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Abstract

During the past decades, with the significant proliferation of Fifth Generation (5G) networks, Ultra
Reliable and Low Latency Communications (URLLC) has been becoming indispensable to support

time-critical applications where data transmission in an error-prone wireless medium must be bounded
by low-delay and ultra-reliability requirements. However, the phenomenal growth of data traffic coupled
with the heterogeneous Quality of Service (QoS), are posing unprecedented challenges. It suggests the
paradigm shift from reactive and centralised networks towards proactive, low latency, ultra-reliable and
decentralised network designs which allow more flexible, scalable and low complexity deployments of
resource management solutions. In this thesis, we focus on the refinement of fundamental trade-offs be-
tween latency, reliability and other Key Performance Indicators (KPIs) such as radio resource efficiency
and network throughput in guaranteeing URLLC communications In the first part of our work, we fo-
cus on centralised resource management to ensure latency and reliability of URLLC communication in
dynamic scenarios. First, we prove that proactive resource allocation is essential to cope with the uncer-
tainty of the wireless medium and to improve latency at the cost of potentially low allocation efficiency.
When the traffic source rate is further considered in addition to the rapidly changing wireless chan-
nel, we propose an adaptive allocation algorithm based on Lyapunov’s optimization for two-queue state
(data queue and transmission queue) management and to improve allocation efficiency while fulfilling
the requirements of URLLC communications. Furthermore, under highly critical perturbation system,
we extend this adaptive allocation framework towards adaptive and reliability-aware one to improve the
reliability of wireless communication without sacrificing low latency communication and high allocation
efficiency. The performance gains of our algorithms are then evaluated with the system-level simulator
NS3 and validated with experiments based on OpenAirInterface (OAI) hardware where full-stack radio
protocols are considered. In the second part of our work, we propose a novel hybrid radio resource man-
agement using Grant-Based (GB) and Grant-Free (GF) access schemes, where limited radio resources
are exploited for multi-user communication in the UL direction. Leveraging Multi Agent Reinforcement
Learning (MARL), we provide two different algorithms to optimize a global network objective in terms
of latency, reliability and network throughput: Multi-agent Deep-Q Learning (MADQL) and Multi-agent
Deterministic Policy Gradient (MADDPG). MADQL is executed in a fully distributedmanner so that each
associated user (agent) learns its optimal action-value function through its communication via GB or GF
access with the gNb, relying only on its local observation. On the other hand, MADDPG is introduced
as a semi-distributed system with the associated gNb function as a global observer (critic), criticising the
actions of each associated agent (actor) in the network. By leveraging centralised training and decen-
tralised execution, we achieve a shared goal better than the MADQL algorithm. Then, through a system
level simulation, we show the gain of our approach to efficiently manage radio resources.
Keywords: Ultra Reliable and Low Latency Communications (URLLC), Lyapunov’s Optimization , cen-
tralized/hybrid resource management, Multi Agent Reinforcement Learning (MARL), semi-distributed
system.
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Résumé

Durant les dernières décennies, avec la prolifération significative des réseaux 5G, les communications
ultra fiables et à faible latence (URLLC) sont devenues indispensables pour prendre en charge les

applications critiques où la transmission de données sur un support sans fil sujet aux erreurs doit être
limitée par des exigences de faible retard et d’ultra fiabilité. Cependant, la croissance phénoménale du
trafic de données, associée à l’hétérogénéité de la qualité de service (QoS), pose des défis sans précé-
dent. Elle suggère le changement de paradigme des réseaux réactifs et centralisés vers des conceptions
de réseaux proactifs, à faible latence, ultra-fiables et décentralisés qui permettent des déploiements plus
flexibles, évolutifs et peu complexes de solutions de gestion des ressources. Dans cette thèse, nous nous
concentrons sur le raffinement des compromis fondamentaux entre la latence, la fiabilité et d’autres indi-
cateurs clés de performance tels que l’efficacité des ressources radio et le débit du réseau pour garantir les
communications URLLC. Dans la première partie de notre travail, nous nous concentrons sur la gestion
centralisée des ressources afin de garantir la latence et la fiabilité des communications URLLC dans des
scénarios dynamiques. Tout d’abord, nous prouvons que l’allocation proactive des ressources est essen-
tielle pour faire face à l’incertitude du support sans fil et pour améliorer le temps de latence au prix d’une
efficacité d’allocation potentiellement faible. Lorsque le taux de la source de trafic est pris en compte en
plus du canal sans fil qui change rapidement, nous proposons un algorithme d’allocation adaptatif basé
sur l’optimisation de Lyapunov pour la gestion de deux files d’attente (file d’attente de données et file
d’attente de transmission) et pour améliorer l’efficacité de l’allocation tout en satisfaisant aux exigences
des communications URLLC. En outre, dans le cadre d’un système de perturbation hautement critique,
nous étendons ce cadre d’allocation adaptative à un cadre adaptatif et sensible à la fiabilité afin d’amélio-
rer la fiabilité de la communication sans fil sans sacrifier la communication à faible latence et l’efficacité
de l’allocation. Les gains de performance de nos algorithmes sont ensuite évalués avec le simulateur au
niveau du système NS3 et validés par des expériences basées sur le matériel OpenAirInterface (OAI) où
des protocoles radio complets sont pris en compte. Dans la deuxième partie de notre travail, nous propo-
sons une nouvelle gestion hybride des ressources radio utilisant les schémas d’accès Grant-Based (GB) et
Grant-Free (GF), où les ressources radio limitées sont exploitées pour la communicationmulti-utilisateurs
dans la direction UL. En nous appuyant sur Multi Agent Reinforcement Learning (MARL), nous fournis-
sons deux algorithmes différents pour optimiser un objectif de réseau global en termes de latence, de
fiabilité et de débit du réseau : Multi-agent Deep-Q Learning (MADQL) et Multi-agent Deterministic Po-
licy Gradient (MADDPG). MADQL est exécuté de manière entièrement distribuée de sorte que chaque
utilisateur associé (agent) apprend sa fonction action-valeur optimale par le biais de sa communication
via l’accès GB ou GF avec le gNb, en s’appuyant uniquement sur son observation locale. D’autre part,
Multi-agent Deterministic Policy Gradient (MADDPG) est présenté comme un système semi-distribué
avec la fonction gNb associée en tant qu’observateur (critique) global, critiquant les actions de chaque
agent (acteur) associé dans le réseau. En tirant parti de la formation centralisée et de l’exécution décen-
tralisée, nous atteignons un objectif communmieux que l’algorithmeMADQL. Ensuite, par le cadre d’une
simulation au niveau du système, nousmontrons les avantages de notre approche pour gérer efficacement
les ressources radio.
Mots clés : URLLC, optimisation de Lyapunov , gestion des ressources, MARL, système semi-distribué.
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CHAPTER 1. INTRODUCTION

1.1 UltraReliable and LowLatencyCommunications: Mo-
tivations and Research Orientations

1.1.1 Motivations

U ltra Reliable and Low Latency Communications (URLLC) provides unprecedented supports to guar-
antee stringent reliability and latency requirements for mission and safety critical applications.

The core enablers of URLLC are based on plethora of advanced techniques such as short packet trans-
mission, grant-free mechanisms and diversity-based solutions [1]. However, these studies are carried
out in stationary and controlled environments. They lack a deep understanding of wireless channel dy-
namics, elastic orchestration of heterogeneous service networks, flexibility in topology changes, and ef-
fective management of available radio resources [2]. These limitations, with the conflicting trade-offs
between low-latency solutions and ultra-high reliability designs, exacerbate the complications of real-
world URLLC applications.

In order to address these problems, our work focuses on improving the trade-off between low latency,
high reliability while considering the effective use of radio resources and increased network throughput
in the dynamic wireless environment at the RAN level. The main contributions of our work can be di-
vided into three phases. The first phase is dedicated to understanding the key technologies that support
URLLC.We try to evaluate the performance of combined solutions in the light of System Level Simulation
(SLS) based on NS3 [3]. In the second phase, we developed optimisation algorithms for the proactive,
adaptive and reliability-aware allocation of resources to deal with the URLLC in the dynamic scenarios.
Our objective is to enhance the fundamental trade-off between latency, reliability and efficient usage of
resource. Our solutions in this phase are fully exploited on the basis of full-stack simulation (NS3) and
hardware experimentation (OpenAirInterface (OAI)). Ultimately, we deal with hybrid centralised/decen-
tralised radio resourcemanagement in favour ofMulti Agent Reinforcement Learning (MARL) framework
in the last phase. By leveraging shared, opportunistic resources which is jointly managed by each agent
(UE) in conjunction with controlled, scheduled resources managed by centralised gNb, we show the per-
formance gains in term of RAN latency, transmission reliability and network throughput. Before going
to the details of our contribution, we will briefly describe in this chapter the major challenges, current
research trends and comprehensive survey on state-of-the-art research.

1.1.2 5G Networks: A technological breakthrough

Future mobile networks are expected to support exponentially growing number of connected devices
as well as wide range applications. By 2030, it is forecasted that around 80 billion connected devices
will be included in a network [5]. Besides, the novel applications are developed to support various use
cases such as automotive and mobility, transportation, healthcare system, energy industry, media and
entertainment ecosystem as illustrated in Figure 1.1. Although Fourth Generation (4G) technologies
have been massively, commercially used worldwide and enable us to achieve better data capacity and
transfer speed when compared to anterior mobile generations, the proliferation of such new use cases,
which demand the improvements in terms of latency, reliability, and scalability, are posing unprecedented
obstacles for 4G systems. Therefore, Fifth Generation (5G) technologies roll out to enhance network
performance such as mobility, energy, speed, range of services, increased reliability, lower latency and
higher throughput [6]. The detailed differences between the 4G and 5G networks are shown in Table 1.1.

As in report ITU M.2083-0 [7], the applications which are supported by 5G technologies can be clas-
sified into 3 main scenarios:

■ Enhanced Mobile Broadband (eMBB): provides high throughput data services (up to 20 Gbps in
Downlink [8]) for applications. It provides a foundation for the stable connections in very high

2



1.1. ULTRA RELIABLE AND LOW LATENCY COMMUNICATIONS: MOTIVATIONS AND
RESEARCH ORIENTATIONS

Figure 1.1: Overview of 3 key services supported in 5G networks [4]

Table 1.1: Comparison between 4G and 5G [2]

4G 5G

Metadata Important Crucial

Packet size Long (MBB) Short (URLLC)-Long(eMBB)

Design

Throughput-centric,

Average delay good enough
Latency and Reliability centric / tails are matter

Reliability 95 % 1 - 10−x, x = {3, ..., 9}

Rate Shannon (Long packets) Rate loss due to short packet

Delay violation Exponential delay using effective bandwidth Faster decay than exponential

Latency 15 ms RTT based on 1 ms subframe 1 ms or less, shorter TTI, HARQ RTT

Queue size unbounded bounded

Band sub-6GHz Above- and sub-6GHz

Scale Few users/devices billion devices
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peak data rate to multimedia content, services and data (e.g. 3D video, Ultra-High Definition
(UHD) screens, augmented reality, etc.)

■ Ultra Reliable and Low Latency Communications (URLLC): aims at supporting applications with
stringent requirements in throughput, latency, reliability and availability. Such use cases range
from industrial automation, mission-critical applications, self-driving cars, etc.

■ MassiveMachine-TypeCommunication (mMTC): are applicable for scenarioswhere a large number
of connected devices transmitting sporadic data (unpredictable small data payloads) and relatively
low volumes of non-delay sensitive data (e.g. smart grid, smart home/building, smart cities, etc.)

Figure 1.2 illustrates the importance of each capability for the aforementioned usage scenario in 5G
[9]. This was obtained by using three -step scaling: "low", "medium" and "high". For eMBB use cases,
energy efficiency, area traffic capacity, peak data date, user experience data rate, spectrum efficiency are
highly emphasized and are classified as high importance categories. In the case of mMTC, the priorities
are set to connection density and network energy efficiency for massive deployment. Finally, the order
of latency in User Plane and Control Plane as well as mobility with low interruption time are highest
importance for URLLC communications.

Figure 1.2: Key capabilities in 3 main scenarios in 5G [9].

1.1.3 Ultra Reliable and Low Latency Communications

As name suggested, Ultra Reliable and Low Latency Communications (URLLC) aims to accommodate
emerging services and applications having both stringent latency and reliability requirements such as in-
telligent transportation and industry automation [10], tactile internet [11], augmented/virtual reality
(AR/VR) [12], fault detection [13], frequency and voltage control in smart grids [14]. Each application
category generally has different requirements for End-to-End (E2E) latency and reliability, as shown in
Table 1.2 [1]. Thus, 3GPP recommends a general requirement for URLLC communications that the trans-
mission of a packet of 32 bytes should be reliably bounded in 1-10−5 within a user plane latency of 1ms
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[8]. In this section we will analyse the terms "latency" and "reliability" and the relationships between
them with regard to the design of a network.

Firstly, latency is considered as the End-to-End (E2E) time spent in the radio network, backhaul con-
nection and transport/core network together, as follows:

■ Radio delay is mainly concerned at RAN level where over-the-air transmission delay, queuing delay,
processing/computing delay with retransmission are taken into account.

■ Back-haul connection delay is the time for establishing connections between gNb and the Core
Network (CN).

■ Transport and core delay involve the time spent of the packet in the router networks and processing
time taken by the core network.

The latency terms in URLLC can also be defined as user plane latency or control plane latency [15].
The former is seen as the one-way time taken to successfully deliver a packet from the radio protocol layer
ingress point to the radio interface ingress point, regardless of UL or DL communication of a given service
under unloaded conditions. On the other hand, control plane latency is also defined as the transition time
from the idle state to the start of continuous data transmission, i.e. the active state. As recommended, the
minimum (single)-user plane latency requirements are 4ms and 1ms for eMBB and URLLC, respectively,
while the minimum required control plane latency is 20ms [2].

With regards to reliability, it is defined as the probability that a certain amount of data will be suc-
cessfully transferred within a certain amount of time. This definition of reliability stipulates that packet
delivery must happen within latency bounded. Besides that, there are several other definitions of relia-
bility that can be encountered:

■ Reliability per node: is defined as the probability of transmission error and/or queuing delay vio-
lation.

■ Control channel reliability: is defined as the probability of successful decryption of the transmitted
metadata.[4].

■ Availability: is defined as the probability that a given service is available. For example, 99.99%
availability means that one user out of 10000 nodes might not be properly served.

Figure 1.3: Relation between reliability and latency [16]

The tighten relationship between latency and reliability is shown in Figure 1.3 [16]where a pre-configured
deadline is defined as constraint latency of each application. Without the deadline (i.e, there is no delay
target), the perfect reliability is easily achieved whenever transmission rate is below channel capacity ac-
cording to well-known Shannon’s theory. On the other hands, in case of a predefined latency constraint
is set for a particular application, then reliability is seen as the probability that latency does not exceed
the deadline. The definition of outage is complementary to the reliability and it shows the percentage of
deadline violation. The blue curve illustrate that probability of delivering information within a deadline
x. It is also noted from Figure 1.3 that the stricter deadline is, the lower reliability (i.e. higher outage) is
capable of. This phenomenal perfectly demonstrates the fundamental trade-off between low latency and
high reliability communications. Furthermore, in wireless environment where statistics of extreme and
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Table 1.2: Use case requirements [1]

Use case Latency (ms) Reliability (%) Data size (bytes) Communication range (m)

Smart grid 3 ∼ 20 99.999 80 ∼ 1000 10 ∼ 1000

Self-driving car 1 99 144 400

Industrial automation 0.25 ∼ 10 99.9999999 10 ∼ 300 50 ∼ 100

Process automation 50 ∼ 100 99.99 40 ∼ 100 100 ∼ 500

E-health 30 99.999 28 ∼ 400 300 ∼ 500

Augmented reality 0.4 ∼2 99.999 12k ∼ 16k 100 ∼ 400

ITS 10 ∼ 100 99.999 50 ∼ 200 300 ∼ 1000

V2V 5 99.999 1600 300

Tactile internet 1 99.99999 250 100000

rare events are also involved, the variation of blue curve will be bounded between slash red curve and
complicate the studies on URLLC trade-off.

1.1.4 Technological constraints and Design Challenges of URLLC

Among the three main categories of 5G communication, the protocol designs of the URLLC service
are probably considered to be the most challenging and problematic, because we have to deal with two
trade-off requirements: low latency and ultra-high reliability. In addition to these fundamental trade-off
constraints, a number of technical challenges remain to be addressed. These include coexistence with
heterogeneous services and the ability to integrate with new architectures. In this section, we will point
out some of the difficulties involved in the design of a proper URLLC system.

1.1.4.1 Fundamental trade-off constraints

The primary requirement for the achievement of URLLC is to reliably deliver small payloads of data
within a strict and constraining latency target. Obviously, the low latency goal can be achieved by short-
ening the transmit packets. However, the additional cost of degrading the channel coding gain with
respect to the shorter packet length prevents the reliability of the transmission from reaching the pre-
defined goal [17]. Furthermore, the control overhead is often reduced for small packet sizes, thus, we
may not be able to provide the same level of reliability as the long packet transmission where control
overhead is sufficient. It represents the first challenge in addressing the fundamental compromise be-
tween the goals of low latency and high reliability designs. As an example to illustrate this obstacle in the
design of an URLLC system, while other services in eMBB can simply rely on Hybrid Automatic Repeat
reQuest (HARQ) retransmission to achieve high reliability, it is not the case for URLLC when multiple
retransmissions easily violates hard latency constraint.

Another dimensional variable that needs to be taken into account, in addition to the fundamental
trade-off between reliability and latency, is the efficient allocation of resources [18]. Resource efficiency
is defined as the ratio of resources required to accomplish packet transmission to those provided. In
order to compensate for the loss of reliability in a dynamic environment, feedback-based retransmission
systems are traditionally implemented (e.g., HARQ) in which ACK/NACK messages are used to indicate
whether additional resources are needed to correct the corrupted packet or not. Principally, this proto-
col design achieves efficient resource allocation at the cost of high delay due to the regular exchanges
of acknowledgements between sender and receiver. By proactively (re)transmitting a large number of
packets, equivalent to multiple resource allocations per acknowledgement, we can overcome negative
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channel impacts while reducing exchange overhead at the cost of inefficient resource allocation. Thus,
efficient resource allocation in meeting URLLC requirements in dynamic scenario remains a challenge to
be addressed with.

The fourth variable trade-off that attracts a lot of attention in the URLLC design is the network
capacity rate. Generally speaking, the guarantee of high data rate incurs lower reliability and vice versa
[19]. For example, given the physical link between transmitter and receiver, a higher data rate is achieved
by transmitting TB at higher MCS. However, for successful decoding, a higher Signal-to-Interference-
plus-Noise-Ratio (SINR) is required for data reception. Therefore, if a higherMCS is set for a transmission,
the probability of correct packet reception is lower. As a consequence, reliability and latency constraints
in dynamic scenarios (e.g. channel fading, user mobility, etc.) limit the choice of high MCS (e.g. higher
data rate) and the trade-off between these requirements needs to be reconsidered.

In addition to the fundamental trade-offs discussed above, there are several key aspects to be aware
of, such as the power consumption of the device, control overload and user density, etc [2]. However,
in the context of our thesis, our focus is on the trade-off between RAN latency, transmission reliability,
radio resource efficiency and network throughput.

1.1.4.2 Heterogeneous reqirements of services

The deployment of URLLC services together with eMBB and mMTC applications makes a burden
on 5G wireless network because different services require particular metrics and transmission policies.
Although the traffic for URLLC is utmost prioritised, it is important not to degrade the performance of
other services. Moreover, the transitions of various transmission policies require flexible frame structure
andmultiplexing schemes for all services while current static or semi-static resource allocation algorithms
are not flexible enough. Thus, it leads to the requirement of design a dynamic multiplexing scheme where
the satisfaction of each on-going service is guaranteed. In order to do that, a promising approach is to
apply network slicing, which is a virtualisation approach allowing multiple logical slices to run on the
same shared network infrastructure. However, wireless resources are fundamentally different due to their
shared nature, and what the literature fails to mention is the efficient allocation of resources to guarantee
the desired QoS for specific services. Thus, the optimal co-existence of URLLC applications in parallel
with eMBB and mMTC services needs to be further discussed.

In this thesis we open the research direction towards optimal, proactive and hybrid centralised/decen-
tralised 5G networks to guarantee URLLC communications. The heterogeneous support of other types
of services is left to future developments that may arise from this thesis.

1.1.4.3 Incorporating new architectures

From the network perspective, URLLC applications may benefit the design of MEC and edge caching
which offer a platform to offload intensive computations from end users to the nearby edge network.
However, edge computing network functions are incompatible with communication functions of the origi-
nal URLLC traffic, thus amodification of current protocol stack to accommodate edge computing services
are required. Furthermore, edge caching resources are usually distributed and limitedwhen are compared
to caching resources in the cloud, while the amount of contents are unlimited and fast-changing. There-
fore, it is important to employ advanced prediction features to anticipate the most popular contents and
effectively use limited edge cache sizes.

In this thesis, we focus only on the RAN level where wireless protocols for URLLC are carried out.
The extension of this work towards MEC and CN to form an architecture solution will be devoted for
future developments.
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1.1.5 Current Research Orientations

In the literature, researcher propose various techniques/approaches for achieving low latency and/or
high reliability in three main categories: (1) RAN solutions, (2) core network solutions and (3) MEC and
caching solutions.

1.1.5.1 RAN solutions

In RAN, the objectives of low latency and high reliability are usually achieved separately by different
enhancement solutions in Physical Layer (PHY) and Medium Access Control (MAC) as follows:

■ Novel frame and packet structure: is considered as a solution in PHY layer to reduce TTI from 1 ms
in LTE to 0.125 ms as in NR. It is achieved by using fewer OFDM symbols per TTI [20] , shortening
OFDM symbols via broaden Subcarrier Spacing (SCS) [21] and/or reducing HARQ Round Trip
Time (RTT).

■ eMBB/URLLC/mMTC multiplexing: It is seen as an effective method of resource allocation in the
MAC layer for dealing with heterogeneous QoS requirements. This method typically prioritises
resources for mission-critical services by preempting the currently allocated resources of other,
lower-priority services (e.g: puncturing the current eMBB transmission [22])

■ Hybrid GF/GB access: Traditionally, GB access to the wireless channel ensures that users have
collision-free access to the resource. This comes at the cost of high latency and overhead. In GF
random access, the handshake-based grant acquisition phase is omitted. Thus, access latency is
reduced with the risk of resource selection collisions between users. [23]. The trade-off between
these access schemes is therefore favourable and requires further study to design a low-latency,
high-reliability system.

■ Non-orthogonal multiple access (NOMA): shortens latency by supporting more users than conven-
tional orthogonal resource based approaches. By leveraging power or code domain multiplexing
and using successive interference cancellation (SIC), multiple users can share the same time/fre-
quency resource block and achieve higher spectral efficiency, energy efficiency and lower latency.
On top of that, grant-free NOMA has been introduced as a promising technology for URLLC sup-
porting time-critical applications [24]. However, various problems with regards to imperfect CSI,
user ordering, processing delay due to resource overlapping and other dynamics are considered as
bottlenecks of this solution.

On the other hands, the negative effects that affect the reliability of wireless transmissions are caused
by various factors, such as (1) interference and the coexistence of multiple users sharing the same fre-
quency bands. This causes unpredictable signal collisions between users and increases the error rate of
wireless transmissions. (2) Reception signal strength fluctuates due to time-varying fading channels. It
is caused by the scattering effects of signal propagation in a dynamic environment or by user mobility.
In order to address with those nuanced problems, diversity and beamforming play a crucial role to boost
the received SINR. The reliability enabler solutions can be listed as follows:

■ Multi-connectivity: is of paramount importance to overcome the channel impairments and ensur-
ing high reliable communication. Based on the simultaneous connection of UE to multiple gNb,
macro-diversity is exploited to combat large scale fading as well as blockages in the dynamic wire-
less environment [25].

■ massive-MIMO + mmWave: are mutual, complementary solutions to provide better reliable com-
munication, and extreme throughput. Due to the very high frequency of wireless communication,
the susceptibility of blockage and signal attenuation are the main sources of signal degradation
and lowering the network coverage. However, the short wavelength of mmWaves paves the way
for the integration of more antenna elements which make massive MIMO practically feasible [26].
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■ HARQ + short frame duration: are methods to both ensuring highly reliable and low latency trans-
missions based on retransmission in shorten duration. For a latency budget of 1 ms, a 0.125 ms TTI
is used to allow up to 4 retransmission attempts in which half of them are reserved for DL and UL
communications [27]. However, time-critical packets may not benefit from retransmissions, thus
5G public private partnership (5G PPP) project METIS-II suggests turning off the HARQ functions
to achieve URLLC in certain scenarios [28].

■ Network slicing refers to the process of slicing physical network into logical and dedicated sub-
networks for specific applications. By doing that, the interference between services can be reduced
and ultra reliable transmission services can be guaranteed [29].

In the scope of our thesis, we mainly focus on the redesign of frame and packet structure, the hybrid
GB/GF access and allocation resource management to guarantee URLLC objectives.

1.1.5.2 Mobile Edge Computing (MEC) and Caching solutions

One of the main reasons which cause long-delay of communication is seen at the insufficient capacity
of back-haul links in peak-traffic hours. To overcome this impairment, Caching and Mobile Edge Com-
puting (MEC) exploitation are considered as one of the promising candidate technologies. By exploiting
caching and computing resources in proximity to the network edge, it has been proved by Bastug et al.
[30] that latency can be significantly reduced. This implementation is indispensable for the advent of
resource-intensive applications such as augmented/ virtual reality and other mission critical applications
such as autonomous driving. The integration of SDN/NFV technologies also facilitates the deployment of
MEC technologies which decrease the latency. Ford et al. [31] deploy distributed MEC by the placement
of network functions at a decentralized manner. Their demonstrations show that 75 % capacity at the
data center could be reduced and meet the 5G latency requirement.

In terms of caching, there are 4 main categories that can be classified as (1) local caching [32], (2)
device to device (D2D) caching [33], (3) small cell base station (SBS) caching [34] and (4) macro base
station (MBS) caching [33], depending onwhere the requested contents of the user are temporally stored.
The fundamental problem in which caching solutions aim to solve is the trade-off between latency and
storage given the fact that the more contents are cached, the lower delay the devices may take to access
to the information content at the cost of higher storage capacity. By introducing novel metrics such as
normalized delivery time (NDT) [35], fractional delivery time (FDT) [36] and delivery time per bit (DTB)
[37], this fundamental trade-off take the upper bound or lower bound of the latency/storage capacity
into account for the algorithm designs.

Even thoughMEC and caching solutions are envisioned to reduce huge load computation at the server
as well as the latency and reliability, there are several open issues that encourage researcher to study.
For instance, cooperate executing computation tasks in multiple edge nodes may be complexities when
dealing with various channel qualities and computational capabilities of different nodes. Furthermore,
given the fact that the satisfaction of reliability and latency is usually difficult in multiple edge nodes
environment, it is a challenge to design an efficient offloading scheme considering both computations
and communications of the task [38].

In our thesis, we focus primarily on the communication aspects of the URLLC rather than the com-
putational and storage capabilities taking advantage of the MEC architecture, so future development
can be opened up from this work for feasible integration of the MEC to improve heterogeneous URLLC
communications.

1.1.5.3 Core networks solutions

In the core network, several new entities such as SDN andNFV [39] are introduced to flexibly support
larger capacity, massive connectivity and low latency with seamless operation [40]. Because of the fact
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that control plane and data plane have different network QoS criteria to be met, so it is preferable to de-
couple them completely to design them effectively. With the exploitation of SDN and NFV, the user plane
and control plane separation are facilitated. Particularly, the virtualization in SDN-based system allows
handling of QoS by setting specific rules in the switches along with the data path. Along with that, NFV
removes the dependency on the hardware platform and make flexible deployments of core networks
as well as sharing resources in RAN. Once control plane is separated from data plane, an information
centric scheme is introduced by Liang et al. [41]. In this architecture, various controller in terms of
wireless network architecture, radio spectrum resource, virtual resources including content-level slicing,
network-level slicing and flow-level slicing have been presented as key enablers to support low latency
services. Another advantages of SDN/NFV integration into core network are applied at mobility man-
agement functions to lower its processing delay. By implementing proactive and reactive solutions for
mobility management using Mininet and Openflow, Marquezan et al. in [42] successfully stretch global
processing delay around the mean value with high probability (95 %). Their results suggest a potential
solution to guarantee the E2E jitter of communications. Although the huge potentials of SDN/NFV based
core network design, there are several issues which need to be addressed with. As Casellas et al. [43]
suggested, the main challenge is the management and orchestration of the heterogeneous resources. Ef-
fective resource allocation and implementation of network functions in this heterogeneous environment,
while maintaining low latency and high reliability of E2E communication are still open issues. For the
sake of simplicity, we leverage the EPC in LTE network for modelling the functionalities of CN.

1.2 Thesis outline and main contributions
The initial objective of this research is to investigate novel transmission and allocation strategies

involving the Physical Layer (PHY), Medium Access Control (MAC) and Radio Resource Management
(RRM) layers that provide a flexible trade-off between reliability and latency.

In the first part of my thesis, I have carried out the state-of-the-art studies on potential enabling
technologies for URLLC. Then, I have proposed a methodology to classify them in multi-diversity layer
across network layer. Following bibliographic works, I have classified potential solutions as a function of
network layers (RAN, MEC, CN) and diversity (coding, time, frequency, space and interface), addressing
latency reduction, reliability improvement or both. To facilitate the metric measurements and quantify
the satisfaction of QoS in URLLC transmission, I have clarified and set up KPIs to see the impact of
each network layer on latency with associated jitter, reliability, resource utilisation, energy, coverage and
complexity.

Thanks to the preliminary studies on KPIs and mechanisms, I have proposed a complete framework
of orchestrator, integrating Artificial Intelligent (AI) and smartly combining the appropriate mechanisms
using a reactive or proactive approach in order to guarantee URLLC requirements in a dynamic environ-
ment. The integration of the smart management thanks to AI will be useful to manage the entire network
and to face to a myriad of (un)predictable events which impact on the global performance. Thanks to the
NS3 system simulator, we have developed a sub-6GHz/MIMO network framework capable of combining
several mechanisms exploiting modulation and coding diversity (LDPC, MCS, AMC), spatial diversity
(MIMO) and time diversity (frame design, HARQ) at the RAN level for URLLC communication. The
performance has been evaluated in terms of transmission reliability, E2E latency and jitter for dynamic
traffic and a fast fading channel in an indoor factory scenario [44]. The results obtained allow us to
understand the behaviour of different combinations towards URLLC performance and are a first step for
further research using AI.

After promising findings and results from precedent works, we have designed a (i) Decision Maker
(DM) (orchestrator) trading off reliability – latency – resource efficiency and (ii) jitter-aware orchestration
for URLLC communications. Afterwards, we have seen the benefits of using our orchestrator design to
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improve the proactive resource allocation strategy, lower latency communications as described inChapter
2.

In the last piece of our work, we manage to extend our centralized Decision Maker (DM) framework
to (semi)decentralized one in which each user (agent) plays an pivotal role in making an optimal decision
in hybrid allocation schemes and optimize the UL latency, network throughput and reliability. Relying on
the Lyapunov optimization framework that is exploited in previous works andMulti Agent Reinforcement
Learning (MARL), each user can perform optimal resource selection actions to achieve better performance.

The detailed outline of the thesis is as follows:

■ Chapter 1: Introduction provides a philosophical reasons of 5G designs to deal with heteroge-
neous requirements of growing network dimensions. Among the three main usage scenarios that
5G network supports, we emphasise that the design requirements for URLLC communication are
much more challenging. Then, we focus on the recent obstacles and design challenge in which cur-
rent studies are limited to support URLLC requirements. Afterwards, we carry out a comprehensive
survey of state-of-the-art research on URLLC, which lays the foundation for our thesis.

■ Chapter 2: Enabling technologies for Ultra Reliable and Low Latency Communications

aims at providing a methodological design of an orchestrator to flexibly apply the joint mecha-
nisms acrossing network layers and guaranteeing E2E low latency, ultra-reliable communications
at RAN level. Based on the studies of cutting-edge solutions for either reducing latency and/or im-
proving reliableness of wireless communications, a comprehensive classification of solutions into
5 dimensional diversity (time, frequency, signal processing, space and hardware) across network
architecture (RAN, MEC, Core Network (CN)) is carried out. This classification serves as a look-up
table to support orchestrator decisions of functional (de)activations to improve latency or reliability
as the dynamic of environment. The evaluations of enabling mechanisms for URLLC at RAN level
are also conducted in the light of 5-dimensional diversity mechanisms. Afterwards, we are going
to describe our (i) early decision maker and (ii) jitter-aware scheduling at RAN level. The material
of this chapter is recognized in the journal paper [J1], the patents [P1] and [P2]:

[J1] M. Maman, E. Calvanese Strinati, L. N. Dinh, et al., “Beyond Private 5G Networks: Ap-
plications, Architectures, Operator Models and Technological Enablers,” EURASIP Jour-
nal on Wireless Communications and Networking, doi: 10.21203/rs.3.rs-430193/v1.

[P1] M. Maman, L. N. Dinh, E. Calvanese Strinati, “Method to exploit latency distribution
for early decision making,” filled patent, FR2103542.

[P2] L. N. Dinh, M. Maman, E. Calvanese Strinati, “Methods and apparatus for jitter-aware
scheduling in wireless Time Sensitive Network communications,” filled patent, .

■ Chapter 3: Ensuring Latency, Reliability and Effective Resource Allocation for URLLC. The
whole of our research in this chapter can be divided into four distinct phases, as follows: (i) First,
using a system-level simulation based on NS3, we demonstrate how proactive resource allocation
can be integrated into the regular HARQ procedure at the MAC layer to reduce the overall latency
of the RAN level. In this work, we have clarified the correlation between traffic source throughput
and PHY/MAC layer configurations to serve data in a highly dynamic channel. We then high-
lighted the trade-off between RAN latency, transmission reliability and radio resource efficiency
by analysing various proactive resource allocation schemes to re-transmit interrupted packets. Al-
though RAN latency is reduced with higher levels of proactive resource scheduling, the lack of
adaptation is the main cause of low radio resource utilisation efficiency. (ii) In the next step, an
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adaptive control algorithm is proposed to improve the proactive resource management. Based on
the Lyapunov stochastic optimisation tool, a mathematical framework is proposed to understand
the performance-delay trade-off by minimising the objective function of the total resource alloca-
tion and the total queue length, parameterised by a hyper-parameter (i.e.,ν). (iii) In the third step,
we propose an adaptive and reliability-aware solution to deal with the system where the critical
disturbance occurs frequently and more radio resources are needed to improve the reliability of the
communication. (iv) Finally, by means of OpenAirInterface (OAI) experimentation, we successfully
validate the design of algorithms on the real-time and full-stack hardware where the constraints
of experimentation are taken into account. The contributions in this chapter are adapted from
conferences papers [C1], [C2] and [C3].

[C1] L. N. Dinh, M. Maman and E. Calvanese Strinati, “Proactive Resource Schedul-
ing for 5G and Beyond Ultra-Reliable Low Latency Communications,” IEEE 95th
Vehicular Technology Conference: (VTC2022-Spring, doi: 10.1109/VTC2022-
Spring54318.2022.9860872.

[C2] L. N. Dinh, I. Labriji, M. Maman, and E. Calvanese Strinati, “Toward URLLC with
Proactive HARQ Adaptation,” in 2022 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit), pp. 220–225. doi: 10.1109/EuC-
NC/6GSummit54941.2022.9815615.

[C3] L. N. Dinh, R. Bertolini, M. Maman, “Dynamic Resource Scheduling Optimiza-
tion for Ultra-Reliable Low Latency Communications: From Simulation to Experi-
mentation,” in 2022 IEEE 33rd Annual International Symposium on Personal, In-
door and Mobile Radio Communications (PIMRC), sept. 2022, p. 1026-1031. doi:
10.1109/PIMRC54779.2022.9977893.

■ Chapter 4: Semi-decentralized resource scheduling for QoS improvement extends the vi-
sion of dynamic decision maker into (semi)distributed resource scheduling frameworks where each
end user (agent) together with gNb participate to maximize the global objective of low latency, high
reliability and high network throughput. Relying on hybrid allocation schemes of Grant-Based
(GB) and Grant-Free (GF), our solution takes the advantages of each access regime to deal with
massive URLLC traffic in a dynamic environment. The content of this chapter is adapted from our
accepted conference paper.

[C4] L. N. Dinh, M. Maman and E. Calvanese Strinati, “Hybrid Radio Resource Manage-
ment based on Multi-Agent Reinforcement Learning,” accepted in 2023 Joint European
Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit),
Gothenburg, Jun. 2023.

■ Finally, chapter 5: Conclusions and Future works concludes this manuscript. We also present
different research topics that are identified as open issues and future research directions in the
improvement of URLLC communications.
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CHAPTER 2. ENABLING TECHNOLOGIES FOR ULTRA RELIABLE AND LOW
LATENCY COMMUNICATIONS

2.1 Introduction
2.1.1 Motivations

Many independent mechanisms efficiently increase reliability and/or reduce communication la-
tency in the radio access and core network. These mechanisms can exploit different diversity to

improve system performance. However, it is not always preferable to activate all diversity-based mech-
anisms at once to achieve Key Performance Indicators (KPIs) satisfaction due to the huge resource con-
sumption in terms of power, computation, communication and caching memory. They highlight the
need for a controller (e.g. orchestration) designed to intelligently combine the appropriate mechanisms
and flexibly manage the complex system with heterogeneous service requirements and efficient use of
resources. [45]. In this chapter, we propose a classification of the mechanisms and a methodology to
design an orchestrator at RAN to manage classified mechanisms dynamically. Then, we evaluate the per-
formance of current diversity-based mechanisms in achieving URLLC goals with regards to RAN latency
and transmission reliability.

Afterwards, we propose two algorithms to enhance the trade-off between reliability and latency tak-
ing into account the effective resource management and goal-oriented communication with jitter-aware
scheduling. The former algorithm deals with the tactical operations of network orchestrator at Radio
Access Network (RAN) level. Conventionally, a methodology is proposed for a systematic combination
of several mechanisms to stretch the network latency below the deadline. This approach has disadvan-
tages when it is not rapidly adapted to dynamic environment. On the other hand, proactive adaptation
strategies select mechanisms for the worst case with margin to compensate the unpredictable decay of
unwanted defects. This implies a high cost of ultra-reliable communications because defects/impair-
ments (worst cases) can be very rare. Then, a novel decision maker model, which considers performance
statistics and makes a better trade-off between network latency, communication reliability and radio re-
source efficiency, need to be considered. The second algorithm addresses jitter-aware control problem
in a complex wireless environment. In particular, the attainment of highly deterministic communica-
tion (low jitter) is generally problematic due to the presence of a variety of uncontrollable impairments
(e.g. uncertainty of channel dynamics, sporadic and unpredictable user traffic behaviour, mobility and
varying number of users, etc.). It demands a jitter-aware orchestration method that mitigates the be-
haviour of uncontrollable wireless dynamics and improves communication latency/jitter. By doing this,
this algorithm is beneficial in application controls when resources (power, radio, computation, caching,
storage, etc.) are more concentrated to guarantee the occurrence of data transmission in a controllable
time window.

2.1.2 Contributions

The contributions of this chapter can be summarized as follows:

■ Our contribution is firstly to classify enabling solutions according to multi-level diversity. The in-
troduction of additional diversity (i.e. hardware and signal processing) to the existing diversity (i.e.
time, space, frequency) brings interoperability and allows the combination of several technologies
[46]. This classification will act as a look-up table for the combination of diversity that will have
an impact on the performance of the network in terms of reliability, latency/jitter.

■ Our second contribution is to propose a new methodology to design an orchestrator that takes
into account the heterogeneity and coexistence of services, the dynamic evolution of requirements
(e.g. traffic, number of users, QoS) and the dynamics of the wireless propagation medium. We
then focus on the RAN performance, taking into account the enabling mechanisms at this level.
Before considering a AI-based orchestrator, we modified a NS3 network simulator based on [3]

to multiplex low-latency mechanisms (e.g., frame design) and reliability enhancing mechanisms
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(e.g., multiple antennas, redundancy, and adaptive modulation and coding using code/time/space
diversity). This simulator is used to evaluate the impact of the combined mechanisms using a
diversity subset at the RAN level working alongside the EPC/LTE core network [J1].

■ We propose online decision maker (orchestrator) which defines dynamically one or several thresh-
olds based on latency distribution in order to make a tradeoff between network latency, commu-
nication reliability and spectrum efficiency. The objectives are to define when to (de)activate more
resources/ mechanisms, to make an efficient tradeoff between reactive and proactive approaches
and to exploit multi-modal latency distribution [P1].

■ We introduce a jitter-aware orchestration method that forces latency to fall within predetermined
windows. As the results, latency/jitter is independent of the wireless environment and now adapted
to the control system. Thus, we transform the dependence of communication on the environment
into a dependence on control/application. [P2]

The technical content of this chapter is based on our journal paper [J1], the patents [P1] and [P2]:

[J1] M. Maman, E. C. Strinati, L. N. Dinh, et al., “Beyond Private 5G Networks: Applications,
Architectures, Operator Models and Technological Enablers,” EURASIP Journal on Wireless
Communications and Networking, doi: 10.21203/rs.3.rs-430193/v1.

[P1] M. Maman, L. N. Dinh, E. Calvanese Strinati, “Method to exploit latency distribution for
early decision making,” filed patent, FR2103542.

[P2] L. N. Dinh, M. Maman, E. Calvanese Strinati, “Methods and apparatus for jitter-aware
scheduling in wireless Time Sensitive Network communications,” filed patent, .

2.2 Classification of enabling mechanisms
Several advanced mechanisms can be used to reduce latency/jitter, improve transmission reliability,

increase network throughput and strengthen communication availability. These mechanisms can exploit
multi-level diversity based on (1) Time, (2) Frequency, (3) Space, (4) Signal Processing and (5) Hardware.
While time, frequency and space are classic, two additional diversities have been added for more flexibil-
ity and elasticity. First, hardware diversity refers to the ability to switch from one technology to another
(e.g. antenna selection, Multi-Radio Access Technology (Multi-RAT), hardware selection for virtualisa-
tion, etc.). In addition, signal processing diversity refers to software such as data processing redundancy,
channel coding, different modulation schemes to achieve more robust transmission on the noisy chan-
nel. It could also include Mobile Edge Computing (MEC) [47], softwarization [48] and various virtual
network functions in the new network architecture to bring computing, communication, processing and
storage closer to the end-user. Fig. 2.1 classifies the mechanisms proposed in the literature according to
the multi-level diversity and the network layer to which it belongs.

2.2.1 Radio Access Networks

Ultra-reliable communication at the RAN has been widely studied for many years and it is enabled
according to the activation of various diversity-based techniques: channel coding in the signal processing
domain, redundancy in the time and frequency domain, spatial diversity in the space domain and multi-
RAT related to the hardware domain. For example, Liva et al. [49] study short block coding schemes
(signal processing diversity) for ultra-low error rate transmission of short packets. Afterwards, Chen
et al. [50] attempt to combine coding schemes and spatial diversity to further improve reliability. In
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Figure 2.1: Classification of the mechanisms as a function of the diversity and the network layer.

particular, they combine an analog fountain code with 10 antennas at the receiver to obtain a BLER of
10−6. In addition, antenna diversity, also known as spatial diversity, is seen as a enabler for URLLC by
providing more spatial degrees of freedom to improve system reliability. Taking spatial diversity into
account, Pocovi et al. describe in [51] that microscopic MIMO schemes and macroscopic diversity are
sufficient to guarantee the SINR outage performance. The joint spatial diversity is able to handle fast
fading and increases the robustness of the communication by reaching 10−5 SINR outage.

Latency reduction techniques can be classified into several categories such as frame design, lean pro-
tocol, multiple access scheme and scheduling protocol that relate to the PHY andMAC layers of the RAN.
In particular, frame structure design is an important aspect of the 5G PHY and concerns a shortened ver-
sion of the frame that reduces communication latency without affecting reliability. Also, Li et al. show
in [52] that low latency design with guaranteed reliability is achieved by using HARQ with a shorter
CSI turnaround time and TTI. Another method to provide high levels of reliability with reduced latency
is to use multiple communication technologies ([53], [54]). This hardware-based diversity method can
complement signal processing/time/frequency/space-based methods for improved reliability by taking
advantage of multi-path signal propagation effects. For instance, dual connectivity, where users con-
nect to primary and secondary cells simultaneously, adds another layer of diversity to improve network
robustness.

Besides PHY techniques, some MACmechanisms are considered to reduce latency through time and
frequency diversity. Pedersen et al. have proposed a punctured scheduling [55] reducing control latency
at the MAC layer by prioritising URLLC traffic over eMBB to immediately schedule more time-critical
traffic. While the use of dynamic scheduling is advantageous when intermittent traffic is generated to en-
sure some level of resource efficiency, the associated cost of high latency connection establishmentmakes
this approach inappropriate for time-critical services in URLLC. On the other hand, Semi-Persistence
Scheduling (SPS) [56] is proposed to shorten latency by periodically allocating resources to users. The
periodicity of resource allocation can be updated according to channel conditions. Thus, resources can be
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2.3. EVALUATION OF COMBINED MECHANISMS

adequately allocated to each user in a short period of time, reducing spectrum inefficiency. However, the
aperiodic traffic behaviour of users reduces the efficiency of resource allocation and can degrade network
performance when multi-users are considered. It is therefore necessary to discuss new approaches to the
scheduling of resources for aperiodic traffic behaviours, in multi-user scenario and guaranteeing URLLC
communications.

2.2.2 Mobile Edge Computing and Core Networks

In Core Network (CN), packet forwarding takes place over a wired medium such as fibre or copper.
Thus, signalling, routing and packet processing are mainly considered to design a core network support-
ing URLLC communications. Due to the huge amount of data and high congestion of packets in the core
network, its redesign needs to be discussed. To support low latency communication at Core Network,
SDN and NFV are considered as the main candidates when they allow the separation of the control plane
and the data plane, increasing the flexibility and scalability of the network and opening a door for latency
reduction. Furthermore, with the combination of SDN and NFV, it is viable to bring the core network
closer to the end-user to form MEC and thus further reduce E2E latency.

Mobile Edge Computing (MEC) is a well-known concept based on the distribution of computing re-
sources, storage and control services at the edge of the network and close to end users. This enables end
users to run time-sensitive and/or mission-critical applications without having to wait for their data to
reach the remote server via core network, thereby reducing back-haul and core network delay. Based on
a distributed computing system integrating multiple technologies: network virtualisation, cloud comput-
ing, SDN, small cells and network slicing, the use of advanced MEC and CN will be more beneficial for
5G networks due to its scalability, resilience, fault tolerance and reduced network congestion.

The MEC main features can be summarised as follows [57]:

■ On-premises: MEC can run in a standalone mode and provide a mobile user with appropriate
services.

■ Proximity: MEC servers are located in close proximity to a mobile user.

■ Low latency: The computing power of the MEC is sufficient to process applications in real time.
This allows us to support latency-critical 5G applications and also reduce the burden of backhaul
traffic.

■ Location awareness: Since an MEC server is close to a mobile user, it allows us to provide location-
based services.

■ Network contextual information: MEC is able to use information about radio network conditions
and local context information for optimisation of network and application operation. and applica-
tion operations

2.3 Evaluation of combined mechanisms
In this section, we study how to combine some of mechanisms defined in Figure 2.1, enabling URLLC

and which can be a first step for later research using data-driven approach such as Machine Learning
(ML) algorithms. In particular, we will focus on numerology (frame design), micro-diversity (MIMO),
HARQ (redundancy) and adaptive MCS. We consider an 5G network framework based on new radio
module implemented by [3] in NS3 network simulator. The core network is based on LTE/EPC model
while the RAN takes into account sub-6 GHz communications in the NR architecture. Performance is
evaluated in terms of E2E latency, network jitter and RAN reliability.
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Figure 2.2: Simulation scenario.

2.3.1 System description

The considered scenario is that of a UE equipped with a (2x4) Planar Linear Array (PLA) antenna
communicating with its gNb with a (4x8) PLA antenna via a DL direction and requesting service from a
remote server. Spatial diversity is thus initially achieved by a MIMO antenna on the UE and gNb side.
The sub-6GHz NR communication characteristics are as follows: 20 MHz bandwidth in the 3.5 GHz band,
three different numerology (0, 1 or 2) and LDPC channel coding associated with various MCSs (MCS5,
MCS12, MCS17 and MCS25). These MCSs are respectively the four different modulation orders (4-QAM,
16-QAM, 64-QAM, 128-QAM) and refer to four coding rates (0.37, 0.42, 0.43 and 0.8). Numerology and
MCS (time, frequency and signal processing diversity) are applied to reduce the delay at the RAN level.
To improve reliability, HARQ-IR is applied. The selected propagation model is the indoor factory channel
model recommended in [44]. The fast-fading channel, which has a coherence time of 10 ms, is a source
of transmission impairment. Another impairment is the dynamic generation of traffic at the application
layer (exponential distribution of message size and inter-arrival time with an average of 60 Bytes and 1
ms respectively). Our simulation scenario and the associated parameters are then shown in more details
in Figure 2.2 and Table 2.1, respectively.

2.3.2 Numerical results

Figure 2.3: Distribution of E2E latency across the network layers
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Table 2.1: Table of the parameters for the simulation

Simulation parameters Values

Device 1 UE vs 1 BS

Freq 3.5 GHz

Bandwidth 20 MHz

Distance Ue-Bs 120 m

Pathloss Model Indoor Factory

Numerology Num0 - Num1 - Num2

MCS scheme 5 - 12 - 17 - 25

Coding Rate 0.37 - 0.42 - 0.43 - 0.8

HARQ Incremental Redundancy (IR)

Service type UDP

Message size 60 Bytes

Message inter-arrival time 1ms

Figure 2.3 shows the distribution of the E2E latency through the different layers according to nu-
merology. The impact of the LTE/EPC core network was quantified by the fixed delay of 1 ms for the
back-haul and core transport link, respectively. It refers to the time taken for packets to travel through
the transport network from a remote host before reaching the RAN network. At RAN level, the pack-
ets are first proceeded with PDCP layer before being queued at RLC layer (The details on Appendix B)
which the delays are represented by PDCP and RLC queuing, respectively. At MAC layer, every packet is
scheduled with a delay of L12 = 2 slots which corresponds to the preparation time of gNb before pushing
them over the air [58]. At PHY layer, a time slot transmission is considered and its delay is measured by
PHY transmission. Once UE receives the transmitted message, it takes a constant UE processing delay
of 100µs .The E2E latency is mainly due to the PHY and MAC layers where TTI is successfully shortened
compared to the frame structure and the scheduler delay. Figure 2.3 also illustrates the jitters caused by
the mismatch between message generation at the application layer and resource allocation at the MAC
layer.

Figure 2.4 extends the study performed in Figure 2.3 by considering E2E latency and BLock Error
Rate (BLER) as a function of numerology and MCS. As expected, lower MCSs (e.g. MCS5) have more
robust communications and higher latency while higher MCSs offer higher throughput, lower latency
at the cost of reliability. Higher MCS at PHY layer means higher modulation order is set to carry more
bit-wise information per OFDM symbol and higher coding rate (Appendix B, Table B.2). Nevertheless,
the required SINR at the reception is also more strict to be able to decode the message. At lower MCS
(e.g. MCS5) the obtained error rate is small because only low SINR is enough to decode the transmitted
messages. When highest MCS (e.g. MCS25) is applied, error rate is exponentially increased and it shows
that almost all transmitted messages are failed. In exchange, latency under low MCS is higher because
less information is carried in each transmission when compared to higher MCS. This shows the trade-off
between latency and reliability at RAN when various MCS are selected.

In order to give a better insight into the distribution of E2E latency over time when retransmissions
are involved, Figures 2.5 and 2.6 illustrate the distribution profile and Cumulative Distribution Function
(CDF) of E2E latency forMCS 17 with different numerology, respectively. It is evident that the integration
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Figure 2.4: E2E Latency and Packet Error Rate

Figure 2.5: E2E latency distribution of MCS17 with or without HARQ
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Figure 2.6: CDF of E2E Latency of MCS17 with or without HARQ

of HARQ and higher numerology allows us to both improve reliability and reduce PHY transmission
latency. However, the inevitable generation of groups of adjacent delays (retransmission time diversity)
causes the measured delays to diverge into different time windows depending on the maximum number
of retransmissions allowed and the numerology applied. As a consequence, the latency is spread out in
time and its average latency is shifted towards higher values.

Figure 2.7: CDF of E2E Latency for MCS5, MCS17 and AMC

Figure 2.7 compares the performance of the AMC mechanism exploiting signal processing diversity
with the robust MCS 5 and the high throughput MCS 17 in a fast fading channel. The CDF curves show
that the MCS 5 with HARQ outperforms the AMC and achieves a reliability of more than 99% for a
latency of less than 5 ms, compared to 81% and 61% respectively for the AMC and MCS 17. This shows
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that strict adaptation of the MCS may not always be the best solution to tackle signal degradation in a
fast-fading channel and that certain margins are needed to avoid unpredictable events and to bound the
performance.

2.4 Network Orchestration
Based on the 5G architecture in [59] and the integration of AI in an unified framework as illustrated

in [60], we propose an intelligent framework to control the entire network and guarantee not only URLLC
but other heterogeneous services. Our proposed framework serves as a controller (orchestrator) for each
network entity (RAN, MEC and CN) to intelligently coordinate optimal solutions in an efficient manner
to ensure the target performance. In the scope of our thesis work, our concerns are mainly upon on RAN
level orchestration for URLLC communications.

The main objective of AI integration is to make the prediction of the impairments that could occur
for a better provisioning of resources and an optimal selection of mechanisms adapting the environment.
The proposed framework is able to deal with multiple QoS by efficiently combining several mechanisms
simultaneously. Besides, performance monitoring/measurement paves the way for the orchestrator to
dynamically adapt network parameters and mechanisms to respond to these changes. Dynamic adap-
tation can be either reactive or proactive with respect to the current system analysis or long-term data
collection for later prediction, respectively. Finally, depending on the network infrastructure’s capability,
the degree of elasticity can be ensured by making resources (storage, communication, caching, comput-
ing) available to different parts of the network.

Figure 2.8: Framework to design an orchestration.

The orchestrator design proposal is to smartly coordinate UEs, gNbs and network entities. It is de-
signed to find the optimal subset of preferred mechanisms for configuring the RAN, MEC and CN to
fulfill the targeted KPIs without wasting resources. The complexity depends on the scenario, the subset
of mechanisms to be chosen, the level of abstraction at RAN and core and the selected AI. Figure 2.8 illus-
trates the orchestrator framework. The orchestrator inputs are system information, KPIs and impairment
factors which can be described as follows:
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2.4.1 System Information

This block provides user and infrastructure information and allows the appropriate mechanisms to
be defined to support the QoS. User-level information defines the capabilities of each user, such as the
user’s antenna configuration, the supported RATs, battery limitations. On this basis, the orchestrator
will coordinate appropriate strategies to adapt to the services required by each user by (de)activating the
available mechanisms. Infrastructure information such as computing and storage capacities and network
standards, will be considered as a performance constraint that the orchestrator will have to adapt to the
heterogeneity of user needs.

2.4.2 Key Performance Indicators (KPIs)

This block presents the network states at different network layers. For example, the E2E latency is
composed of many elements in the RAN, the edge and the core network. In particular, the RAN latency
corresponds to the transmission time (i.e. to transmit the physical block data in the PHY layer) or the la-
tency for establishing the grant which depends on scheduling scheme at the MAC, the processing time at
the UE/gNb and the notification messages at upper layers (RLC, PDCP). The edge latency corresponds to
the computation time, queue delay, feedback and forwarding delay, and reconfiguration time in theMEC.
Transport latency is the time that transport network needs to transfer the packet to the target direction.
Similarly, the E2E reliability, usage, energy efficiency, coverage and complexity could be considered.

2.4.3 Impairment Factors

Several factors can degrade the performance of the different layers of the network. With appropriate
information and prediction leveraged by AI, the orchestrator can prevent predictable events from de-
grading system performance. In case of unpredictable events, the orchestrator can avoid performance
degradation and bound the performance. From a communication point of view, reliability impairments
are due to the power degradation of the useful signal, uncontrollable interference, resource depletion,
protocol, reliability mismatch and equipment failure. The source of perturbation may be due to time-
varying channel and channel uncertainty due to mobility or changing environment, interference (e.g.,
collisions with other users in uncoordinated channel access, coexistence with other systems in the same
frequency bands) or imperfect knowledge of the environment (e.g., measurement inaccuracy or obso-
lete information). Besides, intermittent connectivity, time-varying traffics or a change in the number of
mobile users can also cause an increase in RAN latency. From a computing and caching point of view, im-
pairments are related to the unavailability of computing resources due to the congestion or overloading
of tasks. Besides, poor coordination between multiple edge servers when users are multi-connected can
lead to wasted resources and increased latency. Concerning the use of AI in CN, deviation in accuracy
between the training phase and the test phase could also lead to errors.

2.4.4 Orchestrator

Several closed-loop management processes are designed. First, the system information will inform
the orchestrator about the behaviours and capabilities of the network in a specific region. Then, it will
measure the state of the network and apply the appropriate mechanisms at the different levels of the
network to achieve the targeted performance. In the feedback direction, the orchestrator will analyze
the performance by comparing measurements and KPIs requirements. In case of a difference between
the expected and the actual performance, the orchestrator will adjust the decision and re-orchestrate the
network in a reactive way. Metric measurement and analyzer are the key elements that enable close-loop
management when it monitors the performance and the network state during operation. The analyzer
will also identify and classify impairment factors or network faults into predictable and unpredictable
events. With appropriate information and prediction leveraged by ML, the orchestrator can prevent
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predictable events degrading system performance and can avoid performance degradation due to unpre-
dictable events by bounding performance.

In this case, the orchestrator will proactively reconfigure the network. The introduction of a new
network architecture (Open-RAN (O-RAN) and MEC) brings flexibility, elasticity, efficiency to the net-
work since storage, processing, control, communication are centralized. During communication oper-
ation, (un)predictable impairments can occur. It will then trigger the orchestration of mechanisms to
adapt to those degradation. Depending on the short or long-term characteristics of the impairments,
the orchestrator can decide on various actions at different locations in the network. For example, block-
age or fast-fading channel can be overcome by allowing dual connectivity or band switching. However,
long-term impairments, such as communication/computing resource depletions, may require not only
additional resources at the RAN level but also at the MEC and CN level. Therefore, the global controller
needs to distinguish the characteristics of the impairments for better orchestration.

2.5 Decision maker models
In this section, we show two models which can be exploited with our proposed orchestrator at RAN

level: (i) Exploit latency distribution for decision making and (ii) Jitter-aware scheduling in wireless time
sensitive network communications. The first model addresses the trade-off between latency, reliability
and efficient use of radio resources by taking into account the flexible transformation between reactive
and proactive approaches. The second model allows the orchestrator to force latency to a predetermined
"window" regardless of the dynamics of the environment and focuses on jitter awareness in addition to
latency through " mean" and "standard deviation" control.

2.5.1 Exploit latency distribution for decision making

More advanced technologies/ mechanisms are needed to jointly reduce latency and improve reliabil-
ity while maintaining an appropriate efficiency. The classical approach is to propose a systematic com-
bination of several mechanisms to stretch the latency below the deadline. This approach is not adapted
to dynamic environment. On the other hand, proactive adaptation strategies select mechanisms for the
worst case with margin. This implies a high cost of ultra-reliable communications because impairments
(worst cases) can be very rare. Reactive adaptation strategies proposes to activate additional resources
but these strategies increase considerably the latency and are based on average single-modal latency
with jitter. In this section, we propose a decision maker which trades off between Reliability –Latency
–Efficiency for URLLC in 5G networks.

Decision maker (orchestrator) defines dynamically one or several thresholds based on latency distri-
bution in order to make a tradeoff between latency, reliability and efficiency. The objectives are to define
when to (de)activate more resources/ mechanisms, to make an efficient tradeoff between reactive and
proactive approaches and to exploit multi-modal latency distribution as the illustration in Figure 2.9. If
the decision is taken too early, the decision maker will be close to a proactive approach: simple cases do
not happen yet and the cost is a possible inefficiency usage of resources If the decision is taken too late,
it means that the decision maker waited for many cases to happen. It uses a solution close to reactive
approach with high efficiency usage at the cost of an increase of latency. The decision maker helps to
solve the tail problem of the distribution (rare case and/or hard to serve)

An example of decision making applying for HARQ protocol can be shown as following: Classically,
in the literature, they proposed reactive approach for HARQ. The first transmission happens and we wait
for an ACK or a NACK in order to know the success or not of the transmission and the necessity to re-
transmit the packet. The main drawback is the latency because we have to wait the packet transmission
and the reception of ACK/NACK before to the retransmission. The advantages are the efficiency because
we re-transmit only after the failure notification. The proactive approach is like the multi-layer HARQ
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Figure 2.9: Multi-modal communication on the QoS level.

paper proposed in the literature. It transmits in parallel several packets to reduce the latency but if the
first transmission were enough, resources are wasted.

In our approach, we propose to activate the parallel transmission on demand depending on the con-
dition or gradually depending on the latency distribution. In normal condition, we use reactive HARQ
and when rare events occur, we activate proactive HARQ. The classification of normal and other condi-
tions is based on the multi-modal distribution of the latency and the level of confidence (integration of
the distribution). Our approach makes a trade off between latency and efficiency. We activate additional
mechanism after regular event occurs (then with higher latency than proactive but lower than reactive),
but we avoid waste of resources (more than reactive but less than proactive) as in Figure 2.10.

Moreover, in reactive or proactive approaches, the input of the orchestrator is the average E2E latency
and jitter profile. Then less information is extracted and it is hard to orchestrate several mechanisms.
With our proposition, the input of the orchestrator is the statistic distribution of E2E delay profile, then
more information is extracted (e.g., multi-cluster distribution) and progressive decision spread over time
can be made.

The decision maker will take into account the following information:

■ Multi modal Latency distribution instead of statistical distribution

■ Diversity scheme ( time, frequency, space, signal processing, hardware) Time, frequency and space
are classical. Hardware diversity refers to the capability to switch from one technology to another
(e.g., antenna selection, multi-RAT, hardware for virtualization). Signal Processing diversity refers
to software such as data processing redundancy, channel coding, various modulation orders to ob-
tain a more robust transmission on the noisy channel. It could also include MEC, softwarization
and separation of the virtual network function in the new network architecture to bring comput-
ing, communication, processing and storage closer to the end-user. The decision maker will apply
different and complementary diversity schemes according to the current state of the communica-
tions.

■ The time remaining and the appropriate mechanisms to react “on the fly”. It will schedule in time
the combination of mechanisms according to the time to apply a mechanism, the remaining time,
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Figure 2.10: Exploitation of HARQ under decision making process.

the current status of already applied mechanisms in order to make a better latency-reliability-
efficiency trade off.

■ Classification of the multi-modal latency as a function of the source of impairment with a certain
level of confidence.

The advantages of our decision maker is a better latency-reliability-efficiency trade off (it is not nec-
essary the most latency-reliability performance one), which is not limited inside a mechanism but takes
into account high level orchestration and it does not need to know the source of impairments because it
will learn online how to react and is adapted to dynamic environments. Concerning the multi-step deci-
sion, one or several thresholds are selected based on the confidence level to make the trade off between
latency, reliability and efficiency.

Figure 2.11: Multi step decision making process.

When the time passed, the activation of additional resources/mechanism is essential to give the ro-
bustness to the communication. After several steps, the dynamic allocation of mechanisms/resources
reduces the latency. The decision maker will exploit the latency distribution by classifying the multi-
cluster distribution according to the level of confidence and intermediate deadlines (threshold).

The classification process with differentiate easy to serve and risky to serve cases. While in the
literature, systematic approach is used. In our case, the decision maker with learn and differentiate on
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the fly the different cases. It is important to recall that easy to serve cases can be solved with a limited
number of resource. These cases happens in general, for the majority of communication and thus it is
not necessary to waste more resources. The risky to serve cases are rare and necessitate many resources.
By degrading the latency performance with respect to proactive approach by waiting that easy to serve
cases happen, then increasing the level of confidence that this risky to serve case happen, the decision
maker becomes more efficient and limits the waste of resources. This classification can be done with
multi-steps. From case 1 simple case (more efficient) which provides minimal resources and mechanisms
to guarantee the communication, to case k risky case (but only when necessary) with the activation of
additional resources/mechanisms on demand based on the confidence in latency distribution. (QoS level)

Figure 2.12: Decision making based on latency statistic acquisition.

Our solution steps develop as follows:

■ Step 1: UE defines its target KPIs and inform the Decision maker

■ Step 2: Decision maker centralised at gNb defines a initial strategy in perfect condition (without
impairments). For example, a relaxed strategy can be initialized at the beginning to effectively
consume resources (communication, computation, caching storage, etc.).

■ Step 3: Decision maker applies this strategy to the network and UE will experience various perfor-
mance along the process.

■ Step 4: The feedback from UE is essential for decision maker measures the network behaviours
and start building statistical information to demonstrate how good/bad of the applied decision
(e.g. latency distribution function)

■ Step 5: The useful measurements of the UE feedback support decision maker to classify how "dif-
ficult" to guarantee the QoS it is (from easy-to-serve to risky-to-serve). Then, the corresponding
threshold and weight are defined to demonstrate the optimal level of proactivity for each use
case.

■ Step 6: Decision maker will define multi-step exploitation-exploration strategies. Particularly, var-
ious diversity-based mechanisms (from 5-dimension diversity) will be pre-determined beforehand
and sequentially activated within a constraint delay budget.

■ Step 7: Scheduled decisions are applied to users sequentially. In case of success, UE will return
feedback to decision maker and any ongoing scheduling decision will be terminated.

■ Step 8: UE dynamically adapts its strategy according to status of communication and feedback the
message to the decision maker for the future evaluation.

■ Step 9: Return to Step 4 (evaluate latency distribution).
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2.5.2 Jitter-aware scheduling in wireless time sensitive network communications

Figure 2.13: Jitter-aware orchestrator.

In this work, we propose a jitter-aware orchestration method that forces latency to fall within prede-
termined windows. The objective is to be independent of the wireless environment (channel condition)
and to be able to concentrate the collection of the communication (thus the moment of decision) in a
short moment. The system is optimized so that decisions are made within small predefined windows
i.e. optimize latency and variation of communication latency (jitter) based on action/control but not on
communication conditions. To reduce the latency and the jitter of the communication, whatever the con-
ditions, in a single short window, is very consuming. Thus, we propose a scheduling of the communication
resulting in a multi-windows latency with two levels of control:

■ "mean" control∼ inter windows orchestration: The “mean” control schedules packet between win-
dows. By defining several windows makes a trade-off between the cost of the action and the de-
cision/goal oriented timeline (joint communication control optimization). The illustration of inter
windows orchestration is shown in Figure 2.14.

■ "standard deviation (std)" control∼ intra window orchestration. The “std” control activates mech-
anisms to guarantee the distribution of delay around the mean. (communication optimization for
determinism). The objective is to reduce the width of each window in order to provide deterministic
condition. Outside these windows, packets are considered as failed.

The objective of the mean control is to define the number of windows K and to classify the windows.
When K=1, the optimisation is similar to the one of Time sensitive networks (TSN) protocols. Our work
allows to extend to K>1, classify the K windows and schedule each packet in the best fitting windows.
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Figure 2.14: Inter-window decision maker.

An example of windows classification is “Easy-to serve”, “Average-to-serve” and “Risky-to-serve”. This
inter windows orchestration will distribute action intensity for each designed windows. For example,
he will define a relaxed action (gate open yellow) for “easy-to-serve” window (i.e. resulting in a yellow
latency between t11 and t12 for w1 of packets), average action (gate open red) for “Average-to-serve” (i.e.
resulting in a red latency between t21 and t22 for w2 of packets) and aggressive action (gate open blue)
for “Risky-to-serve” (i.e. resulting in a blue latency between t31 and t32 for w3 of packets). The reliability
of the communication is w1+w2+w3. This example can easily be generalised to N windows.

The objective of the “std” control is to reduce the width of each window in order to provide determin-
istic condition. This has several advantages: It reduce the uncertainty of when the result will be ready, it
eases the coordination or the scheduling of the window of several processes (multi-users or multi-control)
at the same time and it facilitates the optimization of the energy consumption of the system. During inter
window periods, the system can be turned off or can focus on another task.

The architecture design of jitter-aware orchestration is illustrated in Figure 2.15. Each packet is times-
tamped and is added to the TX Buffer. The estimator block estimates the status of the communication
impairments (e.g., how good of channel state is and how many packets are waiting in the TX buffer). The
Controller decides appropriates windows according to the application and drives packets to the trans-
mitter with specified configurations according to the decision maker. The estimator receives a feedback
from the receiver concerning the channel condition whereas the controller receives information about
the usage of data.

Figure 2.15: Jitter-aware scheduling architecture.

According to the status of TX buffer (number of packets), the target jitter, the network status and how
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the communication will be used by the control system or the application, the decision maker classifies
the use-cases and defines a set of actions to fit the communications inside several windows. The difficulty
of the realisation is how to choose the best latency windows and how to delay/advance a packet trans-
mission. This include a tradeoff between costs of action, decision intensity and required latency/jitter
from the application/control system point of view. The innovation of our solution is to be independent
of the communication environment as much as possible. The other solutions are subject to changes in
the environment and their optimizations are only from the communication point of view. In our case, we
are optimising both communication and control/application system and we take into account when the
information communicated will be processed.

The decision maker provides two levels of optimization. The first level concerns the management
of several windows (inter-window) or when the information should be provided (“mean” control). The
decision maker makes a joint optimization of the communication and the control systems. It defines and
classifies several uses cases (from easy to serve to risky to serve) according to the channel conditions
(i.e. the latency distribution of the communication). The number of use-cases K can be fixed or defined
directly by the decision maker. Once the number of cases/windows defined, the decision maker calcu-
lates the optimal positions (in time) of these windows t1. . . tk. The decision maker can delay or advance a
packet transmission in order to constrain the latency inside a window. This is not necessarily the best la-
tency but it is the one that meets the application/control system requirements. Our approach proposes to
manage the timing of the communication (latency and jitter) whatever the environment with a determin-
istic scheduling (multiple opportunities/windows) based on the control system availability/requirements.
Each window represents a part of the communication with a certain weight. The earliest window cor-
responds to the best conditions of communication and the latest window to the worse condition. For
each window, a number of mechanisms will be activated as in our previous patent (FR2103542 [61]) but
now we will also consider the usage of the communication by the control system (goal oriented). A trade
off between the cost of the action and the decision/goal oriented timeline (joint communication control
optimization) will be made in a multi-step manner. The second level of optimization concerns the man-
agement of each window individually (intra-window). The objective is to reduce the size of each window
(std control) and thus the jitter of each use case (determinism). It is easier and more efficient to reduce
the jitter of each window (meaning use cases with similar conditions) than the global jitter. The decision
maker schedules each packet in the best fitting windows. The objective is to reduce the width of each
window in order to provide deterministic condition but outside these windows, packets are considered
as failed. Our approach has several advantages. It can coordinate or schedule multiple processes or users
by aligning their windows as a rendez-vous. It can also spread the windows over the time in order to be
compliant with the number of computing resources available. Finally, by reducing the sum of the jitters,
it can reduce the energy consumption of the system.

The implementation steps are derived as follows:

■ Step 1: UE defines its target (communication oriented) KPIs and inform the decision maker

■ Step 2: Decision maker defines a strategy to guarantee the communication oriented KPIs ( number
of mechanism to reach the target KPIs and the defined deadline)

■ Step 3: Decision maker applies this strategy to the network and UE will experience various perfor-
mance along the process.

■ Step 4: Decisionmaker collectsmeasurement and evaluate the performance of the network (latency
distribution)

■ Step 5: The network and the application/control system define goal oriented KPIs according to the
task scheduler (usage of the transmitted data)

■ Step 6: Decision maker classifies the cases (from easy to serve to risky to serve) depending on the
latency distribution of the communication and the control system jointly (mean control)
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■ Step 7: Decision maker defined multi-step strategies: progressive decision spread over time can be
made in order to reduce the jitter of each window k individually (Std control)

■ Step 8: Decision maker applies this strategy to the network and the UE launches it

■ Step 9: The decision maker evaluates the performance of the optimization (e.g. cost of the decision,
communication loss)

■ Step 10: GOTO step 4 (evaluate latency distribution)

The purpose of the decision maker is on the one hand to provide deterministic communications (low
jitter) and on the other hand to adapt them to the application (for the one using the transmitted infor-
mation whatever the conditions). Several variants or alternatives can be made according to:

■ The network : when a group decision is needed, each decision maker can synchronise their win-
dows and find a consensus on the same window. For example, when a system must confirm an
information from several sensors (e.g. temperature for fire) or simply collect a set of information
at the same time, the decision maker can avoid additional latency by limiting the collection to be
spread over the time.

■ The control system: The decision maker can define the windows according to the availability of
the control system or computational resources when multi-processes are involved. It can avoid the
queuing of the processing at the receiver.

■ The application: The decision maker can schedule the windows of each packet to maximise the
probability to receive packets in the order they will be processed or according to their priority. It
can take into account sequential processes and define a decision tree with the success probability
of each windows of each process.

■ The energy: The decision make can schedule the windows that are most appropriate to reduce the
sum of the fluctuations, thus the time the decision maker should be on, thus the energy consump-
tion of the system. It can also schedule windows and the probability of success when energy is
available (energy harvesting)

2.6 Conclusion
In this chapter, we investigate an orchestrator exploiting multi-level diversity’s classification to deal

with complex impairments of the environment. The most significant features of our orchestrator are
the efficient management of heterogeneous services characterised by competing KPIs, the elastic orches-
tration of the hardware resources obtained by the concept of O-RAN and SDN/NFV, and the dynamic
(de)activation of mechanisms depending on the state of the network with the support of ML algorithms.
In order to evaluate the performance of the combined mechanisms on the E2E network, using NS3 net-
work simulator, we have exploited several mechanisms combining signal processing diversity (LDPC,
MCS, AMC), spatial diversity (MIMO) and time diversity (frame design, HARQ) at the RAN level, ensur-
ing URLLC communications. Performance are evaluated in terms of reliability, E2E latency and jitter for
dynamic traffic and fast-fading channel in indoor office scenario. The results provide insights into the
behaviour of different combinations with respect to URLLC performance and are a first step for further
research using ML. For example, the mismatch between message generation at the application layer and
resource allocation at the MAC layer or HARQ re-transmission can cause jitter and delay clustering and
should be avoided for deterministic communications. Moreover, MCS adaptation offers a good trade-off
between throughput, latency and reliability but may not be suitable for unpredictable events such as fast
fading channel. In this case, some margins on the budget link may be more relevant.

Besides, we propose two decision maker models: (i) mechanism scheduling and (ii) jitter-aware or-
chestration. The former helps us exploit a better compromise between network latency, communication
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reliability and spectrum efficiency. The latter provides a framework in which latency/jitter of communi-
cation is much dependent on our control system rather than uncontrollable environment.

The technical content of this chapter is based on our journal paper [J1], the patents [P1] and [P2]:

[J1] M. Maman, E. Calvanese Strinati, L. N. Dinh, et al., “Beyond Private 5G Networks: Applica-
tions, Architectures, Operator Models and Technological Enablers,” EURASIP Journal on Wire-
less Communications and Networking, doi: 10.21203/rs.3.rs-430193/v1.

[P1] M. Maman, L. N. Dinh, E. Calvanese Strinati, “Method to exploit latency distribution for
early decision making,” filed patent, FR2103542.

[P2] L. N. Dinh, M. Maman, E. Calvanese Strinati, “Methods and apparatus for jitter-aware
scheduling in wireless Time Sensitive Network communications,” filed patent, .
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CHAPTER 3. ENSURING LATENCY, RELIABILITY AND EFFECTIVE RESOURCE
ALLOCATION FOR URLLC

3.1 Introduction
3.1.1 Motivations

S upporting Ultra Reliable and Low Latency Communications (URLLC) for 5G wireless networks and
beyond is of capital importance for the deployments of novel applications such as self-driving cars

and smart factories. Previous chapter deals with cross-layer orchestration of multi-diversity mechanisms
to enable End-to-End (E2E) URLLC communications. In this chapter, we exploit the dynamic decision
maker architecture for resource allocation problems at Radio Access Network (RAN) in guaranteeing low
latency, high reliability and high resource efficiency (spectral efficiency). Besides latency and reliability,
which are QoS required by each UE, resource efficiency is also considered as another key performance
metric for URLLC [18]. Given the requirements for delay and reliability, two approaches can activate
available resources for the communication. On the one hand, reactive strategies activate additional re-
sources on demand, which allows for efficient resource utilization, but significantly increases latency, as
the demand for additional resources is not instantaneous. On the other hand, the proactive approach is
proposed to systematically apply additional resources to stretch the latency below the deadline and it
usually activates for the worst case with a margin. As a result, this approach implies a high cost in terms
of resource utilization, especially when worst-case impairments are very rare. Our goal is then to define
the level of proactivity to apply, to cope with various scenarios, at the scheduling level, taking into ac-
count the trade-off between reliability, latency and resource efficiency. This study will help in the design
of early decision maker, as patented in [61], dynamically adapting reactive-proactive modes required in
dynamic scenario. In order to highlight the importance of the above-mentioned trade-off for improv-
ing URLLC, we investigate the direct application of reactive and proactive strategies to the well-known
HARQ protocol.

Among the promising enablers for URLLC communication at RAN level, we believe that the Hybrid
Automatic Repeat reQuest (HARQ) protocol is the bottleneck that needs to be optimised to meet strin-
gent latency requirements. In the HARQ protocol, we can clearly see that latency is traded off against
reliability targets and resource efficiency. In particular, any retransmission following the HARQ protocol
will be terminated until the sender receives a Acknowledgement (ACK) response or until it reaches a pre-
defined maximum number of retransmissions. If more retransmissions are required in a highly dynamic
channel, the reactive allocation of radio resources for retransmissions will result in a higher communi-
cation delay. On the other hand, if the channel is in good condition, then the proactive allocation of
abundant resources will be a waste of resources. This requires the adaptation of Hybrid Automatic Re-
peat reQuest (HARQ) strategies at the scheduling level in a dynamic scenario (i.e. traffic behaviours and
rapidly changing channel).

In this chapter, we attempt to fill this gap by exploring the parallelisation of HARQ procedure with
a resource scheduling optimization algorithm without sacrificing the efficiency of resource allocation.
Relying on Lyapunov’s optimizations for two-queue state system management at Radio Link Control
(RLC) layer and Medium Access Control (MAC) layer, we design an optimization framework in which
RAN latency, reliability and resource efficiency are taken into account. Afterwards, we implement in our
5GOpenAirInterface (OAI) testbed the algorithm introduced in and its evolution, in order to bring a proof
of their feasibility under real time restrictions, and evaluate their performance in experimentation.

3.1.2 Related works

Under the strict requirements of URLLC applications, the retransmission regime in classic HARQ is
inadequate. Particularly, in the usual reactive HARQ scheme, retransmission (RTX) is triggered as soon
as the sender receives the negative acknowledgement (NACK) from the receiver, thus the latency require-
ment is no longer met if many RTXs are required. In order to tackle with the problem of long RTTs for
mission critical applications, K-repetition scheme [62] and a proactive scheme with early termination
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[63] have been proposed, allowing for a number of redundant retransmissions upon receipt of the ac-
knowledgement by the sender. By doing so, one can opportunistically decode the packet at the receiver
in a shorter time at the expense of inefficient resource usage [64].

In order to cope with the over-estimation of packet repetition which causes inefficient resource usage,
Le et al. [65] proposed a reserved resource scheme to guarantee that each HARQ process can perform an
adequate number of repetitions under a configured period. However, in a time-varying radio channel, the
lack of an adaptive packet RTX strategy evidently degrades the system performance since the number
of RTX is applied imprecisely and both resource utilization and latency are negatively impacted. With
regards to the adaptation strategies in HARQ, in the current literature, it can be achieved in several ways
such as adapting the modulation and coding scheme [66], the transmission power [67] and the maxi-
mum number of RTXs [68]. By optimally tuning these parameters under dynamic channel conditions,
the performance of adaptive HARQ can be substantially improved. However, the adaptation of HARQ
strategies at the scheduling level in dynamic scenarios is limited in these research.

Considering the benefits of proactive HARQ and the adaptation strategy to dynamic channel condi-
tions, in this work, we proposed an adaptation control algorithm to improve proactive HARQ. In addition,
we evaluate our design in an intermittent traffic scenario that is close to the use cases of URLLC in 5G. To
the best of our knowledge, there is still limited amount of research that considers such dynamics in the
results. In [69], they proposed a Closed-Loop ARQ protocol that dynamically re-allocates the remaining
resource between UL and DL slots upon the result of last uplink transmission. In contrast to the current
state-of-the-art, our proposition will robustly select the number of RTXs sufficient to maintain a good
level of resource efficiency and ensure a shorter packet delivery time. To design such an optimal control
action, knowledge of stochastic processes such as traffic behaviour and instantaneous channel quality is
required. However the acquisition of such information is usually difficult and their behaviours are unpre-
dictable, which is an obstacle to design a feasible optimization algorithm. Fortunately, the framework of
so-called Lyapunov stochastic optimization does not require the prior probabilities associated with these
processes [70]. Furthermore, given the compatibility of the time-slot system in the 5G New Radio (NR),
the Lyapunov optimization framework becomes a promising candidate to deal with our problem.

3.1.3 Contributions

In this chapter, we deal with resource allocation problem in guaranteeing RAN latency, reliability and
resource efficiency. The developments of this work include 3 phases as follows:

■ In the first phase, we exploit the proactive resource allocation in system level simulation to see how
better latency is traded-off by reduced resource efficiency at RAN level.

□ We consider RAN performance by developing a system-level simulator based on NS3 [3] ap-
plying to the 5G New Radio (NR). This simulator handles several HARQ processes and mea-
sures the latency between the transmitter Radio LinkControl (RLC) layer and the receiver RLC
layer assuming that the transmission buffer size is infinite. We therefore consider both the
queuing latency at the scheduler (due to reactive/proactive approaches) and (re)transmission
latency (i.e. PHY/MAC).

□ We highlight the crucial importance of proactive HARQ adaptation for enhancing the reliabil-
ity, latency and resource efficiency tradeoff in dynamic scenarios. We consider several levels
of proactivity, different traffic rates and channel conditions.

■ In the second phase, we proposed two different algorithms for efficient and proactive radio resource
allocation to optimise the joint objective between low latency and high resource efficiency under
the constraints of the long-term and short-term reliability objective, respectively.

□ We propose an adaptation control algorithm to improve proactive resource allocation without
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scarifying resource efficiency in dynamic scenario. An optimal level of proactivity should be
dynamically chosen instead of a static one.

□ We present 2 versions of algorithm branches, in which long term reliability is associated with
the evolution of the risk in virtual queue (adaptive allocation) and short-term reliability is
constraint within the limited decisions and is suitable for time-critical messages (adaptive,
reliability-aware).

□ By means of System Level Simulation (SLS), we evaluate our design in an intermittent traffic
scenario that is close to the use cases of URLLC in 5G.

■ In the last phase, we evaluate our algorithms in a real-time hardware experimentation based on
OpenAirInterface (OAI).

□ We showhowhigher proactivity level is an enabler for achieving lower latency communication
in OAI experimentation.

□ We examine Lyapunov optimization for adaptive allocation and adaptive-reliability aware
allocation schemes to see their potential gains in real-time hardware constraints.

□ We validate the deployment of proposed algorithms with the 5G-compliant hardware.

The technical content of this chapter is based on our conferences papers [C1], [C2] and [C3]:

[C1] L. N. Dinh, M. Maman and E. Calvanese Strinati, “Proactive Resource Scheduling for 5G
and Beyond Ultra-Reliable Low Latency Communications,” IEEE 95th Vehicular Technology
Conference: (VTC2022-Spring, doi: 10.1109/VTC2022-Spring54318.2022.9860872.

[C2] L. N. Dinh, I. Labriji, M. Maman, and E. Calvanese Strinati, “Toward URLLC with
Proactive HARQ Adaptation,” in 2022 Joint European Conference on Networks and Com-
munications & 6G Summit (EuCNC/6G Summit), pp. 220–225. doi: 10.1109/EuC-
NC/6GSummit54941.2022.9815615.

[C3] L. N. Dinh, R. Bertolini, M. Maman, “Dynamic Resource Scheduling Optimization for Ultra-
Reliable Low Latency Communications: From Simulation to Experimentation,” in 2022 IEEE
33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC), sept. 2022, p. 1026-1031. doi: 10.1109/PIMRC54779.2022.9977893.

3.2 Proactive resource allocation for URLLC
Effective resource use in Ultra Reliable and Low Latency Communications (URLLC) is one of the

main challenges for 5G and beyond systems. In this work, we propose a novel scheduling methodology
(combining reactive and proactive resource allocation strategies) specifically devised for URLLC services.
Our ultimate objective is to characterise the level of proactivity required to cope with various scenarios.
Specifically, we propose to operate at the scheduling level, addressing the trade-off between reliability,
latency and resource efficiency. We then offer an evaluation of the proposed methodology in the case
of the well-known Hybrid Automatic Repeat reQuest (HARQ) protocol in which the proactive strategy
allows a number of parallel retransmissions instead of the "send-wait-react" mode. To this end, we pro-
pose some deviations from the HARQ procedure and benchmark the performance in terms of latency,
reliability outage and resource efficiency as a function of the level of proactivity. Afterwards, we highlight
the critical importance of proactive adaptation in dynamic scenarios (i.e. with changing traffic rates and
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channel conditions).
The results of this study pave the way for the design of an online decision maker framework enabling

to dynamically choose the appropriate level of proactivity based on the network state which is derived
in section 3.3.

3.2.1 System model

Our system consists of 1 gNb and 1 UE. It is assumed that a DL traffic is generated by a remote
host located near the gNb with an arrival rate of λ and a packet size of L Bytes. Given the physical slot
duration ts, the amount of traffic that fills the buffer at each slot n is A(n)=λ.L.ts.

Figure 3.1: System model for proactive resource allocation

In order to improve the diversity order of the communication, Utx =MBS × NBS antennas and Srx =
MUE × NUE antennas, which are modelled as Planar Linear Array (PLA), are installed at the gNb and
UE, respectively. In this study, the position between the gNb and the UE is fixed, so the shadowing
effect is negligible. Concerning the fast fading model, the sub-channel between the gNb antenna u and
the UE antenna s is modelled by channel impulse response Hn. Then, the MIMO channel matrix at
transmission slot n e.g., Hn is formed by the superposition of single sub-channels Hu,s(t, τ) which were
described in [44]. In this work, we also consider the scenario where the channel fading is too fast to
apply instantaneous channel quality feedback to the transmitter, resulting in the transmitter has little
knowledge of the channel statistics or only having the outdated delay versions of the feedback. The
details on the comprehensive spatial channel model as well as the configuration of antennas in both gNb
and UE will be given in Appendix C.

In our study, HARQ Incremental Redundancy (HARQ-IR) is assumed in which each RTX contains
different coded bits than the previous RTX. The quality of data transmission over different RB is modelled
using Exponential Effective SNR Mapping (EESM) method where a single effective signal-to-noise ratio
γe f f is combined from individual SINR received from individual RB, i.e. γω . In HARQ-IR, the effective
SINR, i.e. γe f f

r after r RTXs is derived as follows [71]:

γe f f
r = −β× log(

1
|Ω| × ∑

ω∈Ω
e−

γω+γe f f
r−1

β ) (3.1)

where γe f f
r−1 is the effective SINR after the previous (i.e., r− 1) retransmissions, γω is the SINR experi-

enced by the ω-th RB in the r-th RTX, and ω ∈ Ω is the set of RBs. The value of β depends on the MCS
selection and it represents the different effects of MCS on modelling γe f f . Our error model with various
values of β are detailed on Appendix B.5.2.

In order to model the error of the signal transmission (i.e., BLER) Link To System (L2S) method is
exploited for the system level simulation. In doing so, a SINR-BLER lookup table can be used for the
calculation of the TBLER with respect to the MCS selection m associated with Low Density Parity Check
Code (LDPC) coding that corresponds to multiple lifting sizes following the 3GPP specifications in [72].
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Then, the communication between the gNb and the UE is done on a slot basis, where the slot dura-
tion ts is pre-configured by selecting the numerology (Num). The TDMA-based scheduler is capable of
reserving a maximum of 12 OFDM data symbols in a slot, depending on the state of the transmission
buffer queue. Based on the number of OFDM symbols allocated to users in a single slot (1 ≤ ns ≤ 12),
as well as the choice of MCS m, the numerology Num, the bandwidth BW, the TBS is defined according
to Equation B.1

In terms of MAC procedure, a preparation delay of L12 slots is configured at the scheduler to model
the time needed for gNb to put the data over-the-air. At the receiver, the packet is considered corrupted
if the TBLER is greater than a reliability constraint given by a target error ϵt i.e, the actual γe f f

r received
after RTX r is less than a target γt. In this case, the NACK will be returned to the sender after a delay
of K1 slots. Basically, depending on the channel statistics and the selected MCS m, the probability of a
packet being successfully received after r RTXs is:

Ps(m, r) = P(γe f f
r ≥ γt) (3.2)

where γt, which is translated from ϵt according to EESM method, is the target SINR to ensure that the
threshold ϵt is not be violated. Concerning the length of transmission buffer queue, the accumulated
data in the transmission buffer queue until time slot n + 1 is determined as follows:

Q(n + 1) = Q(n) + A(n)−
n+1

∑
i=0

1× TBS(m) (3.3)

where Q(n) and A(n) are the queue state and the arrival event at time slot n, respectively. For the
departure event, a quantity of transport block size TBS(m)will be served to current slot when it received
an ACK feedback.

3.2.2 Simulation strategy

In this section, we use system-level simulation to demonstrate the close relationship between E2E
latency, reliability and efficiency of both reactive and proactive resource allocation. Here, We defined the
resource efficiency ηR,e f f as the ratio of the resources required to accomplish packet transmission to the
resources provided. The E2E delay Le2e of the received packets consists of two main parts, namely the
queuing delay at the transmission buffer Lq and the over-the-air delay La which includes the retransmis-
sion process (i.e., Le2e=Lq + La ).

Obviously, the trade-off between E2E latency and resource usage can be studied by applying the R-
parallel allocation scheme. In this regards, R-parallel allocation scheme refers to the fact that R resources
are proactively allocated in R consecutive slots for the retransmission of corrupted TB. By opportunisti-
cally triggering retransmissions before their feedback, the corrupted packet can be recovered faster than
the classical approach i.e, the over-the-air latency La of the transmitted packet is shortened. On the other
hand, the protocol has to reserve unnecessary slots to re-transmit the already decoded message, which
results in low resource utilization.

With respect to the queue stability condition, proactive allocation is feasible under certain conditions
related to the arrival/departure rate of packets. Particularly, departure rate (D) must be greater than or
equal to the arrival rate (A) to avoid buffer overflow. Assuming that out of N time slots, there are N1 slot(s)
(N1 ≤ N) that do not have an ongoing NACK feedback, the queue stability condition can be expressed
as follows:

E(A)

E(D)
= lim

N→∞

N × L× λ× ts

N1 × TBS
≤ 1 (3.4)

Equation 3.4 shows that either N1 or TBS must be large enough to prevent an adverse queue delay that
is greater than the target delay. This equation also shows the trade-off between packet latency and
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reliability when running RTX. By triggering HARQ protocol in the current slot, we can improve the com-
munication reliability at the cost of increasing the queue delay caused by the departure process to zero
(small N1).

3.2.3 Reactive and proactive allocation schemes
Figure 3.2 depicts the DL HARQ scheme in which reactive single retransmission (R=1) and proactive

parallel retransmission (R=3) are compared. The details of how the corrupted packet is resent in these
2 different cases are revealed below.

Figure 3.2: Schema of (A) classical DL HARQ scheme and (B) R=3-parallel RTXs DL HARQ scheme

The classical allocation, which is based on HARQ procedure, corresponds to a reactive retransmission
procedure (i.e. R=1). Figure 3.2A depicts DL data flow from an application server, which is close to the
gNb, and the UL feedback from the UE side. The procedure of reactive HARQ can be divided into several
steps:

■ Step 1: Data packets are generated periodically at the application layer with a size of L bytes and
are queued in the gNb transmission buffer.

■ Step 2: Once the target UE is determined, the TDMA-based scheduler at gNb takes Tprep = L12
slot(s) to prepare the TB with a RV equal to 0 in the corresponding buffer and send it over the air.
The propagation time between the sender and the receiver is negligible.

■ Step 3: On the receiver side, the UE processes the received TB to see if it is corrupted or not. If an
error occurs, a NACK feedback is encoded together with UCI message and sent back to the gNb
after Tf b =K1 slot(s) which represents the processing time of the UE. Otherwise, an ACK is sent.

■ Step 4: The UE feedback is acquired by gNb. A NACK feedback triggers a retransmission of the
corrupted TB (RV=1) that was previously recorded with the sender.

From there, steps 2 and 3 can be repeated until the maximum number of allowed RTXs is reached or the
packet is successfully received by the receiver (e.g., RV=2 as shown in Figure 3.2A). In contrast, an ACK
gives the scheduler the opportunity to serve new TBs from the queue and repeat step 1. Based on the
statistic of the probability that the packet is successfully decoded after being re-transmitted r times with
a given MCS m e.g Ps(m, r), the average latency La,r of reactive HARQ is given as follows:

La,r = Ps(m, 0)× L12 × ts +
Kmax

∑
r=1

Ps(m, r)× r× LRTT × ts (3.5)

where LRTT = L12 + K1 + 1 refers to the RTT of the retransmission, Kmax is denoted as the maximum
number of allowed retransmissions.
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Since the receiver requires retransmission of the error packet after receiving the NACK, resource
efficiency is always guaranteed, ηR,e f f = 1 (i.e., the number of resources requested to accomplish the
retransmission is equal to those allocated).

On the other hand, R-Parallel HARQ deviates from the last step of regular reactive HARQ as follows:

■ Step 4’: Once NACK is acquired at the sender, instead of systematically re-transmitting the single
corrupted TB, multiple TBs are scheduled consecutively in adjacent transmission slots. The level
of redundancy R is determined by the decision maker taking into account that a higher value of R
improves latency in exchange for resource efficiency and vice versa.

This approach is illustrated in Figure 3.2B where R = 3 refers to the amount of resources the scheduler
gives to the sender. In this case, instead of processing a single transmission, the receiver must process a
stream of RTXs (RV=1,2,3) to generate their corresponding feedback. Again, these feedbackmust undergo
a constant delay of K1 slots before reaching the gNb’s scheduler. Since the first feedback is a NACK and
the others are ACKs, a wasted RTX (RV=4) will be triggered before the scheduler realized that the packet
has already been decoded at RV=2. Therefore, RV=3 and RV=4 are considered wasted resources. The
resource efficiency can be derived as follows:

ηR.e f f =
∑Kmax

r=1 r× Ps(m, r)

min{∑Kmax
r=1 r× Ps(m, r) + R, Kmax}

(3.6)

The underlying over-the-air latency in this HARQ scheme is based on many factors that take into
account the redundancy level R chosen by the gNb scheduler and the over-the-air queue caused by the
scheduler operation. In general, the sender opportunistically retransmits the corrupted packet R times
in R consecutive slots and thus postpones the scheduling of others packets. In this case, the over-the-air
latency is given by:

La,p = Ps(m, 0)× L12 × ts+

E

{
Kmax

∑
r=1

[⌊
r+2

R

⌋
×LRTT+(r+2)modR

]
×Ps(m, r)×ts

}
(3.7)

where ⌊.⌋ is the nearest integer less than or equal operator and mod is the modulo operator. This formu-
lation consists of two parts: the average over-the-air latency of the initial transmission and the average
latency of the RTXs. In the example shown in Figure 3.2B where L12 = 2, K1 = 4 (then LRTT = 7) and
R=3, the distance in TTIs between the initial transmission (RV=0) and second retransmission (RV=2) is
8 slots.

3.2.4 Numerical evaluation
3.2.4.1 Simulation scenario

Our system consists of 1 gNb and 1 UE at a fixed distance. Then, each packet generated by a remote
server has a fixed length of L = 60 Bytes. The arrival rates λ are 100 and 800 for low and high rate data
generation, respectively. In terms of PHY/MAC configurations, the bandwidth of DL communications is
50 MHz in the sub-6GHz band (i.e. fc = 3.5GHz). The PLA antenna designs are operated on the gNb
and UE side, in which Utx =8×4 and Srx =4×4 antenna elements are equipped respectively. Since the
gNb scheduler does not know the instantaneous link quality of the communication, a fixed transmission
power Ptx = 10 dBm is distributed equally among the transmitted antenna elements. Besides, a fixed
MCS m= 5 with a code rate Re = 0.3701 are chosen according to [44]. The numerology Num is set to
1 for the slot configuration. The TDMA-based scheduler takes L12 = 2 slots to prepare the data stored
in the transmission buffer and push it to the air. Once the received payload is processed by the receiver,
a delay K1 =4 slots is required to send the feedback (ACK/NACK) to the transmitter. The TBLER target
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Figure 3.3: Simulation scenario
Table 3.1: Simulation Parameters

Parameters Values

( fc, BW) (3.5 GHz, 50 MHz)

Ptx 10 dBm

(Utx, Srx) (8× 4, 4× 4)

Good vs Bad Chan-
nel

d = 100 vs 150 m

BLER ϵt 10−4

Num 1

(m, Re) (5 , 0.7402 , 0.3701)

(L12, K1) (2,4) slots

Kmax 10

L 60 Bytes

Low vs High Traffic λ = 100 vs 800
packets/s

threshold is set to ϵt = 10−4. If this reliability requirement is not met before the maximum number of
RTXs (i.e. Kmax = 10) is reached, the packet is considered lost. Finally, the performance is evaluated in
a bad/good channel where the UE is placed far/near the gNb at the distance d = 150m and d = 100m,
respectively. Table 3.1 summarises the parameters that are applied in our simulation.

In this section, we evaluate the performance in terms of latency, reliability outage and resource ef-
ficiency, for different traffic rates and channel conditions. The simulation results are averaged over 10
random seeds. Latency is measured from the time the packet arrives in the RLC buffer of the gNb to
the time it leaves the RLC buffer at the UE side, assuming that core network latency, signal processing
latency and propagation delay are negligible.
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3.2.4.2 Performance evaluation

Figure 3.4 shows the Cumulative Distribution Function (CDF) of the latency for different HARQ
schemes: classical (i.e. R = 1) and proactive (i.e. R > 1). In this case, a low application traffic rate is
associated with a bad channel condition to perform DL communications between the gNb and the UE.
Compared to the reactive approach (R=1), a significant latency gain is achieved when a higher redun-
dancy level R is set. By increasing R, the retransmission process will be accelerated by consecutively
scheduling the radio resources for the retransmission and prior to the ACK/NACK reception. As a result,
the delivery of the corrupted packets from the source to the destination is both reliably guaranteed and
considerably faster than the classical method.

Figure 3.4: CDF of latency for different redundancy levels R

To evaluate the impact of channel conditions and arrival traffic rates, Figure 3.5 plots the latency
CDF for a redundancy level R=3. Under very good channel condition, a low traffic regime performs best
compared to the other scenarios, as shown in particular by the probability of successful transmission on
the first communication. When packets are generated by the application at very high rates, and a packet
is error at the receiver, the aggregation of queuing effects occurs at the transmit buffer and the radio at
the same time, resulting in degraded system performance. In this regard, a poor channel condition or a
high traffic rate scenario will severely prolong the overall packet transmission delay.

Figure 3.6 shows the gain in latency and jitter as a function of the redundancy level R for different
channel conditions and traffic rates. Latency and jitter are improved compared to the classical HARQ
(R = 1) regardless of the channel condition and traffic generation behaviour. In low traffic mode, the
increased redundancy further improves performance. In contrast, in high traffic mode, performance is
optimized at a particular redundancy level before it becomes saturated and degrades. This is because
queue aggregation causes buffer latency to increase and moderates the latency gain.

Figure 3.7 shows the outage probability over latency (i.e. the latency required to reach an outage from
0.9 to 0.99999 with different R). It demonstrates how the latency gap is optimized to reach a more critical
outage from a more relaxed outage by increasing R. In general, the cost to reach to critical outages in the
R-parallel RTX scenarios is lower than the classical method (R=1). The benefit of significantly reduced
outage is clearly demonstrated in the low traffic regime where latency outages continue to decrease as R
increases. For high traffic, the latency required is less expensive than reactive HARQ (R= 1) and starts
increasing after an optimal value of R.

To highlight the losses in terms of resource efficiency in exchange for faster response time for different
channel conditions and traffic types, the resource efficiency is illustrated in Figure 3.8 as a function of the
redundancy level R. We can see that the efficiency of resource usage is lower when a higher redundancy
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Figure 3.5: CDF of latency for different channel conditions and traffic rates.

Figure 3.6: Latency as a function of the redundancy levels, channel conditions and traffic source rates

Figure 3.7: Outage probability on latency as a function of the redundancy levels, channel conditions and traffic source
rates
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level is configured by the scheduler. At R = 1, the scheduler always understands the status of packet
transmission before triggering retransmissions, so the resource pools are managed to the maximum re-
gardless the channel conditions and traffic rates. On the other hand, there are significant differences
between bad and good channels in terms of resource efficiency at R > 1. In particular, when chan-
nel condition is significantly good, proactively activating additional RTXs often results in redundancy of
allocated resources. Thus, we are more likely to cause the unnecessary retransmission of successfully
decoded message, which reduces resource efficiency.

Figure 3.8: Resource Efficiency

Remarks 3.2.1

In this study, we focused on different resource allocation strategies based on HARQ retransmissions
for URLLC in a system level simulator. We proposed some deviations of HARQ procedure and evalu-
ated the tradeoff between reliability, latency and resource efficiency by comparing the performance of
reactive HARQ and proactive HARQ as a function of traffic source rates and channel conditions. This
studies clarified the correlation between traffic source rate and PHY/MAC configurations to serve the
data over the air in a highly dynamic channel and highlighted the aforementioned tradeoff by ana-
lyzing the application of different redundancy levels to re-transmit corrupted packets in a classical or
R-parallel manner.
Although the latency gain is observed, the exponential decrease resource efficiency in highly dynamic
scenario is a burden when higher proactivity is set. In the next section, we are going to propose a
solution based on Lyapunov optimization theorem. The objective of this proposition is to improve
resource efficiency level in guaranteeing low latency and high reliability level.

3.3 Adaptive, reliability-aware resource allocation guar-
anteeing Latency, Resource Efficiency and Reliability

In this work, we propose an adaptive and reliability-aware decision making algorithm to improve
proactive resource allocation based on HARQ without sacrificing resource efficiency for better latency
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and reliability. Based on Lyapunov stochastic optimization, our adaptation control framework optimally
selects the number of proactive retransmissions for intermittent URLLC traffic scenarios under time-
varying channel conditions without requiring any prior knowledge associated with this stochastic pro-
cess. It then better exploits the trade-off between Radio Access Network (RAN) latency, reliability and
resource efficiency, which is still limited in its realization on current HARQ designs. We then evaluate
the performance of several HARQ strategies and show that our proposal further improves latency over
the reactive regime without affecting the resource efficiency such as fixed proactive retransmission while
maintaining target reliability.

In terms of reliability, there are two main classes of reliability requirements: (i) Ultra-Reliability over
long-term and (ii) Ultra-Reliability in a short term [73], where the former deals with problems requiring
minimal probability rate over long period of above 10 ms (e.g: reliability for a connection to a public cloud
in a densely populated area, etc.) and the latter addresses problems with stringent latency requirement
of below 10 ms such as vehicles communicating at a crossroad, smart grid, etc. Taking into account their
formal definitions, in this section we transform short and long term reliability into cumulative and in-
stantaneous reliability requirements. In particular, the cumulative reliability requirement is related to the
mean or average of the reliability over the entire communication being below a certain threshold. On the
other hand, the instantaneous reliability requirement is directly associated with the current transmission
and we need to guarantee that the current packet transmission will be successfully received with a high
probability. Then, we propose two different algorithms which address adaptive allocation and adaptive,
reliability aware allocation, respectively.

Our goal is to design an early decision maker, as patented in [61], defining one or more decision
moments to dynamically optimize the resource scheduling by adapting reactive-proactive modes to cope
with various dynamic scenarios. The efficiency-latency-reliability trade-off is achieved by the timing and
intensity of the decisions. The earlier (resp. stronger) the decision is made, the greater the latency gain
(resp. reliability gain) at the cost of resource efficiency, and vice versa. To highlight the benefits of early
decision making in resource scheduling, Figure 3.9 illustrates the probability density function when the
system reacts by setting a series of actions to achieve a latency gain. The clusters represent the latency
when a transmission or several RTXs, are required for the receiver to decode the packet. At the end of
each cluster, the system knows whether the packet was successfully delivered or not. Figure 3.9 shows
how decisions made at different times (e.g., parallel RTXs at actions a1 and a2) can reduce latency at
the cost of resource efficiency (i.e. after action a1, packets that only needed one RTX were allocated two
RTXs).

Figure 3.9: Early decision making scheme

3.3.1 Adaptive resource allocation with long-term reliability reqirement
3.3.1.1 System model

The network contains 1 gNb and 1 UE. During the simulation, the UE node moves around the gNb
and varies its distance to it. Then, DL traffic is assumed to be generated by a remote host located near the
gNb, in which the variable arrival rate and packet length follow an exponential distribution. Therefore,
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the dynamics introduced into the system are an illustration of the unpredictable traffic behaviour and
the time-varying channel.

In order to cope with the fluctuating dynamics of the channel and the traffic behaviour, an algorithm
is centralised at the MAC layer of gNb, since we are able to observe the evolution of the transmission
buffer at the RLC layer and the retransmission queue, which implies the channel characteristics at the
PHY layer. Particularly, the application packets are queued in the transmission buffer Q1(t) of the RLC
layer. After completing the scheduler operation at MAC layer, the gNb prepares a TB whose data is
extracted from Q1(t) and sends it over the air. At the same time, the scheduler keeps a copy of this
TB and associates it with an identifier to construct an identical HARQ process [74], which will give the
receiver information about the processed data. In order to show the state of ongoing HARQ processes
that are not yet decoded at the UE side, we defined a Q2(t) that contains them. Due to the dynamic
nature of not only the traffic model but also the channel behaviour, the lengths of Q1(t) and Q2(t) are
influenced and can be considered as random variables. The state of Q1(t) and Q2(t) expresses a two-
stage queuing system whose length should be minimised. The details of systemmodel is shown in Figure
3.10

Figure 3.10: System model

In terms of the channel block, the indoor factory (IF) channel model is used and the details of how the
fading channel is modelled are given in section Appendix C. Basically, the Spatial Channel Model (SCM)
between sender and receiver depends on large number of parameters, such as the number of antennas at
sender/receiver sides, 3D distance between them, statistical characterisations of the embedded scenario
(LOS/NLOS probability, shadowing effects, delay spread, etc. ), mobility of associated users, etc. In this
study, we consider the UE mobility with respect to the gNb, so the shadowing effect plays an important
role in the channel status and it has been modelled as in [75].

To better understand the benefits of good decision making for proactive HARQ in improving RAN
latency and resource efficiency, Figure 3.11 shows the schemes of (A) classical reactive HARQ procedure,
(B) fixed repetitions of 3 RTXs and (C) adaptive redundancy applied to the number of RTXs.

In Figure 3.11A, a delay L12 is introduced to demonstrate the TB preparation time from the gNb
scheduler to the antenna. Then, a feedback will be encoded together with an UCI message and sent
back to the gNb after Tf b = K1 slot(s), thus illustrating the processing time at the UE. In NR standard,
this processing time reflects a delay between the reception of the UL grant in the DL (PDCCH) and the
transmission of the corresponding UL data (PUSCH) [3]. Afterwards, the gNb has the information about
the corrupted HARQ process on the UE side and decides to re-transmit the erroneous TB after L12 slots.
This process continues 5 times until the corrupted TB is successfully decoded by the UE. By doing this,
the resource are perfectly utilised, but the latency could be unacceptable for URLLC communications.

Figure 3.11B shows the fixed repetition of corrupted TB with a fixed redundancy level R = 3. This
means that the first allocation action (i.e., a1) which will allocation 3 consecutive resources(i.e., ra1 = 3),
will be reserved for retransmissions. If it fails, the second action (i.e., a2) with the same redundancy level
(i.e., ra2 = 3) will be allocated. As shown in Figure 3.11B, latency is significantly improved at the cost
of resource efficiency (RTX6 is useless when the TB has been decoded after 5 retransmissions). In this
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Figure 3.11: Different allocation procedures: (A) classical, (B) fixed R=3 parallel RTXs and (C) adaptive and proactive
RTXs.

allocation scheme, each cluster is defined according to the number of consecutive resource allocations,
and cluster sizes are equal.

By adaptively selecting the proactive redundancy level for each action, Figure 3.11C shows better
performance in terms of reduced latency and improved resource efficiency. In this design, to reduce the
control overhead due to multiple feedbacks to the transmitter, we grouped their feedbacks into a single
feedback that represents the current proactive retransmission status. In addition, the cluster size in this
scheme is designed to be flexible to improve resource efficiency.

3.3.1.2 Problem formulation

In this work, we limit the number of decisions or actions into amax sequential actions of proactive
RTXs. Each action aj ∈ {a0...amax} can perform raj RTXs where a0 corresponds to the initial action
corresponding to a new transmission. The decision maker will take the action which dynamically choose
the proactivity level of each action aj (i.e., raj ) to reduce both RAN latency and resource waste. With
respect to the resources allocated for proactive RTXs for TB (i.e., TBn with n is the index of TB), the
decision maker selects an element-wise positive resource allocation vector (rn,a0 , rn,a1 , ..., rn,amax) that
satisfies the following condition:

1 ≤∑
j

rn,aj ≤ Kmax (3.8)

where Kmax is the maximum number of RTXs for every transport block (re)transmission at PHY layer. In
the case where a TB is not decoded at receiver after Kmax RTXs, the TB that contains many application
packets is considered a loss. Then, rmin ≤ rn,aj ≤ rmax constrains the number of proactive RTXs at action
aj not to exceed a value rmax. We can define an objective function fobj that is akin to the average resource
allocation to be provided for each TB as follows:

fobj = lim
N→∞

1
N

N−1

∑
n=0

(∑
j

rn,aj) (3.9)
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where N is the number of times that decisions are made. The decision of how to optimally select raj

is based on various factors, such as the current status of the Q1(t), Q2(t), the current action aj and the
current aggregated, effective SINR (i.e., γe f f ).

The first decision at time t is to select the queue Qi(t) ∀i ∈ {1, 2} to proactively (re)transmit the TB
over raj consecutive time slots. Then, a series of actions aj ∈ {a0...amax} is made at the corresponding
action slot ta in which the proactive RTXs span ra time slots. The time interval (ta, ta+1) forms the a− th
time frame denoted by Fa. In order to control at frame Fa, which queue among Qi(F) will be served,
we introduced the control variable αa where αa = 1 means serving Q1(Fa) and αa = 0 means serving
Q2(Fa). Knowing that HARQ processes have a higher priority, αa = 0 when Q2(t) > 0. Then, the
queuing dynamic will be given as follows:

Q1(Fa+1) = max{Q1(Fa)− αa.TB
ra0
a , 0}+ A1(Fa) (3.10)

Q2(Fa+1) = max{Q2(Fa)− (1− αa).1
TB

raj
a

.TB
raj
a , 0}+ A2(Fa) (3.11)

where Qi(Fa+1) are the backlogs of the queue i at time frame Fa+1. The value A1(Fa) = ∑Fa
t=1 A1(t)

represents the total amount of high layer packets that accumulated in Q1 during frame Fa. During this

frame, an amount of TB
raj
a that corresponds to the proactive RTX of in raj slots, will be served. The

indicator function 1
TB

raj
a
, in Equation 3.11, is equal to 1 if after the raj proactive RTXs, is successful and

is 0, otherwise. If the first transmission of TB
ra0
a is a failure, A2(Fa) = TBa will be added as a HARQ

process to Q2, otherwise A2(Fa) = 0 as the HARQ process of TB
ra0
a will be removed from Q2. According

to Little’s law, the average delay is related to the queue length. Therefore, the first constraint of our
problem is to make the average long-term queue length Q1(Fa) + Q2(Fa) stable (mean rate stable). By
definition, a stochastic process Q(t), which corresponds to the queue behaviour, is defined as mean rate
stable if [70]:

lim
t→∞

E{Q(t)}
t

= 0 (3.12)

This mean rate stability is necessary to ensure that the time average of the queuing departure process is
at least equal to or greater than the time average of the queuing arrival process. The system is therefore
stable. In the following, we present an additional constraint that is associated with the average long
term risk. The visible risk in our problem is when the decision maker at amax chooses to serve the HARQ
process in Q2 by insufficient allocation of ramax to recover the corrupted TB:

ζn = P[(γs
(∑max

j=0 raj ) ≤ γt) | γs
(∑max−1

j=0 raj )] (3.13)

where γs
(∑max

j=0 rn,aj ) is the SINR of TB after amax actions of RTX and γt is the target SINR. The long-term
average risk across all TBs is:

ζ = lim
N→∞

1
N

N−1

∑
n=0

ζn (3.14)

The constraint is then to guarantee the expectation of the long-term risk ζ below a predefined value
ζo. For that purpose, we introduce a virtual queue Z(t) which is incremented each time slot t by ζ − ζo
each time ζ exceeds ζo. The prove of this transformation can be found in Section D.

Z(t + 1) = max{Z(t) + ζ − ζo, 0} (3.15)

Hence, the constraint of satisfying the long-term risk becomes a stability constraint on the average rate
of the queue Z(t). The prove of this transformation can be found in Section D.

lim
t→∞

E{Z(t)}
t

= 0 (3.16)
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To summarize, our optimization problem P1 is to minimize the objective function fobj subject to
several constraints:

minimize fobj (P1)

s.t. lim
t→∞

E{Qi(t)}
t

= 0, ∀i ∈ {1, 2} (C1,2)

lim
t→∞

E{Z(t)}
t

= 0, (C3)

1 ≤
amax

∑
j

rn,aj ≤ Kmax, (C4)

rmin ≤ rn,aj ≤ Kmax (C5)

3.3.1.3 Proposed solution: adaptive resource allocation

In this section, we propose a decision maker algorithm based on Lyapunov’s optimisation tools to
solve the optimization problem P1. To simplify the design of the sequential decision maker, we assume
that (i) the first decision is the same as the reactive decision (i.e. only one slot is reserved for the TB
transmission) and (ii) proactive RTXs in the same action share the same HARQ feedback. First, we define
the current state in the slot t as Θ(t) = (Q1(t), Q2(t), Z(t)) and the Lyapunov function as follows:

L(Θ(t)) ≜
1
2
[
Q2

1(t) + Q2
2(t) + Z2(t)

]
(3.17)

Next, we define the one-slot conditional Lyapunov drift ∆Θ(t) representing the expected change of
the Lyapunov function over a slot as follows:

∆Θ(t) = E{L(Θ(t+ 1))− L(Θ(t)) | Θ(t)} (3.18)

By minimizing both ∆Θ(t) and fobj, we can solve the problem P1 because the queues are stable in terms
of average rate and the objective function is minimized . However, according to Neely in [70], there is a
performance-delay trade-off between these dual objective optimizations that can be parameterized by a
constant ν. By setting a large positive value to ν, the control algorithmwill favor minimizing the objective
function fobj over the stability of the average rate queues. Our ultimate objective now is to minimize the
following Lyapunov-drift-plus-penalty function:

g(t) = ∆Θ(t)+ ν.E{ fobj | Θ(t)} (3.19)

Its upper bound, h(t), can be derived as follows for any action, any possible value of Θ(t) and any
parameter ν > 0.:

h(t) =ν.E{ fobj | Θ(t)}+ E{Z(t).(ζ − ζo) | Θ(t)}

+ B +
2

∑
i=1

Qi(t).E{Ai(t)− bi(t) | Θ(t)}
(3.20)

where B is a constant that satisfies:

B ≥1
2

2

∑
i=1

E{A2
i (t)− b2

i (t) | Θ(t)}

+
1
2

E{(ζ − ζo) | Θ(t)}

−
2

∑
i=1

E{Ai(t). min{Qi(t), bi(t)} | Θ(t)}

(3.21)
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and bi(t) is the quantity of TBn at time slot t that the queue i can process.

bi(t) =


TBrn,1

n if i = 1

TB
rn,aj
n .1

TB
rn,aj
n

if i = 2

0 otherwise

(3.22)

Proof.
By squaring EquationD.1 stressing the fact thatmax[p, 0]2 ≤ p2, wewill get the following expression:

Q(t + 1)2 ≤ (Qk(t)− bk(t))2 + ak(t)2 + 2 max[Qk(t)− bk(t), 0]ak(t) (3.23)

= (Qk(t)− bk(t))
2 + ak(t)2 + 2

(
Qk(t)− b̃k(t)

)
ak(t) (3.24)

Therefore:

Qk(t + 1)2 −Qk(t)2

2
≤ ak(t)2 − bk(t)2

2
− b̃k(t)ak(t) + Qk(t)[ak(t)− bk(t)] (3.25)

Similarly, we will apply the same proofs for Zl(t) and we get the following expression:

Zl(t + 1)2 − Zl(t)2

2
≤ il(t)2

2
+ Zl(t)il(t) (3.26)

Then, we will take the conditional expectations of the above three equations and summing over k ∈
{1, ..., K} and l ∈ {1, ..., L}, we will get the following results:

1
2

K

∑
k=1

E
{(

Q2
k(t + 1)−Q2

k(t)
)
|Θ(t)

}
+

1
2

L

∑
l=1

E
{(

Z2
l (t + 1)− Z2

l (t)
)
|Θ(t)

}
≤

K

∑
k=1

E
{(

a2
k(t)− b2

k(t)
)
|Θ(t)

}
−

K

∑
k=1

E{b̃k(t)ak(t)|Θ(t)}+
K

∑
k=1

E{Qk(t)[ak(t)− bk(t)]|Θ(t)}

+
1
2

L

∑
l=1

E{il(t)2|Θ(t)}+
L

∑
l=1

E{Zl(t)il(t)|Θ(t)}

(3.27)
We see that the right hand side of Equation 3.27 follows the definition of one-slot conditional Lyapunov
drift function ∆(Θ(t)). By choosing a positive constant B value that satisfies Equation D.7, we will
transform Equation 3.27 as follows:

∆(Θ(t)) ≤ B +
K

∑
k=1

Qk(t)E{ak(t)− bk(t)|Θ(t)}+
L

∑
l=1

Zl(t)E{il(t)|Θ(t)} (3.28)

Afterwards, by adding ν.E{ f0(t)|Θ(t)} in both sides of equation above, we will get the upper bound of
the Lyapunov drift-plus-penalty-function as Equation 3.20 □

Through the opportunistic minimization framework of a conditional expectation [70], by minimising
h(t), the upper bound of the dual objective optimization, we can guarantee that the optimization problem
P1 will be satisfied. Therefore, the design of our algorithm will be based on the control action a at the
decisive time ta and will choose the control action that exhaustively minimises function h(t) as follows:

Since the optimal action is chosen based on the exhaustive search minimizing the designed function
h(t) and the action space is bounded from rmin to rmax, the computation complexity is relatively low and
does not lead to an increase in the transmission processing time.
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Algorithm 1 Control algorithm
1: Observe time slot t
2: if t ̸= ta then

3: t = t + 1 else

end

Observe the concatenated queue Θ(t)
4:5: Choose optimal action : a = arg min

a
{h(t)}

6: end if

7: Observe the outcomes of taken action
8: Update the queue Θ(t+ 1)

Figure 3.12: Simulation scenario

3.3.1.4 Numerical evaluation

Simulation scenario

Our simulation scenario is illustrated in Figure 3.12. Initially, the UE is placed at a distance d0 from
the gNb and moves away from it with constant speed and direction (vx, vy). In this work, packets are
generated in distinct ON and OFF periods that follow the Internet Protocol (IP) traffic model [76]. The
average duration of the ON and OFF periods are ton and to f f , respectively. In the ON state, packets
of variable size are generated at the application layer with an arrival rate of λON [Packets/s] and fill
Q1(t). The performance is evaluated in terms of RAN latency, reliability outage, packet loss and resource
efficiency. We define the resource efficiency as the ratio of the number of radio resources required for a TB
to be received by the receiver to the number of radio resources allocated by the scheduler. We also define
the RAN latency as the times between the arrival of IP packets in the RLC layer of the gNb and their
arrival in the IP layer at the UE side. In the scheduling process, K1 and L12 [74] are modelled to illustrate
the feedback processing time and data preparation time at the UE and gNb, respectively. For simplicity,
we assumed that the core network latency and propagation delay are negligible. Table 3.2 summarizes
all parameters including communication band, transmit power Ptx, target BLER ϵt, maximum number of
proactive action amax and proactive retransmission per action Kmax and risk threshold ζo.

Performance evaluation

In this section, we compare the performance of several HARQ-based allocation strategies (i.e. our
adaptation algorithm, a fixed proactive and a reactive) between a gNb and single mobile user.

Figure 3.13 illustrates how the objective function and resource efficiency behave as a function of
the parameter ν. For small value of ν, our algorithm tends to minimize the expected changes in the
Lyapunov function, i.e L(Θ(t)) rather than the number of allocated resources (i.e. fobj). By doing so, a
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Table 3.2: Simulation Parameters

Parameters Values

( fc, BW) (3.5 GHz, 50 MHz)

Ptx 8 dBm

(Utx, Srx) (4× 4, 2× 2)

d0 110m

Velocity (vx,vy) (4,4) m/s

BLER ϵt 10−4

ζo 0.05

Numerology 1

Processing delay (K1, L12) (2,2) time slots

Kmax 10

MCS (m, CR) (5, 0.3701)

amax 5

(rmin, rmax) (2, 5)

Packet Size L (Application level) Exponential(20) Bytes

ON-OFF Traffic ton = to f f = 2.5 ms, λON=50000 Packets/s

large number of radio resources are generously provided to each TB for proactive RTXs, so the average
resource allocation is high and the resource efficiency is low. When the value of ν increases, the focus
is on minimising the objective function and fewer resources are allocated. At a certain value of ν (i.e.
around 50), we found that a minimum value of the objective function is reached (i.e. around 3.2). This is
because at a high value of ν, the algorithm favours allocating smaller number of parallel RTXs on each
action and thus more proactive RTX action are required for each TB. Therefore, in our future evaluations,
we will set ν to 60.

Figure 3.13: Objective function and resource efficiency as a function of ν
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Figure 3.14 compares the CDF of latency for different HARQ-based allocation schemes: (i) reactive
allocation scheme (i.e. R = 1) with a maximum number of 10 RTXs, (ii) 5 RTX actions where each action
contains 2 proactive RTXs (2-2-2-2-2), (iii) 4 RTX actions where the first three actions contain 3 proactive
RTXs and the last action contains a single RTX (3-3-3-1) and (iv) our proposition with a maximum of 5
actions. Figure 3.14 shows that the reactive allocation scheme performs the worst compared to the other
solutions due to the high RTT cost associated with triggering many RTXs. By enabling two parallel RTXs
per received NACK, the latency can be improved at the cost of decreasing resource efficiency to around
0.82 compared to 1 in the reactive case. The latency can be further improved with 3 proactive RTXs
per action, but the resource efficiency drops significantly to 0.69 when we redundantly provide radio
resources for a TB to be successfully decoded. Concerning the performance of our proactive allocation,
the performance of latency is slightly better than the others cases. As the channel condition and traffic
behaviour varies dynamically, our decision maker will wisely select different redundancy level according
to the current queues status and instantaneous channel condition. As the result, we can enhance the
latency while keeping a good level of resource efficiency at around 0.8.

Figure 3.14: CDF of latency for reactive allocation, fixed 2-parallel, 3-parallel allocation and our adaptation algorithm
with ν = 60

To show the temporal variation in MAC layer delay of the different allocation schemes for intermit-
tent URLLC traffic scenarios under time-varying channel conditions, Figure 3.15 compares the latency
between the departure of a TB at the sender’s MAC layer and its successful arrival at the receiver’s MAC
layer. The reactive allocation scheme experiences more peaks as it needs more time to successfully de-
code a packet when critical errors occur. When fixed proactive allocation schemes are applied, 2-parallel
strategy reduces the peak delay and 3-parallel strategy further improves the delay when the radio re-
sources allocated in parallel help decode the packet faster. Our proposed algorithm also reduces the
number and amplitudes of peaks when it dynamically selects an optimal level of proactive redundancy
for each action, thus achieving a better trade-off between reserving more radio resources to recover the
corrupted packet faster and less to maintain a minimum objective function.

In addition, various performancemetrics such as application packet loss (APP loss), resource efficiency
as well as average delay and its standard deviation for different allocation schemes are discussed. First,
the APP loss is guaranteed to be between 0.8% and 1% because themaximumnumber of retransmissions
(i.e. Kmax = 10) is applied in all cases. Second, we find the largest average delay and its standard
deviation in reactive allocationwhose values are around 10.77ms and 6.57ms, respectively. These coupled
values are enhanced to roughly 8.14 ms, 4.91 ms and 8.1 ms, 4.5 ms in fixed 2-parallel and 3-parallel
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Figure 3.15: Evolution of MAC delay between HARQ schemes

allocation schemes at the expense of resource efficiency which decreases to 0.82 and 0.69, respectively.
By dynamically deciding the number of proactive retransmissions at ν = 60, the average delay and jitter
are slightly better than other HARQs which are about 7.2 ms and 4 ms while maintaining a good resource
utilization level at about 0.8.

Table 3.3: End-to-end evaluations between HARQ schemes

Performance metrics

Schemes APP loss (%) PHY loss (%) Resource Eff Mean delay std delay

Reactive regime 0.8 % 0.8 % 1 10.77 ms 6.57 ms

Fixed proactive
2-2-2-2-2

0.8 % 0.4 % 0.82 8.14 ms 4.91 ms

Fixed proactive
3-3-3-1

1 % 0.8 % 0.69 8.1 ms 4.5 ms

Proactive adapta-
tion with ν = 60

1 % 0.6 % 0.80 7.2 ms 4 ms
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Remarks 3.3.1

In this study, we demonstrate the application of decision maker framework that enables a novel proac-
tive HARQ design to cope with a time-varying channel and intermittent traffic source rate. Based
on Lyapunov stochastic optimization tool, a mathematical framework is proposed to understand the
performance-delay trade-off by minimizing the objective function of the total resource allocation and
the total queue length that is parameterized by a ν value. Our results reveal that an appropriate selec-
tion of ν enables the dynamic selection of proactive retransmission to overcome the defect of a long
RTT in the reactive scheme while maintaining a good level of resource efficiency that is considered a
drawback of the fixed proactive schemes. In the upcoming work, this study will be extended towards
the guarantee of short-term reliability constraints. The resource efficiency-latency-reliability trade-off
will be fully achieved by the number, timing and intensity of the decisions.

3.3.2 Adaptive, reliability-aware resource allocation with short-term reliability
reqirement

In this work, we propose an adaptive and reliability-aware allocation based on Lyapunov optimization
for Ultra Reliable and Low Latency Communications (URLLC), taking into account the arrival of traffic
at the network layer, the behaviour of queues at the data link layer, and the risk that the applied decision
results in packet losses. Particularly the trade-off between the resource efficiency, latency and reliability
is achieved by the timing and intensity of decisions and it is adapted to dynamic scenarios (e.g., random
bursty traffic, time-varying channel). More importantly, the short-term reliability is also considered to
complement the previous study on long-term reliability constraint based on Lyapunov’s optimization
theorem.

The contributions of this work are as follows: (1)We formulate the adaptive, reliability-aware resource
scheduling problem by considering the traffic arrival in the network layer, the queue behaviours in the
data link layer and the instantaneous risk of applying vulnerable decision which causes packet loss. (2)
The proposed solution includes resource efficiency considerations for URLLC applications whereas most
solutions in the literature only consider latency reliability tradeoff. (3) We consider E2E performance by
developing a system-level simulator based on NS3 [3] applying to the NR. This simulator handles several
HARQ processes and measures the latency between the transmitter RLC layer and the receiver RLC layer
assuming that transmission buffer size is infinity. We therefore consider both the queuing latency at the
scheduler (due to reactive/proactive approaches) and (re)transmission latency (i.e. PHY/MAC).

3.3.2.1 System model

Our system model is based on the previous description in Section 3.3.1.1 where a two-stage queu-
ing system Q1(t) (dynamic traffic queue) and Q2(t) (dynamic transmission queue) is introduced. The
queuing dynamic is defined as follows:

Q1(t + 1) = max{Q1(t)− αa.TBa0 , 0}+ A1(t) (3.29)

Q2(t + 1) = max{Q2(t)− (1− αa).1TB.TBaj , 0}+ A2(t) (3.30)

where Qi(t+ 1) are the backlogs of the queue i at the action slot t+ 1. A1(t) represents the total amount
of high layer packets that arrive Q1 at time t. During this action slot, an amount of TBaj will be served.
The indicator function 1TB, in Equation (3.30), is equal to 1 if the scheduling process of TB is successful
and is 0, otherwise. If the first transmission of TBa0 is a failure, A2(t) = TBa will be added to Q2,
otherwise A2(t) = 0 as the scheduling process of TBa0 is ending. In order to control which queue will
be served, we introduced the control variable αa (1 and 0 mean serving Q1(t) and Q2(t) respectively).
Knowing that ongoing processes have a higher priority, αa = 0 when Q2(t) > 0.
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Instead of limiting the maximum number of allowed RTXs Kmax for the scheduling process, our
dynamic resource scheduling is restricted in terms of maximal possible actions amax. Each action aj
∈ {a0, ..., amax} can allocate raj proactive RTXs, between rmin and rmax, and a0 corresponds to the first
transmission. The decision maker we designed, dynamically chooses the number of actions aj and their
intensities (i.e, raj ) to reduce latency and improve resource efficiency and reliability. With respect to the
short-term reliability requirement, we define the instantaneous risk (i.e ζ(aj)) as follows:

ζ(aj)=P[(γs
∑

j
k=0 rn,ak ≤γt) |γs

∑
j−1
k=0 rn,ak ] (3.31)

where γs
∑

j−1
k=0(rn,ak ), γs

∑
j
k=0(rn,ak ) are respectively the SINR of TBn at previous (aj−1) and current (aj) action.

γt is the target SINR to decode TBn.
Our proposed procedure dynamically adapts the resource scheduling to the traffic arrival in the net-

work layer, the queue behaviours in the data link layer and the risk that the applied decision causes loss.
It also automatically adapts the maximum number of RTX to the channel conditions. Finally, to reduce
the control overhead due to multiple feedbacks to the transmitter, we grouped their feedbacks into a
single feedback that represents the current proactive retransmission status.

3.3.2.2 Problem formulation

The objective is to optimally select raj based on various factors, such as the current status of the
Q1(t), Q2(t), the current action index aj and the risk that the applied decision causes loss. The main
reliability constraint is to reduce the risk of the last action ζ(amax) below a predefined value ζo. However,
the constraint associated with poor decision making must be defined for each upcoming action, not just
for the last action. We define the risk for the current action ζ(aj).

In this case, the procedure has to re-trigger other actions later, which consumes not only time and
resources but also the reliability of the communication, when we are close to the maximum number of
actions allowed. The index of the current action (i.e aj) is thus very important. Clearly, the higher j is,
the greater the sensitivity of TB loss will be if a wrong decision is applied, and the earlier the action (i.e
low j) is, the higher the total number of RTXs can be.

We define an objective function fobj as the weighed sum of average number of resources allocated to
each TB and the current risk, as follows:

fobj = lim
N→∞

1
N

N−1

∑
n=0

amax

∑
a0

rn,aj × 1aj + α× f (aj)× ζ(aj) (3.32)

where the indicator function 1aj is equal to 0 if the action aj is successful (i.e. ζ(aj) < ζo) and is 1,
otherwise. α ≥ 0 is a constant value trading off risk and resource allocation. A higher value of α im-
plies greater importance of risk minimization over the number of resources allocated (i.e. reliability over
resource efficiency). The function f (aj) increases with the action index aj. In our study, we consider
f (aj) = j.

Thus, our optimization problem P1 is to minimize the objective function fobj subject to several con-
straints:

min
{rn,aj}n,aj

fobj (P1)

s.t. lim
t→∞

E{Qi(t)}
t

= 0, ∀i ∈ {1, 2}; (C1,2)

rmin×1aj≤∑
aj

rn,aj≤Kmax×1aj , ∀aj≤ amax (C3)

C1,2 concerns the stability constraint of the queue Q1,2(t). C3 limits the number of decisions into amax
actions and constrains the maximal number of proactive RTXs at action aj to Kmax.
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3.3.2.3 Proposed solution: Adaptive, reliability-aware allocation

Our decision maker algorithm is based on Lyapunov’s optimization tools, which do not require a-
priori knowledge of stochastic processes in the ongoing system such as channel dynamics or traffic be-
haviours, to solve the optimization problem P1. Given a time-slotted system, we define the current state
in the slot t as Θ(t) = (Q1(t), Q2(t))). Next, we define the one-slot conditional Lyapunov drift ∆Θ(t)
representing the expected change of the Lyapunov function over a slot as follows:

∆Θ(t) = E{L(Θ(t+ 1))− L(∆Θ(t)) | ∆Θ(t)} (3.33)

Where L(∆Θ(t)) = 1
2

[
Q2

1(t) + Q2
2(t)

]
is the Lyapunov function. By minimising both ∆Θ(t) and fobj,

we can solve the problem P1 because the queues are stable in terms of average rate and the objective
function is minimized. However, according to [70], a performance-delay trade-off between these dual
objective optimizations can be parameterized by a constant ν. By setting a large positive value to ν, the
control algorithm will favor minimizing the objective function fobj over the stability of the average rate
queues. Our objective is then to minimize the following Lyapunov-drift-plus-penalty function:

g(t) = ∆Θ(t)+ ν.E{ fobj | Θ(t)} (3.34)

As defined in [70], the upper bound, h(t), can be derived for any action, any possible value of Θ(t) and
any parameter ν > 0 as follows:

h(t) = B + ν.E{ fobj | Θ(t)}

+
2

∑
i=1

Qi(t).E{Ai(t)− bi(t) | Θ(t)}
(3.35)

where B is a constant that satisfies:

B ≥ 1
2

2

∑
i=1

E{A2
i (t)− b2

i (t) | Θ(t)}

−
2

∑
i=1

E{Ai(t). min{Qi(t), bi(t)} | Θ(t)}
(3.36)

The proof for Equation 3.35 can be found similarly as in Section 3.3.1.3 or in Appendix D.
Through the opportunistic minimization framework of a conditional expectation [70], by minimising

h(t), the upper bound of the dual objective optimization, we can guarantee that the optimization problem
P1 will be satisfied.

3.3.2.4 Numerical evaluation

Simulation scenario

This simulation scenario is similar to Section 3.3.1.4 except the fact that we do not consider the mo-
bility between the user and the gNb. Because this work serves as a preliminary study for the validation
with the OAI which will be detailed in the next section. Thus, our network contains 1 gNb and 1 UE with
fixed distance. In this work, packets are generated in exponentially distributed ON and OFF periods that
follow the Internet Protocol (IP) traffic model [76]. The average duration of the ON and OFF periods are
ton and to f f , respectively. In the ON state, packets of variable size are generated with an arrival rate λON
[Packets/s] and fill Q1(t). In the scheduling process, K1 and L12 are modelled to illustrate the feedback
processing time and data preparation time at the UE and gNb, respectively. For simplicity, we assumed
that the core network latency and propagation delay are negligible. Table 3.4 summarizes application,
optimization and communication parameters.
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Table 3.4: Simulation parameters

Parameters Value

( fc, BW) (3.61 GHz, 50 MHz)

Transmission power Ptx 8 dBm

Antennas (Utx, Srx) (4× 4, 2× 2)

d0 100 m

Numerology 1

Packet Decoding Risk ζ0 = 10−4

MCS (m, CR) (5, 0.3701)

amax 5

(rmin, rmax) (1, 5)

Processing delay (K1,L12) (2,2) time slots

Traffic Type ON-OFF

Traffic Parameters
ton/to f f= 1/3

λON= 75000 Packets/s

Performance evaluation

Performance is evaluated in terms of RAN latency, packet loss and resource efficiency. We define
resource efficiency as the ratio of the number of radio resources required for a TB to be successfully
received to the number of radio resources allocated by the scheduler. We also define RAN latency as the
time between the arrival of IP packets in the RLC layer of the gNb and their arrival in the IP layer at the
UE side. Figure 3.16 shows the evolution of resource efficiency (solid line) as well as the average total

Figure 3.16: Resource allocation and efficiency
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number of radio resources allocated (dash line) as the function of ν and α. We selected three values of α
(i.e. 0, 2 and 15) that depend on the awareness of reliable transmission’s objective. When reliability is not
considered (α = 0), our algorithm tends to spend less radio resources for each action and thus, resources
are used efficiently. When ν increases, we put more emphasis on minimizing resource allocation, so
resource efficiency is further improved. When α appears and grows, the goal of reducing packet loss is
also taken into account. The decision maker adapts to the channel conditions and allows more generous
allocations for each action and this leads to high resource allocation with high standard deviation and
low resource efficiency.

Reliability of communication is guaranteed at the cost of low resource utilization as shown in Figure
3.17. When α is high, the transmission error is significantly low and the communication reliability no
longer depends on the ν-value (i.e., 99.5% and 98.5% of the total packets successfully reach the IP layer
at the UE side for α = 15 and α = 2, respectively). However, the dependent relationship between the
transmission reliability and the ν-value is observed for α = 0. In this case, we barely follow the minimiza-
tion of the number of resources allocated for each action rather than the reliability of its transmission,
thus, we noticed more error-prone transmissions when ν increases.

Figure 3.17: Reliability performance

Figure 3.18 shows that the average latency at the RAN mainly depends on α. Redundant radio re-
sources are scheduled when α is high to improve reliability, but this can result in increased queuing delay
as incoming packets must wait longer in the queue before being served.

Figure 3.19 compares the Cumulative Distribution Function (CDF) of latency for different HARQ-
based allocation schemes: (i) Classic allocation procedure, (ii) Fixed number of parallel allocation,
(iii) Adaptive allocation with a fixed maximum number of RTX (Kmax = 10) as defined in [77] (iv) our
proposed optimization (Adaptive, reliability aware allocation) in which Kmax = ∑amax

a0
rn;aj . According

to those figures, we select two pairs of (ν,α) parameters: (25, 2) for good reliability and considerably low
latency and (60, 0) for very good resource efficiency and latency. As expected, the latency of Classic
allocation is the highest and spreads out over time. 2-parallel and 5-parallel allocation improve latency
at the cost of decreasing resource efficiency to 0.8 and 0.6, respectively due to the lack of adaptation
when needed. Our adaptive, reliability-aware allocation scheme offers two trade-offs. When ν = 60 and
α = 0, we improve resource efficiency and latency but not reliability. When ν = 25 and α = 2, we
improve reliability at the cost of a slight degradation in latency in the best case.
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Figure 3.18: Average latency

Figure 3.19: CDF of latency for different HARQ-based allocation schemes
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Remarks 3.3.2

In this section, we show the decision maker framework in mission critical communication where the
short-term reliability is crucial to be guaranteed in a time-varying channel and intermittent traffic
source rate. By well calibrating our proposed optimization to obtain optimal control parameter pairs
(ν,α), we successfully choose the one which reduces latency, maintain good resource efficiency and
improve reliability by means of system level simulation. In the next section, we would like to validate
our proposed algorithm in a 5G-compliant hardware architecture which is based on OpenAirInterface
(OAI).

3.4 From system simulation to practical experimentation

In this section, we are going to apply our resource optimization frameworks, which are previously
evaluated in system level simulator NS3, into experimentation with the helps of OpenAirInterface (OAI)
[78]. In order to provide an 3GPP compliant reference implementation of UE, gNb and Core Network
(CN), this open-source platform captures the most fundamental cellular network functions. The core
development of this work is mainly carried out at the MAC layer, where the scheduler is implemented.
Besides, this layer is responsible for the data transfer between logical channels at RLC layer and transport
channels at PHY layer, thus it is important for two-state queuing system managements. This collabo-
ration work is done thanks to the enormous help of Mr. Rodolphe Bertolini, who is responsible for the
experimental parts and verifying our proposed algorithms on OpenAirInterface (OAI). The results of our
joint simulation and experimental work are published in [79].

3.4.1 Open-Air-Interface Architecture (OAI)

The OpenAirInterface (OAI) software provides an open-source, standard-compliant implementation
of a 3GPP NR stack which is exploited on top of x86 CPU and a USRP radio device. This platform is
oiginally initiated by Eurocom [80] with the aim at contributing a full experimental LTE implementation
which runs in real-time and supporting commercial LTE handsets. Currently, the OAI software spans the
full protocol stack of 3GPP LTE, NR standards which include implementations of EUTRAN (both gNb
and UE) and EPC (MME, S+P-GW and HSS).

The gNb physical layer software implements 3GPP 36.211 [81], 36.212 [82], 36.213 [83] and provides
following features:

■ FDD and TDD configurations: 1 and 3

■ Transmission modes: 1, 2 (stable); 3, 4, 5, 6, 7 (experimental)

■ Max number of antennas: 2

■ PRACH preamble format 0

■ All downlink (DL) channels supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH

■ All uplink (UL) channels supported: PRACH, PUSCH, PUCCH (format 1/1a/1b), SRS, DRS

■ HARQ support for UL and DL

■ Highly optimized baseband processing (including Turbo decoder)

■ X2 interface and handover.

■ Release 12 Dual Connectivity (DC)

Then, gNb MAC implementation includes:
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■ RRC interface for CCCH, DCCH, and DTCH

■ Proportional fair scheduler, round robin scheduler soon.

■ DCI generation

■ Support for HARQ

■ RA procedures and RNTI management

■ RLC interface

– Acknowledged Mode (AM)

– Unacknowledged Mode (UM)

■ UL power control

■ Link adaptation

The PDCP layer is header-compliant with 3GPP 36.323 [84] and have following functionalities:

■ User and control data transfer

■ Sequence number management

■ RB association with PDCP entity

■ PDCP entity association with one or two RLC entities

■ Integrity check and encryption using the AES and Snow3G algorithms

The RLC layer implements the full specification of 3GPP 36.322 [85].
the RRC layer is based on 3GPP 36.331 [86] and have following features:

■ System Information Broadcast (SIB) formats 1, 2, 3, and 13

■ RRC connection establishment, reconfiguration, release, re-establishment

■ RRC inactivity timer

■ Inter-frequency measurement collection and reporting

■ eMBMS for multicast and broadcast

■ X2 Handover

■ Paging

3.4.2 Experimentation test-bed

Our experimentation consists of several components:

■ Two powerful machines which are the representatives of UE and gNb, each has 2× 14 CPUs and
64 GB of RAM.

■ Two Software Defined Radio (SDR) cards illustrate the radio head of terminal and access point
(USRP b210)

■ Two variable attenuators showing the path loss in DL and UL direction.

■ SMA cables which is responsible for the signal transmission at 3.61 GHz.

As shown in Figure 3.20, the computer on the left hand side (red rectangle) is used to run an instance of
OAI gNb. The ones on the left hand size (green rectangle and yellow rectangle) model the instances of
OAI UE and CN, respectively. We consider that in a situation with few UE, the UE and CN are the parts
that have less processing time needed, so we gathered both into a single computer and let the processing
time-hungry gNb make full use of a two-CPU machine.
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Figure 3.20: OAI experimentation Testbed

Figure 3.21: Demonstration of OAI experimentation

In our experimental scenario, the variable attenuators are used to experiment several channel condi-
tions between the UE and the gNb. Packets generated are PING of 64 bytes every 50ms.

In our performance evaluation, we have implemented and compared several HARQ-based allocation
schemes: (i) Classic allocation refers to the wait-NACK-before-re-transmit scheme, (i) Fixed proac-

tive resource allocation (from 2 to 5 parallel retransmissions) as Section 3.2, (ii) Adaptive resource

allocation with long-term reliability guarantee as defined in Section 3.3 and (iii) Adaptive, reliability-
aware resource allocation with short-term reliability guarantee. In order to find the suitable values
of ν (Proactive and Long-Term Dynamic) and α (Short-Term Dynamic), we run with different values of ν
and α and select the value for which a given metric is optimised.

We have implemented the different resource scheduling optimization schemes in the develop version
of OAI NR RAN. This includes (but is not limited to) modifying the redundant version of a TB and the
HARQ process to handle parallel retransmissions of the same TB by gNb and UE MAC entity and col-
lecting metrics needed to our algorithm, such as DL channel status, buffer length (i.e. Q1 and Q2) in the
RLC layer and risk probability based on SINR measurements.
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3.4.3 Deviations from simulation

Our simulation scenario is demonstrated in Figure 3.21where the current status of 5G implementation
in OAI coupled with the limited capabilities of the USRP do not offer the same freedom as the NS3
simulator. In this work, our aim is not to directly compare the performance between simulation and
experimentation, but to verify if our solution is feasible in a real environment and to show the gain
brought by our solution with real time hardware constraints.

Our implementation starts from the developed version of OAI NR RAN. The main difference with
simulation concerns the spectrum usage technique. While simulations use an FDD, OAI uses a TDD. In a
10-slot frame, the first 6 slots are dedicated to DL and the last 3 slots to UL. The seventh slot is a flexible
slot (Flex) composed of 6 DL symbols and 4 UL symbols.

According to this implementation, the RRC layer of the UE sets K1 to a minimum of 6 slots to allow
OAI sufficient processing time, and the gNb scheduler sets a delay L12 of at least 3 slots. Moreover, in
our experiment, each TB contains a PING packet instead of aggregated application packets. Table 3.4
summarizes OAI experimentation parameters.

For the implementation of our different resource scheduling optimization schemes, Equation (3.31)
needs the DL channel status. The CQI is usually calculated with the SINR of the transmission occurring
in the PDSCH to be acknowledged in the current UCI. As the CQI in the UCI is not implemented in the
current version of OAI, we extrapolate it using the UL channel estimation performed by the gNb in our
TDD configuration and we estimate the risk (i.e ζ(aj)) based on online statistics.

In order to illustrate the deviation from system simulation to hardware experimentation based on
OAI, Table 3.5 shows the different parameters between them.

Table 3.5: Simulation and Experimentation Parameters

Parameters Simulation Experimentation

DL/UL Duplex FDD TDD
DL/Flex/UL N/A 6/1/3 slots per Frame
( fc, BW) (3.61 GHz, 50 MHz)
Numerology 1
(m, CR) (5, 0.3701) (3, 0.2451)
Ptx 8 dBm -8 dBm
(Utx, Srx) (4× 4, 2× 2) (1, 1)

amax 5
(rmin, rmax) (1, 5)
(K1, L12) (2,2) time slots (6,3) time slots
Packet Decoding Risk ζ0 = 10−4 CRC check

Traffic Type ON-OFF PING
Traffic ton/to f f= 1/3 Every 50 ms
Parameters Data Rate= 1.5 Mbps 64-Byte packet

3.4.4 Performance Evaluation

Firstly, we depicts the evolution of the resources allocated for each transmission and its associated
efficiency as a function of ν. As shown in Figure 3.22, a downward trend is observed when ν increases. In
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particular, the degree of better resource efficiency is negatively proportional to the amounts of resources
allocated. Then, we decide to choose a value of ν = 55 that maximizes the resource allocation efficiency.

Figure 3.22: Resource Allocation and Resource Allocation Efficiency depending on ν

Figure 3.23 compares the CDF of latency between (i) classical, reactive allocation schemes, (ii)
fixed proactive allocation schemes in Section 3.2 and (iii) adaptive allocation schemes where long-
term reliability is taken into account as in Section 3.3. We can see first that fixed parallel 4 (4-4-2) and
5 (5-5) are very close to each other, which means that in the current testbed with the current channel
state, allocating 4 or 5 resources does not improve by factors the performance latency wise: for both, 100
% of the packets are located under 42.5ms. On the other hand, we can see that Classic allocation gives
the worst results with 100% of the packet being under 72.5 ms. Parallel 2 performs better with 100% of
the packet under 60 ms, Parallel 3 records 52.5 ms. Our algorithm which optimises resource allocation at
ν = 55, has 100% under 52.5 ms. If we focus on the CDF at 60%, we have the following observations:

■ Classic, reactive allocation reaches 47.5 ms

■ Fixed proactive 2-2-2-2-2 allocation reaches 42.5 ms

■ Fixed proactive 3-3-3-1 allocation reaches 37.5 ms

■ Fixed proactive 4-4-2 allocation reaches 27.5 ms

■ Fixed proactive 5-5 allocation reaches 30 ms

■ Adaptive allocation with ν = 55 reaches 32.5 ms

In the upcoming part, we will compare those results with the one where short-term reliability with
regards to adaptive, reliability-aware algorithm is taken into account. Table 3.6 shows the BLER,
latency, resource usage and resource usage efficiency depending on the values of ν (columns) and α
(lines). The most importance numerical values will be highlighted as following: Firstly, with extremely
low ν or extremely high α the algorithm allocates a high amount of resources. As we are over allocating in
current scenario, the resource usage is the highest, from 7 to 9; resulting in the lowest resource efficiency
– that is the ratio of resources needed over resources allocated – of around 0.72 to 0.78, which means 28
to 22 % of the allocated resources are wasted. However, in such configuration, the BLER is at its lowest:
around 2%. Secondly, in orange, with α = 0 so we do not consider the reliability, and with an extremely
high ν. In such configuration, we are close to the standard HARQ that would allocate 1 retransmission
per cluster. Without surprise, the resource usage is at its lowest, at 3.6; the resource efficiency at its
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Figure 3.23: Cumulative Distribution Function of Latency completion of HARQ processes for classical, fixed proactive
and adaptive schemes

highest, at 0.95; and the BLER is at its lowest with 40 % HARQ error. Finally, in blue, with α = 1 and
ν = 5, we have a BLER that is around that of what we see in scenarios with statically allocated 2 and 5
retransmissions. In such case, we see a mean resource usage of 5 and a resource efficiency of 0.89.

Figure 3.24 and Figure 3.25 respectively shows the relation between resource allocation, resource
allocation efficiency and the reliability in terms of BLER, resource allocation efficiency with different
values of α and ν. We can see clearly that the higher the α, the more resources we allocate per action,
the less efficient we are in exchange for better reliability.

Figure 3.24: Resource allocation and resource allocation efficiency depending on ν value for different values of α
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Table 3.6: Performance of BLER, Latency, Resource Allocation, Resource Allocation Efficiency depending on α and ν

BLER [%] ν=0.001 ν=0.5 ν=1 ν=5 ν=10

α = 0 2.23048327 9.3117409 22.163908 27,478754 40,437788

α = 1 2.53560264 5.2167783 13,411765 15,201192 21,046611

α = 10 2.34246123 2.9767041 3,2193827 4,1683694 4,1200407

α = 100 2.27120908 2.4323084 1,6408814 1,9742883 2,1047228

LATENCY [ms] ν=0.001 ν=0.5 ν=1 ν=5 ν=10

α = 0 19,5289303 25,370268 24,19107 20,536601 21,314922

α = 1 22,9312745 22,356983 22,705722 24,841549 26,204719

α = 10 20,8545892 20,941006 20,595434 22,084314 20,492283

α = 100 22,4786868 21,196891 20,47451 18,221003 18,563746

RESOURCE USAGE ν=0.001 ν=0.5 ν=1 ν=5 ν=10

α = 0 7,95089456 7,5285616 6,1858775 4,3751634 3,6472868

α = 1 8,92859693 6,4655493 6,0027248 5,1883803 5,553539

α = 10 8,11859746 7,0828139 6,5372468 6,7738562 7,0766365

α = 100 8,7872121 8,3122939 7,7267974 7,1397223 7,2345226

RESOURCE EFFICIENCY ν=0.001 ν=0.5 ν=1 ν=5 ν=10

α = 1 0,76157418 0,8491635 0,8719154 0,9020018 0,9543039

α = 15 0,78419769 0,8316244 0,851566 0,8941296 0,9020261

α = 10 0,76627006 0,7922429 0,8130547 0,8214975 0,795217

α = 100 0,77540881 0,7732192 0,7611233 0,7407012 0,7296396

Figure 3.26 depicts the resource allocation and resource efficiency as a function of optimization pa-
rameters (i.e. ν and α). Due to the implementation deviations detailed in the subsection 3.4.3, the size
of the queues, and thus the weights ν and α, are different from those of the simulations. For α = 0, the
decision maker does not consider reliability and mainly optimises resource efficiency. When ν increases,
the decision maker allocates fewer resources, which leads to greater resource efficiency. For this experi-
ment, the right average level of the number of resources allocated is between 3 and 4. When α increases,
the decision maker trades off reliability (which needs more resources) and efficiency (which limits the
number of resources allocated). So the larger α is, the less efficient the scheduling is.

Figure 3.27 shows the latency CDF obtained by experimentation with OAI for different HARQ-based
allocation procedures (i.e. Classic, reactive allocation, Fixedproactive 2,5-Parallel allocation,Adap-
tive, proactive allocation with ν = 0.06 and Adaptive, reliability-aware allocation with ν = 5 and
α = 100). In this experiment, the latency is measured at the MAC layer, instead of the upper application
layer. The approximate 3 ms staircase shape of the curve is explained by the TDD DL/UL duplexing of
our experiment. Indeed, since (K1, L12) is (6,3) time slots, there are, for example, 3 ms (i.e. 6 consecutive
DL slots) before the UL transmission.

We can see that the stronger the action, the lower the latency. The gain in latency is 30% and 55%
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Figure 3.25: Reliability and resource allocation efficiency depending on ν value for different values of α

Figure 3.26: Resource efficiency and resource allocation per TB as a function of optimization parameters
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Figure 3.27: Experimental latency CDF for different HARQ schemes

between Classic, reactive allocation and Fixed proactive 2,5-Parallel schemes, respectively. The average
latency of successfully completed HARQs is 29.5 ms, 21.7 ms, and 17.8 ms for Classic, reactive allocation
and fixed proactive 2,5-Parallel allocation, respectively. Adaptive allocation automatically adjusts the
intensity of each action and trades off resource efficiency and latency, but it is limited by the maximum
number of RTXs (Kmax = 10). Due to this limitation, it achieves the same upper bound of 88% HARQ
completion as the other schemes. The average latency of adaptive allocation with ν = 0.06 is 21.7 ms,
similar to that of 2-Parallel allocation. A close upper bound is achieved by our adaptive, reliability-aware
allocation with ν = 5 and α = 1. By setting α greater than 1 (i.e. 100), our decision maker outperforms
other reliability, since it reaches 95% of completion, while ensuring an average latency of 18.2 ms.

Finally, we examine the RAN latency with the inclusion of RLC layer functionalities. Figure 3.28
shows the CDF of the latency at the RLC layer. First we note that the values of the latency are higher
than previously. Indeed, HARQ processes sometimes fail to transmit a packet. As it is Acknowledged
Mode (AM), the packet remains in RLC until it is well transmitted, thus it may need few HARQ processes
to well transmit a packet, and thus the RLC latency is greater than MAC latency by factors. Finally we
also note that the RLC latency in the case of Dynamic algorithm is lower than others by factors (x axis is
log scale). This is thanks to the high reliability ensured by the algorithm. If less HARQ fail, then packet
spend less time in RLC layer.
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Figure 3.28: Cumulative Distribution Function of RAN Latency for different HARQ schemes

Remarks 3.4.1

In this work, we successfully validate our proposed algorithms (adaptive allocation and adaptive,
reliability-aware), which have been demonstrated with System Level Simulation (SLS) (Network Simu-
lator NS-3 (NS3)), using OpenAirInterface (OAI) hardware experimentation. Our performance results
compare several allocation regimes relying on HARQ-based allocation procedures: (i) Classical,
reactive allocation, (ii) Fixed proactive allocation with 2-Parallel and 5-Parallel allocations,
(iii) Adaptive allocation where long-term reliability is considered and (iv) Adaptive, reliability-
aware allocation where short-term reliability is taken into account. Under the real-time hardware
constraints and deviations from the preliminary simulation, performance gains in terms of latency,
resource efficiency and reliability are validated.

3.5 Conclusions
In this chapter, we proposed an exploitable approach for RAN delay enhancement, guaranteed relia-

bility in long-term (adaptive allocation)/ short term (adaptive, reliability-aware) and reasonable resource
efficiency in solving optimization problem of HARQ protocol. Our proposed algorithms are based on
Lyapunov’s optimization, where the prior knowledge of stochastic processes with regards to channel
statistics and traffic behaviours are not required. Instead, by tracing the evolution of the RLC queue
which measures the tendency of IP packet arrival process, and HARQ process queue at MAC layer which
implies the dynamic of channel states, we are able to design a decision maker framework which opti-
mally allocates proactive resources for speeding up packet decoding process without overreacting. The
performance of our proposed algorithms are evaluated in both system level simulation and hardware
experimentation using OpenAirInterface (OAI), where complete, full stack protocols for NR interface and
EPC core network are also taken into account. Our obtained results suggest that a calibration process
is indispensable for selecting optimal control parameter(s). Once they are well chosen, the performance
gains are obtained at both simulation level and experimentation level.

Despite all these above-mentioned features and performance gains, our propose solutions still lacks,
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to some extent, the automation, scalability and adaptability. In particular, optimal control parameters
are imperatively determined before the algorithms can be applied. In case of objective function changes,
the calibration process needs to be redone and requires the fast adaptation of the network in terms of
computing resources. Furthermore, the performance gains of our proposed algorithms under multi-user
scenario, mixture of UL and DL communication which share the same resources are still mission. Then,
the following questions are still opened: (1) Can we apply the framework in multi-user scenario where a
mixed setting between UL and DL are applied and (2) Can we adapt the control parameters on-the-fly with
respect to the changes of objective functions? These open questions unroll new perspectives to build a more
comprehensive algorithm to solve these problems.

In the next chapter, we investigate how Lyapunov’s optimization framework can be exploited for Up-
link (UL) communications where massive number of users try to select between Grant-Based (GB) trans-
mission scheme and Grant-Free (GF) transmission scheme in heterogeneous service requirements and
dynamic environment. Also relying on Multi Agent Reinforcement Learning (MARL), each user (agent)
participates to the training process together with centralized gNb, which aim at maximizing the global
objective of latency, reliability and network throughput.

The technical contributions of this chapter have been validated by the following publications:

[C1] L. N. Dinh, M. Maman and E. Calvanese Strinati, “Proactive Resource Scheduling for 5G
and Beyond Ultra-Reliable Low Latency Communications,” IEEE 95th Vehicular Technology
Conference: (VTC2022-Spring, doi: 10.1109/VTC2022-Spring54318.2022.9860872.

[C2] L. N. Dinh, I. Labriji, M. Maman, and E. Calvanese Strinati, “Toward URLLC with
Proactive HARQ Adaptation,” in 2022 Joint European Conference on Networks and Com-
munications & 6G Summit (EuCNC/6G Summit), pp. 220–225. doi: 10.1109/EuC-
NC/6GSummit54941.2022.9815615.

[C3] L. N. Dinh, R. Bertolini, M. Maman, “Dynamic Resource Scheduling Optimization for Ultra-
Reliable Low Latency Communications: From Simulation to Experimentation,” in 2022 IEEE
33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC), sept. 2022, p. 1026-1031. doi: 10.1109/PIMRC54779.2022.9977893.
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CHAPTER 4. HYBRID RESOURCE MANAGEMENT FOR URLLC COMMUNICATIONS

4.1 Introduction
4.1.1 Motivations

T his chapter provides a novel vision on the needs of semi-distributed solutions for effective radio
resource allocation in UL communications. Traditionally, in the scenario where multi-user need

radio resources for their UL communication, centralized resource allocation approaches (Grant-Based
(GB)) are considered. In this centralized method, radio resource management functions are implemented
at the gNb side and it adequately provides radio resources for each user that is associated with gNb.
However, this design no longer meets today’s low latency requirements in Ultra Reliable and Low La-
tency Communications (URLLC) due to the long handshaking procedures each time an user requests
radio resources from the access point. In order to tackle with this problem, decentralized approaches
(Grant-Free (GF)) are proposed in which the lengthy procedure establishments is not necessary, thus
reduce the latency. However, the missing of arbitrator in managing shared radio resources causes the
non-negligible collision between users acquiring the same resources and influence the reliability. In 5G
and beyond networks where the heterogeneous services with various QoS requirements are coexisting,
the decentralized resource allocation problem is even more complex. Currently, there are several meth-
ods which involve the reservation of dedicated radio resources while opportunistically using the shared
spectrum, for example: transmission without grant, preemption of radio resources for immediate use
(e.g., mini-slot preemption), semi-distributed allocation (e.g., shared resource pool of Device to Device
communications), or overlapping transmissions (e.g., Non-orthogonal multiple access). In this work, we
propose to enhance Ultra Reliable and Low Latency Communications (URLLC) performance in terms of
latency, reliability and network throughput by hybrid GB/GF architecture.

By using Multi Agent Reinforcement Learning (MARL) in hybrid GF/GB resource allocation, we of-
fload resource allocation function to the each user (agent) without requiring global observation. The
ultimate objective is to make use of the advantages of each allocation schemes to guarantee the low
latency, high reliability and high throughput in URLLC communication.

4.1.2 Related works

An hybrid Grant-Free (GF)/Grant-Based (GB) resource allocation regime was discussed by Zhou et
al. [87] and showed an improvement with up to 70% reduction in resource inefficient utilization when
compared to the conservative transmission scheme. Based on each UE’s channel condition and their
recorded activities, an optimal resource allocation was proposed to determine the amount of resources
for each allocation mode (grant-based and grant-free). dynamic resource allocation framework is missing
and authors assumed the instantaneous global knowledge of UEs at gNb’s side. Nomeir et al. in [88]

considered an hybrid resource allocation scheme dealing with heterogeneous services (URLLC/eMBB)
and proposed combinatorial allocation framework in which eMBB traffic is managed by GB scheduling
andGF is adopted for URLLC traffic. Their schemes are less complex compared to state of the art solutions
while achieving near-optimal performance. However, the exact delay calculation in a full stack system
is omitted and they assumed the perfect knowledge of users at gNb which is impractical in the real
system. Huang et al. [89] proposed a Reinforcement Learning (RL) framework to jointly optimize the
communication delay and energy consumption under a high URLLC load. In their work, they considered
both hybrid spectrum access of licensed and unlicensed mmWave band and used the policy gradient
method to update the approximate policy that then helps to achieve optimal results. In this work, RL
is employed at the gNb to understand the overall knowledge and behaviours of attaching UEs. Thus
the larger the number of UEs, the more complex the centralized decision at gNb and the greater the
computational resources required.

Liang et al. [90] investigated resource sharing as a Multi Agent Reinforcement Learning (MARL)
problem. Under coexistence of Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) connections
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in a limited spectrum, each vehicle (agent) must reuse shared resources in a way that minimizes interfer-
ence while improving payload delivery rate and network capacity performance. The training procedure
relies on deep Q-learning with experience replay to help each agent learn action-value functions and
obtain its optimal function. They showed that cooperation amongst agents is beneficial for efficient
decision making on the shared resources pool. Menes et al. [91] presented an Deep Neural Network
(DNN) approach that help each agent to predict spectrum occupation of unknown neighboring nodes in
a multi-agent setting. Based on offline training, they show a reduction in the number of collisions and an
increase of throughput. Naparstek et al. in [92] deal with dynamic andmulti-user spectrum access based
on Aloha-based protocol. The training process is offline and a Long Short Term Memory (LSTM) is used
to aggregate the observations which are partially observable in each user. It will help each user to have
a better estimation of the state in time. Yang et al. in [93] leveraged transfer learning and cooperative
learning mechanisms to enable collaboratively distributed access management in guaranteeing URLLC’s
requirements. Their proposed MARL consists of a centralized training procedure and distributed cooper-
ative implementation procedure. The objective of this framework is to perform energy-efficient channel
assignment and guaranteeing URLLC’s QoS. Azari et al. [94] proposed an interesting distributed risk-
aware ML for the coexistence of scheduled, non-scheduled (urgent) URLLC traffic. Their ML solution for
Radio Resource Management (RRM) resulted in the growth of data rate (75%) for scheduled traffic and
99.99 % reliability is guaranteed for both scheduled and non-scheduled URLLC users. They conclude that
multiple QoS requirements in URLLC demand a novel, scalable and distributed learning approach, thus
a distributed learning might be a potential candidate when dealing with massive UL access in coopera-
tion/competitive way.

4.1.3 Contributions

There are not many studies that use MARL framework on the hybrid grant-based/grant-free schedul-
ing with the aim of guaranteeing the QoS of massive UL URLLC such as latency, reliability and through-
put. The advantage of GB scheduling is the guaranteed network throughput under a particular schedul-
ing policy at the cost of handshaking latency, but the network throughput and latency under GF is not
ensured due to the unexpected collision. Our global optimization is based on distributed decision mak-
ing. Each agent does not know the behaviour of global network and makes the decision based only on its
local observation. Our contributions are (i) theMARL framework on hybrid GB/GF decision, (ii) maximiz-
ing the objective function of system (i.e. latency, reliability and throughput), (iii) cooperative distributed
training, which means that the training process will take place both at users and gNb and (iv) online
decision making. Performance is evaluated through the combination of the MARL framework and full
protocols in NS3 with different traffic profiles (i.e. predictable and unpredictable traffic pattern) that can
lead to inefficient learning and thus sub-optimal results. The content of this chapter is adapted from our
submitted conference paper

[C4] L. N. Dinh, M.Maman and E. Calvanese Strinati, “Hybrid Radio ResourceManagement based
on Multi-Agent Reinforcement Learning,” accepted in 2023 Joint European Conference on
Networks andCommunications& 6G Summit (EuCNC/6G Summit), Gothenburg, Jun. 2023.

4.2 Problem Formulation
4.2.1 System Models

The system consists of a single gNb and N UEs. Each UEi is di away from the gNb and generates
traffic which follow Poisson process. Let N be the set of UEs. Ai(t), D1,i(t) are the total packet size
[Byte] arriving or departing from Q1,i of agent i at time slot t, respectively. The total bandwidth is
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composed of RBt resource blocks, divided into RBGB for dedicated resources (i.e. formed by NGB OFDM
symbols) and RBGF for shared resources (i.e. formed by NGF OFDM symbols). Each UEi considers 3
queues: Q1,i represents the data packets in the RLC buffer, Q2,i, Q3,i show the data packets scheduled
for the dedicated allocation and shared allocation, respectively. The dynamic queues in each agent i can
be expressed as follows:

Q1,i(t + 1) = max{Q1,i(t)− D1,i(t), 0}+ Ai(t) (4.1)
Q2,i(t + 1) = max{Q2,i(t)− 1i.D2,i(t), 0}+ A2,i(t) (4.2)
Q3,i(t + 1) = max{Q3,i(t)− 1i.D3,i(t), 0}+ A3,i(t) (4.3)

where: A2,i(t) = pi × D1,i(t), A3,i(t) = qi × D1,i(t) are the size of packets in Bytes that start from Q1,i
and are sent to Q2,i and Q3,i of agent i, respectively. pi and qi (or pπi

i and qπi
i ) are the probability that the

transport blocks are sent to Q2,i and Q3,i according to policy πi. If the transport blocks are placed in Q2,i,
the gNb schedules them according to a centralized scheduling policy π0. Indeed, a quantity equivalent
to D2,i (or Dπ0

2,i ) Bytes will leave Q2,i if agent i is scheduled by gNb. On the other hand, if the transport
blocks are queued at Q3,i, each agent i will opportunistically perform resource selection from the shared
and competitive resource pool and D3,i(t) (or Dπi

3,i(t)) Bytes will be removed from Q3,i(t). In both cases,
an indicator function 1 shows that the packet transmission was successful and that the receiver was able
to transfer it to the upper layer. Thanks to the ACK message, D2,i and D3,i will be deducted from Q2,i(t)
and Q3,i(t), respectively. The details on hybrid radio resource management scheme is displayed in Figure
4.1.

Figure 4.1: Hybrid radio resource management scheme

4.2.2 Hybrid radio resource management protocols

In this work, total resources in terms of total bandwidth and OFDM symbols are divided into 2 parts:
scheduled resources (grant-based) and shared resources (grant-free) as the illustration in Figure 4.2. At
first, the partition between scheduled resources and shared resources is defined by π0 (i.e. ρπ0 ) and is
fixed at the beginning.
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Figure 4.2: Resource partition for hybrid GB/GF access.

In our hybrid allocation regime, centralized policy π0 manages scheduled resources in grant-based
manner. Each agent, who wants to access the scheduled resources, has to perform a 5-step (grant-based)
procedure as follows:

■ Step 1: Each agent i sends the status of its RLC queue Q1,i in the Scheduling Request (SR).

■ Step 2: Upon SR reception, gNb sends Signaling Grant (SG) accompanied with few resources for
requested UEs.

■ Step 3: After receiving the SG, each agent sends its Buffer Status Report (BSR) to the attached gNb.

■ Step 4: At this step, the gNb has a global view of the amount of pending data for each user. Ac-
cording to the predetermined total scheduled resources, resources are allocated to corresponding
users following the scheduling policy π0 (e.g, Round-Robin, Proportional-Fair).

■ Step 5: User sends both data and BSR based on allocated resources. The next scheduling phase
begins in step 4 until there is no more data queued in the user.

Hence, GB scheduling is centralized and managed by gNb which has global view of user activity. The
advantage is the guarantee of allocated resources and collision-free communication. However, the long
handshaking procedure (5-step) cause high delay and may not be suitable for URLLC.

Meanwhile, shared resources are opened for opportunistic access of every user such that collisions
between users are minimised under decentralized policy πi. Opportunistic access resources are equally
divided into multiple RBGs in frequency domain (from RBG 1 to RBG max). Based on slotted ALOHA
method and decentralized policy of each agent i, πi, each user selects resources in such way that collision
(i.e. more than two users choosing the same resource) is minimal. Then, the group of local policy at each
user i is formed as π = [π1, ..., πN ]. By doing so, we can overcome the high delay caused by 5-step
handshaking. On the other hand, resource allocation will no longer be managed between users and each
communication will face a non-negligible collision probability.
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4.2.3 Objective Function
The average delay is proportional to the average queue length, so we can formulate the minimization

of global latency as the maximization of the function d(t).

d(t) = lim
T→∞

1
T

T

∑
t

N

∑
i=1
−Eπ [Q1,i(t)+Q2,i(t)+Q3,i(t)]

= lim
T→∞

1
T

T

∑
t

N

∑
i=1

3

∑
j=1
−Eπ

[
Qj,i(t)

] (4.4)

In this case, π = [π1, .., πN ] is global policy and it contains the policy of each agent i, i.e πi.
The throughput of each agent i is measured by the total time average of transport blocks in bytes

that are sent in grant-free and grant-based channels. Next, we defined ri = limT→∞
1
T ∑T

t Eπi [D2,i(t) +
D3,i(t)]. Maximizing the UL throughput of the network is equivalent to maximizing the total sum-rate
e(t) = ∑N

i=1 Ui(ri) where Ui(.) is a non-decreasing and concave utility function.
To trade-off the maximization of the average delay with the network throughput, we introduce the

control parameter ν ≥ 0 to form a weighted-sum objective function fπ(t). If ν is very large, we put more
attention to the network sum-rate optimization rather than network delay minimization and vice versa.
Our global objective function that jointly optimizes latency and throughput is then derived as follows:

fπ(t) = d(t) + νe(t) (4.5)

Instead of maximizing the objective function fπ(t), we will maximize its lower bound function (i.e
gπ(t) ≤ fπ(t)). It is achieved based on the fact that the departure rate of the packets from the Q2 and
Q3 (i.e. ri) should higher than their arrival rate zi (zi = limT→∞

1
T ∑T

t Eπi [A2,i(t) + A3,i(t)]) to stabilise
the queue dynamics.

gπ(t)=d(t)+ν
N

∑
i=1

Ui{zi}

= lim
T→∞

1
T

T

∑
t

N

∑
i=1

3

∑
j=1

νEπ[Ui(zi(t))]−Eπ[Qj,i(t)]
(4.6)

Proof.
In order to guarantee both Q2,i and Q3,i of each user i are mean rate stable, the mean arrival rate to

both queues must be inferior than their departure rate.

zπi
i = zi ≤ ri (4.7)

Also, we assumed that Ui(.) is an increasing and concave utility function, thus:

Ui(zi) ≤ Ui(ri) (4.8)

Therefore, our designed new objective function gπ(t) is the lower bound of the initial objective func-
tion fπ(t). By maximally optimizing gπ(t), we can bring the sub-optimal solution for our opening prob-
lem. ■

Without loss of generality, a negative Lyapunov drift-term NLD(t) is added with no impact on the
overall problem because the solved optimal solution pushes the queues to a minimal congested state.

NLD(t) = Eπ[−ν1(Q2
1,i(t + 1)−Q2

1,i(t))− ν2(
3

∑
j=2

Q2
j,i(t + 1)−Q2

j,i(t))] (4.9)
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Figure 4.3: Average departure/ arrival rate at each user i.

Thus, if all the queues are stable, this add-on will converge to 0 as t goes to infinity. Then, without
changing the optimal solution, the objective function becomes hπ(t).

hπ(t) = lim
T→∞

1
T

T

∑
t

N

∑
i=1

( 3

∑
j=1

Eπ[−Qj,i(t)]

+ Eπ

[
νUi (zi(t))− ν1

(
Q2

1,i(t + 1)−Q2
1,i(t)

)
− ν2

3

∑
j=2

(
Q2

j,i(t + 1)−Q2
j,i(t)

) ]) (4.10)

Where ν, ν1, ν2 > 0.

Finally, we transform Equation (4.10) into a discounted dynamic programming problemwith discount
factor 0 ≤ γ ≤ 1. We show that the optimal policy of this problem can be approximated by the policy
of original average problem when γ is close to 1 [95]. The reward function in the MARL framework is
similar to the function to be optimised.

hγ
π(t) = lim

T→∞

1
T

T

∑
t

γt
N

∑
i=1

( 3

∑
j=1

Eπ[−Qj,i(t)]

+ Eπ

[
νUi (zi(t))− ν1

(
Q2

1,i(t + 1)−Q2
1,i(t)

)
− ν2

3

∑
j=2

(
Q2

j,i(t + 1)−Q2
j,i(t)

) ]) (4.11)

Proof.

For any value of γ ∈ [0, 1], we will obtain the following lower bound:

γ.h(x) ≤ h(x) (4.12)

For any arbitrary function h(x).

Then, hγ
π(t) is a lower bound of hπ(t) whose value should be maximised. ■
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4.2.4 Problem Formulation
Our problem can be formulated as follows:

maximize
π

hγ
π(t) (P )

s.t. ν, ν1, ν2 ≥ 0, (C0)

RBt = RB
ρπ0
GB + RB

1−ρπ0
GF (C1)

0 ≤ ρπ0 ≤ 1 (C2)

RBi = π0,i(RB
ρπ0
GB ) + πi(RB

1−ρπ0
GF ), ∀i (C3)

Pπ0 [γ
gb
i ≤ γt] ≤ ϵt, ∀i (C4)

1− (1−Pcol
πi
)(1−Pπi [γ

g f
i ≤ γt]) ≤ ϵt, ∀i (C5)

A2,i ≤ D2,i

A3,i ≤ D3,i (C6)
A1,i ≤ A2,i + A3,i

The constraints (C1), (C2) and (C3) limit the number of resource blocks (RB) allocated to each agent
i under the policy πi or π0. In particular, (C1,2) states that the total number of resource blocks RBt is

partitioned into GB, i.e. RB
ρπ0
GB and GF, i.e. RB

1−ρπ0
GF . (C2) defines this separation, managed by the gNb

under policy π0 with the ratio ρπ0 . The constraint (C3) reveals that the resources RBi of each agent i
can be either scheduled by policy π0 (i.e. π0,i(RB

ρπ0
GB )) or competed under policy πi (i.e. πi(RB

1−ρπ0
GF )).

Then, the constraints (C4) and (C5) relate to the reliability requirements. The transport blocks will be
successfully decoded at the receiver when their SINR is above a predefined target (i.e.,γt). Regardless of
the GF channel (γg f

i ) or the GB channel (γgb
i ), the outage probability must be less than a target ϵt. In

the GB channel, only fast/slow fading channel is the source of impairment, so (C4) guarantees a trans-
mission error below a threshold ϵt under the scheduling policy π0. In the GF channel, the collision due
to uncoordinated resource selections between agents, which is characterised by Pcol

πi
is also considered

in addition to fast/slow fading. Thus, (C5) takes into account both impairments simultaneously.
The constraint (C6) guarantees the stability of the queues in each agent i under any policy πi. The

operator X is limT→∞
1
T ∑T

t Eπi [X(t)]. According to queue theory, the time average of arriving process
should be smaller than or equal to the one departing from the queue. The average amount of departure
process at Q2,i(t) depends on the centralized scheduling policy of gNb π0, while others depend on its
decentralized policy πi.

4.3 Uplink Grant-Based (GB) / Grant-free (GF) Protocols

As the illustration in Figure 4.2, the total resources in terms of OFDM symbols in time domain and RBs
in frequency domain is divided into 2 parts: (i) scheduled resources under the management of centralized
gNb which are accessible under 5-step procedure and (ii) shared resources which are accessible for every
user. In centralized scheduling method, gNb receives the information related to BSR and SR of each user.
Then, the allocation of resources for demanded users are based on several policy π0 such as: RR, MR
or PF. On the other hand, the immediate access to the shared resources for each user is possible under
collision-prone probability. Then a local policy πi is attached for each user (agent) to control the optimal
shared resource selection. In the following, we will briefly describe the possible centralized scheduling
π0 for GB resources and access protocol for GF resources.
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Figure 4.4: Time diagram of the GB scheme

4.3.1 Centralized scheduling policy π0

In our target scenario, there are no priority of access between user in GB channel, thus, for the sake
of simplicity, we choose RR policy to allocate radio resources for users on demand.

4.3.1.1 Round Robin scheduling policy

The time diagram of GB RR policy is illustrated in Figure 4.4. In this case, the dedicated Bandwidth
in GB channel is divided into Bd RBs, spanning over Td OFDM symbols and fully managed by gNb. In
5-step access, the processing delays of UE and gNb are taken into account and are represented by TUE

P
and TBS

P , respectively.
The RR scheduler is probably the simplest scheduler found in the literature. The involvement of RR

policy is in the Step 4 where gNb has access to the BSR of every users. Then, it works by equally dividing
the available resources among the active flows, i.e., those logical channels which have a non-empty RLC
queue. If the number of RB to be allocated for every users is greater than the number of active flows, all
the flows can be allocated in the same subframe. Otherwise, if the number of active flows is greater than
the number of RB (saturation), not all the flows can be scheduled in a given subframe; then, in the next
subframe the allocation will start from the last flow that was not allocated. The MCS to be adopted for
each user is done according to the received wide-band CQI.

4.3.1.2 Retransmission under policy π0

In case of imperfection channel environment, the message transmission faces to the non-zero cor-
rupted probability (e.g. packet error probability is greater than the predefined error target), then the
receiver will feedback NACK message to the sender for the packet retransmission. In this case, HARQ
protocol is considered to manage the retransmission process in PHY/MAC layer.

For what concern the HARQ, RR implements the non adaptive version, which implies that in allocat-
ing the retransmission attempts RR uses the same allocation configuration of the original block, which
means maintaining the same RBG and MCS. Then, UE that are allocated for HARQ retransmissions will
not be allowed for the transmission of new data in case they have a transmission opportunity available
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in the same TTI. It explains the fundamental trade-off between communication latency and reliability in
error-prone wireless medium.

Figure 4.5: Time diagram of the GF scheme

4.3.2 Opportunistic resource access in GF channel

With opportunistic, GF channel access, UE directly selects channel resources without the coordi-
nation of centralized gNb, thus reduce the access delay due to 5-step message exchange. It can be a
potential protocol candidate to support URLLC applications. However, the collision-prone transmission
over shared resources is a big bottleneck when a plethora of IoT use cases with massive access is consid-
ered and significantly degrades the transmission reliability. The grant-free transmission protocol which
is based on slotted-ALOHA is derived as follows:

In each communication slot, the shared Bandwidth in GF channel is equally divided into Bs RBG
which are spanned over Ts shared OFDM symbol as depicted in Figure 4.5.

If UEi sees the holding packet in its Q3, it will opportunistically select RBGi based on its local policy
πi for data transmission. In case of another UEj accidentally select the same resource block group RBGi
in the shared channel, collision happens and gNb will feedback the NACK to both UEi and UEj after a
processing delay TBS

P + TFB.

In this case, both UEi and UEj will respectively update their local policy to perform other resource
selection procedure. Then, the upcoming opportunistic transmission will be performed after TUE

P delay.

This procedure will be iterated until there is no collision or the maximum number of retransmission
is reached. In the latter case, the packet is considered as lost and irretrievable.
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4.4 Hybrid Resource Scheduling based Multi-agent rein-
forcement learning framework

4.4.1 Single-Agent Reinforcement Learning
4.4.1.1 Markov Decision Process

In single-agent system, an RL agent tries to take optimal decisions and maximises its long-term re-
ward. The sequential decision making process of an agent in the environment is formulated as Markov
Decision Process (MDP) which defines a model of transition states. Originally, an MDP is a tuple of
(S ,A, T ,R, γ) where S and A denote the state and action spaces, respectively; T : S × A → ∆(S)
denotes the transition probability from any state s ∈ S to any state s′ ∈ S for any given action
a ∈ A;R : S × A × S → R is the reward function that determines the immediate reward received
by the agent for a transition from (s, a) to s′; γ ∈ [0, 1) is the discount factor that trades off the in-
stantaneous and future rewards. Each transition state in an MDP follows the Markov property which
shows that the future only depends on current state and not on the history of precedent states and taken
actions. Furthermore, each agent under the assumption of MDP has full observation of the states and
the environment. In this case, the transition probabilities and reward distributions persist over time.

The ultimate goal of each agent is to solve MDP or to find an optimal policy to maximises the rewards
over time. A policy π is defined as a mapping from underlying states s to probabilities of selecting a
particular action a in the action space A. In a episodic (i.e., finite T) or non episodic (i.e., infinite T)
trajectory τ = (s0, a0, s1, a1, ...), the rewards r = (r0, r1, ...) are obtained accordingly in every time step.
The expected return will be expressed as follows:

Eτ

[
T

∑
t∈τ

γtr (st, at, st+1) |at ∼ π(.|st), s0

]
(4.13)

Where discount factor γ controls how much intention we put on the future rewards (γ closes to 1) and
immediate rewards (γ closes to 0).

Based on discounted cumulative reward function in Equation 4.13, under a given policy π, we can
define the value function (i.e., Vπ(s)) and state-action value function (namely Q-function, Qπ(s, a)) as
follows:

Vπ(s) = Eπ

[
T

∑
t∈τ

γtr (st, at, st+1) |s0 = s

]
(4.14)

Qπ(s, a) = Eπ

[
T

∑
t∈τ

γtr (st, at, st+1) |a0 = a, s0 = s

]
, ∀s ∈ S , a ∈ A (4.15)

where Eπ is the expectation under the policy π over the set of long state-action trajectories τ =
(s0, a0, s1, a1, ...).

4.4.1.2 Methods to solve MDP

Given the fact that the agent learns the optimal policy by a trial-and-error process during its interac-
tion with real world, then we can turn these gained experiences through their interaction into knowledge
about the dynamic of the environment. Then, solutions for MDP can be categorised into 2 types: value-
based methods and policy based methods.

Value-based methods are introduce to guide agent selecting optimal Q-function (i.e, Q∗) that max-
imises Equation 4.15. Then, the optimal policy π∗ will be derived with respect to the greedy action as
follows:

π∗ = arg max
a

Q∗(s, a) (4.16)
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In the environment where complex states and actions are involved, it is challenging for the agent to
learn its Q values because its behaviours are not always linear. Instead, by using neural network, non-
linear Q-function can be approximated. Mihn et al. [96] first introduced the concept of DQN to optimise
the following equations:

min
θ

Est,at,rt,st+1∼D

[(
rt + γ max

a
Qθ(st+1, a)−Qθ(st, at)

)2
]

(4.17)

where a replay buffer D records the previous samples of the trajectory [97], a network parameter θ is
fitted by using this experience buffer in a supervised learning fashion and Qθ is a slowly updated target
network which supports training stabilization.

In terms of policy-based methods, optimal policy π∗ will be learnt directly rather than greedy-action
learning. Specifically, the optimal policy will be parameterized by θ (i.e, π∗ = πθ(.|s)) and the update
of parameters θ will be towards the direction in which cumulative rewards are maximized (i.e., θ ←
θ + γ∇θVπθ (s)). The well-known policy gradient ∇θVπθ (s) is expressed as follows [98]:

∇θVπθ (s) = Es∼µπθ ,a∼πθ(.|s) [∇θ log πθ(a|s).Qπθ (s, a)] (4.18)

where µπθ is introduced as the measured state under policy πθ and∇θ log πθ(a|s) is the updating scores
of the target policy.

Deterministic Policy Gradient (DPG) theorem is introduced by Silver et al. [99] to take the deter-
ministic policy and continuous actions into account.

∇θVπθ (s) = Es∼µπθ

[
∇θπθ(a|s).∇aQπθ (s, a)|a=πθ(s)

]
(4.19)

4.4.2 Multi-Agent Reinforcement Learning
4.4.2.1 Markov Game

Multi Agent Reinforcement Learning (MARL) refers to the interactions ofmultiple autonomous agents
within the same environment to learn how to achieve their individual/global objectives. In single agent RL
problem, the understanding of MDP is beneficial to model optimal decision-making process in stochas-
tic environment. Nevertheless, different representations are required in multi-agent system when each
agent’s joint action changes state dynamic and distribution of rewards. Thus, the decision-making pro-
cess that considers many agents is usually modelled as Markov game [100].

In multi-agent system, at each time slot t, each agent i ∈ N observes a state si
t locally or globally

and select an action ai
t ∼ πi(ai

t|si
t). The payoffs (possibly, not intermediate) which agent i receives is ri

t.
Each agent i aims to maximize its own total expected return Ri = ∑T γt ∗ rt

i . A Markov game in multi
agent system is defined by a tuple (N , S ,

{
Ai}

i∈N , T ,
{
Ri}

i∈N , γ), where:

■ N = 1, · · · , N denotes the set of N > 1 agents.

■ S denotes the state space observed by all agents.

■ Ai denotes the action space of agent i. Let A := A1 × ...×AN is the joint action space of agents
in the system.

■ T : S ×A → ∆(S) denotes the transition probability from any state s ∈ S to any state s′ ∈ S
for any joint action a ∈ N .

■ Ri : S ×A× S → R is the reward function that determines the immediate reward received by
agent i for a transition from (s, a) to s′

■ γ ∈ [0, 1) is the discount factor.
At time t, each agent i ∈ N executes an action ai

t according to system state st. The system then
transition to state st+1, and rewards each agent i by Ri(st, at, st+1). The goal of agent i is to optimize its
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own long term reward, by finding the policy πi : S → ∆(Ai) such that ai
t ∼ πi(.|st). As a consequence,

the value function Vi : S → R of agent i becomes a function of the joint policy π : S → ∆(A) defined
as π(a|s) = ∏i∈N πi(ai|s). In particular, for any joint policy π and state s ∈ S , the value function (i.e,
Vi

πi ,π−i(s)) can be expressed as follows:

Vi
πi ,π−i(s) := E

[
∑t≥0 γtRi(st, at, st+1)|ai

t ∼ πi(.|st), s0 = s
]

(4.20)

where −i represents the indices of all agents in N except agent i. Thus, the solution for MDP relies
not only on a single agent, but also the choices of all other agents of the game.

4.4.2.2 Methods to solve Markov game problems

The solutions for Markov Game is also based on MDP solution for single agent: value-based MARL
and policy-based MARL.

In value-based MARL, the update of Q-learning values has been modified considering the environ-
ment states of multi-agents.

Qi(st, at)← Qi(st, at) + γ.
(

ri
t + γ.evali

(
{Qi(st+1, .)}

)
−Qi(st, at)

)
(4.21)

where evali
(
{Qi(st+1, .)}

)
represents the evaluation of agent i at time step t + 1 considering other

agent’s behaviours.
Regarding the policy-based MARL, each agent learns its own policy πi

θi by updating the parameter
θi. Then, we will assume θ = (θi)i∈N as the collection of policy parameters for all agents and πθ =

∏i∈N πi
θi(ai|s) is the collective policy. In order for each agent i to learn its optimal policy, the policy

gradient in Equation 4.18 can be extended as follows:

∇θi Ji(θ) = Es∼µπθ ,a∼πθ(.|s)

[
∇θi log πi(ai|s).Qi,πθ (s, a1, ..., aN)

]
(4.22)

where Qπ
i (s, a1, ..., aN) is the evaluated Q-function of agent i at a particular state s given the action sets

of other agents (a1, ..., aN).
If continuous action sets with deterministic policy are considered, Lowe et al. [101] proposed MAD-

DPG update which is written as follows:

∇θi Ji(θ) = Es∼µπθ

[
∇θi log πi

θ(ai|s).∇ai Qi,πθ |ai=πi
θi (s)]

]
(4.23)

4.4.2.3 Observability in multi-agent reinforcement learning

In multi-agent setting, each agent participates to the optimal decision making process and requires
novel representations of MDP which are modelled depending on full or partial visibility of them. When
each agent has full observability of the transition state, our problem will be formed as represented by
a Markov game. In case of all agents can not observe the state s ∈ S but they share the same reward
function R, it is represented by Dec-POMDP. Finally, POMG assumes that agents do not have global
access to the environmental state but only an observation of the state through an local observation of
each individual agent i [102]. Figure 4.6 shows the different observability in multi-agent system.

In Dec-POMDP, a tuple of (N , S ,
{
Ai}

i∈N ,
{

Ωi}
i∈N ,O , T ,

{
Ri}

i∈N ) is defined. In additional to
theMarkov game’s tuple, joint observation setΩ = [Ω1, ..., ΩN ] and the observation probability function
O : Ω×A×S → [0, 1] are included. The former contains the set of observation for each agent i (i.e Ωi),
the latter is the probability of agents seeing observations o ∈ O, given the state is s ∈ S and agents take
actions a ∈ A. Then a common observation O(o1, .., aN |a1, ..., aN , s′) are observed by N agents given
each action tuple (a1, ..., aN) was chosen and transition state s′ is recorded. At every time step, each
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agent takes an action and receives a local observation corresponding to the state and receives a joint
reward. Then, a local policy in each agent will map local histories of observations to optimal actions.
However, computation complexity is the main drawback of Dec-POMDP when a massive number of
agents and highly dynamic environments are considered [103]. Then, a centralized controller to collect
all the agent’s private information is essential to reduce the noise of knowledge collection and reach
global minimum solution. It is known as the "centralized-training and decentralized execution" fashion
[104]. In wireless system where multiple UEs are attached to the same gNb, this scheme is relevant for
the applications of MARL in achieving performance convergence.

With regards to POMG, it is considered as the counterpart of the Dec-POMDP where each agent
tries to maximise their individual reward functions in a partially observable environment. In this case,
it is formalized as a tuple of (N , S ,

{
Ai}

i∈N , O , T ,
{
Ri}

i∈N ). In this case, O = O1 × ...×ON

is the joint observation set for each of agent i ∈ N . An observation function O(o|a, s′) represents the
probability of observing o given the action a ∈ A and state s′ ∈ S .

Figure 4.6: Observability in multi-agent reinforcement learning

4.4.3 Proposed solutions

In this chapter, we design MARL algorithms to solve the problem P . Two RL approaches to learn
an optimal policy are compared: Multi-agent Deep-Q Learning (MADQL - value-based) and Multi-agent
Deterministic Policy Gradient (MADDPG - policy-based). The former algorithm tries to find global op-
timum based on local observation of each agent (POMG) in a fully distributed manner. On the other
hand, the latter algorithm is based on centralized training-decentralized execution (actor-critic) manner
where centralized critic justifies the action value of each agent and update their weights for decentralized,
individual agent (semi-distributed architecture).

The State/Observation space si for each agent i, at time slot t has to consider some information about
its queues,Qi(t) = {Q1,i(t), Q2,i(t), Q3,i(t)}, the traffic pattern (low/high rate, aperiodic/periodic traf-
fic) λi, whichwill be used to estimate Ai(t) at particular time slot t, the scheduling policy π0 in GB access,
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which indicates how much resources in Bytes will be allocated for scheduled users and occupancy level
information occi(t) in GF access which measures the probability of collision under policy πi. Thus, at
each time slot t, si(t) = {Qi(t), λi, π0(t),occi(t)}. Afterwards, we define a subset K ∈ N of agents
in which each agent k ∈ K can observe other agent’s states, K = {1, ..., K}. If only local observation is
permitted, then K = 1 and each agent observes itself to make decision. If K = N, each agent can access
to global state. The global state is formed as follows:

S(t) =
K⋃

k=1

sk(t) (4.24)

Similarly, we can define the global action of each agent in the network as follows:

A(t) =
K⋃

k=1

ak(t) (4.25)

where on each agent i, at time slot t, the action vector ai(t) includes the flow control and the resource
selection. First, from Q1,i(t), agent i transmits a quantity of D1,i(t) bytes to Q2,i(t) with probability pi
and to Q3,i(t) with probability qi. Second, the data in Q2,i(t) will be framed as transport block for the
scheduled transmission according to policy π0 whereas in grant-free channel, each agent i will automat-
ically select resources to serve the data in Q3,i(t).

The reward function quantifies how good an action is taken under a particular state. For each agent
i, we define the reward under state si(t) and action ai(t), Ri(si(t),ai(t)) ∈ R according to the
objective function in Equation 4.10 as follows:

Ri(si(t),ai(t)) = ∑
j∈3
−Qj,i(t + 1) + ν log(zi(t))

− ν1
(
Q2

1,i(t + 1)−Q2
1,i(t)

)
− ν2

3

∑
j=2

(
Q2

j,i(t + 1)−Q2
j,i(t)

) (4.26)

Accordingly, the global reward observed by gNb for the set N , i.e R(S(t),A(t)) ∈ RN of agents is
derived as follows:

R(S ,A) =
N⋃

i=1

Ri (si(t),ai(t)) (4.27)

4.4.3.1 Optimal policy learning using Multi agent Deep Q networks (MADQL)

In this algorithm, each agent has its own memory play, which is stored locally. Also, we assumed that
Partially Observable Markov Decision Process (POMG) is considered where each agent does not have full
observation dynamic [105]. Under local policy πi, the action value function of agent i, i.e., Wπi -function
is defined as: Wπi(si, ai) = Ri(si, ai) + γWπi(s

′
i, πi(s′i)). Where si and ai are respectively current state

and action of agent i which returns a corresponding rewards Ri(si, ai) and turns agent i into new state
si By estimating this function, we will guide an agent in selecting the optimal action in a particular state.
However, due to the complex dynamic state of the multi-agent system, it is viable to approximate their
value function with the parameter ω using a neural network. The approximation of W-function will be
expressed by the algorithm 2 and the value function will be updated each time slot period.

In this algorithm, we use a technique called Experience Replay [96] to efficiently utilize the collected
samples and eliminate their correlation. Also, two separate networks are used to independently select
the action and learn the value function to avoid overestimation [98]. As we used ω-parameterized net-
work to evaluate the action-value function, the network which is responsible for action selection will be
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Figure 4.7: DQN Multi Agent Decision Maker framework

Algorithm 2W(Q)-learning based on W(Q)-value
Initialization Replay memory Mem
Random initialization Wπi (si, ai, ω), Wπi (si, ai, ϕ) ∀si, ai ∈ S ,A
Define M-batch size
for time slot t do

for each agent i do
if inactive then

continue
end

Given state si(t) ∈ S(t)
Select ai(t) as the output of ε− greedy
Observe next state si(t+ 1)

Store (si(t),ai(t),Ri(t), si(t+ 1)) to Mem.
if More than M samples are collected then

Randomly sampling mini-batch M from Mem
Given (si(t),ai(t), s

′
i(t+ 1)) ∈ M

Calculate yi = maxai [Ri(s
′
i , ai) + γWπi (s

′
i , ai, ϕ)]

Perform gradient descent on (learning rate α)
∑(s,a,s′,y)∈M(yi −Wπi (si, ai, ω))2

if mod(t, T) == 0 then
ϕ = ω

end

end

end

end
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parameterized by ϕ. When local action of each agent i is executed at time slot t, each agent will observe
the next state at time slot t + 1 and store sample (si(t), ai(t), Ri(t), si(t + 1)) to the buffer. The reward
will be calculated accordingly because it is a function of state. After M samples collected (batch-size),
we use fixed target technique which holds the target W-function parameterized with ϕ and updates the
target every steps [97].

4.4.3.2 Optimal policy using Multi agent semi-distributed learning

In this section, we propose another algorithm to solve problem P which is based on optimal policy
learning rather than action-value function learning. It turns out that value function based learning is
sensitive to the high variance of the multi-state environment. Specifically, the use of W(Q)-learning
in a multi-agent environment faces a challenge when policy of each agent changes over time and the
environment is non stationary. Thus, the convergence of multi-agent algorithms based on Q-learning
in dynamic environment is often time consuming. On the other hand, the policy gradient method often
requires the coordination of several agents and leads to high training variance. In this section, we propose
an algorithm based on Actor-Critic approach (Policy-Learning) that directly learns the policy leading to
the optimal solution. Both the actor and the critic are approximated by neural networks. The training
process is centralized at the gNb, where a centralized critic part learns the shared, global states, actions
and policies of all agents. Then, each agent i attached to the gNb can obtain the training knowledge to
derive its own policy in the decentralized actor part. Since we need to learn/approximate the individual
policy and value function of each agent, we parameterize its policy and value function W as θi and wi,
respectively. And let’s assume θ = {θ1, ..., θN}, π = {π1, ..., πN}. The objective of our algorithm is to
maximize the reward function ∑N

i Ri. The framework can then be displayed on Figure 4.8.

Figure 4.8: Multi-Agent Decentralized-Actor, Centralized-Critic Decision Maker framework
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Algorithm 3 Semi-distributed Learning Algorithm
Replay memory Mem
Random action initialization (Exploration)
for each time slot t do

gNb observes global action A(t), reward R(t) and state S(t), S(t+1)
Store (S(t),A(t),S(t + 1),R(t)) in Mem
Set S(t)← S(t + 1)
for each agent i ∈ N do

if inactive then
continue

end

Perform ai = µθi
(si) according current policy πi

Sample M samples (Sm, Am, Rm, S′m) in Mem

Set target ymi = Rm
i + γWµ′

i (S′m, A′m)

gNb updates Critic part (Gradient descent, learning rate αc)
L(θi) =

1
|M| ∑m(ym

i −Wµ
i (S

m, Am))2

Agent i updates Actor part (Policy gradient, learning rate αa)
∆θi

J ≈ 1
|M| ∑m ∆θi

µi(s
m
i )∆ai W

µ
i (S

m, Am)

Update target network parameters
θ′i ← τθi + (1− τ)θ′i

end

end

The motivation of this architecture is the separation of centralized critic part (embedded in gNb)
which has global observation of all users, and decentralized actor part (embedded in each agent i) which
has only local observations. Then, centralized critic will help us to approximate the value function
Wµi

i (si(t), ai(t)) of agent i following its parameterized policy πµi taking action ai(t) at state si(t) at
time slot t. This information will be sent into Agent i and it will use such information to estimate or
optimize policy πµi . centralized critic improves the estimation of state-action value learning of which
decentralized actor use to improves the policy evaluation. To the end, this approach will converge to
optimal policy without requiring global observation of agent i in the network. The algorithm can be
expressed in Algorithm 3. In this algorithm, µ′ = {µθ′i

} is the set of target policies with delayed param-
eters θ′i . The approximate policy of each agent i is learned by maximizing the log probability of agent i′s
actions. τ is a parameter for updating the target network, γ is discounted factor for the future reward
awareness.

4.4.4 Results and discussion

The performance gain of our proposed algorithms will be illustrated in 2 different scenarios: (1) Fixed
number of UEs (N=30) and various homogeneous traffics and (2) Different number of UEs and homoge-
neous traffic. In the former scenario, we demonstrate our algorithms when (i) only collision in shared
bandwidth is considered and (ii)more complex scenario where both collision in shared channel and deep
fading in both shared/scheduled channel are taken into account. In the latter one, we extended our stud-
ies towards the scenario where more associated agents are considered (N=30-90).

4.4.4.1 Fixed number of UEs (N=30) with various homogeneous traffics

Our network contains a single gNb and N = 30 UEs, all placed at the same distance from the gNb
(d = 80m). Each user’s traffic is generated using a Poisson process with a fixed packet size of 20 Bytes.
After being encapsulated with a header in internet protocol and packet data convergence protocol layers,
they arrive at the RLC Layer (Q1) for transmission to the GB channel (Q2) or the GF channel Q3. In this
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work, we consider a total Bandwidth of 50MHz in the Sub-6GHz band and half of it is dedicated to the
GB channel (ρπ0 = 0.5). The remaining BW is divided equally into 15 groups (RBGs) for opportunistic
access to resources. In order to model dynamic channel and antenna model, the 3GPP Indoor-Factory
scenario [44] is considered and gNb and each of agent are equipped with 4 × 4, 2 × 2 planar linear
antennas, respectively. The details of simulation parameters are given in Table 4.1.

Table 4.1: Simulation parameters

Nb of Users 30

Reliability target ϵt 0.01

Tx Power 8 dBm

Distance 80 m

Max re-transmission Kmax 5

Central frequency 3.61 GHz

Bandwidth 50 MHz

Scheduling Policy π0 Round-robin

ρπ0 0.5

Shared resources in shared BW 15 RBGs

Channel Dynamics 3GPP Indoor-Factory

Concerning the hyper-parameters of learning algorithms, Table 4.2 shows their numerical values in
our simulation. In semi-distributed algorithm based onMADDPG, both actor (user) and critic (gNb) have
to learn its local policy and global action reward, respectively. Then, the actor/ critic learning rate (i.e.
αa and αc) are set at 10−3 and 10−2, accordingly. Then, the history of previous state, action, reward
(experience) are stored for each user at gNb. The batch size of 64 shuffled experience are then used for
learning and updating the action-value function/ local policy of each user towards the optimal one. Delay
network update rate parameter τ = 0.1 is used to indicate how frequently the parameterized policy is
updated. As τ ≪ 1, the target networks have a stable and slow update ameliorating the divergence
problem. With regards to the applied neural networks which approximate the action value function at
both actor and critic parts, two layer of 64 fully connected nodes are used.

In W(Q)-learning (MADQL), the experience are stored locally at each agent, the learning rate for
updating the value function is 2.10−2. Decay exploration technique is applied to help each agent to
explore their action value function. Particularly, the initial exploration rate is set as ϵ = 0.99 and will
decay at rate ϵd = 5e− 4 until reaching its minimum ϵm = 0.01. The batch size (64) as well as neural
network architecture (2 layer of fully connected 64 nodes) are similar to semi-decentralised learning
algorithm. A discount factor of 0.99 is considered for future rewards. Besides, a period of T = 0.1(s) is
selected to update the target network for learning.

With regards to parameters ν, ν1, ν2 in the objective functionP , Wewill apply these hyper-parameters
in 2 different scenarios where only collision is considered (retransmissions are deactivated) and both col-
lision and channel fading happen (retransmissions are activated), respectively. In this case, the queue
dynamic changes and suggests us to select different values of ν, ν1, ν2 . In the scenario where the net-
work performance under collision is examined, the ν, ν1, ν2 values are considerably lower than in the case
where both collision and fading effects are considered. It is because that we would like to further promote
the good actions which result in successful transmission as well as further penalise the bad actions which
cause packet corruption and failed transmissions. Then, because of the differences between the unit of
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Table 4.2: Hyper-parameters

Semi-decentralized learning (MADDPG) W(Q)-learning (MADQL)

Actor learning rate αa 10−2 Learning rate α 2.10−2

Critic learning rate αc 10−2 Exploration rate ε / decay rate εd 0.99 / 5e-4

Delay network update rate τ 0.1 Minimum exploration rate εm 0.01

Batch size 64 Batch size 64

Discount factor γ 0.9 Discount factor γ 0.99

Hidden layers 2 Hidden layers 2

Dimension of hidden layer 64 Dimension of hidden layer 64

Time period T 0.1 s

ν, ν1, ν2 (Collision) (1000,100,50) ν, ν1, ν2 (Collision) (1000,100,50)

ν, ν1, ν2 (Collision + Fading) (10000,1000,500) ν, ν1, ν2 (Collision + Fading) (10000,1000,500)

the queues (queue size in bytes) and the sum total rate which is measured by the number of allocated
resources per time unit, the values of ν, ν1, ν2 are not identical.

In the following, we will examine our algorithms (MADQL and MADDPG) in two different scenarios:
(i) Only collisions are considered and (ii) collisions and fading effects are considered .

Performance under collisions

Figure 4.9: Reward convergence for MADDPG and MADQL at load=0.5Mbps (only collision).

Figure 4.9 compares the obtained rewards between MADQL-based and MADDPG-based algorithm
when each user has 0.5 Mbps traffic load. It shows the convergence of both algorithms and better aver-
age rewards are obtained with MADDPG algorithm. In practice, we observed that MADDPG algorithm
either safely selects shared resources or rather following GB resource access for guaranteed resource al-
location. Thus, the error-prone transmission is minimised and resulted in better rewards. On the other
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hand, MADQL algorithms put more favours in opportunistic shared resource access to minimize the
transmission latency. It leads to the frequent collision between decentralized users and penalizes the
obtained rewards.

Figure 4.10: Comparison of RAN Delay and transmission Reliability between access protocols (only collision).

Figure 4.11: Average throughput performance between access protocols (only collision).

Figure 4.10 illustrates the performance of RAN delay and transmission reliability between (i) 100 %
GB (ρπ0 = 1), (ii) 100 % GF (ρπ0 = 0), (iii) MADQL-based hybrid access scheme (ρπ0 = 0.5) and (iv)
MADDPG-based hybrid access scheme (ρπ0 = 0.5). Generally speaking, guaranteed radio resources
are well managed by centralized gNb scheduling at GB method when packet transmission achieves 100
% reliability in good channel condition. In exchange, access latency is always large due to the 5-step
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resource allocation procedure. The upsurge of RAN latency is also observed when each user generates
higher traffic load (0.6 Mbps). In this case, network capacity is almost reached and each user has to wait
longer to access the requested radio resources.

The downward trend can be observed if 100 % GF method is applied. In this case, access latency is
maintained at around 1 ms when the RBG radio resources are occupied immediately regardless the traffic
load. However, the significant decreasing of transmission reliability due to the transmission collision
between users are seen. Starting from 0.5Mbps, the collision becomes more severe and reduces the
successful transmission rate of each user.

Our MADQL algorithm provides a better trade-off when low latency is maintained and transmis-
sion reliability is much improved. Our MADDPG algorithm improves the reliability when compared to
MADQL because critic part provides better global observation for each user to re-evaluate its policy. Thus,
less collision between users are observed. On the other hand, the access latency in this case is slightly
higher than MADQL because each agent is likely to to select 5-step GB resource when traffic load is high
to minimize the risk of colliding with other transmissions.

Finally, Figure 4.11 depicts the average network throughput between access protocols. In 100 % GB,
radio resource allocation is guaranteed and linearly increasing as the function of traffic load until reaching
saturation (network capacity). On the other hands, average network throughput increases at low traffic
rate and considerably drop at high traffic rate at 100 % GF. By exploiting our MADDPG and MADQL
algorithm, network throughput is greatly improved at high traffic when transmission efficiency, inversely
proportional to collision rate, is improved.

Performance under collisions and channel dynamics

In this section, we discover the flow control and resource selection when packet retransmission in
bad radio channel is considered. Now, the involvement of deep fading effects and resource collision
will be taken into account and negatively reduce packet transmission reliability. In case of packet error,
NACK is sent back to the agent. If the packet transmission is initially performed in GB and error, then
the simple retransmission is carried out until packet is successfully received or the maximum number of
retransmission is surpassed. In case of error due to packet collision and/or deep fading in GF channel,
shared resource selection procedures will be repeated for the next retransmission.

Figure 4.12: Reward convergence for MADDPG and MADQL at load =0.1 Mbps (collision + fading).

Figure 4.12 compares the obtained rewards between MADQL-based and MADDPG-based algorithm
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when each user has 0.1 Mbps traffic load. It shows the convergence of both algorithms and the best
rewards of MADDPG. Figure 4.13 and 4.14 displays the performance in terms of latency, reliability and
network throughput between (i) 100 % GB (ρπ0 = 1), (ii) 100 % GF (ρπ0 = 0), (iii) MADQL-based
hybrid access scheme (ρπ0 = 0.5) and (iv) MADDPG-based hybrid access scheme (ρπ0 = 0.5) according
to the traffic load of each user. As expected, the latency due to the handshaking procedure of 100 % GB is
the most important to ensure resource access to all users (maximum reliability). On the other hand, the
latency of successful communications of 100 % GF is the best, but the shared resources are mismanaged
(i.e. collision between users) when user accesses are frequent (worst reliability). Our MADQL-based
algorithm better exploits shared resource to maintain low latency and significantly reduce users collisions
(higher reliability than 100 % GF). Finally, through the coordination of the centralised gNb in estimating
each agent’s action, our MADDPG-based algorithm improved the management of the shared resources
(i.e fewer collisions are observed) while maintaining low latency. 100 % GB guarantees radio resources
for each user according to the round-robin policy π0. Thus, the network throughput increases linearly
when higher traffic loads are generated for each user, until saturation. Nevertheless, this is not the case
for 100 % GF when the higher number of opportunistic accesses causes a higher collision probability
and accidentally reduces the network throughput at some traffic load generation (0.15Mbps). In a more
efficient way,MADQL andMADDPG significantly improve the network throughput as the optimal action-
value/policy guides user to select a safer action for opportunistic use of shared resources. With the gNb
coordination, MADDPG achieves better performance when traffic load is high.

Figure 4.13: Comparison of RAN Delay and transmission Reliability between access protocols (collision + fading).

4.4.4.2 Higher number of UEs with homogeneous traffic

In the second scenario, we evaluate our algorithmsMADQL andMADDPG under moremultiple asso-
ciated agents (users) attached in the single gNb. Then, two sub-scenarios where low homogeneous traffic
(Average source rate = 0.005 Mbps) and medium homogeneous traffic (Average source rate = 0.1 Mbps)
are considered. In both sub-scenarios, N=30,45,60,75 and 90 associated users are placed in the system
where both collisions and channel dynamics are applied. In terms of simulation (hyper)parameters, we
use similar values as the illustrations in Table 4.1 and Table 4.2.
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Figure 4.14: Average network throughput between access protocols (collision + fading).

Low traffic

Figure 4.15 and 4.16 respectively demonstrate performance in terms of delay, reliability and network
throughput as a function of the number of users. In this case, each user generates traffic = 0.005 Mbps
(low) in their application level. Generally speaking, since the probability of a packet existing at the layer
is low, the likelihood of the user being disabled in a time interval is high and this leads to fewer effective
users participating in the management of hybrid resources. As the results, the development of latency
in 100% GB, 100% GF, MADQL and MADDPG algorithm-based access protocols, when more users are
involved, is insignificant. Latency under 100% GB is largest due to 4-step based access while 100% GF
access facilitates immediate access for users in the shared channel. Our MADQL and MADDPG based
access exploit the hybrid GB/GF channel, then network latency will be between 100% GB and 100% GF.
On the other hand, the participation of more users in the shared channel leads to a slight decrease in
reliability due to a higher probability of collision, except for 100% GB when radio resources are reliably
guaranteed under centralised scheduling policy (Round-Robin).

With respect to average throughput performance, the total throughput of users in this scenario is far
from reaching the total capacity of the system, the linear average throughput of the network is related
to a higher number of users in the network. Also, the opposite trend is observed in relation to latency
performance when users performing 100% GB achieve better bit rate through an more reliable, controlled
channel where resources are flexibly allocated for users accordingly. For other access schemes where a
fixed number of shared resources in channels is considered, a larger number of users involved will result
in a non-negligible collision and cause throughput degradation. By exploiting our algorithms MADQL
andMADDPG, throughput improvement is observed when each user learns to coordinate with the others
to optimise the global objective.

Medium Traffic

Figure 4.17 and 4.18 respectively demonstrate performance in terms of delay, reliability and network
throughput when each user generates traffic = 0.1 Mbps (medium) in their application level. In this
scenario, total sum rate of users is comparable to the network capacity and it explains why allocation
resources are overloaded and latency significantly increases as a function of number of users in 100 %
GB scheme. On the other hand, the reliability is remarkably degraded when most of the time shared
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Figure 4.15: RAN delay and reliability as a function of the number of users - low traffic (collision + fading).

Figure 4.16: Average network throughput - low traffic (collision + fading).
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resources are selected by more than two users and collision happens with those users. By using our
algorithmMADQL, associated users better learn how to coordinate with other agents and thus maintain
low latency with improved reliability. In addition, MADDPG based algorithm leverage the coordination
of centralised gNb to effectively use scheduled resources and reduce collision without severely impacting
latency. The impact of each access scheme on network throughput is also demonstrated and it show
similar behaviours as in Figure 4.14.

Figure 4.17: RAN delay and reliability as a function of the number of users - medium traffic (collision + fading).

Figure 4.18: Average network throughput - medium traffic (collision + fading).
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4.4.5 Conclusion
In this chapter, we propose two different multi-agent based algorithms for hybrid GB/GF access

schemes that are capable of empowering shared resources in the GF channel to improve communica-
tion latency and network throughput with low impact on reliability. By means of a system-level simula-
tion, where a full protocol stack is considered, it has been demonstrated that the use of semi-distributed
approach (MADDPG), with the support of centralized gNb (critic) having the full evaluation of each asso-
ciated agent (actor), provides better opportunistic access with fast uplink delay and less collision between
users. However, the application of the MADQL approach where only local observation is possible should
not be discarded when the algorithm favors agents that exploit shared spectrum access to minimise their
uplink latency at the cost of collisions and thus reduce transmission reliability and throughput. The per-
formance gains of our proposal are confirmed when compared with the typical centralized, round-robin
scheduling policy (100% GB) and the decentralized, slotted ALOHA protocol (100 % GF).

Based on the promising findings presented in this work, in our future work, we will evaluate more
complex scenarios with the participation of (i) larger number of users with heterogeneous traffic and
(ii) distributed access using collaborative MARL will be studied. In essence, the association of a larger
number of users with heterogeneous traffic introduces enormous complexities into the system because
the priority of resource allocation for each user is not identical and learning performance is likely to
diverge in an overly complex scenario. Then, fine tuning of the algorithm is essential to achieve optimal
performance in a heterogeneous system. In this case, communication between agents for collaborative
policy exchange could be a solution to reduce the complexity of the learning space and result in an
optimized solution.

The technical contribution of this chapter has been submitted to the following conference:

[C4] L. N. Dinh, M.Maman and E. Calvanese Strinati, “Hybrid Radio ResourceManagement based
on Multi-Agent Reinforcement Learning,” accepted in 2023 Joint European Conference on
Networks andCommunications& 6G Summit (EuCNC/6G Summit), Gothenburg, Jun. 2023.
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5
Conclusions and Future perspectives

5.1 Summary of thesis research

U ltra reliable and low latency communications (URLLC) in 5G networks enable novel applications
in industrial automation, medical healthcare, intelligent transportation, etc., where exchange infor-

mation between nodes are wirelessly transmitted with extremely low delay and ultra-high reliableness.
However, in the context of dynamic wireless medium, protocol designs for ensuring ultra-reliability is en-
tangled with the requirement for low latency and the ideal accomplishment of URLLC is very challenging.
Moreover, cellular networks are complex systems, which involve multiple communication protocols and
layers, so the activation cross-layer protocols exert impacts on the formation of E2E latency as well as
system reliability. In some cases, the poor coordination of available network protocols causes not only
inefficient usage of resources (in terms of radio, power, computing and caching storage) but also latency
violation when the activation of additional protocols is not instantaneous. It introduces the necessities of
an orchestrator which effectively manages cross-layer protocols to ensure URLLC communications and
deal with possible changes of network topology.

In this thesis, we focused on radio resource management for URLLC communication. More specifi-
cally, we first proposed an architecture of network orchestration which takes classified cross-layer proto-
cols, target KPIs and relevant changes in the radio networks (e.g. channel fading, medium interference,
time varying traffic, etc) into account in Chapter 2. With the integration of data-driven feature blocks, it
allows the self-reorganisation of network functions towards the optimal one by appropriately applying
network protocols (mechanisms) in dealing with rapid changes of radio environment. The AI-enabled
core helps with predicting the predictable events for the better orchestration and bound the performance
in case of unpredictable events are involved. Afterwards, we provide two orchestration methods (i) early
decision making based on mechanisms scheduling and (ii) jitter-aware scheduling to turn latency/jitter
dependent environment into dependent application control.

Our first research direction towards the embodiment of early decisionmaking is presented in Chapter
3 where radio resources are effectively managed at RAN level in guaranteeing low latency, high reliability
and high spectrum efficiency. At first, by means of system level simulation based on NS3, we prove how
proactive resource scheduling can be implied in the regular HARQ procedure at MAC layer to reduce
global RAN latency. In this work, we clarified the correlation between traffic source rate and PHY/MAC
layer configurations to serve the data over the air in a highly dynamic channel and highlighted the com-
promise between RAN latency, transmission reliability and radio resource efficiency by analysing the
application of different proactivity resource scheduling levels to re-transmit corrupted packets. Although
the RAN latency is reduced as the function of higher proactive resource scheduling, the lacking of adap-
tation is the main source causing poor radio usage efficiency. In order to deal with that, we propose an
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adaptation control algorithm to improve proactive resource scheduling. Based on Lyapunov stochastic
optimization tool, a mathematical framework is proposed to understand the performance-delay trade-
off by minimising the objective function of the total resource allocation and the total queue length that
is parameterized by a ν value. Our results reveal that an appropriate selection of ν enables the dy-
namic selection of proactive retransmission to overcome the defect of a long RTT in the reactive scheme
while maintaining a good level of resource efficiency that is considered a drawback of the fixed proactive
schemes. Following this research direction, we propose an adaptive, reliability-aware resource schedul-
ing algorithm dealing with dynamic scenarios (e.g., random bursty traffic, time-varying channel). It takes
into account the traffic arrival at the network layer, the queue behaviours at the data link layer and the
risk that the applied decision might trigger packet loss. The trade-off between the resource efficiency, la-
tency and reliability is achieved by the timing and intensity of decisions and can be parameterized with ν
and α. Afterwards, our queue-aware and channel-aware solution is evaluated in a system-level simulator
and validated by an experimental testbed using OAI.

In chapter 4, we exploit AI-based orchestration architecture in hybrid GB/GF radio resource manage-
ment. In this research, we explore the utilization of opportunistic, shared radio resources in GF channel,
where each user performs random access for shortening resource access latency, in addition to scheduled
resources in GB channel which is centralized managed by gNb. Now, each user that wants to access radio
resources has 2 different options at RLC layer. Firstly, it will defer the resource scheduling function to
gNb by sending Scheduling Request (SR) via GB channel. After 5-step message exchange between UE
and gNb, resource allocation for requested user is guaranteed with perfect efficiency at the cost of high
delay. However, this scheme might not be suitable for URLLC applications. On the other hand, each user
directly decides which resource group in shared resource pool it will occupy to transmit the packet hold-
ing in RLC buffer and significantly reduce the access latency. However, it will face to the non-negligible
transmission collision when other user selects the same resource for its transmission. Then, we proposed
2 different algorithms based on MARL framework to minimize the access latency and transmission error
due to collision while maintaining good average network throughput: (i) MADQL and (ii) MADDPG to
solve the hybrid access optimization problem. The former algorithm is able to solve the optimization
problem with only local observation of each user (agent). In the latter, gNb plays an important role in
criticizing the action of each associated user (agent) in the network. This semi-distributed architecture
helps gNb having the full evaluation of each associated agent (actor) and provides better opportunistic
access with fast uplink delay and less collision between users than the former algorithm. However, the
application of the MADQL approach where only local observation is possible should not be discarded
when the algorithm favors agents that exploit shared spectrum access to minimise their uplink latency
at the cost of collisions and thus reduce transmission reliability and throughput. The performance gains
of our proposal are confirmed when compared with the typical centralized, round-robin scheduling policy
(100% GB) and the decentralized, slotted ALOHA protocol (100 % GF).

5.2 Future Perspectives
In this thesis, we proposed 2 main innovative solutions for better radio resource management. Al-

though we introduced advanced features to support URLLC communication, there are still rooms for the
future developments.

The first solution, which is presented in Chapter 3, addresses DL communication, where single gNb
fully controls radio resource allocation for single UE in optimizing the single performance trade-off be-
tween latency, reliability and resource allocation effectiveness in proactive resource allocation strategy.
The mathematical optimization, which is based on Lyapunov optimization framework, is then trans-
formed into protocol designs for system level simulation and experimental test-bed based on OAI. The
immediate extension of our work concerns the management of multi-user scenario where the more ad-
vanced scheduling functions are considered to guarantee the accessibility of proactive radio resources for
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each user. Furthermore, towards some extents, the automation, scalability and adaptability are missing
features of our solution in dealing with unexpected changes of network topology (e.g: the dependent of
obtained performance on manually selected parameters ν and α or the consideration of single-user only,
etc). Then, the future research direction will answer the following questions:

■ (1) Can we apply the framework in multi-user scenario where a mixed setting between UL and DL are
applied.

■ (2) Can we adapt the control parameters on-the-fly with respect to the changes of objective functions
in time?

■ (3) The compatibility of proposed solutions with the full protocol stacks communication.

These open questions unroll new perspectives to build a more comprehensive algorithm to solve the
optimization problems.

The second solution introduced in Chapter 4 concerns UL direction and multiple users are attached
in a single gNb. In this work, multi-user with homogeneous Poisson traffic attempt to explore the oppor-
tunistic, shared resource pool to reduce latency access with possible collision, in additions to scheduled
resources without resource collusion but high delay access. Our solution based on MARL framework:
fully-distributed decision maker model (MADQL) and semi-distributed decision maker model (MAD-
DPG), are proposed to reduce transmission collision, reduce access latency and maintain a good average
network throughput. The future extension of this research can be followed by different axes:

■ (1) Heterogeneous support: When network needs to be self-orchestrated to satisfy heterogeneous
requirement, then how our optimization framework need to be tuned to bring optimal solutions? Also,
our framework should be validated with various centralized scheduling policy (e.g. proportional fair-
ness, maximum rate besides classical round robin) and decentralized multiple access protocol (e.g.
CSMA protocol). Then, the evaluation of our proposed algorithm with different set of centralized
scheduling policy in GB channel and decentralized multiple access protocols in GF channel are
considered.

■ (2) Transfer learning: Based on centralized training and decentralized execution framework, we are
able to decentralize the intelligence to different access nodes in the network and deal with the scalability
dimension when more nodes are added to the communication network. It paves the way for the transfer
learning concept to be integrated for efficient learning. Particularly, when a device joins the network,
it can communicate with neighbor agents to search for optimal its learning model or policy without
requiring the retraining process. In this case, various associated problems are raised such as learning
convergence and communication resources for model exchange between agents.

■ (3) Efficient training approach: In case of massive number of users are involved in the network, the
global action state and state space are extremely large and lead to the inefficient training. It imposes a
big challenge for the exploitation of URLLC application in practice. With the deployment of our pro-
posed centralised training and decentralised execution, the question of high communication efficiency,
data security and privacy are posed. It laid the foundation for the consideration of federated learning
framework.
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A
Résumé étendu de thèse

Les travaux de thèse présentés dans ce manuscrit se concentrent sur les mécanismes avancés pour
la gestion et l’orchestration des ressources dans les communications ultra-fiables à faible latence

(URLLC). Plus spécifiquement, nous étudions comment à gérer de manière effciente et efficace les res-
sources radio des réseaux mobiles en se basant sur l’optimization de Lyapunov et sur des approches
d’apprentissage (semi)distribuées. Dans la partie suivante, nous présentons un bref résumé des princi-
pales contributions de notre travail de recherche. Nous commençons par décrire les contextes de l’étude,
puis nous identifions les principaux défis qui y sont associés, avant de proposer la méthodologie pour
adresser ces problèmes.

Introduction et contexte d’étude

Les futurs réseaux mobiles sont censés prendre en charge un nombre exponentiel d’appareils connec-
tés et un large champ d’applications. Bien que les technologies de 4G ont été largement déployées com-
mercialement dans le monde entier, nous permettant d’atteindre une meilleure capacité de données et
des vitesses de transmission plus élevées, la prolifération de nouveaux cas d’utilisation qui exigent des
améliorations en matière de latence, de fiabilité et de scalabilité posent des défis sans précédent pour les
systèmes 4G. Les technologies de 5G sont donc introduites pour améliorer les performances des réseaux
en termes de mobilité, d’énergie, de vitesse, de diversité des services, de fiabilité améliorée, de latence
réduite et de débit plus élevé [6]. Les services qui seront pris en charge par la 5G peuvent généralement
être divisés en trois catégories principales :

■ Enhanced Mobile Broadband (eMBB) : fournit des services de données à haut débit (jusqu’à 20
Gbps en voie descendante [8]) pour les applications. Il constitue la base de connexions stables à
très haut débit pour le contenu, les services et les données multimédias (par exemple : la vidéo 3D,
les écrans Ultra Haute Définition (UHD), la réalité augmentée, etc.)

■ Massive Machine-Type Communication (mMTC) : Ces services sont applicables à des scénarios
dans lesquels un grand nombre de dispositifs connectés transmettent des données sporadiques
(petites charges utiles imprévisibles) et des quantités relativement faibles de données sensibles non
retardées (par exemple, réseau intelligent, maison/bâtiment intelligent, villes intelligentes, etc.)

■ Ultra Reliable and Low Latency Communications (URLLC) : Il prend en charge les applications
dans lesquelles la transmission de paquets courts est soumise à des exigences de faible latence
(environ 1 ms) et de fiabilité extrêmement élevée (avec des taux d’erreur de l’ordre de 10−5 - 10−9).
Ces cas d’utilisation vont de l’automatisation industrielle, les applications critiques, les voitures
autonomes, etc.
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Parmi ces services clés, la conception du protocole du service URLLC est sans doute considérée comme la
plus difficile et la plus problématique parce qu’elle doit répondre à deux exigences compromettantes : une
faible latence et une très grande fiabilité. Le respect des exigences strictes de l’URLLC est encore compli-
qué par des perturbations environnementales imprévisibles telles que le brouillage du canal, la mobilité
de l’utilisateur ou le comportement du trafic, etc. Dans le contexte d’un environnement dynamique et
d’une exploitation multi-utilisateurs de ressources limitées, la gestion efficace des ressources radio pour
répondre aux exigences de l’URLLC est complexe. Donc, j’aimerais proposer des solutions avancées des
solutions avancées, flexibles, proactives, évolutives pour résoudre ces problèmes.

L’orchestration centralisée

Dans les communications sans fil, la gestion des ressources radio (RRM) est d’une importance capitale
pour permettre des communications ultra-fiables et à faible latence dans des environnements dynamiques
(par exemple, le comportement du trafic, la mobilité des utilisateurs, l’évanouissement des canaux, etc.).
Essentiellement, la gestion des ressources radio comprend toutes les stratégies, procédures et algorithmes
permettant de gérer efficacement les ressources radio (par exemple, la formation de faisceaux, l’attribu-
tion des ressources radio, le choix de la modulation et du système de codage des canaux, etc.). A priori,
la gestion centralisée des ressources au niveau de la station de base donne les meilleurs résultats car
les informations importantes sur les utilisateurs sont souvent collectées et traitées de manière uniforme.
Parmi les outils prometteurs pour la communication URLLC au niveau RAN, nous pensons que le proto-
cole HARQ) est le point de blocage qui doit être optimisé pour répondre aux exigences strictes en matière
de latence tout en respectant les contraintes de fiabilité et d’efficacité des ressources.

Figure A.1 : Gestion centralisée des ressources dans les communications sans fil.

La solution complète que nous proposons dans ce travail est divisée en 4 parties principales.
Tout d’abord, à l’aide d’une simulation au niveau du système basée sur NS3, nous démontrons com-

ment la planification proactive des ressources peut être intégrée dans la procédure HARQ ordinaire au
niveau de la couche MAC afin de réduire la latence globale du réseau RAN. Dans ce travail, nous avons
clarifié la corrélation entre le débit de la source de trafic et les configurations des couches PHY/MAC pour
servir les données dans un canal hautement dynamique. Nous avons ensuite mis en évidence le compro-
mis entre la latence RAN, la fiabilité de la transmission et l’efficacité des ressources radio en analysant
l’application de différents niveaux de planification proactive des ressources pour retransmettre les pa-
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quets interrompus. Bien que la latence du RAN soit réduite en fonction d’une planification proactive des
ressources plus élevée, le manque d’adaptation est la principale cause de la faible efficacité de l’utilisation
des ressources radio.

Dans l’étape suivante, un algorithme de contrôle adaptatif est proposé pour améliorer la gestion
proactive des ressources. Basé sur l’outil d’optimisation stochastique de Lyapunov (cadre de Lyapunov
1), un cadre mathématique est proposé pour comprendre le compromis performance-délai en minimi-
sant la fonction objective de l’allocation totale des ressources et de la longueur totale de la file d’attente,
paramétrée par une valeur de ν. Les résultats montrent qu’un choix approprié de v permet la sélection
dynamique des retransmissions proactives pour surmonter le défaut d’un long RTT dans l’ordonnance-
ment réactif. Nos résultats montrent qu’un choix approprié de ν permet à la sélection dynamique des
retransmissions proactives de surmonter le défaut d’un long RTT dans le schéma réactif, tout en main-
tenant un bon niveau d’efficacité des ressources, ce qui est considéré comme un problème des schémas
proactifs fixes.

Dans la troisième partie, nous proposons une solution adaptative et sensible à la fiabilité pour trai-
ter le système dans lequel la perturbation critique se produit fréquemment et où davantage de ressources
radio sont nécessaires pour améliorer la fiabilité de la communication. Sur la base de l’optimisation de
Lyapunov, nous prenons en compte la dynamique du processus d’arrivée du trafic au niveau du réseau,
le comportement de la transmission sans fil au niveau de la couche physique et le risque que la décision
appliquée puisse entraîner la perte de paquets.

Finalement, nous validons le déploiement des algorithmes proposésmentionnés précédemment avec
le matériel conforme à la 5G. En tenant compte des contraintes matérielles en temps réel et des écarts
par rapport à la simulation préliminaire, nous validons les gains de performance en termes de latence,
d’efficacité des ressources et de fiabilité.

Les contributions techniques de ce chapitre ont été validées par les publications suivantes :

[C1] L. N. Dinh, M. Maman and E. Calvanese Strinati, “Proactive Resource Scheduling for 5G
and Beyond Ultra-Reliable Low Latency Communications,” IEEE 95th Vehicular Technology
Conference : (VTC2022-Spring, doi : 10.1109/VTC2022-Spring54318.2022.9860872.

[C2] L. N. Dinh, I. Labriji, M. Maman, and E. Calvanese Strinati, “Toward URLLC
with Proactive HARQ Adaptation,” in 2022 Joint European Conference on Net-
works and Communications & 6G Summit (EuCNC/6G Summit), pp. 220–225. doi :
10.1109/EuCNC/6GSummit54941.2022.9815615.

[C3] L. N. Dinh, R. Bertolini, M. Maman, “Dynamic Resource Scheduling Optimization for Ultra-
Reliable Low Latency Communications : From Simulation to Experimentation,” in 2022 IEEE
33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC), sept. 2022, p. 1026-1031. doi : 10.1109/PIMRC54779.2022.9977893.

La gestion des ressources hybrides

La sixième génération de communications mobiles (6G) élargit le champ d’application des réseaux de
communication sans fil à des réseaux efficaces, élastiques et dynamiques. Cependant, les approches cen-
tralisées actuelles peuvent ne pas être un bon candidat en raison de la surcharge de signalisation et de la
nécessité d’un calcul excessif, ce qui n’est pas pratique en raison du déploiement dense des utilisateurs et
des stations de base. En outre, comme indiqué ci-dessus, la gestion des ressources radio (RRM) implique
de nombreuses variables d’optimisation qui ne sont pas toujours bien caractérisées mathématiquement
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(en raison de la nature dynamique de l’environnement de propagation, de la mobilité de l’utilisateur).
Cela pose des difficultés dans la formulation et la résolution des problèmes d’optimisation. Cette situa-
tion a stimulé la recherche de solutions plus avancées enmatière de gestion des ressources radio. Lorsqu’il
est question de stratégies d’attribution des ressources pour répondre aux exigences des communications
ultra-fiables et à faible latence (URLLC), les méthodes actuelles impliquent la réservation de ressources
radio dédiées alors qu’une utilisation opportuniste du spectre partagé est disponible. En particulier, plu-
sieurs solutions sont proposées pour intégrer les approches opportunistes : transmission sans octroi, pré-
emption des ressources radio pour une utilisation immédiate (par exemple, préemption de mini-lots),
allocation semi-distribuée (par exemple, pool de ressources partagées pour les communications d’appa-
reil à appareil), ou transmissions se chevauchant (par exemple, accès multiple non orthogonal). Dans ce
travail, nous proposons un schéma hybride d’allocation des ressources basé sur l’accès par subvention
(GB) et sans subvention (GF) pour des communications à faible latence, à haute fiabilité et à haut débit.
Ensuite, nous tirons parti du cadre d’apprentissage par renforcement multi-agents dans lequel chaque
utilisateur associé et chaque station de base gèrent conjointement les ressources limitées d’une manière
entièrement distribuée ou semi-distribuée.

Figure A.2 : Gestion hybride des ressources pour les communications sans fil.

Notre premier algorithme est basé sur Multi-agent Deep-Q Learning (MADQL), dans lequel chaque
utilisateur effectue la sélection des ressources en se basant uniquement sur son observation locale du tra-
fic et des files d’attente de transmission (GB et GF). Étant donné que la sélection des ressources selon la
méthode GB fournit un accès garanti aux utilisateurs avec retard, tandis que l’accès opportuniste GF mi-
nimise le retard total au prix d’une collision potentielle avec d’autres utilisateurs sélectionnant les mêmes
ressources, réduisant ainsi le débit global et l’efficacité de la communication. Ensuite, chaque utilisateur
(agent) doit prendre sa propre décision pour optimiser l’objectif global conçu etMulti-agent Deterministic
Policy Gradient (MADDPG) est proposé pour guider l’utilisateur dans la sélection des actions de grande
valeur. D’autre part, l’algorithme MADDPG est proposé pour exploiter le rôle central du gNB (critique)
afin d’évaluer les actions de sélection des ressources de tous les utilisateurs (acteurs). Ensuite, la qualité
des bonnes/mauvaises actions prises est transmise à chaque utilisateur (agent) pour qu’il mette à jour sa
politique vers la politique optimale. Ensuite, en tirant parti de la formation centralisée et de l’exécution
décentralisée, la gestion optimale des ressources hybrides est proposée de manière semi-distribuée.

Nos résultats montrent que l’utilisation de l’approche semi-distribuée (MADDPG), avec le soutien
d’un gNB centralisé (critique) ayant l’évaluation complète de chaque agent associé (acteur), fournit un
meilleur accès opportuniste avec un faible délai de liaison montante et moins de collisions entre les uti-
lisateurs. Cependant, l’application de l’approche MADQL, où seule l’observation locale est possible, ne
doit pas être écartée lorsque l’algorithme favorise les agents qui exploitent l’accès partagé au spectre pour
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minimiser leur temps de latence sur la liaison montante au prix de collisions, réduisant ainsi la fiabilité
de la transmission et le débit. Les gains de performance de notre proposition sont confirmés lorsqu’on
les compare à la politique d’ordonnancement centralisée typique de type round-robin (100% GB) et au
protocole décentralisé ALOHA à créneaux (100% GF).

La contribution technique de ce chapitre a été soumise à la conférence suivante :

[C4] L. N. Dinh, M. Maman and E. Calvanese Strinati, “Hybrid Radio Resource Management ba-
sed on Multi-Agent Reinforcement Learning,” accepted in 2023 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Jun.
2023.

Conclusion

Dans cette thèse, nous avons développé et étudié la gestion des ressources radio pour la communica-
tion URLLC. Plus précisément, au chapitre 2, nous avons d’abord proposé une architecture d’orchestra-
tion de réseau qui tient compte des protocoles intercouches classifiés, des indicateurs clés de performance
et de la dynamique du réseau radio (par exemple, l’évanouissement du canal, l’interférence moyenne, le
trafic variable dans le temps, etc.) Grâce à l’intégration de blocs fonctionnels pilotés par les données, il
permet l’auto-organisation des fonctions de réseau vers l’optimum en appliquant les protocoles de réseau
(mécanismes) de manière appropriée lorsqu’il s’agit de faire face à des changements rapides dans l’en-
vironnement radio. Le noyau basé sur l’AI aide à prévoir les événements prévisibles pour une meilleure
orchestration et limite les performances en cas d’événements imprévisibles. Nous proposons ensuite deux
méthodes d’orchestration (i) la prise de décision précoce basée sur l’ordonnancement des mécanismes
et (ii) l’ordonnancement tenant compte de la gigue pour transformer l’environnement dépendant de la
latence/gigue en un contrôle dépendant de l’application.

À la lumière de l’architecture du décideur proactif, nous montrons au chapitre 3 comment la latence
est réduite en parallélisant l’allocation dans un environnement dynamique. Nos résultats suggèrent qu’un
algorithme d’adaptation est nécessaire pour réduire le gaspillage des ressources (c’est-à-dire améliorer
l’efficacité des ressources) en raison de la réaction excessive du processus de parallélisation. Nous propo-
sons ensuite un algorithme d’allocation adaptatif pour améliorer l’efficacité de l’allocation des ressources
tout en maintenant l’objectif de fiabilité à long terme de la communication. Sur la base des optimisations
de Lyapunov pour la gestion des systèmes à deux files d’attente au niveau des couches Radio Link Control
(RLC) et Medium Access Control (MAC), nous concevons un cadre d’optimisation qui tient compte de
la latence, de la fiabilité et de l’efficacité des ressources du Radio Access Network (RAN). Dans certains
cas, lorsque des messages critiques doivent être garantis dans un environnement hautement dynamique,
nous adaptons ce cadre pour une allocation tenant compte de la fiabilité. Nous mettons ensuite en œuvre
les algorithmes proposés dans le banc d’essai 5G OpenAirInterface (OAI) afin de prouver leur faisabilité
dans des conditions de temps réel.

Enfin, dans la dernière partie de notre travail, nous nous concentrons sur les multi-utilisateurs par-
tageant des ressources radio limitées et nous proposons un cadre de gestion des ressources hybrides
(schéma d’accès Grant-Based (GB)/Grant-Free (GF)) pour optimiser la latence UL, le débit du réseau et la
fiabilité des communications URLLC. Basés sur l’apprentissage par renforcement multi-agents (MARL),
les algorithmes Multi-agent Deep-Q Learning (MADQL) et Multi-agent Deterministic Policy Gradient
(MADDPG) sont introduits pour guider l’utilisateur associé dans le choix de l’action optimale de sélec-
tion des ressources et optimiser l’objectif global.
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B
End-to-End Protocol Stack

The architecture of end-to-end simulation consists of EPC Network components, LTE components
andNR interface as illustrated in Figure B.1. On the right hand side of architecture, we built a remote host
(server) which connects to a SGW/PGW, through a router. Inside the SGW/PGW, there is an application
(EpcSgwPgwApp), which is responsible for encapsulating the packet through GTP, is installed. By
setting up EpcEnbApp inside the gNb, the packets exchanged between gNb and SGW/PGW are handled
via IP connection which represents the backhaul network. At gNb, packets are received and decapsulated
before being forwarded to RAN. The packet, after being sent into a designed channel, will be then passed
to higher layers of UE in case of correctly received. Concerning the Uplink pathway, the protocol is the
same as the one described above but on the contrary direction.

Figure B.1: End-to-end architecture overview.

In order manage the RAN entities in gNb and UE, NrGnbNetDevice and NrUeNetDevice are in-
stalled at both side, respectively. Hereafter, we are going to detail the RAN protocol stack which is mainly
used in our system level simulation. The packet data flow in RAN therefore illustrated as Figure B.2 below.

At first, the IP packets will arrive SDAP layer in order for beingmapped into a data radio bearer before
being forwarded into the PDCP layer. The PDCP layer will perform header-compression to reduce the
number of redundant information bits and be responsible for in-sequence delivery of packets. Afterthat,
a PDCP header is added to PDCP SDU, carrying essential information for the deciphering at receiver, to
form PDU. The PDCP PDUs will then go through RLC layer which is responsible for segmentation/con-
catenation, duplicate detection and in sequence delivery of the packets to the higher layers. The RLC
provides services to the PDCP under the form of radio bearers in which one RLC entity per radio bearer
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Figure B.2: Packet Data Flow [106]

is configured for each device. Then, the attachment of RLC header will facilitate the in-sequence delivery
of the PDCP PDUs in the case of retransmission. Subsequently, the RLC PDUs are forwarded to the
MAC layer, which multiplexes a number of RLC PDUs together and adds MAC header to create a TB.
The size of a TB depends on various factors, such as the configuration of frame transmission and the
instantaneous rate selected by the scheduler.

B.1 Radio Resource Control (RRC) Protocol
The RRC is a control plane protocol and is in charge of setting crucial exchanges for the communi-

cation session. The implementation of RRC is desired by [107] and can be illustrated as in Figure B.3.
RRC layer is responsible for establishing the radio bearers and configuring all lower layers using RRC sig-
nalling between the gNb and UE. The RRC model which is used in our simulator provides the following
functionalities:

■ Generation (gNb) and interpretation (UE) of System Information (Master Information Block and
System Information Block Type 1 and 2).

■ Initial cell selection

■ RRC connection establishment procedure.

■ RRC reconfiguration procedures, supporting: SRS reconfiguration, UE measurement, data radio
bearer setup and handover.

B.1.1 Broadcast of System Information

System Information is a critical Downlink information for UE to access network. It consists of:

■ Master Information Block(MIB): carries information related to the PHY layer, MIB is generated
during cell configuration and broadcasted every 10 ms at the beginning of radio frame as a control
message.

■ System Information Block Type 1 (SIB1): brings information regarding network access, it is
broadcasted every 20 ms at the middle of radio frame as a control message. Before perceiving SIB1,
UE must have decoded MIB.
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Figure B.3: Illustration of protocol layers in our system level simulation

■ System Information Block Type 2 (SIB2): contains UL- and RACH- related settings. it is sched-
uled to transmit via RRC protocol at 16 ms after cell configuration, and then repeats every 80 ms.

B.1.2 Initial Cell Selection

Initial cell selection is an IDLEmode procedure which is performed by UEwhen it has not yet attached
to a gNb. The objective of the procedure is to look for a suitable gNb and acquire access to the cellular
network.

This procedure is typically done at the beginning of the simulation, in which UE finds the strongest
cell which gives UE the highest RSRP, i.e Cell_IDserving−cell = arg maxk {RSRP(k)}. Once suitable cell
is found, the initial cell selection procedure will be enacted.

B.1.3 RRC connection establishment

The RRC connection establishment consists of three steps: RRC Connection Request message from
UE, the RRC Connection Setup message from gNb and finally, RRC Connection Setup Complete message
from UE. Once RRC connection establishment complete, the UE will be provided with periodic alignment
command from gNb and will continually perform cell measurements for handover.

B.1.4 Ideal RRC protocol model

In our system level simulator, all RRC messages and information elements are transmitter between
the gNb and UE in an ideal fashion, which means that the connection is error free and it does not con-
sume any radio resources to establish the exchange. In our implementation, it is achieved by directly
passing the RRC data structures between UE and gNb entities without considering the lower layers
(PDCP,RLC,MAC,scheduler).
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B.2 Packet Data Convergence Protocol (PDCP)
The implementation for PDCP follows the 3GPP specifications [107]. PDCP layer is responsible

for the IP header compression of user-plane data packets so as to reduce the number of information
transmitted over the air. The functional view of PDCP layer can be shown in Figure B.4. The functionalities
of PDCP layer will be expressed as follows:

■ From Tx, PDCP SDUs coming from PDCP sub-layer are stored in transmission buffer, then the
Sequencing Numbering functionality will add sequence number to each of incoming PDCP SDU.

■ the numbered SDUs then go through header compression procedure (only for User Plane Data).

■ Afterwards, there are 2 paths that PDCP SDUs can be forwarded: (i) Going through Integrity/Ci-
phering or (ii) Directly going to Add PDCP Header. Integrity is applied only to signalling messages
while both signalling and data messages can be ciphered.

■ Then, PDCP header will be added on top of PDCP SDU.

■ At Rx, the process will be inverted.

Figure B.4: Functional review of PDCP layer [107]
.

At the transmitter, it performs header compression using ROHC Protocol as well as ensures the in-
sequence packet delivery and remove duplicated packets. At the receiver side, the PDCP performs the
corresponding decompression operations. With respect to the PDCP operations, we implemented the
following features in our simulation: (i) Transfer of data in control and data plane and (ii) Handling of
PDCP sequence numbers (SNs) and their status.

B.3 Radio Link Control (RLC) Protocol
In order to control the transfer of upper layer Packet Data Unit (PDU) generated by PDCP layer, the

RRC layer is sandwiched between PDCP andMAC layer. There are 3 modes of operations which are well-
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Table B.1: Support of RLC features in each RLC mode

RLC features TM UM AM

Transfer of upper layer PDUs X X X

Error correction through retransmissions (ARQ) X

Concatenation/Segmentation of RLC SDUs X

Resegmentation of RLC data PDUs X

Reordering of RLC data PDUs X X

Duplicate detection X X

RLC SDU discard X X

RLC reestablishment X X X

Protocol error detection X

known in RLC layer: transparent mode (TM), unacknowledgement mode (UM) and acknowledgement
mode (AM) in which each one is identical in terms of concatenation/segmentation, re-segmentation,
duplicate detection and in-sequence delivery of service data units (SDUs). The features differences of
operational modes can be briefly given in the Table B.1 below:

By deferring the retransmission features to the MAC and scheduling layer as well as to model a
sufficientRLC functions, we are going to implement Unacknowledgement mode (UM) which is suitable
for handling delay sensitive, real time data traffic [108].

The functionalities of RLC in UM mode can be depicted in Figure B.5. At the transmitter, the RLC
entity receives RLC PDUs from upper layer through a single UM-SAP, which connect PDCP and RLC
layer together, and put them into transmission buffer. When a transmission opportunity triggered by
MAC appears, it may perform concatenation/segmentation of RLC SDUs depending on the size of each
SDU in transmission buffer and the size of opportunity (TB size). Afterwards, a header will be added to
each PDU to mark the information fields (such as its length and SN) before being passed into MAC layer
for the over-the-air transmission. Due to the retransmission, the reception order of each RLC PDU may
not be maintained, so the UM receiving entity should create a receive buffer to keep them for reordering
process purpose. Based on the information of SN in each PDU header, we are able to perform reordering
process and reassemble, redo concatenation/segmentation process to recover SDUs in the right order.

In order to give an intuitive example of how reordering process is working receiver RLC entity, Figure
B.6 illustrate the whole procedure with the support of 2 parameters which are UM_Window_Size and
T_reordering. In this example, amongst 4 PDUs numbering from 0 through 3 in which the transmit-
ter sends (circle 1), PDUs 0 and 3 are corrupted by the bad channel. The receiver RLC entity triggers
T_reordering timer once the gap due to PDU 0 is detected (circle 2). Thanks to HARQ retransmission
protocol, PDU 0 is successfully recovered before T_reordering timer expires, thus, PDUs 0,1 and 2 are
delivered to upper layer and reordering window advances (circle 3). After well receiving 3 more PDUs
from 4 to 6 (circle 5) which transmitter sent (circle 4) before, T_reordering restarts due to the sequence
gap caused by PDU 3. For some reason, we are not able to recover PDU 3 and T_reordering expires, the
receiver will stop waiting for it and advance PDUs 4,5 and 6 to the upper layers. In this case, PDU 3 is
considered as completely lost (circle 6).
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Figure B.5: Illustration of RLC UM entities

Figure B.6: Illustration of RLC UM reordering process
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B.4 Medium Access Control (MAC) Protocol
In this section, we are going to detail the Medium Access Control (MAC) layer in our simulation, The

MAC layer is responsible for:

■ Channel Mapping: MAC layer maps logical channels carrying RLC PDUs to transport channels.
For transmission, multiple SDUs from logical channel are mapped into the TB which are carried
in the transport channels. In the receiver, TBs are demultiplexed and assigned to corresponding
logical channels.

■ Scheduling: MAC layer performs all related scheduling functions in the UL andDL directions. Thus,
HARQ functionality will be managed by scheduler and it is responsible for exchanging scheduling
related information with UEs.

■ UL Timing Maintenance: Timing synchronisation between UEs and gNb needs to be maintained
in the course of communication. Then, MAC layer is responsible for periodic synchronization.

Typically, UL and DL scheduling are centralized and controlled at gNb. DL scheduler will control
which UEs to transmit and for each of them, the set of RBs upon which the user’s PDSCH should be
transmitted. The information exchanged includes transport-block size, modulation scheme and logical-
channel multiplexing. On UL, the UEs are responsible for selecting from which radio bearers the data will
be served according to their priorities. Then, a set of complementary information from UEs are essential
(buffer status, channel measurement, etc.) for gNb performs scheduling functions. The process of UL /
DL scheduling will be shown in Figure B.7.

Figure B.7: Downlink and Uplink scheduling

Our simulator is inspired by a developed version from mmWave module [109], which additionally
support sub-6GHz band and Time-Division Multiple Access (TDMA) as well as OFDMA schedulers. In
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OFDMA, we simplify the implementation by restricting the single-beam capability, which means that
UEs or gNbs are pointed by only one beam at a particular time instant. However, we do not limit which
UEs are served in a single beam, so the scheduler at MAC layer can schedule these UEs at the same time
in frequency domain. Basically, the allocation of resources in terms of time and frequency is related to
the OFDM symbols and RBGs in side a slot, respectively. There are 3 allocation types that can be used to
schedule UE. Figure B.8a depicts a TDMA-based scheme where three UEs equally occupy OFDM symbols
with their data are spanned in all RBGs. In contrast, OFDMA-based scheduler allocate entire OFDM
symbols for UEs but on different RBGs as in Figure B.8. Figure B.8c provides better level of flexibility
with different TTI, allocating each UE with different RBGs in certain OFDM symbols. In order to identify
the reserved resources for a particular user, a bitmask method is utilized, in which the indicator of 1’s to
show that this resource is for an user u, otherwise, 0’s.

Figure B.8: Allocation schemes for a Slot

B.4.1 Dynamic scheduling in MAC layer

Hereafter, we are going to shed light on the conventional, centralized dynamic scheduled-based ac-
cess.

In DL, whenever a new TB is created and ready, the scheduler decides to transmit them over the air.
However, this operation is not instantaneous, but in a configurable delay of L1L2delay = L12 represent-
ing the preparation and processing time at PHY/MAC layer of gNb side. Afterwards, each UE monitors
the PDCCH at the beginning of each slot to detect whether a valid Downlink Control Information (DCI)
is sent to them or not. Subsequently, the authorized UEs decode the DCI to see where they should look
for their sending data in PDSCH. To determine whether the TB transmission is successful or not, UE will
process the received data. In case of success, UE will forward that TB to higher layer for further process-
ing and send acknowledgement message (ACK) to the gNb. Otherwise, the negative acknowledgement
(NACK) will be sent to inform that the current TB is corrupted. The sending of ACK/NACK will be en-
coded into PUCCH and performed after a delay of K2delay. In order to align with the current 3GPP
recommendation, the sending of PDCCH and PUCCH will be in charged by the first OFDM symbol and
last symbol in a slot, respectively [110]. The DL scheduler timing is represented in Figure B.9.

In UL, upon data arrival at the UE RLC queues, the UE sends an SR to the gNb through PUCCH to
request anUL grant from its attached gNb. Since there is no information of current buffer size in UE is sent
to gNb in this stage, gNb sends an UL grant via DCI in PDCCH to indicate that there is an opportunity
for the UE to transmit its buffer size information. In this regard, UE occupies 1 entire OFDM symbol to
transmit its data and BSR via PUSCH. Afterthat, in case of a BSR is received at gNb, after performing
resource scheduling for UEs which demand radio resources, gNb knows the UE RLC buffer status of
each UE and accordingly provide them another opportunity to transmit their remaining data. The UL
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Figure B.9: Scheduler timing for DL

procedure is presented in Figure B.10 in which the processing delay in gNb and UE are also introduced.
Before sending the UL grants, L1L2delay = L12 has to be considered at the gNb side. Along with that,
upon the reception of UL grant, the UE should sent its UL data and/or BSR after K2delay. The value of
K2delay illustrates the delay between UL grant reception in DL via PDCCH and corresponding UL data
transmission via PUSCH. In our implementation, this delay is seen as the number of time slots required
for the UE to decode UL grant in PDCCH and prepare its UL data to transmit in the indicated scheduling
opportunity over PUSCH. According to NR specification, K2delay may take any integer value from 0 to
32 slots [111]. On the other hand, L1L2delay = L12 depicts the time that the PHY/MAC layer at gNb
need to encode control and/or data channels and can be seen as a delay between control/data acquisition
from the RLC class and the moment at which the control/data is available to be over the air. In short,
the UL packet transmission ends up after 5-step process (SR → UL− grant → UL− data + BSR →
UL− grant→ UL− data).

Figure B.10: Scheduler timing for UL

B.4.2 Scheduler

The scheduling process accounts for the resource assignments for active DL/UL flows and control
the scheduling decisions at the MAC layer for of corresponding slots. The main output of centralized
scheduler at gNb is a list of DCIs for a particular slot, each of which specifies three parameters: (1) The
transmission starting symbol, (2) the duration (in number of symbols) and (3) an RBG bitmask , in which
a value of 1 in the position x represents a transmission in the RBG number x. In UL/DL direction, the
allocation of RBGs in time/frequency domain among active UEs is performed by using specific scheduling
algorithms (e.g., round robin, proportional fair, maximum rate, etc). Scheduling procedures for TDMA-
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based access can be easily obtained by first applying scheduling algorithms and then assign the numbers
of OFDM symbol(s) for the allowed users. Then, the creation of bitmask for each user according to the
scheduling phase will be done to initialize DCI control message.

For OFDMA based scheduler, different phases are performed:

■ (1) Compute the link quality based on the CQI for the DL or SINR measurements for UL data
channel. The corresponding MCS index will be derived then to determine the structure of RBGs.

■ (2) Gather the active UL and DL flows in current slot, perform scheduling algorithm prioritizing
UL flows over the DL flow.

■ (3) If the HARQ retransmission in current slot is triggered, the resource allocation for the retrans-
mission will be prioritized.

■ (4) Both select an adequate number of OFDM symbol(s) and number of RBGs inside a symbol in a
slot to assign to a specific user. The calculation of adequate resources will be based on the Buffer
Status Report (BSR) of each user.

B.4.3 Transport block size (TBS) determination

In order to model the amount of data which is passed between PHY and MAC layer of transmitter
and receiver, a MAC TB will be modelled as described in [110]. A TB is added with CRC and segmented
into code blocks (CBs) as Figure B.11 below.

Figure B.11: Illustration of Transport Block.

The calculation of TB size in NR depends on the frame structure, as well as the selection of MCS
index, resource allocation (in terms of OFDM symbols and RB). Follows the TS 38.214 [110], the TB size
will be computed as following:

TBS = Re ×Qm × ns × nrb × (12− nre f Sc) (B.1)

where Re is the ECR of the selected MCS, Qm is the modulation order of the selected MCS, ns is
the number of allocated OFDM symbols, nrb is the number of allocated RBs and nre f Sc is the number of
reference subcarriers carrying reference signal per RB. By default, nre f Sc = 1 is set as number of reference
subcarriers carrying DeModulation Reference Signal (DMRS) per RB. The details on Re, Qm according to
each MCS value can be presented in Table B.2.

Given a Bandwidth BW[Hz] and Numerology Num, without considering the guard band between
RB, the total number of RB can be calculated as follow:

nrb =
ns × BW[Hz]

2Num × SCS0[Hz]
(B.2)

where SCS0 = 15kHz is the SCS in Hz at standard.
With the purpose of performing error detection in each TB or CB, an CRC attachment with the size

of 24 bits will be reserved at the header of each TB or CB.
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MCS Index m Modulation Or-
der Qm

Code Rate Re x
1024

Spectral effi-
ciency

β-value

0 2 120 0.2344 1.6

1 2 157 0.3066 1.61

2 2 193 0.3770 1.63

3 2 251 0.4902 1.65

4 2 308 0.6016 1.67

5 2 379 0.7402 1.7

6 2 449 0.8770 1.73

7 2 526 1.0273 1.76

8 2 602 1.1758 1.79

9 2 679 1.3262 1.82

10 4 340 1.3281 3.97

11 4 378 1.4766 4.27

12 4 434 1.6953 4.71

13 4 490 1.9141 5.16

14 4 553 2.1602 5.66

15 4 616 2.4063 6.163

16 4 658 2.5703 6.5

17 6 438 2.5664 9.95

18 6 466 2.7305 10.97

19 6 517 3.0293 12.92

20 6 567 3.3223 14.96

21 6 616 3.6094 17.06

22 6 666 3.9023 19.33

23 6 719 4.2129 21.85

24 6 772 4.5234 24.51

25 6 822 4.8164 27.14

26 6 873 5.1152 29.94

27 6 910 5.3320 32.05

28 6 948 5.5547 34.28

Table B.2: MCS index table 1 for TBS and SINR determination
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Table B.3: 5G New Radio numerologies

Numerology Slots/Subframe Symbol Length (µs) Slot length (ms) SCS (kHz) Symbols/Slot

0 1 71.42 1 15 14

1 2 35.71 0.5 30 14

2 4 17.85 0.25 60 14

3 8 8.92 0.125 120 14

4 16 4.46 0.0625 240 14

5 32 2.23 0.03125 480 14

B.5 Physical Layer (PHY) Protocol
B.5.1 Frame structure

In 5G NR, radio frame can be structured in 3 different types: (i) Frequency Division Duplex (FDD), (ii)
Time Division Duplex (TDD) and (iii) Licensed-Assisted Access (LAA) (Unlicensed Spectrum). Typically,
each of those frames contains 10 subframe of 1 ms length. Then, the flexibility of the frame design is
achieved by the introduction of numerology concept. Traditionally, each subframe corresponds to a single
slot in LTE network and SCS is fixed at 15 kHz. The supported numerologies (0, 1, 2, 3, 4, 5) in NR allow
to divide each subframe into multiple slots (1, 2, 4, 8, 16, 32) with corresponding increased SCS (15 KHz,
30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz). In all the case, the number of OFDM symbols per slot is
fixed to 14 symbols for normal CP and 12 symbols for extended CP. In frequency domain, the number
of subcarriers per PRB is also fixed to 12 which follows the 3GPP Release 15 [112]. The details of each
numerology is displayed in Table B.3.

In order to illustrate how frame structure in NR looks like, Figure B.12 shows the frame in time and
frequency domain when numerology Num is configured for num = 3, and Bandwidth 400MHz.

In FDDmode, 2 paired bandwidth parts are modelled where one is dedicated to transmit DL data and
control, and the other for the transmission of UL data and control. Then, the configuration in both band-
width parts are necessary to correctly routing the UL/DL control/data messages in appropriate channels.
On the other hands, TDD model allows 3 different slot types: (i) DL-only slot, (ii) UL-only slot and (iii)

Flexible slot (F). For the two first cases, only DL or UL data can be scheduled in these slots, correspond-
ingly. For the latter, a certain number of DL symbols, a guard band and UL symbols can be configured
according to a predefined pattern. In both TDD and FDD schemes, slot operation will follow event schedul-
ing feature. Starting from time 0, events are inserted into event scheduler and the event processes will be
executed to model time advancement.

■ Time starts at the beginning of the slot.

■ PHY layer of gNb get allocation information from gNb’s MAC layer and extract them.

■ gNb starts transmitting CTRL message to the corresponding users.

■ Correspondingly, UEs begin receiving the CTRL messages (DCI information). Then, UEs can per-
form (i) receive data if they received DL DCI or (ii) send data if they received UL DCI.

■ In UL or F slots, at the end of slot, there will be an opportunity for UEs to transmit their UL CTRL
messages.

■ gNb specifies this tume at the registration time and it is considered as the last operation of the
slot.

Considering the processing of events in each time slot operation, there are 2 factors that we need
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Figure B.12: NR frame structure in time and frequency domain for Num = 3.

to consider. The first is the availability of the channel. In TDD and FDD modes, the channel is always
utilisable for the transmission, while in LAA thismay not be true as the unlicensed spectrum is considered.
In the case if unavailable channel, the event processes will be transferred to the next slot. The second is
the MAC-to-PHY delay, i.e. L1L2delay = L12 which indicates that the MAC is working ahead PHY to
demonstrate the time needed for each component of the chain to perform its work.

B.5.2 Data Error Model in Physical layer

In this section, we are going to detail how to model error behaviours of PHY data transmission in
system level simulation using PHY abstraction. Basically, the impacts of PHY layer to the wireless trans-
mission are modelled by link-level simulation in which the processing blocks of modulation, channel
coding, channel fading, channel estimation, demodulation are featured. However, in a system level sim-
ulation where the evaluations of average network performance are considered, the inclusion of these
features into the PHY layer will be extremely complex and computationally heavy. In the level of system
simulation, wide-band SINR and BLER of each active user in the wireless network are twomost important
parameters to insight into the system performance [113]. Then, the research on how to map the phys-
ical effects of link layer to the corresponding SINRs and BLER are studied. In OFDM and time-slotted
based system, the TBs are transmitted over several sub-carriers whose SINRs are non-uniformed due to
the time and/or frequency selectivity of the channel. Then, one of the traditional approaches to map
several SINRs of sub-channels to an effective SNR is to average the multi post-processing SINRs which is
known as ESM technique [114]. Basically, ESM technique is efficiently used for the purpose of PHY layer
abstraction since it helps to reduce the computational complexity leveraging L2S method. In precedent
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studies, EESM and mutual information based ESM are introduced for L2S method [115], [116], [117].
In [114], a DNN approach is used to accurately derive EESM for 5G New Radio (NR).

Given the SINR measurement on different sub-channel is carried out over the set of ω ∈ Ω RBs (i.e.,
γω), the effective SINR (i.e., γe f f ) can be described as follows [113]:

γe f f = −β×Φ−1(
1
|Ω| ∑

ω∈Ω
Φ(

γω

β
)) (B.3)

where the function Φ(.) is derived from the Chernoff bound on the probability of error [118]. β is a
parameter represented as a shift of Φ(.) to adapt the model to difference MCS. In case of MIMO scheme
with linear processing (ZF or MMSE) is considered and a good estimation of MIMO channel matrix is
assumed at the receiver, the post-processing SINR can be calculated based on well-known expression. In
case of EESM, the effective SINR in the retransmission rth can be written as follows [113]:

γe f f
r(β) = β× log

(
1
|Ω| ∑

ω∈Ω
exp (

γω
r

β
)

)
(B.4)

The value of β is obtainable byminimizing the mean square error between estimated BLER and simulated
BLER using numerical methods as follows [113], [71]:

β̂ = arg min
β

{∑
r

[
log10(BLERi)− log10

(
BLERR

(
γe f f

r(β)
))]
} (B.5)

where BLERR(.) is the reference BLER curve in the AWGN channel for the current MCS and CBS.
Inspired by the work on [71], the general PHY abstraction model that we used is shown in Figure

B.13. The inputs for the model consist of: (i) a vector of SINRs per allocated RB, (ii) the MCS index which
is the output of AMC model and its corresponding parameters, (iii) the calculated TBS and (iv) HARQ
history which stores the computed SINR of each RB for the previous (re)transmission. The output of this
model will be calculated Transport BLock Error Rte (TBLER).

Figure B.13: NR PHY abstraction model.

First and formost, HARQ history stores SINR per allocated RB or the last computed effective SINR
and number of coded bits for each of previous retransmission depending on HARQ Chase Combining
(HARQ-CC) or HARQ-IR method. In HARQ-CC, the ECR remains the same as rth retransmissions are
done. Thus, the the combined SINR values of corresponding resources ω over r retransmissions (i.e., γe f f ,i
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∀i ∈ r) will be summed across the retransmission. Then, the effective SINR using EESM is computed as
[119]

γe f f
r = −β× ln

(
1
|Ω| × ∑

ω∈Ω
exp (− 1

β

r

∑
i=1

γe f f ,i)

)
(B.6)

On the other hand, in HARQ-IR, every retransmission contains different coded bits than the previous
ones. In this case, both ECR and effective SINR require the recomputation after each retransmission. It
is derived as following:

γe f f
r = −β× ln

(
1
|Ω| × ∑

ω∈Ω
exp (−

γω
r + γe f f

r−1

β
)

)
(B.7)

Afterwards, the effective ECR and SINR will be used to calculate CBLER.
In order to calculate CBLER and TBLER, several supplementary information which corresponds to

MCS, CBS and LDPC Base Graph are needed as the illustration in Figure B.13.
Following the 3GPP Recommendation, several related parameters corresponding to each MCS index

be classified into 3 Tables: Table 1 (up to 64-QAM), Table 2 (up to 256-QAM) and Table 3 (up to 64-QAM
with low spectral efficiency) [110]. Given a particular MCS and selected table, a modulation order m,
spectral efficiency and ECR can be found. These useful information will be subtle to map effective SINR
to the related CBLER.

In the block of SINR Compression, an optimal value of β is found using calibration technique in [71]

and [114]. The values of β are derived as the Table B.4.
In the NR PHY abstraction model, LDPC BG is essential to determine the maximum CBS possible

in using LDPC coding [72]. The maximum derived CBS will be useful to see if the input TBS needs the
segmentation into multiple CBSs or not. The selection of BG will be as follows:

■ LDPC BG2 is selected if TBS ≤ 292 or ECR≤ 0.25 or TBS ≤ 3824 with ECR ≤ 0.67

■ Otherwise, LDPC BG1 will be selected.

Code Block Size (CBS) is a procedure which is necessary for LDPC coding when the number of total
bits in TB comprising of CRC is larger than maximum CBS (Kcb). When BG1 is selected, Kcb = 8448 bits
and Kcb = 3840 bits if BG2 is chosen. When CBS takes place, each TBS is divided into C CBS of K bits
each. For each code block, an additional CRC sequence of L = 24 bits is put on the header to recover
the original TB during decoding process. The whole process of CBS will be detailed in [72].

Once we finish the calculation of effective SINR, ECR and CBS, the last step is to transform those
values into a representative BLER. In order to obtain SINR-BLER mapping, an extensive simulation using
NR-compliant Link Level Simulation has been done according to reference [114], [71]. Then, the map-
ping process depends on the resource allocation, where the corresponding values of TBS, CBS, LDPC
BG selection are derived, and it results in various values of BLER according to the allocation. In order
to have a complete view of this curve for different CBS, BG type, MCS index, Patriciello et al. in [120]

showed these results in their research with the note that Code Block Size (CBS) is not included in BLER
calculation. Therefore, we need to convert these results, which are basically obtained from code BLER,
into TBLER. Given the segmentation of TB into C code blocks, then the ultimate TBLER of this TB will
be derived from each CBLER i as follows:

TBLER = 1−
C

∏
i=1

(1− CBLERi) ≈ 1− (1− CBLER)C (B.8)

Where the last approximation assumes that the code blocks are generated with equal sizes.
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Table B.4: Optimal β values for each MCS

MCS

Optimal β
MCS

Optimal β

Table 1 Table 2 Table 1 Table 2

0 1.60 1.60 15 6.16 19.33

1 1.61 1.63 16 6.50 21.85

2 1.63 1.67 17 9.95 24.51

3 1.65 1.73 18 10.97 27.14

4 1.67 1.79 19 12.92 29.94

5 1.70 4.27 20 14.96 56.48

6 1.73 4.71 21 17.06 65.00

7 1.76 5.16 22 19.33 78.58

8 1.79 5.66 23 21.85 92.48

9 1.82 6.16 24 24.51 106.27

10 3.97 6.50 25 27.14 118.74

11 4.27 10.97 26 29.94 126.36

12 4.71 12.92 27 32.05 132.54

13 5.16 14.96 28 34.28 -

14 5.66 17.06

128



A
p
p
e
n
d
ix

C
Spatial Channel Model for Indoor Factory

(InF) Scenario

Along with the development of wireless technologies for 5G and beyond systems, a comprehensive
channel modelling is of paramount importance to characterize a correct network behaviour. Currently,
in order to evaluate novel algorithms in analytical studies, the simple propagation models, which statis-
tically characterize Rayleigh, Nakagami-m [121] or Rayleigh fading, are usually assumed. These models
are relatively simple, lightweight and do not capture the spatial dimensions of the channel. Hence, the
multiple critical features related to the beam aremerely omitted and do not precise the realistic behaviour
of current systems. On the other hands, quasi deterministic channel model [122] is able to generate re-
alistic radio channel impulse responses for system-level simulations of mobile radio networks at the cost
of computation complexities and requiring a precise characterization of the environment.

In order to design a computationally efficient channel model which well represents the spatial char-
acteristic of the beam, the Spatial Channel Model (SCM) which characterizes the channel behaviour
between 0.5 and 100 GHz, is considered. The whole procedure of channel coefficient generation for SCM
is illustrated in Figure C.1.

Figure C.1: Channel coefficient generation procedure.

In the first step , 3D distribution of gNbs and UEs in the InF scenario and their antenna parameters
are set up. It enables us to determine the distances, working frequency band, AOD, ZOD, AOA, ZOA of
each gNb and UE in the GCS.

In step 2 , the propagation conditions (LOS/NLOS) for different gNb-UE links are assigned.
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In step 3 , the propagation pathloss (LOS/NLOS) for each gNb-UE is calculated.
In step 4 , large scale parameters, e.g. DS, angular spreads (ASA, ZSD, ZSA, ZSD), K and SF, are

generated.
In step 5 and 6 , cluster delay and power are generated.
In step 7 , arrival angles and departure angles for both azimuth and elevation are generated.
In step 8 , coupling of rays within a cluster for both azimuth and elevation.
In step 9 , cross polarization power ratios are generated.
In step 10 , random initial phase for each ray of each cluster will be drawn.
In step 11 , channel coefficients for each cluster and each receiver and transmitter element pair (u, s)

are generated.
In the last step , pathloss and shadowing for the channel coefficients will be applied.

C.1 Coordinate system
In order to characterise 3D channel model, a coordinate system, which is formed by x,y,z axes, the

spherical angles and spherical unit vectors, will be described. In Cartesian coordinate system, there are
zenith angle θ and azimuth angle ϕ as the illustration in Figure C.2. The orthonormal basis vector of the
Cartesian coordinate system are n̂, θ̂ and ϕ̂.

Basically, the propagation of signal between transmitter and receiver is scattered by MPC whose is
characterised by its delay and direction of arrival/departure. By grouping MPCs which share the similar
delays and directions into a group, it forms a cluster of MPCs. Thus, we assume that there are N clusters
which is stochastically embedded in our scenario , and there are M rays in each cluster n ∈ N

Figure C.2: Scattering concept in 3D channel model [123].

Antenna array for a gNb or an user is generally defined in a LCS. Such a system is used as reference
to describe the far-field radiation power pattern and polarization of each element in the array. Besides,
a network consists of multiple gNbs and UEs are normally sketched in GCS. Considering a network
with a GCS defined with coordinates (x, y, z, θ, γ),n̂, θ̂ and ϕ̂ and a LCS system with primed-coordinate
(x′, y′, z′, θ′, γ′),n̂′, θ̂′ and ϕ̂′, we can see that the antenna element radiation pattern of LCS and GCS are
the same.

A(θ, ϕ) = A′(θ′, ϕ′) (C.1)

We will define then the polarized field components in LCS and GCS as F′ϕ′(θ
′, ϕ′), F′θ′(θ

′, ϕ′) and
Fϕ(θ, ϕ) Fθ(θ, ϕ) which are related by:Fθ(θ, ϕ)

Fϕ(θ, ϕ)

 =

 θ̂(θ, ϕ)T
Rθ̂′(θ′, ϕ′) θ̂(θ, ϕ)T

Rϕ̂′(θ′, ϕ′)

ϕ̂(θ, ϕ)T
Rθ̂′(θ′, ϕ′) ϕ̂(θ, ϕ)T

Rϕ̂′(θ′, ϕ′)

×
F′θ′(θ

′, ϕ′)

Fϕ′(θ
′, ϕ′)

 (C.2)
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where θ̂ and ϕ̂ are the spherical unit vectors of the GCS and likewise θ̂′ and ϕ̂′ of the LCS, respectively.
R is the rotation matrix transforming the LCS unit vectors to the GCS reference frame. The unit vector
θ̂′ and ϕ̂′ are given by:

θ̂ =


cosθcosϕ

cosθsinϕ

−sinϕ

 (C.3)

and

ϕ̂ =


−sinϕ

cosϕ

0

 (C.4)

C.2 Scenarios
The first step of generating a 3D channel model is to identify the scenario of interest. In this

thesis, we concentrate on the indoor factory (InF) scenarios which focuses on factory halls of varying
sizes and clutter density (e.g. machinery, assembly lines, storage shelves, etc). The parameters for InF
will be derived as the table C.1. Considering the effect of the antenna height between gNb and UE, as
well as the clutter density, there are five sub-scenarios of InF in which four first cases are related to NLOS
communication and the last one refers to the LOS transmission.

■ Sparse clutter, low BS (InF-SL)

■ Dense clutter, low BS (InF-DL)

■ Sparse clutter, high BS (InF-SH)

■ Dense clutter, high BS (InF-DH)

■ High Tx, high Rx (InF-HH)

In InF scenarios, the objects in the environment are metallic machines, thus, their huge architectures
cause signal blockage as in the NLOS cases. Because the machine heights change according to their
types, so we defined "clutter-embedded" and "above clutter" to describe the relative heights of the gNbs
and UEs. In order to make channel model for InF more practical, the clutter density is described which
demonstrate the clutter-occupied ratio in the surface area. Its density are classified into 2 types, sparse
clutter and dense ones which define the ratio threshold of 0.4.

C.3 Antenna modelling
Also in the first step, we need to deal with antenna configurations for gNb and user. The antenna

is modelled as a Uniform Planar Array (UPA) which constitutes of rectangular panels. The conventional
deployment of multi antenna arrays is the use of cross-antenna panels with +/− 45 degree polarisa-
tion. Each rectangular panel is uniformly spaced in the horizontal direction and vertical direction with a
spacing of dH and dV , respectively. Within each antenna panel, there are M× N antenna elements per
polarisation, which are organised in M columns and N rows, to concentrate the transmission within a
narrow beam-width in the vertical and horizontal direction, as illustrated in Figure C.3. For each antenna
element, the dual polarisation is also taken into account, so each element can be either single polarised
or dual polarised.
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Table C.1: Evaluation parameters for Indoor Factory scenario

Indoor Factory

Parameters InF-SL InF-DL InF-SH InF-DH InF-HH

Layout

Room size Rectangular: 20 - 160000 m2

Ceiling
height

5-25 m 5-15 m 5-25 m 5-15 m 5-25 m

Effective
clutter
height hc

Below ceiling height, 0-10 m

External
wall and
ceiling type

Concrete or metal walls and ceiling with metal windows

Clutter type

Big machines
composed
of regular

metallic surface

Small to
medium
metalic

machine with
irregular
structure

Big machine
composed
of regular

metallic surface

Small to medium
metalic machine

with
irregular
structure

Any

Typical clutter size
dclutter

10 m 2 m 10 m 2 m Any

Clutter density r Low ( < 0.4) High (≤ 0.4) Low (< 0.4) High (≤ 0.4) Any

gNb antenna height Clutter-embedded Above clutter

UE
location

LOS/NLOS NLOS and LOS LOS only

UE height Clutter embedded Above
clutter

Figure C.3: Cross-polarized panel array antenna model.
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The effect of antenna is modelled by its radiation field pattern F or radiation power pattern P. De-
pending on the direction (θ, ϕ) of the incoming or outgoing wave, the complex gain at certain direction
(θ, ϕ), given the polarization will be expressed as following:

F(θ, ϕ) =

Fθ(θ, ϕ)

Fϕ(θ, ϕ)
(C.5)

Then, the radiation power pattern P(θ, ϕ) in linear scale will be defined as:

P(θ, ϕ) = |Fθ(θ, ϕ)|2 +
∣∣Fϕ(θ, ϕ)

∣∣2 (C.6)

C.4 Pathloss and LOS probability
In step 2, 3 and 4, we are going to get through the Pathloss model as well as the determination of

LOS/ NLOS link state for the InF scenario. Concerning the pathloss model, the alpha-beta-gamma (ABG)
freespace model is used in our system level simulation where the pathloss PL( fc, d3D) is calculated as
following:

PL( fc, d3D) = β + 10α log10
d3D

d0
++10γ log10

fc

f0
+ Xσ (C.7)

where α is the distance-dependent exponent, β is the intercept, and γ is the frequency-dependent expo-
nent. The variable Xσ is the shadow fading which follows a normal distribution with zero mean value.
Its standard deviation is denoted by σ.

After collecting data for each sub-scenario, 3GPP TR 38.901 [44] specifies the pathloss as following:

■ For InF-HH (LOS) case:

PL( fc, d3D) = 31.84 + 21.50 log10 d3D + 19 log10 fc + Xσ (C.8)

σ = 4.3

■ For InF-SL case:
PL( fc, d3D) = 33 + 25.50 log10 d3D + 20 log10 fc + Xσ (C.9)

σ = 5.7

■ For InF-DL case:
PL( fc, d3D) = 18.6 + 35.7 log10 d3D + 20 log10 fc + Xσ (C.10)

σ = 7.2

■ For InF-SH case:
PL( fc, d3D) = 32.4 + 23 log10 d3D + 20 log10 fc + Xσ (C.11)

σ = 5.9

■ For InF-DH case:

PL( fc, d3D) = 33.63 + 21.9 log10 d3D + 20 log10 fc + Xσ (C.12)

σ = 4.0
In order to determine the visibility of connection between gNb and UEs, a probability model is used

to determine whether a channel state is LOS or NLOS. Given the fact that the higher distance between
gNb and UE is, the NLOS link states will be more likely.
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The LOS probability, e.g PrLOS,subsce under clutter densities and 2D distance d2D is shown in the latest
3GPP 38.901 technical report as following:

PrLOS,subsce(d2D) = exp (− d2D

ksubsce
) (C.13)

where

ksubsce =

 − dclutter
ln(1−r) for subsce ∈ {InF− SL, InF− DL}

− dclutter
ln(1−r)

hgNb−hUE
hc−hUE

for subsce ∈ {InF− SH, InF− DH}
(C.14)

where the value range of clutter density r is from 0 to 1. The parameters dclutter, hc, hUE, and hgNb are
the clutter size, clutter height, antenna height of UE, and antenna height of gNb, respectively.

B.5. Fast fading model
The fast fading model accounts for the changes in the phase and amplitude of the transmitted signal

due to the effect ofmultipath propagation, i.e., the presence ofmultiple signal components that propagate
over different paths.

In order to show the time-varying fluctuations of wireless channels which are caused by the statis-
tical combination of multipath and user mobility, the fast fading channel coefficients will be applied in
our system level simulation. The channel coefficients of a link between transmitter and receiver will be
established by the channel impulse responses of many MPC. Each MPC is characterize by a path delay,
a path power and random phase coupling, Angles Of Departure (AOD), Angles Of Arrival (AOA), Zenith
Angles Of Departure (ZOD) as well as Zenith Angles Of Departure (ZOA).

In InF scenario, many metallic machines might be placed within the propagation path of the signal,
thus the multiple path communication is seem more likely and lead to the increase of Root Mean Square
(RMS) Delay Spread (DS). In NLOS case, when a large number of metallic materials are found between
the signal propagation, the RMS delay spread may decrease from 664 ns to 10 ns [124]. It is assumed
that the RMS delay spread is correlated to the factory volume V and surface area S.

Starting from step 5, we are going to generate delay for each cluster n. At first, under exponential
distribution, path delays are drawn randomly as following:

τ′n = −rτστ ln(Xn) (C.15)

where στ the RMS delay spread, rτ is the delay distribution proportionality factor, Xn ∼ (0, 1), and
cluster index n = 1, ..., N. With uniform delay distribution the delay values tau′n are drawn from the
corresponding range. Normalise the delays by subtracting the minimum delay and sort the normalised
delays to descending order:

τn = sort(τ′n −min(τ′i )
N
i=1) (C.16)

In the case of LOS condition, additional scaling of delays is required to compensate for the effect of
LOS peak addition to the delay spread. The heuristically determined Ricean K-factor dependent scaling
constant Cτ is:

Cτ = 0.775− 0.0433K + 0.002K2 + 0.000017K3 (C.17)

where K [dB] is the Ricean K-factor as given in C.4.
Then, the scaled delays in LOS is

τLOS
n = τn/Cτ (C.18)
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Table C.2: Scaling factors for AOA,AOD

# clusters 4 5 8 10 11 12 14 15 16 19 20 25

CNLOS
ϕ 0.77920 0.860 1.018 1.090 1.123 1.146 1.190 1.211 1.226 1.273 1.289 1.358

In step 6wewill initialize the second set of small scale parameters which is the cluster power, denoted
by Pn. For each cluster n, we first compute:

P′n = exp(−τn
rτ − 1
rτ.DS

)10−
−Zn

10 (C.19)

where Zn ∼ N (0, ζ2), ζ represents the per-cluster shadowing and can be found in Table C.4. In order to
have the sum of the cluster powers equal to one, we divide the previous power set P′n by the total power
and so we obtain the normalized set Pn

Pn =
P′n

∑n P′n
(C.20)

In the case of LOS condition an additional specular component is added to the first cluster. Power of the
single LOS ray is:

P1,LOS = KR/(1 + KR) (C.21)

where KR is the Ricean K-factor converted to linear scale. Therefore, in the case of LOS, we need to
change the normalization strategy as follows:

Pn =
1

1 + KR

P′n
∑n P′n

+ σ(n− 1)P1,LOS (C.22)

After the normalization, we remove the clusters with less than -25 dB power compared to the maximum
cluster power. Once we have the cluster powers Pn, we assign the power to each ray by splitting Pn
equally over the total number of rays, so Pn,m = Pn/Mray, where n = 1, ..., N is the cluster index and
m = 1, ..., Mray is the ray index.

In order to accurately represent the spatial characteristics of the wireless channel, angular spread will
also be described. According to several studies [125] [126], the increases of angular spread is aligned
with bigger factory (high V), higher density cluster and frequency-dependant. Step 7 will detail the
initialisation of arrival/departure angles for both azimuth ϕ and elevation θ.

For each cluster nn the azimuth angle of arrival (AOA), e.g. ϕ′n,AOA is determined by its normalized
cluster power Pn and RMS angle spread ASA:

ϕ′n,AOA =
2(ASA/1.4)

√
− ln(Pn/ max(Pn)

Cϕ
(C.23)

where Cϕ defined as:

Cϕ =

CNLOS
ϕ (1.1035− 0.028K− 0.002K2 + 0.0001K3) for LOS

CNLOS
ϕ for NLOS

(C.24)

where CNLOS
ϕ is defined as a scaling factor related to the total number of clusters as given Table C.2.

The additional scaling in the LOS case depending on the Ricean K factor and to compensate the effect of
LOS peak addition to the angle spread.

Then, the transformation from ϕ′n,AOA to ϕn,AOA is derived:

ϕ′n,AOA = Cn.ϕ′n,AOA + Yn + ϕLOS,AOA (C.25)

135



APPENDICES

Table C.3: Ray offset angles within a cluster, given for rms angle spread normalised to 1

Ray number m Basis vector of offset angles αm

1,2 ±0.0447

3,4 ±0.1413

5,6 ±0.2492

7,8 ±0.3715

9,10 ±0.5129

11,12 ±0.6797

13,14 ±0.8844

15,16 ±1.1481

17,18 ± 1.5195

19,20 ±2.1551

where random variable Xn ∼ U (−1, 1) and Yn ∼ N (0, (ASA/7)2. and ϕLOS,AOA is the direction
of LOS which is assumably known. By default, there are M = 20 rays are initialized for each cluster n,
so the cluster angles will be:

ϕn,m,AOA = ϕn,AOA + cASAαm (C.26)

where cASA is the cluster wise RMS azimuth spread of arrival angles (ASA) which its value is given
in Table C.4. The values of offset angle αm for each ray m in a cluster is given in Table C.3 below.

Similarly, we could obtain the angular spread values for ZOA and ZOD as following:

ϕn,m,ZOA = ϕn,ZOA + cZSAαm (C.27)

ϕn,m,ZOD = ϕn,ZOD +
3
8
(10µlgZSD)αm (C.28)

where µlgZSD is the mean of ZSD log-normal distribution, cZSA A is the cluster-wise rms spread of
ZOA (cluster ZSA) in which their values are given in Table C.4.

In step 8, once we have all the per-ray angles, we need to random couple them within a cluster in
the following way:

■ Randomly couple AOD angles ϕn,m,AOD to AOA ϕn,m,AOA within a cluster n.

■ Randomly couple ZOD angles ϕn,m,ZOD to ZOA ϕn,m,ZOA within a cluster n.

■ Randomly couple AOD angles ϕn,m,AOD to ZOD ϕn,m,ZOD within a cluster n.

In step 9, the last step for small scale parameters, we are going to create the cross polarization
power ratios (XPR) ,i.e κn,m for each ray m of each cluster n.

κn,m = 10Xn,m/10 (C.29)

where Xn,m ∼ N (µXPR, σ2
XPR) is Gaussian distributed and (µXPR, σXPR) = (12, 6) if this link is LOS,

otherwise, (µXPR, σXPR) = (11, 6).
In step 10, we need to randomly draw the initial phases

{
Φθθ

n,m, Φθϕ
n,m, Φϕθ

n,m, Φϕϕ
n,m

}
for each ray m

of each cluster n and for four different combinations (θθ, θϕ, ϕθ, ϕϕ).
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Table C.4: Fast fading parameters for InF

Scenarios

InF

LOS NLOS

Delay Spread

lgDS = log10(DS/1s)

µlgDS log10(26 V
S + 14)− 9.35 log10(30 V

S + 32)− 9.44

σlgDS 0.15 0.19

AOD spread (ASD)

lgASD = log10(ASD/1o)

µlgASD 1.56 1.57

σlgASD 0.25 0.2

AOA spread (ASA)

lgASA = log10(ASA/1o)

µlgASA −0.18 log10(1 + fc) + 1.78 1.72

σlgASA −0.12 log10(1 + fc) + 0.2 0.3

ZOA spread (ZSA)

lgZSA = log10(ZSA/1o)

µlgZSA −0.2 log10(1 + fc) + 1.5 −0.13 log10(1 + fc) + 1.45

σlgZSA 0.35 0.45

ZOD spread (ZSD)

lgZSD = log10(ZSD/1o)

µlgZSD 1.35 1.2

σlgZSA 0.35 0.55

Cluster Shadow std

[dB]
ζ 4 3

K-factor (K)

[dB]

µK 7 N/A

σK 8 N/A

Cluster ASD (cASD)

in [deg]
5 5

Cluster ASA (cASA)

in [deg]
8 8

Cluster ZSA (cZSA)

in [deg]
9 9

In the next step, we are going to generate channel coefficients for each cluster n and each receiver,
transmitter pair u, s. According to 3GPP, channel coefficients for each u, s pair and cluster n is given by:

Hu,s,n(t, τ) =

√
Pn

M
.

M

∑
m=1

F̂rx(θ
A
n,m, ϕA

n,m)

×

 ejΦθ,θ
n,m

√
K−1

n,mejΦθ,ϕ
n,m√

K−1
n,mejΦϕ,θ

n,m ejΦϕ,ϕ
n,m


× F̂tx(θ

D
n,m, ϕD

n,m)

× ejk̂T
rx,n,m d̂rx,u ejk̂T

tx,n,m d̂tx,s .ej2πvn,mt.δ(τ − τn)

(C.30)

where
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■ Ray belonging to the same cluster have the same power Pn, τn , angles of arrival θD
n,m, ϕD

n,m, depar-
tures θA

n,m, ϕA
n,m and uniformly distributed Φn,m

■ Each ray accounts for the antenna field pattern F(θn,m, ϕn,m)

■ Power distribution among the vertical and horizontal polarization through the term Kn,m

■ the term exp(jk̂T d̂) represent the array responses of the transmitting and receiving antennas

■ vn,m is a phase shift due to Doppler effect.

For the two strongest cluster, n=1 and n=2, rays are spread in delay to three sub-clusters (per cluster),
with fixed delay offset. The delays of the sub-clusters are:

τn,1 = τn

τn,2 = τn + 1.28cDS

τn,3 = τn + 2.56cDS

(C.31)

where cDS is cluster delay spread specified in Table C.4 [44]. Normally, the N/A value of cluster delay
specified in the table is default at 3.91ns.

- In the NLOS case, the channel impulse response for NLOS is given by:

HNLOS
u,s (τ, t) =

2

∑
n=1

3

∑
i=1

∑
m∈Ri

HNLOS
u,s,n,mδ(τ − τn,i) +

N

∑
n=3

HNLOS
u,s,n δ(τ − τn) (C.32)

where, HNLOS
u,s,n (t) for N-2 weekest links are given by:

HNLOS
u,s,n (t) =

√
Pn

M
∗

M

∑
m=1

F̂rx(θ
A
n,m, ϕA

n,m)

 ejΦθ,θ
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√
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n,mejΦθ,ϕ
n,m√

K−1
n,mejΦϕ,θ

n,m ejΦϕ,ϕ
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F̂tx(θ

D
n,m, ϕD

n,m)e
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rx,n,m d̂rx,u ejk̂T
tx,n,m d̂tx,s ej2πvn,mt

(C.33)

where, HNLOS
u,s,n,m(t) for 2 strongest cluster are given by:

HNLOS
u,s,n,m(t) =

√
Pn

M
F̂rx(θ

A
n,m, ϕA

n,m)

 ejΦθ,θ
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√
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D
n,m, ϕD

n,m)e
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rx,n,m d̂rx,u ejk̂T
tx,n,m d̂tx,s ej2πvn,mt

(C.34)

- In the LOS case, the LOS channel coefficient is given by:

HLOS
u,s,l (t) =

Frx,u,θ(θLOS,ZOA, ϕLOS,AOA)

Frx,u,ϕ(θLOS,ZOA, ϕLOS,AOA)

T 1 0

0 −1

Ftx,s,θ(θLOS,ZOD, ϕLOS,AOD)

Ftx,s,ϕ(θLOS,ZOD, ϕLOS,AOD)


exp (−j2π

d3D

λ0
). exp (−j2π

r̂T
rx,LOS.drx,u

λ0
). exp (−j2π

r̂T
tx,LOS.dtx,s

λ0
). exp (−j2π

r̂T
rx,LOS.v

λ0
t)

(C.35)

Then, the channel impulse response is given by adding the LOS channel coefficient to the NLOS channel
impulse response and scaling both terms according to the desired K-factor KR as:

HLOS
u,s (τ, t) =

√
1

KR + 1
.HNLOS

u,s (τ, t) +

√
KR

KR + 1
.HLOS

u,s,l (t)δ(τ − τ1) (C.36)

where HNLOS
u,s (τ, t) is given in Equation (C.32).
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C.5. ADDITIONAL COMPONENT: SPATIAL CONSISTENCY , BLOCKAGE EFFECTS

C.5 Additional component: spatial consistency , block-
age effects

In the scenario where the mobility of UE is considered, i.e, UEs move in an area in which channel is
uncorrelated and the fading parameters completely change, the spatial consistency will be added accord-
ing to Procedure A of [44] for both LOS and NLOS communications. The spatial consistency procedures
involve the channel update method, in which channel parameters (large scale and small scales) change
every period of tPER. In particular, the realisation of the channel matrix C.30 will be deleted, and the new
channel coefficient for each antenna pair (u, s) is forced to recompute by repeating from Step 2 to Step
11. It will update the LOS/NLOS probability, propagation path loss according to the current position,
cluster delays, powers and departure as well as arrival angles. The updates will take into account velocity
and position with respect to these generated at time t− tPER

In terms of blockage features that are modelled in our simulation, we support modelling the attenua-
tion of signals that get through the human body or vehicles according to stochastic or geometric methods
of Procedure A or B [44]. For more realistic blocking modelling purpose, we adopted Procedure B by first
placing Kbloc blockers in the scenario. Each blocker k ∈ Kbloc physically has the dimension (hk × wk) at
coordinate (xk, yk, hk). In InF scenario, the blockers, which can be automated guided vehicles (AVG) or
other industrial robots, cause blocking each sub-path of the propagation according to a simple knife edge
diffraction (KED) model [127]. Moreover, the blocking of certain cluster is correlated in space and time
according to the UEmobility. If both spatial consistency and blockage are used, the update of channel re-
alization with these featured will be synchronized, i.e the cluster blockage is updated before the channel
coefficients are recomputed with the spatial consistency procedure.

C.6 Beamforming (BF) scheme
In this part, we will describe the analog MIMO BF scheme implementation that is used in parallel

with the channel model. In this work, we consider an ideal beamforming method which is based on the
perfect knowledge acquirement (e.g: cell-scan method) and does not consume any time/frequency over-
head for BF vectors. Since analog beamforming is considered, each antenna element applies a phase shift
to the transmit signal so that it is concentrated in one direction [128]. Thus, the gain of beamforming
is obtained by multiplexing transmitter-receiver beamforming vector with the channel coefficient ma-
trix H(t, τ). In this work, the cell scanning method is applied to determine the best beam direction as
the illustration in Figure C.4. Basically, the coverage area is divided into several sectors in which the
directional beam points towards using predefined codebook. It means that, if the transmitter wants to
transmit in a sector s, it will select from a list (i.e codebook) the beamforming vector corresponding to
that sector and the signal will be pointed in that sector.

For a given transmitter and receiver, in order to determine which is the best pair of sectors (or BF
vectors) to direct the beam toward, we relied on the highest SNR assuming the perfect knowledge of the
channel.

After calculating the best beamforming vector for each transmitter-receiver pair, the beamforming
gain, G(t, fs) at time t and subcarrier frequency fs is computed as [129]:

G(t, fs) =
N

∑
n=1

w
†
rx Hnwtxej2π

rT
rx,nvt

λ0 ej2πτn fs (C.37)

where wrx, wtx are the receiver and transmitter side beamforming vector, Hn is the matrix of size
U × S representing the long-term MIMO channel for cluster n (Equation C.30). The first exponential
term is the small scale fading effect caused by the central angle of cluster, rT

rx,n is the transpose of the
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Figure C.4: Sector selection with cell scanning method.

receiver spherical unit vector, with azimuth angle θn,AOA and elevation arrival angle θn,ZOA, given by:

rrx,n =


sinθn,ZOA.cosϕn,AOA

sinθn,ZOA.sinϕn,AOA

cosθn,ZOA

 (C.38)

v is the vector of the relative speed in a 3D space between UE and gNb and λ0 is the wavelength. The
second exponential term represents the frequency selectivity effect caused by the delay τn of the n-th
cluster.
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D
Lyapunov’s Optimizations

In this Appendix, we will provide full derivations of the Lyapunov’s optimization used for Chapter 3.

D.1 From (in)eqality constraints to the virtual qeue
stabilisation

Suppose that we want to design a control policy that solves the following optimization problems:

minimize f0(t) (L1)
s.t. il ≤ 0, ∀l ∈ {1, .., L} (1)

ej = 0, ∀j ∈ {1, .., J} (2)
Queues Qk(t) are mean rate stable, ∀k ∈ {1, .., K} (3)

where: f0(t) is the time average function to minimize, il and ej are the limiting values of il(t) and
ej(t) which correspond to the inequality and equality constraints, respectively.

The update of actual queues will be done according to the following dynamic equation:

Q(t + 1) = max [Q(t)− b(t), 0] + a(t) (D.1)

where the value of a(t),b(t) represents the amount of new packets that arrives, departs on slot t, respec-
tively, and they are assumed to be non-negative.

We can equivalently express the dynamics in Equation D.1 without the appearance of non-linear
function max[., 0] as follows:

Q(t + 1) = Q(t)− b̃(t) + a(t) (D.2)

where b̃(t) = min[b(t), Q(t)] ≤ b(t)∀t represents the actual packets proceeded on slot t.
In order to solve the problem L1, we first transform all inequality and equality constrains into queue

stability problem. Particularly, we define the following virtual queues Zl(t) and Hj(t) for each l ∈
{1, .., L} and k ∈ {1, .., K}:

Zl(t + 1) = max [Zl(t) + il(t), 0] (D.3)
Hj(t + 1) = Hj(t) + ej(t) (D.4)

These designed virtual queues are necessary condition to turn the time average (in)equality constraints
into a pure queue stability problem.
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Proof. Indeed, if Zl(t) satisfies Equation D.3, we can easily see that

Zl(t)
t
− Zl(0)

t
≥ 1

t

t−1

∑
τ=0

il(t)

By taking the expectations of both sides of above inequality equation and taking t→ ∞, we obtain:

lim sup
t→∞

E{Zl(t)}
t

≥ lim sup
t→∞

il(t)

Recalling that il(t) is the time average expectation of il(τ) over τ ∈ {0, ..., t− 1}. Therefore, if Zl(t)
is mean rate stable, the left-hand-side of the above inequality is 0, thus:

lim sup
t→∞

il(t) ≤ 0

This means that the inequality constraints for il(t) is already satisfied.
In terms of the virtual queue Hj(t) concerning equality constraints, we can easily obtain the following

equation for any t > 0:

Hj(t)− Hj(0) =
t−1

∑
τ=0

ej(τ)

Taking expectations and dividing by t will yield follow equation:

E{Hj(t)} −E{Hj(0)}
t

= ej(t)

Therefore, if Hj(t) is mean rate stable, then the following equation holds and the desired equality
constraint for ej(t) is satisfied.

lim
t→∞

ej(t) = 0

D.2 Upper boundof Lyapunovdrift-plus-penalty function
Let Θ(t) = {Q(t),Z(t),H(t)} be concatenated vector of all actual queues and virtual queues.

Then, the Lyapunov function is defined as:

L(Θ(t)) =
1
2

K

∑
k=1

Qk(t)2 +
1
2

L

∑
l=1

Zl(t)2 +
1
2

L

∑
j=1

Hj(t)2 (D.5)

According to Neely et al. [70], under any control algorithm, the upper bound of the drift-plus-penalty
function can be expressed as following, for any possible values of Θ(t) and all parameter ν ≥ 0:

∆(Θ(t)) + ν.E{ f0(t)|Θ(t)} ≤ B + ν.E{ f0(t)|Θ(t)}+
K

∑
k=1

Qk(t)E{ak(t)− bk(t)|Θ(t)}

L

∑
l=1

Zl(t)E{il(t)|Θ(t)}+
L

∑
j=1

Hj(t)E{ej(t)|Θ(t)}
(D.6)
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where B is a positive constant that satisfies the following for all t:

B ≥ 1
2

K

∑
k=1

E{ak(t)2 − bk(t)2|Θ(t)}+ 1
2

L

∑
l=1

E{il(t)2|Θ(t)}

+
1
2

L

∑
j=1

E{ej(t)2|Θ(t)} −
K

∑
k=1

E{ak(t).b̃k(t)|Θ(t)}
(D.7)

Proof. By squaring Equation D.1 stressing the fact that max[p, 0]2 ≤ p2, we will get the following
expression:

Q(t + 1)2 ≤ (Qk(t)− bk(t))2 + ak(t)2 + 2 max[Qk(t)− bk(t), 0]ak(t) (D.8)

= (Qk(t)− bk(t))
2 + ak(t)2 + 2

(
Qk(t)− b̃k(t)

)
ak(t) (D.9)

Therefore:

Qk(t + 1)2 −Qk(t)2

2
≤ ak(t)2 − bk(t)2

2
− b̃k(t)ak(t) + Qk(t)[ak(t)− bk(t)] (D.10)

Similarly, we will apply the same proofs for Zl(t) and Hj(t) and get the following expression:

Zl(t + 1)2 − Zl(t)2

2
≤ il(t)2

2
+ Zl(t)il(t)

Hj(t + 1)2 − Hj(t)2

2
≤

ej(t)2

2
+ Hj(t)ej(t)

(D.11)

Then, we will take the conditional expectations of the above three equations and summing over k ∈
{1, ..., K}, l ∈ {1, ..., L} and j ∈ {1, ..., J}, we will get the following results:
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∑
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(D.12)
We see that the right hand side of Equation D.12 follows the definition of one-slot conditional Lyapunov
drift function ∆(Θ(t)) By choosing a positive constant B value that satisfies Equation D.7, we will trans-
form Equation D.12 as follows:

∆(Θ(t)) ≤ B +
K

∑
k=1

Qk(t)E{ak(t)− bk(t)|Θ(t)}+
L

∑
l=1

Zl(t)E{il(t)|Θ(t)}+
J

∑
j=1

Hj(t)E{ej(t)|Θ(t)}

(D.13)
Afterwards, by adding ν.E{ f0(t)|Θ(t)} in both sides of equation above, we will get the upper bound of
the Lyapunov drift-plus-penalty-function as Equation D.6
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Remarks D.2.1

Thus, instead of directly minimising the Lyapunov-drift-plus-penalty function ∆(Θ(t)) +
ν.E{ f0(t)|Θ(t)} on every slot t, we are now trying tominimize the bound given in the right-hand-size
of Equation D.6.

The outcomes of upper bound minimization have been realised in Chapter 3, Section 3.3. In adaptive
resource allocation algorithm, the equality constraint is not considered, thus J=0. In adaptive, reliability-
aware resource allocation algorithm, both equality constraint and inequality constraint are not used, so
virtual queues are not included in the optimization problem (J = 0 and L = 0).
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