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Federated Learning has gained popularity in the last years as it enables different clients to jointly learn a global model without sharing their respective data. FL specializes the classical problem of distributed learning, to account for the private nature of clients information (i.e. data and surrogate features), and for the potential data and hardware heterogeneity across clients, which is generally unknown to the server. Within this context, the main objective of this thesis is to present new theoretical and practical results to quantify the impact of the clients' data heterogeneity on the convergence guarantees of federated learning, while investigating the feasibility of critical components for deployment of federated learning in real-world applications.

In the first part of the thesis we study the robustness and variability of federated learning to heterogeneous conditions. To this end, we introduce the notion of stochastic aggregation weights to generalize the aggregation scheme proposed in FEDAVG, along with a novel theory to account asymptotically for the impact of a client sampling scheme on the federated learning convergence guarantees. We then introduce "clustered sampling", a novel client selection scheme generalizing and outperforming the state-of-the-art sampling methods in terms of improved representativity and lower variability. We provide a theoretical justification of clustered sampling, and show faster and smoother convergence as compared to the standard approaches. We further extend the stochastic aggregation scheme of clustered sampling to account for asynchronous client updates and provide the close-form solution of the aggregation weights for unbiased federated optimization of federated learning procedures, such as synchronous and asynchronous federated learning, FEDFIX, or FEDBUFF. In the second part of the thesis, we investigate the reliability of federated learning in practical applications. We introduce informed federated unlearning (IFU), a novel federated unlearning scheme, allowing to remove (unlearn) the contribution of a client from a federated model, with statistical guarantees on the unlearning effectiveness. Finally, we propose two strategies for free-riding attacks and introduce a novel theoretical framework to prove their efficiency. Overall, the work presented in this thesis highlights novel theoretical properties of federated learning, which ultimately allow to deepen our understanding on the robustness and reliability of the federated optimization process in practical application scenarios.

Résumé

L'apprentissage fédéré a gagné en popularité ces dernières années car il permet à différents clients d'apprendre conjointement un modèle global sans partager leurs données respectives. FL se spécialise dans le problème classique de l'apprentissage distribué, pour tenir compte de la nature privée des informations des clients et de l'hétérogénéité potentielle des données et du matériel entre les clients, qui est généralement inconnue du serveur. Dans ce contexte, l'objectif principal de cette thèse est de présenter de nouveaux résultats théoriques et pratiques pour quantifier l'impact de l'hétérogénéité des données clients sur les garanties de convergence de l'apprentissage fédéré, tout en étudiant la faisabilité de composants critiques pour le déploiement de l'apprentissage fédéré dans des applications concrètes.

Dans la première partie de la thèse, nous étudions la robustesse et la variabilité de l'apprentissage fédéré aux données hétérogènes. Nous introduisons la notion de coefficients stochastiques d'agrégation pour généraliser le schéma d'agrégation proposé dans FEDAVG, ainsi qu'une nouvelle théorie pour tenir compte asymptotiquement de l'impact d'une méthode de sélection de clients sur les garanties de convergence de l'apprentissage fédéré. Nous introduisons ensuite « clustered sampling », une nouvelle méthode de sélection de clients généralisant et surpassant les méthodes de l'état de l'art en améliorant la représentativité des clients et en réduisant leur variabilité de sélection. Nous fournissons une justification théorique de clustered sampling et montrons une convergence plus rapide et plus stable par rapport aux approches standard. Nous étendons davantage les coefficients stochastique d'agrégation de clustered sampling pour prendre en compte des contributions asynchrones de clients et fournissons l'expression des poids d'agrégation pour une optimisation fédérée juste des méthodes d'apprentissage standarad, telles que l'apprentissage fédéré synchrone et asynchrone, FEDFIX ou FEDBUFF. Dans la deuxième partie de la thèse, nous étudions la fiabilité de l'apprentissage fédéré dans des applications concrètes. Nous introduisons IFU, un nouveau schéma de désapprentissage fédéré, permettant de supprimer la contribution d'un client à un modèle fédéré, avec des garanties statistiques sur l'efficacité du désapprentissage. Enfin, nous proposons deux stratégies pour les attaques de « free-riding » et introduisons un nouveau cadre théorique pour prouver leur efficacité. Dans l'ensemble, les travaux présentés dans cette thèse mettent en évidence de nouvelles propriétés théoriques de l'apprentissage fédéré, qui permettent d'approfondir notre compréhension de la robustesse et de la fiabilité du processus d'optimisation fédérée dans des scénarios d'applications concrètes. 

Federated Learning

The way healthcare is delivered to patients is undergoing great change with electronic health records becoming ubiquitous across almost all medical institutions. Artificial Intelligence (AI)-supported medical analysis entails a large potential to provide insight into diagnosi [START_REF] Kononenko | Machine learning for medical diagnosis: history, state of the art and perspective[END_REF][START_REF] Savage | Better medicine through machine learning[END_REF][START_REF] Roque | Using electronic patient records to discover disease correlations and stratify patient cohorts[END_REF] and prognosi [START_REF] Ebadollahi | Predicting patient's trajectory of physiological data using temporal trends in similar patients: a system for near-term prognostics[END_REF][START_REF] Jensen | Mining electronic health records: towards better research applications and clinical care[END_REF], and can assist in the development of treatments [START_REF] Bennett | EHRs connect research and practice: Where predictive modeling, artificial intelligence, and clinical decision support intersect[END_REF][START_REF] Ramakrishnan | Mining electronic health records[END_REF]. Nevertheless, a typical bottleneck for the development of data-driven approaches in biomedical applications is represented by the need for large datasets to achieve robust and reliable models (R. Wang et al., 2019). As a results, AI-based modeling approaches developed on mono-centric data often fail in generalizing to external cohorts, and lack in robustness and reliability [START_REF] Sheller | Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data[END_REF]. To overcome this issue, an AI model should be ideally trained on very large cohorts ensuring proper representativity of the data variability across clinical conditions, data acquisition protocols, and biases. This is currently a major challenge in healthcare since, besides current research efforts such as the UK Biobank [START_REF] Sudlow | UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age[END_REF], or ADNI [START_REF] Petersen | Alzheimer's disease neuroimaging initiative (ADNI): clinical characterization[END_REF], we generally lack data lakes providing large data collections of heterogeneous medical measurements. One of the main reason is practical, since institutions are reluctant to share their data due to the private and sensitive nature of biomedical information. For this reason, during the past years researchers turned their attention to the paradigm of collaborative learning. Among the different collaborative learning paradigms, federated learning (FL) [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] has become increasingly popular as it enables to collaboratively train an AI model without requiring data sharing, thus addressing the problem of data ownership and governance in multi-centric studies. Under the orchestration of a central server, the participating institutions to a FL project collaboratively train a model without ever sharing their data with the server, another institution or a third party. Each institution stores its data locally and shares instead the result of the local training.

The application potential for federated learning in the medical field is important as this technology may allow to operate directly with the patients instead of institutions by using the data that their wearable devices and smartphone collects (J. Xu et al., 2021). In addition, the data samples of a participant are characterized by specific features and variations, which prevents a model trained locally from generalizing to the other clients' data. Instead, with federated learning, the trained model can fit the samples of every client (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF][START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF], which leads to better generalization to unknown data. More generally, federated learning can also be used for finance risk prediction for reinsurance, pharmaceuticals discovery, electronic health records mining, medical data segmentation, smart manufacturing, or features on mobile phones [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF]T. Li, Sahu, Talwalkar, et al., 2020).

In spite of the large potential and interest of FL in medical applications, there are currently numerous challenges that must be addressed in order to allow the successful adoption of this technology in real-world applications. In particular, the dataset of the different participants often has a data distribution specific to each of them. This heterogeneity in the clients' datasets makes more challenging for federated learning to accommodate the participants' data in the global model than with centralized learning. In this setting, federated learning often leads to slower and less stable learning. In addition, a federated optimization scheme needs to be properly designed to fit every data point without favoring some participants. Also, due to the physical locations of the participants and their hardware constraints, clients may compute and communicate their contributions in significantly different time. Finally, work is needed to investigate the robustness of federated learning to current type of attacks and ensure that no information from the participants' data can be leaked by sharing their local information. Given the set of challenges related to the effective exploitation of federated learning in real-world applications, the goal of this thesis is to investigate novel methodology to address the problem of heterogeneity, stability and security of FL in critical setting.

In the rest of this chapter, we introduce the theoretical background of federated learning (Section 1.2), and illustrate the main methodological bottlenecks addressed in this work (Section 1.3). Finally we provide an outline of the rest of the manuscript (Section 1.4).
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Chapter 1 Introduction

Federated Optimization and FedAvg

The work of [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF] proposes the following broad definition of federated learning.

Federated learning is a machine learning setting where multiple entities (clients) collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective.

This definition highlights the key point behind federated learning: a client never shares its data. Hence, clients have total governance over their data as they are guaranteed by design that their data is solely used to compute their local work. Indeed, the main drawback behind centralizing the clients' data on a server is that clients lose control on how the model is trained and on whether the server uses their data for other applications or not, e.g. selling it to a third-party.

We formalize the optimization problem jointly minimized across clients with federated learning and its learning setup as follows. We consider a set I of n clients each respectively owning a dataset D i composed of n i data samples. Federated learning aims at optimizing the average of each client's local loss function L i weighted by factors p i such that n i=1 p i = 1, i.e.

L(θ) = i∈I p i L i (θ), (1.1)

where θ represents the model parameters. The weight p i can be interpreted as the importance given by the server to client i in the federated optimization problem. While any combination of {p i } is possible, we note that in practice, either (a) every client has equal importance, i.e. p i = 1/n, or (b) every data point is equally important, i.e. p i = n i /M with M = i∈I n i .

Among the numerous federated optimization schemes proposed in the federated learning literature, federated averaging (FEDAVG) [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] is currently the most popular approach to solve the optimization problem (1.1). FEDAVG is based on the iterative averaging of the clients models' parameters, after locally updating each client's model for a given number of training epochs.

We consider the following optimization procedure that covers FEDAVG and other federated optimization schemes. A server orchestrates the training procedure to estimate a global model across clients, by repeating the steps in Algorithm 1 at each iteration step t until training is completed. Algorithm 1 highlights the coordinating role of the central server in (1.2) federated learning. Indeed, the server orchestrates the optimization and decides how the new global model parameters are computed based on the information provided by the clients. Several production-oriented federated learning platforms based on this optimization procedure are being developed to enable industrial applications of federated learning including FED-BIOMED1 [START_REF] Silva | Fed-BioMed: A General Open-Source Frontend Framework for Federated Learning in Healthcare[END_REF], NVIDIA Clara2 , and Flower [START_REF] Beutel | Flower: A Friendly Federated Learning Research Framework[END_REF] .

Surveys on federated learning like the one of [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF] distinguish two types of federated learning applications: (i) the cross-silo setting where few clients are participating, typical of medical applications involving a limited number of hospitals, and (ii) the crossdevice one, where the number of clients can be very high, typical of smartphone applications and connected devices. The approaches in this thesis are general, and can be seamlessly applied to both cross-silo and cross-device setting. We note however that this research was conducted with a specific focus on medical applications, while contributing to the development of the federated learning plateform for medical data FED-BIOMED [START_REF] Silva | Fed-BioMed: A General Open-Source Frontend Framework for Federated Learning in Healthcare[END_REF].

Main Challenges of Federated Learning

We next describe four of the core challenges of federated optimization, which distinguishes federated learning from distributed learning. Whenever describing a new challenge, we

Other definitions of fairness have been proposed in the federated learning literature. For example, the works of T. Li, Sanjabi, et al. (2019) and T. [START_REF] Li | Ditto: Fair and Robust Federated Learning Through Personalization[END_REF] focus on minimizing the discrepancy between performances across clients. In that case, a trained model is deemed fair if it has identical training loss or testing accuracy for every client. To this end, the server dynamically updates the way a client's local work is considered in the aggregation to create the new global model, thus solving an optimization problem different from the one in equation (1.1). This example shows how the definition of fairness may impact the federated solution, which may ultimately not correspond with a stationary point of the federated problem (1.1).

In this thesis we focus on the notion of fairness based on preserving the client representativity associated with the optimization problem (1.1). In this setting, proving the fairness of a federated training routine thus requires to demonstrate the convergence of federated learning to the related.

Challenge 2: Privacy

Federated learning guarantees to every client governance over its data without requiring sharing with the server or any third party. Nevertheless, federated learning still requires the sharing of model updates with the server, which is supposed to carry significantly less sensitive information than the training data itself (Carlini et al., 2019b). Nevertheless, model parameters can nonetheless reveal sensitive information, either to a malicious client, or to the central server itself (McMahan, Ramage, et al., 2017). Moreover, without being able to verify clients' data and local work, the server does not have guarantees about the compliance of the clients' work to the prescribed federated routine. This critical aspect opens the way to ill intentioned participants to disguise their contribution to the FL process [START_REF] Lyu | Threats to federated learning: A survey[END_REF]. Numerous types of attacks on federated learning have been proposed in the literature to allow an ill intentioned participant to recover information regarding other clients' data (Z. Wang et al., 2019;[START_REF] Hitaj | Deep Models under the GAN: Information leakage from collaborative deep learning[END_REF][START_REF] Fredrikson | Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures[END_REF]. Different kind of attacks aim instead at manipulating/sabotaging the federated learning routine associated with problem (1.1) to tamper the predictive capabilities of the trained model. For example, the attacker's aim can be to favor some classes or to misclassify a set of chosen inputs with high-confidence during inference [START_REF] Bhagoji | Analyzing federated learning through an adversarial lens[END_REF]B. Li et al., 2016;[START_REF] Yin | Byzantine-robust distributed learning: Towards optimal statistical rates[END_REF][START_REF] Xie | DBA: Distributed Backdoor Attacks against Federated Learning[END_REF][START_REF] Shen | AUROR: Defending against poisoning attacks in collaborative deep learning systems[END_REF]. Current research aim at developing methods to enhance the safety and security of federated learning and prevent these attacks, based on the introduction of cryptographic primitives such as secure multiparty computation (Cramer, I. B. Damgård, et al., 2015;I. Damgård et al., 2012;[START_REF] Lindell | Secure multiparty computation for privacy preserving data mining[END_REF] or by using privacypreserving optimization based on differential privacy [START_REF] Dwork | Differential privacy: A survey of results[END_REF][START_REF] Noble | Differentially Private Federated Learning on Heterogeneous Data[END_REF][START_REF] Wei | Federated learning with differential privacy: Algorithms and performance analysis[END_REF], or decentralization techniques [START_REF] Cyffers | Privacy Amplification by Decentralization[END_REF][START_REF] Zantedeschi | Fully Decentralized Joint Learning of Personalized Models and Collaboration Graphs[END_REF]. Nevertheless, these approaches often provide privacy at the cost of reduced model performance or system efficiency. Understanding and balancing these trade-offs, both theoretically and empirically, is a considerable challenge in realizing secure federated learning systems.

Challenge 3: Communication

Communication can also be a primary bottleneck for federated learning since wireless and other end-user connections may operate at variable communication rates while being potentially unreliable. For example, when jointly optimizing a model with participants from remote geographic locations, the work of [START_REF] Silva | Fed-BioMed: A General Open-Source Frontend Framework for Federated Learning in Healthcare[END_REF] shows that a client's communication time is proportional to the distance to the server. Moreover, the bandwidth capacity of the aggregating server may impose constraints on the number of clients the server can communicate with at the same time. These considerations lead to significant interest in studying novel approaches to optimize the number and bandwidth of communications at every step of the federated learning process. One of the most popular communication reduction strategies proposed with FEDAVG consists in limiting the frequency of communications at the expense of increased computation on the clients side. This is usually achieved by asking the clients to perform multiple iterations of local gradient descent before communicating their updates. To further reduce the number of communications, the server can select a subset of clients participating at every iteration. This strategy, called client sampling (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a; W. Chen et al., 2020;[START_REF] Cho | Client selection in federated learning: Convergence analysis and power-of-choice selection strategies[END_REF][START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF], enables to speed-up the aggregation process of FEDAVG, while requiring less contributions from participants.

Another drawback of FEDAVG concerns the time needed to complete an optimization round, as the server must wait for all the participating clients to perform their local work to synchronize their update and create a new global model. As a consequence, due to the potential heterogeneity of the hardware across clients, the time for an optimization round is conditioned to the one of the slowest update, while the fastest clients stay idle once they have sent their updates to the server. To address these limitations, asynchronous federated learning has been proposed to take full advantage of the clients computing capabilities (Y. Chen et al., 2020;W. Wu et al., 2020;[START_REF] Lu | Privacy-preserving asynchronous federated learning mechanism for edge network computing[END_REF]. In the asynchronous setting, whenever the server receives a client's contribution, it creates a new global model and sends it back to the client. In this way, clients are never idle and always perform local work on a different version of the global model.

Challenge 4: Compliance with Regulations

With the emergence of new data regulations, such as the EU General Data Protection Regulation (GDPR) [START_REF] Voigt | The eu general data protection regulation (gdpr)[END_REF] or the California Consumer Privacy Act (CCPA) [START_REF] Harding | Understanding the scope and impact of the California Consumer Privacy Act of 2018[END_REF], the storage and processing of sensitive personal data is often subject of strict constraints and restrictions. For example, the "right to be forgotten" requires that personal data must be erased upon request from the concerned individuals, with subsequent potential implications on machine learning models trained by using this data. Machine Unlearning (MU) is an emerging discipline that studies methods to ideally remove the contribution of a given data instance used to train a machine learning model. Current MU approaches are essentially based on routines that modify the weights of models trained on a given dataset in order to guarantee the unlearning of a given data point, i.e. to obtain a model equivalent to an hypothetical one trained without this data point (Cao and J. Yang, 2015;[START_REF] Bourtoule | Machine unlearning[END_REF]. Providing risk-less deployments of federated learning in the real-world, it is of crucial importance to extend MU to guarantee the unlearning of clients wishing to opt-out from a collaborative training routine.

Objectives and Organization of the Thesis

We have seen that federated learning is essential to provide optimization for applications where the data cannot be centralized, as well as to guarantee to clients the governance of their data while increasing data privacy. Within this context, the main objective of this thesis is to present new theoretical and practical results to quantify the impact of the clients' data heterogeneity on the convergence guarantees of federated learning, while investigating the feasibility of critical components for deployment of federated learning in real-world applications. This manuscript is organized in two parts. In the first part of the thesis, we study the robustness and variability of federated learning to heterogeneous setting (Chapter 2 to 4), while, in the second part, we investigate the reliability of federated learning in practical applications (Chapter 5 and 6).

First, we present in Chapter 2 a novel decomposition theorem for the convergence of federated learning, allowing to clearly quantify the impact of a client sampling scheme on the global model update. We provide a theoretical ground on the relationship between federated learning convergence and the covariance between the aggregation weights. We show that our theory is general and can be applied to existing client sampling schemes. When applied to Multinomial Distribution (MD) and Uniform sampling, the two default client sampling schemes of federated learning, our results suggest that MD sampling should be used as default sampling scheme, due to the resilience to the changes in data ratio during the learning process, while Uniform sampling is superior only in the special case when clients have the same amount of data.

Second, we present in Chapter 3 clustered sampling, a novel client sampling scheme.

When compared with MD sampling, the state-of-the-art investigated in Chapter 2, we prove that clustered sampling leads to better client representatitivity and to reduced variance of the clients' stochastic aggregation weights in federated learning. Through a series of experiments in non-iid and unbalanced scenarios, we demonstrate that model aggregation through clustered sampling consistently leads to better training convergence and variability when compared to standard sampling approaches.

Third, we present in Chapter 4, a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FEDAVG aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FEDAVG, asynchronous FEDAVG, and FEDBUFF (J. [START_REF] Nguyen | Federated Learning with Buffered Asynchronous Aggregation[END_REF]. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FEDFIX, a novel extension of FEDAVG enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation.

Fourth, we present in Chapter 5 Informed Federated Unlearning (IFU), a novel efficient and quantifiable federated unlearning (FU) approach. Upon unlearning request from a given client, IFU identifies the optimal federated learning iteration from which federated learning has to be reinitialized, with unlearning guarantees obtained through a randomized perturbation mechanism. The theory of IFU is also extended to account for sequential unlearning requests. Experimental results on different tasks and dataset show that IFU leads to more efficient unlearning procedures as compared to state-of-the-art FU approaches.

Fifth, we introduce in Chapter 6 the first theoretical and experimental analysis of free-rider attacks on federated learning and provide formal guarantees for these attacks to converge to the aggregated models of the fair participants. We first show that a straightforward implementation of this attack can be simply achieved by not updating the local parameters during the iterative federated optimization. As this attack can be detected by adopting 1. 4 Objectives and Organization of the Thesis simple countermeasures at the server level, we subsequently study more complex disguising schemes based on stochastic updates of the free-rider parameters.

Finally, we conclude the manuscript in Chapter 7 by summarizing the main contributions of this work. We also present potential applications of our methods and build upon their limitations to propose further research perspectives.

Publications

The contributions of this manuscript led to the following publications and submissions in conferences and peer-reviewed journals.

• (Fraboni, Vidal, Kameni, et al., 2022a) A General Theory for Client Sampling in Federated Learning. Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi.

International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI 2022

• (Fraboni, Vidal, Kameni, et al., 2021) Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning. Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi. Proceedings of the 38th International Conference on Machine Learning, PMLR 139:3407-3416, 2021.

• (Fraboni, Vidal, Kameni, et al., 2022b) A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates. Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi. ArXiv. Under review.

• (Fraboni, Vidal, Kameni, et al., 2022c) Sequential Informed Federated Unlearning: Efficient and Provable Client Unlearning in Federated Optimization. Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi. ArXiv. Under review.

• [START_REF] Fraboni | Free-rider Attacks on Model Aggregation in Federated Learning[END_REF] In this chapter, we provide a general theoretical framework to quantify the impact of a client sampling scheme on the federated optimization. Our goal is to measure the impact of the clients data heterogeneity on the convergence speed of federated learning. First, we provide a unified theoretical ground for previously reported sampling schemes experimental results on the relationship between FL convergence and the variance of the aggregation weights. Second, we prove for the first time that the quality of FL convergence is also impacted by the resulting covariance between aggregation weights. This chapter is published at the International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI 2022 (FL-IJCAI'22) as Fraboni, Vidal, Kameni, et al. (2022a).

Introduction

Federated Learning (FL) has gained popularity in the last years as it enables different clients to jointly learn a global model without sharing their respective data. Among the different FL approaches, federated averaging (FEDAVG) has emerged as the most popular optimization scheme [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF]. An optimization round of FEDAVG requires data owners, also called clients, to receive from the server the current global model which they update on a fixed amount of Stochastic Gradient Descent (SGD) steps before sending it back to the server. The new global model is then created as the weighted average of the client updates, according to their data ratio. FL specializes the classical problem of distributed learning (DL), to account for the private nature of clients information (i.e. data and surrogate features), and for the potential data and hardware heterogeneity across clients, which is generally unknown to the server.

In FL optimization, FEDAVG was first proven to converge experimentally [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF], before theoretical guarantees were provided for any non-iid federated dataset (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF][START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF]Haddadpour and Mahdavi, 2019;Khaled et al., 2020a). A drawback of naive implementations of FEDAVG consists in requiring the participation of all the clients to every optimization round. As a consequence, the efficiency of the optimization is limited by the communication speed of the slowest client, as well as by the server communication capabilities. To mitigate this issue, the original FEDAVG algorithm already contemplated the possibility of considering a random subset of m clients at each FL round. It has been subsequently shown that, to ensure the convergence of FL to its optimum, clients must be sampled such that in expectation the resulting global model is identical to the one obtained when considering all the clients (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF][START_REF] Cho | Client selection in federated learning: Convergence analysis and power-of-choice selection strategies[END_REF]. Clients sampling schemes compliant with this requirement are thus called unbiased. Due to its simplicity and flexibility, the current default unbiased sampling scheme consists in sampling m clients according to a Multinomial Distribution (MD), where the sampling probability depends on the respective data ratio (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;Jianyu Wang, Q. Liu, et al., 2020;[START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]Haddadpour and Mahdavi, 2019;T. Li, Sanjabi, et al., 2020;[START_REF] Wang | Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms[END_REF]Fraboni, Vidal, Kameni, et al., 2021). Nevertheless, when clients have identical amount of data, clients can also be sampled uniformly without replacement [START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF][START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF][START_REF] Reddi | Adaptive Federated Optimization[END_REF][START_REF] Rizk | Dynamic Federated Learning[END_REF]. In this case, Uniform sampling has been experimentally shown to yield better results than MD sampling (Xiang Li et al., 2020).

Previous works proposed unbiased sampling strategies alternative to MD and Uniform sampling with the aim of improving FL convergence. In Fraboni, Vidal, Kameni, et al. (2021), MD sampling was extended to account for clusters of clients with similar data characteristics, while in W. Chen et al. (2020), clients sampling probabilities are defined depending on the Euclidean norm of the clients local work. While these works are based on the definition and analysis of specific sampling procedures, aimed at satisfying a given FL criterion, there is currently a need for a general theoretical framework to elucidate the impact of client sampling on FL convergence.

The main contribution of this chapter consists in deriving a general theoretical framework for FL optimization allowing to clearly quantify the impact of client sampling on the global model update at any FL round. This contribution has important theoretical and practical implications. First, we demonstrate the dependence of FL convergence on the variance of the aggregation weights. Second, we prove for the first time that the convergence speed is also impacted through sampling by the resulting covariance between aggregation weights. From a practical point of view, we establish both theoretically and experimentally that client sampling schemes based on aggregation weights with sum different than 1 are less efficient.

We also prove that MD sampling is outperformed by Uniform sampling only when clients have identical data ratio. Finally, we show that the comparison between different client sampling schemes is appropriate only when considering a small number of clients. Our theory ultimately shows that MD sampling should be used as default sampling scheme, due to the favorable statistical properties and to the resilience to FL applications with varying data ratio and heterogeneity.

This chapter is structured as follows. In Section 2.2, we provide formal definitions for FL, unbiased client sampling, and for the server aggregation scheme. In Section 2.3, we introduce our convergence guarantees (Theorem 2.1) relating the convergence of FL to the aggregation weight variance of the client sampling scheme. Consistently with our theory, in Section 2.4, we experimentally demonstrate the importance of the clients aggregation weights variance and covariance on the convergence speed, and conclude by recommending Uniform sampling for FL applications with identical client ratio, and MD sampling otherwise.

Background

Before investigating in Section 2.3 the impact of client sampling on FL convergence, we recapitulate in Section 2.2 the current theory behind FL aggregation schemes for clients local updates. We then introduce a formalization for unbiased client sampling.

Aggregating clients local updates

In FL, we consider a set I of n clients each respectively owning a dataset D i composed of n i samples. FL aims at optimizing the average of each clients local loss function weighted by p i such that n i=1 p i = 1, i.e.

L(θ) = n i=1 p i L i (θ), (2.1)
where θ represents the model parameters. The weight p i can be interpreted as the importance given by the server to client i in the federated optimization problem. While any combination of {p i } is possible, we note that in practice, either (a) every device has equal importance, i.e. p i = 1/n, or (b) every data point is equally important, i.e. p i = n i /M with M = n i=1 n i . Unless stated otherwise, in the rest of this work, we consider to be in case (b), i.e. ∃i,

p i ̸ = 1/n.
In this setting, to estimate a global model across clients, FEDAVG [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] is an iterative training strategy based on the aggregation of local model parameters. At each iteration step t, the server sends the current global model parameters θ t to the clients. Each client updates the respective model by minimizing the local cost function L i (θ) through a fixed amount K of SGD steps initialized with θ t . Subsequently each client returns the updated local parameters θ t+1 i to the server. The global model parameters θ t+1 at the iteration step t + 1 are then estimated as a weighted average:

θ t+1 = n i=1 p i θ t+1 i . (2.2)
To alleviate the clients workload and reduce the amount of overall communications, the server often considers m ≤ n clients at every iteration. In heterogeneous datasets containing many workers, the percentage of sampled clients m/n can be small, and thus induce important variability in the new global model, as each FL optimization step necessarily leads to an improvement on the m sampled clients to the detriment of the non-sampled ones.

To solve this issue, [START_REF] Reddi | Adaptive Federated Optimization[END_REF], [START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF], and Jianyu [START_REF] Wang | SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum[END_REF] propose considering an additional learning rate η g to better account for the clients update at a given iteration. We denote by ω i (S t ) the stochastic aggregation weight of client i given the subset of sampled clients S t at iteration t . The server aggregation scheme can be written as: Sampling

θ t+1 = θ t + η g n i=1 ω i (S t )(θ t+1 i -θ t
Var [ω i (S t )] α Var [ n i=1 ω i (S t )] Full participation = 0 = 0 = 0 MD = -1 m p 2 i + 1 m p i = 1/m = 0 Uniform = n m -1 p 2 i = n-m m(n-1) = n-m m(n-1) [n n i=1 p 2 i -1]
While FEDAVG was originally based on the uniform sampling of clients [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF], this scheme has been proven to be biased and converge to a suboptimal minima of problem (2.1) (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF][START_REF] Cho | Client selection in federated learning: Convergence analysis and power-of-choice selection strategies[END_REF][START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]. This was the motivation for Xiang Li et al. (2020) to introduce the notion of unbiasedness, where clients are considered in expectation subject to their importance p i , according to Definition 2.1 below. Unbiased sampling guarantees the optimization of the original FL cost function, while minimizing the number of active clients per FL round. We note that unbiased sampling is not necessarily related to the clients distribution, as this would require to know beforehand the specificity of the clients' datasets.

Unbiased sampling methods (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;[START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]Fraboni, Vidal, Kameni, et al., 2021) are currently among the standard approaches to FL, as opposed to biased approaches, known to over-or under-represent clients and lead to suboptimal convergence properties [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF][START_REF] Nishio | Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge[END_REF][START_REF] Jeon | Optimal User Selection for High-Performance and Stabilized Energy-Efficient Federated Learning Platforms[END_REF][START_REF] Cho | Client selection in federated learning: Convergence analysis and power-of-choice selection strategies[END_REF], or to methods requiring additional computation work from clients (W. Chen et al., 2020).

Definition 2.1 (Unbiased Sampling). A client sampling scheme is said unbiased if the expected value of the client aggregation is equal to the global deterministic aggregation obtained when considering all the clients, i.e.

E St n i=1 w i (S t )θ t i := n i=1 p i θ t i , (2.4)
where w j (S t ) is the aggregation weight of client j for subset of clients S t .

The sampling distribution uniquely defines the statistical properties of stochastic weights. In this setting, unbiased sampling guarantees the equivalence between deterministic and stochastic weights in expectation. Unbiased schemes of primary importance in FL are MD and Uniform sampling, for which we can derive a close form formula for the aggregation weights :

MD sampling. This scheme considers l 1 , ..., l m to be the m iid sampled clients from a Multinomial Distribution with support on {1, ..., m} satisfying P(l k = i) = p i (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;[START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]Haddadpour and Mahdavi, 2019;T. Li, Sanjabi, et al., 2020;[START_REF] Wang | Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms[END_REF]Fraboni, Vidal, Kameni, et al., 2021). By definition, we have n i=1 p i = 1, and the clients aggregation weights take the form:

ω i (S t ) = 1 m m k=1 I(l k = i).
(2.5)

Uniform sampling. This scheme samples m clients uniformly without replacement. Since in this case a client is sampled with probability p({i ∈ S t }) = m/n, the requirement of Definition 2.1 implies:

ω i (S t ) = I(i ∈ S t ) n m p i . (2.6)
We note that this formulation for Uniform sampling is a generalization of the scheme previously used for FL applications with identical client importance, i.e. p i = 1/n [START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF][START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF][START_REF] Reddi | Adaptive Federated Optimization[END_REF][START_REF] Rizk | Dynamic Federated Learning[END_REF]. We note that Var [ n i=1 ω i (S t )] = 0 if and only if p i = 1/n for all the clients as, indeed,

n i=1 ω i (S t ) = m n m 1 n = 1
With reference to equation (2.3), we note that by setting η g = 1, and by imposing the condition ∀S t , n i=1 ω i (S t ) = 1, we retrieve equation (2.2). This condition is satisfied for example by MD sampling and Uniform sampling for identical clients importance.

We finally note that the covariance of the aggregation weights for both MD and Uniform sampling satisfies Assumption 2.1.

Assumption 2.1 (Client Sampling Covariance

). There exists a constant α such that the

client sampling covariance satisfies ∀i ̸ = j, Cov [ω i (S t )] ω j (S t ) = -αp i p j .
We provide in Table 2.1 the derivation of α and the resulting covariance for these two schemes with calculus detailed in Appendix A.1. Furthermore, this property is common to a variety of sampling schemes, for example based on Binomial or Poisson Binomial distributions (detailed derivations can be found in Appendix A.1). Following this consideration, in addition to Definition 2.1, in the rest of this chapter we assume the additional requirement for a client sampling scheme to satisfy Assumption 2.1.

Advanced client sampling techniques

Importance sampling for centralized SGD Zhao and T. Zhang (2015) and [START_REF] Csiba | Importance Sampling for Minibatches[END_REF] has been developed to reduce the variance of the gradient estimator in the centralized setting and provide faster convergence. According to this framework, each data point is sampled according to a probability based on a parameter of its loss function (e.g. its Lipschitz constant), in opposition to classical sampling where clients are sampled with same probability. These works cannot be seamlessly applied in FL, since in general no information on the clients loss function should be disclosed to the server. Therefore, the operation of client sampling in FL cannot be seen as an extension of importance sampling. Regarding advanced FL client sampling, Fraboni, Vidal, Kameni, et al. (2021) extended MD sampling to account for collections of sampling distributions with varying client sampling probability. From a theoretical perspective, this approach was proven to have identical convergence guarantees of MD sampling, with albeit experimental improvement justified by lower variance of the clients' aggregation weights. In W. Chen et al. (2020), clients probability are set based on the euclidean norm of the clients local work. We show in Appendix A.1 that these advanced client sampling strategies also satisfy our covariance assumption 2.1, and are thus encompassed by the general theory developed in Section 2.3.

Convergence Guarantees

Based on the assumptions introduced in Section 2.2, in what follows we elaborate a new theory relating the convergence of FL to the statistical properties of client sampling schemes. In particular, Theorem 2.1 quantifies the asymptotic relationship between client sampling and FL convergence.

Asymptotic FL convergence with respect to client sampling

To prove FL convergence with client sampling, this chapter relies on the following three assumptions (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;[START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF]Haddadpour and Mahdavi, 2019;[START_REF] Wang | MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling[END_REF][START_REF] Wang | MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling[END_REF]:

Assumption 2.2 (Smoothness). The clients local objective function is L-Lipschitz smooth, that is, ∀i ∈ {1, ..., n}, ∥∇L i (x) -∇L i (y)∥ ≤ L ∥x -y∥.
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Assumption 2.3 (Bounded Dissimilarity ). There exist constants β 2 ≥ 1 and κ 2 ≥ 0 such that for every combination of positive weights {w i } such that n i=1 w i = 1, we have

n i=1 w i ∥∇L i (x)∥ 2 ≤ β 2 ∥∇L(x)∥ 2 + κ 2 .
If all the local loss functions are identical, then we have β 2 = 1 and κ 2 = 0.

Assumption 2.4 (Unbiased Gradient and Bounded Variance). Every client stochastic gradient g i (x|B) of a model x evaluated on batch B is an unbiased estimator of the local gradient. We thus have

E B [ξ i (B)] = 0 and 0 ≤ E B ∥ξ i (B)∥ 2 ≤ σ 2 , with ξ i (B) = g i (x|B) -∇L i (x).
We formalize in the following theorem the relationship between the statistical properties of the client sampling scheme and the asymptotic convergence of FL (proof in Appendix A.2).

Theorem 2.1 (FL convergence). Let us consider a client sampling scheme satisfying Definition 2.1 and Assumption 2.1. Under Assumptions 2.2, 2.3, and 2.4, and with sufficiently small local step size η l , the following convergence bound holds:

1 T T -1 t=0 E ∇L(θ t ) 2 ≤ O 1 ηKT + O η 2 l (K -1)σ 2 + O η Σ + n i=1 p 2 i σ 2 (2.7) + O η 2 l K(K -1)κ 2 + O ηγ (K -1)σ 2 + Kκ 2 ,
where η = η g η l , K is the number of local SGD,

Σ = n i=1 Var [ω i (S t )] (2.8) and γ = n i=1 Var [ω i (S t )] + α n i=1 p 2 i .
(2.9)

We first observe that any client sampling scheme satisfying the assumptions of Theorem 2.1 converges to its optimum. Through Σ and γ, equation (2.7) shows that our bound is proportional to the clients aggregation weights through the quantities Var [ω i (S t )] and α, which thus should be minimized. These terms are non-negative and are minimized and equal to zero only with full participation of the clients to every optimization round. Theorem 2.1 does not require the sum of the weights ω i (S t ) to be equal to 1. Yet, for client sampling satisfying Var [ n i=1 ω i (S t )] = 0, we get α ∝ Σ. Hence, choosing an optimal client sampling scheme amounts at choosing the client sampling with the smallest Σ. This aspect has been already suggested in Fraboni, Vidal, Kameni, et al. (2021).

The convergence guarantee proposed in Theorem 2.1 extends the work of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] where, in addition of considering FEDAVG with clients performing K vanilla SGD, we include a server learning rate η g and integrate client sampling (equation (2.3)). With full client participation (Σ = γ = 0) and η g = 1, we retrieve the convergence guarantees of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]. Furthermore, our theoretical framework can be applied to any client sampling satisfying the conditions of Theorem 2.1. In turn, Theorem 2.1 holds for full client participation, MD sampling, Uniform sampling, as well as for the other client sampling schemes detailed in Appendix A.1. Finally, the proof of Theorem 2.1 is general enough to account for FL regularization methods (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smithy, 2019;[START_REF] Acar | Federated Learning Based on Dynamic Regularization[END_REF], other SGD solvers [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]R. Ward et al., 2019;[START_REF] Li | On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes[END_REF], and/or gradient compression/quantization [START_REF] Reisizadeh | FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization[END_REF][START_REF] Basu | Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations[END_REF]H. Wang et al., 2018). For all these applications, the conclusions drawn for client samplings satisfying the assumptions of Theorem 2.1 still hold.

Application to current client sampling schemes

MD sampling. When using Table 2.1 to compute Σ and γ close-form we obtain:

Σ M D = 1 m 1 - n i=1 p 2 i and γ M D = 1 m ,
(2.10)
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where we notice that Σ M D ≤ 1 m = γ M D . Therefore, one can obtain looser convergence guarantees than the ones of Theorem 2.1, independently from the amount of participating clients n and set of clients importance {p i }, while being inversely proportional to the amount of sampled clients m. The resulting bound shows that FL with MD sampling converges to its optimum for any FL application.

Uniform sampling. Contrarily to MD sampling, the stochastic aggregation weights of Uniform sampling do not sum to 1. As a result, we can provide FL scenarios diverging when coupled with Uniform sampling. Indeed, using Table 2.1 to compute Σ and γ close-form we obtain (2.11) and

Σ U = n m -1 n i=1 p 2 i ,
γ U = 1 + 1 n -1 n m -1 n i=1 p 2 i , (2.12)
where we notice that

γ U = 1 + 1 n-1 Σ U . Considering that n i=1 p 2 i ≤ 1, we have Σ U ≤ n
m -1, which goes to infinity for large cohorts of clients and thus prevents FL with Uniform sampling to converge to its optimum. Indeed, the condition n i=1 p 2 i ≤ 1 accounts for every possible scenario of client importance {p i }, including the very heterogeneous ones. In the special case where p i = 1/n, we have n i=1 p 2 i = 1/n, such that Σ U is inversely proportional to both n and m. Such FL applications converge to the optimum of equation (2.1) for any configuration of n, {p i } and m.

Moreover, the comparison between the quantities Σ and γ for MD and Uniform sampling shows that Uniform sampling outperforms MD sampling when p i = 1/n. More generally, Corollary 2.1 provides sufficient conditions with Theorem 2.1 for Uniform sampling to have better convergence guarantees than MD sampling (proof in Appendix A.2.7).

Corollary 2.1. Uniform sampling has better convergence guarantees than MD sampling when Σ U ≤ Σ M D , and

γ U ≤ γ M D which is equivalent to n i=1 p 2 i ≤ 1 n -m + 1 . (2.13) Corollary 2.1 can be related to Var [ n i=1 ω i (S t )],
the variance for the sum of the aggregation weights, which is always null for MD sampling, and different of 0 for Uniform sampling except when p i = 1/n for all the clients. density function to sample clients indices (D. [START_REF] Tang | Efficient algorithms for modifying and sampling from a categorical distribution[END_REF]. This makes MD sampling difficult to compute or even intractable for large cohorts of clients. On the contrary sampling m elements without replacement from n states is a reservoir sampling problem and takes [START_REF] Li | Reservoir-Sampling Algorithms of Time Complexity O(n(1 + Log(N/n)))[END_REF]. In practice, clients either receive identical importance (p i = 1/n) or an importance proportional to their data ratio, for which we may assume computation p i = O(1/n). As a result, for important amount n of participating clients, Uniform sampling should be used as the default client sampling due to its lower time complexity. However, for small amount of clients and heterogeneous client importance, MD sampling should be used by default.

time complexity O(m(1 + log(n/m))(K.-H.
Due to space constraints, we only consider in this manuscript applying Theorem 2.1 to Uniform and MD sampling, which can also be applied to Binomial and Poisson Binomial sampling introduced in Section A.1, and satisfying our covariance assumption. To the best of our knowledge, we could only find Clustered sampling introduced in Fraboni, Vidal, Kameni, et al. (2021) not satisfying this assumption. Still, with minor changes, we provide for this sampling scheme a similar bound to the one of Theorem 2.1 (Appendix A.2.6), ultimately proving that clustered sampling improves MD sampling.

Experiments on real data

In this section, we provide an experimental demonstration of the convergence properties identified in Theorem 2.1. 1 We study a LSTM model for next character prediction on the dataset of The complete Works of William Shakespeare [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF][START_REF] Caldas | LEAF: A Benchmark for Federated Settings[END_REF]. We use a two-layer LSTM classifier containing 100 hidden units with an 8 dimensional embedding layer. The model takes as an input a sequence of 80 characters, embeds each of the characters into a learned 8-dimensional space and outputs one character per training sample after 2 LSTM layers and a fully connected one.

When selected, a client performs K = 50 SGD steps on batches of size B = 64 with local learning rate η l = 1.5. The server considers the clients local work with η g = 1. We consider n ∈ {10, 20, 40, 80} clients, and sample half of them at each FL optimization step.

While for sake of interpretability we do not apply a decay to local and global learning rates, we note that our theory remains unchanged even in presence of a learning rate decay. In practice, for dataset with important heterogeneity, considering η g < 1 can speed-up FL with a more stable convergence.

We compare the impact of MD, Uniform, and Clustered sampling, on the convergence speed of FEDAVG. With Clustered sampling, the server selects m clients from m different clusters of clients created based on the clients importance (Fraboni, Vidal, Kameni, et al., 2021, Algorithm 1). MD sampling is a special case of Clustered sampling, where every cluster is identical.

Clients have identical importance [p i = 1/n]. We note that Uniform sampling consistently outperforms MD sampling due to the lower covariance parameter, while the improvement between the resulting convergence speed is inversely proportional to the number of participating clients n . This result confirms the derivations of Section 2.3. Also, with Clustered sampling and identical client importance, every client only belongs to one cluster. Hence, Clustered sampling reduces to Uniform sampling and we retrieve identical convergence for both samplings . This point was not raised in Fraboni, Vidal, Kameni, et al. (2021).

Clients importance depends on the respective data ratio

[p i = n i /M ].
In this experimental scenario the aggregation weights for Uniform sampling do not always sum to 1, thus leading to the slow-down of FL convergence. Hence, we see in Figure 2.1b that MD always outperforms Uniform sampling. This experiment shows that the impact on FL convergence of the variance of the sum of the stochastic aggregation weights is more relevant than the one due to the covariance parameter α. We also retrieve in Figure 2.2e-h that Clustered sampling always outperform MD sampling, which confirms that for two client samplings with a null variance of the sum of the stochastic aggregation weights, the one with the lowest covariance parameter α converges faster. We also note that the slow-down induced by the variance is reduced when more clients do participate. This is explained by the fact that the standard deviation of the clients data ratio is reduced with larger clients participation, e.g. p i = 1/10 ± 0.13 for n = 10 and p i = 1/80 ± 0.017 for n = 80. We thus conclude that the difference between the effects of MD, Uniform, and Clustered sampling is mitigated with a large number of participating clients .

Additional experiments on Shakespeare are provided in Appendix A.3. We show the influence of the amount of sampled clients m and amount of local work K on the convergence speed of MD and Uniform sampling.

Finally, additional experiments on CIFAR10 (Krizhevsky et al., n.d.) are provided in Appendix A.3, where we replicate the experimental scenario previously proposed in Fraboni, Vidal, Kameni, et al. (2021). In these applications, 100 clients are partitioned using a Dirichlet distribution which provides federated scenarios with different level of heterogeneity. For all the experimental scenarios considered, both results and conclusions are in agreement with those here derived for the Shakespeare dataset.

Conclusion

In this chapter, we highlight the asymptotic impact of client sampling on FL with Theorem 2.1, and shows that the convergence speed is inversely proportional to both the sum of the variance of the stochastic aggregation weights, and to their covariance parameter α. Moreover, to the best of our knowledge, this chapter is the first one accounting for schemes where the sum of the weights is different from 1.

Thanks to our theory, we investigated MD and Uniform sampling from both theoretical and experimental standpoints. We established that when clients have approximately identical importance, i.e p i = 1/n, Uniform outperforms MD sampling, due to the larger impact of the covariance term for the latter scheme. On the contrary, Uniform sampling is outperformed by MD sampling in more general cases, due to the slowdown induced by its stochastic aggregation weights not always summing to 1. Yet, in practical scenario with very large number of clients, MD sampling may be unpractical, and Uniform sampling could be preferred due to the more advantageous time complexity.

In this chapter, we also showed that our theory encompasses advanced FL sampling schemes, such as the one recently proposed in Fraboni, Vidal, Kameni, et al., 2021, andW. Chen et al., 2020. Finally, while the contribution of this chapter is in the study of the impact of a client sampling on the global optimization objective, further extensions may focus on the analysis of the impact of clients selection method on individual users' performance, especially in presence of heterogeneity. To further reduce the number of communications, the server can select a subset of clients participating at every iteration. This strategy, called client sampling, enables reducing communications to the minimum. FedAvg first proposed selecting m clients uniformly without replacement while replacing the contribution of the non-sampled clients with the current global model. However this scheme is known for being biased, since the resulting model is, in expectation, different from the deterministic aggregation of every client. To overcome this issue, T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith (2018a) proposes an unbiased sampling scheme where the new global model is created as the average of the sampled clients work. The sampling is based on a multinomial distribution (MD) whose clients probabilities corresponds to their relative sample size. While other clients sampling schemes have been proposed, most of them require additional server-clients communications and are not proven to be unbiased (Xiang Li et al., 2020;W. Chen et al., 2020;[START_REF] Nishio | Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge[END_REF].

To the best of our knowledge, FedAvg and MD sampling are the only schemes keeping to a minimum server-clients communications. In particular, MD sampling has been proven to lead to FL optimum and shown experimentally to outperform FedAvg sampling [START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]. In spite of its unbiasedness, MD sampling may still lead to large variance in the clients selection procedure. While unbiasedness guarantees proper clients representativity in expectation, representativity is not necessarily achieved when considering a single FL iteration. Since at each MD sampling instance we select clients with replacement, this determines a variance in the amount of times a client is selected. This sampling variance is a leading cause of the large variability in the convergence of FL, especially in non-iid applications. Indeed, at each iteration, sampled clients improve the global model based on their data distribution, to the detriment of the data specificity of non-sampled clients.

While the literature mainly focused on the study of the behavior of FL sampling strategies in expectation, to our knowledge this study provides the first theoretical investigation of the variability properties of FL sampling. In what follows, we show that this statistical aspect is crucial to determine convergence stability and quality of FL. The contribution of this chapter is the introduction of clustered sampling, a new unbiased client sampling scheme improving MD sampling by guaranteeing smaller client selection variability, while keeping to a minimum server-clients communications. By increasing every client representativity in model aggregations, clustered sampling ensures that clients with unique distributions are more likely of being sampled, leading to smoother and faster FL convergence.

We first derive, in Section 3.2, the theory behind current FL sampling schemes this chapter is built on. We then formally introduce clustered sampling in Section 3.3 and prove its theoretical correctness by extending the work done in Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF].

We finally show the theoretical benefits of clustered sampling over MD sampling. In Section 3.4, we propose an implementation of clustered sampling aggregating clients based on their sample size, showing that this approach leads to reduced variance of the clients' aggregation weights. In Section 3.5, we extend our sampling theory to aggregation schemes based on the similarity between clients updates, showing that this approach further reduces the variance of clients aggregation weights while improving the representation of the clients during each FL aggregation step, as compared to MD sampling. This result leads to an overall improvement of the convergence of FL. Finally, in Section 3.6, we experimentally demonstrate this chapter on a broad range of balanced and unbalanced heterogeneous dataset.

The code used for this chapter is available here1 .

Related Work

Before introducing in Section 3.3 the core idea of clustered sampling, we first recapitulate in Section 3.2 the current theory behind parameter aggregation and sampling schemes for FL.

Aggregating clients local updates

In FL, we consider a set I of clients respectively owning datasets D i composed of n i samples. FL aims at optimizing the average of each clients local loss function weighted by their importance

p i L(θ) = i∈I p i L i (θ), (3.1)
where θ represents the model parameters and n i=1 p i = 1. While any combination of {p i } is possible, a common choice consists in defining p i = n i /M , where M = i∈I n i is the total number of sample across datasets. In this work, we adopt the same definition of the importance weights, although the theory derived below does not depend on ny specific choice of the parameters {p i }.

In this setting, to estimate a global model across clients, FEDAVG [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] is an iterative training strategy based on the aggregation of local model parameters θ t i . At each iteration step t, the server sends the current global model parameters θ t to the clients. Each client updates the model by minimizing the local cost function L(θ t+1 i , D i ) through a fixed amount of SGD initialized with θ t . Subsequently each client returns the updated local parameters θ t+1 i to the server. The global model parameters θ t+1 at the iteration step t + 1 are then estimated as a weighted average, i.e.

θ t+1 = i∈I n i M θ t+1 i . (3.2)

Clients' sampling

Clients sampling is a central operation of FL. FEDAVG [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] proposes to uniformly sample a subset of participating clients S t at every iteration while the other clients updates are replaced by the current global model, i.e.

θ t+1 = i∈St n i M θ t+1 i + i / ∈St n i M θ t . (3.3)
The sampling scheme introduced by FEDAVG is generally slow due to the attrition introduced by non-participating clients. To solve this problem, T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith (2018a) proposes instead to sample S t , the subset of clients at iteration t, from a Multinomial Distribution (MD) where each client is sampled according to its relative data ratio

p i = n i M .
The new global model is obtained as the average of each selected client, i.e.

θ t+1 = i∈St 1 m θ t+1 i . (3.4)
By design, MD sampling is such that the aggregation of clients model updates is identical in expectation to the one obtained when considering all the clients, i.e. E St θ t+1 = i∈I p i θ t+1 i . Sampling schemes following this property are called unbiased. Notably, the sampling scheme employed by FEDAVG does not satisfy this property, and it is thus prone to clients-drift [START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF].

FL convergence with MD client sampling

Theoretical guarantees regarding the convergence of FEDAVG were given in Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]. The proof relies on assumptions classically used in Stochastic Gradient Descent (SGD) analysis [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]) (Assumptions 3.1 and 3.2 below), or commonly used in the federated optimization literature (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;[START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]Haddadpour, Kamani, Mahdavi, and V. R. Cadambe, 2019;[START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF][START_REF] Wang | MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling[END_REF] to capture the dissimilarities of local objectives (Assumption 3.3 below).

Assumption 3.1 (Smoothness). The clients local objective function is Lipschitz smooth, that is, ∥∇L i (x) -∇L i (y)∥ ≤ L ∥x -y∥ , ∀i ∈ {1, ..., n}.
Assumption 3.2 (Unbiased Gradient and Bounded Variance). For each client i local model, the stochastic gradient g i (x|ξ) of model x evaluated on batch ξ is an unbiased estimator of the local gradient: E ξ [g i (x|ξ)] = ∇L i (x), and has bounded variance

E ξ [∥g i (x|ξ) -∇L i (x)∥] ≤ σ 2 , ∀i ∈ {1, ..., n} with σ 2 ≥ 0.
Assumption 3.3 (Bounded Dissimilarity). For any set of weights {w i ≥ 0} n i=1 such that n i=1 w i = 1, there exists constants β 2 ≥ 1 and

κ 2 ≥ 0 such that n i=1 w i ∥∇L i (x)∥ 2 ≤ β 2 ∥ n i=1 w i ∇L i (x)∥ 2 + κ 2 .
If all the local loss functions are identical, then we have β 2 = 1 and κ 2 = 0.

The following theorem was proven in Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] and provides theoretical guarantees for MD client sampling.

Theorem 3.1. Under Assumption 3.1 to 3.3, and local learning rate η = m/N T , FL with F edAvg when sampling m clients with MD converges to a stationary point of L(θ):

1 T T t=0 E ∇L(θ t ) 2 ≤ O( 1 √ mN T ) + O( mN T
).

(3.5)

Related Work

The proof of Theorem 3.1 can be found in Jianyu Wang, Q. Liu, et al. (2020) and shows that considering a subset of workers with MD client sampling is enough to ensure convergence of the global model to a local minimum of the federated loss function, equation (3.1). Following the conclusions of that work, to avoid optimizing a surrogate loss function instead of the federated one in equation (3.1), the server asks from every client to compute the same amount of SGD steps N .

Sampling schemes comparison

Other client sampling schemes have been proposed. For example, with Xiang Li et al. (2020), the server sends the global model to every client before creating the new global model out of the first m updated models the server receives; with W. Chen et al. (2020), the server waits for every client to send the norm of their work before selecting the m clients with the most relevant updates; with [START_REF] Nishio | Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge[END_REF], clients transmit information about their available computation resources before the server selects m of them in function of their availability. Contrarily to FEDAVG and MD sampling, these sampling schemes require additional communications and sometimes even computation from all the clients. On the contrary, FEDAVG and MD sampling have the appealing property of maintaining to a minimum the amount of clients-server communications at each iteration. The global model is sent only to the sampled clients, and the amount of local work is set for those clients to only N SGD updates. To the best of our knowledge, FEDAVG and MD sampling schemes are the only approaches minimizing the effective work and communications asked to the clients. Moreover, while FEDAVG sampling has no theoretical guarantees regarding its convergence, neither regarding the unbiasedness of its global model, MD sampling is shown to converge to a stationary point of the global loss function (3.1) (Theorem 3.1).

Based on these considerations and given that Xiang Li et al. (2020) shows experimentally that MD sampling outperforms FEDAVG , in the rest of this work we consider MD sampling as reference sampling technique.

Clustered Sampling

In Section 3.3.1, we first introduce clustered sampling and prove the convergence of FL under this scheme. In Section 3.3.2, we show the statistical improvements brought by clustered sampling as compared to MD client sampling, in terms of reduced sampling variance, and better clients representativity across the entire FL process.

Definition of clustered sampling

Let us consider n clients participating to FL. With MD sampling, m clients are sampled from a multinomial distribution supported on {1, ..., n} where a client is selected in function of its data ratio p i .

Assumption 3.4 (Unbiased Sampling). A client sampling scheme is said unbiased if the expected value of the client aggregation is equal to the global deterministic aggregation obtained when considering all the clients, i.e.

E St θ t = E St   j∈St w j (S t )θ t j   := n i=1 p i θ t i , (3.6)
where w j (S t ) is the aggregation weight of client j for subset of clients S t .

In Xiang Li et al. (2020), the notion of unbiased sampling is introduced by means of Assumption 3.4. MD sampling follows this assumption, and thus provides at every iteration an unbiased global model. However, MD sampling enables a client to be sampled from 0 to m times with non-null probability at each iteration, giving aggregation weights for every client ranging from 0 to 1. As a result, MD sampling provides appropriate representation for every client in expectation, with however potentially large variance in the amount of times a client is selected. As a consequence, the representativity of a client at any given realization of a FL iteration may not guaranteed. In the following we introduce clustered sampling, and show that this strategy leads to decreasing clients aggregation weight variance and better clients representativity.

We denote by W 0 the multinomial distribution with support on {1, ..., n} used to sample one client according to its data ratio p i . MD sampling can be seen as sampling m times with W 0 . With clustered sampling, we propose to generalize MD sampling by sampling m clients according to m independent distributions {W k (t)} m k=1 each of them privileging a different subset of clients based on opportune selection criteria (Section 3.4 and 3.5). With clustered sampling, the m clients can be sampled with different distributions and, at two different iterations, the set of distributions can differ. MD sampling is a special case of clustered sampling when ∀t, ∀k ∈ {1, ..., m}, W k (t) = W 0 .

In the rest of this work, we denote by r t k,i the probability for client i to be sampled in distribution W k (t). By construction, we have:

∀k ∈ {1, ..., m}, n i=1 r t k,i = 1 with r t k,i ≥ 0.
(3.7)

Clustered Sampling

We also require clustered sampling to be unbiased. 

E W k (t)   j∈W k (t) w j (W k (t))θ t j   = n i=1 r t k,i θ t i .
(3.9)

By linearity of the expected value, the expected new global model is the average between the weighted models obtained according to each distribution {W k } m k=1 derived in equation (3.9), i.e.

E St θ t = m k=1 1 m n i=1 r t k,i θ t i = n i=1 p i θ t i , (3.10)
where the second equality comes from equation (3.8).

In Theorem 3.2, we prove that FedAvg with clustered sampling satisfying Assumptions 3.1 to 3.3 and Proposition 3.1 has the same convergence bound to a FL local optimum as with FedAvg and MD sampling. The proof of Theorem 3.2 can be found in Appendix B.1.

Theorem 3.2. Under Assumption 3.1 to 3.3, and local learning rate η = m/N T , let's consider FL with F edAvg when sampling m clients with clustered sampling scheme satisfying Proposition 3.1. The same asymptotic behavior of MD sampling holds :

1 T T t=0 E ∇L(θ t ) 2 ≤ O( 1 √ mN T ) + O( mN T ) (3.11)
In the proof of Theorem 3.2 (Appendix B.1), we show that this convergence bound holds for any clustered sampling scheme satisfying Proposition 3.1. Moreover, the convergence bound of MD sampling is a bound itself for the convergence of a general clustered sampling scheme satisfying Proposition 3.1. Therefore, clustered sampling enjoys better convergence guarantees than MD sampling.

Improvements provided by clustered sampling

We introduced clustered sampling in Section 3.3.1 and showed that under the condition of Proposition 3.1 it provides the same convergence bound of MD sampling. In this section, we investigate the statistical benefits of clustered sampling with respect to MD sampling.

We define by ω i (S) the aggregation weight of client i with subset of sampled clients S, and by S M D and S C (t) the subset of clients sampled at iteration t with respectively MD and clustered sampling.

We consider a clustered sampling scheme following Proposition 3.1. Hence, for both MD and clustered sampling, the expected aggregation equals the deterministic aggregation when considering all the clients leading to:

E S M D (t) [ω i (S M D )] = E S C (t) [ω i (S C (t))] = p i . (3.12)
With clustered sampling, we first show that every client has a smaller aggregation weight variance. A client's aggregation weight can be written as ω i (S) = 1 m m k=1 {l k = i}, where l k is the index of the k th sampled client. With MD sampling, m clients are iid sampled according to B(p i ), a Bernoulli distribution with probability p i , giving the following variance:

Var S M D [ω i (S M D )] = 1 m 2 m Var [B(p i )] (3.13) = 1 m 2 mp i (1 -p i ). (3.14)
Clustered sampling instead selects independently m clients according to the distributions {W k (t)} m k=1 . Therefore, each client is sampled according to B(r t k,i ) giving:

Var S C (t) [ω i (S C (t))] = 1 m 2 m k=1 Var B(r t k,i ) (3.15) = 1 m 2 m k=1 r t k,i (1 -r t k,i ). (3.16)
By the Cauchy-Schwartz inequality, one can prove that 

Var S M D [ω i (S M D )] ≥ Var S C (t) [ω i (S C (t))] , ( 3 
p(i ∈ S M D ) = 1 -p({i / ∈ S M D }) (3.18) = 1 -p({i / ∈ W 0 }) m (3.19) = 1 -(1 -p i ) m . (3.20)
Similarly, with clustered sampling we get:

p(i ∈ S C (t)) = 1 - m k=1 p({i / ∈ W k (t)}) (3.21) = 1 - m k=1 (1 -r t k,i ). (3.22)
Since we assume here that clustered sampling follows Proposition 3.1, from equation (3.8), and from the inequality of arithmetic and geometric means, we get:

p({i ∈ S M D (t)}) ≤ p({i ∈ S C (t)}), (3.23) 
with equality if and only if all the m distributions are equal to the one of MD sampling, i.e. ∀k, W k (t) = W 0 (derivation in Appendix B.2). Therefore, with clustered sampling, every client has an higher probability of being sampled and thus is better represented throughout the FL process.

In conclusion, clustered sampling reduces clients aggregation weights variance and increases their representativity. These results are important for FL applications with heterogeneous federated dataset. Increasing a client representativity ensures that clients with unique distributions are more likely of being sampled, and can potentially lead to smoother and faster FL convergence.

Clustered Sampling based on Sample Size

We introduced and showed the convergence of unbiased clustered sampling in Section 3.3. Clustered sampling schemes compatible with Proposition 3.1 are numerous, including MD sampling. In this section, we first provide an unbiased clustered sampling scheme based on the number of samples n i owned by each client. The proposed scheme, illustrated in Algorithm 2 Clustered sampling based on sample size Require: {n i } n i=1 clients number of samples 1: Order clients by descending importance of n i . 2: k ← 1 distribution index. 3: q ← 0 sum of samples. 4: M ← n i=1 n i total number of samples. 5: for each client i = 1 to n do 6: q ← q + mn i 7: q = a i M + b i with a i and b i non negative integers 8:

if a i > k then 9: r ′ k,i ← M -b i-1 10: ∀l ≥ k + 1 s.t. (a i -1) -l ≥ 0, r ′ k,i ← M 11: end if 12: r ′ a i ,i ← b i 13:
k ← a i 14: end for Ensure:

Sampling probabilities r k,i = r ′ k,i /M .
Algorithm 2 , is compatible with Proposition 3.1. In particular, we have the following theorem:

Theorem 3.3. Algorithm 2 outputs m distributions for a clustered sampling satisfying Proposition 3.1. The complexity of the algorithm is O(n log(n)).

Proof. Algorithm 2 identifies the m distributions W k by defining m sets q k of cardinality M in which each client i is represented with probability r k,i . The sets are constructed as follows. We define by n ′ i = mn i the total number of samples to be allocated for each client. We thus have mM samples to allocate over the m sets q k . For each client, the integer division n ′ i = M a i + b i , identifies a i sets for which the client must be represented with probability 1. The remaining b i samples are allocated to the remaining mi a i sets. This is possible by observing that M m = i n ′ i = M ( i a i ) + i b i , and therefore M (mi a i ) = i b i . By construction, Proposition 3.1 is satisfied: |q k | = M implies equation (3.7), while equation (3.8) is met since, for each client, the total number of samples distributed across the sets q k is n ′ i = mn i , and thus each client is represented with proportion mp i across all the distributions. Algorithm 2 provides the practical implementation of this scheme.

The complexity of Algorithm 2 is derived in Appendix B.3, where we also provide a schematic illustration of the allocation procedure.

We note that with Algorithm 2 a client i can be sampled up to ⌊mp i ⌋ + 2 times. This is an improvement from MD sampling where clients can be instead sampled up to m times.

Clustered Sampling based on Sample Size

Algorithm 3 Clustered sampling based on model similarity Require: {n i } n i=1 clients number of samples, {G i } n i=1 clients representative gradient, m number of sampled clients, clustering method (e.g. Ward method), s similarity function (e.g. Arccos) 1: Estimated hierarchical clustering P with clustering method from similarity matrix ρ with ρ i,j = s(G i , G j ). 2: Cut P to determine K ≥ m groups {B k } K k=1 . We define q k as the total number of samples of the corresponding clients:

q k = i∈B k mn i ≤ M . 3: Order the groups {B k } K k=1 by decreasing q k . 4: Define clients number of samples in the m distributions {W k } m k=1 based on the ranking of q k : ∀k ≤ m, ∀i ∈ B k , r ′ k,i ← mn i . 5: Create a set with the clients of the remaining groups S = {{i, u i = mn i }, ∀i ∈ B m+1 ∪ ... ∪ B K } 6: k ← 1 Start considering the first distribution W k 7: while S ̸ = ∅ do 8:
Select first client i in S with u i samples to allocate 9: Determine a i and b i the quotient and remainder of the euclidean division of q k + u i by M 10:

if a i = 0 then 11: r ′ k,i ← b i and i removed from S 12: else if 13: thenr ′ k,i ← M -q k 14: u i ← u i -r ′ k,i 15: Remove i from S if u i = 0 16: k ← k + 1 17:
end if 18: end while Ensure:

Sampling probabilities r k,i = r ′ k,i /M .
Since clustering is performed according to the clients sample size n i , unless n i changes during the learning process, Algorithm 2 needs to be run only once at the beginning of the learning process, i.e. {W k (t)} m k=1 = {W k } m k=1 .

Clustered Sampling based on Similarity

We have shown, in Section 3.3, that unbiased clustered sampling is a generalization of MD sampling providing smaller aggregation weight variance for every client, and we proposed in Section 3.4 an algorithm to practically fulfill Proposition 3.1 to obtain m distributions grouping clients based on their number of samples n i .

In this section we extend the approach of Section 3.3 to define a novel clustered sampling scheme where sampling distributions are defined based on the similarity across clients. In what follows we define clients similarity based on the measure of representative gradient.

The representative gradient is the difference between a client's updated model and the global model. Comparing clients' representative gradients at a given iteration is shown to be an effective approach for detecting similarity between FL participants [START_REF] Sattler | Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints[END_REF].

Algorithm 3 adopts this concept to define a clustered sampling scheme compatible with Proposition 3.1. We have: Proof. Algorithm 3 is similar to Algorithm 2, with the additional constraint that the number of clusters K can differ from the number m of distributions. If K = m, the clients are already allocated in q k sets, and the same reasoning of Algorithm 2 can be applied. If K > m, we consider again the partitioning problem over m sets q k of cardinality M . We define again by n ′ i = mn i the total number of samples to be allocated for each client, and we have mM samples to allocate over the m sets q k . Differently from Algorithm 2, we initialize the allocation with the clustering. In particular, we assign to each set q k the n ′ i samples of the clients included in cluster k. By construction, each of these sets q k has cardinality |q k | ≤ M . We consider the m largest sets, and distribute in these sets the remaining samples of the K -m clusters until |q k | = M , for each k. By construction, this allocation is possible since we have mM total number of samples to be distributed across m sets of cardinality M . As for Algorithm 2, Proposition 3.1 is satisfied: |q k | = M implies equation (3.7), while equation (3.8) is met since, for each client, the total number of samples distributed across sets q k is n ′ i = mn i . Appendix B.3 completes the proof on the complexity of the algorithm.

As for Algorithm 2, Appendix B.3 provides a schematic for a better illustration of the algorithm. Being a clustered sampling scheme, the variance of the clients aggregation weights of Algorithm 3 is bounded (equation (3.16)). Moreover, since the distributions are obtained from the similarity tree resulting from the representative gradients, this scheme explicitly promotes the sampling of clients based on their similarity. Finally, with Algorithm 3, the sampling from the distributions {W k } m k=1 can be performed even when no representative gradient is available for the clients, for example if clients have not been sampled during FL yet. In this case we simply consider a constant 0 representative gradient for those clients, and thus group them together to promote their representativity in the same distribution.

Clustered Sampling based on Similarity

We recall that Algorithm 3 does not require to share gradients across clients, but only the difference between local and global models (a.k.a. representative gradients). Thus, the communication cost is the same of standard FL while the privacy properties of FL privacy remain identical.

We emphasize that any valid hierarchical clustering algorithm can be used in Algorithm 3. Without loss of generality, in the rest of this chapter we consider the Ward hierarchical clustering method (J. H. [START_REF] Ward | Hierarchical Grouping to Optimize an Objective Function[END_REF], which allows to obtain a similarity tree by minimizing at every node the variance of its depending clients. This method has complexity O(n 2 log(n)). We finally observe that the time complexity of Algorithm 3 is not necessarily an issue, even in presence of an important amount of clients. After aggregation of the new global model, the server can sample the clients, and transmit it to them. While waiting for their local work to be completed, the server can therefore estimate the new partitioning. In this way, Algorithm 3 is equivalent to MD sampling for what concerns the process of receiving the updated models, and transmitting the new global model to the clients.

As a final observation, while Algorithm 3 is originally designed for sampling scenarios where p i ≤ 1/m, with few modifications it can be also used for federated datasets composed of clients with larger sample size, i.e. when I = {i :

p i ≥ 1/m} ̸ = ∅, or equivalently I = {i : mn i ≥ M } ̸ = ∅.
In this case, we can simply allocate those clients in specific distributions, where they are sampled with probability 1. In total, we obtain ⌊m n i M ⌋ distributions of this kind. The remaining samples mn i -⌊m n i M ⌋M < M will be then redistributed according to Algorithm 3.

Experiments

We first show on a standard classification problem on MNIST (LeCun et al., 1998), the advantages of clustered sampling obtained with Algorithm 2 and 3 with respect to MD sampling. We consider a fully connected network with one hidden layer of 50 nodes. We create a federated dataset composed of 100 clients where each one has 500 training and 100 testing samples composed by one digit only. Each digit is owned by 10 clients, every client has the same number of samples, and the server samples 10 clients at every iteration.

We note that an ideal clustering method for this FL problem consists in creating 10 clusters each containing the 10 clients with same classes. At each FL round, we should sample a client from each cluster in order to obtain a fair representation of all the digits in the model aggregations. We call 'target' sampling this ideal FL scenario. In practice, the server cannot adopt 'target' sampling as this requires to know the clients data distributions in advance. As 

Experiments

we shall see in the rest of this section, the controlled nature of this example allows to clearly appreciate the practical benefits of clustered sampling.

We first show in Figure 3.1 that the FL processes obtained with Algorithm 2 and 3 both outperform MD sampling in terms of training global loss, testing accuracy, and representativity of the sampled classes. Moreover, we note that Algorithm 3 converges to the same ideal performances of 'target' sampling.

We also note that, with MD sampling, between 6 and 8 clients with different digits are generally chosen at each iteration round (Figure 3.1, top left panel). This is a practical demonstration of the sub-optimal representation of the clients heterogeneity. From a statistical perspective, with MD sampling the probability of sampling 10 different clients is p = 100! 90!100 10 ∼ 63%. Thus, for 37% of FL iterations, the new global model results from aggregation of less than 10 distinct clients. On the contrary, clustered sampling guarantees by construction that the aggregation will be always performed on 10 different clients. Indeed, since the dataset is balanced and the number of sampled clients m = 10 is a divider of the number of clients n = 100, every client can be allocated to one distribution only, and can be thus sampled up to once. Moreover, clustered sampling ensures that all the clients have identical aggregation weight variance. This improved data representation translates in less convergence variability at every iteration. Figure 3.1 illustrates this result by showing noticeable improvements in terms of convergence with lower variance and better performance for training loss and testing accuracy. Moreover, with Algorithm 3, although at the early training steps some classes are not represented, the clustering strategy allows to quickly partition the 100 clients in 10 clusters and converge to the ideal distribution of 'target' (Figure 3.1, top left). As a consequence of this improved representativity of clients and classes, Algorithm 3 is associated with smoother and faster convergence processes for training loss and testing throughout iterations.

To demonstrate the benefits of clustered sampling beyond the controlled setting of MNIST, we conduct additional experiments on CIFAR10 (Krizhevsky et al., n.d.) to investigate clustered sampling on more complex data distributions and models. CIFAR10 is composed of 32x32 images with three RGB channels of 10 different classes with 60000 samples. We use the same classifier of [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] composed of 3 convolutional layers and 2 fully connected ones, including dropout after every convolutional layer.

To measure the influence of non-iid data distributions on the effectiveness of clustered sampling, we partition CIFAR10 using a Dirichlet distribution, Dir(α), giving to each client the respective partitioning across classes. The parameter α monitors the heterogeneity of the created dataset: α = 0 assigns one class only to every client, while α → +∞ gives a uniform partitioning of classes to each client. Harry [START_REF] Hsu | Measuring the effects of non-identical data distribution for federated visual classification[END_REF] provides graphical illustration of datasets obtained with such a process, and we provide in Appendix B.4 similar In Figure 3.2, we show how heterogeneity determines the improvements of clustered sampling over MD sampling for any of the four datasets. We note that the more heterogeneous a dataset is, i.e. the smaller α, the larger is the improvement provided by clustered sampling. Theorem 3.4 shows that clustered sampling has an identical bound as MD sampling. This is retrieved for α = 10. and α = 0.1 where the final performances for the two samplings are close with faster convergence for clustered sampling. However, with α = 0.01 and α = 0.001, clustered sampling provides faster and better convergence. Overall, with clustered sampling, the evolution of the training loss and testing accuracy are smoother processes than with MD sampling.

For sake of clarity, we note that the training losses displayed in Figure 3.2 is computed as the rolling mean over 50 iterations, while we provide in Appendix B.4 the original training 3.6 Experiments loss evolution. Furthermore, Appendix B.4 reports a larger panel of experiments providing additional verification of the improvements brought by clustered sampling. In Figure 3.1 and 3.2, Algorithm 3 is computed with Arccos similarity. We show in Appendix B.4 that with L2 and L1 we get similar improvements. We also show that increasing the amount of local work N enables clients to update models fitting better their data distribution. As a result, measuring clients similarity is easier, enabling better clustering, and leading to better performances. We also show that for any amount of sampled clients clustered sampling improves MD sampling. Finally, it is worth noticing that in none of the experimental settings considered for this paper clustered sampling underperformed with respect to MD sampling, providing further experimental evidence for our theoretical results.

Discussion and Conclusion

In this chapter, we introduced clustered sampling, a novel client selection scheme in FL generalizing MD sampling, the current scheme from the state-of-the-art. We proved the correctness of clustered sampling and proposed two clustering methods implementing aggregation based on the clients number of samples, in Algorithm 2, or model similarity, in Algorithm 3. Both algorithms provide smaller weight variance for the clients aggregation process leading to better client representativity. Consistently, clustered sampling is experimentally shown to have faster and smoother convergence in heterogeneous dataset.

The generality of clustered sampling paves the way to further investigation of clients clustering methods based on different criteria than clients sample size or model similarity.

To the best of our knowledge, this chapter is also the first one introducing model similarity detection when sampling clients, as opposed to current approaches considering all clients at every iteration.

Finally, clustered sampling is an unbiased sampling scheme simple to implement, while not requiring to modify neither server nor clients behavior during FL training. This aspects makes clustered sampling readily compatible with existing methods and technologies for privacy enhancement and communication reduction. In this chapter, we propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. In Chapter 2, we extended the standard FEDAVG aggregation scheme by introducing stochastic aggregation weights to represent the variability of a client sampling scheme. In this chapter, we further extend the stochastic aggregation weights definition to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. In particular, we develop in this chapter FEDFIX, a novel extension of FEDAVG enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. This chapter is published at the Journal of Machine Learning Research as (Fraboni, Vidal, Kameni, et al., 2022b).

Introduction

Federated learning (FL) is a training paradigm enabling different clients to jointly learn a global model without sharing their respective data. Federated learning is a generalization of distributed learning (DL), which was first introduced to optimize a given model in starshaped networks composed of a server communicating with computing machines [START_REF] Bertsekas | Parallel and Distributed Computation: Numerical Methods[END_REF][START_REF] Nedić | Distributed asynchronous incremental subgradient methods[END_REF][START_REF] Zinkevich | Slow Learners are Fast[END_REF]. In DL, the server owns the dataset and distributes it across machines. At every optimization round, the machines return the estimated gradients, and the server aggregates them to perform an SGD step. DL was later extended to account for SGD, and FL extends DL to enable optimization without sharing data between clients. Typical federated training schemes are based on the averaging of clients model parameters optimized locally by each client, such as in FEDAVG [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF], where at every optimization round clients perform a fixed amount of stochastic gradient descent (SGD) steps initialized with the current global model parameters, and subsequently return the optimized parameters to the server. The server computes the new global model as the average of the clients updates weighted by their respective data ratio.

A key methodological difference between the optimization problem solved in FL and the one of DL lies in the assumption of potentially non independent and identically distributed (iid) data instances [START_REF] Kairouz | Advances and Open Problems in Federated Learning[END_REF]Q. Yang et al., 2019). Proving convergence in the non-iid setup is more challenging, and in some settings, FEDAVG has been shown to converge to a sub-optimum, e.g. when each client performs a different amount of local work (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF], or when clients are not sampled in expectation according to their importance [START_REF] Cho | Client selection in federated learning: Convergence analysis and power-of-choice selection strategies[END_REF].

A major drawback of FEDAVG concerns the time needed to complete an optimization round, as the server must wait for all the clients to perform their local work to synchronize their update and create a new global model. As a consequence, due to the potential heterogeneity of the hardware across clients, the time for an optimization round is conditioned to the one of the slowest update, while the fastest clients stay idle once they have sent their updates to the server. To address these limitations, asynchronous FL has been proposed to take full advantage of the clients computation capabilities (C. Xu et al., 2021;L. Nguyen et al., 2018;[START_REF] Koloskova | Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication[END_REF][START_REF] Sa | Taming the Wild: A Unified Analysis of Hogwild-Style Algorithms[END_REF]. In the asynchronous setting, whenever the server receives a client's contribution, it creates a new global model and sends it back to the client. In this way, clients are never idle and always perform local work on a different version of the global model. While asynchronous FL has been investigated in the iid case (Sebastian U Stich and Karimireddy, 2020), a unified theoretical and practical investigation in the non-iid scenario is currently missing.

This chapter introduces a novel theoretical framework for asynchronous FL based on the generalization of the aggregation scheme of FEDAVG, where asynchronicity is modeled as a stochastic process affecting clients' contribution at a given federated aggregation step. More specifically, our framework is based on a stochastic formulation of FL, where clients are given stochastic aggregation weights dependent on their effectiveness in returning an update. Based on this formulation, we provide sufficient conditions for asynchronous FL to converge, and we subsequently give sufficient conditions for convergence to the FL optimum of the associated synchronous FL problem. Our conditions depend on the clients computation time (which can be eventually estimated by the server), and are independent from the clients data heterogeneity, which is usually unknown to the server.

With asynchronous FL, the server only waits for one client contribution to create the new global. As a result, optimization rounds are potentially faster even though the new global improves only for the participating client at the detriment of the other ones. This aspect may affect the stability of asynchronous FEDAVG as compared to synchronous FEDAVG and, as we demonstrate in this work, even diverge in some cases. To tackle this issue, we propose FEDFIX, a robust asynchronous FL scheme, where new global models are created with all the clients contributions received after a fixed amount of time. We prove the convergence of FEDFIX and verify experimentally that it outperforms standard asynchronous FEDAVG in the considered experimental scenarios.

The chapter is structured as follows. In Section 4.2, we introduce our aggregation scheme and the close-form of its aggregation weights in function of the clients computation capabilities and the considered FL optimization routine. Based on our aggregation scheme, in Section 4.1 Introduction 4.3, we provide convergence guarantees, and we give sufficient conditions for the learning procedure to converge to the optimum of the FL optimization problem. In Section 4.4, we apply our theoretical framework to synchronous and asynchronous FEDAVG, and show that this chapter extends current state-of-the-art approaches to asynchronous optimization in FL. Finally, in Section 4.5, we demonstrate experimentally our theoretical results.

Background

We define here the formalism required by the theory that will be introduced in the following sections. We first introduce in Section 4.2.1 the FL optimization problem, and we adapt it in section 4.2.2 to account for delays in client contributions. We then generalize in Section 4.2.3 the FEDAVG aggregation scheme to account for contributions delays. In Section 4.2.4, we introduce the notion of virtual global models as a direct generalization of gradient descent, and introduce in Section 4.2.5 the final asynchronous FL optimization problem. Finally, we introduce in Section 4.2.6 a formalization of the concept of data heterogeneity across clients.

Federated Optimization Problem

We have M participants owning n i data points {z k,i } n i k=1 independently sampled from a fixed unknown distribution over a sample space {Z i } M i=1 . We have z k,i = (x k,i , y k,i ) for supervised learning, where x k,i is the input of the statistical model, and y k,i its desired target, while we denote z k,i = x k,i for unsupervised learning. Each client optimizes the model's parameters θ based on the estimated local loss l(θ, z k,i ). The aim of FL is solving a distributed optimization problem associated with the averaged loss across clients

L(θ) := E z∼ Ẑ [l(θ, z)] = 1 M i=1 n i M i=1 n i k=1 l(θ, z k,i ), (4.1) 
where the expectation is taken with respect to the sample distribution Ẑ across the M participating clients. We consider a general form of the federated loss of equation ( 4.1) where clients local losses are weighted by an associated parameter

p i such that n i=1 p i = 1, i.e. L(θ) = M i=1 p i L i (θ) s.t. L i (θ) = 1 n i n i k=1 l(θ, z k,i ). (4.2)
The weight p i can be interpreted as the importance given by the server to client i in the federated optimization problem. While any combination of {p i } is possible, we note that in typical FL formulations, either (a) every client has equal importance, i.e. p i = 1/M , or (b) every data point is equally important, i.e.

p i = n i / M i=1 n i .

Asynchronicity in Clients Updates

An optimization round starts at time t n with global model θ n , finishes at time t n+1 with the new global model θ n+1 , and takes ∆t n = t n+1 -t n time to complete. No assumptions are made on ∆t n , which can be a random variable, and we set for convenience t 0 = 0. In this section, we introduce the random variables needed to develop in Section 4.2.3 the server aggregation scheme connecting two consecutive global models θ n and θ n+1 .

We define the random variable T i representing the update time needed for client i to perform its local work and send it to the server for aggregation. T i depends on the client computation and communication hardware, and is assumed to be independent from the current optimization round n. If the server sets the FL round time to ∆t n = max i T i , the aggregation is performed by waiting for the contribution of every client, and we retrieve the standard client-server communication scheme of synchronous FEDAVG.

With asynchronous FEDAVG, we need to relate T i to the server aggregation time ∆t n . We introduce ρ i (n) the index of the most recent global model received by client i at optimization round n and, by construction, we have 0 ≤ ρ i (n) ≤ n. We define by

T n i := T i -(t n -t ρ i (n) ) (4.3)
the remaining time at optimization round n needed by client i to complete its local work.

Comparing T n i with ∆t n indicates whether a client is participating to the optimization round or not, through the stochastic event 

I(T n i ≤ ∆t n ). When I(T n i ≤ ∆t n ) = 1, the local work of client i is used to create the new global model θ n+1 , while client i does not contribute when I(T n i ≤ ∆t n ) = 0. With synchronous FEDAVG, we retrieve I(T n i ≤ ∆t n ) = I(T i ≤ max i T i ) = 1 for every client.

Server Aggregation Scheme

We consider ∆ i (n) the contribution of client i received by the server at optimization round n. In the rest of this chapter, we consider that clients perform K steps of SGD on the model they receive from the server. By calling their trained model θ n,k i after k SGD, we can rewrite clients contribution for FEDAVG as ∆ i (n) := θ n,K i -θ n , and the FEDAVG aggregation scheme as

4.2 Background 𝜃 0 𝜃 1 𝜃 2 𝜃 1 0 𝜃 1 1 𝜃 2 0 𝑇 1 0 = 𝑇 1 𝑇 1 1 = 𝑇 1 𝑇 2 0 = 𝑇 2 𝑇 2 1 Δ𝑡 1 Δ𝑡 0 𝑡 0 𝑡 1 𝑡 2 𝜃 2𝑛 𝜃 2𝑛+1 𝜃 2𝑛+2 𝜃 1 2𝑛 𝜃 1 2𝑛+1 𝜃 2 𝜌2(2𝑛+1) = 𝜃 2 2𝑛 𝑇 1 2𝑛 = 𝑇 1 𝑇 1 2𝑛+1 = 𝑇 1 𝑇 2 2𝑛 = 𝑇 2 𝑇 2 2𝑛+1 Δ𝑡 2𝑛+1 Δ𝑡 2𝑛 𝑡 2𝑛 𝑡 2𝑛+1 𝑡 2𝑛+2
θ n+1 := θ n + M i=1 p i ∆ i (n). (4.4)
With FEDAVG, the server waits for every client to send its contribution ∆ i (n) to create the new global model. To allow for partial computation within the server aggregation scheme, we introduce the aggregation weight d i (n) corresponding to the weight given by the server to client i at optimization round n. We can then define the stochastic aggregation weight ω i (n) given to client i at optimization step n as

ω i (n) := I(T n i ≤ ∆t n )d i (n), (4.5) 
with ω i (n) = d i (n) if client i updated its work at optimization round n and ω i (n) = 0 otherwise. In the general setting, client i receives θ ρ i (n) and its contribution is n) . By weighting each delayed contribution ∆ i (ρ i (n)) with its stochastic aggregation weight ω i (n), we propose the following aggregation scheme

∆ i (ρ i (n)) = θ ρ i (n),K i -θ ρ i (
θ n+1 := θ n + η g M i=1 ω i (n)∆ i (ρ i (n)), (4.6) 
where η g is a global learning rate that the server can use to mitigate the disparity in clients contributions [START_REF] Reddi | Adaptive Federated Optimization[END_REF][START_REF] Karimireddy | SCAFFOLD: Stochastic Controlled Averaging for Federated Learning[END_REF][START_REF] Wang | SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum[END_REF]. Equation (4.6) generalizes FedAvg aggregation scheme (4.4) (η g = 1 and ∆t n = max i T i ), and the one of Fraboni, Vidal, Kameni, et al. (2022a) n) to the server.

Clients in S n = {i : T n i ≤ ∆t n } send their contribution ∆ i (ρ i (n)) = θ ρ i (n),K i - θ ρ i (

4:

The server creates the new global model

θ n+1 = θ n + η g i∈Sn d i (n)∆ i (ρ i (n)), equation (4.6). 5:
The global model θ n+1 is sent back to the clients in S n . 6: end for

Expressing FL as cumulative GD steps

To obtain the tightest possible convergence bound, we consider a convergence framework similar to the one of Xiang Li et al. (2020) and Khaled et al. (2020a). We introduced the aggregation rule for the server global models {θ n } in Section 4.2.3, and we generalize it in this section by introducing the virtual sequence of global models θ n,k . This sequence corresponds to the virtual global model that would be obtained with the clients contribution at optimization round n computed on k ≤ K SGD, i.e.

θ n,k := θ n + η g M i=1 ω i (n) θ ρ i (n),k i -θ ρ i (n) . (4.7)
We retrieve θ n,0 = θ n and θ n,K = θ n+1,0 = θ n+1 . The server has not access to θ n,k when k ̸ = 0 or k ̸ = K. Hence the name virtual for the model θ n,k .

The difference between two consecutive global models in our virtual sequence depends on the sum of the differences between local models θ

ρ i (n),k+1 i -θ ρ i (n),k i = -η l ∇L i (θ ρ i (n),k i , ξ i ),
where ξ i is a random batch of data samples of client i. Hence, we can rewrite the aggregation process as a GD step with

θ n,k+1 = θ n,k -η g η l M i=1 ω i (n)∇L i (θ ρ i (n),k i , ξ i ). (4.8)

Asynchronous FL as a Sequence of Optimization Problems

For the rest of this work, we define q i (n

) := E [ω i (n)],
the expected aggregation weight of client i at optimization round n. No assumption is made on q i (n) which can vary across 4.2 Background optimization rounds. The expected clients contribution M i=1 q i (n)∆ i (n) help minimizing the optimization problem L n defined as

L n (θ) := M i=1 q i (n)L i (θ).
(4.9)

We denote by θn the optimum of L n and by θ * the optimum of the optimization problem L defined in equation ( 4.2). Finally, we define by q i = 1 N N -1 n=0 q i (n) the expected importance given to client i over the N server aggregations during the FL process, and by qi (n) the normalized expected importance qi (n) = q i (n)/( M i=1 q i (n)). We define by L the associated optimization problem

L(θ) := M i=1 q i L i (θ) = 1 N N -1 n=0 L n (θ), (4.10) 
and we denote by θ the associated optimum.

Finally, we introduce the following expected convergence residual, which quantifies the variance at the optimum in function of the relative clients importance q i (n)

Σ := M i=1 q i E ξ i ∇L i ( θ, ξ i ) 2 . (4.11)
The convergence guarantees provided in this chapter (Section 4.3) are proportional to the expected convergence residual and extend the ones provided for the synchronous setting in the work of Khaled et al. (2020a). The quantity Σ is finite and serves as a natural measure of variance in local optimization methods. Σ is positive and null only when clients have the same loss function and perform GD steps for local optimization. The work of Khaled et al. (2020a) shows how considering Σ provides tighter convergence guarantees than when assuming, for each client's gradient estimator, a bounded variance σ 2 . This is a common assumption in synchronous FL [START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]Jianyu Wang, Q. Liu, et al., 2020). A thorough analysis of the relationship between Σ and σ 2 is provided in Appendix C.1.1.

Formalizing Heterogeneity across Clients

We assume the existence of J ≤ M different clients feature spaces Z i and, without loss of generality, assume that the first J clients feature spaces are different. This formalism allows us to represent the heterogeneity of data distribution across clients. In DL problems, we have J < M when the same dataset split is accessible to many clients. When clients share the same distribution, we assume that their optimization problem is equivalent. we call F j (θ) their loss function with optimum θ * j . The federated problem of equation ( 4.2) can thus be formalized with respect to the discrepancy between the clients feature spaces Z i . To this end, we define Q j the set of clients with the same feature space of client j, i.e. Q j := {i : Z i = Z j }. Each feature space as thus importance r j = i∈Q j p i , and expected

importance s j (n) = i∈Q j q i (n) such that L(θ) = J j=1 r j F j (θ) and L n (θ) = J j=1 s j (n)F j (θ).
(4.12)

As for qi (n), we define sj

(n) = s j (n)/ M i=1 s j (n).
In Table 4.1, we summarize the different weights used to adapt the federated optimization problem to account respectively for heterogeneity in clients importance and data distributions across rounds.

Convergence of Federated Problem (4.2)

In this section, we prove the convergence of the optimization based on the stochastic aggregation scheme defined in equation ( 4 

τ := max i,n (n -ρ i (n)) optimization steps, which satisfy P(τ < ∞) = 1.
Finally, before focusing our attention on the convergence of Algorithm 4, we introduce Property 4.1 which states that the covariance between two aggregation weights can be expressed as the product of their expected aggregation weight up to a multiplicative factor α.

Property 4.1.

There exists α ∈ [-1, 1] such that E [ω i (n)ω j (n)] ≤ αq i (n)q j (n).
The proof of Property 4.1 follows from the definition of the clients aggregation weights, equation (4.5), which gives

E [ω i (n)ω j (n)] = P(T n i ≤ ∆t n , T n j ≤ ∆t n )d i (n)d j (n) ≤ q i (n)q j (n). (4.13)
This last equality shows that Property 4.1 is always verified by α = 1. In Section 4.4, we show that there exists α such that Property 4.1 is an equality for synchronous FL, asynchronous FL, and FEDFIX. We also derive such an α in close-form as function of the different training parameters. The work of Fraboni, Vidal, Kameni, et al. (2022a) shows that Property 4.1 also holds as an equality for numerous client samplings and provides for each of them related α in close-form.

Convergence of Algorithm 4

Before providing convergence guarantees for the federated optimization problem (4.2), we first prove with Theorem 4.1 the convergence of Algorithm 4.

Theorem 4.1. Under Assumptions 4.1 to 4.4, with η l ≤ 1/48KL min 1, 1/3ρ 2 η g (τ + 1) , we obtain the following convergence bound:

1 N N -1 n=0 1 K K-1 k=0 E L n (θ n,k ) -L n ( θn ) ≤ R({L n }) + ϵ F + ϵ K + ϵ α + ϵ β , (4.14)
where

R({L n }) = 1 N N -1 n=0 L n ( θ) -L n ( θn ) , ϵ F = 1 ηKN θ 0 -θ 2 , (4.15) ϵ K = O η 2 l (K -1) 2 [R({L n }) + Σ] , ϵ α = O α η + η2 K 2 τ 2 [R({L n }) + max q i (n)Σ] , (4.16 
)

ϵ β = O β η + η2 K 2 τ 2 [R({L n }) + Σ] , η = η g η l , β := max{d i (n) -αq i (n)}, (4.17) 
and O accounts for numerical constants and the loss function Lipschitz smoothness L.

Theorem 4.1 is proven in Appendix C.1. The convergence guarantee provided in Theorem 4.1 is composed of 5 terms: R({L n }), ϵ F , ϵ K , ϵ α , ϵ β . In the following, we describe these terms and explain their origin in a given optimization scheme.

Optimized expected residual R({L n }). The residual R({L n }) quantifies the sensitivity of L n between its optimum θn and the optimum θ of the overall expected minimized problem across optimization rounds L. As such, the residual accounts for the heterogeneity in the history of optimized problems, and is minimized to 0 when the same optimization problem is minimized at every round n, i.e. L n = L. This condition is always satisfied when clients have identical data distributions, but requires for the server to set properly every client aggregation weight d i (n) in function of the server waiting time policy ∆t n and the clients hardware capabilities T n i in the general case (Section 4.3.3 and 4.3.4).

Initialization quality ϵ F . ϵ F only depends of the quality of the initial model θ 0 through its distance with respect to the optimum θ of the overall expected minimized problem across optimization rounds L. This convergence term can only be minimized by performing as many serial SGD steps KN .

Clients data heterogeneity ϵ K . This term accounts for the disparity in the clients updated models, and is proportional to the clients amount of local work K (quadratically) and to the heterogeneity of their data distributions Z i through Σ 1 . When K = 1, every client perform its SGD on the same model, which reduces the server aggregation to a traditional centralized SGD. We retrieve ϵ K = 0.

Gradient delay τ through ϵ α and ϵ β . Decreasing the server time policy ∆t n allows faster optimization rounds but decreases a client's participation probability P(T n i ≤ ∆t n ) resulting in an increased maximum answering time τ . In turn, we note that ϵ α and ϵ β are quadratically proportional to the maximum amount of serial SGD Kτ . This latter terms quantifies the maximum amount of SGD integrated in the global model θ n . 

Sufficient

1 N N -1 n=0 1 K K-1 k=0 E ∇L(θ n,k ) 2 ≤ O (R({L n })) + P ({L n }) + U ({L n }) + O (ϵ F ) + ϵ K + ϵ α + ϵ β , (4.18)
where We retrieve the components of the convergence bound of Theorem 4.1. The terms ϵ F to ϵ τ can be mitigated by choosing an appropriate local learning rate η l , but the same cannot be said for R({L n }), P ({L n }), U ({L n }). Behind these three quantities, Theorem 4.2 shows that proper expected representation of every dataset type is needed, i.e. s j (n) = r j . Indeed, if a client is poorly represented, i.e. s j (n) ̸ = r j , then R({L n }) > 0 and P ({L n }) > 0, while if a client is not represented at all, i.e. s j (n) = 0, then U ({L n }) > 0. Therefore, we propose, with Corollary 4.1, sufficient conditions for any FL optimization scheme satisfying Algorithm 4 to converge to the optimum of the federated problem (4.2).

P ({L n }) = O   1 N N -1 n=0 χ 2 n j∈Wn sj (n) F j ( θn ) -F j (θ * j )   , (4.19) U ({L n }) = O   1 N N -1 n=0 1 K K-1 k=0 j / ∈Wn r j E F j (θ n,k ) -F j (θ * j )   , (4.20) χ 2 n = j∈Wn (r j -sj (n)) 2 /s j (n), and W n = {j : s j (n) > 0}.
We also note that the discussions made in Section 4.3.2 on the implications of Theorem 4.1 to provide tighter convergence guarantees (regarding the expected residuals, initialization quality, data heterogeneity, and gradient delay) can be translated to Theorem 4.2 and Corollary 4.1, therefore providing relevant insights on the rate of convergence to reach the optimum in asynchronous FL.

Corollary 4.1. Under the conditions of Theorem 4.1, if every client data distribution satisfies sj (n) = r j , the following convergence bound for optimization problem (4.2) can be obtained

1 N N -1 n=0 1 K K-1 k=0 E L(θ n,k ) -L(θ * ) ≤ ϵ F + ϵ K + ϵ α + ϵ β . (4.21) Proof. Follows directly. sj (n) = r j implies χ 2 n = 0, W n = ∅, L n = q(n)L, and θn = θ * .
These theoretical results provide relevant insights for different FL scenarios.

iid data distributions, Z i = Z. Consistently with the extensive literature on synchronous and asynchronous distributed learning, when clients have data points sampled from the same data distribution, FL always converges to its optimum (Corollary 4.1). Indeed, sj (n) = r j = 1 regardless of which clients are participating, and what importance p i or aggregation weight d i (n) a client is given.

non-iid data distributions. The convergence of FL to the optimum requires to optimize by considering every data distribution type fairly at every optimization round, i.e. sj (n) = r j (Corollary 4.1). This condition is weaker than requiring to treat fairly every client at every optimization round, i.e. q i (n) = p i . Ideally, only one client per data type needs to have a non-zero participating probability, i.e. P(T n i ≤ ∆t n ) > 0, and an appropriate d i (n) such that sj (n) = r j is satisfied. In practice, knowing the clients data distribution is not possible. Therefore, ensuring FL convergence to its optimum requires at every optimization round qi (n) = p i (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF].

4.3 Convergence of Federated Problem (4.2)
We provide in Example 4.1 an illustration on these results based on quadratic loss functions to show that considering fairly data distributions is sufficient for an optimization scheme satisfying Algorithm 4 to converge to the optimum of the optimization problem (4.2), since sj (n) = r j is satisfied at every optimization round, while qi (n) ̸ = p i may not be satisfied.

Example 4.1. Let us consider four clients with data distributions such that their loss can be expressed as

L i (θ) = 1 2 ∥θ -θ * i ∥ 2 with θ * 1 = θ * 2 (Z 1 ), θ * 3 = θ * 4 (Z 2
), and identical client importance, i.e. p i = 1/4. Therefore, each data type has identical importance, i.e. r j = 1/2, and the optimum satisfies

θ * = 1 2 [θ * 1 +θ * 3 ].
We consider that clients with odd index participate at odd optimization rounds while the ones with even index at even optimization rounds, i.e.

q 2n+1 1 = q 2n+1 3 = q 2n 2 = q 2n 4 = 1/2 and q 2n 1 = q 2n 2 = q 2n+1 3 = q 2n+1 4 = 0 which gives s1 (n) = s2 (n) = 1/2 and qi (n) = 0 or qi (n) = 1/2 but not qi (n) = 1/4.
With η g = 1, equation ( 4.6) can be rewritten as

θ n+2 = θ n+1 + 1 2 (θ n+1 1 -θ n ) + (θ n+1 3 -θ n ) . (4.22)
Clients update can be rewritten as 4.22) can thus be rewritten as 

θ n+1 i -θ n = ϕ(θ * i -θ n ), where ϕ = 1 -(1 -η l ) K . Equation (
θ n+2 -θ n+1 + ϕθ n = ϕθ * . ( 4 
4.2 (Window). ∃W ≥ 1 such that ∀s, 1 W (s+1)W -1 n=sW q i (n) = q i .
Property 4.2 states that over a cycle of W aggregations, the sum of a client's expected aggregation weights q i (n) is constant. By definition of q i , Property 4.2 is always satisfied for W = N . In addition, we show in Section 4.4 that Property 4.2 holds for all the asynchronous optimization schemes used in our work, and provide W in close-form depending on M , the amount of participating clients, and their associated update time.

Finally 

E ξ i ∥∇L i (x, ξ i )∥ 2 ≤ B 2 .
Therefore, using Assumption 4.2, Assumption 4.5 and the Cauchy Schwartz inequality gives

E L i (θ n,k+1 ) -E L i (θ n,k ) ≤ E ⟨∇L i (θ n,k+1 ), θ n,k+1 -θ n,k ⟩ ≤ η g η l q(n)B 2 .
(4.24) Finally, using equation (4.24) and Property 4.2, the performance history on the optimized problem can be bounded as follows

(s+1)W -1 n=sW K-1 k=0 q i E L i (θ n,k ) ≤ (s+1)W -1 n=sW K-1 k=0 q i (n) E L i (θ n,k ) + η g η l K(W -1)B 2 . (4.25)
Theorem 4.3. Under Assumption 4.1 to 4.5, and considering that W is a divider of N , we get the following convergence bound for the optimization problem (4.10): where ϵ W = O(η g η l (W -1)K). Furthermore, we obtain the following convergence guarantees for the federated problem (4.2):

1 N N -1 n=0 1 K K-1 k=0 E L(θ n,k ) -L( θ) ≤ ϵ := ϵ F + ϵ K + ϵ α + ϵ β + ϵ W , ( 4 
1 N N -1 n=0 1 K K-1 k=0 E ∇L(θ n,k ) 2 ≤ ϵ + O(χ 2 [ L( θ) - J j=1 s j F j (θ * j )]), (4.27) 
where χ 2 = J j=1 (r j -s j ) 2 sj .

Proof.

1 N N -1 n=0 1 K K-1 k=0 E L(θ n,k ) -L( θ) ≤ 1 N N -1 n=0 1 K K-1 k=0 q i (n) E L i (θ n,k ) + ηK(W -1)B 2 -L( θ) (4.28) ≤ R({L n }) + ϵ + 1 N N -1 n=0 L n ( θn ) -L( θ) = ϵ, (4.29)
where we use equation ( 4.25) for the first inequality and Theorem 4.1 for the second inequality.

Finally, we can obtain convergence guarantees on the optimization problem (4.2) with Theorem 4.2 by considering the minimization of the optimization problem L. Therefore, the bound of Theorem 4.2 can be simplified noting that L n = L, θn = θ, W n = ∅, χ 2 n = χ 2 , and by adding ϵ W , which completes the proof. Theorem 4.3 shows that the condition sj = r j is sufficient to minimize the optimization problem (4.2). In practice, for privacy concerns, clients may not want to share their data distribution with the server, and thus the relaxed sufficient condition becomes qi = p i . This condition is weaker than the one obtained with Corollary 4.1, at the detriment of a looser convergence bound including an additional asymptotic term ϵ W linearly proportional to the window size W . Therefore, for a given learning application, the maximum local work delay τ and the window size W need to be considered when selecting an FL optimization scheme satisfying Algorithm 4. Also, the server needs to properly allocate clients aggregation weight d i (n) such that Property 4.2 is satisfied while keeping at a minimum the window size W . We note that W depends of the considered FL optimization scheme and clients hardware capabilities. Based on the results of Theorem 4.3, in the following section, we introduce FEDFIX, a novel asynchronous FL setting based on a waiting policy over fixed time windows ∆t n . Finally, the following example illustrates a practical application of the condition qi = p i .

60

Chapter 4 A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates Example 4.2. We consider two clients, i = 1, 2, with L i (θ) = 1 2 ∥θ -θ * i ∥ 2 where clients have identical importance, i.e. p 1 = p 2 = 1/2. Client 1 contributes at even optimization rounds and Client 2 at odd ones, i.e. q 2n 1 = q 1 , q 2n+1 2 = q 2 , and q 2n+1 1 = q 2n 2 = 0. Hence, we have 

θ n n→∞ ---→ q 1 θ * 1 + q 2 θ * 2 q 1 + q 2 , ( 4 
q2n i + q2n+1 i = p i (Theorem 4.3).
The conditions of Corollary 4.1 and Theorem 4.3 are equivalent when W = 1, where we retrieve ϵ W = 0. They are also equivalent when clients have the same data distributions, and we retrieve sj = r j = 1 at every optimization round, which also implies that W = 1.

The convergence guarantee proposed in Theorem 4.3 depends on the window size W , and to the maximum amount of optimizations needed for a client to update its work τ . We provide sufficient conditions in Corollary 4.2 for the parameters W , and τ , such that an optimization scheme satisfying Algorithm 4 converges to the optimum of the optimization problem (4.2). Proof. The bound of Theorem 4.3 converges to 0 if the following quantities also do:

η l W , 1 η l N , τ η l , η l .
We get the following conditions on a, b, and c:

-c + a < 0, c -1 < 0, b -c < 0, -c < 0, which completes the proof.
By construction and definition of q i , Property 4.2 is always satisfied with W = N . However, Corollary 4.2 shows that when W = N , no learning rate η l can be chosen such that the learning process converges to θ * . Also, Corollary 4.2 shows that Assumption 4. 

Applications

In this section, we show that the formalism of Section 4.2 can be applied to a wide-range of optimization schemes, demonstrating the validity of the conclusions of Corollary 4.1 and Theorem 4.3 (Section 4.3). When clients have identical data distributions, the sufficient conditions of Corollary 4.1 are always satisfied (Section 4.3). In the heterogeneous case, these conditions can also (theoretically) be satisfied. It suffices that every client has a nonnull participation probability, i.e. P(T n i ≤ ∆t n ) > 0 such that there exists an appropriate d i (n) satisfying qi (n) = p i . Yet, in practice clients generally may not even know their update time distribution P(T n i ) making the computation of

d i (n) intractable.
In what follows, we thus focus on Theorem 4.3 to obtain the close-form of ϵ, which only requires from the server to know the clients time τ i . Theorem 4.3 provides a close-form for the convergence bound ϵ of an optimization scheme in function of the amount of server aggregation rounds N . We first introduce in Section 4.4.1 our considerations for the clients hardware and data to instead express ϵ in function of the training time T . The quantity ϵ also depends on the optimization scheme time policy ∆t n through α, β and τ , and on the clients data heterogeneity through R({L n }) and W . We provide their close-form for synchronous FEDAVG (Section 4.4.2), asynchronous FEDAVG (Section 4.4.3), and FEDFIX (Section 4.4.4), a novel asynchronous optimization scheme motivated by Section 4.3.4. Finally, in Section 4.4.5, we show that the conclusions drawn for synchronous/asynchronous FEDAVG and FEDFIX can also be extended to other distributed optimization schemes with delayed gradients. Of course, similar bounds can seamlessly be derived for centralized learning and client sampling, which we differ to Appendix C.3 to focus on asynchronous FL in this section.

Heterogeneity of clients hardware and data distributions

Clients importance. We restrict our investigation to the case where clients have identical aggregation weights during the learning process, i.e. d i (n) = d i . We also consider identical client importance p i = 1/M . We can therefore define the averaged optimum residual Σ defined as the average of the clients SGD evaluated on the global optimum, i.e. 

Σ := 1 M M i=1 E ξ i ∥∇L i (θ * , ξ i )∥ 2 . ( 4 
= p i = M i=1 1 τ i τ i p i = ⌈τ i /∆t⌉p i N T /τ M M i=1 T /τ i T /∆t ∆t = max T n i = min T n i = ∆t α 1 0 1 β 0 max d i ≤ τ m /τ 0 0 τ 0 Ω(M ), O(M τ M /τ 0 ) 0, ⌊τ m /τ 0 ⌋ W 1 Ω(M ), O(M (τ M ) M ) 1, M ⌈τ m /τ 0 ⌉ M Tab. 4.2.:
The different variables used to account for the importance of clients or data distributions at every optimization round and during the full FL process. For τ and W , we give two values which correspond to their respective lower and upper bound.

simplified by assuming bounded variance of the stochastic gradients, i.e. Σ ≤ σ 2 , where σ 2 is the bounded variance of any client SG.

Clients computation time. In the rest of this chapter, we consider that clients guarantee reliable computation and communication, although with heterogeneous hardware capabilities, i.e. ∃τ i ∈ R, s.t. T i = τ i . Without loss of generality, we assume that clients are ordered by increasing τ i , i.e. τ i ≤ τ i+1 , where the unit of τ i is such that τ i is an integer. In what follows, we provide the close form of d i for all the considered optimization schemes. This derivation still holds for applications where clients have unreliable hardware capabilities that can be modeled as an exponential distribution, i.e.

T i ∼ exp(τ -1 i ) which gives E [T i ] = τ i .
Clients data distributions. Unless stated otherwise, we will consider the FL setting where each client has its unique data distribution. Therefore, clients have heterogeneous hardware and non-iid data distributions. The obtained results can be simplified for the DL setting where a dataset is made available to M processors. In this special case, clients have iid data distributions (Z i = Z 1 ) , and identical computation times (τ i = τ 1 , W = M , and τ = M -1).

Learning rates. For sake of clarity, we ignore the server learning rate when expressing the convergence bounds ϵ, i.e. η g = 1. Also, we consider a local learning rate η l inversely proportional to the serial amount of SGD included in the global model, i.e. η l ∝ 1/ √ KN , consistently with the rest of the distributed optimization literature.

We propose Table 4.2 to summarize the close form or bounds of the different parameters used in Section 4.3.

Applications

FedAvg, Synchronous Federated Learning

As described for FEDAVG in Section 4.2.3, at every optimization round, the server sends to the clients the current global model to perform K SGD steps on their own data before returning the resulting model to the server. Once every client performs its local work, the new global model is created as the weighted average of the clients contribution. The time required for an optimization step is therefore the one of the slowest client (∆t n = max i (T n i )), and every client is considered (P(T n i ≤ ∆t n ) = 1). Hence, α = 1, β = 0, and setting d i = p i is sufficient to satisfy the conditions of Corollary 4.1 (and thus the ones of Theorem 4.3) ensuring that FL converges to its optimum (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]. The term ϵ then reduces to

ϵ FEDAVG = 1 √ KN θ 0 -θ * 2 + O K -1 N Σ + O 1 √ KN 1 M Σ . (4.33)
The second element of equation ( 4.33) accounts for the clients update disparity through their amount of local work K between two server aggregations, and is proportional to the SG variance Σ. The third element benefits of the distributed computation by being proportional to 1/M . Equation (4.33) is consistent with literature on convex distributed optimization with FEDAVG including Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] and Khaled et al. (2020a).

Asynchronous FedAvg

With FEDAVG, every client waits for the slowest one to perform its local work, and cannot contribute to the learning process during this waiting time. To remove this bottleneck, with asynchronous FEDAVG, the server creates a new global model whenever it receives a client contribution before sending it back to this client. For in depth discussion of Asynchronous FEDAVG, please refer to C. Xu et al. (2021).

With asynchronous FEDAVG, clients always compute their local work but each on a different global model, giving ∆t n = min i T n i , α = 0, and β = max i d i . In addition, while the slowest client updates its local work, other clients performs a fix amount of updates (up to ⌈τ M /τ i ⌉). By scaling this amount of updates by the amount of clients sending updates to the server, we have By construction, ν ≥ τ M and thus W = Ω(M ), with W = M when clients have homogeneous hardware (τ M = τ 0 ). In the worse case, every τ i is a prime number, and we have ν/τ i ≤ (τ M ) M -1 , which gives W = O(M (τ M ) M -1 ). In a cycle of W optimization rounds, every client participates ν/τ i times to the creation of a new global model. Therefore, we have q i (n) = d i for the ν/τ i participation of client i, and q i (n) = 0 otherwise. Hence, the sufficient conditions of Theorem 4.3 are satisfied when

τ = O τ M τ 0 (M -1) . ( 4 
q i = 1 W (k+1)W -1 n=kW q i (n) = 1 M i=1 ν/τ i ν τ i d i = p i ⇒ d i = M i=1 1 τ i τ i p i . (4.36)
The client weight calculated in equation ( 4.36) is constant and only depends on the client importance p i (set and thus known by the server), and on the clients computation time τ i (eventually estimated by the server after some clients updates). The condition on d i can be further simplified by accounting for the server learning rate η g . Coupling equation (4.6) with equation ( 4.36) gives η g d i ∝ τ i p i , which is sufficient to guarantee the convergence of asynchronous FL to its optimum. Finally, by bounding τ i , we also have β = max i d i ≤ τ M /τ 0 , bounded the hardware computation time heterogeneity.

The disparity between the optimized objectives R({L n }) at different optimization rounds also slows down the learning process. Indeed, at every optimization round, only a single client can participate with probability 1. As such, we have L n = d i L i which, thanks to the assumption p i = 1/M , yields

R({L n }) = 1 M M i=1 [L i (θ * ) -L i (θ * i )] . (4.37)
Finally, we simplify the close-form of ϵ (Theorem 4.3) for asynchronous FEDAVG to get

ϵ Async = 1 √ KN θ 0 -θ * 2 + O K -1 N Σ + O τ M τ 0 1 √ KN [R({L n }) + Σ] + O τ M τ 0 3 K N M 2 [R({L n }) + Σ] + O 1 √ KN (W -1) . (4.38)
With equation ( 4.38), we can compare synchronous and asynchronous FEDAVG. The first and second asymptotic terms are identical for the two learning algorithms, while the third asymptotic term is scaled by the hardware characteristics τ M /τ 0 instead of 1/M in FEDAVG, with the addition of a non null residual R({L n }) for asynchronous FEDAVG. However, the fourth and fifth term are unique to asynchronous FEDAVG, and explains why

Applications

its convergence gets more challenging as the amount of clients M increases. The impact of the hardware heterogeneity is also identified through the importance of τ M /τ 0 in the third term. With no surprise, for a given optimization round, synchronous FEDAVG outperforms its asynchronous counterpart. However, in T time, the server performs

N = M i=1 T /τ i (4.39)
aggregations with asynchronous FEDAVG against T /τ M for synchronous FEDAVG. With asynchronous FEDAVG, the server thus performs at least M times more aggregations than with synchronous FEDAVG. As a result, the first two terms of equation (4.38), which are proportional to how good the initial model is ∥θ 0 -θ * ∥, decrease faster with asynchronous FEDAVG at the detriment of an higher convergence residual coming for the two last terms.

Comparison with asynchronous DL and FEDAVG literature. The convergence rates obtained in the convex distributed optimization literature relies on additional assumptions to ours, with which we retrieve their proposed convergence rate. To the best of our knowledge, only [START_REF] Zinkevich | Slow Learners are Fast[END_REF] considers non-iid data distributions for the clients. When assuming W = O(τ ) and η l ∝ 1/ √ τ N , we retrieve a convergence rate τ /N .

We also match convergence rates for literature with iid client data distributions and [START_REF] Agarwal | Distributed Delayed Stochastic Optimization[END_REF][START_REF] Lian | Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization[END_REF]. When

K = 1. With M = O( √ N ), then we have O(1/ √ N ) (Agarwal
η l = O(1/τ √ KN ), we retrieve τ /N + 1/ √ N (Sebastian U Stich and
Karimireddy, 2020; S. [START_REF] Stich | Critical Parameters for Scalable Distributed Learning with Large Batches and Asynchronous Updates[END_REF].

FedFix

The analysis of asynchronous FEDAVG (Section 4.4.3) and its comparison with synchronous FEDAVG (Section 4.4.2), shows that asynchronous FEDAVG is not scalable to large cohort of clients. We thus propose FEDFIX combining the strong points of synchronous and asynchronous FEDAVG, where the server creates the new global model at a fixed time t n with the contributions received since t n-1 . Therefore, the server does not wait for every client, contrarily to synchronous FEDAVG, and considers more than one client per aggregation to have more stable aggregations, contrarily to asynchronous FEDAVG. We provide in Figure 4.1 an illustration of FEDFIX with two clients.

With FEDFIX, an iteration time ∆t n = t n+1 -t n is decided by the server and is independent from the clients remaining update time T n i . For sake of convenience, we further assume that the time between optimization rounds is identical, i.e. ∆t n = ∆t, but the following results
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Chapter 4 A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates can be derived for other fixed time policies {∆t n }. Therefore, T n i and T n j are independent, and so are ω i and ω j , which gives α = 1 and β = 0.

Every client sends an update to the server in N ′ i = ⌈T i /∆t⌉ optimization steps. Contrarily to asynchronous FEDAVG, we thus have τ = ⌈τ m /∆t⌉ = O(1), which is independent from the amount of participating clients M . In this case, the smallest window W satisfies W = lcm({N ′ i }), and clients update W/N ′ i times their work to the server during the window W . Therefore, satisfying the conditions of Theorem 4.3 requires

d i = ⌈ τ i ∆t ⌉p i . (4.40)
With equation ( 4.40), we can notice the relationship between FEDFIX and synchronous or asynchronous FEDAVG. When ∆t ≥ τ i , client i participates to every optimization round and is thus considered synchronously, which gives d i = p i . When ∆ t ≥ τ M , we retrieve synchronous FL and d i = p i for every client. On the contrary, for asynchronous FL, when ∆t ≪ τ i , we obtain ⌈τ i /∆t⌉ ≈ τ i /∆t and we retrieve η

g d i = η g [τ i /∆t] p i ∝ τ i p i .
Regarding the disparity between the local objectives R{L n }, we know that a client participates to an optimization round with q i (n) = d i . We thus have

L n = i∈Sn d i L i ,
where S n is the set of the participating clients at optimization step n. Considering that

L n ( θn ) ≥ i∈Sn d i L i (θ * i )
, the close form of FEDFIX is bounded by the one of of asynchronous FEDAVG, i.e.

R({L

n }) ≤ 1 M M i=1 [L i (θ * ) -L i (θ * i )] . (4.41)
Finally, we simplify the close-form of ϵ (Theorem 4.3) for FEDFIX to get

ϵ FEDFIX = 1 √ KN E θ 0 -x 2 + O K -1 N [R({L n }) + Σ] + O 1 √ KN + K N ⌈ τ m ∆t ⌉ 2 R({L n }) + ⌈ τ m ∆t ⌉ 1 M Σ + O 1 √ KN (W -1) . (4.42)
The first two elements of equation ( 4.42) are identical for FEDFIX, synchronous and asynchronous FEDAVG. However, thanks to lower values for the different variables (cf Table 4.2), the last two asymptotic terms of the convergence bound are smaller for FEDFIX than for asynchronous FEDAVG, equation (4.42). Similarly, these two terms are larger with FEDFIX than with synchronous FEDAVG. The hardware heterogeneity and the amount of participating clients still impacts the convergence bound through ⌈τ M /∆t⌉ and W , but can be mitigated with proper selection of ∆t. Therefore, after N optimization rounds, synchronous FEDAVG outperforms FEDFIX which outperforms in turn asynchronous FEDAVG.

Applications

However, in T time, the server performs N = T /∆t aggregations with FEDFIX against T /τ M for synchronous FEDAVG. With asynchronous FEDAVG, the server thus performs at least τ M /∆t times more aggregations than with synchronous FEDAVG. Overall, ∆t can be considered as the level of asynchronicity given to Algorithm 4, with FEDAVG when ∆t = τ M and asynchronous FEDAVG when ∆t ≥ τ M .

In the DL case, clients have identical computation time (τ 1 = τ m ), and we retrieve the convergence bound of synchronous FEDAVG.

In addition, we can increase the waiting time for the clients update, since the learning process converges and gets closer to the optimum of optimization problem (4.2), to reach a behavior similar to the one of synchronous FL. Indeed, for Theorem 4.3 to hold, we only need the same optimization time rounds ∆t over a window W

Generalization

Coupled with the theoretical method developed in Jianyu Wang, Q. [START_REF] Reisizadeh | FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization[END_REF][START_REF] Basu | Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations[END_REF]H. Wang et al., 2018;[START_REF] Koloskova | Decentralized Deep Learning with Arbitrary Communication Compression[END_REF].

We also note that Theorem 4.3 can be applied to other distributed optimization schemes using different waiting time policy ∆t n . With FEDBUFF (J. [START_REF] Nguyen | Federated Learning with Buffered Asynchronous Aggregation[END_REF], the server waits for m client updates to create the new global model. The server then communicates to these clients the new global model, while the other clients keep performing local work on the global model they received.

In this section, the sufficient conditions of Theorem 4.3 regarding the expected aggregation weights q i (n) were applied to obtain proper aggregation weight d i . We keep identical clients local learning rate η l and amount of local work K. We could instead get the close-form of a client specific learning rate η l (i) or amount of local work K(i) using the gradient formalization of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]. Specifically, our conclusions can also be applied to federated optimization schemes where clients perform the same amount of SGD steps on their data over the whole optimization process while asynchronously aggregating the clients' delayed updates (Lian, W. Zhang, et al., 2018;[START_REF] Avdiukhin | Federated Learning under Arbitrary Communication Patterns[END_REF]. Finally, with minor modifications to the aggregation scheme (4.6), our convergence guarantees can also be extended to federated optimization schemes where the server balances the clients' hardware heterogeneity by using every client latest contribution during each aggregation step [START_REF] Gu | Fast federated learning in the presence of arbitrary device unavailability[END_REF]H. Yang et al., 2022).

Experiments

In this section, we experimentally demonstrate the theoretical claims of Section 4.3 and 4.4. We first introduce the information needed to understand how the experiments are run in Section 4.5.1. Finally, in Section 4.5.2, we provide our experiments and their interpretation.

Experimental Setting

We introduce in this subsection the dataset and the predictive models used for federated optimization, the hardware scenarios proposed to simulate hardware heterogeneity, the clients aggregation weights strategies, and how the different hyperparameters are set 1 .

Optimization Problems. We consider learning a predictive model for optimization problem (4.2) where clients have identical importance (p i = 1/M ) based on the following datasets with their associated learning scenarios.

• MNIST iid (Lecun et al., 1998) and MNIST non-iid. MNIST is a dataset of 28x28 pixel grayscale images of handwritten single digits between 0 and 9 composed of 60 000 training and 10 000 testing samples split equally among the clients. We use a logistic regression to predict the images class. Clients are randomly allocated digits to match their number of samples. With MNIST non-iid, we split instead data samples among clients using a Dirichlet distribution of parameter 0.1, i.e. Dir(0.1).Therefore, with MNIST iid and non-iid, we evaluate our theory on a convex optimization problem.

• CIFAR10/100 (Krizhevsky et al., n.d.). The dataset consists of 10/100 classes of 32x32 images with three RGB channels. • CIFAR * 10/100. Clients get the same samples as with CIFAR10/100. However, with CIFAR * 10/100, we use a logistic regression to predict the image class to evaluate our theory on a convex optimization problem as for MNIST iid and non-iid.

• Shakespeare [START_REF] Caldas | LEAF: A Benchmark for Federated Settings[END_REF]. We study a LSTM model for next character prediction on the dataset of The Complete Works of William Shakespeare. The model architecture is composed of a two-layer LSTM classifier containing 100 hidden units with an 8 dimensional embedding layer taken from (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a). The model takes as an input a sequence of 80 characters, embeds each of the characters into a learned 8-dimensional space and outputs one character per training sample after 2 LSTM layers and a fully connected one.

Hardware Scenarios. In the following experimental scenarios, clients computation time are obtained according to the time policy F X. We consider that clients have fixed update times that can be up to X% faster than the slowest client. Clients computation time are uniformly distributed from the lower to the upper bound set at 1 unit of time. Clients have thus identical hardware with F 0. To simulate heterogeneous clients hardware, we consider the time scenario F 80. Hyperparameters. Unless specified otherwise, we consider a global learning rate η g = 1.

Clients Aggregation

We finetune the local learning rate η l with values ranging from 10 -5 to 1. We consider a batch size B = 64 for every dataset. We report mean and standard deviation on 5 random seeds. Every comparison of IDENTICAL with TIME-BASED is done using the same local learning rate. We give an advantage to IDENTICAL by finetuning the learning rate on this clients aggregation weight scenario.

Experimental Results

We experimentally show that asynchronous FL has better performances with TIME-BASED than with IDENTICAL, and thus we demonstrate the correctness of Theorem 4.3 with Figure 4.2 in Section 4.5.2. Finally, we compare synchronous FEDAVG and asynchronous FEDAVG in Focusing on MNIST iid and non-iid, we see the impact of data heterogeneity on the learnt model performances. With IDENTICAL, asynchronous FL converges to a suboptimum point and the differences between the learnt model losses is twice as large for MNIST non-iid than for MNIST iid, Figure 4.2(a). Figure 4.2(b) shows a similar result concerning the clients loss heterogeneity. Therefore, data heterogeneity degrades the suboptimum loss and cannot be ignored in asynchronous FL applications. Indeed, IDENTICAL and TIME-BASED curves are significantly different even for the simplest application on MNIST iid, where the dataset is uniformly distributed across M = 10 clients. Hence, the assumption of identical data distributions should generally not be made and the aggregation scheme TIME-BASED should be used instead for any asynchronous FL (or DL).

Impact of the Clients Aggregation Weights on Asynchronous FedAvg

With 

Partial Asynchronicity with FedFix

The theory derived in Section 4.3 can be applied to asynchronous FL but also synchronous FL, FEDAVG, and other asynchronous FL schemes like FEDFIX (Section 4.4) and FEDBUFF (J. [START_REF] Nguyen | Federated Learning with Buffered Asynchronous Aggregation[END_REF]. We show with Figure 4.3 that allowing asynchronicity does not necessarily provide faster learning processes, e.g. comparison between synchronous and asynchronous FEDAVG above, but FEDFIX outperforms FEDAVG by balancing convergence speed and stability.

With a small enough learning rate η l , asynchronous FEDAVG outperforms FEDFIX and FEDBUFF, which outperforms synchronous FL (see Indeed, in this case, global models change slowly and we can consider that the server receives contributions with no gradient delay. As such, the learning procedure including the most serial contributions in the global model is the fastest. However, in the other cases, the learning rate η l does not mitigate the discrepancy between clients update, which slows down convergence for asynchronous FL, and can even prevent it.

Identifying the fastest optimization scheme must be done by comparing optimization schemes based on their best local learning rate η l (Figure 4.3). Synchronous FL outperforms asynchronous FL when clients have homogeneous (F 0) or heterogeneous (F 80) hardware. Indeed, the server needs to increase the amount of contributions at each aggregation to balance convergence speed and convergence stability. We see that FEDFIX-0.5 provides this trade-off and outperforms synchronous FL by performing twice as many server aggregations in the heterogeneous hardware scenario (F 80). We also see that FEDBUFF always outperforms asynchronous FL by considering more clients at every aggregation without necessarily outperforming synchronous FL. Hence, FEDFIX better balances convergence speed and stability than FEDBUFF.

We note that, even for synchronous FL, FL convergence is not monotonous. Indeed, for synchronous FL to have a better convergence speed than asynchronous FL, the server needs to consider a high local learning rate leading to convergence instability. We note that even when clients have homogeneous hardware (F 0), FEDFIX can outperform synchronous FL. This can be explained by the close-form of FEDFIX weights d i , equation (4.40), which accounts for server aggregations where no client participates. As a result, FEDFIX behaves as asynchronous FL but with an higher server learning rate η g = 2 which provides faster convergence.

Discussion

This chapter introduces equation ( 4.6) which generalizes the expression of FEDAVG aggregation scheme by introducing stochastic aggregation weights ω i (n) to account for asynchronous client updates. We prove the convergence of FL schemes satisfying equation (4.6) with Theorem 4.1. A similar aggregation scheme has been derived in Fraboni, Vidal, Kameni, et al. (2022a) for unbiased client sampling, which this chapter generalizes. In addition, we show that aggregation scheme (4.6) is satisfied by asynchronous FL, FEDFIX, and FEDBUFF, Section 4.4. Finally, we assume fixed clients update time T i such that we can consider d i (n) = d i , and give in Section 4.4 its close-form to ensure any FL optimization scheme converges to the optimum of problem (4.2). Thsi chapter remains relevant for applications with d i (n) = d i but we let the specific derivations to the reader.

This chapter shows theoretically and experimentally that asynchronous FEDAVG does not always outperform its synchronous counterpart. By creating the new global model with the contribution of only one client, asynchronous FEDAVG convergence speed is very sensitive to the choice of learning rate and amount of local work K. These two hyperparameters need to be fine-tuned to properly balance convergence speed and stability. Due to the hardware constraints inherent to the FL setting, fine-tuning is a challenging step for FL and is not necessarily feasible. Therefore, we proposed FEDFIX, an FL algorithm where the server, after a fixed amount of time, creates the new global model with the contribution In this chapter, we present Informed Federated Unlearning (IFU), a novel efficient and quantifiable approach to unlearn the data specificities of a client from a mode trained with federated learning. Upon receiving an unlearning request from a given client, IFU identifies the optimal FL iteration from which FL has to be reinitialized, with unlearning guarantees obtained through a randomized perturbation mechanism. The theory of IFU is also extended to account for sequential unlearning requests. Experimental results on different tasks and dataset show that IFU leads to more efficient unlearning procedures as compared to basic re-training and state-of-the-art federated unlearning approaches. This chapter is under review and currently available as a preprint (Fraboni, Vidal, Kameni, et al., 2022c) 

Introduction

With the emergence of new data regulations, such as the EU General Data Protection Regulation (GDPR) (Voigt and Von dem Bussche, 2017) and the California Consumer Privacy Act (CCPA) [START_REF] Harding | Understanding the scope and impact of the California Consumer Privacy Act of 2018[END_REF], the storage and processing of sensitive personal data is often subject of strict constraints and restrictions. In particular, the "right to be forgotten" states that personal data must be erased upon request from the concerned individuals, with subsequent potential implications on machine learning models trained by using this data. Machine Unlearning (MU) is an emerging discipline that studies methods to ideally remove the contribution of a given data instance used to train a machine learning model. Current MU approaches are essentially based on routines that modify the model weights in order to guarantee the "forgetting" of a given data point, i.e. to obtain a model equivalent to an hypothetical one trained without this data point (Cao and J. Yang, 2015;[START_REF] Bourtoule | Machine unlearning[END_REF].

Motivated by data governance and confidentiality concerns, Federated learning (FL) has gained popularity in the last years to allow data owners to collaboratively learn a model without sharing their respective data. Among the different FL approaches, federated averaging (FEDAVG) has emerged as the most popular optimization scheme [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF]). An optimization round of FEDAVG requires data owners, also called clients, to receive from the server the current global model which they update before sending it back to the server. The new global model is then created as the weighted average of the client updates, according to their data ratio. FL communication design guarantees to clients that their data is solely used to compute their model update, while theoretical work guarantees FL convergence to a stationary point of the clients' joint optimization problem (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF][START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF].

With the current deployments of FL in the real-world, it is of crucial importance to extend MU to guarantee the unlearning of clients wishing to opt-out from a collaborative training routine. This is not straightforward, since current MU schemes have been proposed essentially in the centralized learning setting, and cannot be seamlessly applied to the federated one. For example, several MU methods require the estimation of the Hessian of the loss function [START_REF] Guo | Certified Data Removal from Machine Learning Models[END_REF][START_REF] Izzo | Approximate Data Deletion from Machine Learning Models[END_REF]Golatkar, Achille, and Soatto, 2020a;Golatkar, Achille, and Soatto, 2020b;[START_REF] Golatkar | Mixed-Privacy Forgetting in Deep Networks[END_REF], an operation which is notoriously computationally heavy and intractable for high dimensional models. Moreover, sharing the Hessian would require clients to share with the server additional information about their data, thus exposing the federated setting to information leakage and attacks, for example under the form of model inversion [START_REF] Fredrikson | Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures[END_REF].

Alternative MU methods draw from the concept of differential privacy [START_REF] Dwork | The Algorithmic Foundations of Differential Privacy[END_REF] and are based on a Gaussian noise perturbation of the trained model [START_REF] Neel | Descent-to-Delete: Gradient-Based Methods for Machine Unlearning[END_REF][START_REF] Guo | Certified Data Removal from Machine Learning Models[END_REF][START_REF] Gupta | Adaptive Machine Unlearning[END_REF]. The magnitude of the noise perturbation should be estimated directly from the clients data, which is by construction inaccessible to the server in the FL regime. We also note that while recent federated unlearning (FU) methods have been proposed to unlearn a client from the global FL model (G. [START_REF] Liu | FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models[END_REF][START_REF] Wang | Federated Unlearning via Class-Discriminative Pruning[END_REF][START_REF] Halimi | Federated Unlearning: How to Efficiently Erase a Client in FL?[END_REF]C. Wu et al., 2022), these approaches do not come with theoretical guarantees on the effectiveness of the unlearning.

The main contribution of this chapter consists in Informed Federated Unlearning (IFU), a novel efficient FU approach to unlearn a client's contribution with quantifiable unlearning guarantees. IFU requires minimal additional computations to the server in a standard FEDAVG procedure. Specifically, the server quantifies at every optimization round each client's contribution to the global model. Upon receiving an unlearning request from a client, the server identifies in the FL training history the optimal FL iteration and associated intermediate global model from which re-initializing the unlearning procedure. Unlearning guarantees are provided by introducing a novel randomized mechanism to perturb the selected intermediate model with client-specific noise. We also extend IFU to Sequential Informed Federated Unlearning (SIFU), to account for realistic unlearning scenarios where the server receives sequential unlearning requests from one or more clients at different times [START_REF] Neel | Descent-to-Delete: Gradient-Based Methods for Machine Unlearning[END_REF][START_REF] Gupta | Adaptive Machine Unlearning[END_REF].

This manuscript is structured as follows. In Section 5.2, we provide formal definitions for MU, FL, and FU, and introduce the randomized mechanism with associated unlearning guarantees. In Section 5.3, we introduce sufficient conditions for IFU to unlearn a client from the FL routine (Theorem 5.2). In Section 5.4, we extend IFU to the sequential unlearning setting with Sequential IFU (SIFU). Finally, in Section 5.5, we experimentally demonstrate on different tasks and datasets that SIFU leads to more efficient unlearning procedures as compared to basic re-training and state-of-the-art FU approaches.

Introduction

Background and Related Work

In Section 5.2.1, we introduce the state-of-the art behind Machine Unlearning, while in Section 5.2.2, we introduce FL and FEDAVG. Finally, we introduce Federated Unlearning (FU) in Section 5.2.3.

Machine Unlearning

Let us consider a dataset D composed of two disjoint datasets: D f , the cohort of data samples on which unlearning must be applied after FL training, and D k , the remaining data samples. Hence, we have D = D f ∪ D k . We also consider M(D), the ML model parameters resulting from training with optimization scheme M on dataset D. We introduce in this section the different unlearning baselines and methods currently used to unlearn D f from the trained model M(D).

MU through retraining. Within this setting, a new training is performed from scratch with only D k as training data. As the initial model contains no information from D f , the new trained model M(D k ) also contains no information from D f . We note however that this procedure wastes the contribution of D k already available by training originally on D.

Hence, this method is considered sub-optimal, and represents a basic baseline for unlearning approaches.

MU through fine-tuning. Fine-tuning on the remaining data D k has been proposed as a practical approach to unlearn the specificities of D f . However, fine-tuning does not provide guarantees about the effectiveness of the unlearning. We provide an example of this issue in Appendix D.1.

MU through model scrubbing. Another unlearning approach consists in applying a "scrubbing" transformation h to the model M(D) such that the resulting model is as close as possible to the one that would be trained with only D k , i.e. h(M(D)) ≈ M(D k ) [START_REF] Ginart | Making AI Forget You: Data Deletion in Machine Learning[END_REF]. To define a scrubbing method h, existing work mostly relies on the following Assumption 5.1, which considers a quadratic approximation of the loss function. where H Dx (θ) is positive semi-definite.

The scrubbed model is the new optimum obtained when unlearning data samples in D f . Hence, under Assumption 5.1, the new optimum can be obtained by setting

∇f D k (h D k (θ)) = 0, which gives h D k (θ) = θ -H -1 D k (θ)∇f D k (θ).
(5.2)

With equation (5.2), h reduces to performing a Newton step, and has been derived in previous MU works [START_REF] Guo | Certified Data Removal from Machine Learning Models[END_REF][START_REF] Izzo | Approximate Data Deletion from Machine Learning Models[END_REF]Golatkar, Achille, and Soatto, 2020a;Golatkar, Achille, and Soatto, 2020b;[START_REF] Golatkar | Mixed-Privacy Forgetting in Deep Networks[END_REF]Mahadevan and Mathioudakis, 2021a) under different theoretical assumptions that can be generalized with Assumption 5.1. The main drawback behind the use of the scrubbing function (5.2) is the computation of the Hessian, which can be unfeasible for high dimensional model. Finally, the scrubbing function (5.2) is often coupled with Gaussian noise perturbation on the resulting weights (Golatkar, Achille, and Soatto, 2020a;Golatkar, Achille, and Soatto, 2020b;[START_REF] Golatkar | Mixed-Privacy Forgetting in Deep Networks[END_REF], to compensate the quadratic approximation of the loss function or the approximation of the Hessian.

MU through noise perturbation. This unlearning method consists in randomly perturbing the trained model M(D) to unlearn specificities from data samples in D f [START_REF] Neel | Descent-to-Delete: Gradient-Based Methods for Machine Unlearning[END_REF][START_REF] Gupta | Adaptive Machine Unlearning[END_REF]Mahadevan and Mathioudakis, 2021b). The noise is set such that the guarantees of Definition 5.1 are satisfied, where (ϵ, δ) are parameters quantifying the unlearning guarantees. 

Federated Optimization and FedAvg

In The server sends θ n to every client in I.

3:

Clients perform K SGDs to compute θ n+1 i .

4:

The server creates θ n+1 , equation (5.6). 5: end for 6: return the trained global model θ N (x i,l , y i,l ) ∈ D i , and define a client's loss function as f i (θ) := 1/n i n i l=1 f (x i,l , y i,l , θ). We define for the joint dataset D I := ∪ i∈I D i the federated loss function

f I (θ) := 1 |D I | i∈I |D i |f i (θ).
(5.5) FEDAVG [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] optimizes the loss (5.5) with theoretical guarantees for FL convergence to a stationary point (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF][START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]. At each iteration step n, the server sends the current global model parameters θ n to the clients. Each client updates the model by minimizing its local cost function f i (θ) with K SGD steps initialized on θ n . Subsequently each client returns the updated local parameters θ n+1 i to the server. The global model parameters θ n+1 at the iteration step n + 1 are then estimated as a weighted average, i.e.

θ n+1 = θ n + 1 |D| i∈I |D i | θ n+1 i -θ n .
(5.6)

Algorithm 5 provides the implementation of FEDAVG. For the rest of this work, we define the joint dataset for a subset of client I x ⊂ I as D Ix := ∪ i∈Ix D i .

Federated Unlearning

Existing works (G. [START_REF] Liu | FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models[END_REF][START_REF] Wang | Federated Unlearning via Class-Discriminative Pruning[END_REF][START_REF] Halimi | Federated Unlearning: How to Efficiently Erase a Client in FL?[END_REF]C. Wu et al., 2022) already consider the problem of unlearning a client from a model optimized through FEDAVG. However, these works do not provide theoretical nor quantitative guarantees on the unlearning procedure. Also, we note that standard MU methods cannot seamlessly be used in the federated setting. On one hand, federated unlearning (FU) with model scrubbing would require clients to perform only K = 1 SGD and share their Hessian with the server. Hence, model scrubbing decreases significantly FL convergence speed, while exposing the clients' data by sharing high order quantities with the risk of model inversion [START_REF] Fredrikson | Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures[END_REF]. Moreover, the computation of the Hessian is unfeasible for highly dimensional models. On the other hand, existing MU approaches based on model perturbation require to retrain the model after the noise is added to the model's parameters. As such, retraining generally requires a significant amount of SGD steps to guarantee convergence to a new optimum, negatively affecting the effectiveness of the unlearning procedure.

In this chapter, we introduce a novel unlearning paradigm which avoids retraining the final model by identifying the optimal FL iteration where unlearning should be applied. Therefore, retraining is applied to an "early" version of the global model with reduced perturbation, thus minimizing the amount of required SGD steps to achieve convergence.

Unlearning a FL client with IFU

In this section, we develop our theory for the scenario where a model is trained with FEDAVG on the set of clients I, after which a client c requests unlearning of its own data. In Section 5.3.1, we define the sensitivity of the global model with respect to a client's contribution, and provide a bound relating this sensitivity to the FL procedure. In Section 5.3.2, we provide a tighter model sensitivity for some specific FL applications. Using Theorem 5.1, we introduce in Section 5.3.3 the perturbation procedure to unlearn a client c from the model trained with FEDAVG (Theorem 5.2). Finally, using Theorem 5.2, we introduce Informed Federated Unlearning (IFU) (Algorithm 6).

Theorem 5.1, Bounding the Model Sensitivity

As defined in Section 5.2.2, θ n+1 i is the local update of client i sent to the server after performing K SGD steps on its dataset D i after initialization with global model θ n . Given the contribution θ n+1 i -θ n of a client i, we define the overall FL increment after aggregations across the set of clients I as We show in Theorem 5.1 that the model sensitivity of FEDAVG can be bounded by the bounded sensitivity (5.8).

∆(I, θ n ) := 1 |D I | i∈I |D i | θ n+1 i -θ n . ( 5 
Theorem 5.1. Under Assumption 5.1, the model sensitivity of FEDAVG when removing a client c after n server aggregations is defined as

α(n, c) := ∥FEDAVG(I, n) -FEDAVG(I -c , n)∥ 2 ,
(5.9)

where FEDAVG(I, n) is the output of Algorithm 5, and

α(n, c) ≤ Ψ(n, c).
(5.10)

Proof. See Appendix D.2.

Improving the Tightness of the Sensitivity Bound

Theorem 5.1 shows that the bounded sensitivity provides a bound for the model sensitivity, while the computation of (5.8) only requires the clients' updated models, which are already shared with the server by design in FEDAVG. Nevertheless, we note that the bounded sensitivity (5.8) does not necessarily faithfully represent the evolution of the sensitivity across FL rounds. For instance, this quantity does not properly account for the unlearning of previous clients contributions for s < n -1. Indeed, these contributions should decrease across iterations due to the subsequent server aggregations and new clients' local work.

To account for this aspect, we provide a tighter lower bound by assuming strongly convex and regularized local loss function, leading to a tighter bound for the model sensitivity of FEDAVG (Corollary 5.1).

Corollary 5.1. Under Assumption 5.1, when considering that clients loss functions are µ-strongly convex and regularized with an L2 norm of weight λ, we have α(n, c) ≤ Ψ(n, c)

and (5.11) where η and K are respectively the clients' local learning rate and amount of local work.

Ψ(n, c) = n-1 s=0 (1 -η(λ + µ)) [(n-1)-s]K × ∥∆(I, θ s ) -∆(I -c , θ s )∥ 2 ,
Proof. See Appendix D.2.3.

The bounded sensitivity of Corollary 5.1 shows the following aspects. (1) The importance of a client's contribution decreases through aggregation rounds.

(2) Since FL is guaranteed to converge to a stationary point (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF][START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF], so does the bounded sensitivity since λ + µ > 0.

(3) The bounded sensitivity is not necessarily inversely proportional to K. Indeed, due to data heterogeneity, with an increase in K every local model gets closer to its local optimum and the quantity ∥∆(I, θ n ) -∆(I -c , θ n )∥ 2 increases with the amount of local work K.

When clients have same data distribution, we retrieve ∆(I, θ n ) = ∆(I -c , θ n ), which yields null bounded sensitivity for every client, i.e. Ψ(n, c) = 0. We also note that the bound provided in Corollary 5.1 is tight, e.g. when considering identical eigenvalues for the Hessian of every local loss. More generally, the bound is tight in the limit case where the local learning rate of the clients is small.

We can draw an analogy between the bounded sensitivity (5.8) and client clustering in FL (Sattler et al., 2021;Fraboni, Vidal, Kameni, et al., 2021), where clients are clustered based on their contribution. In this chapter, the bounded sensitivity (5.8) is used instead to bound the sensitivity of the global model across rounds in FEDAVG.

Satisfying Definition 5.1

In this section, we introduce a randomized mechanism to provide guarantees for the unlearning of a given client c, where the magnitude of the perturbation process [START_REF] Dwork | The Algorithmic Foundations of Differential Privacy[END_REF] is defined based on the sensitivity of Theorem 5.1. In practice, we define a Gaussian noise mechanism to perturb each parameter of global model θ n such that we achieve (ϵ, δ)-unlearning of client c for the resulting model, according to Definition 5.1. We give in Theorem 5.2 sufficient conditions for the noise perturbation to satisfy Definition 5.1. for n from 0 to N -1, and i from 1 to c do Compute Ψ(n, i), equation (5.8). end for WHEN UNLEARNING CLIENT c Require: c, ϵ, δ, σ, and amount of retraining steps Ñ .

1: Get Ψ * with equation (5.13).

2: Get T = arg max n (Ψ(n, c) ≤ Ψ * ) with eq. (5.14).

3: The new global model is θ = θ T + N (0, σ 2 I θ ).

4: Run FEDAVG(I -c , Ñ ) initialized on θ.

We note that, according to Theorem 5.2, (ϵ, δ)-unlearning a client from a given global model requires a standard deviation for the noise that is client-specific and proportional to its bounded sensitivity.

In what follows, the unlearning procedure will be defined with respect to the sensitivity threshold Ψ * related to the unlearning budget (ϵ, δ) and standard deviation σ:

Ψ * := [2 (ln(1.25) -ln(δ))] -1/2 ϵσ.
(5.13)

Informed Federated Unlearning (IFU)

Using the bounded sensitivity (5.8) and Theorem 5.2, we introduce Informed Federated Unlearning (IFU) to unlearn the contribution of client c ∈ I from a FL training procedure based on FEDAVG. Algorithm 6 provides the implementation of IFU on top of FEDAVG. We note that during the FL training, IFU requires the server to compute the bounded sensitivity metric Ψ(n, i) from each client's contribution θ n+1 i and current global model θ n . These quantities are tracked throughout FL iterations and are used to identify the optimal unlearning strategy after request from a client c.

To unlearn client c, the server identifies the unlearning index T associated to the history of bounded sensitivity metrics, i.e. the most recent global model index such that a perturbation of size σ satisfies Theorem 5.2:

T := arg max n (Ψ(n, c) ≤ Ψ * ) .
(5.14)

The new global model is obtained after perturbation θ := θ T + ν, where ν ∼ N (0, σ 2 I θ ).

Our unlearning criterion 5.1 is therefore satisfied for θ (Theorem 5.2), and the server can perform Ñ new optimization rounds with FEDAVG initialized on θ. 

I r = I r-1 \ W r . 5:
Compute (ζ r , T r ) with O(r -1), eq. ( 5.17) and (5.18).

6:

Update O(r) with ζ r , T r , and O(r -1), eq. (5.19).

7:

The new global model is θ 0 r = θ Tr ζr + N (0, σ 2 I θ ).

8:

Perform FEDAVG(D r , N r ) initialized on θ 0 r . 9:

Compute Ψ r (n, i), eq. (5.15). 10: end for contribution of the remaining clients in θ, we expect the retraining with IFU to be generally faster than retraining with a random initial model. Since Ψ(n, i) is strictly increasing with n, the server can stop from computing the bounded sensitivity (5.8) for client i whenever Ψ(n i , i) > Ψ * is verified after n i optimization rounds. At this point, the model θ n i -1 will be selected for the unlearning request of client i, as the models at subsequent iterations do not comply with the desired unlearning budget Ψ * .

Sequential FU with SIFU

In this section, we extend IFU to the sequential unlearning setting with Sequential IFU (SIFU). With Algorithm 7, SIFU is designed to satisfy a series of R unlearning requests {W r } R r=1 , where W r is the set of clients to unlearn at request index r. SIFU generalizes IFU for which R = 1 and W 1 = {c}. We provide an illustration of SIFU with an example in Figure 5.1.

The notations introduced thus far need to be generalized to account for our series of unlearning requests W 1 , W 2 , . . . , W R . Global models are now referenced by their coordinates (r, n), i.e. θ n r , which represent the unlearning request index r and the amount of server aggregations n performed during the retraining. Hence, θ 0 r is the initialization of the model when unlearning the clients in W r . Also, we consider that the retraining at request index r requires N r server aggregations on the remaining clients. Therefore, by construction, θ Nr r is the model obtained after using SIFU to (ϵ, δ)-unlearn the sequence of unlearning requests ). At request r = 1 the unlearning index is T 1 , and the training history becomes (θ 0 0 , . . . , θ T1 0 , θ 0 1 , . . . , θ N1 1 ). The oracle is updated to O(1) = {(0, T 1 )}, and ζ 1 = 0. At request r = 2 the unlearning index is T 2 and the training history becomes (θ 0 0 , . . . , θ T1 0 , θ 0 1 , . . . , θ T2 1 , θ 0 2 , . . . θ N2 2 ). The new node is added to the oracle O(2) = {(0, T 1 ), (1, T 2 )}, and ζ 2 = 1. Finally, at request r = 3, the unlearning index is found at T 3 < T 2 in the branch of request r = 1. The updated training history is now (θ 0 0 , . . . , θ T1 0 , θ 0 1 , . . . , θ T3 1 , θ 0 3 , . . . θ N3 3 ), the oracle is updated as O(3) = {(0, T 1 ), (1, T 3 )}, and ζ 3 = 1.

{W s } r s=1 . Finally, we define I r as the set of remaining clients after unlearning request r, i.e. I r := I \ ∪ r s=1 W s = I r-1 \ W r with I 0 = I.

We extend the bounded sensitivity (5.8) with Ψ r (n, i) to compute the metric of client i at unlearning index r with

Ψ r (n, i) := n-1 s=0 ∥∆(I r , θ s r ) -∆(I r \ {i}, θ s r )∥ 2 .
(5.15)

When unlearning client c at r = 1, the metric at r = 0 is equivalent to the previous definition of Ψ. Also, when computing the metric on a client already unlearned, i.e. i / ∈ I r , we retrieve Ψ r (n, i) = 0. Finally, for a set of clients S, we generalize the bounded sensitivity (5.15)

to Ψ r (n, S) = max i∈S Ψ r (n, i).
(5.16)

With SIFU, the selection of the unlearning index T for a request r depends of the past history of unlearning requests. To keep track of the unlearning history, we introduce the oracle O(r) which returns at each request r the coordinates of the history of global models where unlearning has been applied. These coordinates represent the nodes of the training history across unlearning requests (Figure 5.1). With reference to Figure 5.1, we start with the original sequence of global models obtained at each FL round, i.e. (θ 0 0 , . . . , θ N 0 0 ). Similarly to IFU, the first unlearning request requires to identify the unlearning index T 1 for which the corresponding global model θ T 1 0 must be perturbed to obtain θ 0 1 and retrained until convergence, i.e. up to θ N 1 1 . The oracle is updated with the coordinates of the branching O(1) = {(0, T 1 )}, and the current training history is now (θ 0 0 , . . . , θ T 1 0 , θ 0 1 , . . . , θ N 1 1 ). At the next unlearning request, the server needs to identify the coordinates (ζ r , T r ) in the new training history for which unlearning must be applied on the model θ Tr ζr to obtain θ 0 r = θ Tr ζr + N (0, σ 2 I θ ). The oracle is subsequently updated with the new set of nodes describing the new branching in the training history. By construction, we have ζ r ≤ r -1 and T r ≤ N ζr .

More precisely, we define the index ζ r associated to the first coordinate in O(r -1) for which the bounded sensitivity (5.15) of clients in W r exceeds Ψ * . Formally, we have

ζ r := min s {s : Ψ s (n, W r ) > Ψ * and (s, n) ∈ O(r -1), r -1}.
(5.17)

The definition of T r follows directly from the one of ζ r . Similarly as for IFU, the unlearning index T r quantifies the maximum amount of server aggregations starting from the unlearning request index ζ r such that the bounded sensitivity Ψ ζr (n, W r ) on this global model is inferior to Ψ * , i.e. 

O(r) = {(s, n) ∈ O(r -1) s.t. s < ζ r , (ζ r , T r )}.
(5.19) Theorem 5.3 shows that for a model trained with SIFU after a given training request r, (ϵ, δ)-unlearning is guaranteed for every client belonging to the sets W s , s ≤ r.

Theorem 5.3. The model θ Nr r obtained with SIFU satisfies (ϵ, δ)-unlearning for every client in current and previous unlearning requests, i.e. clients in ∪ r s=1 W s .

Proof. See Appendix D.3. 

Experiments

Experiments

In this section, we experimentally demonstrate the effectiveness of SIFU on a series of benchmarks introduced in Section 5.5.1. In Section 5.5.2, we illustrate and discuss our experimental results. Results and related code are publicly available at URL.

Experimental Setup

Datasets. We report experiments on reduced versions of MNIST (Lecun et al., 1998), Fash-ionMNIST [START_REF] Xiao | Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF], n.d.), CIFAR-100 (Krizhevsky et al., n.d.), and CelebA (Z. [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF]. For each dataset, we consider M = 100 clients, with 100 data points each. For MNIST and FashionMNIST, each client has data samples from only one class, so that each class is represented in 10 clients only. For CIFAR10 and CIFAR100, each client has data samples with ratio sampled from a Dirichlet distribution with parameter 0.1 [START_REF] Hsu | Measuring the effects of non-identical data distribution for federated visual classification[END_REF]. Finally, in CelebA, clients own data samples representing the same celebrity. With these five datasets, we consider different level of heterogeneity based on label and feature distribution.

Models. For MNIST, we train a logistic regression model to consider a convex classification problem, while, for the other datasets, we train a neural network with convolutional layers followed by fully connected ones. More details on the networks are available in Appendix D.4.

Unlearning schemes. In addition to SIFU, we consider the following unlearning schemes from the state-of-the-art: SCRATCH, where retraining of a new initial model is performed on the remaining clients; FINE-TUNING, where retraining is performed on the current global model with the remaining clients; LAST [START_REF] Neel | Descent-to-Delete: Gradient-Based Methods for Machine Unlearning[END_REF], where retraining is performed on the remaining clients via perturbation of the final FL global model; DP [START_REF] Dwork | The Algorithmic Foundations of Differential Privacy[END_REF], where training with every client is performed with differential privacy, and FEDACCUM (G. [START_REF] Liu | FedEraser: Enabling Efficient Client-Level Data Removal from Federated Learning Models[END_REF], where retraining is performed on the current global model from which the server removes the updates of the clients to unlearn, by re-aggregating the parameter updates of clients that were stored by the server across FL iterations. We provide in Appendix D.4 the pseudo-code of FEDACCUM with the notation of our paper. We remind that FEDACCUM does not provide quantitative guarantees of the unlearning procedure, and requires the server to store the full sequence of models during the FL procedure.

Experimental scenario. We consider a sequential unlearning scenario in which the server performs the FL training procedure and then receives R = 3 sequential unlearning requests to unlearn 10 random clients per request. In the special case of MNIST and FashionMNIST, the server must unlearn 10 clients owning the same class. The server orchestrates each unlearning scheme through retraining until the global model accuracy on the remaining clients exceeds a fixed value specific to each dataset. We set the minimum number of 50 aggregation rounds, and a maximum budget of 10000 rounds when the stopping accuracy criterion is not met. Each unlearning method is applied with the same hyperparameters, i.e. stopping accuracy, local learning rate η, and amount of local work K (Appendix D.4). We define the set of clients requesting unlearning as: Unlearning quantification. We verify the success of an unlearning scheme with two metrics: (a) the amount of server aggregation rounds needed for retraining, and (b) the resulting model accuracy on the unlearned clients. we note that, by construction, SCRATCH perfectly unlearns the clients from a request W r . Therefore, we consider an unlearning scheme successful if it reaches similar accuracy of SCRATCH with less aggregation rounds, when tested on the data samples of F r . unlearning with FINE-TUNING, FEDACCUM, and DP results in significantly less aggregation rounds than SCRATCH (Figure 5.2-1 st row). We note that SIFU and SCRATCH lead to similar unlearning results, quantified by low accuracy on the unlearned clients F r (Figure 5.2-2 nd row), while SIFU unlearns these clients in roughly half the amount of aggregation rounds needed for SCRATCH (Figure 5.2-1 st row). However, the model accuracy of SIFU is slightly higher than the one of SCRATCH, with perfect overlap only for FashionMNIST. This behavior is natural and can be explained by our privacy budget (ϵ, δ), which trades unlearning capabilities for effectiveness of the retraining procedure. With highest unlearning budget, i.e. ϵ = 0 and δ = 0, SIFU would require to retrain from the initial model θ 0 0 , thus reducing to SCRATCH. Finally, we observed that when unlearning with LAST, the retrained model always converged to a local optimum with accuracy inferior to our target after 10000 aggregation rounds. This behavior is likely due to the difficulty of calibrating the noise perturbation due to the numerous heterogeneous contributions of the clients. For this reason, we decided to exclude LAST from the plots of Figure 5.2.

F r = ∪ r s=1 W s . ( 5 

Experimental Results

Verifying Unlearning through Watermarking

The work of [START_REF] Sommer | Towards Probabilistic Verification of Machine Unlearning[END_REF] proposes an adversarial approach to verify the efficiency of an unlearning scheme based on watermarking. We apply here this method to our federated 92 Chapter 5 Sequential Informed Federated Unlearning: Efficient and Provable Client Unlearning in Federated Optimization setting, in which watermarking is operated by each client by randomly assigning on all its data samples the maximum possible value to 10 given pixels. To ensure that clients' data heterogeneity is only due to the modification of the pixels, we define heterogeneous data partitioning across clients by randomly assigning the data according to a Dirichlet distribution with parameter 1. Figure 5.3 shows our results for this experimental scenario on CIFAR100 and CelebA, while Appendix D.4 provides similar results for MNIST, FashionMNIST and CIFAR10. We retrieve the same conclusions drawn from Figure 5.2. SIFU and SCRATCH have similar accuracies on the unlearned clients in F r , to demonstrate the effectiveness of the unlearning. Moreover, SIFU unlearns these clients in significantly less aggregation rounds than SCRATCH.

Impact of the noise perturbation on SIFU

Appendix D.4 illustrates the impact of the perturbation amplitude σ on convergence speed when unlearning with SIFU. We note that when unlearning with a small σ, SIFU has identical behavior to SCRATCH as the unlearning is applied to the initial random model θ 0 0 . With large values of σ, SIFU performs instead identically to LAST and applies the unlearning to the finale global model θ Nr r .

Conclusions

In this chapter, we introduce informed federated unlearning (IFU), a novel federated unlearning scheme to unlearn a client's contribution from a model trained with federated learning.

Upon receiving an unlearning request from a given client, IFU identifies the optimal FL iteration from which FL has to be reinitialised, with statistical unlearning guarantees defined by Definition 5.1. We extend the theory of IFU to account for the practical scenario of sequential unlearning (SIFU), where the server receives a series of forgetting request of one or more clients. We prove that SIFU can unlearn a series of forgetting requests while satisfying our unlearning guarantees, and demonstrate the effectiveness of our methods on a variety of tasks and dataset.

An additional contribution of this chapter consists in a new theory for bounding the clients contribution in FL. The server can compute this bound for every client without asking for any additional computation and communication. The theoretical justification of this approach relies on the linear approximation of the clients' loss function, and its relevance is here demonstrated across several benchmarks. Future extensions of this chapter will focus on generalizing our unlearning framework to more general settings.

Conclusions

Free In this chapter, we introduce the first theoretical and experimental analysis of free-rider attacks on federated learning schemes based on iterative parameters aggregation, such as FEDAVG or FEDPROX, and provide formal guarantees for these attacks to converge to the aggregated models of the fair participants. We demonstrate the effectiveness of free-rider attacks on a number of experimental scenarios, in both iid and non-iid settings. We conclude by providing recommendations to avoid free-rider attacks in real world applications of federated learning, especially in sensitive domains where security of data and models is critical. This work is published at the International Conference in Artificial Intelligence and Statistics (AISTATS) of 2021 as [START_REF] Fraboni | Free-rider Attacks on Model Aggregation in Federated Learning[END_REF].

Introduction

Federated learning is a training paradigm that has gained popularity in the last years as it enables different clients to jointly learn a global model without sharing their respective data. It is particularly suited for Machine Learning applications in domains where data security is critical, such as healthcare [START_REF] Brisimi | Federated learning of predictive models from federated Electronic Health Records[END_REF][START_REF] Silva | Federated learning in distributed medical databases: Meta-analysis of large-scale subcortical brain data[END_REF]. The relevance of this approach is witnessed by current large scale federated learning initiatives under development in the medical domain, for instance for learning predictive models of breast cancer1 , or for drug discovery and development2 .

The participation to this kind of research initiatives is usually exclusive and typical of applications where data is scarce and unique in its kind. In these settings, aggregation results entail critical information beyond data itself, since a model trained on exclusive datasets may have very high commercial or intellectual value. For this reason, providers may not be interested in sharing the model: the commercialization of machine learning products would rather imply the availability of the model as a service through web-or cloud-based API. This is due to the need of preserving the intellectual property on the model components, as well as to avoid potential information leakage, for example by limiting the maximum number of queries allowed to the users (Carlini et al., 2019a;[START_REF] Fredrikson | Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures[END_REF][START_REF] Ateniese | Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers[END_REF].

This critical aspect can lead to the emergence of opportunistic behaviors in federated learning, where ill-intentioned clients may participate with the aim of obtaining the federated model, without actually contributing with any data during the training process. In particular, the attacker, or free-rider, aims at disguising its participation to federated learning while ensuring that the iterative training process ultimately converges to the wished target: the aggregated model of the fair participants. Free-riding attacks performed by ill-intentioned participants ultimately open federated learning initiatives to intellectual property loss and data privacy breaches, taking place for example in the form of model inversion [START_REF] Fredrikson | Privacy in Pharmacogenetics: An End-to-End Case Study of Personalized Warfarin Dosing[END_REF][START_REF] Fredrikson | Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures[END_REF].

The study of security and safety of federated learning is an active research domain, and several kind of attacks are matter of ongoing studies. For example, an attacker may interfere during the iterative federated learning procedure to degrade/modify models performances [START_REF] Bhagoji | Analyzing federated learning through an adversarial lens[END_REF]B. Li et al., 2016;[START_REF] Yin | Byzantine-robust distributed learning: Towards optimal statistical rates[END_REF][START_REF] Xie | DBA: Distributed Backdoor Attacks against Federated Learning[END_REF][START_REF] Shen | AUROR: Defending against poisoning attacks in collaborative deep learning systems[END_REF], or retrieve information about other clients' data (Z. Wang et al., 2019;[START_REF] Hitaj | Deep Models under the GAN: Information leakage from collaborative deep learning[END_REF]. Since currently available defense methods such as [START_REF] Fung | The Limitations of Federated Learning in Sybil Settings[END_REF][START_REF] Bhagoji | Analyzing federated learning through an adversarial lens[END_REF] are generally based on outliers detection mechanisms, they are generally not suitable to prevent free-riding, as this kind of attack is explicitly conceived to stay undetected while not perturbing the FL process. Free-riding may become a critical aspect of future machine learning applications, as federated learning is rapidly emerging as the standard training scheme in current cooperative learning initiatives. To the best of our knowledge, the only investigation is in a preliminary work (J. [START_REF] Lin | Free-riders in Federated Learning: Attacks and Defenses[END_REF] focusing on attack strategies operated on federated learning based on gradient aggregation. However, no theoretical guarantees are provided for the effectiveness of this kind of attacks. Furthermore this setup is unpractical in many real world applications, where federated training schemes based on model averaging are instead more common, due to the reduced data exchange across the network. FedAvg [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] is the most representative framework of this kind, as it is based on the iterative averaging of the clients models' parameters, after updating each client model for a given number of training epochs at the local level. To improve the robustness of FedAvg in non-iid and heterogeneous learning scenarios, FedProx (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018b) extends FedAvg by including a regularization term penalizing local departures of clients' parameters from the global model.

The contribution of this cahpter consists in the development of a theoretical framework for the study of free-rider attacks in federated learning schemes based on model averaging, such as in FedAvg and FedProx. The problem is here formalized via the reformulation of federated learning as a stochastic process describing the evolution of the aggregated parameters across iterations. To this end, we build upon previous works characterizing the evolution of model parameters in Stochastic Gradient Descent (SGD) as a continuous time process [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF][START_REF] Orvieto | Continuous-time Models for Stochastic Optimization Algorithms[END_REF][START_REF] Li | Stochastic modified equations and adaptive stochastic gradient algorithms[END_REF][START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF]. A critical requirement for opportunistic free-rider attacks is to ensure the convergence of the training process to the wished target represented by the aggregated model of the fair clients. We show that the proposed framework allows to derive explicit conditions to guarantee the success of the attack. This is an important theoretical feature as it is of primary interest for the attacker to not interfere with the learning process.

The manuscript is structured as follows. We first derive in Section 6.2.4 a basic freeriding strategy to guarantee the convergence of federated learning to the model of the fair participants. This strategy simply consists in returning at each iteration the received global parameters. As this behavior could easily be detected by the server, we build more complex strategies to disguise the free-rider contribution to the optimization process, based on opportune stochastic perturbations of the parameters. We demonstrate in Section 6.2.5 that this strategy does not alter the global model convergence, and in Section 6.3 we experimentally demonstrate our theory on a number of learning scenarios in both iid and non-iid settings. All proofs and additional material are provided in the Appendix.

6.1 Introduction
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Before introducing in Section 6.2.2 the core idea of free-rider attacks, we first recapitulate in Section 6.2.1 the general context of parameter aggregation in federated learning. 

θ t+1 = i∈I M i N θ t+1 i , (6.1)
where N = i∈I M i represents the total number of samples across distributed datasets. FedProx (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018b) builds upon Fe-dAvg by adding to the cost function a L2 regularization term penalizing the deviation of the local parameters θ t+1 i from the global parameters θ t . The new cost function is

L P rox (θ t+1 i , D i , θ t ) = L(θ t+1 i , D i ) + µ 2 θ i t+1 -θ t 2
where µ is the hyperparameter monitoring the regularization by enforcing proximity between local update θ i t+1 and reference model θ t . for each free-rider k ∈ K do 9:

Formalizing Free-rider attacks

if disguised free-rider then 10: 

θt+1 k = θt + ϵ,
θt+1 = j∈J M j N θt+1 j + k∈K M k N
θt+1 k ; 17: end for sharing of opportune counterfeited parameters. The free-riding attacks investigated in this chapter are illustrated in Algorithm 8, and analysed in the following sections from both theoretical and experimental standpoints.

We denote by J the set of fair clients, i.e. clients following the federated learning strategy of Section 6.2.1 and by K the set of free-riders, i.e. malicious clients pretending to participate to the learning process, such that I = J ∪ K and J ̸ = ∅. We denote by M K the number of samples declared by the free-riders.

SGD perturbation of the fair clients local model

To describe the clients' parameters observed during federated learning, we rely on the modeling of Stochastic Gradient Descent (SGD) as a continuous time stochastic process [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF][START_REF] Orvieto | Continuous-time Models for Stochastic Optimization Algorithms[END_REF][START_REF] Li | Stochastic modified equations and adaptive stochastic gradient algorithms[END_REF][START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF].

For a client j, let us consider the following form for the loss function:

L j (θ j ) = 1 M j M j n=1
l n,j (θ j ), (6.2)
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where M j is the number of samples owned by the client, and l n,j is the contribution to the overall loss from a single observation {x n,j ; y n,j }. The gradient of the loss function is defined as g j (θ j ) ≡ ∇L j (θ j ).

We represent SGD by considering a minibatch S j,k , composed of a set of S different indices drawn uniformly at random from the set {1, ... , M j }, each of them indexing a function l n,j (θ j ) and where k is the index of the minibatch. Based on S j,k , we form a stochastic estimate of the loss,

L S j,k (θ j ) = 1 S n∈S j,k l n,j (θ j ), (6.3)
where the corresponding stochastic gradient is defined as g S j,k (θ j ) ≡ ∇L S j,k (θ j ).

By observing that gradient descent is a sum of S independent and uniformly distributed samples, thanks to the central limit theorem, gradients at the client level can thus be modeled by a Gaussian distribution (6.4) where g j (θ j ) = E s g S j,k (θ j ) is the full gradient of the loss function in equation ( 6.2) and σ 2 j (θ j ) is the variance associated with the loss function in equation ( 6.3).

g S j,k (θ j ) ∼ N (g j (θ j ), 1 S σ 2 j (θ j )),
SGD updates are expressed as:

θ j (u j + 1) = θ j (u j ) -λg S j,k (θ j (u j )), (6.5)
where u j is the SGD iteration index and λ is the learning rate set by the server.

By defining ∆θ j (u j ) = θ j (u j + 1) -θ j (u j ), we can rewrite the update process as (6.6) where ∆W j ∼ N (0, 1). The resulting continuous-time model [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF][START_REF] Orvieto | Continuous-time Models for Stochastic Optimization Algorithms[END_REF][START_REF] Li | Stochastic modified equations and adaptive stochastic gradient algorithms[END_REF][START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF] is

∆θ j (u j ) = -λg j (θ j (u j )) + λ √ S σ j (θ j )∆W j ,
dθ j = -λg j (θ j )du j + λ √ S σ j (θ j )dW j . (6.7)
where W j is a continuous time Wiener Process.

Similarly as in [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF], we assume that σ j (θ j ) is approximately constant with respect to θ j for the client's stochastic gradient updates between t and t + 1, and will therefore denote σ j (θ j ) = σ t j . Following [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF], we consider a local quadratic approximation for the client's loss, leading to a linear form for the gradient 100 Chapter 6 Free-rider Attacks on Model Aggregation in Federated Learning

g j (θ j ) ≃ r j [θ j -θ * j ]
, where r j ∈ R + depends on the approximation of the cost function around the local minimum θ * j . This assumption enables rewriting equation (6.7) as an Ornstein-Uhlenbeck process [START_REF] Uhlenbeck | On the Theory of the Brownian Motion[END_REF]. Starting from the initial condition represented by θ t , the global model received at the iteration t, we characterize the local updating of the parameters through equation (6.7), and we follow the evolution up to the time

EM j S
, where E is the number of epochs, and M j is the number of samples owned by the client. Assuming that M j is a multiple of S, the number of samples per minibatch, the quantity EM j S represents the total number of SGD steps run by the client. The updated model θ t+1 j uploaded to the server therefore takes the form:

θ t+1 j = e -λr j EM j S [θ t -θ * j ] + θ * j θt+1 j + λ √ S EM j S u=0 e -λr j EM j S -u σ t j dW u . (6.8)
We note that the relative number of SGD updates for the fair clients, EM j S , influences the parameter η j = e -λr j EM j S , which becomes negligible for large values of E.

The variance introduced by SGD can be rewritten as

Var θ t+1 j |θ t = λ S σ t j 2 1 2r j 1 -e -2λr j EM j S ρ t j 2 , (6.9)
where we can see that the higher EM j S , the lower the overall SGD noise. The noise depends on the local loss function r j , on the server parameters (number of epochs E, learning rate λ, and number of samples per minibatch S), and on the clients' data specific parameters (SGD variance σ t j 2 ). Equation (6.8) shows that clients' parameters observed during federated learning can be expressed as θ t j = θt j +ρ t j ζ j,t , where, given θ t , θt j is a deterministic component corresponding to the model obtained with EM j S steps of gradient descents, and ζ j,t is a delta-correlated Gaussian white noise. We consider in what follows a constant local noise variance σ 2 j (this assumption will be relaxed in Section 6.2.5 to consider instead time-varying noise functions ρ t j ).

Based on this formalism, in the next Section we study a basic free-rider strategy simply consisting in returning at each iteration the received global parameters. We call this type of attack plain free-riding.

6.2 Methods

Plain free-riding

We denote by θ and θj respectively the global and local model parameters obtained in presence of free-riders. The plain free-rider returns the same model parameters as the received ones, i.e. ∀k ∈ K, θt+1 k = θt . In this setting, the server aggregation process (6.1) can be rewritten as:

θt+1 = j∈J M j N θt+1 j + M K N θt , (6.10)
where θt is the global model and θt j are the fair clients' local models uploaded to the server for free-riding.

Free-riders perturbation of the fair clients local model

In this section, we investigate the effect of the free-riders on the local optimization performed by the fair clients at every server iteration. The participation of the free-riders to federated learning implies that the processes of the fair clients are being perturbed by the attacks throughout training. In particular, the initial conditions of the local optimization problems are modified according to the perturbed aggregation of equation (6.10).

Back to the assumptions of Section 6.2.3 , the initial condition θt of the local optimization includes now the aggregated model of the fair clients and a perturbation coming from the free-riders. Thus, equation (6.8) in presence of free-riding can be written as

θt+1 j = η j [ θt -θ * j ] + θ * j + λ √ S EM j S u=0 e -λr j EM j S -u σt j dW u ,
where σt j = σ t j ( θj ) is the SGD variance for free-riding. We consider that σt j = σ t j = σ j . This assumption will be relaxed in Section 6.2.5 to consider instead time-varying noise functions. With analogous considerations to those made in Section 6.2.3, the updated parameters take the form:

θt+1 j = η j [ θt -θ * j ] + θ * j + ρ j ζj,t , (6.11)
where ζj,t is a delta-correlated Gaussian white noise. Similarly as for federated learning,

E θt+1 j | θt = η j [ θt -θ * j ] + θ * j , and Var θt+1 j | θt = ρ 2 j .
We want to express the global optimization process θt due to free-riders in terms of a a perturbation of the equivalent stochastic process θ t obtained with fair clients only. Theorem 6.1 provides a recurrent form for the difference between these two processes.
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Chapter 6 Free-rider Attacks on Model Aggregation in Federated Learning Theorem 6.1. Under the assumptions of Section 6.2.3 and 6.2.4 for the local optimization processes resulting from federated learning with respectively only fair clients and with free-riders, the difference between the aggregation processes of formulas (6.1) and (6.10) takes the following recurrent form:

θt -θ t = t-1 i=0 ϵ + M K N t-i-1 f (θ i ) + t-1 i=0 ϵ + M K N t-i-1 (ν i -ν i ), with f (θ t ) = M K N θ t -j∈J M j N -M K [η j (θ t -θ * j ) + θ * j ] , ϵ = j∈J M j N η j , ν t = j∈J M j N -M K ρ j ζ j,t and νt = j∈J M j N ρ j ζj,t .
We note that in the special case with no free-riders (i.e. M K = 0), the quantity θt -θ t depends on the second term of equation (6.12) only, and represents the comparison between two different realizations of the stochastic process associated to the federated global model. Theorem 6.1 shows that in this case the variance across optimization results is non-zero, and depends on the intrinsic variability of the local optimization processes quantified by the variable ν t . We also note that in presence of free-riders the convergence to the model obtained with fair clients depends on the relative sample size declared by the free-riders

M K N .

Convergence analysis of plain free-riding

Based on the relationship between the learning processes established in Theorem 6.1, we are now able to prove that federated learning with plain free-riders defined in equation (6.10) converges in expectation to the aggregated model of the fair clients of equation (6.1). Theorem 6.2 (Plain free-riding). Assuming FedAvg converges in expectation, and based on the assumption of Theorem 6.1, the following asymptotic properties hold:

E θt -θ t t→+∞
----→ 0, (6.12)

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -ϵ + M K N 2 . (6.13)
As a corollary of Theorem 6.2, in Proof E.1.2 it is shown that the asymptotic variance is strictly increasing with the sample size M K declared by the free-riders. In practice, the smaller the total number of data points declared by the free-riders, the closer the final aggregation result approaches the model obtained with fair clients only. On the contrary, when the the sample size of the fair clients is negligible with respect to the the 6.2 Methods one declared by the free-riders, i.e. N ≃ M K , the variance tends to infinity. This is due to the ratio approaching to 1 in the geometric sum of the second term of equation (6.12). In the limit case when only free-riders participate to federated learning (J = ∅), we obtain instead the trivial result θt = θ 0 and Var θt = 0. In this case there is no learning throughout the training process. Finally, with no free-riders (M K = 0), we obtain Var θt

1 -θ t 2 t→+∞ ----→ 2 N 2 1 1-ϵ 2
j∈J (M j ρ j ) 2 , reflecting the variability of the fair aggregation process due to the stochasticity of the local optimization processes.

Disguised free-riding

Plain free-riders can be easily detected by the server, since for each iteration the condition

[ θt+1 k -θt = 0] is true.
In what follows, we study improved attack strategies based on the sharing of opportunely disguised parameters, and investigate sufficient conditions on the disguising models to obtain the desired convergence behavior of free-rider attacks.

Additive noise to mimic SGD updates

A disguised free-rider with additive noise generalizes the plain one, and uploads parameters

θt+1 k = θt + φ k (t)ϵ t .
Here, the perturbation ϵ t is assumed to be Gaussian white noise, and φ k (t) > 0 is a suitable time-varying perturbation compatible with the free-rider attack.

As shown in equation (6.8), the parameters uploaded by the fair clients take the general form composed of an expected model corrupted by a stochastic perturbation due to SGD. Free-riders can mimic this update form by adopting a noise structure similar to the one of the fair clients:

φ 2 k (t) = λ S σ t k 2 1 2r k 1 -e -2λr k EM k S , ( 6.14) 
where r k and σ t k would ideally depend on the (non-existing) free-rider data distribution and thus need to be determined, while M k is the declared number of samples. Compatibly with the assumptions of constant SGD variance σ 2 j for the fair clients, we here assume that the free-riders noise is constant and compatible with the SGD form:

φ 2 k = λ S σ 2 k 1 2r k 1 -e -2λr k EM k S . (6.15)
The parameters r k and σ k affect the noise level and decay of the update, and thus the ability of the free-rider of mimicking a realistic client. These parameters can be ideally estimated by computing a plausible quadratic approximation of the local loss function (Section 6.2.3). While the estimation may require the availability of some form of data for the free-rider, in Section 6.2.5 we prove that, for any combination of r k and σ k , federated learning still converges to the desired aggregated target.

Analogously as for the fair clients, this assumption will be relaxed in Section 6.2.5.

Attacks based on fixed additive stochastic perturbations

In this new setting, we can rewrite the FedAvg aggregation process (6.1) for an attack with a single free-rider with perturbation φ:

θt+1 = j∈J M j N θt+1 j + M K N θt + M K N φϵ t .
(6.16) Theorem 6.3 extends the results previously obtained for federated learning with plain free-riders to our new case with additive perturbations.

Theorem 6.3 (Single disguised free-rider). Analogously to Theorem 6.2, the aggregation process under free-riding described in equation ( 6.16) converges in expectation to the aggregated model of the fair clients of equation ( 6.1) :

E θt -θ t t→+∞ ----→ 0, (6.17)

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -ϵ + M K N 2 + 1 1 -ϵ + M K N 2 M 2 K N 2 φ 2 . (6.18)
Theorem 6.3 shows that disguised free-riding converges to the final model of federated learning with fair clients, although with a higher variance resulting from the free-rider's perturbations injected at every iteration. The perturbation is proportional to M K N , the relative number of samples declared by the free-rider.

The extension of this result to the case of multiple free-riders requires to account in equation (6.16) for an attack of the form k∈K

M k N φ k ϵ k,t
, where M k is the total sample size declared by free-rider k. Corollary 6.1 follows from the linearity of this form.
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Corollary 6.1 (Multiple disguised free-riders). Assuming a constant perturbation factor φ k for each free-rider k, the asymptotic expectation of Theorem 6.3 still holds, while the variance reduces to

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -ϵ + M K N 2 + 1 1 -ϵ + M K N 2 k∈K M 2 k N 2 φ 2 k . (6.19)

Time-varying noise model of fair-clients evolution

To investigate more plausible parameters evolution in federated learning, in this section we relax the assumption made in Section 6.2.3 about the constant noise perturbation of the SGD process across iteration rounds.

We assume here that the standard deviation σ t j of SGD decreases at each server iteration t, approaching to zero over iteration rounds: σ t j t→+∞ ----→ 0. This assumption reflects the improvement of the fit of the global model θt to the local datasets over server iterations, and implies that the stochastic process of the local optimization of Section 6.2.3 has noise parameter ρ t j t→+∞ ----→ 0. We thus hypothesize that, to mimic the behavior of the fair clients, a suitable time-varying perturbation of the free-riders should follow a similar asymptotic behavior: φ k (t) t→+∞ ----→ 0. Under these assumptions, Corollary 6.2 shows that the asymptotic variance of model aggregation under free-rider attacks is zero, and that it is thus still possible to retrieve the fair client's model. Corollary 6.2. Assuming that fair clients and free-riders evolve according to Section 6.2.3 to 6.2.5, if the conditions ρ t j t→+∞ ----→ 0 and φ k (t) t→+∞ ----→ 0 are met, the aggregation process of federated learning is such that the asymptotic variance of Theorems 6.2 and 6.3 reduce to Var θt -θ t t→+∞ ----→ 0. (6.20)

We assumed in Corollary 6.2 that the SGD noise σ t j decreases at each server iteration and eventually converges to 0. In practice, the global model may not fit perfectly the dataset of the different clients D j and, after a sufficient number of optimization rounds, may keep oscillating around a local minima. We could therefore assume that σ t j t→+∞ ----→ σ j leading to ρ t j t→+∞ ----→ ρ j . In this case, to mimic the behavior of the fair clients, a suitable time-varying perturbation compatible with the free-rider attacks should converge to a fixed noise level such that φ k (t) t→+∞ ----→ φ k . Similarly as for Corollary 6.2, it can be shown that under these 106 Chapter 6 Free-rider Attacks on Model Aggregation in Federated Learning hypothesis federated learning follows the asymptotic behaviors of Theorem 6.2 and 6.3 for respectively plain and disguised free-riders.

FedProx

FedProx includes a regularization term for the local loss functions of the different clients ensuring the proximity between the updated models θ t+1 j and θ t . This regularization is usually defined as an additional L2 penalty term, and leads to the following form for the local gradient

g j (θ j ) ≃ r j [θ j -θ * j ] + µ[θ j -θ t ]
where µ is a trade-off parameter. Since the considerations in Section 6.2.3 still hold in this setting, we can express the local model contribution for FedProx with a formulation analogous to the one of equation (6.8). Hence, for FedProx, we obtain similar conclusions for Theorem 6.2 and 6.3, as well as for Corollary 6.1 and 6.2, proving that the convergence behavior with free-riders is equivalent to the one obtained with fair clients only, although with a different asymptotic variance (Appendix E.2). Theorem 6.4. Assuming convergence in expectation for federated learning with fair clients only, under the assumptions of Theorem 6.1 the asymptotic properties of plain and disguised free-riding of Theorem 6.2, 6.3, and Corollary 6.1, 6.2, still hold with FedProx. In this case we have parameters:

ρ j 2 = λ S σ j 2 1 2(r j + µ)
1 -e -2λ(r j +µ)

EM j S , (6.21)

ϵ = j∈J M j N [γ j + µ 1 -γ j r j + µ ], (6.22) 
and γ j = e -λ(r j +µ) EM j S . (6.23)

We note that the asymptotic variance is still strictly increasing with the total number of free-riders samples. Moreover, the regularization term monitors the asymptotic variance: a higher regularization leads to a smaller noise parameter ρ 2 j and to a smaller ϵ, thus decreasing the asymptotic variances of Theorem 6.2, 6.3, and Corollary 6.1, 6.2.

Experiments

This experimental section focuses on a series of benchmarks for the proposed free-rider attacks. The methods being of general application, the focus here is to empirically demonstrate our theory on diverse experimental setups and model specifications. All code, data and experiments are available at https://github.com/Accenture/ Labs-Federated-Learning/tree/free-rider_attacks.

Experimental Details

We consider 5 fair clients for each of the following scenarios, investigated in previous works on federated learning [START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF]T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018b):

MNIST (classification in iid and non-iid settings). We study a standard classification problem on MNIST (LeCun et al., 1998) and create two benchmarks: an iid dataset (MNIST iid) where we assign 600 training digits and 300 testing digits to each client, and a non-iid dataset (MNIST non-iid), where for each digit we create two shards with 150 training samples and 75 testing samples, and allocate 4 shards for each client. For each scenario, we use a logistic regression predictor. , et al., 2017). We randomly chose 5 clients with more than 3000 samples, and assign 70% of the dataset to training and 30% to testing. Each client has on average 6415.4 samples (±1835.6) . We use a two-layer LSTM classifier containing 100 hidden units with an 8 dimensional embedding layer. The model takes as an input a sequence of 80 characters, embeds each of the characters into a learned 8-dimensional space and outputs one character per training sample after 2 LSTM layers and a fully connected one.

We train federated models following FedAvg and FedProx aggregation processes. In FedProx, the hyperparameter µ monitoring the regularization is chosen according to the best performing scenario reported in (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018b): µ = 1 for MNIST (iid and non-iid), and µ = 0.001 for Shakespeare. For the free-rider we declare a number of samples equal to the average sample size across fair clients. We test federated learning with 5 and 20 local epochs using SGD optimization with learning rate λ = 0.001 for MNIST (iid and non-iid), λ = 0.001 for CIFAR-10, and λ = 0.5 for
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Shakespeare, and batch size of 100. We evaluate the success of the free-rider attacks by quantifying testing accuracy and training loss of the resulting model, as indicators of the effect of the perturbation induced by free-riders on the final model performances. Resulting figures for associated accuracy and loss can be found in Figure 6.1, Figure 6.2 and Appendix E.3.

Free-rider attacks: convergence and performances

In the following experiments, we assume that free-riders do not have any data, which means that they cannot estimate the noise level by computing a plausible quadratic approximation of the local loss function (Section 6.2.5). Therefore, we investigate free-rider attacks taking the simple form φ(t) = σt -γ . The parameter γ is chosen among a panel of testing parameters γ ∈ {0.5, 1, 2}, while additional experimental material on the influence of γ on the convergence is presented in Appendix E.3. While the optimal tuning of disguised freerider attacks is out of the scope of this study, in what follows the perturbations parameter σ is defined according to practical hypotheses on the parameters evolution during federated learning. After random initialization at the initial federated learning step, the parameter σ is opportunely estimated to mimic the extent of the distribution of the update ∆ θ0 = θ1 -θ0 observed between consecutive rounds of federated learning. We can simply model these increments as a zero-centered univariate Gaussian distribution, and assign the parameter σ to the value of the fitted standard deviation. According to this strategy, the free-rider would return parameters θt k with perturbations distributed as the ones observed between two consecutive optimization rounds. Figure 6.1, top row, exemplifies the evolution of the models obtained with FedAvg (20 local training epochs) on the Shakespeare dataset with respect to different scenarios: 1) fair clients only, 2) plain free-rider, 3) disguised free-rider with decay parameter γ = 1, and estimated noise level σ, and 4) disguised free-rider with noise level increased to 3σ. For each scenario, we compare the federated model obtained under free-rider attacks with respect to the equivalent model obtained with the participation of the fair clients only. For this latter setting, to assess the model training variability, we repeated the training 30 times with different parameter initializations. The results show that, independently from the chosen free-riding strategy, the resulting models attains comparable performances with respect to the one of the model obtained with fair clients only (Figure 6.1, top row). Similar results are obtained for the setup with 5 local training epochs and different values of γ, as well as for FedProx with 5 and 20 local epochs (Appendix E.3).

We also investigate the same training setup under the influence of multiple free-riders (Figure 6.1, mid and bottom rows). In particular, we test the scenarios where the free-riders declare respectively 50% and 90% of the total training sample size. In practice, we maintain the same experimental setting composed of 5 fair clients, and we increase the number of free-riders to respectively 5 and 45, while declaring for each free-rider a sample size equal to the average number of samples of the fair clients. Independently from the magnitude of the perturbation function, the number of free-riders does not seem to affect the performance of the final aggregated model. However, the convergence speed is greatly decreased. Figure 6.2 shows that the convergence in these different settings is not identically affected by the free-riders. When the size of free-riders is moderate, e.g. up to 50% of the total sample size, the convergence speed of the loss is slightly slower than for federated learning with fair clients. The attacks can be still considered successful, as convergence is achieved within the pre-defined iteration budget. However, when the size of free-riders reaches 90%, convergence to the optimum is extremely slow and cannot be achieved anymore in a reasonable amount of iterations. This result is in agreement with our theory, for which the convergence speed inversely proportional to the relative size of the free-riders. Interestingly, we note that the final accuracy obtained in all the scenarios is similar (though a bit slower with 90% of free-riders), and falls within the variability observed in federated learning with fair-clients only (Figure 1). This result is achieved in spite of the incomplete convergence during training. This effect can be explained by observing that this accuracy level is already reached at the early training stages of federated learning with fair clients, while further training does not seem to improve the predictions. This result suggests that, in spite of the very low convergence speed, the averaging process with 90% of free-riders still achieves a reasonable minima compatible with the training path of the fair clients aggregation.

We note that the "peaks" observed in the loss of Figure 2 are common in FL, especially in the considered application when the number of clients is low. It is important to notice that our experiments are performed by using vanilla SGD. As such, the peaks for only fair clients are to be expected in both loss and performances. We also notice that the peaks are smaller for free-riding because of the "regularization" effect of free-riders, which regresses the update towards the global model of the previous iteration.

Analogous results and considerations can be derived from the set of experiments on the remaining datasets, training parameters and FedProx as an aggregation scheme (Appendix E.3).

Conclusion and discussion

We introduced a theoretical framework for the study of free-riding attacks on model aggregation in federated learning. Based on the proposed methodology, we proved that simple strategies based on returning the global model at each iteration already lead to successful free-rider attacks (plain free-riding), and we investigated more sophisticated disguising

Conclusion and discussion

techniques relying on stochastic perturbations of the parameters (disguised free-riding). The convergence of each attack was demonstrated through theoretical developments and experimental results. The threat of free-rider attacks is still under-investigated in machine learning. For example, current defence schemes in federated learning are mainly based on outliers detection mechanisms, to detect malicious attackers providing abnormal updates. These schemes would be therefore unsuccessful in detecting a free-rider update which is, by design, equivalent to the global federated model. This chapter opens the way to the investigation of optimal disguising and defense strategies for free-rider attacks, beyond the proposed heuristics. Our experiments show that inspection of the client's distribution should be established as a routine practice for the detection of free-rider attacks in federated learning. Further research directions are represented by the improvement of detection at the server level, through better modeling of the heterogeneity of the incoming clients' parameters. This study provides also the theoretical basis for the study of effective free-riding strategies, based on different noise model distributions and perturbation schemes. Finally, in this chapter we relied on a number of hypothesis concerning the evolution of the clients' parameters during federated learning. This choice provides us with a convenient theoretical setup for the formalization of the proposed theory which may be modified in the future, for example, for investigating more complex forms of variability and schemes for parameters aggregation. In the first part of this thesis, we studied the robustness and variability of federated learning to heterogeneous dataset and hardware, through our investigation of the impact of clients sampling (Chapter 2 and 3) and delayed updates (Chapter 4) on the convergence speed and guarantees of federated learning. In the second part of this thesis, we investigated the reliability of federated learning in practical applications. We provided a federated unlearning scheme to remove the contribution of a set of clients from a federatively trained model (Chapter 5) and investigated free-rider attacks to federated learning (Chapter 6).

Summary of the Main Contributions

A General Theory for Client Sampling in Federated Learning

In Chapter 2, we highlighted the asymptotic impact of client sampling on FL. In particular, we showed how the variance and covariance of the clients' stochastic aggregation weights impact FL convergence speed. While our theory holds for any advanced FL sampling scheme, we investigated MD and Uniform sampling from both theoretical and experimental standpoints. We established that when clients have approximately identical importance, Uniform outperforms MD sampling, while MD outperform Uniform sampling otherwise. Yet, in practical scenario with very large number of clients, MD sampling may be unpractical, and Uniform sampling could be preferred due to the more advantageous time complexity.

Main Contributions

• We highlight the asymptotic impact of client sampling on FL with Theorem 2.1, and shows that the convergence speed is inversely proportional to both the sum of the variance of the stochastic aggregation weights, and to their covariance parameter α.

• We established that when clients have approximately identical importance, i.e p i = 1/n, Uniform outperforms MD sampling, due to the larger impact of the covariance term for the latter scheme.

• We showed that our theory encompasses advanced FL sampling schemes, such as the one proposed in Fraboni, Vidal, Kameni, et al. (2021), and W. Chen et al. (2020).

Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning

In Chapter 3, we introduced clustered sampling, a novel client selection scheme in FL generalizing MD sampling, the current scheme from the state-of-the-art (Chapter 2). Consistently with Chapter 2, we proved the correctness of clustered sampling and proposed two clustering methods implementing aggregation based on the clients number of samples or model similarity. Both algorithms provide smaller weight variance for the clients aggregation process leading to better client representativity. Consistently, clustered sampling is experimentally shown to have faster and smoother convergence in heterogeneous dataset.

Main Contributions

• We introduced clustered sampling, a novel client selection scheme in FL generalizing MD sampling, the current scheme from the state-of-the-art.

• We proved the correctness of clustered sampling and proposed two clustering methods implementing aggregation based on the clients number of samples, in Algorithm 2, or model similarity, in Algorithm 3.

• We showed that clustered sampling has faster and smoother convergence in heterogeneous dataset than MD sampling.

A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates

In Chapter 4, we generalized the expression of FEDAVG aggregation scheme by introducing stochastic aggregation weights to account for asynchronous client updates. We proved the convergence of FL schemes satisfying this formalization, e.g. synchronous and asynchronous FEDAVG, FEDFIX, and FEDBUFF. Finally, we gave the aggregation weights close-form to ensure the convergence of any FL optimization scheme to the optimum of the federated problem.
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Main Contributions

• With equation ( 4.6), we generalized the expression of FEDAVG aggregation scheme by introducing stochastic aggregation weights ω i (n) to account for asynchronous client updates, and proved the convergence of FL schemes satisfying this equation with Theorem 4.1.

• We showed that existing federated optimization procedures satisfy aggregation scheme (4.6) including synchronous FL, asynchronous FL, FEDFIX, FEDBUFF, and client sampling.

• We proposed FEDFIX, an FL algorithm where the server, after a fixed amount of time, creates the new global model with the contribution of all the participating clients, proved its convergence with our theoretical framework, and experimentally demonstrated its improvement over synchronous and asynchronous FEDAVG in all the considered scenarios.

Sequential Informed Federated Unlearning: Efficient and Provable Client Unlearning in Federated Optimization

In Chapter 5, we introduced informed federated unlearning (IFU), a novel federated unlearning scheme to unlearn a client's contribution from a model trained with federated learning with statistical unlearning guarantees. We extended the theory of IFU to account for the practical scenario of sequential unlearning (SIFU), where the server receives a series of forgetting request of one or more clients. We proved that SIFU can unlearn a series of forgetting requests while satisfying our unlearning guarantees, and demonstrated the effectiveness of our methods on a variety of tasks and dataset.

Main Contributions

• We introduced informed federated unlearning (IFU), a novel federated unlearning scheme to unlearn, with statistical guarantees, a client's contribution from a model trained with FL.

• We extended the theory of IFU to account for the practical scenario of sequential unlearning (SIFU), where the server receives a series of forgetting request of one or more clients.

• We provided a new theory for the server to bound the clients contribution in FL without asking clients for any additional computation and communication.

Free-rider Attacks on Model Aggregation in Federated Learning

Summary of the Main Contributions

In Chapter 6, we introduced a theoretical framework for the study of free-riding attacks on model aggregation in federated learning. Based on the proposed methodology, we proved that simple strategies based on returning the global model at each iteration already lead to successful free-rider attacks, and we investigated more sophisticated disguising techniques relying on stochastic perturbations of the parameters. The convergence of each attack was demonstrated through theoretical developments and experimental results.

Main Contributions

• We provided the theoretical basis for the study of effective free-riding strategies, based on different noise model distributions, perturbation schemes and the Ornstein-Uhlenbeck process.

• We proved that simple strategies based on returning the global model at each iteration already lead to successful free-rider attacks (plain free-riding), and we investigated more sophisticated disguising techniques relying on stochastic perturbations of the parameters (disguised free-riding).

• We demonstrated the convergence and success of plain and disguised free-riding attacks through theoretical developments and experimental results.

7.2 Perspectives and Future Applications

Fully Decentralized Federated Learning

In this thesis, we considered that the server orchestrates the federated optimization by receiving the clients' contributions and creating the new global model with them. The server communication capabilities are finite and can be constraining when training with large cohort of clients. In this thesis, we addressed this aspect with the analysis of FL convergence speed when only a subset of clients participates for aggregation. We showed the impact of only considering a subset of clients for participation in Chapter 2, and even provided a faster selection method in Chapter 3. In addition, we introduced FEDFIX in Chapter 4. By allowing delayed client contribution, the server only considers the received contributions for aggregation every fixed period of time, which alleviates the server communication workload. However, mitigating the server computation workload is not the only server constraint in FL. Indeed, by orchestrating the FL training procedure, the server is also a central point of failure, and the cost of guaranteeing a reliable and powerful central server may not always be possible [START_REF] Vanhaesebrouck | Decentralized collaborative learning of personalized models over networks[END_REF]. Hence, the interest of fully decentralized learning for FL training without a server.

The key idea behind fully decentralized learning is to replace communication with the server by peer-to-peer communication between individual clients. The communication topology is represented as a connected graph in which nodes are the clients and an edge indicates a communication channel between two clients. In fully decentralized algorithms, a round corresponds to each client performing a local update and exchanging information with their neighbors. Note that there is no longer a global state of the model as in standard federated learning, but the process can be designed such that all local models converge to the desired global solution, i.e., the individual models gradually reach consensus. While multi-agent optimization has a long history in the control community, fully decentralized variants of SGD and other optimization algorithms have recently been considered in machine learning both for improved scalability in datacenters [START_REF] Assran | Stochastic gradient push for distributed deep learning[END_REF] as well as for decentralized networks of devices [START_REF] Colin | Gossip dual averaging for decentralized optimization of pairwise functions[END_REF]H. Tang et al., 2018). It is worth noting that even in the decentralized setting outlined above, a certain degree of trust is needed to set up the learning task either through a central authority or a consensus scheme. Indeed, to perform training, clients need to know their training instruction and hyperparameters used for training.

While fully decentralized FL removes the server constraints, the ones related to the clients' computation and communication capabilities remain. Clients might still need to use their computation and communication capabilities for other tasks than FL training. The clients heterogeneous hardware forces fast clients to wait for the slow ones to communicate with them. As such, adapting the frameworks developed to account for client sampling, Chapter 2, and asynchronicity, Chapter 4, could be coupled with fully decentralized FL for faster federated optimization without the need of a server orchestrating the training. However, a fairness investigation is needed to identify the scenarios in which fully decentralized FL converges to a stationary point of its federated problem, and otherwise how to modify accordingly the training procedure for fully decentralized FL.

Ensuring Fairness

In this thesis, we investigated the impact of a federated optimization scheme on the fairness of the resulting trained model. Especially, we verified that the trained model is a stationary point of the federated problem (1.1) and not of a surrogate one favoring some clients. Another popular fairness approach guarantees instead that the trained model has identical performances on every client (T. Li, Sanjabi, et al., 2019;T. Li, Hu, et al., 2021). However, another source of unfairness has yet to be investigated in the federated learning literature.

To this date, no federated optimization scheme guarantees that every class is treated equally in the trained model. Indeed, often the clients' data samples belong to a client-specific distribution, which makes their dataset prone to lack information regarding some sensitive attributes or to over-represent some features or classes. With federated learning, practitioners obtain a better estimate of an unbiased sample of the data that match the distribution of the population. Hence, performing federated learning is a first step towards removing this source of unfairness in the trained model but is not sufficient to guarantee that every class is identically represented in the trained model.

In the classical centralized machine learning setting, numerous improvements have been made to train this kind of fair classifiers, by introducing for example constrained optimization, post-shifting approaches, and distributionally-robust optimization [START_REF] Hardt | Equality of opportunity in supervised learning[END_REF][START_REF] Zafar | Fairness constraints: Mechanisms for fair classification[END_REF][START_REF] Hashimoto | Fairness without demographics in repeated loss minimization[END_REF]. However, it remains to be proven if these methods, which have demonstrated their effectiveness for improving fairness in centralized training, could be used for federated learning. Indeed, with federated learning, the clients share no information regarding their data, which makes designing a federated optimization scheme correcting the data imbalance challenging. Hence, developing a framework accounting for this kind of bias while respecting the private protocol of FL is needed to provide fair, private and useful optimization.

Model Personalization with Federated Learning

Thorough this thesis, we consider that the clients' data samples are generated with a clientspecific data distribution and consider the convergence guarantees of FL on the federated optimization problem (1.1). When local datasets are small and the data is iid, the model trained with FL outperforms the one obtained solely with local training, which justifies the use of FL for optimization in real-world applications (T. [START_REF] Yang | Applied federated learning: Improving google keyboard query suggestions[END_REF]M. Chen et al., 2019). On the other hand, with non-IID distributions, local models can perform better locally than ones trained with a federated optimization scheme. Hence, further investigation is needed to identify a priori the learning scenarios where federated learning outperforms local optimization, and quantify this improvement.

To provide valid incentives for clients to participate to a federated learning experience, researchers are currently focusing in the problem of "personalization" in federated learning. This approach extends the classical federated optimization routine to account for local data specificities, in order to provide client-specific predictions at inference time (M. [START_REF] Zhang | Personalized federated learning with first order model optimization[END_REF][START_REF] Li | Model-contrastive federated learning[END_REF]. These techniques are shown to be particularly efficient when faced with non-iid data and may outperform even the best possible shared global model. For example, the server can cluster clients according to their specificities, such as geographic location or characteristics of the client's device, before running federated learning on each cluster [START_REF] Mansour | Three approaches for personalization with applications to federated learning[END_REF][START_REF] Sattler | Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints[END_REF]. The server can also consider that similar clients are associates with the same machine learning task and apply methods adapted from multi-task learning to FL [START_REF] Smith | Federated multitask learning[END_REF][START_REF] Marfoq | Federated Multi-Task Learning under a Mixture of Distributions[END_REF]. A client can also personalize the global model by fine-tuning on its local dataset. The development of such algorithms is an important open problem for federated optimization. Especially when dealing with heterogeneous and decentralized datasets. However, fairness must be kept in mind while developing such algorithms, thus requiring to define the optimization routine compatible with the solution of the collaborative optimization problem originally defined by formula (1.1).

Final Remarks

The main bottleneck for the development of data-driven approaches in biomedical applications is represented by the need for large datasets to achieve robust and reliable models. Federated Learning could bridge that gap by enabling its participants to train a model without sharing or exposing their data. With this thesis, we introduced new methods to improve the robustness and reliability of federated learning to heterogeneous conditions and thus improve its adoption in real-world applications.

Final Remarks

The clients aggregation weights remain identical to the one of MD sampling, i.e. .42) where I(l k = i) are still independently distributed but not identically.

ω i (S Cl ) = 1 m K k=1 I(l k = i), (A
We have

E [ω i (S t )ω j (S t )] = 1 m 2 k,l̸ =k E [I(l k = i)I(l l = j)] + 1 m 2 m k=1 E [I(l k = i)I(l k = j)] (A.43) = 1 m 2 k,l̸ =k r k,i r l,j + 1 m 2 m k=1 E [I(l k = i)I(l k = j)] (A.44) = p i p j - 1 m 2 m k=1 r k,i r k,j + 1 m 2 m k=1 E [I(l k = i)I(l k = j)] , (A.45)
where we retrieve equation (A.13) when r k,i = p i .

Variance (i = j). We get

E [I(l k = i)I(l k = j)] = E [I(l k = i)] = r k,i
, which gives: .46) where the inequality comes from using the Cauchy-Schwartz inequality with equality if and only if all the m distributions are identical, i.e. r k,i = p i .

Var [ω i (S Cl )] = 1 m p i - 1 m 2 m k=1 r 2 k,i ≤ Var [ω i (S M D )] , (A
Covariance (i ̸ = j). We get E [I(l k = i)I(l k = j)] = 0, which gives: A.47) where the inequality comes from using the Cauchy-Schwartz inequality with equality if and only if all the m distributions are identical, i.e. r k,i = p i .

Cov [ω i (S Cl )] ω j (S Cl ) = - 1 m 2 m k=1 r k,i r k,j ≤ Cov [ω i (S M D )] ω j (S M D ), ( 

Aggregation Weights Sum

Var Our work is based on the one of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]. We use the developed theoretical framework they proposed to prove Theorem 2.1. The focus of our work (and Theorem 2.1) is on FEDAVG. Yet, the proof developed in this section, similarly to the one of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF], expresses a i in such a way they can account for a wide-range of regularization method on FEDAVG, or optimizers different from Vanilla SGD. This proof can easily be extended to account for different amount of local work from the clients (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF].

Before developing the proof of Theorem 2.1 in Section A.2.5, we introduce the notation we use in Section A.2.1, some useful lemmas in Section A.2.2 and Theorem A.1 generalizing Theorem 2.1 in Section A.2.3.

A.2.1 Notations

We define by y t i,k the local model of client i after k SGD steps initialized on θ t , which enables us to also define the normalized stochastic gradients d t i and the normalized gradient h t i defined as

d t i = 1 a i K-1 k=0 a i,k g i (y t i,k ) and h t i = 1 a i K-1 k=0 a i,k ∇L i (y t i,k ), (A.54)
where a i,k is an arbitrary scalar applied by the client to its kth gradient, a i = [a i,0 , .., a i,K-1 ] T , and a i = ∥a i ∥ 1 . In the special case of FEDAVG, we have a i = [1, ..., 1] and in the one of FEDPROX, we have a i = [(1 -µ) K-1 , ..., 1] where µ is the FEDPROX regularization parameter.

With the formalism of equation (A.54), we can express a client contribution as θ t+1 i -θ t = -η l a i d t i and rewrite the server aggregation scheme defined in equation (2.3) as (A.55) which in expectation over the set of sampled clients S t gives

θ t+1 -θ t = -η g η l n i=1 ω i a i d t i ,
E St θ t+1 -θ t = -η n i=1 p i a i d t i = -η n i=1 p i a i K ef f n i=1 p i a i n i=1 p i a i w i d t i . (A.56)
We define the surrogate objective L(x) = n i=1 w i L i (x), where n i=1 w i = 1.

In what follows, the norm used for a i can either be L1, ∥•∥ 1 , or L2, ∥•∥ 2 , For other variables, the norm is always the euclidean one and ∥•∥ is used instead of ∥•∥ 2 . Also, regarding the client sampling metrics, for ease of writing, we use ω i instead of ω i (S t ) due to the independence of the client sampling statistics with respect to the current optimization round.

A.2.2 Useful Lemmas

Lemma A.1. Let us consider n vectors x i , ..., x n and a client sampling satisfying E St [ω i (S t )] = p i and Cov [ω i (S t )] ω j (S t ) = -αp i p j . We have:

E St   n i=1 ω i (S t )x i 2   = n i=1 γ i ∥x i ∥ 2 + (1 -α) n i=1 p i x i 2 , (A.57)
where

γ i = Var St [ω i (S t )] + αp 2 i .
Proof.

E St   n i=1 ω i (S t )x i 2   = n i=1 E St ω i (S t ) 2 ∥x i ∥ 2 + n i=1 n j=1 j̸ =i E St [ω i (S t )ω j (S t )] ⟨x i , x j ⟩.
(A.58)

In addition, we have: (A.59) where the last equality comes from the assumption on the client sampling covariance.

E St [ω i (S t )ω j (S t )] = Cov [ω i (S t )] ω j (S t ) + p i p j = (-α + 1)p i p j ,
We also have:

n i=1 n j=1 j̸ =i ⟨p i x i , p j x j ⟩ = n i=1 p i x i 2 - n i=1 p 2 i ∥x i ∥ 2 , (A.60)
Substituting equation (A.59) and equation (A.60) in equation (A.58) gives:

E St   n i=1 ω i (S t )x i 2   = n i=1 E St ω i (S t ) 2 -(-α + 1)p 2 i ∥x i ∥ 2 +(-α+1) n i=1 p i x i 2 , (A.61) A.2 FL Convergence ≤ 1 1 -R σ 2 n i=1 γ i ∥a i ∥ 2 2 -(a 2 i,-1 ) + 2 1 1 -R n i=1 γ i a 2 i β 2 E ∇ L(θ t ) 2 + κ 2 , (A.66)
where

R ′ = 2η 2 l L 2 max i {∥a i ∥ 2 1 } < 1.
Proof. Due to the definition of h t i , we have:

E a i h t i 2 = a 2 i E   K-1 k=0 1 a i a i,k ∇L i (y t i,k ) 2   ≤ a 2 i K-1 k=0 1 a i a i,k E ∇L i (y t i,k ) 2 .
(A.67)

Using Jensen inequality, we have

E ∇L i (y t i,k ) 2 ≤ 2 E ∇L i (y t i,k ) -∇L i (θ t ) 2 + 2 E ∇L i (θ t ) 2 (A.68) ≤ 2L 2 E y t i,k -θ t 2 + 2 E ∇L i (θ t ) 2 , (A.69)
where the second equality comes from using Assumption 2.2.

Also, Section C.5 of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] proves

1 a i K-1 k=0 a i,k E y t i,k -θ t 2 ≤ 1 1 -R η 2 l σ 2 ∥a i ∥ 2 2 -(a 2 i,-1 ) + 1 L 2 R 1 -R E ∇L i (θ t ) 2 . (A.70) A.2 FL Convergence
Plugging equation (A.69) and then equation (A.70) in equation (A.67), we get:

E a i h t i 2 ≤ a 2 i K-1 k=0 1 a i a i,k 2L 2 E y t i,k -θ t 2 + 2 E ∇L i (θ t ) 2 (A.71) = 2L 2 a 2 i K-1 k=0 1 a i a i,k E y t i,k -θ t 2 + 2a 2 i E ∇L i (θ t ) 2 (A.72) ≤ 2L 2 a 2 i 1 1 -R η 2 l σ 2 ∥a i ∥ 2 2 -(a 2 i,-1 ) + 1 L 2 R 1 -R E ∇L i (θ t ) 2 + 2a 2 i E ∇L i (θ t ) 2 (A.73) ≤ R ′ 1 -R σ 2 ∥a i ∥ 2 2 -(a 2 i,-1 ) + 2a 2 i R 1 -R + 1 E ∇L i (θ t ) 2 . (A.74)
Multiplying by γ i and summing over n gives

n i=1 γ i E a i h t i 2 ≤ R ′ 1 -R σ 2 n i=1 γ i ∥a i ∥ 2 2 -(a 2 i,-1 ) + 2 1 1 -R n i=1 γ i a 2 i E ∇L i (θ t ) 2 . (A.75)
Using Assumption 2.3 in equation (A.75) and R ′ < 1 completes the proof.

A.2.3 Intermediary Theorem

Theorem A.1. The following inequality holds:

1 T T -1 t=0 E ∇ L(θ t ) 2 ≤ O( 1 (1 -Ω)η ( n i=1 p i a i ) T ) + O(η 1 m A ′ σ 2 ) + O(η 2 l B ′ σ 2 ) + O(η 2 l C ′ κ 2 ) + O(ηD ′ σ 2 ) + O(ηE ′ κ 2 ), (A.76)
where quantities A ′ -E ′ are defined in the following proof from equation (A.93) to equation (A.97).

Proof. Clients local loss functions are L-Lipschitz smooth. Therefore, L is also L-Lipschitz smooth which gives

E L(θ t+1 ) -L(θ t ) ≤ E ⟨∇ L(θ t ), θ t+1 -θ t ⟩ T 1 + L 2 E θ t+1 -θ t 2 T 2 , (A.77)
where the expectation is taken over the subset of randomly sampled clients S t and the clients gradient estimator noises ξ t i . Please note that we use the notation

E [•] instead of E {ξ t i },St [•]
for ease of writing.

Bounding T 1 By conditioning on {ξ t i } and using equation (A.56), we get:

T 1 = E ⟨∇ L(θ t ), E St θ t+1 -θ t ⟩ = -ηK ef f E ⟨∇ L(θ t ), n i=1 w i h t i ⟩ , (A.78)
which, using 2⟨a, b⟩ = ∥a∥ 2 + ∥b∥ 2 -∥a -b∥ 2 can be rewritten as:

T 1 = - 1 2 ηK ef f E   ∇ L(θ t ) 2 + n i=1 w i h t i 2 -∇ L(θ t ) - n i=1 w i h t i 2   . (A.79) Bounding T 2 T 2 |S t = η2 E   n i=1 ω i a i d t i 2 |S t   (A.80) = η2 E   n i=1 ω i a i d t i -h t i + n i=1 ω i a i h t i 2 |S t   (A.81) = η2 E   n i=1 ω i a i d t i -h t i 2 |S t   + η2 E   n i=1 ω i a i h t i 2 |S t   + 2η E ⟨ n i=1 ω i a i d t i -h t i , n i=1 ω i a i h t i ⟩|S t U . (A.82) A.2 FL Convergence
Using Assumption 2.4, we have E ⟨d t i -h t i , h t j ⟩ = 0. Hence, we get U = 0 and can simplify T 2 as:

T 2 = η2 n i=1 E ω 2 i a 2 i E d t i -h t i 2 + η2 E   n i=1 ω i a i h t i 2   . (A.83)
Using Lemma A.1 on the second term, we get:

T 2 = η2 n i=1 E ω 2 i a 2 i E d t i -h t i 2 + η2 n i=1 γ i E a i h t i 2 + η2 (1 -α) E   n i=1 p i a i h t i 2   . (A.84)
Finally, by bounding the first term using Assumption 2.4, and noting that p i a i = w i K ef f for the second term, we get:

T 2 = η2 n i=1 E ω 2 i K-1 k=0 a 2 i,k E g i (y t i,k ) -∇L i (y t i,k ) 2 + η2 n i=1 γ i E a i h t i 2 + η2 (1 -α)K 2 ef f E   n i=1 w i h t i 2   (A.85) ≤ η2 n i=1 E ω 2 i ∥a i ∥ 2 2 σ 2 + η2 n i=1 γ i E a i h t i 2 + η2 (1 -α)K 2 ef f E   n i=1 w i h t i 2   . (A.86)

Going back to equation (A.77)

Substituting equation (A.79) and equation (A.86) back in equation (A.77), we get:

E L(θ t+1 ) -L(θ t ) ≤ - 1 2 ηK ef f ∇ L(θ t ) 2 + 1 2 ηK ef f E   ∇ L(θ t ) - n i=1 w i h t i 2   - 1 2 ηK ef f [1 -Lη(1 -α)K ef f ] E   n i=1 w i h t i 2   + L 2 η2 n i=1 E ω 2 i ∥a i ∥ 2 2 σ 2 + L 2 η2 n i=1 γ i E a i h t i 2
We consider the learning rate to satisfy 1 -Lη(1 -α)K ef f > 0 such that we can simplify equation (A.87) as :

E L(θ t+1 ) -L(θ t ) ηK ef f ≤ - 1 2 ∇ L(θ t ) 2 + 1 2 E   ∇ L(θ t ) - n i=1 w i h t i 2   + L 2 η 1 K ef f n i=1 E ω 2 i ∥a i ∥ 2 2 σ 2 + L 2 η 1 K ef f n i=1 γ i E a i h t i 2 (A.88) ≤ - 1 2 ∇ L(θ t ) 2 + 1 2 n i=1 w i E ∇L i (θ t ) -h t i 2 + L 2 η 1 K ef f n i=1 E ω 2 i ∥a i ∥ 2 2 σ 2 + L 2 η 1 K ef f n i=1 γ i E a i h t i 2 , (A.89)
where the last inequality uses the definition of the surrogate loss function L and the Jensen's inequality.

Using Lemma A.2 and A.3, we get:

E L(θ t+1 ) -L(θ t ) ηK ef f ≤ - 1 2 ∇ L(θ t ) 2 + 1 2 η 2 l L 2 σ 2 1 -R n i=1 w i ∥a i ∥ 2 2 -a 2 i,-1 + Rβ 2 2(1 -R) E ∇ L(θ t ) 2 + Rκ 2 2(1 -R) + L 2 η 1 K ef f n i=1 E ω 2 i ∥a i ∥ 2 2 + 1 1 -R n i=1 γ i ∥a i ∥ 2 2 -(a 2 i,-1 ) σ 2 + Lη 1 K ef f R 1 -R + 1 n i=1 γ i a 2 i β 2 E ∇ L(θ t ) 2 + κ 2 . (A.90) If we assume that R ≤ 1 2β 2 +1
, and considering that β 2 ≥ 1, then we have 1

1-R ≤ 1 + 1 2β 2 ≤ 3 2 , R 1-R ≤ 1 2 , and Rβ 2 1-R ≤ 1 2β 2 +1 (1 + 1 2β 2 )β 2 = 1 2 . We also define Ω = Lη 1 K ef f 3 2 n i=1 γ i a 2 i β 2 ≤ 1 2 .
Substituting these terms in equation (A.90) gives

A.2 FL Convergence 151 E L(θ t+1 ) -L(θ t ) ηK ef f ≤ - 1 4 [1 -Ω] ∇ L(θ t ) 2 + 3 4 η 2 l L 2 n i=1 w i ∥a i ∥ 2 2 -a 2 i,-1 σ 2 + L 2 η 1 K ef f n i=1 E ω 2 i ∥a i ∥ 2 2 + 3 2 n i=1 γ i ∥a i ∥ 2 2 -(a 2 i,-1 ) σ 2 + 3 2 η 2 l L 2 max i {a i (a i -a i,-1 )}κ 2 + 3 2 Lη 1 K ef f n i=1 γ i a 2 i κ 2 . (A.91)
Averaging across all rounds, we get:

1 -Ω T T -1 t=0 E ∇ L(θ t ) 2 ≤ 4 L(θ 0 ) -L(θ * ) ηK ef f T + 3η 2 l L 2 n i=1 w i ∥a i ∥ 2 2 -a 2 i,-1 σ 2 + Lη 1 K ef f 2 n i=1 E ω 2 i ∥a i ∥ 2 2 + 3 n i=1 γ i ∥a i ∥ 2 2 -(a 2 i,-1 ) σ 2 + 6η 2 l L 2 max i {a i (a i -a i,-1 )}κ 2 + 6Lη 1 K ef f n i=1 γ i a 2 i κ 2 . (A.92)
We define the following auxiliary variables

A = m 1 K ef f n i=1 E ω 2 i ∥a i ∥ 2 2 = m 1 n i=1 p i a i n i=1 Var [ω i ] + p 2 i ∥a i ∥ 2 2 , (A.93) B = n i=1 w i ∥a i ∥ 2 2 -a 2 i,-1 = n i=1 p i a i n j=1 p j a j ∥a i ∥ 2 2 -a 2 i,-1 , (A.94) C = max i {a i (a i -a i,-1 )}, (A.95) D = 1 K ef f max i {a i (a i -a i,-1 )} n i=1 γ i = 1 n i=1 p i a i C n i=1 Var [ω i ] + α n i=1 p 2 i , (A.96) E = 1 K ef f max i {a 2 i } n i=1 γ i = 1 n i=1 p i a i max i {a 2 i } n i=1 Var [ω i ] + α n i=1 p 2 i .
(A.97) the convergence bound of Theorem A.1 can be reduced to

1 T T -1 t=0 E ∇L(θ t ) 2 ≤ O 1 η g η l KT + O η g η l n i=1 Var [ω i ] + p 2 i σ 2 + O η 2 l (K -1)σ 2 + O η 2 l K(K -1)κ 2 + O η g η l n i=1 Var [ω i ] + α n i=1 p 2 i (K -1)σ 2 + Kκ 2 , (A.104)
which completes the proof.

Ω is proportional to n i=1 γ i = n i=1 Var [ω i ]+α n i=1 p 2 i .
With full participation, we have Ω = 0. However, with client sampling, all the terms in equation (A.104) are proportional with 1 1-Ω . Yet, we provide a looser bound in equation (A.104) independent from Ω as the conclusions drawn are identical. Through Ω, n i=1 Var [ω i ] and α needs to be minimized. This fact is already visible by inspection of the quantities E and F .

We note that equation (A.104) depends on client sampling through σ 2 , which is an indicator of the clients SGD quality, and κ 2 , which depends on the clients data heterogeneity. In the special case where clients have the same data distribution and perform full gradient descent, based on the arguments discussed in the previous paragraph, we can still provide the following bound showing the influence of client sampling on the convergence speed, while highlighting the interest of minimizing the quantities n i=1 Var [ω i ] and α.

1 T T -1 t=0 E ∇L(θ t ) 2 ≤ O 1 (1 -Ω)η g η l KT , (A.105)
When setting the server learning rate at 1, η g = 1 with client full participation, i.e.

Var [ω

i ] = Var [ n i=1 ω i ] = α = 0 and m = n, we have E = F = 0 and can sim- plify A to A = n n i=1 p 2 i . (A.106)
Therefore, the convergence guarantee we provide is 1

η l KT + η l n i=1 p 2 i σ 2 + η 2 l (K -1)σ 2 + η 2 l K(K -1)κ 2
, which is identical to the one of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] (equation (97) in their work), where n i=1 p 2 i can be replaced by 1/n when clients have identical importance, i.e. p i = 1/n.

In the special case, where we use η l = m/KT (Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] 

E S Cl   n i=1 ω i (S Cl )x i 2   ≤ n i=1 γ i (M D) ∥x i ∥ 2 + (1 -α M D ) n i=1 p i x i 2 , (A.107)
where γ i (M D) and α M D are the aggregation weights statistics of MD sampling. Equation (A.107) is an equality if and only if n i=1 r k,i x i = n j=1 r k,j x j .

Proof. Substituting equation (A.46) in equation (A.58) gives

E S Cl   n i=1 ω i (S Cl )x i 2   = n i=1 E S Cl ω i (S Cl ) 2 ∥x i ∥ 2 + n i=1 n j=1 j̸ =i p i p j ⟨x i , x j ⟩ - 1 m 2 m k=1 n i=1 n j=1 j̸ =i r k,i r k,j ⟨x i , x j ⟩, (A.108)
Substituting equation (A.60) in equation (A.58) gives:

E S Cl   n i=1 ω i (S Cl )x i 2   = n i=1 E S Cl ω i (S Cl ) 2 ∥x i ∥ 2 + n i=1 p i x i 2 - n i=1 p 2 i ∥x i ∥ 2 - 1 m 2 m k=1   n i=1 r k,i x i 2 - n i=1 r 2 k,i ∥x i ∥ 2   . (A.109) A.2 FL Convergence
With rearrangements and using equation (A.41) we get: .110) Using the expression of clustered sampling variance for the first term (equation (A.47)), and using Jensen's inequality on the third term completes the proof. Jensen's inequality is an equality if and only if n i=1 r k,i x i = n j=1 r k,j x j .

E S Cl   n i=1 ω i (S Cl )x i 2   = n i=1 Var [ω i (S Cl )] + 1 m 2 m k=1 r 2 k,i ∥x i ∥ 2 + n i=1 p i x i 2 - 1 m 2 m k=1 n i=1 r k,i x i 2 . ( A 
We adapt Theorem 2.1 to Clustered sampling. Fraboni, Vidal, Kameni, et al. (2021) 

A = m 1 m - 1 m 2 n i=1 m k=1 r 2 k,i + n i=1 p 2 i , E = 1 m (K -1), and F = 1 m K, (A.111)
where E and F are identical to the one for MD sampling and A is smaller than the one for Clustered sampling. 

A.3 Additional experiments

Regarding equation (B.2), we have:

1 m m j=1 z l j =   1 m m j=1 z l j - 1 m j=1 ∇L l j (x)   +   1 m m j=1 L l j (x) -∇L(x)   + ∇L(x). (B.3)
Using the Jensen inequality on the ∥•∥ 2 operator, we get:

E    1 m m j=1 z l j 2    ≤ 3 E    1 m m j=1 (z l j -∇L l j (x)) 2    + 3 E    1 m m j=1 ∇L l j (x) -∇L(x) 2    + 3 ∥∇L(x)∥ 2 (B.4)
Using the Jensen inequality, we get the following upper bound for the first term:

E    1 m m j=1 (z l j -∇L l j (x)) 2    ≤ E   1 m m j=1 z l j -∇L l j (x) 2   (B.5) = n i=1 p i ∥z i -∇L i (x)∥ 2 , (B.6)
where the equality follows from equation (B.1).

By definition, MD sampling is unbiased, i.e. E ∇L l j (x) = ∇L(x). Therefore, we get the following upper bound for the second term: B.11) where the first inequality comes from using Assumption 3.3. 

E    1 m m j=1 ∇L l j (x) -∇L(x) 2    = E   1 m 2 m j=1 ∇L l j (x) -∇L(x) 2   (B.7) = 1 m n i=1 p i ∥∇L i (x) -∇L(x)∥ 2 (B.8) = 1 m n i=1 p i ∥∇L i (x)∥ 2 - 1 m ∥∇L(x)∥ 2 (B.9) ≤ 1 m [(β 2 -1) ∥∇L(x)∥ 2 + κ 2 ] (B.10) ≤ 1 m [β 2 ∥∇L(x)∥ 2 + κ 2 ], ( 
E    1 m m j=1 (z l j -∇L l j (x)) 2    ≤ n i=1 p i ∥z i -∇L i (x)∥ 2 .
Before bounding the second term, we define ∇L W k (x) as the expected gradient of the distribution W k with respects to the parameters x, i.e.

∇L W k (x) := E l k ∼W k [∇L l k (x)] = n i=1 r k,i ∇L i (x) (B.12)
Using this definition, we bound the second term as B.17) where the last inequality comes from using Assumption 3. We define by .16). Using the Jensen inequality, we get 

E   1 m m k=1 ∇L l k (x) -∇L(x) 2   = E   1 m m k=1 (∇L l k (x) -∇L W k (x)) 2   (B.13) = 1 m 2 m k=1 E ∥∇L l k (x) -∇L W k (x)∥ 2 (B.14) = 1 m 2 m k=1 n i=1 r k,i ∥∇L i (x) -∇L W k (x)∥ 2 (B.15) = 1 m 2 [ n i=1 mp i ∥∇L i (x)∥ 2 - m k=1 ∥∇L W k (x)∥ 2 ] (B.16) ≤ 1 m [β 2 ∥∇L(x)∥ 2 + κ 2 ], ( 
B M D = 1 m n i=1 p i ∥∇L i (x)∥ 2 -1 m ∥∇L(x)∥ 2 , equation (B.9), and B Cl = 1 m n i=1 p i ∥∇L i (x)∥ 2 -1 m 2 m k=1 ∥∇L W k (x)∥ 2 , equation (B
- m k=1 1 m 2 ∥∇L W k (x)∥ 2 ≤ - 1 m m k=1 1 m ∇L W k (x) 2 = - 1 m ∥∇L(x)∥ 2 (B.
Var S M D [ω i (S M D )] = 1 m 2 mp i (1 -p i ), (B.19)
and

Var S C (t) [ω i (S C (t)] = 1 m 2 m k=1 r t k,i (1 -r t k,i ). (B.20)
Hence, we get:

Var S M D [ω i (S M D )] -Var S C (t) [ω i (S C (t)] (B.21) = 1 m 2 [mp i (1 -p i ) - m k=1 r t k,i (1 -r t k,i )] (B.22)
We consider an unbiased clustered sampling. Therefore, the sum of probability for client i over the m clusters satisfies m k=1 r t k,i = mp i giving:

Var S M D [ω i (S M D )] -Var S C (t) [ω i (S C (t)] = 1 m 2 [ m k=1 r t k,i 2 -mp 2 i ] (B.23)
Using the Cauchy-Schwartz inequality, we get:

m k=1 r t k,i 2 × m k=1 1 2 ≥ m k=1 r t k,i × 1 2 = (mp i ) 2 due
to the unbiased aspect of the considered clustered sampling. As such, we get:

Var S M D [ω i (S M D )] -Var S C (t) [ω i (S C (t)] ≥ 0, (B.24)
with equality if and only if r t k,i = p i .

B.2.2 Probability for a client to be sampled at least once

In Section 3.3, we have shown that

p({i ∈ S M D }) = 1 -(1 -p i ) m (B.25) and p({i ∈ S C (t)}) = 1 - m k=1 (1 -r t k,i ). (B.26)
Hence, we get:

p({i ∈ S M D }) -p({i ∈ S C (t)}) (B.27) = m k=1 (1 -r t k,i ) -(1 -p i ) m (B.28)
We consider an unbiased clustered sampling. Therefore, when using the inequality of arithmetic and geometric means, we get: 

m k=1 (1 -r t k,i ) ≤ m k=1 (1 -r t k,i ) m m = (1 -p i ) m , (B.

B.3 Explaining Algorithm 2 and 3

Algorithms 2 and 3 can be written in term of data ratio p i instead of samples number n i . While in both cases the algorithms would be correct, it turns out to be simpler to work with quantities of samples n i = p i M instead which are integers. Therefore, without loss of generality, we denote by r ′ k,i the number of samples allocated by client i to distribution k. We retrieve the sampling probability of client i in distribution

W k with r k,i = r ′ k,i M .
Also, without loss of generality, we prove Algorithms 2 and 3 at iteration t and therefore we use in the proofs r k,i and W k instead of r t k,i and W t k .

B.3.1 Algorithm 2

We illustrate in Figure B.1 the clients allocation scheme of Algorithm 2 introduced in Section 3.4, by considering how a client i is associated to the m distributions. Theorem 3.3 states that Algorithm 2 provides a sampling scheme satisfying Proposition 3.1 with complexity O(n log(n)) which we prove in Section 3.4 and in the following proof.

Proof. In term of complexity, the while loop for the client allocation, as illustrated in 

(n + m) = O(n). Also, sorting n elements is done in complexity O(n log(n)). Therefore, Algorithm 2 overall complexity is O(n log(n). B 1 B 2 B 3 B 4 ... B m B m+1 B m+2 ... B K W 1 W 2 W 3 W 4 ... W m q1 q2 q3 q4 qm qm+1 qm+2 qK q1 q2 qm+1,1 q3 qm+1,2 q4 qm+2 qm qK M M M M M K l=1 ql = K l=1 i∈B l r ′ l,i = n i=1 mni = mM

B.3.2 Algorithm 3

We illustrate in Figure B.2, the clients allocation scheme of Algorithm 3 introduced in Section 3.5 by considering how a client i is associated to the m distributions. Theorem 3.4 states that Algorithm 3 provides a sampling scheme satisfying Proposition 3.1 and takes time complexity O(n 2 d + X). We prove these statements in Section 3.5 and the following proof.

Proof. With identical reasoning as for Algorithm 2, clients are allocated in complexity O(n).

Computing the similarity between two clients requires d elementary operations, where d is the number of parameters in the model, and has thus complexity O(d). Computing the similarity matrix requires computing n(n-1) 2 client similarities and thus has total complexity O(n 2 d). Computing the similarity tree depends on the clustering method which we consider has complexity O(X). Transforming the tree as discussed in Section 3.5 requires going through its n -1 nodes and thus has time complexity O(n). Cutting the tree requires considering at most every nodes and has thus complexity O(n). Lastly, the tree is cut in at most n branches and sorting them takes therefore complexity O(n log(n). Finally, combining all these time complexities gives for Algorithm 3 a time complexity of O(n 2 d + X).

B.3 Explaining Algorithm 2 and 3

In practice, the m distributions are computed at every iteration, while the server is required to compute the similarity between sampled clients and all the other clients. Therefore the similarity matrix can be estimated in complexity O(nmd), and Algorithm 3 has complexity O(nmd + X).

B.4 Additional Experiments

We describe in Section 3.6 the different datasets used for the experiments and how we use the Dirichlet distribution to partition CIFAR10 in realistic heterogeneous federated datasets. In all the experiments, we consider a batch size of 50. For every CIFAR10 dataset partition, the learning rate is selected in {0.001, 0.005, 0.01, 0.05, 0.1} to minimize FEDAVG with MD sampling training loss. We retrieve that Algorithm 2 outperforms MD sampling by reducing clients aggregation weight variance. We remind that the hierarchical tree is obtained using Ward's method in this work. We notice that the tree similarity measures gives similar performances when using Algorithm 3 with Ward hierarchical clustering method.. This justifies the use of Arccos similarity for the other experiments. 

B.4.1 CIFAR10 partitioning illustration

C.1.2 Basic Inequalities

We provide the following basic inequalities used in our proofs.

Let us consider f a L-Lipschitz smooth and convex function with optimum x * . For any vector x and y, we have 

∥∇f (x)∥ 2 ≤ 2L[f (x) -f (x * )],
p k x k ) ≤ d k=1 p k g(x k ). (C.6)
Let us consider the random variable X, we have

E ∥X -E [X]∥ 2 ≤ E ∥X∥ 2 . (C.7) where γ i (n) = E Sn ω 2 i (n) -αq 2 i (n) ≥ 0, and γ i (n) ≤ βq i (n) with β := max{d i (n) - αq i (n)}.
Proof. We first propose the following intermediary result. For any y ∈ R, we have

E Sn [ω i (n)ω j (n)] y ≤ αq i (n)q j (n)y. (C.14)
When y ≥ 0, equation (C.14) follows directly from Property 4.1. When y < 0, equation (C.14) follows from providing a lower bound to the joint probability of two Bernoullis and the fact that α ∈ [-1, 1]. Indeed, in that case, we have

P(T n i ≤ ∆t n , T n j ≤ ∆t n ) ≥ P(T n i ≤ ∆t n )P(T n j ≤ ∆t n ) ≥ αP(T n i ≤ ∆t n )P(T n j ≤ ∆t n ). (C.15)
Going back to the stochastic sum of vectors, we have

E Sn   M i=1 ω i (n)x i 2   = M i=1 E Sn ω 2 i (n) ∥x i ∥ 2 + M i=1 M j=1 j̸ =i E Sn [ω i (n)ω j (n)] ⟨x i , x j ⟩ (C.16) ≤ M i=1 E Sn ω 2 i (n) ∥x i ∥ 2 + M i=1 M j=1 j̸ =i αq i (n)q j (n)⟨x i , x j ⟩, (C.17)
where we use equation (C.14) to obtain the inequality. In addition, we have

M i=1 M j=1 j̸ =i ⟨q i (n)x i , q j (n)x j ⟩ = M i=1 q i (n)x i 2 - M i=1 q 2 i (n) ∥x i ∥ 2 . (C.18)
Substituting equation (C.18) in equation (C.17) completes the first claim.

Considering that 

E Sn ω 2 i (n) = Var [ω i (n)] + q 2 i (n) ≥ q 2 i (n) and α ≤ 1, we have γ i (n) ≥ 0 which completes the second claim.
:= 6η 2 l (K -1) 2 L 2 ≤ 1/2, we have ϕ(n) ≤ 4q(n)τ τ s=1 Q(n -s) + 4D 1 L q -1 (n)Z(n) + 6η 2 l (K -1) 2 σ 1 (n), (C.25) and S(n) ≤ 12q(n)L 2 τ τ s=1 Q(n -s) + 12Lq -1 (n)Z(n) + 6σ 1 (n). (C.26) Proof. Let us decompose the difference θ ρ i (n),k i -θ n,k as θ ρ i (n),k i -θ n,k = θ ρ i (n) -η l k-1 l=0 g i (θ ρ i (n),l i ) -θ n -η l k-1 l=0 M i=1 qi (n)g i (θ ρ i (n),l i 
) .

(C.27) Using Jensen inequality, we split the difference between the global models and the one between the gradients to get

θ ρ i (n),k i -θ n,k 2 ≤ 2 θ ρ i (n) -θ n 2 + 2η 2 l k k-1 l=0 g i (θ ρ i (n),l i ) - M i=1 qi (n)g i (θ ρ i (n),l i ) 2 .
(C.28) Therefore, by taking the expectations of equation (C.28) and summing over M gives

ϕ(n, k) ≤ 2 M i=1 qi (n) E θ ρ i (n) -θ n 2 + 2η 2 l k k-1 l=0 M i=1 qi (n) E   g i (θ ρ i (n),l i ) - M i=1 qi (n)g i (θ ρ i (n),l i ) 2   (C.29) ≤ 2 M i=1 qi (n) E θ ρ i (n) -θ n 2 + 2η 2 l k k-1 l=0 M i=1 qi (n) E g i (θ ρ i (n),l i ) 2 , (C.30)
where we see that S(n, l) appears in the second term of equation (C.30). We consider now bounding S(n, k), and first note that a stochastic gradient can be bounded as follow

E g i (θ ρ i (n),k i ) 2 ≤ 3 E ∇L i (θ ρ i (n),k i , ξ ρ i (n) i,k ) -∇L i (θ n,k , ξ ρ i (n) i,k ) 2 + 3 E ∇L i (θ n,k , ξ i ) -∇L i ( θn , ξ i ) 2 + 3 E ∇L i ( θn , ξ i ) 2 .
(C.31)

Lemma C.5. Under Assumption 4.1 and 4.3, and considering D ≤ 1/2, we have 

R(n) ≤ 12L 2 τ τ s=1 Q(n -s) + 24Lq -1 (n)Z(n) + 3Dσ 1 (n) + 6σ 2 (n). (C.37) Proof. R(n, k) ≤ 3 E   M i=1 qi (n) g i (θ ρ i (n),k i ) -∇L i (θ n,k , ξ ρ i (n) i,k ) 2   + 3 E   M i=1 qi (n) ∇L i (θ n,k , ξ i ) -∇L i (θ n,k ) 2   + 3 E   M i=1 qi (n)∇L i (θ n,k ) 2   . (C.
a(n, k) ≤ 3 M i=1 qi (n) E g i (θ ρ i (n),k i ) -∇L i (θ n,k , ξ ρ i (n) i,k ) 2 ≤ 3L 2 ϕ(n,
(n, k) = 3 M i=1 q2 i (n) E ∇L i (θ n,k , ξ i ) -∇L i (θ n,k ) 2 (C.40) ≤ 3 M i=1 q2 i (n) E ∇L i (θ n,k , ξ i ) 2 (C.41) ≤ 6 M i=1 q2 i (n) E ∇L i (θ n,k , ξ i ) -∇L i ( θn , ξ i ) 2 + E ∇L i ( θn , ξ i ) 2 (C.42) ≤ 12L max i (q i (n)) Ln (θ n,k ) -Ln ( θn ) + 6 M i=1 q2 i (n) E ∇L i ( θn , ξ i )) 2 . (C.43) Proof. We have J j=1 s j (n) = M i=1 q i (n) = q(n).
Hence, by definition of L(θ) and L n (θ), we have

∇L(θ) -∇ Ln (θ) = J j=1 (r j -sj (n))∇L j (θ) (C.65) = j∈Wn r j -sj (n) sj (n) sj (n)∇L j (θ) + j / ∈Wn r j ∇L j (θ). (C.66)
Applying Jensen and Cauchy-Schwartz inequality gives

∇L(θ) -∇ Ln (θ) 2 ≤ 2 j∈Wn r j -sj (n) sj (n) sj (n)∇L j (θ) 2 + 2 j / ∈Wn r j ∇L j (θ) 2 (C.67) ≤ 2   j∈Wn (r j -sj (n)) 2 sj (n)   J j=1 sj (n) ∥∇L j (θ)∥ 2 + 2   j / ∈Wn r j   j / ∈Wn r j ∥∇L j (θ)∥ 2 (C.68)
Considering the Lipschitz smoothness of the clients loss function, and j / ∈Wn r j ≤ 1 completes the proof.

C.2.2 Proof of Theorem 4.2

Proof. Using Jensen inequality and Lemma C.7 gives

∥∇L(θ)∥ 2 ≤ 2 ∇L(θ) - 1 q(n) ∇L n (θ) 2 + 2 1 q(n) ∇L n (θ) 2 (C.69) ≤ 4L χ 2 n 1 q(n) + 1 q 2 (n) [L n (θ) -L n ( θn )] + χ 2 n 1 q(n) 4L[L n ( θn ) - j∈Wn s j (n)L j (θ * j )] + 4L j / ∈Wn r j [L j (θ) -L j (θ * j )] (C.70)
We take the maximum of χ 2 n and q(n), the mean over the KN serial SGD steps, and use In this example, we assume there are more features than data samples, which makes X T X a singular matrix. While f is convex, f has more than one global optimum. Any model with parameter θ * such that X T Xθ * = X T y (D.2) is a global optimum. When X T X is non-singular, we retrieve the unique optimum in closeform θ * = X T X -1 X T y. We show with this simple example that, upon unlearning a data sample, no amount of fine-tuning on the model θ * can lead to the same model obtained when retraining from a random initial model. We differentiate between (X, y) and (X -1 , y -1 ) our data with and without a given data point.

Optimizing f , as defined in equation (D.1), with N steps of gradient descent, learning rate η, and initial model θ 0 gives model parameters θ N defined as

θ N = I -ηX T X N A(X,N ) θ 0 + η N -1 n=0 I -ηX T X n X T y B(X,y,N ) . (D.3)
We first note that we retrieve the standard form for the global optimum of linear regression when X T X is non-singular as lim n→∞ A(X, n) = 0 and lim n→∞ B(X, y, n) = X T X -1 X T y. In the general form accounting for the singular case, at least one eigenvalue of A(X, N ) is equal to 1 independently from the amount of gradient descent steps N . Hence, the parameters of the model obtained with gradient descent optimization always depend from the ones of the initial model θ 0 . Hence, when unlearning our data sample from θ N , the resulting trained model still depends of that data samples. Indeed, if we compare the model θ Ñ -1 trained on the data samples (X -1 , y -1 ), to the model ϕ Ñ -1 obtained after fine-tuning the model θ N with Ñ server aggregations, we have ϕ Ñ -1 -θ Ñ -1 = A(X -1 , Ñ )A(X, N )θ 0 + A(X -1 , Ñ )B(X, y, N ). where the third equality follows from equation (D.9), and the fourth from expanding the recurrent equation. For the rest of this work, we define

Q n i = K-1 k=0 I -ηH i (θ n,k i ) .
Using equation (D.13), we relate the difference between two global models with every client in I and in I c . When removing client c the clients' importance changes. We consider importance p i when training with I. Instead, when training with clients in I c , we consider the regularized importance q i = p i /(1 -p c ) for the remaining clients and q c = 0. We have

ϕ n+1 -θ n+1 = M i=1 q i ϕ n+1 i -ϕ n - M i=1 p i θ n+1 i -θ n (D.14) = M i=1 q i ϕ n+1 i -θ n+1 i + θ n+1 i -θ n - M i=1 p i θ n+1 i -θ n (D.15) = M i=1 q i Q n i (ϕ n -θ n ) + ∆(I -c , θ n ) -∆(I, θ n ). (D.16)
We consider a learning rate η such that η ≤ 1/σ max (H i (θ n,k )). Hence, ∥Q n i ∥ 2 ≤ 1. With equation (D.16), we get the following inequality 

D.2.4 Generalization

The proof of Theorem 5.1 can be also extended to account for FL regularization methods (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;T. Li, Sahu, Zaheer, Sanjabi, When considering the more general case where there exists an integer k such that u = s + k while (ν, t s ) ∈ O(s) and (ν, t u ) ∈ O(u), then it is sufficient to consider iteratively an integer j ranging from 1 to k. Considering (ν, t u ) ∈ O(u), there exists t s+j such that (ν, t s+j ) ∈ O(s + j). In that case, using the same reasoning as for k = 1, we have t s ≤ t s+1 ≤ . . . ≤ t s+k-1 ≤ t u .

D.3.2 Proof of Theorem 5.3

Proof. Proving that θ Nr r (ϵ, δ)-unlearns every client in F r , equation (5.20), reduces to proving that θ 0 r (ϵ, δ)-unlearns every client in F r , equation (5.20). Indeed, the data of clients in F r are not used on the noised perturbed model θ 0 r = θ Tr ζr + N (0, σ 2 I θ ).

We prove by induction that θ 0 r (ϵ, δ)-unlearns every client in F r , equation (5.20). The initialization (r = 1) directly follows from IFU, Algorithm 6, with Theorem 5.2. We now assume that for every s such that s ≤ r -1, θ 0 s (ϵ, δ)-unlearns every client in F s and prove that θ 0 r (ϵ, δ)-unlearns every client in F r .

• s ≤ ζ r . Using the induction property, θ 0 ζr (ϵ, δ)-unlearns every clients in W s . Clients in W s are not used for training on θ 0 ζr . Hence, θ Tr ζr and θ 0 r also (ϵ, δ)-unlearns every client in W s .

• s = r. By definition of ζ r , equation (5.17 For each integer on the x-axis, a different set of clients to unlearn is considered. Each unlearning request is composed of 10 random clients for CIFAR10, CIFAR100, and CelebA. For MNIST and FashionMNIST, each unlearning request |W 1 | has 10 clients of the same class such that the x-axis is the class forgotten. The integers on the x-axis corresponds to the class of the clients to unlearn.

D.4 Experiments

From t to t + 1

We suppose the property true at a server iteration t. Hence, we get:

θt -θ t = t-1 i=0 ϵ + M K N t-i-1 f (θ i ) + t-1 i=0 ϵ + M K N t-i-1 (ν i -ν i ), (E.5)
With the same reasoning as for t = 1, we get: 

θ t+1 = j∈J M j N -M K η j θ t -
θt+1 = j∈J M j N η j θ t -θ * j + θ * j + ϵ t-1 i=0 ϵ + M K N t-i-1 f (θ i ) + ϵ t-1 i=0 ϵ + M K N t-i-1 (ν i -ν i ) + M K N θ t + M K N t-1 i=0 ϵ + M K N t-i-1 f (θ i ) + M K N t-1 i=0 ϵ + M K N t-i-1 (ν i -ν i ) + νt (E.8)
E.1.2 Proof of Theorem 6.2

Proof. Expected Value

Let us first have a look at the expected value. By definition, a sum of Gaussian distributions with 0 mean, E [ν i ] = 0 and E [ν i ] = 0. We also notice that E f (θ t ) =

M K N E θ t -E θ t+1
. Hence, we obtain

E θt -θ t = M K N t-1 i=0 ϵ + M K N n-i-1 E θ t -θ t+1 . (E.13)
We consider that federated learning is converging, hence

| E θ t -E θ t+1 | t→+∞ ----→ 0,
and for any positive α, there exists N 0 such that | E θ t -θ t+1 | < α. Since η j ∈]0, 1[, we have ϵ ∈]0, N -M K N [ and ϵ + M K N ∈]0, 1[. Thus, we can rewrite equation (E.13) as

| E θt -θ t | ≤ N 0 -1 i=0 ϵ + M K N t-i-1 | E θ t -E θ t+1 | + t-1 i=N 0 ϵ + M K N t-i-1
α.

(E.14)

We define by R α = max i∈[1,N 0 ] | E θ t -E θ t+1 |, and get: 

| E θt -θ t | ≤ N 0 -1 i=0 ϵ + M K N t-i-1 A R α + t-1 i=N 0 ϵ + M K N t-i-1 B α. (E.15) • Expressing A. A = N 0 -1 i=0 ϵ + M K N t-i-1 (E.16) = ϵ + M K N t-1 1 -ϵ + M K N -N 0 1 -ϵ + M K N -1 (E.17) t→+∞ ----→ 0 (E.18) • Expressing B. B = t-1 i=N 0 ϵ + M K N t-i-1 (E.19) = ϵ + M K N t-N 0 -1 1 -ϵ + M K N -(t-N 0 ) 1 -ϵ + M K N -1 (E.20) = 1 -ϵ + M K N t-N 0 1 -ϵ + M K N (E.21) t→+∞ ----→ 1 1 -ϵ + M K N > 0 (E.

Variance

The Wiener processes, ν i and νi are independent from the server models parameters θ i . Also, each Wiener process is independent with the other Wiener processes. Hence, we get:

Var θt -θ t = Var t-1 i=0 ϵ + M K N t-i-1 f (θ i ) E + t-1 i=0 ϵ + M K N 2(t-i-1)
Var [ν i -ν i ] F , (E.25)

Expressing E. Before getting a simpler expression for E, we need to consider Cov f (θ l ), f (θ m ) .

To do so, we first consider f (θ t ) -E f (θ t ) . 

f (θ t ) -E f (θ t ) = M K N   1 - j∈J M j N -M K η j   G [θ t -E θ t ], ( 
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We can prove with a reasoning by induction that θ t -E θ t = n-1 i=0 j∈J

M j N -M K η j t-i-1 ν i =
n-1 k=0 ϵ t-i-1 ν i . All the ν i are independent across each others and have 0 mean, hence:

Cov [f (θ l ), f (θ m )] = G 2 min{l-1,m-1} i=0 ϵ l+m-2i-2 E ν 2 i (E.27) Considering that E ν 2 i = Var [ν i ] = j∈J M j N -M K ρ j 2
, we get:

Cov f (θ l ), f (θ m ) = G 2 j∈J M j N -M K ρ j 2 min{l-1,m-1} i=0 ϵ t-i-1 (E.28) We define G ′ = G 2 j∈J M j N -M K ρ j 2
. Given that ϵ ∈]0, 1[, we get the following upper bound on E:

Cov f (θ l ), f (θ m ) ≤ G ′ min{l, m} (E.29)
By denoting H = ϵ + M K N , we can rewrite E as:

E = t-1 l=0 t-1 m=0 H 2(t-1)-l-m Cov f l (θ l ), f (θ m ) (E.30) ≤ t-1 l=0 t-1 m=0
H 2(t-1)-l-m G ′ min{l, m} (E.31)

Considering that min{l, m} ≤ l, we get:

E ≤ G ′ t-1 l=0 t-1 m=0
H 2(t-1)-l-m l (E.32)

= G ′ H 2(t-1) t-1 l=0 H -l l t-1 m=0 H -m (E.33) = G ′ H 2(t-1) t-1 l=0 H -l l 1 -H -n 1 -H -1 (E.34) = G ′ H 2(t-1) 1 -H -n 1 -H -1 t-1 l=0 H -l l (E.35)
Considering the power series +∞ k=0 nx n = x (1-x) 2 , we get that t-1 l=0 H -l l = H -1

(1-H -1 ) 2 . Hence, E's upper bound goes to 0. Given that E is non-negative, we get E t→+∞ ----→ 0.

(E.36) with M J -α > 0 because η j ∈]0, 1[. Also, considering that

1 N 2 + 1 (N -M K ) 2 = 1 N 2 [ M 2 K M 2 J + 2 M K M J + 2],
(E.47)

we can rewrite

1 N 2 + 1 (N -M K ) 2 1 -ϵ + M K N 2 = M 2 K M 2 J + 2 M K M J + 2 M 2 J + 2M K [M J -α] -α 2 (E.48)
As the numerator is a polynomial of order 2 in M K and the denominator is a polynomial of order 1 in M K , the asymptotic variance is increasing with M K .

Note 2: When considering that the SGD noise variance is different for federated learning with and without free-riders, we get: 

F = 1 N 2 j∈J (M j ρj ) 2 + 1 (N -M K ) 2 j∈J (M j ρ j ) 2 (E.

E.2 Complete Proofs for FedProx

FedProx is a generalization of FedAvg. As such, we use the proof done for FedAvg to prove convergence of free-riders attack using FedProx as an optimization solver. The L2 norm monitored by µ changes the gradient as g j (θ j ) ≃ r j [θ j -θ * j ] + µ[θ j -θ t ].

Using equation (6.7), we then get: (E.71) leading to θ j (u) = e -λ[r j +µ]u θ j (0) + r j θ * j + µθ t r j + µ [1 -e -λ(r j +µ)u ]

dθ j = -λ r j [θ j -θ * j ] + µ[θ j -θ t ] + λ √ S σ j (θ j )dW j ,
+ λ √ S u x=0
e -λ(r j +µ)(u-x) σ j (θ j )dW x . (E.72) considering that θ j (0) = θ t , θ j ( EM j S ) = θ t+1 j , and σ j (θ j ) = σ t j , we get:

θ t+1 j = γ j θ t + r j θ * j + µθ t r j + µ [1 -γ j ] + λ √ S EM j S x=0
e -λ(r j +µ)( EM j S -x) σ t j dW x , (E.73)

where γ j = e -λ[r j +µ] The SGD noise variance between two server iterations for FedProx is:

Var θ t+1 j |θ t = λ S σ t j 2 1 2(r j + µ)
1 -e -2λ(r j +µ)

EM j S ρ t j 2 , (E.76)

We also define η ′ j = γ j + µ 1-γ j r j +µ and δ j = r j r j +µ [1 -γ j ]. For FedAvg, µ = 0, we get η ′ j = η j and δ j = 1 -η j . By property of the exponential, γ j ∈]0, 1[. As r j and µ are non negative, then η ′ j ∈]0, 1[ like η j for FedAvg.

Theorem 6.1 for FedProx

We consider ρ ′ j 2 = λ S σ j 2 1 2(r j +µ) 1 -e -2λ(r j +µ) Using the same reasoning by induction as in Proof E.1.1, we get: Like for FedAvg, we make the assumption that federated learning without free-riders using FedProx converge. In addition, ν′ t and ν ′ t are also independent delta-correlated Gaussian white noises. Following the same proof as in Proof E.1.2, we thus get:

θt -θ t = t-1 i=0 ϵ ′ + M K N t-i-1 g(θ i ) + t-1 i=0 ϵ ′ + M K N t-i-1 (ν ′ i -ν ′ i ), (E.77) with g(θ t ) = M K N θ t -j∈J M j N -M K [η ′ j θ t + δ j θ * j ] , ϵ ′ = j∈J M j N η ′ j , ν ′ t = j∈J M j N -M K ρ ′ j ζ j,
lim t→+∞ E θt -θ t = 0.
(E.78) and Var θt -θ t t→+∞ ----→

[ 1 N 2 + 1 (N -M K ) 2 ] j∈J M j ρ ′ j 2 1 -ϵ ′ + M K N 2 (E.79)
The asymptotic variance still strictly increases with M K .

Note: We introduce x = λ(r j + µ) EM j S . By taking the partial derivative of ρ ′ j with respect to µ, we get:

δρ ′ j δµ = λ 2S σ 2 j 1 (r j + µ) 2 [-1 + (1 + 2x)e -2x ],
(E.80) which is strictly negative for a positive µ considering that all the other constants are positive. Hence, the SGD noise variance ρ ′ j is inversely proportional with the regularization factor µ.

Similarly, for ϵ ′ , by considering that η ′ j can be rewritten as η ′ j = γ j r j r j +µ + µ r j +µ , the partial derivative of η ′ j with respect to µ can be expressed as:

δη ′ j δµ = r j (r j + µ) 2 [1 -(1 -x)e -x ],
(E.81) which is strictly positive. Hence η ′ j is strictly increasing with the regularization µ and so is ϵ ′ .

Considering the behaviours of ϵ ′ and ρ ′ j with respect to the regularization term µ, the more regularization is asked by the server and the smaller the asymptotic variance is, leading to more accurate free-riding attacks. 

E.2 Complete Proofs for FedProx
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Algorithm 1 4 :

 14 Federated optimization procedure Require: A set of I participating clients 1: Client selection: In function of the clients availability, the server selects all or a subset of the clients for participation. 2: Broadcast: Participating clients download the current global model weights θ t and the training instructions of the server for this optimization round. 3: Client computation: Each participating client locally computes its update to the global model θ t+1 i by executing its training instructions, e.g. a fixed amount of stochastic gradient descents (SGD) with FEDAVG. Model update: The server collects the updated model θ t+1 i of each participating clients and creates the new global model θ t+1 based on these updates. With FEDAVG, the new global model parameters θ t+1 are estimated as a weighted average of the clients' ones, i.e. θ t+1 = i∈I p i θ t+1 i .

  Fig. 2.1.: Difference between the convergence of the global losses resulting from MD and Uniform sampling when considering n ∈ {10, 20, 40, 80} clients and sampling m = n/2 of them. In (a), clients have identical importance, i.e. p i = 1/n. In (b), clients importance is proportional to their amount of data, i.e. p i = n i /M . Differences in global losses are averaged across 30 FL experiments with different model initialization (global losses are provided in Figure 2.2).

A

  Fig. 2.2.: Convergence of the global losses for MD, Uniform, and Clustered sampling when considering n ∈ {10, 20, 40, 80} clients and sampling m = n/2 of them. In (a-d), clients have identical importance, i.e. p i = 1/n.In (e-h), clients importance is proportional to their amount of data, i.e. p i = n i /M . Zoom of the global losses over the last 100 server aggregations and a variation of 0.5 in the global loss.

Theorem 3. 4 .

 4 If for every client p i ≤ 1/m, Algorithm 3 outputs m distributions for a clustered sampling satisfying Proposition 3.1. The complexity of the algorithm is in O(n 2 d + X), where d is the number of parameters in the model, and X is the complexity of the clustering method.

  Fig. 3.1.: Comparison of MD sampling with clustered sampling of Algorithm 2 and 3 using cosine angle for the similarity measure. n = 100 clients from which m = 10 are sampled to perform N = 50 SGD with learning rate lr = 0.01 and batch size B = 50.

  Fig. 3.2.:We investigate the improvement provided by clustered sampling on federated unbalanced datasets partitioned from CIFAR10 using a Dirichlet distribution with parameter α ∈ {0.001, 0.01, 0.1, 10}. We use N = 100, m = 10, and respective learning rate for each dataset lr = {0.05, 0.05, 0.05, 0.1}.
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Figure 4 .

 4 Figure 4.1 illustrates the notations described in this section in a FL process with M = 2 clients.

  Fig. 4.1.: Illustration of the time notations introduced in Section 4.2.2 with M = 2 clients. The frequency of the updates of Client 1 (C1) is twice the one of Client 2 (C2). If the server (S) creates the new global model after every fixed waiting time (∆t n = ∆t), C1 contributes at every optimization round, while C2 contributes once every two rounds. This aggregation policy define the federated learning strategy FEDFIX (Section 4.4.4).

Theorem 4 .

 4 2 provides convergence guarantees for the optimization problem (4.2) and generalizes the Theorem 2 in the work of Jianyu Wang, Q.[START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] developed for the synchronous setting.

Property

  

Corollary 4 . 2 .

 42 Let us assume there exists a ≥ 0 and b ≥ 0 such that W = O(N a ), τ = O(N b ), and η l ∝ N -c . The convergence bound of Theorem 4.3 asymptotically converges to 0 if W = o(N ), τ = o(N ), and max(a, b) < c < 1.(4.31) 

  4 can be relaxed. Indeed, Assumption 4.4 implies that τ = O(1) and Corollary 4.2 shows that τ = o(N ) is sufficient. We show in Section 4.4 that all the considered optimization schemes satisfy τ = O(1) and W = O(1), and also depend of the clients hardware capabilities and amount of participating clients M .
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 644 .34) We define lcm({x i }) the function returning the least common multiplier of the set of integers {x i }. Hence, after every ν := lcm({τ i }) time, each client has performed ν/τ i General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates optimization rounds and the cycle of clients update repeats itself. Thus, the smallest window W satisfies

  Weights. To compare asynchronous FL with and without the closeform of d i provided in Section 4.4, we introduce IDENTICAL where d i = 1 for every client regardless of the time scenario F X, and TIME-BASED where d i satisfies equation (4.36) derived in Section 4.4.

Figure 4 Fig. 4 .

 44 Fig. 4.2.: We consider the loss evolution over time of federated problem (4.2) (FP) and surrogate problem (4.10) (SP) for MNIST iid, MNIST non-iid, CIFAR * 10, and CIFAR * 100; and the respective standard deviation of the loss over clients in (b) and (d). We consider M = 10 for a time scenario F 80 with K = 1.

Figure 4 .

 4 Figure 4.2(a) experimentally shows the interest of coupling asynchronous FL with TIME-BASED instead of IDENTICAL for different convex applications (MNIST iid, MNIST non-iid, CIFAR * 10, and CIFAR * 100). The learnt model with TIME-BASED has better minima on the federated problem (4.2). In addition, Figure 4.2(b) shows that losses across clients are more homogeneous with TIME-BASED, resulting in generally lower standard deviations.

Figure 4 .Fig. 4 .

 44 Fig. 4.3.: Evolution of federated problem (4.2) (FP) loss for CIFAR10 and Shakespeare and time scenario F 0 and F 80, with M = 20 and M = 50. We consider η g = 1 and K = 10. The server creates the new global model after ∆t = 0.5 for FEDFIX and after receiving c = 10 delayed contributions with FEDBUFF.

  Figure C.1 to C.4 in Appendix C.4).

  Figure 4.3 shows this instability for Shakespeare and t > 2500, and Figure C.1 to C.4 in Appendix C.4 provides the evolution of this instability as the learning rate η l increases.
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Assumption 5. 1 .

 1 For model parameters θ and ϕ, the gradient of the loss function of a given data point D x satisfies ∇f Dx (ϕ) = ∇f Dx (θ) + H Dx (θ)(ϕθ),(5.1)

Definition 5. 1 .

 1 Let f m be a randomized mechanism taking model parameters as an input. (ϵ, δ)-Unlearning trough f m of a data point {x m , y m } from a model M(D) is achieved if, for any subset S of the model parameters space and D -m := D \ {x m , y m }, we have P(f m (M(D)) ∈ S) ≤ e ϵ P(f m (M(D -m )) ∈ S) + δ (5.3) and P(f m (M(D -m )) ∈ S) ≤ e ϵ P(f m (M(D)) ∈ S) + δ.(5.4)[START_REF] Guo | Certified Data Removal from Machine Learning Models[END_REF] shows the relationship between Definition 5.1 and the definition a randomized mechanism in differential privacy[START_REF] Dwork | The Algorithmic Foundations of Differential Privacy[END_REF] X. Chen et al., 2020).

  FL, we consider a learning setup with M clients, and define I = {1, ..., M } as the set of indices of the participating clients. Each client owns a dataset D i composed of |D i | = n i data samples. We consider a loss f (x i,l , y i,l , θ) assessed on each data sample 5.2 Background and Related Work 81 Algorithm 5 FEDAVG(I, N ) 1: for n from 0 to N -1 do 2:

. 7 )

 7 By comparing increments obtained by training on the set of clients I, and on the set I -c := I \ {c} obtained after dropping a given client c, we define the bounded sensitivity after n server aggregations asΨ(n, c) θ s ) -∆(I -c , θ s )∥ 2 , Unlearning a FL client with IFU

  Defining σ(n, c) := [2 (ln(1.25) -ln(δ))] 1/2 ϵ -1 Ψ(n, c), (5.12) the noise perturbation σ(n, c)I θ applied to the global model θ n , where I θ is the identity matrix, achieves (ϵ, δ)-unlearnig of client c according to Definition 5.1. Proof. Follows directly from Theorem 5.1 coupled with Theorem A.Unlearning a FL client with IFU Algorithm 6 Informed Federated Unlearning (IFU) DURING LEARNING WITH FEDAVG FEDAVG(I, N ) initialized on initial model θ 0 .

  Fig. 5.1.: Illustration of SIFU (Algorithm 7) when the server receives R = 3 unlearning requests, through the evolution of the global model parameters θ n r after server aggregation and noise perturbation. After standard federated training via FEDAVG(I, N 0 ), the oracle is O(0) = {∅}, and the current training history is (θ 0 0 , . . . , θ N0 0 ). At request r = 1 the unlearning index is T 1 , and the training history becomes (θ 0 0 , . . . , θ T1 0 , θ 0 1 , . . . , θ N1 1 ). The oracle is updated to O(1) = {(0, T 1 )}, and ζ 1 = 0. At request r = 2 the unlearning index is T 2 and the training history becomes (θ 0 0, . . . , θ T1 0 , θ 0 1 , . . . , θ T2 1 , θ 0 2 , . . . θ N2 2 ). The new node is added to the oracle O(2) = {(0, T 1 ), (1, T 2 )}, and ζ 2 = 1. Finally, at request r = 3, the unlearning index is found at T 3 < T 2 in the branch of request r = 1. The updated training history is now (θ 0 0 , . . . , θ T1 0 , θ 0 1 , . . . , θ T3 1 , θ 0 3 , . . . θ N3 3 ), the oracle is updated as O(3) = {(0, T 1 ), (1, T 3 )}, and ζ 3 = 1.

  T r := arg max n {Ψ ζr (n, W r ) ≤ Ψ * }.(5.18)Finally, we update the oracle O(r -1) to O(r) with the following recurrent equation

  Fig. 5.2.: Total amount of aggregation rounds (1 st row) and model accuracy of unlearned clients(2 nd row) for MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better). The server runs a federated routine with M = 100 clients, and unlearns 10 of them at each unlearning request (R = 3).

  .20) In our experimental scenario, we have |F 0 | = 0 during training and |F 1 | = 10, |F 2 | = 20, and |F 3 | = 30 after each unlearning request.

Figure 5 .

 5 Figure5.2 shows that for every dataset and unlearning index, FINE-TUNING, FEDACCUM, and DP provide similar model accuracy for the unlearned clients in F r (Figure5.2-2 nd row), albeit significantly higher than for SCRATCH, the unlearning standard. Noteworthy,

Chapter 6

 6 Aiming at obtaining the aggregated model of the fair clients, the strategy of a free-rider consists in participating to federated learning by dissimulating local updating through the 98 Free-rider Attacks on Model Aggregation in Federated Learning Algorithm 8 Free-riding in federated learning Require: learning rate λ, epochs E, initial model θ 0 , batch size S, 1: θ0 = θ 0 ; 2: for each round t=0,...,T-1 do 3:Send the global model θt to all the clients;

  Fig. 6.1.: Plots for Shakespeare and E = 20. Accuracy performances for FedAvg and FedProx according to the number of free-riders participating in the learning process: 15% (top), 50% (middle), and 90% (bottom) of the total amount of clients. The shaded blue region indicates the variability of federated learning model with fair clients only, estimated from 30 different training initialization.
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 106 Fig. 6.2.: Plots for Shakespeare and E = 20. Loss performances for FedAvg and FedProx accordingto the number of free-riders participating in the learning process: 15% (top), 50% (middle), and 90% (bottom) of the total amount of clients.
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Proof.

  Fig. A.2.: Convergence speed of the global loss with MD sampling and Uniform sampling when considering n = 80 clients while sampling m = 4 ((a) and (c)), and m = 8 ((b) and (d)) while clients perform K = 50 SGD steps. In (a-b) , clients have identical importance, i.e. p i = 1/n, and, in (d-f), their importance is proportional to their amount of data, i.e. p i = n i /M . Global losses are estimated on 15 different model initialization.

Finally, substituting

  equation (B.6) and (B.11) in equation (B.4) completes the proof. B.1.2 Proof of Lemma B.1 for Theorem 3.2 Proof. Clients are selected with clustered sampling. The m clients indices l 1 , l 2 , ..., l m are still independently sampled but no longer identically. Each index l k is sampled from a distribution W k . Each client can be sampled with probability P(l k = i) = r k,i . Clustered sampling follows Proposition 3.1 and therefore satisfies equation (B.1). Equation (B.4) holds for any sampling schemes. Therefore, we also use it to prove equation (B.2) for clustered sampling. Using the same steps as for the proof of Lemma B.1 for MD sampling, we bound the first term of equation (B.4) as:

Figure B. 1 ,

 1 Figure B.1, either change client or distribution at every step and is thus done in complexity O(n + m). Sampling client is relevant if m < n. Therefore the allocation complexity is equivalent to O(n + m) = O(n). Also, sorting n elements is done in complexity O(n log(n)). Therefore, Algorithm 2 overall complexity is O(n log(n).

Fig

  Fig. B.2.:Illustration of the clients allocation scheme of Algorithm 3. After the tree is split in K groups of clients, the groups are ordered and we consider without loss of generality that their number of samples are inversely proportional to their index. With Algorithm 3, the first m groups, i.e. B 1 to B m , are each associated to one distribution, i.e. W 1 to W m . The remaining groups are considered one after the other and split among the remaining slots in the groups. Each distribution has M samples from clients participating to the FL process.

  In Figure B.3, we show the influence of α on the resulting federated dataset heterogeneity. α = 10 provides almost an iid dataset and identical class percentages, column (a) , and same number of samples per class, column (b). With α = 0.001, we get a very heterogeneous dataset with almost only one class per client translating into some classes much more represented than others due to the unbalanced nature aspect of the created federated dataset, cf Section 3.6. B.4.2 Influence of the similarity measure

Figure B. 4

 4 Figure B.4 shows the effect similarity measures (Arccos, L2, and L1) have on training global loss convergence. We retrieve that Algorithm 2 outperforms MD sampling by reducing clients aggregation weight variance. We remind that the hierarchical tree is obtained using Ward's method in this work. We notice that the tree similarity measures gives similar performances when using Algorithm 3 with Ward hierarchical clustering method.. This justifies the use of Arccos similarity for the other experiments.

Fig. B. 4 .:

 4 Fig. B.4.: Effect of the similarity measure chosen for Algorithm 3 on the training loss convergence.We consider the evolution of the global loss, equation (3.1), in function of the server iteration t. For clarity concerns, we plot the global loss obtained with rolling mean over 50 server iterations (top) and the raw global loss (bottom). We consider CIFAR partitioned with Dir(α = 0.01), learning rate lr = 0.05, N = 100 SGD, and m = 10 sampled clients.

Fig

  Fig. B.7.: We consider the federated dataset partitioned from CIFAR10 using a Dirichlet distribution with parameter α = 0.01. We investigate the influence of N the number of SGD run by each client in the first two rows with N = 10 and N = 500 for m = 10 and the influence of sampled clients with m = 5 and m = 20 for N = 100 in the last two rows. For each dataset, we use respective learning rate lr = {0.1, 0.05, 0.05, 0.05}.

Finally

  , the third claim follows directly from the close-form of the clients aggregation weights, equation (4.5).Lemma C.3. UnderAssumption 4.3 and 4.1, and D 

  k). (C.39) Using the unbiasedness of the gradient estimator, Assumption 4.3, and the local loss function Lipschitz smoothness, Assumption 4.1, we can bound b(n, k) as b

  Fig. C.1.: Evolution of federated problem (4.2) (FP) loss for CIFAR10 and time scenario F 80, with M = 20 and K = 10.

  We first consider the case where clients perform K = 1 SGD in Section D.2.1 before considering the general case K ≥ 1 in Section D.2.2.D.2.1 Proof of Theorem 5.1 for K = 1Proof. We define by θ N = FEDAVG(I, N ) and ϕ N = FEDAVG(I -c , N ) the models trained with FEDAVG on θ 0 with respectively all the clients, i.e. I, and all the clients but client c, i.e. I -c , performing K = 1 GD step.When clients perform K = 1 GD step, two consecutive global models can be related, when training with clients in I as a simple GD step, i.e.θ n+1 = θ n -η∇f I (θ n ). (D.5)By considering the same process for I -c and with Assumption 5.1, we getϕ n+1 -θ n+1 = ϕ nθ n -η ∇f I -c (ϕ n ) -∇f I (θ n ) (D.6) = I -ηH I -c (θ n ) [ϕ nθ n ] -η ∇f I -c (θ n ) -∇f I (θ n ) . (D.7) H I -c (θ n ) is semi-positive, Assumption 5.1. Let us define σ max (H I -c (θ n )) the highest eigenvalue of H I -c (θ n ). When consider that η ≤ 1/σ max (H I -c (θ n )), and due to the subadditivity of the norm, we get the following recurrent inequalityϕ n+1 -θ n+1 2 ≤ η ∇f I (θ n ) -∇f I -c (θ n ) 2 + ∥ϕ nθ n ∥ 2 , (D.8)which when developed completes the proof when clients perform K = 1 GD.D.2.2 Proof of Theorem 5.1 for K ≥ 1Proof. We maintain the definitions of θ n and ϕ n introduced in Section D.2.1. To account for the amount of local work K, we introduce θ n,k i the model of client i after k GD steps performed on global model θ n . We apply a similar reasoning for ϕ n,k i .With Assumption 5.1, we have∇f i (ϕ n,k i ) = ∇f i (θ n,k i ) + H i (θ n,k i ) ηH i (θ n,r i )] (ϕ nθ n ) ,(D.13) 

ϕ n+1 -θ n+1 2 ≤

 2 ∥ϕ nθ n ∥ 2 + ∥∆(I, θ n ) -∆(I -c , θ n )∥ 2 , Forgetting a Single Client with IFU, Proof of Theorem 5.1 D.2.3 Local Loss Functions' Regularization and Strong Convexity, Proof of Corollary 5.1Proof. Under L2 regularization, every client's regularized loss function F i is expressed asF i (θ) = f i (θ) + λ 2 ∥θ∥ 2 and ∇F i (θ) = ∇f i (θ) + λθ. (D.18)When clients perform K = 1 GD step, equation (D.16) reduces toϕ n+1 -θ n+1 = η ∇f I (θ n ) -∇f I -c (θ n ) + (1 -ηλ)I -ηH I -c (θ n ) (ϕ n -θ n ), (D.19) which, if η ≤ 1/(λ + σ max (H i (θ n )), gives ϕ n+1 -θ n+1 2 ≤ η ∇f I (θ n ) -∇f I -c (θ n ) 2 + (1 -ηλ -ηµ) ∥ϕ nθ n ∥ 2 . (D.20) When clients perform K ≥ 1 GD steps, we have ϕ n+1 i ηλ)I -ηH i (θ n,r i )] . (D.21)Hence, we retrieve equation (D.16). We consider the local learning rate satisfy η ≤ 1/(λ + σ max (H i (θ n ))). Hence, considering that Q n i can be bounded with the µ-strong convexity of the Hessian, we getϕ n+1 -θ n+1 2 ≤ η ∥∆(I, θ n ) -∆(I -c , θ n )∥ 2 + (1 -ηλ -ηµ) K ∥ϕ nθ n ∥ 2 .(D.22) Developing this recurrent equation completes the proof.

  Fig. D.1.: Total amount of aggregation rounds (1 st row) and model accuracy of unlearned clients (2 nd row) for the unlearning of watermarked data from MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better).

  Fig. D.2.: Impact of the noise standard deviation σ when unlearning with SIFU versus SCRATCH.Total amount of aggregation rounds (1 st row) and model accuracy of unlearned clients (2 nd row) for MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better).

E. 3

 3 Fig. E.2.: Accuracy performances for FedAvg and 5 epochs in the different experimental scenarios.
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  based on client sampling. Asynchronous Federated Learning based on equation(4.6) Require: server learning rate η g , aggregation weights {d i (n)}, number of SGD K, learning rate η l , batch size B, aggregation time policy ∆t n . 1: The server sends to the M clients the learning parameters (K, η l , B) and the initial global model θ 0 . 2: for n ∈ {0, ..., N -1} do

	3:
	We introduce with Algorithm 4 the implementation of the optimization schemes satisfying
	aggregation scheme (4.6) with stochastic aggregation weights satisfying equation (4.5).
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  The different weights used to account for the importance of clients or data distributions at every optimization round and during the full FL process.

	Importance	p i	r j
	Stochastic aggregation weight	ω i (n)	-
	Aggregation weight	d i (n)	-
	Expected agg. weight	q i (n)	s j (n)
	Normalized expected agg. weight	qi (n)	sj (n)
	Expected agg. weight over N rounds	q i	s j
	Tab. 4.1.:		

In this case, 52 Chapter 4 A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates Client i Sample distribution j

  Clients local objective functions are L-Lipschitz smooth, that is, ∀i ∈ {1, ..., n}, ∥∇L i (x) -∇L i (y)∥ ≤ L ∥x -y∥.

	We make the following assumptions regarding the Lipschitz smoothness and convexity of
	the clients local loss functions (Assumption 4.1 and 4.2), unbiased gradients estimators
	(Assumption 4.3), and finite answering time for the clients (Assumption 4.4). Assumption
	4.3 (Khaled et al., 2020a) considers unbiased gradient estimators without assuming bounded
	variance, giving in turn more interpretable convergence bounds.
	Assumption 4.1 (Smoothness). Assumption 4.2 (Convexity). Clients local objective functions are convex.
	.6), with implementation given in Algorithm 4.
	We first introduce in Section 4.3.1 the necessary assumptions and then prove with Theorem
	4.1 the convergence of the sequence of optimized models (Section 4.3.2). We show in
	Section 4.3.3 the implications of Theorem 4.1 on the convergence of the federated problem
	(4.2), and propose sufficient conditions for the learnt model to be the associated optimum.
	Finally, with two additional assumptions, we propose in Section 4.3.4 simpler and practical
	sufficient conditions for FL convergence to the optimum of the federated problem (4.2).

4.3 Convergence of Federated Problem (4.2)

4.3.1 Assumptions and Property Assumption 4.3 (Unbiased Gradient). Every client stochastic gradient g i

(x) = ∇L i (x, ξ i )

of a model with parameters x evaluated on batch ξ i is an unbiased estimator of the local gradient, i.e.

E ξ i [g i (x)] = ∇L i (x).

Assumption 4.4 (Finite Answering Time). The server receives a client local work in at most

  Conditions for Minimizing the Federated Problem (4.2)

Theorem 4.1 provides convergence guarantees for the history of optimized models {L n }. Under the same assumptions of Theorem 4.1, we can provide convergence guarantees for the original FL problem L(θ) (proof in Appendix C.2).

Theorem 4.2. Under the same conditions of Theorem 4.1, we have

  , we consider with Assumption 4.5 that clients gradients are bounded. This assumption has been considered in previous work on federated optimization including XiangLi et al. (2020) and Sebastian U.[START_REF] Stich | Local SGD Converges Fast and Communicates Little[END_REF], and can be justified by the use of gradient clipping during the practical optimization of deep learning models to prevent exploding gradients. With gradient clipping, a given threshold B is introduced, and gradients with norm exceeding this threshold are clipped to norm B.

Assumption 4.5 (Bounded Gradients)

. The expected squared norm of gradients is uniformly bounded, i.e. ∃B > 0 such that

  .32) When clients have identical data distributions, Σ can be simplified as Σ = E ξ ∥∇L(θ * , ξ)∥ 2 , and Σ = 0 when clients perform GD. We note that in the DL and FL literature Σ is often 62

	Sync. FEDAVG	Async. FEDAVG	FEDFIX
	d i		
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  There are 50000 training and 10000 testing examples. The model architecture was taken from[START_REF] Mcmahan | Communication-Efficient Learning of Deep Networks from Decentralized Data[END_REF] which consists of two convolutional layers and a linear transformation layer to produce logits. Clients get the same amount of samples but their percentage for each class vary and is determined with a Dirichlet distribution of parameter 0.1, i.e. Dir(0.1)[START_REF] Hsu | Measuring the effects of non-identical data distribution for federated visual classification[END_REF].

	1 Code	and	data	are	available	at	https://github.com/Accenture/
	Labs-Federated-Learning/tree/asynchronous_FL
							4.5 Experiments

  Discussionof all the participating clients. We prove the convergence of FEDFIX with our theoretical framework, and experimentally demonstrate its improvement over FEDAVG in all the considered scenarios.

	Sequential Informed	
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	Optimization	Part II
	Reliability of Federated Learning in
	Practical Applications
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  Following this assumption, and for simplicity of notation, in what follows we restrict our analysis to a single parameter entry, that will be generally denoted by θ t i and θ t for clients and server respectively. In this setting, to estimate a global model across clients, FedAvg (McMahan, Moore, et al., 2017) is an iterative training strategy based on the aggregation of local model parameters θ t i . At each iteration step t, the server sends the current global model parameters θ t to the clients. Each client updates the model by minimizing over E epochs the local cost function L(θ t+1

	6.2.1 Federated learning through model aggregation: FedAvg and
	FedProx
	In federated learning, we consider a set I of participating clients respectively owning
	datasets D i composed of M i samples. During optimization, it is generally assumed that
	the D elements of the clients' parameters vector θ t i = (θ t i,0 , θ t i,1 , ..., θ t i,D ), and the global
	parameters θ t = (θ t 0 , θ t 1 , ..., θ t

D ) are aggregated independently at each iteration round t. i , D i ) initialized with θ t , and subsequently returns the updated local parameters θ t+1 i to the server. The global model parameters θ t+1 at the iteration step t + 1 are then estimated as a weighted average:

  , we retrieve their asymptotic convergence bound 1 Instead of Lemma A.1 which requires Cov [ω i (S t )] ω j (S t ) = -αp i p j , we propose the following Lemma for Clustered sampling expressed in function of MD sampling covariance parameter α M D showing that a sufficient condition for MD sampling to perform as well as Clustered sampling is that all x i are identical, or that all the distributions are identical, i.e. r k,i = p i .

	√	mKT + m KT	n i=1 p 2 i σ 2 + m T σ 2 + m T Kκ 2 .
	A.2.6 Application to Clustered Sampling	

Lemma A.4. Let us consider n vectors x i , ..., x n and a Clustered sampling satisfying E St [ω i (S t )] = p i . We have:

  prove the convergence of FL with clustered sampling by giving identical convergence guarantees to the one of FL with MD sampling. As a result, their convergence bound does not depend of the clients selection probability in the different clusters r k,i . The authors' claim was that reducing the variance of the aggregation weights provides faster FL convergence, albeit only providing experimental proofs was provided to support this statement. Corollary A.1 here proposed extends the theory ofFraboni, Vidal, Kameni, et al. (2021) by theoretically demonstrating the influence of clustered sampling on the convergence rate. For easing the notation, Corollary A.1 is adapted to FEDAVG but can easily be extended to account for any local a i using the proof of Theorem A.1 in Section A.2.3.

Corollary A.1. Even with no α such that Cov [ω i (S t )] ω j (S t ) = -αp i p j , the bound of Theorem 2.1 still holds with B, C, and D defined as in Section A.2.3 and

  Finally, substituting equation (B.12) and (B.17) in equation (B.4) completes the proof.

	Equation (B.9) and (B.16) allow us to theoretically identify the convergence improvement
	of clustered sampling over MD sampling.
	3 and equation (B.14) and (B.16)
	are obtained with equation (B.12).

B.1 Proof of Theorem 3.2

  18)with equality if and only if ∀k, l, ∇L W k (x) = ∇L W l (x). Thus, B Cl ≤ B M D with equality if and only if all the clients have the same data distribution or the considered clustered sampling is MD sampling.

	B.2 MD and Clustered Sampling Comparison
	B.2.1 Client aggregation weight variance

As in Section 3.3, we denote by S M D and S C (t) the random variables associated respectively to MD and clustered sampling. Also in Section 3.3, we have shown that

  Illustration of the clients allocation scheme of Algorithm 2. Clients are considered in decreasing importance of their number of samples and always allocate client samples to distributions that already received samples but do not yet have M of them. As a result, after allocating a client, all distributions except at most one have 0 or M samples. Client i is only sampled in W k because every distribution with index inferior to k are filled with clients of index inferior to i, and because there is enough room in W k to receive all the samples that need to be allocated for client i.

			n i=1 m ni = m M
		mni-1		mni	mni+1
	...	W k-1		W k		W k+1	...
		rk-1,i-1	rk,i-1	rk,i	rk,i+1	rk+1,i+1
		M		M		M
	Fig. B.1.:				
						29)
	with equality if and only if r t k,i = p i . Finally, we get:
			p({i ∈ S M D }) ≥ p({i ∈ S C (t)})	(B.30)

B.2 MD and Clustered Sampling Comparison 167

Table 4

 4 .1).Remaining computation time of client i at time t n . ∆t nTime elapsed between two server aggregations. ρ

	Symbol	Description
	M	Number of clients.
	K	Number of local SGD.
	η g , η l	Global/Local learning rate.
	η	Effective learning rate, η = η l η g .
	θ n	Global model at server iteration n.
	θ n+1 i θ * , θ * i θ n,k , θ n,k i	Local update of client i on model θ n . Optimum of the federated problem (4.2)/client i. Global/Local update after k SGD on global model θ n .
	α	Covariance parameter.
	β	Defined in Theorem 4.1.
	L(•), L i (•)	Federated/local loss function.
	g i (•)	SG. We have E ξ i [g i (•)] = ∇L i (•) with Assumption 4.3.
	ξ i	Random batch of samples from client i of size B.
	L	Lipschitz smoothness parameter, Assumption 4.1.
	T i	Computation time of client i.
	t n	Time at aggregation n.
	T n i	

i (n) Last index at which a client i received its global model. ρ

Highest sum of aggregation weights, i.e. ρ := max (1, q(n))

  22)Using equation (E.18) and (E.22) in equation (E.15), we get:

	∀α lim

t→+∞

| E θt -θ t | ≤ Bα, (E.23)

which is equivalent to

lim t→+∞ E θt -θ t = 0. (E.24)

  E.26) 

E.1 Complete Proofs for FedAvg

  49)E.1.3 Proof of Theorem 6.3Proof. Relation between federated learning with and without free-riders global modelWith a reasoning by induction similar to Proof E.1.1, we get:θt -θ t =Expected value ϵ t is a delta-correlated Gaussian White noise which implies that E [ϵ t ] = 0. Following the same reasoning steps as in Proof E.1.2, we get:

		t-1 i=0	ϵ +	M K N	t-i-1	f (θ i )	(E.50)
	+	t-1 i=0	ϵ +	M K N	t-i-1	(ν i -ν i )	(E.51)
	+	t-1 i=0	ϵ +	M K N	t-i-1 M K N	φϵ t ,	(E.52)
	lim t→+∞	E θt -θ t = 0.		(E.53)
	Variance						

1.2 Federated Optimization and FedAvg

https://fedbiomed.gitlabpages.inria.fr

https://developer.nvidia.com/blog/federated-learning-clara/

1.3 Main Challenges of Federated Learning

2.2 Background

Chapter 2 A General Theory for Client Sampling in Federated Learning

2.4 Experiments on real data

2.5 Conclusion

Chapter 3 Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning

https://github.com/Accenture//Labs-Federated-Learning/tree/clustered_sampling3.2 Related Work

Chapter 4 A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates

4.3 Convergence of Federated Problem (4.2)

Chapter 5 Sequential Informed Federated Unlearning: Efficient and Provable Client Unlearning in Federated Optimization

blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/

www.imi.europa.eu/projects-results/project-factsheets/melloddy 96 Chapter 6 Free-rider Attacks on Model Aggregation in Federated Learning

Chapter 6 Free-rider Attacks on Model Aggregation in Federated Learning

7.2 Perspectives and Future Applications

Bibliography

Bibliography

Acknowledgement

This work has been supported by the French government, through the 3IA Côte d'Azur Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-19-P3IA-0002, and by the ANR JCJC project Fed-BioMed 19-CE45-0006-01. The project was also supported by Accenture. The authors are grateful to the OPAL infrastructure from Université Côte d'Azur for providing resources and support. ix 4

A 135

A.1 Client Sampling Schemes Calculus

In this section, we calculate for MD, Uniform, Poisson, and Binomial sampling the respective aggregation weight variance Var [ω i (S t )], the covariance parameter α such that Cov [ω i (S t ))] ω j (S t ) = -αp i p j , and the variance of the sum of weights Var [ n i=1 ω i (S t )]. We also propose statistics for the parameter N , i.e. the amount of clients the server communicates with at an iteration:

(A.1)

A.1.1 Property A.1

Proposition A.1. For any client sampling, we have 0 ≤ α ≤ 1 and

Hence, we have α ≤ 1.

Aggregation Weights Sum

Var

Var [ω i (S t )] + i,j̸ =i

Cov [ω i (S t )] ω j (S t ) (A.4)

Var [ω i (S t )] -α i,j̸ =i p i p j (A.5)

where we use n i=1 p i = 1, equation (2.1), for the third and fourth equality.

Re-expressing α. Using equation (A.6), we get

which, with reordering, gives

(A.9)

A.1.2 No sampling scheme

When every client participate at an optimization round, we have ω i (S t ) = p i which gives Var St [ω i (S t )] = 0, α = 0, and N = n.

A.1.3 MD sampling

We recall equation (2.5),

Variance(i = j). We get E [I(l = i)I(l = j)] = E [I(l = i)] = p i , which gives:

Covariance(i ̸ = j). We get E [I(l = i)I(l = j)] = 0, which gives: (A.15) and by definition we get α = 1 m (A.16) ω i (S t ) = 0. (A.17) Amount of clients. Considering that p(i ∈ S t ) = 1 -p(i / ∈ S t ) = 1 -(1 -p i ) m , we get:

(1 -p i ) m ≤ m (A.18)

A.1.4 Uniform Sampling

We recall equation (2.6),

Variance. We first calculate the probability for a client to be sampled, i.e.

Using equation (A.20), we have

Covariance. We have P({i, j} ∈ S t ) = P(i ∈ S t ) + P(j ∈ S t ) -P(i ∪ j ∈ S t ) (A.22) = P(i ∈ S t ) + P(j ∈ S t ) -(1 -P({i, j} / ∈ S t )), (A.23) and

Substituting equation (A.20) and (A.24) in equation (A.23) gives 

where we retrieve Var [ n i=1 ω i (S t )] = 0 for identical client importance, i.e. n i=1 p 2 i = 1 n .

Amount of Clients. N = m.

A.1.5 Poisson Binomial Distribution

Clients are sampled according to a Bernoulli with a probability proportional to their importance p i , i.e.

Hence, only m ≥ p -1 max can be sampled and we retrieve

Covariance. Due to the independence of each stochastic weight, we also get:

Aggregation Weights Sum. Using Property A.1 we obtain

(A.34)

A.1 Client Sampling Schemes Calculus Amount of Clients.

A.1.6 Binomial Distribution

Clients are sampled according to a Bernoulli with identical sampling probability, i.e.

Variance.

Covariance. Due to the independence of each stochastic weight, we have:

Aggregation Weights Sum. Using Property A.1 gives

Amount of Clients.

(A.40)

A.1.7 Clustered Sampling

Clustered sampling (Fraboni, Vidal, Kameni, et al., 2021) is a generalization of MD sampling where instead of sampling m clients from the same distributions, m clients are sampled from m different distributions {W k } m k=1 each of them privileging a different subset of clients. We denote by r k,i the probability of client i to be sampled in distribution k. To satisfy Definition 2.1, the original work (Fraboni, Vidal, Kameni, et al., 2021) 

A.1.8 Optimal Sampling

With optimal sampling (W. Chen et al., 2020), clients are sampled according to a Bernoulli distribution with probability q i , i.e.

Covariance. Due to the independence of each stochastic weight, we have:

Aggregation Weights Sum. Using Property A.1 gives

A.2 FL Convergence

In Table A.1, we provide the definition of the different notations used in this work. We also propose in Algorithm 9 the pseudo-code for FEDAVG with aggregation scheme (2.3). 

)} with a learning rate such that R < 1.

Proof. The proof is in Section C.5 of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF].

The bound here provided is slightly tighter in term of numerical constants than the one of Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF]. Indeed, equation (70) in Jianyu Wang, Q. [START_REF] Wang | Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization[END_REF] uses the Jensen's inequality ∥a + b∥ 2 ≤ 2 ∥a∥ 2 + 2 ∥b∥ 2 which could instead be obtained with: We define for A -E the respective quantities A ′ -E ′ such that X ′ = 1 1-Ω X. We have:

A.2.4 Synthesis of local learning rate η l conditions for Theorem A.1

A sufficient bound on the local learning rate η l for constraints on R for Lemma A.2 and equation (A.90), and constraint on R ′ for Lemma A.3 to be satisfied is:

Constraints on equation (A.87) can be simplified as

Constraints on Ω, equation (A.90), give

A.2.5 Theorem 2.1

Proof. With FEDAVG, every client performs vanilla SGD. As such, we have a i,k = 1 which gives a i = K and ∥a i ∥ 2 = √ K. In addition we consider a local learning rate η l such that Ω ≤ 1 2 as such we can bound A ′ -E ′ as X ′ ≤ 2X.

Finally, considering that the variables A to E can be simplified as 

Therefore, we have

Combining equation (A.16), (A.17), (A.29), and (A.30) gives

Therefore, we have

Noting that completes the proof.

A.3 Additional experiments A.3.1 Shakespeare dataset

The client local learning rate η l is selected in {0.1, 0.5, 1., 1.5, 2., 2.5} minimizing FEDAVG with full participation, and n = 80 training loss at the end of the learning process.

A.3.2 CIFAR10 dataset

We consider the experimental scenario used to prove the experimental correctness of clustered sampling in (Fraboni, Vidal, Kameni, et al., 2021) on CIFAR10 (Krizhevsky et al., n.d.). The dataset is partitioned in n = 100 clients using a Dirichlet distribution with parameter α = 0.1 as proposed in Harry Hsu et al., 2019. 10, 30, 30, 20 Lemma B.1. Suppose we are given

.., l m be the index of the sampled clients and S be the set of sampled clients. We have

and 

B.4.5 Local regularization

With FedProx (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a), every client's local loss function is equipped with a regularization term forcing the updated model to stay close to the current global model, i.e.

where θ t+1 is the updated local model of client i and θ t is the current global model. µ is the hyperparameter monitoring the regularization and is common for all the clients. This framework enables smoother federated learning processes. 

C.1.1 Bounding the convergence residual Σ

As defined in Section 4.2.5, the convergence residual is defined as

When considering that the clients gradient estimator are bounded by σ 2 , then each client gradient estimator satisfies

Under this assumption, we can bound Σ as follows

where the first inequality follows from the unbiasedness of the gradient estimator, Assump- 

C.1.3 Additional Notation

In Table 4.1, we synthesize the different random variables associated to the clients aggregation weights. In Table C.1, we synthesize the remaining random variables.

We introduce the following notations to provide clear and compact proofs. Whenever considering a function f (n, k), we define f (n) := 1/K K-1 k=0 f (n, k), and f (N ) := 1/N N -1 n=0 f (n). We introduce the following quantities

Finally, we define g i (y) = ∇L i (y, ξ i ) the SG of client i evaluated on model parameters y and batch ξ i . We will thus write g i (θ

C.1.4 Useful Lemmas

Lemma C.1. Let us consider n vectors x i , ..., x n . We have

Remark. We can also provide the following lower bound for equation (C.18) using Jensen inequality

Lemma C.2. The following equation holds for any vector x:

Proof. We consider S n , the set of participating clients at optimization round n, i.e. S n = {n :

We have

By construction, we have

). Taking the expectation over S n , we can simplify the second term of equation (C.22) with

). Finally, using Lemma C.1, we can bound the third term. Therefore, we have

, taking the expected value over the iteration random batches ξ ρ i (n),k , and finally taking the expected value over the remaining random variables gives

Taking the mean over K completes the proof.

C.1 Proof of Theorem 4.1

When summing equation (C.31) over M , and considering the clients loss functions Lipschitz smoothness, Assumption 4.1, we have

(C.32)

We also note the following intermediary results

We substitute equation (C.32) in equation (C.30) such that D appears, take the mean over K to introduce ϕ(n) on the two sides of the equation, and use equation (C.33). We have

Finally, reminding that D ≤ 1/2, which gives 1 -D ≥ 1/2, and using Assumption 4.4 to bound E θ ρ i (n) -θ n 2 with Jensen inequality completes the first claim for ϕ(n), i.e.

Substituting the close-form of ϕ(n) in equation (C.32) completes the claim for S(n, k).

Lemma C.4. Under Assumption 4.2 and 4.3, we have

(C.36)

Proof. Follows directly from using Lemma 12 in Khaled et al., 2020a on D(x, n, k) 

Using Lemma C.3 to replace ϕ(n), and considering that D ≤ 1/2 < 1 completes the proof.

Lemma C.6. Under Assumption 4.1 and 4.3, considering that γ i (n) ≤ βq i (n), and

(C.46)

Proof. Considering the proof of Lemma C.2, using the fact that γ i (n) ≤ βq i (n), and Jensen inequality, we have

with the previous global model distances to the optimum Q(s), where max(0, n -τ ) ≤ s ≤ n -1, we thus have

We can thus define A(n) and B(n) such that the bound of of equation (C.49) can be rewritten as in equation (C.50), with its associated implications when taking the mean over N , reordering, and considering that τ A(n) ≤ 1/2:

C.1.5 Proof of Theorem 4.1

Proof. Using Lemma C.2, we have 

When considering the following intermediary result

reordering the terms, and taking the mean over N , we get

Using Lemma C.6 to bound Q(N ), and with ν = 16ρL, we have

We note that when Ξ(N ) ≤ 0, the claim follows directly. Therefore, we consider Ξ(N ) ≥ 0 for the rest of this proof. We first note that

and consider η l such that

which gives

The 5th term can be simplified with the third one. Indeed, we consider a local learning rate such that 3ρ 2 ηL ≤ 1, 48ρ 3 η2 K 2 τ 2 L 2 ≤ 1, and we remind that α ≤ 1. We thus have 

C.1.6 Simplifying the constraint on the learning rate

The constraints on the learning rate can be summarized as

We note that α ≤ 1, and β ≤ 1. We thus propose the following sufficient conditions to satisfy the conditions above

which can further be simplified with

C.2 Proof of Theorem 4.2

In this proof, we consider Ln = q -1 (n)L n .

C.2.1 Useful Lemma

Lemma C.7. The difference between the gradients of L(θ) and L(θ) can be bounded as follow

where

C.3 Applying Theorem 4.3

This section extends Section 4. 

C.3.1 Centralized Learning

In this setting, one client, i.e. M = 1, learns a predictive model on its own data. In this case, we always have q1 (n) = 1, and the resulting optimization problem is always proportional to

There is no gradient delay (τ = 1), while the clients always participate at each optimization round (α = 1 and β = 0), while the global learning rate is redundant with the local learning rate (η g = 1). The server performs KN SGD steps. All these considered elements give

With equation (C.71), we retrieve standard convergence guarantees for centralized ML derived in [START_REF] Bottou | Optimization Methods for Large-Scale Machine Learning[END_REF] C.3.2 Unbiased client sampling (q i (n) = p i )

We define by S n the set of sampled clients performing their local work at optimization step n. Setting ∆t n = max i∈Sn T i , with T i = ∞ for the clients that are not sampled, and thus not in S n , gives P(T i ≤ ∆t n ) = P(i ∈ S n ). S n is independent from the clients hardware capabilities and is decided by the server. This allows to pre-compute P(T i ≤ ∆t n ) and to allocate to each client the aggregation weight d i such that q i = p i .

Standard unbiased client sampling schemes include sampling m clients uniformly without replacement [START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF] or sampling m clients according to a Multinomial distribution (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a). Fraboni, Vidal, Kameni, et al. (2022a) shows that both Uniform and MD sampling satisfy Property 4.1. In particular, in those setting, the term α ≤ 1 is proportional to m, the amount of sampled clients, while 1 ≥ β > 0 is inversely proportional to m. We get

The second term, proportional to α/M , is reduced at the expense of the introduction of a fourth term proportional to β. In turn, it still provides faster optimization rounds with ∆t n = max i∈Sn T i and N = O (T / E [max i∈Sn T i ]). FedAvg with client sampling generalizes FedAvg with full client participation (α = 1 and β = 0).

C.3.3 Biased client sampling (q

The condition q i (n) = p i imposes the design of new client sampling based on the clients data heterogeneity. Nevertheless, we show convergence of biased client samplings where m clients are selected according to a deterministic criterion, e.g. when selecting the m clients with the highest loss [START_REF] Cho | Client selection in federated learning: Convergence analysis and power-of-choice selection strategies[END_REF], or when selecting the m clients with the most available computation resources [START_REF] Nishio | Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge[END_REF]. In this case, P(i ∈ S n ) = 0/1, with 1 if a client satisfies the criterion and 0 otherwise. In this case, no weighting scheme can make an optimization round unbiased. We also have P({i, j} ∈ S n ) = P(i ∈ S n )P(j ∈ S n ), which gives α = 1 with β = 0. Without modification, this client sampling cannot satisfy the relaxed sufficient conditions of Theorem 4.3 and thus converges to a suboptimum point. This drawback can be mitigated by allocating a part of time in the window W to sample clients according to the criterion, and the rest of the window to consider clients such that q i = p i is satisfied over W optimization rounds. By denoting ϵ FEDAVG the convergence guarantees (4.33), we have

We note that equation (C.73) provides a looser bound than equation (4.33) in term of optimization rounds N . Still, this bound is informative and shows that, with minor changes, biased clients sampling based on a deterministic criterion can be proven to converge to the FL optimum. 

C.4 Additional Experiments

C.4 Additional Experiments

C.4 Additional Experiments

Talwalkar, and Smithy, 2019; [START_REF] Acar | Federated Learning Based on Dynamic Regularization[END_REF], other SGD solvers [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]R. Ward et al., 2019;[START_REF] Li | On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes[END_REF][START_REF] Yu | On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization[END_REF]Yu, S. Yang, et al., 2019;Haddadpour, Kamani, Mahdavi, and V. Cadambe, 2019), client sampling (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;[START_REF] Li | On the Convergence of FedAvg on Non-IID Data[END_REF]Fraboni, Vidal, Kameni, et al., 2022a) and/or gradient compression/quantization [START_REF] Reisizadeh | FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization[END_REF][START_REF] Basu | Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification and Local Computations[END_REF]H. Wang et al., 2018).

D.2.5 Calculus simplification with uniform importance

For computation purposes, we propose the following expression to estimate a client bounded sensitivity, equation (5.8. When removing client c, each client has new importance q i = p i /(1 -p c ) for the remaining clients and q c = 0. Hence, we have

In the special case where clients have identical importance, we have The training and retraining depends on the initial model θ 0 0 and the clients' batches of data used at every aggregation to compute their local work. Hence, we replicate each unlearning scenario on 10 different seeds and plot in Figure 5.2 to D.3 their averaged results. For the unlearning benchmarks described in Section 5.5.1 and used in Figure 5.2, D.2, and D.3, the stopping accuracies considered are 93% for MNIST, 90% for FashionMNIST, CIFAR10, and CIFAR100, and 99.9% for CelebA. For Figure 5.3 and D.1 with unlearning benchmark described in Section 5.5.3, the stopping accuracies considered are instead 99.9% for MNIST, FashionMNIST, CIFAR10, and CelebA, and 99% for CIFAR100. Reaching such accuracies is easier with the backdoored datasets because the clients' data heterogeneity is only due to their watermark, Section 5.5.3. We prove with a reasoning by induction that:

D.4 Experiments

Proof. Server iteration t = 1

Using the fair clients local model parameters evolution of Section 6.2.3 and the server aggregation process expressed in equation (6.10), the global model can be written as

Similarly, the global model for federated learning with plain free-riders can be expressed as

By subtracting equation (E.2) to equation (E.3), we obtain:

Hence, θ1 -θ 1 follows the formalization.

which can be rewritten as:

By subtracting equation (E.10) to equation (E.6), we obtain:

(E.12)

E.1 Complete Proofs for FedAvg

Expressing F . Let us first consider the noise coming from the SGD steps. All the νi are independent with ν i . Hence, we have

Replacing (E.39) in equation (E.25), we can express the variance as

By replacing F and H with their respective expression, we can conclude that

Note 1: The asymptotic variance is strictly increasing with the number of data points declared by the free-riders M K .

While M j and ρ j are constants and independent from the number of free-riders and from their respective number of data points, N and ϵ depend on the total number of free-riders' samples M K . We first rewrite ϵ = 1 N α with α = j∈J M j η j not depending on M K and we get:

By defining M J = j∈J M j , we get:

All the ϵ t are independent Gaussian white noises implying Var [ϵ t ] = 1. Following the same reasoning steps as in Proof E.1.2, we get:

As for equation (E.25), all the ϵ t are independent from ν t , from νt , and from the global model parameters θ t . Hence, for one disguised free-rider we get the following asymptotic variance:

(E.58) 

Like for equation (E.25), all the ϵ k,t are independent from ν t , νt and the global model parameters θ t . Hence, for multiple disguised free-rider we get the following asymptotic variance:

E.1.5 Proof of Corollary 6.2

Proof. Relation between federated learning with and without free-riders global model

The relation remains the same for Theorem 6.2, Theorem 6.3, and Corollary 6.1 by replacing η j with η j (t) = j ∈ J M j N ρ j (t) and φ k by φ k (t) for disguised free-riding.

Expected value

With ρ t j and φ(t) the properties for νt , ν t , ϵ t and ϵ k,t remain identical. Hence, they still are delta-correlated Gaussian White noises implying that E [ν t ] = E [ν t ] = E [ϵ t ] = E [ϵ k,t ] = 0. Hence, for Theorem 6.2, Theorem 6.3, and Corollary 6.1, we get:

(E.65)

Variance

Variance asymptotic behaviour proven in Proof E.1.2, E.1.3, and E.1.4 can be reduced to the one in Proof E.1.2. Hence, F , equation (E.39), need to be reexpressed to take into account ρ j (t). All the νi are still independent with ν i . Hence, we have:

Considering that ρ t j t→+∞ ----→ 0, we get:

Using the same reasoning as the one used for the expected value convergence in Proof E.1.2, we get that the SGD noise contribution linked to F goes to 0 at infinity.

For the disguised free-riders, ϵ k,t are still independent Gaussian white noises implying Var [ϵ k,t ] = 1. Hence, following a reasoning similar to the on in Proof E.1.2, we get:

Considering that φ k (t) t→+∞ ----→ 0, by using the same reasoning as for the proof of the expected value for free-riders, Section XX, we get: The free-riders mimic the behaviour of the fair clients. Hence, we get:

1 -e -2λ(r k +µ)

EM j S (E.82) leading to

Var θt -θ t t→+∞ ----→

(E.83)

For disguised free-riders, the variance is also inversely proportional to the regularization parameter µ.

Corollary 6.1 for FedProx

Similarly, for many free-riders, we get:

Var θt -θ t t→+∞ ----→