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Abstract

Federated Learning has gained popularity in the last years as it enables different clients to
jointly learn a global model without sharing their respective data. FL specializes the classical
problem of distributed learning, to account for the private nature of clients information (i.e.
data and surrogate features), and for the potential data and hardware heterogeneity across
clients, which is generally unknown to the server. Within this context, the main objective
of this thesis is to present new theoretical and practical results to quantify the impact of
the clients’ data heterogeneity on the convergence guarantees of federated learning, while
investigating the feasibility of critical components for deployment of federated learning in
real-world applications.

In the first part of the thesis we study the robustness and variability of federated learning to
heterogeneous conditions. To this end, we introduce the notion of stochastic aggregation
weights to generalize the aggregation scheme proposed in FEDAVG, along with a novel
theory to account asymptotically for the impact of a client sampling scheme on the federated
learning convergence guarantees. We then introduce “clustered sampling”, a novel client
selection scheme generalizing and outperforming the state-of-the-art sampling methods in
terms of improved representativity and lower variability. We provide a theoretical justifi-
cation of clustered sampling, and show faster and smoother convergence as compared to
the standard approaches. We further extend the stochastic aggregation scheme of clustered
sampling to account for asynchronous client updates and provide the close-form solution of
the aggregation weights for unbiased federated optimization of federated learning proce-
dures, such as synchronous and asynchronous federated learning, FEDFIX, or FEDBUFF. In
the second part of the thesis, we investigate the reliability of federated learning in practical
applications. We introduce informed federated unlearning (IFU), a novel federated unlearn-
ing scheme, allowing to remove (unlearn) the contribution of a client from a federated
model, with statistical guarantees on the unlearning effectiveness. Finally, we propose two
strategies for free-riding attacks and introduce a novel theoretical framework to prove their
efficiency. Overall, the work presented in this thesis highlights novel theoretical properties
of federated learning, which ultimately allow to deepen our understanding on the robustness
and reliability of the federated optimization process in practical application scenarios.

Keywords: federated learning, distributed optimization, heterogeneous data, bias, pri-
vacy.
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Résumé

L’apprentissage fédéré a gagné en popularité ces dernières années car il permet à différents
clients d’apprendre conjointement un modèle global sans partager leurs données respectives.
FL se spécialise dans le problème classique de l’apprentissage distribué, pour tenir compte
de la nature privée des informations des clients et de l’hétérogénéité potentielle des données
et du matériel entre les clients, qui est généralement inconnue du serveur. Dans ce contexte,
l’objectif principal de cette thèse est de présenter de nouveaux résultats théoriques et
pratiques pour quantifier l’impact de l’hétérogénéité des données clients sur les garanties de
convergence de l’apprentissage fédéré, tout en étudiant la faisabilité de composants critiques
pour le déploiement de l’apprentissage fédéré dans des applications concrètes.

Dans la première partie de la thèse, nous étudions la robustesse et la variabilité de l’appren-
tissage fédéré aux données hétérogènes. Nous introduisons la notion de coefficients stochas-
tiques d’agrégation pour généraliser le schéma d’agrégation proposé dans FEDAVG, ainsi
qu’une nouvelle théorie pour tenir compte asymptotiquement de l’impact d’une méthode
de sélection de clients sur les garanties de convergence de l’apprentissage fédéré. Nous
introduisons ensuite « clustered sampling », une nouvelle méthode de sélection de clients
généralisant et surpassant les méthodes de l’état de l’art en améliorant la représentativité
des clients et en réduisant leur variabilité de sélection. Nous fournissons une justification
théorique de clustered sampling et montrons une convergence plus rapide et plus stable
par rapport aux approches standard. Nous étendons davantage les coefficients stochastique
d’agrégation de clustered sampling pour prendre en compte des contributions asynchrones
de clients et fournissons l’expression des poids d’agrégation pour une optimisation fédérée
juste des méthodes d’apprentissage standarad, telles que l’apprentissage fédéré synchrone et
asynchrone, FEDFIX ou FEDBUFF. Dans la deuxième partie de la thèse, nous étudions la fi-
abilité de l’apprentissage fédéré dans des applications concrètes. Nous introduisons IFU, un
nouveau schéma de désapprentissage fédéré, permettant de supprimer la contribution d’un
client à un modèle fédéré, avec des garanties statistiques sur l’efficacité du désapprentissage.
Enfin, nous proposons deux stratégies pour les attaques de « free-riding » et introduisons un
nouveau cadre théorique pour prouver leur efficacité. Dans l’ensemble, les travaux présentés
dans cette thèse mettent en évidence de nouvelles propriétés théoriques de l’apprentissage
fédéré, qui permettent d’approfondir notre compréhension de la robustesse et de la fiabilité
du processus d’optimisation fédérée dans des scénarios d’applications concrètes.

Mots-clefs : apprentissage fédéré, optimisation distribuée, données hétérogènes, biais,
protection des données.
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1.1 Federated Learning

The way healthcare is delivered to patients is undergoing great change with electronic health
records becoming ubiquitous across almost all medical institutions. Artificial Intelligence
(AI)-supported medical analysis entails a large potential to provide insight into diagnosi
(Kononenko, 2001; Savage, 2012; Roque et al., 2011) and prognosi (Ebadollahi et al.,
2010; Jensen et al., 2012), and can assist in the development of treatments (Bennett et al.,
2012; Ramakrishnan et al., 2010). Nevertheless, a typical bottleneck for the development
of data-driven approaches in biomedical applications is represented by the need for large
datasets to achieve robust and reliable models (R. Wang et al., 2019). As a results, AI-based
modeling approaches developed on mono-centric data often fail in generalizing to external
cohorts, and lack in robustness and reliability (Sheller et al., 2020). To overcome this issue,
an AI model should be ideally trained on very large cohorts ensuring proper representativity
of the data variability across clinical conditions, data acquisition protocols, and biases. This
is currently a major challenge in healthcare since, besides current research efforts such
as the UK Biobank (Sudlow et al., 2015), or ADNI (Petersen et al., 2010), we generally
lack data lakes providing large data collections of heterogeneous medical measurements.
One of the main reason is practical, since institutions are reluctant to share their data
due to the private and sensitive nature of biomedical information. For this reason, during
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the past years researchers turned their attention to the paradigm of collaborative learning.
Among the different collaborative learning paradigms, federated learning (FL) (McMahan,
Moore, et al., 2017) has become increasingly popular as it enables to collaboratively train
an AI model without requiring data sharing, thus addressing the problem of data ownership
and governance in multi-centric studies. Under the orchestration of a central server, the
participating institutions to a FL project collaboratively train a model without ever sharing
their data with the server, another institution or a third party. Each institution stores its data
locally and shares instead the result of the local training.

The application potential for federated learning in the medical field is important as this
technology may allow to operate directly with the patients instead of institutions by using
the data that their wearable devices and smartphone collects (J. Xu et al., 2021). In addition,
the data samples of a participant are characterized by specific features and variations, which
prevents a model trained locally from generalizing to the other clients’ data. Instead, with
federated learning, the trained model can fit the samples of every client (Jianyu Wang, Q.
Liu, et al., 2020; Xiang Li et al., 2020), which leads to better generalization to unknown
data. More generally, federated learning can also be used for finance risk prediction for
reinsurance, pharmaceuticals discovery, electronic health records mining, medical data
segmentation, smart manufacturing, or features on mobile phones (Kairouz et al., 2019;
T. Li, Sahu, Talwalkar, et al., 2020).

In spite of the large potential and interest of FL in medical applications, there are currently
numerous challenges that must be addressed in order to allow the successful adoption of this
technology in real-world applications. In particular, the dataset of the different participants
often has a data distribution specific to each of them. This heterogeneity in the clients’
datasets makes more challenging for federated learning to accommodate the participants’
data in the global model than with centralized learning. In this setting, federated learning
often leads to slower and less stable learning. In addition, a federated optimization scheme
needs to be properly designed to fit every data point without favoring some participants.
Also, due to the physical locations of the participants and their hardware constraints, clients
may compute and communicate their contributions in significantly different time. Finally,
work is needed to investigate the robustness of federated learning to current type of attacks
and ensure that no information from the participants’ data can be leaked by sharing their local
information. Given the set of challenges related to the effective exploitation of federated
learning in real-world applications, the goal of this thesis is to investigate novel methodology
to address the problem of heterogeneity, stability and security of FL in critical setting.

In the rest of this chapter, we introduce the theoretical background of federated learning
(Section 1.2), and illustrate the main methodological bottlenecks addressed in this work
(Section 1.3). Finally we provide an outline of the rest of the manuscript (Section 1.4).
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1.2 Federated Optimization and FedAvg

The work of Kairouz et al. (2019) proposes the following broad definition of federated
learning.

Federated learning is a machine learning setting where multiple entities (clients)
collaborate in solving a machine learning problem, under the coordination of a
central server or service provider. Each client’s raw data is stored locally and
not exchanged or transferred; instead, focused updates intended for immediate
aggregation are used to achieve the learning objective.

This definition highlights the key point behind federated learning: a client never shares its
data. Hence, clients have total governance over their data as they are guaranteed by design
that their data is solely used to compute their local work. Indeed, the main drawback behind
centralizing the clients’ data on a server is that clients lose control on how the model is
trained and on whether the server uses their data for other applications or not, e.g. selling it
to a third-party.

We formalize the optimization problem jointly minimized across clients with federated
learning and its learning setup as follows. We consider a set I of n clients each respectively
owning a datasetDi composed of ni data samples. Federated learning aims at optimizing the
average of each client’s local loss function Li weighted by factors pi such that

∑n
i=1 pi = 1,

i.e.
L(θ) =

∑
i∈I

piLi(θ), (1.1)

where θ represents the model parameters. The weight pi can be interpreted as the importance
given by the server to client i in the federated optimization problem. While any combination
of {pi} is possible, we note that in practice, either (a) every client has equal importance,
i.e. pi = 1/n, or (b) every data point is equally important, i.e. pi = ni/M with M =∑

i∈I ni.

Among the numerous federated optimization schemes proposed in the federated learning
literature, federated averaging (FEDAVG) (McMahan, Moore, et al., 2017) is currently the
most popular approach to solve the optimization problem (1.1). FEDAVG is based on the
iterative averaging of the clients models’ parameters, after locally updating each client’s
model for a given number of training epochs.

We consider the following optimization procedure that covers FEDAVG and other federated
optimization schemes. A server orchestrates the training procedure to estimate a global
model across clients, by repeating the steps in Algorithm 1 at each iteration step t until
training is completed. Algorithm 1 highlights the coordinating role of the central server in
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Algorithm 1 Federated optimization procedure

Require: A set of I participating clients
1: Client selection: In function of the clients availability, the server selects all or a subset

of the clients for participation.
2: Broadcast: Participating clients download the current global model weights θt and the

training instructions of the server for this optimization round.
3: Client computation: Each participating client locally computes its update to the global

model θt+1
i by executing its training instructions, e.g. a fixed amount of stochastic

gradient descents (SGD) with FEDAVG.
4: Model update: The server collects the updated model θt+1

i of each participating clients
and creates the new global model θt+1 based on these updates. With FEDAVG, the new
global model parameters θt+1 are estimated as a weighted average of the clients’ ones,
i.e.

θt+1 =
∑
i∈I

piθ
t+1
i . (1.2)

federated learning. Indeed, the server orchestrates the optimization and decides how the new
global model parameters are computed based on the information provided by the clients.
Several production-oriented federated learning platforms based on this optimization proce-
dure are being developed to enable industrial applications of federated learning including
FED-BIOMED 1 (Silva, Altmann, et al., 2020), NVIDIA Clara 2 , and Flower (Beutel et al.,
2020) .

Surveys on federated learning like the one of Kairouz et al. (2019) distinguish two types of
federated learning applications: (i) the cross-silo setting where few clients are participating,
typical of medical applications involving a limited number of hospitals, and (ii) the cross-
device one, where the number of clients can be very high, typical of smartphone applications
and connected devices. The approaches in this thesis are general, and can be seamlessly
applied to both cross-silo and cross-device setting. We note however that this research
was conducted with a specific focus on medical applications, while contributing to the
development of the federated learning plateform for medical data FED-BIOMED (Silva,
Altmann, et al., 2020).

1.3 Main Challenges of Federated Learning

We next describe four of the core challenges of federated optimization, which distinguishes
federated learning from distributed learning. Whenever describing a new challenge, we

1https://fedbiomed.gitlabpages.inria.fr
2https://developer.nvidia.com/blog/federated-learning-clara/
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also discuss the currently available technologies to solve or mitigate its impact on federated
optimization.

1.3.1 Challenge 1: Data Heterogeneity

The combination of each patient’s anatomy, physiology, and medical history, makes every
patient’s data unique. Moreover, the amount of measurements across patients may vary
significantly, as, for example, an healthy individual is less likely to undergo medical
examination. Within this setting, federated learning cannot rely on the assumption frequently
used in distributed optimization that clients have independent and identically distributed (iid)
data. This constraint introduces important challenges in the study of the theoretical properties
of federated optimization, and requires the design of federated learning frameworks to
specifically account for data heterogeneity. Indeed, it can be demonstrated that otherwise
the federated training procedure converges to a suboptimal model of the federated problem
described in equation (1.1), where clients are not represented according to their importance
pi, thus introducing a bias (Jianyu Wang, Q. Liu, et al., 2020). As a result, some clients
may also be underrepresented and, as such, the training procedure is also characterized as
unfair to these clients. For example, the work of Jianyu Wang, Q. Liu, et al. (2020) proves
that FEDAVG is biased when clients perform heterogeneous amount of local work, or when
performing local optimization with solvers like Adam (Kingma and Ba, 2014). Nonetheless,
the authors of Jianyu Wang, Q. Liu, et al. (2020) also prove that, under minor modifications
to the learning procedure, FEDAVG remains unbiased with these learning scenarios and
converges to a stationary point of the federated problem (1.1). Another example is the work
of Cho et al. (2020) which also shows that, to guarantee fairness, clients should be sampled
according to their importance pi in expectation.

Other definitions of fairness have been proposed in the federated learning literature. For
example, the works of T. Li, Sanjabi, et al. (2019) and T. Li, Hu, et al. (2021) focus on
minimizing the discrepancy between performances across clients. In that case, a trained
model is deemed fair if it has identical training loss or testing accuracy for every client. To
this end, the server dynamically updates the way a client’s local work is considered in the
aggregation to create the new global model, thus solving an optimization problem different
from the one in equation (1.1). This example shows how the definition of fairness may
impact the federated solution, which may ultimately not correspond with a stationary point
of the federated problem (1.1).

In this thesis we focus on the notion of fairness based on preserving the client representativity
associated with the optimization problem (1.1). In this setting, proving the fairness of a
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federated training routine thus requires to demonstrate the convergence of federated learning
to the related.

1.3.2 Challenge 2: Privacy

Federated learning guarantees to every client governance over its data without requiring
sharing with the server or any third party. Nevertheless, federated learning still requires
the sharing of model updates with the server, which is supposed to carry significantly less
sensitive information than the training data itself (Carlini et al., 2019b). Nevertheless, model
parameters can nonetheless reveal sensitive information, either to a malicious client, or to
the central server itself (McMahan, Ramage, et al., 2017). Moreover, without being able to
verify clients’ data and local work, the server does not have guarantees about the compliance
of the clients’ work to the prescribed federated routine. This critical aspect opens the way
to ill intentioned participants to disguise their contribution to the FL process (Lyu et al.,
2020). Numerous types of attacks on federated learning have been proposed in the literature
to allow an ill intentioned participant to recover information regarding other clients’ data
(Z. Wang et al., 2019; Hitaj et al., 2017; Matt Fredrikson et al., 2015). Different kind of
attacks aim instead at manipulating/sabotaging the federated learning routine associated
with problem (1.1) to tamper the predictive capabilities of the trained model. For example,
the attacker’s aim can be to favor some classes or to misclassify a set of chosen inputs
with high-confidence during inference (Bhagoji et al., 2019; B. Li et al., 2016; Yin et al.,
2018; Xie et al., 2019; Shen et al., 2016). Current research aim at developing methods to
enhance the safety and security of federated learning and prevent these attacks, based on the
introduction of cryptographic primitives such as secure multiparty computation (Cramer,
I. B. Damgård, et al., 2015; I. Damgård et al., 2012; Lindell, 2005) or by using privacy-
preserving optimization based on differential privacy (Dwork, 2008; Noble et al., 2022;
Wei et al., 2020), or decentralization techniques (Cyffers and Bellet, 2022; Zantedeschi
et al., 2020). Nevertheless, these approaches often provide privacy at the cost of reduced
model performance or system efficiency. Understanding and balancing these trade-offs,
both theoretically and empirically, is a considerable challenge in realizing secure federated
learning systems.

1.3.3 Challenge 3: Communication

Communication can also be a primary bottleneck for federated learning since wireless
and other end-user connections may operate at variable communication rates while being
potentially unreliable. For example, when jointly optimizing a model with participants
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from remote geographic locations, the work of Silva, Altmann, et al. (2020) shows that a
client’s communication time is proportional to the distance to the server. Moreover, the
bandwidth capacity of the aggregating server may impose constraints on the number of
clients the server can communicate with at the same time. These considerations lead to
significant interest in studying novel approaches to optimize the number and bandwidth
of communications at every step of the federated learning process. One of the most
popular communication reduction strategies proposed with FEDAVG consists in limiting
the frequency of communications at the expense of increased computation on the clients
side. This is usually achieved by asking the clients to perform multiple iterations of local
gradient descent before communicating their updates. To further reduce the number of
communications, the server can select a subset of clients participating at every iteration.
This strategy, called client sampling (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith,
2018a; W. Chen et al., 2020; Cho et al., 2020; Xiang Li et al., 2020), enables to speed-up
the aggregation process of FEDAVG, while requiring less contributions from participants.
Another drawback of FEDAVG concerns the time needed to complete an optimization
round, as the server must wait for all the participating clients to perform their local work
to synchronize their update and create a new global model. As a consequence, due to the
potential heterogeneity of the hardware across clients, the time for an optimization round is
conditioned to the one of the slowest update, while the fastest clients stay idle once they
have sent their updates to the server. To address these limitations, asynchronous federated
learning has been proposed to take full advantage of the clients computing capabilities
(Y. Chen et al., 2020; W. Wu et al., 2020; Lu et al., 2020). In the asynchronous setting,
whenever the server receives a client’s contribution, it creates a new global model and sends
it back to the client. In this way, clients are never idle and always perform local work on a
different version of the global model.

1.3.4 Challenge 4: Compliance with Regulations

With the emergence of new data regulations, such as the EU General Data Protection
Regulation (GDPR) (Voigt and Von dem Bussche, 2017) or the California Consumer Privacy
Act (CCPA) (Harding et al., 2019), the storage and processing of sensitive personal data is
often subject of strict constraints and restrictions. For example, the “right to be forgotten”
requires that personal data must be erased upon request from the concerned individuals,
with subsequent potential implications on machine learning models trained by using this
data. Machine Unlearning (MU) is an emerging discipline that studies methods to ideally
remove the contribution of a given data instance used to train a machine learning model.
Current MU approaches are essentially based on routines that modify the weights of models
trained on a given dataset in order to guarantee the unlearning of a given data point, i.e. to
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Challenge 1:
Data Hetero-

geneity

Challenge 2:
Privacy

Challenge 3:
Communic-

ation

Challenge 4:
Compliance

with
Regulations

Chapter 2 on Client
Sampling

✓ ✓

Chapter 3 on Clustered
Sampling

✓ ✓

Chapter 4 on
Asynchronous FEDAVG

✓ ✓

Chapter 5 on Federated
Unlearning

✓ ✓ ✓ ✓

Chapter 6 on Free-riders ✓ ✓ ✓ ✓

Tab. 1.1.: Summary of the main contributions of this thesis.

obtain a model equivalent to an hypothetical one trained without this data point (Cao and
J. Yang, 2015; Bourtoule et al., 2021). Providing risk-less deployments of federated learning
in the real-world, it is of crucial importance to extend MU to guarantee the unlearning of
clients wishing to opt-out from a collaborative training routine.

1.4 Objectives and Organization of the Thesis

We have seen that federated learning is essential to provide optimization for applications
where the data cannot be centralized, as well as to guarantee to clients the governance of
their data while increasing data privacy. Within this context, the main objective of this
thesis is to present new theoretical and practical results to quantify the impact of the clients’
data heterogeneity on the convergence guarantees of federated learning, while investigating
the feasibility of critical components for deployment of federated learning in real-world
applications. This manuscript is organized in two parts. In the first part of the thesis, we
study the robustness and variability of federated learning to heterogeneous setting (Chapter
2 to 4), while, in the second part, we investigate the reliability of federated learning in
practical applications (Chapter 5 and 6).

First, we present in Chapter 2 a novel decomposition theorem for the convergence of
federated learning, allowing to clearly quantify the impact of a client sampling scheme
on the global model update. We provide a theoretical ground on the relationship between
federated learning convergence and the covariance between the aggregation weights. We
show that our theory is general and can be applied to existing client sampling schemes.
When applied to Multinomial Distribution (MD) and Uniform sampling, the two default
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client sampling schemes of federated learning, our results suggest that MD sampling should
be used as default sampling scheme, due to the resilience to the changes in data ratio during
the learning process, while Uniform sampling is superior only in the special case when
clients have the same amount of data.

Second, we present in Chapter 3 clustered sampling, a novel client sampling scheme.
When compared with MD sampling, the state-of-the-art investigated in Chapter 2, we prove
that clustered sampling leads to better client representatitivity and to reduced variance
of the clients’ stochastic aggregation weights in federated learning. Through a series of
experiments in non-iid and unbalanced scenarios, we demonstrate that model aggregation
through clustered sampling consistently leads to better training convergence and variability
when compared to standard sampling approaches.

Third, we present in Chapter 4, a novel framework to study asynchronous federated
learning optimization with delays in gradient updates. Our theoretical framework extends
the standard FEDAVG aggregation scheme by introducing stochastic aggregation weights to
represent the variability of the clients update time. Our formalism applies to the general
federated setting where clients have heterogeneous datasets and perform at least one step
of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and
provide sufficient conditions for the related minimum to be the optimum of the federated
problem. We show that our general framework applies to existing optimization schemes
including centralized learning, FEDAVG, asynchronous FEDAVG, and FEDBUFF (J. Nguyen
et al., 2021). The theory here provided allows drawing meaningful guidelines for designing
a federated learning experiment in heterogeneous conditions. In particular, we develop in
this work FEDFIX, a novel extension of FEDAVG enabling efficient asynchronous federated
training while preserving the convergence stability of synchronous aggregation.

Fourth, we present in Chapter 5 Informed Federated Unlearning (IFU), a novel efficient
and quantifiable federated unlearning (FU) approach. Upon unlearning request from a
given client, IFU identifies the optimal federated learning iteration from which federated
learning has to be reinitialized, with unlearning guarantees obtained through a randomized
perturbation mechanism. The theory of IFU is also extended to account for sequential
unlearning requests. Experimental results on different tasks and dataset show that IFU leads
to more efficient unlearning procedures as compared to state-of-the-art FU approaches.

Fifth, we introduce in Chapter 6 the first theoretical and experimental analysis of free-rider
attacks on federated learning and provide formal guarantees for these attacks to converge
to the aggregated models of the fair participants. We first show that a straightforward
implementation of this attack can be simply achieved by not updating the local parameters
during the iterative federated optimization. As this attack can be detected by adopting

1.4 Objectives and Organization of the Thesis 9



simple countermeasures at the server level, we subsequently study more complex disguising
schemes based on stochastic updates of the free-rider parameters.

Finally, we conclude the manuscript in Chapter 7 by summarizing the main contributions
of this work. We also present potential applications of our methods and build upon their
limitations to propose further research perspectives.

1.5 Publications

The contributions of this manuscript led to the following publications and submissions in
conferences and peer-reviewed journals.

• (Fraboni, Vidal, Kameni, et al., 2022a) A General Theory for Client Sampling in
Federated Learning. Yann Fraboni, Richard Vidal, Laetitia Kameni, Marco Lorenzi.
International Workshop on Trustworthy Federated Learning in Conjunction with
IJCAI 2022

• (Fraboni, Vidal, Kameni, et al., 2021) Clustered Sampling: Low-Variance and Im-
proved Representativity for Clients Selection in Federated Learning. Yann Fraboni,
Richard Vidal, Laetitia Kameni, Marco Lorenzi. Proceedings of the 38th International
Conference on Machine Learning, PMLR 139:3407-3416, 2021.

• (Fraboni, Vidal, Kameni, et al., 2022b) A General Theory for Federated Optimization
with Asynchronous and Heterogeneous Clients Updates. Yann Fraboni, Richard Vidal,
Laetitia Kameni, Marco Lorenzi. ArXiv. Under review.

• (Fraboni, Vidal, Kameni, et al., 2022c) Sequential Informed Federated Unlearning:
Efficient and Provable Client Unlearning in Federated Optimization. Yann Fraboni,
Richard Vidal, Laetitia Kameni, Marco Lorenzi. ArXiv. Under review.

• (Fraboni, Vidal, and Lorenzi, 2021) Free-rider Attacks on Model Aggregation in
Federated Learning. Yann Fraboni, Richard Vidal, Marco Lorenzi. Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, PMLR
130:1846-1854, 2021.
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In this chapter, we provide a general theoretical framework to quantify the impact of a client
sampling scheme on the federated optimization. Our goal is to measure the impact of the
clients data heterogeneity on the convergence speed of federated learning. First, we provide
a unified theoretical ground for previously reported sampling schemes experimental results
on the relationship between FL convergence and the variance of the aggregation weights.
Second, we prove for the first time that the quality of FL convergence is also impacted
by the resulting covariance between aggregation weights. This chapter is published at the
International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI
2022 (FL-IJCAI’22) as Fraboni, Vidal, Kameni, et al. (2022a).

2.1 Introduction

Federated Learning (FL) has gained popularity in the last years as it enables different clients
to jointly learn a global model without sharing their respective data. Among the different FL
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approaches, federated averaging (FEDAVG) has emerged as the most popular optimization
scheme (McMahan, Moore, et al., 2017). An optimization round of FEDAVG requires data
owners, also called clients, to receive from the server the current global model which they
update on a fixed amount of Stochastic Gradient Descent (SGD) steps before sending it back
to the server. The new global model is then created as the weighted average of the client
updates, according to their data ratio. FL specializes the classical problem of distributed
learning (DL), to account for the private nature of clients information (i.e. data and surrogate
features), and for the potential data and hardware heterogeneity across clients, which is
generally unknown to the server.

In FL optimization, FEDAVG was first proven to converge experimentally (McMahan,
Moore, et al., 2017), before theoretical guarantees were provided for any non-iid federated
dataset (Jianyu Wang, Q. Liu, et al., 2020; Karimireddy et al., 2020; Haddadpour and
Mahdavi, 2019; Khaled et al., 2020a). A drawback of naive implementations of FEDAVG

consists in requiring the participation of all the clients to every optimization round. As a
consequence, the efficiency of the optimization is limited by the communication speed of
the slowest client, as well as by the server communication capabilities. To mitigate this
issue, the original FEDAVG algorithm already contemplated the possibility of considering a
random subset of m clients at each FL round. It has been subsequently shown that, to ensure
the convergence of FL to its optimum, clients must be sampled such that in expectation
the resulting global model is identical to the one obtained when considering all the clients
(Jianyu Wang, Q. Liu, et al., 2020; Cho et al., 2020). Clients sampling schemes compliant
with this requirement are thus called unbiased. Due to its simplicity and flexibility, the
current default unbiased sampling scheme consists in sampling m clients according to a
Multinomial Distribution (MD), where the sampling probability depends on the respective
data ratio (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a; Jianyu Wang, Q. Liu,
et al., 2020; Xiang Li et al., 2020; Haddadpour and Mahdavi, 2019; T. Li, Sanjabi, et al.,
2020; Jianyu Wang and Joshi, 2018; Fraboni, Vidal, Kameni, et al., 2021). Nevertheless,
when clients have identical amount of data, clients can also be sampled uniformly without
replacement (Xiang Li et al., 2020; Karimireddy et al., 2020; Reddi et al., 2021; Rizk et al.,
2020). In this case, Uniform sampling has been experimentally shown to yield better results
than MD sampling (Xiang Li et al., 2020).

Previous works proposed unbiased sampling strategies alternative to MD and Uniform
sampling with the aim of improving FL convergence. In Fraboni, Vidal, Kameni, et al.
(2021), MD sampling was extended to account for clusters of clients with similar data
characteristics, while in W. Chen et al. (2020), clients sampling probabilities are defined
depending on the Euclidean norm of the clients local work. While these works are based
on the definition and analysis of specific sampling procedures, aimed at satisfying a given
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FL criterion, there is currently a need for a general theoretical framework to elucidate the
impact of client sampling on FL convergence.

The main contribution of this chapter consists in deriving a general theoretical framework
for FL optimization allowing to clearly quantify the impact of client sampling on the global
model update at any FL round. This contribution has important theoretical and practical
implications. First, we demonstrate the dependence of FL convergence on the variance of
the aggregation weights. Second, we prove for the first time that the convergence speed is
also impacted through sampling by the resulting covariance between aggregation weights.
From a practical point of view, we establish both theoretically and experimentally that client
sampling schemes based on aggregation weights with sum different than 1 are less efficient.
We also prove that MD sampling is outperformed by Uniform sampling only when clients
have identical data ratio. Finally, we show that the comparison between different client
sampling schemes is appropriate only when considering a small number of clients. Our
theory ultimately shows that MD sampling should be used as default sampling scheme, due
to the favorable statistical properties and to the resilience to FL applications with varying
data ratio and heterogeneity.

This chapter is structured as follows. In Section 2.2, we provide formal definitions for
FL, unbiased client sampling, and for the server aggregation scheme. In Section 2.3,
we introduce our convergence guarantees (Theorem 2.1) relating the convergence of FL
to the aggregation weight variance of the client sampling scheme. Consistently with
our theory, in Section 2.4, we experimentally demonstrate the importance of the clients
aggregation weights variance and covariance on the convergence speed, and conclude by
recommending Uniform sampling for FL applications with identical client ratio, and MD
sampling otherwise.

2.2 Background

Before investigating in Section 2.3 the impact of client sampling on FL convergence, we
recapitulate in Section 2.2 the current theory behind FL aggregation schemes for clients
local updates. We then introduce a formalization for unbiased client sampling.
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2.2.1 Aggregating clients local updates

In FL, we consider a set I of n clients each respectively owning a dataset Di composed of
ni samples. FL aims at optimizing the average of each clients local loss function weighted
by pi such that

∑n
i=1 pi = 1, i.e.

L(θ) =
n∑

i=1
piLi(θ), (2.1)

where θ represents the model parameters. The weight pi can be interpreted as the importance
given by the server to client i in the federated optimization problem. While any combination
of {pi} is possible, we note that in practice, either (a) every device has equal importance, i.e.
pi = 1/n, or (b) every data point is equally important, i.e. pi = ni/M with M =

∑n
i=1 ni.

Unless stated otherwise, in the rest of this work, we consider to be in case (b), i.e. ∃i, pi ̸=
1/n.

In this setting, to estimate a global model across clients, FEDAVG (McMahan, Moore, et al.,
2017) is an iterative training strategy based on the aggregation of local model parameters.
At each iteration step t, the server sends the current global model parameters θt to the
clients. Each client updates the respective model by minimizing the local cost function
Li(θ) through a fixed amount K of SGD steps initialized with θt. Subsequently each client
returns the updated local parameters θt+1

i to the server. The global model parameters θt+1

at the iteration step t + 1 are then estimated as a weighted average:

θt+1 =
n∑

i=1
piθ

t+1
i . (2.2)

To alleviate the clients workload and reduce the amount of overall communications, the
server often considers m ≤ n clients at every iteration. In heterogeneous datasets containing
many workers, the percentage of sampled clients m/n can be small, and thus induce
important variability in the new global model, as each FL optimization step necessarily
leads to an improvement on the m sampled clients to the detriment of the non-sampled ones.
To solve this issue, Reddi et al. (2021), Karimireddy et al. (2020), and Jianyu Wang, Tantia,
et al. (2020) propose considering an additional learning rate ηg to better account for the
clients update at a given iteration. We denote by ωi(St) the stochastic aggregation weight of
client i given the subset of sampled clients St at iteration t . The server aggregation scheme
can be written as:

θt+1 = θt + ηg

n∑
i=1

ωi(St)(θt+1
i − θt). (2.3)
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2.2.2 Unbiased data agnostic client samplings

Tab. 2.1.: Synthesis of statistical properties of different sampling schemes.

Sampling Var [ωi(St)] α Var [
∑n

i=1 ωi(St)]

Full participation = 0 = 0 = 0
MD = − 1

mp2
i + 1

mpi = 1/m = 0
Uniform =

(
n
m − 1

)
p2

i = n−m
m(n−1) = n−m

m(n−1) [n
∑n

i=1 p2
i − 1]

While FEDAVG was originally based on the uniform sampling of clients (McMahan, Moore,
et al., 2017), this scheme has been proven to be biased and converge to a suboptimal minima
of problem (2.1) (Jianyu Wang, Q. Liu, et al., 2020; Cho et al., 2020; Xiang Li et al., 2020).
This was the motivation for Xiang Li et al. (2020) to introduce the notion of unbiasedness,
where clients are considered in expectation subject to their importance pi, according to
Definition 2.1 below. Unbiased sampling guarantees the optimization of the original FL
cost function, while minimizing the number of active clients per FL round. We note that
unbiased sampling is not necessarily related to the clients distribution, as this would require
to know beforehand the specificity of the clients’ datasets.

Unbiased sampling methods (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a;
Xiang Li et al., 2020; Fraboni, Vidal, Kameni, et al., 2021) are currently among the standard
approaches to FL, as opposed to biased approaches, known to over- or under-represent
clients and lead to suboptimal convergence properties (McMahan, Moore, et al., 2017;
Nishio and Yonetani, 2019; Jeon et al., 2020; Cho et al., 2020), or to methods requiring
additional computation work from clients (W. Chen et al., 2020).

Definition 2.1 (Unbiased Sampling). A client sampling scheme is said unbiased if the
expected value of the client aggregation is equal to the global deterministic aggregation
obtained when considering all the clients, i.e.

ESt

[
n∑

i=1
wi(St)θt

i

]
:=

n∑
i=1

piθ
t
i , (2.4)

where wj(St) is the aggregation weight of client j for subset of clients St.

The sampling distribution uniquely defines the statistical properties of stochastic weights.
In this setting, unbiased sampling guarantees the equivalence between deterministic and
stochastic weights in expectation. Unbiased schemes of primary importance in FL are MD
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and Uniform sampling, for which we can derive a close form formula for the aggregation
weights :

MD sampling. This scheme considers l1, ..., lm to be the m iid sampled clients from a
Multinomial Distribution with support on {1, ..., m} satisfying P(lk = i) = pi (Jianyu
Wang, Q. Liu, et al., 2020; T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a; Xiang
Li et al., 2020; Haddadpour and Mahdavi, 2019; T. Li, Sanjabi, et al., 2020; Jianyu Wang
and Joshi, 2018; Fraboni, Vidal, Kameni, et al., 2021). By definition, we have

∑n
i=1 pi = 1,

and the clients aggregation weights take the form:

ωi(St) = 1
m

m∑
k=1

I(lk = i). (2.5)

Uniform sampling. This scheme samples m clients uniformly without replacement. Since
in this case a client is sampled with probability p({i ∈ St}) = m/n, the requirement of
Definition 2.1 implies:

ωi(St) = I(i ∈ St)
n

m
pi. (2.6)

We note that this formulation for Uniform sampling is a generalization of the scheme
previously used for FL applications with identical client importance, i.e. pi = 1/n (Karim-
ireddy et al., 2020; Xiang Li et al., 2020; Reddi et al., 2021; Rizk et al., 2020). We
note that Var [

∑n
i=1 ωi(St)] = 0 if and only if pi = 1/n for all the clients as, indeed,∑n

i=1 ωi(St) = m n
m

1
n = 1

With reference to equation (2.3), we note that by setting ηg = 1, and by imposing the
condition ∀St,

∑n
i=1 ωi(St) = 1, we retrieve equation (2.2). This condition is satisfied for

example by MD sampling and Uniform sampling for identical clients importance.

We finally note that the covariance of the aggregation weights for both MD and Uniform
sampling satisfies Assumption 2.1.

Assumption 2.1 (Client Sampling Covariance). There exists a constant α such that the
client sampling covariance satisfies ∀i ̸= j, Cov [ωi(St)] ωj(St) = −αpipj .

We provide in Table 2.1 the derivation of α and the resulting covariance for these two
schemes with calculus detailed in Appendix A.1. Furthermore, this property is common to a
variety of sampling schemes, for example based on Binomial or Poisson Binomial distribu-
tions (detailed derivations can be found in Appendix A.1). Following this consideration, in
addition to Definition 2.1, in the rest of this chapter we assume the additional requirement
for a client sampling scheme to satisfy Assumption 2.1.
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2.2.3 Advanced client sampling techniques

Importance sampling for centralized SGD Zhao and T. Zhang (2015) and Csiba and Richtárik
(2018) has been developed to reduce the variance of the gradient estimator in the centralized
setting and provide faster convergence. According to this framework, each data point
is sampled according to a probability based on a parameter of its loss function (e.g. its
Lipschitz constant), in opposition to classical sampling where clients are sampled with
same probability. These works cannot be seamlessly applied in FL, since in general no
information on the clients loss function should be disclosed to the server. Therefore, the
operation of client sampling in FL cannot be seen as an extension of importance sampling.
Regarding advanced FL client sampling, Fraboni, Vidal, Kameni, et al. (2021) extended MD
sampling to account for collections of sampling distributions with varying client sampling
probability. From a theoretical perspective, this approach was proven to have identical
convergence guarantees of MD sampling, with albeit experimental improvement justified
by lower variance of the clients’ aggregation weights. In W. Chen et al. (2020), clients
probability are set based on the euclidean norm of the clients local work. We show in
Appendix A.1 that these advanced client sampling strategies also satisfy our covariance
assumption 2.1, and are thus encompassed by the general theory developed in Section
2.3.

2.3 Convergence Guarantees

Based on the assumptions introduced in Section 2.2, in what follows we elaborate a new
theory relating the convergence of FL to the statistical properties of client sampling schemes.
In particular, Theorem 2.1 quantifies the asymptotic relationship between client sampling
and FL convergence.

2.3.1 Asymptotic FL convergence with respect to client sampling

To prove FL convergence with client sampling, this chapter relies on the following three
assumptions (Jianyu Wang, Q. Liu, et al., 2020; T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and
Smith, 2018a; Karimireddy et al., 2020; Haddadpour and Mahdavi, 2019; J. Wang et al.,
2019; S. Wang et al., 2019):

Assumption 2.2 (Smoothness). The clients local objective function is L-Lipschitz smooth,
that is, ∀i ∈ {1, ..., n}, ∥∇Li(x)−∇Li(y)∥ ≤ L ∥x− y∥.
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Assumption 2.3 (Bounded Dissimilarity ). There exist constants β2 ≥ 1 and κ2 ≥ 0
such that for every combination of positive weights {wi} such that

∑n
i=1 wi = 1, we have∑n

i=1 wi ∥∇Li(x)∥2 ≤ β2 ∥∇L(x)∥2 +κ2. If all the local loss functions are identical, then
we have β2 = 1 and κ2 = 0.

Assumption 2.4 (Unbiased Gradient and Bounded Variance). Every client stochastic
gradient gi(x|B) of a model x evaluated on batch B is an unbiased estimator of the
local gradient. We thus have EB [ξi(B)] = 0 and 0 ≤ EB

[
∥ξi(B)∥2

]
≤ σ2, with

ξi(B) = gi(x|B)−∇Li(x).

We formalize in the following theorem the relationship between the statistical properties
of the client sampling scheme and the asymptotic convergence of FL (proof in Appendix
A.2).

Theorem 2.1 (FL convergence). Let us consider a client sampling scheme satisfying
Definition 2.1 and Assumption 2.1. Under Assumptions 2.2, 2.3, and 2.4, and with sufficiently
small local step size ηl, the following convergence bound holds:

1
T

T −1∑
t=0

E
[∥∥∥∇L(θt)

∥∥∥2
]
≤ O

( 1
η̃KT

)

+O
(
η2

l (K − 1)σ2
)

+O
(

η̃

[
Σ +

n∑
i=1

p2
i

]
σ2
)

(2.7)

+O
(
η2

l K(K − 1)κ2
)

+O
(
η̃γ
[
(K − 1)σ2 + Kκ2

])
,

where η̃ = ηgηl, K is the number of local SGD,

Σ =
n∑

i=1
Var [ωi(St)] (2.8)

and

γ =
n∑

i=1
Var [ωi(St)] + α

n∑
i=1

p2
i . (2.9)

We first observe that any client sampling scheme satisfying the assumptions of Theorem
2.1 converges to its optimum. Through Σ and γ, equation (2.7) shows that our bound
is proportional to the clients aggregation weights through the quantities Var [ωi(St)] and
α, which thus should be minimized. These terms are non-negative and are minimized
and equal to zero only with full participation of the clients to every optimization round.
Theorem 2.1 does not require the sum of the weights ωi(St) to be equal to 1. Yet, for client
sampling satisfying Var [

∑n
i=1 ωi(St)] = 0, we get α ∝ Σ. Hence, choosing an optimal
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Fig. 2.1.: Difference between the convergence of the global losses resulting from MD and Uniform
sampling when considering n ∈ {10, 20, 40, 80} clients and sampling m = n/2 of them.
In (a), clients have identical importance, i.e. pi = 1/n. In (b), clients importance is
proportional to their amount of data, i.e. pi = ni/M . Differences in global losses are
averaged across 30 FL experiments with different model initialization (global losses are
provided in Figure 2.2).

client sampling scheme amounts at choosing the client sampling with the smallest Σ. This
aspect has been already suggested in Fraboni, Vidal, Kameni, et al. (2021).

The convergence guarantee proposed in Theorem 2.1 extends the work of Jianyu Wang,
Q. Liu, et al. (2020) where, in addition of considering FEDAVG with clients performing K

vanilla SGD, we include a server learning rate ηg and integrate client sampling (equation
(2.3)). With full client participation (Σ = γ = 0) and ηg = 1, we retrieve the convergence
guarantees of Jianyu Wang, Q. Liu, et al. (2020). Furthermore, our theoretical framework
can be applied to any client sampling satisfying the conditions of Theorem 2.1. In turn,
Theorem 2.1 holds for full client participation, MD sampling, Uniform sampling, as well
as for the other client sampling schemes detailed in Appendix A.1. Finally, the proof of
Theorem 2.1 is general enough to account for FL regularization methods (T. Li, Sahu,
Zaheer, Sanjabi, Talwalkar, and Smith, 2018a; T. Li, Sahu, Zaheer, Sanjabi, Talwalkar,
and Smithy, 2019; Acar et al., 2021), other SGD solvers (Kingma and Ba, 2014; R. Ward
et al., 2019; Xiaoyu Li and Orabona, 2019), and/or gradient compression/quantization
(Reisizadeh et al., 2020; Basu et al., 2019; H. Wang et al., 2018). For all these applications,
the conclusions drawn for client samplings satisfying the assumptions of Theorem 2.1 still
hold.

2.3.2 Application to current client sampling schemes

MD sampling. When using Table 2.1 to compute Σ and γ close-form we obtain:

ΣMD = 1
m

[
1−

n∑
i=1

p2
i

]
and γMD = 1

m
, (2.10)
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where we notice that ΣMD ≤ 1
m = γMD. Therefore, one can obtain looser convergence

guarantees than the ones of Theorem 2.1, independently from the amount of participating
clients n and set of clients importance {pi}, while being inversely proportional to the amount
of sampled clients m. The resulting bound shows that FL with MD sampling converges to
its optimum for any FL application.

Uniform sampling. Contrarily to MD sampling, the stochastic aggregation weights of
Uniform sampling do not sum to 1. As a result, we can provide FL scenarios diverging when
coupled with Uniform sampling. Indeed, using Table 2.1 to compute Σ and γ close-form
we obtain

ΣU =
[

n

m
− 1

] n∑
i=1

p2
i , (2.11)

and

γU =
[
1 + 1

n− 1

] [
n

m
− 1

] n∑
i=1

p2
i , (2.12)

where we notice that γU =
[
1 + 1

n−1

]
ΣU . Considering that

∑n
i=1 p2

i ≤ 1, we have
ΣU ≤ n

m − 1, which goes to infinity for large cohorts of clients and thus prevents FL with
Uniform sampling to converge to its optimum. Indeed, the condition

∑n
i=1 p2

i ≤ 1 accounts
for every possible scenario of client importance {pi}, including the very heterogeneous ones.
In the special case where pi = 1/n, we have

∑n
i=1 p2

i = 1/n, such that ΣU is inversely
proportional to both n and m. Such FL applications converge to the optimum of equation
(2.1) for any configuration of n, {pi} and m.

Moreover, the comparison between the quantities Σ and γ for MD and Uniform sampling
shows that Uniform sampling outperforms MD sampling when pi = 1/n. More generally,
Corollary 2.1 provides sufficient conditions with Theorem 2.1 for Uniform sampling to have
better convergence guarantees than MD sampling (proof in Appendix A.2.7).

Corollary 2.1. Uniform sampling has better convergence guarantees than MD sampling
when ΣU ≤ ΣMD, and γU ≤ γMD which is equivalent to

n∑
i=1

p2
i ≤

1
n−m + 1 . (2.13)

Corollary 2.1 can be related to Var [
∑n

i=1 ωi(St)], the variance for the sum of the aggre-
gation weights, which is always null for MD sampling, and different of 0 for Uniform
sampling except when pi = 1/n for all the clients.

A last point of interest for the comparison between MD and Uniform sampling concerns the
respective time complexity for selecting clients. Sampling with a Multinomial Distribution
has time complexity O(n + m log(n)), where O(n) comes from building the probability
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Fig. 2.2.: Convergence of the global losses for MD, Uniform, and Clustered sampling when con-
sidering n ∈ {10, 20, 40, 80} clients and sampling m = n/2 of them. In (a-d), clients
have identical importance, i.e. pi = 1/n. In (e-h), clients importance is proportional to
their amount of data, i.e. pi = ni/M . Zoom of the global losses over the last 100 server
aggregations and a variation of 0.5 in the global loss.

density function to sample clients indices (D. Tang, 2019). This makes MD sampling
difficult to compute or even intractable for large cohorts of clients. On the contrary sampling
m elements without replacement from n states is a reservoir sampling problem and takes
time complexity O(m(1 + log(n/m))(K.-H. Li, 1994). In practice, clients either receive
identical importance (pi = 1/n) or an importance proportional to their data ratio, for
which we may assume computation pi = O(1/n). As a result, for important amount n of
participating clients, Uniform sampling should be used as the default client sampling due to
its lower time complexity. However, for small amount of clients and heterogeneous client
importance, MD sampling should be used by default.

Due to space constraints, we only consider in this manuscript applying Theorem 2.1 to
Uniform and MD sampling, which can also be applied to Binomial and Poisson Binomial
sampling introduced in Section A.1, and satisfying our covariance assumption. To the best
of our knowledge, we could only find Clustered sampling introduced in Fraboni, Vidal,
Kameni, et al. (2021) not satisfying this assumption. Still, with minor changes, we provide
for this sampling scheme a similar bound to the one of Theorem 2.1 (Appendix A.2.6),
ultimately proving that clustered sampling improves MD sampling.
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2.4 Experiments on real data

In this section, we provide an experimental demonstration of the convergence properties
identified in Theorem 2.1. 1 We study a LSTM model for next character prediction on the
dataset of The complete Works of William Shakespeare (McMahan, Moore, et al., 2017;
Caldas et al., 2018). We use a two-layer LSTM classifier containing 100 hidden units with
an 8 dimensional embedding layer. The model takes as an input a sequence of 80 characters,
embeds each of the characters into a learned 8-dimensional space and outputs one character
per training sample after 2 LSTM layers and a fully connected one.

When selected, a client performs K = 50 SGD steps on batches of size B = 64 with
local learning rate ηl = 1.5. The server considers the clients local work with ηg = 1. We
consider n ∈ {10, 20, 40, 80} clients, and sample half of them at each FL optimization step.
While for sake of interpretability we do not apply a decay to local and global learning rates,
we note that our theory remains unchanged even in presence of a learning rate decay. In
practice, for dataset with important heterogeneity, considering ηg < 1 can speed-up FL with
a more stable convergence.

We compare the impact of MD, Uniform, and Clustered sampling, on the convergence speed
of FEDAVG. With Clustered sampling, the server selects m clients from m different clusters
of clients created based on the clients importance (Fraboni, Vidal, Kameni, et al., 2021,
Algorithm 1). MD sampling is a special case of Clustered sampling, where every cluster is
identical.

Clients have identical importance [pi = 1/n]. We note that Uniform sampling consistently
outperforms MD sampling due to the lower covariance parameter, while the improvement
between the resulting convergence speed is inversely proportional to the number of partic-
ipating clients n (Figure 2.1a and Figure 2.2a-d). This result confirms the derivations of
Section 2.3. Also, with Clustered sampling and identical client importance, every client
only belongs to one cluster. Hence, Clustered sampling reduces to Uniform sampling and
we retrieve identical convergence for both samplings (Figure 2.2a-d). This point was not
raised in Fraboni, Vidal, Kameni, et al. (2021).

Clients importance depends on the respective data ratio [pi = ni/M ]. In this experi-
mental scenario the aggregation weights for Uniform sampling do not always sum to 1, thus
leading to the slow-down of FL convergence. Hence, we see in Figure 2.1b that MD always
outperforms Uniform sampling. This experiment shows that the impact on FL convergence
of the variance of the sum of the stochastic aggregation weights is more relevant than the
one due to the covariance parameter α. We also retrieve in Figure 2.2e-h that Clustered

1Code and data are available at https://github.com/Accenture/
Labs-Federated-Learning/tree/impact_client_sampling.
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sampling always outperform MD sampling, which confirms that for two client samplings
with a null variance of the sum of the stochastic aggregation weights, the one with the lowest
covariance parameter α converges faster. We also note that the slow-down induced by the
variance is reduced when more clients do participate. This is explained by the fact that the
standard deviation of the clients data ratio is reduced with larger clients participation, e.g.
pi = 1/10 ± 0.13 for n = 10 and pi = 1/80 ± 0.017 for n = 80. We thus conclude that
the difference between the effects of MD, Uniform, and Clustered sampling is mitigated
with a large number of participating clients (Figure 2.1b and Figure2.2e-h).

Additional experiments on Shakespeare are provided in Appendix A.3. We show the influ-
ence of the amount of sampled clients m and amount of local work K on the convergence
speed of MD and Uniform sampling.

Finally, additional experiments on CIFAR10 (Krizhevsky et al., n.d.) are provided in
Appendix A.3, where we replicate the experimental scenario previously proposed in Fraboni,
Vidal, Kameni, et al. (2021). In these applications, 100 clients are partitioned using a
Dirichlet distribution which provides federated scenarios with different level of heterogeneity.
For all the experimental scenarios considered, both results and conclusions are in agreement
with those here derived for the Shakespeare dataset.

2.5 Conclusion

In this chapter, we highlight the asymptotic impact of client sampling on FL with Theorem
2.1, and shows that the convergence speed is inversely proportional to both the sum of
the variance of the stochastic aggregation weights, and to their covariance parameter α.
Moreover, to the best of our knowledge, this chapter is the first one accounting for schemes
where the sum of the weights is different from 1.

Thanks to our theory, we investigated MD and Uniform sampling from both theoretical and
experimental standpoints. We established that when clients have approximately identical
importance, i.e pi = 1/n, Uniform outperforms MD sampling, due to the larger impact of the
covariance term for the latter scheme. On the contrary, Uniform sampling is outperformed
by MD sampling in more general cases, due to the slowdown induced by its stochastic
aggregation weights not always summing to 1. Yet, in practical scenario with very large
number of clients, MD sampling may be unpractical, and Uniform sampling could be
preferred due to the more advantageous time complexity.

In this chapter, we also showed that our theory encompasses advanced FL sampling schemes,
such as the one recently proposed in Fraboni, Vidal, Kameni, et al., 2021, and W. Chen et al.,
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2020. Finally, while the contribution of this chapter is in the study of the impact of a client
sampling on the global optimization objective, further extensions may focus on the analysis
of the impact of clients selection method on individual users’ performance, especially in
presence of heterogeneity.
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In the previous chapter, we provided a unified framework to measure the impact of a client
sampling scheme and of the clients’ data heterogeneity on the convergence speed of FL. In
this chapter, we introduce clustered sampling, a novel client sampling scheme providing
optimal FL convergence speed and representativity of clients during FL optimization. In
particular, we provide two different clustering approaches enabling clients aggregation
based on 1) sample size, and 2) models similarity. Through a series of experiments in
non-iid and unbalanced scenarios, we demonstrate that model aggregation through clustered
sampling consistently leads to better training convergence and variability when compared to
standard sampling approaches. This chapter is published at the International Conference on
Machine Learning (ICML) of 2021 as Fraboni, Vidal, Kameni, et al. (2021).
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3.1 Introduction

Federated learning (FL) is a training paradigm enabling different clients to jointly learn
a global model without sharing their respective data. Communication can be a primary
bottleneck for FL since wireless and other end-user internet connections operate at variable
communication rates while being potentially unreliable. Moreover, the capacity of the
aggregating server may impose constraints on the number of clients the server can commu-
nicate with at the same time. These considerations led to significant interest in reducing the
number and bandwidth of communications at every step of the FL process.

One of the most popular communication reduction strategies consists in limiting the fre-
quency of communications at the expense of increased computation on the clients side. This
is usually achieved by asking the clients to perform multiple iterations of local gradient
descent before communicating their updates. In this setting, FedAvg (McMahan, Moore,
et al., 2017) is the first and most widely used FL algorithm, for which convergence bounds
were given in Jianyu Wang, Q. Liu, et al. (2020), Xiang Li et al. (2020), Karimireddy et al.
(2020), Yu, S. Yang, et al. (2019), Khaled et al. (2020b), Woodworth et al. (2020), T. Lin
et al. (2020), and Sebastian U. Stich (2019).

To further reduce the number of communications, the server can select a subset of clients
participating at every iteration. This strategy, called client sampling, enables reducing
communications to the minimum. FedAvg first proposed selecting m clients uniformly
without replacement while replacing the contribution of the non-sampled clients with the
current global model. However this scheme is known for being biased, since the resulting
model is, in expectation, different from the deterministic aggregation of every client. To
overcome this issue, T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith (2018a) proposes
an unbiased sampling scheme where the new global model is created as the average of the
sampled clients work. The sampling is based on a multinomial distribution (MD) whose
clients probabilities corresponds to their relative sample size. While other clients sampling
schemes have been proposed, most of them require additional server-clients communications
and are not proven to be unbiased (Xiang Li et al., 2020; W. Chen et al., 2020; Nishio and
Yonetani, 2019).

To the best of our knowledge, FedAvg and MD sampling are the only schemes keeping to a
minimum server-clients communications. In particular, MD sampling has been proven to
lead to FL optimum and shown experimentally to outperform FedAvg sampling (Xiang Li
et al., 2020). In spite of its unbiasedness, MD sampling may still lead to large variance in the
clients selection procedure. While unbiasedness guarantees proper clients representativity
in expectation, representativity is not necessarily achieved when considering a single FL
iteration. Since at each MD sampling instance we select clients with replacement, this
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determines a variance in the amount of times a client is selected. This sampling variance
is a leading cause of the large variability in the convergence of FL, especially in non-iid
applications. Indeed, at each iteration, sampled clients improve the global model based on
their data distribution, to the detriment of the data specificity of non-sampled clients.

While the literature mainly focused on the study of the behavior of FL sampling strategies
in expectation, to our knowledge this study provides the first theoretical investigation of the
variability properties of FL sampling. In what follows, we show that this statistical aspect
is crucial to determine convergence stability and quality of FL. The contribution of this
chapter is the introduction of clustered sampling, a new unbiased client sampling scheme
improving MD sampling by guaranteeing smaller client selection variability, while keeping
to a minimum server-clients communications. By increasing every client representativity in
model aggregations, clustered sampling ensures that clients with unique distributions are
more likely of being sampled, leading to smoother and faster FL convergence.

We first derive, in Section 3.2, the theory behind current FL sampling schemes this chapter
is built on. We then formally introduce clustered sampling in Section 3.3 and prove its
theoretical correctness by extending the work done in Jianyu Wang, Q. Liu, et al. (2020).
We finally show the theoretical benefits of clustered sampling over MD sampling. In Section
3.4, we propose an implementation of clustered sampling aggregating clients based on their
sample size, showing that this approach leads to reduced variance of the clients’ aggregation
weights. In Section 3.5, we extend our sampling theory to aggregation schemes based
on the similarity between clients updates, showing that this approach further reduces the
variance of clients aggregation weights while improving the representation of the clients
during each FL aggregation step, as compared to MD sampling. This result leads to an
overall improvement of the convergence of FL. Finally, in Section 3.6, we experimentally
demonstrate this chapter on a broad range of balanced and unbalanced heterogeneous dataset.
The code used for this chapter is available here1.

3.2 Related Work

Before introducing in Section 3.3 the core idea of clustered sampling, we first recapitulate
in Section 3.2 the current theory behind parameter aggregation and sampling schemes for
FL.

1https://github.com/Accenture//Labs-Federated-Learning/tree/clustered_sampling
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3.2.1 Aggregating clients local updates

In FL, we consider a set I of clients respectively owning datasets Di composed of ni

samples. FL aims at optimizing the average of each clients local loss function weighted by
their importance pi

L(θ) =
∑
i∈I

piLi(θ), (3.1)

where θ represents the model parameters and
∑n

i=1 pi = 1. While any combination of {pi}
is possible, a common choice consists in defining pi = ni/M , where M =

∑
i∈I ni is

the total number of sample across datasets. In this work, we adopt the same definition of
the importance weights, although the theory derived below does not depend on ny specific
choice of the parameters {pi}.

In this setting, to estimate a global model across clients, FEDAVG (McMahan, Moore, et al.,
2017) is an iterative training strategy based on the aggregation of local model parameters θt

i .
At each iteration step t, the server sends the current global model parameters θt to the clients.
Each client updates the model by minimizing the local cost function L(θt+1

i ,Di) through a
fixed amount of SGD initialized with θt. Subsequently each client returns the updated local
parameters θt+1

i to the server. The global model parameters θt+1 at the iteration step t + 1
are then estimated as a weighted average, i.e.

θt+1 =
∑
i∈I

ni

M
θt+1

i . (3.2)

3.2.2 Clients’ sampling

Clients sampling is a central operation of FL. FEDAVG (McMahan, Moore, et al., 2017)
proposes to uniformly sample a subset of participating clients St at every iteration while the
other clients updates are replaced by the current global model, i.e.

θt+1 =
∑
i∈St

ni

M
θt+1

i +
∑
i/∈St

ni

M
θt. (3.3)

The sampling scheme introduced by FEDAVG is generally slow due to the attrition introduced
by non-participating clients. To solve this problem, T. Li, Sahu, Zaheer, Sanjabi, Talwalkar,
and Smith (2018a) proposes instead to sample St, the subset of clients at iteration t, from a
Multinomial Distribution (MD) where each client is sampled according to its relative data
ratio pi = ni

M . The new global model is obtained as the average of each selected client,
i.e.

θt+1 =
∑
i∈St

1
m

θt+1
i . (3.4)
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By design, MD sampling is such that the aggregation of clients model updates is identical
in expectation to the one obtained when considering all the clients, i.e. ESt

[
θt+1] =∑

i∈I piθ
t+1
i . Sampling schemes following this property are called unbiased. Notably, the

sampling scheme employed by FEDAVG does not satisfy this property, and it is thus prone
to clients-drift (Karimireddy et al., 2020).

3.2.3 FL convergence with MD client sampling

Theoretical guarantees regarding the convergence of FEDAVG were given in Jianyu Wang,
Q. Liu, et al. (2020). The proof relies on assumptions classically used in Stochastic Gradient
Descent (SGD) analysis (Bottou et al., 2018) (Assumptions 3.1 and 3.2 below), or commonly
used in the federated optimization literature (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and
Smith, 2018a; Xiang Li et al., 2020; Haddadpour, Kamani, Mahdavi, and V. R. Cadambe,
2019; Karimireddy et al., 2020; J. Wang et al., 2019) to capture the dissimilarities of local
objectives (Assumption 3.3 below).

Assumption 3.1 (Smoothness). The clients local objective function is Lipschitz smooth,
that is, ∥∇Li(x)−∇Li(y)∥ ≤ L ∥x− y∥ , ∀i ∈ {1, ..., n}.

Assumption 3.2 (Unbiased Gradient and Bounded Variance). For each client i local
model, the stochastic gradient gi(x|ξ) of model x evaluated on batch ξ is an unbiased
estimator of the local gradient: Eξ [gi(x|ξ)] = ∇Li(x), and has bounded variance
Eξ [∥gi(x|ξ)−∇Li(x)∥] ≤ σ2, ∀i ∈ {1, ..., n} with σ2 ≥ 0.

Assumption 3.3 (Bounded Dissimilarity). For any set of weights {wi ≥ 0}ni=1 such that∑n
i=1 wi = 1, there exists constants β2 ≥ 1 and κ2 ≥ 0 such that

∑n
i=1 wi ∥∇Li(x)∥2 ≤

β2 ∥
∑n

i=1 wi∇Li(x)∥2 + κ2. If all the local loss functions are identical, then we have
β2 = 1 and κ2 = 0.

The following theorem was proven in Jianyu Wang, Q. Liu, et al. (2020) and provides
theoretical guarantees for MD client sampling.

Theorem 3.1. Under Assumption 3.1 to 3.3, and local learning rate η =
√

m/NT , FL
with FedAvg when sampling m clients with MD converges to a stationary point of L(θ):

1
T

T∑
t=0

E
[∥∥∥∇L(θt)

∥∥∥2
]
≤ O( 1√

mNT
) +O(mN

T
). (3.5)
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The proof of Theorem 3.1 can be found in Jianyu Wang, Q. Liu, et al. (2020) and shows that
considering a subset of workers with MD client sampling is enough to ensure convergence
of the global model to a local minimum of the federated loss function, equation (3.1).
Following the conclusions of that work, to avoid optimizing a surrogate loss function instead
of the federated one in equation (3.1), the server asks from every client to compute the same
amount of SGD steps N .

3.2.4 Sampling schemes comparison

Other client sampling schemes have been proposed. For example, with Xiang Li et al. (2020),
the server sends the global model to every client before creating the new global model out
of the first m updated models the server receives; with W. Chen et al. (2020), the server
waits for every client to send the norm of their work before selecting the m clients with
the most relevant updates; with Nishio and Yonetani (2019), clients transmit information
about their available computation resources before the server selects m of them in function
of their availability. Contrarily to FEDAVG and MD sampling, these sampling schemes
require additional communications and sometimes even computation from all the clients.
On the contrary, FEDAVG and MD sampling have the appealing property of maintaining
to a minimum the amount of clients-server communications at each iteration. The global
model is sent only to the sampled clients, and the amount of local work is set for those
clients to only N SGD updates. To the best of our knowledge, FEDAVG and MD sampling
schemes are the only approaches minimizing the effective work and communications asked
to the clients. Moreover, while FEDAVG sampling has no theoretical guarantees regarding
its convergence, neither regarding the unbiasedness of its global model, MD sampling is
shown to converge to a stationary point of the global loss function (3.1) (Theorem 3.1).
Based on these considerations and given that Xiang Li et al. (2020) shows experimentally
that MD sampling outperforms FEDAVG , in the rest of this work we consider MD sampling
as reference sampling technique.

3.3 Clustered Sampling

In Section 3.3.1, we first introduce clustered sampling and prove the convergence of FL
under this scheme. In Section 3.3.2, we show the statistical improvements brought by
clustered sampling as compared to MD client sampling, in terms of reduced sampling
variance, and better clients representativity across the entire FL process.
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3.3.1 Definition of clustered sampling

Let us consider n clients participating to FL. With MD sampling, m clients are sampled
from a multinomial distribution supported on {1, ..., n} where a client is selected in function
of its data ratio pi.

Assumption 3.4 (Unbiased Sampling). A client sampling scheme is said unbiased if the
expected value of the client aggregation is equal to the global deterministic aggregation
obtained when considering all the clients, i.e.

ESt

[
θt
]

= ESt

∑
j∈St

wj(St)θt
j

 :=
n∑

i=1
piθ

t
i , (3.6)

where wj(St) is the aggregation weight of client j for subset of clients St.

In Xiang Li et al. (2020), the notion of unbiased sampling is introduced by means of
Assumption 3.4. MD sampling follows this assumption, and thus provides at every iteration
an unbiased global model. However, MD sampling enables a client to be sampled from 0 to
m times with non-null probability at each iteration, giving aggregation weights for every
client ranging from 0 to 1. As a result, MD sampling provides appropriate representation for
every client in expectation, with however potentially large variance in the amount of times a
client is selected. As a consequence, the representativity of a client at any given realization
of a FL iteration may not guaranteed. In the following we introduce clustered sampling, and
show that this strategy leads to decreasing clients aggregation weight variance and better
clients representativity.

We denote by W0 the multinomial distribution with support on {1, ..., n} used to sample
one client according to its data ratio pi. MD sampling can be seen as sampling m times
with W0. With clustered sampling, we propose to generalize MD sampling by sampling m

clients according to m independent distributions {Wk(t)}mk=1 each of them privileging a
different subset of clients based on opportune selection criteria (Section 3.4 and 3.5). With
clustered sampling, the m clients can be sampled with different distributions and, at two
different iterations, the set of distributions can differ. MD sampling is a special case of
clustered sampling when ∀t, ∀k ∈ {1, ..., m}, Wk(t) = W0.

In the rest of this work, we denote by rt
k,i the probability for client i to be sampled in

distribution Wk(t). By construction, we have:

∀k ∈ {1, ..., m},
n∑

i=1
rt

k,i = 1 with rt
k,i ≥ 0. (3.7)

3.3 Clustered Sampling 33



We also require clustered sampling to be unbiased. Extending Assumption 3.4 to m

independent sampling distributions {Wk(t)}mk=1, we obtain the property:

∀i ∈ {1, ..., n},
m∑

k=1
rt

k,i = m pi. (3.8)

Proposition 3.1. Equations (3.7) and (3.8) are sufficient conditions for clustered sampling
to satisfy Assumption 3.4.

Proof. Satisfying equation (3.7) ensures the m distributions used with clustered sampling
are feasible. When sampling one client from one of the m distributions Wk(t), we get:

EWk(t)

 ∑
j∈Wk(t)

wj(Wk(t))θt
j

 =
n∑

i=1
rt

k,iθ
t
i . (3.9)

By linearity of the expected value, the expected new global model is the average between
the weighted models obtained according to each distribution {Wk}mk=1 derived in equation
(3.9), i.e.

ESt

[
θt
]

=
m∑

k=1

1
m

n∑
i=1

rt
k,iθ

t
i =

n∑
i=1

piθ
t
i , (3.10)

where the second equality comes from equation (3.8).

In Theorem 3.2, we prove that FedAvg with clustered sampling satisfying Assumptions 3.1
to 3.3 and Proposition 3.1 has the same convergence bound to a FL local optimum as with
FedAvg and MD sampling. The proof of Theorem 3.2 can be found in Appendix B.1.

Theorem 3.2. Under Assumption 3.1 to 3.3, and local learning rate η =
√

m/NT , let’s
consider FL with FedAvg when sampling m clients with clustered sampling scheme satis-
fying Proposition 3.1. The same asymptotic behavior of MD sampling holds :

1
T

T∑
t=0

E
[∥∥∥∇L(θt)

∥∥∥2
]
≤ O( 1√

mNT
) +O(mN

T
) (3.11)

In the proof of Theorem 3.2 (Appendix B.1), we show that this convergence bound holds
for any clustered sampling scheme satisfying Proposition 3.1. Moreover, the convergence
bound of MD sampling is a bound itself for the convergence of a general clustered sampling
scheme satisfying Proposition 3.1. Therefore, clustered sampling enjoys better convergence
guarantees than MD sampling.
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3.3.2 Improvements provided by clustered sampling

We introduced clustered sampling in Section 3.3.1 and showed that under the condition of
Proposition 3.1 it provides the same convergence bound of MD sampling. In this section,
we investigate the statistical benefits of clustered sampling with respect to MD sampling.

We define by ωi(S) the aggregation weight of client i with subset of sampled clients S, and
by SMD and SC(t) the subset of clients sampled at iteration t with respectively MD and
clustered sampling.

We consider a clustered sampling scheme following Proposition 3.1. Hence, for both MD
and clustered sampling, the expected aggregation equals the deterministic aggregation when
considering all the clients leading to:

ESMD(t) [ωi(SMD)] = ESC(t) [ωi(SC(t))] = pi. (3.12)

With clustered sampling, we first show that every client has a smaller aggregation weight
variance. A client’s aggregation weight can be written as ωi(S) = 1

m

∑m
k=1{lk = i},

where lk is the index of the kth sampled client. With MD sampling, m clients are iid
sampled according to B(pi), a Bernoulli distribution with probability pi, giving the following
variance:

VarSMD
[ωi(SMD)] = 1

m2 m Var [B(pi)] (3.13)

= 1
m2 mpi(1− pi). (3.14)

Clustered sampling instead selects independently m clients according to the distributions
{Wk(t)}mk=1. Therefore, each client is sampled according to B(rt

k,i) giving:

VarSC(t) [ωi(SC(t))] = 1
m2

m∑
k=1

Var
[
B(rt

k,i)
]

(3.15)

= 1
m2

m∑
k=1

rt
k,i(1− rt

k,i). (3.16)

By the Cauchy-Schwartz inequality, one can prove that

VarSMD
[ωi(SMD)] ≥ VarSC(t) [ωi(SC(t))] , (3.17)

with equality if and only if all the m distributions are equal to the one of MD sampling, i.e.
∀k, Wk(t) = W0. Exact derivation is given in Appendix B.2. Therefore, with clustered
sampling, every client has a smaller aggregation weight variance. Another interesting
statistical measure of representativity is the probability for a client to be sampled, i.e.
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P({i ∈ S}). In particular, increasing the probability for every client to be sampled is
mandatory to allow a proper representation of each client’s data specificity in the global
model, especially in heterogeneous setting, such as with non-iid and unbalanced clients.
For this statistical measure, clustered sampling also provides better guarantees than MD
sampling. With MD sampling, clients are iid sampled giving

p(i ∈ SMD) = 1− p({i /∈ SMD}) (3.18)

= 1− p({i /∈W0})m (3.19)

= 1− (1− pi)m. (3.20)

Similarly, with clustered sampling we get:

p(i ∈ SC(t)) = 1−
m∏

k=1
p({i /∈Wk(t)}) (3.21)

= 1−
m∏

k=1
(1− rt

k,i). (3.22)

Since we assume here that clustered sampling follows Proposition 3.1, from equation (3.8),
and from the inequality of arithmetic and geometric means, we get:

p({i ∈ SMD(t)}) ≤ p({i ∈ SC(t)}), (3.23)

with equality if and only if all the m distributions are equal to the one of MD sampling, i.e.
∀k, Wk(t) = W0 (derivation in Appendix B.2). Therefore, with clustered sampling, every
client has an higher probability of being sampled and thus is better represented throughout
the FL process.

In conclusion, clustered sampling reduces clients aggregation weights variance and increases
their representativity. These results are important for FL applications with heterogeneous
federated dataset. Increasing a client representativity ensures that clients with unique
distributions are more likely of being sampled, and can potentially lead to smoother and
faster FL convergence.

3.4 Clustered Sampling based on Sample Size

We introduced and showed the convergence of unbiased clustered sampling in Section 3.3.
Clustered sampling schemes compatible with Proposition 3.1 are numerous, including MD
sampling. In this section, we first provide an unbiased clustered sampling scheme based
on the number of samples ni owned by each client. The proposed scheme, illustrated in
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Algorithm 2 Clustered sampling based on sample size

Require: {ni}ni=1 clients number of samples
1: Order clients by descending importance of ni.
2: k ← 1 distribution index.
3: q ← 0 sum of samples.
4: M ←

∑n
i=1 ni total number of samples.

5: for each client i = 1 to n do
6: q ← q + mni

7: q = aiM + bi with ai and bi non negative integers
8: if ai > k then
9: r′

k,i ←M − bi−1
10: ∀l ≥ k + 1 s.t. (ai − 1)− l ≥ 0, r′

k,i ←M
11: end if
12: r′

ai,i
← bi

13: k ← ai

14: end for
Ensure: Sampling probabilities rk,i = r′

k,i/M .

Algorithm 2 , is compatible with Proposition 3.1. In particular, we have the following
theorem:

Theorem 3.3. Algorithm 2 outputs m distributions for a clustered sampling satisfying
Proposition 3.1. The complexity of the algorithm is O(n log(n)).

Proof. Algorithm 2 identifies the m distributions Wk by defining m sets qk of cardinality
M in which each client i is represented with probability rk,i. The sets are constructed as
follows. We define by n′

i = mni the total number of samples to be allocated for each
client. We thus have mM samples to allocate over the m sets qk. For each client, the
integer division n′

i = Mai + bi, identifies ai sets for which the client must be represented
with probability 1. The remaining bi samples are allocated to the remaining m −

∑
i ai

sets. This is possible by observing that Mm =
∑

i n′
i = M(

∑
i ai) +

∑
i bi, and therefore

M(m−
∑

i ai) =
∑

i bi. By construction, Proposition 3.1 is satisfied: |qk| = M implies
equation (3.7), while equation (3.8) is met since, for each client, the total number of samples
distributed across the sets qk is n′

i = mni, and thus each client is represented with proportion
mpi across all the distributions. Algorithm 2 provides the practical implementation of this
scheme.

The complexity of Algorithm 2 is derived in Appendix B.3, where we also provide a
schematic illustration of the allocation procedure.

We note that with Algorithm 2 a client i can be sampled up to ⌊mpi⌋ + 2 times. This is
an improvement from MD sampling where clients can be instead sampled up to m times.
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Algorithm 3 Clustered sampling based on model similarity
Require: {ni}ni=1 clients number of samples, {Gi}ni=1 clients representative gradient, m

number of sampled clients, clustering method (e.g. Ward method), s similarity function
(e.g. Arccos)

1: Estimated hierarchical clustering P with clustering method from similarity matrix ρ
with ρi,j = s(Gi, Gj).

2: Cut P to determine K ≥ m groups {Bk}Kk=1. We define qk as the total number of
samples of the corresponding clients: qk =

∑
i∈Bk

mni ≤M .
3: Order the groups {Bk}Kk=1 by decreasing qk.
4: Define clients number of samples in the m distributions {Wk}mk=1 based on the ranking

of qk : ∀k ≤ m,∀i ∈ Bk, r′
k,i ← mni.

5: Create a set with the clients of the remaining groups S = {{i, ui = mni}, ∀i ∈
Bm+1 ∪ ... ∪BK}

6: k ← 1 Start considering the first distribution Wk

7: while S ̸= ∅ do
8: Select first client i in S with ui samples to allocate
9: Determine ai and bi the quotient and remainder of the euclidean division of qk + ui

by M
10: if ai = 0 then
11: r′

k,i ← bi and i removed from S
12: else if
13: thenr′

k,i ←M − qk

14: ui ← ui − r′
k,i

15: Remove i from S if ui = 0
16: k ← k + 1
17: end if
18: end while
Ensure: Sampling probabilities rk,i = r′

k,i/M .

Since clustering is performed according to the clients sample size ni, unless ni changes
during the learning process, Algorithm 2 needs to be run only once at the beginning of the
learning process, i.e. {Wk(t)}mk=1 = {Wk}mk=1.

3.5 Clustered Sampling based on Similarity

We have shown, in Section 3.3, that unbiased clustered sampling is a generalization of MD
sampling providing smaller aggregation weight variance for every client, and we proposed
in Section 3.4 an algorithm to practically fulfill Proposition 3.1 to obtain m distributions
grouping clients based on their number of samples ni.

In this section we extend the approach of Section 3.3 to define a novel clustered sampling
scheme where sampling distributions are defined based on the similarity across clients. In
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what follows we define clients similarity based on the measure of representative gradient.
The representative gradient is the difference between a client’s updated model and the global
model. Comparing clients’ representative gradients at a given iteration is shown to be an
effective approach for detecting similarity between FL participants (Sattler et al., 2019).

Algorithm 3 adopts this concept to define a clustered sampling scheme compatible with
Proposition 3.1. We have:

Theorem 3.4. If for every client pi ≤ 1/m, Algorithm 3 outputs m distributions for
a clustered sampling satisfying Proposition 3.1. The complexity of the algorithm is in
O(n2d + X), where d is the number of parameters in the model, and X is the complexity of
the clustering method.

Proof. Algorithm 3 is similar to Algorithm 2, with the additional constraint that the number
of clusters K can differ from the number m of distributions. If K = m, the clients are
already allocated in qk sets, and the same reasoning of Algorithm 2 can be applied. If
K > m, we consider again the partitioning problem over m sets qk of cardinality M . We
define again by n′

i = mni the total number of samples to be allocated for each client,
and we have mM samples to allocate over the m sets qk. Differently from Algorithm
2, we initialize the allocation with the clustering. In particular, we assign to each set qk

the n′
i samples of the clients included in cluster k. By construction, each of these sets qk

has cardinality |qk| ≤ M . We consider the m largest sets, and distribute in these sets the
remaining samples of the K −m clusters until |qk| = M , for each k. By construction, this
allocation is possible since we have mM total number of samples to be distributed across
m sets of cardinality M . As for Algorithm 2, Proposition 3.1 is satisfied: |qk| = M implies
equation (3.7), while equation (3.8) is met since, for each client, the total number of samples
distributed across sets qk is n′

i = mni. Appendix B.3 completes the proof on the complexity
of the algorithm.

As for Algorithm 2, Appendix B.3 provides a schematic for a better illustration of the algo-
rithm. Being a clustered sampling scheme, the variance of the clients aggregation weights
of Algorithm 3 is bounded (equation (3.16)). Moreover, since the distributions are obtained
from the similarity tree resulting from the representative gradients, this scheme explicitly
promotes the sampling of clients based on their similarity. Finally, with Algorithm 3, the
sampling from the distributions {Wk}mk=1 can be performed even when no representative
gradient is available for the clients, for example if clients have not been sampled during FL
yet. In this case we simply consider a constant 0 representative gradient for those clients,
and thus group them together to promote their representativity in the same distribution.
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We recall that Algorithm 3 does not require to share gradients across clients, but only the
difference between local and global models (a.k.a. representative gradients). Thus, the
communication cost is the same of standard FL while the privacy properties of FL privacy
remain identical.

We emphasize that any valid hierarchical clustering algorithm can be used in Algorithm 3.
Without loss of generality, in the rest of this chapter we consider the Ward hierarchical clus-
tering method (J. H. Ward, 1963), which allows to obtain a similarity tree by minimizing at
every node the variance of its depending clients. This method has complexity O(n2 log(n)).
We finally observe that the time complexity of Algorithm 3 is not necessarily an issue, even
in presence of an important amount of clients. After aggregation of the new global model,
the server can sample the clients, and transmit it to them. While waiting for their local
work to be completed, the server can therefore estimate the new partitioning. In this way,
Algorithm 3 is equivalent to MD sampling for what concerns the process of receiving the
updated models, and transmitting the new global model to the clients.

As a final observation, while Algorithm 3 is originally designed for sampling scenarios where
pi ≤ 1/m, with few modifications it can be also used for federated datasets composed of
clients with larger sample size, i.e. when I = {i : pi ≥ 1/m} ≠ ∅, or equivalently I = {i :
mni ≥M} ≠ ∅. In this case, we can simply allocate those clients in specific distributions,
where they are sampled with probability 1. In total, we obtain ⌊m ni

M ⌋ distributions of this
kind. The remaining samples mni− ⌊m ni

M ⌋M < M will be then redistributed according to
Algorithm 3.

3.6 Experiments

We first show on a standard classification problem on MNIST (LeCun et al., 1998), the
advantages of clustered sampling obtained with Algorithm 2 and 3 with respect to MD
sampling. We consider a fully connected network with one hidden layer of 50 nodes. We
create a federated dataset composed of 100 clients where each one has 500 training and 100
testing samples composed by one digit only. Each digit is owned by 10 clients, every client
has the same number of samples, and the server samples 10 clients at every iteration.

We note that an ideal clustering method for this FL problem consists in creating 10 clusters
each containing the 10 clients with same classes. At each FL round, we should sample a
client from each cluster in order to obtain a fair representation of all the digits in the model
aggregations. We call ‘target’ sampling this ideal FL scenario. In practice, the server cannot
adopt ‘target’ sampling as this requires to know the clients data distributions in advance. As
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Fig. 3.1.: Comparison of MD sampling with clustered sampling of Algorithm 2 and 3 using cosine
angle for the similarity measure. n = 100 clients from which m = 10 are sampled to
perform N = 50 SGD with learning rate lr = 0.01 and batch size B = 50.
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we shall see in the rest of this section, the controlled nature of this example allows to clearly
appreciate the practical benefits of clustered sampling.

We first show in Figure 3.1 that the FL processes obtained with Algorithm 2 and 3 both out-
perform MD sampling in terms of training global loss, testing accuracy, and representativity
of the sampled classes. Moreover, we note that Algorithm 3 converges to the same ideal
performances of ‘target’ sampling.

We also note that, with MD sampling, between 6 and 8 clients with different digits are
generally chosen at each iteration round (Figure 3.1, top left panel). This is a practical
demonstration of the sub-optimal representation of the clients heterogeneity. From a
statistical perspective, with MD sampling the probability of sampling 10 different clients
is p = 100!

90!10010 ∼ 63%. Thus, for 37% of FL iterations, the new global model results
from aggregation of less than 10 distinct clients. On the contrary, clustered sampling
guarantees by construction that the aggregation will be always performed on 10 different
clients. Indeed, since the dataset is balanced and the number of sampled clients m = 10 is a
divider of the number of clients n = 100, every client can be allocated to one distribution
only, and can be thus sampled up to once. Moreover, clustered sampling ensures that all
the clients have identical aggregation weight variance. This improved data representation
translates in less convergence variability at every iteration. Figure 3.1 illustrates this result
by showing noticeable improvements in terms of convergence with lower variance and better
performance for training loss and testing accuracy. Moreover, with Algorithm 3, although
at the early training steps some classes are not represented, the clustering strategy allows
to quickly partition the 100 clients in 10 clusters and converge to the ideal distribution of
‘target’ (Figure 3.1, top left). As a consequence of this improved representativity of clients
and classes, Algorithm 3 is associated with smoother and faster convergence processes for
training loss and testing throughout iterations.

To demonstrate the benefits of clustered sampling beyond the controlled setting of MNIST,
we conduct additional experiments on CIFAR10 (Krizhevsky et al., n.d.) to investigate
clustered sampling on more complex data distributions and models. CIFAR10 is composed
of 32x32 images with three RGB channels of 10 different classes with 60000 samples. We
use the same classifier of McMahan, Moore, et al. (2017) composed of 3 convolutional
layers and 2 fully connected ones, including dropout after every convolutional layer.

To measure the influence of non-iid data distributions on the effectiveness of clustered
sampling, we partition CIFAR10 using a Dirichlet distribution, Dir(α), giving to each
client the respective partitioning across classes. The parameter α monitors the heterogeneity
of the created dataset: α = 0 assigns one class only to every client, while α→ +∞ gives a
uniform partitioning of classes to each client. Harry Hsu et al. (2019) provides graphical
illustration of datasets obtained with such a process, and we provide in Appendix B.4 similar
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Fig. 3.2.: We investigate the improvement provided by clustered sampling on federated unbalanced
datasets partitioned from CIFAR10 using a Dirichlet distribution with parameter α ∈
{0.001, 0.01, 0.1, 10}. We use N = 100, m = 10, and respective learning rate for each
dataset lr = {0.05, 0.05, 0.05, 0.1}.

illustrations for the parameters α ∈ {0.001, 0.01, 0.1, 10} considered in this chapter. To
create an unbalanced federated dataset, we consider 100 clients where 10, 30, 30, 20 and 10
clients have respectively 100, 250, 500, 750, and 1000 training samples, and testing samples
amounting to a fifth of their training size. All the clients consider a batch size of 50. For
every CIFAR10 dataset partition, we report in this chapter experiments with learning rate in
{0.001, 0.005, 0.01, 0.05, 0.1} minimizing FEDAVG with MD sampling training loss at the
end of the learning process.

In Figure 3.2, we show how heterogeneity determines the improvements of clustered sam-
pling over MD sampling for any of the four datasets. We note that the more heterogeneous a
dataset is, i.e. the smaller α, the larger is the improvement provided by clustered sampling.
Theorem 3.4 shows that clustered sampling has an identical bound as MD sampling. This
is retrieved for α = 10. and α = 0.1 where the final performances for the two samplings
are close with faster convergence for clustered sampling. However, with α = 0.01 and
α = 0.001, clustered sampling provides faster and better convergence. Overall, with
clustered sampling, the evolution of the training loss and testing accuracy are smoother
processes than with MD sampling.

For sake of clarity, we note that the training losses displayed in Figure 3.2 is computed as
the rolling mean over 50 iterations, while we provide in Appendix B.4 the original training
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loss evolution. Furthermore, Appendix B.4 reports a larger panel of experiments providing
additional verification of the improvements brought by clustered sampling. In Figure 3.1
and 3.2, Algorithm 3 is computed with Arccos similarity. We show in Appendix B.4 that
with L2 and L1 we get similar improvements. We also show that increasing the amount of
local work N enables clients to update models fitting better their data distribution. As a
result, measuring clients similarity is easier, enabling better clustering, and leading to better
performances. We also show that for any amount of sampled clients clustered sampling
improves MD sampling. Finally, it is worth noticing that in none of the experimental settings
considered for this paper clustered sampling underperformed with respect to MD sampling,
providing further experimental evidence for our theoretical results.

3.7 Discussion and Conclusion

In this chapter, we introduced clustered sampling, a novel client selection scheme in FL
generalizing MD sampling, the current scheme from the state-of-the-art. We proved the
correctness of clustered sampling and proposed two clustering methods implementing ag-
gregation based on the clients number of samples, in Algorithm 2, or model similarity,
in Algorithm 3. Both algorithms provide smaller weight variance for the clients aggrega-
tion process leading to better client representativity. Consistently, clustered sampling is
experimentally shown to have faster and smoother convergence in heterogeneous dataset.

The generality of clustered sampling paves the way to further investigation of clients
clustering methods based on different criteria than clients sample size or model similarity.
To the best of our knowledge, this chapter is also the first one introducing model similarity
detection when sampling clients, as opposed to current approaches considering all clients at
every iteration.

Finally, clustered sampling is an unbiased sampling scheme simple to implement, while
not requiring to modify neither server nor clients behavior during FL training. This aspects
makes clustered sampling readily compatible with existing methods and technologies for
privacy enhancement and communication reduction.
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In this chapter, we propose a novel framework to study asynchronous federated learning
optimization with delays in gradient updates. In Chapter 2, we extended the standard
FEDAVG aggregation scheme by introducing stochastic aggregation weights to represent
the variability of a client sampling scheme. In this chapter, we further extend the stochastic
aggregation weights definition to represent the variability of the clients update time, due for
example to heterogeneous hardware capabilities. In particular, we develop in this chapter
FEDFIX, a novel extension of FEDAVG enabling efficient asynchronous federated training
while preserving the convergence stability of synchronous aggregation. This chapter is
published at the Journal of Machine Learning Research as (Fraboni, Vidal, Kameni, et al.,
2022b).

4.1 Introduction

Federated learning (FL) is a training paradigm enabling different clients to jointly learn a
global model without sharing their respective data. Federated learning is a generalization
of distributed learning (DL), which was first introduced to optimize a given model in star-
shaped networks composed of a server communicating with computing machines (Bertsekas
and Tsitsiklis, 1989; Nedić et al., 2001; Zinkevich et al., 2009). In DL, the server owns
the dataset and distributes it across machines. At every optimization round, the machines
return the estimated gradients, and the server aggregates them to perform an SGD step.
DL was later extended to account for SGD, and FL extends DL to enable optimization
without sharing data between clients. Typical federated training schemes are based on the
averaging of clients model parameters optimized locally by each client, such as in FEDAVG

(McMahan, Moore, et al., 2017), where at every optimization round clients perform a fixed
amount of stochastic gradient descent (SGD) steps initialized with the current global model
parameters, and subsequently return the optimized parameters to the server. The server
computes the new global model as the average of the clients updates weighted by their
respective data ratio.

A key methodological difference between the optimization problem solved in FL and the
one of DL lies in the assumption of potentially non independent and identically distributed
(iid) data instances (Kairouz et al., 2019; Q. Yang et al., 2019). Proving convergence in
the non-iid setup is more challenging, and in some settings, FEDAVG has been shown to
converge to a sub-optimum, e.g. when each client performs a different amount of local
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work (Jianyu Wang, Q. Liu, et al., 2020), or when clients are not sampled in expectation
according to their importance (Cho et al., 2020).

A major drawback of FEDAVG concerns the time needed to complete an optimization round,
as the server must wait for all the clients to perform their local work to synchronize their
update and create a new global model. As a consequence, due to the potential heterogeneity
of the hardware across clients, the time for an optimization round is conditioned to the one
of the slowest update, while the fastest clients stay idle once they have sent their updates
to the server. To address these limitations, asynchronous FL has been proposed to take
full advantage of the clients computation capabilities (C. Xu et al., 2021; L. Nguyen et al.,
2018; Koloskova et al., 2019; De Sa et al., 2015). In the asynchronous setting, whenever the
server receives a client’s contribution, it creates a new global model and sends it back to
the client. In this way, clients are never idle and always perform local work on a different
version of the global model. While asynchronous FL has been investigated in the iid case
(Sebastian U Stich and Karimireddy, 2020), a unified theoretical and practical investigation
in the non-iid scenario is currently missing.

This chapter introduces a novel theoretical framework for asynchronous FL based on the
generalization of the aggregation scheme of FEDAVG, where asynchronicity is modeled
as a stochastic process affecting clients’ contribution at a given federated aggregation step.
More specifically, our framework is based on a stochastic formulation of FL, where clients
are given stochastic aggregation weights dependent on their effectiveness in returning an
update. Based on this formulation, we provide sufficient conditions for asynchronous FL
to converge, and we subsequently give sufficient conditions for convergence to the FL
optimum of the associated synchronous FL problem. Our conditions depend on the clients
computation time (which can be eventually estimated by the server), and are independent
from the clients data heterogeneity, which is usually unknown to the server.

With asynchronous FL, the server only waits for one client contribution to create the new
global. As a result, optimization rounds are potentially faster even though the new global
improves only for the participating client at the detriment of the other ones. This aspect may
affect the stability of asynchronous FEDAVG as compared to synchronous FEDAVG and, as
we demonstrate in this work, even diverge in some cases. To tackle this issue, we propose
FEDFIX, a robust asynchronous FL scheme, where new global models are created with all
the clients contributions received after a fixed amount of time. We prove the convergence of
FEDFIX and verify experimentally that it outperforms standard asynchronous FEDAVG in
the considered experimental scenarios.

The chapter is structured as follows. In Section 4.2, we introduce our aggregation scheme and
the close-form of its aggregation weights in function of the clients computation capabilities
and the considered FL optimization routine. Based on our aggregation scheme, in Section
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4.3, we provide convergence guarantees, and we give sufficient conditions for the learning
procedure to converge to the optimum of the FL optimization problem. In Section 4.4, we
apply our theoretical framework to synchronous and asynchronous FEDAVG, and show that
this chapter extends current state-of-the-art approaches to asynchronous optimization in FL.
Finally, in Section 4.5, we demonstrate experimentally our theoretical results.

4.2 Background

We define here the formalism required by the theory that will be introduced in the following
sections. We first introduce in Section 4.2.1 the FL optimization problem, and we adapt it in
section 4.2.2 to account for delays in client contributions. We then generalize in Section
4.2.3 the FEDAVG aggregation scheme to account for contributions delays. In Section
4.2.4, we introduce the notion of virtual global models as a direct generalization of gradient
descent, and introduce in Section 4.2.5 the final asynchronous FL optimization problem.
Finally, we introduce in Section 4.2.6 a formalization of the concept of data heterogeneity
across clients.

4.2.1 Federated Optimization Problem

We have M participants owning ni data points {zk,i}ni
k=1 independently sampled from a

fixed unknown distribution over a sample space {Zi}Mi=1. We have zk,i = (xk,i, yk,i) for
supervised learning, where xk,i is the input of the statistical model, and yk,i its desired
target, while we denote zk,i = xk,i for unsupervised learning. Each client optimizes the
model’s parameters θ based on the estimated local loss l(θ, zk,i). The aim of FL is solving
a distributed optimization problem associated with the averaged loss across clients

L(θ) := Ez∼Ẑ [l(θ, z)] = 1∑M
i=1 ni

M∑
i=1

ni∑
k=1

l(θ, zk,i), (4.1)

where the expectation is taken with respect to the sample distribution Ẑ across the M

participating clients. We consider a general form of the federated loss of equation (4.1)
where clients local losses are weighted by an associated parameter pi such that

∑n
i=1 pi = 1,

i.e.

L(θ) =
M∑

i=1
piLi(θ) s.t. Li(θ) = 1

ni

ni∑
k=1

l(θ, zk,i). (4.2)

The weight pi can be interpreted as the importance given by the server to client i in the
federated optimization problem. While any combination of {pi} is possible, we note that in
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typical FL formulations, either (a) every client has equal importance, i.e. pi = 1/M , or (b)
every data point is equally important, i.e. pi = ni/

∑M
i=1 ni.

4.2.2 Asynchronicity in Clients Updates

An optimization round starts at time tn with global model θn, finishes at time tn+1 with the
new global model θn+1, and takes ∆tn = tn+1 − tn time to complete. No assumptions are
made on ∆tn, which can be a random variable, and we set for convenience t0 = 0. In this
section, we introduce the random variables needed to develop in Section 4.2.3 the server
aggregation scheme connecting two consecutive global models θn and θn+1.

We define the random variable Ti representing the update time needed for client i to
perform its local work and send it to the server for aggregation. Ti depends on the client
computation and communication hardware, and is assumed to be independent from the
current optimization round n. If the server sets the FL round time to ∆tn = maxi Ti, the
aggregation is performed by waiting for the contribution of every client, and we retrieve the
standard client-server communication scheme of synchronous FEDAVG.

With asynchronous FEDAVG, we need to relate Ti to the server aggregation time ∆tn. We
introduce ρi(n) the index of the most recent global model received by client i at optimization
round n and, by construction, we have 0 ≤ ρi(n) ≤ n. We define by

T n
i := Ti − (tn − tρi(n)) (4.3)

the remaining time at optimization round n needed by client i to complete its local work.

Comparing T n
i with ∆tn indicates whether a client is participating to the optimization

round or not, through the stochastic event I(T n
i ≤ ∆tn). When I(T n

i ≤ ∆tn) = 1,
the local work of client i is used to create the new global model θn+1, while client i

does not contribute when I(T n
i ≤ ∆tn) = 0. With synchronous FEDAVG, we retrieve

I(T n
i ≤ ∆tn) = I(Ti ≤ maxi Ti) = 1 for every client.

Figure 4.1 illustrates the notations described in this section in a FL process with M = 2
clients.

4.2.3 Server Aggregation Scheme

We consider ∆i(n) the contribution of client i received by the server at optimization round
n. In the rest of this chapter, we consider that clients perform K steps of SGD on the model
they receive from the server. By calling their trained model θn,k

i after k SGD, we can rewrite
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Fig. 4.1.: Illustration of the time notations introduced in Section 4.2.2 with M = 2 clients. The
frequency of the updates of Client 1 (C1) is twice the one of Client 2 (C2). If the server (S)
creates the new global model after every fixed waiting time (∆tn = ∆t), C1 contributes at
every optimization round, while C2 contributes once every two rounds. This aggregation
policy define the federated learning strategy FEDFIX (Section 4.4.4).

clients contribution for FEDAVG as ∆i(n) := θn,K
i − θn, and the FEDAVG aggregation

scheme as

θn+1 := θn +
M∑

i=1
pi∆i(n). (4.4)

With FEDAVG, the server waits for every client to send its contribution ∆i(n) to create the
new global model. To allow for partial computation within the server aggregation scheme,
we introduce the aggregation weight di(n) corresponding to the weight given by the server
to client i at optimization round n. We can then define the stochastic aggregation weight
ωi(n) given to client i at optimization step n as

ωi(n) := I(T n
i ≤ ∆tn)di(n), (4.5)

with ωi(n) = di(n) if client i updated its work at optimization round n and ωi(n) = 0
otherwise. In the general setting, client i receives θρi(n) and its contribution is ∆i(ρi(n)) =
θ

ρi(n),K
i − θρi(n). By weighting each delayed contribution ∆i(ρi(n)) with its stochastic

aggregation weight ωi(n), we propose the following aggregation scheme

θn+1 := θn + ηg

M∑
i=1

ωi(n)∆i(ρi(n)), (4.6)

where ηg is a global learning rate that the server can use to mitigate the disparity in clients
contributions (Reddi et al., 2021; Karimireddy et al., 2020; Jianyu Wang, Tantia, et al., 2020).
Equation (4.6) generalizes FedAvg aggregation scheme (4.4) (ηg = 1 and ∆tn = maxi Ti),
and the one of Fraboni, Vidal, Kameni, et al. (2022a) based on client sampling.

We introduce with Algorithm 4 the implementation of the optimization schemes satisfying
aggregation scheme (4.6) with stochastic aggregation weights satisfying equation (4.5).
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Algorithm 4 Asynchronous Federated Learning based on equation (4.6)

Require: server learning rate ηg, aggregation weights {di(n)}, number of SGD K, learning
rate ηl, batch size B, aggregation time policy ∆tn.

1: The server sends to the M clients the learning parameters (K, ηl, B) and the initial
global model θ0.

2: for n ∈ {0, ..., N − 1} do
3: Clients in Sn = {i : T n

i ≤ ∆tn} send their contribution ∆i(ρi(n)) = θ
ρi(n),K
i −

θρi(n) to the server.
4: The server creates the new global model θn+1 = θn + ηg

∑
i∈Sn

di(n)∆i(ρi(n)),
equation (4.6).

5: The global model θn+1 is sent back to the clients in Sn.
6: end for

4.2.4 Expressing FL as cumulative GD steps

To obtain the tightest possible convergence bound, we consider a convergence framework
similar to the one of Xiang Li et al. (2020) and Khaled et al. (2020a). We introduced the
aggregation rule for the server global models {θn} in Section 4.2.3, and we generalize it
in this section by introducing the virtual sequence of global models θn,k. This sequence
corresponds to the virtual global model that would be obtained with the clients contribution
at optimization round n computed on k ≤ K SGD, i.e.

θn,k := θn + ηg

M∑
i=1

ωi(n)
[
θ

ρi(n),k
i − θρi(n)

]
. (4.7)

We retrieve θn,0 = θn and θn,K = θn+1,0 = θn+1. The server has not access to θn,k when
k ̸= 0 or k ̸= K. Hence the name virtual for the model θn,k.

The difference between two consecutive global models in our virtual sequence depends on
the sum of the differences between local models θ

ρi(n),k+1
i −θ

ρi(n),k
i = −ηl∇Li(θρi(n),k

i , ξi),
where ξi is a random batch of data samples of client i. Hence, we can rewrite the aggregation
process as a GD step with

θn,k+1 = θn,k − ηgηl

M∑
i=1

ωi(n)∇Li(θρi(n),k
i , ξi). (4.8)

4.2.5 Asynchronous FL as a Sequence of Optimization Problems

For the rest of this work, we define qi(n) := E [ωi(n)], the expected aggregation weight of
client i at optimization round n. No assumption is made on qi(n) which can vary across
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optimization rounds. The expected clients contribution
∑M

i=1 qi(n)∆i(n) help minimizing
the optimization problem Ln defined as

Ln(θ) :=
M∑

i=1
qi(n)Li(θ). (4.9)

We denote by θ̄n the optimum of Ln and by θ∗ the optimum of the optimization problem
L defined in equation (4.2). Finally, we define by qi = 1

N

∑N−1
n=0 qi(n) the expected

importance given to client i over the N server aggregations during the FL process, and by
q̃i(n) the normalized expected importance q̃i(n) = qi(n)/(

∑M
i=1 qi(n)). We define by L̄

the associated optimization problem

L̄(θ) :=
M∑

i=1
qiLi(θ) = 1

N

N−1∑
n=0
Ln(θ), (4.10)

and we denote by θ̄ the associated optimum.

Finally, we introduce the following expected convergence residual, which quantifies the
variance at the optimum in function of the relative clients importance qi(n)

Σ :=
M∑

i=1
qi Eξi

[∥∥∥∇Li(θ̄, ξi)
∥∥∥2
]

. (4.11)

The convergence guarantees provided in this chapter (Section 4.3) are proportional to the
expected convergence residual and extend the ones provided for the synchronous setting in
the work of Khaled et al. (2020a). The quantity Σ is finite and serves as a natural measure
of variance in local optimization methods. Σ is positive and null only when clients have
the same loss function and perform GD steps for local optimization. The work of Khaled
et al. (2020a) shows how considering Σ provides tighter convergence guarantees than when
assuming, for each client’s gradient estimator, a bounded variance σ2. This is a common
assumption in synchronous FL (Xiang Li et al., 2020; Jianyu Wang, Q. Liu, et al., 2020). A
thorough analysis of the relationship between Σ and σ2 is provided in Appendix C.1.1.

4.2.6 Formalizing Heterogeneity across Clients

We assume the existence of J ≤M different clients feature spaces Zi and, without loss of
generality, assume that the first J clients feature spaces are different. This formalism allows
us to represent the heterogeneity of data distribution across clients. In DL problems, we
have J < M when the same dataset split is accessible to many clients. When clients share
the same distribution, we assume that their optimization problem is equivalent. In this case,
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Client i Sample distribution j

Importance pi rj

Stochastic aggregation weight ωi(n) -
Aggregation weight di(n) -

Expected agg. weight qi(n) sj(n)
Normalized expected agg. weight q̃i(n) s̃j(n)

Expected agg. weight over N rounds qi sj

Tab. 4.1.: The different weights used to account for the importance of clients or data distributions
at every optimization round and during the full FL process.

we call Fj(θ) their loss function with optimum θ∗
j . The federated problem of equation (4.2)

can thus be formalized with respect to the discrepancy between the clients feature spaces
Zi. To this end, we define Qj the set of clients with the same feature space of client j, i.e.
Qj := {i : Zi = Zj}. Each feature space as thus importance rj =

∑
i∈Qj

pi, and expected
importance sj(n) =

∑
i∈Qj

qi(n) such that

L(θ) =
J∑

j=1
rjFj(θ) and Ln(θ) =

J∑
j=1

sj(n)Fj(θ). (4.12)

As for q̃i(n), we define s̃j(n) = sj(n)/
∑M

i=1 sj(n).

In Table 4.1, we summarize the different weights used to adapt the federated optimization
problem to account respectively for heterogeneity in clients importance and data distributions
across rounds.

4.3 Convergence of Federated Problem (4.2)

In this section, we prove the convergence of the optimization based on the stochastic
aggregation scheme defined in equation (4.6), with implementation given in Algorithm 4.
We first introduce in Section 4.3.1 the necessary assumptions and then prove with Theorem
4.1 the convergence of the sequence of optimized models (Section 4.3.2). We show in
Section 4.3.3 the implications of Theorem 4.1 on the convergence of the federated problem
(4.2), and propose sufficient conditions for the learnt model to be the associated optimum.
Finally, with two additional assumptions, we propose in Section 4.3.4 simpler and practical
sufficient conditions for FL convergence to the optimum of the federated problem (4.2).
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4.3.1 Assumptions and Property

We make the following assumptions regarding the Lipschitz smoothness and convexity of
the clients local loss functions (Assumption 4.1 and 4.2), unbiased gradients estimators
(Assumption 4.3), and finite answering time for the clients (Assumption 4.4). Assumption
4.3 (Khaled et al., 2020a) considers unbiased gradient estimators without assuming bounded
variance, giving in turn more interpretable convergence bounds.

Assumption 4.1 (Smoothness). Clients local objective functions are L-Lipschitz smooth,
that is, ∀i ∈ {1, ..., n}, ∥∇Li(x)−∇Li(y)∥ ≤ L ∥x− y∥.

Assumption 4.2 (Convexity). Clients local objective functions are convex.

Assumption 4.3 (Unbiased Gradient). Every client stochastic gradient gi(x) = ∇Li(x, ξi)
of a model with parameters x evaluated on batch ξi is an unbiased estimator of the local
gradient, i.e. Eξi

[gi(x)] = ∇Li(x).

Assumption 4.4 (Finite Answering Time). The server receives a client local work in at
most τ := maxi,n(n− ρi(n)) optimization steps, which satisfy P(τ <∞) = 1.

Finally, before focusing our attention on the convergence of Algorithm 4, we introduce
Property 4.1 which states that the covariance between two aggregation weights can be
expressed as the product of their expected aggregation weight up to a multiplicative factor
α.

Property 4.1. There exists α ∈ [−1, 1] such that E [ωi(n)ωj(n)] ≤ αqi(n)qj(n).

The proof of Property 4.1 follows from the definition of the clients aggregation weights,
equation (4.5), which gives

E [ωi(n)ωj(n)] = P(T n
i ≤ ∆tn, T n

j ≤ ∆tn)di(n)dj(n) ≤ qi(n)qj(n). (4.13)

This last equality shows that Property 4.1 is always verified by α = 1. In Section 4.4,
we show that there exists α such that Property 4.1 is an equality for synchronous FL,
asynchronous FL, and FEDFIX. We also derive such an α in close-form as function of the
different training parameters. The work of Fraboni, Vidal, Kameni, et al. (2022a) shows
that Property 4.1 also holds as an equality for numerous client samplings and provides for
each of them related α in close-form.
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4.3.2 Convergence of Algorithm 4

Before providing convergence guarantees for the federated optimization problem (4.2), we
first prove with Theorem 4.1 the convergence of Algorithm 4.

Theorem 4.1. Under Assumptions 4.1 to 4.4, with ηl ≤ 1/48KL min
(
1, 1/3ρ2ηg(τ + 1)

)
,

we obtain the following convergence bound:

1
N

N−1∑
n=0

1
K

K−1∑
k=0

[
E
[
Ln(θn,k)

]
− Ln(θ̄n)

]
≤ R({Ln}) + ϵF + ϵK + ϵα + ϵβ, (4.14)

where

R({Ln}) = 1
N

N−1∑
n=0

[
Ln(θ̄)− Ln(θ̄n)

]
, ϵF = 1

η̃KN

∥∥∥θ0 − θ̄
∥∥∥2

, (4.15)

ϵK = O
(
η2

l (K − 1)2 [R({Ln}) + Σ]
)

, ϵα = O
(
α
[
η̃ + η̃2K2τ2

]
[R({Ln}) + max qi(n)Σ]

)
,

(4.16)

ϵβ = O
(
β
[
η̃ + η̃2K2τ2

]
[R({Ln}) + Σ]

)
, η̃ = ηgηl, β := max{di(n)− αqi(n)},

(4.17)

and O accounts for numerical constants and the loss function Lipschitz smoothness L.

Theorem 4.1 is proven in Appendix C.1. The convergence guarantee provided in Theorem
4.1 is composed of 5 terms: R({Ln}), ϵF , ϵK , ϵα, ϵβ . In the following, we describe these
terms and explain their origin in a given optimization scheme.

Optimized expected residual R({Ln}). The residual R({Ln}) quantifies the sensitivity of
Ln between its optimum θ̄n and the optimum θ̄ of the overall expected minimized problem
across optimization rounds L̃. As such, the residual accounts for the heterogeneity in the
history of optimized problems, and is minimized to 0 when the same optimization problem
is minimized at every round n, i.e. Ln = L̃. This condition is always satisfied when clients
have identical data distributions, but requires for the server to set properly every client
aggregation weight di(n) in function of the server waiting time policy ∆tn and the clients
hardware capabilities T n

i in the general case (Section 4.3.3 and 4.3.4).

Initialization quality ϵF . ϵF only depends of the quality of the initial model θ0 through its
distance with respect to the optimum θ̄ of the overall expected minimized problem across
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optimization rounds L̃. This convergence term can only be minimized by performing as
many serial SGD steps KN .

Clients data heterogeneity ϵK . This term accounts for the disparity in the clients updated
models, and is proportional to the clients amount of local work K (quadratically) and to the
heterogeneity of their data distributions Zi through Σ1. When K = 1, every client perform
its SGD on the same model, which reduces the server aggregation to a traditional centralized
SGD. We retrieve ϵK = 0.

Gradient delay τ through ϵα and ϵβ . Decreasing the server time policy ∆tn allows
faster optimization rounds but decreases a client’s participation probability P(T n

i ≤ ∆tn)
resulting in an increased maximum answering time τ . In turn, we note that ϵα and ϵβ are
quadratically proportional to the maximum amount of serial SGD Kτ . This latter terms
quantifies the maximum amount of SGD integrated in the global model θn.

4.3.3 Sufficient Conditions for Minimizing the Federated Problem
(4.2)

Theorem 4.1 provides convergence guarantees for the history of optimized models {Ln}.
Under the same assumptions of Theorem 4.1, we can provide convergence guarantees for
the original FL problem L(θ) (proof in Appendix C.2).

Theorem 4.2. Under the same conditions of Theorem 4.1, we have

1
N

N−1∑
n=0

1
K

K−1∑
k=0

E
[∥∥∥∇L(θn,k)

∥∥∥2
]

≤ O (R({Ln})) + P ({Ln}) + U({Ln}) +O (ϵF ) + ϵK + ϵα + ϵβ, (4.18)

where

P ({Ln}) = O

 1
N

N−1∑
n=0

χ2
n

∑
j∈Wn

s̃j(n)
[
Fj(θ̄n)− Fj(θ∗

j )
] , (4.19)

U({Ln}) = O

 1
N

N−1∑
n=0

1
K

K−1∑
k=0

∑
j /∈Wn

rj

[
E
[
Fj(θn,k)

]
− Fj(θ∗

j )
] , (4.20)

χ2
n =

∑
j∈Wn

(rj − s̃j(n))2/s̃j(n), and Wn = {j : sj(n) > 0}.

Theorem 4.2 provides convergence guarantees for the optimization problem (4.2) and
generalizes the Theorem 2 in the work of Jianyu Wang, Q. Liu, et al. (2020) developed for
the synchronous setting.
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We retrieve the components of the convergence bound of Theorem 4.1. The terms ϵF to ϵτ

can be mitigated by choosing an appropriate local learning rate ηl, but the same cannot be
said for R({Ln}), P ({Ln}), U({Ln}). Behind these three quantities, Theorem 4.2 shows
that proper expected representation of every dataset type is needed, i.e. sj(n) = rj . Indeed,
if a client is poorly represented, i.e. sj(n) ̸= rj , then R({Ln}) > 0 and P ({Ln}) > 0,
while if a client is not represented at all, i.e. sj(n) = 0, then U({Ln}) > 0. Therefore, we
propose, with Corollary 4.1, sufficient conditions for any FL optimization scheme satisfying
Algorithm 4 to converge to the optimum of the federated problem (4.2).

We also note that the discussions made in Section 4.3.2 on the implications of Theorem 4.1
to provide tighter convergence guarantees (regarding the expected residuals, initialization
quality, data heterogeneity, and gradient delay) can be translated to Theorem 4.2 and
Corollary 4.1, therefore providing relevant insights on the rate of convergence to reach the
optimum in asynchronous FL.

Corollary 4.1. Under the conditions of Theorem 4.1, if every client data distribution
satisfies s̃j(n) = rj , the following convergence bound for optimization problem (4.2) can
be obtained

1
N

N−1∑
n=0

1
K

K−1∑
k=0

[
E
[
L(θn,k)

]
− L(θ∗)

]
≤ ϵF + ϵK + ϵα + ϵβ. (4.21)

Proof. Follows directly. s̃j(n) = rj implies χ2
n = 0, Wn = ∅, Ln = q(n)L, and

θ̄n = θ∗.

These theoretical results provide relevant insights for different FL scenarios.

iid data distributions, Zi = Z . Consistently with the extensive literature on synchronous
and asynchronous distributed learning, when clients have data points sampled from the
same data distribution, FL always converges to its optimum (Corollary 4.1). Indeed,
s̃j(n) = rj = 1 regardless of which clients are participating, and what importance pi or
aggregation weight di(n) a client is given.

non-iid data distributions. The convergence of FL to the optimum requires to optimize by
considering every data distribution type fairly at every optimization round, i.e. s̃j(n) = rj

(Corollary 4.1). This condition is weaker than requiring to treat fairly every client at every
optimization round, i.e. qi(n) = pi. Ideally, only one client per data type needs to have a
non-zero participating probability, i.e. P(T n

i ≤ ∆tn) > 0, and an appropriate di(n) such
that s̃j(n) = rj is satisfied. In practice, knowing the clients data distribution is not possible.
Therefore, ensuring FL convergence to its optimum requires at every optimization round
q̃i(n) = pi (Jianyu Wang, Q. Liu, et al., 2020).
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We provide in Example 4.1 an illustration on these results based on quadratic loss functions
to show that considering fairly data distributions is sufficient for an optimization scheme
satisfying Algorithm 4 to converge to the optimum of the optimization problem (4.2), since
s̃j(n) = rj is satisfied at every optimization round, while q̃i(n) ̸= pi may not be satisfied.

Example 4.1. Let us consider four clients with data distributions such that their loss can
be expressed as Li(θ) = 1

2 ∥θ − θ∗
i ∥

2 with θ∗
1 = θ∗

2 (Z1), θ∗
3 = θ∗

4 (Z2), and identical
client importance, i.e. pi = 1/4. Therefore, each data type has identical importance, i.e.
rj = 1/2, and the optimum satisfies θ∗ = 1

2 [θ∗
1+θ∗

3]. We consider that clients with odd index
participate at odd optimization rounds while the ones with even index at even optimization
rounds, i.e. q2n+1

1 = q2n+1
3 = q2n

2 = q2n
4 = 1/2 and q2n

1 = q2n
2 = q2n+1

3 = q2n+1
4 = 0

which gives s̃1(n) = s̃2(n) = 1/2 and q̃i(n) = 0 or q̃i(n) = 1/2 but not q̃i(n) = 1/4.
With ηg = 1, equation (4.6) can be rewritten as

θn+2 = θn+1 + 1
2
[
(θn+1

1 − θn) + (θn+1
3 − θn)

]
. (4.22)

Clients update can be rewritten as θn+1
i − θn = ϕ(θ∗

i − θn), where ϕ = 1 − (1 − ηl)K .
Equation (4.22) can thus be rewritten as

θn+2 − θn+1 + ϕθn = ϕθ∗. (4.23)

Solving equation (4.23) proves FL asymptotic convergence to the optimum θ∗.

4.3.4 Relaxed Sufficient Conditions for Minimizing the Federated
Problem (4.2)

Theorem 4.2 holds for any client’s update time Ti and optimization scheme satisfying
Algorithm 4, and provides finite convergence guarantees for the optimization problem
(4.2). Corollary 4.1 shows that for the asymptotic convergence of FL, data distribution
types should be treated fairly in expectation, i.e. s̃j(n) = rj . This sufficient condition is
not necessarily realistic, since the server cannot know the clients data distributions and
participation time, and thus needs to give to every client an aggregation weight di(n) such
that q̃i(n) = pi without knowing Ti.

In Example 4.1, we note that we have 1
2

[
q2n

i + q2n+1
i

]
= pi. Therefore, every client is given

proper consideration every two optimization rounds. Based on Example 4.1, in Theorem
4.3 we provide weaker sufficient conditions than the ones of Corollary 4.1. To this end, we
introduce Property 4.2 stating that, in a window of size W optimization rounds, clients are
always contributing according to their expected importance qi.
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Property 4.2 (Window). ∃W ≥ 1 such that ∀s, 1
W

∑(s+1)W −1
n=sW qi(n) = qi.

Property 4.2 states that over a cycle of W aggregations, the sum of a client’s expected
aggregation weights qi(n) is constant. By definition of qi, Property 4.2 is always satisfied for
W = N . In addition, we show in Section 4.4 that Property 4.2 holds for all the asynchronous
optimization schemes used in our work, and provide W in close-form depending on M , the
amount of participating clients, and their associated update time.

Finally, we consider with Assumption 4.5 that clients gradients are bounded. This assump-
tion has been considered in previous work on federated optimization including Xiang Li
et al. (2020) and Sebastian U. Stich (2019), and can be justified by the use of gradient
clipping during the practical optimization of deep learning models to prevent exploding
gradients. With gradient clipping, a given threshold B is introduced, and gradients with
norm exceeding this threshold are clipped to norm B.

Assumption 4.5 (Bounded Gradients). The expected squared norm of gradients is uniformly
bounded, i.e. ∃B > 0 such that Eξi

[
∥∇Li(x, ξi)∥2

]
≤ B2 .

Therefore, using Assumption 4.2, Assumption 4.5 and the Cauchy Schwartz inequality
gives

E
[
Li(θn,k+1)

]
− E

[
Li(θn,k)

]
≤ E

[
⟨∇Li(θn,k+1), θn,k+1 − θn,k⟩

]
≤ ηgηlq(n)B2.

(4.24)
Finally, using equation (4.24) and Property 4.2, the performance history on the optimized
problem can be bounded as follows

(s+1)W −1∑
n=sW

K−1∑
k=0

qi E
[
Li(θn,k)

]

≤
(s+1)W −1∑

n=sW

K−1∑
k=0

qi(n)
[
E
[
Li(θn,k)

]
+ ηgηlK(W − 1)B2

]
. (4.25)

Theorem 4.3. Under Assumption 4.1 to 4.5, and considering that W is a divider of N , we
get the following convergence bound for the optimization problem (4.10):

1
N

N−1∑
n=0

1
K

K−1∑
k=0

[
E
[
L̄(θn,k)

]
− L̄(θ̄)

]
≤ ϵ := ϵF + ϵK + ϵα + ϵβ + ϵW , (4.26)
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where ϵW = O(ηgηl(W − 1)K). Furthermore, we obtain the following convergence
guarantees for the federated problem (4.2):

1
N

N−1∑
n=0

1
K

K−1∑
k=0

E
[∥∥∥∇L(θn,k)

∥∥∥2
]
≤ ϵ +O(χ2[L̄(θ̄)−

J∑
j=1

sjFj(θ∗
j )]), (4.27)

where χ2 =
∑J

j=1
(rj−s̃j)2

s̃j
.

Proof.

1
N

N−1∑
n=0

1
K

K−1∑
k=0

[
E
[
L̄(θn,k)

]
− L̄(θ̄)

]

≤ 1
N

N−1∑
n=0

1
K

K−1∑
k=0

qi(n)
[
E
[
Li(θn,k)

]
+ η̃K(W − 1)B2

]
− L̄(θ̄) (4.28)

≤ R({Ln}) + ϵ + 1
N

N−1∑
n=0
Ln(θ̄n)− L̄(θ̄) = ϵ, (4.29)

where we use equation (4.25) for the first inequality and Theorem 4.1 for the second
inequality.

Finally, we can obtain convergence guarantees on the optimization problem (4.2) with
Theorem 4.2 by considering the minimization of the optimization problem L̄. Therefore, the
bound of Theorem 4.2 can be simplified noting that Ln = L̄, θ̄n = θ̄, Wn = ∅, χ2

n = χ2,
and by adding ϵW , which completes the proof.

Theorem 4.3 shows that the condition s̃j = rj is sufficient to minimize the optimization
problem (4.2). In practice, for privacy concerns, clients may not want to share their data
distribution with the server, and thus the relaxed sufficient condition becomes q̃i = pi. This
condition is weaker than the one obtained with Corollary 4.1, at the detriment of a looser
convergence bound including an additional asymptotic term ϵW linearly proportional to the
window size W . Therefore, for a given learning application, the maximum local work delay
τ and the window size W need to be considered when selecting an FL optimization scheme
satisfying Algorithm 4. Also, the server needs to properly allocate clients aggregation
weight di(n) such that Property 4.2 is satisfied while keeping at a minimum the window
size W . We note that W depends of the considered FL optimization scheme and clients
hardware capabilities. Based on the results of Theorem 4.3, in the following section, we
introduce FEDFIX, a novel asynchronous FL setting based on a waiting policy over fixed
time windows ∆tn.

Finally, the following example illustrates a practical application of the condition q̃i = pi.
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Example 4.2. We consider two clients, i = 1, 2, with Li(θ) = 1
2 ∥θ − θ∗

i ∥
2 where clients

have identical importance, i.e. p1 = p2 = 1/2. Client 1 contributes at even optimization
rounds and Client 2 at odd ones, i.e. q2n

1 = q1, q2n+1
2 = q2, and q2n+1

1 = q2n
2 = 0. Hence,

we have

θn n→∞−−−→ q1θ∗
1 + q2θ∗

2
q1 + q2

, (4.30)

which converges to the optimum of problem (4.2) if and only if 1
2

[
q̃2n

i + q̃2n+1
i

]
= pi

(Theorem 4.3).

The conditions of Corollary 4.1 and Theorem 4.3 are equivalent when W = 1, where we
retrieve ϵW = 0. They are also equivalent when clients have the same data distributions,
and we retrieve s̃j = rj = 1 at every optimization round, which also implies that W = 1.

The convergence guarantee proposed in Theorem 4.3 depends on the window size W , and
to the maximum amount of optimizations needed for a client to update its work τ . We
provide sufficient conditions in Corollary 4.2 for the parameters W , and τ , such that an
optimization scheme satisfying Algorithm 4 converges to the optimum of the optimization
problem (4.2).

Corollary 4.2. Let us assume there exists a ≥ 0 and b ≥ 0 such that W = O(Na),
τ = O(N b), and ηl ∝ N−c. The convergence bound of Theorem 4.3 asymptotically
converges to 0 if

W = o(N), τ = o(N), and max(a, b) < c < 1. (4.31)

Proof. The bound of Theorem 4.3 converges to 0 if the following quantities also do: ηlW ,
1

ηlN
, τηl, ηl. We get the following conditions on a, b, and c: −c + a < 0, c − 1 < 0,

b− c < 0, −c < 0, which completes the proof.

By construction and definition of qi, Property 4.2 is always satisfied with W = N . However,
Corollary 4.2 shows that when W = N , no learning rate ηl can be chosen such that the
learning process converges to θ∗. Also, Corollary 4.2 shows that Assumption 4.4 can be
relaxed. Indeed, Assumption 4.4 implies that τ = O(1) and Corollary 4.2 shows that
τ = o(N) is sufficient. We show in Section 4.4 that all the considered optimization schemes
satisfy τ = O(1) and W = O(1), and also depend of the clients hardware capabilities and
amount of participating clients M .
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4.4 Applications

In this section, we show that the formalism of Section 4.2 can be applied to a wide-range of
optimization schemes, demonstrating the validity of the conclusions of Corollary 4.1 and
Theorem 4.3 (Section 4.3). When clients have identical data distributions, the sufficient
conditions of Corollary 4.1 are always satisfied (Section 4.3). In the heterogeneous case,
these conditions can also (theoretically) be satisfied. It suffices that every client has a non-
null participation probability, i.e. P(T n

i ≤ ∆tn) > 0 such that there exists an appropriate
di(n) satisfying q̃i(n) = pi. Yet, in practice clients generally may not even know their
update time distribution P(T n

i ) making the computation of di(n) intractable. In what
follows, we thus focus on Theorem 4.3 to obtain the close-form of ϵ, which only requires
from the server to know the clients time τi.

Theorem 4.3 provides a close-form for the convergence bound ϵ of an optimization scheme
in function of the amount of server aggregation rounds N . We first introduce in Section
4.4.1 our considerations for the clients hardware and data to instead express ϵ in function of
the training time T . The quantity ϵ also depends on the optimization scheme time policy
∆tn through α, β and τ , and on the clients data heterogeneity through R({Ln}) and W . We
provide their close-form for synchronous FEDAVG (Section 4.4.2), asynchronous FEDAVG

(Section 4.4.3), and FEDFIX (Section 4.4.4), a novel asynchronous optimization scheme
motivated by Section 4.3.4. Finally, in Section 4.4.5, we show that the conclusions drawn for
synchronous/asynchronous FEDAVG and FEDFIX can also be extended to other distributed
optimization schemes with delayed gradients. Of course, similar bounds can seamlessly be
derived for centralized learning and client sampling, which we differ to Appendix C.3 to
focus on asynchronous FL in this section.

4.4.1 Heterogeneity of clients hardware and data distributions

Clients importance. We restrict our investigation to the case where clients have identical
aggregation weights during the learning process, i.e. di(n) = di. We also consider identical
client importance pi = 1/M . We can therefore define the averaged optimum residual Σ
defined as the average of the clients SGD evaluated on the global optimum, i.e.

Σ := 1
M

M∑
i=1

Eξi

[
∥∇Li(θ∗, ξi)∥2

]
. (4.32)

When clients have identical data distributions, Σ can be simplified as Σ = Eξ

[
∥∇L(θ∗, ξ)∥2

]
,

and Σ = 0 when clients perform GD. We note that in the DL and FL literature Σ is often
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Sync. FEDAVG Async. FEDAVG FEDFIX

di = pi =
[∑M

i=1
1
τi

]
τipi = ⌈τi/∆t⌉pi

N T/τM
∑M

i=1 T/τi T/∆t
∆t = max T n

i = min T n
i = ∆t

α 1 0 1
β 0 max di ≤ τm/τ0 0
τ 0 Ω(M), O(MτM /τ0) 0, ⌊τm/τ0⌋
W 1 Ω(M), O(M(τM )M ) 1, M⌈τm/τ0⌉M

Tab. 4.2.: The different variables used to account for the importance of clients or data distributions
at every optimization round and during the full FL process. For τ and W , we give two
values which correspond to their respective lower and upper bound.

simplified by assuming bounded variance of the stochastic gradients, i.e. Σ ≤ σ2, where σ2

is the bounded variance of any client SG.

Clients computation time. In the rest of this chapter, we consider that clients guarantee re-
liable computation and communication, although with heterogeneous hardware capabilities,
i.e. ∃τi ∈ R, s.t. Ti = τi. Without loss of generality, we assume that clients are ordered by
increasing τi, i.e. τi ≤ τi+1, where the unit of τi is such that τi is an integer. In what follows,
we provide the close form of di for all the considered optimization schemes. This derivation
still holds for applications where clients have unreliable hardware capabilities that can be
modeled as an exponential distribution, i.e. Ti ∼ exp(τ−1

i ) which gives E [Ti] = τi.

Clients data distributions. Unless stated otherwise, we will consider the FL setting where
each client has its unique data distribution. Therefore, clients have heterogeneous hardware
and non-iid data distributions. The obtained results can be simplified for the DL setting
where a dataset is made available to M processors. In this special case, clients have iid
data distributions (Zi = Z1) , and identical computation times (τi = τ1, W = M , and
τ = M − 1).

Learning rates. For sake of clarity, we ignore the server learning rate when expressing
the convergence bounds ϵ, i.e. ηg = 1. Also, we consider a local learning rate ηl inversely
proportional to the serial amount of SGD included in the global model, i.e. ηl ∝ 1/

√
KN ,

consistently with the rest of the distributed optimization literature.

We propose Table 4.2 to summarize the close form or bounds of the different parameters
used in Section 4.3.
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4.4.2 FedAvg, Synchronous Federated Learning

As described for FEDAVG in Section 4.2.3, at every optimization round, the server sends
to the clients the current global model to perform K SGD steps on their own data before
returning the resulting model to the server. Once every client performs its local work, the new
global model is created as the weighted average of the clients contribution. The time required
for an optimization step is therefore the one of the slowest client (∆tn = maxi(T n

i )), and
every client is considered (P(T n

i ≤ ∆tn) = 1). Hence, α = 1, β = 0, and setting di = pi

is sufficient to satisfy the conditions of Corollary 4.1 (and thus the ones of Theorem 4.3)
ensuring that FL converges to its optimum (Jianyu Wang, Q. Liu, et al., 2020). The term ϵ

then reduces to

ϵFEDAVG = 1√
KN

∥∥∥θ0 − θ∗
∥∥∥2

+O
(

K − 1
N

Σ
)

+O
( 1√

KN

1
M

Σ
)

. (4.33)

The second element of equation (4.33) accounts for the clients update disparity through their
amount of local work K between two server aggregations, and is proportional to the SG
variance Σ. The third element benefits of the distributed computation by being proportional
to 1/M . Equation (4.33) is consistent with literature on convex distributed optimization
with FEDAVG including Jianyu Wang, Q. Liu, et al. (2020) and Khaled et al. (2020a).

4.4.3 Asynchronous FedAvg

With FEDAVG, every client waits for the slowest one to perform its local work, and cannot
contribute to the learning process during this waiting time. To remove this bottleneck, with
asynchronous FEDAVG, the server creates a new global model whenever it receives a client
contribution before sending it back to this client. For in depth discussion of Asynchronous
FEDAVG, please refer to C. Xu et al. (2021).

With asynchronous FEDAVG, clients always compute their local work but each on a different
global model, giving ∆tn = mini T n

i , α = 0, and β = maxi di. In addition, while the
slowest client updates its local work, other clients performs a fix amount of updates (up to
⌈τM /τi⌉). By scaling this amount of updates by the amount of clients sending updates to
the server, we have

τ = O
(

τM

τ0
(M − 1)

)
. (4.34)

We define lcm({xi}) the function returning the least common multiplier of the set of
integers {xi}. Hence, after every ν := lcm({τi}) time, each client has performed ν/τi

64 Chapter 4 A General Theory for Federated Optimization with Asynchronous
and Heterogeneous Clients Updates



optimization rounds and the cycle of clients update repeats itself. Thus, the smallest window
W satisfies

W =
M∑

i=1
ν/τi. (4.35)

By construction, ν ≥ τM and thus W = Ω(M), with W = M when clients have ho-
mogeneous hardware (τM = τ0). In the worse case, every τi is a prime number, and we
have ν/τi ≤ (τM )M−1, which gives W = O(M (τM )M−1). In a cycle of W optimization
rounds, every client participates ν/τi times to the creation of a new global model. Therefore,
we have qi(n) = di for the ν/τi participation of client i, and qi(n) = 0 otherwise. Hence,
the sufficient conditions of Theorem 4.3 are satisfied when

qi = 1
W

(k+1)W −1∑
n=kW

qi(n) = 1∑M
i=1 ν/τi

ν

τi
di = pi ⇒ di =

[
M∑

i=1

1
τi

]
τipi. (4.36)

The client weight calculated in equation (4.36) is constant and only depends on the client
importance pi (set and thus known by the server), and on the clients computation time τi

(eventually estimated by the server after some clients updates). The condition on di can be
further simplified by accounting for the server learning rate ηg. Coupling equation (4.6)
with equation (4.36) gives ηgdi ∝ τipi, which is sufficient to guarantee the convergence of
asynchronous FL to its optimum. Finally, by bounding τi, we also have β = maxi di ≤
τM /τ0, bounded the hardware computation time heterogeneity.

The disparity between the optimized objectives R({Ln}) at different optimization rounds
also slows down the learning process. Indeed, at every optimization round, only a single
client can participate with probability 1. As such, we have Ln = diLi which, thanks to the
assumption pi = 1/M , yields

R({Ln}) = 1
M

M∑
i=1

[Li(θ∗)− Li(θ∗
i )] . (4.37)

Finally, we simplify the close-form of ϵ (Theorem 4.3) for asynchronous FEDAVG to get

ϵAsync = 1√
KN

∥∥∥θ0 − θ∗
∥∥∥2

+O
(

K − 1
N

Σ
)

+O
(

τM

τ0

1√
KN

[R({Ln}) + Σ]
)

+O
((

τM

τ0

)3 K

N
M2 [R({Ln}) + Σ]

)
+O

( 1√
KN

(W − 1)
)

. (4.38)

With equation (4.38), we can compare synchronous and asynchronous FEDAVG. The
first and second asymptotic terms are identical for the two learning algorithms, while the
third asymptotic term is scaled by the hardware characteristics τM /τ0 instead of 1/M in
FEDAVG, with the addition of a non null residual R({Ln}) for asynchronous FEDAVG.
However, the fourth and fifth term are unique to asynchronous FEDAVG, and explains why
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its convergence gets more challenging as the amount of clients M increases. The impact of
the hardware heterogeneity is also identified through the importance of τM /τ0 in the third
term. With no surprise, for a given optimization round, synchronous FEDAVG outperforms
its asynchronous counterpart. However, in T time, the server performs

N =
M∑

i=1
T/τi (4.39)

aggregations with asynchronous FEDAVG against T/τM for synchronous FEDAVG. With
asynchronous FEDAVG, the server thus performs at least M times more aggregations than
with synchronous FEDAVG. As a result, the first two terms of equation (4.38), which are
proportional to how good the initial model is ∥θ0 − θ∗∥, decrease faster with asynchronous
FEDAVG at the detriment of an higher convergence residual coming for the two last terms.

Comparison with asynchronous DL and FEDAVG literature. The convergence rates
obtained in the convex distributed optimization literature relies on additional assumptions to
ours, with which we retrieve their proposed convergence rate. To the best of our knowledge,
only Zinkevich et al. (2009) considers non-iid data distributions for the clients. When
assuming W = O(τ) and ηl ∝ 1/

√
τN , we retrieve a convergence rate

√
τ/N .

We also match convergence rates for literature with iid client data distributions and K = 1.
With M = O(

√
N), then we have O(1/

√
N) (Agarwal and Duchi, 2011; Lian, Huang,

et al., 2015). When ηl = O(1/τ
√

KN), we retrieve τ/N + 1/
√

N (Sebastian U Stich and
Karimireddy, 2020; S. Stich et al., 2021).

4.4.4 FedFix

The analysis of asynchronous FEDAVG (Section 4.4.3) and its comparison with synchronous
FEDAVG (Section 4.4.2), shows that asynchronous FEDAVG is not scalable to large cohort
of clients. We thus propose FEDFIX combining the strong points of synchronous and
asynchronous FEDAVG, where the server creates the new global model at a fixed time
tn with the contributions received since tn−1. Therefore, the server does not wait for
every client, contrarily to synchronous FEDAVG, and considers more than one client per
aggregation to have more stable aggregations, contrarily to asynchronous FEDAVG. We
provide in Figure 4.1 an illustration of FEDFIX with two clients.

With FEDFIX, an iteration time ∆tn = tn+1−tn is decided by the server and is independent
from the clients remaining update time T n

i . For sake of convenience, we further assume that
the time between optimization rounds is identical, i.e. ∆tn = ∆t, but the following results
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can be derived for other fixed time policies {∆tn}. Therefore, T n
i and T n

j are independent,
and so are ωi and ωj , which gives α = 1 and β = 0.

Every client sends an update to the server in N ′
i = ⌈Ti/∆t⌉ optimization steps. Contrarily

to asynchronous FEDAVG, we thus have τ = ⌈τm/∆t⌉ = O(1), which is independent
from the amount of participating clients M . In this case, the smallest window W satisfies
W = lcm({N ′

i}), and clients update W/N ′
i times their work to the server during the

window W . Therefore, satisfying the conditions of Theorem 4.3 requires

di = ⌈ τi

∆t
⌉pi. (4.40)

With equation (4.40), we can notice the relationship between FEDFIX and synchronous or
asynchronous FEDAVG. When ∆t ≥ τi, client i participates to every optimization round
and is thus considered synchronously, which gives di = pi. When ∆t ≥ τM , we retrieve
synchronous FL and di = pi for every client. On the contrary, for asynchronous FL, when
∆t≪ τi, we obtain ⌈τi/∆t⌉ ≈ τi/∆t and we retrieve ηgdi = ηg [τi/∆t] pi ∝ τipi.

Regarding the disparity between the local objectives R{Ln}, we know that a client par-
ticipates to an optimization round with qi(n) = di. We thus have Ln =

∑
i∈Sn

diLi,
where Sn is the set of the participating clients at optimization step n. Considering that
Ln(θ̄n) ≥

∑
i∈Sn

diLi(θ∗
i ), the close form of FEDFIX is bounded by the one of of asyn-

chronous FEDAVG, i.e.

R({Ln}) ≤ 1
M

M∑
i=1

[Li(θ∗)− Li(θ∗
i )] . (4.41)

Finally, we simplify the close-form of ϵ (Theorem 4.3) for FEDFIX to get

ϵFEDFIX = 1√
KN

E
[∥∥∥θ0 − x

∥∥∥2
]

+O
(

K − 1
N

[R({Ln}) + Σ]
)

+O
([ 1√

KN
+ K

N
⌈τm

∆t
⌉2
] [

R({Ln}) + ⌈τm

∆t
⌉ 1
M

Σ
])

+O
( 1√

KN
(W − 1)

)
.

(4.42)

The first two elements of equation (4.42) are identical for FEDFIX, synchronous and asyn-
chronous FEDAVG. However, thanks to lower values for the different variables (cf Table
4.2), the last two asymptotic terms of the convergence bound are smaller for FEDFIX than
for asynchronous FEDAVG, equation (4.42). Similarly, these two terms are larger with
FEDFIX than with synchronous FEDAVG. The hardware heterogeneity and the amount
of participating clients still impacts the convergence bound through ⌈τM /∆t⌉ and W , but
can be mitigated with proper selection of ∆t. Therefore, after N optimization rounds, syn-
chronous FEDAVG outperforms FEDFIX which outperforms in turn asynchronous FEDAVG.
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However, in T time, the server performs N = T/∆t aggregations with FEDFIX against
T/τM for synchronous FEDAVG. With asynchronous FEDAVG, the server thus performs at
least τM /∆t times more aggregations than with synchronous FEDAVG. Overall, ∆t can
be considered as the level of asynchronicity given to Algorithm 4, with FEDAVG when
∆t = τM and asynchronous FEDAVG when ∆t ≥ τM .

In the DL case, clients have identical computation time (τ1 = τm), and we retrieve the
convergence bound of synchronous FEDAVG.

In addition, we can increase the waiting time for the clients update, since the learning
process converges and gets closer to the optimum of optimization problem (4.2), to reach a
behavior similar to the one of synchronous FL. Indeed, for Theorem 4.3 to hold, we only
need the same optimization time rounds ∆t over a window W

4.4.5 Generalization

Coupled with the theoretical method developed in Jianyu Wang, Q. Liu, et al., 2020, the
proof of Theorem 4.1 can account for FL regularization methods (T. Li, Sahu, Zaheer,
Sanjabi, Talwalkar, and Smith, 2018a; T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smithy,
2019; Acar et al., 2021), other SGD solvers (Kingma and Ba, 2014; R. Ward et al., 2019;
Xiaoyu Li and Orabona, 2019; Yu, Jin, et al., 2019; Yu, S. Yang, et al., 2019; Haddadpour,
Kamani, Mahdavi, and V. Cadambe, 2019), and/or gradient compression/quantization
(Reisizadeh et al., 2020; Basu et al., 2019; H. Wang et al., 2018; Koloskova* et al., 2020).

We also note that Theorem 4.3 can be applied to other distributed optimization schemes
using different waiting time policy ∆tn. With FEDBUFF (J. Nguyen et al., 2021), the server
waits for m client updates to create the new global model. The server then communicates to
these clients the new global model, while the other clients keep performing local work on
the global model they received.

In this section, the sufficient conditions of Theorem 4.3 regarding the expected aggregation
weights qi(n) were applied to obtain proper aggregation weight di. We keep identical clients
local learning rate ηl and amount of local work K. We could instead get the close-form
of a client specific learning rate ηl(i) or amount of local work K(i) using the gradient
formalization of Jianyu Wang, Q. Liu, et al. (2020). Specifically, our conclusions can also be
applied to federated optimization schemes where clients perform the same amount of SGD
steps on their data over the whole optimization process while asynchronously aggregating
the clients’ delayed updates (Lian, W. Zhang, et al., 2018; Avdiukhin and Kasiviswanathan,
2021). Finally, with minor modifications to the aggregation scheme (4.6), our convergence
guarantees can also be extended to federated optimization schemes where the server balances
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the clients’ hardware heterogeneity by using every client latest contribution during each
aggregation step (Gu et al., 2021; H. Yang et al., 2022).

4.5 Experiments

In this section, we experimentally demonstrate the theoretical claims of Section 4.3 and
4.4. We first introduce the information needed to understand how the experiments are
run in Section 4.5.1. Finally, in Section 4.5.2, we provide our experiments and their
interpretation.

4.5.1 Experimental Setting

We introduce in this subsection the dataset and the predictive models used for federated
optimization, the hardware scenarios proposed to simulate hardware heterogeneity, the
clients aggregation weights strategies, and how the different hyperparameters are set1.

Optimization Problems. We consider learning a predictive model for optimization problem
(4.2) where clients have identical importance (pi = 1/M ) based on the following datasets
with their associated learning scenarios.

• MNIST iid (Lecun et al., 1998) and MNIST non-iid. MNIST is a dataset of 28x28
pixel grayscale images of handwritten single digits between 0 and 9 composed of 60
000 training and 10 000 testing samples split equally among the clients. We use a
logistic regression to predict the images class. Clients are randomly allocated digits to
match their number of samples. With MNIST non-iid, we split instead data samples
among clients using a Dirichlet distribution of parameter 0.1, i.e. Dir(0.1).Therefore,
with MNIST iid and non-iid, we evaluate our theory on a convex optimization prob-
lem.

• CIFAR10/100 (Krizhevsky et al., n.d.). The dataset consists of 10/100 classes of
32x32 images with three RGB channels. There are 50000 training and 10000 testing
examples. The model architecture was taken from (McMahan, Moore, et al., 2017)
which consists of two convolutional layers and a linear transformation layer to produce
logits. Clients get the same amount of samples but their percentage for each class
vary and is determined with a Dirichlet distribution of parameter 0.1, i.e. Dir(0.1)
(Harry Hsu et al., 2019).

1Code and data are available at https://github.com/Accenture/
Labs-Federated-Learning/tree/asynchronous_FL
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• CIFAR∗10/100. Clients get the same samples as with CIFAR10/100. However, with
CIFAR∗10/100, we use a logistic regression to predict the image class to evaluate our
theory on a convex optimization problem as for MNIST iid and non-iid.

• Shakespeare (Caldas et al., 2018). We study a LSTM model for next character
prediction on the dataset of The Complete Works of William Shakespeare. The model
architecture is composed of a two-layer LSTM classifier containing 100 hidden units
with an 8 dimensional embedding layer taken from (T. Li, Sahu, Zaheer, Sanjabi,
Talwalkar, and Smith, 2018a). The model takes as an input a sequence of 80 characters,
embeds each of the characters into a learned 8-dimensional space and outputs one
character per training sample after 2 LSTM layers and a fully connected one.

Hardware Scenarios. In the following experimental scenarios, clients computation time
are obtained according to the time policy FX . We consider that clients have fixed update
times that can be up to X% faster than the slowest client. Clients computation time are
uniformly distributed from the lower to the upper bound set at 1 unit of time. Clients have
thus identical hardware with F0. To simulate heterogeneous clients hardware, we consider
the time scenario F80.

Clients Aggregation Weights. To compare asynchronous FL with and without the close-
form of di provided in Section 4.4, we introduce IDENTICAL where di = 1 for every client
regardless of the time scenario FX , and TIME-BASED where di satisfies equation (4.36)
derived in Section 4.4.

Hyperparameters. Unless specified otherwise, we consider a global learning rate ηg = 1.
We finetune the local learning rate ηl with values ranging from 10−5 to 1. We consider a
batch size B = 64 for every dataset. We report mean and standard deviation on 5 random
seeds. Every comparison of IDENTICAL with TIME-BASED is done using the same local
learning rate. We give an advantage to IDENTICAL by finetuning the learning rate on this
clients aggregation weight scenario.

4.5.2 Experimental Results

We experimentally show that asynchronous FL has better performances with TIME-BASED

than with IDENTICAL, and thus we demonstrate the correctness of Theorem 4.3 with Figure
4.2 in Section 4.5.2. Finally, we compare synchronous FEDAVG and asynchronous FEDAVG

in Figure 4.3.
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Fig. 4.2.: We consider the loss evolution over time of federated problem (4.2) (FP) and surrogate
problem (4.10) (SP) for MNIST iid, MNIST non-iid, CIFAR∗10, and CIFAR∗100; and
the respective standard deviation of the loss over clients in (b) and (d). We consider
M = 10 for a time scenario F80 with K = 1.

Impact of the Clients Aggregation Weights on Asynchronous FedAvg

Figure 4.2(a) experimentally shows the interest of coupling asynchronous FL with TIME-
BASED instead of IDENTICAL for different convex applications (MNIST iid, MNIST non-iid,
CIFAR∗10, and CIFAR∗100). The learnt model with TIME-BASED has better minima on
the federated problem (4.2). In addition, Figure 4.2(b) shows that losses across clients are
more homogeneous with TIME-BASED, resulting in generally lower standard deviations.

Focusing on MNIST iid and non-iid, we see the impact of data heterogeneity on the learnt
model performances. With IDENTICAL, asynchronous FL converges to a suboptimum point
and the differences between the learnt model losses is twice as large for MNIST non-iid
than for MNIST iid, Figure 4.2(a). Figure 4.2(b) shows a similar result concerning the
clients loss heterogeneity. Therefore, data heterogeneity degrades the suboptimum loss and
cannot be ignored in asynchronous FL applications. Indeed, IDENTICAL and TIME-BASED

curves are significantly different even for the simplest application on MNIST iid, where the
dataset is uniformly distributed across M = 10 clients. Hence, the assumption of identical
data distributions should generally not be made and the aggregation scheme TIME-BASED

should be used instead for any asynchronous FL (or DL).

With Figure 4.2(c), we can also appreciate the performances of the learning procedure on
the surrogate problem (4.10) based on the clients computation times Ti. Due to clients
hardware heterogeneity, in the scenario F80, clients communicate with the server up to 5
more times than the slowest one. TIME-BASED balances this amount of updates disparity
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Fig. 4.3.: Evolution of federated problem (4.2) (FP) loss for CIFAR10 and Shakespeare and time
scenario F0 and F80, with M = 20 and M = 50. We consider ηg = 1 and K = 10.
The server creates the new global model after ∆t = 0.5 for FEDFIX and after receiving
c = 10 delayed contributions with FEDBUFF.

across clients. As a result, IDENTICAL has better performances than TIME-BASED on the
surrogate problem (4.10) for MNIST iid/non-iid and CIFAR∗10/100.

Partial Asynchronicity with FedFix

The theory derived in Section 4.3 can be applied to asynchronous FL but also synchronous
FL, FEDAVG, and other asynchronous FL schemes like FEDFIX (Section 4.4) and FEDBUFF

(J. Nguyen et al., 2021). We show with Figure 4.3 that allowing asynchronicity does not
necessarily provide faster learning processes, e.g. comparison between synchronous and
asynchronous FEDAVG above, but FEDFIX outperforms FEDAVG by balancing convergence
speed and stability.

With a small enough learning rate ηl, asynchronous FEDAVG outperforms FEDFIX and
FEDBUFF, which outperforms synchronous FL (see Figure C.1 to C.4 in Appendix C.4).
Indeed, in this case, global models change slowly and we can consider that the server
receives contributions with no gradient delay. As such, the learning procedure including
the most serial contributions in the global model is the fastest. However, in the other cases,
the learning rate ηl does not mitigate the discrepancy between clients update, which slows
down convergence for asynchronous FL, and can even prevent it.

Identifying the fastest optimization scheme must be done by comparing optimization
schemes based on their best local learning rate ηl (Figure 4.3). Synchronous FL outperforms
asynchronous FL when clients have homogeneous (F0) or heterogeneous (F80) hardware.
Indeed, the server needs to increase the amount of contributions at each aggregation to
balance convergence speed and convergence stability. We see that FEDFIX-0.5 provides
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this trade-off and outperforms synchronous FL by performing twice as many server aggre-
gations in the heterogeneous hardware scenario (F80). We also see that FEDBUFF always
outperforms asynchronous FL by considering more clients at every aggregation without
necessarily outperforming synchronous FL. Hence, FEDFIX better balances convergence
speed and stability than FEDBUFF.

We note that, even for synchronous FL, FL convergence is not monotonous. Indeed, for
synchronous FL to have a better convergence speed than asynchronous FL, the server needs
to consider a high local learning rate leading to convergence instability. Figure 4.3 shows
this instability for Shakespeare and t > 2500, and Figure C.1 to C.4 in Appendix C.4
provides the evolution of this instability as the learning rate ηl increases.

We note that even when clients have homogeneous hardware (F0), FEDFIX can outperform
synchronous FL. This can be explained by the close-form of FEDFIX weights di, equation
(4.40), which accounts for server aggregations where no client participates. As a result,
FEDFIX behaves as asynchronous FL but with an higher server learning rate ηg = 2 which
provides faster convergence.

4.6 Discussion

This chapter introduces equation (4.6) which generalizes the expression of FEDAVG ag-
gregation scheme by introducing stochastic aggregation weights ωi(n) to account for
asynchronous client updates. We prove the convergence of FL schemes satisfying equation
(4.6) with Theorem 4.1. A similar aggregation scheme has been derived in Fraboni, Vidal,
Kameni, et al. (2022a) for unbiased client sampling, which this chapter generalizes. In
addition, we show that aggregation scheme (4.6) is satisfied by asynchronous FL, FEDFIX,
and FEDBUFF, Section 4.4. Finally, we assume fixed clients update time Ti such that we can
consider di(n) = di, and give in Section 4.4 its close-form to ensure any FL optimization
scheme converges to the optimum of problem (4.2). Thsi chapter remains relevant for
applications with di(n) = di but we let the specific derivations to the reader.

This chapter shows theoretically and experimentally that asynchronous FEDAVG does not
always outperform its synchronous counterpart. By creating the new global model with the
contribution of only one client, asynchronous FEDAVG convergence speed is very sensitive
to the choice of learning rate and amount of local work K. These two hyperparameters
need to be fine-tuned to properly balance convergence speed and stability. Due to the
hardware constraints inherent to the FL setting, fine-tuning is a challenging step for FL and
is not necessarily feasible. Therefore, we proposed FEDFIX, an FL algorithm where the
server, after a fixed amount of time, creates the new global model with the contribution
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of all the participating clients. We prove the convergence of FEDFIX with our theoretical
framework, and experimentally demonstrate its improvement over FEDAVG in all the
considered scenarios.
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Practical Applications





Sequential Informed
Federated Unlearning:
Efficient and Provable Client
Unlearning in Federated
Optimization
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In this chapter, we present Informed Federated Unlearning (IFU), a novel efficient and
quantifiable approach to unlearn the data specificities of a client from a mode trained with
federated learning. Upon receiving an unlearning request from a given client, IFU identifies
the optimal FL iteration from which FL has to be reinitialized, with unlearning guarantees
obtained through a randomized perturbation mechanism. The theory of IFU is also extended
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to account for sequential unlearning requests. Experimental results on different tasks and
dataset show that IFU leads to more efficient unlearning procedures as compared to basic
re-training and state-of-the-art federated unlearning approaches. This chapter is under
review and currently available as a preprint (Fraboni, Vidal, Kameni, et al., 2022c)

5.1 Introduction

With the emergence of new data regulations, such as the EU General Data Protection Regu-
lation (GDPR) (Voigt and Von dem Bussche, 2017) and the California Consumer Privacy
Act (CCPA) (Harding et al., 2019), the storage and processing of sensitive personal data is
often subject of strict constraints and restrictions. In particular, the “right to be forgotten”
states that personal data must be erased upon request from the concerned individuals, with
subsequent potential implications on machine learning models trained by using this data.
Machine Unlearning (MU) is an emerging discipline that studies methods to ideally remove
the contribution of a given data instance used to train a machine learning model. Current
MU approaches are essentially based on routines that modify the model weights in order
to guarantee the “forgetting" of a given data point, i.e. to obtain a model equivalent to an
hypothetical one trained without this data point (Cao and J. Yang, 2015; Bourtoule et al.,
2021).

Motivated by data governance and confidentiality concerns, Federated learning (FL) has
gained popularity in the last years to allow data owners to collaboratively learn a model
without sharing their respective data. Among the different FL approaches, federated averag-
ing (FEDAVG) has emerged as the most popular optimization scheme (McMahan, Moore,
et al., 2017). An optimization round of FEDAVG requires data owners, also called clients, to
receive from the server the current global model which they update before sending it back
to the server. The new global model is then created as the weighted average of the client
updates, according to their data ratio. FL communication design guarantees to clients that
their data is solely used to compute their model update, while theoretical work guarantees
FL convergence to a stationary point of the clients’ joint optimization problem (Jianyu Wang,
Q. Liu, et al., 2020; Xiang Li et al., 2020).

With the current deployments of FL in the real-world, it is of crucial importance to extend
MU to guarantee the unlearning of clients wishing to opt-out from a collaborative training
routine. This is not straightforward, since current MU schemes have been proposed essen-
tially in the centralized learning setting, and cannot be seamlessly applied to the federated
one. For example, several MU methods require the estimation of the Hessian of the loss
function (Guo et al., 2020; Izzo et al., 2021; Golatkar, Achille, and Soatto, 2020a; Golatkar,
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Achille, and Soatto, 2020b; Golatkar, Achille, Ravichandran, et al., 2021), an operation
which is notoriously computationally heavy and intractable for high dimensional models.
Moreover, sharing the Hessian would require clients to share with the server additional
information about their data, thus exposing the federated setting to information leakage
and attacks, for example under the form of model inversion (Matt Fredrikson et al., 2015).
Alternative MU methods draw from the concept of differential privacy Dwork and Roth
(2014) and are based on a Gaussian noise perturbation of the trained model (Neel et al.,
2021; Guo et al., 2020; Gupta et al., 2021). The magnitude of the noise perturbation should
be estimated directly from the clients data, which is by construction inaccessible to the
server in the FL regime. We also note that while recent federated unlearning (FU) methods
have been proposed to unlearn a client from the global FL model (G. Liu et al., 2021;
Junxiao Wang et al., 2021; Halimi et al., 2022; C. Wu et al., 2022), these approaches do not
come with theoretical guarantees on the effectiveness of the unlearning.

The main contribution of this chapter consists in Informed Federated Unlearning (IFU), a
novel efficient FU approach to unlearn a client’s contribution with quantifiable unlearning
guarantees. IFU requires minimal additional computations to the server in a standard
FEDAVG procedure. Specifically, the server quantifies at every optimization round each
client’s contribution to the global model. Upon receiving an unlearning request from a
client, the server identifies in the FL training history the optimal FL iteration and associated
intermediate global model from which re-initializing the unlearning procedure. Unlearning
guarantees are provided by introducing a novel randomized mechanism to perturb the
selected intermediate model with client-specific noise. We also extend IFU to Sequential
Informed Federated Unlearning (SIFU), to account for realistic unlearning scenarios where
the server receives sequential unlearning requests from one or more clients at different times
(Neel et al., 2021; Gupta et al., 2021).

This manuscript is structured as follows. In Section 5.2, we provide formal definitions for
MU, FL, and FU, and introduce the randomized mechanism with associated unlearning
guarantees. In Section 5.3, we introduce sufficient conditions for IFU to unlearn a client from
the FL routine (Theorem 5.2). In Section 5.4, we extend IFU to the sequential unlearning
setting with Sequential IFU (SIFU). Finally, in Section 5.5, we experimentally demonstrate
on different tasks and datasets that SIFU leads to more efficient unlearning procedures as
compared to basic re-training and state-of-the-art FU approaches.
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5.2 Background and Related Work

In Section 5.2.1, we introduce the state-of-the art behind Machine Unlearning, while in
Section 5.2.2, we introduce FL and FEDAVG. Finally, we introduce Federated Unlearning
(FU) in Section 5.2.3.

5.2.1 Machine Unlearning

Let us consider a dataset D composed of two disjoint datasets: Df , the cohort of data
samples on which unlearning must be applied after FL training, and Dk, the remaining
data samples. Hence, we have D = Df ∪ Dk. We also considerM(D), the ML model
parameters resulting from training with optimization schemeM on datasetD. We introduce
in this section the different unlearning baselines and methods currently used to unlearn Df

from the trained modelM(D).

MU through retraining. Within this setting, a new training is performed from scratch
with only Dk as training data. As the initial model contains no information from Df , the
new trained modelM(Dk) also contains no information from Df . We note however that
this procedure wastes the contribution of Dk already available by training originally on D.
Hence, this method is considered sub-optimal, and represents a basic baseline for unlearning
approaches.

MU through fine-tuning. Fine-tuning on the remaining data Dk has been proposed as a
practical approach to unlearn the specificities of Df . However, fine-tuning does not provide
guarantees about the effectiveness of the unlearning. We provide an example of this issue in
Appendix D.1.

MU through model scrubbing. Another unlearning approach consists in applying a
“scrubbing" transformation h to the modelM(D) such that the resulting model is as close
as possible to the one that would be trained with only Dk, i.e. h(M(D)) ≈M(Dk) (Ginart
et al., 2019). To define a scrubbing method h, existing work mostly relies on the following
Assumption 5.1, which considers a quadratic approximation of the loss function.

Assumption 5.1. For model parameters θ and ϕ, the gradient of the loss function of a
given data point Dx satisfies

∇fDx(ϕ) = ∇fDx(θ) + HDx(θ)(ϕ− θ), (5.1)

where HDx(θ) is positive semi-definite.
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The scrubbed model is the new optimum obtained when unlearning data samples in Df .
Hence, under Assumption 5.1, the new optimum can be obtained by setting∇fDk

(hDk
(θ)) =

0, which gives
hDk

(θ) = θ −H−1
Dk

(θ)∇fDk
(θ). (5.2)

With equation (5.2), h reduces to performing a Newton step, and has been derived in
previous MU works (Guo et al., 2020; Izzo et al., 2021; Golatkar, Achille, and Soatto,
2020a; Golatkar, Achille, and Soatto, 2020b; Golatkar, Achille, Ravichandran, et al., 2021;
Mahadevan and Mathioudakis, 2021a) under different theoretical assumptions that can
be generalized with Assumption 5.1. The main drawback behind the use of the scrub-
bing function (5.2) is the computation of the Hessian, which can be unfeasible for high
dimensional model. Finally, the scrubbing function (5.2) is often coupled with Gaussian
noise perturbation on the resulting weights (Golatkar, Achille, and Soatto, 2020a; Golatkar,
Achille, and Soatto, 2020b; Golatkar, Achille, Ravichandran, et al., 2021), to compensate
the quadratic approximation of the loss function or the approximation of the Hessian.

MU through noise perturbation. This unlearning method consists in randomly perturbing
the trained model M(D) to unlearn specificities from data samples in Df (Neel et al.,
2021; Gupta et al., 2021; Mahadevan and Mathioudakis, 2021b). The noise is set such that
the guarantees of Definition 5.1 are satisfied, where (ϵ, δ) are parameters quantifying the
unlearning guarantees.

Definition 5.1. Let fm be a randomized mechanism taking model parameters as an input.
(ϵ, δ)-Unlearning trough fm of a data point {xm, ym} from a modelM(D) is achieved if,
for any subset S of the model parameters space and D−m := D \ {xm, ym}, we have

P(fm(M(D)) ∈ S) ≤ eϵP(fm(M(D−m)) ∈ S) + δ (5.3)

and P(fm(M(D−m)) ∈ S) ≤ eϵP(fm(M(D)) ∈ S) + δ. (5.4)

Guo et al., 2020 shows the relationship between Definition 5.1 and the definition a random-
ized mechanism in differential privacy (Dwork and Roth, 2014; X. Chen et al., 2020).

5.2.2 Federated Optimization and FedAvg

In FL, we consider a learning setup with M clients, and define I = {1, ..., M} as the
set of indices of the participating clients. Each client owns a dataset Di composed of
|Di| = ni data samples. We consider a loss f(xi,l, yi,l, θ) assessed on each data sample
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Algorithm 5 FEDAVG(I, N)
1: for n from 0 to N − 1 do
2: The server sends θn to every client in I .
3: Clients perform K SGDs to compute θn+1

i .
4: The server creates θn+1, equation (5.6).
5: end for
6: return the trained global model θN

(xi,l, yi,l) ∈ Di, and define a client’s loss function as fi(θ) := 1/ni
∑ni

l=1 f(xi,l, yi,l, θ).
We define for the joint dataset DI := ∪i∈IDi the federated loss function

fI(θ) := 1
|DI |

∑
i∈I

|Di|fi(θ). (5.5)

FEDAVG (McMahan, Moore, et al., 2017) optimizes the loss (5.5) with theoretical guarantees
for FL convergence to a stationary point (Jianyu Wang, Q. Liu, et al., 2020; Xiang Li et al.,
2020). At each iteration step n, the server sends the current global model parameters θn

to the clients. Each client updates the model by minimizing its local cost function fi(θ)
with K SGD steps initialized on θn. Subsequently each client returns the updated local
parameters θn+1

i to the server. The global model parameters θn+1 at the iteration step n + 1
are then estimated as a weighted average, i.e.

θn+1 = θn + 1
|D|

∑
i∈I

|Di|
[
θn+1

i − θn
]

. (5.6)

Algorithm 5 provides the implementation of FEDAVG. For the rest of this work, we define
the joint dataset for a subset of client Ix ⊂ I as DIx

:= ∪i∈IxDi.

5.2.3 Federated Unlearning

Existing works (G. Liu et al., 2021; Junxiao Wang et al., 2021; Halimi et al., 2022; C.
Wu et al., 2022) already consider the problem of unlearning a client from a model opti-
mized through FEDAVG. However, these works do not provide theoretical nor quantitative
guarantees on the unlearning procedure. Also, we note that standard MU methods cannot
seamlessly be used in the federated setting. On one hand, federated unlearning (FU) with
model scrubbing would require clients to perform only K = 1 SGD and share their Hessian
with the server. Hence, model scrubbing decreases significantly FL convergence speed,
while exposing the clients’ data by sharing high order quantities with the risk of model
inversion (Matt Fredrikson et al., 2015). Moreover, the computation of the Hessian is
unfeasible for highly dimensional models. On the other hand, existing MU approaches
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based on model perturbation require to retrain the model after the noise is added to the
model’s parameters. As such, retraining generally requires a significant amount of SGD
steps to guarantee convergence to a new optimum, negatively affecting the effectiveness of
the unlearning procedure.

In this chapter, we introduce a novel unlearning paradigm which avoids retraining the
final model by identifying the optimal FL iteration where unlearning should be applied.
Therefore, retraining is applied to an “early" version of the global model with reduced
perturbation, thus minimizing the amount of required SGD steps to achieve convergence.

5.3 Unlearning a FL client with IFU

In this section, we develop our theory for the scenario where a model is trained with FEDAVG

on the set of clients I , after which a client c requests unlearning of its own data. In Section
5.3.1, we define the sensitivity of the global model with respect to a client’s contribution,
and provide a bound relating this sensitivity to the FL procedure. In Section 5.3.2, we
provide a tighter model sensitivity for some specific FL applications. Using Theorem 5.1,
we introduce in Section 5.3.3 the perturbation procedure to unlearn a client c from the model
trained with FEDAVG (Theorem 5.2). Finally, using Theorem 5.2, we introduce Informed
Federated Unlearning (IFU) (Algorithm 6).

5.3.1 Theorem 5.1, Bounding the Model Sensitivity

As defined in Section 5.2.2, θn+1
i is the local update of client i sent to the server after

performing K SGD steps on its dataset Di after initialization with global model θn. Given
the contribution θn+1

i −θn of a client i, we define the overall FL increment after aggregations
across the set of clients I as

∆(I, θn) := 1
|DI |

∑
i∈I

|Di|
[
θn+1

i − θn
]

. (5.7)

By comparing increments obtained by training on the set of clients I , and on the set
I−c := I \ {c} obtained after dropping a given client c, we define the bounded sensitivity
after n server aggregations as

Ψ(n, c) :=
n−1∑
s=0
∥∆(I, θs)−∆(I−c, θs)∥2 , (5.8)
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We show in Theorem 5.1 that the model sensitivity of FEDAVG can be bounded by the
bounded sensitivity (5.8).

Theorem 5.1. Under Assumption 5.1, the model sensitivity of FEDAVG when removing a
client c after n server aggregations is defined as

α(n, c) := ∥FEDAVG(I, n)− FEDAVG(I−c, n)∥2 , (5.9)

where FEDAVG(I, n) is the output of Algorithm 5, and

α(n, c) ≤ Ψ(n, c). (5.10)

Proof. See Appendix D.2.

5.3.2 Improving the Tightness of the Sensitivity Bound

Theorem 5.1 shows that the bounded sensitivity provides a bound for the model sensitivity,
while the computation of (5.8) only requires the clients’ updated models, which are already
shared with the server by design in FEDAVG. Nevertheless, we note that the bounded
sensitivity (5.8) does not necessarily faithfully represent the evolution of the sensitivity
across FL rounds. For instance, this quantity does not properly account for the unlearning
of previous clients contributions for s < n− 1. Indeed, these contributions should decrease
across iterations due to the subsequent server aggregations and new clients’ local work.
To account for this aspect, we provide a tighter lower bound by assuming strongly convex
and regularized local loss function, leading to a tighter bound for the model sensitivity of
FEDAVG (Corollary 5.1).

Corollary 5.1. Under Assumption 5.1, when considering that clients loss functions are
µ-strongly convex and regularized with an L2 norm of weight λ, we have α(n, c) ≤ Ψ(n, c)
and

Ψ(n, c) =
n−1∑
s=0

(1− η(λ + µ))[(n−1)−s]K × ∥∆(I, θs)−∆(I−c, θs)∥2 , (5.11)

where η and K are respectively the clients’ local learning rate and amount of local work.

Proof. See Appendix D.2.3.
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The bounded sensitivity of Corollary 5.1 shows the following aspects. (1) The importance of
a client’s contribution decreases through aggregation rounds. (2) Since FL is guaranteed to
converge to a stationary point (Jianyu Wang, Q. Liu, et al., 2020; Xiang Li et al., 2020), so
does the bounded sensitivity since λ + µ > 0. (3) The bounded sensitivity is not necessarily
inversely proportional to K. Indeed, due to data heterogeneity, with an increase in K every
local model gets closer to its local optimum and the quantity ∥∆(I, θn)−∆(I−c, θn)∥2
increases with the amount of local work K.

When clients have same data distribution, we retrieve ∆(I, θn) = ∆(I−c, θn), which yields
null bounded sensitivity for every client, i.e. Ψ(n, c) = 0. We also note that the bound
provided in Corollary 5.1 is tight, e.g. when considering identical eigenvalues for the
Hessian of every local loss. More generally, the bound is tight in the limit case where the
local learning rate of the clients is small.

We can draw an analogy between the bounded sensitivity (5.8) and client clustering in FL
(Sattler et al., 2021; Fraboni, Vidal, Kameni, et al., 2021), where clients are clustered based
on their contribution. In this chapter, the bounded sensitivity (5.8) is used instead to bound
the sensitivity of the global model across rounds in FEDAVG.

5.3.3 Satisfying Definition 5.1

In this section, we introduce a randomized mechanism to provide guarantees for the un-
learning of a given client c, where the magnitude of the perturbation process (Dwork and
Roth, 2014) is defined based on the sensitivity of Theorem 5.1. In practice, we define a
Gaussian noise mechanism to perturb each parameter of global model θn such that we
achieve (ϵ, δ)-unlearning of client c for the resulting model, according to Definition 5.1. We
give in Theorem 5.2 sufficient conditions for the noise perturbation to satisfy Definition
5.1.

Theorem 5.2. Defining

σ(n, c) := [2 (ln(1.25)− ln(δ))]1/2 ϵ−1Ψ(n, c), (5.12)

the noise perturbation σ(n, c)Iθ applied to the global model θn, where Iθ is the identity
matrix, achieves (ϵ, δ)-unlearnig of client c according to Definition 5.1.

Proof. Follows directly from Theorem 5.1 coupled with Theorem A.1 of Dwork and Roth
(2014).
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Algorithm 6 Informed Federated Unlearning (IFU)
DURING LEARNING WITH FEDAVG

FEDAVG(I, N ) initialized on initial model θ0.
for n from 0 to N − 1, and i from 1 to c do

Compute Ψ(n, i), equation (5.8).
end for

WHEN UNLEARNING CLIENT c

Require: c, ϵ, δ, σ, and amount of retraining steps Ñ .
1: Get Ψ∗ with equation (5.13).
2: Get T = arg maxn (Ψ(n, c) ≤ Ψ∗) with eq. (5.14).
3: The new global model is θ̃ = θT + N(0, σ2Iθ).
4: Run FEDAVG(I−c, Ñ ) initialized on θ̃.

We note that, according to Theorem 5.2, (ϵ, δ)-unlearning a client from a given global model
requires a standard deviation for the noise that is client-specific and proportional to its
bounded sensitivity.

In what follows, the unlearning procedure will be defined with respect to the sensitivity
threshold Ψ∗ related to the unlearning budget (ϵ, δ) and standard deviation σ:

Ψ∗ := [2 (ln(1.25)− ln(δ))]−1/2 ϵσ. (5.13)

5.3.4 Informed Federated Unlearning (IFU)

Using the bounded sensitivity (5.8) and Theorem 5.2, we introduce Informed Federated
Unlearning (IFU) to unlearn the contribution of client c ∈ I from a FL training procedure
based on FEDAVG. Algorithm 6 provides the implementation of IFU on top of FEDAVG.
We note that during the FL training, IFU requires the server to compute the bounded
sensitivity metric Ψ(n, i) from each client’s contribution θn+1

i and current global model θn.
These quantities are tracked throughout FL iterations and are used to identify the optimal
unlearning strategy after request from a client c.

To unlearn client c, the server identifies the unlearning index T associated to the history of
bounded sensitivity metrics, i.e. the most recent global model index such that a perturbation
of size σ satisfies Theorem 5.2:

T := arg max
n

(Ψ(n, c) ≤ Ψ∗) . (5.14)

The new global model is obtained after perturbation θ̃ := θT + ν, where ν ∼ N(0, σ2Iθ).
Our unlearning criterion 5.1 is therefore satisfied for θ̃ (Theorem 5.2), and the server
can perform Ñ new optimization rounds with FEDAVG initialized on θ̃. Thanks to the
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Algorithm 7 Sequential IFU (SIFU)
DURING LEARNING WITH FEDAVG

1: FEDAVG(I, N ) initialized on initial model θ0
0 .

2: Compute Ψ0(n, i), equation (5.15).
UNLEARNING A SERIES OF REQUESTS {Wr}
Require: {Wr}Rr=1, ϵ, δ, σ, and {Nr}Rr=1

1: O(0) = {∅}.
2: Get Ψ∗ with equation (5.13).
3: for r from 1 to R do
4: Ir = Ir−1 \Wr.
5: Compute (ζr, Tr) with O(r − 1), eq. (5.17) and (5.18).
6: Update O(r) with ζr, Tr, and O(r − 1), eq. (5.19).
7: The new global model is θ0

r = θTr
ζr

+ N(0, σ2Iθ).
8: Perform FEDAVG(Dr, Nr) initialized on θ0

r .
9: Compute Ψr(n, i), eq. (5.15).

10: end for

contribution of the remaining clients in θ̃, we expect the retraining with IFU to be generally
faster than retraining with a random initial model.

Since Ψ(n, i) is strictly increasing with n, the server can stop from computing the bounded
sensitivity (5.8) for client i whenever Ψ(ni, i) > Ψ∗ is verified after ni optimization rounds.
At this point, the model θni−1 will be selected for the unlearning request of client i, as the
models at subsequent iterations do not comply with the desired unlearning budget Ψ∗.

5.4 Sequential FU with SIFU

In this section, we extend IFU to the sequential unlearning setting with Sequential IFU
(SIFU). With Algorithm 7, SIFU is designed to satisfy a series of R unlearning requests
{Wr}Rr=1, where Wr is the set of clients to unlearn at request index r. SIFU generalizes
IFU for which R = 1 and W1 = {c}. We provide an illustration of SIFU with an example
in Figure 5.1.

The notations introduced thus far need to be generalized to account for our series of un-
learning requests W1, W2, . . . , WR. Global models are now referenced by their coordinates
(r, n), i.e. θn

r , which represent the unlearning request index r and the amount of server
aggregations n performed during the retraining. Hence, θ0

r is the initialization of the model
when unlearning the clients in Wr. Also, we consider that the retraining at request index r

requires Nr server aggregations on the remaining clients. Therefore, by construction, θNr
r

is the model obtained after using SIFU to (ϵ, δ)-unlearn the sequence of unlearning requests
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Fig. 5.1.: Illustration of SIFU (Algorithm 7) when the server receives R = 3 unlearning requests,
through the evolution of the global model parameters θn

r after server aggregation and
noise perturbation. After standard federated training via FEDAVG(I, N0), the oracle is
O(0) = {∅}, and the current training history is (θ0

0, . . . , θN0
0 ). At request r = 1 the

unlearning index is T1, and the training history becomes (θ0
0, . . . , θT1

0 , θ0
1, . . . , θN1

1 ). The
oracle is updated to O(1) = {(0, T1)}, and ζ1 = 0. At request r = 2 the unlearning
index is T2 and the training history becomes (θ0

0, . . . , θT1
0 , θ0

1, . . . , θT2
1 , θ0

2, . . . θN2
2 ).

The new node is added to the oracle O(2) = {(0, T1), (1, T2)}, and ζ2 = 1. Finally, at
request r = 3, the unlearning index is found at T3 < T2 in the branch of request r = 1.
The updated training history is now (θ0

0, . . . , θT1
0 , θ0

1, . . . , θT3
1 , θ0

3, . . . θN3
3 ), the oracle is

updated as O(3) = {(0, T1), (1, T3)}, and ζ3 = 1.

{Ws}rs=1. Finally, we define Ir as the set of remaining clients after unlearning request r, i.e.
Ir := I \ ∪r

s=1Ws = Ir−1 \Wr with I0 = I .

We extend the bounded sensitivity (5.8) with Ψr(n, i) to compute the metric of client i at
unlearning index r with

Ψr(n, i) :=
n−1∑
s=0
∥∆(Ir, θs

r)−∆(Ir \ {i}, θs
r)∥2 . (5.15)

When unlearning client c at r = 1, the metric at r = 0 is equivalent to the previous definition
of Ψ. Also, when computing the metric on a client already unlearned, i.e. i /∈ Ir, we retrieve
Ψr(n, i) = 0. Finally, for a set of clients S, we generalize the bounded sensitivity (5.15)
to

Ψr(n, S) = max
i∈S

Ψr(n, i). (5.16)

With SIFU, the selection of the unlearning index T for a request r depends of the past history
of unlearning requests. To keep track of the unlearning history, we introduce the oracle
O(r) which returns at each request r the coordinates of the history of global models where
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unlearning has been applied. These coordinates represent the nodes of the training history
across unlearning requests (Figure 5.1). With reference to Figure 5.1, we start with the
original sequence of global models obtained at each FL round, i.e. (θ0

0, . . . , θN0
0 ). Similarly

to IFU, the first unlearning request requires to identify the unlearning index T1 for which
the corresponding global model θT1

0 must be perturbed to obtain θ0
1 and retrained until

convergence, i.e. up to θN1
1 . The oracle is updated with the coordinates of the branching

O(1) = {(0, T1)}, and the current training history is now (θ0
0, . . . , θT1

0 , θ0
1, . . . , θN1

1 ). At
the next unlearning request, the server needs to identify the coordinates (ζr, Tr) in the
new training history for which unlearning must be applied on the model θTr

ζr
to obtain

θ0
r = θTr

ζr
+ N (0, σ2Iθ). The oracle is subsequently updated with the new set of nodes

describing the new branching in the training history. By construction, we have ζr ≤ r − 1
and Tr ≤ Nζr .

More precisely, we define the index ζr associated to the first coordinate in O(r − 1) for
which the bounded sensitivity (5.15) of clients in Wr exceeds Ψ∗. Formally, we have

ζr := min
s
{s : Ψs(n, Wr) > Ψ∗ and (s, n) ∈ O(r − 1), r − 1}. (5.17)

The definition of Tr follows directly from the one of ζr. Similarly as for IFU, the unlearning
index Tr quantifies the maximum amount of server aggregations starting from the unlearning
request index ζr such that the bounded sensitivity Ψζr (n, Wr) on this global model is inferior
to Ψ∗, i.e.

Tr := arg max
n
{Ψζr (n, Wr) ≤ Ψ∗}. (5.18)

Finally, we update the oracle O(r − 1) to O(r) with the following recurrent equation

O(r) = {(s, n) ∈ O(r − 1) s.t. s < ζr, (ζr, Tr)}. (5.19)

Theorem 5.3 shows that for a model trained with SIFU after a given training request r,
(ϵ, δ)-unlearning is guaranteed for every client belonging to the sets Ws, s ≤ r.

Theorem 5.3. The model θNr
r obtained with SIFU satisfies (ϵ, δ)-unlearning for every client

in current and previous unlearning requests, i.e. clients in ∪r
s=1Ws.

Proof. See Appendix D.3.
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Fig. 5.2.: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients
(2nd row) for MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the
better). The server runs a federated routine with M = 100 clients, and unlearns 10 of
them at each unlearning request (R = 3).

5.5 Experiments

In this section, we experimentally demonstrate the effectiveness of SIFU on a series of
benchmarks introduced in Section 5.5.1. In Section 5.5.2, we illustrate and discuss our
experimental results. Results and related code are publicly available at URL.

5.5.1 Experimental Setup

Datasets. We report experiments on reduced versions of MNIST (Lecun et al., 1998), Fash-
ionMNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al., n.d.), CIFAR-100 (Krizhevsky
et al., n.d.), and CelebA (Z. Liu et al., 2015). For each dataset, we consider M = 100 clients,
with 100 data points each. For MNIST and FashionMNIST, each client has data samples
from only one class, so that each class is represented in 10 clients only. For CIFAR10 and
CIFAR100, each client has data samples with ratio sampled from a Dirichlet distribution
with parameter 0.1 (Harry Hsu et al., 2019). Finally, in CelebA, clients own data samples
representing the same celebrity. With these five datasets, we consider different level of
heterogeneity based on label and feature distribution.

Models. For MNIST, we train a logistic regression model to consider a convex classification
problem, while, for the other datasets, we train a neural network with convolutional layers
followed by fully connected ones. More details on the networks are available in Appendix
D.4.

Unlearning schemes. In addition to SIFU, we consider the following unlearning schemes
from the state-of-the-art: SCRATCH, where retraining of a new initial model is performed on
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the remaining clients; FINE-TUNING, where retraining is performed on the current global
model with the remaining clients; LAST (Neel et al., 2021), where retraining is performed
on the remaining clients via perturbation of the final FL global model; DP (Dwork and
Roth, 2014), where training with every client is performed with differential privacy, and
FEDACCUM (G. Liu et al., 2021), where retraining is performed on the current global model
from which the server removes the updates of the clients to unlearn, by re-aggregating the
parameter updates of clients that were stored by the server across FL iterations. We provide
in Appendix D.4 the pseudo-code of FEDACCUM with the notation of our paper. We remind
that FEDACCUM does not provide quantitative guarantees of the unlearning procedure, and
requires the server to store the full sequence of models during the FL procedure.

Experimental scenario. We consider a sequential unlearning scenario in which the server
performs the FL training procedure and then receives R = 3 sequential unlearning requests
to unlearn 10 random clients per request. In the special case of MNIST and FashionMNIST,
the server must unlearn 10 clients owning the same class. The server orchestrates each
unlearning scheme through retraining until the global model accuracy on the remaining
clients exceeds a fixed value specific to each dataset. We set the minimum number of 50
aggregation rounds, and a maximum budget of 10000 rounds when the stopping accuracy
criterion is not met. Each unlearning method is applied with the same hyperparameters, i.e.
stopping accuracy, local learning rate η, and amount of local work K (Appendix D.4). We
define the set of clients requesting unlearning as:

Fr = ∪r
s=1Ws. (5.20)

In our experimental scenario, we have |F0| = 0 during training and |F1| = 10, |F2| = 20,
and |F3| = 30 after each unlearning request.

Unlearning quantification. We verify the success of an unlearning scheme with two
metrics: (a) the amount of server aggregation rounds needed for retraining, and (b) the
resulting model accuracy on the unlearned clients. we note that, by construction, SCRATCH

perfectly unlearns the clients from a request Wr. Therefore, we consider an unlearning
scheme successful if it reaches similar accuracy of SCRATCH with less aggregation rounds,
when tested on the data samples of Fr.

5.5.2 Experimental Results

Figure 5.2 shows that for every dataset and unlearning index, FINE-TUNING, FEDACCUM,
and DP provide similar model accuracy for the unlearned clients in Fr (Figure 5.2-2nd

row), albeit significantly higher than for SCRATCH, the unlearning standard. Noteworthy,
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Fig. 5.3.: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients
(2nd row) for the unlearning of watermarked data from CIFAR100 and CelebA.

unlearning with FINE-TUNING, FEDACCUM, and DP results in significantly less aggregation
rounds than SCRATCH (Figure 5.2-1st row). We note that SIFU and SCRATCH lead to similar
unlearning results, quantified by low accuracy on the unlearned clients Fr (Figure 5.2-2nd

row), while SIFU unlearns these clients in roughly half the amount of aggregation rounds
needed for SCRATCH (Figure 5.2-1st row). However, the model accuracy of SIFU is
slightly higher than the one of SCRATCH, with perfect overlap only for FashionMNIST.
This behavior is natural and can be explained by our privacy budget (ϵ, δ), which trades
unlearning capabilities for effectiveness of the retraining procedure. With highest unlearning
budget, i.e. ϵ = 0 and δ = 0, SIFU would require to retrain from the initial model θ0

0 , thus
reducing to SCRATCH.

Finally, we observed that when unlearning with LAST, the retrained model always converged
to a local optimum with accuracy inferior to our target after 10000 aggregation rounds.
This behavior is likely due to the difficulty of calibrating the noise perturbation due to the
numerous heterogeneous contributions of the clients. For this reason, we decided to exclude
LAST from the plots of Figure 5.2.

5.5.3 Verifying Unlearning through Watermarking

The work of Sommer et al., 2020 proposes an adversarial approach to verify the efficiency of
an unlearning scheme based on watermarking. We apply here this method to our federated
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setting, in which watermarking is operated by each client by randomly assigning on all its
data samples the maximum possible value to 10 given pixels. To ensure that clients’ data
heterogeneity is only due to the modification of the pixels, we define heterogeneous data par-
titioning across clients by randomly assigning the data according to a Dirichlet distribution
with parameter 1. Figure 5.3 shows our results for this experimental scenario on CIFAR100
and CelebA, while Appendix D.4 provides similar results for MNIST, FashionMNIST and
CIFAR10. We retrieve the same conclusions drawn from Figure 5.2. SIFU and SCRATCH

have similar accuracies on the unlearned clients in Fr, to demonstrate the effectiveness
of the unlearning. Moreover, SIFU unlearns these clients in significantly less aggregation
rounds than SCRATCH.

5.5.4 Impact of the noise perturbation on SIFU

Appendix D.4 illustrates the impact of the perturbation amplitude σ on convergence speed
when unlearning with SIFU. We note that when unlearning with a small σ, SIFU has
identical behavior to SCRATCH as the unlearning is applied to the initial random model
θ0

0 . With large values of σ, SIFU performs instead identically to LAST and applies the
unlearning to the finale global model θNr

r .

5.6 Conclusions

In this chapter, we introduce informed federated unlearning (IFU), a novel federated unlearn-
ing scheme to unlearn a client’s contribution from a model trained with federated learning.
Upon receiving an unlearning request from a given client, IFU identifies the optimal FL
iteration from which FL has to be reinitialised, with statistical unlearning guarantees defined
by Definition 5.1. We extend the theory of IFU to account for the practical scenario of
sequential unlearning (SIFU), where the server receives a series of forgetting request of
one or more clients. We prove that SIFU can unlearn a series of forgetting requests while
satisfying our unlearning guarantees, and demonstrate the effectiveness of our methods on a
variety of tasks and dataset.

An additional contribution of this chapter consists in a new theory for bounding the clients
contribution in FL. The server can compute this bound for every client without asking
for any additional computation and communication. The theoretical justification of this
approach relies on the linear approximation of the clients’ loss function, and its relevance is
here demonstrated across several benchmarks. Future extensions of this chapter will focus
on generalizing our unlearning framework to more general settings.
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6.1 Introduction

Federated learning is a training paradigm that has gained popularity in the last years as
it enables different clients to jointly learn a global model without sharing their respective
data. It is particularly suited for Machine Learning applications in domains where data
security is critical, such as healthcare (Brisimi et al., 2018; Silva, Gutman, et al., 2019). The
relevance of this approach is witnessed by current large scale federated learning initiatives
under development in the medical domain, for instance for learning predictive models of
breast cancer1, or for drug discovery and development2.

The participation to this kind of research initiatives is usually exclusive and typical of
applications where data is scarce and unique in its kind. In these settings, aggregation results
entail critical information beyond data itself, since a model trained on exclusive datasets
may have very high commercial or intellectual value. For this reason, providers may not be
interested in sharing the model: the commercialization of machine learning products would
rather imply the availability of the model as a service through web- or cloud-based API.
This is due to the need of preserving the intellectual property on the model components,
as well as to avoid potential information leakage, for example by limiting the maximum
number of queries allowed to the users (Carlini et al., 2019a; Matt Fredrikson et al., 2015;
Ateniese et al., 2015).

This critical aspect can lead to the emergence of opportunistic behaviors in federated learning,
where ill-intentioned clients may participate with the aim of obtaining the federated model,
without actually contributing with any data during the training process. In particular, the
attacker, or free-rider, aims at disguising its participation to federated learning while ensuring
that the iterative training process ultimately converges to the wished target: the aggregated
model of the fair participants. Free-riding attacks performed by ill-intentioned participants
ultimately open federated learning initiatives to intellectual property loss and data privacy
breaches, taking place for example in the form of model inversion (Matthew Fredrikson
et al., 2014; Matt Fredrikson et al., 2015).

The study of security and safety of federated learning is an active research domain, and
several kind of attacks are matter of ongoing studies. For example, an attacker may interfere
during the iterative federated learning procedure to degrade/modify models performances
(Bhagoji et al., 2019; B. Li et al., 2016; Yin et al., 2018; Xie et al., 2019; Shen et al., 2016),
or retrieve information about other clients’ data (Z. Wang et al., 2019; Hitaj et al., 2017).
Since currently available defense methods such as (Fung et al., 2020; Bhagoji et al., 2019)
are generally based on outliers detection mechanisms, they are generally not suitable to

1blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
2www.imi.europa.eu/projects-results/project-factsheets/melloddy
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prevent free-riding, as this kind of attack is explicitly conceived to stay undetected while
not perturbing the FL process. Free-riding may become a critical aspect of future machine
learning applications, as federated learning is rapidly emerging as the standard training
scheme in current cooperative learning initiatives. To the best of our knowledge, the only
investigation is in a preliminary work (J. Lin et al., 2019) focusing on attack strategies
operated on federated learning based on gradient aggregation. However, no theoretical
guarantees are provided for the effectiveness of this kind of attacks. Furthermore this setup
is unpractical in many real world applications, where federated training schemes based on
model averaging are instead more common, due to the reduced data exchange across the
network. FedAvg (McMahan, Moore, et al., 2017) is the most representative framework of
this kind, as it is based on the iterative averaging of the clients models’ parameters, after
updating each client model for a given number of training epochs at the local level. To
improve the robustness of FedAvg in non-iid and heterogeneous learning scenarios, FedProx
(T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018b) extends FedAvg by including
a regularization term penalizing local departures of clients’ parameters from the global
model.

The contribution of this cahpter consists in the development of a theoretical framework for
the study of free-rider attacks in federated learning schemes based on model averaging,
such as in FedAvg and FedProx. The problem is here formalized via the reformulation
of federated learning as a stochastic process describing the evolution of the aggregated
parameters across iterations. To this end, we build upon previous works characterizing
the evolution of model parameters in Stochastic Gradient Descent (SGD) as a continuous
time process (Mandt et al., 2017; Orvieto and Lucchi, 2018; Qianxiao Li et al., 2017; He
et al., 2018). A critical requirement for opportunistic free-rider attacks is to ensure the
convergence of the training process to the wished target represented by the aggregated
model of the fair clients. We show that the proposed framework allows to derive explicit
conditions to guarantee the success of the attack. This is an important theoretical feature as
it is of primary interest for the attacker to not interfere with the learning process.

The manuscript is structured as follows. We first derive in Section 6.2.4 a basic free-
riding strategy to guarantee the convergence of federated learning to the model of the
fair participants. This strategy simply consists in returning at each iteration the received
global parameters. As this behavior could easily be detected by the server, we build more
complex strategies to disguise the free-rider contribution to the optimization process, based
on opportune stochastic perturbations of the parameters. We demonstrate in Section 6.2.5
that this strategy does not alter the global model convergence, and in Section 6.3 we
experimentally demonstrate our theory on a number of learning scenarios in both iid and
non-iid settings. All proofs and additional material are provided in the Appendix.
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6.2 Methods

Before introducing in Section 6.2.2 the core idea of free-rider attacks, we first recapitulate
in Section 6.2.1 the general context of parameter aggregation in federated learning.

6.2.1 Federated learning through model aggregation: FedAvg and
FedProx

In federated learning, we consider a set I of participating clients respectively owning
datasets Di composed of Mi samples. During optimization, it is generally assumed that
the D elements of the clients’ parameters vector θt

i = (θt
i,0, θt

i,1, ..., θt
i,D), and the global

parameters θt = (θt
0, θt

1, ..., θt
D) are aggregated independently at each iteration round t.

Following this assumption, and for simplicity of notation, in what follows we restrict our
analysis to a single parameter entry, that will be generally denoted by θt

i and θt for clients
and server respectively.

In this setting, to estimate a global model across clients, FedAvg (McMahan, Moore, et al.,
2017) is an iterative training strategy based on the aggregation of local model parameters
θt

i . At each iteration step t, the server sends the current global model parameters θt to the
clients. Each client updates the model by minimizing over E epochs the local cost function
L(θt+1

i ,Di) initialized with θt, and subsequently returns the updated local parameters θt+1
i

to the server. The global model parameters θt+1 at the iteration step t + 1 are then estimated
as a weighted average:

θt+1 =
∑
i∈I

Mi

N
θt+1

i , (6.1)

where N =
∑

i∈I Mi represents the total number of samples across distributed datasets.
FedProx (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018b) builds upon Fe-
dAvg by adding to the cost function a L2 regularization term penalizing the deviation
of the local parameters θt+1

i from the global parameters θt. The new cost function is
LP rox(θt+1

i ,Di, θt) = L(θt+1
i ,Di) + µ

2

∥∥∥θi
t+1 − θt

∥∥∥2
where µ is the hyperparameter mon-

itoring the regularization by enforcing proximity between local update θi
t+1 and reference

model θt.

6.2.2 Formalizing Free-rider attacks

Aiming at obtaining the aggregated model of the fair clients, the strategy of a free-rider
consists in participating to federated learning by dissimulating local updating through the
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Algorithm 8 Free-riding in federated learning
Require: learning rate λ, epochs E, initial model θ0, batch size S,

1: θ̃0 = θ0;
2: for each round t=0,...,T-1 do
3: Send the global model θ̃t to all the clients;
4: for each fair client j ∈ J do
5: θ̃t+1

j = ClientUpdate(θ̃t, E, λ);
6: Send θ̃t+1

j to the server;
7: end for
8: for each free-rider k ∈ K do
9: if disguised free-rider then

10: θ̃t+1
k = θ̃t + ϵ, where ϵ ∼ N (0, σ2

kI);
11: else
12: θ̃t+1

k = θ̃t;
13: end if
14: Send θ̃t+1

k to the server;
15: end for
16: θ̃t+1 =

∑
j∈J

Mj

N θ̃t+1
j +

∑
k∈K

Mk
N θ̃t+1

k ;
17: end for

sharing of opportune counterfeited parameters. The free-riding attacks investigated in this
chapter are illustrated in Algorithm 8, and analysed in the following sections from both
theoretical and experimental standpoints.

We denote by J the set of fair clients, i.e. clients following the federated learning strategy of
Section 6.2.1 and by K the set of free-riders, i.e. malicious clients pretending to participate
to the learning process, such that I = J ∪K and J ̸= ∅. We denote by MK the number of
samples declared by the free-riders.

6.2.3 SGD perturbation of the fair clients local model

To describe the clients’ parameters observed during federated learning, we rely on the
modeling of Stochastic Gradient Descent (SGD) as a continuous time stochastic process
(Mandt et al., 2017; Orvieto and Lucchi, 2018; Qianxiao Li et al., 2017; He et al., 2018).

For a client j, let us consider the following form for the loss function:

Lj(θj) = 1
Mj

Mj∑
n=1

ln,j(θj), (6.2)
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where Mj is the number of samples owned by the client, and ln,j is the contribution to
the overall loss from a single observation {xn,j ; yn,j}. The gradient of the loss function is
defined as gj(θj) ≡ ∇Lj(θj).

We represent SGD by considering a minibatch Sj,k, composed of a set of S different indices
drawn uniformly at random from the set {1, ... , Mj}, each of them indexing a function
ln,j(θj) and where k is the index of the minibatch. Based on Sj,k, we form a stochastic
estimate of the loss,

LSj,k
(θj) = 1

S

∑
n∈Sj,k

ln,j(θj), (6.3)

where the corresponding stochastic gradient is defined as gSj,k
(θj) ≡ ∇LSj,k

(θj).

By observing that gradient descent is a sum of S independent and uniformly distributed
samples, thanks to the central limit theorem, gradients at the client level can thus be modeled
by a Gaussian distribution

gSj,k
(θj) ∼ N (gj(θj), 1

S
σ2

j (θj)), (6.4)

where gj(θj) = Es

[
gSj,k

(θj)
]

is the full gradient of the loss function in equation (6.2) and
σ2

j (θj) is the variance associated with the loss function in equation (6.3).

SGD updates are expressed as:

θj(uj + 1) = θj(uj)− λgSj,k
(θj(uj)), (6.5)

where uj is the SGD iteration index and λ is the learning rate set by the server.

By defining ∆θj(uj) = θj(uj + 1)− θj(uj), we can rewrite the update process as

∆θj(uj) = −λgj(θj(uj)) + λ√
S

σj(θj)∆Wj , (6.6)

where ∆Wj ∼ N (0, 1). The resulting continuous-time model (Mandt et al., 2017; Orvieto
and Lucchi, 2018; Qianxiao Li et al., 2017; He et al., 2018) is

dθj = −λgj(θj)duj + λ√
S

σj(θj)dWj . (6.7)

where Wj is a continuous time Wiener Process.

Similarly as in (Mandt et al., 2017), we assume that σj(θj) is approximately constant
with respect to θj for the client’s stochastic gradient updates between t and t + 1, and
will therefore denote σj(θj) = σt

j . Following (Mandt et al., 2017), we consider a local
quadratic approximation for the client’s loss, leading to a linear form for the gradient
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gj(θj) ≃ rj [θj − θ∗
j ], where rj ∈ R+ depends on the approximation of the cost function

around the local minimum θ∗
j . This assumption enables rewriting equation (6.7) as an

Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930). Starting from the initial
condition represented by θt, the global model received at the iteration t, we characterize the
local updating of the parameters through equation (6.7), and we follow the evolution up to
the time EMj

S , where E is the number of epochs, and Mj is the number of samples owned
by the client. Assuming that Mj is a multiple of S, the number of samples per minibatch,
the quantity EMj

S represents the total number of SGD steps run by the client. The updated
model θt+1

j uploaded to the server therefore takes the form:

θt+1
j = e−λrj

EMj
S [θt − θ∗

j ] + θ∗
j︸ ︷︷ ︸

θ̂t+1
j

+ λ√
S

∫ EMj
S

u=0
e

−λrj

(
EMj

S
−u

)
σt

jdWu. (6.8)

We note that the relative number of SGD updates for the fair clients, EMj

S , influences the

parameter ηj = e−λrj
EMj

S , which becomes negligible for large values of E.

The variance introduced by SGD can be rewritten as

Var
[
θt+1

j |θt
]

= λ

S
σt

j
2 1
2rj

[
1− e−2λrj

EMj
S

]
︸ ︷︷ ︸

ρt
j

2

, (6.9)

where we can see that the higher EMj

S , the lower the overall SGD noise. The noise depends
on the local loss function rj , on the server parameters (number of epochs E, learning rate λ,
and number of samples per minibatch S), and on the clients’ data specific parameters (SGD
variance σt

j
2 ).

Equation (6.8) shows that clients’ parameters observed during federated learning can be
expressed as θt

j = θ̂t
j+ρt

jζj,t, where, given θt, θ̂t
j is a deterministic component corresponding

to the model obtained with EMj

S steps of gradient descents, and ζj,t is a delta-correlated
Gaussian white noise. We consider in what follows a constant local noise variance σ2

j (this
assumption will be relaxed in Section 6.2.5 to consider instead time-varying noise functions
ρt

j).

Based on this formalism, in the next Section we study a basic free-rider strategy simply
consisting in returning at each iteration the received global parameters. We call this type of
attack plain free-riding.
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6.2.4 Plain free-riding

We denote by θ̃ and θ̃j respectively the global and local model parameters obtained in
presence of free-riders. The plain free-rider returns the same model parameters as the
received ones, i.e. ∀k ∈ K, θ̃t+1

k = θ̃t. In this setting, the server aggregation process (6.1)
can be rewritten as:

θ̃t+1 =
∑
j∈J

Mj

N
θ̃t+1

j + MK

N
θ̃t , (6.10)

where θ̃t is the global model and θ̃t
j are the fair clients’ local models uploaded to the server

for free-riding.

Free-riders perturbation of the fair clients local model

In this section, we investigate the effect of the free-riders on the local optimization performed
by the fair clients at every server iteration. The participation of the free-riders to federated
learning implies that the processes of the fair clients are being perturbed by the attacks
throughout training. In particular, the initial conditions of the local optimization problems
are modified according to the perturbed aggregation of equation (6.10).

Back to the assumptions of Section 6.2.3 , the initial condition θ̃t of the local optimization
includes now the aggregated model of the fair clients and a perturbation coming from the
free-riders. Thus, equation (6.8) in presence of free-riding can be written as

θ̃t+1
j = ηj [θ̃t − θ∗

j ] + θ∗
j + λ√

S

∫ EMj
S

u=0
e

−λrj

(
EMj

S
−u

)
σ̃t

jdWu,

where σ̃t
j = σt

j(θ̃j) is the SGD variance for free-riding. We consider that σ̃t
j = σt

j = σj .
This assumption will be relaxed in Section 6.2.5 to consider instead time-varying noise
functions. With analogous considerations to those made in Section 6.2.3, the updated
parameters take the form:

θ̃t+1
j = ηj [θ̃t − θ∗

j ] + θ∗
j + ρj ζ̃j,t, (6.11)

where ζ̃j,t is a delta-correlated Gaussian white noise. Similarly as for federated learning,
E
[
θ̃t+1

j |θ̃t
]

= ηj [θ̃t − θ∗
j ] + θ∗

j , and Var
[
θ̃t+1

j |θ̃t
]

= ρ2
j .

We want to express the global optimization process θ̃t due to free-riders in terms of a a
perturbation of the equivalent stochastic process θt obtained with fair clients only. Theorem
6.1 provides a recurrent form for the difference between these two processes.
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Theorem 6.1. Under the assumptions of Section 6.2.3 and 6.2.4 for the local optimization
processes resulting from federated learning with respectively only fair clients and with
free-riders, the difference between the aggregation processes of formulas (6.1) and (6.10)
takes the following recurrent form:

θ̃t − θt =
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi) +

t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi),

with f(θt) = MK
N

[
θt −

∑
j∈J

Mj

N−MK
[ηj(θt − θ∗

j ) + θ∗
j ]
]
, ϵ =

∑
j∈J

Mj

N ηj ,

νt =
∑

j∈J
Mj

N−MK
ρjζj,t and ν̃t =

∑
j∈J

Mj

N ρj ζ̃j,t.

We note that in the special case with no free-riders (i.e. MK = 0), the quantity θ̃t − θt

depends on the second term of equation (6.12) only, and represents the comparison between
two different realizations of the stochastic process associated to the federated global model.
Theorem 6.1 shows that in this case the variance across optimization results is non-zero,
and depends on the intrinsic variability of the local optimization processes quantified by
the variable νt. We also note that in presence of free-riders the convergence to the model
obtained with fair clients depends on the relative sample size declared by the free-riders
MK
N .

Convergence analysis of plain free-riding

Based on the relationship between the learning processes established in Theorem 6.1, we are
now able to prove that federated learning with plain free-riders defined in equation (6.10)
converges in expectation to the aggregated model of the fair clients of equation (6.1).

Theorem 6.2 (Plain free-riding). Assuming FedAvg converges in expectation, and based on
the assumption of Theorem 6.1, the following asymptotic properties hold:

E
[
θ̃t − θt

]
t→+∞−−−−→ 0, (6.12)

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J (Mjρj)2

1−
(
ϵ + MK

N

)2 . (6.13)

As a corollary of Theorem 6.2, in Proof E.1.2 it is shown that the asymptotic variance
is strictly increasing with the sample size MK declared by the free-riders. In practice,
the smaller the total number of data points declared by the free-riders, the closer the
final aggregation result approaches the model obtained with fair clients only. On the
contrary, when the the sample size of the fair clients is negligible with respect to the the
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one declared by the free-riders, i.e. N ≃ MK , the variance tends to infinity. This is
due to the ratio approaching to 1 in the geometric sum of the second term of equation
(6.12). In the limit case when only free-riders participate to federated learning (J = ∅),
we obtain instead the trivial result θ̃t = θ0 and Var

[
θ̃t
]

= 0. In this case there is no
learning throughout the training process. Finally, with no free-riders (MK = 0), we
obtain Var

[
θ̃t

1 − θt
2

]
t→+∞−−−−→ 2

N2
1

1−ϵ2
∑

j∈J (Mjρj)2, reflecting the variability of the fair
aggregation process due to the stochasticity of the local optimization processes.

6.2.5 Disguised free-riding

Plain free-riders can be easily detected by the server, since for each iteration the condition
[θ̃t+1

k − θ̃t = 0] is true. In what follows, we study improved attack strategies based on the
sharing of opportunely disguised parameters, and investigate sufficient conditions on the
disguising models to obtain the desired convergence behavior of free-rider attacks.

Additive noise to mimic SGD updates

A disguised free-rider with additive noise generalizes the plain one, and uploads parameters
θ̃t+1

k = θ̃t + φk(t)ϵt. Here, the perturbation ϵt is assumed to be Gaussian white noise, and
φk(t) > 0 is a suitable time-varying perturbation compatible with the free-rider attack.
As shown in equation (6.8), the parameters uploaded by the fair clients take the general
form composed of an expected model corrupted by a stochastic perturbation due to SGD.
Free-riders can mimic this update form by adopting a noise structure similar to the one of
the fair clients:

φ2
k(t) = λ

S
σt

k
2 1
2rk

[
1− e−2λrk

EMk
S

]
, (6.14)

where rk and σt
k would ideally depend on the (non-existing) free-rider data distribution and

thus need to be determined, while Mk is the declared number of samples. Compatibly with
the assumptions of constant SGD variance σ2

j for the fair clients, we here assume that the
free-riders noise is constant and compatible with the SGD form:

φ2
k = λ

S
σ2

k

1
2rk

[
1− e−2λrk

EMk
S

]
. (6.15)

The parameters rk and σk affect the noise level and decay of the update, and thus the ability
of the free-rider of mimicking a realistic client. These parameters can be ideally estimated
by computing a plausible quadratic approximation of the local loss function (Section 6.2.3).
While the estimation may require the availability of some form of data for the free-rider,
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in Section 6.2.5 we prove that, for any combination of rk and σk, federated learning still
converges to the desired aggregated target.

Analogously as for the fair clients, this assumption will be relaxed in Section 6.2.5.

Attacks based on fixed additive stochastic perturbations

In this new setting, we can rewrite the FedAvg aggregation process (6.1) for an attack with
a single free-rider with perturbation φ:

θ̃t+1 =
∑
j∈J

Mj

N
θ̃t+1

j + MK

N
θ̃t + MK

N
φϵt. (6.16)

Theorem 6.3 extends the results previously obtained for federated learning with plain
free-riders to our new case with additive perturbations.

Theorem 6.3 (Single disguised free-rider). Analogously to Theorem 6.2, the aggregation
process under free-riding described in equation (6.16) converges in expectation to the
aggregated model of the fair clients of equation (6.1) :

E
[
θ̃t − θt

]
t→+∞−−−−→ 0, (6.17)

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J (Mjρj)2

1−
(
ϵ + MK

N

)2

+ 1

1−
(
ϵ + MK

N

)2
M2

K

N2 φ2. (6.18)

Theorem 6.3 shows that disguised free-riding converges to the final model of federated
learning with fair clients, although with a higher variance resulting from the free-rider’s
perturbations injected at every iteration. The perturbation is proportional to MK

N , the relative
number of samples declared by the free-rider.

The extension of this result to the case of multiple free-riders requires to account in equation
(6.16) for an attack of the form

∑
k∈K

Mk
N φkϵk,t, where Mk is the total sample size declared

by free-rider k. Corollary 6.1 follows from the linearity of this form.
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Corollary 6.1 (Multiple disguised free-riders). Assuming a constant perturbation factor
φk for each free-rider k, the asymptotic expectation of Theorem 6.3 still holds, while the
variance reduces to

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J (Mjρj)2

1−
(
ϵ + MK

N

)2

+ 1

1−
(
ϵ + MK

N

)2
∑
k∈K

M2
k

N2 φ2
k. (6.19)

Time-varying noise model of fair-clients evolution

To investigate more plausible parameters evolution in federated learning, in this section we
relax the assumption made in Section 6.2.3 about the constant noise perturbation of the
SGD process across iteration rounds.

We assume here that the standard deviation σt
j of SGD decreases at each server iteration

t, approaching to zero over iteration rounds: σt
j

t→+∞−−−−→ 0. This assumption reflects the
improvement of the fit of the global model θ̃t to the local datasets over server iterations,
and implies that the stochastic process of the local optimization of Section 6.2.3 has
noise parameter ρt

j
t→+∞−−−−→ 0. We thus hypothesize that, to mimic the behavior of the

fair clients, a suitable time-varying perturbation of the free-riders should follow a similar
asymptotic behavior: φk(t) t→+∞−−−−→ 0. Under these assumptions, Corollary 6.2 shows that
the asymptotic variance of model aggregation under free-rider attacks is zero, and that it is
thus still possible to retrieve the fair client’s model.

Corollary 6.2. Assuming that fair clients and free-riders evolve according to Section 6.2.3
to 6.2.5, if the conditions ρt

j
t→+∞−−−−→ 0 and φk(t) t→+∞−−−−→ 0 are met, the aggregation process

of federated learning is such that the asymptotic variance of Theorems 6.2 and 6.3 reduce to

Var
[
θ̃t − θt

]
t→+∞−−−−→ 0. (6.20)

We assumed in Corollary 6.2 that the SGD noise σt
j decreases at each server iteration and

eventually converges to 0. In practice, the global model may not fit perfectly the dataset
of the different clients Dj and, after a sufficient number of optimization rounds, may keep
oscillating around a local minima. We could therefore assume that σt

j
t→+∞−−−−→ σj leading to

ρt
j

t→+∞−−−−→ ρj . In this case, to mimic the behavior of the fair clients, a suitable time-varying
perturbation compatible with the free-rider attacks should converge to a fixed noise level
such that φk(t) t→+∞−−−−→ φk. Similarly as for Corollary 6.2, it can be shown that under these
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hypothesis federated learning follows the asymptotic behaviors of Theorem 6.2 and 6.3 for
respectively plain and disguised free-riders.

6.2.6 FedProx

FedProx includes a regularization term for the local loss functions of the different clients
ensuring the proximity between the updated models θt+1

j and θt. This regularization is
usually defined as an additional L2 penalty term, and leads to the following form for the
local gradient gj(θj) ≃ rj [θj − θ∗

j ] + µ[θj − θt] where µ is a trade-off parameter. Since
the considerations in Section 6.2.3 still hold in this setting, we can express the local model
contribution for FedProx with a formulation analogous to the one of equation (6.8). Hence,
for FedProx, we obtain similar conclusions for Theorem 6.2 and 6.3, as well as for Corollary
6.1 and 6.2, proving that the convergence behavior with free-riders is equivalent to the one
obtained with fair clients only, although with a different asymptotic variance (Appendix
E.2).

Theorem 6.4. Assuming convergence in expectation for federated learning with fair clients
only, under the assumptions of Theorem 6.1 the asymptotic properties of plain and disguised
free-riding of Theorem 6.2, 6.3, and Corollary 6.1, 6.2, still hold with FedProx. In this case
we have parameters:

ρj
2 = λ

S
σj

2 1
2(rj + µ)

[
1− e−2λ(rj+µ)

EMj
S

]
, (6.21)

ϵ =
∑
j∈J

Mj

N
[γj + µ

1− γj

rj + µ
], (6.22)

and γj = e−λ(rj+µ)
EMj

S . (6.23)

We note that the asymptotic variance is still strictly increasing with the total number of
free-riders samples. Moreover, the regularization term monitors the asymptotic variance: a
higher regularization leads to a smaller noise parameter ρ2

j and to a smaller ϵ, thus decreasing
the asymptotic variances of Theorem 6.2, 6.3, and Corollary 6.1, 6.2.

6.3 Experiments

This experimental section focuses on a series of benchmarks for the proposed free-rider
attacks. The methods being of general application, the focus here is to empirically
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Fig. 6.1.: Plots for Shakespeare and E = 20. Accuracy performances for FedAvg and FedProx
according to the number of free-riders participating in the learning process: 15% (top),
50% (middle), and 90% (bottom) of the total amount of clients. The shaded blue region
indicates the variability of federated learning model with fair clients only, estimated from
30 different training initialization.

demonstrate our theory on diverse experimental setups and model specifications. All
code, data and experiments are available at https://github.com/Accenture/
Labs-Federated-Learning/tree/free-rider_attacks.

6.3.1 Experimental Details

We consider 5 fair clients for each of the following scenarios, investigated in previous
works on federated learning (McMahan, Moore, et al., 2017; T. Li, Sahu, Zaheer, Sanjabi,
Talwalkar, and Smith, 2018b):

MNIST (classification in iid and non-iid settings). We study a standard classification
problem on MNIST (LeCun et al., 1998) and create two benchmarks: an iid dataset (MNIST
iid) where we assign 600 training digits and 300 testing digits to each client, and a non-iid
dataset (MNIST non-iid), where for each digit we create two shards with 150 training
samples and 75 testing samples, and allocate 4 shards for each client. For each scenario, we
use a logistic regression predictor.

CIFAR-10(Krizhevsky et al., n.d.) (image classification). The dataset consists of 10 classes
of 32x32 images with three RGB channels. There are 50000 training examples and 10000
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Fig. 6.2.: Plots for Shakespeare and E = 20. Loss performances for FedAvg and FedProx according
to the number of free-riders participating in the learning process: 15% (top), 50% (middle),
and 90% (bottom) of the total amount of clients.

testing examples which we partitioned into 5 clients each containing 10000 training and
2000 testing samples. The model architecture was taken from (McMahan, Moore, et al.,
2017) which consists of two convolutional layers and a linear transformation layer to
produce logits.

Shakespeare (LSTM prediction). We study a LSTM model for next character prediction
on the dataset of The Complete Works of William Shakespeare (McMahan, Moore, et al.,
2017). We randomly chose 5 clients with more than 3000 samples, and assign 70% of the
dataset to training and 30% to testing. Each client has on average 6415.4 samples (±1835.6)
. We use a two-layer LSTM classifier containing 100 hidden units with an 8 dimensional
embedding layer. The model takes as an input a sequence of 80 characters, embeds each
of the characters into a learned 8-dimensional space and outputs one character per training
sample after 2 LSTM layers and a fully connected one.

We train federated models following FedAvg and FedProx aggregation processes. In
FedProx, the hyperparameter µ monitoring the regularization is chosen according to the best
performing scenario reported in (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018b):
µ = 1 for MNIST (iid and non-iid), and µ = 0.001 for Shakespeare. For the free-rider
we declare a number of samples equal to the average sample size across fair clients. We
test federated learning with 5 and 20 local epochs using SGD optimization with learning
rate λ = 0.001 for MNIST (iid and non-iid), λ = 0.001 for CIFAR-10, and λ = 0.5 for
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Shakespeare, and batch size of 100. We evaluate the success of the free-rider attacks by
quantifying testing accuracy and training loss of the resulting model, as indicators of the
effect of the perturbation induced by free-riders on the final model performances. Resulting
figures for associated accuracy and loss can be found in Figure 6.1, Figure 6.2 and Appendix
E.3.

6.3.2 Free-rider attacks: convergence and performances

In the following experiments, we assume that free-riders do not have any data, which means
that they cannot estimate the noise level by computing a plausible quadratic approximation
of the local loss function (Section 6.2.5). Therefore, we investigate free-rider attacks
taking the simple form φ(t) = σt−γ . The parameter γ is chosen among a panel of testing
parameters γ ∈ {0.5, 1, 2}, while additional experimental material on the influence of γ on
the convergence is presented in Appendix E.3. While the optimal tuning of disguised free-
rider attacks is out of the scope of this study, in what follows the perturbations parameter σ

is defined according to practical hypotheses on the parameters evolution during federated
learning. After random initialization at the initial federated learning step, the parameter σ is
opportunely estimated to mimic the extent of the distribution of the update ∆θ̃0 = θ̃1 − θ̃0

observed between consecutive rounds of federated learning. We can simply model these
increments as a zero-centered univariate Gaussian distribution, and assign the parameter
σ to the value of the fitted standard deviation. According to this strategy, the free-rider
would return parameters θ̃t

k with perturbations distributed as the ones observed between
two consecutive optimization rounds. Figure 6.1, top row, exemplifies the evolution of the
models obtained with FedAvg (20 local training epochs) on the Shakespeare dataset with
respect to different scenarios: 1) fair clients only, 2) plain free-rider, 3) disguised free-rider
with decay parameter γ = 1, and estimated noise level σ, and 4) disguised free-rider with
noise level increased to 3σ. For each scenario, we compare the federated model obtained
under free-rider attacks with respect to the equivalent model obtained with the participation
of the fair clients only. For this latter setting, to assess the model training variability, we
repeated the training 30 times with different parameter initializations. The results show that,
independently from the chosen free-riding strategy, the resulting models attains comparable
performances with respect to the one of the model obtained with fair clients only (Figure
6.1, top row). Similar results are obtained for the setup with 5 local training epochs and
different values of γ, as well as for FedProx with 5 and 20 local epochs (Appendix E.3).

We also investigate the same training setup under the influence of multiple free-riders
(Figure 6.1, mid and bottom rows). In particular, we test the scenarios where the free-riders
declare respectively 50% and 90% of the total training sample size. In practice, we maintain
the same experimental setting composed of 5 fair clients, and we increase the number of
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free-riders to respectively 5 and 45, while declaring for each free-rider a sample size equal
to the average number of samples of the fair clients. Independently from the magnitude of
the perturbation function, the number of free-riders does not seem to affect the performance
of the final aggregated model. However, the convergence speed is greatly decreased. Figure
6.2 shows that the convergence in these different settings is not identically affected by the
free-riders. When the size of free-riders is moderate, e.g. up to 50% of the total sample
size, the convergence speed of the loss is slightly slower than for federated learning with
fair clients. The attacks can be still considered successful, as convergence is achieved
within the pre-defined iteration budget. However, when the size of free-riders reaches
90%, convergence to the optimum is extremely slow and cannot be achieved anymore in a
reasonable amount of iterations. This result is in agreement with our theory, for which the
convergence speed inversely proportional to the relative size of the free-riders. Interestingly,
we note that the final accuracy obtained in all the scenarios is similar (though a bit slower
with 90% of free-riders), and falls within the variability observed in federated learning with
fair-clients only (Figure 1). This result is achieved in spite of the incomplete convergence
during training. This effect can be explained by observing that this accuracy level is already
reached at the early training stages of federated learning with fair clients, while further
training does not seem to improve the predictions. This result suggests that, in spite of the
very low convergence speed, the averaging process with 90% of free-riders still achieves a
reasonable minima compatible with the training path of the fair clients aggregation.

We note that the "peaks" observed in the loss of Figure 2 are common in FL, especially
in the considered application when the number of clients is low. It is important to notice
that our experiments are performed by using vanilla SGD. As such, the peaks for only fair
clients are to be expected in both loss and performances. We also notice that the peaks are
smaller for free-riding because of the “regularization” effect of free-riders, which regresses
the update towards the global model of the previous iteration.

Analogous results and considerations can be derived from the set of experiments on the
remaining datasets, training parameters and FedProx as an aggregation scheme (Appendix
E.3).

6.4 Conclusion and discussion

We introduced a theoretical framework for the study of free-riding attacks on model aggre-
gation in federated learning. Based on the proposed methodology, we proved that simple
strategies based on returning the global model at each iteration already lead to successful
free-rider attacks (plain free-riding), and we investigated more sophisticated disguising
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techniques relying on stochastic perturbations of the parameters (disguised free-riding).
The convergence of each attack was demonstrated through theoretical developments and
experimental results. The threat of free-rider attacks is still under-investigated in machine
learning. For example, current defence schemes in federated learning are mainly based on
outliers detection mechanisms, to detect malicious attackers providing abnormal updates.
These schemes would be therefore unsuccessful in detecting a free-rider update which is, by
design, equivalent to the global federated model.

This chapter opens the way to the investigation of optimal disguising and defense strategies
for free-rider attacks, beyond the proposed heuristics. Our experiments show that inspection
of the client’s distribution should be established as a routine practice for the detection of
free-rider attacks in federated learning. Further research directions are represented by the
improvement of detection at the server level, through better modeling of the heterogeneity
of the incoming clients’ parameters. This study provides also the theoretical basis for
the study of effective free-riding strategies, based on different noise model distributions
and perturbation schemes. Finally, in this chapter we relied on a number of hypothesis
concerning the evolution of the clients’ parameters during federated learning. This choice
provides us with a convenient theoretical setup for the formalization of the proposed theory
which may be modified in the future, for example, for investigating more complex forms of
variability and schemes for parameters aggregation.
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In the first part of this thesis, we studied the robustness and variability of federated learning
to heterogeneous dataset and hardware, through our investigation of the impact of clients
sampling (Chapter 2 and 3) and delayed updates (Chapter 4) on the convergence speed
and guarantees of federated learning. In the second part of this thesis, we investigated the
reliability of federated learning in practical applications. We provided a federated unlearning
scheme to remove the contribution of a set of clients from a federatively trained model
(Chapter 5) and investigated free-rider attacks to federated learning (Chapter 6).

7.1 Summary of the Main Contributions

A General Theory for Client Sampling in Federated Learning

In Chapter 2, we highlighted the asymptotic impact of client sampling on FL. In particular,
we showed how the variance and covariance of the clients’ stochastic aggregation weights
impact FL convergence speed. While our theory holds for any advanced FL sampling
scheme, we investigated MD and Uniform sampling from both theoretical and experimental
standpoints. We established that when clients have approximately identical importance,
Uniform outperforms MD sampling, while MD outperform Uniform sampling otherwise.
Yet, in practical scenario with very large number of clients, MD sampling may be unpractical,
and Uniform sampling could be preferred due to the more advantageous time complexity.

Main Contributions
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• We highlight the asymptotic impact of client sampling on FL with Theorem 2.1, and
shows that the convergence speed is inversely proportional to both the sum of the
variance of the stochastic aggregation weights, and to their covariance parameter α.

• We established that when clients have approximately identical importance, i.e pi =
1/n, Uniform outperforms MD sampling, due to the larger impact of the covariance
term for the latter scheme.

• We showed that our theory encompasses advanced FL sampling schemes, such as the
one proposed in Fraboni, Vidal, Kameni, et al. (2021), and W. Chen et al. (2020).

Clustered Sampling: Low-Variance and Improved Representativity for Clients Selec-
tion in Federated Learning

In Chapter 3, we introduced clustered sampling, a novel client selection scheme in FL
generalizing MD sampling, the current scheme from the state-of-the-art (Chapter 2). Con-
sistently with Chapter 2, we proved the correctness of clustered sampling and proposed two
clustering methods implementing aggregation based on the clients number of samples or
model similarity. Both algorithms provide smaller weight variance for the clients aggre-
gation process leading to better client representativity. Consistently, clustered sampling is
experimentally shown to have faster and smoother convergence in heterogeneous dataset.

Main Contributions

• We introduced clustered sampling, a novel client selection scheme in FL generalizing
MD sampling, the current scheme from the state-of-the-art.

• We proved the correctness of clustered sampling and proposed two clustering methods
implementing aggregation based on the clients number of samples, in Algorithm 2, or
model similarity, in Algorithm 3.

• We showed that clustered sampling has faster and smoother convergence in heteroge-
neous dataset than MD sampling.

A General Theory for Federated Optimization with Asynchronous and Heterogeneous
Clients Updates

In Chapter 4, we generalized the expression of FEDAVG aggregation scheme by introducing
stochastic aggregation weights to account for asynchronous client updates. We proved
the convergence of FL schemes satisfying this formalization, e.g. synchronous and asyn-
chronous FEDAVG, FEDFIX, and FEDBUFF. Finally, we gave the aggregation weights
close-form to ensure the convergence of any FL optimization scheme to the optimum of the
federated problem.
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Main Contributions

• With equation (4.6), we generalized the expression of FEDAVG aggregation scheme
by introducing stochastic aggregation weights ωi(n) to account for asynchronous
client updates, and proved the convergence of FL schemes satisfying this equation
with Theorem 4.1.

• We showed that existing federated optimization procedures satisfy aggregation scheme
(4.6) including synchronous FL, asynchronous FL, FEDFIX, FEDBUFF, and client
sampling.

• We proposed FEDFIX, an FL algorithm where the server, after a fixed amount of
time, creates the new global model with the contribution of all the participating
clients, proved its convergence with our theoretical framework, and experimentally
demonstrated its improvement over synchronous and asynchronous FEDAVG in all
the considered scenarios.

Sequential Informed Federated Unlearning: Efficient and Provable Client Unlearning
in Federated Optimization

In Chapter 5, we introduced informed federated unlearning (IFU), a novel federated un-
learning scheme to unlearn a client’s contribution from a model trained with federated
learning with statistical unlearning guarantees. We extended the theory of IFU to account
for the practical scenario of sequential unlearning (SIFU), where the server receives a series
of forgetting request of one or more clients. We proved that SIFU can unlearn a series
of forgetting requests while satisfying our unlearning guarantees, and demonstrated the
effectiveness of our methods on a variety of tasks and dataset.

Main Contributions

• We introduced informed federated unlearning (IFU), a novel federated unlearning
scheme to unlearn, with statistical guarantees, a client’s contribution from a model
trained with FL.

• We extended the theory of IFU to account for the practical scenario of sequential
unlearning (SIFU), where the server receives a series of forgetting request of one or
more clients.

• We provided a new theory for the server to bound the clients contribution in FL
without asking clients for any additional computation and communication.

Free-rider Attacks on Model Aggregation in Federated Learning
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In Chapter 6, we introduced a theoretical framework for the study of free-riding attacks on
model aggregation in federated learning. Based on the proposed methodology, we proved
that simple strategies based on returning the global model at each iteration already lead to
successful free-rider attacks, and we investigated more sophisticated disguising techniques
relying on stochastic perturbations of the parameters. The convergence of each attack was
demonstrated through theoretical developments and experimental results.

Main Contributions

• We provided the theoretical basis for the study of effective free-riding strategies,
based on different noise model distributions, perturbation schemes and the Ornstein-
Uhlenbeck process.

• We proved that simple strategies based on returning the global model at each iteration
already lead to successful free-rider attacks (plain free-riding), and we investigated
more sophisticated disguising techniques relying on stochastic perturbations of the
parameters (disguised free-riding).

• We demonstrated the convergence and success of plain and disguised free-riding
attacks through theoretical developments and experimental results.

7.2 Perspectives and Future Applications

7.2.1 Fully Decentralized Federated Learning

In this thesis, we considered that the server orchestrates the federated optimization by
receiving the clients’ contributions and creating the new global model with them. The server
communication capabilities are finite and can be constraining when training with large
cohort of clients. In this thesis, we addressed this aspect with the analysis of FL convergence
speed when only a subset of clients participates for aggregation. We showed the impact
of only considering a subset of clients for participation in Chapter 2, and even provided a
faster selection method in Chapter 3. In addition, we introduced FEDFIX in Chapter 4. By
allowing delayed client contribution, the server only considers the received contributions for
aggregation every fixed period of time, which alleviates the server communication workload.
However, mitigating the server computation workload is not the only server constraint in
FL. Indeed, by orchestrating the FL training procedure, the server is also a central point of
failure, and the cost of guaranteeing a reliable and powerful central server may not always
be possible (Vanhaesebrouck et al., 2017). Hence, the interest of fully decentralized learning
for FL training without a server.
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The key idea behind fully decentralized learning is to replace communication with the server
by peer-to-peer communication between individual clients. The communication topology
is represented as a connected graph in which nodes are the clients and an edge indicates
a communication channel between two clients. In fully decentralized algorithms, a round
corresponds to each client performing a local update and exchanging information with their
neighbors. Note that there is no longer a global state of the model as in standard federated
learning, but the process can be designed such that all local models converge to the desired
global solution, i.e., the individual models gradually reach consensus. While multi-agent
optimization has a long history in the control community, fully decentralized variants of
SGD and other optimization algorithms have recently been considered in machine learning
both for improved scalability in datacenters (Assran et al., 2019) as well as for decentralized
networks of devices (Colin et al., 2016; H. Tang et al., 2018). It is worth noting that even
in the decentralized setting outlined above, a certain degree of trust is needed to set up
the learning task either through a central authority or a consensus scheme. Indeed, to
perform training, clients need to know their training instruction and hyperparameters used
for training.

While fully decentralized FL removes the server constraints, the ones related to the clients’
computation and communication capabilities remain. Clients might still need to use their
computation and communication capabilities for other tasks than FL training. The clients
heterogeneous hardware forces fast clients to wait for the slow ones to communicate with
them. As such, adapting the frameworks developed to account for client sampling, Chapter
2, and asynchronicity, Chapter 4, could be coupled with fully decentralized FL for faster
federated optimization without the need of a server orchestrating the training. However,
a fairness investigation is needed to identify the scenarios in which fully decentralized
FL converges to a stationary point of its federated problem, and otherwise how to modify
accordingly the training procedure for fully decentralized FL.

7.2.2 Ensuring Fairness

In this thesis, we investigated the impact of a federated optimization scheme on the fairness
of the resulting trained model. Especially, we verified that the trained model is a stationary
point of the federated problem (1.1) and not of a surrogate one favoring some clients.
Another popular fairness approach guarantees instead that the trained model has identical
performances on every client (T. Li, Sanjabi, et al., 2019; T. Li, Hu, et al., 2021). However,
another source of unfairness has yet to be investigated in the federated learning literature.
To this date, no federated optimization scheme guarantees that every class is treated equally
in the trained model. Indeed, often the clients’ data samples belong to a client-specific
distribution, which makes their dataset prone to lack information regarding some sensitive
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attributes or to over-represent some features or classes. With federated learning, practitioners
obtain a better estimate of an unbiased sample of the data that match the distribution of
the population. Hence, performing federated learning is a first step towards removing this
source of unfairness in the trained model but is not sufficient to guarantee that every class is
identically represented in the trained model.

In the classical centralized machine learning setting, numerous improvements have been
made to train this kind of fair classifiers, by introducing for example constrained optimiza-
tion, post-shifting approaches, and distributionally-robust optimization (Hardt et al., 2016;
Zafar et al., 2017; Hashimoto et al., 2018). However, it remains to be proven if these
methods, which have demonstrated their effectiveness for improving fairness in centralized
training, could be used for federated learning. Indeed, with federated learning, the clients
share no information regarding their data, which makes designing a federated optimization
scheme correcting the data imbalance challenging. Hence, developing a framework account-
ing for this kind of bias while respecting the private protocol of FL is needed to provide fair,
private and useful optimization.

7.2.3 Model Personalization with Federated Learning

Thorough this thesis, we consider that the clients’ data samples are generated with a client-
specific data distribution and consider the convergence guarantees of FL on the federated
optimization problem (1.1). When local datasets are small and the data is iid, the model
trained with FL outperforms the one obtained solely with local training, which justifies
the use of FL for optimization in real-world applications (T. Yang et al., 2018; M. Chen
et al., 2019). On the other hand, with non-IID distributions, local models can perform better
locally than ones trained with a federated optimization scheme. Hence, further investigation
is needed to identify a priori the learning scenarios where federated learning outperforms
local optimization, and quantify this improvement.

To provide valid incentives for clients to participate to a federated learning experience,
researchers are currently focusing in the problem of "personalization" in federated learning.
This approach extends the classical federated optimization routine to account for local data
specificities, in order to provide client-specific predictions at inference time (M. Zhang et al.,
2020; Qinbin Li et al., 2021). These techniques are shown to be particularly efficient when
faced with non-iid data and may outperform even the best possible shared global model. For
example, the server can cluster clients according to their specificities, such as geographic
location or characteristics of the client’s device, before running federated learning on each
cluster (Mansour et al., 2020; Sattler et al., 2019). The server can also consider that similar
clients are associates with the same machine learning task and apply methods adapted
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from multi-task learning to FL (Smith et al., 2017; Marfoq et al., 2021). A client can
also personalize the global model by fine-tuning on its local dataset. The development of
such algorithms is an important open problem for federated optimization. Especially when
dealing with heterogeneous and decentralized datasets. However, fairness must be kept in
mind while developing such algorithms, thus requiring to define the optimization routine
compatible with the solution of the collaborative optimization problem originally defined by
formula (1.1).

7.3 Final Remarks

The main bottleneck for the development of data-driven approaches in biomedical appli-
cations is represented by the need for large datasets to achieve robust and reliable models.
Federated Learning could bridge that gap by enabling its participants to train a model
without sharing or exposing their data. With this thesis, we introduced new methods to
improve the robustness and reliability of federated learning to heterogeneous conditions and
thus improve its adoption in real-world applications.
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A.1 Client Sampling Schemes Calculus

In this section, we calculate for MD, Uniform, Poisson, and Binomial sampling the re-
spective aggregation weight variance Var [ωi(St)], the covariance parameter α such that
Cov [ωi(St))] ωj(St) = −αpipj , and the variance of the sum of weights Var [

∑n
i=1 ωi(St)].

We also propose statistics for the parameter N , i.e. the amount of clients the server commu-
nicates with at an iteration:

N =
n∑

i=1
I(i ∈ St). (A.1)

A.1.1 Property A.1

Proposition A.1. For any client sampling, we have 0 ≤ α ≤ 1 and

Var
[

n∑
i=1

ωi(St)
]

=
n∑

i=1
Var [ωi(St)]− α

[
1−

n∑
i=1

p2
i

]
. (A.2)

Proof. Covariance parameter

Cov [ωi(St)] ωj(St) = E [ωi(St)ωj(St)]− pipj ≥ −pipj . (A.3)

Hence, we have α ≤ 1.

Aggregation Weights Sum

Var
[

n∑
i=1

ωi(St)
]

=
n∑

i=1
Var [ωi(St)] +

∑
i,j ̸=i

Cov [ωi(St)] ωj(St) (A.4)

=
n∑

i=1
Var [ωi(St)]− α

∑
i,j ̸=i

pipj (A.5)

=
n∑

i=1
[Var [ωi(St)]− αpi(1− pi)] (A.6)

=
n∑

i=1
Var [ωi(St)]− α

[
1−

n∑
i=1

p2
i

]
, (A.7)

where we use
∑n

i=1 pi = 1, equation (2.1), for the third and fourth equality.

Re-expressing α. Using equation (A.6), we get

Var
[

n∑
i=1

ωi(St)
]

=
n∑

i=1
Var [ωi(St)]− α

[
1−

n∑
i=1

p2
i

]
, (A.8)
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which, with reordering, gives

α =
∑n

i=1 Var [ωi(St)]−Var [
∑n

i=1 ωi(St)]
1−

∑n
i=1 p2

i

. (A.9)

A.1.2 No sampling scheme

When every client participate at an optimization round, we have ωi(St) = pi which gives
VarSt [ωi(St)] = 0, α = 0, and N = n.

A.1.3 MD sampling

We recall equation (2.5),

ωi(St) = 1
m

m∑
k=1

I(lk = i), (A.10)

which gives

E [ωi(St)ωj(St)] = 1
m2

∑
k,l ̸=k

E [I(lk = i)I(ll = j)] + 1
m2

m∑
k=1

E [I(lk = i)I(lk = j)]

(A.11)

= 1
m2

∑
k,l ̸=k

pipj + 1
m2

m∑
k=1

E [I(lk = i)I(lk = j)] (A.12)

= m− 1
m

pipj + 1
m

E [I(l = i)I(l = j)] (A.13)

Variance(i = j). We get E [I(l = i)I(l = j)] = E [I(l = i)] = pi, which gives:

Var [ωi(St)] = − 1
m

p2
i + 1

m
pi (A.14)

Covariance(i ̸= j). We get E [I(l = i)I(l = j)] = 0, which gives:

Cov [ωi(St)] ωj(St) = − 1
m

pipj , (A.15)

and by definition we get

α = 1
m

(A.16)

A.1 Client Sampling Schemes Calculus 137



Aggregation Weights Sum. Using equation (A.14) and (A.16) with Property A.1 , we
get

Var
[

n∑
i=1

ωi(St)
]

= 0. (A.17)

Amount of clients. Considering that p(i ∈ St) = 1 − p(i /∈ St) = 1 − (1 − pi)m, we
get:

E [N ] =
n∑

i=1
P(i ∈ St) = n−

n∑
i=1

(1− pi)m ≤ m (A.18)

A.1.4 Uniform Sampling

We recall equation (2.6),
ωi(St) = I(i ∈ St)

n

m
pi. (A.19)

Variance. We first calculate the probability for a client to be sampled, i.e.

P(i ∈ St) = 1− P(i /∈ St) = 1− n− 1
n

...
n−m

n−m + 1 = 1− n−m

n
= m

n
. (A.20)

Using equation (A.20), we have

VarSt [ωi(St)] =
[

n

m
pi

]2
Var [I(i ∈ St)] = n2

m2
m

n
(1− m

n
)p2

i = ( n

m
− 1)p2

i (A.21)

Covariance. We have

P({i, j} ∈ St) = P(i ∈ St) + P(j ∈ St)− P(i ∪ j ∈ St) (A.22)

= P(i ∈ St) + P(j ∈ St)− (1− P({i, j} /∈ St)), (A.23)

and
P({i, j} /∈ St) = n− 2

n
...

n−m− 1
n−m + 1 = (n−m)(n−m− 1)

n(n− 1) . (A.24)

Substituting equation (A.20) and (A.24) in equation (A.23) gives

P({i, j} ∈ St) = 2m

n
− 1 + (n−m)(n−m− 1)

n(n− 1) (A.25)

= 1
n(n− 1) [2m(n− 1)− n(n− 1) + (n−m)(n−m− 1)] (A.26)

= m(m− 1)
n(n− 1) . (A.27)
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Hence, we can express the aggregation weights covariance as

Cov [ωi(St)] ωj(St) = n2

m2
m(m− 1)
n(n− 1) pjpk − pjpk, (A.28)

which gives
α = n−m

m(n− 1) . (A.29)

Aggregation Weights Sum. Combining equation (A.21) and (A.29) with Property A.1
gives

Var
[

n∑
i=1

ωi(St)
]

=
n∑

i=1

[
n

m
− 1

]
p2

i −
n−m

m(n− 1)

n∑
i=1

pi(1− pi) = n−m

m(n− 1)

[
n

n∑
i=1

p2
i − 1

]
,

(A.30)

where we retrieve Var [
∑n

i=1 ωi(St)] = 0 for identical client importance, i.e.
∑n

i=1 p2
i =

1
n .

Amount of Clients. N = m.

A.1.5 Poisson Binomial Distribution

Clients are sampled according to a Bernoulli with a probability proportional to their impor-
tance pi, i.e.

ωi(St) = 1
m
B(mpi). (A.31)

Hence, only m ≥ p−1
max can be sampled and we retrieve E [ωi(St)] = 1

mmpi = pi.

Variance.
VarSt [ωi(St)] = 1

m2 mpi(1−mpi) = 1
m

pi(1−mpi) (A.32)

Covariance. Due to the independence of each stochastic weight, we also get:

Cov [ωi(St)] ωj(St) = 0 (A.33)

Aggregation Weights Sum. Using Property A.1 we obtain

Var
[

n∑
i=1

ωi(St)
]

= 1
m
−

n∑
i=1

p2
i . (A.34)
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Amount of Clients.

E [N ] = m and Var [N ] = m−m2
n∑

i=1
p2

i . (A.35)

A.1.6 Binomial Distribution

Clients are sampled according to a Bernoulli with identical sampling probability, i.e.

ωi(St) = n

m
B(m

n
)pi. (A.36)

Hence, we retrieve E [ωi(St)] = n
m

m
n pi = pi.

Variance.

VarSt [ωi(St)] = n2

m2
m

n
(1− m

n
)p2

i = n−m

m
p2

i . (A.37)

Covariance. Due to the independence of each stochastic weight, we have:

Cov [ωi(St)] ωj(St) = 0. (A.38)

Aggregation Weights Sum. Using Property A.1 gives

Var
[

n∑
i=1

ωi(St)
]

= n−m

m

n∑
i=1

p2
i . (A.39)

Amount of Clients.

E [N ] = m and Var [N ] = m− m2

n
. (A.40)

A.1.7 Clustered Sampling

Clustered sampling (Fraboni, Vidal, Kameni, et al., 2021) is a generalization of MD sampling
where instead of sampling m clients from the same distributions, m clients are sampled from
m different distributions {Wk}mk=1 each of them privileging a different subset of clients. We
denote by rk,i the probability of client i to be sampled in distribution k. To satisfy Definition
2.1, the original work (Fraboni, Vidal, Kameni, et al., 2021) provides the conditions:

∀k ∈ {1, ..., m},
n∑

i=1
rk,i = 1 and ∀i ∈ {1, ..., n},

m∑
k=1

rk,i = mpi. (A.41)
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The clients aggregation weights remain identical to the one of MD sampling, i.e.

ωi(SCl) = 1
m

K∑
k=1

I(lk = i), (A.42)

where I(lk = i) are still independently distributed but not identically.

We have

E [ωi(St)ωj(St)] = 1
m2

∑
k,l ̸=k

E [I(lk = i)I(ll = j)] + 1
m2

m∑
k=1

E [I(lk = i)I(lk = j)]

(A.43)

= 1
m2

∑
k,l ̸=k

rk,irl,j + 1
m2

m∑
k=1

E [I(lk = i)I(lk = j)] (A.44)

= pipj −
1

m2

m∑
k=1

rk,irk,j + 1
m2

m∑
k=1

E [I(lk = i)I(lk = j)] , (A.45)

where we retrieve equation (A.13) when rk,i = pi.

Variance (i = j). We get E [I(lk = i)I(lk = j)] = E [I(lk = i)] = rk,i, which gives:

Var [ωi(SCl)] = 1
m

pi −
1

m2

m∑
k=1

r2
k,i ≤ Var [ωi(SMD)] , (A.46)

where the inequality comes from using the Cauchy-Schwartz inequality with equality if and
only if all the m distributions are identical, i.e. rk,i = pi.

Covariance (i ̸= j). We get E [I(lk = i)I(lk = j)] = 0, which gives:

Cov [ωi(SCl)] ωj(SCl) = − 1
m2

m∑
k=1

rk,irk,j ≤ Cov [ωi(SMD)] ωj(SMD), (A.47)

where the inequality comes from using the Cauchy-Schwartz inequality with equality if and
only if all the m distributions are identical, i.e. rk,i = pi.

Aggregation Weights Sum

Var
[

n∑
i=1

ωi(SCl)
]

= 0. (A.48)
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Algorithm 9 Federated Learning based on equation (2.3)
The server sends to the n clients the learning parameters (K, ηl, B).
for t = 0 to T − 1 do

Sample a set of clients St and get their aggregation weights di(t).
Send to clients in St the current global model θt.
Receive each sampled client contributions ci(t) = θt+1

i − θt.
Creates the new global model θt+1 = θt + ηg

∑n
i=1 di(t)ci(t).

end for

A.1.8 Optimal Sampling

With optimal sampling (W. Chen et al., 2020), clients are sampled according to a Bernoulli
distribution with probability qi, i.e.

ωi(St) = pi

qi
B(qi). (A.49)

Hence, we retrieve E [ωi(St)] = pi
qi

qi = pi.

Variance.
VarSt [ωi(St)] = 1− qi

qi
p2

i . (A.50)

Covariance. Due to the independence of each stochastic weight, we have:

Cov [ωi(St)] ωj(St) = 0. (A.51)

Aggregation Weights Sum. Using Property A.1 gives

Var
[

n∑
i=1

ωi(St)
]

=
n∑

i=1

1− qi

qi
p2

i . (A.52)

Amount of Clients.

E [N ] =
n∑

i=1
qi and Var [N ] =

n∑
i=1

qi(1− qi). (A.53)

A.2 FL Convergence

In Table A.1, we provide the definition of the different notations used in this work. We
also propose in Algorithm 9 the pseudo-code for FEDAVG with aggregation scheme (2.3).
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Tab. A.1.: Common Notation Summary.

Symbol Description
n Number of clients.
K Number of local SGD.
ηl Local/Client learning rate.
ηg Global/Server learning rate.
η̃ Effective learning rate, η̃ = ηlηg.
θt Global model at server iteration t.
θ∗ Optimum of the federated loss function, equation (2.1).

θt+1
i Local update of client i on model θt.

yt
i,k Local model of client i after k SGD (yt

i,K = θt+1
i and yt

i,0 = θt).
pi Importance of client i in the federated loss function, equation (2.1).
m Number of sampled clients .
St Set of participating clients considered at iteration t.

ωi(St) Aggregation weight for client i given St.
α Covariance parameter.
γi cf Section 2.3

Et [·] Expected value conditioned on θt.
L(·) Federated loss function, equation 2.1
Li(·) Local loss function of client i.
gi(·) SGD. We have Eξi

[gi(·)] = ∇Li(·) with Assumption 2.4.
ξi Random batch of samples from client i of size B.
L Lipschitz smoothness parameter, Assumption 2.2.
σ2 Bound on the variance of the stochastic gradients, Assumption 2.4.

β, κ Assumption 2.3 parameters on the clients gradient bounded dissimilarity.
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Our work is based on the one of Jianyu Wang, Q. Liu, et al. (2020). We use the developed
theoretical framework they proposed to prove Theorem 2.1. The focus of our work (and
Theorem 2.1) is on FEDAVG. Yet, the proof developed in this section, similarly to the one
of Jianyu Wang, Q. Liu, et al. (2020), expresses ai in such a way they can account for a
wide-range of regularization method on FEDAVG, or optimizers different from Vanilla SGD.
This proof can easily be extended to account for different amount of local work from the
clients (Jianyu Wang, Q. Liu, et al., 2020).

Before developing the proof of Theorem 2.1 in Section A.2.5, we introduce the notation we
use in Section A.2.1, some useful lemmas in Section A.2.2 and Theorem A.1 generalizing
Theorem 2.1 in Section A.2.3.

A.2.1 Notations

We define by yt
i,k the local model of client i after k SGD steps initialized on θt, which

enables us to also define the normalized stochastic gradients dt
i and the normalized gradient

ht
i defined as

dt
i = 1

ai

K−1∑
k=0

ai,kgi(yt
i,k) and ht

i = 1
ai

K−1∑
k=0

ai,k∇Li(yt
i,k), (A.54)

where ai,k is an arbitrary scalar applied by the client to its kth gradient, ai = [ai,0, .., ai,K−1]T ,
and ai = ∥ai∥1. In the special case of FEDAVG, we have ai = [1, ..., 1] and in the one
of FEDPROX, we have ai = [(1 − µ)K−1, ..., 1] where µ is the FEDPROX regularization
parameter.

With the formalism of equation (A.54), we can express a client contribution as θt+1
i − θt =

−ηlaid
t
i and rewrite the server aggregation scheme defined in equation (2.3) as

θt+1 − θt = −ηgηl

n∑
i=1

ωiaid
t
i, (A.55)

which in expectation over the set of sampled clients St gives

ESt

[
θt+1 − θt

]
= −η̃

n∑
i=1

piaid
t
i = −η̃

(
n∑

i=1
piai

)
︸ ︷︷ ︸

Keff

n∑
i=1

(
piai∑n

i=1 piai

)
︸ ︷︷ ︸

wi

dt
i. (A.56)

We define the surrogate objective L̃(x) =
∑n

i=1 wiLi(x), where
∑n

i=1 wi = 1.
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In what follows, the norm used for ai can either be L1, ∥·∥1, or L2, ∥·∥2, For other variables,
the norm is always the euclidean one and ∥·∥ is used instead of ∥·∥2. Also, regarding
the client sampling metrics, for ease of writing, we use ωi instead of ωi(St) due to the
independence of the client sampling statistics with respect to the current optimization
round.

A.2.2 Useful Lemmas

Lemma A.1. Let us consider n vectors xi, ..., xn and a client sampling satisfying ESt [ωi(St)] =
pi and Cov [ωi(St)] ωj(St) = −αpipj . We have:

ESt

∥∥∥∥∥
n∑

i=1
ωi(St)xi

∥∥∥∥∥
2
 =

n∑
i=1

γi ∥xi∥2 + (1− α)
∥∥∥∥∥

n∑
i=1

pixi

∥∥∥∥∥
2

, (A.57)

where γi = VarSt [ωi(St)] + αp2
i .

Proof.

ESt

∥∥∥∥∥
n∑

i=1
ωi(St)xi

∥∥∥∥∥
2
 =

n∑
i=1

ESt

[
ωi(St)2

]
∥xi∥2 +

n∑
i=1

n∑
j=1
j ̸=i

ESt [ωi(St)ωj(St)] ⟨xi, xj⟩.

(A.58)

In addition, we have:

ESt [ωi(St)ωj(St)] = Cov [ωi(St)] ωj(St) + pipj = (−α + 1)pipj , (A.59)

where the last equality comes from the assumption on the client sampling covariance.

We also have:
n∑

i=1

n∑
j=1
j ̸=i

⟨pixi, pjxj⟩ =
∥∥∥∥∥

n∑
i=1

pixi

∥∥∥∥∥
2

−
n∑

i=1
p2

i ∥xi∥2 , (A.60)

Substituting equation (A.59) and equation (A.60) in equation (A.58) gives:

ESt

∥∥∥∥∥
n∑

i=1
ωi(St)xi

∥∥∥∥∥
2
 =

n∑
i=1

[
ESt

[
ωi(St)2

]
− (−α + 1)p2

i

]
∥xi∥2+(−α+1)

∥∥∥∥∥
n∑

i=1
pixi

∥∥∥∥∥
2

,

(A.61)
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Considering that we have ESt

[
ωi(St)2] = Var [ωi(St)] + p2

i , we have :

ESt

[
ωi(St)2

]
+ (α− 1)p2

i = VarSt [ωi(St)] + αp2
i , (A.62)

Substituting equation (A.62) in equation (A.61) completes the proof.

Lemma A.2 (equation (87) in Jianyu Wang, Q. Liu, et al. (2020)). Under Assumptions 2.2
to 2.4, we can prove

1
2

n∑
i=1

wi E
[∥∥∥∇Li(θt)− ht

i

∥∥∥2
]
≤ 1

2
η2

l L2σ2

1−R

n∑
i=1

wi

(
∥ai∥22 − a2

i,−1

)
+ Rβ2

2(1−R) E
[∥∥∥∇L̃(θt)

∥∥∥2
]

+ Rκ2

2(1−R) , (A.63)

with R = 2η2
l L2 maxi{∥ai∥1 (∥ai∥1 − ai,−1)} with a learning rate such that R < 1.

Proof. The proof is in Section C.5 of Jianyu Wang, Q. Liu, et al. (2020).

The bound here provided is slightly tighter in term of numerical constants than the one of
Jianyu Wang, Q. Liu, et al. (2020). Indeed, equation (70) in Jianyu Wang, Q. Liu, et al.
(2020) uses the Jensen’s inequality ∥a + b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 which could instead be
obtained with:

E

∥∥∥∥∥
k−1∑
s=0

ai,sgi(yt
i,s)
∥∥∥∥∥

2 = E

∥∥∥∥∥
k−1∑
s=0

ai,s

(
gi(yt

i,s)−∇Li(yt
i,s)
)∥∥∥∥∥

2
+ E

∥∥∥∥∥
k−1∑
s=0

ai,s∇Li(yt
i,s)
∥∥∥∥∥

2 , (A.64)

which uses Assumption 2.4, giving

E
[
⟨
k−1∑
s=0

ai,s

(
gi(yt

i,s)−∇Li(yt
i,s

)
,

k−1∑
s=0

ai,s∇Li(yt
i,s⟩
]

= 0 (A.65)

with the same reasoning as for U in equation (A.82).
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Lemma A.3. Under Assumptions 2.2 to 2.4, we can prove

n∑
i=1

γi E
[∥∥∥aih

t
i

∥∥∥2
]
≤ 1

1−R
σ2

n∑
i=1

γi

(
∥ai∥22 − (a2

i,−1)
)

+ 2 1
1−R

(
n∑

i=1
γia

2
i

)(
β2 E

[∥∥∥∇L̃(θt)
∥∥∥2
]

+ κ2
)

, (A.66)

where R′ = 2η2
l L2 maxi{∥ai∥21} < 1.

Proof. Due to the definition of ht
i, we have:

E
[∥∥∥aih

t
i

∥∥∥2
]

= a2
i E

∥∥∥∥∥
K−1∑
k=0

1
ai

ai,k∇Li(yt
i,k)
∥∥∥∥∥

2 ≤ a2
i

K−1∑
k=0

1
ai

ai,k E
[∥∥∥∇Li(yt

i,k)
∥∥∥2
]

.

(A.67)

Using Jensen inequality, we have

E
[∥∥∥∇Li(yt

i,k)
∥∥∥2
]
≤ 2E

[∥∥∥∇Li(yt
i,k)−∇Li(θt)

∥∥∥2
]

+ 2E
[∥∥∥∇Li(θt)

∥∥∥2
]

(A.68)

≤ 2L2 E
[∥∥∥yt

i,k − θt
∥∥∥2
]

+ 2E
[∥∥∥∇Li(θt)

∥∥∥2
]

, (A.69)

where the second equality comes from using Assumption 2.2.

Also, Section C.5 of Jianyu Wang, Q. Liu, et al. (2020) proves

1
ai

K−1∑
k=0

ai,k E
[∥∥∥yt

i,k − θt
∥∥∥2
]
≤ 1

1−R
η2

l σ2
(
∥ai∥22 − (a2

i,−1)
)

+ 1
L2

R

1−R
E
[∥∥∥∇Li(θt)

∥∥∥2
]

. (A.70)
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Plugging equation (A.69) and then equation (A.70) in equation (A.67), we get:

E
[∥∥∥aih

t
i

∥∥∥2
]
≤ a2

i

K−1∑
k=0

1
ai

ai,k

[
2L2 E

[∥∥∥yt
i,k − θt

∥∥∥2
]

+ 2E
[∥∥∥∇Li(θt)

∥∥∥2
]]

(A.71)

= 2L2a2
i

K−1∑
k=0

1
ai

ai,k E
[∥∥∥yt

i,k − θt
∥∥∥2
]

+ 2a2
i E
[∥∥∥∇Li(θt)

∥∥∥2
]

(A.72)

≤ 2L2a2
i

[ 1
1−R

η2
l σ2

(
∥ai∥22 − (a2

i,−1)
)

+ 1
L2

R

1−R
E
[∥∥∥∇Li(θt)

∥∥∥2
]]

+ 2a2
i E
[∥∥∥∇Li(θt)

∥∥∥2
]

(A.73)

≤ R′

1−R
σ2
(
∥ai∥22 − (a2

i,−1)
)

+ 2a2
i

[
R

1−R
+ 1

]
E
[∥∥∥∇Li(θt)

∥∥∥2
]

.

(A.74)

Multiplying by γi and summing over n gives

n∑
i=1

γi E
[∥∥∥aih

t
i

∥∥∥2
]
≤ R′

1−R
σ2

n∑
i=1

γi

(
∥ai∥22 − (a2

i,−1)
)

+ 2 1
1−R

n∑
i=1

γia
2
i E
[∥∥∥∇Li(θt)

∥∥∥2
]

. (A.75)

Using Assumption 2.3 in equation (A.75) and R′ < 1 completes the proof.

A.2.3 Intermediary Theorem

Theorem A.1. The following inequality holds:

1
T

T −1∑
t=0

E
[∥∥∥∇L̃(θt)

∥∥∥2
]
≤ O( 1

(1− Ω)η̃ (
∑n

i=1 piai) T
) +O(η̃ 1

m
A′σ2) +O(η2

l B′σ2)

+O(η2
l C ′κ2) +O(η̃D′σ2) +O(η̃E′κ2), (A.76)

where quantities A′-E′ are defined in the following proof from equation (A.93) to equation
(A.97).
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Proof. Clients local loss functions are L-Lipschitz smooth. Therefore, L̃ is also L-Lipschitz
smooth which gives

E
[
L̃(θt+1)− L̃(θt)

]
≤ E

[
⟨∇L̃(θt), θt+1 − θt⟩

]
︸ ︷︷ ︸

T1

+L

2 E
[∥∥∥θt+1 − θt

∥∥∥2
]

︸ ︷︷ ︸
T2

, (A.77)

where the expectation is taken over the subset of randomly sampled clients St and the clients
gradient estimator noises ξt

i . Please note that we use the notation E [·] instead of E{ξt
i },St

[·]
for ease of writing.

Bounding T1

By conditioning on {ξt
i} and using equation (A.56), we get:

T1 = E
[
⟨∇L̃(θt),ESt

[
θt+1 − θt

]
⟩
]

= −η̃Keff E
[
⟨∇L̃(θt),

n∑
i=1

wih
t
i⟩
]

, (A.78)

which, using 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 can be rewritten as:

T1 = −1
2 η̃Keff E

∥∥∥∇L̃(θt)
∥∥∥2

+
∥∥∥∥∥

n∑
i=1

wih
t
i

∥∥∥∥∥
2

−
∥∥∥∥∥∇L̃(θt)−

n∑
i=1

wih
t
i

∥∥∥∥∥
2
 . (A.79)

Bounding T2

T2|St = η̃2 E

∥∥∥∥∥
n∑

i=1
ωiaid

t
i

∥∥∥∥∥
2

|St

 (A.80)

= η̃2 E

∥∥∥∥∥
n∑

i=1
ωiai

(
dt

i − ht
i

)
+

n∑
i=1

ωiaih
t
i

∥∥∥∥∥
2

|St

 (A.81)

= η̃2 E

∥∥∥∥∥
n∑

i=1
ωiai

(
dt

i − ht
i

)∥∥∥∥∥
2

|St

+ η̃2 E

∥∥∥∥∥
n∑

i=1
ωiaih

t
i

∥∥∥∥∥
2

|St


+ 2η̃ E

[
⟨

n∑
i=1

ωiai

(
dt

i − ht
i

)
,

n∑
i=1

ωiaih
t
i⟩|St

]
︸ ︷︷ ︸

U

. (A.82)

A.2 FL Convergence 149



Using Assumption 2.4, we have E
[
⟨dt

i − ht
i, ht

j⟩
]

= 0. Hence, we get U = 0 and can
simplify T2 as:

T2 = η̃2
n∑

i=1
E
[
ω2

i

]
a2

i E
[∥∥∥dt

i − ht
i

∥∥∥2
]

+ η̃2 E

∥∥∥∥∥
n∑

i=1
ωiaih

t
i

∥∥∥∥∥
2
 . (A.83)

Using Lemma A.1 on the second term, we get:

T2 = η̃2
n∑

i=1
E
[
ω2

i

]
a2

i E
[∥∥∥dt

i − ht
i

∥∥∥2
]

+ η̃2
n∑

i=1
γi E

[∥∥∥aih
t
i

∥∥∥2
]

+ η̃2(1− α)E

∥∥∥∥∥
n∑

i=1
piaih

t
i

∥∥∥∥∥
2
 . (A.84)

Finally, by bounding the first term using Assumption 2.4, and noting that piai = wiKeff

for the second term, we get:

T2 = η̃2
n∑

i=1
E
[
ω2

i

]K−1∑
k=0

a2
i,k E

[∥∥∥gi(yt
i,k)−∇Li(yt

i,k)
∥∥∥2
]

+ η̃2
n∑

i=1
γi E

[∥∥∥aih
t
i

∥∥∥2
]

+ η̃2(1− α)K2
eff E

∥∥∥∥∥
n∑

i=1
wih

t
i

∥∥∥∥∥
2
 (A.85)

≤ η̃2
n∑

i=1
E
[
ω2

i

]
∥ai∥22 σ2 + η̃2

n∑
i=1

γi E
[∥∥∥aih

t
i

∥∥∥2
]

+ η̃2(1− α)K2
eff E

∥∥∥∥∥
n∑

i=1
wih

t
i

∥∥∥∥∥
2
 . (A.86)

Going back to equation (A.77)

Substituting equation (A.79) and equation (A.86) back in equation (A.77), we get:

E
[
L̃(θt+1)− L̃(θt)

]
≤ −1

2 η̃Keff

∥∥∥∇L̃(θt)
∥∥∥2

+ 1
2 η̃Keff E

∥∥∥∥∥∇L̃(θt)−
n∑

i=1
wih

t
i

∥∥∥∥∥
2


− 1
2 η̃Keff [1− Lη̃(1− α)Keff ]E

∥∥∥∥∥
n∑

i=1
wih

t
i

∥∥∥∥∥
2


+ L

2 η̃2
n∑

i=1
E
[
ω2

i

]
∥ai∥22 σ2 + L

2 η̃2
n∑

i=1
γi E

[∥∥∥aih
t
i

∥∥∥2
]

, (A.87)
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We consider the learning rate to satisfy 1− Lη̃(1− α)Keff > 0 such that we can simplify
equation (A.87) as :

E
[
L̃(θt+1)− L̃(θt)

]
η̃Keff

≤ −1
2

∥∥∥∇L̃(θt)
∥∥∥2

+ 1
2 E

∥∥∥∥∥∇L̃(θt)−
n∑

i=1
wih

t
i

∥∥∥∥∥
2


+ L

2 η̃
1

Keff

n∑
i=1

E
[
ω2

i

]
∥ai∥22 σ2 + L

2 η̃
1

Keff

n∑
i=1

γi E
[∥∥∥aih

t
i

∥∥∥2
]

(A.88)

≤ −1
2

∥∥∥∇L̃(θt)
∥∥∥2

+ 1
2

n∑
i=1

wi E
[∥∥∥∇Li(θt)− ht

i

∥∥∥2
]

+ L

2 η̃
1

Keff

n∑
i=1

E
[
ω2

i

]
∥ai∥22 σ2 + L

2 η̃
1

Keff

n∑
i=1

γi E
[∥∥∥aih

t
i

∥∥∥2
]

,

(A.89)

where the last inequality uses the definition of the surrogate loss function L̃ and the Jensen’s
inequality.

Using Lemma A.2 and A.3, we get:

E
[
L̃(θt+1)− L̃(θt)

]
η̃Keff

≤ −1
2

∥∥∥∇L̃(θt)
∥∥∥2

+ 1
2

η2
l L2σ2

1−R

n∑
i=1

wi

(
∥ai∥22 − a2

i,−1

)
+ Rβ2

2(1−R) E
[∥∥∥∇L̃(θt)

∥∥∥2
]

+ Rκ2

2(1−R)

+ L

2 η̃
1

Keff

[
n∑

i=1
E
[
ω2

i

]
∥ai∥22 + 1

1−R

n∑
i=1

γi

(
∥ai∥22 − (a2

i,−1)
)]

σ2

+ Lη̃
1

Keff

[
R

1−R
+ 1

]( n∑
i=1

γia
2
i

)(
β2 E

[∥∥∥∇L̃(θt)
∥∥∥2
]

+ κ2
)

.

(A.90)

If we assume that R ≤ 1
2β2+1 , and considering that β2 ≥ 1, then we have 1

1−R ≤
1 + 1

2β2 ≤ 3
2 , R

1−R ≤
1
2 , and Rβ2

1−R ≤
1

2β2+1(1 + 1
2β2 )β2 = 1

2 . We also define Ω =
Lη̃ 1

Keff

3
2
(∑n

i=1 γia
2
i

)
β2 ≤ 1

2 . Substituting these terms in equation (A.90) gives
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E
[
L̃(θt+1)− L̃(θt)

]
η̃Keff

≤ −1
4 [1− Ω]

∥∥∥∇L̃(θt)
∥∥∥2

+ 3
4η2

l L2
n∑

i=1
wi

(
∥ai∥22 − a2

i,−1

)
σ2

+ L

2 η̃
1

Keff

[
n∑

i=1
E
[
ω2

i

]
∥ai∥22 + 3

2

n∑
i=1

γi

(
∥ai∥22 − (a2

i,−1)
)]

σ2

+ 3
2η2

l L2 max
i
{ai(ai − ai,−1)}κ2 + 3

2Lη̃
1

Keff

(
n∑

i=1
γia

2
i

)
κ2.

(A.91)

Averaging across all rounds, we get:

1− Ω
T

T −1∑
t=0

E
[∥∥∥∇L̃(θt)

∥∥∥2
]
≤ 4 L̃(θ0)− L̃(θ∗)

η̃Keff T
+ 3η2

l L2
n∑

i=1
wi

(
∥ai∥22 − a2

i,−1

)
σ2

+ Lη̃
1

Keff

[
2

n∑
i=1

E
[
ω2

i

]
∥ai∥22 + 3

n∑
i=1

γi

(
∥ai∥22 − (a2

i,−1)
)]

σ2

+ 6η2
l L2 max

i
{ai(ai − ai,−1)}κ2 + 6Lη̃

1
Keff

(
n∑

i=1
γia

2
i

)
κ2.

(A.92)

We define the following auxiliary variables

A = m
1

Keff

n∑
i=1

E
[
ω2

i

]
∥ai∥22 = m

1∑n
i=1 piai

n∑
i=1

[
Var [ωi] + p2

i

]
∥ai∥22 , (A.93)

B =
n∑

i=1
wi

(
∥ai∥22 − a2

i,−1

)
=

n∑
i=1

piai∑n
j=1 pjaj

(
∥ai∥22 − a2

i,−1

)
, (A.94)

C = max
i
{ai(ai − ai,−1)}, (A.95)

D = 1
Keff

max
i
{ai(ai − ai,−1)}

n∑
i=1

γi = 1∑n
i=1 piai

C

(
n∑

i=1
Var [ωi] + α

n∑
i=1

p2
i

)
,

(A.96)

E = 1
Keff

max
i
{a2

i }
(

n∑
i=1

γi

)
= 1∑n

i=1 piai
max

i
{a2

i }
(

n∑
i=1

Var [ωi] + α
n∑

i=1
p2

i

)
.

(A.97)
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We define for A -E the respective quantities A′-E′ such that X ′ = 1
1−ΩX . We have:

1
T

T −1∑
t=0

E
[∥∥∥∇L̃(θt)

∥∥∥2
]
≤ 4 L̃(θ0)− L̃(θ∗)

(1− Ω)η̃ (
∑n

i=1 piai) T
+ 2Lη̃

1
m

A′σ2 + 3η2
l L2B′σ2

+ 6η2
l L2C ′κ2 + 3Lη̃Dσ2 + 6Lη̃Eκ2, (A.98)

A.2.4 Synthesis of local learning rate ηl conditions for Theorem A.1

A sufficient bound on the local learning rate ηl for constraints on R for Lemma A.2 and
equation (A.90), and constraint on R′ for Lemma A.3 to be satisfied is:

2
[
2β2 + 1

]
η2

l L2 max
i
{∥ai∥21} < 1. (A.99)

Constraints on equation (A.87) can be simplified as

Lηgηl(1− α)Keff < 1. (A.100)

Constraints on Ω, equation (A.90), give

3Lηgηl
1

Keff

(
n∑

i=1
γia

2
i

)
β2 ≤ 1. (A.101)

A.2.5 Theorem 2.1

Proof. With FEDAVG, every client performs vanilla SGD. As such, we have ai,k = 1 which
gives ai = K and ∥ai∥2 =

√
K. In addition we consider a local learning rate ηl such that

Ω ≤ 1
2 as such we can bound A′-E′ as X ′ ≤ 2X .

Finally, considering that the variables A to E can be simplified as

A = m
n∑

i=1

[
Var [ωi] + p2

i

]
, B = (K − 1), C = K(K − 1), (A.102)

D = (K − 1)
(

n∑
i=1

Var [ωi] + α
n∑

i=1
p2

i

)
, and E = K

(
n∑

i=1
Var [ωi] + α

n∑
i=1

p2
i

)
,

(A.103)
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the convergence bound of Theorem A.1 can be reduced to

1
T

T −1∑
t=0

E
[∥∥∥∇L(θt)

∥∥∥2
]
≤ O

(
1

ηgηlKT

)
+O

(
ηgηl

n∑
i=1

[
Var [ωi] + p2

i

]
σ2
)

+O
(
η2

l (K − 1)σ2
)

+O
(
η2

l K(K − 1)κ2
)

+O
(

ηgηl

(
n∑

i=1
Var [ωi] + α

n∑
i=1

p2
i

)[
(K − 1)σ2 + Kκ2

])
,

(A.104)

which completes the proof.

Ω is proportional to
∑n

i=1 γi =
∑n

i=1 Var [ωi]+α
∑n

i=1 p2
i . With full participation, we have

Ω = 0. However, with client sampling, all the terms in equation (A.104) are proportional
with 1

1−Ω . Yet, we provide a looser bound in equation (A.104) independent from Ω as the
conclusions drawn are identical. Through Ω,

∑n
i=1 Var [ωi] and α needs to be minimized.

This fact is already visible by inspection of the quantities E and F .

We note that equation (A.104) depends on client sampling through σ2, which is an indicator
of the clients SGD quality, and κ2, which depends on the clients data heterogeneity. In
the special case where clients have the same data distribution and perform full gradient
descent, based on the arguments discussed in the previous paragraph, we can still provide
the following bound showing the influence of client sampling on the convergence speed,
while highlighting the interest of minimizing the quantities

∑n
i=1 Var [ωi] and α.

1
T

T −1∑
t=0

E
[∥∥∥∇L(θt)

∥∥∥2
]
≤ O

(
1

(1− Ω)ηgηlKT

)
, (A.105)

When setting the server learning rate at 1, ηg = 1 with client full participation, i.e.
Var [ωi] = Var [

∑n
i=1 ωi] = α = 0 and m = n, we have E = F = 0 and can sim-

plify A to

A = n
n∑

i=1
p2

i . (A.106)

Therefore, the convergence guarantee we provide is 1
ηlKT + ηl

∑n
i=1 p2

i σ2 + η2
l (K− 1)σ2 +

η2
l K(K−1)κ2, which is identical to the one of Jianyu Wang, Q. Liu, et al. (2020) (equation

(97) in their work), where
∑n

i=1 p2
i can be replaced by 1/n when clients have identical

importance, i.e. pi = 1/n.
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In the special case, where we use ηl =
√

m/KT (Jianyu Wang, Q. Liu, et al., 2020), we
retrieve their asymptotic convergence bound 1√

mKT
+
√

m
KT

∑n
i=1 p2

i σ2 + m
T σ2 + m

T Kκ2.

A.2.6 Application to Clustered Sampling

Instead of Lemma A.1 which requires Cov [ωi(St)] ωj(St) = −αpipj , we propose the
following Lemma for Clustered sampling expressed in function of MD sampling covariance
parameter αMD showing that a sufficient condition for MD sampling to perform as well as
Clustered sampling is that all xi are identical, or that all the distributions are identical, i.e.
rk,i = pi.

Lemma A.4. Let us consider n vectors xi, ..., xn and a Clustered sampling satisfying
ESt [ωi(St)] = pi. We have:

ESCl

∥∥∥∥∥
n∑

i=1
ωi(SCl)xi

∥∥∥∥∥
2
 ≤ n∑

i=1
γi(MD) ∥xi∥2 + (1− αMD)

∥∥∥∥∥
n∑

i=1
pixi

∥∥∥∥∥
2

, (A.107)

where γi(MD) and αMD are the aggregation weights statistics of MD sampling. Equation
(A.107) is an equality if and only if

∑n
i=1 rk,ixi =

∑n
j=1 rk,jxj .

Proof. Substituting equation (A.46) in equation (A.58) gives

ESCl

∥∥∥∥∥
n∑

i=1
ωi(SCl)xi

∥∥∥∥∥
2
 =

n∑
i=1

ESCl

[
ωi(SCl)2

]
∥xi∥2 +

n∑
i=1

n∑
j=1
j ̸=i

pipj⟨xi, xj⟩

− 1
m2

m∑
k=1

n∑
i=1

n∑
j=1
j ̸=i

rk,irk,j⟨xi, xj⟩, (A.108)

Substituting equation (A.60) in equation (A.58) gives:

ESCl

∥∥∥∥∥
n∑

i=1
ωi(SCl)xi

∥∥∥∥∥
2
 =

n∑
i=1

ESCl

[
ωi(SCl)2

]
∥xi∥2 +

∥∥∥∥∥
n∑

i=1
pixi

∥∥∥∥∥
2

−
n∑

i=1
p2

i ∥xi∥2

− 1
m2

m∑
k=1

∥∥∥∥∥
n∑

i=1
rk,ixi

∥∥∥∥∥
2

−
n∑

i=1
r2

k,i ∥xi∥2
 . (A.109)
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With rearrangements and using equation (A.41) we get:

ESCl

∥∥∥∥∥
n∑

i=1
ωi(SCl)xi

∥∥∥∥∥
2
 =

n∑
i=1

[
Var [ωi(SCl)] + 1

m2

m∑
k=1

r2
k,i

]
∥xi∥2

+
∥∥∥∥∥

n∑
i=1

pixi

∥∥∥∥∥
2

− 1
m2

m∑
k=1

∥∥∥∥∥
n∑

i=1
rk,ixi

∥∥∥∥∥
2

. (A.110)

Using the expression of clustered sampling variance for the first term (equation (A.47)), and
using Jensen’s inequality on the third term completes the proof. Jensen’s inequality is an
equality if and only if

∑n
i=1 rk,ixi =

∑n
j=1 rk,jxj .

We adapt Theorem 2.1 to Clustered sampling. Fraboni, Vidal, Kameni, et al. (2021) prove
the convergence of FL with clustered sampling by giving identical convergence guarantees
to the one of FL with MD sampling. As a result, their convergence bound does not depend
of the clients selection probability in the different clusters rk,i. The authors’ claim was that
reducing the variance of the aggregation weights provides faster FL convergence, albeit
only providing experimental proofs was provided to support this statement. Corollary A.1
here proposed extends the theory of Fraboni, Vidal, Kameni, et al. (2021) by theoretically
demonstrating the influence of clustered sampling on the convergence rate. For easing the
notation, Corollary A.1 is adapted to FEDAVG but can easily be extended to account for any
local ai using the proof of Theorem A.1 in Section A.2.3.

Corollary A.1. Even with no α such that Cov [ωi(St)] ωj(St) = −αpipj , the bound of
Theorem 2.1 still holds with B, C, and D defined as in Section A.2.3 and

A = m

[
1
m
− 1

m2

n∑
i=1

m∑
k=1

r2
k,i +

n∑
i=1

p2
i

]
, E = 1

m
(K − 1), and F = 1

m
K, (A.111)

where E and F are identical to the one for MD sampling and A is smaller than the one for
Clustered sampling.

Proof. The covariance property required for Theorem A.1 is only used for Lemma A.1. In
the proof of Theorem A.1, Lemma A.1 is only used in equation (A.84). We can instead use
Lemma A.4 and keep the rest of the proof as it is in Section A.2.3. Therefore, the bound of
Theorem A.1 remains unchanged for clustered sampling where E and F use the aggregation
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weight statistics of MD sampling instead of clustered sampling. Statistics for MD sampling
can be found in Section A.1.3 and give

Var
[

n∑
i=1

ωi(SMD)
]

= 0 and αMD = 1
m

, (A.112)

while the ones of clustered sampling in Section A.1.7 give

n∑
i=1

Var [ωi(SCl)] = 1
m
− 1

m2

n∑
i=1

m∑
k=1

r2
k,i ≤

n∑
i=1

Var [ωi(SMD)] . (A.113)

A.2.7 Proof of Corollary 2.1

Proof. Combining equation (A.14) with equation (A.21) gives

ΣMD − ΣU =
[
− 1

m

n∑
i=1

p2
i + 1

m

]
−
(

n

m
− 1

) n∑
i=1

p2
i = − 1

m

[
(n−m + 1)

n∑
i=1

p2
i − 1

]
.

(A.114)

Therefore, we have

ΣMD ≤ ΣU ⇔
n∑

i=1
p2

i ≤
1

n−m + 1 . (A.115)

Combining equation (A.16), (A.17), (A.29), and (A.30) gives

γMD − γU =
n∑

i=1
Var [ωi(SMD)] + αMD

n∑
i=1

p2
i −

(
n∑

i=1
Var [ωi(SU )] + αU

n∑
i=1

p2
i

)
(A.116)

= 1
m
− n−m

m(n− 1)n
n∑

i=1
p2

i . (A.117)

Therefore, we have

γMD ≤ γU ⇔
n∑

i=1
p2

i ≤
1

n−m

n− 1
n

. (A.118)

Noting that

1
n−m + 1 −

1
n−m

n− 1
n

= −m + 1
n(n−m)(n−m + 1) ≤ 0, (A.119)
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Fig. A.1.: Difference between the convergence of the global losses resulting from MD and Uniform
sampling when considering n = 80 clients and sampling m ∈ {4, 8, 40} of them
while clients perform K = 50 SGD steps . In (a), clients have identical importance,
i.e. pi = 1/n. In (b), clients importance is proportional to their amount of data, i.e.
pi = ni/M . Differences in global losses are averaged across 15 FL experiments with
different model initialization (global losses are provided in Figure A.2).

completes the proof.

A.3 Additional experiments

A.3.1 Shakespeare dataset

The client local learning rate ηl is selected in {0.1, 0.5, 1., 1.5, 2., 2.5} minimizing FEDAVG

with full participation, and n = 80 training loss at the end of the learning process.

A.3.2 CIFAR10 dataset

We consider the experimental scenario used to prove the experimental correctness of clus-
tered sampling in (Fraboni, Vidal, Kameni, et al., 2021) on CIFAR10 (Krizhevsky et al.,
n.d.). The dataset is partitioned in n = 100 clients using a Dirichlet distribution with
parameter α = 0.1 as proposed in Harry Hsu et al., 2019. 10, 30, 30, 20 and 10 clients have
respectively 100, 250, 500, 750, and 1000 training samples, and testing samples amounting
to a fifth of their training size. The client local learning rate ηl is selected in {0.01, 0.02,
0.05, 0.1}.
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Fig. A.2.: Convergence speed of the global loss with MD sampling and Uniform sampling when
considering n = 80 clients while sampling m = 4 ((a) and (c)), and m = 8 ((b) and (d))
while clients perform K = 50 SGD steps. In (a-b) , clients have identical importance,
i.e. pi = 1/n, and, in (d-f), their importance is proportional to their amount of data, i.e.
pi = ni/M . Global losses are estimated on 15 different model initialization.
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Fig. A.3.: Difference between the convergence of the global losses resulting from MD and Uniform
sampling when considering n = 80 clients and sampling m ∈ {8, 40} of them while
clients perform K = 1 SGD step. In (a), clients have identical importance, i.e. pi = 1/n.
In (b), clients importance is proportional to their amount of data, i.e. pi = ni/M .
Differences in global losses are averaged across 15 FL experiments with different model
initialization (global losses are provided in Figure A.4).

A.3 Additional experiments 159



0 500 1000 1500 2000 2500

2

3

4

(
t )

(a) - m = 8

0 500 1000 1500 2000 2500

2

3

4

(b) - m = 40

0 500 1000 1500 2000 2500
# rounds

2

3

4

(
t )

(c) - m = 8

0 500 1000 1500 2000 2500
# rounds

2

3

4

(d) - m = 40

MD Uniform

Fig. A.4.: Convergence speed of the global loss with MD sampling and Uniform sampling when
considering n = 80 clients while sampling m = 4 ((a) and (d)), m = 8 ((b) and (e)),
m = 40 ((c) and (f)) while clients perform K = 1 SGD steps. In (a-c) , clients have
identical importance, i.e. pi = 1/n, and, in (d-f), their importance is proportional to
their amount of data, i.e. pi = ni/M . Global losses are estimated on 15 different model
initialization.
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Fig. A.5.: Convergence speed of the global loss with MD sampling and Uniform sampling when
considering n = 100 clients, while sampling m = 10 of them. Clients are partitioned
using a Dirichlet distribution with parameter α = 0.1 (a), α = 0.01 (b), and α = 0.001
(c). Global losses are estimated on 30 different model initialization.
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Appendix of Chapter 3 B
B.1 Proof of Theorem 3.2

Theoretical guarantees regarding the convergence of FEDAVG were given in Jianyu Wang,
Q. Liu, et al. (2020). The proof relies on Assumption 3.1 to 3.3. The full proof is provided
in Jianyu Wang, Q. Liu, et al. (2020) for MD sampling where the MD sampling is shown
to satisfy Lemma B.1. In Section B.1.1, we reproduce the proof provided in Jianyu Wang,
Q. Liu, et al. (2020) for Lemma B.1 and, in Section B.1.2, we show that clustered sampling
satisfying Proposition 3.1 also satisfies Lemma B.1. As a result, FEDAVG when sampling
clients with MD or clustered sampling has identical asymptotic behavior.

Lemma B.1. Suppose we are given z1, z2, ..., zn, x ∈ Rd. Let l1, l2, ..., lm be the index of
the sampled clients and S be the set of sampled clients. We have

ES

 1
m

m∑
j=1

zlj

 =
n∑

i=1
pizi, (B.1)

and

ES


∥∥∥∥∥∥ 1

m

m∑
j=1

zlj

∥∥∥∥∥∥
2
 ≤ 3

n∑
i=1

pi ∥zi −∇Li(x)∥2 + 3 ∥∇L(x)∥2 + 3
m

(β2 ∥∇L(x)∥2 + κ2).

(B.2)

B.1.1 Proof of Lemma B.1 for Theorem 3.1

Proof. Clients are selected with MD sampling. We denote by l1, l2, ..., lm the m indices of
the sampled clients which are iid sampled from a multinomial distribution supported on
{1, ..., n} satisfying P(lx = i) = pi and

∑n
i=1 pi = 1.

By definition, MD sampling satisfies equation (B.1).
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Regarding equation (B.2), we have:

1
m

m∑
j=1

zlj =

 1
m

m∑
j=1

zlj −
1
m

∑
j=1
∇Llj (x)


+

 1
m

m∑
j=1
Llj (x)−∇L(x)

+∇L(x). (B.3)

Using the Jensen inequality on the ∥·∥2 operator, we get:

E


∥∥∥∥∥∥ 1

m

m∑
j=1

zlj

∥∥∥∥∥∥
2
 ≤ 3E


∥∥∥∥∥∥ 1

m

m∑
j=1

(zlj −∇Llj (x))

∥∥∥∥∥∥
2


+ 3E


∥∥∥∥∥∥ 1

m

m∑
j=1
∇Llj (x)−∇L(x)

∥∥∥∥∥∥
2
+ 3 ∥∇L(x)∥2 (B.4)

Using the Jensen inequality, we get the following upper bound for the first term:

E


∥∥∥∥∥∥ 1

m

m∑
j=1

(zlj −∇Llj (x))

∥∥∥∥∥∥
2
 ≤ E

 1
m

m∑
j=1

∥∥∥zlj −∇Llj (x)
∥∥∥2
 (B.5)

=
n∑

i=1
pi ∥zi −∇Li(x)∥2 , (B.6)

where the equality follows from equation (B.1).

By definition, MD sampling is unbiased, i.e. E
[
∇Llj (x)

]
= ∇L(x). Therefore, we get the

following upper bound for the second term:

E


∥∥∥∥∥∥ 1

m

m∑
j=1
∇Llj (x)−∇L(x)

∥∥∥∥∥∥
2
 = E

 1
m2

m∑
j=1

∥∥∥∇Llj (x)−∇L(x)
∥∥∥2
 (B.7)

= 1
m

n∑
i=1

pi∥∇Li(x)−∇L(x)∥2 (B.8)

= 1
m

n∑
i=1

pi ∥∇Li(x)∥2 − 1
m
∥∇L(x)∥2 (B.9)

≤ 1
m

[(β2 − 1) ∥∇L(x)∥2 + κ2] (B.10)

≤ 1
m

[β2 ∥∇L(x)∥2 + κ2], (B.11)

where the first inequality comes from using Assumption 3.3.

Finally, substituting equation (B.6) and (B.11) in equation (B.4) completes the proof.
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B.1.2 Proof of Lemma B.1 for Theorem 3.2

Proof. Clients are selected with clustered sampling. The m clients indices l1, l2, ..., lm are
still independently sampled but no longer identically. Each index lk is sampled from a
distribution Wk. Each client can be sampled with probability P(lk = i) = rk,i.

Clustered sampling follows Proposition 3.1 and therefore satisfies equation (B.1).

Equation (B.4) holds for any sampling schemes. Therefore, we also use it to prove equation
(B.2) for clustered sampling. Using the same steps as for the proof of Lemma B.1 for MD
sampling, we bound the first term of equation (B.4) as:

E


∥∥∥∥∥∥ 1

m

m∑
j=1

(zlj −∇Llj (x))

∥∥∥∥∥∥
2
 ≤ n∑

i=1
pi ∥zi −∇Li(x)∥2 .

Before bounding the second term, we define ∇LWk
(x) as the expected gradient of the

distribution Wk with respects to the parameters x, i.e.

∇LWk
(x) := Elk∼Wk

[∇Llk(x)] =
n∑

i=1
rk,i∇Li(x) (B.12)

Using this definition, we bound the second term as

E

∥∥∥∥∥ 1
m

m∑
k=1
∇Llk(x)−∇L(x)

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1
m

m∑
k=1

(∇Llk(x)−∇LWk
(x))

∥∥∥∥∥
2
 (B.13)

= 1
m2

m∑
k=1

E
[
∥∇Llk(x)−∇LWk

(x)∥2
]

(B.14)

= 1
m2

m∑
k=1

n∑
i=1

rk,i ∥∇Li(x)−∇LWk
(x)∥2 (B.15)

= 1
m2 [

n∑
i=1

mpi ∥∇Li(x)∥2 −
m∑

k=1
∥∇LWk

(x)∥2]

(B.16)

≤ 1
m

[β2 ∥∇L(x)∥2 + κ2], (B.17)

where the last inequality comes from using Assumption 3.3 and equation (B.14) and (B.16)
are obtained with equation (B.12).
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Finally, substituting equation (B.12) and (B.17) in equation (B.4) completes the proof.

Equation (B.9) and (B.16) allow us to theoretically identify the convergence improvement
of clustered sampling over MD sampling.

We define by BMD = 1
m

∑n
i=1 pi ∥∇Li(x)∥2 − 1

m ∥∇L(x)∥2, equation (B.9), and BCl =
1
m

∑n
i=1 pi ∥∇Li(x)∥2 − 1

m2
∑m

k=1 ∥∇LWk
(x)∥2, equation (B.16). Using the Jensen in-

equality, we get

−
m∑

k=1

1
m2 ∥∇LWk

(x)∥2 ≤ − 1
m

∥∥∥∥∥
m∑

k=1

1
m
∇LWk

(x)
∥∥∥∥∥

2

= − 1
m
∥∇L(x)∥2 (B.18)

with equality if and only if ∀k, l, ∇LWk
(x) = ∇LWl

(x). Thus, BCl ≤ BMD with equality
if and only if all the clients have the same data distribution or the considered clustered
sampling is MD sampling.

B.2 MD and Clustered Sampling Comparison

B.2.1 Client aggregation weight variance

As in Section 3.3, we denote by SMD and SC(t) the random variables associated respectively
to MD and clustered sampling. Also in Section 3.3, we have shown that

VarSMD
[ωi(SMD)] = 1

m2 mpi(1− pi), (B.19)

and

VarSC(t) [ωi(SC(t)] = 1
m2

m∑
k=1

rt
k,i(1− rt

k,i). (B.20)

Hence, we get:

VarSMD
[ωi(SMD)]−VarSC(t) [ωi(SC(t)] (B.21)

= 1
m2 [mpi(1− pi)−

m∑
k=1

rt
k,i(1− rt

k,i)] (B.22)
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We consider an unbiased clustered sampling. Therefore, the sum of probability for client i

over the m clusters satisfies
∑m

k=1 rt
k,i = mpi giving:

VarSMD
[ωi(SMD)]−VarSC(t) [ωi(SC(t)] = 1

m2 [
m∑

k=1
rt

k,i
2 −mp2

i ] (B.23)

Using the Cauchy-Schwartz inequality, we get:
∑m

k=1 rt
k,i

2×
∑m

k=1 12 ≥
(∑m

k=1 rt
k,i × 1

)2
=

(mpi)2 due to the unbiased aspect of the considered clustered sampling. As such, we get:

VarSMD
[ωi(SMD)]−VarSC(t) [ωi(SC(t)] ≥ 0, (B.24)

with equality if and only if rt
k,i = pi.

B.2.2 Probability for a client to be sampled at least once

In Section 3.3, we have shown that

p({i ∈ SMD}) = 1− (1− pi)m (B.25)

and

p({i ∈ SC(t)}) = 1−
m∏

k=1
(1− rt

k,i). (B.26)

Hence, we get:

p({i ∈ SMD})− p({i ∈ SC(t)}) (B.27)

=
m∏

k=1
(1− rt

k,i)− (1− pi)m (B.28)

We consider an unbiased clustered sampling. Therefore, when using the inequality of
arithmetic and geometric means, we get:

m∏
k=1

(1− rt
k,i) ≤

(∑m
k=1(1− rt

k,i)
m

)m

= (1− pi)m, (B.29)

with equality if and only if rt
k,i = pi. Finally, we get:

p({i ∈ SMD}) ≥ p({i ∈ SC(t)}) (B.30)
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∑n

i=1 m ni = m M

Fig. B.1.: Illustration of the clients allocation scheme of Algorithm 2. Clients are considered in
decreasing importance of their number of samples and always allocate client samples to
distributions that already received samples but do not yet have M of them. As a result,
after allocating a client, all distributions except at most one have 0 or M samples. Client
i is only sampled in Wk because every distribution with index inferior to k are filled with
clients of index inferior to i, and because there is enough room in Wk to receive all the
samples that need to be allocated for client i.

B.3 Explaining Algorithm 2 and 3

Algorithms 2 and 3 can be written in term of data ratio pi instead of samples number ni.
While in both cases the algorithms would be correct, it turns out to be simpler to work with
quantities of samples ni = piM instead which are integers. Therefore, without loss of
generality, we denote by r′

k,i the number of samples allocated by client i to distribution k.

We retrieve the sampling probability of client i in distribution Wk with rk,i = r′
k,i

M .

Also, without loss of generality, we prove Algorithms 2 and 3 at iteration t and therefore we
use in the proofs rk,i and Wk instead of rt

k,i and W t
k.

B.3.1 Algorithm 2

We illustrate in Figure B.1 the clients allocation scheme of Algorithm 2 introduced in
Section 3.4, by considering how a client i is associated to the m distributions. Theorem
3.3 states that Algorithm 2 provides a sampling scheme satisfying Proposition 3.1 with
complexity O(n log(n)) which we prove in Section 3.4 and in the following proof.

Proof. In term of complexity, the while loop for the client allocation, as illustrated in
Figure B.1, either change client or distribution at every step and is thus done in complexity
O(n + m). Sampling client is relevant if m < n. Therefore the allocation complexity
is equivalent to O(n + m) = O(n). Also, sorting n elements is done in complexity
O(n log(n)). Therefore, Algorithm 2 overall complexity is O(n log(n).
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Fig. B.2.: Illustration of the clients allocation scheme of Algorithm 3. After the tree is split in K
groups of clients, the groups are ordered and we consider without loss of generality that
their number of samples are inversely proportional to their index. With Algorithm 3, the
first m groups, i.e. B1 to Bm, are each associated to one distribution, i.e. W1 to Wm.
The remaining groups are considered one after the other and split among the remaining
slots in the groups. Each distribution has M samples from clients participating to the FL
process.

B.3.2 Algorithm 3

We illustrate in Figure B.2, the clients allocation scheme of Algorithm 3 introduced in
Section 3.5 by considering how a client i is associated to the m distributions. Theorem 3.4
states that Algorithm 3 provides a sampling scheme satisfying Proposition 3.1 and takes
time complexity O(n2d + X). We prove these statements in Section 3.5 and the following
proof.

Proof. With identical reasoning as for Algorithm 2, clients are allocated in complexityO(n).
Computing the similarity between two clients requires d elementary operations, where d

is the number of parameters in the model, and has thus complexity O(d). Computing the
similarity matrix requires computing n(n−1)

2 client similarities and thus has total complexity
O(n2d). Computing the similarity tree depends on the clustering method which we consider
has complexity O(X). Transforming the tree as discussed in Section 3.5 requires going
through its n − 1 nodes and thus has time complexity O(n). Cutting the tree requires
considering at most every nodes and has thus complexity O(n). Lastly, the tree is cut
in at most n branches and sorting them takes therefore complexity O(n log(n). Finally,
combining all these time complexities gives for Algorithm 3 a time complexity of O(n2d +
X).
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In practice, the m distributions are computed at every iteration, while the server is required
to compute the similarity between sampled clients and all the other clients. Therefore the
similarity matrix can be estimated in complexity O(nmd), and Algorithm 3 has complexity
O(nmd + X).

B.4 Additional Experiments

We describe in Section 3.6 the different datasets used for the experiments and how we use
the Dirichlet distribution to partition CIFAR10 in realistic heterogeneous federated datasets.
In all the experiments, we consider a batch size of 50. For every CIFAR10 dataset partition,
the learning rate is selected in {0.001, 0.005, 0.01, 0.05, 0.1} to minimize FEDAVG with
MD sampling training loss.

B.4.1 CIFAR10 partitioning illustration

In Figure B.3, we show the influence of α on the resulting federated dataset heterogeneity.
α = 10 provides almost an iid dataset and identical class percentages, column (a) , and same
number of samples per class, column (b). With α = 0.001, we get a very heterogeneous
dataset with almost only one class per client translating into some classes much more
represented than others due to the unbalanced nature aspect of the created federated dataset,
cf Section 3.6.

B.4.2 Influence of the similarity measure

Figure B.4 shows the effect similarity measures (Arccos, L2, and L1) have on training global
loss convergence. We retrieve that Algorithm 2 outperforms MD sampling by reducing
clients aggregation weight variance. We remind that the hierarchical tree is obtained using
Ward’s method in this work. We notice that the tree similarity measures gives similar
performances when using Algorithm 3 with Ward hierarchical clustering method.. This
justifies the use of Arccos similarity for the other experiments.
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Fig. B.3.: Effect of α on the resulting clients partitioning when using a Dirichlet distribution. Plots
in column (a) represent the percentage of each class owned by the clients. Plots in column
(b) give for every class its total number of samples across clients. We consider in this
work α ∈ {0.001, 0.01, 0.1, 10}.
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Fig. B.4.: Effect of the similarity measure chosen for Algorithm 3 on the training loss convergence.
We consider the evolution of the global loss, equation (3.1), in function of the server
iteration t. For clarity concerns, we plot the global loss obtained with rolling mean
over 50 server iterations (top) and the raw global loss (bottom). We consider CIFAR
partitioned with Dir(α = 0.01), learning rate lr = 0.05, N = 100 SGD, and m = 10
sampled clients.
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B.4.3 More details on Figure 3.2

For sake of clarity, we note that the training loss displayed in Figures 3.2 is computed as the
rolling mean over 50 iterations. In Figure B.5, we provide the raw training global loss with
the testing accuracy at every server iteration.

B.4.4 Influence of m the number of sampled clients, and N the
number of SGD run

We also investigates the influence the number of sampled clients m and the number of
SGD run N have on the FL convergence speed and smoothness in Figure B.6. We notice
that the more important the amount of local work N is, and the faster clustered sampling
convergence speed is. With more local work, clients better fit their data. In non-iid dataset
this translates in more forgetting on the classes and samples which are not part of the
sampled clients. Regarding the amount of sampled clients m, we notice that with a smaller
amount of sampled clients the improvement of clustered sampling over MD sampling is
more important. We associate this result to the better data representativity of clustered
sampling. For the same reason, when we increase the number of sampled clients, we see
faster convergence for both MD and clustered sampling. The performance of clustered
sampling is closer but still better than the one of MD sampling.

For sake of clarity, we note that the training loss displayed in Figures B.6 is computed as
the rolling mean over 50 iterations. In Figure B.5, we provide the raw training global loss
with the testing accuracy at every server iteration.

B.4.5 Local regularization

With FedProx (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a), every client’s
local loss function is equipped with a regularization term forcing the updated model to stay
close to the current global model, i.e.

L′
i(θt+1

i ) = Li(θt+1
i ) + µ

2

∥∥∥θt+1
i − θt

∥∥∥2
(B.31)

where θt+1 is the updated local model of client i and θt is the current global model. µ is
the hyperparameter monitoring the regularization and is common for all the clients. This
framework enables smoother federated learning processes.
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Fig. B.5.: We investigate the improvement provided by clustered sampling on federated unbalanced
datasets partitioned from CIFAR10 using a Dirichlet distribution with parameter α ∈
{0.001, 0.01, 0.1, 10} for respective row (a), (b), (c), (d). We use N = 100, m = 10,
and respective learning rate for each dataset lr = {0.05, 0.05, 0.05, 0.1}.
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Fig. B.6.: We consider the federated dataset partitioned from CIFAR10 using a Dirichlet distribution
with parameter α = 0.01. We investigate the influence of N , the number of SGD run by
each client, and m, the number of sampled clients, on the training loss convergence. For
each plot, experiments in first row use respectively lr = {0.1, 0.05} and for second row
lr = {0.05, 0.05}.
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Fig. B.7.: We consider the federated dataset partitioned from CIFAR10 using a Dirichlet distribution
with parameter α = 0.01. We investigate the influence of N the number of SGD run by
each client in the first two rows with N = 10 and N = 500 for m = 10 and the influence
of sampled clients with m = 5 and m = 20 for N = 100 in the last two rows. For each
dataset, we use respective learning rate lr = {0.1, 0.05, 0.05, 0.05}.
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Fig. B.8.: Training loss convergence for FL with FedProx local loss function regularization (µ =
0.1). We consider CIFAR10 partitioned with Dir(α = 0.01), learning rate lr = 0.05,
m = 10 sampled clients, and N = 100 SGD.

We try a range of regularization term µ ∈ {0.001, 0.01, 0.1, 1.} and keep µ = 0.1 maxi-
mizing the performances of FEDAVG with regularization and MD sampling. We notice in
Figure B.8 that Algorithm 2 and 3 still outperform MD sampling.
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Appendix of Chapter 4 C
C.1 Proof of Theorem 4.1

We first provide in Section C.1.2 the basic inequalities used in our proofs, and in Section
C.1.3 the basic notations used to provide clearer proofs.

C.1.1 Bounding the convergence residual Σ

As defined in Section 4.2.5, the convergence residual is defined as

Σ :=
M∑

i=1
qi Eξi

[∥∥∥∇Li(θ̄, ξi)
∥∥∥2
]

. (C.1)

When considering that the clients gradient estimator are bounded by σ2, then each client
gradient estimator satisfies

Eξi

[∥∥∥∇Li(θ̄, ξi)−∇Li(θ̄)
∥∥∥2
]
≤ σ2. (C.2)

Under this assumption, we can bound Σ as follows

Σ ≤
M∑

i=1
qi

∥∥∥∇Li(θ̄)
∥∥∥2

+ q(n)σ2 (C.3)

≤ 2L
M∑

i=1
qi

[
Li(θ̄)− Li(θ∗

i )
]

+ q(n)σ2, (C.4)

where the first inequality follows from the unbiasedness of the gradient estimator, Assump-
tion 4.3, and the second inequality from the Lipschitz smoothness of every client loss
function, Assumption 4.1. With both equation (C.3) and (C.4), the convergence guarantees
of Theorem 4.1 can be extended to account for bounded gradient estimator bounded variance,
an additional assumption unneeded in this work.
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Tab. C.1.: Common Notation Summary (addition to Table 4.1).

Symbol Description
M Number of clients.
K Number of local SGD.

ηg, ηl Global/Local learning rate.
η̃ Effective learning rate, η̃ = ηlηg.

θn Global model at server iteration n.
θn+1

i Local update of client i on model θn.
θ∗, θ∗

i Optimum of the federated problem (4.2)/client i.
θn,k, θn,k

i Global/Local update after k SGD on global model θn.
α Covariance parameter.
β Defined in Theorem 4.1.

L(·),Li(·) Federated/local loss function.
gi(·) SG. We have Eξi

[gi(·)] = ∇Li(·) with Assumption 4.3.
ξi Random batch of samples from client i of size B.
L Lipschitz smoothness parameter, Assumption 4.1.
Ti Computation time of client i.
tn Time at aggregation n.
T n

i Remaining computation time of client i at time tn.
∆tn Time elapsed between two server aggregations.
ρi(n) Last index at which a client i received its global model.

ρ Highest sum of aggregation weights, i.e. ρ := max (1, q(n))

C.1.2 Basic Inequalities

We provide the following basic inequalities used in our proofs.

Let us consider f a L-Lipschitz smooth and convex function with optimum x∗. For any
vector x and y, we have

∥∇f(x)∥2 ≤ 2L[f(x)− f(x∗)], and ∥∇f(x)−∇f(y)∥2 ≤ L2 ∥x− y∥2 . (C.5)

Let us consider g a convex function and d vectors {xk} each with importance pk such that∑d
k=1 pk = 1. With Jensen inequality, we have

g(
d∑

k=1
pkxk) ≤

d∑
k=1

pkg(xk). (C.6)

Let us consider the random variable X , we have

E
[
∥X − E [X]∥2

]
≤ E

[
∥X∥2

]
. (C.7)
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C.1.3 Additional Notation

In Table 4.1, we synthesize the different random variables associated to the clients aggrega-
tion weights. In Table C.1, we synthesize the remaining random variables.

We introduce the following notations to provide clear and compact proofs. Whenever
considering a function f(n, k), we define f(n) := 1/K

∑K−1
k=0 f(n, k), and f̄(N) :=

1/N
∑N−1

n=0 f(n). We introduce the following quantities

D(x, n, k) := E
[
⟨

M∑
i=1

qi(n)∇Li(θρi(n),k
i ), θn,k − x⟩

]
, Q(n) := E

[∥∥∥θn+1,0 − θn,0
∥∥∥2
]

,

(C.8)

R(n, k) := E

∥∥∥∥∥
M∑

i=1
q̃i(n)gi(θρi(n),k

i )
∥∥∥∥∥

2 , S(n, k) :=
M∑

i=1
q̃i(n)E

[∥∥∥gi(θρi(n),k
i )

∥∥∥2
]

,

(C.9)

Z(n, k) = Ln(θn,k)− Ln(θ̄n), ∆(n, k) := E
[∥∥∥θn,k+1 − x

∥∥∥2
]
− E

[∥∥∥θn,k − x
∥∥∥2
]

,

(C.10)

ϕ(n, k) :=
M∑

i=1
q̃i(n)E

[∥∥∥θρi(n),k
i − θn,k

∥∥∥2
]

, σ1(n) :=
M∑

i=1
q̃i(n)E

[∥∥∥∇Li(θ̄n, ξi)
∥∥∥2
]

,

(C.11)

σ2(n) :=
M∑

i=1
q̃2

i (n)E
[∥∥∥∇Li(θ̄n, ξi)

∥∥∥2
]

, and Ξ(n, k) = Ln(θn,k)− Ln(x). (C.12)

Finally, we define gi(y) = ∇Li(y, ξi) the SG of client i evaluated on model parameters y

and batch ξi. We will thus write gi(θρi(n)
i,k ) instead of∇Li(θρi(n)

i,k , ξ
ρi(n)
i,k ).

C.1.4 Useful Lemmas

Lemma C.1. Let us consider n vectors xi, ..., xn. We have

ESn

∥∥∥∥∥
M∑

i=1
ωi(n)xi

∥∥∥∥∥
2 =

M∑
i=1

γi(n) ∥xi∥2 + α

∥∥∥∥∥
M∑

i=1
qi(n)xi

∥∥∥∥∥
2

, (C.13)
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where γi(n) = ESn

[
ω2

i (n)
]
− αq2

i (n) ≥ 0, and γi(n) ≤ βqi(n) with β := max{di(n)−
αqi(n)}.

Proof. We first propose the following intermediary result. For any y ∈ R, we have

ESn [ωi(n)ωj(n)] y ≤ αqi(n)qj(n)y. (C.14)

When y ≥ 0, equation (C.14) follows directly from Property 4.1. When y < 0, equation
(C.14) follows from providing a lower bound to the joint probability of two Bernoullis and
the fact that α ∈ [−1, 1]. Indeed, in that case, we have

P(T n
i ≤ ∆tn, T n

j ≤ ∆tn) ≥ P(T n
i ≤ ∆tn)P(T n

j ≤ ∆tn) ≥ αP(T n
i ≤ ∆tn)P(T n

j ≤ ∆tn).
(C.15)

Going back to the stochastic sum of vectors, we have

ESn

∥∥∥∥∥
M∑

i=1
ωi(n)xi

∥∥∥∥∥
2 =

M∑
i=1

ESn

[
ω2

i (n)
]
∥xi∥2 +

M∑
i=1

M∑
j=1
j ̸=i

ESn [ωi(n)ωj(n)] ⟨xi, xj⟩

(C.16)

≤
M∑

i=1
ESn

[
ω2

i (n)
]
∥xi∥2 +

M∑
i=1

M∑
j=1
j ̸=i

αqi(n)qj(n)⟨xi, xj⟩, (C.17)

where we use equation (C.14) to obtain the inequality. In addition, we have

M∑
i=1

M∑
j=1
j ̸=i

⟨qi(n)xi, qj(n)xj⟩ =
∥∥∥∥∥

M∑
i=1

qi(n)xi

∥∥∥∥∥
2

−
M∑

i=1
q2

i (n) ∥xi∥2 . (C.18)

Substituting equation (C.18) in equation (C.17) completes the first claim.

Considering that ESn

[
ω2

i (n)
]

= Var [ωi(n)] + q2
i (n) ≥ q2

i (n) and α ≤ 1, we have
γi(n) ≥ 0 which completes the second claim.

Finally, the third claim follows directly from the close-form of the clients aggregation
weights, equation (4.5).
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Remark. We can also provide the following lower bound for equation (C.18) using Jensen
inequality

M∑
i=1

M∑
j=1
j ̸=i

⟨qi(n)xi, qj(n)xj⟩ ≥
∥∥∥∥∥

M∑
i=1

qi(n)xi

∥∥∥∥∥
2

− max qi(n)
q(n)

∥∥∥∥∥
M∑

i=1
qi(n)xi

∥∥∥∥∥
2

≥ 0. (C.19)

Therefore, ESn

[∥∥∥∑M
i=1 ωi(n)xi

∥∥∥2
]

is linearly proportional to α.

Lemma C.2. The following equation holds for any vector x:

∆(n) ≤ −2η̃D(x, n) + η̃2αq2(n)R(n) + η̃2βq(n)S(n). (C.20)

Proof. We consider Sn, the set of participating clients at optimization round n, i.e. Sn =
{n : T n

i ≤ ∆tn}. We have

ESn

[∥∥∥θn,k+1 − θ∗
∥∥∥2
]

= ESn

[∥∥∥(θn,k+1 − θn,k) + (θn,k − θ∗)
∥∥∥2
]

(C.21)

=
∥∥∥θn,k − θ∗

∥∥∥2
+ 2⟨ESn

[
θn,k+1 − θn,k

]
, θn,k − θ∗⟩

+ ESn

[∥∥∥θn,k+1 − θn,k
∥∥∥2
]

. (C.22)

By construction, we have θn,k+1 − θn,k = −η̃
∑M

i=1 ωi(n)gi(θρi(n),k
i ). Taking the expecta-

tion over Sn, we can simplify the second term of equation (C.22) with ESn

[
θn,k+1 − θn,k

]
=

−η̃
∑M

i=1 qi(n)gi(θρi(n),k
i ). Finally, using Lemma C.1, we can bound the third term. There-

fore, we have

ESn

[∥∥∥θn,k+1 − θ∗
∥∥∥2
]

=
∥∥∥θn,k − θ∗

∥∥∥2
+ 2η̃⟨

M∑
i=1

qi(n)gi(θρi(n),k
i ), θn − θ∗⟩

+ η̃2
M∑

i=1
γi(n)

∥∥∥gi(θρi(n),k
i )

∥∥∥2
+ η̃2α

∥∥∥∥∥
M∑

i=1
qi(n)gi(θρi(n),k

i )
∥∥∥∥∥

2

.

(C.23)

Considering γi(n) ≤ βqi(n), taking the expected value over the iteration random batches
ξρi(n),k, and finally taking the expected value over the remaining random variables gives

∆(n, k) ≤ −2η̃D(x, n, k) + η̃2αq2(n)R(n, k) + η̃2βq(n)S(n, k). (C.24)

Taking the mean over K completes the proof.
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Lemma C.3. Under Assumption 4.3 and 4.1, and D := 6η2
l (K − 1)2L2 ≤ 1/2, we have

ϕ(n) ≤ 4q(n)τ
τ∑

s=1
Q(n− s) + 4D

1
L

q−1(n)Z(n) + 6η2
l (K − 1)2σ1(n), (C.25)

and S(n) ≤ 12q(n)L2τ
τ∑

s=1
Q(n− s) + 12Lq−1(n)Z(n) + 6σ1(n). (C.26)

Proof. Let us decompose the difference θ
ρi(n),k
i − θn,k as

θ
ρi(n),k
i − θn,k =

[
θρi(n) − ηl

k−1∑
l=0

gi(θρi(n),l
i )

]
−
[
θn − ηl

k−1∑
l=0

M∑
i=1

q̃i(n)gi(θρi(n),l
i )

]
.

(C.27)
Using Jensen inequality, we split the difference between the global models and the one
between the gradients to get

∥∥∥θρi(n),k
i − θn,k

∥∥∥2
≤ 2

∥∥∥θρi(n) − θn
∥∥∥2

+ 2η2
l k

k−1∑
l=0

∥∥∥∥∥gi(θρi(n),l
i )−

M∑
i=1

q̃i(n)gi(θρi(n),l
i )

∥∥∥∥∥
2

.

(C.28)
Therefore, by taking the expectations of equation (C.28) and summing over M gives

ϕ(n, k) ≤ 2
M∑

i=1
q̃i(n)E

[∥∥∥θρi(n) − θn
∥∥∥2
]

+ 2η2
l k

k−1∑
l=0

M∑
i=1

q̃i(n)E

∥∥∥∥∥gi(θρi(n),l
i )−

M∑
i=1

q̃i(n)gi(θρi(n),l
i )

∥∥∥∥∥
2 (C.29)

≤ 2
M∑

i=1
q̃i(n)E

[∥∥∥θρi(n) − θn
∥∥∥2
]

+ 2η2
l k

k−1∑
l=0

M∑
i=1

q̃i(n)E
[∥∥∥gi(θρi(n),l

i )
∥∥∥2
]

,

(C.30)

where we see that S(n, l) appears in the second term of equation (C.30). We consider now
bounding S(n, k), and first note that a stochastic gradient can be bounded as follow

E
[∥∥∥gi(θρi(n),k

i )
∥∥∥2
]
≤ 3E

[∥∥∥∇Li(θρi(n),k
i , ξ

ρi(n)
i,k )−∇Li(θn,k, ξ

ρi(n)
i,k )

∥∥∥2
]

+ 3E
[∥∥∥∇Li(θn,k, ξi)−∇Li(θ̄n, ξi)

∥∥∥2
]

+ 3E
[∥∥∥∇Li(θ̄n, ξi)

∥∥∥2
]

.

(C.31)

184 Appendix C Appendix of Chapter 4



When summing equation (C.31) over M , and considering the clients loss functions Lipschitz
smoothness, Assumption 4.1, we have

S(n, k) =
M∑

i=1
q̃i(n)E

[∥∥∥gi(θρi(n),k
i )

∥∥∥2
]
≤ 3L2ϕ(n, k) + 6Lq−1(n)Z(n, k) + 3σ1(n).

(C.32)

We also note the following intermediary results

K−1∑
k=0

k
k−1∑
l=0

xl ≤ (K − 1)
K−1∑
k=1

k−1∑
l=0

xl ≤ (K − 1)2
K−2∑
k=0

xk ≤ (K − 1)2
K−1∑
k=0

xk. (C.33)

We substitute equation (C.32) in equation (C.30) such that D appears, take the mean over
K to introduce ϕ(n) on the two sides of the equation, and use equation (C.33). We have

ϕ(n) ≤ 2
M∑

i=1
q̃i(n)E

[∥∥∥θρi(n) − θn
∥∥∥2
]

+ Dϕ(n) + 2D
1
L

q−1(n)Z(n)

+ 6η2
l (K − 1)2σ1(n). (C.34)

Finally, reminding that D ≤ 1/2, which gives 1−D ≥ 1/2, and using Assumption 4.4 to

bound E
[∥∥∥θρi(n) − θn

∥∥∥2
]

with Jensen inequality completes the first claim for ϕ(n), i.e.

E
[∥∥∥θρi(n) − θn

∥∥∥2
]
≤ τ

τ∑
s=1

E
[∥∥∥θn−s+1 − θn−s

∥∥∥2
]

= τ
τ∑

s=1
Q(n− s). (C.35)

Substituting the close-form of ϕ(n) in equation (C.32) completes the claim for S(n, k).

Lemma C.4. Under Assumption 4.2 and 4.3, we have

−2D(x, n) ≤ −2Ξ(n) + 4Lq(n)τ
τ∑

s=1
Q(n− s) + 4DZ(n) + 6η2

l (K − 1)2q(n)Lσ1(n).

(C.36)

Proof. Follows directly from using Lemma 12 in Khaled et al., 2020a on D(x, n, k), taking
the mean over K, and using Lemma C.3 to bound ϕ(n) completes the proof.
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Lemma C.5. Under Assumption 4.1 and 4.3, and considering D ≤ 1/2, we have

R(n) ≤ 12L2τ
τ∑

s=1
Q(n− s) + 24Lq−1(n)Z(n) + 3Dσ1(n) + 6σ2(n). (C.37)

Proof.

R(n, k) ≤ 3E

∥∥∥∥∥
M∑

i=1
q̃i(n)

[
gi(θρi(n),k

i )−∇Li(θn,k, ξ
ρi(n)
i,k )

]∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
M∑

i=1
q̃i(n)

[
∇Li(θn,k, ξi)−∇Li(θn,k)

]∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
M∑

i=1
q̃i(n)∇Li(θn,k)

∥∥∥∥∥
2 . (C.38)

We respectively call the three terms of equation (C.38), a(n, k), b(n, k), and c(n, k). Using
the local loss functions Lipschitz smoothness, Assumption 4.1, and Jensen inequality, we
can bound a(n, k) as

a(n, k) ≤ 3
M∑

i=1
q̃i(n)E

[∥∥∥gi(θρi(n),k
i )−∇Li(θn,k, ξ

ρi(n)
i,k )

∥∥∥2
]
≤ 3L2ϕ(n, k). (C.39)

Using the unbiasedness of the gradient estimator, Assumption 4.3, and the local loss function
Lipschitz smoothness, Assumption 4.1, we can bound b(n, k) as

b(n, k) = 3
M∑

i=1
q̃2

i (n)E
[∥∥∥∇Li(θn,k, ξi)−∇Li(θn,k)

∥∥∥2
]

(C.40)

≤ 3
M∑

i=1
q̃2

i (n)E
[∥∥∥∇Li(θn,k, ξi)

∥∥∥2
]

(C.41)

≤ 6
M∑

i=1
q̃2

i (n)
[
E
[∥∥∥∇Li(θn,k, ξi)−∇Li(θ̄n, ξi)

∥∥∥2
]

+ E
[∥∥∥∇Li(θ̄n, ξi)

∥∥∥2
]]

(C.42)

≤ 12L max
i

(q̃i(n))
[
L̃n(θn,k)− L̃n(θ̄n)

]
+ 6

M∑
i=1

q̃2
i (n)E

[∥∥∥∇Li(θ̄n, ξi))
∥∥∥2
]

.

(C.43)
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Using the Lipschitz smoothness of the local loss functions, Assumption 4.1 and Jensen
inequality, we can bound c(n, k) as

c(n, k) ≤ 3E
[∥∥∥∇L̃n(θn,k)−∇L̃n(θ̄n)

∥∥∥2
]
≤ 6L

[
L̃n(θn,k)− L̃n(θ̄n)

]
. (C.44)

Substituting equation (C.39), equation (C.43), and equation (C.44) in equation (C.38),
considering that maxi(q̃i(n)) ≤ 1, and summing over K gives

R(n) ≤ 3L2ϕ(n) + 18Lq−1(n)Z(n) + 6σ2(n) (C.45)

Using Lemma C.3 to replace ϕ(n), and considering that D ≤ 1/2 < 1 completes the proof.

Lemma C.6. Under Assumption 4.1 and 4.3, considering that γi(n) ≤ βqi(n), and
considering 12ρ2 [α + β] η̃2K2τ2L2 ≤ 1/2, we have

Q̄(N) ≤ 24ρ [2α + β] η̃2K2LZ̄(N) + 6ρ2 [αD + 2β] η̃2K2Σ1(N) + 12ρ2αη̃2K2Σ2(N).
(C.46)

Proof. Considering the proof of Lemma C.2, using the fact that γi(n) ≤ βqi(n), and Jensen
inequality, we have

Q(n) ≤ q2(n)αη̃2 E

∥∥∥∥∥
M∑

i=1
q̃i(n)

K−1∑
k=0

gi(θρi(n),k
i )

∥∥∥∥∥
2

+ q(n)βη̃2
M∑

i=1
q̃i(n)E

∥∥∥∥∥
K−1∑
k=0

gi(θρi(n),k
i )

∥∥∥∥∥
2 (C.47)

≤ q2(n)αη̃2K2R(n) + q(n)βη̃2K2S(n) (C.48)

Using Lemma C.5 to bound R(n) and Lemma C.3 to bound S(n), we can thus bound Q(n)
with the previous global model distances to the optimum Q(s), where max(0, n − τ) ≤
s ≤ n− 1, we thus have

1
ρη̃2K2 Q(n) ≤ 12ρ [α + β] τL2

τ∑
s=1

Q(n− s) + 12 [2α + β] LZ(n)

+ 3ρ [αD + 2β] σ1(n) + 6ρασ2(n). (C.49)
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We can thus define A(n) and B(n) such that the bound of of equation (C.49) can be
rewritten as in equation (C.50), with its associated implications when taking the mean over
N , reordering, and considering that τA(n) ≤ 1/2:

Q(n) ≤ A(n)
τ∑

s=1
Q(n− s) + B(n)⇒ Q̄(N) = 1

N

N−1∑
n=0

Q(n) ≤ 2 1
N

N−1∑
n=0

B(n).

(C.50)

Therefore, considering 12ρ2 [α + β] η̃2K2τ2L2 ≤ 1/2 completes the proof.

C.1.5 Proof of Theorem 4.1

Proof. Using Lemma C.2, we have

1
η̃

∆(n) ≤ −2D(x, n) + ρ2αη̃R(n) + ρβη̃S(n) (C.51)

Using Lemma C.4 to bound D(x, n), Lemma C.5 to bound R(n), Lemma C.3 to bound
S(n), and 3ρ [α + β] η̃L ≤ 1, we get

1
η̃

∆(n) ≤ −2Ξ(n) + 8ρτL
τ∑

s=1
Q(n− s) + 4DZ(n) + 6ρη2

l (K − 1)2Lσ1(n)

+ 12 [2α + β] ρη̃LZ(n) + 3ρ2η̃ [αD + 2β] σ1(n) + 6ρ2αη̃σ2(n). (C.52)

When considering the following intermediary result

N−1∑
n=0

K∆(n) = E
[∥∥∥θKN − x

∥∥∥2
]
−
∥∥∥θ0 − x

∥∥∥2
≥ −

∥∥∥θ0 − x
∥∥∥2

, (C.53)

reordering the terms, and taking the mean over N , we get

2Ξ̄(N) ≤ 1
η̃KN

E
[∥∥∥θ0 − x

∥∥∥2
]

+ 8ρLτ2Q̄(N) + 4DZ̄(N) + 6ρη2
l (K − 1)2LΣ1(N)

+ 12ρ [2α + β] η̃LZ̄(N) + 3ρ2 [αD + 2β] η̃Σ1(N) + 6ρ2αη̃Σ2(N). (C.54)
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Using Lemma C.6 to bound Q̄(N), and with ν = 16ρL, we have

2Ξ̄(N) ≤ 1
η̃KN

E
[∥∥∥θ0 − x

∥∥∥2
]

+ 4DZ̄(N) + 6ρη2
l (K − 1)2LΣ1(N)

+ 12ρ [2α + β]
[
η̃ + νη̃2K2τ2

]
LZ̄(N) + 3ρ2 [αD + 2β]

[
η̃ + νη̃2K2τ2

]
Σ1(N)

+ 6ρ2α
[
η̃ + νη̃2K2τ2

]
Σ2(N). (C.55)

We note that when Ξ̄(N) ≤ 0, the claim follows directly. Therefore, we consider Ξ̄(N) ≥ 0
for the rest of this proof. We first note that

Z̄(N) = Ξ̄(N) + R({Ln}), (C.56)

and consider ηl such that

2− 4D − 12ρ [2α + β]
[
η̃ + νη̃2K2τ2

]
L ≥ 1, (C.57)

which gives

Ξ̄(N) ≤ 1
η̃KN

E
[∥∥∥θ0 − x

∥∥∥2
]

+ 4DR({Ln}) + 6ρη2
l (K − 1)2LΣ1(N)

+ 12ρ [2α + β]
[
η̃ + νη̃2K2τ2

]
LR({Ln})

+ 3ρ2 [αD + 2β]
[
η̃ + νη̃2K2τ2

]
Σ1(N)

+ 6ρ2α
[
η̃ + νη̃2K2τ2

]
Σ2(N). (C.58)

The 5th term can be simplified with the third one. Indeed, we consider a local learning rate
such that 3ρ2η̃L ≤ 1, 48ρ3η̃2K2τ2L2 ≤ 1, and we remind that α ≤ 1. We thus have

Ξ̄(N) ≤ 1
η̃KN

E
[∥∥∥θ0 − x

∥∥∥2
]

+O
(
η2

l (K − 1)2 [R({Ln}) + Σ1(N)]
)

+O
(
α
[
η̃ + η̃2K2τ2

]
[R({Ln}) + Σ2(N)]

)
+O

(
β
[
η̃ + η̃2K2τ2

]
[R({Ln}) + Σ1(N)]

)
. (C.59)

With

∥∇Li(θ, ξ)∥2 ≤ 2
∥∥∥∇Li(θ, ξ)−∇Li(θ̄, ξ)

∥∥∥2
+ 2

∥∥∥∇Li(θ̄, ξ)
∥∥∥2

, (C.60)

we have
Σ2(N) ≤ max qi(n)Σ1(N) ≤ max qi(n) [4LR(Ln) + 2Σ] . (C.61)

Finally, substituting equation (C.56) and (C.61) in equation (C.59) completes the proof.

C.1 Proof of Theorem 4.1 189



C.1.6 Simplifying the constraint on the learning rate

The constraints on the learning rate can be summarized as D = 6η2
l (K − 1)2L2 ≤ 1/2

(Lemma C.3), 12ρ2 [α + β] η̃2K2τ2L2 ≤ 1/2 (Lemma C.6), 3ρ [α + β] η̃L ≤ 1 (Theorem
4.1), 2− 4D − 12ρ [2α + β]

[
η̃ + νη̃2K2τ2]L ≥ 1 (Theorem 4.1), 3ρ2η̃L ≤ 1 (Theorem

4.1), and 48ρ3η̃2K2τ2L2 ≤ 1 (Theorem 4.1).

We note that α ≤ 1, and β ≤ 1. We thus propose the following sufficient conditions to
satisfy the conditions above

48η2
l (K − 1)2L2 ≤ 1, 144ρ2η̃L ≤ 1, and 2304ρ3η̃2K2τ2L2 ≤ 1, (C.62)

which can further be simplified with

ηl ≤
1

48KL
min

(
1,

1
3ρ2ηg(τ + 1)

)
. (C.63)

C.2 Proof of Theorem 4.2

In this proof, we consider L̃n = q−1(n)Ln.

C.2.1 Useful Lemma

Lemma C.7. The difference between the gradients of L(θ) and L(θ) can be bounded as
follow ∥∥∥∇L(θ)−∇L̃n(θ)

∥∥∥2
≤ 4Lχ2

n[L̃n(θ)−
∑

j∈Wn

s̃j(n)Lj(θ∗
j )]

+ 4L
∑

j /∈Wn

rj [Lj(θ)− Lj(θ∗
j )], (C.64)

where Wn = {j : sj(n) > 0} and χ2
n =

∑
j∈Wn

(rj − s̃j(n))2/s̃j(n).
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Proof. We have
∑J

j=1 sj(n) =
∑M

i=1 qi(n) = q(n). Hence, by definition of L(θ) and
Ln(θ), we have

∇L(θ)−∇L̃n(θ) =
J∑

j=1
(rj − s̃j(n))∇Lj(θ) (C.65)

=
∑

j∈Wn

rj − s̃j(n)√
s̃j(n)

√
s̃j(n)∇Lj(θ) +

∑
j /∈Wn

rj∇Lj(θ). (C.66)

Applying Jensen and Cauchy-Schwartz inequality gives

∥∥∥∇L(θ)−∇L̃n(θ)
∥∥∥2
≤ 2

∥∥∥∥∥∥
∑

j∈Wn

rj − s̃j(n)√
s̃j(n)

√
s̃j(n)∇Lj(θ)

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∑

j /∈Wn

rj∇Lj(θ)

∥∥∥∥∥∥
2

(C.67)

≤ 2

 ∑
j∈Wn

(rj − s̃j(n))2

s̃j(n)

 J∑
j=1

s̃j(n) ∥∇Lj(θ)∥2

+ 2

 ∑
j /∈Wn

rj

 ∑
j /∈Wn

rj ∥∇Lj(θ)∥2 (C.68)

Considering the Lipschitz smoothness of the clients loss function, and
∑

j /∈Wn
rj ≤ 1

completes the proof.

C.2.2 Proof of Theorem 4.2

Proof. Using Jensen inequality and Lemma C.7 gives

∥∇L(θ)∥2 ≤ 2
∥∥∥∥∇L(θ)− 1

q(n)∇L
n(θ)

∥∥∥∥2
+ 2

∥∥∥∥ 1
q(n)∇L

n(θ)
∥∥∥∥2

(C.69)

≤ 4L

[
χ2

n

1
q(n) + 1

q2(n)

]
[Ln(θ)− Ln(θ̄n)]

+ χ2
n

1
q(n)4L[Ln(θ̄n)−

∑
j∈Wn

sj(n)Lj(θ∗
j )]

+ 4L
∑

j /∈Wn

rj [Lj(θ)− Lj(θ∗
j )] (C.70)

We take the maximum of χ2
n and q(n), the mean over the KN serial SGD steps, and use

Theorem 4.1 to complete the proof .
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C.3 Applying Theorem 4.3

This section extends Section 4.4, where we apply Theorem 4.3 to centralized learning
(Section C.3.1) and synchronous FEDAVG with unbiased and biased client sampling (Section
C.3.2 and C.3.3 respectively).

C.3.1 Centralized Learning

In this setting, one client, i.e. M = 1, learns a predictive model on its own data. In this case,
we always have q̃1(n) = 1, and the resulting optimization problem is always proportional to
L = L1 which thus gives R({Ln}) ≤ R(L) = 0. There is no gradient delay (τ = 1), while
the clients always participate at each optimization round (α = 1 and β = 0), while the
global learning rate is redundant with the local learning rate (ηg = 1). The server performs
KN SGD steps. All these considered elements give

ϵ = O
(∥∥θ0 − θ∗∥∥2

ηlKN

)
+O

(
ηl Eξ

[
∥∇L(x, ξ)∥2

])
. (C.71)

With equation (C.71), we retrieve standard convergence guarantees for centralized ML
derived in Bottou et al., 2016.

C.3.2 Unbiased client sampling (qi(n) = pi)

We define by Sn the set of sampled clients performing their local work at optimization step
n. Setting ∆tn = maxi∈Sn Ti, with Ti =∞ for the clients that are not sampled, and thus
not in Sn, gives P(Ti ≤ ∆tn) = P(i ∈ Sn). Sn is independent from the clients hardware
capabilities and is decided by the server. This allows to pre-compute P(Ti ≤ ∆tn) and to
allocate to each client the aggregation weight di such that qi = pi.

Standard unbiased client sampling schemes include sampling m clients uniformly without
replacement (Xiang Li et al., 2020) or sampling m clients according to a Multinomial
distribution (T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a). Fraboni, Vidal,
Kameni, et al. (2022a) shows that both Uniform and MD sampling satisfy Property 4.1. In
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particular, in those setting, the term α ≤ 1 is proportional to m, the amount of sampled
clients, while 1 ≥ β > 0 is inversely proportional to m. We get

ϵ = O
(

1
ηgηlKN

)
+O

(
ηgηlα

1
M

Σ
)

+O
(
η2

l (K − 1)2Σ
)

+O (ηgηlβΣ) . (C.72)

The second term, proportional to α/M , is reduced at the expense of the introduction
of a fourth term proportional to β. In turn, it still provides faster optimization rounds
with ∆tn = maxi∈Sn Ti and N = O (T/E [maxi∈Sn Ti]). FedAvg with client sampling
generalizes FedAvg with full client participation (α = 1 and β = 0).

C.3.3 Biased client sampling (qi(n) ̸= pi)

The condition qi(n) = pi imposes the design of new client sampling based on the clients
data heterogeneity. Nevertheless, we show convergence of biased client samplings where
m clients are selected according to a deterministic criterion, e.g. when selecting the m

clients with the highest loss (Cho et al., 2020), or when selecting the m clients with the most
available computation resources (Nishio and Yonetani, 2019). In this case, P(i ∈ Sn) = 0/1,
with 1 if a client satisfies the criterion and 0 otherwise. In this case, no weighting scheme can
make an optimization round unbiased. We also have P({i, j} ∈ Sn) = P(i ∈ Sn)P(j ∈ Sn),
which gives α = 1 with β = 0. Without modification, this client sampling cannot satisfy
the relaxed sufficient conditions of Theorem 4.3 and thus converges to a suboptimum point.
This drawback can be mitigated by allocating a part of time in the window W to sample
clients according to the criterion, and the rest of the window to consider clients such that
qi = pi is satisfied over W optimization rounds. By denoting ϵFEDAVG the convergence
guarantees (4.33), we have

ϵ = ϵFEDAVG +O (ηgηl(W − 1)K) . (C.73)

We note that equation (C.73) provides a looser bound than equation (4.33) in term of
optimization rounds N . Still, this bound is informative and shows that, with minor changes,
biased clients sampling based on a deterministic criterion can be proven to converge to the
FL optimum.

C.4 Additional Experiments
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Fig. C.1.: Evolution of federated problem (4.2) (FP) loss for CIFAR10 and time scenario F80, with
M = 20 and K = 10.
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Fig. C.2.: Evolution of federated problem (4.2) (FP) loss for CIFAR10 and time scenario F80, with
M = 50 and K = 10.
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Fig. C.3.: Evolution of federated problem (4.2) (FP) loss for Shakespeare and time scenario F80,
with M = 20 and K = 10.
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Fig. C.4.: Evolution of federated problem (4.2) (FP) loss for Shakespeare and time scenario F80,
with M = 50 and K = 10.
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Appendix of Chapter 5 D
D.1 When fine tuning does not guarantee unlearning:

example on linear regression

Let us consider a linear regression optimization, with feature matrix X and predictions y

such that the loss function f is defined as

f(X, y, θ) = 1
2 [y −Xθ]T [y −Xθ] . (D.1)

In this example, we assume there are more features than data samples, which makes XT X

a singular matrix. While f is convex, f has more than one global optimum. Any model
with parameter θ∗ such that

XT Xθ∗ = XT y (D.2)

is a global optimum. When XT X is non-singular, we retrieve the unique optimum in close-
form θ∗ =

(
XT X

)−1
XT y. We show with this simple example that, upon unlearning

a data sample, no amount of fine-tuning on the model θ∗ can lead to the same model
obtained when retraining from a random initial model. We differentiate between (X, y)
and (X−1, y−1) our data with and without a given data point.

Optimizing f , as defined in equation (D.1), with N steps of gradient descent, learning rate
η, and initial model θ0 gives model parameters θN defined as

θN =
[
I − ηXT X

]N
︸ ︷︷ ︸

A(X,N)

θ0 + η
N−1∑
n=0

[
I − ηXT X

]n
XT y︸ ︷︷ ︸

B(X,y,N)

. (D.3)

We first note that we retrieve the standard form for the global optimum of linear regres-
sion when XT X is non-singular as limn→∞ A(X, n) = 0 and limn→∞ B(X, y, n) =(
XT X

)−1
XT y. In the general form accounting for the singular case, at least one eigen-

value of A(X, N) is equal to 1 independently from the amount of gradient descent steps
N . Hence, the parameters of the model obtained with gradient descent optimization always
depend from the ones of the initial model θ0. Hence, when unlearning our data sample from
θN , the resulting trained model still depends of that data samples. Indeed, if we compare

197



the model θÑ
−1 trained on the data samples (X−1, y−1), to the model ϕÑ

−1 obtained after
fine-tuning the model θN with Ñ server aggregations, we have

ϕÑ
−1 − θÑ

−1 = A(X−1, Ñ)A(X, N)θ0 + A(X−1, Ñ)B(X, y, N). (D.4)

D.2 Forgetting a Single Client with IFU, Proof of
Theorem 5.1

We first consider the case where clients perform K = 1 SGD in Section D.2.1 before
considering the general case K ≥ 1 in Section D.2.2.

D.2.1 Proof of Theorem 5.1 for K = 1

Proof. We define by θN = FEDAVG(I, N) and ϕN = FEDAVG(I−c, N) the models
trained with FEDAVG on θ0 with respectively all the clients, i.e. I , and all the clients but
client c, i.e. I−c, performing K = 1 GD step.

When clients perform K = 1 GD step, two consecutive global models can be related, when
training with clients in I as a simple GD step, i.e.

θn+1 = θn − η∇fI(θn). (D.5)

By considering the same process for I−c and with Assumption 5.1, we get

ϕn+1 − θn+1 = ϕn − θn − η
[
∇fI−c(ϕn)−∇fI(θn)

]
(D.6)

=
[
I − ηHI−c(θn)

]
[ϕn − θn]− η

[
∇fI−c(θn)−∇fI(θn)

]
. (D.7)

HI−c(θn) is semi-positive, Assumption 5.1. Let us define σmax(HI−c(θn)) the highest
eigenvalue of HI−c(θn). When consider that η ≤ 1/σmax(HI−c(θn)), and due to the
subadditivity of the norm, we get the following recurrent inequality∥∥∥ϕn+1 − θn+1

∥∥∥
2
≤ η

∥∥∇fI(θn)−∇fI−c(θn)
∥∥

2 + ∥ϕn − θn∥2 , (D.8)

which when developed completes the proof when clients perform K = 1 GD.
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D.2.2 Proof of Theorem 5.1 for K ≥ 1

Proof. We maintain the definitions of θn and ϕn introduced in Section D.2.1. To account
for the amount of local work K, we introduce θn,k

i the model of client i after k GD steps
performed on global model θn. We apply a similar reasoning for ϕn,k

i .

With Assumption 5.1, we have

∇fi(ϕn,k
i ) = ∇fi(θn,k

i ) + Hi(θn,k
i )

(
ϕn,k

i − θn,k
i

)
, (D.9)

which gives

ϕn,k+1
i − θn,k+1

i =
(
ϕn,k+1

i − ϕn,k
i

)
−
(
θn,k+1

i − θn,k
i

)
+
(
ϕn,k

i − θn,k
i

)
(D.10)

= −η
[
∇fi

(
ϕn,k

i

)
−∇fi

(
θn,k

i

)]
+
(
ϕn,k

i − θn,k
i

)
(D.11)

=
[
I − ηHi(θn,k

i )
] (

ϕn,k
i − θn,k

i

)
(D.12)

=
[

k∏
r=0

[I − ηHi(θn,r
i )]

]
(ϕn − θn) , (D.13)

where the third equality follows from equation (D.9), and the fourth from expanding the
recurrent equation. For the rest of this work, we define Qn

i =
∏K−1

k=0

[
I − ηHi(θn,k

i )
]
.

Using equation (D.13), we relate the difference between two global models with every
client in I and in Ic. When removing client c the clients’ importance changes. We consider
importance pi when training with I . Instead, when training with clients in Ic, we consider
the regularized importance qi = pi/(1− pc) for the remaining clients and qc = 0. We have

ϕn+1 − θn+1 =
M∑

i=1
qi

(
ϕn+1

i − ϕn
)
−

M∑
i=1

pi

(
θn+1

i − θn
)

(D.14)

=
M∑

i=1
qi

[(
ϕn+1

i − θn+1
i

)
+
(
θn+1

i − θn
)]
−

M∑
i=1

pi

(
θn+1

i − θn
)

(D.15)

=
(

M∑
i=1

qiQ
n
i

)
(ϕn − θn) + ∆(I−c, θn)−∆(I, θn). (D.16)

We consider a learning rate η such that η ≤ 1/σmax(Hi(θn,k)). Hence, ∥Qn
i ∥2 ≤ 1. With

equation (D.16), we get the following inequality∥∥∥ϕn+1 − θn+1
∥∥∥

2
≤ ∥ϕn − θn∥2 + ∥∆(I, θn)−∆(I−c, θn)∥2 , (D.17)

which expansion completes the proof.

D.2 Forgetting a Single Client with IFU, Proof of Theorem 5.1 199



D.2.3 Local Loss Functions’ Regularization and Strong Convexity,
Proof of Corollary 5.1

Proof. Under L2 regularization, every client’s regularized loss function Fi is expressed as

Fi(θ) = fi(θ) + λ

2 ∥θ∥
2 and ∇Fi(θ) = ∇fi(θ) + λθ. (D.18)

When clients perform K = 1 GD step, equation (D.16) reduces to

ϕn+1 − θn+1 = η
[
∇fI(θn)−∇fI−c(θn)

]
+
[
(1− ηλ)I − ηHI−c(θn)

]
(ϕn − θn),

(D.19)

which, if η ≤ 1/(λ + σmax(Hi(θn)), gives∥∥∥ϕn+1 − θn+1
∥∥∥

2
≤ η

∥∥∇fI(θn)−∇fI−c(θn)
∥∥

2 + (1− ηλ− ηµ) ∥ϕn − θn∥2 .

(D.20)

When clients perform K ≥ 1 GD steps, we have ϕn+1
i − θn+1

i = Qn
i [ϕn − θn] with

Qn
i =

K−1∏
r=0

[(1− ηλ)I − ηHi(θn,r
i )] . (D.21)

Hence, we retrieve equation (D.16). We consider the local learning rate satisfy η ≤
1/(λ + σmax(Hi(θn))). Hence, considering that Qn

i can be bounded with the µ-strong
convexity of the Hessian, we get∥∥∥ϕn+1 − θn+1

∥∥∥
2
≤ η ∥∆(I, θn)−∆(I−c, θn)∥2 + (1− ηλ− ηµ)K ∥ϕn − θn∥2 .

(D.22)

Developing this recurrent equation completes the proof.

D.2.4 Generalization

The proof of Theorem 5.1 can be also extended to account for FL regularization methods
(T. Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a; T. Li, Sahu, Zaheer, Sanjabi,
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Talwalkar, and Smithy, 2019; Acar et al., 2021), other SGD solvers (Kingma and Ba, 2014;
R. Ward et al., 2019; Xiaoyu Li and Orabona, 2019; Yu, Jin, et al., 2019; Yu, S. Yang,
et al., 2019; Haddadpour, Kamani, Mahdavi, and V. Cadambe, 2019), client sampling (T. Li,
Sahu, Zaheer, Sanjabi, Talwalkar, and Smith, 2018a; Xiang Li et al., 2020; Fraboni, Vidal,
Kameni, et al., 2022a) and/or gradient compression/quantization (Reisizadeh et al., 2020;
Basu et al., 2019; H. Wang et al., 2018).

D.2.5 Calculus simplification with uniform importance

For computation purposes, we propose the following expression to estimate a client bounded
sensitivity, equation (5.8. When removing client c, each client has new importance qi =
pi/(1− pc) for the remaining clients and qc = 0. Hence, we have

∥∆(I, θn)−∆(θn,D−c)∥2 =
∥∥∥∥∥[θn+1 − θn

]
−
[

M∑
i=1

qiθ
n+1
i − θn

]∥∥∥∥∥
2

(D.23)

=
∥∥∥∥θn+1 − 1

1− pc

[
θn+1 − pcθ

n+1
i

]∥∥∥∥
2

(D.24)

= pc

1− pc

∥∥∥θn+1
i − θn+1

∥∥∥
2

(D.25)

In the special case where clients have identical importance, we have pc/(1−pc) = 1/(M −
1).

D.3 Convergence of SIFU, Theorem 5.3

D.3.1 Intermediate results

Property D.1. If there exists ν, s, u such that s < u, (ν, ts) ∈ O(s) and (ν, tu) ∈ O(u),
then ts ≥ tu.

Proof. We first assume that s and u satisfy u = s + 1. Considering that (ν, ts) ∈ O(s) and
(ν, tu) ∈ O(u), we have, by definition of ζu in equation (5.17), ν ≤ ζu.

• ζu > ν. Considering that u = s + 1, we have ts = tu, equation (5.19).

• ζu = ν. Considering that (ν, ts) ∈ O(s) and (ν, tu) ∈ O(u), then we have ν ≤ s− 1.
Therefore, by definition of ζu, we have Ψζu(ts, Wu) > Ψ∗. By construction of Tu,
equation (5.18), we have tu = Tu < ts.
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When considering the more general case where there exists an integer k such that u = s + k

while (ν, ts) ∈ O(s) and (ν, tu) ∈ O(u), then it is sufficient to consider iteratively an
integer j ranging from 1 to k. Considering (ν, tu) ∈ O(u), there exists ts+j such that
(ν, ts+j) ∈ O(s + j). In that case, using the same reasoning as for k = 1, we have
ts ≤ ts+1 ≤ . . . ≤ ts+k−1 ≤ tu.

D.3.2 Proof of Theorem 5.3

Proof. Proving that θNr
r (ϵ, δ)-unlearns every client in Fr, equation (5.20), reduces to

proving that θ0
r (ϵ, δ)-unlearns every client in Fr, equation (5.20). Indeed, the data of clients

in Fr are not used on the noised perturbed model θ0
r = θTr

ζr
+N (0, σ2Iθ).

We prove by induction that θ0
r (ϵ, δ)-unlearns every client in Fr, equation (5.20). The

initialization (r = 1) directly follows from IFU, Algorithm 6, with Theorem 5.2. We now
assume that for every s such that s ≤ r − 1, θ0

s (ϵ, δ)-unlearns every client in Fs and prove
that θ0

r (ϵ, δ)-unlearns every client in Fr.

• s ≤ ζr. Using the induction property, θ0
ζr

(ϵ, δ)-unlearns every clients in Ws. Clients
in Ws are not used for training on θ0

ζr
. Hence, θTr

ζr
and θ0

r also (ϵ, δ)-unlearns every
client in Ws.

• s = r. By definition of ζr, equation (5.17), the noise perturbations for every model in
O(r) is such that θ0

ζr
(ϵ, δ)-unlearns every client in Wr. Hence, by definition of Tr

on the bounded sensitivity of clients in Wr at unlearning request ζr, equation (5.18),
the noised perturbed model θ0

r (ϵ, δ)-unlearns every client in Wr, Theorem 5.2.

• ζr < s ≤ r − 1. The successive update of the oracle, equation (5.19), from O(ζr)
to O(s) gives, by construction, that there exists ts such that the coordinates (ζr, ts)
are in O(s). Hence, by definition of ζs, equation (5.17), we have ζs ≥ ζr and the
successive noise perturbations to obtain θ0

ζr
(ϵ, δ)-unlearns every client in Ws. Also,

while we have the coordinates (ζr, ts) in O(s), we also have the coordinates (ζr, Tr)
in O(r), equation (5.19). Therefore, using property D.1, we have ts ≥ Tr. Hence, we
have Ψζr (Tr, Ws) ≤ Ψ∗. Therefore, with the noise perturbation of SIFU, clients in
Ws are (ϵ, δ)-unlearned in θ0

r .
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D.4 Experiments

For every benchmark, we consider the number of SGD steps K, batch size B, number
of clients M , the number of sampled clients m, the standard deviation σ of the noise
perturbation, and the local learning rate η given in Table D.1. Also, for our unlearning
scheme SIFU, DP, and LAST, we consider an unlearning budget of ϵ = 10 and δ = 0.01.
The unlearning budget plays the important role of identifying in the training history the
global model to perturb. Theorem 5.2 shows that ϵ and σ are linearly related. Hence, to
unlearn a client c from a global model c, a smaller σ can be considered, but at the cost
of a lower unlearning budget (ϵ, δ), Definition 5.1. Also, for fair comparison of DP with
other FU schemes, we select the best clipping value C, in a range from 0.001 to 1, for
which the global model reaches the target accuracy in the smallest amount of aggregation
rounds. Finally, for FashionMNIST, CIFAR10, CIFAR100, and CelebA, we consider model
architectures composed of three convolutional layers followed by two fully connected layers,
with implementation at URL.

Tab. D.1.: Hyperparameters used for our different unlearning benchmarks described in Section
5.5.1.

Dataset K B M m σ η C

MNIST 10 100 100 10 0.05 0.01 0.5
FashionMNIST 5 20 100 10 0.1 0.02 0.5
CIFAR10 5 20 100 5 0.05 0.01 0.2
CIFAR100 5 20 100 5 0.05 0.02 0.2
CelebA 10 20 100 20 0.1 0.01 0.5

The training and retraining depends on the initial model θ0
0 and the clients’ batches of data

used at every aggregation to compute their local work. Hence, we replicate each unlearning
scenario on 10 different seeds and plot in Figure 5.2 to D.3 their averaged results. For the
unlearning benchmarks described in Section 5.5.1 and used in Figure 5.2, D.2, and D.3, the
stopping accuracies considered are 93% for MNIST, 90% for FashionMNIST, CIFAR10,
and CIFAR100, and 99.9% for CelebA. For Figure 5.3 and D.1 with unlearning benchmark
described in Section 5.5.3, the stopping accuracies considered are instead 99.9% for MNIST,
FashionMNIST, CIFAR10, and CelebA, and 99% for CIFAR100. Reaching such accuracies
is easier with the backdoored datasets because the clients’ data heterogeneity is only due to
their watermark, Section 5.5.3.
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Fig. D.1.: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd

row) for the unlearning of watermarked data from MNIST, FashionMNIST, CIFAR10,
CIFAR100, and CelebA (the lower the better).

10 3 10 1
102

103

104

# 
Ro

un
ds

MNIST

10 3 10 1

102

103

104
FashionMNIST

10 3 10 1

102

103

104
CIFAR10

10 3 10 1

102

103

104
CIFAR100

10 3 10 1

102

6 × 101

2 × 102
3 × 102
4 × 102 CelebA

10 3 10 1
Noise std 

0

20

40

60

Ac
cu

ra
cy

 o
n 

W
1

10 3 10 1
Noise std 

0

5

10

15

10 3 10 1
Noise std 

25

50

75

10 3 10 1
Noise std 

20

40

60

80

10 3 10 1
Noise std 

85

90

95

100

Scratch SIFU Fine-Tuning FedAccum DP

Fig. D.2.: Impact of the noise standard deviation σ when unlearning with SIFU versus SCRATCH.
Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients
(2nd row) for MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the
better).

204 Appendix D Appendix of Chapter 5



0 5

200

400

600

# 
Ro

un
ds

MNIST

0 5

250

500

750
FashionMNIST

0 5
0

500

1000

CIFAR10

0 5

250

500

750
CIFAR100

0 5

100

200

300

400
CelebA

0 5
0

20

40

Ac
cu

ra
cy

 o
n 

W
1

0 5
0

50

0 5

60

70

80

90

0 5

40

60

80

0 5

85

90

95

100

Scratch SIFU Fine-Tuning FedAccum DP

Fig. D.3.: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients
(2nd row) for MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the
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Appendix of Chapter 6 E
E.1 Complete Proofs for FedAvg

E.1.1 Proof of Theorem 6.1

We prove with a reasoning by induction that:

θ̃t − θt =
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi)

+
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi), (E.1)

with f(θt) = MK
N

[
θt −

∑
j∈J

Mj

N−MK
[ηj(θt − θ∗

j ) + θ∗
j ]
]
, ϵ =

∑
j∈J

Mj

N ηj ,

νt =
∑

j∈J
Mj

N−MK
ρjζj,t and ν̃t =

∑
j∈J

Mj

N ρj ζ̃j,t. By definition of θt+1, E
[
f(θt)

]
=

MK
N

[
E
[
θt
]
− E

[
θt+1]].

Proof. Server iteration t = 1

Using the fair clients local model parameters evolution of Section 6.2.3 and the server
aggregation process expressed in equation (6.10), the global model can be written as

θ1 =
∑
j∈J

Mj

N −MK

[
ηj

(
θ0 − θ∗

j

)
+ θ∗

j

]
+ ν0. (E.2)

Similarly, the global model for federated learning with plain free-riders can be expressed as

θ̃1 =
∑
j∈J

Mj

N

[
ηj

(
θ0 − θ∗

j

)
+ θ∗

j

]
+ MK

N
θ0 + ν̃0. (E.3)

By subtracting equation (E.2) to equation (E.3), we obtain:

θ̃1 − θ1 = −MK

N

∑
j∈J

Mj

N −MK

[
ηj

(
θ0 − θ∗

j

)
+ θ∗

j

]
+ MK

N
θ0 + ν̃0 − ν0 (E.4)

Hence, θ̃1 − θ1 follows the formalization.
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From t to t + 1

We suppose the property true at a server iteration t. Hence, we get:

θ̃t − θt =
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi) +

t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi), (E.5)

With the same reasoning as for t = 1, we get:

θt+1 =
∑
j∈J

Mj

N −MK

[
ηj

(
θt − θ∗

j

)
+ θ∗

j

]
+ νt (E.6)

and

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj

(
θ̃t − θ∗

j

)
+ θ∗

j

]
+ MK

N
θ̃t + ν̃t (E.7)

By using equation (E.5) for equation (E.7), we get:

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj

(
θt − θ∗

j

)
+ θ∗

j

]

+ ϵ
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi)

+ ϵ
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi)

+ MK

N
θt

+ MK

N

t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi)

+ MK

N

t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi)

+ ν̃t (E.8)

208 Appendix E Appendix of Chapter 6



which can be rewritten as:

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj

(
θt − θ∗

j

)
+ θ∗

j

]

+ [ϵ + MK

N
]

t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi)

+ [ϵ + MK

N
]

t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi)

+ MK

N
θt + ν̃t, (E.9)

leading to

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj

(
θt − θ∗

j

)
+ θ∗

j

]

+
t−1∑
i=0

(
ϵ + MK

N

)t−i

f(θi)

+
t−1∑
i=0

(
ϵ + MK

N

)t−i

(ν̃i − νi)

+ MK

N
θt + ν̃t (E.10)

By subtracting equation (E.10) to equation (E.6), we obtain:

θ̃t+1 − θt+1 = −MK

N

∑
j∈J

Mj

N −MK

[
ηj

(
θt − θ∗

j

)
+ θ∗

j

]

+
t−1∑
i=0

(
ϵ + MK

N

)t−i

f(θi)

+
t−1∑
i=0

(
ϵ + MK

N

)t−i

(ν̃i − νi)

+ MK

N
θt + ν̃t − νt (E.11)

Given that −MK
N

∑
j∈J

Mj

N−MK

[
ηj

(
θt − θ∗

j

)
+ θ∗

j

]
+ MK

N θt = f(θt), we get:

θ̃t+1 − θt+1 =
t∑

i=0

(
ϵ + MK

N

)t−i

f(θi) +
t∑

i=0

(
ϵ + MK

N

)t−i

(ν̃i − νi). (E.12)
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E.1.2 Proof of Theorem 6.2

Proof. Expected Value

Let us first have a look at the expected value. By definition, a sum of Gaussian dis-
tributions with 0 mean, E [νi] = 0 and E [ν̃i] = 0. We also notice that E

[
f(θt)

]
=

MK
N

[
E
[
θt
]
− E

[
θt+1]]. Hence, we obtain

E
[
θ̃t − θt

]
= MK

N

t−1∑
i=0

(
ϵ + MK

N

)n−i−1
E
[
θt − θt+1

]
. (E.13)

We consider that federated learning is converging, hence |E
[
θt
]
− E

[
θt+1] | t→+∞−−−−→ 0,

and for any positive α, there exists N0 such that |E
[
θt − θt+1] | < α. Since ηj ∈]0, 1[, we

have ϵ ∈]0, N−MK
N [ and ϵ + MK

N ∈]0, 1[. Thus, we can rewrite equation (E.13) as

|E
[
θ̃t − θt

]
| ≤

N0−1∑
i=0

(
ϵ + MK

N

)t−i−1
|E
[
θt
]
− E

[
θt+1

]
|+

t−1∑
i=N0

(
ϵ + MK

N

)t−i−1
α.

(E.14)

We define by Rα = maxi∈[1,N0] |E
[
θt
]
− E

[
θt+1] |, and get:

|E
[
θ̃t − θt

]
| ≤

N0−1∑
i=0

(
ϵ + MK

N

)t−i−1

︸ ︷︷ ︸
A

Rα +
t−1∑

i=N0

(
ϵ + MK

N

)t−i−1

︸ ︷︷ ︸
B

α. (E.15)

• Expressing A.

A =
N0−1∑
i=0

(
ϵ + MK

N

)t−i−1
(E.16)

=
(

ϵ + MK

N

)t−1 1−
(
ϵ + MK

N

)−N0

1−
(
ϵ + MK

N

)−1 (E.17)

t→+∞−−−−→ 0 (E.18)
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• Expressing B.

B =
t−1∑

i=N0

(
ϵ + MK

N

)t−i−1
(E.19)

=
(

ϵ + MK

N

)t−N0−1 1−
(
ϵ + MK

N

)−(t−N0)

1−
(
ϵ + MK

N

)−1 (E.20)

=
1−

(
ϵ + MK

N

)t−N0

1−
(
ϵ + MK

N

) (E.21)

t→+∞−−−−→ 1
1−

(
ϵ + MK

N

) > 0 (E.22)

Using equation (E.18) and (E.22) in equation (E.15), we get:

∀α lim
t→+∞

|E
[
θ̃t − θt

]
| ≤ Bα, (E.23)

which is equivalent to

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (E.24)

Variance

The Wiener processes, νi and ν̃i are independent from the server models parameters θi.
Also, each Wiener process is independent with the other Wiener processes. Hence, we get:

Var
[
θ̃t − θt

]
= Var

[
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi)

]
︸ ︷︷ ︸

E

+
t−1∑
i=0

(
ϵ + MK

N

)2(t−i−1)
Var [ν̃i − νi]︸ ︷︷ ︸

F

, (E.25)

Expressing E. Before getting a simpler expression for E, we need to consider Cov
[
f(θl), f(θm)

]
.

To do so, we first consider f(θt)− E
[
f(θt)

]
.

f(θt)− E
[
f(θt)

]
= MK

N

1−
∑
j∈J

Mj

N −MK
ηj


︸ ︷︷ ︸

G

[θt − E
[
θt
]
], (E.26)
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We can prove with a reasoning by induction that θt−E
[
θt
]

=
∑n−1

i=0

(∑
j∈J

Mj

N−MK
ηj

)t−i−1
νi =∑n−1

k=0 ϵt−i−1νi. All the νi are independent across each others and have 0 mean, hence:

Cov [f(θl), f(θm)] = G2
min{l−1,m−1}∑

i=0
ϵl+m−2i−2 E

[
ν2

i

]
(E.27)

Considering that E
[
ν2

i

]
= Var [νi] =

∑
j∈J

(
Mj

N−MK
ρj

)2
, we get:

Cov
[
f(θl), f(θm)

]
= G2 ∑

j∈J

(
Mj

N −MK
ρj

)2 min{l−1,m−1}∑
i=0

ϵt−i−1 (E.28)

We define G′ = G2∑
j∈J

(
Mj

N−MK
ρj

)2
. Given that ϵ ∈]0, 1[, we get the following upper

bound on E:

Cov
[
f(θl), f(θm)

]
≤ G′ min{l, m} (E.29)

By denoting H = ϵ + MK
N , we can rewrite E as:

E =
t−1∑
l=0

t−1∑
m=0

H2(t−1)−l−m Cov
[
fl(θl), f(θm)

]
(E.30)

≤
t−1∑
l=0

t−1∑
m=0

H2(t−1)−l−mG′ min{l, m} (E.31)

Considering that min{l, m} ≤ l, we get:

E ≤ G′
t−1∑
l=0

t−1∑
m=0

H2(t−1)−l−ml (E.32)

= G′H2(t−1)
t−1∑
l=0

H−ll
t−1∑
m=0

H−m (E.33)

= G′H2(t−1)
t−1∑
l=0

H−ll
1−H−n

1−H−1 (E.34)

= G′H2(t−1) 1−H−n

1−H−1

t−1∑
l=0

H−ll (E.35)

Considering the power series
∑+∞

k=0 nxn = x
(1−x)2 , we get that

∑t−1
l=0 H−ll = H−1

(1−H−1)2 .
Hence, E’s upper bound goes to 0. Given that E is non-negative, we get

E
t→+∞−−−−→ 0. (E.36)
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Expressing F . Let us first consider the noise coming from the SGD steps. All the ν̃i are
independent with νi. Hence, we have

F = Var [ν̃i]−Var [νi] (E.37)

= Var

∑
j∈J

Mj

N
ρj ζ̃j,i −

∑
j∈J

Mj

N −MK
ρjζj,i

 (E.38)

= [ 1
N2 + 1

(N −MK)2 ]
∑
j∈J

(Mjρj)2 (E.39)

Replacing (E.39) in equation (E.25), we can express the variance as

Var
[
θ̃t − θt

]
= E + F

t−1∑
i=0

H2(t−i−1) (E.40)

= E + FH2(t−1)
t−1∑
i=0

H−2i (E.41)

= E + FH2(t−1) 1−H−2t

1−H−2 (E.42)

= E + F
1−H2t

1−H2 (E.43)

By replacing F and H with their respective expression, we can conclude that

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J (Mjρj)2

1−
(
ϵ + MK

N

)2 (E.44)

Note 1: The asymptotic variance is strictly increasing with the number of data points
declared by the free-riders MK .

While Mj and ρj are constants and independent from the number of free-riders and from
their respective number of data points, N and ϵ depend on the total number of free-riders’
samples MK . We first rewrite ϵ = 1

N α with α =
∑

j∈J Mjηj not depending on MK and
we get:

ϵ + MK

N
= 1

N
[α + MK ]. (E.45)

By defining MJ =
∑

j∈J Mj , we get:

1−
(

ϵ + MK

N

)2
= 1

N2 [M2
J + 2MK [MJ − α]− α2], (E.46)

E.1 Complete Proofs for FedAvg 213



with MJ − α > 0 because ηj ∈]0, 1[.

Also, considering that

1
N2 + 1

(N −MK)2 = 1
N2 [M

2
K

M2
J

+ 2MK

MJ
+ 2], (E.47)

we can rewrite

1
N2 + 1

(N−MK)2

1−
(
ϵ + MK

N

)2 =
M2

K

M2
J

+ 2MK
MJ

+ 2

M2
J + 2MK [MJ − α]− α2 (E.48)

As the numerator is a polynomial of order 2 in MK and the denominator is a polynomial of
order 1 in MK , the asymptotic variance is increasing with MK .

Note 2: When considering that the SGD noise variance is different for federated learning
with and without free-riders, we get:

F = 1
N2

∑
j∈J

(Mj ρ̃j)2 + 1
(N −MK)2

∑
j∈J

(Mjρj)2 (E.49)

E.1.3 Proof of Theorem 6.3

Proof. Relation between federated learning with and without free-riders global model

With a reasoning by induction similar to Proof E.1.1, we get:

θ̃t − θt =
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi) (E.50)

+
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi) (E.51)

+
t−1∑
i=0

(
ϵ + MK

N

)t−i−1 MK

N
φϵt, (E.52)

Expected value

ϵt is a delta-correlated Gaussian White noise which implies that E [ϵt] = 0. Following the
same reasoning steps as in Proof E.1.2, we get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (E.53)

Variance
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All the ϵt are independent Gaussian white noises implying Var [ϵt] = 1. Following the same
reasoning steps as in Proof E.1.2, we get:

Var
[

t−1∑
i=0

(
ϵ + MK

N

)t−i−1 MK

N
φϵt

]

=
t−1∑
i=0

(
ϵ + MK

N

)2(t−i−1) M2
K

N2 φ2 (E.54)

=
(

ϵ + MK

N

)2(t−1) 1−
(
ϵ + MK

N

)−2t

1−
(
ϵ + MK

N

)−2
M2

K

N2 φ2 (E.55)

=
1−

(
ϵ + MK

N

)2t

1−
(
ϵ + MK

N

)2
M2

K

N2 φ2 (E.56)

t→+∞−−−−→ 1

1−
(
ϵ + MK

N

)2
M2

K

N2 φ2 (E.57)

As for equation (E.25), all the ϵt are independent from νt, from ν̃t, and from the global
model parameters θt. Hence, for one disguised free-rider we get the following asymptotic
variance:

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J (Mjρj)2

1−
(
ϵ + MK

N

)2 + 1

1−
(
ϵ + MK

N

)2
M2

K

N2 φ2.

(E.58)

E.1.4 Proof of Corollary 6.1

Proof. Relation between federated learning with and without free-riders global model

With a reasoning by induction similar to Proof E.1.1, we get:

θ̃t − θt =
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
f(θi) (E.59)

+
t−1∑
i=0

(
ϵ + MK

N

)t−i−1
(ν̃i − νi) (E.60)

+
∑
k∈K

t−1∑
i=0

(
ϵ + MK

N

)t−i−1 Mk

N
φkϵk,t, (E.61)
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Expected value

ϵk,t are delta-correlated Gaussian White noises which implies that E [ϵk,t] = 0. Following
the same reasoning steps as in Proof E.1.2, we get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (E.62)

Variance

All the ϵk,t are independent Gaussian white noises over server iterations t and free-riders
indices k implying Var [ϵt] = 1. Following the same reasoning steps as in Proof E.1.2, we
get:

Var
[

t−1∑
i=0

(
ϵ + MK

N

)t−i−1 Mk

N
φkϵk,t

]
t→+∞−−−−→ 1

1−
(
ϵ + MK

N

)2
M2

k

N2 φ2
k (E.63)

Like for equation (E.25), all the ϵk,t are independent from νt, ν̃t and the global model
parameters θt. Hence, for multiple disguised free-rider we get the following asymptotic
variance:

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J (Mjρj)2

1−
(
ϵ + MK

N

)2

+ 1

1−
(
ϵ + MK

N

)2
∑
k∈K

M2
k

N2 φ2
k. (E.64)

E.1.5 Proof of Corollary 6.2

Proof. Relation between federated learning with and without free-riders global model

The relation remains the same for Theorem 6.2, Theorem 6.3, and Corollary 6.1 by replacing
ηj with ηj(t) =

∑
j ∈ J

Mj

N ρj(t) and φk by φk(t) for disguised free-riding.

Expected value
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With ρt
j and φ(t) the properties for ν̃t, νt, ϵt and ϵk,t remain identical. Hence, they still are

delta-correlated Gaussian White noises implying that E [ν̃t] = E [νt] = E [ϵt] = E [ϵk,t] = 0.
Hence, for Theorem 6.2, Theorem 6.3, and Corollary 6.1, we get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (E.65)

Variance

Variance asymptotic behaviour proven in Proof E.1.2, E.1.3, and E.1.4 can be reduced to the
one in Proof E.1.2. Hence, F , equation (E.39), need to be reexpressed to take into account
ρj(t). All the ν̃i are still independent with νi. Hence, we have:

F = Var [ν̃i(t)− νi(t)] = Var

∑
j∈J

Mj

N
ρt

j ζ̃j,i −
∑
j∈J

Mj

N −MK
ρt

jζj,i

 (E.66)

Considering that ρt
j

t→+∞−−−−→ 0, we get:

F
t→+∞−−−−→ 0 (E.67)

Using the same reasoning as the one used for the expected value convergence in Proof E.1.2,
we get that the SGD noise contribution linked to F goes to 0 at infinity.

For the disguised free-riders, ϵk,t are still independent Gaussian white noises implying
Var [ϵk,t] = 1. Hence, following a reasoning similar to the on in Proof E.1.2, we get:

Var
[

t−1∑
i=0

(
ϵ + MK

N

)t−i−1 MK

N
φk(t)ϵk,t

]
=

t−1∑
i=0

(
ϵ + MK

N

)2(t−i−1) M2
K

N2 φ2
k(t) (E.68)

Considering that φk(t) t→+∞−−−−→ 0, by using the same reasoning as for the proof of the
expected value for free-riders, Section XX, we get:

Var
[

t−1∑
i=0

(
ϵ + MK

N

)t−i−1 MK

N
φk(t)ϵk,t

]
t→+∞−−−−→ 0 (E.69)

Hence, we can conclude that

Var
[
θ̃t − θt

]
t→+∞−−−−→ 0. (E.70)
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E.2 Complete Proofs for FedProx

FedProx is a generalization of FedAvg. As such, we use the proof done for FedAvg to prove
convergence of free-riders attack using FedProx as an optimization solver. The L2 norm
monitored by µ changes the gradient as gj(θj) ≃ rj [θj − θ∗

j ] + µ[θj − θt].

Using equation (6.7), we then get:

dθj = −λ
[
rj [θj − θ∗

j ] + µ[θj − θt]
]

+ λ√
S

σj(θj)dWj , (E.71)

leading to

θj(u) = e−λ[rj+µ]uθj(0) +
rjθ∗

j + µθt

rj + µ
[1− e−λ(rj+µ)u]

+ λ√
S

∫ u

x=0
e−λ(rj+µ)(u−x)σj(θj)dWx. (E.72)

considering that θj(0) = θt, θj(EMj

S ) = θt+1
j , and σj(θj) = σt

j , we get:

θt+1
j = γjθt +

rjθ∗
j + µθt

rj + µ
[1− γj ] + λ√

S

∫ EMj
S

x=0
e−λ(rj+µ)(

EMj
S

−x)σt
jdWx, (E.73)

where γj = e−λ[rj+µ]
EMj

S . We can reformulate this as

θt+1
j = [γj + µ

1− γj

rj + µ
]θt + rj

rj + µ
[1− γj ]θ∗

j (E.74)

+ λ√
S

∫ EMj
S

x=0
e−λ(rj+µ)(

EMj
S

−x)σt
jdWx, (E.75)

The SGD noise variance between two server iterations for FedProx is:

Var
[
θt+1

j |θt
]

= λ

S
σt

j
2 1
2(rj + µ)

[
1− e−2λ(rj+µ)

EMj
S

]
︸ ︷︷ ︸

ρt
j

2

, (E.76)

We also define η′
j = γj + µ

1−γj

rj+µ and δj = rj

rj+µ [1 − γj ]. For FedAvg, µ = 0, we get
η′

j = ηj and δj = 1− ηj . By property of the exponential, γj ∈]0, 1[. As rj and µ are non
negative, then η′

j ∈]0, 1[ like ηj for FedAvg.

Theorem 6.1 for FedProx

We consider ρ′
j
2 = λ

S σj
2 1

2(rj+µ)

[
1− e−2λ(rj+µ)

EMj
S

]
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Using the same reasoning by induction as in Proof E.1.1, we get:

θ̃t − θt =
t−1∑
i=0

(
ϵ′ + MK

N

)t−i−1
g(θi) +

t−1∑
i=0

(
ϵ′ + MK

N

)t−i−1
(ν̃ ′

i − ν ′
i), (E.77)

with g(θt) = MK
N

[
θt −

∑
j∈J

Mj

N−MK
[η′

jθt + δjθ∗
j ]
]
, ϵ′ =

∑
j∈J

Mj

N η′
j , ν ′

t =
∑

j∈J
Mj

N−MK
ρ′

jζj,t

and ν̃ ′
t =

∑
j∈J

Mj

N ρ′
j ζ̃j,t.

Theorem 6.2 for FedProx

Like for FedAvg, we make the assumption that federated learning without free-riders using
FedProx converge. In addition, ν̃ ′

t and ν ′
t are also independent delta-correlated Gaussian

white noises. Following the same proof as in Proof E.1.2, we thus get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (E.78)

and

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J

(
Mjρ′

j

)2

1−
(
ϵ′ + MK

N

)2 (E.79)

The asymptotic variance still strictly increases with MK .

Note: We introduce x = λ(rj + µ)EMj

S . By taking the partial derivative of ρ′
j with respect

to µ, we get:

δρ′
j

δµ
= λ

2S
σ2

j

1
(rj + µ)2 [−1 + (1 + 2x)e−2x], (E.80)

which is strictly negative for a positive µ considering that all the other constants are positive.
Hence, the SGD noise variance ρ′

j is inversely proportional with the regularization factor
µ.

Similarly, for ϵ′, by considering that η′
j can be rewritten as η′

j = γj
rj

rj+µ + µ
rj+µ , the partial

derivative of η′
j with respect to µ can be expressed as:

δη′
j

δµ
= rj

(rj + µ)2 [1− (1− x)e−x], (E.81)

which is strictly positive. Hence η′
j is strictly increasing with the regularization µ and so is

ϵ′.

Considering the behaviours of ϵ′ and ρ′
j with respect to the regularization term µ, the more

regularization is asked by the server and the smaller the asymptotic variance is, leading to
more accurate free-riding attacks.
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Theorem 6.3 for FedProx

The free-riders mimic the behaviour of the fair clients. Hence, we get:

φk
′2 = λ

S
σk

2 1
2(rj + µ)

[
1− e−2λ(rk+µ)

EMj
S

]
(E.82)

leading to

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J

(
Mjρ′

j

)2

1−
(
ϵ′ + MK

N

)2 + 1

1−
(
ϵ′ + MK

N

)2
M2

K

N2 φ′2.

(E.83)

For disguised free-riders, the variance is also inversely proportional to the regularization
parameter µ.

Corollary 6.1 for FedProx

Similarly, for many free-riders, we get:

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑

j∈J

(
Mjρ′

j

)2

1−
(
ϵ′ + MK

N

)2

+ 1

1−
(
ϵ′ + MK

N

)2
M2

K

N2

∑
k∈K

φ′2
k . (E.84)

E.3 Additional experimental results

E.3.1 Accuracy Performances
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Fig. E.1.: Accuracy performances for FedAvg and 20 epochs in the different experimental scenarios.
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Fig. E.2.: Accuracy performances for FedAvg and 5 epochs in the different experimental scenarios.
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Fig. E.3.: Accuracy performances for FedProx and 20 epochs in the different experimental scenar-
ios.
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Fig. E.4.: Accuracy performances for FedProx and 5 epochs in the different experimental scenarios.
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Fig. E.5.: Loss performances for FedAvg and 20 epochs in the different experimental scenarios.
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Fig. E.6.: Loss performances for FedAvg and 5 epochs in the different experimental scenarios.
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Fig. E.7.: Loss performances for FedProx and 20 epochs in the different experimental scenarios.
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Fig. E.8.: Loss performances for FedProx and 5 epochs in the different experimental scenarios.
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