaction in the dilute regime. Within this framework, we have extended the Boltzmann deterministic kinetic theory to its Ćuctuating counterpart. This is best described through a large deviation theory formalism, given that Ćuctuations in the kinetic theory are not Gaussian. The large deviation Hamiltonian associated with it is given in Eqs. (2.32) and (2.33). Our Ćuctuating BoltzmannŰVicsek equation has the same regime of validity of the original BoltzmannŰVicsek equation: ε ≪ 1, where ε -1 = ρ 0 ℓ 2 is the number of particles in an area equal to the square of the mean free path ℓ.

We have then derived the associated Ćuctuating hydrodynamics in two different regimes of parameters. First, deep in the ordered phase, our Ąnal result is in Eqs. (2.45), (2.47) and (2.48), which allows to obtain the path probability of the density and the orientational Ąeld to leading order in the Knudsen number α = ℓ/L, where L is a macroscopic length-scale (e.g. the size of the system). In this regime and for dilute systems, even the derivation of the deterministic hydrodynamics was not known. We stopped the perturbative expansion at leading order in α, which corresponds to neglecting diffusive terms, but the same technique could be employed to obtained them, along the lines of the computations previously done in the weak-interactions regime [START_REF] Degond | Continuum limit of self-driven particles with orientation interaction[END_REF]. Second, we have derived the Ćuctuating hydrodynamics close to the transition between order and disorder using a moment expansion and a closure of the hierarchy, as widely employed in the active matter community [START_REF] Chaté | Dry, aligning, dilute, active matter: A synthetic and selfcontained overview[END_REF]. We derived it both for polar particles (with polar interactions) and nematic particles.

The derivation of the hydrodynamic noise in the dilute regime differs in two important aspects from the one obtained in the weak-interactions regime [START_REF] Dean | Langevin equation for the density of a system of interacting Langevin processes[END_REF][START_REF] Bertin | Mesoscopic theory for fluctuating active nematics[END_REF]. First, it depends explicitly on the particle interactions and, reĆecting the binary nature of the collisions, its variance is quadratic in the density.

We conclude with three remarks. First, we have presented results on polar particles with polar aligning interactions, but we expect that these can be generalized to polar particles with nematic interactions in Sections 3 and 4 or to fully active nematic systems in Section 3. Second, in most real systems stochasticity at hydrodynamic level can originate both from interactions and from single-particle diffusion; our theory is linear Ű and if single particle diffusion is present, it just adds up at hydrodynamic level. Lastly, while our derivation of the hydrodynamic theory deep in the ordered state can be considered controlled from a mathematical viewpoint, it should be noted that our results assume a smooth evolution at the hydrodynamic level: our scaling hypothesis might break down in the presence of shocks. The analysis of large deviations in their presence is a much harder problem, whose understanding is so far limited only to few examples [START_REF] Bodineau | Distribution of current in nonequilibrium diffusive systems and phase transitions[END_REF], and progress along these lines would certainly require the analysis of dissipative terms at hydrodynamic level.

Introduction

Quenched disorder is usually argued to be inevitably present in real condensed matter systems and there is thus no reason for active matter systems to escape it. For instance active particles most of the time live in dirty and crowded environments [START_REF] Bechinger | Active particles in complex and crowded environments[END_REF], which may considerably alter their motion, hence the question: to which extent does quenched disorder change the phenomenology known from pure active systems ? The literature on this topic is rather recent and relatively few universal results are known. In any case, even though disorder in the context of out-of-equilibrium physics is not a new topic of study (e.g. the quenched KPZ equation [START_REF] Kessler | Interface fluctuations in random media[END_REF] or the out-of-equilibrium random-Ąeld Ising model [START_REF] Sethna | Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations[END_REF]), much less is known compared to the equilibrium case.

Quenched disorder in active matter

The interaction between activity and quenched disorder has been investigated in numerous active matter systems: with aligning particles [START_REF] Chepizhko | Optimal Noise Maximizes Collective Motion in Heterogeneous Media[END_REF] or scalar ones [START_REF] Volpe | Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation[END_REF], with different types of disorder (random obstacles [START_REF] Chepizhko | Diffusion, Subdiffusion, and Trapping of Active Particles in Heterogeneous Media[END_REF], rotators [START_REF] Das | Polar flock in the presence of random quenched rotators[END_REF], potentials or torques [START_REF] Ben Dor | Ramifications of disorder on active particles in one dimension[END_REF], traps [START_REF] Bhattacharjee | Bacterial hopping and trapping in porous media[END_REF][START_REF] Woillez | Active Trap Model[END_REF]) and with various emerging collective effects (clogging, jamming or depinning [240Ű242], clustering or dispersion [START_REF] Pinçe | Disorder-mediated crowd control in an active matter system[END_REF], localization [START_REF] Morin | Diffusion, subdiffusion, and localization of active colloids in random post lattices[END_REF], vortex glasses [START_REF] Chardac | Emergence of dynamic vortex glasses in disordered polar active fluids[END_REF]). We focus in this section on the one dealing with active phase separation and Ćocking in the presence of quenched disorder and notably those assessing their robustness against quenched Ćuctuations.

The study of quenched disorder in active matter began with Ćocking systems (as in the pure case) by showing that collective motion can be maximized if the amount of quenched disorder is properly tuned [START_REF] Chepizhko | Optimal Noise Maximizes Collective Motion in Heterogeneous Media[END_REF]. Ensuing studies outlined what can be the effect of quenched disorder on polar Ćocks, mainly depending of the type of disorder introduced [236, 246Ű 249]. As regards the Vicsek universality class, both numerical studies [START_REF] Chepizhko | Active particles in heterogeneous media display new physics[END_REF] and analytical treatment at the hydrodynamic level [START_REF] Toner | Swarming in the Dirt: Ordered Flocks with Quenched Disorder[END_REF] showed that Ćocking exists in dimensions d ≥ 3, while only a quasi-long-range Ćocking order is seen in d = 2 (thus setting the lower critical dimension to d l = 2). Recently large-scale simulations additionally observe that, depending on the type of disorder, non-self-averaging and sample-to-sample Ćuctuations are expected. The nature of the ordered phase is also strongly altered and the transition between the ordered and disordered state might even be continuous [START_REF] Duan | Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder[END_REF]. For incompressible Ćocks, the lower-critical dimension is found to be d l = 2, with polar long-range order predicted in d = 2 and higher dimensions [START_REF] Chen | Packed Swarms on Dirt: Two-Dimensional Incompressible Flocks with Quenched and Annealed Disorder[END_REF][START_REF] Chen | Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d > 2[END_REF].

Within the context of active phase separation, much less is known and the effect of disorder has been mainly investigated by introducing quenched random potentials or torques [START_REF] Ro | Disorder-Induced Long-Ranged Correlations in Scalar Active Matter[END_REF]. It has notably been argued that the lower critical dimension for active phase separation is d l = 4 (while it is d l = 2 in the passive case) and that for the physically relevant dimension d = 2, phase separation is replaced by an homogeneous phase with anomalous long-range correlations. Phase-separating active systems thus seem to be less robust to quenched disorder than their passive counterparts.

Both activity and disorder can be introduced at the microscopic level in a countless number of ways. As already discussed in the manuscript, we could nonetheless hope that at large scales, as in equilibrium, some universal properties or mechanisms emerge out of precise examples, providing guiding principles to better appraise what the interplay between activity and disorder may lead to. We review in the next section the main effects of quenched disorder on critical phenomena at equilibrium, more speciĄcally within the frame of the O(N ) model.

Quenched disorder in the equilibrium O(N )-model

There are classically two ways to introduce the effect of quenched disorder in the O(N ) model. 1 . The Ąrst way, termed random-bond model, consists in introducing static spacedependent Ćuctuations in the mass term of the Ąeld theory or in the exchange coupling constant. On a microscopic level, it is thought to model noninteracting impurities or vacancies. The second way of introducing quenched disorder is to impose a space-dependent random Ąeld on each point of the space, which models the effect of interacting impurities at the Ąeld theory level.

The Ąrst question to be asked concerning the inĆuence of quenched disorder on collective effects is whether it alters or even destabilizes the phases of the pure system. If true, the disorder is then said to be strong. It is known that the presence of random-bond disorder does not alter the stability of the pure phases. It is however the case for some random-Ąeld models, in which, depending on the space dimension, order is destroyed by the quenched Ćuctuations as shown by Imry and Ma [START_REF] Imry | Random-Field Instability of the Ordered State of Continuous Symmetry[END_REF]. 2If the robustness of the phases against quenched Ćuctuations has been assessed, it is possible to investigate whether quenched disorder can alter the phase transition separating the ordered and disordered phases. 3 Again, the answer depends on the nature of the disorder, although a decrease of the critical temperature is systematically expected.

For random-bond disorder, it can be shown [START_REF] Harris | Effect of random defects on the critical behaviour of Ising models[END_REF][START_REF] Grinstein | Ferromagnetic Phase Transitions in Random Fields: The Breakdown of Scaling Laws[END_REF] that quenched disorder is irrelevant or not (at the critical point of the pure system) depending on whether the following inequalities, known as Harris criterion, are satisĄed:

quenched disorder is relevant, if 2 -d ν = α > 0, irrelevant, if 2 -d ν = α < 0, (3.1)
where d is the dimension of the space, ν is the critical exponent associated with the correlation length and α the one to the heat capacity, both of pure system. In the case in which the random-bond disorder is relevant, the universality class of the pure system is changed with a priori different critical exponents and scaling-functions than of those of the pure case.

Regarding random-Ąeld disorder, it is always a relevant perturbation for the asymptotic properties of the pure system [START_REF] Cardy | Scaling and renormalization in statistical physics[END_REF][START_REF] Nattermann | Theory of the random field Ising model[END_REF]: the upper critical dimension of the quenched system is lifted by 2 and the critical behavior the system is controlled by a zero-temperature Ąxed point (as shown in Fig. 3.1 for the random-Ąeld Ising model). Dimensional reduction predicts that the critical properties of the quenched system behave in the same way as [START_REF] Nattermann | Theory of the random field Ising model[END_REF]. T is the temperature, h the strength of the random Ąeld, H the magnitude of a Ąnite and homogeneous magnetic external Ąeld and J the spin interaction strength. C is the totally unstable thermal Ąxed point, while R is the zero-temperature critical Ąxed point: stable along the T -axis but unstable along the h axis. F is a totally stable Ąxed point and its basin of attraction (the RF C area) corresponds to the ordered phase, while the rest corresponds to the disordered phase.

those of a pure model in dimension d -2. However the dimensional reduction property turns to be true only above a certain critical dimension d ≳ 5 [START_REF] Tarjus | Nonperturbative Functional Renormalization Group for Random-Field Models: The Way Out of Dimensional Reduction[END_REF][START_REF] Tarjus | Random-field Ising and O(N) models: theoretical description through the functional renormalization group[END_REF] and it has been rigorously proven that the lower-critical dimension is d l = 2 [START_REF] Imbrie | Lower Critical Dimension of the Random-Field Ising Model[END_REF] in the Ising model, in agreement with the heuristic Imry-Ma analysis [START_REF] Imry | Random-Field Instability of the Ordered State of Continuous Symmetry[END_REF]. In any case, new Ąxed points together with new critical exponents are generically expected with random forces. In some cases, random-Ąeld disorder can even change the nature of the phase transition, for instance by rounding Ąrst-order phase transitions [START_REF] Aizenman | Rounding of first-order phase transitions in systems with quenched disorder[END_REF].

Quenched random forces in flocking models

All the studies concerning disordered Ćocks have so far focused on the effect of quenched disorder on the ordered or quasi-ordered phase. In this chapter, we study the inĆuence of quenched disorder on the Ćocking transition itself found in incompressible polar active Ćuids [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF]. We have already highlighted in the introduction of the manuscript that the pure model is only one of the few cases where the Ćocking transition can be well-controlled via a one-loop perturbative RG calculation. This is thus a good starting model to assess the inĆuence of disorder on the Ćocking transition using RG.

Proceeding by analogy with equilibrium O(N ) Ąeld theories, it is tempting to introduce quenched disorder either under the form of a random mass or of a random Ąeld: the underlying idea is that these quenched theories could be incompressible versions of coarse-grained hydrodynamics obtained from Vicsek-models in which noninteracting or interacting frozen impurities have been added.

Examples of such quenched Vicsek models have been introduced and studied in [START_REF] Duan | Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder[END_REF]. In the quenched Şrandom-massŤ case in [START_REF] Duan | Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder[END_REF], a static space-dependent random modulation of the microscopic misalignment after collisions (i.e. η in Eq. (0.23)) is introduced and could correspond for instance to a space-dependent variation of collisions in the system. On the other hand, the quenched Şrandom-ĄeldŤ case in [START_REF] Duan | Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder[END_REF] consists in imposing an additional reorientation of the particles after collisions imposed once for all on each point of the space. Physically this quenched random force model could be motivated by the presence of defects on a substrate that locally force active particles to deviate from their trajectory (like bacteria on a random medium for instance). A last way to introduce quenched disorder in Vicsek models is to consider defects which are not point-like anymore but rather obstacles with a size of the order at least of the particle length [START_REF] Chepizhko | Optimal Noise Maximizes Collective Motion in Heterogeneous Media[END_REF]. 4 It is not clear though what would be the corresponding Ąeld theory. This analogy between quenched microscopic models and incompressible quenched Ąeld theories should be nevertheless qualiĄed. First, as already mentioned in the introduction, no microscopic model has yet been shown to truly fall into the universality class of incompressible active Ćuids, even in the pure case. Second, as we will see later, at the level of the hydrodynamics of quenched incompressible active Ćuids, random mass and random force models belong to the same universality class.

The chapter is divided into four sections: in Section 2 we introduce the hydrodynamics of incompressible polar Ćuid in the presence of quenched random forces and we represent it within a Ąeld-theory formalism in Section 3. In Section 4, we determine the RG Ćow of the model and the universality class of the Ćocking transition. Last in Section 5, we discuss the fact that a unique universality class is expected to describe the Ćocking transition in quenched incompressible Ćocks.

Disordered incompressible polar active fluid: definition of the model

The hydrodynamics of incompressible polar active Ćuids [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF] is given by the two equations

∂ t v + λ(v • ∇)v = -∇P -(a + b 3! v 2 )v + µ∇ 2 v + f , (3.2) ∇ • v = 0 . (3.3)
Here v is the Ćuid-velocity Ąeld (of d components living in a space of d dimensions), λ is the advection parameter, P is the pressure, a and b > 0 deĄne the standard quartic ŞMexican hatŤ potential (the ordered state corresponds to a < 0), µ is the diffusion constant and f is a dynamic gaussian white noise, whose correlator reads

⟨f α (r 1 , t 1 )f β (r 2 , t 2 )⟩ = 2D δ αβ δ(t 2 -t 1 )δ(r 2 -r 1 ) . (3.4)
As shown in [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF], this model displays an ordered or Ćocking phase, which is separated from a disordered phase by a continuous second order phase transition, whose critical exponents are accessible using one-loop perturbative RG.

Quenched disorder can be introduced in the hydrodynamics of Eq. (3.2) via a static but space-dependent random force g

∂ t v + λ(v • ∇)v = -∇P -(a + b 3! v 2 )v + µ∇ 2 v + f (r, t) + g(r), (3.5) 
∇ • v = 0, (3.6)
where g is a centered Gaussian white noise, with correlator

g α (r 1 )g β (r 2 ) = ∆ δ αβ δ(r 2 -r 1 ) . (3.7)
From a mean-Ąeld point of view, Eq. (3.5) predicts a disordered phase or an ordered one depending on the sign of a. 5 To study the transition between these two phases, renormalization group is required since the λ-and b-nonlinearities are relevant below the upper critical dimension d c = 6. More precisely, dimensional analysis of Eq. (3.5) Ąrst shows that the dynamical noise is a priori less relevant than the quenched one. Indeed, imposing the strength of both noises to be of the same magnitude upon the rescaling

r ′ = Λ r, t ′ = Λ z t and v ′ = Λ χ v gives [D] ∼ [∆]Λ -z , z = 2, (3.8) 
which means that in the large-scale limit (Λ → ∞) the dynamical noise is expected to be subdominant with respect to quenched disorder. Equation (3.5) thus gives, in the absence of nonlinearities and of dynamical noise, the mean-Ąeld critical exponents z = 2 and χ = 4-d 2 . The nonlinearities λ and b start however to be relevant under the upper critical dimension d c = 6 (as in equilibrium, the upper critical dimension is lifted by z in the presence of quenched random forces) and critical exponents are thus expected to differ from their mean-Ąeld value in any dimension relevant within an active matter context. We determine the corrections to the critical exponents in the next sections by performing a perturbative oneloop RG calculation in ε = 6d around from the upper critical dimension.

Field-theory formalism

Two equivalent formalisms can be used to represent the hydrodynamics of incompressible active Ćuid in Eq. (3.5) as a Ąeld theory. The Ąrst way is to impose incompressibility by introducing appropriate Lagrange multipliers, as performed in [START_REF] Zinati | Dense polar active fluids in a disordered environment[END_REF]. We complement this approach by following in this chapter a second path, used in [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF] and which consists in expressing in Fourier space the Langevin equation (3.5) in terms of parallel and perpendicular modes.

The same Fourier transform and vectors conventions as in the rest of the manuscript are used and recapped in Appendix A ; notably capital letters denotes 4-vectors Q = (ω, q). Einstein's summation convention is everywhere implied.

Incompressibility constraint in Fourier space

The incompressibility constraint imposed on the velocity Ąeld fully determines the pressure P, since the Fourier transform of Eq. (3.5) projected along the vector p reads

p 2 P = -ip • f -ip • g -λ Q 1 +Q 2 =P q 1 • v(Q 2 ) q 2 • v(Q 1 ) + i b 3 Q 1 +Q 2 +Q 3 =P q 1 • v(Q 3 ) v(Q 1 ) • v(Q 2 ) . (3.9)
By replacing pressure by its expression in Eq. (3.9), the Langevin equation (3.2) can be rewritten in terms of the transverse velocity Ąeld as in [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF]:

(-iω + a + µp 2 )v α (P ) = P α,β (P )f β (P ) + P α,β (P )g β (P )

-iλV αβγ (P )

Q 1 +Q 2 =P v β (Q 1 )v γ (Q 2 ) - b 3! Q αβγδ (P ) Q 1 +Q 2 +Q 3 =P v β (Q 1 )v γ (Q 2 )v δ (Q 3 ), (3.10)
where

P α,β (P ) = δ αβ - p α p β p 2 , V αβγ (P ) = 1 2 P α,β (P )p γ + P α,γ (P )p β  (3.11) Q αβγδ (P ) = 1 3 P α,β (P )δ γδ + P α,γ (P )δ βδ + P α,δ (P )δ βγ  . (3.12)
This equation of motion for v is the starting point for the Ąeld-theory formalism of the next sections.

Response-field and replica formalisms

Within the response-Ąeld formalism (Appendix B), once the integration over the dynamical noise has been performed, the action S associated with Eq. (3.5) reads in terms of v and the response Ąeld v

S[v, v♣g] = Q vα (-Q)  G 0 α,β (Q) -1 v β (Q) + A α (v, Q) -P α,β (Q)g β (Q) -DP α,β (Q)v β (Q)  , ( 3.13) 
where

G 0 α,β (Q) = δ α,β -iω + a + µ q 2 , (3.14) A α (v, Q) = iλ V αβγ (Q) Q 1 +Q 2 =Q v β (Q 1 )v γ (Q 2 ) (3.15) + b 3! Q αβγδ (Q) Q 1 +Q 2 +Q 3 =Q v β (Q 1 )v γ (Q 2 )v δ (Q 3 ) . (3.16)
To deal with the quenched force g, we introduce n copies (or replicas) of the velocity Ąeld ¶v a ♢ 1≤a≤n to integrate over the probability distribution of g (Appendix D). We end up with the following action, which we call S by an abuse of notation,

S[ ¶v a ♢, ¶v a ♢] = a S 1 [v a , v a ] - 1 2 a,b S 2 [v a , vb ], (3.17)
where the one-replica and the two-replica parts respectively read

S 1 [v a , v a ] = Q va α (-Q)  G -1 0 (Q)v a α (Q) + A α (v a , Q) -DP α,β (Q)v a β (-Q)  , (3.18) S 2 [v a , vb ] = ∆ Q P α,β (Q) va α (q, 0)v b β (-q, 0) . (3.19)

RG flow to one loop

We determine the RG Ćow of the coupling constants from the action (3.17) by using oneloop perturbative RG with Wilson's cutoff. To do so, we deĄne from the bare action the vertices for the perturbation theory in Section 4.1 and we list in Section 4.2 the associated one-particle-irreducible (1-PI) diagrams to one loop. From the diagrammatic corrections, we deduce the RG Ćow of the model in Section 4.3 and we characterize the universality class which the Ćocking transition belongs to in Section 4.4.

Vertices of the perturbation theory

From the bare action (3.17), we deĄne the bare propagator

G 0 α,β (Q) = ṽα v β = δ α,β -iω + a + µ q 2 , (3.20)
and the bare vertices as

V α,β,γ 3 (Q 1 , Q 2 , Q 3 ) = ṽα (Q 1 ) v β (Q 2 ) v γ (Q 3 ) (3.21) = 2i λ V α,β,γ (Q 1 )δ(Q 1 + Q 2 + Q 3 ), V α,β,γ,δ 4 (Q 1 , Q 2 , Q 3 , Q 4 ) = ṽα (Q 1 ) v β (Q 2 ) v γ (Q 3 ) v δ (Q 4 ) (3.22) = b Q α,β,γ,δ (Q 1 )δ(Q 1 + Q 2 + Q 3 + Q 4 ), N α,β (Q) = v α v β (3.23) = G 0 α,γ (Q)  -2∆P γ,δ (Q)δ(ω)  G 0 δ,β (-Q) .
Due to the fact that the dynamical noise is RG-irrelevant, we do not consider the one-loop diagrams which can be built out of it and we thus drop the noise vertex in the perturbative expansion.

The vertices should a priori depend on the replica indices. However, those coming from the one-replica part of the action can only couple Ąelds of the same replica. Second, to one-loop order, the quenched noise vertex cannot couple two different replicas (while it can to higher loop orders), except in one diagram in Fig. 3.2c contributing to its own renormalization. Because the diagrammatic contribution in Fig. 3.2c is irrelevant (as explained in the next section), the quenched noise is not renormalized. This means in practice that all replica indices can be forgotten in the deĄnition of the vertices.

Diagrammatic corrections

The 1-PI diagrams which can be built at one-loop order out of the bare vertices deĄned in Section 4.1 are summarized in Fig. 3.2. Only the different topologies of the diagrams are displayed and permutations over the external momenta are implied everywhere. Each of the diagrammatic corrections is calculated at the upper critical dimension d c = 6 using Wilson's regularization.

Due to the fact that we work at one-loop order, several simpliĄcations occur, similarly to the pure case. First, the quenched noise (Fig. 3.2c) is not renormalized to one loop: the 3-leg vertex in Eq. (3.21) is indeed proportional to the momentum circulating in the ṽ-leg, hence, contributions to the quenched noise are at least of order O(♣p♣ 2 ) while the relevant term in the noise is of order O(♣p♣ 0 ), p being the external momentum. For the same reason, time is not renormalized to one loop by the diagram in Fig. 3.2b, which justiĄes a posteriori why we set the coupling constant of the ∂ t v-term to 1. Among the other graphs, the diagrams in Figs. 3.2h, 3.2i, 3.2l and 3.2m do not contribute to the renormalization of b, as their external ṽ-leg makes the diagram at least of order O(♣p♣ 1 ).

However, the sum of some graphs, which ŞaccidentallyŤ vanishes in the pure case, no longer does in the quenched case: this is the case of the diagrams in Figs. 3.2d, 3.2e, 3.2j and 3.2k which thus contribute to the RG Ćow. 6Due to the nonrenormalization of the quenched noise, the 2-replica parts of the action is trivial. Thus, to one loop, the RG calculation associated with Eq. (3.17) goes along the same lines as in the pure case, with the caveat there is no integral over the internal frequency to be calculated (the quenched noise is constant in time and its vertex thus constrains the internal frequencies, cf. Eq. (3.23)). 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

Equations of the RG flow

The contributions obtained from the nonvanishing diagrams at the upper critical dimension d c = 6 give the following dimensionfull RG Ćow:

Λ d dΛ a =  z - 80 9 b∆ µ 3 K 6  a, (3.24) 
Λ d dΛ µ =  -2 + z + 8 3 λ 2 ∆ µ 4 K 6  µ, (3.25) 
Λ d dΛ λ =  χ -1 + z + 1 6 λ 2 ∆ µ 4 K 6 - 25 9 b∆ µ 3 K 6  λ, (3.26) 
Λ d dΛ b =  2χ + z - 25 6 
λ 2 ∆ µ 4 K 6 -15 b∆ µ 3 K 6  b, (3.27) 
Λ d dΛ ∆ = (-2χ + 2z -d)∆, (3.28) 
where Λ is the momentum scale used in the regularization. We deĄne the two reduced coupling constants g 1 = λ 2 ∆ µ 4 K 6 and g 2 = b∆ µ 3 K 6 . Compared to the pure case, g 1 and g 2 only differ by a factor 1/µ, which comes from the fact that the dimension of the noise has changed. The RG Ćow for the reduced coupling constants reads

Λ d dΛ g 1 = εg 1 - 50 9 g 1 g 2 - 31 3 g 2 1 , (3.29) 
Λ d dΛ g 2 = εg 2 - 73 6 g 1 g 2 -15g 2 2 . ( 3.30) 
Imposing that Λ d dΛ µ = 0 and Λ d dΛ ∆ = 0 at the Ąxed points, we Ąnd the two critical exponents

z = 2 - 8 3 g 1 , χ = z - d 2 , ( 3.31) 
and the Ćow of the relevant coupling constant a reads

Λ d dΛ a = (2 - 8 3 g 1 - 80 9 g 2 )a . (3.32)

Graph of the RG flow and critical exponents

The RG Ćow associated with Eq. (3.29) in the critical hypersurface a ⋆ = 0 is shown in Fig. 3.3, where by deĄnition the renormalized mass a ⋆ to one loop makes Eq. (3.32) vanish.

The critical exponents of the theory are determined via the linearized Ćow at the stable qNS FP. From the Ćow of the mass in Eq. (3.32), we deduce the critical exponent ν = 1/2 + 2/31ε. From Eq. (3.31), we Ąnd

z = 2 - 8 31 ε, χ = -1 - 8 31 ε . ( 3.33) 
These two exponents can be equivalently rewritten in terms of η and η, to put emphasis on the quenched disorder aspect. By deĄnition,

⟨ṽ α (0, 0)v β (x, t)⟩ ∼ F 1 (x z /t)δ α,β + F 2 (x z /t) xαx β x 2 x d-2+η+z , ( 3.34 
)

⟨v α (0, 0)v β (x, t)⟩ ∼ F 3 (x z /t)δ α,β + F 4 (x z /t) xαx β x 2 x d-4+η , ( 3.35) 
where x = ♣x♣, the F i 's are scaling functions such that

F 1,2 (u) ∝ u (d-2+η+z)/z , u ≪ 1, 1, u ≫ 1, (3.36) 
F 3,4 (u) ∝ u (d-4+η)/z , u ≪ 1, 1, u ≫ 1. (3.37) 
Hence

η = 2 -z = 8 31 ε, η = 4 -d -2χ = 16 31 ε . ( 3.38) 
The presence of quenched random forces is reĆected in the formalism by the nonvanishing anomalous dimension η, which induces an anomalous scaling of the observable correlation function in Eq. (3.35).

The last critical exponent β cannot be straightforwardly computed, due to the fact that the v 4 coupling b vanishes at the qNS FP and that the conventional hyperscaling relation β = ν(d -2 + η)/2 breaks down [START_REF] Zinn-Justin | Quantum Field Theory and Critical Phenomena[END_REF]. At the qNS FP, b is called a dangerously irrelevant coupling constant and β can still be computed by appropriately modifying the hyperscaling relation to

β = ν 2 (d -2 + η -ω) . ( 3.39) 
Here ω characterizes the speed at which the v 4 -coupling constant vanishes and can be obtained as the relative speed of g 2 in its Ćow in Eq. (3.30), evaluated at the qNS FP:

β = 1/2 -41/248ε.
These critical exponents deĄne the universality class characterizing the long-time and large-scale physics of an incompressible Navier-Stokes equation, with a purely static random force. This universality class is somewhat unusual, at least in the context of standard Navier-Stokes equations, because the (quenched) random force is acting at microscopic scales, while the random forcing within a turbulent context is often acting at large-scales (and the energy dissipated via the Kolmogorov's cascade to the lower scales). Finding what could be the appropriate physical interpretation of the qNS theory representative for this universality class is an interesting but open question.

Although the v 4 coupling constant b is vanishing at the phase transition, an ordered state does exist below the upper critical dimension, as found in [START_REF] Chen | Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d > 2[END_REF], because b is in fact a dangerously irrelevant variable at the qNS FP. 7 The Ćocking transition in incompressible polar active Ćuids is thus described by the qNS universality class.

A unique universality class in the presence of quenched disorder

A last interesting observation concerns other possible universality classes which could be found if the quenched disorder is introduced differently in the hydrodynamics of incompressible active Ćuids. For instance, in a random-bond disorder like model, a quenched random Ćuctuation δa(x) could be added to the mass a in Eq. (3.2), such that

δa(x) = 0, δa(x 1 )δa(x 2 ) = ∆ a δ(x 1 -x 2 ) . ( 3.40) 
and no quenched random forces is a priori present. However, it turns out that the symmetry content of the Ąeld theory either with a quenched random mass or with a quenched random force is the same. This is different than what happens in the equilibrium Ising model for instance and it directly stems from the advection term in Eq. (3.5) which couples space derivatives to the Ąelds. Since the two theories cannot be distinguished from a symmetry point of view, they belong to the same universality class, which is that we have studied above. We refer to [START_REF] Zinati | Dense polar active fluids in a disordered environment[END_REF] for a more detailed discussion.

Conclusion

We study in this chapter the effect of quenched disorder on the continuous Ćocking transition found in incompressible active Ćuids. We show that it changes the universality class of the Ćocking transition by destabilizing the attractive Ąxed point of the pure case in favor of a pure advective Ąxed point describing a quenched Navier-Stokes theory. If the physical interpretation of this limiting theory remains unclear at this point, this scenario is expected to happen quite generally in the presence of quenched disorder, irrespective of its detailed form (spin-glass behavior with frustration due to interactions that are both attractive and repulsive being excluded).

Introduction

As we mention in the introduction of the manuscript, the Ćocking transition is discontinuous in compressible active Ćuids and the density Ąeld displays atypical band proĄles. A natural idea which has been explored at the level of the Ąeld theories is to tame density Ćuctuations, by making further assumptions on the density Ąeld. In this chapter, we investigate what happens if the density Ąeld is assumed to be uniform.

To do so, we propose a lattice model, the Swapping XY (SXY) model, containing all the ingredients to display Ćocking (namely self-propulsion and alignment) but which displays a rigorously uniform density Ąeld at every time step. The associated hydrodynamics is derived and we refer to it as the hydrodynamics for uniform-density active Ćuids. It corresponds to the Ąeld theory of compressible active Ćuids, in which all density-dependent terms (including pressure) have been dropped, in the same spirit of what is done to obtain the Bateman-Burgers' equation [START_REF] Bateman | Some recent researches on the motion of fluids[END_REF][START_REF] Burgers | A Mathematical Model Illustrating the Theory of Turbulence[END_REF].

In fact, the uniform density limit in Ćocks has already been explored within the frame of Malthusian Ćocks [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF]. In this model, birth and death processes occurring on fast time-scales allow to integrate out the density Ąeld, so that only the velocity Ąeld has to be retained. Although it is tempting to say that the hydrodynamics of uniform active Ćuids probably share many of the large scales properties of Malthusian Ćocks, the two Ąeld theories are strictly speaking not the same, as density is not necessarily uniform in Malthusian Ćocks. Comparing the phenomenology of the two theories might thus be interesting to investigate.

Besides these analytical results, few works have explored the uniform density limit in Ćocks. First the coarsening to the ordered phase of incompressible active hydrodynamics has been studied in the deterministic limit in [START_REF] Rana | Coarsening in the two-dimensional incompressible Toner-Tu equation: Signatures of turbulence[END_REF][START_REF] Rana | Phase ordering, topological defects, and turbulence in the three-dimensional incompressible Toner-Tu equation[END_REF]. Other works focused on the Ćocking transition in Malthusian Ćocks: a one-loop RG calculation at the upper critical dimension d = 4 suggests a Ćuctuation-induced Ąrst-order transition [START_REF] Carlo | Evidence of fluctuation-induced first-order phase transition in active matter[END_REF], while numerical simulations of a lattice-based model advocates the scenario of crossover from Ąrst-order to second-order behavior [START_REF] Mishra | Active polar flock with birth and death[END_REF].

So far however, the ordered phase in Malthusian Ćocks has not been investigated numerically, notably in dimension d = 2 and this is the subject of the chapter.

We Ąrst introduce in Section 2 the SXY model and discuss the phenomenology observed in numerical simulations. In the low temperature phase, if the initial state is ordered, this model displays a seemingly ordered phase and the critical behavior of the soft modes transverse to the order is characterized. Surprisingly however, the SXY model does not seem to necessarily coarsen to an ordered state, if it starts from a disordered initial conditions. Instead large-scale ŞbubblesŤ (in the orientation of the velocity Ąeld) spontaneously form, which are made of asters surrounded by shock lines. Within the limits of our numerical simulations at microscopic level, it is not possible to decide whether these bubbles are only a transient structure of the coarsening or not, nor to properly resolve their dynamics.

To bypass numerical limitations of the particle-based simulations and to better characterize the ordered phase of the SXY model, we switch to the continuum in Section 3 by determining the large-scale hydrodynamics associated with the SXY model. We do so both by an explicit coarse-graining and on the basis of symmetries. Section 4 is devoted to the study via pseudospectral simulations of the Ćuctuating hydrodynamics of uniform-density active Ćuids. At sufficiently low noise or strong alignment, a long-range ordered phase is observed, at least in time interval, which can be reached within the simulations. This Ćocking phase is endowed with the scaling laws and critical exponents predicted within the context of Malthusian Ćocks [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF]. This ordered phase however appears to be only metastable: for intermediate values of the mass and waiting long enough, the same large-scale bubbles observed in the SXY model emerge to form an ever-evolving ŞfoamŤ state. Because the bubbles are constantly nucleated and annihilated in this state, they are clearly not transient structures of the dynamics but asymptotically stable ones. This notably suggests that the ordered phase in Malthusian Ćocks is generically metastable to the apparition of the foam state.

SXY model

We introduce in this section the SXY model and we discuss some aspects of its phenomenology studied via numerical simulations.

Definition of the particle-based model

We consider XY-spins on a 2D square lattice, each site being Ąlled by a unique spin. At each time step, spins align with their 4 nearest neighbors as in the classical XY model, according to a random sequential update of the spins and to a Metropolis-acceptance rate of control parameter or effective temperature T . Spins can also hop on the lattice, preferentially in the direction of their pointing spin in the same spirit as in Active Ising Model [START_REF] Solon | Revisiting the Flocking Transition Using Active Spins[END_REF] ; this spinhopping explicitly breaks TRS. An additional constraint is imposed on the spin-hopping: spins have to swap their position two by two in order to hop from site to site, so that density is uniform throughout the system. We call this model the Swapping XY (SXY) model.

More precisely, the pseudo-code algorithm used in practice to perform the numerical simulations of the SXY model in Section 2.2 is the following. A L×L-square lattice is Ąrst initialized with one spin on every lattice sites. At each time-step ∆t, L 2 updates of spins are performed according to the following rules:

1. choose at random one spin of coordinates (i, j) at random 2. align it with its 4 -nearest neighbors , using a random sequential update of the spins and a Metropolis acceptance rate with effective temperature T 3. swap it with one of its 4 neighbors in the following way : i . compute the swapping rates W u , W d , W l , W r , properly taking care of the boundary conditions

W u /∆t = D + v 0 sin θ i,j -sin θ i,j+1  W d /∆t = D -v 0 sin θ i,j -sin θ i,j-1  W r /∆t = D + v 0 cos θ i,j -cos θ i+1,j  W l /∆t = D -v 0 cos θ i,j -cos θ i-1,j
 D is the diffusive coefficient and v 0 the self -propulsion speed of the spins . ∆t is chosen so that the swapping rates are smaller but close to 1.

ii . draw a random number α ∈ [0, 1] and swap the current spin -with its neighbor to the right if α < W r , -with its left -neighbor if W r < α < W r + W l , -with its upper -neighbor if W r + W l < α < W r + W l + W u , and -with its down -neighbor if

W r + W l + W u < α < W r + W l + W u + W d .
In practice, in the numerical simulations, we set v 0 to 1, while we vary D and T . This model contains the two minimal ingredients thought to enable Ćocking: selfpropulsion and alignment interactions. Moreover, by construction of the model, density is uniform, density bands observed in [START_REF] Solon | Revisiting the Flocking Transition Using Active Spins[END_REF] are thus forbidden and we could a priori wonder what is the nature of the Ćocking transition in this model. However, as it is shown later, the physics arising at large scales in the SXY model is rather different from the Ćocking scenario of compressible active Ćuids. Besides, the swapping dynamics of the SXY model spoils out the usual density conservation equation of Ćuids and this model is thus not incompressible, although the density Ąeld is uniform.

On the limitation of the SXY model is that it cannot be straightforwardly parallelized due to the spin-swapping dynamics and the fact that permutations do not in general commute. The system sizes which can be simulated numerically within reasonable computational times are thus more limited, compared to those reached with equivalent parallel algorithms.

We present in the next section the large-scale behavior observed in numerical simulations of the SXY model.

Simulation of the microscopic model

We investigate the phenomenology of the SXY mode using simulations based of the pseudocode algorithm of Section 2. We Ąrst check in Section 2.2.1 that an ordered phase exists for sufficiently low temperature and we determine the scaling laws of the soft modes transverse to the order. In Section 2.2.2, we discuss the apparition in the model of large-scale structures made of asters surrounded by shock lines.

Ordered phase

We deĄne an order parameter as v = ⟨♣⟨v⟩ L×L ♣⟩ t , where ⟨.⟩ L×L and ⟨.⟩ t denotes respectively the average over the L 2 spins of the system and over time. A rapid investigation of how v behaves as a function of the temperature T suggests the presence of an ordered phase below T ∼ 1.0 and of a disordered phase above.

We need to conĄrm whether the low temperature phase is a true long-range ordered phase. Indeed, in the passive limit v 0 = 0, the SXY model corresponds to the classical XY model, known to display only quasi long-range order (QLRO) below the Berezinskii-Kosterlitz-Thouless critical temperature [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and twodimensional systems having a continuous symmetry group I. Classical systems[END_REF][START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF]. To do so, we check in Fig. 4.2a that v2 (L) converges toward a Ąnite value when system sizes L are increased, starting both from ordered and disordered initial conditions. Although we would need to go to larger L to clearly show that v2 indeed converges, Fig. 4.2a strongly suggests it (the xŰ and yŰscales are logarithmic). and by comparison we indicate the L -0.18 decay of v2 (L) in the XY model, at T = 0.8. As expected, in the passive limit of the SXY model, we Ąnd v2 (L) ∼ L -0.18 at T = 0.8, D = 0.0. 
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Figure 4.2: (a) Decay of v2 (L) as a function of the system size L at T = 0.8, starting from a disordered (red) or an ordered (orange) initial conditions. This suggests it converges towards a nonvanishing constant. By comparison, the power-law decay of the passive case ∼ L -0.18 is indicated. Other parameters used in the simulation: v 0 = 1.0, D = 1.0. (b) Scaling of the structure factors S ⊥ (q ∥ , q ⊥ = 0) (red line) and S ⊥ (q ∥ = 0, q ⊥ ) (blue line). The same simulation parameters are used as in the Ągure on the left.

As it is highlighted in the literature on Ćocking [START_REF] Toner | Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together[END_REF], it is interesting to look at the scalings of the soft modes transverse to the direction of the order, which are characterized by universal critical exponents. Due to the fact that the Ćocking direction typically undergoes a rotational diffusion in the Vicsek model or in the hydrodynamics of compressible active Ćuids, the orientation of the order needs to be ŞpinnedŤ to measure meaningful critical exponents. To do so, different methods exists in the literature [START_REF] Mahault | Outstanding problems in the statistical physics of active matter[END_REF] and we use the following one: the orientation of the order is pinned along the x-axis (for example) by imposing a small external ŞmagnetizationŤ Ąeld. We then check that the values of the critical exponents measured do not depend on the strength of the external Ąeld, by varying its magnitude. In Fig. 4.2b, we show how the structure factor for the transverse mode v ⊥ = v y scales as a function of q ∥ = q x and q ⊥ = q y , the Fourier modes associated with x and y. More precisely, the structure factor is deĄned as S ⊥ (q) = ⟨v ⊥ (q, t) 2 ⟩, where q = (q x , q y ). Figure 4.2b suggests that the scaling of S ⊥ (q ∥ , q ⊥ = 0) is compatible with the prediction of [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF] (z = 2), while it is unclear for S ⊥ (q ∥ = 0, q ⊥ ) (z = 6/5 predicted). In fact the analogous Ągure at the level of the Ąeld theory, Fig. 1 in [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF], is compatible with Fig. 4.2b and shows that S ⊥ (q ∥ = 0, q ⊥ ) display a crossover before behaving according to the predictions of [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF]. This might explain the critical exponent obtained for S ⊥ (q ∥ = 0, q ⊥ ) in Fig. 4.2b.

The previous results have to be considered with caution though as it is not clear that the SXY model in the ordered state does respect rotational invariance. Although lattice models often explicitly break it (e.g. the Ising model on the square lattice), it is usually expected to be restored on large scales. However for the SXY model, it is shown later in Section 3.1 that its coarse-grained hydrodynamics explicitly breaks the O(2) symmetry. It seems also to be the case in numerical simulations of the SXY model (without any external Ąeld), at least in the ordered state. By building an histogram over time snapshots of the global orientation of the mean velocity, it is not clear that the global orientation of the mean velocity diffuse and anisotropies (which do not correspond to the obvious preferred directions of the lattice) seem to arise.

We discuss in the next section the coarsening of the SXY model starting from a disordered initial condition at low temperatures.

Emergence of asters and shock lines

Starting from an initial disordered system and at low temperature (T ≲ 1), the SXY model coarsen to an ordered state, at least for system sizes L ≤ 500. However, during the coarsening process, large-scale structures in the spin Ąeld emerge, as shown in Fig. 4.3. They become more and more apparent as the system size increase. These structures are analogous to ŞbubblesŤ delimited by Ćuctuating shock lines, along which the orientation of the spins changes abruptly, and whose center is occupied by an aster pointing inward (i.e. a point around which polarity is arranged radially). If for system sizes L ≤ 500, the bubbles coarsen rapidly and eventually disappear in favor of the ordered state, for larger system sizes L ≥ 1000, the bubbles coarsen to a unique system-spanning bubble, which seems to be a stable though fragile attractor of the dynamics of the system. Moreover, smaller bubbles are nucleated at the intersection of the shock lines, although they disappear rapidly. Due to the limited system sizes and thermalization time we could reach with our serial algorithm, it is not clear whether these large-scale bubbles constitute a truly dynamic state or not and it was not possible to resolve their macrodynamics in a reasonable computational time frame.
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Simulations of the coarse-grained hydrodynamics of the SXY model in Section 4 shed some light on what might happens in the SXY model in the low temperature phase.

From SXY model to large-scale hydrodynamics

To try to better understand what is the large-scale behavior of the SXY model, we determine its associated hydrodynamics. To do so, we write down in Section 3.1 the master equation associated with the SXY model, from which we infer, by taking the continuum limit, the coarse-grained Ąeld theory for the velocity. We Ąnd back this Ąeld theory on the basis of symmetries in Section 3.2.

Explicit coarse-graining at mean-field level

In this section, we write down the master equation associated with the algorithm from Section 2.1.

To do so we deĄne the space of conĄguration S = [0, 2π] N×N and we denote C the conĄguration where the angles θ i,j are on the sites (i, j). The sum over all conĄgurations, C corresponds to the integral over all the angles i,j∈N dθ i,j . The conĄguration where the spins θ i,j and θ k,l have been swapped with respect to the reference conĄguration C is denoted C (θ i,j ♣θ k,l ). The transition rates for a spin θ i,j to swap with a spin θ i+1,j or with a spin θ i,j+1 read

W x [(i, j) → (i + 1, j)] = D + v 0 (cos θ i,j -cos θ i+1,j ), (4.1) 
W y [(i, j) → (i, j + 1)] = D + v 0 (sin θ i,j -sin θ i,j+1 ) . (

The master equation associated with the stochastic process underlying the algorithm from Section 2.1 reads

∂ t P(C ) = C ′ ̸ =C P(C ′ )W [C ′ → C ] -P(C )W [C → C ′ ], = i,j P(C (θ i,j ♣θ i-1,j ))W x [(i, j) → (i -1, j)] + P(C (θ i+1,j ♣θ i,j ))W x [(i + 1, j) → (i, j)] -P(C )W x [(i -1, j) → (i, j)] -P(C )W x [(i, j) → (i + 1, j)] + P(C (θ i,j ♣θ i,j-1 ))W y [(i, j) → (i, j -1)] + P(C (θ i,j+1 ♣θ i,j ))W y [(i, j + 1) → (i, j)] -P(C )W y [(i, j -1) → (i, j)] -P(C )W y [(i, j) → (i, j + 1)], (4.3) 
while we aim at determinining the evolution equation for the quantities

v (k,l) x = C cos θ k,l P(C ), (4.4) v (k,l) y = 
C sin θ k,l P(C ) . ( 4.5) 
We have

∂ t v (k,l) x = C cos θ k,l ∂ t P(C ) = 2 C P(C )  W x [(k -1, l) → (k, l)](-cos θ k,l + cos θ k-1,l ) + W x [(k, l) → (k + 1, l)](-cos θ k,l + cos θ k+1,l ) + W y [(k, l -1) → (k, l)](-cos θ k,l + cos θ k,l-1 ) + W y [(k, l) → (k, l + 1)](-cos θ k,l + cos θ k,l+1 ) (4.6) = 2D C P(C )  cos θ k+1,l + cos θ k-1,l + cos θ k,l+1 + cos θ k,l-1 -4 cos θ k,l + 2v 0 C  -(cos θ k,l -cos θ k+1,l ) 2 + (cos θ k-1,l -cos θ k,l ) 2 (cos θ k,l -cos θ k,l+1 )(sin θ k,l -sin θ k,l+1 ) + (cos θ k,l -cos θ k,l-1 )(sin θ k,l -sin θ k,l-1 ) , (4.7) 
where we performed permutations over internal variables and we used the fact that in the summation, only the indices k -

1 ≤ i ≤ k + 1, l -1 ≤ j ≤ l + 1 give nonvanishing contributions.
Assuming the dynamical mean-Ąeld hypothesis

C nonlinearities = C nonlinearities, (4.8) 
we end up with

∂ t v (k,l) x = 2D  v (k+1,l) x + v (k-1,l) x + v (k,l+1) x + v (k,l-1) x -4v (k,l) x + 2v 0  -  v (k,l) x -v (k+1,l) x  2 +  v (k-1,l) x -v (k,l) x  2 -  v (k,l) x -v (k,l+1) x  v (k,l) y -v (k,l+1) y  +  v (k,l) x -v (k,l-1) x  v (k,l) y -v (k,l-1) y  . ( 4.9) 
As we are interested in the large-scale physics, we take the scaling limit in which the lattice spacing ℓ goes to 0 and where the renormalized couplings D r = 2D/ℓ 2 , λ r = 2v 0 /ℓ 3 are kept constant. We obtain

∂ t v x = D r ∆v x -λ r ∂ x  ∂ x v x ∂ x v x  -λ r ∂ y  ∂ y v y ∂ y v x  . ( 4.10) 
The equation of motion for v y is obtained adapting mutantis mutandis the calculation for v x . Moreover, the alignment of the spins at each time step produces the classical Ginzburg-Landau potential terms (a rb r v 2 )v. The deterministic hydrodynamics associated with the SXY model reads in Ąne

∂ t v α = D r ∂ β ∂ β v α -λ r ∂ β (∂ β v α ∂ β v β ) + (a r -b r v 2 )v α . ( 4.11) 
Interestingly λ r is not the usual advection term found in the Navier-Stokes equations: it corresponds instead to an advection term of higher orders in ∇, where the derivatives of the velocity Ćuid are advected by the second order derivatives of the velocity. Moreover, the λ r Űterm does not respect rotational invariance.

In the following, we assume that the Ąeld theory we derived is nonetheless endowed with rotational invariance, meaning that the following terms are allowed:

∂ β (∂ β v α ∂ γ v γ ), ∂ β (∂ γ v α ∂ β v γ ), ∂ γ (∂ β v α ∂ β v γ ) . ( 4.12) 
Due to the stochastic nature of the microscopic model, a noise term is a priori expected in the hydrodynamic equation (4.11). Deriving it explicitly from the microscopic parameters of the SXY model is beyond the reach of the manuscript. However, in the absence of any particular symmetry, we assume it can be written as a gaussian white noise √ η f , whose correlator

reads ⟨f α (r 1 , t 1 )f β (r 2 , t 2 )⟩ = δ(r 1 -r 2 )δ(t 1 -t 2 )δ αβ .
The presence of a noise term in the hydrodynamics, together with nonlinearities, generates on larger scales new nonlinearities, in fact all possible (relevant) nonlinearities allowed by symmetries. We determine these nonlinearities in the next section.

Effective field theory written on the basis of symmetry

We observe that Eq. (4.11) together with the terms of Eq. (4.12) (assumed to be present at large scales) breaks the invariance under O(2), due to the advective terms. However this equation still obeys to a weaker rotationnal symmetry of O(2) × O( 2), which acts both on the space and on the spin space [START_REF] Zinati | Dense polar active fluids in a disordered environment[END_REF]. This symmetry is actually the same that the one found in Navier-Stokes equations. There is thus no reason not to include all terms respecting this symmetry, notably the ŞstandardŤ advective terms of lower order (in ∇). We thus obtain the following hydrodynamics:

∂ t v+λ 1 (v•∇)v+λ 2 (∇•v)v+λ 3 ∇(v 2 ) = (a 0 -b 0 v 2 )v+D 0 ∇ 2 v+D 1 ∇(∇•v)+ √ η 0 f , (4.13)
where f is a Gaussian white noise such that ⟨f α (r

1 , t 1 )f β (r 2 , t 2 )⟩ = δ(r 1 -r 2 )δ(t 1 -t 2 ) δ αβ .
Equation (4.13) contains additional terms compared to the Navier-Stokes equations. It stems from the fact that momentum conservation is explicitly broken in this problem [START_REF] Toner | Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together[END_REF]. Moreover, since the density Ąeld is uniform, it is fully decoupled from the velocity Ąeld, unlike in the Navier-Stokes equations or in the hydrodynamics for polar active Ćuids [START_REF] Toner | Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together[END_REF].

The Ąeld theory we obtain closely resembles the hydrodynamics of Malthusian Ćocks derived in [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF], although in this case some pressure terms remain, because the density Ąeld has only been enslaved and is not strictly uniform. The large-scales physics of Eq. (4.13) could nonetheless share some similarities with the one of Malthusian Ćocks.

In the next section, we show the results obtained from the numerical integration of the stochastic Ąeld theory of Eq. (4.13).

Simulations of the field theory

In this section, we study numerically the Ąeld theory deĄned in Eq. (4.13). To reduce the dimension of the parameter space, we set λ 2 , λ 3 and D 1 to 0, but we checked that the behavior is not altered in the presence of λ 2 , λ 3 . Moreover, in the presence of noise, λ 2 , λ 3 are expected to be effectively generated even if not present in the bare hydrodynamics.

Upon a rescaling of space by

x 0 = D 3/2 0 b -1/2 0 η -1
0 , of time by t 0 = x 2 0 D -1 0 and of the velocity Ąeld magnitude by v 0 = η 0 D -1 0 , the equation of motion we study in this section can be written under the dimensionless form

∂ t v + λ(v • ∇)v = ∇ 2 v + (a -v 2 )v + f , ( 4.14) 
with the two remaining parameters a = a 0 t 0 and λ = λ 0 t 0 v 0 x -1 0 . The passive limit of this equation, λ = 0, describes the relaxation dynamics of a Ąeld theory describing the XY model, a.k.a. Model A [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF], which obeys to TRS. To a certain extent, λ controls the activity level in the system, while a tunes the alignment strength between the particles.

Another rescaling can be made in which the mass a is scaled to 1 instead of the noise strength η 0 . This allows for instance to study the deterministic limit of Eq. (4.14). We do not use this scaling except in Fig. 4.8 to have a closer look of the deterministic limit of an aster surrounded by its shock lines.

To numerically investigate Eq. (4.14), we perform an explicit time integration using a pseudo-spectral code with Euler explicit time stepping and 2/3 anti-aliasing. We take in all the simulations the time stepping ∆t equal to 0.1 and the space stepping ∆x to 2, unless otherwise explicitly stated.

In Section 4.1, we investigate the apparent ordered or liquid phase of this model and we Ąnd back the scaling laws for the soft modes predicted in [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF]. We however show in Section 4.4, that the ordered phase is in fact metastable: for sufficiently long times, defects always nucleate and proliferate across the system. This leads to a stationary dynamic foam state replacing the ordered phase, for which we try to give some insights in Section 4.2.

Ordered phase for ordered initial conditions

If we simulate Eq. (4.14) with a large enough mass a, starting from an ordered initial condition, we observe a liquid-state, with a nonvanishing mean velocity.

Since quasi-long range order (QLRO) is expected in the passive limit, we need to distinguish whether the phase is characterized by a truely long-range order (LRO) or only by QLRO. To do so, we compute the order parameter v = ⟨♣⟨v⟩ x ♣⟩ t to see how it scales with the system size. ⟨.⟩ x and ⟨.⟩ t denotes respectively the average over space and time. In Fig. 4.4, we see that in the passive case where λ = 0, the expected QLRO in the passive case is observed, as v(L) ∼ L -η(a)/2 where η(a) is the anomalous dimension correcting the scaling dimension of the correlator, which continuously depends on the mass a [START_REF] Zinn-Justin | Quantum Field Theory and Critical Phenomena[END_REF]. Using the predicted value η(a BKT ) = 1/4 at the BKT transition (i.e. the transition between disorder and QLRO), we estimate the latter to happen at a BKT = 0.38 ± 0.01.

On the contrary, at Ąnite λ ̸ = 0, v(L) decays slower than a power law in Fig. 4.4, suggesting convergence towards a Ąnite value v∞ in the inĄnite size limit. Our data are reasonably well Ątted by v -v∞ = AL -ω , with ω = 2/3, indicating LRO. This thus conĄrms the theoretical prediction of an ordered state [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF], at least for large enough values of the mass a and small enough system size L. Decreasing λ, this behavior is only observed beyond a crossover scale that seems to diverge when λ → 0, which is compatible with the fact that TRS is broken for λ = 0.

Foam state for disordered initial conditions

The phenomenology is however qualitatively different, if the system is initially in a disordered state, as there is no coarsening towards an ordered state.

The coarsening which is instead observed is illustrated in Fig. 4.5 by the snapshots at different time of the orientation of the velocity. Large-scale structures or ŞbubblesŤ surprisingly emerge, which are made of asters surrounded by shock lines, along which the direction of the velocity Ąeld changes abruptly (but not discontinuously). As illustrated in the Movie Şcoarsening.aviŤ in [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF], these structures coarsen during a transient regime before reaching a nonequilibrium steady state, analogous to a foam, characterized by a nontrivial macrodynamics and a well-deĄned average number of asters together with a web of shock lines surrounding each of them. 1 In the simulations at the Ąeld theory level, the bubbles are clearly not sheer transient structures of the coarsening but constitute the stationary state, where the bubbles are constantly nucleated and annihilated. The nucleation of the bubbles arises preferentially at the crossing point of the shock lines, while a bubble typically disappears when the center of the aster hits one of its shock line. The approximate size of the bubbles can be determined by looking at the correlation length ξ in the system, deĄned as ξ(a) = 2π q S(q)

q qS(q) , q = ♣q♣ . (4.15)

At Ąxed parameters, ξ converges to a well-deĄned asymptotic value when the system size L is increased: the active foam is self-averaging, and reliable estimates of its intrinsic correlation length are obtained as soon as L ≫ ξ. We show in Fig. 4.6 how ξ(a) grows with the mass of the system a, but only slowly, possibly linear with a. This holds for sufficiently large systems, namely L ≫ ξ(a), otherwise the bubbles disappear and the system coarsen to a seemingly ordered state. This slow growth of ξ(a) suggests that the foam state is always observed as long as L ≫ ξ(a). This is quite different with respect to the passive case, where the BKT scenario predicts a divergence of ξ at a Ąnite value of the mass, equal here to a BKT = 0.38±0.01. Error bars correspond to two standard errors of the mean, computed over 10 independent time intervals. At a given a value, small size data may not be reliable since ξ can then be of the order of L. At L = 900 in particular, data for a > 2.0 are not shown since only very few or even no asters are present.

To better understand why the active regime is so different from the passive case, we now study more precisely the bubbles emerging in Fig. 4.5.

Description of the bubbles

Asters have been reported in models of the self-organization of microtubules and molecular motors [275Ű278] but also in variants of the hydrodynamics of active Ćuids [276, 279Ű282], as well as in active gel theory [START_REF] Kruse | Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments[END_REF][START_REF] Kruse | Generic theory of active polar gels: a paradigm for cytoskeletal dynamics[END_REF]. All these systems are more complex than ours, including a density and/or a motor concentration Ąeld. To our best knowledge, only [START_REF] Vafa | Defect dynamics in active polar fluids vs. active nematics[END_REF] studied defects in the simple Equation (4.13) of interest here, concluding that asters are the most stable +1 defects. This result is in agreement with the observations of the active foam, where asters are quite passive regions, and most of the remaining activity occurs at the shock lines and in particular at their intersection (c.f. Movies Şnucleation.aviŤ and Şcoarsening.aviŤ in [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF]).

Active foam conĄgurations are best understood in the deterministic version of Eq. (4.13), either by switching off the noise from a given conĄguration, or by watching the slow coarsening following disordered initial conditions (c.f. Movie Şdeterministiccoarsening.aviŤ in [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF]). In the deterministic case, we believe, in agreement with [START_REF] Vafa | Defect dynamics in active polar fluids vs. active nematics[END_REF], that coarsening should proceed all the way to the ordered phase, although in practice Ąnite numerical resolution may pin the system in some near Ąnal conĄguration with few asters. [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF]). Apart from the 5 clearly visible asters, which have +1 topological charge, 9 shock-line embedded -1 defects are present (white circles), as well as 4 vortex-like +1 defects present at some shock line vertices (black diamonds). Labels A, B, C in the main panel point to the defects shown more clearly in the small lower panels.

and their surrounding shock lines, extracted from this coarsening process. Close inspection shows that shock lines are extended objects across which the phase varies rapidly but not discontinuously. Given the existence of +1 defects (at the centers of asters), -1 defects must be present. In the 5-aster conĄguration under scrutiny, 9 defects with topological charge -1 are found embedded in the shock lines (white circles, zoom B), typically located at the points closest to the aster centers, where the phase jump is ±π. The -2π circulation around these defects is mostly due to two phase jumps occurring when crossing the shock line. This suggests that the important structures are the extended shock lines and not so much the pointwise location of the -1 defect. Given that the global topological charge must be zero, the inspection is not complete. Indeed one can locate 4 other +1 vortex-like defects typically located at shock lines vertices (black diamonds and zooms A, C). Note Ąnally that the shock line vertices are rather unstable dynamically, even in the absence of noise (c.f. Movie Şdeterministiccoarsening.aviŤ in [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF]). A qualitative expression for the width of the shock lines can be found in dimension d = 1 and in the deterministic limit, by solving Eq. (4.13) in the stationary state and without noise

λ v ∂ x v = a v -b v 3 + D ∂ 2 x v . (4.16)
The previous equation can be written into the dimensionless form

v ∂ x v = v - 1 g v 3 + ∂ 2 x v, ( 4.17) 
where g = λ2 /bD and v Ű resp. x Ű has been rescaled by (Da/λ 2 ) 1/2 Ű resp. (D/a) 1/2 . Following [START_REF] Solon | Flocking with discrete symmetry: The two-dimensional active Ising model[END_REF], we look for solution under the form v(x) = v 0 tanh (x/ ξ), where ξ is the typical width of the shock line. We then Ąnd a polynomial in tanh (x/ ξ), whose coefficients have to vanish, yielding 

v 0 = ±g 1/2 , ξ = ± 4 -g 1/2 ± (8 + g) 1/2 . ( 4 

Metastability of the ordered state

The existence of a liquid-state and of a foam state depending on the initial state of the system is rather puzzling and raises the question of whether these two states are stable in the thermodynamic limit. It turns out that the ordered state is in fact only metastable. Indeed, observing the ordered state at intermediate values of the mass (a ∼ 0.46) and for sufficiently long times, asters surrounded by shock lines are eventually nucleated by some Ćuctuations as shown in Fig. 4.10. Some of these bubbles grow sufficiently to either interact with other nucleated bubbles or with themselves via their shock lines. New bubbles are then nucleated, again preferentially at the crossing of the shock lines. As a result, bubbles proliferate and invade the whole system, which reaches after a coarsening time the foam state described in Section 4.2. This scenario is expected to hold for sufficiently large systems, typically of size L ≫ ξ(a).

To characterize the nucleation process we study the nucleation probability in the ordered phase as a function of time, i.e. the probability of the Ąrst time an aster pops up and decreases the magnetization of the ordered state by more than 20%. The rate of asters nucleation in the ordered phase, hence the lifetime of the ordered phase τ , decreases very rapidly by increasing the mass, which explains why for large values of a and for numerically accessible system size L, the ordered phase is observed. However, due to the fact that nucleation is a local event, we expect τ ∝ 1/L 2 , which would mean that for sufficiently large system size the foam state is always nucleated. This is indeed what is observed in Fig. 4.11 for intermediate values of the mass (a ∼ 0.46), which conĄrms that the emergence of the bubbles is essentially a local process, even though the ordered phase possesses built-in long-range correlations. Thus, in the thermodynamic limit, the ordered state is only metastable and the foam state is the stationary state. Replicating this study at various parameter values, and in particular at large values of a, quickly becomes numerically prohibitive because τ can then take very large values. The data at hand does not suggest the existence of a threshold beyond which nucleation would become impossible. This is corroborated by the ŞdirectŤ study of the dynamic active foam, reached from disordered initial conditions, conducted in Section 4.2. In this case, no particular change of behavior is seen, even for large values of the mass term a, for which the spontaneous nucleation of an aster from the ordered phase would take unreasonably long times. Extrapolating our numerical results, we conclude that the ordered phase is metastable for any nonzero λ and positive a (ignoring a possible renormalization of the mass term).

Conclusion

We introduced in this chapter a microscopic model, the SXY model, which displays two minimal ingredients for Ćocking, self-propulsion and alignment, with the particularity that the density Ąeld is uniform at any time. We derived the coarse-grained continuous equations describing the large-scale physics of the SXY model ; the resulting Ąeld theory closely resembles the hydrodynamics of Malthusian Ćocks.

We studied both the SXY model and its continuous limit via numerical simulations. If the numerical simulations of the SXY model were limited due to the accessible system sizes, the ones of the Ąeld theory clearly show: i) the existence of a metastable ordered phase, endowed with the critical scaling found in [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF] and ii) the existence of an asymptotically stable foam state, made of bubbles composed of an aster surrounded by shock lines.

Although the numerical efficiency in the particle-based and the pseudospectral simulations is not the same (serial vs. parallel algorithm), the chapter might be a nice instance of the fact that large-scale physics can sometimes be much more clearly observed at Ąeld level than in microscopic models.

Chapter 5

Perspectives

We investigated in this manuscript different active systems, which are prototypical for the two collective effects that are phase separation and Ćocking. We focused on the role of Ćuctuations and showed that they can have an impact at large scales: Chapters 1 and 3 illustrate how Ćuctuations can change universality classes, Chapter 2 highlights that the nature of the microscopic noise terms can induce nontrivial Ćuctuating terms at hydrodynamical level and Chapter 4 provides an example, where Ćuctuations are responsible for the emergence of an unexpected dynamical phase, which is different from the one predicted at mean-Ąeld level. We refer to the conclusion of each chapter for a brief recap of their contents.

We conclude this manuscript with a brief discussion of some issues raised throughout theses pages and which might be worth investigating.

Interfaces

Two kind of interfaces were encountered in the manuscript: interfaces in phase-separated systems in Chapter 1 and shock lines delimiting aster domains in uniform-density Ćocks in Chapter 4.

Interfaces in phase-separated systems

In Chapter 1, we determined to one-loop order the critical exponents characterizing the ♣q♣KPZ universality class, which is expected to describe the roughening of interfaces in nonequilibrium phase-separated systems. Few questions remain nonetheless open.

The Ąrst point is rather technical but still important. It consists in obtaining, if possible, an explicit form of the terms generated in the effective interface equation going from the Stratonovich to the Îto convention, in Section 4.2. Indeed, although these terms were shown to be irrelevant, they might generate upon renormalization relevant nonanalytic terms which were not considered in Chapter 1. Although this is not the most probable scenario, it would be good to rule it out.

The second point concerns the possibility to push further the RG calculation of Chapter 1 to two-loop order, to bypass the ŞaccidentalŤ nonrenormalization of the ♣q♣KPZ-nonlinearity to one loop as suggested in [START_REF] Janssen | On Critical Exponents and the Renormalization of the Coupling Constant in Growth Models with Surface Diffusion[END_REF]. Besides cutting short the reasoning of Section 4.3, which 125 advocates for the generation upon Ćuctuations of the ♣q♣KPZ-nonlinearity, this would improve the precision on the critical exponents of the ♣q♣KPZ universality class; so far, there is a discrepancy of 10% between RG and numerical predictions in d = 1. It should nonetheless be noted that a two-loop calculation in this context is something which is nonstandard, due to the nonanalytic terms of the form (q 2 ) α with α noninteger [287Ű289].

Beyond these two technical points, it would be interesting to see whether the roughening properties we predict can be measured in active systems displaying phase separation, be they at Ąeld theory level (e.g. in simulations of AMB+), at particle level [START_REF] Lee | Interface stability, interface fluctuations, and the Gibbs-Thomson relationship in motility-induced phase separations[END_REF][START_REF] Patch | Curvature-dependent tension and tangential flows at the interface of motility-induced phases[END_REF] or experiments. In the latter cases, one should be careful to prepare the systems in the same parameter regime as the one investigated in Chapter 1, where both the capillary wave tension and the surface tension determining the Ostwald process are positive. Such regime might not be easy to reach in practice because, as far as the author is aware of, there is no direct link yet between parameters of microscopic models of active matter and the two previous pseudo surface tensions.

It would be furthermore interesting to determine whether other examples of nonequilibrium phase-separated systems (in the absence of momentum conservation) falls into the ♣q♣KPZ universality class (as it is expected on the basis of symmetries). Granular materials [START_REF] Oyarte | Phase transition in an out-ofequilibrium monolayer of dipolar vibrated grains[END_REF] could be such an instance but maybe also equilibrium models (e.g. Model B) in which equilibrium is not yet established. This latter point could be elucidated by numerically studying the roughening of interfaces in Model B during the coarsening towards equilibrium. Last, the presence of other slow Ąelds (such as a velocity Ąeld) in real phaseseparated systems could signiĄcantly alter the phenomenology at stake, motivating further studies.

The inĆuence of quenched disorder on the dynamics of phase-separating interfaces might also be of interest. In fact, before discussing the hydrodynamics of such interfaces, the existence of phase separation itself in the presence of disorder has to be questioned. A series of work [START_REF] Ro | Disorder-Induced Long-Ranged Correlations in Scalar Active Matter[END_REF][START_REF] Ben Dor | Disordered boundaries destroy bulk phase separation in scalar active matter[END_REF] has recently studied the interplay between phase separation, disorder and activity and concluded that the lower critical dimension for phase separation to occur in the presence of quenched random forces is d l = 2 for Model B, while it is lifted to d l = 4 in the presence of activity. If this happens to be the case it would be possible to study the inĆuence of quenched random forces on the effective hydrodynamics of interfaces either in dimensions above the respective lower critical dimensions or on length scales which are smaller than the Imry-Ma length (the typical length beyond which disorder destroys phase separation) [START_REF] Ro | Disorder-Induced Long-Ranged Correlations in Scalar Active Matter[END_REF].

In the presence of quenched random forces, the upper critical dimension for the roughening of nonequilibrium interfaces is predicted to be d q c = d p c + z = 5. This would thus mean that the ♣q♣KPZ-nonlinearity should be relevant for an interface dimension d such that 1 ≤ d ≤ 5 for quenched Model B (which is a nonequilibrium model) and for 3 ≤ d ≤ 5 for active phase separation. A one-loop RG calculation might however not be enough to determine the associated critical exponents (because of some accidental cancellations), hence the need to go to two-loop order.

Beyond quenched random forces, other types of disorder could be considered and different universality classes should be expected (unlike advective theories, the symmetry contents is different depending on the nature of the disorder). It might also be interesting to relate the quenched versions of the interface hydrodynamics to quenched models of phase separations, for instance following the procedure of Section 4.

Shock lines

The Ćuctuating shock lines, which delimits the bubbles observed in Chapter 4, can also be considered as Ćuctuating interfaces, whose proĄle in dimension d = 1 is discussed in Section 4.3. These interfaces were partially studied numerically in a unidimensional case in [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF] and it might be possible to make some analytical progress, by for instance deriving the interface dynamics.

It should be moreover noted that the 1d density proĄle across the interface corresponds to the equation of uniform-density Ćocks but in d = 1 and closely resembles to the 1d Bateman-Burgers' equation, containing an additional quartic potential. This latter model might be worth studying both analytically and numerically, either by simulation of the Ąeld theory or of the SXY model in d = 1 (the numerical limitations encountered with the SXY model in Chapter 4 should be less restrictive in d = 1 than in d = 2). At mean-Ąeld level, the 1d hydrodynamics of uniform-density Ćocks is expected to display two phases, separated by a (roughening ?) transition, depending on the sign of the mass term: a Ąrst phase of vanishing velocity (similar to the rough phase of KPZ ?) and a second one of nonvanishing velocity, which remain to be investigated.

Quenched disorder

We have shown in Chapter 3 that quenched disorder changes the universality class of the Ćocking transition in incompressible active Ćuids, which is now described (to one-loop order at least) by a quenched incompressible Navier-Stokes (qNS) theory or Ąxed point.

Interpretation of the qNS theory

The fact that no potential term appears in the qNS Ąxed point may appear at Ąrst sight surprising but we highlighted that a Ćocking phase is still expected in the quenched theory (as further shown in [START_REF] Chen | Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d > 2[END_REF][START_REF] Chen | Hydrodynamic theory of two-dimensional incompressible polar active fluids with quenched and annealed disorder[END_REF]). This in fact rather reĆects the dangerous irrelevance of the v 4 coupling constant at the qNS Ąxed point, near d c = 6 ; whether this persists in lower dimensions (d c being rather high) remains however a partially open question. A Ąrst calculation using nonperturbative renormalization group (NPRG) [START_REF] Zinati | Dense polar active fluids in a disordered environment[END_REF] shows that this is still the case in lower dimensions but it might be beneĄcial to double-check this using twoloop RG, since few nonrenormalizations in Chapter 3 are only true to one-loop order and some NPRG Ansätze are known to be less accurate than the two-loop order. A numerical simulation of quenched incompressible Ćocks in two dimensions could tackle this point and provide estimates of the critical exponents to be compared against the RG predicted values (from the dimension d c = 6); however, simulations of quenched disorder systems are known to show large crossovers in some cases [START_REF] Duan | Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder[END_REF][START_REF] Ro | Disorder-Induced Long-Ranged Correlations in Scalar Active Matter[END_REF].

Another point which remains unclear yet concerns the physical interpretation of the qNS Ąxed point. If incompressible Navier-Stokes theories are studied for long [START_REF] Forster | Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid[END_REF], it is mainly in the context of turbulence, where energy is usually injected at the larger scales (e.g. with a long range dynamic noise) and dissipated to the smaller ones (unless an inverse energy cascade scenario happens). This is here different in the qNS theory, as the quenched random force is short range and acts at smaller scales.

A Ąrst step towards a better understanding of the qNS could maybe consist in performing coarse-grainings of microscopic Ćocking models subjected to quenched Ćuctuations, although the resulting hydrodynamics are not expected to be incompressible. This could be done by straightforwardly adapting the methods [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF] we followed in Chapter 2, provided the Boltzmann approach still makes sense in a disordered context. Ways to introduce quenched disorder at microscopic level could consist in adding quenched disorder to the collision noise in the Vicsek model [START_REF] Duan | Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder[END_REF] or in adding static random external forces to the Boltzmann equation.

Flocking transition in compressible systems

Recently, numerical studies [START_REF] Duan | Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder[END_REF] suggested that the Ćocking transition in compressible active Ćuids (which is actually rather a Ćuctuation-induced phase separation in the pure case [START_REF] Martin | Fluctuation-induced phase separation in metric and topological models of collective motion[END_REF]) could be smoothed out into a continuous transition in the presence of quenched random forces. Checking this point analytically might be of interest, but the well-documented presence of a band instability (Fig. 0.15) makes this problem rather hard to tackle. It can for instance be checked that the band instability is still present at linear level even in the presence of quenched random forces, suggesting that the mechanism responsible for smoothing out the Ćocking transition, if any, occurs at nonlinear level. It might also be possible to revisit the works investigating the band patterns in Ćocking models [START_REF] Solon | Flocking with discrete symmetry: The two-dimensional active Ising model[END_REF][START_REF] Solon | Pattern formation in flocking models: A hydrodynamic description[END_REF] by taking this time the presence of quenched disorder into account. Several works in the literature have already investigated the propagation of (nonlinear) waves in disordered media [START_REF] Kivshar | Localization decay induced by strong nonlinearity in disordered systems[END_REF][START_REF] Gredeskul | Propagation and scattering of nonlinear waves in disordered systems[END_REF].

Uniform-density flocks

We have shown in Chapter 4 that the ordered phase in uniform-density Ćocks is expected to be metastable to the emergence of an ever-evolving foam state.

Characteristics of the foam state

If some of the properties of the foam have been studied, other remains to be investigated, as for instance the distribution in size of the bubbles in the steady state or the fact that the lifetime of the ordered phase is still proportional to 1/L 2 (where L is the system size) for higher values of the mass term a. It moreover seems that the dynamics of the foam state can be decomposed into a fast dynamics (those of the previously mentioned shock lines) and a slower one (those of topological charges). Investigating the slow dynamics of the topological charges might be interesting.

The fact that the foam state is more stable than the ordered phase is rather puzzling: it means it is worth for the system to pay the price of creating interfaces without (apparent) constraints. Finding an (even qualitative) argument to support this numerical observation would be interesting. This could be nontrivial as the noise seems to play a crucial role in sustaining the foam state: in the deterministic limit η 0 = 0, the bubbles of the foam ŞburstŤ progressively until an ordered state is reached. Some tools however, such as the renormalization group or nonperturbative extensions of it, can in principle handle the effect of the Ćuctuations across the scales. A good example in this context is the XY model, where NPRG calculations successfully predict the known phenomenology without any prior knowledge about the topological vortices. As regards perturbative approaches, these only work once the gas of defects is Şintroduced by handŤ à la Villain. In this active generalization of the XY model, it is unclear whether a nonperturbative scheme would work (and which one). Another possibility to make further progress could be to Ąnd out an effective model to describe the dynamics of the bubbles in the foam state, for instance using vertex models endowed with proper surface tensions.

A last question concerns the nonequilibrium character of the foam state: is it possible to make the difference between a movie of the foam in the stationary state and the timereversed movie ? Maybe the tools developed to compute entropy production [START_REF] Nardini | Entropy Production in Field Theories without Time-Reversal Symmetry: Quantifying the Non-Equilibrium Character of Active Matter[END_REF] and more recently those proposed in [START_REF] O'byrne | Nonequilibrium currents in stochastic field theories: A geometric insight[END_REF] could shed some light on the nonequilibrium character of this foam and the entropy production rates in its different regions.

Robustness of the foam state

Besides characterizing the foam state, it could be worth to investigate its robustness and genericity.

First, it would be interesting to conĄrm that the foam state is seen in particle models. The SXY model is a step in this direction but it turns out to be numerically intractable to analyze the foam state and its dynamics. Maybe a careful tuning of the microscopic parameters of the SXY model could shrink the size of the bubbles and possibly reduce the time scales on which they evolve. It might however be wiser to deĄne another particle-based models in the same spirit as the SXY model (i.e. uniform density at every time-step) but which can be this time parallelized. In such a model, one should take care of imposing O(2) invariance, and, if possible, designing the model such that the advection term is directly generated at the hydrodynamic level. The generation upon Ćuctuations of the advection term in the SXY model might indeed explain the long crossovers before the bubbles appear in the simulations.

Second, the effects of dimensionality in these uniform-density models could also be studied. We already mentioned the marginal case of the dimension d = 1 but d = 3 is the physically more relevant dimension. However a numerical study in d = 3 is probably rather demanding, notably if, as in d = 2, bubbles and their dynamics only appear for large system sizes.

Third, the robustness of the foam state with respect to quenched disorder could be assessed. In this advective theory, quenched random forces and mass should belong to the same universality class (up to an unknown-in-size crossover) and it might thus be easier to directly study the case of quenched random forces.

The Ąeld theory of uniform-density Ćocks we studied is only a limiting case of Malthusian Ćocks and our results call for further investigations of the more general situation, where a fast but Ąnite timescale regulates the density Ąeld. Another issue which might be addressed about the Malthusian Ćocks is whether the Ćuctuating hydrodynamics of Malthusian Ćocks could be derived in coarse-grainings of particle models, in the same spirit as in Chapter 4. This could help for instance to clarify how birth and death processes are introduced at microscopic level, whether they yield equivalent hydrodynamics or to Ąnd expressions of the Ćuctuating terms at hydrodynamical level, where density Ćuctuations could be expected in some regimes.

The numerical study of Chapter 4 also suggests to carefully and numerically look back on some ŞclassicalŤ models of active matter, taking into account the noise terms, since they seem to induce qualitative differences at large scales. For instance, it might be worth reexamine the study of [START_REF] Rana | Coarsening in the two-dimensional incompressible Toner-Tu equation: Signatures of turbulence[END_REF] about the coarsening of incompressible active Ćuids, taking noise into account.

Last, the observation of the metastability in uniform-density Ćocks could be of relevance in some real systems in spite of the simplicity of the theories we considered. Prime candidates are found in cytoskeletal active matter, i.e. in vitro mixtures of (mostly) bioĄlaments and molecular motors, for which the formation of asters have been reported [297Ű305].

Let us bet that the effects of Ćuctuations still hold a few surprises in store for the physicists.

or equivalently in the Fourier space

S[φ, φ] = q,ω φ(-q, -ω) (-i ω φ(q, ω) + Ω 1 F [φ](q, ω)) - Ω 2 2 q,ω,q ′ ,ω ′ φ(q, ω)⟨η(-q, -ω)η(-q ′ , -ω ′ )⟩ φ(q ′ , ω ′ ). (B.4)
The average of any physical observable O is deĄned as

⟨O(φ)⟩ = D[φ, φ]O(φ)e -S[φ, φ] (B.5) (B.6)
and the standard path-integral calculus known at equilibrium can be used. We consider in Eq. (B.1) a SPDE with a scalar Ąeld φ but the response-Ąeld formalism can be straightforwardly adapted to vectorial Ąelds.

There is an important issue concerning Langevin equations with multiplicative noise (i.e, SPDE whose noise depends on the value of the Ąeld itself): the noise can be ŞinterpretedŤ differently depending on the discretization chosen. In practice, two main interpretations exist, which are the Itô and Stratonovich conventions. In the Stratonovich convention, the standard tools of differential calculus do apply (and notably the chain rule) but less tools of martingale theories can be applied, while it is the reversed in the Itô convention (the chain rule is then given by the so-called Itô formula). If both conventions can be used to represent a Langevin equation into a Ąeld theory, the result in Eq. (B.3) assumes Itô convention and RG calculations are generally performed within this convention (at least in the manuscript). We refer to Section 4.2 in Chapter 1 for a more concrete example concerning this issue.

Ąeld ¶φ a ♢ 1≤a≤n and of the sources ¶J a , Ja ♢ 1≤a≤n to calculate

Z ξ [J, J] n =  a D[φ a , φa ]  e -a S[φ a , φa ]+ t,x φa (t,x)ξ(x)+ t,x J a φ a + Ja φa (D.4) =  a D[φ a , φa ]  e -a S 1 [φ a , φa ]+ 1 2 a,b S 2 [ φa , φb ]+ t,x J a φ a + Ja φa , (D.5)
where the one-and two-replica parts write

S 1 [φ a , φa ] = S[φ a , φa ], (D.6) S 2 [ φa , φb ] = x,t,x ′ ,t ′ φ a (x, t)⟨ξ(x)ξ(x ′ )⟩φ b (x ′ , t ′ ) (D.7) = q,q ′ φ a (q, 0)⟨ξ(-q)ξ(-q ′ )⟩φ b (q ′ , 0). (D.8)
To go from Eq. (D.4) to Eq. (D.5), we explicitly compute the gaussian integral over the noise ξ. Introducing replica thus allows to simplify the quenched average but it has the price to introduce nontrivial couplings between the replicas, present in the two-replica part of the action S 2 .

In practice, as for instance in Chapter 3, the quenched noise is often delta-correlated in space with variance ∆, which yields to

S 2 [ φa , φb ] = ∆ x,t,t ′ φ a (x, t)φ b (x, t ′ ) (D.9)
= ∆ q φ a (q, 0)φ b (-q, 0). (D.10)

Short summary

This manuscript is devoted to the study of Ćuctuations in active matter. Via four examples, it shows how Ćuctuations can lead to surprising phenomenologies that escape standard equilibrium descriptions.

Active matter refers to all systems made of agents able, among others, to self-propel (e.g. Ąsh schools). If examples (biological, artiĄcial or theoretical) are numerous, many of them fall at the collective level into the physics of phase separation (chapter 1) or collective motion (chapters 2, 3, 4).

Chapter 1 studies active phase-separated systems and more precisely their interfaces, because it is where the system's activity mostly is. From the symmetries of the problem, we deduce the evolution equation for these interfaces. Out of equilibrium, a single nonlinearity becomes relevant at long distance, changing the universality class of the roughness statistics of the interfaces. We study this class both analytically (renormalization group) and numerically (integration in dimension d = 1) and show that it differs from already known models (Kardar-Parisi-Zhang etc.). Lastly we derive the interface evolution equation from a classical (non-equilibrium) model for phase separation.

Chapter 2 is devoted to the derivation of Ćuctuating kinetic and hydrodynamic theories for active Ćuids, starting from a microscopic model of particles that align and self-propel. While this micro-macro transition has already been studied for collective motion, microscopic Ćuctuations have so far been neglected, although their long-distance effect can not be a priori assessed. Here, we show how to incorporate Ćuctuations at the kinetic and then hydrodynamic levels, using a large deviation principle and its hydrodynamic limit. It allows to express the resulting noise as a function of the microscopic parameters of the problem: it is non-Gaussian at the kinetic level but effectively Gaussian and multiplicative at the hydrodynamic level, proportional to the square of the density (since collisions are mostly binary).

Chapter 3 focuses on the effect of quenched disorder (i.e. defects, inevitably present in any real system) on the phase transition to collective motion, particularly in incompressible active Ćuids where this transition is continuous. We show via the renormalization group that the introduction of quenched random forces preserves the continuity of the transition but changes its universality class and critical exponents. Surprisingly, this universality class is common to all reasonable forms of quenched disorder, because of the advective terms of the theory. This is in stark contrast with equilibrium physics where different universality classes coexist.

Chapter 4 is dedicated to the numerical study (in d = 2) of the hydrodynamics of active Ćuid at uniform density (a limiting case of Malthusian Ćocks). We Ąrst study a lattice-model containing the minimal ingredients of this hydrodynamics (spin alignment, displacement along spins directions, uniform density at any time) and then its hydrodynamic limit. Surprisingly numerical simulations show that the ordered state predicted by mean-Ąeld is metastable: Ćuctuations generate asters, which then proliferate throughout the system to form a perpetually evolving foam. An important part of the chapter is devoted to characterizing this foam, composed of a slow dynamics (topological charges) and a fast one (interfaces).

Long summary

This manuscript is devoted to the study of Ćuctuations in active matter. Via four examples, it shows how Ćuctuations can lead to surprising phenomenologies that escape standard equilibrium descriptions.

A short introduction to active matter

Active matter refers to all systems composed of (a large number of) agents that are able to exert forces or to selfpropel by transforming the (nonthermal) energy present in their environment.

While biology provides numerous examples of active systems (bird Ćights, biological tissues, bacterial suspensions), from which most historical models of active matter are inspired (Vicsek model, Şrun and tumbleŤ particles), physicists have also successfully synthesized active particles in their laboratories (Janus particles, swarms of robots). This opens up the possibility of building materials with new functionalities, since these materials are intrinsically out of equilibrium (energy is dissipated at any point in the bulk of the system). As is often the case, many questions regarding their possible future uses need to be answered.

Not only active matter triggers experimental and engineering questions, but also many theoretical challenges, due to the numerous examples of tangible (strongly) nonequilibrium systems it enables us to construct. These models, which often escape both Boltzmann formalism and thermodynamics, are an ideal starting point for the physicist seeking to explore the world of (statistical) nonequilibrium physics. This manuscript contributes to this research Ąeld of theoretical nonequilibrium statistical physics by investigating a few aspects of two widely studied collective phenomena in active matter: collective motion and phase separation.

Of these two phenomena, collective motion is undoubtedly the one most familiar to the general public, probably because of its macroscopic manifestations: schools of Ąsh, swarms of insects or herd behavior (of animals but also humans). Collective motion is a state of matter in which all agents of the system move on average in the same direction and without any leader. This type of motion is mainly observed in self-propelled particle assemblies, where alignment interactions of the direction of motion dominate. It is noteworthy that such a state is observed in dimension d = 2 and it is a direct consequence of the nonequilibrium nature of the system. Indeed, otherwise at equilibrium in dimension d = 2, the Mermin-Wagner theorem precludes the existence of such an ordered state resulting from a spontaneous symmetry breaking.

As regards phase separation, it is generically observed in many active systems, as long as the active agents have persistent trajectories and repulsive interactions: we then observe the spontaneous formation of aggregates of repulsive particles. This leads to phase separation between two phases, one dense (or liquid) and the other more dilute (or gaseous). While the notion of phase separation is a well-known phenomenon at equilibrium, substantial differences exist for active phase separation, such as the possibility of reversing Ostwald ripening.

While the previous active and collective phenomena can be correctly described using equilibrium physics (to some extent at least), taking Ćuctuations into account usually leads to new phenomenologies and requires new analyses. It is this latter point that we seek to illustrate within manuscript, by investigating the effects of Ćuctuations in four examples of active systems: i) interfaces of nonequilibrium phase-separated systems, whose roughness depends on the (non)equilibrium nature of Ćuctuations, ii) self-propelled and aligning particle systems, whose macroscopic Ćuctuations are no longer constrained by Ćuctuation-dissipation relations, iii) incompressible active Ćuids, whose transition to collective motion changes in the presence of quenched disorder, iv) active Ćuids with uniform density, for which Ćuctuations unconditionally lead to the emergence of a phase made of a perpetually evolving foam of asters.

Chapter 1: Interface roughening in nonequilibrium phase-separated systems

In this Ąrst chapter, we focus on active systems displaying a separation between a dense and a dilute phases, as illustrated in Ągure E.1. Early descriptions of these systems showed that the equilibrium formalism could to some extent accounts for the physics of active phase separation. At Ąrst glance however, this may seem at odds with the strong nonequilibrium nature of these systems.

This apparent paradox can in fact be resolved by the following observation: in active phase-separated systems, activity mainly lies where the density gradient are the strongest, namely at the interfaces between the dense-dilute phases. This observation naturally motivates the study of these interfaces and it is the subject of the Ąrst chapter of the manuscript. As a Ąrst step, we identify the two symmetries obeyed by these systems. The Ąrst one is classical for the physics of interface: it is the invariance under the choice of reference for the height Ąeld. The second one stipulates that the total mass of the system must be conserved. These two symmetries allow to fully determine the hydrodynamics describing the evolution of an interface parametrized by a Ąeld ĥ (as in Fig. E.1):

∂ t h(q, t) = -σ♣q♣ 3 h(q, t) + λ 1 2 ♣q♣F[♣∇ ĥ♣ 2 ](q, t) + 2D♣q♣ η(q, t), (E.1)
where F[•] represents the Fourier transform, η is a Gaussian white noise and σ, λ, D are real coupling constants. The term σ♣q♣ 3 h(q, t) corresponds to surface tension and describes how a perturbation along the interface relaxes in a typical time of order ♣q♣ -3 for waves of wavenumber q. The noise term describes the random (mass-conserving) forces to which the interface is subjected. Crucially, we show that, out of equilibrium, the nonlinearity proportional to F[♣∇ ĥ♣ 2 ] is relevant at large distances (in the renormalization group sense) and must therefore be considered to account for the physics and correctly predict the universality class for the roughness of the interface.

An important part of the chapter is devoted to the characterization of this universality class: Ąrst analytically using one-loop perturbative renormalization group and second, numerically, by integrating the hydrodynamics of the interface in dimension d = 1. These two approaches independently conĄrm that this universality class is different from those already known, such as Kardar-Parisi-Zhang (KPZ), conserved KPZ, Mullins and so on. More precisely, for phase-separated systems in dimension d = 2, we Ąnd the following critical exponents

z analytic = 5 3 , χ analytic = 1 3 , z numeric = 2.79, χ numeric = 0.39, (E.2)
as well as the scaling law for the roughness in Ągure E.2, where the roughness is deĄned as

W 2 (t, L) = 1 L x
ĥ2 (x, t), L being the size of the system. Finally, we show how the hydrodynamics for the evolution of the interface can be obtained from a classical (nonequilibrium) phase separation model called Model B (resp. Active Model B). It is interesting to note that the nonlinearity identiĄed above is effectively generated in all diffusive phase separation models (i.e. of the type of Model B or its extensions), as soon as they are out of equilibrium.

The other three chapters of the manuscript focus for their part on different aspects of collective motion.

Chapter 2: Fluctuating kinetic theory and fluctuating hydrodynamic theory for active aligning particles

In the second chapter of this manuscript, we derive a Ćuctuating kinetic theory of active Ćuids and the associated Ćuctuating hydrodynamic theory.

Being able to link microscopic descriptions (e.g. agent models) and macroscopic ones (mainly hydrodynamic theories) is one of the cornerstone of statistical physics. Indeed this allows, among others, to better assess the role played by certain parameters on the largedistance physics, which might be of great help to understand a numerical simulation or an experiment. Although this transition from microscopic to macroscopic has been extensively studied in the literature on collective motion, these approaches did not take into account microscopic Ćuctuations, but only average behavior. These Ćuctuations can however be signiĄcant, especially out of equilibrium, where the time-reversal symmetry is broken and no longer determines the noise at the hydrodynamic level.

In this chapter, we show how microscopic Ćuctuations can be taken into account both at kinetic and hydrodynamic levels in a model of self-propelled and aligning particles, as illustrated in Ągure E.3.

θ in 1 θ in 2 θ out 2 θ out 1 Figure E.3: A model of self-
propelled particles in dimension d = 2: agents move ballistically as long as there is no collision; if there is a risk of collision, it is avoided by the alignment of trajectories, up to some Ćuctuations (modeled by a probability distribution P σ ).

First, using a large deviation principle, we write the (Ćuctuating) kinetic theory associated with this microscopic model. To do this, we deĄne the empirical probability distribution

f ε (r, θ, t) = ε N n=1 δ (r n (t) -r) δ (θ n (t) -θ) , (E.3)
where ε is inversely proportional to the number of particles N in the system and corresponds to the velocity of the large deviation principle, r n are the positions of the particles and θ n their angles. The associated large deviation principle can then be written as follows

P ¶f ε (t)♢ 0≤t<T = ¶f (t)♢ 0≤t<T ≍ ε↓0 exp  - 1 ε J T [f ]  , (E.4)
where J T [f ] is the rate function

J T [f ] = T 0 dt sup p  drdθ ∂ t f p -H BV [f, p]  , (E.5) H BV [f, p] = H T [f, p] + H col [f, p] (E.6)
while H T and H col are the Hamiltonians describing respectively particle transport and interparticle collisions,

H T [f, p] = -dθdr p(r, θ, t)e θ • ∇f (r, θ, t), (E.7) H col [f, p] = 1 2 dθ 1 dθ 2 dθ ′ 1 dθ ′ 2 dr K(θ 2 -θ 1 )f (r, θ 1 , t)f (r, θ 2 , t)× P σ θ ′ 1 -Ψ(θ 1 , θ 2 ) P σ θ ′ 2 -Ψ(θ 1 , θ 2 )  e -p(r,θ 1 ,t)-p(r,θ 2 ,t)+p(r,θ ′ 1 ,t)+p(r,θ ′ 2 ,t) -1 . (E.8)
Here e θ corresponds to the orthoradial vector in dimension d = 2, K is the kernel describing collisions between two particles, P σ is the probability distribution describing alignment Ćuctuations and Ψ(θ 1 , θ 2 ) returns the mean angle between the angles θ 1 and θ 2 in the interval [0, 2π]. Interestingly, the rate function J T is not quadratic, which means that the noise in the kinetic theory is non-Gaussian. This principle of large deviations can be equivalently rewritten as a Ćuctuating Boltzmann equation

∂ t f + e θ • ∇f -I col [f ] = ξ[f ](r, θ, t), (E.9)
where the left-hand side of the equation corresponds to the deterministic part of the Boltzmann-Vicsek equation originally derived in [START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF], where the term e θ • ∇f describes particle transport and where the collision kernel

I col [f ](r, θ, t) = dθ 1 dθ 2 f (r, θ 1 , t)f (r, θ 2 , t)K(θ 2 -θ 1 )× ¶P σ (θ -Ψ(θ 1 , θ 2 )) -δ(θ -θ 1 )♢ (E.10)
characterizes binary collisions between particles. The right-hand side of the equation E.9 is a non-Gaussian noise whose second moment reads

⟨ξ [f ] (r, θ, t) ξ [f ] r ′ , θ ′ , t ′ ⟩ = ε δ 2 H BV δp(r, θ, t)δp(r ′ , θ ′ , t ′ ) [f, p = 0] . (E.11)
From this Ćuctuating kinetic theory, we then derive the Ćuctuating hydrodynamics describing the large-scale system, both deep in the ordered phase and close to the order-disorder transition. More precisely, we perform an hydrodynamic rescaling t = αt, r = αr where α is a dimensionless number called Knudsen number. We then obtain (in the weak hydrodynamic regime α and ε) the Ćuctuating hydrodynamics for the density Ąelds ρ and p ∂ t δρ + ∇ • p = 0, (E.12)

∂ t p + λ 1 (p • ∇) p + λ 2 (∇ • p) p - λ 2 2 ∇ p 2  = a -b p 2  p -c 3 ∇δρ + D T ∆p + η . (E.13)
The form of this hydrodynamics for active Ćuids is the same as the one derived on the basis of symmetries in [START_REF] Toner | Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together[END_REF]. Here, however, the expression of the various coupling constants is known as an explicit function of the microscopic parameters of the problem. While these expressions have already been established in the literature for the deterministic part, we are here able to determine it also for the Ćuctuating force η = (η x , η y ). η is an isotropic noise, which effectively becomes Gaussian in the hydrodynamic limit, and whose variance can be written as

E[η i (r, t)η j (r ′ , t ′ )] = 1 2 ε α δ ij γρ 2 δ(t -t ′ )δ(r -r ′ ), (E.14)
where γ is a real constant that can be expressed as a function of the microscopic parameters of the model in Fig. E.3. Interestingly, this noise is multiplicative, proportional to the square of the density Ąeld, because the (most-likely) collisions are binary. This result is at odds with Dean-Kawasaki-like noises [START_REF] Dean | Langevin equation for the density of a system of interacting Langevin processes[END_REF], that are generically obtained in small-coupling hydrodynamics where many particles interact together.

Chapter 3: Transition to collective motion in presence of quenched disorder

The study of quenched disorder is motivated by the fact that physical systems inevitably display some static heterogeneities on top of more classical ŞdynamicalŤ or thermal Ćuctuations. Assessing whether quenched disorder modiĄes the (large-scale) phenomenology known in the pure case (i.e the idealized homogeneous system) is therefore of great signiĄcance; indeed it is otherwise futile to study the pure system. Many physicists have therefore investigated the effects of quenched (i.e. static-in-time) disorder in condensed matter, and, more recently, in active matter as well.

In the third chapter of this manuscript, we focus on the effect of quenched disorder on collective motion, and more speciĄcally on its inĆuence on the transition to collective motion, a subject that has not been studied yet.

For this purpose, we focus on a relatively well-understood model of active matter, the incompressible active Ćuid model

∂ t v + λ(v • ∇)v = -∇P -(a + b 3! v 2 )v + µ∇ 2 v + f , (E.15) ∇ • v = 0, (E.16)
where v denotes a velocity Ąeld, λ is the advection parameter, P is the pressure, a and b > 0 deĄne the classical quartic potential in the shape of a Mexican hat (the ordered state corresponds to a < 0), µ is the diffusion constant, f is Gaussian white noise and the condition ∇ • v = 0 imposes the incompressibility constraint.

In this incompressible system, the phase transition between ordered and disordered states is continuous and of second-order, which means that it can be studied using the perturbative one-loop renormalization group. The associated renormalization group Ćow can be seen in Ągure E.4a. To investigate the effect of quenched disorder on the phase transition to collective motion, we introduce into the hydrodynamics E.16 a quenched random force g, with zero mean and correlator g α (r 1 )g β (r 2 ) = ∆ δ αβ δ(r 2 -r 1 ) .

(E.17)

We show in particular that this new term is relevant at large scales, meaning that disorder plays a decisive role in long-distance physics, dominating thermal noise. This quenched disorder term preserves the continuity of the phase transition to collective motion, while modifying its universality class, as illustrated in Fig. E.4b. A signiĄcant part of the chapter is devoted to characterizing this universality class using one-loop perturbative renormalization group. More surprisingly, we also show that this universality class is common to all ŞreasonableŤ forms of quenched disorder. This is for instance the case for quenched disordered mass term, which can be modeled in Eq. (E.16) as Ćuctuations δa v, where a is a centered Gaussian noise of correlator δa(x 1 )δa(x 2 ) = ∆ a δ(x 1 -x 2 ). This unique universality class is in sharp contrast to the classical phenomenology of disordered systems, where quenched random mass induces a different universality class than quenched random forces.

It is in fact a straightforward consequence of the presence of an advective term in the theory, which breaks the O(d)-invariance of the theory, d being the space dimension.

Chapter 4: Metastability of uniform density flocks

In this last chapter, we numerically investigate the hydrodynamics of active Ćuids of uniform density in dimension d = 2. It is a limiting case of the hydrodynamics of Malthusian Ćocks, which are active Ćuids for which the mass is not conserved, for example as a result of the birth or death of agents in the system. This limiting case is a priori simpler to study than the hydrodynamics of active Ćuids, since the velocity Ąeld becomes the only hydrodynamic variable of the system. Moreover theoretical predictions have already been formulated concerning the structure of the ordered phase of the model [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF]. To carry out this study of uniform-density active Ćuids, we adopt a twofold approach in this chapter.

The Ąrst is to study the hydrodynamics using an lattice-based model, the Swapping XY (SXY) model, which contains the minimal ingredients present in the hydrodynamics of uniform Ćocks (spin alignment, displacement along the spin direction and uniform density at any time). Numerical simulations of this model indicate the existence not only of an ordered phase, but also of an astonishing phase of constantly evolving asters (Fig. The system becomes effectively ordered as soon as it is out-of-equilibrium (λ ̸ = 0).

The initial lattice-based model is then complemented by the study of its hydrodynamics at large scales. A numerical integration of this hydrodynamics reveals a phase of collective motion when the alignment is sufficiently strong (Fig. E.5). Its structure can be characterized numerically and it is in line with what is predicted in the literature [START_REF] Toner | Death, and Flight: A Theory of Malthusian Flocks[END_REF].

Surprisingly, however, this ordered phase turns out to be unconditionally metastable if observed long enough: indeed, Ćuctuations in the ordered state eventually lead to the emergence of aster-like structures which then proliferate throughout the system, as illustrated in Ągure E.6. The resulting stationary state eventually takes the form of a perpetually evolving aster foam and a major part of the chapter is devoted to characterizing this state, composed of a slow dynamics (those of topological charges) and a fast one (those

Résumé court

Ce manuscrit est dédié à l'étude des Ćuctuations dans la matière active. Au travers de quatre exemples il montre comment les Ćuctuations peuvent conduire à des comportements étonnants qui échappent aux descriptions classiques de la physique d'équilibre.

La matière active désigne l'ensemble des systèmes composés d'agents capables entre autres de s'autopropulser (e.g. un banc de poissons). Si de tels exemples (biologiques, artiĄciels, théoriques) sont nombreux, beaucoup sont en fait décrits au niveau collectif par la physique de la séparation de phase (chap. 1) ou du mouvement collectif (chap. 2, 3, 4).

Le chapitre 1 concerne les interfaces dans les systèmes actifs présentant une séparation de phase, car c'est là que se concentre l'activité du système. L'équation d'évolution de ces interfaces est déduite des symétries du problème et, hors d'équilibre, une unique non-linéarité devient relevante à longue distance, ce qui change la classe d'universalité de la statistique de rugosité des interfaces. Nous étudions cette classe analytiquement (groupe de renormalisation) et numériquement (intégration en dimension d = 1) et montrons qu'elle diffère des modèles connus (Kardar-Parisi-Zhang etc.). EnĄn nous dérivons l'équation d'évolution de l'interface d'un modèle classique de séparation de phase (hors d'équilibre).

Le chapitre 2 est consacré à la dérivation des théories cinétique et hydrodynamique Ćuctuantes pour les Ćuides actifs, à partir d'un modèle microscopique de particules qui s'alignent et s'autopropulsent. Si ce passage micro-macro a déjà été étudié pour le mouvement collectif, les Ćuctuations microscopiques étaient jusqu'alors négligées, alors que, hors d'équilibre, rien ne permet de déterminer a priori leur effet à longue distance. Nous montrons ici comment elles peuvent être prises en compte au niveau cinétique puis hydrodynamique en utilisant un principe de grandes déviations puis sa limite hydrodynamique. Le bruit résultant peut alors être exprimé explicitement en fonction des paramètres microscopiques du problème: il est non-gaussien au niveau cinétique mais effectivement gaussien et multiplicatif au niveau hydrodynamique, proportionnel au carré de la densité (collisions principalement binaires). Le chapitre 3 s'intéresse à l'effet du désordre gelé (i.e. des défauts, inévitables dans tout système réel) sur la transition de phase vers le mouvement collectif, notamment dans les Ćuides actifs incompressibles où cette transition est continue. Nous montrons via le groupe de renormalisation que l'introduction de forces aléatoires gelées préserve la continuité de la transition mais en change la classe d'universalité et les exposants critiques. Étonnement, cette classe d'universalité est commune à toutes les formes raisonnables de désordre gelé, du fait des termes advectifs de la théorie. Ceci est en notable opposition avec la physique d'équilibre où différentes classes d'universalité coexistent.

Le chapitre 4 est dédié à l'étude numérique (en d = 2) de l'hydrodynamique des Ćuides actifs à densité uniforme, cas limite de l'hydrodynamique des Ćuides malthusiens. Nous étudions d'abord un modèle d'agents sur réseau qui contient les ingrédients minimaux de cette hydrodynamique (alignement des spins, déplacement selon la direction des spins, densité uniforme à tout instant) puis sa limite hydrodynamique. Les simulations numériques montrent alors que l'état ordonné prédit par le champ moyen est étonnement métastable: des Ćuctuations génèrent des asters, qui prolifèrent ensuite dans tout le système pour former une mousse en perpétuelle évolution. Une part importante du chapitre est consacrée à la caractérisation de cette mousse, composé d'une dynamique lente (charges topologiques) et plus diluée (ou gazeuse). Si la notion de séparation de phases est un phénomène bien connu à l'équilibre, des différences substantielles existent pour la séparation de phases active, comme par exemple la possibilité de renversement du phénomène de mûrissement d'Ostwald.

De manière générale, si les phénomènes collectifs actifs évoqués précédemment peuvent être dans une certaine mesure correctement décrit à l'aide du formalisme de la physique d'équilibre, la prise en compte des Ćuctuations peut conduire à de nouvelles phénoménologies et requiert de nouvelles analyses. C'est notamment ce dernier point que nous cherchons à illustrer dans ce manuscrit de thèse, en analysant les effets des Ćuctuations dans quatre exemples de systèmes actifs: i) les interfaces des systèmes hors d'équilibre et séparés en phase, dont la rugosité est dépendante du caractère (hors) d'équilibre des Ćuctuations, ii) les systèmes de particules autopropulsées avec alignement, dont les Ćuctuations macroscopiques ne sont plus contraintes par les relations de Ćuctuation-dissipation, iii) les Ćuides actifs incompressibles, dont la transition vers le mouvement collectif change en présence de désordre gelé, iv) les Ćuides actifs à densité uniforme, pour lesquels les Ćuctuations mènent inconditionnellement à l'émergence d'une phase constituée d'une mousse d'asters en continuelle recomposition.

Chapitre 1: Rugosité des interfaces dans les systèmes hors d'équilibre et séparés en phases

Dans ce premier chapitre, nous nous intéressons aux systèmes actifs qui présentent une séparation entre une phase dense et une phase diluée, comme illustrée dans la Ągure E.7. Si les premières descriptions de ces systèmes ont montré que le formalisme d'équilibre de la séparation de phases permettait de rendre correctement compte de certains aspects de la physique en jeu, ceci peut sembler en contradiction avec le caractère fortement hors d'équilibre de ces systèmes.

Ce qui est au premier abord un paradoxe peut en fait être résolu par l'observation suivante: dans les systèmes actifs en séparation de phases, l'activité est principalement située dans les zones de fort gradient de densité, donc aux interfaces des phases dense-diluée. Cette observation motive naturellement l'étude des interfaces dans ces systèmes, ce qui constitue l'objet du premier chapitre de ce manuscrit. Dans un premier, nous commençons par identiĄer les deux symétries auxquels obéis-sent ces systèmes. La première, classique pour la physique des surfaces, est l'invariance de la physique aux différents choix de référence des hauteurs, tandis que la seconde stipule que la masse totale du système doit être conservée. Ces deux symétries permettent alors de complètement déduire l'équation hydrodynamique décrivant l'évolution d'une interface paramétrisée par un champ hydrodynamique ĥ (cf. ∂ t h(q, t) = -σ♣q♣ 3 h(q, t) + λ 1 2 ♣q♣F[♣∇ ĥ♣ 2 ](q, t) + 2D♣q♣ η(q, t), (E.18)

où F[•] représente la transformée de Fourier, η est un bruit blanc gaussien et σ, λ, D des constantes de couplages réelles. Le terme en σ♣q♣ 3 h(q, t) correspond à un terme de tension de surface et décrit la relaxation des perturbations de l'interface (sur des temps typiques de l'ordre ♣q♣ -3 pour des ondes de vecteur d'onde q), tandis que le terme de bruit décrit les forces aléatoires (conservant la masse) auxquelles l'interface est soumise. De manière cruciale, nous montrons que, hors d'équilibre, la non-linéarité proportionnelle à F[♣∇ ĥ♣ 2 ] est relevante à longue distance (au sens du groupe de renormalisation) et qu'elle doit donc être prise en compte pour expliquer la physique en jeu et correctement prédire la classe d'universalité de la statistique de rugosité de l'interface. Nous montrons enĄn comment l'équation hydrodynamique d'évolution de l'interface peut être dérivée d'un modèle classique de séparation de phases (hors d'équilibre) dénommé Modèle B (resp. Modèle B actif). Il est d'ailleurs intéressant de noter que la non-linéarité précédemment identiĄée est générée de manière effective dans tous les modèles de séparation de phases diffusifs (i.e. de type Modèle B ou ses extensions), dès que ceux-ci sont hors d'équilibre.

Les trois autres chapitres du manuscrit de thèse ont quant à eux pour objet l'étude de différents aspects du mouvement collectif.

Chapitre 2: Théorie cinétique fluctuante et théorie hydrodynamique fluctuante de particules autopropulsées avec interactions d'alignement

Dans le deuxième chapitre de ce manuscrit de thèse, nous dérivons une théorie cinétique Ćuctuante des Ćuides actifs ainsi que la théorie hydrodynamique Ćuctuante associée.

Être capable de relier descriptions microscopiques (par exemple des modèles d'agents) et macroscopiques (principalement des théories hydrodynamiques) est une des réussites majeures de la physique statistique. Cela permet entre autres de mieux comprendre quel peutêtre le rôle joué sur la physique à longue distance par certains paramètres, que ce soient dans une expérience ou dans une simulation numérique. Si ce passage du microscopique au macroscopique a été largement étudié dans la littérature sur le mouvement collectif, ces approches ne tenaient toutefois pas compte des Ćuctuations microscopiques, seulement du comportement moyen. Or ces Ćuctuations peuvent s'avérer importantes, notamment hors d'équilibre où la symétrie par renversement du temps est brisée et ne détermine plus le bruit au niveau hydrodynamique.

Dans ce chapitre, nous montrons comment tenir compte des Ćuctuations microscopiques à la fois au niveau cinétique et hydrodynamique dans le cadre d'un modèle de particules autopropulsées avec des interactions d'alignement, comme illustré dans la Ągure E.9. Dans un premier temps, nous écrivons à l'aide d'un principe de grandes déviations la théorie cinétique (Ćuctuante) associée à ce modèle microscopique. Pour cela, nous déĄnissons la distribution de probabilité empirique (E.30)

f ε (r, θ, t) = ε N n=1 δ (
La forme de ces équations hydrodynamiques pour les Ćuides actifs est bien la même que celle dérivée dans [START_REF] Toner | Long-Range Order in a Two-Dimensional Dynamical XY Model: How Birds Fly Together[END_REF] sur la base de symétries. Ici toutefois, l'expression des différentes constantes de couplage est connue en fonction des paramètres microscopiques du problème. Si ces expressions étaient déjà établies dans la littérature pour la partie déterministe [START_REF] Bertin | Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis[END_REF], nous sommes ici en mesure de les déterminer également pour la force Ćuctuante η = (η x , η y ). Il s'agit d'un bruit isotropique, qui devient effectivement gaussien dans la limite hydrodynamique et dont la variance s'écrit

E[η i (r, t)η j (r ′ , t ′ )] = 1 2 ε α δ ij γρ 2 δ(t -t ′ )δ(r -r ′ ), (E.31)
où γ est une constante réelle qui peut être explicitée dans le cadre du modèle de la Ągure E.9. Il est intéressant de noter que ce bruit est multiplicatif, proportionnel au carré du champ de densité car les collisions considérées sont binaires (ce sont les plus probables). Ce résultat contraste avec ce qui est connu pour les bruits de type Dean-Kawasaki [START_REF] Dean | Langevin equation for the density of a system of interacting Langevin processes[END_REF], obtenus dans des limites hydrodynamiques faisant l'hypothèse de petits couplages (e.g. lorsque beaucoup de particules interagissent entre elles).

Chapitre 3: Transition vers le mouvement collectif en présence de désordre gelé

L'étude du désordre dans les systèmes actifs est motivée par la même préoccupation que pour les systèmes de la matière condensée classique. En effet tout système physique réel présente inévitablement des impuretés ou des défauts et déterminer si ces défauts peuvent avoir des effets importants sur la physique à longue distance est crucial ; il est sinon vain d'étudier les systèmes idéalisés purs et homogènes. De nombreux physiciens se sont donc attachés à caractériser les effets du désordre gelé (i.e. n'évoluant pas dans le temps) dans la matière condensée et plus récemment dans le cadre de la matière active.

Dans le troisième chapitre de ce manuscrit, nous nous intéressons à l'effet du désordre gelé sur le mouvement collectif et plus particulièrement son inĆuence sur la transition vers le mouvement collectif, sujet qui n'a pas encore été étudié pour le moment.

Pour cela, nous nous concentrons sur un modèle relativement bien compris de la matière active qui est le modèle des Ćuides actifs incompressibles Nous concluons ce manuscrit de thèse en dressant un bref panorama des questions qui restent ouvertes à l'issue des quatre précédents chapitres.

∂ t v + λ(v • ∇)v = -∇P -(a + b 3! v 2 )v + µ∇ 2 v + f , (E.
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Figure 0 . 1 :

 01 Figure 0.1: Examples of active matter systems. Top row: from the smallest to the biggest. Middle row: from molecular machinery to biological tissues and large-scale organisms. Bottom row: from biology to engineering or even in between. Left column: ŞwetŤ active matter. Right column: systems well-described within ŞdryŤ active matter. Middle column: heterogeneous interactions. (a) Living liquid crystals of a swimming bacteria Bacillus subtilis, adapted from[START_REF] Zhou | Living liquid crystals[END_REF]. Size of picture: 100 µm. (b) A crowd of kilobots[START_REF] Rubenstein | Kilobot: A low cost scalable robot system for collective behaviors[END_REF], 3cm-tall programmable robots. Reproduced from[START_REF]Kilobot is a thousand robot swarm developed at[END_REF]. (c) Herds of wildebeests in the Serengeti National Park[START_REF] Mcnaughton | Serengeti Migratory Wildebeest: Facilitation of Energy Flow by Grazing[END_REF]. Reproduced from[START_REF]Wildebeest herding and following a few leading zebra in the Masai Mara[END_REF].(d) Microtubule active nematics, displaying four defects, reproduced from[START_REF] Decamp | Orientational order of motile defects in active nematics[END_REF]. Scale bars: 50 µm. Microtubules are one of the constituent of the cytoskeleton. The dynamics of the microtubules comes from molecular motors which convert ATP into inter-microtubule sliding. (e) Snapshot of an epithelial monolayer with its superimposed velocity Ąeld, 4 hours after the structure constraining the tissue had been removed. Scale bar: 50 µm. Adapted from[START_REF] Poujade | Collective migration of an epithelial monolayer in response to a model wound[END_REF]. (f) Murmurmation of starlings[START_REF]A murmuration of starlings at Gretna[END_REF]. (g) Chlamydomonas, a 5-µm swimming algae, observed under scanning electron microscope. Adapted from[START_REF]SEM image of flagellated Chlamydomonas[END_REF]. (h) An active emulsion made of a passive phase (black region) embedded in a microtubule-rich active phase[START_REF] Adkins | Dynamics of active liquid interfaces[END_REF]. Scale bars: 75 µm. (i) A ŞJanusŤ particle: due to the bicephalic coating, the spherical symmetry is broken and different chemical reactions can occur on each side of the particle, which results ultimately in net propulsion. Adapted from[START_REF] Erb | Towards Holonomic Control of Janus Particles in Optomagnetic Traps[END_REF]. Typical radius: 5 µm.

Figure 0 . 2 :

 02 Figure 0.2: Different instances of phase separation in active matter. (a) Formation of clusters in a suspension of photoactivated colloidal particles. The particles are self-propulsing but their interactions are purely repulsive. Extracted from[5]. (b) Steady-state of numerical simulations of active brownian particles, displaying phase separation. Contrary to the bulk phase separation observed at equilibrium, a bubbly phase separation is seen in this active context. The colormap reĆects the relative density (the lighter, the denser). Extracted from[START_REF] Stenhammar | Phase behaviour of active Brownian particles: the role of dimensionality[END_REF]. (c) Dark-Ąeld microscopy image of Einstein made out of millions of photocontrolled bacteria. These bacteria can be morphed into tunable complex patterns on time scales of the order of the minute. Reproduced from[START_REF] Frangipane | Dynamic density shaping of photokinetic E. coli[END_REF].

Figure 0 . 3 :

 03 Figure 0.3: Different instances of Ćocking in active matter. (a) Collective motion of vibrated disks (pictured in the bottom left corner). The self-propulsion of the disks stems from their their polar asymmetry [4]. (b) One of the Ąrst simulations of the ordered phase for the ŞĆying XY spinsŤ of the Vicsek model [2]. (c) Schooling predators size up schooling anchovies [46].
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 205 Figure 0.5: Sketch of the different reduction steps to relate models or theories at microscopic, mesoscopic and macroscopic scales for the classical examples of the Ćuids and of active Ćuids.Arrows correspond to reduction methods, which allows to bridge the gap between the scales and examples are provided in parenthesis. Typical lengths are measured in terms of the wavenumber k. The colormap expresses the amount of information or the number degrees of freedom (dof) present at each scale (red: many dof, blue: less dof), which also reĆects the expected diversity of models at each scale (microscale: ŞmanyŤ models, macroscale: only few universality classes). The larger-scale models are a caricature of the ones at smaller scales but they are at least common to many of them. Going from smaller to larger scales is an irreversible process as information is progressively lost in each of the reduction methods. From a RG point of view, it means that reversing the RG time for a real system does not make sense because of the sensitivity of the reversed RG Ćow to initial conditions (i.e. volume in the parameter space along the RG trajectory is not preserved). The type of models or methods which are used in the different chapters of the manuscript are marked with a ⋆ , while the circled number of each chapter is represented in its corresponding k-region.
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 06 Figure 0.6: (a) Potential f (ϕ), when a < 0. Its complex envelop (i.e. the potential at equilibrium after coarsening) is drawn in blue and can be obtained via the Maxwell construction a.k.a. the common tangent construction. The minima of f are called the binodals: ±ϕ b = (-a/b) 1/2 . The points of vanishing curvature of f are the spinodals: ±ϕ s = (-a/3b) 1/2 . The binodal region (characterized by metastability) is drawn in purple, while the spinodal region (thermodynamically unstable) is drawn in red. (b) Phase diagram of Model B, taken from[START_REF] Cates | Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions[END_REF]. φ = r ϕ(r) corresponds to the global reduced density. Above the binodal curve, the homogeneous disordered state is unconditionally stable. Below the binodal curve, in the equilibrium state, the system completely phase-separates into the two homogeneous binodal phases. The coarsening towards phase separation is different below the spinodal curve (the homogeneous phase φ is linearly unstable and spinodal decomposition occurs as in Fig.0.8b) and in between the spinodal and the binodal curve (the homogeneous phase φ is only metastable and coarsening arises via nucleation as in Fig.0.8a). Because of the FDT, tuning a or D has the same qualitative effect. By deĄnition, the critical point is deĄned as the point where the binodal and spinodal phases merge to a single point. The phase transition at the critical point is second-order.
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 07 Figure 0.7: Full phase separation in a numerical simulation of Model B, taken from [130].The colormap reĆects the density: the denser, the lighter. From left to right, the liquid density progressively increases, starting from a purple vapor phase till reaching a yellow liquid phase. In between, the minority phase forms a spherical bubble (up to Ćuctuations) in the bulk of the majority phase.

  Fig. 0.7, but differently depending on the region of the phase diagram of Fig. 0.6b.

FigFigure 0

 0 Figure 0.8: (a) Nucleations of carbon dioxide bubbles, which occur more easily on a rough or defected surface. Reproduced from [132]. (b) Spinodal decomposition observed at intermediate times in a numerical simulation of the Cahn-Hilliard model. Experimental realizations of spinodal decomposition are rather scarce since, during a quenched for instance, the system goes Ąrst through the binodal region and is thus destabilized before reaching the spinodal phase in Fig. 0.6b. Adapted from [133].

Figure 0

 0 Figure 0.10: (a) A Ćat interface separates the vapor and liquid phases in AMB+. Adapted from [138]. (b) Density proĄle across the interface corresponding to (a). Since the interface is Ćat, the density proĄle ϕ across the interface only depends on the normal coordinate, say y as illustrated in Fig. 0.10b, and AMB+ thus reads J = -∂ y µ, (0.13)
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Figure 0 . 11 :

 011 Figure 0.11: The binodal and spinodal curves in AMB+ (a = b = K = 1). Contrary to the binodals, the spinodals do not depend on λ. Reproduced from[START_REF] Cates | Active Field Theories[END_REF]. In between the binodals, the system is globally unstable, while it is locally unstable in between the spinodals.

Figure 0

 0 Figure0.12: (a) Numerical simulations of AMB+ taken from[START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF]. The colormap reĆects the density: the denser, the lighter. From left to right, the liquid fraction progressively increases. From top to bottom, activity is switched off and on. First row: at vanishing activity, bulk phase separation is observed. Second row: when activity is on, phase separation is replaced by microphase separation. (b) Mean-Ąeld phase diagram of AMB+ in the (ζ, λ)-plane taken from[START_REF] Tjhung | Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process[END_REF]. It shows that Ostwald ripening can be reversed and thus the phase separation coarsening can be arrested in favor of microphase separation.

  gives a diverging RG Ćow below the naive upper-critical dimension d c = 4, as shown in Fig. 0.13. 22 This suggests the presence of a strong coupling Ąxed point (with further hints found in d = 2 in a closely related model [141]), probably stemming from the fact that the naively irrelevant in d ≲ 4 coupling constant λ and ζ do in fact play a role in the RG Ćow.
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 013 Figure 0.13: RG Ćow of AMB+ projected in the (ζ, b)-plane, in d = 2.5, taken from [140]. The colored RG trajectories are obtained numerically from the RG Ćow to one loop, Ąxing λ 2 D/K 3/2 = 3.24 and K 2 1 D/K 3/2 = 0. The separatrix (black line) delimitates the basin of attraction of the Wilson-Fisher Ąxed point of Model B from a zone where the Ćow diverges to inĄnity (towards a strong coupling Ąxed point ?).

  Figure 0.14: Phase diagram of the Vicsek model, taken from[START_REF] Solon | From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations[END_REF]. The binodals curves ρ ℓ and ρ h delimit a microphase region, which is detailed in the next section.
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 015 Figure 0.15: Density bands observed both in the Vicsek model (a) and its associated hydrodynamic descriptions (b). The warmer the color, the higher the density. Figure taken from [32].
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 27 where we keep notations of Eq. (0.24), except for λ 1 = λ and D 0 = D ; the incompressibility constraint makes λ 2 , λ 3 , D 1 and D 2 vanish. This Ąeld theory displays a Ćocking phase and interestingly a continuous second-order Ćocking transition, which can be characterized via a perturbative one-loop RG calculation at the upper-critical dimension d c = 4[START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF], whose associated RG Ćow is given in Fig.0.16. At the nontrivial Ąxed point (red square), new critical exponents are found. They deĄne the nonequilibrium universality class of incompressible active Ćuids.
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 16 Figure 0.16: RG Ćow in the critical hypersurface associated with Eqs. (0.26) and (0.27), taken from [148]. g 1 is the dimensionless coupling constant associated with λ while g 2 is associated with b. An attractive and stable Ąxed (red square) is found at nonvanishing λ and b and deĄnes the universality class of incompressible active Ćuids.
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 11 Figure 1.1: (a) Experiment of a burning segment of paper, where Ąre is propagating upwards (approximate size: 4 cm). Adapted from [164]. (b) Sketch of an interface described in terms of the height Ąeld ĥ.
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 12 Figure 1.2: Phase diagram and Ąxed points of the KPZ equation in the (g, d)-plane where g is the reduced coupling constant and d is the dimension of the space. A critical line above d > 2 (in red) separates the smooth phase, corresponding to the basin of attraction of the gaussian Ąxed point g = 0 (blue line), from the rough phase. It can be captured by a oneloop RG calculation upon a Cole-Hopf transformation of the KPZ equation. The red arrow represents the run-away Ćow predicted by the one-loop RG of the KPZ equation below the naive upper critical dimension d = 2.The rough phase is ruled by a strong-coupling Ąxed point, whose existence is conĄrmed via RG calculations [172] for 1 ≤ d ≤ 3 (dashed line) and via numerics even in higher dimensions[START_REF] Alves | Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension[END_REF] (blue points). The rough phase is generically scale-invariant (i.e. no Ąne-tuning is required for the theory to be critical).
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 13 Figure 1.3: (a) Snapshots of the growth of an instability in liquid crystals in dimension d = 2 at successive times. The statistics of height obeys the KPZ scaling but also the universal distributions of interface positions. Figure reproduced from [183]. (b) Numerical simulation of a Ćame front, also obeying the KPZ scaling in this regime of parameters.Adapted from[START_REF] Provatas | Flame propagation in random media[END_REF].
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 14 Figure 1.4: A typical experimental realization of MBE observed with a scanning tunneling microscope: a rough surface obtained by growing silicene on an Ag substrate at ∼ 500 K.Adapted from[START_REF] Sone | Epitaxial growth of silicene on ultra-thin Ag(111) films[END_REF].
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 16 Figure 1.6: 1PI diagrams to one loop for the renormalization of (a) the propagator, (b), (c) the nonlinearity and (d) the noise.
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 17 Figure1.7: Interfacial width W 2 (t) as a function of time for different system sizes showing a roughening law W 2 (t) ∼ t 0.28 . The parameters used, σ = 1.0, D = 0.1, λ = 2.0, correspond to the reduced coupling constant g = 0.4. Each curve was obtained by averaging over 500 noise realizations. The inset contains the same data but rectiĄed by t 0.28 .
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 18 Figure 1.8: Saturated value of the interfacial width W 2∞ ∼ L 2χ as a function of the system size L. Continuous lines are the RG predictions either at the Gaussian (blue) or at the ♣q♣KPZ (red) Ąxed point. Points are the results of numerical integration of the ♣q♣KPZ equation with λ 1 = 0 (blue) and λ 1 = 2 (red), corresponding to the nondimensional bare coupling g = 0.4. Other parameters used: σ = 1.0 and D = 0.1. Error bars are smaller than the symbols' size. Dashed lines correspond to power-law Ąts.
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 19 Figure 1.9: Family-Vicsek scaling functions for (a) g = 0.0 (parameters used σ = 1.0, D = 0.1, λ = 0.0) and (b) g = 0.4 (parameters used σ = 1.0, D = 0.1, λ = 2.0). Each curve was obtained by averaging over 500 noise realizations and the Ąrst two time-decades have been removed to only retain the universal behavior in the data.

  and where the h-independent factors A n , D n , σ and the noise χ are respectively given in Eqs. (1.60), (1.63), (1.69) and (1.71) in Section 4.1. The Stratonovich convention is used in the derivation of Eq.(1.42), meaning that the equation has to be interpreted accordingly.
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 70 Collecting all the terms in Eqs. (1.51), (1.61), (1.62) and (1.69) gives back Equation (1.42).
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 110 Figure 1.10: Two graphical corrections to the 3-leg vertex.
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 1212 Figure 2.1: Schematic representation of a collision event. In this speciĄc case, θ = arg e iθ in 1 + e iθ in 2

7 Figure 2 . 2 :

 722 Figure 2.2: ProĄle of the local equilibria M φ (θ) for different values of σ.
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 523 Figure 2.3: ProĄle of the GCI ψ φ (θ) for different values of σ. This quantity is deĄned whenever σ < σ c .
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 24 Figure 2.4: Phase diagram at deterministic level for polar particles.
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 7603 If one further assumes that Eq. (2.75) holds in the polar-liquid ordered phase, one can wonder how the evolution equation for the polarity Ąeld is affected. Assuming the norm of the polarity Ąeld to be Ąxed to p 0 = a/b, which is reasonable deep in the ordered phase, we look for solutions under the form p = p 0 e φ , where e φ is a unit 2d-vector parametrized by the angle φ. Projecting Eq. (2.75) onto e ⊥ = e φ+π/2 yields p 0 ∂ t e φ + λ 1 p 2 (e φ • ∇)e φ  ⊥ δρ + D T p 0 (e ⊥ • ∆e φ )e ⊥ + (e ⊥ • η)e ⊥ (2.77)
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 26 Figure 2.6: Phase diagram at deterministic level for nematic particles.
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 27 Figure 2.7: Scaling limit for active nematic Ćuids.

Figure 3 . 1 :

 31 Figure 3.1: RG Ćow of the random-Ąeld Ising model in dimension d > d l = 2, taken from[START_REF] Nattermann | Theory of the random field Ising model[END_REF]. T is the temperature, h the strength of the random Ąeld, H the magnitude of a Ąnite and homogeneous magnetic external Ąeld and J the spin interaction strength. C is the totally unstable thermal Ąxed point, while R is the zero-temperature critical Ąxed point: stable along the T -axis but unstable along the h axis. F is a totally stable Ąxed point and its basin of attraction (the RF C area) corresponds to the ordered phase, while the rest corresponds to the disordered phase.
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 32 Figure 3.2: Diagrammatic contributions to the renormalization of (a) the mass a, (b) the diffusion µ, (c) the quenched noise ∆, (d,e,f,g) the advection λ, and (h,i,j,k,l,m,n) the potential term b.
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 41 Figure 4.1: The swapping rates for an individual spin in the SXY model.
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 43 Figure 4.3: Snapshots of the orientation of the velocity Ąeld in the SXY model during the coarsening from an initial disordered system at low temperature. Left: Snapshot of a system of size L × L = 2000 × 2000, at time 4.94 × 10 5 . Right: Snapshot of a system of size L × L = 5000 × 5000, at time 6.5 × 10 4 . Parameters used in the simulation: v 0 = 1, D = 0.1, T = 0.7.

Figure 4 . 4 :

 44 Figure 4.4: v(L) for different values of the advection parameter λ (a = 0.7, η = 0.5 and initial ordered state). The system becomes long-range ordered with a crossover length which decreases with increasing λ. Error bars correspond to two standard errors of the mean computed over 5 independent samples. For large λ values, v(L) is reasonably well Ątted by v -v∞ = AL -ω with ω = 2/3 (v ∞ = 0.67, A = 0.77, for λ = 0.5, orange curve, and v∞ = 0.68, A = 0.57, for λ = 1.0, red curve).

Figure 4 . 5 :

 45 Figure 4.5: Coarsening of an initially disordered system. The three snapshots of the orientation of the velocity Ąeld are taken at successive times 10 3 , 10 4 and 10 6 . Parameters used in the simulation: a = 1.0, λ = 1.0, η = 0.5 and L × L = 1800 × 1800.

Figure 4 . 6 :

 46 Figure 4.6: Variation of correlation length ξ with the mass a for different sizes L (in the foam state reached by starting from an initial disordered condition). Data taken in the active foam steady state (λ = 1.0, η = 0.5). Error bars correspond to two standard errors of the mean, computed over 10 independent time intervals. At a given a value, small size data may not be reliable since ξ can then be of the order of L. At L = 900 in particular, data for a > 2.0 are not shown since only very few or even no asters are present.

Figure 4 . 7 :

 47 Figure 4.7: Typical conĄguration taken during coarsening in the deterministic limit η = 0 (a = 1, λ = 1.0, L = 900, ∆x = 0.5, ∆t = 0.01, colors as in Fig. 4.5, snapshots from Movie Şdeterministiccoarsening.aviŤ in[START_REF] Besse | Metastability of Constant-Density Flocks[END_REF]). Apart from the 5 clearly visible asters, which have +1 topological charge, 9 shock-line embedded -1 defects are present (white circles), as well as 4 vortex-like +1 defects present at some shock line vertices (black diamonds). Labels A, B, C in the main panel point to the defects shown more clearly in the small lower panels.

Figure 4 .

 4 Figure 4.8 additionally show the typical conĄguration in which the deterministic coarsening often ends ŞpinnedŤ, or least becomes too slow to be resolved in our numerical simulations (probably due the very symmetric aspect of Fig. 4.8a). This conĄguration is made of a single aster surrounded by its shock lines in a box with periodic boundary conditions. The aster is a point-like topological defect of topological charge +1. 2 Shocks lines on the other hand can be seen as Şspatially extended defectsŤ of topological charge -1, as illustrated by the winding of the orientation of the velocity Ąeld v along 4 different contours in Fig. 4.8b.

Figure 4 . 8 :

 48 Figure 4.8: (a) Snapshot of an single aster surrounded by its shock lines with periodic boundary conditions. Parameters used in the simulation: a = 1.0, λ = 1.0, η = 0 and L×L = 600×600 with periodic boundary conditions. The same colormap as in Fig. 4.5 is used. (b) Evolution of the angle of the velocity Ąeld corresponding to each of the 4 colored squares in the left Ągure in the clockwise direction. The Ştopological chargeŤ along the black and grey contours is +1, while it is -1 along the red and purple contours.

. 18 )Figure 4 . 9 Figure 4 . 9 :

 184949 Figure 4.9 shows how ξ evolves as a function of g, the dimensionfull width being equal to ξ s = (D/a) 1/2 ξ. Due to the symmetry ¶(m 0 , ξ) → (-m 0 , -ξ)♢, only two branches are shown: the blue Ű resp. red Ű curve corresponds to the width for the shock proĄle going from -v 0 to v 0 Ű resp. from v 0 to -v 0 . The width of the shock line is thus not expected to be the same

Figure 4 . 10 :

 410 Figure 4.10: Nucleation of one aster starting from an initially ordered state at successive times 3.3 × 10 4 , 8.5 × 10 4 , 1.6 × 10 5 and 2.6 × 10 5 . Parameters used in the simulation: a = 0.48, λ = 1.0, η = 0.5 and L × L = 3600 × 3600.

Figure 4 . 11 :

 411 Figure 4.11: Probability distribution of the lifetime of the ordered phase τ , deĄned as the Ąrst time for which the nucleation of an aster decreases v by more than 20% (a = 0.45, λ = 1.0, η = 0.5). Data obtained for three different L values, rescaled by a factor s 2 proportional to L 2 .

Figure E. 1 :

 1 Figure E.1: (Left) Simulation of an active phase-separated system. Adapted from [138]. (Right) Sketch of an interface parametrized in terms of the ĥ height Ąeld.
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 1031322282 Figure E.2: Family-Vicsek scaling law obtained for different system sizes L (in the presence of the nonlinearity). Each curve is averaged over 500 noise realizations. The Ąrst two time decades are not taken into account to highlight the universal long-time behavior.

Figure E. 4 :

 4 Figure E.4: Renormalization group Ćows for the incompressible active Ćuid model (a) in the pure case [148] or (b) in the presence of quenched disorder. g 1 is the coupling constant associated with the advection term and g 2 with the b aligning term. In (a), an attractive and stable Ąxed point (red square) exists for nonzero values of g 1 and g 2 , thus deĄning the universality class of incompressible active Ćuids. In (b), the introduction of quenched disorder destabilizes the pure Ąxed point, and it is the blue Ąxed point that becomes globally attractive, deĄning a new universality class, for which the coupling constant g 2 is dangerously irrelevant.

Figure E. 5 :

 5 Figure E.5: (Left) A spin conĄguration in the SXY model at low temperature. (Right) Average velocity Ąeld of uniform-density Ćocks as a function of system size, at low temperature and for different values of the advection term λ (at λ = 0 we Ąnd back the XY model).The system becomes effectively ordered as soon as it is out-of-equilibrium (λ ̸ = 0).

Figure E. 7 :

 7 Figure E.7: (Gauche) Simulation d'un système actif séparé de phase. Adapté de [138]. (Droite) Croquis d'une interface paramétrisée en terme du champ de hauteur ĥ.

  Fig. E.7):

  Une part importante du chapitre est consacrée à la caractérisation de cette classe d'universalité: d'une part analytiquement via un traitement par le groupe de renormalisation perturbatif à une boucle, d'autre part numériquement en intégrant l'équation hydrodynamique de l'interface en dimension d = 1. Ces deux approches conĄrment indépendamment le fait que cette classe d'universalité est différente de celles déjà connues pour la physique des interfaces, comme par exemple celle de Kardar-Parisi-Zhang (KPZ), de KPZ conservé, de Mullins etc. Plus précisément, pour des systèmes séparés de phase en dimension d = 2, nous trouvons les exposants critiques suivants = 2.79, χ numérique = 0.39, (E.19) ainsi que, dans la Ągure E.8, la loi d'échelle pour la rugosité W 2 (t, L) = 1 L x ĥ2 (x, t), L étant la taille du système.
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 1031322288 Figure E.8: Loi d'échelle de type Family-Vicsek obtenue pour différentes tailles de système L (en présence de la non-linéarité). Chaque courbe est obtenue à l'aide d'une moyenne sur 500 réalisations du bruit. Les deux premières décades en temps ne sont pas prises en compte pour mettre en évidence le comportement universel à temps long.

1 Figure E. 9 :

 19 Figure E.9: Modèle de particules autopropulsées en dimension d = 2: les agents se déplacent de façon balistique tant qu'il n'y a pas de collisions ; si risque il y a, la collision est évitée par l'alignement des trajectoires, à quelques Ćuctuations près (modélisées par une distribution de probabilité P σ ).

 = a -b p 2 p -c 3

 23 ∇δρ + D T ∆p + η .

Figure E. 10 :Chapitre 4 :

 104 Figure E.10: Flots du groupe de renormalisation pour le modèle des Ćuides actifs incompressibles (a) pur [148] ou (b) en présence de désordre gelé. g 1 est la constante de couplage associée au terme d'advection et g 2 au terme d'alignement b. Dans (a), un point Ąxe attractif et stable (carré rouge) existe pour des valeurs non-nulles de g 1 et g 2 , déĄnissant ainsi la classe d'universalité des Ćuides actifs incompressibles. Dans (b) l'introduction d'un désordre gelé déstabilise le point Ąxe pur et c'est le point Ąxe bleu qui devient globalement attractif, déĄnissant une nouvelle classe d'universalité, pour laquelle la constante de couplage g 2 est dangereusement irrelevante.

Figure E. 11 :

 11 Figure E.11: (Gauche) Une conĄguration de spins dans le modèle SXY à basse température. (Droite) Moyenne du champ de vitesse des Ćuides à densité uniforme en fonction de la taille du système, à basse température et pour des différentes valeurs du terme d'advection λ (à λ = 0 on retrouve le modèle XY). Le système devient effectivement ordonné dès qu'il est mis hors d'équilibre (λ ̸ = 0).Cette première approche sur réseau est complétée dans un second temps par l'étude de

Figure E. 12 :

 12 Figure E.12: Destruction de l'état ordonné dans les Ćuides actifs à densité uniforme: les Ćuctuations conduisent à la nucléation d'asters, qui se propagent alors à tout le système et Ąnissent par former une mousse d'asters en constante évolution.
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  r n (t) -r) δ (θ n (t)θ) , (E.[START_REF] Dombrowski | Self-Concentration and Large-Scale Coherence in Bacterial Dynamics[END_REF] où ε est inversement proportionnel au nombre de particules N dans le système et correspondra à la vitesse du principe de grandes déviations, r n sont les positions des particules et θ n leurs angles. Le principe de grandes déviations associé s'écrit alorsP ¶f ε (t)♢ 0≤t<T = ¶f (t)♢ 0≤t<T ≍Ici e θ correspond au vecteur orthoradial en dimension d = 2, K est le noyau décrivant les collisions entre deux particules, P σ est la distribution de probabilité décrivant les Ćuctuations d'alignement et Ψ(θ 1 , θ 2 ) retourne l'angle moyen entre les angles θ 1 et θ 2 dans l'intervalle [0, 2π]. Il est intéressant de noter que la fonction de taux J T n'est pas quadratique, ce qui signiĄe que le bruit associé à la théorie cinétique est non gaussien. Ce principe de grandes déviations peut être réécrit de manière équivalente sous la forme d'une équation de Boltzmann Ćuctuante∂ t f + e θ • ∇f -I col [f ] = ξ[f ](r, θ, t), (E.26)où le membre de gauche de l'équation correspond à la partie déterministe de l'équation de Boltzmann-Vicsek dérivée originellement dans[START_REF] Bertin | Boltzmann and hydrodynamic description for self-propelled particles[END_REF], où le terme e θ • ∇f décrit le transport des particles et où le noyau de collisionI col [f ](r, θ, t) = dθ 1 dθ 2 f (r, θ 1 , t)f (r, θ 2 , t)K(θ 2θ 1 )× ¶P σ (θ -Ψ(θ 1 , θ 2 ))δ(θθ 1 )♢ (E.27) caractérise les collisions binaires entre particules. Le membre de droite de l'équation E.26 est un bruit non-gaussien dont le second moment admet pour expression BV δp(r, θ, t)δp(r ′ , θ ′ , t ′ ) [f, p = 0] . (E.28) De cette théorie cinétique Ćuctuante, nous déduisons dans un deuxième temps les équations hydrodynamiques Ćuctuantes décrivant le système à large échelle, ceci à la fois profondément dans la phase ordonnée et proche de la transition ordre-désordre. Plus précisément, après avoir opéré le redimensionnement hydrodynamique t = αt, r = αr où α est un nombre adimensionné appelé nombre de Knudsen, nous obtenons (dans le régime hydrodynamique de faibles α et ε) les équations hydrodynamiques Ćuctuantes pour les champs de densité ρ et p ∂ t δρ + ∇ • p = 0, (E.29) ∂ t p + λ 1 (p • ∇) p + λ 2 (∇ • p) p -

				λ 2 2	∇ p 2	ε↓0	exp		-	1 ε	J T [f ] 	,	(E.21)
	J T [f ] étant la fonction de taux qui s'écrit					
	J T [f ] =	0	T	dt sup						

p  drdθ ∂ t f p -H BV [f, p]  , (E.22) H BV [f, p] = H T [f, p] + H col [f, p] (E.23)

où H T est associé au transport des particules et H col décrit les collisions entre particules

H T [f, p] =dθdr p(r, θ, t)e θ • ∇f (r, θ, t), (E.24) H col [f, p] = 1 2 dθ 1 dθ 2 dθ ′ 1 dθ ′ 2 dr K(θ 2θ 1 )f (r, θ 1 , t)f (r, θ 2 , t)× P σ θ ′ 1 -Ψ(θ 1 , θ 2 ) P σ θ ′ 2 -Ψ(θ 1 , θ 2 )  e -p(r,θ 1 ,t)-p(r,θ 2 ,t)+p(r,θ ′ 1 ,t)+p(r,θ ′ 2 ,t) -1 . (E.25) ⟨ξ [f ] (r, θ, t) ξ [f ] r ′ , θ ′ , t ′ ⟩ = ε δ 2 H
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As usual in physics when a symmetry is broken, much less is a priori known, since some properties or the conservation of some quantities are no longer protected from fluctuations. These fluctuations can thus give rise to richer features, which were previously forbidden by the symmetry.

A comment should be made here: assemblies of active particles are usually made out of a large number of units, so that they fall into the realm of statistical physics. However for some systems, this number is still much smaller (sometimes less than 10 6 ) than the typical number of degrees of freedom in thermodynamic (i.e. the Avogadro number NA ∼ 10 23 ), implying that some of the tools of statistical mechanics have to be applied with caution.

The term "macroscopic" refers in the manuscript to any property which is observed at the level of all the particles of the system, while "microscopic" characterizes a property attached to only few particles, regardless or their size.

It is in contrast with quantum mechanics, at least in the Copenhaguen interpretation, where quantum fluctuations are intrinsic to the theory: a particle even in free space has to be described by a probability distribution. Although there is often a correspondence between quantum problems in d dimensions and their corresponding classical stochastic counterparts in d + 1 dimensions, we do not deal with quantum fluctuations in the manuscript (ℏ ≈ 0).

The recurrence time is exponentially long in the number of internal degrees of freedom of the system.

This symmetry has very pragmatic implementation at the level of kinetic theories[START_REF] Bouchet | Is the Boltzmann Equation Reversible? A Large Deviation Perspective on the Irreversibility Paradox[END_REF] or of Langevin equations as detailed in Appendix C.

In fact, out of equilibrium, changing dynamics is equivalent to changing models (for instance the XY model[START_REF] Kosterlitz | The critical properties of the two-dimensional xy model[END_REF] vs. the flying-spin model of Vicsek[START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]).

To be precise, impurities are quenched if they evolve on time scales much slower than the typical experimental times. When the systems considered are at equilibrium, the "dynamical" fluctuations is often referred to as thermal noise

By "large" deviation, it is usually meant deviations which significantly deviates from the mean expected behavior, a.k.a rare or tail events.

The number of neighbors has still to be be finite or the interactions should decay sufficiently fast though.

Note that in this case MFT predicts correct critical exponents at the phase transition, even though the correlation length ξ is infinite.

The molecular chaos hypothesis assumes the absence of correlations in the positions and momenta of colliding particles in a classical fluid.

In this paragraph we do not make a clear distinction between the BBGKY hiearchy and the so-called Boltzmann hierarchy and we refer the reader to[START_REF] Golse | Boltzmann-Grad limit[END_REF] for a more precise discussion.

These noise terms are crucial when they significantly alter the mean-field behavior of the system, for instance rendering a continuous phase transition first-order[START_REF] Martin | Fluctuation-induced phase separation in metric and topological models of collective motion[END_REF].

In fact, this statement should be qualified: besides symmetries, the functional space in which the theory lives has to be specified. This turns out to be fundamental in Chapter 1.

It should be noted that weak interactions and weak correlations do not mutually imply one another: in the φ 4 field theory, the strength of the interaction coupling constant can be rendered arbitrary small near 4d dimension, but strong correlations in the system are still observed.

It cannot be denied though that TRS may simplify calculations, as it constraints the renormalization of certain quantities.

The deterministic version of Model B is also known as the Cahn-Hilliard equation[START_REF] Cahn | Free Energy of a Nonuniform System. I. Interfacial Free Energy[END_REF].

There is a priori no reason to set mobility to 1 but in practice this simplest choice yields sensible results compatible with the physics observed.

The faster growth occurs for instability of wavevector ∝ (-f ′′ ( φ)) 1/2 and the growth is exponential only at early times.

Detailed balance in the context of the response-field formalism and of Model B is discussed in more details in Appendix C.

By naive, we mean power-counting performed at the mean-field level/gaussian fixed point.

Please note that, at the time of writing, John Toner does think that his results need to be refined.

The quantities are universal in the sense that they are the same for all interfaces belonging to the same universality class. For interfaces, only few universality classes are known and are detailed in the next sections.

The shift-symmetry reflects the fact that physics does not depend on the absolute height but on the relative one.

This extra symmetry can also be considered as shift-symmetry, but this time for the response-field.

A classical example of capillary waves are ripples in water.

The absence of momentum conservation means that the velocity field is not a relevant or slow field of the problem but it does not mean that translation invariance is lost in the system nor that the RG diagrams in the next sections do not satisfy to the conservation of momentum.

We do not consider spin glasses nor random anisotropies.

At least beyond a typical length called the Larkin length[START_REF] Larkin | Pinning in type II superconductors[END_REF].

In this case, the disorder is said to be weak.

This is in fact the first way quenched disorder was introduced in a flocking model and a physically very relevant case.

This is further confirmed at nonlinear order in[START_REF] Chen | Packed Swarms on Dirt: Two-Dimensional Incompressible Flocks with Quenched and Annealed Disorder[END_REF][START_REF] Chen | Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d > 2[END_REF].

There is a symmetry which makes the diagram in Fig.3.2d vanish in the pure case: if the potential terms are switched off, Eq. (3.2) is invariant under Galilean symmetry, which protects λ from being renormalized. It is no longer the case in the disordered model because the quenched noise breaks Galilean invariance.

A classical example of this is the Ising model above the upper critical dimension[START_REF] Cardy | Scaling and renormalization in statistical physics[END_REF]. Although the associated field theory is gaussian, the φ 4 coupling constant is dangerously irrelevant and an ordered state still exists.

We use the term "foam" to describe the stationary state because the asters surrounded by their shock lines are analogous to flexible bubbles which are entirely filling the space. Moreover in the deterministic limit, the analogy of the steady-state with vertex models is noteworthy., with processes which seem similar to rearrangement observed in two-dimensional foam[START_REF] Weaire | The physics of foams[END_REF].

It should be noted however that if the aster in Fig.4.8a points outward as λ > 0, it would point inward when λ < 0, due to the symmetry of the equation under the joint transformation λ → -λ, v → -v .

More general noises than the gaussian ones can be considered in Eq. (B.1) and we refer to Chapter

for a detailed treatment within a Large Deviation Principle formalism.132
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Chapter 3

Flocking transition in the presence of quenched disorder

This chapter largely relies on [START_REF] Zinati | Dense polar active fluids in a disordered environment[END_REF] and studies the effect of quenched disorder on the Ćocking transition in incompressible active Ćuids. It provides a complementary derivation of the RG Ćow in [START_REF] Zinati | Dense polar active fluids in a disordered environment[END_REF] following the spirit of [START_REF] Chen | Critical phenomenon of the order-disorder transition in incompressible active fluids[END_REF]. The main results are summarized in Fig. 3.3 and in Section 5. In the critical hypersurface a ⋆ = 0, the Ćow admits four Ąxed points (FP):

-(g ⋆ 1 = 0, g ⋆ 2 = 0), the gaussian FP (in orange in Fig. 3.3), which becomes repulsive below the upper critical dimension d c = 6, -(g ⋆ 1 = 0, g ⋆ 2 = ε/15), which is an unstable FP without advection (in purple) and describes the critical behavior of an isotropic ferromagnet with long-ranged dipolar interactions in the presence of quenched disorder (the pure case is studied in [START_REF] Fisher | Dipolar Interactions at Ferromagnetic Critical Points[END_REF]), -(g ⋆ 1 = 51ε/472, g ⋆ 2 = -99ε/4720), which is a second unstable FP (in red) and is the quenched counterpart of the attractive FP found in the pure case (red square FP in Fig. 0.16), -(g ⋆ 1 = 3ε/31, g ⋆ 2 = 0), which is the completely attractive FP and is termed Şquenched Navier-StokesŤ (qNS) FP. It indeed corresponds to a purely advective FP, which is the quenched version of the pure FP describing the large-distance and long-time properties of a stirred Ćuid described by the Navier-Stokes equation forced at zero wavelength [START_REF] Forster | Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid[END_REF].

Introducing quenched random forces thus destabilizes the fully attractive FP of the pure case in favor of the qNS FP. This changes the universality class characterizing the critical properties of the system, which is now described in terms of a quenched Navier-Stokes theory.

Chapter 4

Metastability of uniform-density flocks

This chapter is adapted from [START_REF] Besse | Metastability of Constant-Density Flocks[END_REF]. It highlights the metastability of the ordered phase in uniform-density Ćocks simulated in dimension d = 2, as illustrated in Fig. 

Appendix A

Notations and conventions

All through the manuscript, (3-)vectors are shown in bold type, for instance q, while capital letters denotes 4-vectors, made of frequency and momentum, such as Q = (ω, q). Einstein's convention about the summation of repeated indices is also everywhere intended. The following notation for the Fourier transform is used ĥ

and analogously for other quantities. To ease the writing of convolution products, integrals

Appendix B

Response-field formalism

The Ąeld-theoretical formalism used to represent a Langevin equation as an action with a path integral is known as the Martin-Siggia-Rose-Janssen-de Dominicis formalism [ 102Ű 104, 170]. This formalism, that we shorten as Şreponse-Ąeld formalismŤ, is used throughout the manuscript and we give some details on it in this section.

Hydrodynamics is usually written in terms of a stochastic partial differential equation (SPDE) of the form

where φ is a scalar Ąeld (density, temperature...), Ω 1 and Ω 2 are two relaxation rates, F [φ] is a functional of φ which describes the deterministic forces in the system and η is a centered gaussian white noise, with variance ⟨η(x, t)η(x ′ , t ′ )⟩, accounting for the presence of Ćuctuations. 1 From a technical point of view (RG calculations etc.), it is usually simpler to work at the level of the so-called dynamical action by introducing an integral representation of the above SPDE. This amounts to introduce the following generating functional, vaguely resembling to the partition function of a static equilibrium problem,

where φ is an ad-hoc auxiliary Ąeld called response-Ąeld, S[φ, φ] is the response-Ąeld action and J and J are two source terms, which can be used for instance to derive the n-point correlation-functions.

It can be shown that the response-Ąeld action S[φ, φ] associated with the Langevin equation (B.1) reads

Appendix C

Time-reversal-symmetry or detailed balance

Time-reversal-symmetry (TRS), or equivalently detailed balance, is deĄned via Kolmogorov's criterion, as stated in the introduction of the manuscript. At the level of the response-Ąeld formalism introduced in Appendix B, it is characterized by a symmetry of the action S[φ, φ] involving both the Ąeld and the response-Ąeld. Symmetries have to be handled with care, since they usually impose important physical constraints on the problem. This is especially true in RG calculations: if for instance the bare action or the employed RG scheme breaks these symmetries, the resulting RG Ćow and the low-energy Ąnal action most probably do not respect them, while they should.

For instance, for model B, which is an equilibrium process deĄned in Eqs. (0.6) and (0.7), the associated time-reversal-symmetry reads (T B ) :

Within the context of model B, imposing TRS is thus crucial to ensure the approximate RG procedure preserves the equilibrium nature of the model and it constrains the relative renormalization of the dynamic term ∂ t φ and the noise.

The previous expression for (T B ) has however one drawback: it is nonlinear in the Ąelds (φ, φ) while it is in general preferable to deal with linear symmetries, especially within the FRG context, where regulator are harder to design. Within the model B, this can be however bypassed thanks to the fact that TRS can be equivalently expressed as (T B ) :

which is this time linear in the Ąelds. These symmetries straightforwardly transfer to the effective action Γ k .

Appendix D

Replica method

We have seen in the introduction in Section 2.3 that the suitable way to study the effect of quenched disorder on a system is to average it over different realizations of the quenched disorder, so that translational invariance is restored. Performing this quenched average is however much more difficult than the thermal average, notably to compute nonlinear quantities such as the free-energy ln Z. To do so, physicists often resort to the so-called replica trick:

The idea is to trade the calculation of the quenched average ln Z by the one of Z n , which is easier to calculate. If n is an integer, it is physically equivalent to introduce n copies or replicas of the system in order to calculate Z n . To take the limit n → 0, an analytic continuation is then performed. If the mathematics behind such limit is not completely clear yet, it gives at least sensible results in physics.

We illustrate this method on the following scalar Langevin equation (the vectorial case can be straightforwardly generalized):

where the same notations as in Appendix B are used and ξ is a purely static centered gaussian white noise, characterized by its variance ⟨ξ(x)ξ(x ′ )⟩ which can depend on φ. Within the response-Ąeld formalism, Eq. (D.2) can be represented by the following functional

where S is deĄned in Eq. (B.3).

We need to average over the quenched noise ξ and we thus introduce n replicas of the 135 Appendix E

Publications

Most of the material in the manuscript is coming from the following preprints and we provide the correspondence with each chapter of the manuscript. We conclude this manuscript with a brief overview of some open issues raised throughout the manuscript. of shock lines). We conclude this manuscript with a brief overview of the questions that remain open following the previous four chapters.

Résumé long

Ce manuscrit de thèse est dédié à l'étude des Ćuctuations dans la matière active. Par l'analyse de quelques exemples, il s'attache entre autres à montrer que les Ćuctuations peuvent conduire à des comportements étonnants qui échappent aux descriptions classiques de la physique d'équilibre.

Une brève introduction à la matière active

La matière active désigne l'ensemble des systèmes composés (d'un grand nombre) d'agents capables d'exercer des forces ou de s'autopropulser en transformant l'énergie présente dans leur environnement sous des formes autres que thermiques.

Si la biologie offre de nombreux exemples de systèmes actifs (vols d'oiseaux, tissus biologiques, suspensions de bactéries) dont sont inspirés la plupart des modèles historiques de la matière active (modèle de Vicsek, particules browniennes actives), les physiciens sont également parvenus à synthétiser des particules actives dans leurs laboratoires (particules de Janus, essaims de robots). Ceci laisse entrevoir la possibilité de créer à l'avenir des matériaux aux fonctionnalités nouvelles, car intrinsèquement hors d'équilibre (de l'énergie est dissipée à tout instant en tout point du système. La question de leurs utilisations futures sera comme toujours à interroger.

La matière active ne pose pas seulement des questions expérimentales ou d'ingénierie mais également de nombreux déĄs théoriques, de par la foison de systèmes concrets et (fortement) hors d'équilibre qu'elle permet de construire. Ces modèles, qui échappent donc souvent au formalisme de Boltzmann et à la thermodynamique, constituent un point de départ idéal pour le physicien cherchant à explorer le monde de la physique (statistique) hors d'équilibre.

C'est dans ce champ de recherche de la physique théorique des phénomènes collectifs hors d'équilibre que s'inscrit ce manuscrit de thèse. Il se concentre notamment sur deux des phénomènes collectifs de la matière active qui ont particulièrement retenus l'attention des physiciens jusqu'à présent: le mouvement collectif et la séparation de phases.

De ces deux phénomènes, le mouvement collectif est sans doute celui le plus connu du grand public, notamment à travers ses manifestations macroscopiques: bancs de poisson, essaims d'insectes ou comportements grégaires (troupeaux, foules humaines). Il s'agit d'un état de la matière où les agents du système se déplacent en moyenne dans la même direction, en l'absence d'un chef de Ąle. Ce type de mouvement est principalement observé dans des assemblés de particules autopropulsées où les interactions d'alignement des directions de propulsion dominent. Il est remarquable qu'un tel état soit observée en dimension d = 2 et c'est une conséquence directe du caractère hors d'équilibre du système, car sinon, à l'équilibre en dimension d = 2, le théorème de Mermin-Wagner interdit l'existence d'un tel état ordonnée issu d'une brisure spontanée de symétrie.

La séparation de phases quant à elle est génériquement observée dans de nombreux systèmes actifs, du moment que les agents actifs ont des trajectoires persistantes et des interactions répulsives: on observe alors la formation spontanée d'agrégats de particules répulsives. Ceci mène à une séparation de phases entre deux phases, l'une dense (ou liquide) et l'autre