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ABSTRACT

Industrialized countries have come to the conclusion that numerous chronic
non-communicable diseases are caused by lifestyle-related factors after completing
numerous epidemiological studies on these conditions, and can be called lifestyle-
related diseases (LRDs). Obesity, high blood pressure, coronary heart disease, and
other cardiovascular diseases, stroke and other cerebrovascular diseases, diabetes,
and several malignant tumors are among the diseases that are included. All of these
conditions pose a major threat to people’s lives and health and are challenging to
treat with current medical technology.

In this context, the prevention of lifestyle-related diseases is extremely impor-
tant. Disease prediction facilitates early detection to improve the chances of positive
health outcomes. Therefore, this study aims to propose a lifestyle-related disease pre-
diction framework based on missing value imputation and stacking ensemble method.
Specifically, the application of information technology in the medical field is resulting
in a large amount of medical data. However, due to early withdrawal and refusal of
participants, there are a lot of missing values in medical data. We proposed an imputa-
tion method based on SMOTE-NC oversampling technology and the ALWRF method
for imbalanced and mixed-type data, called SncALWRFI. Meanwhile, Bayesian op-
timization and cross-validation are employed to search optimal parameters. In the
experiment for missing value imputation, the SncALWRFI shows the best imputa-
tion accuracy, and it performs high imputation effectiveness in public datasets with
characteristics of data imbalance and mixed type.

Since prediction performance can be easily impacted by the presence of noise,
we have to look for a good strategy to improve this situation. Noise may come from
real patients and cannot be removed directly. Meanwhile, ensemble approaches are

a great way to lower variation, bias, and noise. Therefore, in order to increase the
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prediction performance of lifestyle-related diseases, we employ the stacking ensemble
technology in our study. Specifically, in order to maximize the diversity and the ac-
curacy of ensemble models simultaneously, we proposed a Multi-objective Iterative
Model Selection (MoltMS) algorithm. Data were obtained from the National Health
and Nutrition Examination Survey from 2007 to 2018. Our study utilized an im-
balanced data set of 11,341 with (67.16%) non-hypertensive patients, and (32.84%)
hypertensive patients. The results indicate a sensitivity of 51.41%, a specificity of
70.48%, an accuracy of 76.62%, and a measured AUC (Area under the ROC Curve)
of 0.84, which outperformed 12 individual and ensemble models. The proposed ensem-
ble model can be implemented in applications to assist population health management
programs in identifying patients with a high risk of developing hypertension.

The missing value module, feature selection module, and disease prediction
module are the three main elements of the architecture we propose for LRDs pre-
diction. In view of the large number of missing values in the data set related to
lifestyle-related diseases, the missing value module uses a combination of deletion
and imputation to deal with missing values. Since different lifestyle-related diseases
have different relevant features, the feature selection module uses machine learning-
based feature selection to find key features for lifestyle-related diseases. Finally, we
use a scenario from a Chinese hospital to apply the suggested prediction framework.
According to the experimental findings, the proposed prediction framework can also
enhance LRD’s prevention performance.

Keywords: Lifestyle-related diseases, Prediction, Machine Learning, Missing

values, Stacking ensemble.
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RESUME

Les pays industrialisés sont arrivés a la conclusion que de nombreuses maladies
chroniques non transmissibles sont causées par des facteurs liés au mode de vie apres
avoir réalisé de nombreuses études épidémiologiques sur ces conditions, et peuvent étre
appelées maladies liées au mode de vie (MRD). L’obésité, I’hypertension artérielle,
les maladies coronariennes et autres maladies cardiovasculaires, les accidents vascu-
laires cérébraux et autres maladies cérébrovasculaires, le diabete et plusieurs tumeurs
malignes font partie de ces maladies. Toutes ces conditions constituent une men-
ace majeure pour la vie et la santé des personnes et sont difficiles a traiter avec la
technologie médicale actuelle.

Dans ce contexte, la prévention des maladies liées au mode de vie est extréemement
importante. La prévention des maladies facilite la détection précoce pour améliorer
les chances de résultats positifs pour la santé. Par conséquent, cette étude vise a pro-
poser un cadre de prédiction des maladies liées au mode de vie basé surl’'imputation
des valeurs manquantes et ’ensemble la méthode ensembliste. Plus précisément,
I’application des technologies de I'information dans le domaine médical produit une
grande quantité de données médicales. Cependant, a cause de certaines situations
de la collecte de données, comme le retrait précoce et le refus des participants, il y
a beaucoup de valeurs manquantes dans les données médicales. Nous avons proposé
une méthode d’imputation basée sur la technologie de suréchantillonnage SMOTE-
NC et la méthode ALWREF pour les données déséquilibrées et de type mixte, appelée
SncALWRFI. Pendant ce temps, 'optimisation bayésienne et la validation croisée
sont utilisées pour rechercher les parametres optimaux. Dans I'imputation des valeurs

manquantes, le SncALWRFT présente une meilleure précision d’'imputation et réalise
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une efficacité d’imputation élevée pour I'ensemble des bases de données publiques
avec des caractéristiques de déséquilibre et de type mixe.

Etant donné que les performances de prédiction peuvent étre facilement im-
pactées par la présence de bruit dans les données, nous devons rechercher une bonne
stratégie pour améliorer cette situation. Le bruit peut provenir de vrais patients et il
ne peut étre supprimé directement.Les approches d’ensemble sont un excellent moyen
de réduire la variation, le biais et le bruit. Par conséquent, afin d’augmenter les perfor-
mances de prédiction des maladies liées au mode de vie, nous utilisons la technologie
d’approche ensembliste dans notre étude pour confronter au bruit des données. Plus
précisément, afin de maximiser simultanément la diversité et la précision des modeles
d’ensemble, nous avons proposé un algorithme multi-objectif de sélection itérative de
modeles (MoItMS). Les données ont été obtenues a partir de I'enquéte nationale sur
la santé et la nutrition de 2007 a 2018. Notre étude a utilisé un ensemble de données
déséquilibrées de 11 341 personnes avec (67,16%) personnes non hypertendues et
(32,84%) patients hypertendus. Les résultats indiquent une sensibilité de 51,41 %,
une spécificité de 70,48 %, une précision de 76,62 % et une AUC mesurée a 0,84, ce
qui a surpassé 12 modeles individuels et d’ensemble. Ce modele peut étre mis en
ceuvre dans des applications pour aider les programmes de santé publique a identifier
les patients présentant un risque élevé de développer une hypertension.

Le module de I'imputation de valeur manquante, le module de sélection des
caractéristiques et le module de prédiction des maladies sont les trois principaux
éléments de l'architecture que nous proposons pour la prédiction des LRD. Pour
un grand nombre de valeurs manquantes, la méthode combinant la suppression et
I'imputation est sélectionnée comme principale stratégie de traitement des valeurs
manquantes. Etant donné que différentes maladies liées au mode de vie ont des car-
actéristiques différentes, le module de sélection de caractéristiques utilise une méthode

basée sur 'apprentissage automatique pour trouver des caractéristiques clés. Enfin,



nous utilisons un scénario chinois pour expérimenter le cadre de prédiction suggéré.
Selon les résultats expérimentaux, le cadre de prédiction proposé peut également
améliorer les performances d’évaluation des risques de LRD.

Mots clés: Maladies liées au mode de vie, Prédiction, Apprentissage automa-

tique, Valeurs manquantes, Ensemble d’empilement.
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Chapter 1. Introduction

1.1 Background

Traditional medical services used to be kept and recorded on paper [1, 2],
which is difficult to serve people effectively and easily as society has developed
[3]. The medical industry has seen revolutionary changes as a result of the digiti-
zation of medical information [4]. Through the systematization, standardization,
and intelligence of big data, the digital medical system effectively integrates vari-
ous patient information data, offers intelligent services for patients, and intelligent
management based on electronic files for hospitals [5]. The construction of a dig-
ital hospital management system is essential in order to improve the operational
efficiency of modern hospitals. The database of the hospital information system
includes a variety of medical data, including administrative data, laboratory data,
treatment data, and prescription data [6]. The amount of data keeps growing over
time, and the gathered knowledge about medical practices can serve as a guide
for the conduct of the clinical medical staff as well as a wealth of useful infor-
mation for hospital administrators [7]. Additionally, examining and mining this
beneficial data can yield important references for making medical decisions [8].

However, the exponential rise of medical data as a result of the quick devel-

opment of medical information technology has made its hidden value an urgently



needed treasure. Especially, with the improvement of people’s living standards
and health awareness, more and more health check data are collected. For ex-
ample, the ”China Health Statistical Yearbook” showed that 444 million health
examinations were performed in China in 2019 compared to 406 million in 2017.
These health examinations produce enormous amounts of medical data with hid-
den value. In order to offer people intelligent and individualized medical services,
it is urgently necessary to mine the valuable information concealed in massive
amounts of medical data [9]. In particular, the use of information-based methods
to screen data allows administrators and healthcare professionals to thoroughly
research patient medical histories and deliver more effective care [10]. Accurate
and individualized health care services can be provided by utilizing big data analy-
sis techniques in the medical and health fields, as well as data mining and analysis
technology to examine medical data [6]. In this context, it is crucial to employ big
data and artificial intelligence to discover valuable information hidden in massive
data sets held in medical information systems and to equip local hospitals with

smart medical systems to boost the effectiveness of healthcare services.

1.2 Research Significance

As we know, there is a global lack of medical resources, including general
practitioners and medical supplies. For example, only 800 doctors were practicing
medicine in the French department of Seine-et-Marne as of December 31, 2020,
or less than 6 doctors for every 10,000 people [11]. Therefore, more and more

researchers use information technology to assist doctors in their work to improve



service efficiency. For example, Mohamed Elhoseny et al.[12] proposed a clas-
sification system of chronic kidney disease to help doctors distinguish different
groups and achieved a prediction accuracy of 95%. Although it is difficult for
these methods to predict all cases perfectly, they can be used as additional tools
to provide information to doctors. On the other hand, some studies focus on pre-
venting or delaying the progression of the disease. For example, Shuqiong Huang
et al. proposed an artificial neural network method to use risk factors to evaluate
the risk of hypertension. Their model achieves 90% Area under the ROC(Receiver
operating characteristic) curve (AUC) performance better than Logistic Regres-
sion Model (LRM) in assessing HTN risk. Risk evaluation methods have obvious
advantages in disease prevention. They predict people’s risks based on risk fac-
tors before the disease occurs, and assist doctors in providing early intervention,
which can reduce medical expenses and people’s suffering from diseases.
However, disease prevention approaches have some limitations, and they
are more suitable for diseases where risk factors are readily available and dis-
ease progression is improvable. Lifestyle-related diseases (LRDs) have natural
advantages to building disease risk prediction models. LRDs refer to diseases
whose psychophysiology is significantly affected by lifestyle factors, and changes
in these etiological factors can significantly improve disease prevention and treat-
ment [13, 14]. From the definition of LRDs, they are extremely related to people’s
lifestyles or behaviors, their risk factors are easily obtained, and many studies

[15, 16] have shown that LRDs can be improved by healthy lifestyles.



On the other hand, as countries become more industrialized and wealthier,
the prevalence of LRDs increases due to changes in people’s behavior. Generally,
most chronic diseases, including cardiovascular disease, metabolic syndrome, obe-
sity, type 2 diabetes, and some cancers, are lifestyle-related diseases and closely
related to people’s lifestyles [14]. Studies have found that lifestyle-related diseases
are the absolute and relative most common diseases in the world today, and the
death toll exceeds that of AIDS, malaria, and tuberculosis combined [17]. Car-
diovascular disease, obesity, type 2 diabetes, hypertension, and some particular
malignancies have all grown to be significant problems in the twenty-first century.
In the Republic of Ireland, 61% of adults are overweight or obese, and over 40%
of adults report having at least one lifestyle-related disease, the most prevalent
of which is high blood pressure and high cholesterol [18]. Additionally, 17.8 mil-
lion individuals globally passed away from cardiovascular disease (CVD) in 2017,
according to the Global Burden of Disease report published in 2018 and the es-
timated overall number of tumor-related fatalities (mostly cancer) is 9.56 million
[19]. The WHO predicts that by 2030, there will be 366 million individuals world-
wide who have diabetes, up from the present estimate of 175 million [20]. Despite
the availability of a wide range of medicines, the frequency of lifestyle illnesses
is not controlled due to the safety concerns connected with these medicines[21].
To sum up, there is a crisis in the global healthcare system as a result of the
prevalence of these lifestyle-related disorders.

Smoking, poor diet, excessive alcohol use, and a sedentary lifestyle are

all clear contributors to various lifestyles related diseases [22, 23]. According to



research, even tiny adjustments to one’s behavior can have a significant impact.
Ford et al. [15] found that those who did not smoke, had a body mass index
of less than 30 kg/ms, engaged in 3.5 hours of physical activity per week, and
consumed a nutritious diet had a 78% decreased risk of getting a chronic illness
throughout the course of the 8-year trial. The risks of myocardial infarction,
stroke, cancer, and type 2 diabetes all decreased by 93%, 81%, 50%, and 36%
respectively. A change in physical activity level alone would result in an increase
in life expectancy of between 2.8 and 7.8 years for men and between 4.6 and 7.3
years for women, depending on the degree of the increase in activity, according to
actual disease and death rates of physically active and inactive people in Denmark
aged 30 to 80 years [16].

Despite this convincing evidence, neither general medical treatment nor
modern physiotherapy practice is dominated by lifestyle-related diseases or meth-
ods for avoiding, reversing, and managing them [24]. The idea of health is dras-
tically altering in response to these modern health trends and goals [18]. The
focus of healthcare is shifting from disease models to health models on a global
scale. Contrarily, lifestyle-related diseases are multi-factorial illnesses that are
influenced by both environmental and genetic variables and are brought on by
the interaction of numerous risk factors [13]. These illnesses have sneaky onsets,
a protracted incubation period, and a quick progression. Identifying and treating
large numbers of patients in a timely manner is challenging. Additionally, as the

majority of lifestyle-related diseases still have unclear etiologies and pathogens



and poor therapeutic outcomes, it is important from a practical standpoint to
prevent the development of lifestyle-related diseases.

In terms of the characteristics of lifestyle-related diseases and contempo-
rary health trends, early disease prediction has significant research ramifications.
It is one of the key steps in preventing and treating diseases that are caused by
a person’s lifestyle because identifying population risks prior to the onset of dis-
eases can help people change their lifestyles as soon as possible, especially the
life behaviors of high-risk groups, lowering the risk of disease [25]. The primary
tool for assessing and preventing lifestyle-related diseases is the disease prediction
model [26]. Disease prediction models specifically establish an intelligent model
to predict the probability of a specific disease at a specific point in the future,
classify high-risk groups in accordance with the probability cut-off point, and
conducts behavior, diet, and other interventions to prevent future disease. It can
fall under the heading of illness prevention. In other words, the disease prediction
model may show assessment subjects about the likelihood that they will become
ill in the future and anticipate this likelihood, as well as advise them on how to

manage their own health.

1.3 Research Status of LRDs Prediction

The original disease prediction model is a disease prediction model of coro-
nary heart disease, which was established by the United States based on the
Framingham cohort study [27], and other cardiovascular disease risk assessment

models with various markers[28, 29]. The disease prediction models have grad-



ually expanded from cardiovascular disease to include a variety of diseases. For
instance, the United States has developed a model for predicting stroke based on
the Framing cohort [30]. The Cox proportional hazards model approach is used
in this model to create an individual stroke risk model for American whites. Age,
systolic blood pressure, hypertension, smoking, atrial fibrillation, left ventricular
hypertrophy, and other cardiac conditions were among the factors in the model
(i.e., myocardial infarction, congestive heart failure, coronary insufficiency, and
intermittent cardiac claudication). Additionally, several nations are actively cre-
ating and validating disease prediction models for various diseases appropriate
for their particular ethnic characteristics because populations in different coun-
tries have varied disease spectrums and prevalence risk factors. For instance, the
UK Prospective Diabetes Study (UKPDS) [31], Harvard Cancer Risk Assessment
Tool [32], the breast cancer disease prediction-Gail model [33], and a prediction
model for lung cancer proposed by the Cancer Research Center of University of
Texas Anderson [34].

Machine learning (ML) techniques, a subset of artificial intelligence tech-
niques, employ computer systems to predict diseases using statistical models and
algorithms, opening up a wide range of opportunities for illness prevention [25].
Researchers have utilized a number of ML algorithms to predict various diseases
in the field of disease prediction. For instance, the use of ensemble techniques
for the early diagnosis of coronary heart disease [35]; the use of support vector
machines to detect pre-diabetes and diabetes [36]; the use of random forest algo-

rithms to predict the risk of diabetes in the population examined physically [37];



To predict hypertension, a combination of sub type (the least absolute shrinkage
and selection operator, LASSO) and support vector machine recursive feature
elimination (SVMRFE) was used [38]. A new ensemble learning-based frame-
work for the early detection of type 2 diabetes utilizing lifestyle markers was also
developed [39].

Our study employed Web of Science and Google Scholar as search engines
to thoroughly analyze the current research status of LRDs prediction. The search
was limited to conference and journal papers published between 2013 and 2022.
It is important to note that lifestyle-related diseases are a disease set including
those diseases related to lifestyles. Since our aim was to investigate the research
status on the prediction of LRDs diseases, the most common LRDs diseases (i.e.
hypertension, diabetes, obesity, overweight, and coronary heart disease) were rep-
resented for analysis. Searches were conducted with terms including lifestyle dis-
eases (this expression was more commonly used in earlier papers), lifestyle-related
diseases, hypertension, diabetes, obesity, coronary heart disease (CHD), and car-
diovascular disease (CVD).

Specifically, 45 papers are studied. Data extraction included the author’s
name, year of publication, predicted disease, type of model, and the specific
model used. The categories of models were mainly divided into statistical models
(SM) and machine learning models (ML). Statistical models are mainly used to
discover correlations between variables and thus predict the output, while machine
learning models build analytical systems by learning from data and do not rely on

explicit rules of construction [40]. Statistical modeling is more about discovering



relationships between variables and the importance of those relationships, without

training or testing. Machine learning, on the other hand, aims to obtain models

that can make repeatable predictions in order to obtain the best performance

on the test set. Therefore the model category as statistical or machine learning

models is classified depending on whether the models were trained and tested in

the studied papers.

Authors Year Diseases Model Models
Category

Kumari et al. [41] 2013 Diabetes ML Support Vector Machine (SVM)

Dalakleidi et al. [42] 2013 Diabetes ML Logistic Regression Model (LRM)
and Decision Tree (DT)

Ford E S [43] 2013 CVD SM Framingham

Wang et al.[44] 2014 Obesity SM SVM, k-Nearest Neighbors (kNN),
and DT

Dugan et al.[45] 2015 Obesity ML Random Forest (RF), J48, ID3,
Naive Bayes Network (NB), and
Bayes trained

Nai-Arun N et al. [46] 2015 Diabetes ML DT, Neural Networks, LRM and
NB

Lingren et al. [47] 2016 Obesity ML SVM and NB

LaFreniere et al. [48] 2016 Hypertension ML Neural Networks

Vartiainen E et al. 2016 Cardiovascular SM FINRISK Risk Calculator

[49] diseases

Weng et al. [50] 2017 CHD ML Neural Networks

Montafiez et al. [51] 2017 Obesity ML Gradient Boosting Decision Tree

(GBDT), Linear Regression (LR),
(RT),
SVM, RF, and MLFFNN

Regression Trees KNN,

Continued on next page



Authors Year Diseases Model Models
Category
Rajput et al. [52] 2018 Obesity ML Neural Networks
Ye et al. [53] 2018 Hypertension ML Extreme Gradient Boosting (XG-
Boost)
Nour et al. [54] 2018 Hypertension ML DT and RF
Patnaik et al. [55] 2018 Hypertension ML SVM
Lépez-Martinez et al. 2018 Hypertension ML LRM
[56]
Effoe V et al. [57] 2018 Cardiovascular SM Cox Regression
diseases
Machorro-Cano et 2019 Obesity ML J48 DT
al. [58]
Daanouni et al. [59] 2019 Diabetes ML KNN and DT
Ahuja et al. [60] 2019 Diabetes ML SVM, Multi-Layer  Perceptron
(MLP), LRM, RF and DT
Daanouni et al. [59] 2019 Diabetes ML Neural Networks
Yahyaoui A et al 2019 Diabetes ML Neural Networks
/61]
Lépez-Martinez F et 2020 Hypertension ML Neural Networks
al. [62]
Tjahjadi et al. [63] 2020 Hypertension ML KNN
Alpan et al. [64] 2020 Diabetes ML BN, J48, RF, KNN, and SVM
Rahman et al. [65] 2020 Diabetes ML Neural Networks
Memon S A [66] 2020 Obesity ML Lil-regularized regression
Singh B [67] 2020 Overweight ML MLP
Shukla AK [68] 2020 Diabetes ML LRM
Islam et al. [69] 2020 Diabetes ML NB and LRM, RF
Abdel-Basset, M et 2020 Diabetes ML SVM, DTs, RF, and LR
al. [70]
Aminian A et al. [71] 2020 Cardiovascular ML RF
diseases

Continued on next page

10



Authors Year Diseases Model Models
Category
Athanasiou M et al. 2020 Cardiovascular ML XGBoost
[72] diseases
Rezaee M et al.[73] 2020 Cardiovascular SM Cox Regression
diseases and
diabetes
Yaganteeswarudu A 2020 Diabetes, Dia- ML RF, SVM, Neural Networks
et al. [74] betic Retinopa-
thy, Heart Dis-
ease, and Breast
Cancer
Chaves L and Mar- 2021 Diabetes ML Neural Networks
ques G [75]
Shorewala V [36] 2021 coronary heart ML kNN, LRM and NB
disease
Wang K et al. [76] 2021 coronary heart SM  and Cox regression and XGBoost
disease ML
Islam M M and 2021 Hypertension ML Neural Networks
Shamsuddin R [38]
Islam M M et al. [77] 2021 Hypertension ML SVM
LiL et al. [78] 2021 Diabetes SM Multiple Cox regression
Ferdowsy F et al. [79] 2021 Obesity ML kNN, RF, LRM, MLP, SVM, NB,
ADA, DT and GBDT
Rashid J et al. [80] 2022 Breast cancer, ML Neural Networks
diabetes, heart
disease, hepati-
tis, and kidney
disease
Gupta A and Singh 2022 Heart disease ML Adaptive Boosting (AdaBoost)

A [81]

and diabetes

Continued on next page
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Authors Year Diseases Model Models

Category

Yan J et al. [82] 2022 coronary heart ML XGBoost, Light Gradient Boost-
disease ing Machine (LightGBM), RF, NG-
Boost, LRM and MLP

Table 1.1: Studied papers about LRDs prediction.

Based on Table 1.1, it observed that there already exist numerous studies
focusing on risk prediction of LRDs diseases, among which 39 papers use machine
learning-based models for LRDs prediction, 5 papers use statistical based models
for LRDs prediction, and 1 paper uses both types of models for analysis. In
general, machine learning is increasingly applied in LRDs prediction and is one

of the current research hotpots for LRDs prediction.

1.4 Problem Statement and Objectives

According to literature studies, almost all existing prediction studies (91%)
focus on single disease prediction, with 14 papers focusing on diabetes prediction,
9 papers on hypertension prediction, 9 papers on overweight or obesity predic-
tion, 9 papers on cardiovascular disease prediction, and only 4 studies focusing on
multiple disease prediction. Specifically, Yaganteeswarudu [74] proposed a sys-
tem using the Flask API to predict multiple diseases including diabetes, diabetic
retinopathy, heart disease, and breast cancer. This system uses different datasets

to train different machine-learning models for different diseases. Rezaece M et al.
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[73] achieved consistent discrimination performance for multiple cardiovascular
diseases and type-2 diabetes using prediction models derived from Cox propor-
tional risk regression. These models contain multiple shared predictor variables
and can be integrated into a single platform to enhance clinical stratification to
influence health outcomes. Moreover, Rashid J et al. [80] proposed a new aug-
mented artificial intelligence approach using artificial neural networks (ANN) and
particle swarm optimization (PSO) to predict five prevalent chronic diseases in-
cluding breast cancer, diabetes, heart disease, hepatitis, and kidney disease using
five open-source datasets. Further, Gupta A et al. employed genetic algorithm
based on recursive feature elimination and AdaBoost to predict two lifestyle dis-
eases (heart disease and diabetes) using two open-source datasets with missing
values. On further analysis, the quantitative relationship between models and

diseases in the studied papers was as follows.

e One to one: almost all studied papers only focused on predicting a single

disease.

e one-to-many: three studied papers used the same model and different datasets

to predict multiple diseases.

e many-to-many: only one studied paper employed different models to predict

different diseases in different datasets.

Based on the above analysis, existing studies are unable to intelligently
identify key features of diseases while building prediction models with different

structures and robustness for different LRDs. Therefore, our objective is to design
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an intelligent risk prediction framework for LRDs that can smartly identify key
features of different LRDs for dirty real medical data, accurately predict the risk

of LRDs and visualize prediction results.

1.5 Organization of Thesis

The present thesis is organized in 6 chapters as shown in Figure 1.1. Fol-

lowing the introduction in Chapter 1, the rest of the thesis chapters are as follows:

Chapter 3:

A Missing Value
Imputation Approach for
Imbalance and Mixed-
Type Data
Propose an imputation
method for missing
values based on

> improved random forest | o
Chapter 2: w | @
5 : Chapter 5:
Lifestyle Related Disease
Context and Research e Sy fon Chapter 6:
Chapter 1: Lifestyle Related Disease 2
. Issues N Conclusions and
Introduction Proposed a disease -
= Y a Perspectives
Research context, = prediction framework | W
) Chapter4: . Summarize t
Problem Statement and 2 based on missing values
o A Stacking-Based i . and give pers|
Objectives " &4 B imputation, feature
research issues in LRDs - Ensemble Approach for | ¥ 4, - future wor
N selection and stacking
prediction (missing Noise Data rernbl
ensemble
values and noise) Prosed a Multi-objective

Iterative Model Selection
strategy for constructing

the robust ensemble
LRDs prediction model

Figure 1.1: Chapters organization

In Chapter 2, entitled “Data Characteristics and Proposed LRDs Predic-
tion Framework” , introduces the characteristics of the studied health examination
data, explains and analyzes technical difficulties of this study, and then introduces
the proposed prediction framework for LRDs.

In Chapter 3, entitled “A Missing Value Imputation Approach for Imbal-
ance and Mixed-Type Data”, introduces two proposed model including ALWRF
and SncALWRFI. Specifically, the structures of ALWRF and SncALWREFI are

introduced and Bayesian optimization is employed to optimize their parameters.
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Meanwhile, extensive experiments are conducted to evaluate these two models’
performance.

In Chapter 4, entitled “A Stacking-Based Ensemble Approach for Noise
Data”, firstly introduces the proposed Multi-objective Iterative Model Selection
(MoItMS) strategy, which use to select individual models for the ensemble model.
Meanwhile, ensemble technologies are introduced and the stacking-based ensemble
architecture is employed to improve the performance of LRDs risk assessment.
Furthermore, extensive testing is performed utilizing real-world data to evaluate
the performance of the proposed ensemble model.

In Chapter 5, entitled “A Case Study for Lifestyle Related Disease”, the
effectiveness of the proposed disease prediction framework is illustrated using a
real case in Nanjing, China, taking hypertensive disease as an example.

In Chapter 6, entitled “Conclusions and Perspectives”, a brief summary
of the main contributions, conclusions, and potential future perspectives is pre-

sented.
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Chapter 2. Data Characteristics and Proposed LRDs

Prediction Framework

2.1 Characteristics of Studied Data

Regular physical examinations have become a crucial component of public
health care, contributing to the rapid rise in disease prevention awareness and
public health literacy that has led to an enormous increase in physical exami-
nation data. In 2020, China’s public hospitals and private hospitals performed
179 million and 38 million health examinations, respectively, in which patients
with lifestyle-related diseases make up the large majority of those with diseases
found by health examination [83]. Meanwhile, people are progressively coming to
understand the value of post-examination health services. In order to analyze the
risk factors of specific lifestyle-related diseases when conducting health checks,
doctors are increasingly focusing on the collection of information about people’s
lifestyles. Due to the fact that the development of lifestyle-related diseases is
closely related to people’s unhealthy lifestyle decisions [14].

However, the large amount of physical examination data is now not fully
utilized by the majority of medical examination institutions, which leads to data
waste and reduces the effectiveness of physical examination. Using efficient and

sufficient physical examination data along with artificial intelligence techniques
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can more easily and accurately assess each person’s physical state [84]. The
standard physical examination includes measurements of height, weight, waist
circumference, blood pressure, urine, B-ultrasound, and other items. During the
physical examination, individuals’ age, gender, and other information will be
recorded, and some institutions also inquire about their lifestyles. In general,
health checks can collect three different types of medical data: administrative,
inspection, and lifestyle data [85].

Several studies utilizing health check data to predict LRDs have been
conducted. Hui Yang et al. [86] designed an online diabetes risk assessment
system and developed an extreme gradient boosting (XGBoost)-based model to
predict diabetes risk based on extensive physical examination data. Using data
from Japanese health examinations, Mariko Kawasoe et al. [87] constructed a
simple and useful clinical prediction model to forecast the 5-year incidence of
hypertension in the general Japanese population. Xin Qian et al. [88] developed
a cardiovascular disease prediction model using L1 regularized logistic regression
with the best predictive performance based on indicators from routine physical
examinations. Consequently, health check data is a very good choice for our
research. In addition to fully utilizing the ever-growing health data, it may also
measure disease risk among individuals and help medical professionals take early
preventive action.

Missing values might occur for many causes when collecting health check
data. A lot of valuable information is lost when a value is missing, and null values

can screw up data mining and produce incorrect results. Moreover, the data from
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the health check contains noise and outliers. These values are observations that
could be the result of machine or human error, real data, or both. The model’s
convergence speed and accuracy will be slowed down by noise in the data. Less
sensitivity to noisy data will result from increasing the model’s robustness. Health
check data includes variables that are nominal, binary, and of mixed types. The
complexity of data mining will increase as a result of various variable types. In
addition, some redundant features in the health check data make the disease pre-
diction model more complex as well. On the other hand, since sick people only
make up a portion of all the check-up people, the health check data frequently
suffers from an imbalance of positive and negative labels. In addition, as diseases
are connected and some become risk factors for others, imbalances in features are
frequently present. In conclusion, a variety of characteristics of physical examina-
tion data, including incompleteness (missing values), redundant features, noise,

mixed types, and imbalance, need to be taken into account in our research.

2.2 Research Status of Related Technologies

Based on the analysis in Chapter 1 and the studied data characteristics,
three research issues need to be considered in the proposed risk prediction frame-
work for LRDs:

1) Most common prediction techniques are challenging for people to use in
accordance with standard processes because medical data that have been collected

are dirty and contain a lot of missing values.
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2) Effective and precise risk factor identification is essential because re-
moving redundant variables can decrease model complexity and makes it easier
to analyze and comprehend model predictions.

3) Since data noise may lower the model’s convergence rate and accuracy,
it is crucial to research robust models. Enhancing model robustness can reduce
sensitivity to noisy data, make models more accurate and offer more reliable
auxiliary services.

In conclusion, the proposed risk prediction framework for LRDs must take
into account the mentioned three issues: 1) analysis and processing of missing
values; 2) identification of key features; and 3) accurate disease prediction. To
specifically handle these three issues, the proposed framework must take into

account three important techniques.
2.2.1 Research Status of Missing Value Processing Methods

As analyzed above, with the construction of modern health information
systems, healthcare organizations are experiencing explosive growth in medical
data. These medical data contain an abundance of hidden but potentially valu-
able information, i.e., unknown correlations between diseases and features, and
links between diseases with their complications [89]. Such information is useful
for medical diagnosis, therapy, and decision-making [90]. However, some unavoid-
able reasons, such as the early withdrawal of participants from medical research
studies and the refusal of participants to attend certain items in medical exami-

nations, can easily result in missing values in research data [91, 92, 93|. Since the
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existence of missing values makes it more challenging for people to mine relevant
information, many methods for dealing with missing values have been proposed,
which can be mainly divided into three categories, namely, deleting missing val-
ues, tolerating missing values, and imputing missing values.

Missing value deletion, also known as disregarding missing values, is the
process of explicitly deleting instances or variables that contain missing data items
to solve the problem of missing data [93]. Although a test pattern with missing
values cannot be classified since the deletion procedure would ignore it, deletion
methods have the advantage of allowing the normal pattern classification methods
to be used directly for complete data [94]. For ignoring missing data, there are two
general strategies [95, 94, 93]. First, Listwise Deletion (LD), also known as case-
wise deletion, or case removal, is a technique for removing instances (rows, cases)
with missing data. This technique is also known as complete case analysis because
it only keeps complete cases for analysis (CCA). The analysis is then restricted
to those observations for which all values are observed, which frequently leads to
biased estimates and loss of precision [18] because this method excludes all cases
with missing values for any variable of interest. The second technique is known
as Pairwise Deletion (PD) or Available Case Analysis (ACA), also referred to as
variable deletion, and it is used to delete variables (columns) with missing data
[96]. This method analyzes all situations in which the variables of interest are
present, using as much data from each case as is feasible rather than excluding
the entire case. Even though some of its variables have missing values, it can

nevertheless maintain the most amount of data possible for analysis since it uses
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distinct sample sizes for each variable [96]. As a result, the ACA approach has a
larger sample size than the CCA method.

In the second type of missing value processing approach, the model is built
with some strategies to tolerate missing values. For instance, XGBoost, Light-
GBM, and Catboost ensemble tree models and decision trees both process missing
data during training. These models specifically attempt, during the decision tree
construction process, to allocate samples with missing values in the features se-
lected as split points to the left sub-tree or the right sub-tree, and then analyze
which side will reduce the loss. This method preserves all data while also assist-
ing in the discovery of hidden information in missing data. Nevertheless, these
techniques only work with certain model architectures, which makes the model
more complex.

In the third type of missing value processing method, the value estimated
by the model is used to replace the missing value. Early approaches for imput-
ing missing data were specifically motivated by traditional statistical models and
estimate processes, which are referred to as imputation methods based on statis-
tics. These techniques are designed to model the information included in the
non-missing parts of the data set in order to as correctly estimate the missing
values as possible [97]. Researchers initially substituted missing values with the
mean, median, mode, and zero values. The disadvantage is that when there are
numerous missing data, a significant portion of the data is replaced by the same
value (i.e., mean, median, mode, zero), which can easily lead to serious deviation.

The mean imputation approach should not be used, according to certain recent
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research that has demonstrated its shortcomings [98, 99]. The in-depth study on
missing values has been accompanied by the proposal of a number of innovative
techniques. For instance, the Least Squares (LS) imputation approach is based
on the least squares principle to estimate missing values, whereas the hot-deck
imputation method predicts missing values by seeking for the nearest neighbor
using non-missing information [100].

Further, the researchers used machine learning models to impute miss-
ing values. Machine learning-based imputation approaches are complex processes
that often include building a predictive model to estimate values that will substi-
tute those missing [101]. The machine learning-based imputation method often
involves building a predictive model to predict the values for missing data. Many
machine learning-based imputation methods have been proposed recently, and
these methods frequently produce good imputation results. Examples of these
methods include imputation methods based on decision trees (DT) [102, 103],
imputation using multilayer perceptrons [104], imputation using artificial neural
networks (ANNs) [105], and imputation using self-organizing maps (SOMs)[106].

The three missing value processing methods and their advantages and

disadvantages are shown in Table 2.1.
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Methods Advantage Disadvantage Example

Deletion Simple Ignore valuable information PD, LD

Toleration Learning hidden in- Increase model complexity; spe- DT, XGBoost
formation cific model structure

Imputation Independent of pre- Additional computing space and Mean, KNNI
dictive models time

Table 2.1: The three missing value processing methods and their advantages and
disadvantages.

2.2.2 Research Status of Feature Selection Methods

As it can be challenging for people to distinguish between significant and
superfluous features when gathering data, feature selection is an essential com-
ponent of data reprocessing. Specifically, feature selection refers to choosing a
task-related feature subset from the full set of features in order to reduce the
amount of data that must be stored, shorten the time needed to train machine
learning models, and enhance the predictive skills of machine learning models.
Therefore, feature selection can assist in both the identification of essential fea-
tures and the elimination of superfluous features. Data mining techniques based
on machine learning techniques were used to select the primary characteristics
of lifestyle-related diseases. The benefit of this approach is that the outcomes
are generated by data analysis without the need for human interaction. This
approach is appropriate for those without strong expertise in medicine and uses
sophisticated algorithms to guide people in choosing essential factors. Our re-
search belongs to the category of supervised learning because it focuses on the

prediction of LRDs disease. We, therefore, concentrate on feature selection for
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supervised issues in this study. Three categories of feature selection techniques

can be distinguished based on the form of the feature selection [107]:

e Filter: Determine thresholds or the maximum number of features to be
selected, and then rank each feature according to specific statistical indica-

tors.

e Wrapper: When choosing alternative feature subsets for the model’s train-
ing, consider the impact of cross-validation as the optimization objective.

Then, choose the best combination.

e Embedded: After the model has been trained, many machine learning mod-
els allow for the evaluation of the contribution of each feature to the pre-
diction result. The threshold, or the number of thresholds to be selected,
can then be set in accordance with the contribution, and the feature can be

chosen.

Three feature selection categories and their advantages and disadvantages

are shown in Table 2.2.

Category Advantage Disadvantage Example

Filter High computa- Ignore combination effect be- Pearson correlation coeffi-
tional efficiency tween features cient, chi-square test

Wrapper Oriented to algo- High complexity and easy to Complete search, random
rithm optimization overfit with small samples search

Embedded Automatically se- Need to select loss functions and Feature Selection Method
lects features adjust parameter Based on Tree Model

Table 2.2: Three feature selection categories and their advantages and disadvantages.
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2.2.3 Research Status of Disease Prediction Methods

Nowadays, a lot of academics are researching disease prediction models and
have developed a number of useful models. In earlier research, we investigated
the state of various prevalent lifestyle diseases prediction methods (hypertension,
diabetes, obesity, overweight, and coronary heart disease). There are specifically
3 statistics-based models: Framingham, FINRISK Risk Calculator, and Cox Re-
gression. The Framingham risk score can be used to calculate a person’s 10-year
cardiovascular risk, even in those without a history of heart disease. Based on
the findings of the Framingham Heart Study, this risk score has been developed.
Based on risk factor information and incidence tracking from researchers in the
five-year FINRISK study, the FINRISK calculator was developed. Each risk fac-
tor that was taken into account while developing the risk coefficients was first
evaluated for its impact on disease prevalence and mortality using multivariate
analysis. For analyzing the relationship between patient survival time and one
or more predictor factors, the Cox Regression model is frequently employed in
medical research.

On the other hand, a wide range of machine learning models, including but
not limited to SVM, NB, and Neural Networks, have been employed to predict
LRDs. These models use the rules to forecast unknown data after automatically
analyzing the data. Different machine learning methods are suitable for different
types of data [91]. For instance, Although BN does not have severe limitations

on the number of samples as well as a high classifier efficiency, the prediction
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performance is poor due to the assumed prior model in some situations; the KNN
model is challenging people to apply to high-dimensional and sparse data; the
SVM model is also simple to manage when the number of sample features and
the number of samples are close together. Two different categories of feature

selection methods together with their benefits and drawbacks are shown in Table

2.3.
Category Advantage Disadvantage Example
Traditional Sta- Strong model inter- Modeling is based on multiple Framingham,
tistical Methods pretability assumptions; underperform in Cox Regression
complex data
Machine learn- High flexibility and High model complexity; Poor XGBoost, Neu-
ing method learning capability interpretability ral Network

Table 2.3: Two types of disease prediction methods and their advantages and disad-
vantages

2.3 Technical Challenges

As we have already mentioned, as living standards have increased, people’s
concern for their personal health has increased. To lower risks or postpone the
development of contracting lifestyle-related diseases, people have chosen a variety
of strategies, including health screenings, diet, and exercise. Over time, a large
amount of health and medical information is recorded and stored in detail by the
medical information system. The foundation for research on lifestyle-related dis-
eases has been set in this situation by enough health examination data and some
lifestyle-related data. Researchers are now concentrating on applying machine

learning techniques to mine valuable information hidden in health test data to
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assist people in predicting and preventing diseases connected to lifestyle choices.
But when data mining is used, two key aspects in gathered medical examination
data—missing values and noise—present technical difficulties for the analysis and
prediction of lifestyle-related diseases. Next, we will provide an in-depth analysis
and introduction of missing values and noise in the dataset of lifestyle-related

diseases.
2.3.1 Missing Values in Imbalanced and Mixed-type Features

A simple and easy-to-operate missing value processing technique is missing
value deletion, but this technique is prone to losing valuable information and is
unable to be utilized with data that has a lot of missing values. Furthermore, some
predictive models develop techniques to deal with missing values, which can help
preserve more useful information but makes the predictive model more complex
and only works with specific model structures. The missing value imputation
method can keep more valuable information, is more flexible, and is not dependent
on the prediction model.

Numerous methods are available in the literature to impute missing values
in metrically scaled data, such as imputation by mean, hot-deck [108], k-Nearest
Neighbors (kNN) [109], Decision Tree (DT) [110] and Random Forest (RF) [111].
The two types of mean imputation are conditional and unconditional mean impu-
tation, both of which are quick but may destroy the data distribution [99]. The
kNN technique finds the k-nearest records to fill in missing values. The kNN strat-

egy has the advantage of simplicity, but it requires searching the entire dataset
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to locate the k-nearest neighbors. In addition, as kNN ignores the correlation
between covariates, Shahla and Gerhard [112] proposed a sophisticated imputa-
tion method for mixed-type data that uses non-parametric nearest-neighbor and
takes into account the correlation between covariates. Although it yields smaller
imputation errors and higher performance in datasets with significant covariate
correlation, it easily encounters disaster in time and space in large-scale datasets
since it needs to multiple search datasets and calculates distances between records.
Further, researchers prefer tree-based imputation methods like the decision tree
and random forest model because of their high interpretability, quick prediction
speed, and adaptability for mixed-type datasets. For example, Rahman and Is-
lam [113] employed decision trees and decision forests to impute missing values
by dividing and merging records and achieved outperformed results on nine pub-
lic datasets. Even though they used tree-based approaches to impute missing
data, their methods are computationally complicated and demand a lot of mem-
ory when merging records from many trees with various structures. In another
tree-based example, Nikfalazar and Yeh et al. [114] introduced a new missing
value imputation approach that considers mixed-type data by combining decision
trees and fuzzy C-means (FCM) [115] with iterative learning. But single decision
tree is susceptible to noise, and it is time-consuming to search for the number of
clusters and perform clustering.

In the medical field, large-scale datasets with mixed type and imbalance
characteristics are widespread [116, 117]. Although advanced methods can reduce

imputation errors and improve the quality of missing data, existing methods can-
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not perform missing values well in data with mixed types and unbalanced charac-
teristics. As a result, we proposed a new missing value imputation method based
on the Adaptive Laplacian Weight Random Forest (ALWRF) and the Synthetic
Minority Oversampling Technique for Nominal and Continuous (SMOTE-NC),
which can adjust the weight of features adaptively when building a random for-
est and improve prediction accuracy for imbalance features. As far as we know,
our work is the first imputation method to consider both adaptive weights and
imbalanced problems based on a tree model. We will give a detailed introduction

to the proposed missing value imputation method in Chapter 3.
2.3.2 Diverse Noises in Lifestyle Related Disease Context

Data noise is the term for errors or unusual data present in the data. The
processing and analysis of data sets can be significantly impacted by these data
noises. To discover a suitable approach to deal with data noise, it is required to
identify the different types of noise in the data. Two categories of noise—attribute
noise and class noise—are generally separated in terms of disease prediction [118].
Class noise happens when examples are incorrectly classified into a class, and
attribute noise influences the attribute values of examples in the dataset. Both
attribute noise and noise-like noise can affect the classifier’s performance [119].In

medical data classification, noise can come from multiple sources:

e Human error. Errors in the labeling process, which are more likely to oc-
cur in jobs dealing with complex data, can occur due to fatigue, routine,

checking each case quickly, or time pressure. In addition, subjectivity also
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creates category noise. For example, when there are discrepancies in the

labels of multiple experts.

e Machine errors. When machines are responsible for providing automated

data, design errors or transient errors can result in incorrect attributes and

labels.

e Digitization and filing errors. When creating digital records of inspection
cases, categories can be entered incorrectly due to simple mistakes. The

same happens when using history.

In particular, noise is a combination of attribute noise and class noise
in the medical data of lifestyle-related diseases, where attribute noise is mostly
made up of abnormal attribute values, or outliers, which are distinct individual
points from the system as a whole. However, these points cannot be ignored
because they might potentially have useful information. For instance, a study
[120] on diabetes discovered that outliers were indicated by significant disparities
between the maximum value of two key characteristics, triglycerides (TG) and
low-density lipoprotein (LDL), and the third quartile. Because they belonged
to valid patients, these outliers were not excluded. On the other hand, class
noise is known as wrong instance labels. In practice, the diagnosis of lifestyle-
related diseases is prone to mislabeling. For example, if you speak during blood
pressure measurement, blood pressure will increase by 5-19 mmHg; or when blood
pressure is measured in a cold environment, blood pressure may increase by 5-23

mmHg; these situations can affect blood pressure measurement and result in a
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misdiagnosis. Furthermore, it is impossible for medical professionals to ensure
the utmost accuracy of their diagnosis results when making medical diagnoses in
the face of complicated lifestyle-related diseases, such as coronary heart disease
and tumors.

According to the above analysis, medical data of lifestyle-related diseases
inevitably have attribute noises and label noises. In general, there have been two

basic strategies for dealing with noisy data in medical data:

e Algorithmic-level methods. These techniques are characterized by being less
affected by noisy data. For example, C4.5 [121] uses a pruning strategy to

reduce the chance of the tree overfitting due to noise [122].

e Data-level approach. The most well-known type of method in this group is
the noise filter [123]. They identify noisy examples, which can be eliminated

from the training data.

Using data-level methods to directly delete outliers is easy to lose effec-
tive information because there are some in the dataset of lifestyle-related dis-
eases examined that correspond to valid patients. The ensemble approach, an
algorithm-level technique, is a great way to lower variation, bias, and noise, and
it can combine several individual models as a whole to outperform each indi-
vidual model. Therefore, in order to improve the accuracy of lifestyle-related
disease prediction, we employed an ensemble method in our research to develop

a robust disease prediction model, which makes the model less sensitive to noise
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and improves the prediction accuracy of LRDs. In Chapter 4, a comprehensive

introduction to the proposed ensemble method is presented.

2.4 The Overview of Prediction Framework

A framework for LRDs prediction is proposed based on the above find-
ings. The missing value module, feature selection module, and disease prediction
module are the three key components of this framework. The method of combin-
ing deletion and imputation is chosen as the primary strategy for missing value
processing for the significant number of missing values in the data set gathered
from lifestyle-related diseases first. The feature selection module employs ma-
chine learning-based feature selection to discover key features for lifestyle-related
diseases since different lifestyle-related diseases have distinct important features.
In order to create a strong ensemble prediction model for lifestyle-related diseases
and achieve a more accurate prediction of lifestyle-related diseases, the data pro-
cessed by the missing value module and the feature selection module are used
as the input of the prediction model. Figure 2.1 is a diagram of the proposed

prediction framework for LRDs.

LRDs Prediction Framework

Real medical data includes missing Different LRDs have different risk
values factors

| l l

Incomplete Key Dataset
Dataset Feature Selection Module :

Figure 2.1: LRDs prediction framework

Accurately predict disease risk
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2.4.1 Missing Value Module

In the missing value module, in order to enable the comprehensive analy-
sis of missing values, missing rates, and missing patterns are visually presented.
Firstly, The missing rate analysis help to rapidly comprehend the missing condi-
tions in the data set. Meanwhile, it can also use this information to help choose
the processing strategy for missing values. For clarity of definitions, we assume
that data set X includes n instances and k features. Let M represent a missing
value matrix, where m;; has a value of 0 if any value z;;(i < n,j7 < k) in X is

observed and 1 otherwise. The total missing rate M R can be represented as

k
_ D it Zj:l Mij

mXn

MR

(2.1)

On the other hand, the missing rate of ith row (denoted by ;) can be calculated

by
k
> jm1 Mij

MR, =
m

(2.2)

Finally, the missing rate of jth column (denoted by ¢;) can be computed by

MR., = M (2.3)

m

Second, by displaying the distribution of missing values, such as univariate, mono-
tone, and non-monotone [93], the study of missing patterns can assess how com-

plex missing values are. Finally, by examining the relationships between different
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features with missing values, such as MCAR, MAR, and NMAR [95], the study
of the missing mechanism can investigate the causes of missing values.

In reality, some features or instances will have a disproportionate number
of missing values for a variety of reasons; for instance, 99% of the values will
be absent. The major features of lifestyle-related diseases are used in our study
to build excellent predictive models, so when features or instances have a large
number of missing values, this is difficult to apply in our study. Instead, we
will prefer to use the deletion method rather than filling in a large number of
estimates. We need to describe the criteria for deleting missing values, or the
threshold for using it, in more detail. According to the 80% rule [124], which
states that a substance should be removed if its non-missing portion is less than
80% of the sample size as a whole, the suggested prediction framework excludes
features or instances whose missing rate is more than 80%. At the same time, the
framework provides an interface for customizing the threshold, making it simple
for knowledgeable specialists to adjust the threshold based on their own expertise.

There are still some missing values in the dataset even though some fea-
tures and instances are compelled to be removed in accordance with the threshold
setting of the missing rate. The reasons and ways of missing are typically dis-
persed among several features and instances, making it difficult to simply elimi-
nate them using a deletion procedure. Therefore, to appropriately handle missing
values, we shall employ more sophisticated techniques. We suggest a missing
value imputation technique in Chapter 3 that can be used with datasets that are

imbalanced or mixed types. We employed the proposed missing value imputation
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approach as our default missing value handling method in the missing value im-
putation step since features with characteristics of unbalanced and mixed types
are common in datasets of lifestyle-related diseases. Similarly, we incorporate
various well-known and excellent imputation methods for missing values, such as
MissForest and KNNI, as alternatives or benchmarks in order to provide people

with more options.

2.4.2 Feature Selection Module

Data mining techniques based on machine learning techniques are em-
ployed to select the primary characteristics of lifestyle-related diseases. The ben-
efit of this approach is that the outcomes are generated by data analysis without
the need for human interaction. This approach is appropriate for those without
strong expertise in medicine and uses sophisticated algorithms to guide people
in choosing essential factors. In previous studies, we surveyed existing feature
selection methods, and each method has its own advantages and disadvantages.
The feature selection of the wrapper has high computation complexity, and the
filtering mechanism ignores the connection between the feature and the target
variable. As a result, the tree-based strategy in the embedding method is em-
ployed for feature selection in the proposed prediction framework. Splitting into
tree-based approaches occurs in the classification model due to Gini impurity or
information gain/entropy, whereas it occurs in the regression model due to vari-
ance. Using techniques like random forests and gradient boosting, features are

chosen according to the relevance of each one. Generally, features with high im-
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portance are more likely to have an impact on the target feature. The proposed
prediction framework uses the random forest importance approach as the main
algorithm of the feature selection module because the random forest has high
generalization capabilities and is appropriate for large-scale datasets.
Specifically, the random forest feature importance evaluation calculates the
mean value of each feature’s contribution to each tree in the random forest. There
are two techniques to obtain the final collection of key features after assessing the
importance of each feature: 1) select Top-N features, 2) Select larger than the
set threshold. Since the value of N is difficult to determine and in order to keep
as many task-related features as possible, the feature selection module selects

according to the important threshold of the feature.
2.4.3 Disease Prediction Module

As we previously mentioned, a variety of machine learning algorithms have
been utilized by researchers to estimate the risk of various diseases in the field of
disease risk prediction. There are various noises in the data set, which threaten the
accuracy of the disease prediction model. Therefore, in order to build a robust
prediction model for LRDs, we will employ ensemble techniques to reduce the
impact of noise. We propose a stacked ensemble method in Chapter 4, a technique
that can be used on datasets with diverse noise. We adopted the proposed stacked
ensemble method as the default prediction method for the disease prediction

module.
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Specifically, the disease prediction module includes visualization of the
development of forecasting models, evaluation of the models, and interpretation
of forecasting results. Visualization of model development can better explain
the prediction process of lifestyle-related diseases. The model’s evaluation is also
crucial because it defines how usable the final model will be. The evaluation
index provides a quantitative index of the quality of the algorithm or parameters
and is designed to input the same data into several algorithm models or the
same algorithm model with varied parameters. It is frequently important to
employ a variety of various indications while evaluating a model. The majority
of the numerous evaluation indicators can only indicate a portion of the model’s
performance. If the evaluation indicators are not used properly, flaws with the
model itself cannot be detected, which will result in incorrect inferences. The

interpretation of prediction results can provide people with rich information.
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Chapter 3. A Missing Value Imputation Approach for

Imbalance and Mixed-Type Data

3.1 Methodology of the Proposed Imputation Method
3.1.1 Adaptive Laplacian Weight Random Forest (ALWRF) Method

On mixed-type data, tree-based models have a natural advantage because
their construction is concentrated only on the information gain of features rather
than the distance between cases [93]. On the other hand, tree-based models show
high interpretability compared to algorithms such as neural networks, because
their routes from the root node to the leaf node represent a rule [125]. A deci-
sion tree is one of the most representative tree-based models. The decision tree
starts from the root node of the tree, continually splits by selecting the optimal
attribute, and builds the tree nodes one by one until a stopping condition of
tree building is satisfied. There are two typical stopping conditions, including
no samples in the child nodes and exhaustion of attributes. As a single decision
tree frequently suffers from overfitting, ensemble approaches based on decision
trees have been proposed including Boosting[126] and Bagging [127]. Random
forest is an ensemble algorithm based on the bagging approach that has strong

anti-noise properties and can perform effectively on large data sets [110, 128].
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Meanwhile, as it blends the idea of the ensemble with randomization, overfitting
is well-controlled. In particular, random forest uses the bootstrap technique to
randomly draw samples from original samples to build a single decision tree, and
then repeat this process a specific number of times (the number of trees) [125].
Finally, the final prediction result is obtained by combining these decision trees.

In random forests, features with high quality are not fully used because fea-
tures are selected consistently and randomly to construct a feature subspace. As
a result, the random forest’s performance may be limited, because all features,
including those with little or no information, have the same probability [129].
From the standpoint of feature subspace selection, some better random forest
methods have been developed. Amaratunga and Cabrera et al. [130] proposed
enriched random forests: choose the eligible subsets at each node by weighted
random sampling instead of simple random sampling, with the weights tilted in
favor of the informative features. Then, stratified Random Forests [131] utilized
the weights that obtained by Fisher discriminant projection to divide the features
into two parts, namely strong and weak features. However, it needs to determine
the segmentation threshold of strong and weak features, as well as the amount
of strong and weak characteristics. Further, Liang and Huang et al. [132] took
advantage of the Laplacian score [133] to quantify the importance of different
features by considering their locality preserving power and then generated a set
of diverse subspaces by weighted random sampling. To sum up, these studies are
mostly concerned with estimating features and raising the weight of excellent fea-

tures. However, the diversity of random forests is easily reduced by utilizing fixed
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weights. To improve this situation, we proposed an adaptive Laplacian weight
random forest (ALWRF) by dynamically adjusting the weight when constructing
trees.

As the decision tree is the basic model of random forest, common decision
tree algorithms are introduced first, ie., ID3[134], C4.5 [135], Classification and
Regression Tree (CART) [136]. The ID3 algorithm iterates through every unused
attribute and calculates the entropy or the information gain of that attribute and
it then selects the attribute which has the smallest entropy (or largest informa-
tion gain) value. ID3 is harder to use on continuous data than on factored data
(factored data has a discrete number of possible values, thus reducing the possi-
ble branch points) [135]. The C4.5 algorithm is an extension of the earlier ID3
algorithm and can be used for classification. ID3 and C4.5 are time-consuming
because of logarithmic operations in entropy models. In the CART algorithm,
each node has less than or equal to two children. The bisection method can
simplify the scale of decision trees and improve the efficiency of generating deci-
sion trees. On the other hand, the CART algorithm can be used to create both
classification trees and regression trees, which is suitable for categorical missing
values and numerical missing values [114]. Therefore, the CART algorithm is
employed as a basic model in ALWRF. In the CART algorithm, the outputs for
the classification tree and regression tree are discrete value and continuous value
respectively. In detail, the output in the classification tree is the majority class
of the leaf node, while the regression tree uses the mean value of the leaf node

as the output. In addition, the CART algorithm uses the Gini coefficient as the
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impurity of variables, which can reduce the complexity of logarithmic operations
compared with ID3 and C4.5. The smaller Gini coefficient shows the feature is

better. The equation for the Gini coefficient is:

Gini(D) = 3 plai) + (1 — plz) = 1 - 3 p(a?) (3.1)
i=1
where p(z;) is the probability of occurrence of category x; and n is the number of
categories. Gini(D) reflects the probability of two randomly drawn samples from
dataset D whose class labels are inconsistent. Therefore, the smaller Gini(D)
represents the higher purity of the dataset D.

In our work, in order to evaluate the feature importance for enhancing
the performance of random forest, we resort to the adaptive feature selection
technique termed adaptive Laplacian score. The Laplace score is a classical and
popular feature selection algorithm in filter style, which aims to find the most
discriminative features [133]. To avoid confusion, we assume that training data
with n samples and d dimension. its data matrix can be represented as X € R"*.
Each row in X = (1,9, ...,7,)" corresponds to a sample, while each column
corresponds to a feature. z; € R? is the i-th sample. Thereby, the data matrix
can also be denoted as X = (fi, f2, ..., fa), where f; € R, is the j-th feature.
Particularly, a k-nearest neighbor graph is first constructed, which is used to
calculate the Laplacian scores of different features by considering their locality-
preserving power. We denote this graph as G = {V, E'}, where V' = {x1, 29, ..., z,,}
is the set of the training samples and £ € R™ is the adjacent matrix. Here, we

use the H-nearest neighbor and the cosine similarity to compute the edge weights.
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That is

E = {i; }nxn (3.2)

Ylzi 2;) , 2; € kNN(x;) or 7; € kNN (),
ei; = V(@i z:). (), 25) (3.3)
0 , otherwise,

where 9(. ) computes the inner product of two vectors and kN N(x;) denotes the
set of k-nearest neighbors of x;. Let D € R™ be the degree matrix, which is a
diagonal matrix with its (i, 7)-th element being the sum of the i-th row in E. Let
the graph Laplacian of G be denoted as L = D — E. Then, the Laplacian score

of the i-th feature f; can be computed as

PR
TLf
fi' Df;
~ f-TDe
where e = (1,...,1)7. According to equation (3.4), all Laplacian scores of d

features can be denoted as S = (s1, 89, ...,54) . As a smaller Laplacian score indi-
cates that this feature can better preserve the locality information and therefore
can be viewed as a feature of greater importance, the feature weight of the feature

fi can be defined as ¢; = 1 — s;. Then normalized feature weights can be denote
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as L = (271,272, ...,Ed). The ¢; is computed by

h= b (3.6)

Zj:l ¢

The computed weights L serve as an initial indicator of the importance
of each feature and then diversified random subspaces are generated using the
weighted random sampling. With the construction of the Laplacian-weighted
random forest, the weights of features are adjusted according to the importance
of features on prediction. In detail, the importance of features on prediction can
be estimated by the accuracy of out-of-bag (OOB) data after adding random noise
in the process of constructing a random forest. Generally, the higher importance
of a feature on prediction means that changing its value makes predictions more
prone to errors. Specifically, the importance of features on prediction in random
forests is the sum of importance in all decision trees. We assume that the number
of trees in the random forest is m, and the already established set of decision trees
is T = {t1,t, ..., t,;, }. The importance of i-th feature on prediction is calculated
by

S eOOBL _ (00852

j=16i; oy
i = 3.7
L - (37)

0OB1

where e;7; is the error of corresponding out-of-bag data in j-th decision tree

0O0B2

and e;;"77 is the error of out-of-bag data with randomly added noise. Similarly,

the importance of features on prediction can be normalized and denoted as I=

{,517’[2a "'7’Ed}
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With the increase of the decision tree, the weights of features are adjusted
by I. The adaptive weights of features are computed by
(=) X i+ p X

where E is the normalized Laplacian weight for the i-th feature and 7; is
the normalized importance of the i-th features on prediction. p is an adjusted
parameter which is the ratio of the number of trees that have been constructed
to the number of trees that needs to be generated. The interval for updating
weights is v which means features’ weights are updated in specific iterative times.
Additionally, a random operator € is employed to increase the diversity of trees.
Specifically, the weights of features are updated according to a frequency that they
are selected when building decision trees. Therefore, the selection probabilities
of features with lower weight are increased, which helps construct various trees.
Assuming that the number of selected times for features is N = (v, 15, ..., 14) in

decision trees that have been built, and the selected probability of i-th feature is
defined as
Vi

pi = —5— (3.9)
23:1 Vj

As the smaller number of selected times shows the higher locality and lower
importance for the feature, € is set to 0.9. When the random number is larger

than e, the weight of i-th feature can be updated by

@/_wri‘m
9

(3.10)
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Based on the previous introduction, the proposed adaptive Laplacian weighted

random forest (ALWRF) is shown in algorithm 1.
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Algorithm 1 The adaptive Laplacian weighted random forest (ALWRF)

Input: D: A data set with n rows and d columns;
m: The number of trees;
~: The interval to update the weights
Output: ALWRF
L= {[1,[2, ...,[d} <+ The normalized Laplacian weighted

for i =0 to m do
V ={v1,vs,...uq} + The number of selected times for features

DT + 0
while True do

if DT meets conditions then
| break

end
Di Sampling m times with replacement from D
Di

oob

< The Corresponding out-of-bag data
W, + W
random < A random number in the range (0,1)

if random>e then
W, + Update weights by equation (3.10)

Fyup +— Weighted random sampling of feature subsets using W;

else
|  Fsup ¢ Weighted random sampling of feature subsets using W,

end
fj + Select the optimal splitting feature using lN)Z

DT <+ Generate branches and update DT

v+ vi+1

end

ALWRE < ALWRF U DT

if len(ALW RF) mod v equals 0 then

I= {t1,72,...,zq} < Calculate the normalized importance of features using Do
W + Update weights by equation (3.8)
end 46
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On the other hand, the training and testing process for the proposed AL-
WRF is similar to a random forest. Five steps involved in the ALWREF:

Step 1: The dataset(n xd) is divided into training data (n, x d) and testing
data (ng x d), where ny + ny = n.

Step 2: In ALWRF n; number of random records are taken from the
training data set having d number of records.

Step 3: Individual decision trees are constructed for each sample based on
adaptive Laplacian weights.

Step 4: Each decision tree will generate an output.

Step 5: Final output is considered based on majority Voting or averaging
for classification and regression respectively using the testing data.

The training and testing process for adaptive Laplacian weighted random

forest is shown in Figure 3.1.
3.1.2 Oversampling Technique: SMOTE-NC

Imbalanced classifications pose a challenge for missing value imputation
algorithms used for classification were designed around the assumption of an
equal number of samples for each class. This results in algorithms that have poor
predictive performance, specifically for the minority class[137]. Many nominal
features with missing values have an imbalanced class distribution in medical
data. For example, when diabetes is a feature to predict hypertension, the class
of diabetes is the majority and the class of health is a minority. Therefore,

imputation algorithms have to pay more attention to incomplete and imbalanced
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Figure 3.1: The training and testing process for adaptive Laplacian weighted random
forest

features. Existing methods for solving the problem of imbalanced data mainly
focus on the algorithm level [138] and the data level [137]. At the algorithm
level, mainly combined with the characteristics of imbalanced data, to improve
the accuracy of minority samples [90]. Although this method retains the original
data distribution, its usual range is relatively limited [139]. At the data level, the
imbalanced level of data is reduced or eliminated mainly by changing the sample
distribution of data. Common approaches at the data level contain oversampling
of the minority class or undersampling of the majority class. Undersampling
technologies have the risk of losing important concepts because they remove a

part of the data from the majority classes. At the same time, when the number
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of observed data is small, undersampling produces smaller data sets, which may
limit the performance of models.

Although the random forest method uses the ensemble idea to preserve the
original data distribution and improve the performance of a single decision tree
in imbalanced data, its application is limited in highly unbalanced data [139]. In
this work, an oversampling technique for mixed-type data is employed to over-
come the imbalanced problem. Random oversampling and Synthetic Minority
Over-sampling TEchnique (SMOTE) [140] are two popular oversampling meth-
ods. Random oversampling reduces data imbalance by randomly copying mi-
nority samples, but blind copying may lead to overfitting [141]. The SMOTE
algorithm uses linear interpolation to synthesize a new minority sample between
some minority samples, which effectively alleviates the risk of overfitting. Al-
though more improved SMOTE methods have been proposed [142, 90, 137], they
introduce more computations and parameters. For example, Last and Douzas et
al. [137] proposed an advanced oversampling method combining K-Means [143]
and SMOTE, which avoids the generation of noise and effectively overcoming the
imbalance between classes and within classes. However, this method introduces
additional clustering calculations and additional parameters (i.e., the number of
clusters k£ and the density de) compared to the naive SMOTE method. Therefore,
we resort Synthetic Minority Over-sampling Technique for Nominal and Continu-
ous features (SMOTE-NC) [144] to improve imputation performance when facing
incomplete and imbalanced features, which creates synthetic data for categorical

as well as quantitative features in the data set. The steps of the SMOTE-NC
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algorithm are described below and an example of nearest neighbor computation
for SMOTE-NC is demonstrated in Table 3.1. Here, Med? is the median of the
standard deviations of continuous features of the minority class.

Step 1: Median calculation. Calculate the median of the standard devi-
ations of all continuous features of the minority class. If the nominal features
differ between a sample and its potential nearest neighbors, then this median is
included in the Euclidean distance computation. The median is used to penalize
the variance of nominal features, the amount of which is related to the typical
variance of continuous feature values.

Step 2. Nearest neighbor calculation. Calculate the Euclidean distance be-
tween the feature vector that is identifying the k-nearest neighbors (minority class
samples) and other feature vectors (minority class samples) using a continuous
feature space. For each distinct nominal feature between the considered feature
vector and its potential nearest neighbor, including the median of the standard
deviations previously computed, in the Euclidean distance computation.

Step 3. Populate the synthetic sample. The continuous features of the new
synthetic minority class sample are created using the same approach of SMOTE
[140] as described earlier. The nominal feature is given the value occurring in the

majority of the k-nearest neighbors (mode).
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Two Cases F1={123ABC},F2={465ADE}

Median Calculation It includes twice for the 5th feature: B—D and the 6th: C—E,

which differ for the two feature vectors.

Nearest Neighbor Euclidean Distance: sqrt[(4 —1)% + (6 —2)* + (5 — 3)* + Med? +
Calculation Med?]

Table 3.1: Example of nearest neighbor computation for SMOTE-NC.

3.1.3 The Proposed Imputation Method

The random forest method is suitable for imputing incomplete and mixed-
type data as it works for classification and regression tasks[111]. We apply the
proposed adaptive Laplacian weight random forest and the SMOTE-NC method
to impute incomplete data with the characteristics of imbalance and mixed type,
called SMOTE-NC and ALWRF Imputation (SncALWRFI). Specifically, its pro-
cedure is iterative, in which it uses mean and mode values to replace missing data
and then it updates missing values on each successive iteration. Consider a given
dataset D, where The feature set is F. The features can be either numerical or
categorical. The SncALWRFT method includes 6 steps as follows:

Step 1. Calculate the missing rate of all features F' with missing values,
and sort the features in descending order. The sorted feature set is donated as
F(F CF).

Step 2. Calculate an indicator matrix (donate as M) to record the location
of missing values, where observed values are 1 and missing values are 0. Then
the average of the numerical features and the mode of the categorical features are

used to initially impute missing values, donate as D’
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Step 3. For each feature f; € F that has a missing value for some of the
records, the full dataset D’ is divided into two subsets D} and Dy, according to
the indicator matrix M, where D} contains all records with missing values at the
feature f; and DY, contains records with no missing value at the feature f;.

Step 4. Some available values (value = 1) in the data matrix are set to
missing (value = 0) and then these values will be used for estimating the tuning
parameters. According to the location of simulated missing values, D is dived
into Diraining, Diesting. Cross-validation is used to automatically select the values
of the tuning parameters yielding the smallest imputation error. Meanwhile, the
SMOTE-NC method is applied to imbalanced and categorical features. At last,
an ALWRF model (donate as F},) is built so that the feature f; is the targeted
variable and the rest of the features without missing values are predictive features.
If the targeted variable is a numerical variable, the built forest is a regression
forest. If the targeted variable is a categorical variable, a classification forest is
built. To compute the optimal values of the tuning parameters, the optimization
procedure is described in section 3.2.

Step 5. Use the optimal values of the tuning parameters to build an
ALWRF model (donate as F7” timaly “and then use it to impute missing values at
the f; feature in D?.

Step 6. Repeat steps 3 to 5 until all features with missing values are
traversed.

The proposed SncALWRFT method for missing values is shown in algo-

rithm 2.
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Algorithm 2 The proposed imputation method: SncALWRFI

D: A data set with missing values D: Data set has been imputed

M < Calculate indicator matrix
D'+ Using mean or mode values as an initial imputation
F + The sorted feature set by missing rate in descending order

for f; € F do
D%, D% «+ Divide dataset according to M;

// optimal parameter

for Cross-validation do
Dirainings Diesting < Randomly generate missing values in Dg

for n,m,s,v,knn,irt do

if f; is categorical and ir > irt then
| Diraining < Use SMOTE-NC to oversample and update Dyrqining

end

Fy, < Build ALWRF for the feature f;

loss <= Use Dicsting to compute the loss value of F,

end

end

F })f’ timal . Using optimal parameters to build the model

DY « Use F}’f”m“l to impute and update D

D« Update D using D¢

end

3.2 Hyperparameter Optimization

The proposed imputation method SncALWRFI requires the tuning pa-
rameters to be specified including the parameters in random forest and the pa-

rameters in SMOTE-NC. Bayesian optimization(BO) [145] is a state-of-the-art
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optimization framework for the global optimization of expensive black-box func-
tions [145, 110], which can find the optimal value through only a small number of
samples. Compared with traditional optimization methods, it does not need the
explicit expression of the function. Therefore, Bayesian optimization is employed
to search best parameters in our work. In our work, the goal is to improve the pre-
dictive performance of the proposed model on both classification and regression
tasks where the optimization functions are different. In the classification task,
the output can be two or more classes. Therefore, a Confusion Matrix with four
different combinations of predicted and actual values commonly used to evaluate

classifier performance, as shown in Figure 3.2.

Actual Value

- N

Positive Negative
Predicted Positive TP FP
¥alne Negative FN TN

Figure 3.2: Confusion Matrix

where TP(True Positive) means that our model predicted positive and
it’s true; TN(True Negative) means that our model predicted negative and it’s
true; FP(False Positive) means that our model predicted positive and it’s false;
FN(False Negative) means that our model predicted negative and it’s false. Based
on Confusion Matrix, accuracy is employed as the optimization function for clas-
sification tasks because it can present how many times our model was correct

overall. Accuracy can be computed by
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TP+TN
TP+TN+ FP+FN

Accuracy = (3.11)

where high accuracy values mean better classification performance. On
the other hand, in the regression task, Mean Squared Error (MSE) represents the
average squared residual. As the data points fall closer to the regression line, the
model has less error, decreasing the MSE. A model with less error produces more

precise predictions. The MSE can be calculated by

n

MSE(D) = % 3 () — w2 (3.12)

where f(x;) is the prediction value and y; is the real value. Due to MSE reflecting
the overall deviation of the predicted and true values, the smaller M SFE is better.
As the low MSE values mean better performance, negative MSE is applied as the

optimization function for regression tasks.
3.2.1 Bayesian Optimization: ALWRF

Firstly, Bayesian optimization resorts to tuning hyper-parameters for AL-
WREF. The optimization process is similar to a random forest. The hyperpa-
rameters include the number of decision trees in the random forest n, the size
of the predictor variables subset m, minimum sample split s, and the interval
for updating weights v. The default values of hyperparameters are n = 100,
m = v/M(M is the number of predictor variables), s = 2. The ranges of value

for hyperparameters are n € Range(50,500,50), m € (0.1,0.999), s € [2,25]
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and v € {10, 20,30, 40}, respectively. Here, m is a fraction and it means that
m percentage features are considered at each split. Based on the analysis of the
3.1 section, the model prediction accuracy and negative MSE on the test set are
chosen as optimization functions. Specifically, the Bayesian optimization process
for ALWREF works as follows:

Step 1. Select five sample points randomly in the hyperparameters space
and calculate the prediction accuracy or negative MSE of the ALWRF. The five
samples are used as the training set;

Step 2. Obtain a new sample point by optimizing the acquisition function
and calculating the acquisition function value at the new sample point;

Step 3. Add the new sample point into the training set and update the
posterior distribution of the function;

Step 4. Repeat the above steps until reaching the limit of iterations.

In addition, in order to optimize the hyper-parameters of the ALWREF, the
dataset is divided into training data, validation data, and testing data. Training
data is applied to train the ALWRF model. Validation data is used to tune
hyperparameters. The performance of ALWRF is evaluated using testing data.
The flow chart of the Bayesian optimization process for the ALWRF is shown in

Figure 3.3.
3.2.2 Bayesian Optimization: SncALWRFI

Similarly, Bayesian optimization is also employed for hyperparameters of

the proposed SncALWRFI method. However, the bayesian optimization process
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Figure 3.3: The bayesian optimization process for the ALWRF.

for the SncALWRFT has three differences from ALWRF. Firstly, as SncALWRFI
pays attention to missing values, the optimization function is different and it needs
to consider both categorical and numerical features. Therefore, the Proportion of
Falsely Imputed Categories (PFC.y;) is employed as a performance measure for
categorical variables, while the Mean of Squared Imputation Errors for numerical

values (M SIE,.,) is used as a performance measure for continuous variables.

1 /
PFCCM = NZI(I” 7£ xij)
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where (.) is an indicator function, which is 1 when the predicted value and the

true value are the same. In addition, the M SIFE,,,, can be calculate by

’

MSIE, = %(% i) (3.14)
where N is the number of numerical missing values, z;; is the true value in the
complete data matrix, and .:1:;]- is the corresponding imputed value. Then the
optimization function of the SncALWRFI is the sum of PFC.,; and MSIE,,,,,.
Secondly, missing values should be randomly introduced in validation data. In
detail, we temporarily set as missing some of the available values in the full data
matrix, and these missing records make up the validation data for estimating
hyperparameters. The third difference is that more parameters should be con-
sidered because of the SMOTE-NC method. The additional parameters include
knn and irt which are the number of neighbors in SMOTE-NC and the thresh-

old of imbalance rate respectively. The ranges of value for hyperparameters are

knn € {3,5,20} and irt € {2,5,10}.

3.3 Experiments for Adaptive Laplacian Weight Random Forest

At first, two experiments are conducted to evaluate the performance of
the proposed adaptive Laplacian weight random forest. As two category tasks
including classification and regression tasks can be applied in the random for-
est model, we used 4 public medical datasets and 4 public datasets to evaluate

the classification and regression performance of the AILWRF method, respec-
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tively. In this experiment, feature scaling is not required since the proposed and
compared methods are tree-based models. All models were implemented using
Python Language and the configuration of the experimental environment is In-

tel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz, 8 GB RAM.
3.3.1 Classification Task

As we introduced in section 3.1, the classification task is that learn how
to assign a class label to samples. Therefore, prediction accuracy and AUC are
employed as performance measurements for the classification task. The AUC-
ROC curve is a common performance measurement for classification problems
at various threshold settings. ROC is a probability curve and AUC represents
the degree or measure of separability. It tells how much the model is capable of
distinguishing between classes. A higher AUC means that the model has a higher
capability to predict class 0 as 0 and class 1 as 1. By analogy, a higher AUC in
disease prediction shows the model has a better ability at distinguishing between
patients with the disease and no disease.

In the classification task, the information of 4 public medical datasets is
shown in Table 3.2. Specifically, three datasets focus on hypertension prediction
including Men’s dataset, Women’s dataset, and the NHANES dataset. Men’s
dataset and Women’s dataset are freely available in a web repository for repro-
ducible purposes [146, 147]. The predictive variables included in these datasets
were Body Mass Index (BMI), WC (Waist Circumference), HC (Hip Circum-
ference), and WHR (Waist-to-Height Ratio). NHANES dataset [62] is a subset
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of National Health and Nutrition Examination Survey (NHANES) from 2007 to
2017. This dataset can be used to predict the occurrence of hypertension using
7 features that associate with hypertension, such as gender, race, age, smoking,
BMI, diabetes, and kidney conditions. The fourth datasets is called Pima dataset
[148], which is originally from the National Institute of Diabetes and Digestive
and Kidney Diseases. The objective of this dataset is to diagnostically predict
whether or not a patient has diabetes, based on certain diagnostic measurements

included in the dataset.

Dataset Total Samples Total Variables Categorical Numerical

Men’s dataset 175 7 2 5
Women’s dataset 224 7 2 5

Pima dataset 768 9 1 8
NHANES dataset 24,434 8 8 0

Table 3.2: The data information for the ALWRF classification experiment

In order to evaluate the performance of the ALWRF after Bayesian op-
timization (BO-ALWRF), random forest(using default parameters) and random
forest after Bayesian optimization (BO-RF) methods are employed for compari-
son. First, the three methods were performed 20 times, and then four boxplots
were used to present their accuracy values across the four datasets, as shown in
Figure 3.4.

In Figure 3.4, the distribution of accuracy values for RF, BO-RF, and BO-
ALWREF is presented. The results showed that the median of RF was the lowest in
all datasets. After hyperparameter optimization, the accuracy values increased,

especially in the NHANES dataset. As we expected, BO-ALWREF showed the
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Figure 3.4: The distribution of accuracy in the ALWRF classification experiment

best performance on the four datasets, which indicates that introducing adaptive
Laplacian weights can improve accuracy. Further, the AUC-ROC curve is also
resorted to measuring the separability of three methods, as shown in Figure 3.5.

According to Figure 3.5, RF shows AUC values of 0.485, 0.538, 0.799, and
0.793 on Men’s dataset, Women’s dataset, Pima dataset and NHANES dataset,
respectively before Bayesian optimization. The AUC values of the four datasets
were boosted by hyperparameter optimization. In addition, the classification
capability of the BO-ALWRF improved (0.606, 0.635, 0.848, and 0.767), based
on the results of the RF and BO-RF models. In summary, the proposed adaptive
Laplacian-weighted random forest method exhibits better performance in terms
of accuracy and AUC metrics for classification tasks in four datasets. On the
other hand, since missing values may be continuous features, we also need to pay

attention to their performance in regression tasks.
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Figure 3.5: The AUC-ROC curve in the ALWRF classification experiment

3.3.2 Regression Task

Further, four public datasets are used for validating the performance of
the proposed ALWRF method in regression tasks. Specifically, insurance cost and
dataset include 7 variables in terms of age, sex, BMI, children, smoker, region, and
charges, where a charge is the target variable and it represents individual medical
costs billed by health insurance. The second dataset is related to life expectancy
and it consists of 22 columns and 2938 rows which means 20 predicting variables.
Both insurance cost and life expectancy datasets are available on the Kaggle

website. The other two datasets are related to red and white variants of the
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Portuguese ”Vinho Verde” wine [149]. The quality is the target variable and the
other 11 variables are predicting variables. The information of these four datasets

is shown in Table 3.3.

Dataset Total Samples Total Variables Categorical Numerical
Insurance cost dataset 1,338 7 3 2
Life expectancy dataset 2,838 22 2 20
Red Wine dataset 1,599 12 0 12
White Wine dataset 4,898 12 0 12

Table 3.3: The data information for the ALWRF regression experiment

Similarly, random forest(using default parameters) and random forest after
Bayesian optimization (BO-RF) methods are employed for comparison and each
method is performed 20 times. In regression tasks, MSE (equation (3.13)) and R?
(coefficient of determination) are used as performance indicators. 72 represents
the proportion of variance that has been explained by the independent variables
in the model and provides an indication of goodness of fit and therefore a measure
of how well-unseen samples are likely to be predicted by the model, through the

proportion of explained variance.

2 4 Doy (i = fl@)?
SRR > S 1)

where f(z;) is the prediction value, y; is the real value and 7 is the mean of y.
The best possible score is 1.0 and it can be negative (because the model can
be arbitrarily worse). As such variance is dataset dependent, R? may not be
meaningfully compared across different datasets. The best possible score is 1.0

and it can be negative (because the model can be arbitrarily worse). A constant
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model that always predicts the expected (average) value of y, disregarding the
input features, would get a score of 0. Firstly, in order to evaluate the predictive
accuracy, we used a bar chart to present the average MSE of three methods over
20 runs, as shown in Figure 3.6. At the same time, we also draw a boxplot to
present the distribution of R? over 20 runs, as shown in Figure 3.7.
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Figure 3.6: The average of MSE in the ALWRF regression experiment

According to 3.6, we can observe that RF shows the worst mean MSE
across the four datasets. As expected, although the performance of the regression
task can also be improved by optimizing the parameters of the random forest, the
proposed ALWREF can obtain the lowest average MSE over 20 runs on the four
datasets comparing RF and BO-RF. In addition, the ALWRF similarly shows the
best medium of R? across four datasets in 3.7. Although the R? of BO-RF in the
red wine dataset is close to RF, the proposed method can also improve the per-
formance, which indicates that the proposed method is more robust. Overall, the
proposed ALWRF method outperforms RF and BO-RF on two common metrics
for regression tasks, MSE and R2, suggesting that the use of adaptive Lapland

weights can improve the predictive power of random forests.
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Figure 3.7: The distribution of R? in the ALWRF regression experiment

3.4 Experiments for Missing Value Imputation

In this section, we used 16 datasets to evaluate the performance of the
proposed SncALWREFI imputation method, where types of experiments are ap-
plied in terms of imputation error and imputation effectiveness in classification
tasks. In the first category, imputation error is computed by comparing the dif-
ference between imputation values and real values. In the second category, we
compared the performance using both complete data and imputed data that deal

with missing values by a variety of imputation methods.
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3.4.1 Imputation Error

In order to evaluate the true imputation errors of imputation methods,
only complete datasets are used in this experiment. If a dataset has naturally
missing values, we discard incomplete rows. Specifically, missing values are then
introduced into each data completely randomly at a specific level. and then im-
putation methods are employed to impute missing values. Finally, imputation

accuracy is evaluated by comparing imputed values and real values. The experi-

,—» —P‘ Incomplete Data }ﬁ
Imputation
< Complete Data Q Methods

Evaluate Imputation Imputed Data ( )

Errors
Figure 3.8: The experiment flow of simulation missing values for imputation error.

mental procedure is shown in Figure 3.8.

Generate Missing |
Values

Here, three benchmarks are applied including k-Nearest Neighbors Impu-
tation (kNNI) [109], Random Forest Imputation or MissForest (RFI) [111] and
Weighted Nearest Neighbor Imputation using Selected Variables (wNNSel,,;.)
[112]. In the kKNNI approach, an imputed value is obtained by taking the average
of the values of k candidate samples, called neighbors, chosen based on a distance
measure. In order to apply for mixed-type data, Gower’s distance [150] is em-
ployed as the distance measure. The RFT approach is applicable to categorical as
well as continuous data even in the case of a high number of predictors. This ap-

proach firstly uses simple imputation like mean imputation as an initial method,
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and then improves the imputed data by random forest model on each successive
iteration. Further, the wN N Sel,,;, approach makes practical and effective use
of the information on the association among the variables to improve imputation
accuracy. In this experiment, three missing percentages of 10%, 20%, and 30%
are simulated. For each missing percentage, we repeat each configuration 200
times to reduce noise from simulating missing values. In order to compare the
performance of different imputation procedures, PF'C,,; and M SIFE,,,, are used
as performance measures for categorical and continuous variables, respectively.
Specifically, five public datasets are used including German Breast Cancer
Study Group 2 (GBSG2) data, Hepatitis dataset (Hepatitis), Body Mass Index
dataset (BMI), Cars dataset(Cars), and Automobile dataset (Automobile). The
Hepatitis dataset is from UCI Machine Learning Repository [151] and the other
four datasets can be found in the R package. In order to compare performance
with wNNSel,,;; (denoted as wNN), the same experimental datasets [112] are
used and their information is shown in Table 3.4. In addition, experimental
datasets are normalized by StandardScaler in this experiment because kNNI and
wN N Sel,,;, methods are easily affected by data scalar. Here, IRs show the range

of imbalance rates for features.
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Dataset Total Used Total Categorical Numerical IRs
Samples Samples Variables
GBSG2 686 100 10 3 7 [1.29,5.48]
Hepatitis 155 155 19 13 6 [1.03,8.69]
BMI 152 152 6 2 4 [1.14,2.71]
Cars 93 82 24 6 18 [1.05,12.6]
Automobile 205 155 24 9 15 [1.0,64.0]

Table 3.4: The information of five public datasets.

According to Table 3.4, it is easy to observe that some of the existing
features in the four datasets are unbalanced, especially in the Automobile dataset.

The experiment results are shown in Table 3.5.

Dataset MR Total MSIE Categorical PFC
kKNNI RFI wNN Proposed kKNNI RFI wNN Proposed
GBSG2 10% 1.4156 1.0012 0.8524 0.8141 0.3540 0.2820 0.2140 0.1937
20% 1.5560 1.0700 0.9492 0.8713 0.4075 0.3005 0.2540 0.2247
30% 1.5257 1.0753 0.9411 0.9104 0.4097  0.3040 0.2490 0.2301
Hepatitis 10% 1.3805 1.3098 1.0108 0.917 0.3912 0.3600 0.3169 0.2723
20% 1.3782 1.3425 1.1111 1.0312 0.3962 0.3653  0.3259 0.2914
30% 1.4429 1.3622 1.2050 1.112 0.4060 0.3690 0.3467 0.3009
BMI 10% 0.9780 0.8623 0.7728 0.7646 0.2928 0.3469 0.2543 0.2481
20% 1.1857 1.0588 1.0740 0.968 0.3902 0.4264 0.3475 0.3348
30% 1.3215 1.1857 1.1731 1.1118 0.3904 0.4367 0.3575 0.3614
Cars 10% 0.4860 0.2854 0.1735 0.1677 0.2125 0.1450 0.1250 0.1167
20%  0.5462 0.3038 0.2058 0.2023 0.2275 0.1550  0.1403 0.1368
30% 0.6335 0.3821 0.2368 0.2340 0.2308 0.1562 0.1430 0.1456
Automobile 10% 0.4412 0.1756 0.1824 0.1579 0.2537  0.0981 0.0881 0.0745
20% 0.4637 0.1872 0.1910 0.1732 0.2819 0.1081 0.0942 0.879
30% 0.4727 0.1978  0.2060 0.1868 0.2978 0.1185  0.1050 0.941

Table 3.5: The experiment results of imputation errors.

In Table 3.5, the total error is listed on the left and the error for categorical
variables is on the right. The error for numerical variables can be calculated using
the total error minus the error for nominal variables. From Table 3.5, the imputa-
tion quality is affected by the percentage of missing values. Especially in the BMI

and Cars datasets, imputation accuracies of all approaches deteriorated rapidly
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with increasing missing values. While compared with other methods, our pro-
posed SncALWRFI method has the best total error regardless of the percentage
of missing data. The KNNI method always provides poor imputation because the
other three methods seem to use the correlation among covariates for imputation
to provide better imputation results. However, the imputation performance of the
proposed method for categorical variables is lower than that of the wN N Sel,,;,
method in the BMI and Cars datasets at the 30% missing rate. The main reason is
that the features in the BMI dataset are nearly balanced, and only a few samples
are available to build the random forest model for the Cars dataset. As expected,
our proposed SncALWRFI method outperforms the other three models overall,

which is attributed to adaptive Lapland weights and oversampling techniques.
3.4.2 Imputation Effectiveness in Classification Tasks

The imputation error describes how accurately the imputation of missing
values is done by the imputation techniques. However, it does not guarantee that
a good imputation always improves data quality for a data mining task such as
classification [152]. Therefore, the main objective of this section is to evaluate
the effectiveness of the imputation techniques for data mining by applying several
classifiers on the original data set, imputed data set and the data sets have missing
values. As the prediction accuracy of a classifier can be used to evaluate the
impact of the imputation of missing values [152], an evaluation model is built
in order to find the prediction accuracy as the effectiveness of an imputation

technique. In addition, since the true value of missing data is unknown in the

69



real world, imputation effectiveness in classification tasks is more important than
the evaluation of imputation error. Therefore, we paid more attention to this
experiment and used two types of dataset terms complete data and incomplete
data. different missing rates can be easily simulated in complete data, while it
can not replace real missing values. The overall block diagram of the experiment
flow is shown in Figure 3.9.

In this experiment, a dataset is firstly divided into two sub data sets namely
a testing data set and a training data set. As we used two types of experiment data
including complete data and incomplete data, we then need to introduce missing
values in the complete training dataset. Next, deletion and imputation techniques
are employed to deal with missing values in both the training dataset and the
testing dataset. Further, some popular classifiers are applied to each complete
data set and thereby build prediction models. Finally, for each prediction model,
we calculate its prediction accuracy by applying it to the testing data set.

Specifically, five missing rates are adopted including 10%, 15%, 20%, 25%,
and 30% in this experiment. For each missing rate, each configuration is also re-
peated 200 times. In addition, in order to compare our model with more models
that are suitable for mixed-type data, we implemented four imputation methods
using a similar strategy with [111] based on the CART tree [136], the Adap-
tive Boosting Decision Tree (ABDT) [126], the Gradient Boosting Decision Tree
(GBDT) [153] and Multi-Layer Perceptron (MLP) [154]. Therefore, seven impu-
tation methods including k-nearest neighbors imputation (kNNT), the random for-

est imputation (RFI), the decision tree imputation (DTT), the AdaBoost decision
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Figure 3.9: The overall block diagram of the imputation effectiveness experiment flow

tree imputation (ABDTI), the gradient boosting decision tree imputation (GB-

DTTI), the multi-layer perceptron imputation (MLPI) and the proposed method

SncALWREFT are used in this experiment. Moreover, three classifiers with differ-
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ent structures are adopted as evaluation classifications, namely Linear Regression
(LR) [155], Naive Bayes Network (NB) [156] and Support Vector Machine (SVM)
[157].

Firstly, we used six complete medical datasets to evaluate imputation ef-
fectiveness including Statlog heart data (Statlog), heart failure by cardiovascular
diseases (Heart Failure), early-stage diabetes risk prediction dataset (Diabetes
Risk), contraceptive method choice dataset (CMC), the dataset for estimating
obesity levels based on eating habits and physical condition (Obesity) [158], and
cardiovascular disease dataset (Cardiovascular). The Obesity and Cardiovascu-
lar datasets are from the Kaggle platform and the other four datasets are from
UCI Machine Learning Repository [151]. The information of these six experiment

datasets is shown in Table 3.6.

Dataset Total Used Total Categorical Continuous IRs
Samples Samples Variables

Statlog 270 270 14 7 7 [2.1, 68.5]

Heart Fail- 299 299 13 6 7 [1.32, 2.11]

ure

Diabetes 520 520 17 16 1 [1.02, 4.91]

Risk

CMC 1,473 1,473 10 8 2 [1.89,20.43]

Obesity 2,110 2,110 17 9 8 [1.02, 225.71]

Cardiovascular 70,000 5,000 12 7 5 [1.0,17.6]

Table 3.6: The information of six public medical datasets.

In order to compare the overall performance of imputation methods, we
calculated the average accuracy of five levels of missing rate in three classifiers

for each dataset, as shown in Figure 3.10.
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Figure 3.10: The experiment results of for the total missing rates.

According to Figure 3.10, we observed that the classification results of the
NB classifier are lower than LR and SVM classifiers in most situations because
it assumes that each feature makes an independent and equal contribution to the
target class. Additionally, the kNN imputation based on Gower’s distance per-
forms the worst, followed by a single decision tree. The reason is that the kNN
imputation ignores the correlation between covariates, while the single decision
tree imputation method is susceptible to noise. By contrast, the prediction ac-
curacy of ensemble models is relatively stable and similar. Although the MLPI
performs well, it has high complexity. Overall, our proposed method outperforms
other methods in all datasets. Especially in the Obesity dataset with more im-

balanced categorical features, the proposed method has obvious advantages, as a
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result of the advanced oversampling algorithm. Compared with RFI, our proposed
method always performs better, which indicates that the prediction model based
on the proposed adaptive Lapland weights can improve the quality of the data.
Next, to analyze the performance of our proposed method on different missing
rates, we calculated the average performance in three classifiers for imputation

methods, as shown in Figure 3.11.
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Figure 3.11: The experiment results of three classifiers vales.

In Figure 3.11, the prediction accuracy of imputation methods drops sharply
as the missing rate increases. Additionally, we notice that the kNN imputation
performed poorly on the Diabetes Risk and Obesity datasets because these two
datasets have more features, and it ignored the correlation of features. As ex-

pected, the performance of a single decision tree is always lower than ensemble
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models in all missing rates. While our proposed method performs best under
different missing rates across all datasets, it shows that our proposed imputation
method is robust in different missing rates.

Further, to verify the performance of our proposed imputation method
in datasets with true missing values, six public medical datasets from UCI [151]
with real missing values are used, including the Cleveland heart disease dataset
(Cleveland), Hepatitis, primary tumor dataset (Primary Tumor), chronic kidney
disease dataset (Chronic Kidney), Thyroid dataset and Framingham heart study

cohort dataset (Framingham). Their information is shown in Table 3.7.

Total Total Categorical Continuous IRs % MV

Dataset Samples Vari-
ables

Hepatitis 155 19 13 6 [1.03,8.69] 5.39
Cleveland 303 14 9 5 [2.06,37.75] 0.14
Primary 339 18 17 1 [1.10,47.43] 3.69
Tumor
Chronic 400 25 23 2 [1.91,22.31] 10.09
Kidney
Thyroid 2,800 30 8 22 [1.0,199.0] 5.42
Dataset
Framingham 4,238 16 7 9 [1.33,168.52] 0.95

Table 3.7: The information of datasets with real missing values.

In order to show the distribution of missing values in the datasets, we
use the missing matrix to identify where missing values occur in real cases. The

missing matrix of these six datasets is shown from Figure 3.12 to Figure 3.17.
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When data is present, the plot is shaded in black, and when it is absent the plot

is displayed in white.
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Figure 3.12: The missing matrix of Hepatitis Dataset
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As seen in the plot, the Chronic Kidney dataset shows the largest total
missing rate (10.09%) and the Cleveland dataset shows the smallest total missing

rate (0.14%). In addition, the missing values are widely distributed in the Hepati-
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Figure 3.15: The missing matrix of Chronic Kidney Dataset

tis dataset and Chronic Kidney dataset. For the other four datasets, the missing
values are concentrated in some columns. Specifically, We also adopted the same
six imputation methods as benchmarks, while adding two popular deletion meth-
ods (LD and PD) for comparison. As deletion methods are limited in some scenes,
we computed instance-missing rates and column-missing rates of these datasets.

The instance missing rate is the percentage of instances in the data set which
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Figure 3.17: The missing matrix of Framingham Dataset

have at least one missing value and the column missing rate is the proportion of
columns in the dataset that have at least one missing value. The instance miss-
ing rates of the Hepatitis dataset, Cleveland dataset, Primary Tumor dataset,
Chronic Kidney dataset, Thyroid Dataset and Framingham dataset are 48.39%,
1.98%, 61.06%, 60.5%, 100%, 13.72% respectively and their column missing rates
are 75.0%, 14.29%, 27.78%, 96.0%, 16.67%, 37.5% respectively. Therefore, as the
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instance missing rates of the Thyroid Dataset is 100%, the LD method can not
be used. At the same time, as there are no complete covariates in the Chronic
Kidney dataset, the PD method can not be used. Additionally, since LD and PD
methods cannot be used directly when missing values occur in test data, we use
mean and mode to fill them to ensure using the same size of testing data for all

methods. The experiment results are shown in Figure 3.18.
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Figure 3.18: The experiment results of datasets with real missing values.

Firstly, the performance of all imputation methods and the LD method is
close in the Cleveland dataset, which is attributed to the highly lower instance
missing rate (less than 1.98%). While the PD method performed badly because
it deleted two columns. In this case, the LD seems like a favorable choice. On the

other hand, all methods performed similar prediction accuracy in the Framingham
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dataset, even for two deletion methods. The reasons are the missing rate is
low and missing features play less impact on the predicted outcome. In this
case, PD may be a suitable choice. However, for the other four datasets with
high instance missing rates, our proposed method consistently shows the best
performance, except for the performance of the LD method for the NB classifier on
the Primary Tumor Dataset. Although the LD method outperforms our proposed
method on the Primary Tumor dataset for the NB classifiers, its performance is
highly weaker for LR and SVM classifiers. Generally, when missing values are
concentrated in a few features, the PD can be used, but if these features need
to be preserved, our proposed method has great competitiveness. To sum up,
although our proposed imputation method performs similarly to other methods
in datasets with low missing rates, it shows the best imputation effectiveness in
datasets with high missing rates. But where the missing rate of the dataset is
low, the prediction accuracy of our method is not always better than the deletion
method in classification tasks. Therefore, our method is not necessarily the best
choice for studies that have low missing rates and focus only on classification
accuracy. But for studies with a high missing rate or need to retain more samples,

our method can significantly improve data quality.

3.5 Summary

As features uniformly and randomly are selected to form a feature sub-
space in a random forest, features with high quality are not fully utilized. We

proposed an improved random forest model, called adaptive Laplacian weight ran-
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dom forest (ALWRF), in which features” weights adaptively adjust when building
a random forest. Meanwhile, cross-validation and Bayesian optimization are em-
ployed to search hyper-parameters. Then eight pubic datasets are used to verify
the prediction ability of the ALWREF on the classification and regression tasks.
The experiment results show that the ALWRF outperforms random forest and
Bayesian optimized random forest.

Missing values is an inevitable problem when mining useful information
from medical data. In order to improve the quality of incomplete medical data
with the characteristics of imbalance and mixed type, an imputation method
(SncALWRF) is proposed based on the ALWRF and the oversampling technol-
ogy SMOTE-NC. In the experiment for missing values, we first compared the
imputation errors of the proposed method with three advanced imputation meth-
ods using five small complete data subsets. Experiment results show that the
proposed method provides excellent imputation estimates for missing values in
categorical and numerical variables.

We then focus on the imputation effectiveness of the proposed imputa-
tion method in the classification tasks. We first used six complete datasets with
the characteristics of imbalance and mixed type to evaluate the prediction accu-
racy of the proposed imputation model at different missing rates. Experiment
results show although with the increasing of missing ratio, the imputation perfor-
mance for all imputation methods deteriorates, the decrease is more gradual for
the proposed method. At the same time, our method outperforms other impu-

tation methods in the same missing values. We then adopted six public medical
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datasets with real missing values and compare them to evaluate the effectiveness
of our proposed method in classification tasks and compared them with other
6 imputation methods and 2 deletion methods. Experiment results show when
datasets with low missing rates (5%), our model can not always perform well than
deletion methods, but it outperforms other imputation methods in the real case
study. Therefore, our imputation method can significantly improve data quality

for studies with high missing rates or the need to retain more samples.
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Chapter 4. A Stacking-Based Ensemble Approach for

Noise Data

4.1 Methodology of the Proposed Stacking-Based Approach

It is notoriously difficult to utilize an individual model due to its unidi-
rectionality, domain unity, and inherent quality. In addition, it is challenging
to employ a single model to generate more accurate forecasts and attain higher
levels of performance due to the noise from attributes and classes. In machine
learning, an ensemble is a sort of model that is built by merging the predictions of
various individual models. Typically, ensembles increase performance by reducing
the mistakes created by each individual model that contributes to the ensemble.
Generally, there are two challenges in the ensemble framework in terms of model

selection and model fusion.
4.1.1 Model Selection

There are many types of research devoted to the selection of meta-leaners.
The paper [159] adopted prediction accuracy as an objective, optimized by an
artificial bee colony algorithm to collect meta-learners. In [160], the ant colony
algorithm was applied to optimize local information, which represented the preci-

sions of the meta-level classifiers to configure stacking ensembles. But the single-
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objective optimization algorithms usually adopt a greedy search strategy that
easily leads to a local minimum. It doesn’t take much accuracy improvement but
excess meta-learners. The paper [161] adopted a multi-objective optimization al-
gorithm named non-dominated sorting genetic algorithms-IT (NSGA-II) to evolve
an ensemble and the result is averaged by each individual. It maximizes the
generalization capacity of the ensemble and minimizes its structural complexity
simultaneously to get a better ensemble. While the papers [162] and [163] describe
that the ideal ensemble is constructed using learners of small error and good di-
versity. However, rich diversity may cause the predicted value of meta-learners to
deviate from the true values, and the improvement of individual accuracy often
reduces the diversity of meta-learners, that is, accuracy and diversity are usually
conflicting with each other. Further, the selection of meta-learners in the paper
[164] followed the NSGA II algorithm to balance the two conflicting objectives
in terms of accuracy and diversity. As the NSGA II algorithm randomly ini-
tializes the population, optimal individuals are changeable and it requires more
meta-learners when generating the offspring in the NSGA II algorithm.

To sum up, accuracy and diversity are two crucial factors that decide the
success of stacking. In order to maximize the diversity and the accuracy of ensem-
ble models simultaneously, we proposed a Multi-objective Iterative Model Selec-
tion (MoltMS) algorithm. Specifically, accuracy measures the difference between
the predicted values and actual values while diversity measures the differences
between meta-learners. Suppose there are k individual models which are selected

by MoltMS, for the cost function C,,, is defined as:
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O = Ep, + ADy, (4.1)

where F,,, represents the accuracy, and D,,, represents the diversity. X is the

weight and A = 1. Here £, can be computed by:

1 N
Eu = Z (4.2)

where 17 is the actual values of the j-th training sample, and the p] is the
predicted values obtained by the i-th meta-learner for the j-th training sample.
Here, the predicted probabilities are applied to the predicted values instead of
class labels. N is the number of samples. According to the paper [164], the

correlation D,,, is defined as:

N k
mi = % Z p]mZ - pgvg) Zp]ml - pgvg) (43)
j=1 I#i

where pJ, and p], represent the predicted values of the i-th and I-th meta-
learners for the j-th training instance, respectively. pévg is the average predicted
value of the models in the ensemble. Reference [163] proves that good diversity
can be achieved (if there is no bias) when the individual models are negatively
correlated, which means the lower the D,,. is, the larger the diversity is. Further,
since the two objective functions have different magnitudes, normalization is re-
quired so that the algorithm does not favor a larger magnitude. Therefore, the

objective functions f, f € {F, D} can be normalize by
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oy = 22 (4.4

where X represents candidate models. Z; is the normalization factor of
each objective function which is the maximum function value in the candidate
models. Therefore, the cost function for the ensemble can be the average of these

individual model’s costs:

T = =
C = Ezi: (Em, + D)) (4.5)

where Em“ lN)mz are the accuracy and diversity of i-th meta-learner after
normalization, respectively. The small value of C' means that the ensemble model
combines meta-models with high accuracy and diversity. In order to maximize the
accuracy and diversity of the ensemble model, an iterative process is employed
to search for the best cost. In detail, the proposed MoltMS algorithm mainly
includes six steps:

(1)Firstly, five-fold cross-validation is used to generate a predicted set of
a dataset X, which will be applied to assess the accuracy and diversity of each
individual model.

(2) All candidate models M = {my, my, ..., ms} is an ensemble model, and
then the cost function of each candidate model in this ensemble model is calculated
according to equations (1)-(4). The model 7; with smallest cost function is
selected and add into M = 77 and it is removed from the candidate models

M= mq, Mo, ..., Mg_1.
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(3) A model m; is iteratively selected from the candidate models M and
then a new ensemble model G is formed combining m; and M The two objective
functions values E,,,),D,,, of the model m; in the ensemble model G need to be
calculated.

(4) The objective function values of all candidate models are normalized
by equation (4). The cost function values of ensemble models are computed by
equation (5), and then the model m; with the smallest cost function is selected
and added into M.

(5) The selected models Mare stacked, and the performance of the ensem-
ble model is evaluated using five-fold cross-validation.

(6) The performance of previously selected models and newly selected mod-
els are compared. If the performance is improved and the difference is greater
than a threshold 3, then repeat steps 3 to 5. Otherwise, the last added model is
pushed out.

In the proposed MoltMS approach, the threshold $=0.01 is implemented
to balance accuracy and complexity, which means that when the performance
increase is insufficient, we sacrifice performance and maintain complexity low.
In general, the proposed algorithm has lower computational complexity. The
computational complexity of the MoItMS is [s+ (s — 1) 4 (s — k)] * O(mn), which
is lower than the paper [164], [0 x k * G] * O(mn). Here, m represents the number
of training samples, n is the number of features, s is the number of candidate

models, k represents the number of selected models, o is the number of offspring
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and G is the generation number. Specifically, the proposed MoltMS is shown in
Algorithm 3.

Algorithm 3 Multi-objective Iterative Model Selection (MoItMS) algorithm
Input: Data set D = (X,Y), Candidate models M = {my,ma, ..., ms}, the threshold g, the

weight A
Output: Selected models M
Selected models M = {m, Mo, ..., My} for the ensemble model
Selected models M < @; The improved performance p + 0
Using 5 cross-validations to train each candidate model
Y’ ={Y{, Y], ..., Y]} « The predicted probabilities of all candidate models in validation datasets
E + Calculating error of candidate models based on Y’ and Y by equation (2)
Mpest < The model with the smallest error value
p < The performance of Tp.s; on 5 cross-validation
M + M UTpest

while p > 5 do
accuracy E < (), diversity D + ()

for each m; not in M do

E;, D; + Computing error and diversity of m; when m; and M form an ensemble model

E+ EUE;, D+ DUD;

end

E’, D' < Normalized E, D by equation (5)

C + Calculating cost values using E’, D’ by equation (1)
Mpest < The model with the smallest cost value

M+ MU Mpest, Spp < stacking M

p’ < Evaluating the ensemble model Sy using 5 cross-validation

p< (p' —p)

end

M remove the last model
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4.1.2 Model Fusion

In general, ensemble models can be categorized into the homogeneous en-
semble and heterogeneous ensembles according to the structure of the component
model. Homogeneous ensemble mainly ensemble decision trees in terms of bagging
and boosting technologies. Bagging technology [165] often considers homogeneous
learners, learns them independently from each other in parallel, and combines
them following some kind of deterministic averaging process. Random Forest
[166] is the representative model in bagging technology. While boosting technol-
ogy [167] learns learners sequentially in an adaptative way (a model depends on
the previous ones) and combines them following a deterministic strategy, such
as Adaptive Boosting (AdaBoost) [168], Extreme gradient boosting (XGBoost)
[169] and Light gradient boosting machine (LightGBM) [170]. Further, stacking
technology [171] generally considers heterogeneous learners, learns them in paral-
lel, and combines them by training a meta-model to output a prediction based on
the different model predictions. Even though different models may have similar
error rates, stacking ensembles tend to make different mistakes, since they get
different professions. In order to search best leaners for staking ensemble, ACO
(Ant Colony Optimization) [172], GA (Genetic Algorithms) [173] and NSGA 1I
(non-dominated sorting genetic algorithms-1I) [164] have been resorted. The cat-
egories of ensemble models and their representative models are shown in Figure

4.1.
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Figure 4.1: The categories of ensemble models and representative models

The benefit of stacking is that it can harness the capabilities of a range of
well-performing models on a classification or regression task and make predictions
that have better performance than any single model in the ensemble. Therefore,
in order to achieve the best risk prediction, a staking ensemble is employed in
our work. The framework of our stacking ensemble approach for hypertension
risk estimation of systems under multi-operating conditions is introduced in this
chapter, which is illustrated in Figure 4.2. It has three major steps: (i) Model
selecting. (ii) Model fusing. (iii) Risk estimating. Firstly, the proposed MoltMS
algorithm is applied to select the most suitable meta-learners from candidate mod-
els. secondly, the ensemble model is stacked based on these diverse meta-learners.
Finally, an extensive analysis was performed to identify the best meta-learner
among the employed meta-learners which improves the final prediction accuracy
of the proposed system. Therefore, in our stacking approach a neural network
with a hidden layer is determined because the neural network model can introduce

nonlinearity and one hidden layer can reduce time consumption. Specifically, our
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proposed ensemble model includes a two-level classification structure in terms of

the base-learner level (level-0 models) and the meta-learner level (level-1 model).

Experiment Data

Testing Data

'

Using five-fold cross-validation to
'

generate predicted sets for all
candldatf models Five Folds Cross Validation
Model selection using the MoItMS
Algorithm !
l Train base-learners and the
meta-learner

Selected Models

level-1

Predict Predict Predict Predict
values values values values

Final predict values

Figure 4.2: The framework of the proposed ensemble model
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4.2 Ensemble Approach Evaluation on A National Health Dataset
4.2.1 Dataset Introduction

In order to provide complete access, we used the National Health and Nu-
trition Examination Survey (NHANES) datasets that were generated and pub-
lished by the Centers for Disease Control and Prevention (CDC). The dataset
includes information on human population statistics (i.e., age and gender), as
well as data from examination (i.e., blood pressure and body measures), and
questionnaires in terms of disease condition and healthy habits. From 2007 to
2018, there are six folders containing PDF files with NHANES response rate
data and SAS Transport files for each of the investigation measurement factors.
Following importing the primitive datasets into Python, data extraction and pro-
cessing was essential to identify and classified variables. We generated a Github
repository including the original NHANES files, and the final dataset applied for
constructing and evaluating the model.

The prediction model was trained and evaluated using data from the Na-
tional Health and Nutrition Examination Survey (NHANES), which was gathered
between 2007 and 2018. The purpose of developing this model was to evaluate the
disease risk of hypertension using relevant risk factors in a representative sample
of American adults aged 20 and older (n = 11,341). According to some studies
[56, 62] related to high blood pressure, they all exclude people under the age of
20. The main reason is that the occurrence of hypertension at the age of 20 is

mainly related to genetic factors. According to the American Heart Association’s
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definition of hypertension, which uses blood pressure as the dichotomous depen-
dent variable in this study, hypertension is defined as having a systolic blood
pressure that is more than or equal to 140 mmHg [62]. Following the cleaning of
the data, we used only the records that included values that were not null. Table
4.1 presents the distribution of samples based on the type of hypertensive people,

as well as the people’s gender and race.

Category Gender Ethnicity Number
Without hypertension Female Mexican American 353
Other Hispanic 312
Non-Hispanic White 1,761
Non-Hispanic Black 519
Other Race 208
Without hypertension Male Mexican American 667
Other Hispanic 460
Non-Hispanic White 2,171
Non-Hispanic Black 738
Other Race 428
hypertension Female Mexican American 107
Other Hispanic 108
Non-Hispanic White 629
Non-Hispanic Black 376
Other Race 50
hypertension Male Mexican American 362
Other Hispanic 239
Non-Hispanic White 1,024
Non-Hispanic Black 653
Other Race 176

Table 4.1: Number of people by hypertension category, gender and ethnicity.
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We conducted literature research that have used machine learning tech-
niques to predict the occurrence of hypertension among different populations
to identify several risk factors, including demographic variables in terms of age
(174, 53, 175, 176], gender [53, 175, 62], race [56, 177, 62|, education [177, 175],
examination data like body measures [174, 53, 177, 175, 178] and waist [176, 178],
chronic diseases in terms of diabetes and kidney conditions [53, 56, 62] and lifestyle
factors such as smoking cigarette use [175, 56, 62|, alcohol use [177, 179], exercise
(177, 175], diet [177, 175] and sleeping [174, 180]. We used hist charts to sim-

ply analyze the correlation between these features with hypertension as shown in

Figure 4.3.
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Figure 4.3: Distribution of hypertension for features
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From Figure 4.3, individuals with hypertension in different cohorts have in-
creased kidney disease, diabetic issues, and a notable relationship with unhealthy
habits throughout follow-up. Although it has been shown that careful manage-
ment of BMI can reduce the incidence of hypertension (Lépez-Martinez et al.,
2020), other factors such as age, race, education level, and lifestyle choices also
influence the prevalence of hypertension. Meanwhile, the number of healthy and
unhealthy people is imbalanced according to the last subplot. Therefore, based
on the previous analysis, 19 features including age, gender, race, education level,
BMI, waist, smoking, drinking, physical exercise, sleeping, diabetes, and kidney
problems were chosen as input features. Table 4.2 and Table 4.3 show all the

selected variables.

Variable Code Variable Description Code Description
RIAGENDR Gender 1 Male
2 Female
RIDRETH1 Race/Hispanic origin 1 Mexican American
2 Other Hispanic
3 Non-Hispanic White
4 Non-Hispanic Black
5 Other Race
DMDEDUC2 Education level 1 Grade lower than ninth
2 9-11th grade (Consists of 12th

grade without a diploma)

3 High school graduate/GED or
equivalent
4 University or AA degree
5 A university degree or higher
SMQO040 Do you currently keep smoking? 1 Yes

Continued on next page
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Variable Code Variable Description Code Description
2 No
ALQ101 A minimum of 12 alcoholic bev- 1 Yes
erages each year?
2 No
ALQ151 Have you ever had 4/5 or even 1 Yes
more drinks each day?
2 No
PAQ605 Vigorous work activity 1 Yes
2 No
PAQ620 Moderately active work 1 Yes
2 No
PAQ635 Walk or ride a bike 1 Yes
2 No
PAQ650 Vigorous recreational activities 1 Yes
2 No
PAQ665 Moderately active recreation 1 Yes
2 No
DBQ700 How healthy is the diet 1 Excellent
2 Very good
3 Good
4 Fair
5 Poor
SLQO050 Have you ever mentioned your 1 Yes
trouble sleeping to a physician?
2 No
DIQO10 Your physician informed you 1 Yes
that you have diabetes.
2 No
3 Borderline
KIQO022 Ever told you that your kidneys 1 Yes

are weak and failing
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Variable Code Variable Description Code Description
2 No
HYPCLASS Systolic: Mean blood pressure 1 Non-Hypertensive
(mmHeg)
2 Hypertensive
Table 4.2: Selected categorical variables in the NHANES dataset

Variable Code Variable Description Mean Standard
RIDAGEYR Age at Screening Adjudicated 1.36 17.03
BMXBMI Body Mass Index (kg/m2) 29.0 36.57
BMXWAIST Waist Circumference 100.85 16.15
PAD680 Minutes sedentary activity 358.18 19.80

Table 4.3:

Selected numerical variables in the NHANES dataset

4.2.2 Performance Evaluation

The precision, specificity, recall (sensitivity), accuracy, Fl-measure, and
AUC are the metrics that are applied in this research to evaluate the models that
are suggested and compared. To begin, these metrics will be described with the
help of a confusion matrix, which can be seen in Figure 3.2. According to it,

the number of instances of each type (true positive, true negative, false positive,
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and false negative) is indicated by the letters TP, TN, FP, and FN, respectively.

Table 4.4 explains how the confusion matrix is used to calculate six indicators.

Performance measure Mathematical Remark
equation
.. TP . .
Precision TP1FP The fraction of true hypertension samples among

the classified hypertension samples.

Specificity % The percentage of healthy samples that were ac-
curately categorized.
Recall (Sensitivity) TPZ_% Identifies the proportion of hypertension samples
that have been correctly classified.
Accuracy % Calculates the overall proportion of samples that
have been successfully categorized.
Fl-measure %ﬁm The harmonic average of the value of recall and
precision.
AUC % X (TPZ% + The diagnostic ability of a classifier system to
%) distinguish between non-hypertension and hyper-

tensive people.

Table 4.4: The introduction of six performance indicators

4.2.3 Experimental Setup

This research mainly focuses on improving the AUC of the ensemble clas-
sification approach because it tells how much the model is capable of distinguish-
ing between classes. For performance evaluation, firstly the proposed ensemble
learning approach is compared with various individual learners such as multi-
layer perceptron (MLP) [55], k-nearest neighbors (KNN) [181], Decision Tree
(DT) [182], support vector machine (SVM) [183], Gaussian Naive Bayes (Gaus-
sian NB) [184] and Logistic Regression Model (LRM) [185], which are mostly

utilized in the existing research on the diagnosis of hypertension. Secondly, the
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proposed method is compared with six well-known ensemble learning methodolo-
gies namely bagging, boosting, and stacking. Specifically, random forest (RF)
uses a bagging ensemble technic based on multiple decision trees, and Adaptive
Boosting (AdaBoost), Extreme gradient boosting (XGBoost), and Light gradient
boosting machine (Light GBM) are based on residual iterative tree. Further, two
state-of-the-art staking ensemble models are used. The paper [186] developed
a stacking-based evolutionary ensemble learning system ‘NSGA-II-Stacking’ for
predicting the onset of Type-2 diabetes mellitus based on SVM and DT. Then,
the paper [164] proposes an optimal stacking ensemble approach combining dif-
ferent learning algorithms, which selects meta-learners following a multi-objective
evolutionary algorithm named non-dominated sorting genetic algorithms-I11. We
utilized the Standard Scaler approach to normalize the dataset first because KNN
and SVM are easily affected by feature scale. All experiments were simulated on
a machine with Intel(R) Core (TM) i5-8265U CPU @ 1.60GHz 1.80 GHz, 8 GB
RAM., Windows 10 64-bit O.S., and Python 3.8.6 environment.

4.2.4 Hyperparameter Optimization

The parameter adjustment range of all models is set to a commonly used
range and the final setting of parameters is carried out by using Bayesian opti-
mization [145]. Specifically, the study population (11,341) was split into a training
dataset and a testing dataset. The training dataset was derived from a random
sampling of 70% (7,939) of the extracted study population and the testing sam-

pling of the remaining 30% (3,402) to evaluate the model on data sets with known

99



labels (ground truth) that were never used for training. Therefore, we employed

Bayesian optimization and five cross-validations to search parameters using the

training dataset, which is implemented by the hyperopt package [187] in Python.

The maximum iterative time is set as 50. The hyperparameter space for models

is shown in Table 4.5.

Model Name Hyperparameter Options/Range Selected value

MLP hidden _layer_sizes [(50,50,50),(50,100,50),(100,)] (50,100,50)
activation ['tanh’,’relu’] relu
solver ['sed’,adam’] sgd
alpha ['constant’,’adaptive’] constant
learning_rate [0.0001,0.01,0.05,0.1] 0.1
max_iter [*range(100,500,100)] 300

KNN n_neighbors ['uniform’,’distance’] distance
weights [*range(1,15)] 14

DT splitter ['best’, random’] best
criterion [’gini”,” entropy”] entropy
max_depth [*range(1,50,5)] 5
min_samples_leaf [*range(1,15)] 11
class_weight [’balanced’,None] balanced

SVM kernel [’linear’,’poly’,’rbf’,’sigmoid’] rbf
gamma [0.001,0.01,0.1,1] 0.01
C [0.001,0.01,0.1,1,10,100,1000] 1
class_weight ['balanced’,None] None

LRM solver ['newton- liblinear

cg’,'Ibfgs’,’liblinear’,’sag’,’saga’]

penalty ['11°12’’elasticnet’, none’] 12
C [0.001,0.01,0.1,1] 0.1
class_weight ['balanced’,None] None
max_iter [*range(100,800,100)] 700

RF criterion [?gini”,” entropy”] entropy
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Model Name Hyperparameter Options/Range Selected value

max_depth [*range(1,15),None] None
min_samples_leaf [*range(1,50,5)] 1
class_weight ["balanced’,None] balanced
n_estimators [*range(100,500,100)] 400

AdaBoost n_estimators [*range(100,500,100)] 400
learning_rate [0.01,0.05,0.1,1] 0.1

XGBoost max_depth [*range(1,15),None] 13
min_samples_leaf [*range(1,50,5)] 31
class_weight [’balanced’,None] None
n_estimators [*range(100,500,100)] 300
learning_rate [0.01,0.05,0.1] 0.05
subsample uniform(0.3,1) 0.7283

Light GBM max_depth [*range(1,15),None] 13
class_weight ['balanced’,None] None
n_estimators [*range(100,500,100)] 400
learning_rate [0.01,0.05,0.1] 0.1
subsample uniform(0.3,1) 0.3930
lambda_11 uniform(0,0.6) 0.0435
lambda_12 [0,10,15,35,40] 0

Table 4.5: Hyperparameter space for models

After optimization, the AUC values of models using default parameters

and optimized parameters are shown in Figure 4.4.

In Figure 4.4, we found that while the performance of machine learning

models like KNN, DT, and SVM is significantly impacted by varying parameter

values, the identifying power of MLP, RF, and LRM utilizing various hyperpa-

rameters is comparable. In conclusion, hyperparameter optimization is necessary

because it helps machine learning models find better parameters to improve per-

formance. For example, the performance of the decision tree in this figure has
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Figure 4.4: Comparison between default and optimized parameters

been significantly improved. It may be that the optimized parameters have im-
proved its generalization ability, making the model perform better on untrained

data.
4.2.5 Ensemble Model Construction

Another aspect that plays an important role in determining the accuracy of
predictions is meta-learners. Growing the number of meta-learners could poten-
tially enhance global generalization; however, an excessive number could result in
overfitting. Meanwhile, the computing cost will increase proportionally with the
amount of meta-learning done. Based on the proposed model selection approach,
MoltMS, the procedure of model selection is shown in Figure 4.5.

According to the predicted values and real values, the objective values
in terms of accuracy (E) and diversity (D) for each individual model can be
calculated as shown in Figure 4.6.

We can see in Figure 4.6 that KNN has the best performance, whereas

MLP and LRM have similar £ and D values. Then, when we applied the proposed
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Figure 4.6: The objective values for models

MolItMS approach, the weight (\) of diversity needs to be determined in equation
(1). The search range of weight is denoted as A = 0.5,1,1.5,2, and the ensemble
model’s AUC values for the different weights are shown in Figure 4.7.

According to Figure 4.7. It is obvious that when A equals 1, the AUC value
is greatest. Additionally, Figure 4.8 displays the AUC values for each iteration of

the ensemble model when the weight is set to 1.
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As can be seen, the ensemble model with four models has the highest AUC,
but its AUC value is similar to the ensemble model with three models. Concur-
rently, the amount of time spent computing rises in a steady and predictable
manner due to the increased computational burden caused by the accuracy and
diversity of computations performed inside the aggregative model. Therefore, the
most suitable ensemble model is the aggregation of the three models. Specifically,

KNN, SVM, and MLP are the three different meta-learners that are chosen by
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the proposed method in accordance with the MoltMS methodology. Additionally,
stacking is used in this paper for better fusion, and a neural network model with
a hidden layer is used for the meta-classifier. This is due to the fact that the
neural network model has the potential to produce, and that having one hidden

layer can shorten the time that is consumed.

4.2.6 Model Evaluation

In this section, a comparative analysis of the suggested approach and thir-
teen other methods is carried out. The results of 20 separate simulations are
summarized in Table 4.6, which compares the proposed stacking ensemble model

against a total of six distinct individual models.

Individual Models Precision Recall Accuracy F1- AUC

Name measure
MLP 0.5637 0.4105 0.7002 0.4733 0.7383
KNN 0.6588 0.4994 0.7495 0.5679 0.8154
DT 0.4820 0.7522 0.6514 0.5872 0.7254
SVM 0.0 0.0 0.6702 0.0 0.7968
Gaussian NB 0.4989 0.3604 0.6697 0.4182 0.6940
LRM 0.5604 0.3600 0.6957 0.4382 0.7304

Proposed Staking 0.7113 0.5376 0.7682 0.6105 0.8420

Table 4.6: Performance comparison with individual classifiers

Considering the results of Table 4.6, it is evident that in the context of
accuracy, the proposed methodology achieves a maximum AUC value of 0.8425
succeeded by individual learner KNN (0.8154). In addition, the proposed model

showed significant improvement in the accuracy indicator (0.7682) compared with
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the other six individual models. Although the recall value of the proposed model
(0.5376) was low than DT (0.7522), it outperformed obviously than DT on the
other four indicators. Further, the average performances of the proposed stacking
ensemble model are compared with 6 ensemble models in Table 4.7. Here, two so-
phisticated stacking ensemble models are used as benchmarks in this study. [186]
SVMs and DTs were used as the base learner, and the NSGA-II algorithm was
used to combine models that were trained on different sub-datasets. In the paper
[164], the NSGA-IT algorithm was used to choose a model from a set of individual
and tree-based ensemble models. In addition, voting is usually beneficial when
aggregating a large number of base learners that attain comparable performance
for similar work. As a result, an ensemble model based on Majority Voting is used

as a benchmark against which the proposed stacking framework is measured.

Models Base Ensemble Precision Recall Accuracy F1- AUC
Name Learn- Technic measure
ers

RF DT Bagging 0.6991 0.4922 0.7626 0.5775 0.8306
Adaboost DT Boosting 0.5689 0.3658 0.6993 0.4451 0.7365
XGBoost DT Boosting 0.6564 0.5394  0.7549 0.5920 0.8102
Light GBM DT Boosting 0.6409 0.5181 0.7453 0.5729 0.7895
[186] SVM, DT Stacking 0.5508 0.4421 0.6967 0.4893 0.7335
[164] RF, XG- Stacking 0.6947 0.5108 0.7637 0.5871 0.8361

Boost, Light-

GBM, MLP
Majority KNN, SVM, Majority 0.5582 0.3974 0.6971 0.4630 0.7359
Voting MLP Voting
Proposed KNN, SVM, Stacking 0.7113 0.5376 0.7682 0.6105 0.8420
Staking MLP

Table 4.7: Performance comparison with other ensembles
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Table 4.7 shows that our model (0.8420) had the best performance with
AUCs, followed by the paper [164] (0.8361). Surprisingly, Majority Voting’s AUCs
(0.7359) is dismal, even worse than KNN’s, implying that Majority Voting is not
suitable as a simple ensemble approach in our study. On the other hand, the
stacking architecture that we utilized possesses a substantial benefit in the sense
that it is able to learn the values that are produced by each model. In terms of
recall, our model achieved the highest value possible, which was 0.5376, followed
by XGBoost (0.5394). The proposed technique achieves the highest value in terms
of precision, which is 0.7113. This is followed by Random Forest, which achieves
0.6991, and the paper [164] achieves 0.6947. The specificities displayed by the pa-
per [186] (0.5508) and Majority Voting was the most problematic (0.5582). The
proposed strategy was able to obtain an average Fl-measure that was 0.6105,
making it the most successful method overall. In accuracy terms, the best per-
formance was obtained from our model, followed by the paper [164] (0.7637) and
Random Forest (0.7626). Additionally, our method achieves better performance
than the paper [164] with a smaller number of models and has lower complex-
ity in the process of model selection. The proposed approach’s promising and
competitive performance results demonstrated its superiority to the conventional
stacking approach. In conclusion, in terms of prediction performance, the sug-
gested stacking technique surpasses both the six individual and seven ensemble
approaches.

Furthermore, a boxplot depicts the distribution of the data and is helpful

in determining whether or not there are typical observations or outliers present
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in the data. The boxplots of the five performance measures in terms of precision,
recall, accuracy, F1l-measure, and AUC obtained using a variety of models and
the proposed ensemble method are depicted from Figure 4.9 to Figure 4.13, re-
spectively. The outlier is shown by the sign ”+" in each of the figures. Twenty
iterations of each classifier are utilized in order to acquire the boxplot values for
each metric. Additionally, two advanced methods [186, 164] are denoted as “Singh

& Singh” and “Li et al.,” in these figures.
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Figure 4.10: Boxplot of percentage recall
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Figure 4.13: Boxplot of percentage AUCs

When comparing the precision distributions in Figure 4.9, it can be seen

that the proposed methodology offers the highest precision value when compared
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to the other methods. DT and Gaussian Naive Bayes Network (Gaussian NB)
are the two approaches with the lowest precision values. When looking at the
distributions of recall in Figure 4.10, it can be seen that DT achieved the high-
est recall value, followed by the proposed technique. Despite the fact that DT
appeared to have the highest recall, it generated the least amount of precision
and accuracy. The accuracy distributions are displayed in Figure 4.11 and in-
dicate that the suggested stacking strategy achieves a much greater accuracy
when compared to the other classifiers. These algorithms, including DT, SVM,
and Gaussian NB, produce lower accuracy values. The ensemble learner [164]
achieves the second-lowest accuracy of all the learners shown in this image. It
is evident from the distributions of the Fl-measure that are presented in Figure
4.12 that the strategy that has been proposed produces the highest F1-measure
value. The AdaBoost, DT, and LRM techniques, on the other hand, produce
solutions with lower F1l-measure values. Finally, the area under the curve (AUC)
comparisons of the proposed technique and the benchmark method are shown in
Figure 4.13. As can be seen in this figure, the suggested method performed better
than any of the other classifiers when it came to AUC. The paper [164] came in
second, which suggests that the proposed stacking model performs better than
the complex model. The greater AUC is largely attributable to the aggregation
of the decision-making capabilities of the chosen base learners, which are then
combined with the suitable meta-learner. Therefore, in terms of predicted pre-
cision, accuracy, F1-measure, and AUC, the suggested method fared better than

all of the individual and ensemble approaches. The overall positive performance
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of the suggested methodology may be valuable in assisting doctors in providing
diagnoses that are more accurate and trustworthy, and it may have significant
promise in the field of clinical hypertension diagnosis. In addition, the classifi-
cation report generated by our model is included in Table 4.8 for the purpose of
carrying out analysis in the clinical sense. Additionally, sensitivity and specificity

can be determined using 4.4 and are displayed in Table 4.8 respectively.

True Posi- False Nega- False Posi- True Nega- Sensitivity Specificity
tive (TP) tive(FN) tive(FP) tive(TN)
623 536 253 1990 0.5376 0.8872

Table 4.8: Classification Report

Since its sensitivity is only 53.76%, the model proposed here may be in-
effective as a healthcare diagnostic tool for detecting people who are genuinely
hypertensive. However, the model’s true negative rate (88.72%) suggests that
it is successful in detecting those who are not hypertensive. We can also see
that our model has a high negative predicted value of 1,990/2,526 (or 78.11%),
demonstrating its suitability as a testing instrument. As well as it has provided
a reference value for positive prediction in 623 out of 876 (or 71.11%), which

demonstrates that it is superior to an inference drawn at random.

4.3 Extensive Approach Evaluation

The paper has shown that the classification capability of the model im-
proved (AUC=0.8420) when applied to the input features19 features. In previous

research, the results of artificial neural networks (AUC=0.77) were utilized when
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applied to the input features of gender, race, BMI, age, smoking, kidney condi-
tions, and diabetes. In order to further explore the performance of our proposed
approach, we conduced an experiment on the same dataset [62] with the previous
research. According to the proposed approach for model selection, MLP, LRM,
and Gaussian NB models are employed as base models in level-0. Six machine
learning algorithms in the paper [62] were identified and compared, including de-
cision jungle, logistic regression, support vector machine, boosted decision tree,
Bayes point machine, and artificial neural network. Among them, parameters
of MLP, LRM, and Gaussian NB from the paper [56], and parameters of other
models are optimized by the Bayesian Optimization algorithm. The experiment

results are shown in Table 4.9.

Models Name Precision Recall Accuracy Fl-measure AUC
SVM 0.59 0.464 0.737 0.464 0.759
DJ 0.581 0.453 0.734 0.453 0.769
BDT 0.564 0.462 0.729 0.462 0.765
BPM 0.583 0.456 0.735 0.456 0.763
LR 0.589 0.465 0.737 0.465 0.764
ANN 0.578 0.474 0.732 0.474 0.770
Proposed Stacking 0.592 0.490 0.745 0.536 0.788

Table 4.9: Classification methods comparison

The findings of a comparison of six distinct approaches with our suggested
method are presented in Table 4.9. In terms of predictive precision, recall, ac-
curacy, fl-measure, and area under the curve (AUC), we discovered that the
proposed approach outperformed all other methods. Moreover, based on the f1-

measure, our model scored the highest attainable value, which was 0.536, followed
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by the Artificial Neural Network achieved 0.474. This is a significant improve-
ment. Furthermore, our research considered lifestyle factors compared with the
previous research[56, 62]. So as to explore the effect of lifestyle factors on hy-
pertension prediction, a sub-dataset without lifestyle factors is used. The input
features are age, gender, race, education, BMI, waist, diabetes, and kidney. The

experiment results are shown in Table 4.10.

Datasets Precision Recall Accuracy Fl-measure AUC

Dataset with lifestyle fea- 0.7113 0.5376 0.7682 0.6105 0.8420
tures

Dataset without lifestyle 0.7104 0.4956 0.7668 0.5834 0.8409
features

Table 4.10: Comparing the impact of lifestyle factors in hypertension prediction

The experimental results show that after removing lifestyle characteris-
tics, the prediction performance, including precision, accuracy, and AUC values,
only slightly dropped, while recall and Fl-measure decreased by 4.2% and 2.71%,
respectively. As demonstrated in 4.3, the four characteristics of gender, age, edu-
cation level, and obesity have strong discriminatory power for hypertension in our
study. Furthermore, the model’s capacity to correctly hypertensive samples is de-
grading, as evidenced by the fall in recall terms. In practice, a model with a better
hypertension discrimination performance is preferable. Despite the slight perfor-
mance gain, we still suggest integrating lifestyle features in the model because
they can improve the model’s performance while also assisting in the analysis of

the causes of the patient’s condition.

113



4.4 Summary

Various categorization algorithms for the early detection of lifestyle-related
diseases have been presented in recent years. One of the current study areas is
selecting an acceptable methodology that strikes a compromise between efficiency
and implementation complexity. According to the reports of the National Health
and Nutrition Examination Survey (NHANES), the prevalence of hypertension
in the adult population of the United States is high and has been rising over
the past few years. We initially devised a Multi-objective Iterative Model Selec-
tion (MoItMS) strategy to simultaneously maximize the ensemble model diversity
and the accuracy of meta-learners in this work. Subsequently, a stacking-based
aggregative method for accurately classifying the data of hypertension patients
was created. The proposed model uses three distinct types of learners namely,
KNN, SVM, and MLP, as its basic learners. Each of these models is trained using
cross-validation to ensure accuracy. The level-1 data is comprised of the predic-
tions made on training samples in addition to the actual labels, both of which are
utilized in the process of training the meta-learner. After that, the meta-learner
is used to make predictions regarding the testing samples. The effectiveness of
the proposed ensemble technique is evaluated with reference to both individual
and ensemble models, which serve as baseline models. The comparative find-
ings reveal that the proposed model performs better than the baseline individual
and ensemble models according to five specified evaluation measures, such as

accuracy, precision, recall, Fl-measure, and AUC value. These metrics include
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accuracy, precision, and recall. In addition, we assessed the suggested stacking
structure by employing hypertension datasets that included gender, race, BMI,
age, smoking, kidney problems, and diabetes. According to the findings of the
experiment, the proposed method performs better than the previous studies on all
five of the evaluation measures that were used. Finally, we evaluated the effect of
lifestyle factors on the classification performance for hypertension, and we found
that lifestyle factors can help the model discriminate hypertensive samples from
normal samples. In future studies, a more in-depth examination and screening of
features will be considered. On the other hand, in order to verify the proposed
framework, hypertension can be predicted using a variety of data sets, including

those with various features and risk factors.
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Chapter 5. A Case Study for A Lifestyle-Related Disease

5.1 Data Source

This study used real medical data gathered during a hospital health check-
up in Nanjing, China. This dataset is from 2012 to 2022. All subjects in the
study gave informed consent to the use of the data, and all sensitive informa-
tion about the subjects was removed from the original dataset. In this real case
study, hypertension is an example of a lifestyle-related disease because it is really
common in our daily life. First, we removed 23 records who were 20 years of age
or younger. The remaining data comprised 32,784 instances and 65 attributes.
Specifically, there are 41 features including age, gender, heart rate (HR), height,
weight, waist circumference (WC), body massive index (BMI), hemoglobin (HB),
white blood cell (WBC), platelets (PL), urinary protein (UP), Urinary sugar
(US), Urinary ketones (UK), Urinary occult blood (UOB), blood sugar (BS), ala-
nine aminotransferase (ALT), aspartate transaminase (AT), Total Bilirubin (TB),
Creatinine (CR), BU (Blood Urea), Total cholesterol (TC), triglycerides (TG),
high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol
(LDL-C), right systolic blood pressure (right_SBP), right diastolic blood pressure
(right_DBP), left systolic blood pressure (left_SBP), left diastolic blood pres-

sure (left_DBP), exercise frequency (L_EF), exercise year(L_EY), exercise time
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(L_ET), smoking (L-S), smoking quantity(L_SQ), smoking age(L_SA), drinking
frequency(L._SQ), drinking quantity(L_DQ), drinking age (L_DA), diet balance
(D_BD), diet hobby (D_DH), Atherosclerosis (As), fat liver (FL), hypertension
(HTN). In addition, there are 24 symptoms including blurred vision (S_BV), dizzi-
ness (S_Di), polydipsia (S_ polydipsia), polyuria (S_ polyuria), vertigo (S_vertigo),
headache (S_HA), joint swelling and pain (S_joint_SP), numb hands and feet
(S.numb_HF), tinnitus (S_tinnitus), constipation (S_constipation), chest tightness
(S_CT), palpitations (S_palpitations), nausea and vomiting (S_NV), chest pain
(S_CP), chronic cough (S_CC), fatigue (S_fatigue), sputum production (S_SP), di-
arrhea (S_diarrhea), weight loss (S_-WL), urgency (S_urgency), dyspnea (S_dyspnea),
painful urination (S_PU), breast pain (S_BP). Meanwhile, there are 18,936 males

(57.75%) and 13,848 females (42.24%) in the dataset, with an age of 63.8849.27.

5.2 Missing Value Analysis and Processing

First, the missing value module can automatically calculate the missing
rate of each dimension in the dataset. First, the missing value module automat-
ically calculates the missing rate of each dimension in the data set. Specifically,
the overall missing rate in our case is 13.36%. Subsequently, the missing value
module automatically analyzes the absence of the missing rate of the features in
the data set, as shown in Figure 5.1.

Figure 5.1 shows that some features’ missing rate exceeds the 0.8 cutoff
point, which means that 80% of their values are lost. Because of this, we exclude

these features, which include L_SQ, L_SA, L_DQ, and L_DA. Following that, as
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Figure 5.1: Missing rate of features in the case study

seen in Figure 5.2, the missing value module examines the absence of instances
in the dataset. It is important to note that it is impossible to display the missing
rate for each instance of a big data set, such as the more than 30,000 records in
our case. In order to illustrate the distribution of each missing rate segment of

the instance, the missing value module employs segmented statistics.

The Missing Rate Distribution for Cases
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Figure 5.2: Segmented statistics of the missing rate of instances in the case study
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Figure 5.2 shows that 28% of the dataset’s instances have less than 10%
of their values missing, while 32.57 of them have missing values between 10%
and 20%. Less than 0.02% of the instances lost more than 35% of the values at
the same moment. Overall, no instance’s portion of the dataset is missing by
more than 50%, hence no instance is disregarded. The missing value module also
employs the distribution map and hot map of missing values for auxiliary analysis

to examine the missing mechanism and missing mode of missing values, as shown
in Figure 5.3 and Figure 5.4.

32784 61

Figure 5.3: Distribution of missing values in the case study

Missing values are mainly distributed discretely in various measured fea-
tures, as seen in Figure 5.3. At the same time, it can be shown that several
features, such as ALT and HB, have a significant relationship according to the
missing value heat map (Figure 5.4). It is not advised to delete the missing
value model of the missing values in our data set directly since it is not missing

completely at random (MCAR). The missing pattern in our case data is non-
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Figure 5.4: Hot map of missing values in the case study

monotonic, which is also supported by the distribution plot of missing values.
The findings of the missing value analysis show that, even after eliminating some
features with 80% missing values, the data set still contains 8.84% missing values.
We examine the imbalance rate of categorical features with missing values in order
to effectively handle these missing values. By dividing the number of classes with
the most values in the feature by the number of classes with the fewest values, the
imbalance ratio is determined. As seen in Figure 5.5, the imbalance rate analysis
is carried out on the case’s categorical features with missing values.

UP, UA, UK, and UOB are a few examples of categorical features with
missing values that are noticeably uneven after looking at Figure 5.5. The UOB
has the lowest imbalance rate of all of them at 7.67%. The proposed SncALWRFI
imputation method was used to impute missing data based on the previous anal-
ysis. Pair deletion (PD), MEAN, KNNI, and MissForest missing value processing

techniques were employed in comparison to examining the effects of the proposed
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Figure 5.5: Imbalance rate analysis of categorical features in the case study

imputation approach on the performance of lifestyle-related disease prediction.
Because 80% of the instances contain missing values, the complete case analysis
(CCA) approach is not employed because it is impossible to delete instances with
missing values.

Additionally, to ensure fairness, default parameters are chosen for datasets
processed by various missing value methods, along with RF, LGBM, and LRM
being used as predictive models for diseases connected to lifestyle. In more detail,
the data is split into two sets: a training data set, which comprises 70% of the
data, and a testing data set, which contains 30% of the data. The training data
set is used to create a missing value imputation model, and the test data set is
used to assess the model’s effectiveness. We compare performance using AUC as
a performance indicator. The experiment was carried out 20 times, and Table 5.1

displays the average outcomes.

121



Methods PD MEAN KNNI MissForest SncALWRFI

RF 75.02 80.07 81.10 82.72 83.88
LGBM 75.98 81.46 82.92 83.94 84.83
LRM 71.08 72.19 71.91 72.20 73.31

Table 5.1: Prediction results of different processing methods for missing values in the
case study

The maximum prediction result of 75.98 is obtained in the LGBM model,
according to experimental results, while removing features with missing values
yields the lowest prediction results. However, our proposed approach performs at
its best, achieving an average ideal value of 84.83 in the LGBM model. Therefore,
as the output data for the missing value module, we will ultimately select the data
set without missing values that was processed using the suggested SncALWRFI

approach.

5.3 Feature Selection Based on Feature Importance

The highly accurate and robust random forest-based feature selection (RF_FS)
method was introduced in 5.1.2. In the feature selection module, specifically, the
data without missing values preprocessed by the missing value module will be
input, followed by the use of RF_FS to analyze the importance of features, and
finally the selection of the data set containing only key features in accordance

with the ranking of feature importance. A predictive model for LRDs was cre-
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ated using an experimental dataset. Initially, there were 65 features in our case,
but since 4 of them (L_SQ, L_.SA, L._DQ, and L._DA) were 80% absent from the
dataset, they were excluded and the remaining 61 features were input into the
feature selection module. When calculating feature importance, the result will be

rounded to 3 decimal places. The final output of RF_FS is shown in Figure 5.6.
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Figure 5.6: Ranking of feature importance in the case study

The top-N important features or all features with importance greater than
0 can be chosen once the calculation of feature importance is complete. In or-
der to keep as many features as possible, the feature selection module selects
according to the important threshold of the feature, that is, the features with
importance of more than 0 are picked, and 16 features are then discarded. The
final experimental dataset will have 32,784 instances and 45 features. We use
the same three prediction models and conduct 20 runs to confirm the impact of

feature selection strategies on LRDs’ prediction outcomes. The Table 5.2 below
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displays the average AUC results obtained from 20 runs using various prediction

models.
Methods RF LGBM LRM
Non - Feature Selection 83.88 84.83 73.31
Random Forest Feature Selection 84.17 85.28 73.89

Table 5.2: Prediction results of feature selection in the case study

The experimental results demonstrate that feature selection increased the
performance of the three prediction models, demonstrating that the feature selec-
tion method based on random forest can increase the accuracy of LRDs prediction

after removing some features with low importance.

5.4 The Construction of LRDs Ensemble Prediction Model

After analysis based on key features, the dataset with key features will
be utilized to create a strong ensemble LRD predictive model. The final LRDs
prediction model will be combined from candidate models including multilayer
perceptron (MLP), K-Nearest Neighbors (KNN), Decision Tree (DT), support
vector machine (SVM), Gaussian Naive Bayes Network (Gaussian NB), Logistic
Regression Model (LRM) model, Extreme Gradient Boosting (XGBoost), Light
Gradient Boosting Machine (Light GBM) and Random Forest (RF). Three steps
make up the model construction: ensemble model construction, hyperparameter

optimization, and model evaluation. The disease prediction module will first
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automatically adjust the hyperparameters of each individual model in order to
improve performance. In Chapter 4.2.4, Table 4.5 provides a description of the
parameter space. Each model will receive the ideal set of parameters following
the Bayesian optimization procedure. The disease prediction module then uses
the proposed MoltMS technique to select a suitable model for the ensemble case

data. Figure 5.7 depicts the model’s integration procedure.
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Figure 5.7: The generation process of the ensemble model

Figure 5.7 above shows the construction process of the integrated model.
The LGBM model is selected at the beginning, and then more models are iter-
atively selected to be added to the integrated model according to the accuracy
and diversity of the model. Due to the increased computational burden resulting
from the accuracy and diversity calculations performed in the aggregated model,
the amount of time spent on the calculation increases in a steady and predictable
manner. Therefore, the most suitable ensemble model is the aggregation of the

three models. Finally, the disease prediction module will use the six-dimensional
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model capability map to automatically and visually evaluate the performance dif-
ference between the generated integrated model and the various sub-models that

make up the model, as shown in Figure 5.8.
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Figure 5.8: Ensemble model evaluation

According to Figure 5.8, it can be seen that the constructed integrated
model presents the best performance in the capability chart. And the value of
the most important AUC index is 87.54, which shows that the model has a high
discrimination ability and has practical application significance. Finally, in order
to further demonstrate the changes in model prediction performance after each

module is processed, we compare and display them in Table 5.3.
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Methods RF LGBM LRM Ensemble

Model
Original Data (MEAN) 80.07 81.46 72.19 -
Missing value module 83.88 84.83 73.31 -
Feature selection module 84.17 85.28 73.89 -
Disease prediction model - - - 87.54

Table 5.3: Prediction results of each module in the case study
5.5 Data Flow of the Prediction Framework

The data flow through the forecasting framework is then examined. In
particular, the raw data will be appropriately processed in the proposed prediction
framework and utilized to identify essential features and build core models, such
as a missing value imputation model and an ensemble prediction model for LRDs.
The prediction framework has three primary data processing components, which
we previously analyzed:

1) The original data is converted into data without missing values and
available and robust imputation models for missing values in the missing value
module after some features and instances are removed and the null values are
filled with the proper missing value processing method.

2) The feature selection module selects crucial features for lifestyle-related

diseases using advanced feature selection techniques based on machine learning
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and then turns the data into core experimental data for creating models for the
prediction of lifestyle-related diseases.

3) The disease prediction module separates the training and test data
sets, builds an integrated prediction model using the training data, assesses the
usability of the prediction model using the test data, and finally transforms the
data into a useable prediction model.

The data flow diagram of the proposed prediction framework is represented

as Figure 5.9.
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Figure 5.9: The data flow diagram of the proposed prediction framework
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5.6 A Simple Application Scenario

We then present a simple scenario application for the proposed framework.
Similar to the previous example, we will utilize the constructed prediction frame-
work to forecast the probability of hypertensive diseases for a group of 10 new
people who have had health examinations. Figure 5.10. displays the data for

these people.

Original Data

height

). 0

NaN NaN
NaN NaN
0.0 0.0

Figure 5.10: The data for 10 people in the simple application scenario

First, the data is input into the feature selection module, and the execution

result is shown in Figure 5.11.
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Exclude 16 features:
S_palpitations, S_NV, S_CP, S_CC, S_fatigue, S_SP, S_diarrhea, S_WL,
S_urgency, S_dyspnea, S_PU, S_BP, D_BD, D_DH, As, FL

Data after feature selection module
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Figure 5.11: The execution result of feature selection module in the simple application
scenario

Next, input the data after feature selection into the missing value module,
and the result is shown in Figure 5.12.

Mi g Values Module
age gender height ... S_tinnitus nstipation S_C Missing Rate
60 1.6 31\ 0
69

aN
163.0
165.0
NaN
147.0

) values and will be imputed.

Figure 5.12: The result of missing value module in the simple application scenario
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According to the analysis results of the missing value module, two records
(ID=7,8) will be excluded because they are missing more than 85% of the values.
In addition, there are 8 records including missing values, which need to be imputed
using the model. The imputed data are shown in Figure 5.13.

after imputation---

nb_HF S_constipation
0.0 0.0 0.6

[8 rows x 48 columns]

Figure 5.13: The imputed data in the simple application scenario

Finally, we input the processed data into the constructed ensemble predic-
tion model, and the prediction results are presented in Figure 5.14.
Unhealthy Lifestyles
.31 Overweight, Smoking, Drinking, No Exercise
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Figure 5.14: The prediction results in the simple application scenario

We introduced the operation of the proposed prediction framework using

a simple application case. Then we employed SHapley Additive exPlanations

132



(SHAP) [188] to further analyze the contribution of high-risk population char-
acteristics to hypertensive disorders. Specifically, SHAP (SHapley Additive ex-
Planations) is a game theoretical approach to explain the output of any machine
learning model. It connects optimal credit allocation with local explanations us-
ing the classic Shapley values from game theory and their related extensions. The
features’ contribution to hypertension of those two persons (ID=0 and ID=6) with
high risk are shown in 5.16.
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Figure 5.15: The features’ contribution for hypertension of two persons

The above explanation shows features each contributing to pushing the
model output from the base value (the average model output over the training
dataset we passed) to the model output. Features pushing the prediction higher
are shown in red, and those pushing the prediction lower are in blue. Specifically,
for people with ID=0, the larger WC pushes up the value of the model by 0.13,
while for women with ID=6, higher wc, and weight push up the predicted value

of the model respectively by 0.06 and 0.04, while a normal CR pulls down the
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model’s prediction by a value of 0.06. SHAP can assist doctors to understand the

prediction results of the model, rather than providing a black box to doctors.
Finally, in order to manage and prevent LRDs, we will also plan to create

a website that predicts LRDs. We present various modules in the thesis that can

assist our website to provide effective medical services.

5.7 Summary

This chapter primarily serves to demonstrate the three modules—missing
value, feature selection, and disease prediction—that make up the proposed pre-
diction framework. It begins by thoroughly introducing each module before ana-
lyzing a case from Nanjing, China, and using hypertension as an example for this
case study. The integrated prediction model is built using a data set that only
contains the important features after the missing values in the case have been pro-
cessed, analyzed, and evaluated in terms of importance. Finally, the constructed
model is evaluated using a range of indicators to examine its applicability to the

scenario.
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Chapter 6. Conclusions and Future Work

6.1 Conclusions

Lifestyle-related diseases are the conclusions drawn by developed coun-
tries after conducting a large number of epidemiological investigations on chronic
non-communicable diseases. One main cause of these chronic non-communicable
diseases is people’s unhealthy lifestyles. These diseases include obesity, hyper-
tension, coronary heart disease, other cardiovascular diseases, stroke, and other
cerebrovascular diseases, diabetes, and some malignant tumors. These diseases
are difficult to cure even with modern medicine, and seriously endanger people’s
lives and health. Now, healthcare has been digitized and generated massive new
datasets. These include electronic medical record (EMR) systems, health dec-
laration data, radiology images, and lab results. Health service providers can
propose different approaches to predictive analysis of medical diagnosis, predic-
tive modeling of health risks, and even prescription analysis of precision medicine
by combining data from different sources. Among them, disease prediction has
emerged as a crucial component of any strategy for health analysis. By predicting
the occurrence of diseases, it aids medical facilities in improving patient care and
lowering expenditures. The development of evidence-based best practices and

aiding in the identification of people at risk for lifestyle-related diseases are two
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areas where disease prediction has enormous potential. This makes it possible for
data to assist clinicians in staying one step ahead and offering patients proactive
care before their health issues become serious.

The significant dataset noise and missing values make it challenging to use
conventional machine learning methods when building LRDs prediction models
utilizing medical data. Particularly, some inescapable causes, including early
subject withdrawal from medical research, might quickly result in missing values
in research data. Many approaches to coping with missing values have been put
forth since the presence of missing values makes it more difficult to mine pertinent
data. Large-scale datasets with mixed types and unbalanced features are common
in the medical industry, nevertheless. Only a few approaches may be utilized for
data of mixed types and unbalanced features at the same time, despite the fact
that existing state-of-the-art methods can decrease imputation errors and increase
the quality of missing data. In order to achieve this, we propose a novel missing
value interpolation technique based on Adaptive Laplacian Weighted Random
Forest (ALWRF) and SMOTE-NC oversampling technology. This method can
improve Unbalanced prediction accuracy features by adaptively adjusting feature
weights when building random forests.

Additionally, the algorithm’s robustness will be impacted by the presence
of noise. However, as noise is frequently present in medical data, a lot of studies
has concentrated on how to handle it. Since some of the datasets of the analyzed
lifestyle-related disorders correspond to real patients, it is difficult in practice

to directly remove outliers. Combining ensemble methods with algorithm-level
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techniques is an excellent strategy to minimize variance, bias, and noise. The per-
formance of each model in the ensemble varies depending on the circumstance.
In this method, an ensemble model partially addresses these shortcomings and
outperforms each individual model on a combined basis. Therefore, an ensemble
approach was used in our work to reduce data noise and increase the precision of
lifestyle-related illness prediction. We propose a multi-objective iterative model
selection (MoltMS) technique to maximize ensemble models’ variety and accu-
racy at the same time. The proposed stacking-based multi-objective integration
framework can offer useful data-driven methodologies to categorize patients for
population health management, promote disease control, and support the detec-
tion of LRDs when applied to large clinical datasets.

Finally, we use a case from China to apply the proposed prediction frame-
work. Two significant models—missing value imputation models and disease pre-
diction models—are produced following processing by the three primary modules
of missing value, feature selection, and disease prediction. The proposed predic-
tion framework can also enhance LRDs’ predicting performance for better public

health prevention, according to the experimental results.

6.2 Future Work
6.2.1 Designing of LRDs Risk Prediction Website

In order to demonstrate the generalizability of the proposed approach, the

study also lacks a long-term perspective on various use cases (chronic diseases
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other than hypertension). Assessments in practice (multidisciplinary collabora-
tion with clinicians) will be taken into consideration in the future within the
context of this study and will require human or professional analysis. This study
is going to create a website for LRD prediction in order to control and prevent
LRDs. The proposed framework can assist the site in offering high-quality health-

care services. The website will include the following 7 key functions:

e User registration/login. Users need to register and log in to use the functions

of the website.

e Personal information entry. Users need to enter their basic information,
including name, gender, age, height, weight, blood pressure, heart rate, and

other indicators.

e Disease selection. Users need to select the type of disease to be predicted,

such as hypertension, diabetes, etc.

e Risk prediction. According to the information provided by the user and
the type of disease selected, the website will use a predictive model to cal-
culate the probability of the user suffering from the disease and provide

corresponding suggestions.

e Health Advice. According to the information and prediction results pro-
vided by users, the website will give corresponding health advice, including

diet, exercise, living habits, and so on.
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e Health information. The website will regularly update health information

and provide knowledge and advice on health.

The technical implementation of the LRDs risk prediction website includes

four important parts.

e The front end of the website will be implemented using HTML, CSS, JavaScript,
and other technologies, and adopts a responsive design to adapt to different

devices and screen sizes.

e The back-end of the website will be implemented with Python language and
Django framework, including user management, data management, predic-

tion model, and other functions.

e The data of the website will be stored in a MySQL database, including user

information, prediction results, health advice, etc.

e The Prediction model of the website will be implemented using the proposed
forecasting framework, which can be trained according to different disease

types and data provided by users to improve the accuracy of forecasting.

In order to ensure the security of user information, the website uses SSL certifi-
cates for encrypted transmission, and at the same time backs up and encrypts
user data. This website aims to help users better understand their physical con-
ditions and risks, and provide corresponding health advice and information, but
it cannot replace the doctor’s diagnosis and treatment. Users should treat it
with caution when using it, and consult a professional in time if they have any

questions doctor.
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6.2.2 Considering Medical Data with Multiple Structures

The long-term objective of this study is to take data from multiple struc-
tures into account as this can provide more comprehensive feature information,
such as fundamental knowledge, clinical examination, physiological indicators,
imaging data, etc., that can be used to predict LRDs disease. The data can
more accurately reflect both the disease’s progression and the patient’s physical
state. In addition, by combining deep learning and traditional machine learn-
ing techniques, collecting feature information from various levels, and improving
the model’s accuracy and reliability, more sophisticated prediction models can be

created using data from various structures.
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