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Abstract 

Protein cavities are the heart of molecular interactions that trigger and regulate biological processes in 

living organisms. Supported by the constant augmentation of characterized pockets in three-dimensional 

protein structures, methods to assess the similarity between protein cavities have multiple applications 

in drug design but face many challenges. This thesis proposes new algorithms based on three-

dimensional (3D) image processing to compare global and subtle patterns in different protein (sub-) 

pockets represented by point clouds. Through prospective applications validated by in vitro biological 

experiments, we showed how these methods can predict a secondary target at the proteome scale and 

design a target-focused library for faster small molecule hit identification. In the next stages, better 

characterization of the cavities for pharmacophore elaboration and the development of virtual screening 

methods were investigated. 

Keywords: protein subpocket comparison, point cloud, 3D alignment, secondary target prediction, 

focused library, virtual screening, pharmacophore, graph matching, machine learning, drug design, 

structure-based, Cheminformatics. 

 

Résumé (Abstract in French) 

Les cavités de protéines sont au cœur d’interactions moléculaires nécessaires aux fonctions biologiques 

du vivant. Grâce à l’augmentation incessante des données structurales, les méthodes de comparaison de 

cavités protéiques offrent diverses applications en conception de molécules bioactives mais doivent 

relever plusieurs défis. Cette thèse propose de nouveaux algorithmes basés sur le traitement d’images 

tridimensionnelles pour comparer les motifs globaux et locaux de (sous-) cavités protéiques, 

représentées en nuages de points. Leurs applications concrètes, validées par des essais biologiques in 

vitro, illustrent leurs utilisations pour prédire des cibles secondaires à l’échelle du protéome structural 

et pour générer des chimiothèques focalisées permettant d’augmenter le taux de touches en criblage 

virtuel. A partir de la caractérisation des cavités, l’élaboration de pharmacophores et le développement 

de méthodes de criblage virtuel ont été investigués. 

Mots-Clés : comparaison de sites de protéines, nuage de points, alignement 3D, prédiction de cible 

secondaire, chimiothèque focalisée, criblage virtuel, pharmacophore, alignement de graphe, intelligence 

artificielle, conception de molécules bioactives, structure, Chémoinformatique.  
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1. Introduction 

Un des problèmes fondamentaux de la conception de candidat-médicaments reste l’identification de 

molécules bioactives ayant de bonnes propriétés pharmacologiques, ou du moins optimisables aux 

mêmes fins. Expérimentalement, des banques de molécules de masse molaire allant de 200 à 800 g.mol-

1 (chimiothèques) sont évaluées dans des essais biologiques à haut-débit afin d’identifier des touches. 

Cette approche requiert des infrastructures particulières, en plus de la mise en place des essais 

biologiques, et est par conséquence coûteuse. Au contraire, la conception assistée par ordinateur (CAO) 

offre l’avantage d’être rapide et beaucoup moins onéreuse, mais s’applique lorsque certaines données 

sont connues : par exemple, la structure tri-dimensionnelle (3D) de la cible, les structures chimiques 

d’inhibiteurs, etc. Une approche populaire de la CAO est l’arrimage moléculaire ou « docking »1 dont 

le principe est de prédire l’affinité de molécules à la cible, par proposition de potentiels modes de liaison 

et évaluation des contributions énergétiques à des fins de classement, avant de tester expérimentalement 

les meilleures propositions. Classiquement, un programme de docking commence par le choix de la 

chimiothèque à cribler, étape cruciale car les chercheurs partent d’un ensemble fini de molécules et 

espèrent y trouver, sans garantie, des touches pour une protéine particulière. Même si les chances 

d’identifier des molécules bioactives augmentent avec la taille de la chimiothèque,2 il reste la question 

de la priorisation des touches. Le criblage de chimiothèques focalisées, conçues pour être enrichies en 

touches pour une cible donnée, s’avère avantageux.3 Il existe donc un besoin de méthodes alternatives 

au docking classique, comme la comparaison de poches protéiques, en tirant profit de l’augmentation 

incessante des données structurales publiques de cavités de complexes protéine-ligand.4 

Les petites molécules interagissent avec une protéine en se liant à des cavités compatibles avec leurs 

formes et propriétés physicochimiques. La comparaison de cavités de protéines a pour but d’estimer la 

similarité entre des sites de liaison de différentes protéines. Cette approche est utilisée en CAO à 

plusieurs fins selon le principe de similarité : générer des hypothèses de touches et identifier des cibles 

secondaires. Quelques applications réussies de prédictions, d’explications d’observations 

expérimentales ou de confirmation ont été rapportées dans la littérature.5 Depuis la création de la banque 

de données structurales Protein Data Bank ou PDB, permettant la caractérisation des sites de liaison 

protéiques, plusieurs méthodes de comparaison de cavités ont vu le jour. Cependant, elles se 

différencient par la combinaison des quatre principales étapes d’une comparaison : la détection de la 

cavité, la sélection et représentation de motifs pertinents du site, l’algorithme de comparaison 

(alignement de graphe ou de motifs géométriques, comparaison d’empreintes ou d’histogrammes de 

distances, apprentissage automatique) et l’estimation du degré de ressemblance (scoring). La 

comparaison de site, reste une tâche difficile, non directement mesurable expérimentalement mais 

sensible à la précision de chacune des étapes énumérées ci-dessus. La délimitation du site peut être 

suggérée par un ligand en complexe avec la protéine, lorsqu’il est présent. Toutefois les algorithmes 
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opérant par détection de cavité de novo offre l’avantage de s’appliquer à de nouvelles cavités pour 

lesquelles aucune information n’est connue. Aussi, observons-nous que la majorité des méthodes 

existantes effectuent des comparaisons globales des sites, alors qu’une comparaison locale pourrait 

mettre en évidence des similarités cachées expliquant la liaison du ligand à une cible secondaire.6  

Notre laboratoire a préalablement développé une représentation en nuage de points des sites de protéines 

(IChem VolSite, Figure 1).7 L’objectif de cette thèse est de développer des méthodes basées sur la vision 

par ordinateur pour traiter et comparer les nuages de points de cavités protéiques puis d’évaluer leurs 

usages dans la conception de molécules bioactives. 

 

Figure 1. Example de nuage de points de cavité de protéine calculé par VolSite. Chaque point, est 

associé à une propriété pharmacophorique complémentaire à celle de l’atome protéique le plus proche : 

en bleu, donneur de liaison hydrogène, positivement ionisable, en rouge accepteur ou accepteur/donneur 

de liaison hydrogène, négativement ionisable, en blanc hydrophobe, aromatique et nul. La surface 

transparente du nuage est déterminée par Pymol 2.1 (Schrödinger, New York, USA), code PDB: 5HBH. 

 

 

2. Traitements et comparaisons de cavités protéiques 

La comparaison de cavités protéiques repose sur une représentation des propriétés importantes du site. 

Généralement, il s’agit d’encoder les relations spatiales et pharmacophoriques des atomes du site 

protéique, mais celle-ci peut prendre la forme d’une surface continue, d’un graphe, d’une empreinte ou 

de nuages de points. Mes travaux se basent sur cette dernière représentation car elle offre plusieurs 

avantages : les points occupent l’espace discrétisé 3D du ligand, encodent les courbures et les propriétés 

pharmacophoriques du site. Cependant cette discrétisation a pour inconvénient d’introduire du bruit dans 

la représentation, un défi pour les algorithmes de comparaison. En vision par ordinateur et robotique, 

des procédures particulières d’alignement de nuages de points sont utilisées pour superposer des images 

3D bruitées8 mais elles n’avaient jamais été adaptées pour aligner des cavités protéiques. Le principe 
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d’un de ces l’algorithmes le rend intéressant pour notre problème car il permettrait une comparaison 

locale tout en étant robuste aux bruits. A partir des données de la sc-PDB, une base de données de 

complexes de protéines-ligands non-redondants, plusieurs stratégies CAO et leurs applications concrètes 

ont été élaborées (Figure 2). 

 

 

Figure 2. Stratégies CAO par traitement de nuages de points élaborées dans cette thèse. 

 

2.1. ProCare : développement d’une nouvelle méthode de comparaison 

locale de cavités protéiques 

ProCare est une méthode codée en C++ et en Python permettant de comparer deux nuages de points de 

cavités protéiques.9 Elle est basée sur la librairie de traitement d’image Open3D,10 adaptée et optimisée 

pour traiter nos représentations des cavités protéiques. La comparaison de deux cavités se déroulent en 

cinq étapes : (1) calcul des descripteurs de chaque point, (2) échantillonnage aléatoire d’au moins trois 

points de la première cavité et associations avec des points de la deuxième cavité les plus similaires dans 

l’espace des descripteurs et par leur topologie commune, (3) alignement grossier à partir des points 

associés, (4) raffinement de l’alignement par la méthode itérative du point le plus proche (« iterative 

closest point ») qui associe naïvement les points les plus proches dans l’espace Euclidien et enfin (5) 

quantification de la similarité. 

Du fait que Open3D ait été développé originellement pour une autre application, nous avons dans un 

premier lieu optimisé les paramètres géométriques en évaluant 157 465 conditions d’alignement 

couvrant 15 paramètres. Ensuite, le descripteur représentant la forme locale autour de chaque point a été 
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modifié en y introduisant l’information pharmacophorique, ce qui a amélioré les comparaisons. Enfin, 

plusieurs fonctions de score ont été développées, implémentées, optimisées et finalement, un score 

symétrique comptant les points ayant un équivalent de même propriété dans l’autre cavité a été défini 

comme score principal. 

Afin d’évaluer les performances de la méthode, nous avons assemblé 8 jeux de données, de taille allant 

de dix paires à deux millions de paires d’entrées, représentant différents scénarios de similarité de cavités 

(classification fonctionnelle, reconnaissance de mêmes ligands, comparaison de sous-poches de 

fragments avec des cavités entières de protéines différentes, sensibilités aux variations de coordonnées) 

et permettant la détermination statistique d’un seuil de similarité. 

ProCare a montré une performance de similarité globale équivalente aux méthodes de l’état de l’art et 

supérieure en ce qui concerne la détection de similarité locale. Elle est sensible aux déformations 

globales du squelette de la cavité d’environ 2.5 Å et indique une similarité significative à partir d’un 

score de 0.47, la zone grise étant estimée à 0.39. Tout en reconnaissant que ces valeurs peuvent être 

biaisées par la composition des jeux de données, elles forment néanmoins une base de comparaison à 

haut-débit. Le principe de comparaison locale a été appliqué pour comparer des sous poches de protéines 

à des cavités entières de protéines dont les structures venaient d’être nouvellement résolues. 

L’alignement ainsi obtenu a été appliqué aux fragments issus de ces sous-poches afin de suggérer des 

blocs de construction de ligands (Figures 3). Ce protocole sera exploité dans les parties 2.2 et 2.3. 
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Figure 3. Positionnement de fragments de la sc-PDB dans de nouvelles cavités protéiques par 

alignement de sous-poches avec ProCare. Code couleur des atomes (azote : bleu ; oxygène : rouge; 

souffre : jaune ; carbone du fragment: cyan / jaune vif / rose orangé / vert ; carbone du ligand, blanc). 

Les codes PDB, HET, le site sc-PDB et le numéro du fragment sont indiqués. Cibles : A-B) récepteur 

muscarinique M5 (PDB : 6OL9), C-E) facteur de nécrose tumorale alpha (PDB : 6OOY), F-G) 

Récepteur des cystéinyl-leucotriènes 2 (PDB : 6RZ8). 

 

À la suite de ces évaluations rétrospectives concluantes, nous avons évalué ProCare dans les applications 

prospectives en drug design. 

 

 

2.2. Prédiction de cible secondaire par comparaison de sous-poches de 

protéines 

La capacité de ProCare à effectuer des alignements locaux le rend prometteur pour détecter des 

similarités non-évidentes mais suffisantes pour favoriser la reconnaissance d’un même ligand/fragment. 

Nous avons comparé la poche à l’interface de la protéine homotrimérique du facteur de nécrose tumorale 

TNF-α11 à une collection de 31 000 sous-poches, correspondant à diverses protéines. ProCare a prédit 
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une similarité locale avec des sous-poches du site non-nucléosidique de la transcriptase inverse du virus-

1 de l’immunodéficience humain (HIV1-RT) de manière significative12 : les scores sont élevés et 

statistiquement indépendants de la structure 3D utilisée, l’alignement des points de cavités résulte en un 

alignement pertinent des résidus protéiques délimitant les deux cavités, les alignements des fragments 

correspondent à des propositions de docking (Figure 4).  

 

Figure 4. Comparaison des cavités de TNF-α et HIV1-RT avec ProCare. A) Distribution des scores de 

similarité. B) Résidus alignés de TNF-α (chaine A: cyan, chaine B: bleu, chaine C: bleu ciel; code PDB: 

6OOZ) sur ceux de HIV1-RT (orange, code PDB: 1FKO) après rotation et translation résultant de 

l’alignement des cavités par ProCare. C) Alignement correspondant du fragment principal d’efavirenz 

(orange clair) dans la poche de TNF-α, superposé à une solution de docking (orange foncé transparent). 

L’interaction aromatique avec TYR59-TNF-α et la liaison hydrogène avec TYR151-TNF-α sont 

représentées par le trait en pointillé bleu. 

 

Nous donc avons émis l’hypothèse que des ligands HIV1-RT peuvent se lier au TNF-α. Afin de vérifier 

ou de réfuter cette hypothèse, 3 inhibiteurs commercialisés (delavirdine, efavirenz et nevirapine) du site 

non-nucléosidique du HIV1-RT ont été testés in vitro pour leur capacité à se lier au TNF-α (Figure 5). 

L’efavirenz et la delavirdine se lient au TNF-α avec une constante de dissociation à l’équilibre KD de 

24±8 µM et 39±9 µM respectivement, de même ordre de grandeur que de celle du fragment co-cristallisé 

avec TNF-α (UCB-6876 KD = 22 µM).11 Cette similarité non évidente entre des protéines 

fonctionnellement et structuralement différentes n’a pu être détectée par les méthodes existantes de 

comparaison de cavités protéiques, ou de similarités bi- et tri-dimensionnelles de ligands.  
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Figure 5. L’essai biophysique par thermophorèse (MST) démontre une liaison directe entre deux 

inhibiteurs non-nucléosidiques du HIV1-RT et le TNF-α. A) efavirenz (KD = 24 ± 8 µM); B) delavirdine 

(KD = 39 ± 9 µM); C) nevirapine (pas de liaison). 

 

Nous avons ainsi validé l’usage de ProCare à déterminer des similarités non-évidentes et locales entre 

sous-poches de protéines de différentes familles. 

 

 

2.3.  Conception de chimiothèque focalisée 

Une chimiothèque focalisée est une petite collection de molécules, enrichie en touches pour la cible 

choisie, permettant ainsi un criblage rapide et un taux de touches plus élevé.3 De nombreuses approches 

publiées requièrent des ligands connus pour élaborer une chimiothèque focalisée, ce qui les rend 

inutilisables pour les cibles dont la seule information connue est structure protéique. Nous avons donc 

conçu une approche (POEM, Pocket-Oriented Elaboration of Molecule ou élaboration de molécules 

focalisés sur les caractéristiques de la cavité protéique, Figure 6) qui, à partir de la cavité de la cible, 

positionne des fragments obtenus de complexes protéine-ligand sur la base de la similarité de leurs 

microenvironnements protéiques avec la cavité cible. Les fragments sont filtrés, annotés selon zone de 

la cavité cible qu’ils occupent, puis liés par un algorithme d’apprentissage profond génératif13 pour 

énumérer des molécules complètes. Les molécules sont ensuite vérifiées et filtrées selon leurs propriétés 

physico-chimiques et leur accessibilité synthétique.14 
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Figure 6. La méthode POEM (Pocket-Oriented Elaboration of Molecule) pour concevoir une 

chimiothèque focalisée. La preuve de concept a été appliquée à la protéine kinase dépendante des 

cyclines 8 (CDK8). 

 

L’application de POEM à la protéine kinase dépendante des cyclines 8 (CDK8) a conduit à 

l’identification de molécules similaires à des inhibiteurs connus, mais surtout à de nouveaux inhibiteurs 

d’affinité micromolaire, voire nanomolaire pour les meilleurs d’entre eux (Figure 7), avec un taux de 

touches de 16%. 
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Figure 7. Inhibition de CDK8 par 7 molécules générées par POEM. Les courbes dose-réponse sont 

dérivées de trois expériences de compétition (TR-FRET, Fluorescence en temps résolu) indépendantes 

avec duplicatas par expérience. Les molécules 12 (issu du cycle #1, Figure 6) et 49 (cycle #2) ont 

respectivement une affinité (IC50) de 376 nM et 6.4 nM. 

 

Ces molécules ont été générées à partir de fragments aussi bien dérivés de complexes avec des protéines 

kinases que de complexes avec des protéines non-kinases, démontrant la capacité de la méthode à 

transposer des fragments pertinents en opérant dans tout le protéome structural connu. L’application à 

d’autres cibles thérapeutiques (quinolinate synthase NadA, domaine WD40 de la leucine rich-repeats 

kinase 2 LRRK2) a permis d’améliorer le protocole (positionnement et regroupement des fragments, 

atomes connectables) mais aussi d’identifier les limites de l’approche. Les résultats des essais 

biologiques de ces deux dernières applications sont attendus prochainement de nos collaborateurs. 

 

 

 

2.4.  Alignement de petites molécules à des cavités de protéines  

La comparaison des nuages de points de cavités à des petites molécules, sur la base de règles 

pharmacophoriques et topologiques simples peut être une alternative intéressante au docking si elle 

génère des hypothèses orthogonales. Nous avons exploré et développé différentes approches pour 

superposer des petites molécules à des nuages points de cavités protéiques, puis les classer (scoring) par 

complémentarité décroissante : (1) implémentation d’un modèle pharmacophorique des molécules afin 

de les rendre comparables aux points de cavités, (2) développement de modèles de nuage de points des 

petites molécules pour une utilisation avec ProCare, (3) développement d’algorithmes d’alignement de 

graphes cavité-molécule, (4) développement d’une autre représentation de la cavité afin de contourner 

12 

49 
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les bruits des cavités VolSite, tout en respectant les contraintes de temps de calculs pour rester compétitif 

avec les méthodes existantes. Les résultats suggèrent que la recherche et l’estimation d’alignement rigide 

telle qu’implémentée ne sont pas efficaces pour résoudre ce problème, les performances restant 

inférieures à celles de méthodes de docking (Figure 8).15 Cependant, ils montrent également que les 

jeux de représentations de cavités protéiques et de ligands contiennent parfois des informations riches, 

exploitables à des fins de classification. 

 

Figure 8. Alignement de 176 ligands de la sc-PDB sur leurs cavités correspondantes par comparaison 

de nuages de points. Trois descripteurs FPFH (forme), c-FH (forme et propriétés pharmacophoriques) 

et c-FPFH (hybride des deux précédents) sont utilisés. A) Pourcentage cumulatif de ligands alignés en 

deçà d’un certain seuil de déviation (RMSD) par rapport à la position du ligand déterminé par rayons X. 

B) Distribution en tracé de violon, montrant une RMSD médian d’environ 6 Å. C) RMSD des ligands 

en fonction du nombre de points dans la cavité protéique. D) Example d’alignement de l’entrée PDB 

2FPT donnant une RMSD de 0.94 Å. 
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2.5.  Apprentissage automatique des points de cavités pertinents 

Identifier les points de cavités pertinents permettrait plusieurs applications directes en CAO : 

amélioration des comparaisons/alignements des petites molécules/cavités protéiques, priorisation de 

touches en criblage virtuel, interprétation de résultats d’activités. Nous avons conçu des modèles 

d’apprentissage pour discriminer les points pertinents des points non-pertinents, capable d’opérer sur de 

larges nuages de points de cavités, même en l’absence de ligands connus. Les descripteurs représentent 

la densité pharmacophorique dans des sphères concentriques, l’enfouissement et la distance au 

centroïde. Les points sont annotés en deux classes, selon leur distance et la compatibilité 

pharmacophorique avec les atomes du ligand qui interagissent avec la cible : les points importants 

(classe positive) sont situés à moins de 2 Å d’un atome du ligand de même propriété pharmacophorique, 

tout autre point est de classe négative. Les données sont ensuite équilibrées en jeux d’apprentissage 

(~450 000 points), d’évaluation externe (~150 000 points), puis d’application externe (1000 cavités). 

Les résultats préliminaires montrent que les modèles individuels pour chaque type pharmacophorique 

se généralisent mieux qu’un modèle global et permettent d’élaguer 60% des points négatifs tout en 

conservant les points positifs (Figure 9). Ces résultats sont encourageants pour des études plus 

approfondies. 

 

Figure 9. Prédiction des points importants des cavités protéiques. Les deux premiers exemples montrent 

une bonne délimitation des points autour des ligands, le dernier exemple une mauvaise délimitation. 
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3. Conclusion générale 

A travers les travaux présentés dans cette thèse, nous avons proposé de nouvelles approches 

computationnelles pour la conception de molécules bioactives, en exploitant les cavités protéiques 

disponibles et représentées sous forme de nuage de points. Les projets ont été progressivement construits 

pour résoudre plusieurs problèmes : (1) estimation de la similarité des cavités protéiques à l'échelle du 

protéome structural et leurs applications prospectives à (2) la prédiction de cibles secondaires et (3) la 

conception de chimiothèques focalisées, (4) la comparaison de ligands aux cavités protéiques, (5) la 

prédiction des points de cavité en interaction (Figure 2). 

La revue des méthodes existantes a révélé les difficultés de la comparaison des cavités protéiques et le 

besoin de méthodes permettant la comparaison de micro-environnements protéiques. En développant 

ProCare à cette fin, nous avons montré que traitement de nuages de points basé sur l'échantillonnage, 

appliqué à l'origine à d'autres tâches de la vision par ordinateur, peut identifier des motifs communs 

entre des sous-poches de protéines non apparentées. A partir des premières validations rétrospectives, 

nous avons procédé à l'évaluation de notre méthode en confrontant les prédictions computationnelles 

aux validations expérimentales. Ainsi, nous avons pu identifier une similarité locale entre les sites de 

liaison de deux protéines fonctionnellement et structurellement différentes, la cytokine facteur de 

nécrose tumorale alpha (TNF-α) et la transcriptase inverse (RT) du VIH-1. La mesure directe de la 

liaison in vitro a montré que deux inhibiteurs non nucléosidiques du RT-VIH-1 interagissent avec le 

trimère TNF-α avec une affinité comparable à un résultat de criblage à haut débit. De plus, nous avons 

développé une méthode, POEM, pour concevoir une chimiothèque focalisée de petites molécules, basée 

sur la prédiction de similarité de sous-poches. En appliquant POEM à la kinase dépendante des cyclines 

8 (CDK8), nous avons réussi à concevoir un nouveau ligand nanomolaire en seulement deux étapes. 

Enfin, l'évaluation de POEM sur des cibles orphelines (quinolinate synthase, domaine WD40 de la 

leucine-rich repeat kinase 2), pour lesquelles aucun ligand pharmacologique n'est connu à ce jour, 

permet d'améliorer le workflow tout en proposant un défi à l’aveugle et en permettant d’identifier les 

limites de l’approche. 

La représentation des cavités protéiques sous forme de nuages de points occupant tout l'espace des 

ligands offre l'avantage de développer des méthodes informatiques pour le criblage de petites molécules. 

Dans cette lancée, nous avons étudié l’alignement des nuages de points et de graphes des ligands aux 

cavités protéiques. Les informations contenues dans les nuages de la cavité se sont avérées riches pour 

être comparées à de petites molécules mais insuffisante pour générer de bons alignements, c'est pourquoi 

des modèles d'apprentissage automatique ont été développés pour prédire les points importants 

correspondant aux pharmacophores des ligands. Ces résultats sont encourageants et ont suggéré d'autres 

analyses pour approfondir ces études. Enfin, nous sommes intrigués par l'application de ces concepts à 

d'autres classes cibles. 
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Pour conclure, nous espérons que les nouvelles contributions de cette thèse par rapport à l'état de l'art 

ont fourni des informations utiles dans le cadre général de la conception de molécules assistée par 

ordinateur. Les diverses évaluations entreprises dans ces travaux de recherche nous ont suggéré des 

pistes d’améliorations, qui feront l’objet de travaux futurs. 
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General introduction 

In our contemporary era, designing a drug molecule to treat a particular disease is a long and costly 

process from the earlier generation of hypotheses to the distribution on the market. It takes on average 

20 years, two billion US dollars,1 thousands of scientists, operators, and participants, many failures2 and 

one success to safely bring solutions to patients. In the early stages of the pharmaceutical industry, drugs 

were extracted from natural sources according to prior observations to treat symptoms or have been 

discovered accidentally.3 The technological progress together with the accumulation of knowledge have 

enabled to adopt various strategies to characterize targets and find starting bioactive molecules on a 

rational basis while controlling the safety and costs. Many of these targets are proteins, one of the major 

building blocks that compose living organisms.4 Proteins regulate biological processes by interacting 

with other molecules at specific areas on their surfaces.5 Thus, it was discovered that inhibiting or 

activating key proteins involved in biological pathways relevant to a particular disease could restore a 

heathier function.6 For more than a century, this was largely achieved by small molecular weight 

molecules. In 2021, 72% of FDA-approved drugs were new chemical entities.7  

Before they ever reach clinical trials, drug candidates go through tedious “design-make-test-analyze” 

(DMTA) cycles to meet desired pharmacological and non-toxicity profiles, but the very beginning of 

this process is the identification of hit molecules that sufficiently interact with the target.8 By accessing 

models of proteins three-dimensional structures thanks to advances in genomics and structural biology, 

it was shown that small molecules preferentially bind to buried cavities.9 From then on, computational 

methods to model protein-small molecule interactions have flourished. The most popular, docking,10 

supports the screening of millions of molecules from well-thought virtual libraries to propose a few that 

have higher chances to bind in experimental assays.11 Alternatively, methods which focus on assessing 

the resemblance of protein interaction sites quickly emerged and gain popularity in the first decade of 

this century.12 This strategy is notably relevant now as the structural data on diverse proteins and the 

binding information on several molecules are constantly increasing.13 Pure protein cavities comparison 

operates in the target space only, therefore is thought to provide at least a different perspective, at best 

an advantage against the combinatorial complexity of protein-ligand information and scoring problems 

known to docking.10 When cavities of different targets are found similar, binding knowledge are 

hypothetically transferred to identify secondary targets, to design ligands or focused libraries for virtual 

screening.14 

My host laboratory has contributed to the state-of-the-art binding site detection and comparison methods 

in the past two decades.15–17 One of these methods (VolSite)17 detects pockets in proteins irrespective of 

prior bound ligand coordinates and represents them as a cloud of points featuring a negative image of 

the cavity. Thus, it enables to reach previously non-characterized pockets, or those which prove to be 

difficult for classical approaches (small or large cavities). Then, another tool (Shaper) is used to compare 
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these clouds to estimate the similarity between two protein cavities.17 Shaper is based on a commercial 

and proprietary toolkit from OpenEye Scientific Software (Santa Fe, USA), which performs global 

shape and property matching of two cavity clouds. Shaper have achieved good performance in 

evaluations, which validated the information carried by VolSite cavities. However, two aspirations have 

led to my dissertation: 

• the access to a non-proprietary method to estimate the similarity of VolSite cavities, 

• the exploration of pattern recognition methods used in image processing. 

In Chapter 1, a review of previously published methods showed a diversity in how protein cavities are 

represented, compared and the similarity scored. Yet, the majority perform global searches for 

resemblance which might hinder the detection of subtle but relevant similarities at times. Therefore, the 

first part of my work consisted in identifying and implementing suitable algorithms to compare VolSite 

clouds, while striving for the following specifications: 

• the possibility to estimate both global and local similarities, 

• a computing time compatible with screening large databases on a daily basis, 

• the interpretability of the results. 

This led to the development and retrospective evaluation of a novel tool (ProCare), presented in Chapter 

2. During the evaluation of ProCare on the tumor necrosis factor-alpha (TNF-α) protein, I observed a 

common pattern between the TNF-α trimer interface and the cavity of reverse transcriptase non-

nucleoside inhibitors. The resulting similarity hypothesis was investigated in Chapter 3. In the same 

pursuit of providing a realistic assessment to the ProCare method, I designed a workflow for generating 

target-focused libraries using fragment moieties bound to subpockets that were locally estimated similar 

to the target cavity (Chapter 4). Finally, as a continuation of my laboratory goal to find alternative 

screening methods, I have explored the search of common patterns between VolSite cavities and small 

molecules in Chapter 5. 
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This Chapter was adapted and published in: 

Merveille Eguida and Didier Rognan. Int. J. Mol. Sci. 2022, 23, 12462. 

1.1. Introduction 

In living organisms, biological processes are regulated through specific molecular recognition at local 

surfaces. Proteins, one of the major biomolecules composing our cells, interact with different partners: 

other proteins, peptides, nucleic acids, small molecules, transition metals. Proteins are made of amino 

acids chains, which spatially fold into particular shapes. To explore the proteome, sequence-based 

studies benefit from the boom of genomics since the early 2000, but their scope are quickly limited by 

the conservation of structure in proteins sharing less than 30% sequence homology.1 Progress in 

molecular and structural biology have enabled to solve the three-dimensional (3D) structure of proteins, 

either by X-ray diffraction,2–4 nuclear magnetic resonance (NMR)5 or more recently cryo-electron 

microscopy (cryo-EM) at atomic scale.6–9 Characterizing the binding cavities for small molecules have 

bolstered the rise of structure-based drug design.10–12 

With the exponential increase of publicly-available protein structures,13,14 coupled to the development 

of methods able to detect cavities,15,16 the comparison of protein binding sites emerged naturally as a 

scientific topic to explain observations or generate hypothesis for ligand design or target fishing in drug 

design.11 Possible applications span biological function prediction in bioinformatics to 

polypharmacology in medicinal chemistry.17,18 Supported by the outlooks and successful case studies, 

many methods have been developed in the last three decades. The bottleneck of protein cavity 

comparison is common to all similarity estimation problems—similarity is a relative quantity which 

depends on the aspects considered. Therefore, generalizing a similarity quantification on different pairs 

of entries, without prior knowledge of the key points to compare is delicate. 

Similarity is not directly measurable experimentally. Instead, derived hypotheses (e.g. function, ligand 

binding) are further evaluated. This presents many challenges for benchmarking methods and highlights 

the importance of carefully designing datasets in retrospective studies. For users as well as developers, 

knowing where we start from and what has been done in the field would enable realistic expectations 

and spot limitations to be addressed by future developments. 

Structure-based algorithms for protein site comparison emerged after the 1970s, a decade marked by the 

establishment of the Protein Data Bank (PDB) and the deposit of a few structures.13,14,19 Initially, efforts 

were made to compare protein 3D structural motifs independently of sequence order and gaps. Computer 

vision approaches20 were applied in structural biology for similar substructure identification even in the 

absence of sequence homology via rigid body alignments.21–27 Protein functions could be predicted from 

a database of known 3D templates, by querying or inferring protein active sites.28–32 Beyond functional 

annotations, cavity alignment and comparison quickly appeared promising for rational design of proteins 
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and ligands, since similar 3D arrangement of surface motifs may be similarly involved in molecular 

recognition.31,33  

The path from the earlier to the current site comparison methods involved several implementations. It 

was common for the user to define researched features (e.g. set of atom/residues distances defining a 

motif: catalytic triads, similar ligands) from prior knowledge to initialize the search.29,30,34,35 Subsequent 

advantages are a better control of the comparison, easier selection of relevant matches, and the reliability 

of the solutions. Progressively, methods enabling automatic identification of pockets36–40 and of relevant 

patterns that are matching opened the doors to the analysis of the relationship between evolutionally and 

structurally remote members of an entire database, without any a priori judgment.41–45 Such predictions 

led to unexpected findings with implications for drug design.18,46 Screening large databases require 

effective computing time. Together with the progress of computing technologies, fast methods were 

introduced but often at the cost of interpretability.47–49 

The repertoire of possible comparison algorithms is tailored to the representation made of the pocket.50 

Pocket representation is a way to provide structured information to the algorithm, for exploration. Once 

delimited in the protein, a pocket can be modeled as list of residues, graphs, or unconnected pseudo 

atoms among other possibilities. Geometry constraints of alpha carbon tuples were extensively used to 

identify equivalenced areas.51–53 Other cavity descriptors further encode the chemical properties of 

atoms or residues, hence reducing redundancy in the possible matches.41,54,55 The intricacy of the 

representation lays in finding a good balance between fuzziness with a risk of false positive matches and 

preciseness with a risk of missing on remote similarities. In any case, similarity can only be properly 

reported with a fair scoring function. The scoring scheme aims at quantifying how two pockets resemble 

or differ. Often, a score threshold is applied in screening campaigns for decision making. How to assign 

the value of that threshold and assess the significance of that similarity is a genuine question raised by 

earlier studies.47,56,57 

In practice, the variability of the pocketome (ensemble of all protein pockets) in terms of size, solvent 

accessibility, flexibility constitute obstacles to the performance of binding site comparison methods, as 

it is for other structure-based approaches.11 It is perceived that comparing subpockets, instead of entire 

cavities might better handle the conformational variations, typically induced by ligand binding.45,58–60 

Noteworthy, the ability to detect local or global similarities is suitable for different purposes.  

As the reader will notice, different parameters entail the success of protein cavity comparison, as 

discussed by previous articles.18,61–64 In this review, we will provide a most recent and broad overview 

of all stages involved in pockets comparison, from the prediction of ligand binding sites, to the 

evaluation and prospective applications in drug design. 
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1.2. Pocket detection and druggability estimation 

Identification of potential interaction sites is crucial to structure-based approaches and constitute the 

very first step of binding site comparison. Proteins can specifically bind to different classes of molecule 

(proteins, peptides, nucleic acids, small molecules, transition metals). Contact surfaces exhibit different 

geometric and physicochemical characteristics according to the nature of the binding partner. For 

examples, small molecule interaction sites are buried clefts while protein-protein interaction interfaces 

are rather flat and hydrophobic.12,65–68 Although available methods for binding site detection covers the 

different applications above, they majorly concern small molecule pocket identification as a testimony 

of efforts to structure-based drug design of small chemical entities in the last decades. Accessibility to 

binding site identification is possible via standalone tools,69 webservers,70 or databases of precomputed 

sites.71  

Methods can be classified at three levels: (i) the genomic or 3D structure nature of the input, (ii) the 

dependency to bound ligands and (iii) the class of the algorithm (Figure 1.1). Template or sequence-

based methods such as ConSeq,72 available from the ConSurf server71,73 identifies functionally important 

residues in protein sequences by searching for evolutionary relations with other proteins.74–77 

3DLigandSite is another approach which can take a protein sequence input, although it relies on 

homology models or de novo structure predictions.78 Structure-based pocket identification uses only the 

3D coordinates of structures as input and benefits from the augmentation of structural data14. 

Ligand-centric methods are restricted to protein-ligand complexes and is rather a site delimitation than 

prediction. Noticeably, the analysis of crystallization additives binding sites might suggest potential 

allosteric pockets.79 Typically, a site is defined as all residues within a certain distance cutoff to the 

partner's heavy atoms, ca. 6 Å for protein-small molecule complexes. Alternatively, the set of residues 

can be restricted to those properly oriented and toward the ligand, with the particularity that the distance 

cutoff varies according to the interaction type. These approaches are available through integrated 

environments enabling to manipulate protein structure coordinates and interactions such as Molecular 

Operating Environment (Chemical Computing Group, Montreal, Canada), IChem80, independent tools 

for parsing protein 3D structure data. 
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Figure 1.1. Classification of binding site detection methods. 

 

Ligand-free approaches can operate on a larger range of structures, enabling the discovery of 

unprecedented sites. According to their search algorithm, they can be classified as geometric, energetic, 

or data-driven (Table 1.1). At first glance, all geometric methods aim at identifying sufficiently buried 

zones unoccupied by protein atoms, but differ in strategies to search for these areas. Grid-based methods 

place the protein into a cartesian grid and identify grid cells likely to be in a cleft by analyzing their 

neighborhood.36,37,81–94 POCKET37 and LIGSITE89, two of the earliest methods, keep cells that 

correspond to a ‘protein-solvent-protein’ event by scanning respectively in three and seven directions. 

Such algorithms are sensitive to grid resolution and orientation but are powerful to detect cavities of 

different sizes and curvatures.  
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Table 1.1. Common structure-based methods to predict ligand binding pocket in proteins. 

Category Search approach Methods  

Geometric 

Grid 

CAVIAR,85 PROcket,84 KVFinder,83 VolSite82, 

DoGSite,81 McVol,94 ghecom,93 VICE,92 

PocketDepth,91 PocketPicker,90 LIGSITEcsc89, 

CAVER,88 LIGSITE,36 VOIDOO,87 POCKET37 

Alpha-shape Fpocket,40  CASTp,95,96 CAST,10 APROPOS,97  

Spherical probes 

DEPTH,98 Roll,99 HOLLOW,100 PHECOM,101 Xie 

and Bourne,102 SURFNET-ConSurf,103 PASS,104 

HOLE,105 SURFNET69 

Other MSPocket,106 SplitPocket107 

Energetic 

Grid 

FTSite,108 SiteMap,109 SITEHOUND,110 

AutoLigand,111 Q-SiteFinder,112 PocketFinder,113 

DrugSite,114 pocket-finder (Surflex protomol),115 

GRID116 

Spherical probes dPredGB,117 Morita et al.118 

Other Gaussian Network Model119 

Data-driven 

Classical machine 

learning 

GRaSP,120 P2Rank,39 MCSVMBs,121 PRANK,122 

SCREEN123 

Deep learning 

PoinSite,124 DeepPocket,125 PUResNet,126 

DeepSurf,127 BiteNet,128 Jiang et al.,129 DeepSite, 

ISMBLab-LIG130 

 

Contrarily, other methods process the protein coordinates directly and are not affected by the grid 

initialization phenomena. Based on the alpha-shape concept introduced by Edelsbrunner et al.,131 they 

circumvent protein cavities by connecting adequate adjacent Delaunay triangles via the ‘discrete flow’ 

method,10,95–97,107 or by clustering alpha spheres to satisfy pocket descriptors (e.g. Fpocket).40 Alternative 

purely geometric approaches fill or coat the protein with spherical probes to delimit cavity void.69,98–105 

Finally, other concepts such as monitoring the direction of surface normal vectors were implemented.106  
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The second category of ligand-free methods estimate favorable surfaces for protein-ligand contacts by 

calculating the potential energy of probes at different positions. Generally, the Lennard-jones 

potentials132,133 are used with hydrophobic probes. The nature and number of probes vary from a simple 

carbon probe in DrugSite114 to 16 different in FTSite108. Potentials are either mapped to grid positions108–

116 or to probe coating the protein surface.117,118 GRID, a very popular grid-based approach, has 

implemented an empirical force field to estimate van der Waals, electrostatic and hydrogen-bonding 

energies for 6 different probes with predefined parameters.116 Obviously, the outputs of energy based 

methods are influenced by the force field, in addition to the initialization for grid-based ones. 

The final class of methods use supervised models, trained on the features of well characterized ligand 

binding sites. Hence, they differ in the features representation, training models, set of parameters and 

datasets. P2RANK is one of the examples based on classical machine learning models. The protein 

solvent-exposed atoms are processed into a topological and physicochemical feature vector which serve 

as input to a Random Forest classifier.39 Recently, many deep learning methods, majorly based on 3D-

convolutional neural networks were introduced. PointSite is an example of point clouds segmentation 

using sparse convolution.124 While these methods need to be challenged by prospective usages, recent 

advances on 3D point cloud deep learning134 offers some long perspectives for this type of problem. 

All in all, these methods have been evaluated on their performance to accurately predict binding pockets 

by comparing predictions on unbound proteins to true ligand locations in their corresponding bound 

structures. Not only the accuracy of the location, but also the delimitation or overlap with respect to the 

ligand are analyzed.81 Indeed, all identified clefts do not forcibly correspond to the ability to 

accommodate a drug-like ligand (druggability). Detected pockets might be too large, or too small where 

a clustering is required. Thus, it might be convenient to post-process the results of other approaches.135 

Cleverly, meta-methods (e.g., MetaPocket) thrive to find consensus from different algorithms to 

increase the chances of correct predictions.136,137 However, consensus might not always yield the right 

solution. 

The concept of structural druggability138–141 arose from observing the characteristics of pockets bound 

to pharmacological ligands: average volume between 200 to 800Å3, a good balance of hydrophobic and 

polar atoms enabling some binding specificity, sufficient buriedness. A few methods were developed to 

predict target druggability.38,82,142–146 Consistently, topological and physicochemical characteristics of 

the pockets sites are encoded into descriptors and trained on curated datasets to generate classification 

models (Support Vector Machines, linear regression).38,82,144,145 Since pocket druggability does not 

guarantee that the  bound ligand will also be druggable, the term may be replaced by ligandability147 or 

bindability.114 For more information, we refer the reader to a recent review.141 Interestingly, some of the 

methods previously described have implemented a rule-based druggability prediction enabling to hit 

two targets with one bullet.38,82,109 VolSite, the tool developed in my host laboratory, is one of them. 
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Zoom on VolSite 

In VolSite,82 (Figure 1.2) grid points are sampled by projecting 120 rays of equally-spaced solid angle 

and 8 Å length. Positions that yield at least 80 rays overlapping with cells close to or occupied by a 

protein atom are further considered. Points having a protein atom within 4 Å are labeled with a 

pharmacophoric feature complementary to the physicochemical property of the closest protein atom (h-

bond acceptor, h-bond donor, h-bond acceptor/donor, negative ionizable, positive ionizable, 

hydrophobic and aromatic), otherwise a dummy property. Isolated points, i.e., having less than three 

adjacent grid points are discarded. Later, VolSite was adapted so that at least three hydrophobic protein 

atoms are required in the neighborhood to assign that property to a grid point.80 While hydrophobic and 

aromatic features happen to cluster in patches, in reality, the rarest features (e.g. negative ionizable) are 

diluted among other features. 

 

Figure 1.2. VolSite pocket detection. A) Grid initialization. B) Grid points can have one of the eight 

possible pharmacophoric points: h-bond acceptor HBA, h-bond donor HBD, h-bond acceptor and donor 

OG, negative ionizable A-, positive ionizable D+, hydrophobic H, aromatic Ar, dummy DU. C) Example 

of pockets detected in a kinase protein (PDB: 5HBH) by VolSite (molecular surface is depicted with 

PyMol 2.1, red points: HBA, A-, blue: HBD, D+, white: H, Ar, DU). A) and B) are adapted from 

Desaphy et al.82 
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VolSite has the particularity to output a cloud of points, occupying the volume of the cavity and not just 

the surface, therefore mimicking an ideal ligand (negative image of the cavity). It is therefore applicable 

to many structure-based scenarios ranging from ligand-binding site comparisons82 (Chapter 2), 

secondary target identification67 (Chapter 3), structure-based pharmacophore perception148 (Chapter 5) 

and fragment-based library-design (Chapter 4). 

 

In conclusion, we have seen in this section that methods to predict ligand pockets are diverse in the way 

they search and the features they consider. Predictions are subjected to uncertainties about the true 

delimitation of a ligand area and druggability, with implications for subsequent applications. In practice, 

some tools are specialized for predicting interaction sites with particular molecule classes: protein-

protein interfaces,67,149 nucleic acids,150,151 peptides,152 pores/channels,153,154 phosphates.155 In all cases, 

the output serves to delineate cavity-lining residues, and a few are directly processed by site comparison 

tools (e.g. DoGSite, LIGSITE, VolSite). 

 

 

1.3. Steps for comparing cavities in proteins  

Methods comparing protein cavities operate in three steps: the representation of the cavity 

characteristics, the comparison of these representations and finally a scoring or classification.50,61,62 

Hence, successful results reside in a coordinated performance of each of these tasks. Yet, cavity 

representation, which is the first step of the procedure is crucial as it influences the later steps. 

Principally, a poor representation where relevant characteristics are missing cannot be compensated by 

the most efficient algorithm. State-of-the art methods to compare protein cavities are summarized in 

Table 1.2. In the following sections, we will discuss these different algorithms to achieve this end. 
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Table 1.2. Methods to compare protein cavities. 

Year Name Detectiona  Principle Scoring Evaluation datasets 

2002 CavBase41 LIGSITE Clique detection in graphs of pseudoatoms 
Overlap of surface grid points, 

RMSD 

Cofactor sites, kinases, 

serine proteases 

2002 eF-site156 
Ligand 

Databases 

Clique detection in graph of surface normal 

vectors and electrostatic potentials 

Normalized and weighed 

contributions of vectors 

angles, potentials, distances 

Phosphate sites, antibodies, 

PROSITE classes 

2003 SuMo157 Ligand 
Incremental match of triplets of 

pseudocenters 

Count of matches, RMSD, 

composite of euclidian and 

density distances  

Protease catalytic sites, 

lectine sites 

2004 SiteEngine42 Ligand Match of triplets of points by hashing 

Hierarchical scoring: count of 

matches, RMSD, overlap of 

patches, local shape 

Cofactors, steroids, fatty 

acid sites, catalytic triad in 

proteases 

2004 
Brakoulias et al. 

(SiteBase)158 
Ligand Match of triplets of points Count of matches, RMSD Cofactors, phosphate sites 

2007 Ramensky et al.59 Ligand Clique detection in graph of atoms Dice similarity of matches Diverse 

2008 Binkowski et al.159 
CAST 

Ligand 

Comparison of pairwise distance 

histograms 

Kolmogorov-Smirnov 

divergence, overlap of volume, 

RMSD 

Cofactor sites, HIV 

proteases 

a The site detection approaches used in the reference studies were reported. However, ligand-free methods might be employed depending on the input for the 

site comparison method. 
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Table 1.2. Methods to compare protein cavities (continued). 

Year Name Detectiona  Principle Scoring Datasets 

2008 PocketMatch43 Ligand Comparison of sorted pairwise distances  Normalized count of matches Diverse, SCOP160 classes 

2008 SiteAlign44 Ligand Alignment of polyhedron fingerprints 
Normalized distances of 

fingerprints 

Functional groups, 

proteases, estrogen 

receptors, GPCRs 

2008 SOIPPA161 Ligand Clique detection in graphs of atoms 
Composite weighted by 

frequencies, PSSM, distances 

Cofactor sites, SCOP 

classes 

2009 SMAP56 Ligand Clique detection in graphs of atoms 

Gaussian densities from 

distances, angles of normal 

vectors, BLOSSUM weights 

Cofactor sites 

2010 BSSF48 
PASS 

Ligand 

Comparison of fingerprints of binned 

distances and properties 

Canberra distances of 

fingerprints 

Diverse, synthetic data, 

SCOP classes 

2010 Feldman et al.53 Ligand Match of subsets of Cα atoms 
Potential based on distances 

between matches 
Diverses, kinases 

2010 FuzCav47 Ligand Fingerprints of triplets of atom features 
Maximal proportion of 

matches 

Diverse, functional groups, 

8 difficult cases 

2010 Milletti et al.162 Ligand 

Comparison of 3 concentric spheres 

fingerprints encoding neighborhood for 

each point, solving linear assignment 

Composite of fingerprint 

distances and RMSD 
ATP sites, kinases 

2010 
P.A.R.I.S163 

(sup-CK) 
Ligand 

Initial alignment optimized by gradient 

ascent to maximize a Gaussian kernel 
Gaussian kernel Cofactor sites 
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Table 1.2. Methods to compare protein cavities (continued). 

Year Name Detectiona Principle Scoring Datasets 

2010 ProBiS54 Ligand 
Maximum clique detection in graphs of 

surface atoms  

Count of Matches, RMSD, 

angle between vectors 

Cofactor/metal sites, 

protein-protein interfaces, 

protein-DNA complexes 

2011 PocketAlign164 Ligand 
Initial pairs from sorted lists of atom 

distances, then extend 
Count of matches, RMSD 

Cofactor sites, SCOP 

classes 

2011 PocketFEATU-RE165 Ligand 

Comparison of 7 concentric spheres 

fingerprints encoding neighborhood for 

each microenvironment 

Normalized Tanimoto 

similarity of fingerprints 
 Kinases 

2012 KRIPO45 Ligand Fingerprints of triplets of pharmacophore 
Modified Tanimoto of 

fingerprints 

Diverse, search of 

bioisosteric substructures 

2012 Patch-Surfer166 
LIGSITE 

Ligand 

Comparison of 3D Zernike of surface 

patches solving a weighted bipartite 

matching 

Composite of surface match 

distances and size differences 
Cofactor sites 

2012 Shaper82 VolSite 
Comparison of cloud of points by Gaussian 

shapes matching 
Tanimoto, Tversky of matches Diverse, GPCRs, proteases 

2012 TIPSA167 Ligand 
Match of quadruplets of points, iterative 

refinement by Hungarian algorithm 

Tanimoto of matches, overlap 

of volume, normalized RMSD 
Cofactor sites 

 

 

 



Chapter 1. On the quest for estimating the similarity between protein pockets 

 

44 
 

Table 1.2. Methods to compare protein cavities (continued). 

Year Name Detectiona Principle Scoring Datasets 

2013 Apoc51 

CAVITA-

TOR,51  

LIGSITE 

Ligand 

Seed alignment by comparing secondary 

structures, optimized by solving linear 

assignment problem 

Composite of vector 

orientation, distance, 

properties 

Diverse, similar ligand 

recognition sites  

2013 TrixP168 DoGSite 
Search for common shape and triplets of 

points by bitmap indexing 

Composite of matches count, 

angle between vectors, 

mismatches penalty 

Diverse, 8 difficult cases, 

protease, estrogen receptor, 

HIV reverse transcriptase 

2014 eMatchSite52 eFindSite169 
Template-based alignment optimized by 

Hungarian algorithm 

Machine learning score: 

RMSD, residue, properties 
Cofactors, steroid sites 

2014 RAPMAD49 LIGSITE 
Comparison of 14 pairwise distance 

histograms, one for each property 

Jensen-Shannon divergence of 

histograms 

Cofactor sites, proteases, 

diverse 

2015 IsoMIF170 GetCleft170 
Clique detection in graphs of interaction 

grid points 

Tanimoto of descriptors of 

matched points 
 Cofactors, steroid sites 

2016 G-LoSA60 Ligand Clique detection in graphs of atoms 
Feature-weighted count of 

matches 

Diverse, Ca+ sites, similar 

ligands recognition sites, 

protein-protein interfaces 

2016 SiteHopper171,172 Ligand 
Comparison of surface atoms by Gaussian 

shapes matching 

Weighted combination of 

Shape and color Tanimoto 

Diverse using binding 

affinities 
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Table 1.2. Methods to compare protein cavities (continued). 

Year Name Detectiona Principle Scoring Datasets 

2019 DeepDrug3D173 Ligand Convolutional neural network model Binary classification 
Cofactors, steroids sites, 

proteases 

2020 DeeplyTough55 
Fpocket 

Ligand 
Convolutional neural network model Binary classification 

Cofactor sites, Diverse and 

using binding affinities 

2021 PocketShape174 Ligand 
Initial alignment optimized by Hungarian 

algorithm 

Composite of matches, 

orientation of residues 

Diverse SCOP classes, 

kinases 

2021 Site2Vec175 Ligand 
Machine learning (random forest)  on 

autoencoder-generated descriptor  
Binary classification 

Cofactors, steroid sites, 

diverse 
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1.3.1. Pocket representation 

Once pockets are delimited, features are selected by considering different aspects. This step aims at 

focusing on the relevant characteristics that explain ligand recognition, while decreasing the so 

considered “unnecessary” information. Our brains will perform the same exercise on everyday life's 

objects, for example if we are asked to compare two cars: we might decompose the information into 

major aspects such as the brand, design, color, motor, etc. Interestingly, different people will focus on 

different combinations of these aspects resulting in different decision-making. For pocket modeling, 

there is the general knowledge that the attributes (size, physicochemical properties, flexibility) of 

residues flanking the site and their relative 3D location explain the specific recognition of 

ligands.31,33,50,176 Therefore, site comparison methods approximate these residues into various 

representations which differ at three levels: (i) the discretization of the residues, (ii) the viewpoint and 

(iii) the chemical features. 

Firstly, possible representations (Table 1.3), from coarse-grained to more detailed, are an atom 

(typically the Cα or Cβ) describing an entire residue (e.g., Apoc), a group of pseudocenters or vectors 

associated to residue fragments (e.g., CavBase), 3D voxels or surface grid points (e.g., DeepDrug3D) 

and all atoms cloud (e.g., Ramensky et al.). The resolution of the representation determines how local 

the subsequent comparison can be. For example, rigid matching of atoms which are 7 Å apart in a query 

pocket can only be associated to similarly spaced atoms in the reference pocket, therefore excluding a 

pertinent association of smaller areas. Resolution also influences sensitivity to chemical and coordinates 

variations (Figure 1.3). Coarse-grained representations are less sensitive to variations in atomic 

coordinates but are more perceptive of changes in chemical properties such as single residue mutations. 

They offer a better signal to noise ratio at the cost of information. In grid/polyhedron-based approaches, 

the grid resolution (often 0.5 to 1.5 Å)/number of triangles are adjusted to capture the shape of the site 

while compromising between precision and computing.82,170 Although small changes of residues are 

reflected in detailed representations, they can be perceived to a lesser extent since drowned in many 

other information. Detection of such details are highly influenced by the assignment of chemical features 

and the performance of the search algorithm. Noticeably, some methods have adopted a mix 

representation scheme, where gross representations are used for a faster search and whereas finer 

representations are involved in the scoring.41  
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Table 1.3. Discretization of the residues to represent a protein cavity 

Representation  Illustrationa Methods 

Single points 

(e.g. alpha carbon) 

 

 

 

APoc, eMatchSite, 

Feldman et al. (PSILO®), 

FuzCav, G-LoSA, 

PocketAlignb, SiteAlignb, 

SMAP, SOIPPA  

Pseudocenters 

 

 

 

BSSF, CavBaseb, KRIPO, 

PocketAlignb, 

PocketMatch, RAPMAD, 

Site2Vec, SiteEngine, 

SuMo, TrixPb 

Surface points, surface 

patches, volume points, 

polyhedron 

 

 

 

CavBaseb, DeepDrug3D, 

DeeplyTough, IsoMiF, 

Patch-Surfer, Shaper, 

SiteAlignb, TrixPb, 

VolSite 

 

All atoms 

(non-hydrogen) 

 

 

 

Binkowski et al., 

Brakoulias et al., Milletti 

et al., P.A.R.I.S, ProBiS, 

SiteHopper, TISPA  

a The protein cavity is delimited by a few residues (hydrogen atom are not shown). Representative points 

at different resolutions are depicted as colored spheres. b Some methods use mixed representations; in 

PocketAlign, several schemes are proposed. 
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Figure 1.3. Sensitivity of coarse-grained or ‘all atoms’ cavity representations to variations in atomic 

coordinates, chemical features and subsequent applications (+: low, +++: high). 

Secondly, most methods adopt the protein perspective by considering atoms or pseudocenters at the 

protein surface (e.g. FuzCav, SMAP). A few stand out by projecting these protein patterns into the ligand 

space, where polyhedron, voxels or points are annotated with the properties of nearest or well-oriented 

protein features (e.g., IsoMIF, SiteAlign) (Figure 1.4). Such discretization aims at offering a good 

balance between information completeness while handling variations in atomic coordinates and features. 

However, it is important to recall that grid-based representations are affected by the centroid location 

and axes orientation during the grid initialization. As a result, the distribution of feature types might 

change between different 3D models of the same protein (a pharmacophoric feature might move in 

adjacent voxels or not represented at all), particularly when a voxel is associated to only one feature at 

a time. 

 

Figure 1.4. Protein cavity representation according to the protein or the ligand perspective. 

Representation of the protein side occupy larger surface to compare. 
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Finally, besides the two aspects described above, methods differ in their definition of chemical and 

geometric features. For example, Binkowski et al. do not consider the chemical type of atoms but 

showed that the relative position of the surface atoms describing the shape of the pocket already contain 

some discriminative information.159,177  However, shape only information is insufficient, hence  it is not 

surprising that almost all the state-of-the-art site comparison methods annotate surface coordinates 

atoms with pharmacophoric features to improve discrimination between redundant areas. In coarse-

grained representations, Cα/Cβ atoms are annotated according to the chemical groups of their residues. 

For instance, APoc defined eight exclusive chemical groups, allowing a residue to belong to only one.51 

Searching for identity of chemical features between the query and reference pockets with such 

representations do not account for the interchanging role that fragments in different amino acids can 

perform: the hydroxyl group of serine and tyrosine are h-bond donor or acceptor whereas tyrosine 

additionally displays an aromatic feature as a phenylalanine; yet serine and tyrosine belong to different 

classes. To correct this effect, residues are assigned multiple classes (e.g. Feldman et al., SiteAlign).44,53 

Alternatively, single or group of atoms defining pseudocenters are annotated according to their 

interaction capacities (e.g. a histidine side chain is represented by h-bond donor-acceptor and aromatic 

pseudocenters in CavBase). Commonly, five to eight pharmacophoric features are defined (KRIPO, 

SiteEngine, VolSite),41,45,82 up to more than 40 atom types (Ramensky et al., PocketFEATURE).59,165 

Other possible chemical attributes are partial charges used in P.A.R.I.S (sup-CK) or SiteEngine 

scoring,42,163 atomic density in SuMo157 or atom types in Brakoulias et al.158 Definition of many feature 

types might improve the description of the site with precision but might at the same time hinder remote 

similarity detection by narrowing the applicability domain of the method. Aside chemical features, 

geometrical patterns are sometimes considered: CavBase and RAPMAD indicate the directionality of 

polar features by vectors,41,49 SuMo considers the directionality of the patterns toward the cavity by 

scalar triple product,157 SOIPPA assign normal vectors to local surfaces,161 TrixP and SiteAlign consider 

distances to fixed points.44,168 

In a nutshell, there are various ways to represent a protein cavity. Challenges reside in finding a good 

balance between comprehensive representation of features to ensure reliability and loose representation 

enabling to detect remote similarities. While the absence of pocket attributes cannot be recovered at the 

later comparison step, too many attributes may constitute difficulties to the search algorithm in 

separating the signal from the noise. 

 

  



Chapter 1. On the quest for estimating the similarity between protein pockets 

 

50 
 

1.3.2. Search algorithms 

Following the selection of features characterizing the cavities, similarity is estimated by algorithms that 

search for common patterns shared between two sites. First, representations of the protein cavities are 

converted or organized into comparable and computer-friendly objects that can be processed 

automatically. There are a variety of search algorithms to this end, which can be categorized according 

to their inputs, procedure, and visual interpretability (Figure 1.5). 

 

 

Figure 1.5. Classification of state-of-the-art methods for protein pockets comparison. Alignment-based 

methods (colored background) compute a transformation (rotation, translation) to superpose the query 

to the target site whereas alignment-free methods (white background) do not provide visual 

superposition. 

 

The first category of algorithms searches for geometric (e.g. pairwise distances, angles, shape) and 

chemical (identical or compatible types) constraints to match. It is not sound to be expecting a perfect 

match, given the errors in 3D structure resolution, the flexibility nature of proteins, the aim to find 

unobvious similarities. Therefore, a certain margin of geometric errors is always tolerated. PocketMatch 

compares set of distances belonging to 90 combinations of atom types and properties to establish 

correspondences between two pockets and keep the solution maximizing the number of 

correspondences.43 Global alignment methods (P.A.R.I.S, SiteHopper, Shaper) try to maximize the 

overlap between two cavities. A seed alignment is initialized, for example by superposing centroids or 



Chapter 1. On the quest for estimating the similarity between protein pockets 

 

51 
 

principal axes of the two sites, then optimized.82,163,171  SiteHopper and Shaper rely on the OpenEye tool 

ROCS (OpenEye Scientific Software, Santa Fe, USA), where atoms/points are represented by smooth 

Gaussians to enable fuzzy shape comparison.82,171 A different approach for global optimization is to 

establish seed correspondences—APoc compares local protein fragments, secondary structures, Milletti 

et al. associate points based on their circular fingerprints’ similarity, eMatchSite relates Cα according to 

seven residue-level scores, Patch-Surfer compares the patch surface properties by 3D functions—then 

solves assignment problems by the Hungarian or other combinatorial optimization algorithms.51,52,162,166 

PocketAlign is based on a similar approach using BLOSSUM62 weights when generating local seed 

alignments, that are later extended to the full structures.164 

Alternatively, some methods partition the pocket by considering a few points each time.  Given that at 

least three points are necessary to superpose two objects without ambiguity, those methods enumerate 

triplets (Brakoulias et al., Feldman et al., SiteEngine, SuMo, TrixP) or quadruplets (TIPSA) of feature 

points in the query to iteratively search for equivalent cliques in the target.42,53,157,158,167,168 The formation 

of the n-tuples can be customized to avoid promiscuous sets. In TrixP, triangles solely made of 

hydrophobic features are not considered. A match can signify a simple correspondence of identical 

chemical types and pairwise distances (SiteEngine, TIPSA) or of additional properties such as vector 

angles, local shape (TrixP). Aligning all possible combinations is costly in time, hence SiteEngine and 

TrixP respectively employ hashing and bitmap indexing allowing a ‘search IN’ for faster identification 

of similar patterns. 

In the second category, selected points form the nodes of a graph. According to the cavity representation, 

each node is annotated by a property and the edges by their lengths. Comparing two cavities results in 

comparing two graphs to extract the (maximum) common subgraphs. To achieve this end, a product 

graph is built, by associating similar nodes (property comparison) and edges of almost equal distances, 

tolerating a certain deviation. Cliques are identified in this association graph to derive pairs of equivalent 

points that can be used to superpose the two cavities. CavBase, G-LoSA, ProBiS, etc. (Figure 1.5) are 

based on this principle. Differences between methods arise from the graph construction (minimal and 

maximal distances to consider adjacent nodes), distance tolerances, and the definition of a property 

match (identity or compatibility). For example, G-LoSA tolerates three different distance deviations 

(1.5, 2.0 and 2.5 Å) and further evaluates the alignment of local triangles within each clique of more 

than four nodes.60 Clique detection is computationally expensive, particularly with dense graphs (e.g. 

0.5 Å grid spacing in IsoMIF).170 Therefore, it requires practically efficient solutions such as the Bron–

Kerbosch algorithm and improved variants.178,179 

Methods in the third category generally adopt a global vision of the protein sites. They consider a pocket 

as a fixed-length fingerprint or histograms, where comparing two pockets is calculating the similarity 

or distances between their fingerprints/histograms. BSSF, FuzCav and KRIPO respectively compute 
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couple or triplets of pharmacophoric features separated by binned distances. While the two former count 

the number of occurrences of each combination, bits are activated in KRIPO when a combination occurs. 

Later, KRIPO fuzzifies its fingerprints to account for the neighborhood phenomena.45 SiteAlign also 

compare fingerprints, but contrarily to the other methods, the fingerprint of the query pocket is 

iteratively generated, as it derives from properties of the cavity projected on a rotated/translated 80-face 

polyhedron.44 Since the site is discretized and a finite number of geometric transformations are sampled, 

the performance of the search depends on the resolution of the steps, at the cost of the computing time. 

Finally, Binkowski et al. and RAPMAD compare distributions of pairwise distances between the pocket 

features.49,159 RAPMAD generates 14 histograms, one for each of the seven pharmacophoric features, 

considering two centroids. The idea behind these implementations is that similar binding sites will 

exhibit similar set of distances. However, these methods may suffer from matching redundant distances 

that do not superpose geometrically. The advantage of fingerprints/histograms is to enable faster 

comparison, without the computationally expensive alignment. Still, KRIPO and Binkowski et al. 

generate an alignment independently of the comparison procedure for visual inspections, SiteAlign as 

part of its search procedure.  

Finally, the recent regain of interest for deep neural networks on chemical information favors the 

emergence of data-driven methods for binding site comparison. Typically, binary classification models 

are created  to discriminate between similar and dissimilar pairs of pockets. Site2Vec transform the 

features representing a cavity into a fixed-length vector that can feed a random forest classifier. 

DeepDrug3D and DeeplyTough discretize the 3D space of the pocket as voxels, and logically train a 

convolutional neural network (CNN) model.55,173 Besides the dependency to sufficiently diverse training 

datasets for a generalized model, these approaches suffer from interpretability of the predictions. 

Interestingly, DeepDrug3D exploits the activation map to visually highlight areas that largely contribute 

to the classification. 

The above-summarized methods use only the protein information for comparison. Provided the pocket 

is delimited, they have a larger scope that reaches deorphanization of targets. When bound ligands are 

available, comparing the protein-ligand interactions can be an efficient alternative, particularly when 

the goal is to reproduce existing binding modes. Likewise, dedicated methods are based on graph 

alignment (e.g.Grim) or fingerprints comparison (e.g. TIFP).180 

 

1.3.3. Local comparison of protein cavities 

Looking for an average match that maximizes the overlap between entire cavities is not forcibly the 

right solution to similarity estimation. Local comparison is a popular term, often used to differentiate 

full protein structural comparison from protein site comparison. Here, we refer to truly local comparison 
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of protein pockets (Figure 1.6), i.e. subpockets of approximately 3-to-4 Å radius (for reference, 

approximately the shortest distance between a chain of four atoms connected by simple bonds). Enabling 

local similarity detection is relevant for drug design applications since a few similar subpockets between 

two targets may suffice for a same ligand to bind. This observation was applied to explain the binding 

of cyclooxygenase type 2 inhibitors to carbonic anhydrase.46  

Logically, methods that can operate locally have implemented detailed site representation and/or 

adequate algorithms that partition the cavity during the search. In the G-LoSA example, global matches 

are decomposed into local subsites to generate other solutions. Local comparison can also be achieved 

by providing subpockets as input to the search algorithm. KRIPO enables to compare subpockets 

delimited by fragmented ligands.45 While the search algorithms are a major factor in detecting subtle 

common motifs, how pocket similarities are quantified is equally important, since generalizing the score 

over the full pockets might hinder any local similarity as well. 

 

Figure 1.6. Global versus local pattern comparison. 

Local comparison is notably suitable to handle cases of conformational change upon ligand binding.58 

By analogy to ligand versus fragment promiscuity, comparing smaller cavity regions is likely to be more 

redundant at the proteome scale than comparing full cavities, enabling to catch similarities between 

remote proteins but at the same time yielding possible unspecific matches. Finally, successful 

discrimination requires a robust scoring scheme. 
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1.3.4. Scoring functions 

Scoring functions serve two purposes. They quantify the final output generated by the search algorithm. 

In many cases (e.g., alignment-based), they are also used to guide the search and prioritize one among 

several possible solutions. It is not uncommon to use distinct scoring functions for the search and final 

quantification.42 Consequently, a method may implement an accurate representation and efficient search 

algorithm but fail to accurately predict similarity levels if the scoring functions are incorrect. Some 

analogy can be made with the problem of pose sampling and ranking in docking, leading to rescoring 

efforts.181 Aspects to consider when defining a scoring function for site comparison are (i) the 

discriminative potential, (ii) the minimal and maximal boundaries, (iii) the broadness,  (iv) the sensitivity 

to the size of the cavities, (v) the interpretability. The very simple and intuitive scoring scheme counts 

the number of common patterns between two pockets (Brakoulias et al.).158 However, bigger sites would 

tend to score higher  as the chances for a match increase. To avoid this bias, methods account for the 

size of the pockets using metrics such as the proportion of aligned features with respect to the 

query/target size (FuzCav, PocketMatch), Tanimoto indices (IsoMIF, KRIPO, TIPSA, Shaper) and 

Tversky indices (Shaper). SiteHopper adopts a linear combination of Tanimoto measures for shape and 

chemical features matching. Almost all alignment-based geometric matching methods aim at 

minimizing the root mean square deviation (RMSD) of superposition candidates or with respect to a 

cutoff (Brakoulias et al., SuMo, etc.). In some cases, the RMSD is also a composite of the final score 

(Milletti et al., PocketAlign). In the same way, CavBase R2 score accounts for the RMSD of 

peudocenters when scoring the overlap of the surface grid points. Implementing successive scores 

(Binkowski et al., ProBiS) enables the user to apply a custom filter according to the desired application. 

For instance, SiteEngine proposes a hierarchical workflow where a gross evaluation allows to quickly 

filter out bad solutions before applying a finer rescoring on promising matches. Instead of reporting 

similarities, some methods rather measure the distances between pockets (SiteAlign)—the lower, the 

better. BSSF and RAPMAD, which  compare histograms, respectively report the Kolmogorov-Smirnov 

and the Jensen-Shannon divergences. Scoring functions can be more complex, often at the cost of 

interpretability (Feldman et al., eMatchSite, P.A.R.I.S). 

Weights are used to give more or less importance to different variables (types of features, geometric 

patterns) but their assignment are at best subjective,60,166,168  intuitive such as inverse of feature 

frequency, or adapted from sequence alignment methods (BLOSSUM, PSSM).161,164,182,183 Proportioning 

penalties of mismatches with respect to the positive contributions of the matches as in TrixP is tricky 

and might better or worsen the discrimination performance in noisy representations. Fingerprint 

comparison is delicate, when bins are counts or integer descriptors with variable ranges, or when 

comparing two pockets of different sizes. Descriptors are normalized,44 or the scores are corrected to 

account for the increase of activated bits with respect to the size of the cavity.45 Finally, the 
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commutativity of the score should be regarded, to ensure a consistent output whatever the 

reference/query order. 

A few studies44,47,51,54,56,82,161 have assessed the significance (Z-score, P-values) of their scoring by 

analyzing random distributions or robustness to variations in the cavities (simulated data, molecular 

dynamic simulations). While these studies offer a certain overview on possible scoring thresholds in 

screening settings, we draw attention to their biases to used datasets. 

 

 

1.4. Retrospective evaluations and datasets 

To demonstrate their applicability, methods for comparing protein pockets have been evaluated for their 

ability to (i) discriminate between similar and dissimilar binding sites (classification), (ii) retrieve similar 

pairs seeded in decoys (enrichment), or (iii) cluster proteins belonging to the same families according 

to other classifications (e.g. SCOP, functional annotations).160,184,185 The availability of structural data 

impacts the design of evaluation datasets. 

As for any benchmarking study, the quality of the dataset is instrumental to the reliability of the 

conclusions. Popular computational approaches such as molecular docking benefit from well-

established standards and datasets.186,187 Predicting the binding affinity of molecules to a target can be 

directly verified by experimental measures in many circumstances. Contrarily, pocket similarity cannot 

be measured experimentally. Instead, similarity prediction suggests hypotheses such as the recognition 

of similar ligands or the catalysis of the same reaction, which are then confronted to in vitro experiments. 

What is conveyed here is that there is not a straight line between predictions and verifications since 

ligand recognition involves other parameters likely not evaluated by site comparison methods, such as 

the pocket flexibility, the influence of disregarded parts of the protein (residues outside the cavity), the 

ligand conformations and energetics. Indeed, the ligand may bind to different proteins in different 

conformations and using different interaction patterns.58  

Nevertheless, many available datasets are used with the assumption that similar pockets are those 

binding to identical or similar ligands, and vice versa (APoc set, Kahraman et al., TOUGH-M1, 

TOUCH-C1, Barelier et al., Table 1.4).51,173,177,188,189 

These include proteins belonging to the same family for the easiest ones, and unrelated proteins for the 

most difficult datasets. In these cases, unrelated proteins are predicted by other computational 

approaches (sequence alignment, global structural comparison). Besides the discussions above, one 

issue encountered with these definitions is how to set the similarity cutoff to group proteins and ligands. 

Chen et al. (Vertex) dataset defines similar pairs as pockets in PDB proteins sharing at least three 
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submicromolar ligands according to ChEMBL while dissimilar pairs share at least three ligands with 

large affinity variations going from one target to the other.171 Although giving a different perspective, 

this dataset is imbalanced as the similar pairs (n = 6598) largely outnumbered the dissimilar pairs (n = 

379). Still, the main concern is the ChEMBL ligands used for annotation not necessarily be targeting 

the PDB binding sites that are finally compared. Generally, datasets relying on ligand binding 

information suffer from data incompleteness.190,191 Dissimilar pairs are based on limited 

available/accessible binding information, because all ligands have not been tested against all targets. 

Otherwise, some pairs labeled  as ‘dissimilar’ might have fallen into the ‘similar’ classes. 

Given the bias in the PDB data towards some protein-cofactors complexes and well-studied protein 

families, methods have been extensively evaluated on nucleotide-binding pockets. Similarly, intrafamily 

retrieval of proteases, kinases or steroid-binding sites were widely studied.41,162,192 Alternatively, other 

datasets proposed pairs of similar and dissimilar sites based on their functional annotations (UniProt, 

Enzyme Classification number)185 and fold (SCOP,160 CATH184) starting from the non-redundant sc-

PDB database to reduce these biases.44,47,193  

The ProSPECCTs benchmarking work intended to propose guidelines for methods evaluation while 

revealing common issues.63 Many datasets are too easy or do not correspond to realistic challenges. 

Compilation of difficult cases, drawn from experimental observations are provided but such examples 

are rare.43,47,168 Finally, the most effective evaluations are prospective applications in research. 

 

Table 1.4. Common datasets used in benchmarking studies for pocket comparison. 

Purpose Name Content # Positive 

(# Negatives) 

Pairs of cavities from dissimilar 

proteins binding identical or similar 

ligands (positives) and dissimilar 

ligands (negatives) 

 

Vertex: positives are pairs of sites in 

proteins sharing 3 high affinity 

ligands (potency < 100 nM) vs. pairs 

of sites in proteins sharing 3 ligands 

with divergent affinities  

APoc set51 
Various 38 066 

(38 066) 

Barelier et al.188 Various 62 

Homogeneous163 Various 100 

Kahraman et al. / 

extended163,177 

Cofactor sites 100 / 972 

TOUGH-M1189 
Various 505 116 

(556 810) 

TOUGH-C1173 

Nucleotides, 

heme, steroid 

sites 

2218 

Vertex171 
Various 6598 

(379) 
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Pairs of cavities associated to the 

same (positives) or different  

(negatives) functions and fold class 

sc-PDB-derived47 

Various 769 

(769) 

Intra-family classification  
Proteases, kinases, GPCRs, Estrogen 

receptors41,44,82,162,192 

- 

Difficult cases Difficult cases43,47 

Diverse from 

experimental 

validations 

8 

Successful applications  ProSPECCTs D763 

Diverse from 

experimental 

validations 

115 

(56 284) 

Structures of identical sequences 

ProSPECCTs D163 
Various 13 430 

(92 846) 

ProSPECCTs 

D1.263 

Various 241 

(1784) 

NMR structures ProSPECCTs D263 
Various 7729 

(100 512) 

Synthetic set: random mutations 
ProSPECCTs D3 

and D463 

Various 13 430 

(67 150) 

 

 

1.5. Applications in medicinal chemistry and practical 

considerations 

Protein cavities comparison have been used alongside with other computational methods to predict or 

explain the binding of small molecules to different targets. Many of these success stories are described 

in a recent review.18 Following secondary targets prediction, structural information (e.g. bound ligands) 

are used as hints to efficiently explore the chemical space for faster hit identification. Proposed putative 

hits are directly tested experimentally or serve for designing focused screening libraries. The most 

striking examples involve unrelated targets. For example, the graph matching method CavBase was 

successful in detecting the subpockets similarity between cyclooxygenase type 2 (COX-2) and human 

carbonic anhydrase (CA), supporting the nanomolar inhibition of CA by COX-2 inhibitors.46 Other 

literature examples involving diverse methods are summarized Table 1.5. Practically, inspection of 

aligned features or manual selection, in addition to the high similarity scores and rankings were carried 

out, highlighting the advantage of alignment-based methods. Other computational studies by docking 

and molecular dynamics simulations are used complementarily.194 Ligand induced fit of the protein 

might hinder the detection of hidden similarity, hence the exploration of several query and target 
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structures when available.195,196 Although several studies are rather explanation of in vitro/clinical 

observations46,197 than fully blind predictions or involve targets that were already known to share 

common characteristics (evolutionary conservation, cofactor ATP or NAD sites, kinases 

polypharmacology),196,198–201 the detected similarities/divergences were to be proved and provided new 

insights. Strikingly, pocket comparison has enabled new discoveries with limited to no preliminary 

information. All together, these case studies demonstrated how the analysis of cavity similarities can 

benefit drug design. 

 

Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.18 

Year Methods 

(Study)a 

Primary target Secondary target Compound / affinity to 

secondary target 

2004 
CavBase 

(C)46 

Cyclooxygenase type 

2 (COX-2) 

Human carbonic 

anhydrase (CA) 
 

Celecoxib 

IC50 = 21 nM 

2006 
CavBase 

(P)202 

Querying SARS-Cov Mpro to a database of 

amino acids-bound subpockets for peptide 

design 

Design of a focused 

library of peptides 

~7 – 20 µM 

2007 
SOIPPA 

(E)197 

Estrogen receptor 

alpha (ERα) 

Sarcoplasmic 

Reticulum (SR) Ca2+ 

ion channel ATPase 

(SERCA, putative) 

 

Tamoxifen 

Inhibits thapsigargin 

(SERCA inhibitor) 

effects 

2009 

Brakoulias et 

al. 

(C)201 

Rationalization of cross-reactivity of kinase 

inhibitors   

Imatinib 

a Type of study: (C) confirmation, (E) explanation of experimental or clinical observations, (P) 

prediction of new findings. 
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Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.18 

(continued) 

Year Methods 

(Study)a 

Primary target Secondary target Compound / affinity to 

secondary target 

2009 
CPASS203 

(P)195 

Bcl-2 apoptosis 

protein Bcl-xL 

S. typhimurium 

type III Secretion 

System Needle 

Protein (PrgI) 

 

Chelerythrine 

2D NMR binding 

analysis 

2009 
SOIPPA 

(P)198 

Catechol-O-

methyltransferase 

(COMT) 

M. tuberculosis enoyl-

acyl carrier protein 

reductase (InhA)  

Entacapone 

MIC99 = 260 µM 

2010 
SiteAlign 

(P)199 
Pim-1 kinase Synapsin I 

 

Quercetagetin 

IC50 = 0.15 µM 

2011 
SMAP 

(P)204 
HIV-1 protease 

Epidermal growth 

factor receptor 

(EGFR)  

Nelfinavir 

High micromolar 

2012 
PSSC205 

(P)206 

Monoamine oxidase 

(MAO) 

Lysine-specific 

demethylase 1 

(LSD1) 
 

Namoline 

IC50 = 51 µM 

2013 
SiteEngine 

(P)207 

Template ubiquitin 

(Ub)-binding 

interfaces  

Discovery of new Ub-

binding domain: 

ALIX-V 

ALIX-V:mono-Ub  

MST Kd = 119 µM 
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Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.18 

(continued) 

Year Methods 

(Study)a 

Primary target Secondary target Compound / affinity to 

secondary target 

2014 
SMAP 

(P)194 

Epidermal growth 

factor receptor 

(EGFR) 

β-secretase  

(BACE-1)  

Gefitinib 

IC50 = 20 µM 

2015 

 

KRIPO 

(E)208 

Cannabinoid receptor 

1 (CB1R) 

Adenine nucleotide 

translocase 1 (ANT1) 

 

Ibipinabant 

Inhibition of ADP/ATP 

exchange 

2015 

PocketFEA-

TURE 

(E)196,209 

S.aureus FtsZ 

(SaFtsZ)  

Selectivity of PC190723 to SaFtsZ vs. other 

species FtsZ and mutants SaFtsZ 

2015 
PocketMatch 

(C)210,211 

Serotonin 

metabotropic 

receptors: 

5-HT2BR 

5-HT2CR 

Ionotropic α7 

nicotinic acetylcholine 

receptor (nAChR) 

 

SB-206553 

EC50 = 1.5 µM 

2015 
PSIM212 

(P)213 

Peroxisome 

proliferator-activated 

receptor gamma 

(PPARγ) 

Cyclooxygenase type 

1 (COX-1) Fenofibric acid  

IC50 = 950 μM 

2015 
TM-align27 

(P)200 

Tyrosine kinase 

family members 

 

Acetylcholinestera-se 

(AchE)  

Pazopanib 

IC50 = 0.93 μM 
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Table 1.5. Examples of binding site comparison applications relevant to medicinal chemistry.18 

(continued) 

Year Methods 

(Study)a 

Primary target Secondary target Compound / affinity to 

secondary target 

2019 

VolSite-

Shaper 

(P)67 

Cyclooxygenase type 

1 (COX-1) 
Cinnamoylesterase 

 

Flurbiprofen 

Allosteric inhibition 

(IC50 ~400 µM) 

a Type of study: (C) confirmation, (E) explanation of experimental or clinical observations, (P) 

prediction of new findings. 

 

 

1.6. Conclusions  

This chapter have presented the current state of protein site comparison applied to small molecule drug 

design. As one of the computer-aided drug design strategies, assessing the similarity of protein pockets 

constitutes a unique way to analyze structural information, hence complement other well-spread 

approaches. The repertoire of available methods is diverse with respect to the detection and 

representation of cavities, the search algorithms, the scoring functions. All of these aspects must 

somehow be coordinated to achieve the best performance. Still, limitation of experimental data and bias 

in datasets constitute major obstacles to properly evaluate such methods. In reality, estimating protein 

site similarity is context-dependent for different considered pairs, and for different studies. The 

importance of matched features is influenced by the chemical context and physicochemical 

considerations of the targets, making it hard to predict subtle and specific similarities from generalized 

principles. One holy grail of computational chemists is to repurpose existing drugs proposed by 

structure-based experiments. Although this pursuit appears at best hardly probable due to the 

optimization of drugs to their targets,214,215 protein sites comparison have demonstrated its effective 

contribution to medicinal chemistry projects, from the elucidation of previous biological observations 

to generation of new hypotheses supported by experimentally validation. The majority of the-state-of-

the-art methods are based on superposition of the compared structures. Alignment allows visual 

inspection and increase the possibilities of applications. Typically, pocket-bound ligands in the reference 

frame can be transposed to the target pocket and serve as starting point for ligand generation. 
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Improvement of the algorithmic efficiency of methods alongside with technological progress would 

enable to better follow the current growth of publicly-available protein structures. 

 

For each case study (meal), might correspond a different combination of methods (recipe). 
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2.1.  Scope, motivations, and novelty 

In the previous chapter, we learned why protein pocket comparisons are useful and important in drug 

design. We navigated through a broad range of state-of-the-art methods, which differ in how they 

simultaneously represent, compare pockets and score their similarity. We think that the variety of 

methods is an asset with respect to the difficulty in estimating pocket similarities and the quite different 

applicability domains. The current work was initiated with this in mind. We strikingly observed the 

underrepresentation of local comparison algorithms, which to our perspective, are suitable for 

comparing pockets of different sizes. Thus, small protein areas that can bind fragment-sized moieties 

(subpockets) can be appropriately compared to an entire pocket. The subsequent possibilities for drug 

design looked promising. 

By building on a previous work in our lab where a protein pocket is represented as a three-dimensional 

(3D) cloud of annotated points (VolSite,1 see Chapter 1), we aimed at exploring image recognition 

approaches. Computer vision algorithms have been used in the field for decades, particularly in 

alignment-based approaches.2–7 

Herein, we introduced for the first time the application of sampling-based point cloud registration (PCR) 

to the binding site comparison problem. PCR is originally applied to millions of points which represent 

the surface of any kind of objects (tables, buildings, scenes, etc.). More information is given in section 

2.2. We later found that at the time of this study, PCR only started being applied to ligand surfaces 

comparison8 while the shape descriptor has been used for classification of entire protein structures.9,10 

Independently, the choice of this algorithm was motivated by the resemblance between the standard 3D 

image inputs and our pocket representation. Both are ensemble of 3D points with annotations: RGB 

color for the first and distinct pharmacophoric properties for the second. However, the small-size (a few 

hundred of points), sparseness, grid regularity, volumetric nature of the pocket clouds instead of 

surfaces, and the definition of pocket edges questioned the applicability of PCR to our problem.  

To delineate the two problems, common tasks of PCR would superpose objects which are known to 

share overlapping areas. In the binding site comparison case, whether there is any overlapping area is 

an additional variable to be estimated.  

In this chapter, we have prototyped, optimized, and benchmarked a point cloud registration algorithm 

to compare protein pockets. The open-source method has been publicly released at 

https://github.com/kimeguida/ProCare.  
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2.2. Previous work 

This section only aims at summarizing the knowledge relevant to this chapter. For more details, we refer 

the reader to the original papers. 

 

2.2.1. Source of druggable protein-ligand complexes 

The screening Protein Data Bank (sc-PDB)11 is a public database of curated protein-ligand complexes, 

compiled by our laboratory. It was first released in 2006 and updated along the years.11–13 It aims at 

providing a non-redundant subset of the PDB, useful to find relevant starting data for structure-based 

screening. Structures are selected according to several filtering rules: structure resolution, consistency 

of annotations from different sources, nature of amino acids, the presence of pharmacological and buried 

ligands. A careful treatment (e.g. ionization and protonation states of both protein and ligand atoms, 

keeping bound water molecules) finally yields protein chain and ligand structures available in MOL2 

formats, offering the advantage of atom type information and connectivity table. The database actually 

provides more materials and services than stated. The 2016 archive consisted of ~16,000 unique protein-

ligand X-ray structures made of 4755 unique proteins, and 6326 unique ligands. The recent 2022 archive 

(Bret et al., unpublished data) consists of ~37,000 unique protein-ligand complexes (X-ray, NMR, cryo-

EM), 7105 unique proteins and 13993 unique ligands. We draw attention to the fact that protein-ligand 

redundancy was removed by binding mode analysis. In other words, only a representative protein-ligand 

complex is kept out of the available PDB copies, even when residues slightly deviate due to local 

flexibility. Outcomes for binding site comparison may be a loss of information.  Nonetheless, this 

database is a sufficient data source to evaluate and apply our method. 

 

2.2.2. Point cloud registration 

In computer vision, point cloud registration is the process of finding a transformation, i.e., the rotation, 

translation and scaling that adequately superpose two overlapping clouds. It falls within the general 

registration problem, whose applications span object reconstruction in robotics, medical imaging, 

photography, cinematography, etc. Objects are modeled as two-dimensional (2D) or three-dimensional 

(3D) color images when associated with a depth (RGB-D).14 The depth information is the distance 

between each pixel and a fixed reference, the camera. Hence, the 3D shapes of objects are characterized. 

These data points are collected via range imaging techniques such as LIDAR (light detection and 

ranging), tomography scanning, structured-light 3D scanners, time of flight 3D scanners, and 

represented as point clouds, or processed into meshes and voxels by appropriate methods (Figure 2.1). 

It is interesting to note that point clouds are unstructured and unordered data, without neighborhood 
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information, and describing the surface of objects (i.e. what the camera can see). Contrarily, the point 

clouds of protein cavities are volumetric data (i.e. any position in the cavity is independent of the 

viewpoint), obtained first via voxelization. 

 

Figure 2.1. Examples of different 3D representations. The Stanford Bunny model in A) voxel, B) sparse 

voxel octree, C) point cloud, and D) mesh. Adapted from Fahim et al (2021).15 

 

There are two scenarios of (point cloud) registration. In the first case, a set of correspondences between 

the two models is known. In that respect, the registration task consists of finding the best alignment that 

minimizes the superposition error. Estimating a transformation is a non-trivial exercise, influenced by 

the presence of noise and the planarity of the sets.16 This is to account for when developing alignment-

based binding site comparison methods, where scoring and chances to detect similarity rely on proposed 

superposition. In linear algebra, solutions to various definitions of the orthogonal Procrustes problem 

are searched.16,17 The Kabsch algorithm is popular in the structural biology field to estimate a proper 

rotation.2,18 Translation is estimated by alignment of centroids. This singular value decomposition-based 

solution was first introduced by Schönemann (1966), later proposed by Arun et al. (1987) and other 

studies.16,19 In 1991, Umeyama refined the Arun’s solution to handle noisy data.20 This implementation 

is used in our method. Other solutions have been reported, based on orthonormal matrices, or 

quaternions where both rotation and translation are calculated.21–23 

In the second registration scenario, there is no prior knowledge of equivalent points. It is a variable to 

be estimated. Correspondence estimation is one of the fundamental problems in computer vision. The 

iterative closest point (ICP)24,25 is a well know algorithm which repeatedly, associates the closest points 

in the Euclidian space as correspondences and estimates a transformation until convergence. This 

solution is not efficient and is sensitive to the initial guess, i.e. a good alignment is obtained provided a 

good initial orientation. Also, ICP is prone to be trapped in a local minimum. To solve this issue, other 

methods were implemented for global optimization of the alignment.26–28 Alternatively, shape 

descriptors were developed to systematically recognize similar local areas in objects, including machine-

learning-based approaches.15,29–32 In our studies, data-driven approaches were first disregarded due to 

the amount of data available and the quest for interpretability. Geometry-based approaches seemed 
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suitable for our goals and were therefore investigated. Major open source and maintained packages for 

point cloud processing and registration are listed Table 2.1. 

 

Table 2.1. Community open-source packages for point cloud processing and registration 

Name Source Language 

CloudCompare cloudcompare.org C++ 

Open3D www.open3d.org C++, Python 

OpenCV opencv.org C++, Python, Java, MATLAB 

Point Cloud Library PCL pointclouds.org C++ 

 

At the time of this study, PCL has not been maintained for a while whereas its reimplementation Open3D 

was being actively improved and offered two programming language interfaces. Hence, Open3D was 

prioritized for our method development.  
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2.3. A computer vision approach to align and compare protein 

cavities: Application to fragment-based drug design 

 

This section was integrally published in: 

Merveille Eguida and Didier Rognan. J. Med. Chem. 2020, 63, 13, 7127–7142. 

The open source code is available at: https://github.com/kimeguida/ProCare 

 

 

 

  

https://github.com/kimeguida/ProCare
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2.3.1. Abstract 

Identifying local similarities in binding sites from distant proteins is a major hurdle to rational drug 

design. We herewith present a novel method, borrowed from computer vision, adapted to mine fragment 

subpockets and compare them to whole ligand-binding sites. Pockets are represented by pharmacophore-

annotated point clouds mimicking ideal ligands or fragments. Point cloud registration is used to find the 

transformation enabling an optimal overlap of points sharing similar topological and pharmacophoric 

neighborhoods. The method (ProCare) was calibrated on a large set of druggable cavities, and applied 

to the comparison of fragment subpockets to entire cavities. A collection of 33,953 subpockets annotated 

with their bound fragments was screened for local similarity to cavities from recently described protein 

X-ray structures. ProCare was able to detect local similarities between remote pockets and transfer the 

corresponding fragments to the query cavity space, thereby proposing a first step to fragment-based 

design approaches targeting orphan cavities.  
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2.3.2. Introduction 

Three-dimensional (3D) structures of protein-ligand complexes are the corner stones of structure-based 

rational approaches to ligand design.1 Among the many computational methods2 to infer putative 

relationships between ligand and target spaces, detection and pairwise comparison of protein-ligand 

binding sites have gained considerable popularity in the last decade.3-5 Potential cavities can be first 

detected at the surface of macromolecules using a myriad of computational tools,5 classically grouped 

in three categories: geometry-based (e.g. CavBase,6 VolSite,7 Fpocket8), energy-based (e.g. GRID,9 Q-

SiteFinder10) and evolutionary-based (e.g. SURFNET-ConSurf11), although some methods may 

combine different approaches (e.g. Ligsitecsc12, SiteMap13). Whereas geometry-based approaches rely 

on the prior calculation of the target's molecular surface to identify accessible pockets, energy-based 

methods compute interaction energies on a 3D lattice between the target protein and several probe atoms. 

Last, evolutionary-based tools require a multiple sequence or structural alignment of targets from the 

same family to pinpoint evolutionary conserved motifs that can be linked to the recognition of specific 

ligand structures. Interestingly, structural druggability or ligandability,14 the propensity to accommodate 

high-affinity drug-like ligands, can be computed on the fly using machine-learning models8, 7 trained on 

sets of known druggable and undruggable sites. Once pockets have been detected, they can be 

systematically compared at a high-throughput to detect global similarities even in absence of fold 

conservation.5 Many descriptors (fingerprints, distance counts, pharmacophoric triplets, grid points, 

point clouds, graphs, and shapes) of protein-ligand binding pockets can be used by geometric hashing15 

or clique detection6 algorithms to find the most prominent shared features guiding the structural 

alignment of protein cavities. 

Following the basic principle that similar cavities recognize similar ligands, protein-ligand binding site 

comparison methods have been successfully used in many drug discovery scenarios: (i) assigning a 

function from a target's 3D structure,16-18 (ii) finding hits for a novel target,19 (iii) prioritizing compound 

library design,20 (iv) repurposing ancient drugs for new targets,21-23 (v) explaining the 

poypharmacological profile of known drugs,24 (vi) predicting unexpected off-targets25-28 and extending 

potential binding sites to new areas of target space.29-30  A practical guide to navigate across all available 

methods and benchmarking data sets has been recently described.31 

Most of above-described methods consider pocket similarity from a global and not a local point of view. 

In other words, current methods usually estimate the similarity between whole 3D objects (pockets) 

without specifically rewarding the microenvironments (subpockets) responsible for that similarity. For 

related protein pairs (e.g. serine/threonine protein kinases, aminergic G protein-coupled receptors), a 

good alignment and similarity estimate will be found. However, current methods will generally fail to 

find correspondences between binding pockets from totally unrelated proteins. The consequences are 

two-fold. First, the proposed initial 3D alignment of both pockets will prioritize global properties (e.g. 
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molecular shape, principle axes and moments of inertia) over particular microenvironments. A wrong 

preliminary misalignment will therefore not be corrected after refinement and will lead to erroneous 

similarity estimates. Second, inferring ligand information from pocket similarity searches (e.g. merging 

ligand coordinates from one reference pocket to a target cavity) will address the entire ligand structure 

as a whole, without any obvious clues about which ligand substructure ideally fits which subpocket. 

Therefore, most existing computational methods are well suited to repurpose existing ligands for new 

pockets,21-23 but not to prioritize ligand fragments for specific protein subsites, a very important process 

in fragment-based drug discovery.32  

Fewer examples of subpocket comparisons are available to date.6, 33-40 Existing approaches follow a 

common flowchart made of four steps: (i) fragmentation of protein-bound PDB ligands into smaller 

pieces; (ii) registration of protein-ligand non covalent interactions; (iii) definition of protein 

microenvironments interacting with above-reported ligand chemical moieties; (iv) mathematical 

representation of the microenvironment into a graph, pharmacophore or fingerprint; (v) pairwise 

similarity calculation between a reference and a query microenvironment.  

Reported methods differ in the level of ligand fragmentation (few connected atoms,33 chemical group,34 

fragment35-39), the atomic definition of protein microenvironments (atom33 or residue35 based, surface 

feature pseudoatoms21, 37, 39), the computational representation of the subpocket (graph,33, 36-38 

fingerprint34, 39), the alignment method (clique detection,6 rigid-body transformation,34 rmsd 

alignment35) and the scoring function (simple Tanimoto or cosine metric,36-39  shape and/or 

pharmacophore overlap,33-34, 38 rmsd of key atoms35) to estimate pairwise pocket similarity.  To the best 

of our knowledge, only retrospective validation of subpocket comparisons have been proposed, one of 

the most impressive being the a posteriori molecular explanation to the unexpected cross-reactivity of 

cyclooxygenase-2 inhibitors with human carbonic anhydrase.21 Moreover, most approaches are focusing 

on fragment-bound sub-cavities and cannot easily predict local similarities between the whole of a novel 

cavity and a collection of microenvironments. Last, the lack of availability of most methods (KRIPO36 

being a noticeable exception) hampers the usage of above-described tools.  

There is therefore still a need for novel computational methods, notably those relying on novel cavity 

representations and alternative alignment methods, applicable at a high throughout to compare entire 

cavities to fragment-annotated protein microenvironment collections. Following the above guidelines, 

we herewith present a novel pocket comparison method (ProCare: Protein Cavity registration), 

particularly adapted to detect local similarity between entire cavities and fragment subpockets, that 

significantly differs from existing computational tools. ProCare utilizes the concept of point cloud 

registration, widely used in computer vision to compare and align 2D/3D images. We first describe the 

implementation of the method to align and compare entire cavities. After parameter optimization and 

fine-tuning a scoring function to evaluate pocket similarity, we then apply the new method to the 
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comparison of fragment subpockets to full cavities, thereby enabling to fill new binding pockets with 

complementary fragments. 

 

 

2.3.3. Results and discussion 

In computer vision, pattern recognition, and robotics, point cloud registration41,42,43  is the process of 

finding the best spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds 

(Figure 1).  

 

Figure 1. Schematic representation of point cloud registration. The red cloud is rotated and translated 

along its three main axes until the optimal alignment to the green cloud is found. 

Since this concept may not be familiar to medicinal chemists, we here provide a brief summary of the 

underlying principles and algorithms. The basic principle behind registration of two clouds of points 

(cloud 1 and cloud 2) requires to first identifying pairs of equivalent points. Two points, respectively in 

cloud 1 and cloud 2, will be considered equivalent if they are sharing a similar microenvironment, in 

other words a similar topological arrangement of their neighboring points.  Because the aim is to match 

two geometrical shapes, the environment of a point is herein described by a histogram of angular values 

called fast point feature histogram or FPFH (see Computational methods). For example, one can imagine 

discriminating between carbon atoms in 2D representations of cyclobutyl and cyclohexyl moieties, as 

we would do for the corners of a square and a hexagon, respectively. Since each descriptor of the FPFH 

is a “count” of a certain angle value range, the similarity of two FPFHs can be estimated via a simple 

Euclidian distance. However, the FPFH although complex, cannot avoid ambiguities in detecting 

correspondences, especially when there exist irrelevant points (called outliers) that should not be 

considered. A solution to rule out outlier points is the Random Sample Consensus (RANSAC) 

algorithm44-45. At each RANSAC iteration, a few points are randomly sampled in cloud 1, their 
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corresponding points in cloud 2 are assigned, the relevance of these correspondences is verified by 

comparing the topological distances and finally a rotation/translation is estimated to align the sampled 

sets. This preliminary alignment, based on only a few points, is then refined with an iterative closest 

point (ICP) method. ICP is an iterative algorithm46 that minimizes the overall root-mean square deviation 

between corresponding points in both clouds.  

Interestingly, point cloud registration has rarely been used to overlay molecular surfaces of proteins47-48 

and ligands.49 With respect to previous approaches using recognition algorithms to compare protein 

cavities,50-51 we here take advantage of our previous work describing a protein pocket by a point cloud 

located in ligand space.7  The cloud is described as an ensemble of 3D points regularly filling the pocket, 

each point having a specific pharmacophoric property (“color”) complementary to that of the nearby 

protein environment.7 The cloud is therefore bigger (200-300 points), regular and complementary in 

shape and pharmacophoric properties to flanking protein residues.  We will first demonstrate the proof-

of-concept of applying this computational method to the problem of protein cavity alignments, next fine 

tune a set of parameters enabling an optimal performance on a large dataset of known cavities, and then 

propose a physicochemically relevant score to quantify the alignment and pocket similarity. Last, we 

will apply the optimized method to the specific problem of finding local similarities between fragment 

subpockets and whole cavities. 

 

ProCare implementation and parameter optimization 

Preliminary attempts suggested that many parameters of point cloud registration strongly influence the 

quality of the alignment. We therefore systematically studied 15 key parameters (Table 1, 

Computational methods) by enumerating 157,465 parameter combinations in order to consider their 

effect of as well as their interdependencies. To test all these conditions, a very simple data set of five 

similar pairs completed by five dissimilar cavity pairs (EASY1 set; Table S1, Computational methods) 

was designed, just to filter out those parameter combinations that failed in either producing any kind of 

alignment (fitness = 0), or could not perfectly discriminate similar from dissimilar pairs (ROC AUCs < 

1). These two simple filters enabled to decrease the number of potential combinations from 157,465 to 

20,181 (Figure 2). 
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Figure 2. Selection procedure to determine the best alignment parameters. 157,465 different conditions 

(a set of parameters) were initially enumerated and non-relevant conditions filtered-out with the EASY1 

set. The 314 remaining alignment conditions were evaluated with the BO1 set and the best one selected 

by its discrimination performance (high ROC AUC) and manual inspection. 

 

For the remaining possibilities, the output transformation matrices were applied to the protein 

coordinates of the similar pairs to ensure whether the corresponding protein structures were correctly 

aligned (rmsd on backbone heavy atoms < 2 Å) or not. A total number of 314 combinations (0.2 % of 

the total number) still fulfilled the above-described requirements. In order to benchmark the 314 

remaining alignment conditions, we designed a larger and much more diverse data set (BO1 set, Tables 

S2 and S3, see Computational methods) of similar pairs and dissimilar pairs of cavities starting from 

the sc-PDB archive of 16,034 druggable-protein-ligand complexes.52 The BO1 data set consists of 766 

pairs of non-redundant VolSite cavities (383 similar pairs, 383 dissimilar pairs) covering 507 different 

proteins (460 in the set of similar, 178 in the set of dissimilar), 62 different sets of Uniprot functional 

annotations for similar pairs and 38 for dissimilar pairs (Figure S1). 

The 314 pre-selected conditions were used to align cavity pairs from the BO1 set. The area under the 

ROC curve (ROC AUC) of a binary classification (similar, dissimilar) was calculated to rank each 

condition using three possible scoring functions (ph4-strict, ph4-rules and ph4-ext) differing by the 

fuzziness of allowed pharmacophoric matches (see Computational methods). We finally selected the 

best alignment condition (see parameters in Table S4) that yielded a ROC AUC value of 0.87 (CI = 

[0.85;0.89]), based on the ph4-ext scoring. Although the current approach was successful in aligning 

and ranking cavity pairs from a large and diverse data set, we observed that some pairs of similar cavities 

still remained misaligned (see example in Figure S2). Constraining the alignment to consider both shape 

and color might solve the problem. However, the existing colored-ICP algorithm53 which aims at 

optimizing both geometric (shape) and photometric (colors) terms is not suited here for two reasons: (i)  
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ICP requires a starting point close to the optimal solution, meaning that ICP would not rescue initial 

FPFH feature-based misalignments; (ii) the meaning and assignment of color in a pharmacophoric 

context do not correspond to that utilized in image processing (RGB primary colors). Using the optimal 

set of parameters on the BO1 set, but refining the rough RANSAC alignment with the FPFH-colored-

icp method confirmed our initial hypothesis, as the corresponding AUC (ROC AUC = 0.83; CI = 

[0.81;0.86]) was inferior to that reported above. We have therefore implemented a new descriptor to 

improve the correspondences estimation during the feature-based alignment. 

 

Improvement of the method with histograms encoding shape and pharmacophoric properties 

In light of the interesting results we previously obtained with the FPFH-icp routine and regarding the 

misalignment issues that arose, we have modified the FPFH descriptor implemented by default 

(Computational methods). Similarly to the way that shape information is binned to form a normalized 

33-bin histogram, we encoded the distribution of eight pharmacophoric features (Table 2; 

Computational methods) in the neighborhood of a point into an eight-bin histogram, each bin 

corresponding to one of the eight pharmacophoric features. The final 41-bin histogram, termed c-FPFH 

(see Computational methods) was next utilized to improve RANSAC preliminary alignments of BO1 

cavity pairs. Obtained results were compared to that obtained using the standard FPFH descriptor and 

to the alignments obtained our previously-reported Shaper7 tool that uses a smooth Gaussian function to 

optimize the shape overlap of cavity points. Using the ph4-ext scoring function to score alignment of 

BO1 cavity pairs, the novel c-FPFH appears clearly superior to the standard one (c-PFPH, ROC AUC= 

0.93, CI = [0.91;0.94]; FPFH, ROC AUC = 0.87) in discriminating similar from dissimilar pairs (Figure 

3). The performance of the novel descriptor was almost similar to that obtained with the state-of-the art 

Shaper alignment tool (ROC AUC = 0.92, CI = [0.90; 0.93]) on the same data set. The Shaper method7 

was used here as a baseline alignment method for two reasons: (i) it has been favorably evaluated by 

independent groups31, 54 on different benchmarking datasets featuring various applicability domains and 

comparison scenarios31,, (ii) it is the only tool that can unambiguously be compared to ProCare because 

they use an identical input (two point clouds) for generating and scoring cavity alignments. Observed 

differences are therefore directly explained by different alignment qualities, the scoring function used 

by both methods remaining comparable.   
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Figure 3. Evaluation of ProCare scoring in comparing cavities from the BO1 set. A) Receiver operating 

characteristics (ROC) plot in ranking BO1 cavity pairs with the ph4-ext scoring function, using ProCare 

(standard FPFH descriptor, new c-FPFH descriptor) and Shaper; B) Distribution of ph4-ext scores after 

ProCare overlay with FPFH-icp refinement; C) Distribution of ph4-ext scores after ProCare overlay 

with c-FPFH-icp refinement; D) Distribution of scores after Shaper overlay. 

 

The improvement of the discrimination with c-FPFH descriptors is due to the correction of alignment 

errors previously reported, which are consequently reflected on scores. Differences in the ranking 

between methods is partially explained by misalignment of some similar pairs, and by the different 

fuzziness level of the utilized scoring functions. In quite a few cases, alignments of similar cavities were 

well approximated when evaluating the consequent alignment of the corresponding proteins, while the 

scores were inferior to the median score obtained for similar pairs. For those misaligned pairs, we did 

not find any correlation between alignment scores and chemical similarity of the cavity-bound ligands 
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(Tversky on Morgan fingerprint and MCS uniformly ranged from 0 to 1). Another reason for 

misalignments is the difference in shape (globular vs. planar) observed between the two cavities, 

rendering neighborhood similarities of randomly sampled points difficult to catch. Of course, we cannot 

exclude the possibility to have wrongly annotated BO1 pairs, particularly those predicted dissimilar. 

However, observing a similarity between binding sites of functionally unrelated proteins is a very rare 

event38 so that, even if present in the data set, such cases are negligible.  

 

Statistical evaluation of ProCare score distributions 

The ability of the method combining c-FPFH descriptors for aligning and ph4-ext for scoring, was first 

assessed by its ability to discriminate similar and dissimilar cavities of the BO1 set, using incremental 

variations of the ph4-ext score (from here on ProCare score). The optimal discriminative power (recall 

= precision = F-measure = 0.85) is obtained at a threshold value of 0.39 for the investigated data set 

(Figure 4A). To check whether this threshold value is data set-dependent, we next generated a 

background distribution of 2.5 million alignments (510 non-redundant BO1 cavities vs. 4,223 sc-PDB 

cavities). 100 statistically representative samples of 100,000 values each, could be fitted to a generalized 

extreme value (GEV) distribution (Figure 4B) according to the Kolmogorov-Smirnov test (D = 0.046, 

P-value = 0.0292, a =0.02) with a probability density function of the type: 

f(x) =  exp(−(1 + 𝑘𝑧)−1/𝑘) (1 + 𝑘𝑧)−1−1/𝑘 k ≠ 0     (1) 

f(x)= exp(-z-exp(-z))   k = 0 

with k = -0.15024, s = 0.08338, m = 0.24475, 𝑧 =
𝑥−𝜇

𝜎
 

 

The significance level p of the detected similarity represents the probability of obtaining the same or 

higher similarity score Z > z by chance is: 

𝑝(𝑍 > 𝑧) =  1 − exp (−(1 + 𝑘𝑧)−
1

𝑘)  k ≠ 0      (2) 

𝑝(𝑍 > 𝑧) =  1 − exp (− exp(−𝑧))  k=0 

 

From the background distribution, a statistically significant threshold for the ProCare score was set at a 

value of 0.47, which corresponds to a p-value of 0.05. At this threshold, the classification of the previous 

BO1 set yields to a lower recall (0.72) but a much better precision (0.95). From here on, ProCare will 

be used with the above-reported best set of parameters, combining c-FPFH descriptors for aligning and 

ph4-ext for scoring pocket alignments. 

 



Chapter 2. Development of a new method for local comparison of protein pockets  

91 
 

 

Figure 4. Statistical evaluation and sensitivity of ProCare to variations in atomic coordinates. A) 

Variation of statistical parameters (recall, precision, F-measure) of a binary classification model 

(similar/dissimilar) of BO1 cavity pairs for increasing ProCare similarity score thresholds; B) Fitting 

randomly sampled ProCare scores to a generalized extreme value (GEV) distribution. Repeated random 

samples (n = 100) showed to be representative of the whole population of scores (Scipy combined p-

value for the 100 Kolmogorov-Smirnov p-values with Fisher’s method: 0.90). GEV parameters were 

estimated with EasyFit.55  

 

Benchmarking ProCare versus state-of-the art methods in a medicinal chemistry context 

A fair comparison of a novel algorithm to state-of-the art competing methods is a difficult exercise 

because of the many sources of possible biases that can directly influence pocket similarity 

assessments:31 data set assembly, pocket definition, scoring metrics, purpose (e.g. off-target prediction, 

polypharmacology, drug repurposing, target's function assessment). We herewith made the choice of a 

classical medicinal chemistry scenario: Do two pockets bind to the same ligands (chemotypes) or not? 

For that purpose, we revisited the recently published Vertex dataset56 comprising 6,598 positive and 379 

negative protein pairs defined from 6,029 protein structures. Interestingly, pairs were chosen depending 

on the availability (or not) of common high-affinity ligands (potency ≤ 100 nM). However, the published 

data set was strongly imbalanced (positive pairs >> negative pairs) and required some filtering (see 

Computational methods) to reach an equivalent numbers of 338 positive and 338 negative pairs (Table 

S5). Six publicly available methods (FuzCav,57 Kripo,36 PocketMatch,58 ProBiS,59 Shaper,7 SiteAlign60; 

see Computational methods for more details), considered as state-of-the art cavity comparison tools by 

independent groups,31, 54 were compared to the herein presented method for their ability to discriminate 

positive from negative pairs by the simple estimation of their ligand-binding pocket similarity (Figure. 

5). 

As a general trend, methods mapping physicochemical and/or pharmacophoric properties onto binding 

site atoms (FuzCav, PocketMatch, SiteAlign, KRIPO) outperformed the two methods (ProCare, Shaper) 
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relying on descriptors mapped onto pseudoligand atomic coordinates. This observation is easily 

explained by the design of the Vertex dataset that assigns positive pairs to very similar proteins of the 

same target family (e.g. Ser/Thr protein kinase, protease) sharing high sequence and structure 

homologies. However, these tools exhibit at least one drawback that does not exists with ProCare. First, 

alignment-independent methods (FuzCav, PocketMatch) are very fast and accurate but produce results 

that are hard to interpret since no protein overlay is generated. From a medicinal chemistry perspective, 

the absence of protein alignment prevents transferring a ligand from a reference pocket to another one 

and thereby hinders a structure-based hit to lead optimization. Second, the SiteAlign technology, 

although very precise, is very slow (ca 30 sec./comparison) and presents a limited applicability domain 

to short lists of proteins, unless executed in a distributed parallel computing environment. ProBiS allows 

a precise classification of positive and negative pairs but at the cost of a low completeness (only 64% of 

pairs could be treated, Figure 5). 

 

 

Figure 5.  Receiver operating characteristics (ROC) plot for ranking 676 protein pairs (Vertex set: 338 

positive, 338 negative) by decreasing pocket similarity, according to six different methods. Area under 

the ROC curve and completeness (% of successfully processed pairs) are indicated in brackets for each 

method. 

 

Last, the KRIPO method that relies on known-protein ligand interactions to generate binding site 

descriptors failed in producing results for 5% of test cases and cannot be used for apo-proteins. ProCare 

therefore constitutes a widely applicable, robust approach to detect binding site similarity, as it is the 

only method cumulating high speed (a few sec/comparison), good precision (ROCAUC = 0.81), 
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interpretability (aligned proteins,  list of distances between matched residues) and large applicability 

domain (ligand-bound and ligand-free protein structures). 

 

Detecting similarity between fragment subpockets and whole protein cavities 

As demonstrated in the previous section, point cloud registration can be successfully applied to align 

and compare entire protein cavities. Is it still applicable to smaller objects (fragment-binding sites), a 

notoriously difficult problem in cavity comparisons?5 To answer this question, we systematically 

aligned cavity pairs from the Frag-Lig set61 (Table S6; Computational methods) in which the same 

protein is bound to either a drug-like ligand or a substructural fragment of the later ligand (see 

Computational Methods). A correct subpocket to full cavity alignment can therefore be easily deduced 

after applying the ProCare transformation matrix to the corresponding protein-fragment complex and 

computing two properties: (i) the rmsd of the fragment-bound protein to the full ligand-bound target, 

(ii) the similarity of interactions observed between the full cavity and either the merged fragment or the 

reference full drug-like ligand.  

Examination of pocket sizes, expressed as the number of points in the corresponding clouds, confirmed 

that the fragment-bound subpockets are much smaller than the entire cavities to which the corresponding 

full ligands bind to (Figure S3). In 91% of the cases, a structural alignment of both protein structures, 

performed by the combinatorial extension (CE) method,62 yields to a rmsd on C-alpha atoms below 2 

Å, illustrating that no major conformational changes occurs at the protein level upon ligand binding, 

when compared to the original fragment-bound protein structure (Figure 6A). In this context, ProCare 

clearly outperforms Shaper in proposing reliable alignments (rmsd of protein backbone atoms ≤ 2 Å) in 

42% of cases vs. 34% for the Gaussian-based Shaper method (Figure 6A). For those structurally well-

aligned pockets, the ProCare score was higher than the previously defined threshold (score 0.47, p-value 

= 0.05) in 98% of the cases, suggesting that scores obtained by aligning full cavities can be translated 

to the comparison of pockets of very different sizes. 

We next looked whether the better alignments proposed by ProCare, corresponds to a better positioning 

of the fragments after rotation/translation to the full cavity. Since fragments were not always real 

substructures of the full drug-like ligand counterpart (but sometimes just bioisosteric substructural 

parts), we could not compute rms deviations on fragment atomic coordinates. We therefore estimated 

the similarity of interactions between the fragment subpocket and either the ProCare-aligned fragment 

or the native drug-like ligand, using a Tanimoto coefficient calculated on molecular interaction 

fingerprints (IFP).63 
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Figure 6. Evaluation of ProCare alignment of fragment supockets to full cavities. A) Proportion of pairs 

of proteins poses yielding rmsd on main chain atoms falling into the following intervals (Å) [0;2[, [2;4[, 

[4;6[, [6;10[, [10;∞[ after applying the transformation matrix derived from ProCare and Shaper 

alignments. The values were compared to the original structural alignments of the proteins obtained by 

the CE algorithm;62 B) Proportion of pairs of fragment poses yielding IFP similarity with their paired 

ligands which falls into the following intervals [0;0.2], ]0.2;0.4], ]0.4;0.6], ]0.6;0.8], ]0.8;1.0]; C) 

Example of Shaper misalignment of cavities from cytochrome P121 bound to fragment 1G9 (PDB ID 

4IQ7) and ligand YTT (PDB ID 3G5H; rmsd of proteins backbone heavy atoms: 22 Å; rmsd of ligands 

matching substructure: 5.4 Å); D) ProCare correct alignment of the same cavity pair (rmsd of proteins 

backbone heavy atoms: 0.45 Å; rmsd of ligands matching substructure: 0.59 Å). 
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Considering a conserved binding mode for IFP similarities higher than 0.6,63 the CE structural alignment 

indicates that the fragment  binding mode is conserved in the full ligand in 53% of cases (Figure 6B). 

Provided with this baseline, ProCare succeeded in correctly positioning the fragment in the full pocket 

in 35% of cases whereas Shaper was only successful in 28% of cases (Figure 6B), thereby confirming 

that the better cavity alignments provided by ProCare also translates into better poses of the 

corresponding fragment. In many examples, Shaper misalignments were indeed rescued by the herein 

described point cloud registration (Figures 6C, D). 

 

Virtual screening of fragment subpockets to assist fragment-based drug design: a first proof-of-

concept 

We next extended the concept of fragment positioning inferred from binding sites alignments, to pairs 

of unrelated proteins. In this fragment-based drug design exercise, we took high-resolution X-ray 

structures of protein-ligand complexes recently disclosed for the first time in the Protein Data Bank, and 

checked whether screening a collection of fragment subpockets for similarity to the novel query cavities 

(Table 3), could help reconstitute, even partly, the masked query-bound ligands. 

 

Table 3. Binding site comparison of three protein-ligand complexes recently released in the PDB. 

Target PDB 

ID 

Liganda Resolution, Å Release date Cavity sizeb 

M5 muscarinic receptor 6OL9 0HK 2.5 2019-12-11 99 

TNF-alpha trimer 6OOY A7M 2.5 2019-12-25 208 

Cysteinyl leukotriene receptor 2 6RZ8 KNZ 2.7 2019-12-11 241 

a Ligand  chemical component HET code 

b number of cavity points. The volume of cavity (in Å3) is the number of points x 3.375 (third power of 

the grid resolution in Å) 

 

A collection of 33,953 fragment subpockets was obtained by fragmenting all sc-PDB-bound ligands (sc-

PDB fragment set, Computational methods) using a previously reported protocol,64 while keeping 

protein-bound 3D coordinates. The fragment subpocket collection was then screened for ProCare 

similarity to the three novel cavities whose structure had recently been disclosed and therefore not 

present in the sc-PDB archive. After point cloud registration, the corresponding fragments were merged 

into the coordinate frame of the query cavity using the optimal transformation matrix, and filtered 

according to two criteria: (i) compliance to the fragment rule-of-three65 (hence, our fragmentation 

protocol may find no possible fragmentation of the sc-PDB ligand), (ii) ProCare score > 0.47.  

Remaining fragments hits were then ranked by a composite score (FragScore, eq. 3) taking into account 
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both pocket similarity and interaction fingerprint similarity when comparing selected fragments with 

the masked ligand co-crystallized with the target query. 

𝐹𝑟𝑎𝑔𝑆𝑐𝑜𝑟𝑒 =  𝑃𝑟𝑜𝑐𝑎𝑟𝑒𝑠𝑐𝑜𝑟𝑒 + 𝐼𝐹𝑃𝑠𝑖𝑚 +
1

2
𝐼𝐹𝑃_𝑝𝑜𝑙𝑎𝑟𝑠𝑖𝑚 

where IFPsim is the similarity of full interaction fingerprints 

and IFP_polarsim is similarity of polar interaction fingerprints 

 

                          (3) 

The first query cavity is small-sized (335 Å3) and was retrieved from the recently published muscarinic 

M5 receptor structure bound the tiotropium inverse agonist.66 It is intended to be an easy challenge since 

the same ligand bound to three related muscarinic receptor subtypes (M1, M3 and M4) in five sc-PDB 

entries. Therefore, this first query was meant as a quality control of the ProCare alignment protocol and 

subsequent scoring function. Hence, three tiotropium-based fragments are ranked among the top 33th 

fragments (Table S7) and nicely posed with respect to the true M5-bound tiotopium pose (Figure 7A, 

Table 4). Interestingly, highly ranked fragments derived from ligands bound to unrelated proteins (e.g. 

Hemolymph juvenile hormone binding protein, PDB ID: 3AOS, Ligand HET: JH2; Histone deacetylase-

like amidohydrolase, PDB ID: 1ZZ1, Ligand HET: SHH; Figure 7B, Table 4) nicely overlaps M5-

bound tiotropium and suggest suitable starting points for fragment growing and/or linking. 
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Figure 7. ProCare positioning of sc-PDB fragments in novel cavities. Atoms are colored using a cpk 

color-coding (nitrogen: blue; oxygen: red; sulfur; yellow; carbon of fragment: cyan/rosy salmon, green; 

carbon of true ligand, white). A-B) Placing a fragment derived from a muscarinic M1 receptor-bound 

ligand (PDB ID: 5CXV; HET: 0HK), and a hemolymph juvenile hormone binding protein-bound ligand 

(PDB ID: 3AOS; HET:JH2) in the muscarinic M5 receptor cavity (PDB ID 6OL9); C-E) Placing a 

fragment derived from a phosphatidylinositol 4,5-bisphosphate 3-kinase-bound ligand (PDB ID: 4KZ0; 

HET: 1UJ), a protein kinase Pim1-bound ligand (PDB ID: 3R04; HET: UNQ), and a LysR type 

regulator-bound ligand (PDB ID: 3N6U; HET: NSU) in the TNF-alpha trimer cavity (PDB ID 6OOY); 

F-G) Placing fragments derived from a catabolite gene activator protein-bound ligand (PDB ID: 1RU0; 

HET: CMP), a potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2-bound 

ligand (PDB ID: 1Q43; HET: CMP), a receptor-type tyrosine-protein phosphatase gamma-bound ligand 

(PDB ID: 3QCH; HET: NX2), a glucokinase-bound ligand (PDB ID: 3F9M; HET: MRK) and a MAP 

kinase 14-bound ligand (PDB ID: 3DT1; HET: P40) in the cysteinyl leukotriene receptor 2 cavity (PDB 

ID 6RZ8). 

 



Chapter 2. Development of a new method for local comparison of protein pockets  

98 
 

Of course, visual inspection of the merged fragments into the query cavity space remains necessary to 

optimize fragment hits (e.g. JH2 fragment lacks the necessary ammonium group for π-cation interaction 

to Tyr481) for the intended cavity. The second query cavity (681 Å3) is present at the interface of an 

asymmetrical tumor necrosis factor-alpha (TNF-alpha) trimer. This unique inhibitor-bound TNF 

conformation has very recently been reported67 and has no comparable structure in the sc-PDB archive. 

Nevertheless, several sc-PDB fragments (e.g. 4KZ0_1UJ, 3R04_UNQ; see list of top 100 scorers in 

Table S8) selected from unrelated proteins, appear among the top ProCare scorers, and are true 

bioisosteres of the benzimidazole moiety of the TNF-alpha inhibitor (Figure 7C-D, Table 4). The 

ProCare poses of the selected fragments nicely overlaps that of the true ligand, and recapitulates 

aromatic interactions exhibited by the bicyclic benzimidazole ring and a hydrogen bond to Tyr151 side 

chain of the TNF-alpha cavity. Likewise, the disubstituted aromatic substituent of the true TNF-alpha 

inhibitor is also mimicked by one of the top scoring aromatic fragment (3N6U_NSU, Figure 7E, Table 

4). 

Table 4. Selection of top-scoring fragments for three novel cavities. 

Targeta Fragment 

 Nameb Rank FragScorec Procare p-value IFPsim IFP_polarsim 

6OL9 5CVX_OHK_1_1 1 1.61 0.82 2.04e-12 0.53 0.50 

 3AOS_JH2_1_1 10 1.10 0.57 0.006 0.53 0.00 

 1ZZ1_SSH_1_1 11 1.10 0.56 0.008 0.54 0.00 

        

6OOY 4KZ0_1UJ_1_1 1 1.48 0.57 0.006 0.67 0.50 

 3R04_UNQ_1_1 7 1.28 0.65 1.63e-04 0.46 0.33 

 3N6U_TSU_1_1 45 1.16 0.64 7.89e-04 0.36 0.33 

        

6RZ8 1RUO-CMP_1_1 1 1.43 0.55 0.010 0.43 0.50 

 3F9M_MRK_1_1 2 1.38 0.57 0.006 0.64 0.00 

 3QCH_NX2_1_2 7 1.25 0.52 0.020 0.73 0.00 

 3DT1_P40_1_3 10 1.21 0.57 0.006 0.64 0.00 

 1Q43_CMP_1_1 22 1.15 0.47 0.054 0.43 0.50 

a Targets are named according to their PDB identifier (6OL9, M5 muscarinic receptor; 6OOY, TNF-

alpha trimer, 6RZ8, Cysteinyl leukotriene receptor 2) 

b Fragment name (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the 

corresponding ligand chemical component (HET), the target cavity identifier (C), and the fragment 

number (N).  

c The Fragscore is computed according to eq. 3 
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The last query used for this preliminary proof-of-concept comes from the structure of an antagonist-

bound cysteinyl leukotriene type 2 receptor (CysLTR2, PDB ID 6RZ8).68 Again, this structure has no 

similar homologue in the sc-PDB archive, such that the ProCare search for potential subpocket matching 

has no obvious bias. The CysLTR2 pocket is wider (813 Å3) than the two previous ones, and is fully 

occupied by a high molecular weight ligand (ONO-2080365, HET: KNZ) filling three separate subsites, 

thereby challenging ProCare for finding local similarity to each of the three subpockets and finding 

appropriate fragments. The benzoxazine dicarboxylic acid-binding subpocket in CysLTR2 is found 

similar to that of two adenosine-3',5'-cyclic-monophosphate (cAMP) pockets from unrelated proteins 

(catabolite gene activator protein, PDB ID: 1RUO; Potassium/sodium hyperpolarization-activated 

cyclic nucleotide-gated channel 2, PDB ID: 1Q43) with the cyclic  phosphate group mimicking each of 

the two carboxylic acids of the CysLTR2 antagonist (Figure 7F, Table 4) and interacting with a basic 

residue (Arg82 for 1RUO, Arg591 for 1Q43) that drives the subpocket similarity to the CysLTR2 cavity 

(Figure S4). Local similarity to the central phenoxy-binding subsite is also found in a subpocket from 

a receptor tyrosine phosphatase (PDB ID: 3QCH, Figure 7F, Table 4) with a nice overlap of the 

corresponding dichlorophenyl fragment to the fluorophenyl substructure of the CysLTR2 ligand. 

Another fragment mimicking both the benzoxazine and the central fluophenyl CysLTR2 antagonist is 

selected by ProCare from remote pocket similarity to that of a glucokinase pocket (PDB ID 3F9M, 

Figure 7G, Table 4). Last the hydrophobic CysLTR2 subsite accommodating the terminal 

difluorophenyl ring of the bound inhibitor is found similar to that of a MAP kinase 14 subpocket (PDB 

ID: 3DT1) with a nice overlap of the cognate phenyl fragment  to the terminal aromatic ring of the 

CysLTR2 ligand (Figure 7G, Table 4). Altogether, ProCare managed to find subpocket similarity 

between each of the three CysLTR2 subsites with totally unrelated subpockets and proposes reliable 

fragments for a structure-based fragment linking strategy (see the list of 100 top fragments in Table S9). 

Importantly, subpocket similarity and fragment posing were found for very different reasons ranging 

from salt bridge mimicry to the conservation of hydrogen bonds and hydrophobic/aromatic interactions. 

We acknowledge that the empirical FragScore, used in the present exercise, can only be used in case the 

query cavity is already filled with a ligand. It enables to retrieve either apolar/aromatic fragments 

exhibiting a high interaction fingerprint similarity score (IFP), or polar/charged fragments with a high 

polar interaction fingerprint similarity value (IFP_polar). Cavity pairwise similarity, expressed by the 

ProCare score remains however the main driver for fragment selection, and can be used to query cavities 

in the apo-state. The accompanying p-value gives a statistical support to the predictions and can be used 

as a surrogate to the ProCare similarity value. 
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2.3.4. Conclusions 

We herewith present a novel computational method, inspired from computer vision, to align and 

compare protein cavities. Cavities are represented as 3D point clouds annotated by pharmacophoric 

properties mimicking that of an ideal ligand, and aligned by the point cloud registration. Importantly, 

ProCare takes advantage of a novel point feature histogram to encode cavity microenvironments, thereby 

favoring the overlay of supockets sharing similar geometrical and physicochemical properties. The new 

method is able to align either entire pockets, subpockets, and compares subsites to full cavities. It 

exhibits a comparable performance to state-of-the-art methods when tested across a variety of 

benchmarking data sets. A key feature of ProCare is its unique ability to detect local similarities and 

thereby compare cavities of quite different sizes (e.g. fragment-bound subpockets vs. full ligand-bound 

cavities). We herewith provide the proof-of-concept of its application in a fragment-based drug design 

scenario in which cavities from recently described X-ray structures have been compared to a collection 

of fragment-bound subpockets. Local similarities undetectable with standard cavity comparison tools 

are found by ProCare, and enable after cavity overlay, to directly locate the corresponding fragments in 

the query cavity. Interestingly, proposed fragments are derived from remote targets that are totally 

different from the query, and proved to be identical or bioisosteric to susbtructures of the unmasked 

query cavity-bound ligand. Of course, designing a full ligand still requires to either grow and/or link 

ProCare-aligned fragments with any of existing computational fragment linking tool.69-72 Nevertheless, 

the novel method enables to elaborate a fragment-based drug design strategy from the simple knowledge 

of a cavity 3D structure, by simple detection of local similarities to a large collection of fragment-bound 

subpockets. 

In its current implementation, ProCare can still be optimized with respect to speed and completeness. A 

pairwise similarity search can be achieved in a couple of seconds, but the cpu cost could be significantly 

reduced by optimizing the nearest neighbor search and excluding irrelevant points in the preliminary 

RANSAC alignment procedure. Moreover, usage of the RANSAC algorithm does not guarantee to find 

the best possible solution to the registration. Deterministic algorithms able to find the absolute minimum 

have recently been proposed73 and should be tested further on.  Last, the method could also be applied 

to align ligands to cavity points, and propose a computer vision approach to the protein-ligand docking 

problem. ProCare is freely available upon request to authors. 
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2.3.5. Computational methods 

Data Sets 

EASY1 set. This data set consists of five pairs of known similar cavities and five pairs of known 

dissimilar cavities (Table S1). Protein-ligand X-ray structures were extracted from the sc-PDB database 

(http://bioinfo-pharma.u-strasbg.fr/scPDB)52. Cavities were computed from ligand-free sc-PDB protein 

input (mol2 file format) with using default parameters of the VolSite7 algorithm within the IChem v. 

5.2.9 toolkit.74 Cavity points, located on a 1.5-Å three-dimensional (3D) lattice and annotated by 

pharmacophoric properties,7 were placed within 6 Å of heavy atoms of the corresponding hidden ligand, 

and visually checked with Pymol v.2.1.0.75  

BO1 diverse set. Starting from all 16,034 sc-PDB protein-ligand complexes, unique proteins were 

retrieved and clustered according to UniProt76 keywords. Proteins without keywords (cluster “No 

Keywords”) and singletons were discarded. For each cluster, the proteins sequences in fasta format were 

retrieved from the UniprotKB API and gathered to form a multi-fasta alignment file of the cluster. In 

case several isoforms were available for one protein, only the first one (default) has been considered. 

Then, multiple sequence alignments were performed with Clustal Omega77 via the EMBL-EBI web 

services REST API78using default parameters, and outputted in ClustalW format. The Percent Identity 

Matrix (PIM) files were processed to retrieve pairs of proteins having different Uniprot AC and a 

sequence identity between 50 and 100%. For enzymes (Function-Keywords containing one of the 6 

enzyme classes), the Enzyme Classification (E.C.) number was fetched from UniprotKB and additional 

filtering was performed to discard pairs having different E.C. numbers and pairs in which at least one 

partner is not annotated with E.C. number (e.g. TrEMBL entries). At this stage, PDB atomic coordinates 

of ligand-bound protein chains were extracted and structurally aligned with Sybyl-X 2.1.179 

("biopolymer align_structure" method, default parameters). Pairs of proteins for which the root-mean 

square deviation (rmsd) of main chain coordinates is higher than 5 Å were discarded. For 30 pairs, a 

manual structural alignment was performed with Maestro v.11.9.01175 to rescue SYBYL misalignments. 

For each of the remaining 643 pairs, corresponding cavities were computed from the position of their 

bound ligands, as described above for the EASY1 set. The transformation matrix used to align the 

proteins was applied to their corresponding cavities using the realign module of the IChem toolkit. Pairs 

of cavity points were next analyzed for co-localization, by measuring all possible pairwise distances. A 

pair was kept if three conditions were verified: (i) at least 45% of all pairwise distances are lower than 

10 Å, (ii) any cavity point in one pair member has more than 50 unique neighbors (d < 1.5 Å) in the 

cognate pair member; (iii) bound ligands according to Morgan fingerprints (radius = 2)80 were not 

identical (Tanimoto coefficient Tc ≠ 1). Finally, a set of 383 pairs (Table S2) was annotated as "similar". 

An equally-sized set of dissimilar pairs (Table S3) was defined from the above described clustering of 



Chapter 2. Development of a new method for local comparison of protein pockets  

102 
 

UniprotKB keywords, as protein pairs sharing no single functional keyword and different ligands HET 

codes with a chemical similarity, expressed by a Tanimoto coefficient on Morgan fingerprints (radius = 

2), below  0.4. Finally, an equivalent number of 383 dissimilar pairs was retrieved randomly from that 

list, with the constraint that the distribution of differences in cavity volumes between dissimilar pairs 

matches that of similar pairs.  

 

Vertex Set. The dataset was retrieved from the original publication56 and comprises 6,598 positive and 

379 negative protein pairs defined from 6,029 protein structures. Positive and negative labels were 

originally assigned as whether the pair share high affinity common ligands (potency < 100 nM) or not. 

The full dataset provides a total of 1,564,605 putative matches, considering multiple structures (e.g. 5 

PDB entries for human CDK5) and all possible bound ligands for a single protein structure. Since the 

dataset is very imbalanced, a post-processing step was conducted to achieve an equivalent number of 

positive and negative labels. For each possible protein pair, the chemical 2D similarity of their ligands 

was computed from RDKit Morgan fingerprints (radius = 2) and the pair with the highest ligand 

similarity saved as representative sample (for positive pairs, 0.4 ≤ ligand similarity ≤ 0.7). For each 

remaining pair, the corresponding pockets were identified with the VolSite module of IChem, leading 

to a final set of 338 negative and 841 positive pairs out of which 338 were randomly retrieved to achieve 

an equivalent number of positive and negative samples (Table S5). 

 

Frag-Lig set. This data set is a subset of the previously reported PDBmob data set,61 and consists of 578 

pairs of cavities from the same protein (same Uniprot AC), bound to a drug-like ligand and a 

substructural fragment of the latter ligand. The data set provides already aligned protein-ligand/fragment 

complexes for each target set. For each unique protein of the PDBmob data set, all possible pairs of 

protein-fragment and protein-druglike ligand were formed. The Tversky similarity of the paired 

fragments and ligands were calculated using RDKit Morgan fingerprints (radius = 2) and maximum 

common substructures (RDKit FindMCS default parameters). A first selection conserved pairs with both 

similarity metrics superior to 0.6. The corresponding cavities were computed with IChem VolSite using 

default parameters. For fragment-bound structures, only the close vicinity (4 Å) of the fragment was 

considered for cavity detection (VolSite CAVITY_4 output). For ligand-bound structures, the entire 

cavity (VolSite CAVITY_ALLoutput) was retrieved. This preliminary list was then filtered to remove 

drug-like-bound cavities of smaller volume that that of the fragment counterpart. Then, fragment/ligand 

occupancy in their cognate cavities was inspected to ascertain that any heavy atom has a cavity point 

within a 2 Å distance. Last cavity overlap (fragment-bound vs. ligand-bound) was computed by 

estimating the number of fragment-bound cavity points with a close neighbor (≤ 2Å) in druglike-bound 

cavity points. Only pairs with 100% overlap were finally retained to yield 578 pairs (Table S6). For 
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each pair, atomic coordinates of the fragment-protein complex were randomly translated by 10 Å along 

the three axes x-y-z and rotated by 180° along the x-axis, in order to put reference and target complexes 

in different coordinate frames. 

 

sc-PDB fragment set. For each of the 16,034 entries of the sc-PDB data set,52 the corresponding 3D 

structure of the ligand was fragmented using a previously-described protocol64 in three steps. First, a 

ring perception algorithm is used to detect aromatic and aliphatic rings of the ligand. Second, acyclic 

atoms are then parsed to assign either a linker or substituent label, as whether to the corresponding bonds 

are connecting two rings or not. Linker atoms are left unchanged. In case of substituent atoms, single 

bonds involving the closest apolar carbon (in terms of bond distance) to any ring are later cleaved at the 

condition that the cleaved bond is at least three bonds away from the cyclic root atom. Third, fragments 

are kept at the condition that they make at least 4 interactions (including ≥1 polar or aromatic) with the 

target. The fragment set contains 33,953 fragments out of which 7,294 are unique. For each of the 33,953 

protein-bound fragments, the 4 Å-surrounding cavity was computed in IChem VolSite as described 

above. 

 

Point Cloud registration 

The herein described method relies on Open3D v.0.5.0,81 a library for point cloud processing. The library 

is available in C++ programming language but provides a python interface with pybind11, and allows 

parallel computing via the OpenMP environment. For the sake of efficiency, Open3D was compiled and 

installed from source in conda environment following the provided guidelines. Protein cavity files 

computed with VolSite (mol2 format) were converted into PCD (Point Cloud Data) file format version 

0.7. The Header was kept as default unless the “WIDTH” and “POINT” sections that were updated with 

the cavity size (number of cavity points). The “DATA ascii” section contained the x, y, z coordinates of 

the mol2 file and a fourth column assigning a color to each of the eight VolSite pharmacophoric 

properties.7 Normal vectors and fast point feature histograms (FPFH)82 were computed for the source 

cloud and the target cloud. A first rough alignment was performed based on FPFH descriptors with the 

Random Sample Consensus (RANSAC) method45 in an iterative way 

(registration_ransac_based_on_feature_matching function). The rough alignment was subsequently 

refined with an Iterative Closest Point algorithm46 (registration_icp function) starting from the 

transformation matrix of the rough alignment. Alternative to registration_icp is 

registration_colored_icp, which is a function considering the color of points to compute transformation 

matrices. We further implemented a new descriptor, the colored-FPFH (c-FPFH). c-FPFH consists of 

41 bins: the 33 FPFH bins, with eight additional normalized bins accounting for the distribution of the 

eight colors (pharmacophoric properties) in the neighborhood of the point (Figure 8). 
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Figure 8. Fast point feature histogram (FPFH) and colored fast point feature histogram (c-FPFH) 

computation. A) Simplified schematic representation of a cloud of points. The neighborhood is 

perceived without considering the points colors. Considering a point Pq (green) whose FPFH is to be 
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computed, its neighbor points Ƥ𝑘 = {1, 2, 3} within a radius r are determined (green circle). For each 

neighbor in Ƥ𝑘, their respective neighbors are also determined within the radius r;  B) Between a point 

and each of its neighbor, an ensemble of θ, α and φ angular values are computed to reflect the local 

environment of each point; C) Each of the θ, α and φ computed values for the point Pq and its normal 

nq are respectively binned into 11-bin histograms with regular intervals deduced from minimal and 

maximal distances. The resulting 33-bin histogram forms the simplified point feature histogram (SPFH) 

of the point Pq. Similarly, the SPFH is computed for each point in Ƥ𝑘;  D) The FPFH of the point Pq is 

the sum of its SPFH and the distance-weighted average of its neighbors’ SPFHs;  E) Simplified 

schematic representation of a cloud of points with perception of point colors. Considering a point Pq 

(green) whose c-FPFH is to be computed, its neighbor points Ƥ𝑘 = {1, 2, 3}  within a radius r are 

determined (green circle). For each neighbor in Ƥ𝑘, their respective neighbors are also determined within 

radius r; F) The 33-bin histogram SPFH is computed for the point Pq, in addition to eight bins coding 

for the eight pharmacophoric features respectively, encompassing the percentage of each 

pharmacophoric feature in Ƥ𝑘. The final 41-bin histogram forms the c-SPFH of the point Pq. Similarly, 

the c-SPFH is computed for each point in Ƥ𝑘; G) The c-FPFH of the point Pq is the sum of its c-SPFH 

and the distance-weighted average of its neighbors’ c-SPFHs. 

 

ProCare parameters 

A set of values were rationally defined for 15 Open3D parameters (Table 1). A combination of these 

values led to 157,464 different alignment conditions.  

All possible combinations were tested on the EASY1 data set and their performance evaluated in three 

steps. First, parameter sets having rough and refined alignment fitness values higher than 0 were 

retrieved and their corresponding alignments were rescored with the above-described ph4-strict scoring 

scheme. 

 

Table 1. Open3D parameters values for ProCare alignment (default values are underlined) 

Parameter Tested values 

RANSAC cycle number of validations, rn 2; 4; 5 

RANSAC maximum number of validations, rv 50; 500 

RANSAC maximum number of iterations, ri 50,000; 100,000; 4,000,000 

Rough alignment transformation estimation type, gt TransformationEstimationPointToPoint 

Rough alignment distance threshold in Å, gd 0.75; 1.20; 1.50  

Checkers similarity threshold, cs 0.90; 0.96; 1.00 
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ICP alignment transformation estimation type, it TransformationEstimationPointToPoint; 

TransformationEstimationPointToPlane 

ICP alignment distance threshold in Å, id 0.75; 1.50; 3.00; 6.00 

ICP maximum iterations, ii 30; 100; 500 

ICP relative fitness threshold, if 10-7; 10-6; 10-5 

ICP relative RMSE threshold, ir 10-7; 10-6; 10-5 

Nearest neighbor search radius for normals in Å, nr 1.6; 3.1; 10 

Maximum number of neighbors for normal, nm 30; 471a 

Nearest neighbor search radius for FPFH in Å, r 2; 3.1; 4.6 

Maximum neighbors for FPFH, fm 100; 135a 

a Theoretical maximal value for 1.5 Å-regularly spaced point sets. 

 

Second, the area under the receiver operating characteristic (ROC) curve was assessed using either the 

Tanimoto or the Tversky metric to rank alignment similarity values. Corresponding parameter sets were 

conserved only if the ROC AUC was equal to 1. Finally, the target protein structures were aligned with 

UCSF Chimera v.1.1283 using the cavity transformation matrix previously generated by ProCare for 

three EASY1 pairs (HIV protease: residues 1-99, 100-198; beta-2 adrenergic receptor: residues 1-202, 

363-44; cyclin-dependent kinase 2: 2c6t-residues 1-35, 45-148; 1dm2 residues 1-35, 36-139, 140-272). 

Only parameter sets leading to a mean rmsd (backbone heavy atoms)  below 2 Å were kept for further 

analysis on the BO1 data set. 

 

ProCare scoring 

The quality of the alignment was estimated by two scores (fitness, RMSE) in Open3D. The fitness score 

(eq. 4) measures the overlap of source and target clouds as the ratio of  the number of inlier 

correspondences (points in the source cloud that are fitted to the target cloud, based on a nearest neighbor 

search on coordinates after transformation) to the total number of points in the source cloud. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑙𝑖𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑙𝑜𝑢𝑑
 

(4) 

 

RMSE (eq. 5) is the root-mean square error between corresponding pairs of points in source and target 

clouds. 
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𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑃𝑠𝑖 − 𝑃𝑡𝑖)2

𝑁

𝑖=1

, 𝑃𝑠 ∈  Ƥ𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑃𝑡 ∈  Ƥ𝑡𝑎𝑟𝑔𝑒𝑡 

      (5) 

  

We then implemented 3 additional scoring functions (ph4-strict, ph4-rules, ph4-ext) to evaluate the 

alignment of pharmacophoric properties. The ph4-strict scoring method, relies on the ball-tree algorithm 

implemented in scikit-learn,84 and searches for the nearest neighbor point in the largest cavity for each 

point of the smallest cavity, within a maximum distance d ( d = 1.5 Å by default). Three similarity 

indices (Tanimoto, Tversky, Wei) are computed for each alignment (eq. 6-8). 

𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜 =  
𝑐

𝑎 + 𝑏
 (6) 

𝑇𝑣𝑒𝑟𝑠𝑘𝑦(𝛼, 𝛽) =
𝑐

𝛼(𝑎−𝑐) + 𝛽(𝑏−𝑐)+𝑐
, (α=0.95, ϐ=0.05) (7) 

𝑊𝑒𝑖 =  ∑
1

𝑓𝑖

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

𝑖

∙
𝑐𝑖

𝑎
  , 𝑖 ∈  {𝐶𝐴, 𝐶𝑍, 𝑂, 𝑁, 𝑂𝐷1, 𝑁𝑍, 𝑂𝐺, 𝐷𝑈} 

(8) 

Where c is the number of fitted points of identical pharmacophoric properties, 

a and b are number of points of the smallest and the largest cavity, respectively, 

ci is the number of points of property i aligned, 

fi is the average frequency of points with property i in all sc-PDB cavities. 

The ph4-rules scoring function is defined as the ph4-strict, with c equal to the number of fitted points 

of similar pharmacophoric properties (Table 2). The ph4-ext scoring function is defined as the ph4-

strict, with c as the number of points in the smallest cloud which has a point of the same property of any 

of its neighbors in the target cloud. As for the ph4-strict scoring method, the Tanimoto, Tversky and 

frequency-weighted metrics are calculated. 

Table 2. Pharmacophoric matching rules used by the ph4-rules scoring function. 

Property Definition Compatible pharmacophoric properties 

CA Hydrophobic CA, CZ 

CZ Aromatic CZ, CA 

N H-bond donor N, NZ, OG 

NZ Positive NZ, N, OG 

O H-bond acceptor O, OD1, OG 

OD1 Negative OD1, O, OG 

OG H-bond acceptor & donor OG, N, O, OD1, NZ 

DU Dummy atom DU 



Chapter 2. Development of a new method for local comparison of protein pockets  

108 
 

Shaper comparisons 

Starting the from the same set of point clouds, Shaper7 relies on the OpenEye ShapeTK toolkit85 and a 

smooth Gaussian function to maximize the overlap of both cavity shapes and colors (pharmacophoric 

properties). The alignment between cavities A and B was scored as the higher of two Tversky metrics 

(eq. 9-10). 

𝑆𝐴,𝐵 =
𝑂𝐴,𝐵

0.95 𝐼𝐴 + 0.05 𝐼𝐵 + 𝑂𝐴,𝐵
 

(9) 

𝑆𝐴,𝐵 =
𝑂𝐴,𝐵

0.05 𝐼𝐴 + 0.95 𝐼𝐵 + 𝑂𝐴,𝐵
 

(10) 

where OA,B is the overlap between colors of cavities A and B, and I non-overlapped colors of each entity 

A and B. 

 

FuzCav comparisons 

FuzCav is an alignment-independent ultra-fast pocket similarity tool57 relying on generic 4833-integer 

vector registering counts of all possible pharmacophoric triplets from the C-α atomic coordinates of 

binding site-lining residues. The code was retrieved from authors' website86 and used with default 

parameters on binding sites (mol2 file format) deduced from atomic coordinates of the bound ligand, 

selecting any amino acid for which one heavy atom is present in a 6.5-Å radius sphere centered on the 

geometric barycenter of ligand heavy atoms.  Similarity between two pockets was estimated from the 

Hamming distance between the two compared fingerprints. 

 

KRIPO comparisons 

KRIPO discretizes protein- bound ligands into small fragments and further describe their binding 

subpockets by 3-point pharmacophore fuzzy fingerprints.36 Similarity between two fingerprints is 

estimated by a modified Tanimoto coefficient taking into account the mean density of each bit string. 

The code (version 1.0.1, released date: 2018-03-28) was downloaded from https://github.com/3D-e-

Chem/kripo. For purposes of comparing to other methods, default parameters were used to compute 

fingerprints without fragmentation using ligand expo sdf files.87 Lastly, fingerprints similarities were 

computed with Kripodb using default parameters and setting the score cutoff to 0. 
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PocketMatch comparisons 

PocketMatch58 describes a binding pocket as a set of 90 lists of sorted distances between three sets of 

critical atoms (Cα, Cβ and centroid of the side chain) of any cavity-lining residue classified in five 

groups according to their physicochemical properties.  Similarity between two binding sites is scored as 

the net average of the number of matching distances in the 90 lists as a fraction of the total number of 

distance elements in the bigger set. The program (version 2.1) was retrieved from authors' website88 and 

used with default parameters from ligand-binding sites in regular PDB file format. Similarity between 

two pockets was estimated using the P_max_OP score. 

 

ProBiS comparisons 

ProBiS detects structurally similar sites on protein surfaces by local surface structure alignment using a 

fast maximum clique algorithm.59 The program (version 2.4.7) was downloaded from the authors' web 

site.89 Starting from protein-ligand PDB files, default settings were used at the exception of the distance 

used to define binding site atoms from ligand atomic coordinates which was raised from 3.0 (default 

value to 6.5). Similarity between two pockets was estimated using the alignment score.  

 

SiteAlign comparisons 

SiteAlign60 is an alignment-dependent algorithm describing a pocket by eight topological and 

physicochemical attributes, projected from the Cα-atom of cavity-lining residues to an 80 triangle-

discretized polyhedron placed at the center of the binding site, thus defining a cavity fingerprint of 640 

integers. 3-D alignment is performed by moving the sphere within the target binding site while keeping 

the query sphere fixed. After each move, the distance of the newly described cavity descriptor is 

compared to that of the query, the best alignment being that minimizing the distance between both cavity 

fingerprints. The program (version 4.0) was retrieved from authors' website86 and used with default 

parameters from ligand-binding sites in regular mol2 file format. Similarity between two pockets was 

estimated as 1 minus the d2 score. 

 

ProCare running times 

Cavity alignments were run on a 64-bit Intel Core i5-4590 @ 3.30 GHz processor with 4 threads, 16 Go 

RAM. Average running time of a pair-wise comparison is 2.17 s. 
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Statistical analysis 

Data analysis was performed with in-house python scripts. The 90 % confidence intervals CI = [𝑖𝑢𝑝𝑝𝑒𝑟 

; 𝑖𝑙𝑜𝑤𝑒𝑟] for area under the ROC curve were obtained with 5,000 bootstrap samples, where 𝑖𝑢𝑝𝑝𝑒𝑟 and 

𝑖𝑙𝑜𝑤𝑒𝑟 were calculated with the NumPy90package to be the 95th and the 5th percentiles. Sampling fitting 

to the generalized extreme value (GEV) distribution and statistical tests were performed with EasyFit55 

and Scipy.91 

 

2.3.6. Associated content 

Supporting Information 

The supporting information is available free of charge on the ACS Publications website at DOI: 

https://dx.doi.org/10.1021/acs.jmedchem.0c00422. 

Properties of the BO1 data set of 766 protein-ligand cavity pairs; Example of misalignment for a pair of 

similar cavities from the BO1 set; Distribution of pocket size for fragments (light blue) and full cavities 

(dark blue); ProCare overlay of cavities from unrelated targets; EASY1 set of similar and dissimilar 

pairs; List of BO1 similar pairs; List of BO1 dissimilar pairs; Optimal parameters to align cavities from 

the BO1 set; Revised Vertex dataset of 338 positive and 338 negative pairs; Frag-Lig set of 578 pairs of 

protein-fragment and related protein-ligand and complexes; Fragment hits for the muscarinic M5 

receptor (PDB ID 6OL9); Fragment hits for the TNF-alpha (PDB ID 6OOY); Fragment hits for the 

cysteinyl leukotriene receptor 2 (PDB ID 6RZ8). 
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2.3.8. Supporting information for A computer vision approach to align and 

compare protein cavities: Application to fragment-based drug design 

 

 

 

Figure S1. Properties of  the BO1 data set of 766 protein-ligand cavity pairs 

Figure S2. Example of misalignment for a pair of similar cavities from the BO1 set. 

Figure S3. Distribution of pocket size for fragments (light blue) and full cavities (dark blue). Size is 

expressed as the number of points (voxel centers) encompassing the pocket placed in a 2 Å-regular 3D 

lattice. 

Figure S4. ProCare overlay of cavities from unrelated targets. 

Table S1. EASY1 set of similar and dissimilar pairs 

Table S2.  List of BO1 similar pairs 

Table S3. List of BO1 dissimilar pairs 

Table S4. Optimal parameters to align cavities from the BO1 set. 

Table S5. Revised Vertex dataset of 338 positive and 338 negative pairs 

Table S6. Frag-Lig set of 578 pairs of protein-fragment and related protein-ligand and complexes. 

Table S7. Fragment hits for the muscarinic M5 receptor (PDB ID 6OL9). 

Table S8. Fragment hits for the TNF-alpha (PDB ID 6OOY). 

Table S9. Fragment hits for the cysteinyl leukotriene receptor 2 (PDB ID 6RZ8). 
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Figure S1. Properties of  the BO1 data set of 766 protein-ligand cavity pairs (383 similar, 383 

dissimilar). Because the notion of similarity and dissimilarity of protein pockets is context-dependent, 

we defined two similar cavities as deriving from pairs of different proteins (different Uniprot accession 

numbers) that are similar in terms of sequence (50-100% identity), structure (rmsd on backbone atoms 

≤ 5 Å) and functions (Uniprot keywords annotation). No constraint was applied on the bound-ligand 

chemical similarity, so that different cases are represented (0 ≤ chemical similarity < 1; see 

Computational methods for similarity calculation). Conversely, pairs of dissimilar cavities were formed 

from the same target space, but need to be different in terms of function and bound ligands (0 ≤ chemical 

similarity ≤ 0.4) in order to rule out potential wrong class annotations. The final sets of similar and 

dissimilar cavities have comparable distribution of size (i.e. number of points) difference between 

members of each pair, with the aim of eliminating possible biases in results due to alignment of 

differently-sized objects.  
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A) Protein-bound ligand similarity (Tanimoto coefficient from Morgan fingerprints) vs. protein 

sequence identity (PIM of Clustal Omega alignment with default parameters) for similar (blue) and 

dissimilar pairs (redbrick); B) Distribution of the difference in the size of cavity point clouds for 

dissimilar pairs; C) Distribution of the difference in the size of cavity point clouds for similar pairs.  

 

Figure S2. Example of misalignment for a pair of similar cavities from the BO1 set. A) ProCare FPFH-

icp alignment of 3-(4,5,6,7-tetrabromo-1H-benzotriazol-1-yl)propan-1-ol cavity in casein kinase II 

subunit alpha’ (PDB ID: 3OFM, HET: 4B0) to phosphoaminophosphonic acid-adenylate ester cavity in 
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casein kinase II subunit alpha (PDB ID: 3U87, HET:ANP). The ProCare transformation matrix was 

applied to ligand and protein atomic coordinates and showed misalignment of proteins (rmsd of protein 

backbone heavy atoms: 43 Å); B) ProCare c-FPFH-icp correct alignment (rmsd of proteins backbone 

heavy atoms: 3.1 Å) of the same pair. 

 

 

 

 

Figure S3. Distribution of pocket size for fragments (light blue) and full cavities (dark blue). Size is 

expressed as the number of points (voxel centers) encompassing the pocket placed in a 1.5 Å-regular 

3D lattice. 
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Figure S4. ProCare overlay of cavities from unrelated targets. A) Alignment of a phosphoribosyl-

binding subpocket in catabolite activator protein CAP (PDB ID: 1RUO, HET: CMP) to full ONO-

2080365 binding site in cysteinyl leukotriene receptor 2 CYSTLR2 (PDB ID: 6RZ8, HET: KNZ). The 

derived transformation matrix was applied to the corresponding fragments and protein atomic 

coordinates. In both proteins, basic residues (K194 in CYSTLR2 and R82 in CAP) interacting with 

acidic groups in ligands were matched. Hydrogen-bond acceptors (Y119 in CYSTLR2 and E72 in CAP), 

aliphatic hydrophobic residues (L190 in CYSTLR2 and A84 in CAP) are also matched;  B) Alignment 

of N-(1,3-thiazol-2-yl)benzamide moiety binding environment in glucokinase (PDB ID: 3F9M, HET: 

MRK) to full ONO-2080365 binding site in cysteinyl leukotriene receptor 2 CYSTLR2 (PDB ID: 6RZ8, 

HET: KNZ). The derived transformation matrix was applied to the corresponding fragments and protein 

atomic coordinates. In both proteins, aromatic residues (Y97, Y119, Y123 in CYSTLR2 and Y61, Y214, 
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Y215 in glucokinase), basic residues (K194 in CYSTLR2 and H156 in glucokinase), acidic residues 

(E97 in CYSTLR2 and D158 in glucokinase), aliphatic hydrophobic residues (L198 in CYSTLR2 and 

V452 in CAP) were matched.   
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Table S1. EASY1 set of five similar and five dissimilar pairs 

 β2-adrenergic 

receptor 

Estrogen 

receptor α 

Cyclin-dependent 

kinase 2 

HIV-1 protease Glutamate 

receptor 2 

 2RH1 5D6L 2OUZ 3ERT 2C6T 1DM2 1C6X 2B7Z 1FTL 1LB9 

2RH1           

5D6L           

2OUZ           

3ERT           

2C6T           

1DM2           

1C6X           

2B7Z           

1FTL           

1LB9           

Five targets are represented by two protein-ligand complexes, each (PDB identifiers given as column 

and row names). The pairs of similar and dissimilar cavities are displayed by green and red boxes, 

respectively. 
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Table S2. List of BO1 similar pairs 

 

The list of the 383 pairs of similar cavities is available as supporting information at: 

https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf 

 

 

Table S3. List of BO1 dissimilar pairs 

 

The list of the 383 pairs of dissimilar cavities is available as supporting information at: 

https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf 

 

 

Table S4. Optimal Open3D parameters to align cavities from the BO1 set. 

Parameter Value 

RANSAC cycle number of validations, rn 4 

RANSAC maximum number of validations, rv 500 

RANSAC maximum number of iterations, ri 4,000,000 

Rough alignment transformation estimation type, gt TransformationEstimationPointToPoint 

Rough alignment distance threshold in Å, gd 1.5 

Checkers similarity threshold, cs 0.9 

ICP alignment transformation estimation type, it TransformationEstimationPointToPoint 

ICP alignment distance threshold in Å, id 3 

ICP maximum iterations, ii 100 

ICP relative fitness threshold, if 10-6 

ICP relative RMSE threshold, ir 10-6 

Nearest neighbor search radius for normals in Å, nr 3.1 

Maximum number of neighbors for normal, nm 471 

Nearest neighbor search radius for FPFH in Å, fr 3.1 

Maximum neighbors for FPFH, fm 135 

 

  

https://doi.org/10.1021/acs.jmedchem.0c00422
https://doi.org/10.1021/acs.jmedchem.0c00422
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Table S5. Revised Vertex dataset of 338 positive and 338 negative pairs 

The list of the pairs of similar and dissimilar cavities is available as supporting information at: 

https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf 

 

 

Table S6. Frag-Lig set of 578 pairs of protein-fragment and related protein-ligand and complexes. 

The list of the pairs of cavities is available as supporting information at: 

https://doi.org/10.1021/acs.jmedchem.0c00422: jm0c00422_si_001.pdf 

 

 

Table S7. Fragment hits for the muscarinic M5 receptor (PDB ID 6OL9). 

FragIDa Protein name Rank ProCaReb IFPc IFP_polard FragScoree 

5CXV_0HK_1_1 Muscarinic acetylcholine receptor m1 1 0.82 0.54 0.50 1.61 

1N43_BTN_1_1 Streptavidin 2 0.48 0.54 0.50 1.27 

1UMK_FAD_1_1 Nadh-cytochrome b5 reductase 3 0.60 0.42 0.50 1.26 

1YRO_GDU_2_2 Alpha-lactalbumin 4 0.48 0.46 0.50 1.19 

1C0I_BE2_2_1 D-amino acid oxydase 5 0.63 0.27 0.50 1.16 

4U16_OHK_1_1 Muscarinic acetylcholine receptor m3 6 0.72 0.43 0.00 1.15 

3HV6_R39_1_1 Mitogen-activated protein kinase 14 7 0.56 0.33 0.50 1.14 

3RPE_FAD_1_1 Modulator of drug activity b 8 0.62 0.25 0.50 1.12 

3U2L_FAD_1_1 Fad-linked sulfhydryl oxidase alr 9 0.61 0.25 0.50 1.11 

3AOS_JH2_1_1 Hemolymph juvenile hormone binding 

protein 

10 0.57 0.53 0.00 1.10 

1ZZ1_SHH_1_1 Histone deacetylase-like amidohydrolase 11 0.56 0.54 0.00 1.10 

4BMZ_MTA_1_1 Mta/sah nucleosidase 12 0.47 0.36 0.50 1.08 

2YG3_FAD_2_3 Putrescine oxidase 13 0.49 0.33 0.50 1.07 

1S3V_TQD_1_2 Dihydrofolate reductase 14 0.53 0.54 0.00 1.07 

3HZG_FAD_1_1 Thymidylate synthase thyx 15 0.48 0.33 0.50 1.07 

1QJX_W02_1_3 None 16 0.58 0.45 0.00 1.04 

2EIX_FAD_2_1 Nadh-cytochrome b5 reductase 17 0.47 0.31 0.50 1.03 

3QCI_NX3_1_2 Receptor-type tyrosine-protein phosphatase 

gamma 

18 0.64 0.38 0.00 1.03 

3G5E_Q74_1_1 Aldose reductase 19 0.52 0.50 0.00 1.02 

4U15_0HK_1_1 Muscarinic acetylcholine receptor m3 20 0.67 0.36 0.00 1.02 

3VLN_ASC_1_1 Glutathione s-transferase omega-1 21 0.54 0.23 0.50 1.02 

4H96_14Q_1_3 Dihydrofolate reductase 22 0.55 0.31 0.33 1.02 

4B1I_A8P_1_2 Poly(adp-ribose) glycohydrolase 23 0.52 0.25 0.50 1.02 

3VTB_TKA_1_1 Vitamin d3 receptor 24 0.52 0.50 0.00 1.02 

3ETE_NDP_11_3 Glutamate dehydrogenase 25 0.48 0.29 0.50 1.01 

2BF4_FAD_1_1 Nadph-cytochrome p450 reductase 26 0.51 0.25 0.50 1.01 

4JJU_1MB_2_1 Genome polyprotein 27 0.51 0.50 0.00 1.01 

2PDG_47D_1_1 Aldose reductase 28 0.62 0.38 0.00 1.01 

4AA0_AA0_1_3 Mitogen-activated protein kinase 14 29 0.48 0.27 0.50 1.01 

1VOT_HUP_1_1 Acetylcholinesterase 30 0.54 0.47 0.00 1.00 

1OE0_TTP_2_2 Deoxyribonucleoside kinase 31 0.60 0.15 0.50 1.00 

https://doi.org/10.1021/acs.jmedchem.0c00422
https://doi.org/10.1021/acs.jmedchem.0c00422
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3PX3_T3Q_2_1 N-methyltransferase 32 0.49 0.25 0.50 0.99 

4U14_0HK_1_1 Muscarinic acetylcholine receptor m3 33 0.56 0.43 0.00 0.99 

4GCA_2X9_1_2 Aldose reductase 34 0.61 0.38 0.00 0.99 

2G27_4LG_2_1 Renin 35 0.56 0.42 0.00 0.98 

3GHR_LDT_1_2 Aldose reductase 36 0.59 0.38 0.00 0.98 

2PDX_ZST_1_2 Aldose reductase 37 0.54 0.44 0.00 0.98 

4KNI_E1E_1_2 Carbonic anhydrase 2 38 0.54 0.43 0.00 0.97 

1LCZ_BH7_2_1 Streptavidin 39 0.55 0.42 0.00 0.97 

4GDA_BTN_1_1 Streptavidin 40 0.52 0.45 0.00 0.97 

3E93_19B_1_4 Mitogen-activated protein kinase 14 41 0.64 0.33 0.00 0.97 

3PX2_T3Q_2_1 N-methyltransferase 42 0.48 0.23 0.50 0.96 

3OU7_SAM_2_1 Sam-dependent methyltransferase 43 0.52 0.44 0.00 0.95 

2BAB_FAD_1_3 Putative aminooxidase 44 0.52 0.43 0.00 0.95 

2PDB_ZST_1_2 Aldose reductase 45 0.49 0.46 0.00 0.95 

5PAH_LDP_1_1 Phenylalanine 4-monooxygenase 46 0.55 0.15 0.50 0.95 

1QIW_DPD_2_2 Calmodulin 47 0.55 0.40 0.00 0.95 

3G70_A5T_1_3 Renin 48 0.56 0.38 0.00 0.95 

3LBO_LDT_1_2 Aldose reductase 49 0.56 0.38 0.00 0.95 

4A6D_SAM_1_1 Hydroxyindole o-methyltransferase 50 0.48 0.47 0.00 0.94 

4GBD_MCF_1_2 Methylthioadenosine deaminase 51 0.47 0.47 0.00 0.94 

4XUG_F9F_1_1 Tryptophan synthase alpha chain 52 0.47 0.47 0.00 0.94 

3G72_A6T_1_3 Renin 53 0.48 0.46 0.00 0.94 

1AH4_NAP_1_3 Aldose reductase 54 0.48 0.29 0.33 0.94 

2PD9_FID_1_1 Aldose reductase 55 0.50 0.44 0.00 0.94 

2HVO_ZST_1_2 Aldose reductase 56 0.51 0.43 0.00 0.94 

3N7H_DE3_1_1 Odorant binding protein 57 0.51 0.43 0.00 0.94 

2HNZ_PC0_1_2 Reverse transcriptase/ribonuclease h 58 0.47 0.46 0.00 0.93 

4JUA_TZD_1_1 Benzoylformate decarboxylase 59 0.63 0.14 0.33 0.93 

4BFP_SWY_2_4 Tankyrase-2 60 0.48 0.45 0.00 0.93 

3T7R_6PP_1_1 Putative methyltransferase 61 0.48 0.29 0.33 0.93 

2CND_FAD_1_1 Nadh-dependent nitrate reductase 62 0.62 0.31 0.00 0.93 

2FZ9_ZST_1_2 Aldose reductase 63 0.50 0.43 0.00 0.93 

3LCC_SAH_1_1 Putative methyl chloride transferase 64 0.50 0.43 0.00 0.93 

1T64_TSN_2_1 Histone deacetylase 8 65 0.51 0.41 0.00 0.92 

4EMD_C5P_1_2 4-diphosphocytidyl-2-c-methyl-d-erythritol 

kinase 

66 0.59 0.08 0.50 0.92 

4R5W_XAV_2_1 Poly [adp-ribose] polymerase 1 67 0.56 0.36 0.00 0.92 

2PD5_ZST_1_2 Aldose reductase 68 0.49 0.43 0.00 0.92 

2IU8_UD1_1_2 Udp-3-o-[3-hydroxymyristoyl] glucosamine 

n-acyltransferase 

69 0.59 0.08 0.50 0.92 

2I65_NAD_2_1 Adp-ribosyl cyclase 1 70 0.62 0.30 0.00 0.92 

3UFL_508_1_2 Beta-secretase 1 71 0.65 0.27 0.00 0.92 

4UM3_09R_17_2 Acetylcholine binding protein 72 0.61 0.31 0.00 0.92 

1G3M_PCQ_1_1 Estrogen sulfotransferase 73 0.58 0.33 0.00 0.92 

3L8S_BFF_1_2 Mitogen-activated protein kinase 14 74 0.49 0.43 0.00 0.92 

1M51_TSX_1_2 Phosphoenolpyruvate carboxykinase 75 0.58 0.33 0.00 0.91 

4YFY_0FX_1_3 Viof 76 0.70 0.21 0.00 0.91 

2A8Y_MTA_7_1 5'-methylthioadenosine phosphorylase 77 0.48 0.43 0.00 0.91 
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3QCL_NXV_1_2 Receptor-type tyrosine-protein phosphatase 

gamma 

78 0.49 0.42 0.00 0.91 

3NJQ_NJQ_2_1 ORF 17 79 0.52 0.38 0.00 0.91 

4A79_P1B_2_1 Amine oxidase [flavin-containing] B 80 0.66 0.25 0.00 0.91 

4BU9_08C_2_2 Tankyrase-2 81 0.54 0.36 0.00 0.91 

1HQT_NAP_1_3 Aldehyde reductase 82 0.56 0.22 0.25 0.91 

2FZ8_ZST_1_1 Aldose reductase 83 0.53 0.38 0.00 0.91 

2O5D_VR1_2_1 HCV 84 0.48 0.18 0.50 0.90 

3G1O_RF1_1_1 Transcriptional regulatory repressor protein 

(tetr-family) ethr 

85 0.50 0.40 0.00 0.90 

3NWE_662_1_3 Catechol o-methyltransferase 86 0.54 0.36 0.00 0.90 

2JGS_BTN_3_1 Circular permutant of avidin 87 0.55 0.35 0.00 0.90 

1O5P_CHR_1_2 Neocarzinostatin 88 0.56 0.33 0.00 0.90 

1IKV_EFZ_1_2 Pol polyprotein 89 0.65 0.25 0.00 0.90 

1SM4_FAD_2_3 Chloroplast ferredoxin-nadp+ 

oxidoreductase 

90 0.48 0.25 0.33 0.89 

3W2E_FAD_1_1 Nadh-cytochrome b5 reductase 3 91 0.56 0.33 0.00 0.89 

2Q96_A18_1_2 Methionine aminopeptidase 92 0.66 0.23 0.00 0.89 

3QCM_NXW_1_3 Receptor-type tyrosine-protein phosphatase 

gamma 

93 0.53 0.36 0.00 0.89 

4I5X_FLF_1_1 Aldo-keto reductase family 1 member b10 94 0.50 0.39 0.00 0.89 

1FRB_ZST_1_2 Fr-1 protein 95 0.51 0.38 0.00 0.89 

2V8P_CDP_3_1 4-diphosphocytidyl-2-c-methyl-d-erythritol 

kinase 

96 0.56 0.08 0.50 0.88 

4M7V_RAR_1_3 Dihydrofolate reductase 97 0.48 0.40 0.00 0.88 

3TVX_PNX_1_1 Camp-specific 3' 98 0.53 0.36 0.00 0.88 

1PAX_DHQ_1_1 Poly(adp-ribose) polymerase 99 0.52 0.36 0.00 0.88 

3O8H_O8H_1_1 Transcriptional regulatory repressor protein 

(tetr-family) ethr 

100 0.48 0.23 0.33 0.88 

a Fragment name (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the corresponding 

ligand chemical component (HET), the target cavity identifier (C), and the fragment number (N). 

b cavity similarity score, computed by ProCare, between the fragment-bound subpocket and the query target 

cavity 

c Interaction fingerprint similarity, computed with IChem, between the subpocket-fragment interaction 

fingerprint and the query target-ligand interaction fingerprint 

d Interaction fingerprint similarity (polar interactions only), computed with IChem, between the subpocket-

fragment interaction fingerprint and the query target-ligand interaction fingerprint 

e FragScore = ProCare + IFP + 0.5*(IFP_polar) 
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Table S8. Fragment hits for the TNF-alpha (PDB ID 6OOY). 

FragIDa Protein name Rank ProCaReb IFPc IFP_polard FragScoree 

4KZ0_1UJ_1_1 Phosphatidylinositol 4,5-bisphosphate 3-

kinase 

1 0.57 0.67 0.50 1.48 

4CCB_OFG_1_4 Alk tyrosine kinase receptor 2 0.72 0.67 0.00 1.39 

4NQM_Y1Z_1_3 Bromodomain-containing protein 4 3 0.60 0.57 0.33 1.34 

3K3K_A8S_1_1 Abscisic acid receptor pyr1 4 0.51 0.64 0.33 1.32 

1VRT_NVP_1_2 HIV-1 reverse transcriptase 5 0.63 0.50 0.33 1.30 

3K90_A8S_1_1 Abscisic acid receptor pyr1 6 0.55 0.57 0.33 1.29 

3R04_UNQ_1_1 Proto-oncogene serine/threonine-protein 

kinase pim-1 

7 0.65 0.46 0.33 1.28 

1LW0_NVP_1_2 HIV-1 reverse transcriptase 8 0.61 0.50 0.33 1.27 

4IWC_1GV_2_1 Estrogen receptor 9 0.73 0.55 0.00 1.27 

4OTY_LUR_2_1 Prostaglandin g/h synthase 2 10 0.62 0.64 0.00 1.26 

3UMW_596_1_2 Proto-oncogene serine/threonine-protein 

kinase pim-1 

11 0.70 0.56 0.00 1.25 

1LWE_NVP_1_2 HIV-1 reverse transcriptase 12 0.58 0.50 0.33 1.25 

2L85_L85_1_1 Creb-binding protein 13 0.58 0.50 0.33 1.25 

3TUC_FPW_1_2 Tyrosine-protein kinase syk 14 0.67 0.57 0.00 1.24 

4NYW_2O3_1_2 Creb-binding protein 15 0.53 0.54 0.33 1.24 

3BTO_SSB_1_1 Liver alcohol dehydrogenase 16 0.63 0.60 0.00 1.23 

1YDT_IQB_1_1 C-AMP-dependent protein kinase 17 0.61 0.50 0.25 1.23 

4HXM_1A8_1_1 Bromodomain-containing protein 4 18 0.57 0.53 0.25 1.23 

1NDE_MON_1_3 Estrogen receptor beta 19 0.63 0.60 0.00 1.23 

4F9W_LM4_3_3 Mitogen-activated protein kinase 14 20 0.67 0.56 0.00 1.22 

4DFL_0K0_1_1 Tyrosine-protein kinase syk 21 0.56 0.50 0.33 1.22 

1Q3E_PCG_2_1 Potassium/sodium hyperpolarization-

activated cyclic nucleotide-gated channel 2 

22 0.57 0.40 0.50 1.22 

3RR3_FLR_3_2 Prostaglandin g/h synthase 2 23 0.68 0.54 0.00 1.22 

4IV2_1GR_2_1 Estrogen receptor 24 0.64 0.57 0.00 1.21 

1JLQ_SBN_1_1 HIV-1 reverse transcriptase 25 0.59 0.62 0.00 1.21 

3EVC_SAH_1_1 RNA-directed rna polymerase ns5 26 0.49 0.38 0.67 1.21 

2NNL_ERD_1_1 Dihydroflavonol 4-reductase 27 0.54 0.50 0.33 1.20 

4CFL_8DQ_1_1 Brd4 protein 28 0.57 0.47 0.33 1.20 

3RIN_I2O_1_2 Mitogen-activated protein kinase 14 29 0.61 0.43 0.33 1.20 

3K3J_I46_2_1 Mitogen-activated protein kinase 14 30 0.73 0.46 0.00 1.20 

3CX5_SMA_2_1 Cytochrome b-c1 complex subunit 1 31 0.62 0.41 0.33 1.19 

3GB2_G3B_1_2 Glycogen synthase kinase-3 beta 32 0.57 0.46 0.33 1.19 

1S1X_NVP_1_2 HIV-1 reverse transcriptase 33 0.60 0.43 0.33 1.19 

4G1W_G1W_1_1 Mitogen-activated protein kinase 8 34 0.58 0.62 0.00 1.19 

3V49_PK0_1_1 Androgen receptor 35 0.56 0.47 0.33 1.19 

4F9Y_GG5_1_3 Mitogen-activated protein kinase 14 36 0.77 0.42 0.00 1.18 

2X0W_X0W_1_1 Cellular tumor antigen p53 37 0.55 0.47 0.33 1.18 

2XIZ_XIZ_1_1 Proto-oncogene serine/threonine protein 

kinase pim-1 

38 0.68 0.50 0.00 1.18 

4NG5_PFB_4_1 Alcohol dehydrogenase e chain 39 0.55 0.64 0.00 1.18 

3Q7D_NPX_1_1 Prostaglandin g/h synthase 2 40 0.67 0.50 0.00 1.17 

4PWD_NVP_1_2 HIV-1 reverse transcriptase 41 0.58 0.43 0.33 1.17 

2JJ3_JJ3_2_1 Estrogen receptor beta 42 0.64 0.53 0.00 1.17 
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2L1R_SXK_1_2 Troponin c 43 0.71 0.46 0.00 1.17 

3K14_535_1_1 2-c-methyl-d-erythritol 2 44 0.50 0.67 0.00 1.17 

3N6U_TSU_1_1 Lysr type regulator of tsambcd 45 0.64 0.36 0.33 1.16 

2XIY_XIY_1_1 Proto-oncogene serine/threonine protein 

kinase pim-1 

46 0.70 0.46 0.00 1.16 

4I5H_G17_1_2 Mitogen-activated protein kinase 1 47 0.60 0.56 0.00 1.16 

4ZHX_C1V_1_2 5'-amp-activated protein kinase catalytic 

subunit alpha-2 

48 0.71 0.44 0.00 1.16 

2CLF_F6F_1_1 Tryptophan synthase alpha chain 49 0.54 0.62 0.00 1.15 

4OKT_198_1_1 Androgen receptor 50 0.48 0.67 0.00 1.15 

3MSS_MS7_4_2 Tyrosine-protein kinase ABL1 51 0.60 0.55 0.00 1.15 

3LP1_NVP_2_2 HIV-1 reverse transcriptase 52 0.55 0.43 0.33 1.15 

2WUZ_TPF_2_1 Lanosterol 14-alpha-demethylase 53 0.52 0.63 0.00 1.15 

2WMW_ZYW_1_1 Serine/threonine-protein kinase chk1 54 0.65 0.50 0.00 1.15 

5DQ8_FLF_2_1 Transcriptional enhancer factor tef-4 55 0.57 0.57 0.00 1.14 

4F4P_0SB_1_2 Tyrosine-protein kinase syk 56 0.64 0.50 0.00 1.14 

3I0R_RT3_1_1 Reverse transcriptase/ribonuclease h 57 0.60 0.55 0.00 1.14 

4EH4_0OL_2_1 Mitogen-activated protein kinase 14 58 0.48 0.67 0.00 1.14 

1OUK_084_1_3 Mitogen-activated protein kinase 14 59 0.70 0.44 0.00 1.14 

4PH9_IBP_1_1 Prostaglandin g/h synthase 2 60 0.53 0.62 0.00 1.14 

2UZT_SS3_1_2 Camp-dependent protein kinase 61 0.71 0.43 0.00 1.14 

2RTP_IMI_1_1 Streptavidin 62 0.51 0.46 0.33 1.14 

4ANQ_VGH_1_2 Alk tyrosine kinase receptor 63 0.69 0.44 0.00 1.14 

2Q2Y_MKR_2_1 Kinesin-like protein kif11 64 0.52 0.62 0.00 1.14 

1BDB_NAD_1_3 Cis-biphenyl-2 65 0.51 0.50 0.25 1.14 

4IUI_1GQ_1_2 Estrogen receptor 66 0.49 0.64 0.00 1.14 

3SRS_M23_1_2 Dihydrofolate reductase 67 0.60 0.54 0.00 1.14 

4OJB_198_1_1 Androgen receptor 68 0.64 0.50 0.00 1.14 

3IW2_EKO_1_1 XAA-PRO Dipeptidase 69 0.55 0.58 0.00 1.13 

3IW7_IPK_1_1 Mitogen-activated protein kinase 14 70 0.70 0.43 0.00 1.13 

4KQK_PCR_1_1 Nicotinate-nucleotide--

dimethylbenzimidazole 

phosphoribosyltransferase 

71 0.56 0.57 0.00 1.13 

1PMU_9HP_1_1 Mitogen-activated protein kinase 10 72 0.67 0.46 0.00 1.13 

3NC2_QUZ_1_1 Ketohexokinase 73 0.53 0.60 0.00 1.13 

4GE7_0K5_1_1 Kynurenine/alpha-aminoadipate 

aminotransferase 

74 0.53 0.43 0.33 1.13 

2I0V_6C3_1_1 Cfms tyrosine kinase 75 0.50 0.63 0.00 1.13 

4OLM_198_1_1 Androgen receptor 76 0.57 0.56 0.00 1.13 

3ZSI_52P_1_1 Mitogen-activated protein kinase 14 77 0.63 0.50 0.00 1.13 

4IVY_1GT_1_1 Estrogen receptor 78 0.62 0.50 0.00 1.12 

3F8C_HT1_1_3 Transcriptional regulator 79 0.65 0.31 0.33 1.12 

4ERF_0R3_1_3 E3 ubiquitin-protein ligase mdm2 80 0.62 0.50 0.00 1.12 

3PVW_QRX_1_1 Beta-adrenergic receptor kinase 1 81 0.49 0.46 0.33 1.12 

2ITP_AEE_1_1 Epidermal growth factor receptor precursor 82 0.62 0.33 0.33 1.12 

3BQR_4RB_1_1 Death-associated protein kinase 3 83 0.72 0.40 0.00 1.12 

4CFK_LY2_1_1 Brd4 protein 84 0.55 0.40 0.33 1.12 

2YFE_YFE_2_1 Peroxisome proliferator-activated receptor 

gamma 

85 0.48 0.64 0.00 1.12 
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3KDT_7HA_2_3 Peroxisome proliferator-activated receptor 

alpha 

86 0.59 0.36 0.33 1.12 

3ZLS_92P_1_1 Dual specificity mitogen-activated protein 

kinase kinase 1 

87 0.58 0.54 0.00 1.11 

2QHN_582_1_1 Serine/threonine-protein kinase chk1 88 0.48 0.47 0.33 1.11 

4EOS_1RO_1_3 Cyclin-dependent kinase 2 89 0.64 0.31 0.33 1.11 

3KPK_FAD_1_3 Sulfide-quinone reductase 90 0.54 0.40 0.33 1.11 

3C5U_P41_2_1 Mitogen-activated protein kinase 14 91 0.57 0.54 0.00 1.11 

2M56_CAM_1_1 Camphor 5-monooxygenase 92 0.53 0.58 0.00 1.11 

4FJ2_NAP_3_3 17beta-hydroxysteroid dehydrogenase 93 0.48 0.47 0.33 1.11 

1UUM_AFI_2_2 Dihydroorotate dehydrogenase 94 0.67 0.44 0.00 1.11 

2A4Z_BYM_1_1 Phosphatidylinositol-4 95 0.55 0.56 0.00 1.11 

2X2K_X2K_1_1 Proto-oncogene tyrosine-protein kinase 

receptor ret 

96 0.54 0.57 0.00 1.11 

2YIS_I46_2_1 Mitogen-activated protein kinase 14 97 0.69 0.42 0.00 1.11 

1C0T_BM1_1_1 HIV-1 reverse transcriptase 98 0.60 0.50 0.00 1.10 

3Q95_ESL_1_1 Estrogen receptor 99 0.57 0.53 0.00 1.10 

3L8S_BFF_1_2 Mitogen-activated protein kinase 14 100 0.60 0.50 0.00 1.10 

a Fragment name (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the corresponding 

ligand chemical component (HET), the target cavity identifier (C), and the fragment number (N). 

b cavity similarity score, computed by ProCare, between the fragment-bound subpocket and the query target 

cavity 

c Interaction fingerprint similarity, computed with IChem, between the subpocket-fragment interaction 

fingerprint and the query target-ligand interaction fingerprint 

d Interaction fingerprint similarity (polar interactions only), computed with IChem, between the subpocket-

fragment interaction fingerprint and the query target-ligand interaction fingerprint 

e FragScore = ProCare + IFP + 0.5*(IFP_polar) 
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Table S9. Fragment hits for the cysteinyl leukotriene receptor 2 (PDB ID 6RZ8) 

FragIDa Protein name Rank ProCaReb IFPc IFP_polard FragScoree 

1RUO_CMP_1_1 Catabolite gene activator protein 1 0.55 0.38 1.00 1.43 

3F9M_MRK_1_1 Glucokinase 2 0.57 0.56 0.50 1.38 

2XBJ_XBJ_1_2 Serine/threonine-protein kinase chk2 3 0.64 0.67 0.00 1.30 

4FCQ_2N6_1_1 Heat shock protein hsp 90-alpha 4 0.52 0.78 0.00 1.30 

2RHT_C1E_1_1 2-hydroxy-6-oxo-6-phenylhexa-2 5 0.51 0.27 1.00 1.29 

3UIV_308_1_1 None 6 0.61 0.64 0.00 1.25 

3QCH_NX2_1_2 

Receptor-type tyrosine-protein 

phosphatase gamma 7 0.52 0.73 0.00 1.25 

1YW2_PGJ_1_2 Mitogen-activated protein kinase 14 8 0.67 0.55 0.00 1.22 

3MTF_A3F_2_1 Activin receptor type-1 9 0.55 0.50 0.33 1.22 

3DT1_P40_1_3 Mitogen-activated protein kinase 14 10 0.57 0.64 0.00 1.21 

2ZB3_NDP_1_3 Prostaglandin reductase 2 11 0.49 0.32 0.80 1.20 

1YC3_4BC_1_3 Heat shock protein hsp 90-alpha 12 0.54 0.42 0.50 1.20 

2Q2Y_MKR_2_1 Kinesin-like protein kif11 13 0.47 0.71 0.00 1.19 

1MX5_HTQ_3_1 None 14 0.58 0.36 0.50 1.19 

3FL9_TOP_2_2 Dihydrofolate reductase (dhfr) 15 0.53 0.40 0.50 1.18 

4Z35_ON7_1_1 Lysophosphatidic acid receptor 1 16 0.51 0.67 0.00 1.18 

1E06_IPB_2_1 None 17 0.51 0.67 0.00 1.17 

1HPZ_AAP_1_2 Pol polyprotein 18 0.47 0.70 0.00 1.17 

4MF1_29Y_1_2 Tyrosine-protein kinase itk/tsk 19 0.60 0.57 0.00 1.17 

3CW9_01A_2_3 4-chlorobenzoyl coa ligase 20 0.52 0.47 0.33 1.16 

3VRY_B43_1_3 Tyrosine-protein kinase hck 21 0.62 0.54 0.00 1.15 

1Q43_CMP_1_1 

Potassium/sodium hyperpolarization-

activated cyclic nucleotide-gated channel 

2 22 0.47 0.43 0.50 1.15 

1EET_BFU_1_2 Hiv-1 reverse transcriptase 23 0.48 0.67 0.00 1.15 

3TKU_M77_1_1 

Serine/threonine-protein kinase mrck 

beta 24 0.48 0.41 0.50 1.15 

2C3I_IYZ_1_3 Pimtide 25 0.54 0.60 0.00 1.14 

2YI5_YI5_1_2 Heat shock protein hsp 90-alpha 26 0.49 0.40 0.50 1.14 

4IWQ_1FV_1_2 Serine/threonine-protein kinase tbk1 27 0.52 0.62 0.00 1.14 

1RD4_L08_1_2 Integrin alpha-l 28 0.51 0.62 0.00 1.13 

3IW7_IPK_1_1 Mitogen-activated protein kinase 14 29 0.63 0.50 0.00 1.13 

3L8S_BFF_1_2 Mitogen-activated protein kinase 14 30 0.59 0.54 0.00 1.13 

3ULE_C69_1_1 Actin-related protein 3 31 0.56 0.44 0.25 1.12 

3OAF_OAG_1_1 Dihydrofolate reductase 32 0.53 0.58 0.00 1.12 

4LGH_0JN_2_2 

Proto-oncogene tyrosine-protein kinase 

src 33 0.62 0.50 0.00 1.12 

3HQ5_GKK_1_2 None 34 0.57 0.55 0.00 1.12 

3CX5_SMA_2_1 Cytochrome b-c1 complex subunit 1 35 0.55 0.56 0.00 1.10 

3ZSG_T75_1_3 Mitogen-activated protein kinase 14 36 0.52 0.58 0.00 1.10 

2IOK_IOK_1_3 None 37 0.60 0.50 0.00 1.10 

3MSS_MS7_4_1 None 38 0.54 0.56 0.00 1.10 

4LH7_1X8_1_1 Dna ligase 39 0.51 0.33 0.50 1.09 

2RTF_BTN_1_1 Streptavidin 40 0.48 0.62 0.00 1.09 
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3N4M_CMP_1_1 Catabolite gene activator 41 0.51 0.42 0.33 1.09 

3T94_MTA_4_1 

5'-methylthioadenosine phosphorylase 

(mtap) 42 0.62 0.46 0.00 1.08 

4L4B_CAM_1_1 Camphor 5-monooxygenase 43 0.48 0.60 0.00 1.08 

3GL2_D3M_2_1 Ddmc 44 0.51 0.57 0.00 1.08 

4NG5_PFB_4_1 Alcohol dehydrogenase e chain 45 0.58 0.50 0.00 1.08 

3OZU_X89_1_3 None 46 0.54 0.54 0.00 1.08 

3VS4_VSF_1_3 Tyrosine-protein kinase hck 47 0.51 0.57 0.00 1.08 

3GC7_B45_1_1 Mitogen-activated protein kinase 14 48 0.54 0.55 0.00 1.08 

4H38_0YX_1_2 Undecaprenyl pyrophosphate synthase 49 0.62 0.45 0.00 1.08 

4F4P_0SB_1_2 Tyrosine-protein kinase syk 50 0.49 0.58 0.00 1.08 

1VRU_AAP_1_1 Hiv-1 reverse transcriptase 51 0.62 0.45 0.00 1.07 

2EXC_JNK_1_1 Mitogen-activated protein kinase 10 52 0.54 0.53 0.00 1.07 

4Z34_ON7_1_2 Lysophosphatidic acid receptor 1 53 0.53 0.55 0.00 1.07 

1ZUC_T98_1_1 Progesterone receptor 54 0.64 0.43 0.00 1.07 

4C66_H4C_1_2 Bromodomain-containing protein 4 55 0.57 0.50 0.00 1.07 

4OTY_LUR_2_1 Prostaglandin g/h synthase 2 56 0.53 0.53 0.00 1.07 

3RUK_AER_3_2 Steroid 17-alpha-hydroxylase/17 57 0.56 0.50 0.00 1.06 

1CR6_CPU_1_2 None 58 0.47 0.42 0.33 1.06 

4G27_PHU_1_1 None 59 0.60 0.45 0.00 1.06 

2ZDT_46C_1_1 Mitogen-activated protein kinase 10 60 0.52 0.54 0.00 1.06 

4LGG_VGG_1_2 

Proto-oncogene tyrosine-protein kinase 

src 61 0.55 0.50 0.00 1.05 

2G76_NAD_1_3 D-3-phosphoglycerate dehydrogenase 62 0.49 0.23 0.67 1.05 

3SRS_M23_1_2 Dihydrofolate reductase 63 0.60 0.45 0.00 1.05 

1VRT_NVP_1_2 None 64 0.59 0.46 0.00 1.05 

1JHV_PCR_1_1 None 65 0.60 0.45 0.00 1.05 

1IKY_MSD_1_1 Pol polyprotein 66 0.55 0.50 0.00 1.05 

3V66_D3A_1_1 None 67 0.55 0.50 0.00 1.05 

2XAE_2XA_3_3 Kinesin-like protein kif11 68 0.59 0.46 0.00 1.05 

2UZT_SS3_1_1 Camp-dependent protein kinase 69 0.56 0.23 0.50 1.04 

4F84_SAM_1_1 

Geranyl diphosphate 2-c-

methyltransferase 70 0.50 0.29 0.50 1.04 

4BIE_IE6_1_2 

Mitogen-activated protein kinase kinase 

kinase 5 71 0.63 0.42 0.00 1.04 

2J7Y_E3O_1_1 Estrogen receptor beta 72 0.51 0.53 0.00 1.04 

2XYX_Z00_1_2 None 73 0.68 0.36 0.00 1.04 

5KCP_PFB_2_1 Alcohol dehydrogenase e chain 74 0.50 0.54 0.00 1.04 

2ZB1_GK4_1_2 Mitogen-activated protein kinase 14 75 0.54 0.50 0.00 1.04 

4G2I_0VQ_1_1 Vitamin d3 receptor 76 0.54 0.50 0.00 1.04 

3TQ9_MTX_1_2 Dihydrofolate reductase 77 0.57 0.46 0.00 1.04 

3CD2_MTX_1_2 Dihydrofolate reductase 78 0.66 0.38 0.00 1.04 

2QBM_CAM_1_1 Cytochrome p450-cam 79 0.50 0.54 0.00 1.04 

4O1Y_NLA_1_1 None 80 0.50 0.54 0.00 1.04 

5DP2_NAP_1_3 Curf 81 0.48 0.35 0.40 1.04 

1GUF_NDP_1_2 

Enoyl-[acyl-carrier-protein] reductase 

[nadph 82 0.53 0.17 0.67 1.03 

1J3J_CP6_1_2 

Bifunctional dihydrofolate reductase-

thymidylate synthase 83 0.53 0.50 0.00 1.03 
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4HW7_64M_1_3 

Macrophage colony-stimulating factor 1 

receptor 84 0.59 0.44 0.00 1.03 

3DXM_N24_1_1 Actin-related protein 3 85 0.62 0.42 0.00 1.03 

2AYR_L4G_1_2 Estrogen receptor 86 0.58 0.45 0.00 1.03 

2ZM4_KSM_1_2 

Proto-oncogene tyrosine-protein kinase 

lck 87 0.57 0.45 0.00 1.03 

2IZI_BTN_1_1 Streptavidin 88 0.53 0.50 0.00 1.03 

1I7I_AZ2_1_1 

Peroxisome proliferator activated 

receptor gamma 89 0.53 0.50 0.00 1.03 

1LW0_NVP_1_2 None 90 0.49 0.54 0.00 1.03 

1C1C_612_1_2 Hiv-1 reverse transcriptase (a-chain) 91 0.52 0.50 0.00 1.02 

3EEL_53T_2_3 Dihydrofolate reductase 92 0.57 0.45 0.00 1.02 

3SR5_Q12_1_2 Dihydrofolate reductase 93 0.52 0.50 0.00 1.02 

3Q2A_PAB_2_1 None 94 0.57 0.44 0.00 1.02 

4BBE_3O4_2_2 Tyrosine-protein kinase jak2 95 0.52 0.50 0.00 1.02 

3EWK_FAD_1_3 Sensor protein 96 0.50 0.35 0.33 1.02 

3W16_P9J_1_1 Aurora kinase a 97 0.55 0.47 0.00 1.01 

2CF6_NAP_1_3 Cinnamyl alcohol dehydrogenase 98 0.52 0.29 0.40 1.01 

4FAK_SAM_1_1 

Ribosomal rna large subunit 

methyltransferase h 99 0.47 0.54 0.00 1.01 

4MEO_25V_1_1 Bromodomain-containing protein 4 100 0.60 0.42 0.00 1.01 

 a Fragment name (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the 

corresponding ligand chemical component (HET), the target cavity identifier (C), and the fragment 

number (N). 

b cavity similarity score, computed by ProCare, between the fragment-bound subpocket and the query target 

cavity 

c Interaction fingerprint similarity, computed with IChem, between the subpocket-fragment interaction 

fingerprint and the query target-ligand interaction fingerprint 

d Interaction fingerprint similarity (polar interactions only), computed with IChem, between the subpocket-

fragment interaction fingerprint and the query target-ligand interaction fingerprint 

e FragScore = ProCare + IFP + 0.5*(IFP_polar) 
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2.4. Critical evaluation of ProCare 

 

2.4.1. ProCare algorithm 

Several implementations of ProCare were attempted to improve the method, although incremental. We 

quickly remind the comparison procedure to serve a basis for discussion here: (1) N (with N > 2) points 

are randomly sampled in pocket #1 and associated with their nearest neighbor in pockets #2 according 

to the Euclidian distance their descriptors; (2) conservation of pairwise distances between all points in 

#1 versus #2 is checked (topological verification); (3) an initial alignment is estimated on the N pairs of 

points, (4) the alignment is refined with ICP and (5) the final alignment is scored. 

First, it was intriguing that when optimizing the set of alignment parameters, we found that sampling 

N=4 points was yielding better alignment and discrimination, compared to sampling three and five 

points. This value is consistent with what Open3D authors experienced on their image inputs. Our 

hypothesis is that although sampling three points is sufficient to estimate a transformation, it is more 

permissive and yields to false-positive topological verification. Contrarily, comparing five points would 

impose more constraints, so that the topological verification is harder to pass. In this sense, we 

implemented two variants to study this effect and avoid the non-deterministic aspect of the algorithm. 

In the first variant, all the points in pocket #1 are sampled simultaneously. This variant was unsuccessful 

unless identical pockets are compared, therefore useless. In the second variant, the set of equivalent 

points is progressively increased by adding a pair of points that satisfies the topological verification of 

the set. This variant was successful only for very similar pockets (e.g. different PDB structures of the 

same protein), therefore unapplicable for detecting remote similarities. These studies shed light on the 

importance of the initial correspondences. 

Since points are associated to their nearest neighbor in the descriptor space, a point is always associated 

to another, even if the similarity of the descriptors is meaningless. Applying a distance cutoff is not a 

systematic solution and is prone to be dependent on the dataset. In a new version where the sampled 

points are tracked, we observed that the distance ranges leading to a good alignment is hardly 

distinguishable from the distance ranges leading to a bad alignment (Figure 2.2).  
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Figure 2.2. Euclidian distance between descriptors of RANSAC-sampled and topologically valid points 

(N = 4 pairs) leading to good and bad alignments. ~31,000 sc-PDB subpockets were translated and 

realigned on their corresponding pockets. The transformation matrix was applied to the co-crystal ligand 

and the RMSD between the original position and the new position after alignment is reported. A good 

alignment refers to RMSD ≤ 0.5 Å, a bad alignment to RMSD ≥ 4 Å. Alignments were proposed using 

two sets of pocket descriptors (c-FPFH and c-FH). 

Analysis of the RANSAC-equivalenced pairs showed that sometimes, redundant pairs of points are 

sampled whereas a proper rotation requires three different pairs. Not surprisingly, sampling less than 

three different pairs led to more misalignments (Figure 2.3). As a result, redundancy of the 

correspondences during the procedure should be used as quality filter to decrease the chances of 

misalignment. 

 

Figure 2.3. RANSAC correspondences used for transformation estimation. Sampling four different 

pairs increase the chances of a good alignment. sc-PDB subpockets were translated into different 

coordinate frames and realigned to their corresponding pockets. A good alignment (success) refers to 

RMSD ≤ 0.5 Å with respect to cocrystal coordinates, a bad alignment (failure) to RMSD ≥ 4 Å. 



Chapter 2. Development of a new method for local comparison of protein pockets  

137 
 

The grid-based arrangement of points implies a fixed number of possible pairwise distances. Therefore, 

it is also possible that random matches verify topological constraints and serve as wrong initial 

alignment. Our hypothesis is that points occupying the core of the cavity are hard to differentiate due 

the regular repartition of neighbor points around them. Possible improvements pertain to the metric (e.g. 

using L1 distance), optimizing the weights of the shape and color bins in the descriptor, evaluating other 

descriptors. In this regard, later applications showed that the color part of the c-FPFH descriptor (c-FH), 

encoding the relative distribution of pharmacophoric features around each point, showed equivalent 

discrimination performance as c-FPFH. Interestingly, c-FH alignments tend to be more refined than c-

FPFH alignments, when comparing pocket to pocket or subpocket to pocket. In future prospective 

applications, a ‘divide and conquer’ mode is possible, by performing shape-only, color-only and hybrid 

descriptor-based alignments. 

VolSite cavity descriptions are noisy with respect to pharmacophoric annotation. Statistics on the sc-

PDB revealed that the hydrophobic points (CA) are present in a large proportion (ca. 40%), compared 

to the other pharmacophoric features.1 Thus, it was not surprising that they also contribute more to the 

proposed alignments and might erroneously increase the similarity score. However, not considering the 

CA feature is not applicable for highly hydrophobic pockets and generally led to poor discrimination. 

The same conclusions were derived for the dummy (DU) feature. Contrarily, some features such as 

negatively ionized OD1 are rare (ca. 5% of all annotations). Given that only one pharmacophoric feature 

is assigned to a point, a residue might be present in the site, yet not represented in the cavity cloud if a 

different residue is closest to the point. For example, this was observed in the hinge area of some protein 

kinase structures. Some features clusters in patches, others are isolated—but important points.  

Scoring is the final step of the comparison. At that stage, it is not possible to rescue an alignment solution 

that has not been previously explored. The scoring scheme should be robust enough to discriminate 

relevant from noisy similarity estimates. Several scoring schemes were evaluated, some of them are 

alignment-free. We showed that pairwise comparison of point descriptors in the two pockets can 

discriminate similar from dissimilar pairs in the BO1 dataset (Figure 2.4) and can be used as an 

additional filter. 
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Figure 2.4. Scoring scheme optimization. The receiver operating characteristics curve of (left) 

alignment-based and (right) alignment-free scoring on the BO1 dataset. The ph4-strict, ph4-rules and 

ph4-ext were previously described. The ph4-soft is the ph4-strict without distance cutoff. ph4-strict_pl, 

ph4-ext_pl, ph4-ext_pl are the piece-wise linear implementation of their counterparts (intervals are 

below 0.75 Å, between 0.75 and 1.5 Å, beyond 1.5 Å). Alignment-free scoring are the mean pairwise 

points descriptor distances in the compared pockets, with the idea that similar pockets would share more 

similar points in the descriptor space, lowering the average distance; ‘all’, ‘q2’ and ‘q3’ denote the use 

of all, above median and above third quartile distances. 

 

In future developments to rescue wrong initializations, we suggest the generation of multiple alignment 

solutions during the sampling and the use of a pharmacophoric scoring as a convergence criterion instead 

of current color-agnostic fitness score. 

 

 

2.4.2.   Sensitivity to protein fold and coordinate deviations 

Finding the right balance between detection of subtle changes in a cavity while enabling remote 

similarity detection is one of the challenges to binding site comparison tools. 

The dependency of ProCare to the protein structure/fold has been assessed on the radical SAM 

superfamily (RSS) of proteins, described by Holliday et al.33 This family of proteins covers 63785 

different sequences, 1500 protein architectures, and 150 folds, all of them having converged to form a 

catalytic site using S‐adenosylmethionine (SAM) in a radical enzymatic mechanism. The RSS dataset 
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used here is composed of 15 representative proteins of known X‐ray structures describing nine different 

classes varying in folds and catalyzing different enzymatic reactions. Pairwise comparison of SAM 

binding cavities was achieved with the current method and compared to that obtained with 6 other cavity 

comparison tools (FuzCav, KRIPO, PocketMatch, ProBiS, Shaper, SiteAlign) representative of the 

current state of a recent review from an independent group.34 Seven RSS subgroups (L1, L2, L11, L13, 

L15, L16, L19) are represented by a single protein structure whereas two subgroups (L6 and L17) are 

described by five and three different proteins, respectively. Using default parameters and developer‐

suggested thresholds for distinguishing similar from dissimilar cavities, we first derived a 15*15 cavity 

similarity matrix and computed the proportion of cavity pairs still considered similar by each of the 

investigated tool (Figure 2.5). 

 

Figure 2.5. Pairwise binding site comparison of 15 Radical SAM Superfamily entries. Nine subgroups 

are represented: L1 (PDB ID: 4NJK), L2 (PDB ID: 1OLT), L6 (PDB IDs: 1R30, 3IIX, 3T7V, 4R34, 

4RTB), L11 (PDB ID: 4U0P), L13 (PDB ID: 3RFA), L15 (PDB ID: 3CB8), L16 (PDB ID: 2A5H), L17 

(PDB IDs: 1TV8, 4K37, 4M7T), L19 (PDB ID: 4FHD). Score* is a normalized score: score* = 

(score_method -min_score_method) / (max_score_method - min_score_method). Self-comparisons 

(diagonal of the matrix) were automatically assigned a maximum score of 1. L6 and L17 subgroups are 
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encircled in yellow and red respectively. A) FuzCav. B) KRIPO. C) PocketMatch. D) ProBiS; 

alignment_score was used when z-score is higher than the default 1 or was set to 0 when no alignment 

was produced. E) ProCare with cavity detected at 4 Å. F) ProCare with cavity detected at 6 Å. G) Shaper 

with cavity detected at 4 Å. H) Shaper with cavity detected at 6 Å. I) SiteAlign; distances d were 

normalized to d’ and converted into a similarity score 1-d’. 

 

Obtained results are hardly interpretable because very much dependent of pocket definition and 

threshold values to estimate pairwise similarities. ProCare estimates that 55% of all pairs are still similar 

despite the very different protein folds and structures, a proportion higher than that obtained by three 

tools (FuzCav, ProBiS, SiteAlign), almost similar to KRIPO (63%), but lower than the performance 

reached by the two best tools (Shaper, PocketMatch; 91% for both methods). The latter two tools 

outperforming ProCare in this benchmarking exercise might however be too promiscuous and not 

specific enough. We then examined whether all compared cavity comparison tools were equally able to 

predict higher similarity values for intra‐class than for inter‐class comparisons. 

Indeed, some tools are not well suited for finer comparisons. On the one hand, PocketMatch (C) is not 

specific enough to discriminate among RSS classes. On the other hand, ProBiS (D) fails in detecting 

inter‐class pocket similarities. KRIPO (B), although partially clustering entries for L6 and L17 

subgroups did not succeed in finding any similarity between one entry (4U0P) and the 14 others. 

Altogether, ProCare (E, F) as well as two other tools (FuzCav (A), SiteAlign (I)) provide the best 

compromise between selectivity and precision. It affords high similarity values throughout the matrix 

but enables a clear distinction of the two subclasses represented by more than one entry. As to be 

expected, pocket definition (size of the binding site) has a clear impact on the heat maps produced by a 

single tool. Since this definition varies from a method to another one and cannot always be homogenized, 

a truly unbiased comparison of all methods presented here remains difficult, notably for this dataset for 

which no experimental data can support (or not) the predicted similarity estimation. 

To be robust, methods need to be insensitive to variations in atomic coordinates of the pocket, frequently 

observed upon ligand binding and experimental details of the structural determination method (e.g. X-

ray diffraction, single-particle cryo-electron microscopy, homology modeling). We therefore designed 

two data sets (MD-PLA2, Holo-Apo) to assess ProCare robustness to align and score identical cavities 

exhibiting small to large variations in atomic coordinates. In the first set (MD-PLA2), the phospholipase 

A2-atropine complex was subjected to a 10 ns molecular dynamics (MD) simulation in explicit water, 

and 1000 MD snapshots of the atropine-bound cavity were retained for pairwise similarity calculations. 

The second set (Holo-Apo) is composed of 10 pairs of pockets in a ligand-bound (holo) and ligand-free 

(apo) form, showing from small (rmsd < 1.0 Å) to large (rmsd > 4.0 Å) variations in the atomic 

coordinates of cavity-lining heavy atoms. 
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For both sets, ProCare still detected cavity similarity up to variations in atomic coordinates located in a 

grey zone around 2.5-3.0 Å RMSD of heavy atoms (Figure 2.6), which is in line with the usually 

admitted 2.0 Å RMSD in posing ligands by molecular docking. 

 

Figure 2.6. Sensitivity of the ProCare score to variations in atomic coordinates. A) Atomic coordinates 

variations of the pocket (RMSD on heavy atoms to the first snapshot), induced by molecular dynamics 

simulation of phospholipase A2 in complex with atropine (PDB ID: 2ARM). A score of 0.47 (dotted 

line) corresponds a statistically significant threshold (p-value = 0.05) to discriminate similar from 

dissimilar cavities; B) Sensitivity of the ProCare score to ligand-induced variations in atomic 

coordinates of pockets (RMSD on heavy atoms) of the Holo-Apo set (cell division protein kinase 2, 

CDK2, PDB IDs: 1DM2, 2JGZ; HIV-1 protease, HIVP1, PDB IDs: 1QBS, 1HHP; estrogen-related 

receptor gamma, ERRγ, PDB IDs: 2ZKC, 2ZBS; aldose reductase, AR, PDB IDs: 1ADS, 2NVD; 

hexokinase, Hexo, PDB IDs: 2E2O, 2E2N; alginate-binding protein, ALGI, PDB IDs:1Y3N, 1Y3Q; 

Osmo-protection protein, OSMO, PDB IDs: 1SW2, 1SW5; D-allose binding protein, ALLO, PDB 

IDs:1RPJ, 1GUD; guanylate kinase, GUA, PDB IDs: 1EX7, 1EX6; 5-enolpyruvylshikimate-3-

phosphate synthase, ESP, PDB IDs:1RF4, 1RF5). A score of 0.47 (dotted line) corresponds a statistically 

significant threshold (p-value = 0.05) to discriminate similar from dissimilar cavities. 

 

 

2.4.3.  Local comparisons 

Local comparison of cavities is desired for unobvious similarity detection. Herein, there are three levels 

of definition. Firstly, local comparison denotes the specific positioning of a small pocket (subpocket) 

with respect to a larger pocket. Secondly, when comparing two cavities independently of their sizes, 

locality refers to specific partial alignment when applicable. Finally, the third level pertains the scoring 

scheme. ProCare allows the three levels of local comparison by local description around each point, 
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point-to-point correspondences, and a symmetrical scoring scheme accounting for the size of the 

pockets. 

We however draw attention to the fact that detection of partial overlapping areas relies on the positions 

of sampled points. When the alignment is constrained on sampled points that are spread in large cavities, 

the resulting comparison can only be global. Contrarily, sampling a few clustered points would enable 

partial alignment when applicable. 

 

 

2.4.4.   Computing time 

The ProCare algorithm can be optimized with respect to the alignment speed. ProCare was implemented 

based on existing package that allows multithreading. Interestingly, compilation of a non-parallelized 

version improved the alignment time by a factor two. This is not surprising, given the number of points 

treated. The alignment time is largely dominated by the number of RANSAC iterations until 

convergence. Implementing the different improvement proposals discussed above might yield a quicker 

convergence. Finally, ProCare core is available in both C++ and Python, but the execution tools were 

provided in Python only. Developing a full C++ tool might also speed up the comparisons. 
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3.1. Unexpected similarity between HIV-1 reverse transcriptase 

and tumor necrosis factor binding sites revealed by computer 

vision 

 

This section was integrally published in:  

Merveille Eguida and Didier Rognan. J. Cheminform. 2021, 13, 90. 
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3.1.1. Abstract 

Rationalizing the identification of hidden similarities across the repertoire of druggable protein cavities 

remains a major hurdle to a true proteome-wide structure-based discovery of novel drug candidates. We 

recently described a new computational approach (ProCare), inspired by numerical image processing, 

to identify local similarities in fragment-based subpockets. During the validation of the method, we 

unexpectedly identified a possible similarity in the binding pockets of two unrelated targets, human 

tumor necrosis factor alpha (TNF-α) and HIV-1 reverse transcriptase (HIV-1 RT). Microscale 

thermophoresis experiments confirmed the ProCare prediction as two of the three tested and FDA-

approved HIV-1 RT inhibitors indeed bind to soluble human TNF-α trimer. Interestingly, the herein 

disclosed similarity could be revealed neither by state-of-the-art binding sites comparison methods nor 

by ligand-based pairwise similarity searches, suggesting that the point cloud registration approach 

implemented in ProCare, is uniquely suited to identify local and unobvious similarities among totally 

unrelated targets. 

 

Keywords: binding sites, similarity, point cloud registration 
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3.1.2. Introduction 

Among the many possible approaches to structure-based drug design [1, 2], inferring novel ligand 

properties from the large-scale comparison of their possible binding pockets gains popularity as the 

repertoire of protein cavities of known three-dimensional (3D) structures (pocketome) is constantly 

increasing, thereby offering unique opportunities to design ligands while simultaneously considering 

multiple targets [3]. The term 'pocketome' was first coined in 2004 by An et al. [4] to describe the 

universe of cavities located at the surface of macromolecules and capable of binding low molecular-

weight ligands. A systematic survey of currently available three-dimensional structures [5], suggests 

that its size is estimated to ca. 250,000 pockets [6] out of which 10-15% are accommodating true drug-

like compounds [7, 8]. Pocket locations can be inferred from the position of already-bound molecules 

or predicted on the fly, by one of the many available cavity detection methods [3, 9].  The pockeome 

space can then be searched by numerous computational tools [10] for similarity to any query cavity to 

predict evolutionary relationships and protein-ligand interactions [3]. The later application is notably of 

paramount importance to the drug discovery field as it may reveal hidden relationships for guiding the 

design of safer drug candidates with a precise control of selectivity [3] with respect to either on-targets 

(polypharmacology approach) [11] or off-targets (side effects mitigation) [12], in a time and cost-

effective manner [13]. 

Currently available methods are generally able to detect global similarities between two druggable 

pockets from different proteins, and therefore permit to transfer drug-like compounds from one target 

space to another [3].  Identifying more subtle local similarities at the level of fragment-bound pockets 

remains a much more difficult problem [14] as it requires a searchable archive of fragment-bound 

subpockets [15–17] and a computational method focusing on local subpocket descriptors. Consequently, 

there are still very few reports of experimentally verified subpocket similarity examples that have 

enabled the transfer of chemical fragments across unrelated proteins [18]. To fill the need for local 

similarity searching methods while comparing pockets of different sizes, we developed a novel method 

(ProCare) [17] relying on point cloud registration,  a numerical image processing to find a spatial 

transformation (e.g., scaling, rotation and translation) that aligns two point clouds [19, 20]. ProCare uses 

as input a point cloud representation of the protein pocket or subpockets, where each point is annotated 

by eight possible pharmacophoric features (hydrophobic, aromatic, H-bond donor, H-bond acceptor, H-

bond donor and acceptor, positive, negative, dummy) complementary to that of the pocket 

microenvironment [21]. Since ProCare uses local descriptors to compare and align binding subpockets, 

the method is particularly suited to fragment-based design strategies aimed at positioning fragments in 

subpockets of any druggable cavity.  

While validating the method by focused benchmarking studies [17], we noticed some unexpected local 

similarity between subpockets from two unrelated proteins with 23% sequence identity: human tumor 
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necrosis factor alpha  (TNF-α) trimer [22] and human immunodeficiency virus type 1 reverse 

transcriptase (HIV-1 RT) [23]. On the one hand side, TNF-α is a homotrimeric pro-inflammatory 

cytokine involved in autoimmune disorders such as rheumatoid arthritis and Crohn's disease [24]. It is 

currently targeted by monoclonal antibodies preventing its recognition by TNF-α receptors (TNFR1 and 

TNFR2). To date, no small molecule TNF-α inhibitor has reached the market [22]. On the other side, 

HIV-1 RT is an enzyme used by the HIV virus to replicate its genome by first generating a 

complementary DNA from the viral RNA template. HIV-1 RT can be blocked by many marketed drugs 

[25] binding to either the catalytic site (nucleoside inhibitors, e.g. zidovudine) or a remote allosteric 

pocket (non-nucleoside inhibitors, e.g. efavirenz). 

To exclude potential artifacts or biases and provide a strong statistical support to this initial prediction, 

we here systematically compared the inner cavity of three inhibitor-bound TNF-α trimer structures with 

122 non-nucleoside inhibitor-bound HIV-1 RT X-ray structures. In a large majority of pairwise 

comparisons, the corresponding subpockets were deemed similar, a prediction that could be confirmed 

by biophysical experiments evidencing a direct micromolar binding of non-nucleoside HIV-1 RT 

inhibitors to human soluble TNF-α. Interestingly, this unexpected similarity could not be recovered by 

state-of-the-art cavity comparisons tools suggesting the unique ability of ProCare to delineate subtle 

local relationships between unrelated target cavities. 

 

 

3.1.3. Results and discussion 

Identifying similarity between pockets from different proteins suggests that the latter might bind to 

similar molecules. Although molecular recognition is a dynamic and complex process, the above 

hypothesis is worth investigating in drug design for hit discovery or for potential off-targets detection. 

We previously described ProCare [17], a novel computational method relying on a point cloud 

registration algorithm [19, 20] to assess the similarity between protein pockets. ProCare computes and 

uses local descriptors, which makes it particularly suitable for detecting local similarities among cavities 

of different sizes. Typically, ProCare aligns the cavities, described by a cloud of 3D points labeled with 

pharmacophoric features, by comparing the point descriptors and then derives a similarity score. In the 

current study (see flowchart in Figure 1), ProCare was used to detect local similarities between the full 

cavity of the target protein (here the inner core of the TNF- α trimer) and a collection of 31,570 

subpockets from the sc-PDB dataset [8], a repository of 16,034 protein-ligand complexes of known 

three-dimensional structure for which the ligand is a pharmacological agent bound to a druggable cavity.  

First, the full cavity of the target protein is computed with the in-house VolSite algorithm [21] and 

represented by a cloud of pharmacophore-annotated points (Figure 1). In parallel, the collection of 
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subpocket point clouds is generated after fragmentation of each protein-bound sc-PDB ligand and 

consideration of the immediate vicinity (4 Å) of generated fragments. Last, the ProCare method aligns 

and computes the pairwise similarity between the target point cloud, and that from subpockets from the 

sc-PDB archive (Figure 1). When a statistically significant similarity is found between a subpocket and 

the target cavity, the transformation matrix used for the previous alignment is then applied to the 

corresponding and hidden bound fragment that is directly positioned in the target cavity. In absence of 

major clashes, the corresponding fragment can therefore be used for a fragment growing or linking 

strategy or even directly tested for binding to the target. 

While benchmarking the ProCare method, we noticed unexpected high similarities (ProCare score > 

0.47; p-value < 0.05) between the core pocket at the interface of an inhibitor-bound asymmetric human 

TNF-α trimer (PDB ID 6OOY) [22], and several non-nucleoside binding sites of inhibitor-bound HIV-

1 RT (Supporting Table S1).  Notably, seven subpockets from the HIV-1 RT were ranked among the 

100 top scoring subpockets, with high ProCare similarity scores (ranging from 0.67 to 0.72) 

corresponding to very low p-values (from 2.5x10-4 to 2.1x10-5). 

 

Fig. 1 Virtual screening of sc-PDB subpockets for similarity to the core cavity TNF-α. The inner 

pocket of TNF-α (PDB ID 6OOY) is converted as a cloud of points with pharmacophoric properties 

(orange: hydrophobic and aromatic, blue: H-bond donor and positive ionizable, red: H-bond acceptor, 

H-bond donor and acceptor, and negative ionizable, white: dummy) and compared to the corresponding 

point clouds originating from fragment-bound subpockets of sc-PDB ligands. 
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To assess that the predicted similarity between these unrelated binding sites was not fortuitous, we 

computed the Receiver-Operating Characteristic (ROC) curve of a binary classifier for which all cavities 

of a single sc-PDB target (Table 1) are artificially annotated as positives, the rest being defined as 

negatives. For each target, the ROC curve was defined from the full list of sorted ProCare similarity 

scores by plotting the true positive rate versus the false positive rate at different threshold settings 

(Supporting Figure S1). The area under the ROC curve (ROCAUC) provides a statistical estimation 

of the accuracy of the classifier to discriminate positives from negatives and therefore predict whether 

the samples from one particular target are similar (or not) to the TNF-α cavity (Table 1). 

Table 1 Area under the ROC curve of pairwise ProCare similarity scores.a 

Target Site Number of subpocketsb ROCAUC 

HIV-1 RT non-nucleoside 195 (122) 0.84 

β2 adrenergic receptor orthosteric 14 (14) 0.35 

Carbonic anhydrase II catalytic 183 (137) 0.38 

Cyclin-dependent kinase 

2 

catalytic 461 (274) 0.63 

Heat shock protein 90α catalytic 214 (117) 0.64 

Thrombin catalytic 253 (126) 0.35 

a For each target, the similarity scores of the corresponding subpockets (actives) and decoys (any other 

subpocket) to the TNF-α query (PDB ID 6OOY) are used to compute the area under the ROC curve. 

b Total number of subpockets for the corresponding target. The number of PDB entries are in brackets. 

 

Making the hypothesis that the HIV-1 RT non-nucleoside binding pocket is similar to that of TNF-α, 

the ProCare score nicely discriminates positives (HIV-1 RT) from decoys (all other sc-PDB cavities) 

with a ROCAUC value (0.84) well above the threshold corresponding to a random classification, 

ROCAUC=0.50). Repeating the same exercise with five randomly picked targets (β2 adrenergic 

receptor, carbonic anhydrase II, cyclin-dependent kinase 2, heat shock protein 90α, and thrombin) lead 

to much poorer ROC AUC values close or even inferior to random classifications (Table 1). To further 

exclude a potential bias in the ProCare alignment/scoring method due to the reference TNF-α structure 

(PDB ID 6OOY) and give a stronger statistical support to our prediction, we systematically compared 

two additional binding sites (PDB IDs 6OOZ, 6OP0) from available asymmetric human TNF-α X-ray 

structures [22] to that of 122 HIV-1 RT structures bound to non-nucleoside inhibitors. 

 

Exhaustive comparison of TNF-α trimer and HIV-1 reverse transcriptase binding sites. A ProCare 

similarity matrix was built by comparing cavities of three asymmetric TNF-α structures (PDB identifiers 

6OOY, 6OOZ and 6OP0) co-crystallized with benzimidazole inhibitors to the 195 subpockets from 122 
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non-nucleoside HIV-1 RT inhibitors binding sites (Supporting Table S2; Figure 2) available in the sc-

PDB. We observed that 76% of all pairwise comparisons were scored higher than the previously 

statistically determined ProCare similarity score threshold of 0.47 [17] (Figure 2A).   

 

  

Fig. 2 Comparison of TNF-α trimer and HIV-1 RT binding sites with ProCare. (A) Distribution of 

pairwise similarity scores (n = 195 x 3). Entries scoring above 0.47 (p-value=0.05; threshold marked by 

the red dashed line) are considered similar according to a previous statistical analysis of 2 million 

pairwise alignments [17]. (B) Aligned residues of TNF-α (chain A: cyan, chain B: dark slate blue, chain 

C: cornflower blue; PDB code: 6OOZ) to HIV-1 RT (orange, PDB code: 1FKO) after rotation and 

translation of HIV-1 RT protein with the resulting ProCare alignment matrix. (C) ProCare alignment of 

efavirenz main fragment (light orange) in the TNF-α trimer pocket and PLANTS docking (transparent 

orange) in the TNF-α trimer pocket (PDB code: 6OOZ). Edge-to-face aromatic interaction with TYR59 

of TNF-α chain A and hydrogen bond with TYR151 of TNF-α  chain C are depicted by blue dashed 

lines.  

 

To exclude the possibility that the predicted similarity is caused by peculiar mutations of the HIV-1 RT 

non-nucleoside biding site, we also compared pairwise similarities for both wild type and mutated HIV-



Chapter 3. ProCare validation: fragment repurposing and secondary target prediction 

154 
 

1 RT pockets, but did not observe significant differences in the percentage of HIV-1 RT pockets 

predicted similar to that of TNF-α (74% and 82% of similar pockets for wild type and mutants, 

respectively). We thus conclude that the predicted similarity between pockets from these two unrelated 

targets is independent on the chosen PDB structures and is not biased by mutations in the HIV-1 RT 

binding site. Since ProCare yields a transformation matrix to align the compared objects (subpockets 

onto the target pockets), we herein provided the visual analysis for one entry (efavirenz-bound 

subpocket) aligned to the TNF-α structure 6OOZ. Pairs of residues of equivalent interaction properties 

(aromatic, hydrogen bond donor and acceptor, hydrophobic) respectively in TNF-α and HIV-1 RT were 

nicely matched (Figure 2B) demonstrating that the similarity caught with the point clouds is truly 

present at the residue level. Matched TNF-α/HIV-1 RT residues were: LEU57.A/LEU100; 

TYR59.A/TYR318; ILE155.A/LEU234; LEU157.A/TRP229; LEU57.B/PHE227; LEU57.C/TYR188; 

TYR59.C/TYR181 and TYR151.C/TYR181. Inspection of the matched pharmacophoric points that are 

contributing to the ProCare score showed a mixed contribution of aromatic, hydrogen bond donor and 

hydrophobic points (Supporting Figure S2) in agreement with the aligned residues (Figure 2B) and 

the statistics of the contributions of the eight pharmacophoric features to the detected similarity 

(Supporting Figure S3). Furthermore, efavirenz was docked into TNF-α binding site 6OOZ with 

PLANTS [26] after validation of the docking protocol by self-docking of the cocrystallized ligand UCB-

5307 in 6OOZ (RMSD of top-ranked pose by ChemPLP to crystal coordinates: 0.47 Å, ChemPLP score 

of -124.79).  The ProCare-aligned efavirenz fragment (Figure 3B) in TNF-α fitted well with one of the 

PLANTS docking solutions (ranked 3rd/10 with a ChemPLP score of -79.32), corresponding to a RMSD 

of 1.8 Å of efavirenz main fragment heavy atoms to the ProCare pose (Figure 2C).  Aside the potential 

hydrophobic interactions in the TNF-α binding site, efavirenz docking pose displayed an edge-to-face 

aromatic interaction with residue TYR59.A and a hydrogen bond with TYR151.C. Interestingly, 

efavirenz bound to HIV-1 RT protein structure (1FKO) exhibits an edge-to-face aromatic interaction 

with residue TYR318 [27] (Supporting Figure S4A) that was matched by ProCare to TYR59.A in 

TNF-α (Figure 2B). Both TYR59.A and TYR151.C are key residues [22] involved in the micromolar 

and nanomolar binding of the co-crystallized ligands UCB-6876, UCB-5307 and UCB-9260 (Figure 3) 

in the TNF-α structures 6OOY, 6OOZ, 6OP0; the interaction between TYR151.C residue and the 

benzimidazole moiety being a hydrogen bond (Supporting Figure S4B). Altogether, these observations 

are strongly suggesting that subpockets in the non-nucleoside binding site of HIV-1 RT are similar to 

the TNF-α trimer cavity. 
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Fig. 3 Structures of TNF-α and HIV-1 RT non-nucleoside inhibitors. (A) TNF-α inhibitors and (B) 

HIV-1 RT non-nucleoside inhibitors (PDB entries between brackets). Red substructures indicate the 

main fragment binding to the HIV-1 RT subpocket found similar to the TNF-α cavity. 

 

Assuming that similar binding sites should accommodate similar ligands, HIV-1 RT non-nucleoside 

inhibitors should therefore bind to TNF-α. In order to prioritize HIV-1 RT inhibitors for experimental 

validation of our hypothesis, we checked which inhibitors were bound to the HIV-RT subpockets that 

are predicted by ProCare as the most similar to the TNF-α cavity (Table 2).  

Among the corresponding inhibitors, two compounds (Q27097507, TNK6-51) are not commercially 

available and were not considered. However, two easily purchasable FDA-approved drugs (efavirenz, 

nevirapine; Figure 3) are almost entirely buried in the HIV-1 RT subpockets found similar to the TNF-

α cavity, exhibit a size and molecular volume similar to that of two TNF-α inhibitors (UCB-6876 and 

UCB-5307; Figure 3) and were therefore selected for biological evaluation. In addition, we also 

considered a third marketed inhibitor (delavirdine; Table 2, Figure 3) whose pocket was found much 

less similar to that of TNF-α, although just above the 0.47 ProCare similarity threshold.   
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Table 2 Bound inhibitors of the HIV-1 reverse transcriptase cavities found similar to TNF-α cavities. 

HIV-RT 

Inhibitora 

HIV1-RT PDB 

entry 

TNF-α PDB entry ProCare score Rank 

NNI (Q27097507) 2VG7 6OOZ 0.810 1 

EFZ (Efavirenz) 1FKO 6OOZ 0.773 2 

NVP (Nevirapine) 1LWC 6OOZ 0.737 3 

TNK (TNK-651) 1S1V 6OOZ 0.731 4 

NVP (Nevirapine) 2HNY 6OOZ 0.729 5 

…  … … … 

SPP 

(Delavirdine)b 

1KLM 6OOZ 0.484 408 

a PDB chemical component identifier (Name in brackets). 

b After manual fragmentation, a higher ProCare score (0.599) was obtained for the subpocket of 

delavirdine's fragment #2 (Supporting Figure S5) against 6OOY pocket (Supporting Table S3). 

 

Non-nucleoside HIV-1 RT inhibitors bind to human TNF-α. Three different non-nucleoside FDA-

approved drugs (nevirapine, efavirenz and delavirdine) were tested for direct binding to a fluorescent-

labelled TNF-α trimer by microscale thermophoresis (MST), a robust and sensitive biophysical method 

to detect and quantify molecular interactions in solution [28, 29]. The MST signal is based on ligand-

dependent temperature-induced changes (thermophoresis, temperature-related fluorescence intensity) of 

the fluorescence emission of the labelled protein target. The 17.3 kDa homotrimeric TNF-α that 

spontaneously assemble in solution [30, 31] was therefore labelled by a RED-fluorescent probe for MST 

experiments in presence of increasing concentrations of  the three HIV-1 RT inhibitors (Figure 4).  

MST traces in presence of efavirenz and delavirdine showed distinct states (from bound to unbound), 

indicating a direct interaction of these two inhibitors with TNF-α (Figure 4A, B). Dissociation constants 

(KD) could be derived for the two corresponding complexes and estimated to 24 ± 8 µM (Efavirenz) and 

39 ± 9 µM (Delavirdine), respectively (Figure 4A, B). The measured dissociation constants for the two 

HIV-1 RT inhibitors are in the same range of magnitude than that of UCB-6876 (KD= 22 µM) [22], one 

of the three TNF-α inhibitors  used as a reference for this study.  
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Fig. 4 Microscale thermophoresis (MST) demonstrates a direct interaction between HIV-1 RT 

inhibitors and RED fluorescent-tagged TNF-α. For analysis, the change in thermophoresis is 

expressed as the change in the normalized fluorescence (ΔFnorm), which is defined as Fhot/Fcold (F-values 

correspond to average fluorescence values between defined areas marked by the red and blue cursors). 

Titration of the non-fluorescent ligand results in a gradual change in thermophoresis, which is plotted 

as ΔFnorm to yield a binding curve, which can be fitted to derive binding constants. (A) Experimental 

MST traces of efavirenz (KD = 24 ± 8 µM); (B) Experimental MST traces of delavirdine (KD = 39 ± 9 

µM); (C) Experimental MST traces of nevirapine. Only the best MST traces (highest signal to noise 

ratio) are shown here.  Values for all experiments conducted according to different experimental 

protocols are listed in Supporting Table S4. 

Contrarily to our prediction, no thermophoresis signal could be detected in presence of nevirapine 

(Figure 4C) indicating no binding of this inhibitor to TNF-α, at least in our experimental settings. The 

herein observations were insensitive to experimental protocols (buffer composition, solubilizing agents, 

incubation time, MST power; Supporting Table S4). 

In absence of X-ray structures of TNF-α bound to efavirenz and delavirdine, we cannot rule out the 

possibility that both inhibitors bind to a different pocket than that highlighted in the current 

computational study.  This hypothesis is however very unlikely for two reasons: (i) no other cavity than 

that occurring at the inner core of the multimeric TNF-α could be detected among the currently existing 

33 structures available in the Protein Data Bank; (ii) all non-covalent small molecular weight inhibitors 

co-crystallized with TNF-α dimeric or trimeric forms [32–35] are exactly bound at the central pocket 

examined in this study. 
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We should recall here that none of the HIV-1 RT inhibitors has been optimized for binding to TNF-α 

and is directly repurposable for treating TNF-α -dependent autoimmune disorders. However, we do think 

that efavirenz may be optimized to a much more potent HIV-1 RT inhibitor by following a strategy 

similar to that reported to modify the 22 µM TNF-α inhibitor UCB-6876 to a 9 nM lead (UCB-5307; 

Figure 3) by just occupying a side pocket formed by the three TYR199 side chains of the TNF-α 

homotrimer with a pyridyl ring [22]. Structure-guided efavirenz optimization for TNF-α binding is 

therefore possible by appropriate trimming of unnecessary cyclopropylethynyl substituent and 

occupation of the above-described potency subpocket. 

 

The similarity between TNF-α trimer and HIV-1 reverse transcriptase binding sites is not obvious. 

To demonstrate whether the herein disclosed similarity between the human TNF-α trimer and the HIV-

1 RT non-nucleoside binding sites is obvious, we performed the same set of pairwise binding site 

comparisons, as that previously reported for ProCare (Figure 2), with state-of-the-art methods [10] 

developed either in-house (FuzCav [36], Shaper [21] and SiteAlign [37]) or by third parties (G-LoSA 

[38], KRIPO [15] and  ProBiS [39]).  The binding site perception, comparison algorithm and scoring 

function is specific to each method. Some methods (FuzCav, SiteAlign) consider entire cavities while 

some others utilize either fragment-bound subpockets (KRIPO, Shaper) or local protein descriptors (G-

LoSA). To make the comparison consistent, the same set of atomic coordinates were compared, a 

binding site being defined by the protein PDB identifier, the ligand PDB HET record (three 

alphanumeric character describing non-standard PDB residues), chain identifiers and list of amino acids 

lining the cavity. The only exception was for the KRIPO method, which used all the chains available in 

the PDB entry, but still corresponding to the same tuple (PDB, HET) as for the other methods. For each 

method, the distribution (Figure 5) and percentage of pairwise comparisons scored above the 

developer's recommended similarity threshold (Table 3) were reported.  

Table 3  Comparison of three TNF-α and 122 HIV-1 RT non-nucleoside binding sites by state-of-the-

art cavity comparison methods. 

Method  Score thresholda Metric Success rateb 

G-LoSA 0.59 GA-score 35.2 

KRIPO 0.50 Modified Tanimoto coefficient 5.8 

Shaper 0.44 ColorRefTversky 1.4 

SiteAlign 0.6, 0.2 d1 and d2 distancesc 0.3 

FuzCav 0.16 Tanimoto coefficient 0 

ProBiS 2 Z-scored 0 

ProCare 0.47 ProCare score 76.6 

a Developer's recommended similarity/distance threshold for estimating two binding sites similar. 
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b Percentage of pairwise comparisons scored above the threshold. 

c For SiteAlign comparisons, pairs are considered similar when the two distances (d1, d2) are below the 

score threshold value [37]. 

d The Z-score indicates the statistical relevance of ProBiS binding site alignments. 

 

Strikingly, only the G-LoSA method relying on a graph-based local alignment of cavity-lining amino 

acids, managed to find some similarity between the two sets of binding sites, however with reduced 

success rate (35.2%) when compared to the ProCare algorithm (76.6 % success rate; Table 3). We 

acknowledge that the developer's recommended thresholds may be biased toward peculiar datasets. 

However, all methods compared herein were subjected to the same protocol and we do think that the 

threshold scores are appropriate indicators in a virtual screening setting where there is no room for a 

one-by-one case study of each pairwise comparison. 

 

Fig. 5 Score distribution of pairwise comparisons between binding sites of TNF-α trimer and HIV-

1 reverse transcriptase. Binding sites in asymmetric structures of TNF-α trimer (n=3) were compared 

to binding sites of non-nucleoside inhibitors in HIV-1 reverse transcriptase (sc-PDB set, n=122). Pairs 

with similarity measures scored above each method-specific threshold (red dashed line) were considered 
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similar. For SiteAlign comparisons, pairs are considered similar in case the two distances (distance 1, 

distance 2) are below the recommended cut-off. For ProBiS, the threshold above which an alignment is 

considered significant is marked by the blue dashed line. 

 

The herein reported binding of some HIV-1 RT non-nucleoside inhibitors to human TNF-α remains 

unobvious to many binding site comparison algorithms. Would this unexpected feature be better 

captured by remote ligand similarities? To investigate this question, we compared 2D and 3D descriptors 

of the corresponding inhibitors (Figure 6).  

 

Fig. 6  Pairwise similarity between inhibitors of TNF-α trimer and non-nucleoside inhibitors of 

HIV-1 reverse transcriptase. Recently described TNF-α trimer inhibitors (n=3) were compared to non-

nucleoside inhibitors of HIV-1 RT (sc-PDB set, n=122). Pairs with similarity measures scored above 

each descriptor-specific threshold (red dashed line) were considered similar. (Top left) 2D similarity 

estimated by a Tanimoto metric using Morgan2 circular fingerprint, (Top right) 2D similarity estimated 

by a Tanimoto metric using 166 MACCS public keys. (Bottom) 3D shape comparison (ROCS) 

estimated by the TanimotoCombo metric. 

 

Neither comparing 2D fingerprints nor 3D shapes would have confidently suggested possible binding 

of HIV-1 RT inhibitors to TNF-α trimer (Figure 6) since none of the considered ligand pairs exhibit a 

pairwise similarity above an acceptable threshold (Morgan2 circular fingerprint: 0.30 [40]; 166 public 

MACCS keys: 0.65 [40], TanimotoCombo ROCS 3D similarity: 1.5 [41, 42]). We should precise here 

that 3D similarities were inferred from PDB protein-bound ligand X-ray structures and that alternative 

conformations might be selected by the two targets, although the very rigid efavirenz does indeed bind 
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to the two proteins of interest albeit with different affinities (TNF-α, KD=24 μM; HIV-1RT, ChEMBL 

median IC50= 20 nM). Extending 2D fingerprint comparisons to additional 2,361 HIV-1 RT inhibitors 

(Supporting Table S5) from the ChEMBL database [43], did not change our conclusion since only 

0.71% and 0.09% of the corresponding pairs were found similar using Morgan2 and 166 public MACCS 

keys, respectively  (data not shown). 

 

 

3.1.4. Conclusions 

Herein, we describe a systematic comparison of fragment-bound subpockets from a priori unrelated 

targets (TNF-α, HIV-1 RT) but predicted to share local similarities according to our recently-developed 

ProCare point cloud registration method.  The computational prediction was verified by microscale 

thermophoresis experiments evidencing the micromolar binding of some but not all HIV-1 RT non-

nucleoside inhibitors to human soluble TNF-α. Interestingly, the ProCare prediction could not be 

revealed by other state-of-the-art cavity or ligand similarity search methods. Point cloud registration, a 

computational method frequently used for digital image processing in robotics and medical imaging, 

enables the detection of subtle and local protein similarities thanks to a powerful description of 

subpocket microenvironments. The ProCare method appears as a promising idea generator for drug 

repurposing and fragment-based ligand design since it is able to pick starting ligands at a proteomic 

scale.  
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3.1.5. Methods 

Preparation of protein and ligand structures 

TNF-α structures. The recently described asymmetric structures of the human TNF-α trimer bound to 

different inhibitors were retrieved from the RCSB Protein Data Bank (PDB) homepage 

(https://www.rcsb.org) [44] using the following identifiers: 6OOY, 6OP0, 6OOZ [22]. The PDB 

structures were protonated with Protoss [45] v.4.0, then split into protein, ligands and water molecules 

and finally converted into mol2 format with Sybyl-X v.2.1.1 (Certara USA, Inc., Princeton, NJ 08540). 

The binding sites (‘SITE’) were defined as any protein residue with at least one heavy atom closer than 

6.5 Å from any ligand heavy atom and saved in mol2 and pdb formats. The ligands were converted into 

sdf format with OpenEye Python toolkits v.2020.0.4 (OpenEye Scientific Software, Santa Fe, U.S.A.). 

Cavities were detected with IChem v.5.2.9 VolSite utility [21] (cavity_all output) using default 

parameters. The cavity points are labeled with eight possible pharmacophoric features (hydrophobic, 

aromatic, H-bond donor, H-bond acceptor, H-bond donor and acceptor, positive, negative, dummy) that 

are complementary to the features of the nearest protein atom. If no protein atom is found within a 4 Å 

distance of a cavity point, the latter is assigned a dummy property. 

 

HIV-1 reverse transcriptase PDB structures. Starting from the PDB structure 1VRT as a reference, a 

search was performed in the RCSB PDB (https://www.rcsb.org) [44] to retrieve all structures with strict 

matching (“Structure Similarity” query in the PDB). After visual check, 122 entries already available in 

the sc-PDB repository (http://bioinfo-pharma.u-strasbg.fr/scPDB) [8] and for which the ligand is a non-

nucleoside inhibitor were kept. The remaining PDB structures were protonated with Protoss [45] v4.0. 

The list of the PDB identifiers and Uniprot accession numbers is reported Supporting Table S2. 

According to the sc-PDB preparation rules, the binding sites (‘SITE’) were defined as described above. 

Protein, ligand and binding site ‘SITE’ structures were directly retrieved in mol2 file format from the 

sc-PDB archive. The corresponding 122 ligands were 3D-fragmented with the IChem v.5.2.9 [49] 

fragmentation utility [47] and the complementary VolSite [21] cavity points, computed at 4 Å around 

each fragment were finally saved. The ligands were converted into sdf format as described above. 

 

Preparation of HIV-1 reverse transcriptase ChEMBL ligands 

Bioassay information were first retrieved from the ChEMBL [43] dataset (Release 28; 

https://www.ebi.ac.uk/chembl) by querying the general keyword 'reverse transcriptase' and retaining 

ChEMBL target identifiers (CHEMBL247, CHEMBL4296301, CHEMBL2366516) corresponding to 

HIV-1 RT. Ligands with a measured sub-micromolar half-maximal inhibitory concentration (IC50) 

against the HIV1-RT single target were defined here as inhibitors (Supporting Table S5). The 
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corresponding SMILES strings were retrieved and further processed with RDKit (Open-source 

cheminformatics; http://www.rdkit.org) v.2019.03.4.0 to remove redundancy. 

 

Preparation of sc-PDB fragments and subpockets 

Ligands coordinates from the sc-PDB (http://bioinfo-pharma.u-strasbg.fr/scPDB) [46] v.2016 archive 

were fragmented in 3D with the IChem v.5.2.9 fragmentation utility [47]. Fragmentations occurs in the 

binding sites so that only the main fragments interacting sufficiently (four interactions of which at least 

one is polar) with their target proteins were kept. Finally, the cavity pharmacophoric points cloud were 

computed at 4 Å from the fragments center to describe the protein subpocket, using the IChem v.5.2.9 

VolSite utility ("cavity_4" output).  VolSite cavities exhibiting less than three points were removed. A 

total of 31,570 valid fragment-bound subpockets were finally obtained. 

 

Cavity similarities 

ProCare. ProCare [17] v.0.1.1 pairwise comparison were performed on cavities computed with the 

VolSite module [21] in IChem v5.2.9 [49]. Entire cavities ("cavity_all" output) were calculated for TNF-

α structures whereas only cavity points closer than 4.0 Å from any fragmented ligand center ("cavity_4" 

output) were considered for sc-PDB subpockets. VolSite cavity points were directly used for point cloud 

registration staring with determination of colored fast point feature histograms (c-FPFH) as previously 

described [17]. Finally, the respective set of c-FPFH descriptors for the two cavities were compared to 

each other using a RANSAC algorithm [19, 20] followed by refinement with default parameters [17]. 

Alignments results were scored with the default ProCare scoring function [17] which evaluates with a 

Tversky metric the proportion of aligned points of the same pharmacophoric features. In agreement with 

our previous study [17] where the similarity threshold of 0.47 (p-value of 0.05) was statistically 

determined, pockets scoring above 0.47 were considered similar. 

 

FuzCav. FuzCav [36], an alignment-free method, was used to compare the binding site ‘SITE’ (mol2 

format) entries of TNF-α dataset to the binding sites of HIV-1 RT sc-PDB dataset. Each binding site 

was tagged to compute a 4,833 bit-string that count all possible pharmacophoric triplets based on the 

atomic coordinates of Cα atoms lining the binding cavity. The pairwise comparisons of the fingerprints 

were evaluated with the default similarity score, with a threshold set at a value of 0.16 to distinguish 

similar from dissimilar binding sites. 
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G-LoSA. G-LoSA [38] v.2.2 is an alignment tool that was used with the binding sites ’SITE’ pdb files. 

G-LoSA computes a set of inter-structural Cα pair distances to derive a graph, which will later be 

subjected to maximum clique search. The default G-LoSA score (GA-score) was used to evaluate the 

alignments. A threshold value of 0.59, recommended by the authors [38] and corresponding to a p-value 

of 0.05, was used to distinguish similar from dissimilar binding sites. 

 

KRIPO. PDB ligands structural information were downloaded from Ligand Expo (http://ligand-

expo.rcsb.org/) and prepared according to the KRIPO procedure (https://github.com/3D-e-Chem/kripo). 

Then KRIPO [15] v.1.0.1 was used with the list of prepared PDB structures for the pharmacophore fuzzy 

fingerprints calculations, using default parameters (fragmentation procedure activated). The pairwise 

similarities of the fingerprints were estimated with kripodb (v.3.0.0) using the modified Tanimoto 

coefficient as similarity metric. A threshold value of 0.50 was used to distinguish similar from dissimilar 

binding sites. 

 

ProBiS. In a first place, the surface information (srf files) was computed for each prepared PDB 

structures with the default parameters referenced in the manual (3.0 Å to the ligand). ProBiS [39] 

requires a list of ligand HET code and residue number for each PDB entries. That list was provided to 

ensure that the ligands/sites considered are the same as in the binding site datasets used for other 

methods. Then, the alignment and comparison of the srf files were executed with default parameters, 

except for the Z-score that was set to a high negative value (-9999) as suggested by the authors to enforce 

the output of all results. Similarity between two binding sites was evaluated by the alignment score and 

Z- score. A threshold Z-score value of 2.0 was used to distinguish significant from irrelevant binding 

site alignments. 

 

SiteAlign. For each entry, the list of natural amino acids in the ‘SITE’ mol2 files were provided as input. 

SiteAlign [37] v.4.0 describes a binding site by a polyhedron of 80 discretized triangles annotated with 

eight possible pharmacophoric features projected from cavity-lining C-α atoms. This results in a 

fingerprint of 640 integers. The pairwise comparisons imply aligning the corresponding polyhedron and 

computing the d1 and d2 distances of the fingerprints. The distance thresholds of d1=0.6 and d2=0.2 

were applied respectively, to discriminate similar from dissimilar binding sites. 

 

Shaper. Shaper [21] v.1.0 uses the same input files (VolSite cavities in mol2 file format) as ProCare. 

Shaper is an alignment method based on the OpenEye ShapeTK toolkit (OpenEye Toolkits 2020.2.0, 
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OpenEye Scientific Software, Santa Fe) to maximize the overlap of shape and pharmacophoric features 

of the two compared cavities, thanks to a smooth Gaussian function. The alignments were realized with 

default settings and scored with a Tversky metric putting more weight on the reference cavity (RefTve). 

A threshold RefTve value of 0.44 (p-value = 0.005) was used to distinguish similar from dissimilar 

binding sites. 

 

Ligand similarities 

Ligand 2D similarity. Morgan fingerprints on the one hand, and 166 public MACSS keys on the other 

hand were computed on the PDB ligands (sdf format) and ChEMBL ligands (SMILES strings) with 

RDKit (Open-source cheminformatics; http://www.rdkit.org) python package v.2019.03.4.0 using 

default parameters (radius = 2 Å for the Morgan fingerprints). The Tanimoto coefficients of the pairwise 

TNF-α ligands/HIV-1 RT ligands fingerprints comparison were reported. Cut-off values of 0.30 

(Morgan fingerprints) and 0.65 (MACCS keys) were used to discriminate chemically similar from 

dissimilar ligands.  

 

Ligand 3D similarity. sc-PDB HIV-1 RT inhibitors were compared to TNF-α inhibitors with OpenEye 

ROCS v.3.2.0.4 and scored by decreasing Tanimoto similarity metric accounting for both shape and 

chemical features overlap (TanimotoCombo). A TanimotoCombo cut-off value of 1.5 was used to 

discriminate chemically similar from dissimilar ligands. 

 

Docking 

TNF-α X-ray structure 6OOZ was prepared as described above (see TNF-α structures). 6OOZ co-

crystallized ligand on the one hand, delavirdine, efavirenz and nevirapine as well as their main fragments 

on the other hand were drawn with MarvinSketch v.16.10.17 (ChemAxon Ltd, 1031 Budapest, Hungary) 

and saved into 2D sdf format. They were ionized with Filter v.2.5.1.4 (OpenEye Scientific Software, 

Santa Fe, U.S.A.) using customized parameters (Supporting Table S6). Then Corina v.3.40 (Molecular 

Networks GmbH, 90411 Nürnberg, Germany) was used to generate a starting 3D conformation for each 

inhibitor. The prepared molecules were docked into the target 6OOZ with PLANTS v.1.2 [26] using the 

following configuration: the grid was set at 13 Å from the binding site center; poses were searched 

‘speed1’ settings to generate a maximum of 10 poses per ligand using a clustering rmsd of 2 Å. Solutions 

were scored with the default ChemPLP scoring function [26]. The docking protocol was validated by 

computing the rmsd between of the docked 6OOZ ligand coordinates and the X-ray coordinates. Results 

were processed and rescored by computing the interaction fingerprint (IFP) similarity (Tanimoto metric) 
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[48] between X-ray and docking poses. The IFPs were computed with IChem v.5.2.9  IFP module. All 

poses were visually inspected using Maestro v.2019-3 (Schrödinger, New York, NY 10036-4041). 

 

Chemicals and biologicals 

Nevirapine (catalog #S1742), efavirenz (catalog #S4685) and delavirdine mesylate (catalog #S6452) 

were purchased from Selleck Chemicals (https://www.selleckchem.com/). Soluble human TNF-α 

(catalog # Z01001) was purchased from GenScript (http://www.genscript.com). 

 

Binding of HIV-1 RT inhibitors to human TNF-α (Microscale thermophoresis) 

Human TNF-α was labeled using the RED-NHS 2nd generation labeling kit (NanoTemper Technologies 

GmbH) using a protein concentration of 10 µM and a molar dye-to-protein ratio ~ 3:1. A label/protein 

ratio of 0.4 was determined using photometry at 650 and 280 nm.  Compounds efavirenz, delavirdine 

and nevirapine were initially dissolved in DMSO to afford stock solutions of 10 mM. These were then 

diluted to initial concentrations of 260 μM into 20 mM K-phosphate pH 7.4, 150 mM NaCl ensuring a 

final concentration of DMSO of 2.6 %. These compounds were serially diluted 2:1 in buffer 20 mM K-

phosphate pH 7.4, 150 mM NaCl, 2.6 % DMSO producing ligand concentrations ranging from 260 µM 

to 594 nM (16 titration points). For MST measurements, each ligand dilution was mixed with 1 volume 

of fluorescently-labelled TNF-α at 680 nM in 20 mM K-phosphate pH 7.4, 150 mM NaCl, 0.02% 

Tween-20, which leads to a final concentration of TNF-α of 340 nM and final ligand concentrations at 

half of the ranges above. The final buffer is 20 mM K- phosphate pH 7.4, 150 mM NaCl, 0.01% Tween-

20 and 1.3 % DMSO. After a 15-min incubation at room temperature in the dark, followed by 

centrifugation at 13,000 g for 3 min, each solution was filled into Monolith NT Premium capillaries 

(NanoTemper Technologies GmbH). Thermophoresis was measured at 25°C with 40% LED power and 

20%, 40% and 80% MST power using a Monolith NT.115 (NanoTemper Technologies GmbH). Data 

were analyzed in the NT Analysis software version 1.5.41 (NanoTemper Technologies GmbH). 
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3.1.6. Associated contents 

List of abbreviations 

2D: two-dimension 

3D: three-dimension 

AUC: Area Under the Curve 

c-FPFH: colored Fast Point Feature Histogram 

DMSO: Dimethyl Sulfoxide 

HIV: Human Immunodeficiency Virus 

MST: Microscale Thermophoresis 

PDB: Protein Data Bank 

RANSAC: Random Sample Consensus 

RMSD: Root Mean Square Deviation 

ROC: Receiver Operating Characteristics 

RT: Reverse Transcriptase 

TNF: Tumor Necrosis Factor 

 

Supplementary information 

Figure S1: Receiver operating characteristic (ROC) curves derived from ProCare similarity scores. 

Figure S2: ProCare alignment of efavirenz main fragment subpocket onto TNF-α trimer pocket. Figure 

S3: Contributions of the eight pharmacophoric features to the ProCare similarity score between HIV-1 

RT and TNF-α. Figure S4: Non-covalent interactions between efavirenz and HIV-1 RT, and between 

UCB-5307 and TNF-α trimer. Figure S5: Manual fragmentation of delavirdine in three fragments (#1 

to #3). Table S1: sc-PDB subpockets sorted by decreased ProCare similarity to the inner cavity of 

human TNF-α. Table S2: PDB entries describing non-nucleoside inhibitors bound to HIV-1 reverse 

transcriptase. Table S3: Comparison of delavirdine subpockets, resulting from manual fragmentation, 

with TNF-α trimer pockets. Table S4: Dissociation constant (KD) of three HIV-1 RT inhibitor binding 

to human soluble TNF-α, according to MST experimental conditions. Table S5: CHEMBL entries 

describing HIV-1 RT non-nucleoside inhibitors. Table S6: Customized rules for OpenEye Filter 

ionization. 

 

Availability of data and materials 

Data. Input and results data are available at https://github.com/kimeguida/ProCare_TNF. 

Software. ProCare, version 0.1.1 and 0.1.0, https://github.com/kimeguida/ProCare; Fuzcav, 

http://bioinfo-pharma.u-strasbg.fr/labwebsite/downloads/FuzCav.tgz; G-LoSA, version 2.2, 

https://compbio.lehigh.edu/GLoSA; KRIPODB, version 3.0.0, http://3d-e-chem.github.io/kripodb; 

KRIPO, version 1.0.1, https://github.com/3D-e-Chem/kripo;  ProBiS, http://insilab.org/probis-

algorithm/; SiteAlign, version 4.0, http://bioinfo-pharma.u-strasbg.fr/labwebsite/downloads/SiteAlign-

4.0.tgz; Shaper, version 1.0, http://bioinfo-pharma.u-strasbg.fr/labwebsite/downloads/Shaper.tgz; 

RDKit python package, version 2019.03.4.0, https://www.rdkit.org/; ROCS, version 3.2.0.4, 

https://www.eyesopen.com/rocs; IChem, version 5.2.9, http://bioinfo-pharma.u-
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strasbg.fr/labwebsite/downloads/IChem_v.5.2.9.tgz: Python OpenEye toolkits version 2020.0.4; 

FILTER, version 2.5.1.4, https://www.eyesopen.com/filter; PLANTS version 1.2, http://www.tcd.uni-

konstanz.de/plants_download; Python package Matplotlib version 3.0.2; Maestro vesion 2019-3, 

https://www.schrodinger.com/products/maestro; Pymol version 2.1, https://pymol.org/2; Sybyl-X 

v.2.1.1, https://www.certara.com/sybyl-x-software; MarvinSketch version 16.10.17, 

https://chemaxon.com/products/marvin; 
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3.1.8. Supplementary information for Unexpected similarity between HIV-1 

reverse transcriptase and tumor necrosis factor binding sites revealed by 

computer vision 

 

 

Figure S1. Receiver operating characteristic (ROC) curves of ProCare similarity scores. 

Figure S2. ProCare alignment of efavirenz main fragment subpocket onto TNF-α trimer pocket. 

Figure S3. Contributions of the eight pharmacophoric features to the ProCare similarity score between 

HIV-1 RT and TNF-α. 

Figure S4. Non-covalent interactions between efavirenz and HIV-1 RT; and between UCB-5307 and 

TNF-α trimer. 

Figure S5. Manual fragmentation of delavirdine in three fragments (#1 to #3). 

 

Table S1. sc-PDB subpockets sorted  by decreased ProCare similarity to the inner cavity of human  

TNF-α. 

Table S2. PDB entries describing non-nucleoside inhibitors bound to HIV-1 reverse transcriptase. 

Table S3.  Comparison of delavirdine subpockets, resulting from manual fragmentation, with TNF-α 

trimer pockets. 

Table S4.  Dissociation constant (KD) of three HIV-1 RT inhibitor binding to human soluble TNF-α, 

according to MST experimental conditions. 

Table S5. CHEMBL entries describing HIV-1 RT non-nucleoside inhibitors. 

Table S6. Customized rules for OpenEye Filter ionization. 
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Figure S1. Receiver operating characteristic (ROC) curves derived from ProCare similarity scores 

between sc-PDB subpockets and three TNF-α cavities (6OOY, 6OOZ, 6OP0). For each target (HIV-1 

RT, HIV-1 reverse transcriptase; ADRB2, β2 adrenergic receptor; CAH2, carbonic anhydrase; CDK2, 

cyclin-dependent kinase 2; HSP90A, heat shock protein 90α; THRB, thrombin), the hypothesis is made 

that its cavity is similar to that of TNF-α and the area under the ROC curve of the corresponding 

classification is computed. The diagonal black dashed line corresponds to the performance of a random 

classifier (ROCAUC = 0.50). Number of subpockets for each target is given in brackets. (A) 6OOY 

query, (B) 6OOZ query and (C) 6OP0 query. 
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Figure S2. ProCare alignment of efavirenz main fragment subpocket (PDB code: 1FKO, HET code: 

EFZ) onto TNF-α trimer pocket (PDB code: 6OOZ, HET code: A6Y). Matched pharmacophoric points 

are depicted with dark-colored (TNF-α) and light-colored (HIV-1 RT) large spheres. Small spheres 

represent pharmacophoric points not considered by the best ProCare alignment. 
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Figure S3. Contributions of the eight pharmacophoric features to the ProCare similarity score between 

HIV-1 RT (PDB ID 1FKO) and TNF-α (PDB ID 6OOZ). CA: hydrophobic, CZ: aromatic, O: h-bond 

acceptor, N: h-bond donor, OD1: negative, OG: h-bond acceptor and donor, NZ: positive, DU: dummy. 

(A) Aromatic pharmacophoric features are contributing more to the similarity between TNF-α trimer 

pockets (N=3) and HIV-1 RT subpockets (N = 195) although they are less frequent in the HIV-1 RT 

subpockets than hydrophobic points (B). 
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Figure S4. Non-covalent interactions between (A) efavirenz and HIV-1 RT (PDB ID 1FKO, HET code: 

EFZ) and (B) UCB-5307 and TNF-α trimer (PDB ID 6OOZ, HET code: A6Y). 
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Figure S5. Manual fragmentation of delavirdine (PDB code: 1KLM, HET code: SPP) in three 

fragments (#1 to #3). 

 

Table S1. sc-PDB subpockets sorted  by decreased ProCare similarity to the inner cavity of human  

TNF-α (PDB code: 6OOY) 

Cavity IDa Protein name (Uniprot) Scoreb Rank 

4f9y_GG5_1_3 mitogen-activated protein kinase 14 0.7679 1 

1mz9_VDY_2_1 cartilage oligomeric matrix protein 0.7673 2 

1oz1_FPH_1_2 mitogen-activated protein kinase 14 0.7634 3 

3g9n_J88_1_2 mitogen-activated protein kinase 10 0.7527 4 

4fyn_0VE_1_2 tyrosine-protein kinase syk 0.7504 5 

4kb8_1QN_3_1 casein kinase i isoform delta 0.7358 6 

3k3j_I46_2_1 mitogen-activated protein kinase 14 0.7338 7 

2xj1_XJ1_1_2 serine/threonine-protein kinase pim-1 0.7303 8 

4tuv_CPZ_1_1 cytochrome p450 119 0.7303 9 

1mr9_ACO_3_2 streptogramin a acetyltransferase 0.7301 10 

2fze_APR_1_1 alcohol dehydrogenase class-3 0.728 11 

4iwc_1GV_2_1 estrogen receptor 0.726 12 

1ncr_W11_1_2 human rhinovirus 16 0.7256 13 

2ykm_YKN_1_2 HIV-1 reverse transcriptase 0.7242 14 

4a7c_E46_1_1 serine/threonine-protein kinase pim-1 0.7234 15 

4wm7_W11_1_2 capsid protein vp0 0.7216 16 

3q2a_PAB_2_1 

toluene-4-monooxygenase system, hydroxylase 

component subunit alpha 0.7209 17 

3bqr_4RB_1_1 death-associated protein kinase 3 0.7193 18 

4ccb_OFG_1_4 alk tyrosine kinase receptor 0.7191 19 

3fc1_52P_1_1 mitogen-activated protein kinase 14 0.7137 20 

2uzt_SS3_1_2 camp-dependent protein kinase catalytic subunit alpha 0.7126 21 

4ewq_MWL_2_3 mitogen-activated protein kinase 14 0.7122 22 

4zhx_C1V_1_2 5'-amp-activated protein kinase catalytic subunit alpha-2 0.7122 23 

4ogi_R78_2_2 bromodomain-containing protein 4 0.7115 24 

3roc_29A_1_2 mitogen-activated protein kinase 14 0.7093 25 

2l1r_SXK_1_2 troponin c, slow skeletal and cardiac muscles 0.7071 26 
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4h98_14Q_2_3 dihydrofolate reductase 0.7059 27 

1lwc_NVP_1_1 HIV-1 reverse transcriptase 0.7024 28 

3iw7_IPK_1_1 mitogen-activated protein kinase 14 0.7024 29 

2prh_238_2_2 dihydroorotate dehydrogenase (quinone), mitochondrial 0.7023 30 

3hll_I45_1_1 mitogen-activated protein kinase 14 0.7023 31 

2vg7_NNI_1_1 HIV-1 reverse transcriptase 0.7022 32 

1lwc_NVP_1_2 HIV-1 reverse transcriptase 0.6985 33 

1ouk_084_1_3 mitogen-activated protein kinase 14 0.6981 34 

2xiy_XIY_1_1 serine/threonine-protein kinase pim-1 0.6981 35 

4k33_ACP_1_2 fibroblast growth factor receptor 3 0.698 36 

3umw_596_1_2 serine/threonine-protein kinase pim-1 0.6978 37 

4nkw_PLO_4_1 steroid 17-alpha-hydroxylase/17,20 lyase 0.6975 38 

2iok_IOK_1_3 estrogen receptor 0.6969 39 

2qd9_LGF_1_2 mitogen-activated protein kinase 14 0.6967 40 

2hnd_NVP_1_1 HIV-1 reverse transcriptase 0.6964 41 

5av4_GEN_1_2 death-associated protein kinase 1 0.6964 42 

4zth_GG5_1_2 mitogen-activated protein kinase 14 0.6961 43 

3vs2_VSB_2_3 tyrosine-protein kinase hck 0.6951 44 

4r3c_GG5_1_3 mitogen-activated protein kinase 14 0.6951 45 

4q5h_ANP_1_2 protein kinase ospg 0.6939 46 

5awm_ANP_1_2 stress-activated protein kinase jnk 0.6936 47 

4anq_VGH_1_2 alk tyrosine kinase receptor 0.6933 48 

1mp0_NAD_2_2 alcohol dehydrogenase class-3 0.6922 49 

4anv_751_1_1 

phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 

subunit gamma isoform 0.6918 50 

2bxo_OPB_1_2 albumin 0.6914 51 

1nav_IH5_1_1 thyroid hormone receptor alpha 0.6905 52 

3fyw_XCF_1_3 dihydrofolate reductase 0.6903 53 

3lp0_NVP_2_1 HIV-1 reverse transcriptase 0.6897 54 

1adc_PAD_1_2 alcohol dehydrogenase e chain 0.6892 55 

2yis_I46_2_1 mitogen-activated protein kinase 14 0.689 56 

4uun_NAI_2_2 l-lactate dehydrogenase 0.6882 57 

4fl2_ANP_1_2 tyrosine-protein kinase syk 0.6876 58 

4kb8_1QN_3_2 casein kinase i isoform delta 0.6874 59 

1pjc_NAD_1_2 alanine dehydrogenase 0.687 60 

3hl7_I47_1_2 mitogen-activated protein kinase 14 0.687 61 

4l0q_NAD_1_2 alcohol dehydrogenase class-3 0.6864 62 

4loo_SB4_1_2 mitogen-activated protein kinase 14 0.6864 63 

3go6_ADP_1_2 ribokinase 0.6833 64 

3wze_BAX_1_1 vascular endothelial growth factor receptor 2 0.6833 65 

2xiz_XIZ_1_1 serine/threonine-protein kinase pim-1 0.6822 66 

3rsr_N5P_1_1 ribonucleoside-diphosphate reductase large chain 1 0.6816 67 

1jkl_ANP_1_2 death-associated protein kinase 1 0.6807 68 

3bxz_ADP_2_2 protein translocase subunit seca 0.6807 69 
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3uyt_0CK_3_3 casein kinase i isoform delta 0.6807 70 

1qiw_DPD_2_2 calmodulin 0.6806 71 

4mbl_26L_1_2 serine/threonine-protein kinase pim-1 0.6802 72 

4kbc_1QJ_1_1 casein kinase i isoform delta 0.6797 73 

1vru_AAP_1_2 HIV-1 reverse transcriptase 0.6791 74 

1f0y_NAD_2_2 hydroxyacyl-coenzyme a dehydrogenase, mitochondrial 0.6786 75 

4hds_IPH_1_1 n(1)-alpha-phosphoribosyltransferase 0.6786 76 

4mzu_COA_22_2 wxcm-like protein 0.6786 77 

3gc7_B45_1_1 mitogen-activated protein kinase 14 0.6782 78 

3qf9_NM8_1_2 serine/threonine-protein kinase pim-1 0.678 79 

3rr3_FLR_3_2 prostaglandin g/h synthase 2 0.678 80 

4ix6_ADP_1_2 protein kinase domain-containing protein 0.6771 81 

1pf9_ADP_2_2 60 kda chaperonin 0.6761 82 

2bu7_TF3_1_2 

[pyruvate dehydrogenase (acetyl-transferring)] kinase 

isozyme 2, mitochondrial 0.6761 83 

5ani_ES4_1_1 cyclin-dependent kinase 2 0.6761 84 

1tuv_VK3_1_1 probable quinol monooxygenase ygin 0.6754 85 

2zm1_KSF_1_2 tyrosine-protein kinase lck 0.6752 86 

3bea_IXH_1_3 angiopoietin-1 receptor 0.6752 87 

4hur_ACO_3_1 virginiamycin a acetyltransferase 0.6752 88 

5dr2_ATP_1_2 aurora kinase a 0.6752 89 

5dgz_L20_1_1 serine/threonine-protein kinase pim-1 0.674 90 

4iu7_1GM_1_1 estrogen receptor 0.6736 91 

2pnu_ENM_1_1 androgen receptor 0.6736 92 

3hvc_GG5_1_3 mitogen-activated protein kinase 14 0.6736 93 

3wwm_ADP_1_2 [lysw]-aminoadipate kinase 0.6736 94 

3znr_NU9_1_3 histone deacetylase 7 0.6736 95 

3q7d_NPX_1_1 prostaglandin g/h synthase 2 0.6726 96 

3fkn_FKN_1_1 mitogen-activated protein kinase 14 0.6723 97 

4dgm_AGI_1_1 casein kinase ii subunit alpha 0.6721 98 

4i5h_G17_1_1 mitogen-activated protein kinase 1 0.6721 99 

3t9i_3T9_1_1 serine/threonine-protein kinase pim-1 0.6715 100 

... ... ... … 

5je3_SAH_2_2 class I sam-dependent methyltransferase 0.0000 31570 
a Cavity ID (PDB_HET_C_M) is inferred from the cognate target PDB identifier (PDB), the 

corresponding ligand chemical component (HET), the target cavity identifier (C), and the fragment 

number (N). 

b ProCare similarity score. A value above 0.47 corresponds to statistically significant similarity (p-

value < 0.05) between the pair of pockets under investigation [17].  
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Table S2. PDB entries describing non-nucleoside inhibitors bound to HIV-1 reverse transcriptase 

The list of the 122 HIV-RT entries is available as supporting information at: 

https://doi.org/10.1186/s13321-021-00567-3: 13321_2021_567_MOESM1_ESM.pdf 

 

 

Table S3.  Comparison of delavirdine subpockets, resulting from manual fragmentation, with TNF-α 

trimer pockets. 

PDB/HET code Fragment # TNF-α PDB entry ProCare score Ranka 

1KLM/SPP 1 6OOY 0.328 588 

1KLM/SPP 2 6OOY 0.599 113 

1KLM/SPP 3 6OOY 0.283 593 

1KLM/SPP 1 6OOZ 0.361 581 

1KLM/SPP 2 6OOZ 0.570 174 

1KLM/SPP 3 6OOZ 0.416 549 

1KLM/SPP 1 6OP0 0.342 586 

1KLM/SPP 2 6OP0 0.534 272 

1KLM/SPP 3 6OP0 0.130 594 

a Rank after adding delavirdine fragment scores to the ProCare screening results that yielded a total of 

594 pairwise scores. 

 

Table S4.  Dissociation constant (KD) of three HIV-1 RT inhibitor binding to human soluble TNF-α, according 

to MST experimental conditions. 

        
HIV-1 RT 

Inhibitor 

TNF 

concentration 

nM 

DMSO 

concentration 

(%)  

in MST buffer 

Tween-20 

concentr

ation  

in MST 

buffer 

Incubation 

time 

min 

MST 

power 

% 

KD ± CIa 

µM 

 

efavirenz 220 5.0 0.05 5 40 45 ± 9  
efavirenz 220 5.0 0.05 5 80 47 ± 12  
efavirenz 220 5.0 0.01 5 80 26 ± 5  
efavirenz 220 5.0 0.01 30 80 27 ± 6  
efavirenz 220 2.5 0.01 30 80 11 ± 3  
efavirenz 170 1.3 0.01 20 40 17 ± 5  
efavirenz 170 1.3 0.01 20 80 24 ± 4  

efavirenz 340 1.3 0.01 15 40 24 ± 8b  
efavirenz 340 1.3 0.01 15 80 38 ± 5  

        
delavirdine 220 5.0 0.05 5 40 203 ± 143  

https://doi.org/10.1186/s13321-021-00567-3
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delavirdine 220 5.0 0.01 5 40 84 ± 57  
delavirdine 170 1.3 0.01 5 40 90 ± 50  
delavirdine 170 1.3 0.01 60 20 81 ± 31  
delavirdine 170 1.3 0.01 15 20 69 ± 23  

delavirdine 340 1.3 0.01 15 20 39 ± 9b  
delavirdine 340 1.3 0.01 120 20 56 ± 20  

        
nevirapine 220 5.0 0.05 5 40 no signal  
nevirapine 340 1.3 0.01 20 40 no signal  

a CI: 68.3% confidence interval 

b MST measure with the highest signal to noise ratio 

 

Table S5. CHEMBL entries describing HIV-1 RT non-nucleoside inhibitors. 

Available at https://github.com/kimeguida/ProCare_TNF 

 

Table S6. Customized rules for OpenEye Filter ionization. 

MIN_MOLWT      1         "Minimum molecular weight" 

MAX_MOLWT      15000         "Maximum molecular weight" 

MIN_NUM_HVY   0          "Minimum number of heavy atoms" 

MAX_NUM_HVY   2500         "Maximum number of heavy atoms" 

MIN_RING_SYS    0      "Minumum number of ring systems" 

MAX_RING_SYS    50      "Maximum number of ring systems" 

MIN_RING_SIZE    0      "Minimum atoms in any ring system" 

MAX_RING_SIZE    200      "Maximum atoms in any ring system" 

MIN_CON_NON_RING    0      "Minimum number of connected non-ring atoms" 

MAX_CON_NON_RING    190     "Maximum number of connected non-ring atoms" 

MIN_FCNGRP       0      "Minimum number of functional groups" 

MAX_FCNGRP       70      "Maximum number of functional groups" 

MIN_UNBRANCHED   0      "Minimum number of connected unbranched non-ring atoms" 

MAX_UNBRANCHED   130     "Maximum number of connected unbranched non-ring atoms" 

MIN_CARBONS      0      "Minimum number of carbons" 

MAX_CARBONS      410      "Maximum number of carbons" 

MIN_HETEROATOMS    0      "Minimum number of heteroatoms" 

MAX_HETEROATOMS    140      "Maximum number of heteroatoms" 

MIN_Het_C_Ratio    0.04     "Minimum heteroatom to carbon ratio" 

MAX_Het_C_Ratio    40.0      "Maximum heteroatom to carbon ratio" 

MIN_HALIDE_FRACTION      0.0      "Minimum Halide Fraction" 

MAX_HALIDE_FRACTION      0.99     "Maximum Halide Fraction" 

#count ring degrees of freedom = (#BondsInRing) - 4 - (RigidBondsInRing) - (BondsSharedWithOtherRings) 

#must be >= 0, from JCAMD 14:251-265,2000. 

ADJUST_ROT_FOR_RING     true      "BOOLEAN for whether to estimate degrees of freedom in rings" 

MIN_ROT_BONDS    0      "Minimum number of rotatable bonds" 

MAX_ROT_BONDS    160      "Maximum number of rotatable bonds" 

MIN_RIGID_BONDS    0      "Minimum number of rigid bonds" 
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MAX_RIGID_BONDS    550      "Maximum number of rigid bonds" 

MIN_HBOND_DONORS  0      "Minimum number of hydrogen-bond donors" 

MAX_HBOND_DONORS  90      "Maximum number of hydrogen-bond donors" 

MIN_HBOND_ACCEPTORS  0      "Minimum number of hydrogen-bond acceptors" 

MAX_HBOND_ACCEPTORS  130     "Maximum number of hydrogen-bond acceptors" 

MIN_LIPINSKI_DONORS  0      "Minimum number of hydrogens on O & N atoms" 

MAX_LIPINSKI_DONORS  60      "Maximum number of hydrogens on O & N atoms" 

MIN_LIPINSKI_ACCEPTORS  0      "Minimum number of oxygen & nitrogen atoms" 

MAX_LIPINSKI_ACCEPTORS  140      "Maximum number of oxygen & nitrogen atoms" 

MIN_COUNT_FORMAL_CRG    0      "Minimum number formal charges" 

MAX_COUNT_FORMAL_CRG    40      "Maximum number of formal charges" 

MIN_SUM_FORMAL_CRG   -20      "Minimum sum of formal charges" 

MAX_SUM_FORMAL_CRG    20      "Maximum sum of formal charges" 

MIN_CHIRAL_CENTERS   0   "Minimum chiral centers" 

MAX_CHIRAL_CENTERS   100  "Maximum chiral centers" 

MIN_XLOGP      -30.0      "Minimum XLogP" 

MAX_XLOGP       60.85     "Maximum XLogP 

#choices are insoluble<poorly<moderately<soluble<very<highly 

MIN_SOLUBILITY      insoluble "Minimum solubility" 

PSA_USE_SandP   false    "Count S and P as polar atoms" 

MIN_2D_PSA      0.0      "Minimum 2-Dimensional (SMILES) Polar Surface Area" 

MAX_2D_PSA      2050.0    "Maximum 2-Dimensional (SMILES) Polar Surface Area" 

AGGREGATORS    false      "Eliminate known aggregators" 

PRED_AGG       false     "Eliminate predicted aggregators" 

#secondary filters (based on multiple primary filters) 

GSK_VEBER      false     "PSA>140 or >10 rot bonds" 

MAX_LIPINSKI   5        "Maximum number of Lipinski violations" 

MIN_ABS        0.01      "Minimum probability F>10% in rats" 

PHARMACOPIA    false     "LogP > 5.88 or PSA > 131.6" 

ALLOWED_ELEMENTS  H,C,N,O,F,P,S,Cl,Br,I,B 

ELIMINATE_METALS Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd 
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3.2. Scope and critical evaluation of the study 

In Chapter 2, we presented ProCare and its possible applications. Whereas benchmarking via 

retrospective studies is necessary to validate an approach, it is important to delineate the actual 

applicability in real-life cases—what the method was developed for in the first place. This study aimed 

at evaluating whether ProCare can predict similarity between structurally and functionally remote 

pockets and transfer a binding fragment from one pocket to the other. The choice of the target, human 

tumor necrosis factor-alpha (TNF-α),1,2 was motivated by its unavailability in the sc-PDB database and 

its importance in human diseases. 

TNF-α is a pro-inflammatory cytokine, released by the immune system for infection signaling. It binds 

to and activate one of its two receptors, TNF receptor 1 (TNFR1).1 Targeting TNF-α has been a 

successful strategy to treat autoimmune diseases such as rheumatoid arthritis, psoriasis, or inflammatory 

Bowel disease such as Crohn's disease or ulcerative colitis. Approved and commercialized inhibitors are 

monoclonal anti-human TNF-α antibodies (e.g. Infliximab) or chimeric proteins mimicking TNFR (e.g. 

Etanercept).2 Due to the challenges of biologics regarding administration, immunogenicity and other 

side effects, drug design efforts are made to develop small molecule inhibitors.3 Among the strategies, 

some small molecules in the clinical phases disrupt TNF-α pathways (e.g. p38 inhibitors). Others 

directly target the trimeric interface (Table 3.1). We should recall that, among published inhibitors 

accessible in ChEMBL (https://www.ebi.ac.uk/chembl) for instance, not all were co-crystallized with 

TNF-α or released in the Protein Data Bank (PDB).4–6 

Out of the 35 TNF-α homotrimer, dimer and monomer structures in the PDB, one third were released in 

the last two years, after the generation of the hypothesis leading to this work. Some of these structures 

are complexes with small molecules inducing some asymmetric shape of the trimeric TNF-α and 

disrupting its downstream effects. The most recent asymmetric trimeric complexes (PDB ID 6OOY, 

6OOZ, 6OP0) at the time of the study were selected. 

Table 3.1. Small molecules binding TNF-α trimer interface and available in the PDB (on 06/27/2022). 

PDB ID 

(Resol.) 

Ligand  Binding Affinity in 

nM 

(assay, measure) 

Release date 

6X81 

(2.81 Å) 

 

2 700 

(SPR KD)7 

 

2021-01-13 
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6X82 

(2.75 Å) 

 

2.4 

(SPR KD)7 

 

2021-01-13 

6X83 

(2.83 Å) 

 

300 000 

(SPR KD)7 

 

2021-01-13 

6X85 

(2.85 Å) 

 

19 000 

(SPR KD)7 

2021-01-13 

6X86 

(2.93 Å) 

 

7.3 

(SPR KD)7 

 

2021-01-13 

7KP9 

(2.15 Å) 

 

N/A 2021-01-13 

7KPA 

(2.3 Å) 

 

7KPB 

(3 Å) 

 

8.1 

(SPR KD)8 

 

2021-01-13 
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7JRA 

(2.1 Å) 

 

47 

(TNF-α HTRF 

IC50)9 

2020-12-09 

6OOY 

(2.5 Å) 

 

22 000 

(SPR KD)10 

 

2019-12-25 

6OOZ 

(2.8 Å) 

 

9 

(SPR KD)10 

 

2019-12-25 

6OP0 

(2.55 Å) 

 

13.8 

(SPR KD)10 

 

2019-12-25 

5MU8 

(3 Å) 

 

1 200 

(TNF-α-TNFR1 

HTRF IC50)11 

2017-03-29 

2AZ5 

(2.1 Å) 

 

22 000 

(TNF-α-TNFR1 

HTRF IC50)12 

2005-11-29 
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TNF-α pocket is highly hydrophobic (55 % of IChem cavity points are hydrophobic) and might falsely 

match with other hydrophobic pockets. For example, high similarity was predicted for estrogen receptor 

subpockets without further investigations. Interestingly, ProCare aligned four polar features as well, 

associated to a triangle of distinct TNF-α/HIVRT protein residues, hence excluding the possibility of 

unspecific matches. Subpocket-based alignment of corresponding HIVRT fragments (derived from 

nevirapine and efavirenz) superposed to docking solutions encouraged us to continue the study whereas 

the nevirapine butterfly shape nicely matched the benzimidazole ligands of TNF-α. As discussed in the 

previous chapters, there is no experimental measure and not one definition of pocket similarity. Herein, 

‘similar’ subpockets means ‘capable of binding the same molecules, by exhibiting some features that 

can result in favorable energetic contributions. As binding occurs due to contributions other than 

enthalpy, absence of experimental binding data would have resulted in limited to no conclusions in our 

experimental design. Other factors are the assay settings or solubility problems. Contrarily, identifying 

at least one example is enough to prove the above proposition as it is a matter of possibility instead of 

systematic observation. Accordingly, we made no effort to evaluate TNF-α inhibitors on HIVRT. 

Prior to the direct binding microscale thermophoresis (MST) experiments, efavirenz and delavirdine 

showed to interact in vitro with TNF-α in differential scanning fluorimetry (nanoDSF) assays while the 

nevirapine hypothesis failed. We note that intact (and not the corresponding fragments) efavirenz and 

nevirapine were tested whereas the hypothesis was derived from comparing their fragments subpockets. 

The additional moieties might perturb predicted interactions or rather add positive contribution to the 

binding. Nonetheless, a global a posteriori comparison with whole HIVRT pocket enclosing efavirenz 

yielded scores above the similarity threshold, albeit with a different alignment. Several attempts to 

access the SPR assay and have a basis for direct comparison with UCB TNF-α inhibitors10 by contacting 

the authors remained unsuccessful. 

Given the importance of TNF-α, we further assessed the effects of the three HIVRT inhibitors on the 

ability of TNF-α to binds to its receptor TNFR1. While the detected signals were consistent with the 

MST results (signal for delavirdine and efavirenz, no effect with nevirapine), they were weak (< 30% 

inhibition at 100 µM, Figure 3.1). Further investigations with or without crystal structure of complexes, 

which are out of the scope of this thesis, would provide more insights. 
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Figure 3.1. Inhibition of 0.1 nM [125I]-TNF-α binding to human TNF receptor type 1 (TNFR1) in U-

937 cells,13 by three HIV-1 reverse transcriptase inhibitors (Eurofins Discovery assay #76). Results are 

mean ± SEM of two experiments. 

 

What did we learn about the method? Visualization of aligned features in the protein pockets provides 

additional insights. When prioritizing pocket matches, attention must be paid on the size and feature 

composition of the subpockets to decrease the chances of false positives. Because ProCare score was 

made symmetrical and adapted to compare pockets of different sizes, smallest pockets would tend to 

have higher scores when the latter are highly hydrophobic. Additional experiments such as docking or 

molecular dynamic simulations might be useful to provide different perspectives.  
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4.1. Scope and motivations 

Compound library compilation is among the very first steps in a structure-based virtual screening 

campaign. Classically, lists of compounds from chemical vendors of choice are merged and filtered 

according to the project specifications. The size of such libraries can range from a few thousands to 

billions. Yet, a finite number of molecules are to be screened, and it is at best hoped that the library 

covers areas in the chemical space where potential hits are. This assumption is a necessary condition for 

the success of the screening, even before considering the performance of the methods to prioritize the 

best compounds. Among the possible strategies to efficiently explore the chemical space, the brute force 

approach consists of screening the largest possible diverse library, acknowledging the computing 

resources and prioritization efforts it demands.1 Alternative ways use available information on the target, 

like pharmacophore of known ligands or deconstruction-recombination of inhibitors to build a target-

focused library of smaller size, faster to screen and with expected higher hit rate.2 We herein propose a 

semi-automatic workflow to generate molecule ideas for a given target by borrowing and linking bound 

fragments from available protein-bound ligands when their protein subpockets are locally similar to the 

target cavity. Accordingly, the POEM (Pocket-Oriented Elaboration of Molecule) computational 

workflow was developed. It is applicable even when only the apo structure of the target (without known 

binding ligand) is available. 

The research questions raised by this methodology lays in combining two approximations: (i) the 

fragment still binds to the same subpocket as the corresponding substructure in the fully enumerated 

molecule; (ii) the fragment pose is not altered by linking to another fragment. Fragment-based drug 

design efforts demonstrated that linking two fragments does not always ensure conservation of their 

initial binding mode in the newly formed ligand; reversely, it has been shown experimentally that ligands 

deconstruction generates  fragments that do not necessarily bind to the same pocket as in the original 

ligands.3 Therefore, POEM rationally relies on the proportion that escape these considerations. This 

study does not aim at answering the binding mode conservation questions in themselves but rather to 

propose a reasonable and useful tool to support hit discovery. 

POEM was evaluated on three targets (Table 4.1): (1) cyclin-dependent kinase 8 (CDK8) for which 

ligands are known, allowing both retrospective and prospective studies, (2) the quinolinate synthase 

(NadA), a metalloprotein with Fe/S cluster in a narrow binding site for which no inhibitors are known 

and (3) the WD40 domain of leucine-rich repeat kinase 2 (LRRK2) whose pocket appears hardly 

druggable with no available ligands. With these applications, we aspire to validate and show the 

capacities and the limits of the approach. 
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Table 4.1. Characteristics of targets in POEM case-studies. 

Target Pocket Volume (Å3)a Pharmacological ligands Prosthetic group 

CDK8 catalytic 891 yes No 

NadA catalytic 213 No [4Fe-4S] 

LRRK2 WDR scaffold 1411 No No 

a Pocket volume measured by the VolSite module of IChem v.5.2.9. 
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4.2. Target-focused library design by pocket-applied computer 

vision and fragment deep generative linking 

This project was pursued as a collaboration with Pr M. Hibert who, together with his team, were 

investigating the protein CDK8 inhibitors. 

 

4.2.1.  Biological relevance of CDK8 in drug discovery and structural aspects 

Cyclin-dependent kinase 8 (CDK8) is serine/threonine protein kinase (EC 2.7.11.22) which catalyzes 

the transfer of the gamma phosphate of ATP to hydroxyl groups of specific serine or threonine residues 

in peptide substrates. Many human diseases are associated with kinases as phosphorylation is a post-

translational modification involved in several cellular processes. CDK8 belongs to the cyclin-dependent 

kinase (CDK) family whose members are conserved in eucaryotes and were originally known to play a 

role in the regulation of the cell cycle (CDK1, CDK2, CDK4 and CDK6). As part of the coactivator 

Mediator complex, CDK8 however regulates the transcription activities of RNA polymerase II, the 

multiprotein complex that transcribes deoxyribonucleic acid (DNA) into ribonucleic acid (RNA). 

Consequently, disrupting CDK8 functions would affect RNA polymerase II-dependent genes expression 

required for cell life. The CDK8 gene is located on chromosome 13q, a large portion of which was 

identified as overexpressed in colon cancers.4–6 Studies have demonstrated that inhibition of CDK8 

activity through CDK8 gene silencing or small molecule inhibitors decreased proliferation of β-catenin-

dependent colon cancer cell lines.4,7 CDK8 oncogenic role was also shown in other cancers (melanoma, 

gastric, breast, and ovarian cancers),8–11 positioning CDK8 as a potential drug target. 

Recently, a few selective CDK8 inhibitors have been positioned as potential therapeutics for the 

Diamond-Blackfan anemia12,13 (DBA, ORPHA code: 124), a rare orphan disease. DBA is a 

ribosomopathy that affects the bone marrow which fails to produce mature and fully functional red blood 

cells in sufficient quantity. While the incidence is estimated to 1:150,000 in Europe, patients usually 

rely on red blood cells transfusion and/or corticosteroid treatments and are subjected to the related 

consequences (iron chelation therapy to prevent hemochromatosis, steroids adverse effects).14 Although 

the underlying mechanisms are not well known and the potential drug targets are still to be fully 

validated,15 some doors are open for exploration. 

CDK8 is composed of 464 amino acids and exists as two possible isoforms by alternative splicing. These 

isoforms differ by deletion of residue K370 in isoform 2 

(https://www.uniprot.org/uniprot/P49336#expression). The sequence adopts the protein kinase-like 

(PKL) fold, mostly-β-stranded N-lobe connected to the mostly-α-helical C-lobe via the hinge region 

(Supporting information). Structural motifs of kinases are well characterized and shared by all 

eucaryotic/eucaryotic-like protein kinases (ePK/ELK).16 The ATP site sits between the N-lobe and the 
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C-lobe, flanked by the glycine-rich loop (G-loop or P-loop) in the top, the catalytic loop containing the 

HRD motif and the activation loop (A-loop or T-loop) in the bottom, the αC-helix on the right, while 

the adenine head interacts with the hinge.17 An important pattern is the DFG (DMG in CDK8) motif of 

the A-loop whose open conformation (Phe/Met making hydrophobic contact with αC-helix) indicates 

the active state of the kinase, while the close conformation marks the inactive state.17 Kinase inhibitors 

are classified according to the their binding site and bound-kinase state (Type I to VI). Type I inhibitors 

bind to the catalytic site in active conformation, while type II inhibitors bind to the inactive DMG-out 

conformation.18 More information about kinase domains and their regulations are available in the 

literature.19 To be active, kinases of the CDK family associates with other protein partners, mainly 

cyclins. CDK8 interacts with cyclin C. To this date (17/04/2022), only 31 structures of CDK8-CyclinC 

are available in the Protein Data Bank (PDB) in contrast to some other CDKs (e.g. 427 CDK2 entries in 

the PDB). Among these structures, one PDB entry corresponds to the apo-protein, 20 relates to 

complexes with type I inhibitors (DMG ‘in’), and ten with type II inhibitors binding to the back pocket 

(DMG ‘out’) (Supporting information).  
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The following section (4.2.2 – 4.2.9) has been revised and published in: 

Merveille Eguida, Christel Schmitt-Valencia, Marcel Hibert, Pascal Villa, and Didier Rognan. J. Med. 

Chem. 2022, 65, 13771-13783. 

The open source code is available at: https://github.com/kimeguida/POEM 

 

 

  

https://github.com/kimeguida/POEM
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4.2.2. Abstract 

Choosing the most appropriate chemical space is key to successfully screen compound libraries for early 

drug discovery. We here describe a novel computational approach, inspired from fragment-based design, 

to drive the generation of target-focused libraries while taking advantage of all publicly available 

structural information on protein-ligand complexes. The query target cavity, represented by an image 

with key shape and pharmacophoric properties, is first aligned by a computer vision method to a 

collection of 31 384 images describing fragment-bound microenvironments (subpockets) from the 

Protein Data Bank. The fragments of the most similar PDB subpockets are then directly positioned in 

the query cavity using the corresponding image transformation matrices. Last, suitable connectable 

atoms of oriented fragment pairs are linked by a deep generative model to yield fully connected 

molecules. As a first proof of concept, the method was applied to generate a library of 1.5 million 

potential cyclin-dependent kinase 8 (CDK8) inhibitors. After appropriate filtering, as few as 43 

compounds were purchased or synthesized, and tested for in vitro competitive CDK8 inhibition. Several 

nanomolar inhibitors were quickly obtained with limited resources in just two iterative cycles. The 

approach is applicable to any druggable cavity of known three-dimensional structure, irrespective of 

prior ligand information. 
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4.2.3. Introduction 

Fragment-based drug design (FBDD)1 has gain considerable popularity in the last 20 years for 

identifying new lead compounds and guiding the optimization towards drug candidates, even up to the 

market with four recently approved drugs.2 Common FBDD programs starts by screening libraries of 

low molecular weight compound (fragments)3 by multiple biophysical methods such as nuclear magnetic 

resonance spectroscopy (NMR), surface plasmon resonance (SPR), isothermal titration calorimetry 

(ITC) or mass spectroscopy (MS) to cite just a few.4 Key advantages of FBDD with respect to 

biochemical high-throughput screening (HTS) are the sampling of a much larger chemical space as well 

as higher hit rates, even for difficult targets for which other approaches failed. Despite low affinities, 

fragment hits can be progressed to leads by linking, merging or growing approaches.5 Although not 

necessary, it is usually advisable to start from high quality X-ray diffraction data to position fragment 

hits in their cognate target.6 Even if FDBB is now widely used for hit identification, not all targets and 

fragments are suitable to X-ray diffraction. One the one hand, some targets still proved to be hard to 

isolate, purify in large scale and produce high-quality crystals for X-ray diffraction. On the other hand, 

some fragments cannot be detected by the latter technique because of poor physicochemical properties 

or too low affinities. In such cases, computational approaches are the only alternatives to predict the 

most viable positions of fragment hits identified experimentally7 or to identify new hits by in silico 

screening.8  

Three computational approaches can be used to predict the relative orientation of a fragment in a target 

cavity: molecular docking, functional group mapping and deconstruction-reconstruction. Molecular 

docking9 is by far the most popular structure-based approach and aims at identifying both the bound 

conformation and the orientation of the ligand in a target cavity from their respective stereochemical 

and topological complementarities. Although it has mostly been applied to drug-like compounds, 

docking can be used to pose fragments with an accuracy comparable to that of lead-like compounds.10-

11 Docking is the computational method that is the closest to experimental fragment screening, and can 

be directly applied to any fragment library. In addition to potential hit identification, the fragment 

position in the target cavity is also predicted. Unfortunately, scoring weak-binding fragments remains a 

challenge and requires an efficient post-processing, e.g.  knowledge-based protein-ligand interaction 

rescoring.12-14  

Functional group mapping15 uses probe atoms or groups to map a protein cavity at their preferential 

location. Probes can be positioned according to protein-ligand interaction energies at regular points of a 

three-dimensional (3D) lattice16-17 or by molecular dynamics (MD) sampling.18 Interestingly, exhaustive 

all-atom MD better captures protein flexibility and solvation issues, and may also unmask transient 

cavities hidden to conventional docking protocol. Key drawback is the computational burden limiting a 
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wide applicability for virtual screening. Moreover, reconstructing a fully connected ligand from several 

discontinuous propensity maps is not straightforward. 

Last, deconstruction-reconstruction approaches19 aim at computationally splitting protein-bound ligand 

X-ray structures into fragments according to well-known retrosynthetic organic chemistry rules.20-21  

Resulting fragments can then be recombined into new chemical entities while taking into account the 

protein environment. The method still suffers from the tricky recombination step (linking, merging, 

scaffold hopping)22 that may disturb the original fragment binding modes or generate conformational 

strains. Interestingly, deep generative models23-25 for linking disconnected fragments have shown some 

promises as they learn from millions of existing bioactive ligands. Deconstruction-reconstruction is 

mainly target-specific and applicable to targets for which numerous co-crystallized ligands are already 

available, although docking poses may be used in principle. 

None of the above-reported method really takes profit of the increasing amount of structural data on 

protein-ligand complexes and their druggable pockets.26 Since low molecular weight fragments have 

been shown to bind to preferential protein microenvironments regardless of their evolutionary 

relationship,27 a FBDD approach considering the whole universe of druggable ligands and pockets is 

desired. Capitalizing on our recent numerical image processing tool to describe and align protein 

cavities,28 we here propose to pose fragments according to the local similarity of their respective 

subpockets to the target cavity. Applying the transformation matrix leading to the optimal subpocket-

cavity alignment, the corresponding fragments are directly positioned into the target cavity and 

connected, under topological constraints, by a deep generative linker to yield fully connected molecules. 

Applying the method to the catalytic site of human cyclin dependent kinase 8 (CDK8), a focused library 

of 1.5 million chemical entities could be quickly generated. Interestingly, most newly generated 

compounds exhibited unprecedented structures. In vitro biological evaluation of 43 carefully selected 

compounds identified several nanomolar inhibitors within just two design iterations and limited 

experimental efforts. 
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4.2.4. Results and discussion 

Setting the scene 

We herein present a novel method to design target cavity-focused libraries based on predicted 

similarities between the target cavity and a library of PDB fragment-bound subpockets (Figure 1). The 

underlying idea is to locate the most complementary fragments in the target cavity based on the 

estimated similarity of their corresponding subpockets, and then to link the prepositioned fragments into 

drug-like compounds using a deep generative linker. Accordingly, this approach can be implemented 

even in the absence of known ligands for the target protein. To assess its applicability and limits in a 

real-life drug design project, the method is here applied to CDK8, a target of pharmaceutical interest29 

and known X-ray structure.30 In the following sections, we will describe, step by step, each part of the 

workflow until the experimental validation of newly generated inhibitors. 

 

 

Figure 1. Overall workflow of the computational method including in vitro experimental validation. 
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Alignment of fragments to the target cavity 

Subpockets, defined as the immediate protein environment around bound fragments of druggable 

protein-ligand complexes (sc-PDB dataset),31 were compared and aligned to the ATP pocket of CDK8 

with the aim to use the hidden bound fragments for library design. The rationale of this implementation 

is that according to the similarity principle, fragments originating from similar subpockets are likely to 

reproduce favorable interactions with the target pocket. The term ‘fragment’ here refers to the molecular 

moieties obtained after interaction-aware 3D fragmentation of ligands bound to proteins so that each 

fragment exhibits at least one polar interaction and at least four interactions with its target.32 The query 

CDK8 pocket and the sc-PDB subpockets are represented as a cloud of 1.5 Å-spaced points annotated 

by eight pharmacophoric properties (hydrophobic, aromatic, H-bond acceptor, H-bond donor, H-bond 

acceptor and donor, positive ionizable, negative ionizable, null).33 The term 'pocket' describes the full 

druggable cavity available at the surface of the protein while a subpocket is defined from its bound 

fragment. Since we aimed at targeting the ATP binding site in its type-I ‘DMG in’ conformation, the 

druggable pockets were first detected from 19 available CDK8 structures (Table S1). The largest pocket 

(830.3 Å3) selected as representative was retrieved from the 5HBH30 PDB entry (Figure 2). This pocket 

incorporates regions around the hinge, the gatekeeper F97, whereas on the opposite side extends to a 

solvent exposed area near the αD helix. It covers the DMG motif and reaches the αC-helix (Figure 2A). 

It thus spans several already described kinase subpockets: the adenine pocket, the front pockets FP-I and 

FP-II, the back pockets BP-I-A and BP-I-B in the gate area.34 The 31 384 sc-PDB subpockets were 

compared and aligned to the CDK8 cavity with the in-house ProCare method (Figure S1).28 Briefly, 

ProCare finds the best possible local alignment of cavity-defining points using a point cloud registration 

algorithm35-36 and scores the alignment according to the overlap of pharmacophoric properties of the 

aligned points. According to a preliminary study on the set of CDK8 structures, the original ProCare 

alignment fingerprint was modified to account only for the spatial distribution of pharmacophoric 

features (Figure S2-S3), a modification leading to a better alignment of CDK8 subpockets and 

fragments to the corresponding full cavities. 
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Figure 2. Seed fragments selection to fill the CDK8 query cavity. A) Description of the reference CDK8 

pocket (PDB ID: 5HBH). Cavity points (grey dots, 246 points) delineate a ligand-accessible envelope 

(solid surface, 830.3 Å3) and areas (hinge, H; gate area 1, GA1; gate area 2, GA2; solvent-exposed area 

1, SE1; solvent-exposed area 2, SE2; αC area, AC) according to the distance to key CDK8 atoms 

(spheres). B) Fragments selection workflow. (1) A list of cofactors (PDB HET code) is provided in the 

sc-PDB database. (2) Fragments buriedness is approximated as the percentage of heavy atoms within 

1.5 Å of one CDK8 cavity point. (3) fragment rule-of-three:37 molecular weight ≤ 300 g.mol-1, logP ≤ 

3, H-bond donor count ≤ 3 and H-bond acceptor count ≤ 3. (4) ambiguous annotation denotes assignment 

of two or more incompatible areas (Methods section) out of the six possible areas. (5) All annotated 

fragments from H, GA1, SE2 areas and a random sampling of 100 fragments from GA2 were selected. 

Once transformation matrices of the alignment of sc-PDB subpockets to the target cavity were obtained, 

the same rotation/translation matrices were applied to the corresponding sc-PDB fragments to position 

them in the CDK8 cavity. Posed fragments were then filtered according to five criteria (Figure 2B). 

Fragments originating from subpockets exhibiting a similarity score to the CDK8 pocket above a 

threshold value of 0.39 (previously shown to optimally discriminate known similar from known 
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dissimilar binding sites)28 were first selected, leading to a set of  12 661 fragments. Remaining fragments 

were further pruned according to three criteria: (i) belonging to a cofactor (therefore avoiding purine-

base fragments), (ii) insufficient buriedness in the target cavity, (iii) no compliance to the fragment rule-

of-three.37  Remaining fragments were then annotated by one of the six CDK8 areas in which they were 

positioned: hinge (H), gate (GA1, GA2), solvent-accessible (SE1, SE2), αC helix (AC) (Table 1, Figure 

3). 4 152 fragments could be unambiguously assigned to one CDK8 area: H (1.4%), GA1 (2.7%), GA2 

(22.5%), SE1 (61.9%), SE2 (2.8%) and AC (8.7%) (Figure 3A). 

 

Table 1. Annotation of the CDK8 target cavity by key pharmacophoric atoms. 

Area Label Key CDK8 atoms KLIFS subpocketsa 

Hinge area H Asp98.O, Ala100.N, Ala100.O AP 

Gate area 1 GA1 Phe97.CA (gatekeeper residue) AP, BP-I-A, BP-I-B 

Gate area 2 GA2 Lys52.NZ AP, FP-I, FP-II 

Solvent-accessible area 1 SE1 Arg366.CZ - 

Solvent-accessible area 2 SE2 His106.CE1 - 

αC helix area AC Ser62.CA - 

a Full or partial overlap with KLIFS34 subpockets: AP: adenine pocket, BP: back pocket, FP: front pocket 

 

 

Figure 3. CDK8 subpocket occupancy of sc-PDB fragments. A) Assignment of CDK8 pocket areas to 

4 152 sc-PDB fragments. B) Origin of sc-PDB fragments per area. 

 

We next analyzed the origin of the sc-PDB ligands these fragments were derived from. As to be 

expected, 70% of fragments assigned to the hinge area (H) come from protein kinase inhibitors, the 
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remaining 30% originating from a ligand co-crystallized with a protein that belong to a non-kinase 

family (Figure 3B). However, it should be noted that fragments from known CDK8 inhibitors were not 

selected as occupying the hinge region. Two simple reasons explain this absence: (i) the seven CDK8 

ligands in the sc-PDB dataset are type II inhibitors binding to a DMG-out conformation and occupy the 

back pocket, (ii) the only CDK8 ligand (3RGF) that binds to the hinge could not be fragmented by our 

protocol and therefore did not pass our filters. The other areas (GA1, GA2, SE1, SE2, AC) were assigned 

fragments from both kinase (~25%) and non-kinase ligands (~75%). While the initial sc-PDB subpocket 

database contains 16% of entries from protein kinases, the enrichment observed for hinge-selected 

fragments (4.4) is logically due to the specific stereoelectronic features of the hinge area, notably the 

hydrogen bonding capacity of Asp98 and Ala100 backbone heteroatoms imposing complementary 

features on the ligand side. To limit the size of the library, all fragments were not considered for full 

enumeration of complete molecules. Whereas all fragments bound to H (n=57), GA1 (n=111) and SE2 

(n=117) subpockets were selected, only 100 GA2-bound fragments were randomly chosen. Duplicates, 

in other words 2D identical fragments were kept as they do not originate from the same 3D subpocket, 

therefore resulted in different alignments that may differently impact molecules design. Comprehensive 

statistics of the pairwise fragment similarity (Figure S4) and the observed distribution of their 

physicochemical properties (Figure S5) clearly evidence their chemical diversity. 385 fragments were 

selected at this stage for the next linking stage. 

 

Round-1 library generation 

The DeLinker deep generative model23 was used to link the above-selected fragments. Briefly, DeLinker 

uses a graph-based deep generative model, trained on the ZINC38 or PDBbind39 databases, to expand 

bond by bond the two fragments to be connected until final SMILES strings are generated by a 

variational autoencoder while keeping 3D constraints through a set of distances and angles between 

connectable atoms.23 In the current work, all possible connectable atoms of hinge-annotated fragments 

(H) were used as seeds to find potential connectable atoms in fragments filling three remaining 

subpockets (GA1, GA2, SE2) (Figure S6).  

An atom is considered connectable if it is a heavy atom covalently bonded to a hydrogen, that bond 

being used as exit vector for the linking. Pairs of atoms belonging to different fragments are then 

associated by restricting the angle between the exit vectors and distances between the corresponding 

heavy atoms (see Methods) in order to avoid pointless connections and lower the number of 

combinations (Figure S7). Starting from 385 fragments, 1 517 488 SMILES strings were generated by 

linking fragment pairs with DeLinker. 15% of the proposed solutions were discarded since they 

correspond to uncomplete molecules where the SMILES consisted of a linker moiety attached to only 

one of the two fragments (Figure 4).  
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Figure 4. Focused library design via linking selected fragments. Fragments aligned in the H area were 

paired with fragments from GA1, GA2 and SE2 areas. SMILES were generated by linking fragment 

pairs with DeLinker23 and filtered to compose the first-round library R1. (1) Successful linking signifies 

that both fragments have been attached to the linker whereas cases where only one of the fragments was 

linked were considered unsuccessful. (2) Druglikeness is defined by customized OpenEye Filter rules 

available in Table S2. (3) Synthetic accessibility score.40 (4) Filter to remove unwanted aliphatic linkers. 

 

The remaining molecules were filtered for drug-likeness (Table S2) resulting in 566 989 unique 

SMILES. Although the redundant SMILES per pair of connectable atoms were removed during the 

linking process, duplicated molecules still arose when connecting the same 3D fragments via equivalent 

exit atoms (symmetry cases) or connecting the same duplicated fragments originating from different 

subpockets. After keeping only molecules that are likely to be synthesized (SAscore40 ≤ 3), only those 

having a linker compliant with defined rules (Figure S8) were finally kept.  The remaining 141 125 

molecules composed the first-round R1 library (Figure 4). A majority of the generated molecules arose 

from combining the hinge and the solvent-exposed SE2 fragments which account for more than 50% of 

the sets (Figure 5). 
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Figure 5. Protein origin of fragments pairs in newly generated molecules. From left to right, the full set 

after cleaning unsuccessful generation out (GEN), the drug-like subset (DL) and round-1 library (R1). 

The distribution is given for the combinations annotated by the targeted CDK8 area (H, hinge; GA1, 

gate area 1; GA2, gate area 2, SE2, solvent-exposed area 2) and color-coded according to the protein 

origin (co-crystallized target) of the two connected fragments (K, protein kinase; O, other; K-K, both 

fragments were derived from a protein kinase structure; K-O, H-fragment derived from a protein kinase 

and the other fragment from a non-kinase protein structure; O-K, H-fragment derived from a non-protein 

kinase and the other fragment from a kinase protein structure; O-O, both fragments were derived from 

a non-kinase protein structure).  

Indeed, the average number of generated SMILES strings per pair of H-SE fragments is higher than for 

the two other areas, a consequence of having more pairs of connectable atoms and more generated 

linkers per connectable atoms for the H-SE subpockets. While it was expected that kinase-derived 

fragments would contribute to most of the generated molecules, only 14% of SMILES strings were 

generated by linking two kinase-bound fragments. Interestingly, around 26% of the molecules were 

made of two fragments originating from a non-kinase protein. Interestingly, the observed proportions 

do not vary between the full set, the drug-like subset and the R1 set (Figure 5). Most of the generated 

molecules (> 90 %) were already compliant with the Lipinski’s rule of five (Figure S9). Albeit two 

fragments were assembled, many generated molecules still remained in the fragment space with around 

10 % of SMILES strings being compliant with the fragment rule-of-three37 (Figure S9). Filtering the 

designed molecules to R1 library members did not bias our selection towards molecules with particular 

properties as the distribution of the molecular properties, although reported individually, remained 

comparable among the sets (full, drug-like and R1; Figure S9). To give insights on the chemical space 

covered by R1 library members, we further assessed its overlap with either a broad purpose bioactive 

chemical space41 (1.7 million ChEMBL compounds) or a recently described kinase-focused ligand space 

(6.7 million KinFragLib library members).42 259 unique R1 library molecules were exactly found in 

ChEMBL among which only a few have been assayed against protein kinases, while only five R1 library 
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compounds were identical to KinFragLib molecules. Considering similarity, only 0.85% and 13% of R1 

library members were found similar to KingFragLib and ChEMBL molecules, respectively, according 

to a Tanimoto coefficient, computed from Morgan2 fingerprints higher than 0.60.  The herein proposed 

computational workflow is therefore able to generate really new chemical entities, the chemical diversity 

of the generated molecules stemming from the diversity of the seed fragments pool, the connectivity and 

the possible linkers. 

As a first validation of the structure-based workflow, we verified whether the drug-like subset contains 

molecules highly similar to 302 submicromolar human CDK8 inhibitors retrieved from the ChEMBL 

database. Using the similarity search protocol described in the methods section, we found 44 molecules 

that matched with 35 unique known CDK8 inhibitors (representing three series of congeneric 

molecules). While these molecules were built with fragments from all possible areas, most of them were 

assembled from hinge-fragments originally co-crystallized with protein kinases, linked to fragments 

originally co-crystallized with non-kinase proteins. 

 

The round-1 library contains novel and potent CDK8 inhibitors 

To identify chemically novel hits, we filtered first-round R1 library members by dissimilarity (Tanimoto 

coefficient < 0.5, RDKit7 fingerprints) to all CDK8 compounds available in ChEMBL41 and to all seed 

sc-PDB fragments. Hits were then searched for availability among 8.2 million commercially available 

drug-like compounds (Table S3) to select 37 compounds that are identical or very similar (Tanimoto 

coefficient > 0.90, RDKit7 fingerprints) to their queries (Table S4). These compounds were purchased 

and tested for CDK8 inhibition in a homogeneous time-resolved fluorescence (HTRF) assay aimed at 

measuring the FRET signal between a fluorescent-labelled ATP competitive inhibitor and the 

fluorescent-tagged CDK8 soluble kinase (see Methods). Six out of the 37 tested molecules (compounds 

9, 11, 12, 29, 32, 37) inhibited the CDK8 kinase by more than 50% at the single concentration of 10 μM 

(Figure 6). Notably two related compounds (12 and 37), exhibiting more than 80% inhibition were 

assembled from the same pair of 3D fragments by just inverting the ester linkage (Figure 6). They differ 

from the original R1 library members by just a carbon atom (methoxy for ethoxy substitution, Table 

S4).  
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Figure 6. CDK8 inhibition (LanthaScreen Eu kinase competitive binding assay) by 37 commercially 

available compounds identical or very similar to R1 library members. Results are expressed as mean ± 

SEM of two independent experiments using a 10 μM concentration of competitor (STA, staurosporine 

control). 

 

Round-2 library design by fragment hit growing 

The most potent hit (12) from round-1 library , generated by linking a H-area pyridine fragment to a 

GA2-area methoxyphenyl fragment, is still a fragment-like compound (MW = 229 g.mol-1) that can be 

optimized by growing towards the nearby and yet unexploited SE2 and GA1 subpockets. We thus 

explored the possible connections between the hinge-binding fragment of 12 and all remaining SE2 or 

GA1-anchored fragments, to generate a second-round library R2 of 5 700 compounds. R2 library 

members were filtered by physicochemical properties (number of rotatable bonds ≤ 6, no chiral centers) 

and synthetic accessibility (SAscore ≤ 3) to yield a final set of 151 candidates (Table S5). Six 

representative compounds (Table 2) were chosen for their ease of synthesis (i.e. availability of building 

blocks, costs of goods, number of synthetic steps) and predicted buriedness upon preliminary docking 

to CDK8. Three linkers (urea, piperidine, pyrazole) were chosen for their capacity to connect the H-

anchoring pyridine ring to a SE2-anchored phenyl fragment. Two positions of the pyridine ring (ortho 

and meta position to the benzoyl ester) were predicted compatible, therefore leading to six possible 

analogs (Table 2).  
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Table 2. Round-2 library of optimized hits and their CDK8 inhibitory potency. 

Compound Structurea IC50, nMb CI 95%, nMc 

12 

 

376.9 245.2-579.5 

39 

 

354.6 203.4-618.0 

41 

 

>25 000 - 

44 

 

144.1 88.8-233.9 

47 

 

>25 000 - 

49 

 

6.4 4.57-8.95 

51 

 

> 25 000 - 

a A phenyl moiety (blue) is attached via different linkers (red) to round-1 compound 12. b Inhibition of 

CDK8 measured in a LanthaScreen Eu kinase competitive binding assay. Results are expressed as mean 

± SEM of three independent experiments. c confidence interval at a 95% confidence level  
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The six compounds were synthesized (Scheme S1), checked for purity (Figures S10-S15) and tested 

for in vitro CDK8 inhibition using the same HTRF assay as described above, to build concentration-

response curves (Figure 7). Out of the six round-2 library compounds, three molecules (41, 47, 51) are 

weak CDK8 inhibitors, one compound (39) is equipotent to the primary hit 12, and two analogues (44, 

49) exhibit a higher potency than the parent compound 12 (Table 2, Figure 7). 3,4-disubstituted 

pyridines (39, 44, 49) were systematically more potent than their 3,5-disubstituted congeners (41, 47, 

51). Noteworthy, the single-digit nanomolar inhibitor 49 could be obtained from scratch within just two 

design iterations and limited experimental efforts.  

 

 

Figure 7. Inhibition of human CDK8 by six selected round-2 library compounds. Concentration-

response curves are derived from three independent experiments with duplicates per experiment. 

 

Its putative binding mode, deduced form molecular docking, suggests that the pyridine nitrogen atom h-

bonds to the hinge backbone atoms (E98, A100) while the ethoxyphenyl and the newly introduced 

pyrazole moieties exhibit π- π interactions to H106 (SE2 subpocket) and the gatekeeper F97 (GA1 

subpocket). Last, the terminal phenyl ring is oriented towards K52 (GA2 subpocket) for a putative π-

cation interaction (Figure 8). While the parent hit 12 showed two possible docking poses (ethoxyphenyl 

towards GA2 or SE2), growing by a pyrazole prioritized the SE2 orientation, still with exhibited 

interactions compatible with the rationale of the initial fragment alignments. 
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Figure 8. PLANTS docking pose of compound 49 (green sticks) to the catalytic site of CDK8 (PDB ID 

5HBH, solid surface). H-bond to the hinge (E98, A100) and π- π interactions to F97, H106 are displayed 

by yellow broken bonds.  

 

At this point, we should recall that neither early safety (e.g. kinase selectivity) nor pharmacokinetic 

properties (e.g. metabolic stability) have been considered in either generating or post-processing the 

target-focused library members. Although technically feasible, target selectivity assessment requires 

applying the same workflow to different cavities and prioritizing compounds generated only for the 

target of interest. This approach is feasible for a comparing a few targets but is rapidly impracticable at 

a larger scale (e.g. whole kinome). It has not been applied in the current study aimed at demonstrating 

the proof-of-concept of the structure-based workflow.  
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4.2.5. Conclusions 

We herewith propose a novel fragment-based library design method to generate target-focused 

compound libraries. The originality of the approach is that seed fragments are chosen from a large 

repertoire of protein-bound fragmented ligand X-ray structures, and positioned in the target according 

to the local similarity of their protein subpocket to the target cavity. This ligand-agnostic posing protocol 

does not require scoring protein-ligand interactions and is fuzzy enough to transfer ligand information 

across unrelated target spaces. Once fragments have been posed, they are linked by a deep generative 

model to enumerate full molecules which are later post-processed to account for drug-likeness and 

synthetic accessibility. The linking step still deserves improvement, notably to enumerate candidate 

molecules directly in the original target 3D coordinate frame. Hence, the variational autoencoder used 

here generates SMILES strings and just accounts for the target binding site topology in the form of 

topological relationships between fragment atoms to be connected. A true 3D deep generative model43 

considering complementarity to the binding site shape and the ligand conformational freedom would be 

highly desirable to link subpocket-selected seed fragments. It would avoid a tedious post-processing of 

unrealistic solutions and the necessary docking of candidates to verify whether the starting binding 

hypothesis of the seed fragments is conserved. 

When applied to the test case of the CDK8 kinase, the method was able to quickly suggest potential 

inhibitors. Within two iterations and 43 compounds, a single digit nanomolar inhibitor could be 

identified thereby demonstrating a first proof-of-concept of the underlying methodology. Interestingly, 

the method is applicable to any target of known 3D structure and does not require prior ligand 

knowledge. 
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4.2.6. Material and methods 

 

CDK8 cavity detection 

All publicly available X-ray structures of human CDK8 (UniProt accession number P49336; Table S1) 

were downloaded from the Protein Data Bank44-45. Type I structures (DMG-in, α-C helix-out) were put 

in the same coordinates frame by subsequent structural alignment to the 4F7S reference with Maestro 

v.2019-3 (Schrödinger, New York, NY 10036, U.S.A.) and refinement to ensure that the hinge residue 

Ala100 heavy atoms were fitted.  Aligned structures (proteins, co-factors, ligands) were then  protonated 

with Protoss v.4.0,46 while optimizing the intra and inter-molecular hydrogen bond network. After 

discarding crystallization additives, each PDB entry was split to afford a protein (no water molecules) 

and a ligand in separate mol2 files using SYBYL-X 2.1.1 (Certara USA, Inc., Princeton, NJ 08540, 

U.S.A.). For each protein file, entire cavities ("CAVITY_ALL" output) were next computed with the 

VolSite33 module of the IChem v.5.2.9 package,47 using default parameters and saved as point clouds 

annotated by pharmacophoric features. Only cavities corresponding to the catalytic site were retained 

for the next steps. Upon visual inspection, the corresponding three clouds for PDB entry 5HBH were 

merged into a single cavity in mol2 file, yielding the reference pocket for CDK8. 

 

sc-PDB subpocket-fragment database 

16 034 drug-like ligands in their protein-bound X-ray structure were retrieved from the sc-PDB 

database31 of druggable protein-ligand complexes and fragmented in three dimensional (3D) space 

within their protein binding site using the IChem fragmentation tool.32 Only fragments exhibiting at least 

4 non-covalent interactions12 (out of which one is polar, hydrogen-bond or electrostatic interaction) with 

the protein target were retained. The fragments exit bonds (dummy atoms ‘Z’) were converted into 

hydrogen atoms. The immediate protein environment of each selected fragment was considered to 

compute VolSite point clouds, keeping only those with at least 3 points, each being closer than 4.0 Å 

from any fragment heavy atom (“CAVITY_4” output), thereby defining a subpocket point cloud in mol2 

file format for 31 384 fragments. 

 

CDK8-focused library design 

In the first stage, 31 384 sc-PDB subpocket point clouds (Figure S1) were aligned to the reference 

5HBH CDK8 cavity point clouds with ProCare28 v.0.1.1 using default parameters and the c-FH color-

based descriptor (Figure S2) corresponding to the eight terminal bins of the c-FPFH descriptor.28 For 

each subpocket-cavity pair, the optimal alignment matrix was used to position the corresponding sc-
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PDB fragment into the CDK8 cavity. The comparison protocol was validated by successful cross-

comparison of CDK8 subpockets from type I PDB entries (Figure S3). 

In the second stage, aligned sc-PDB fragments were filtered according to their subpocket similarity to 

the CDK8 cavity (ProCare score ≥ 0.39), their compliance to the fragment rule-of-three,37 and their 

embedding into the CDK8 cavity such that at least half of the fragment atoms are less than 1.5 Å away 

to the closest CDK8 cavity point. Fragments originating from the sc-PDB list of cofactors were 

excluded. Resulting fragments were further annotated with the CDK8 cavity area to which they have 

been aligned based on their distance (closest heavy atom should be within 6 Å) to subpocket-specific 

preliminary defined atom centers (hinge H area, Asp98 O atom and Ala100 N and O atoms; gate area 1 

GA1, Phe97 CA atom; gate area 2 GA2, Lys52 NZ atom; solvent-exposed area 1 SE1, Arg356 CZ atom; 

solvent-exposed area 2 SE2 subpocket, His106 CE1 atom; αC area AC, Ser62 CA atom). For selecting 

hinge-binding fragments, hydrogen bonds to Asp98 O or Ala100 N or O was mandatory. Since a few 

fragments were assigned to multiple subpockets, the following prioritization scheme was applied: H 

annotation takes precedence over all the other annotations, therefore a fragment interacting with the 

hinge centers is only annotated as such. SE1 and SE2 were defined compatible so that fragments 

annotated as from both areas were automatically assigned only SE2. Similarly, fragments annotated as 

from both AC and GA2 areas were automatically assigned only GA2. In any other case of combination 

(e.g. fragments annotated as from GA2 and SE1), the annotations were considered ambiguous and the 

fragments were discarded.  

In the third stage, H fragments were defined connectable to either GA1, GA2 or SE2 fragments (in the 

current work, although other connections are possible). Selected fragments were converted into sdf 

format with OpenEye v.2.5.1.4. toolkit.48 For each pair of fragments with hydrogen atoms connected, 

pairs of connectable atoms were searched based on their respective orientation as follows. A right 

circular cone (half-angle=π/4) is projected along the bond axis between any heavy atom Ai and a bound 

hydrogen atom Hi. A connectable atom pair A1A2 is selected if heavy atoms A1 and A2 are located in the 

projection cone of their counterpart (Figure S7).  

In the fourth stage, the recently-described DeLinker23 deep learning method was employed to generate 

linkers between above-described connectable atom pairs using the default model distributed with the 

package and a batch size of 1. Input data were prepared as ZINC atom types features to be ready for 

DeLinker using the 'prepare_data' module and by setting the ‘test’ parameter of the ‘preprocess’ function 

to ‘True’ as molecules are to be found. The linker length was set to a minimum of on and a maximum 

of six heavy atoms. Other parameters were kept by default. Generated molecules were saved as SMILES 

strings and further processed to remove redundancy for each connectable atom pair. In the final stage, 

unsuccessful linking attempts where only a single fragment is attached to the linker were removed using 

the function ‘get_linker’ in the ‘frag_utils’ utility. The remaining SMILES were filtered to keep only 
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drug-like compounds according to in-house rules (Table S2). Next, the synthetic accessibility scores 

were computed with the the SAscore40 method distributed with RDKit49 to remove molecules with 

SAscore higher that three. Finally, molecules made of long flexible linkers were discarded according to 

our in-house filtering workflow (Figure S8), resulting in the first-round library (R1). 

 

Comparison with ChEMBL and KinFraglib ligands 

Standardized ChEMBL (1.7 million compounds) and KinFragLib (6.7 million) data were retrieved from 

the KinFragLib website.50 Pairwise 2D fingerprint similarity to R1 molecules were assessed with 

RDKit49 Morgan (radius = 2) topological fingerprint (default parameters, maximum path = 7). 

 

Comparison to known CDK8 inhibitors 

A search in the ChEMBL database51, 41 for human CDK8 target assays resulted in three target report 

cards (CHEMBL3038474, CHEMBL5719 and CHEMBL3885556) from which bioassay data were 

joined and processed to keep compounds with a half maximal inhibitory concentration  IC50 inferior or 

equal to 1 μM. Duplicates were then removed according to and the SMILES were standardized with 

OpenEye Filter v.3.0.1.2 (OpenEye Scientific Software, Santa Fe, NM 87508, U.S.A.). The final list of 

302 inhibitors was searched in the generated drug-like subset described above for substructure 2D 

similarity using both RDKit Morgan (radius = 2) and topological (maximum path = 7) fingerprints and 

a combination of Tanimoto (Tc) and Tversky (Tv) metrics. Pairs were reported when morgan2 Tc ≥ 0.6 

or morgan2 Tv ≥ 0.8 or RDKit7 Tc ≥ 0.75 or RDKit7 Tv ≥ 0.9. 

 

Search for new potential CDK8 inhibitors 

R1 library members were considered as potentially new at the condition that their similarity to any of 

946 unique human CDK8-tested compounds (both active and inactive) reported in ChEMBL (target card 

reports CHEMBL3038474, CHEMBL5719 and CHEMBL3885556) and any of the 31 384 sc-PDB 

fragment is inferior to 0.50 (Tanimoto coefficient from RDKit topological fingerprints). Last, the 

subsequent list was searched for substructure similarity (RDKit topological fingerprint Tanimoto ≥ 0.90) 

to an in-house library of 8 280 193 commercially available drug-like compounds (Supporting Table 

S3). 
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Molecular docking 

Virtual hits were drawn as 2D sketches with ChemAxon MarvinSketch v.16.10.17, (ChemAxon Ltd., 

1031 Budapest, Hungary) saved in sdf file format, ionized at physiological pH with OpenEye Filter 

v.2.5.1.4 and finally converted in 3D structures (mol2 file) with Corina v.3.40 (Molecular Networks 

GmbH, 90411 Nürnberg, Germany), generating all possible stereoisomers and ring conformers 

simultaneously. The prepared molecules were docked into the above-described CDK8 cavity using 

PLANTS52 v.1.2 The search space was set at 13 Å from the binding site center with a search speed of 1 

(highest accuracy). 10 poses were generated per ligand, scored by the ChemPLP scoring function and 

clustered using a root-mean square deviations (RMSD) of 2 Å on ligand heavy atoms. The 

flipped/rotated side chains were reconstructed in the protein structure for each corresponding PLANTS 

pose when applicable. 

 

Molecular data analysis 

Molecular descriptors (molecular weight (g.mol-1), the count of heavy atoms (non-hydrogen atoms), 

logP, polar surface area (Å), count of H-bond acceptor, count of H-bond donor, count of rotatable bonds, 

count of ring systems, count of heteroatoms, bonds) were computed with RDKit. Data were processed 

with Python v.3.7. 

 

Data visualization 

Molecules were drawn in 2D with RDKit and MarvinSketch v.16.10.17, (ChemAxon Ltd., 1031 

Budapest, Hungary). Three-dimensional structures were analyzed with Maestro v.2019-3 (Schrödinger, 

New York, NY 10036, U.S.A.) and Pymol v.2.1 (Schrödinger, New York, NY 10036, U.S.A.). Plots 

were generated with Matplotlib v3.0.253 in Python v.3.7. 

 

Chemistry 

All reactions were carried out under usual atmosphere unless otherwise stated. Chemicals and solvents 

were purchased from Enamine (LV-1035 Riga, Latvia) and were used without further purification. 

Yields refer to isolated compounds, estimated to be >95% pure as determined by 1H NMR or HPLC. 

1H NMR spectra were recorded at 298 K on Bruker Avance III Spectrometer operating at 400 MHz. All 

chemical shift values δ and coupling constants J are quoted in ppm and in Hz, respectively; multiplicity 

(s = singulet, d = doublet, t = triplet, q = quartet, quin = quintet, sex = sextet m = multiplet, br = broad).  
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Preparative HPLC was performed using two methods: Method A) 2-10 min 30-70% acetonitrile, 30 

ml/min ((loading pump 4 ml acetonitrile); column: YMC-ACTUS TRIART (C18; 100 mm x 20 mm; 5 

µm); Method B) 2-10 min 0-50% acetonitrile, 30 ml/min ((loading pump 4 ml acetonitrile); column: 

SunFire C18; 100 mm x 19 mm; 5 µm) 

Analytical RP-HPLC-MS was performed using Agilent Technologies 1260 Infinity LC/MSD system 

with DAD\ELSD Alltech 3300 and Agilent LC\MSD G6120B mass‐spectrometer using the following 

acquisition parameters: column, Agilent Poroshell 120 SB‐C18 4.6x30mm 2.7 μm with UHPLC Guard 

Infinity Lab Poroshell 120 SB‐C18 4.6x 5mm 2.7 μm; Temperature 60° C; Mobile phase А – acetonitrile 

: water (99:1%), 0.1% formic acid, В – water (0.1% formic acid); Flow rate 3 ml/min; Gradient : 0.01 

min –99% B, 1.5 min – 0% B, 1.73 min ‐ 0% B, 1.74 min ‐ 99% B; Injection volume 0.5μl; Ionization 

mode Electrospray ionization (ESI); Scan range m/z 83‐600; DAD 215 nm, 254nm, 280 nm. Purities of 

all tested compounds used in the biological assays were determined by HPLC/MS using the area 

percentage method on the UV trace recorded at a wavelength of 254 nm. All compounds were found to 

have >95% purity.   

 

1-(3-hydroxypyridin-4-yl)3-phenylurea (38). To a stirred solution of phenylisocyanate (0.4 g, 3.4 mmol) 

in DMF (5 ml) was added a solution of 4-aminopyridin-3-ol hydrochloride (0.5 g, 3.4 mmol) in DMF 

(5 ml) followed by the addition of triethylamine (1.4 ml, 10.2 mmol) at room temperature (r.t.). The 

resulting mixture was stirred at room temperature overnight. The reaction mixture was concentrated 

under reduced pressure and the crude residue was purified by HPLC to afford 50 mg (6%) of the 1-(3-

hydroxypyridin-4-yl)-3-phenylurea 38 as a white solid which was used for the next step without further 

purification. 

4-(3-phenylureido)pyridin-3-yl 4-ethoxybenzoate (39). To a stirred solution of 4-ethoxybenzoic acid (36 

mg, 0.22 mmol) in DMF (2 ml), compound 38 (50 mg, 0.22 mmol), EDC (50 mg, 0.26 mmol) and 

DMAP (27 mg, 0.22 mmol) were added. The resulting mixture was stirred at r.t. for 16 h. After 

completion of the reaction, the mixture was diluted with water (7 ml) and extracted with chloroform 

(3x7 ml). The combined organic layers were washed with saturated aqueous NaHCO3, dried over 

anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by HPLC 

(method A) to afford compound 39 (40 mg, 49%) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 

9.25 (s, 1H), 8.60 (s, 1H), 8.38 – 8.25 (m, 3H), 8.17 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.30 

(t, J = 7.7 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 7.01 (t, J = 7.3 Hz, 1H), 4.18 (q, J = 7.0 Hz, 2H), 1.38 (t, J 

= 7.0 Hz, 3H). LC-MS (ESI) m/z 378.2 [(M+H)+, calcd. C21H20N304, 378.1]. 

1-(5-hydroxypyridin-3-yl)-3-phenylurea (40). Compound 40 was prepared as described above for 

compound 38, starting from 5-aminopyridin-3-ol hydrobromide (0.65 g, 3.4 mmol). The reaction 

mixture was concentrated under reduced pressure and the crude residue was purified by HPLC (method 
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B) to afford 60 mg (8%) of 1-(3-hydroxypyridin-5-yl)-3-phenylurea 40 as a white solid which was used 

for the next step without further purification. 

5-(3-phenylureido)pyridin-3-yl 4-ethoxybenzoate (41). Compound 41 was prepared as described above 

for compound 39, starting from 1-(5-hydroxypyridin-3-yl)-3-phenylurea 40 (60 mg, 0.264 mmol). The 

residue was purified by HPLC (method B) to afford compound 41 (36 mg, 45%) as a white solid. 1H 

NMR (400 MHz, DMSO-d6). δ 9.01 (s, 1H), 8.83 (s, 1H), 8.46 (q, J = 2.7 Hz, 1H), 8.16 (d, J = 2.7 Hz, 

1H), 8.08 (td, J = 5.5, 2.2 Hz, 2H), 7.99 (t, J = 2.5 Hz, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.28 (t, J = 8.0 Hz, 

2H), 7.11 (dd, J = 9.1, 2.3 Hz, 2H), 6.98 (t, J = 7.4 Hz, 1H), 4.16 (dt, J = 10.1, 6.6 Hz, 2H), 1.36 (td, J = 

6.9, 2.4 Hz, 3H). LC-MS (ESI) m/z 378.2 [(M+H)+, calcd. C21H20N304, 378.1]. 

4-(1-phenyl-3,6-dihydro-2H-pyridin-4-yl)pyridin-3-ol (42). To a stirred solution of 4-iodopyridin-3-ol 

(0.63 g, 2.86 mmol, 1.1 eq.) and 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-

2H-pyridine (0.74 g, 2.6 mmol, 1 eq.) in a mixture of 1,4-dioxane and water (20 ml, v/v=4:1), K2CO3 

(1.8 g, 13 mmol, 5 eq.) was added and purged with argon for 30 min followed by the addition of 

Pd(dppf)Cl2 (0.1 g, 0.05 eq.) and stirred at 90°C overnight. After completion, the reaction mixture was 

cooled to room temperature, diluted with ethyl acetate and water. The organic layer was washed with 

water and brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude 

product was purified by column chromatography on silica gel (hexane/EtOAc) to afford 42 (251 mg, 

38%). 

4-(1-phenyl-4-piperidyl)pyridin-3-ol (43). Compound 42 (251 mg, 1 mmol) was dissolved in MeOH (20 

ml), followed by addition of Pd (10 wt % on activated carbon, 50 mg), and then the resulting suspension 

was stirred at room temperature under 1 atm. hydrogen pressure overnight. The resulting reaction was 

filtered, concentrated under reduced pressure, and dried under vacuum, to afford 43 (201 mg, 79%) 

which was used for the next step without further purification. 

[4-(1-phenyl-4-piperidyl)-3-pyridyl] 4-ethoxybenzoate (44). A solution of compound 43 (201 mg, 1 eq.), 

4-ethoxybenzoic acid (131 mg, 1 eq.), Et3N (0.27 ml, 2.5 eq.) and HATU (360 mg, 1.2 eq.) in dry DMSO 

(2 ml) was stirred at room temperature for 12h. The completion of the reaction was monitored by LCMS. 

The mixture was purified by HPLC (Method A) to give compound 44 (120 mg, 38% yield) as a white 

solid. 1H NMR (400 MHz, DMSO-d6). δ 8.46 (d, J = 5.4 Hz, 2H), 8.15 – 8.09 (m, 2H), 7.50 (d, J = 5.1 

Hz, 1H), 7.22 – 7.10 (m, 4H), 6.93 (d, J = 8.2 Hz, 2H), 6.75 (t, J = 7.3 Hz, 1H), 4.16 (q, J = 6.9 Hz, 2H), 

3.78 (d, J = 12.3 Hz, 2H), 2.87 – 2.79 (m, 1H), 2.63 (t, J = 10.0 Hz, 2H), 1.82 (t, J = 5.1 Hz, 4H), 1.37 

(t, J = 7.0 Hz, 3H). LC-MS (ESI) m/z 403.2 [(M+H)+, calcd. C25H27N203, 403.2]. 

5-(1-phenyl-3,6-dihydro-2H-pyridin-4-yl)pyridin-3-ol (45). To a stirred solution of 5-iodopyridin-3-ol 

(0.63 g, 2.86 mmol, 1.1 eq.) and 1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-

2H-pyridine (0.74 g, 2.6 mmol, 1 eq.) in a mixture of 1,4-dioxane and water (20 ml, v/v=4:1), K2CO3 

(1.8 g, 13 mmol, 5 eq.) was added and purged with argon for 30 min followed by the addition of 
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Pd(dppf)Cl2 (0.1 g, 0.05 eq.) and stirred at 90 °C overnight. After completion, the reaction mixture was 

cooled to room temperature, diluted with ethyl acetate and water. The organic layer was washed with 

water and brine, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The crude 

product was purified by column chromatography on silica gel (hexane/EtOAc) to afford compound 45 

(326 mg, 49%). 

4-(1-phenyl-4-piperidyl)pyridin-3-ol (46). Compound 45 (251 mg, 1 mmol) was dissolved in MeOH (20 

ml), followed by addition of Pd (10 wt% on activated carbon, 50 mg), and then the resulting suspension 

was stirred at room temperature under 1 atm. hydrogen pressure overnight. The resulting reaction was 

filtered, concentrated under reduced pressure, and dried under vacuum, to afford compound 46 (220 mg, 

86%) which was used for the next step without further purification. 

[5-(1-phenyl-4-piperidyl)-3-pyridyl] 4-ethoxybenzoate (47). A solution of compound 46 (200 mg, 1 eq.), 

4-ethoxybenzoic acid (131 mg, 1 eq.), Et3N (0.27 mL, 2.5 eq.) and HATU (360 mg, 1.2 eq.) in dry 

DMSO (2 ml) was stirred at room temperature for 12h. The completion of the reaction was monitored 

by LCMS. The mixture was purified by HPLC (Method B) to give compound 47 (140 mg, 44% yield) 

as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 8.48 (d, J = 1.8 Hz, 1H), 8.41 (d, J = 2.4 Hz, 1H), 

8.12 – 8.05 (m, 2H), 7.71 (t, J = 2.2 Hz, 1H), 7.21 (dd, J = 8.6, 7.1 Hz, 2H), 7.15 – 7.09 (m, 2H), 6.98 

(d, J = 7.8 Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 3.82 (d, J = 12.1 Hz, 2H), 2.88 – 

2.71 (m, 2H), 2.54 (d, J = 1.0 Hz, 1H), 1.92 (d, J = 11.8 Hz, 2H), 1.81 (qd, J = 12.4, 3.9 Hz, 2H), 1.37 

(t, J = 7.0 Hz, 3H). LC-MS (ESI) m/z 403.2 [(M+H)+, calcd. C25H27N203, 403.2]. 

4-bromopyridin-3-yl 4-ethoxybenzoate (48). A solution of 4-bromopyridin-3-ol (300 mg, 1.7 mmol, 1 

eq.), 4-ethoxybenzoic acid (310 mg, 1.87 mmol, 1.1 eq.), DIPEA (0.89 ml, 5.1 mmol, 3 eq.) and HATU 

(760 mg, 2 mmol, 1.2 eq.) in DMF (10 ml) was stirred at 25°C for 16 h. The reaction mixture was poured 

into 50 ml of water and extracted with ethyl acetate (3x15 ml). The combined organic layers were 

washed with saturated ammonium chloride solution (50 ml) and brine (50 ml), dried over anhydrous 

sodium sulfate, and concentrated under reduced pressure to afford compound 48 as a brown solid (320 

mg, purity 85%), which was used in the next step without further purification. 

4-(1-phenyl-1H-pyrazol-4-yl)pyridin-3-yl 4-ethoxybenzoate (49). A mixture of compound 48 (200 mg, 

0.62 mmol, 1 eq.), 1-(phenylpyrazol-4-yl)boronic acid (130 mg, 0.68 mmol, 1.1 eq.), cesium carbonate 

(400 mg, 1.24 mmol, 2 eq.) and Pd(dppf)Cl2 (25 mg, 0.03 mmol, 0.05 eq.) in dioxane/water (5 ml, 10:1 

v/v) was degassed and stirred at 105°C for 16 h under inert atmosphere. After cooling, the reaction 

mixture was poured into 30 ml of water and extracted with ethyl acetate (4x10 ml). The combined 

organic layers were washed with brine (20 ml), dried over anhydrous sodium sulfate, and concentrated 

under reduced pressure. The crude material was purified by HPLC (Method A) to afford compound 49 

as a white solid (235 mg, 36% yield after 2 steps). 1H NMR (400 MHz, DMSO-d6). δ 9.06 (s, 1H), 8.61 

– 8.51 (m, 2H), 8.22 (d, J = 8.8 Hz, 2H), 8.14 (s, 1H), 7.88 (d, J = 5.1 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H), 



Chapter 4. Pocket-focused library design 

219 
 

7.50 (t, J = 7.8 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.16 (d, J = 8.8 Hz, 2H), 4.19 (q, J = 6.9 Hz, 2H), 1.38 

(t, J = 6.9 Hz, 3H). LC-MS (ESI) m/z 386.0 [(M+H)+, calcd. C21H20N304, 386.1]. 

5-bromopyridin-3-yl 4-ethoxybenzoate (50). Compound 50 was prepared as described above for 

compound 48, starting from 5-bromopyridin-3-ol (300 mg, 1.7 mmol, 1 eq.) to afford a yellow solid 

(260 mg, purity 90%), which was used in the next step without further purification. 

5-(1-phenyl-1H-pyrazol-4-yl)pyridin-3-yl 4-ethoxybenzoate (51). Compound 51 was prepared as 

described above for compound 49, starting from 5-bromopyridin-3-yl 4-ethoxybenzoate 50 (200 mg, 

0.62 mmol, 1eq.). The crude material was purified by HPLC (method B) to afford compound 51 as a 

white solid (50 mg, 8% yield after 2 steps).  1H NMR (400 MHz, DMSO-d6). δ 9.21 (s, 1H), 8.95 (d, J 

= 1.9 Hz, 1H), 8.44 (d, J = 2.6 Hz, 1H), 8.39 (s, 1H), 8.17 – 8.10 (m, 3H), 7.92 – 7.85 (m, 2H), 7.55 (t, 

J = 7.8 Hz, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.18 – 7.11 (m, 2H), 4.17 (q, J = 6.8 Hz, 2H), 1.38 (t, J = 6.8 

Hz, 3H). LC-MS (ESI) m/z 386.0 [(M+H)+, calcd. C21H20N304, 386.1]. 

 

In vitro CDK8 inhibition 

Inhibitory activity of compounds was tested by using the LanthaScreen® Eu kinase binding assay 

optimized for CDK8/CyclinC (Invitrogen). This assay is based on the binding and displacement of an 

Alexa Fluor® 647-labeled ATP-competitive kinase inhibitor scaffold (kinase tracer) to the kinase. 

Binding of the tracer to the kinase is detected using a europium-labeled anti-tag antibody, which binds 

to the tagged CDK8/CyclinC. Simultaneous binding of both the tracer and antibody to the kinase results 

in a close proximity suitable for a high degree of FRET (fluorescence resonance energy transfer) from 

the europium (Eu) donor fluorophore to the Alexa Fluor® 647 acceptor fluorophore on the kinase tracer. 

Binding of an inhibitor to CDK8/CyclinC competes for binding with the tracer, resulting in a loss of 

FRET. Binding assay was performed into 384-well small volume plates (CORNING 3824) using kinase 

buffer provided by supplier (HEPES 50mM pH7.5, MgCl2 10mM, EGTA 1mM, Brij-35 0.01%) in a 

final volume of 15 µL. Briefly, 5µL of 3X compound (increasing concentrations from 3.10-11 to 3.10-5 

M) prepared in kinase buffer are added to 5µL of 3X kinase/Ab solution (15nM kinase, 6nM biotin anti-

His-tag antibody, 6nM Eu-streptavidin) and 5µL of 30nM kinase tracer236 (Kd 8 nM). The plate was 

incubated 1h at room temperature before reading with a TRF-compatible multi-well plate reader 

(Envision, PerkinElmer) using a classic TRF reading protocol (excitation at 337 nm; donor emission 

measured at 620 nm; acceptor emission measured at 665 nm). The TR-FRET signal was collected both 

at 665 and 620 nm, and TR-FRET ratios were calculated (acceptor signal value divided by donor signal 

value). IC50 and Ki values of the tested compounds were determined from competitive binding curves 

using GraphPad Prism software (version 6.07) as follows: 
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𝑆 = 𝑆𝑚𝑖𝑛 +
(𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛)

(1 + 10(𝑋−𝑙𝑜𝑔𝐼𝐶50))
 

S is the TR-FRET ratio value 

X is the compound concentration 

𝑙𝑜𝑔𝐼𝐶50 = 𝑙𝑜𝑔10
(𝑙𝑜𝑔𝐾𝑖∗(1+

[𝑡𝑟𝑎𝑐𝑒𝑟]
𝐾𝑑

))
 

[tracer] is the tracer concentration used in the competition assay 

Kd is the dissociation constant value of the tracer 

 

4.2.7. Associated contents 

Safety Statement 

No unexpected or unusually high safety hazards were encountered. All experiments were conducted 

under ISO 9001 compliance. 

 

Supporting information  

Supplementary Methods section and additional figures and tables including the comparison and 

alignment of sc-PDB subpocket and fragments to CDK8 ATP binding site, the colored feature histogram 

(c-FH descriptor) used to align sc-PDB subpockets to the target cavity, the validation of the subpocket 

comparison protocol, the pairwise similarity of selected fragments, the properties of selected fragments, 

the definition of connectable fragments, the topological requirements to connect fragment atoms by a 

linker, the filters for DeLinker-generated linkers, the properties of generated molecules, the LC-MS 

analysis of compounds 39, 41, 44, 47, 49 and 51, the synthesis of round-2 library compounds, the list of 

CDK8 X-ray structures, the filtering rules to select drug-like compounds, the in-house catalog of 

commercially available drug-like compounds, the list of 37 commercially available compounds 

structurally similar or identical to round-1 library members, the list of 151 round-2 library members 

(PDF). 

Molecular formula strings–SMILES codes (CSV) 

This material is available free of charge on the ACS Publications website at http://pubs.cas.org 
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4.2.9. Supporting Information for Target-focused library design by pocket-

applied computer vision and fragment deep generative linking 
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Figure S1. Alignment of sc-PDB1 subpockets and fragments to CDK8 ATP binding site. A) Overall 

alignment flowchart, B) CDK8 areas hinge (H), gate area 1 (GA1), gate area 2 (GA2), solvent-exposed 

area 1 (SE1), solvent-exposed area 2 (SE2), αC area (AC). 
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Figure S2. Colored Feature Histogram (c-FH descriptor)2 used to align sc-PDB subpockets to the target 

cavity. A) Considering a point Pq (green) whose c-FH is to be computed, its neighbor points Ƥk = {1, 2, 

3} within a radius r are determined (green circle). For each neighbor in Ƥk, their respective neighbors 

are also determined within the radius r. B) The percentage of each of eight pharmacophoric features 

(hydrophobic, aromatic, H-bond donor, H-bond acceptor, H-bond acceptor and donor, positive 

ionizable, negative ionizable, null) is then stored into a 8-bin histogram that forms the simplified colored 

feature histogram (c-SFH) of the point Pq. C) The c-SFH is iteratively computed for each point in Ƥk;  

D) The c-FH of the point Pq is the sum of its c-SFH and the distance-weighted average of its neighbors’ 

c-FSHs. 

  



Chapter 4. Pocket-focused library design 

228 
 

   

 

 

 

Figure S3. Validation of the subpocket comparison protocol. Cross-alignment of CDK8 subpockets and 

corresponding fragments to CDK8 full cavities. The bound inhibitors of 20 structurally-prealigned 
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(Maestro, Schrödinger, New York, NY 10036, U.S.A.) CDK8 PDB entries (19 type I and one apo 

structures) were fragmented as described in the Methods section. The immediate protein environment 

of each selected fragment defines the corresponding subpocket that is represented as a pharmacophore 

feature-annotated point cloud. After translating and rotating the subpockets and their bound fragments 

in a different coordinates frame, each subpocket from the 20 PDB entries was aligned to the 20 entire 

CDK8 cavities with ProCare using three different fingerprints: c-FPFH (colored Fast Point Feature 

Histogram, violet) encoding both local shape and pharmacophoric properties distributions, c-FH 

(colored Feature Histogram, pink) encoding local  pharmacophoric properties distributions only and 

FPFH (Fast Point Feature Histogram, green) encoding local shape only. The optimal transformation 

matrix is next applied to the accompanying subpocket-bound fragment to pose each fragment into the 

full cavities. A) Root-mean square deviation (RMSD) of ProCare-aligned subpockets from 

corresponding protein structure-based prealigned subpocket with respect to the ProCare score. Green 

dashed line: score default threshold (0.47, p-value: 0.05), grey dashed line: optimal score threshold used 

in this study (0.39, corresponding to the maximum F-measure discriminating known similar and known 

dissimilar cavities)16. B) RMSD of ProCare-aligned fragments from corresponding protein structure-

based prealigned fragments with respect to the ProCare score. C) Proportion of aligned subpockets with 

a RMSD less than 2 Å from the corresponding protein structure-based prealigned subpocket; D) 

Proportion of aligned fragments with a RMSD of their heavy atoms less than 2 Å from the corresponding 

protein structure-based prealigned fragment. 
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Figure S4.  Pairwise similarity of the 385 selected fragments after removing 2D duplicates for each 

CDK8 area: H: hinge, GA1: gate area 1, GA2: gate area 2, SE2: solvent-exposed area 2. A) Tanimoto 

and B) Tversky metrics on RDKit Morgan fingerprint (radius = 2). C) Tanimoto and D) Tversky metrics 

on RDKit topological fingerprint (maximum path size: 7). Tversky similarity corresponds to the 

maximum possible, applying the largest weight (0.95) to the smallest molecule and the smallest weight 

(0.05) to the largest molecule. Outliers are computed to be outside the quartiles past 1.5 times the 

interquartile range. 
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Figure S5. Properties of selected fragments after removing 2D duplicates for each CDK8 area: H: hinge, 

GA1: gate area 1, GA2: gate area 2, SE2: solvent-exposed area 2. From left to right, top to bottom, the 

molecular weight (g.mol-1), the count of heavy atoms (non-hydrogen atoms), calculated logP, polar 

surface area (Å), count of H-bond acceptor, count of H-bond donor, count of rotatable bonds. The seven 

properties were calculated with RDKit. Outliers are computed to be outside the quartiles past 1.5 times 

the interquartile range. 

 

 

Figure S6. Connectable fragments are defined by 

connectable areas: hinge (H)-annotated fragments 

are paired with fragments from the gate area 1 

(GA1), the gate area 2 (GA2), and the solvent-

exposed area 2 (SE2). Spheres of 6 Å radius 

delineate each CDK8 area. Distances between 

area centers are reported in Å. 
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Figure S7. Topological requirements to connect 

fragment atoms by a linker. A) A1 and A2 atoms 

are connectable if they are bound to a hydrogen 

atom, are located within the projected circular 

cone (aperture = π/2) of their counterpart. B) 

Example fragments to be linked with linking 

atoms A and B for the first fragment (orange) 

and linking atoms C and D for the second 

fragment (green). Exit vectors are represented 

by arrows. Only atoms B and C are connectable, 

the connections A-C, A-D and B-D are not 

considered in this study. 

 

 

Figure S8. Filters for DeLinker-generated linkers. To be kept, generated linkers must be small or 

contain ring systems or be branched with unsaturated bonds or heteroatoms. 
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Figure S9. Properties of generated molecules after removing 2D duplicates. GEN: full set after 

removing unsuccessful generation (n=1 119 879), DL: drug-like set (n=566 989), R1: first round library 

(n=141 125). From left to right, top to bottom, the molecular weight (g.mol-1), the count of heavy atoms 

(non-hydrogen atoms), logP, polar surface area (Å), count of H-bond acceptor, count of H-bond donor, 

count of rotatable bonds, proportion compliant with Lipinski’s rule-of-5 and fragment rule-of-three. All 

properties were calculated with RDKit. Outliers are computed to be outside the quartiles past 1.5 times 

the interquartile range. 
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Figure S10. LC-MS analysis of compound 39. 
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Figure S11. LC-MS analysis of compound 41. 
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Figure S12. LC-MS analysis of compound 44. 
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Figure S13. LC-MS analysis of compound 47. 
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Figure S14. LC-MS analysis of compound 49. 
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Figure S15. LC-MS analysis of compound 51. 
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aReagents and conditions: (a) phenylisocyanate, DMF, Et3N, r.t., overnight; (b) 4-ethoxybenzoic acid, 

EDC, DMAP, DMF, r.t., 16h; (c) 4-iodopyridin-3-ol, K2CO3, Pd(dppf)Cl2, dioxane/water, 90°C, 

overnight; (d) MeOH, Pd/C, H2 (1 atm), r.t., overnight; (e) 4-ethoxybenzoic acid, Et3N, HATU, DSO, 

r.t., 12h; (f) 5-iodopyridin-3-ol, K2CO3, Pd(dppf)Cl2, dioxane/water, 90°C, overnight; (g) 4-

ethoxybenzoic acid, HATU, DIPEA, DMF, 25°C, 16h; (h) 1(phenylpyrazol-4-yl)boronic acid, Cs2CO3, 

Pd(dppf)Cl2, dioxane/water, 105°C, 16h  

Scheme S1. Synthesis of round-2 library compoundsa 
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Table S1. List of CDK8 X-ray structures (https://www.rcsb.org, accessed on June 7, 2020) 

PDBa Res.b  Ligandc Ligand SMILES Typed 

3RGF 2.20 BAX CNC(=O)c1cc(ccn1)Oc2ccc(cc2)NC(=O)Nc3ccc(c(c3)C(F)(F)F)Cl II 

4CRL 2.40 C1I 

CC12CC=C3C=C4C(C(C(CC45CCC3(C1CCC2c6ccc7ccncc7c6)O5

)N(C)C)O)O 

I 

4F6S 2.60 JHK Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)N II 

4F6U 2.10 HK5 Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)NCCCN3CCOCC3 II 

4F6W 2.39 0SS 

Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)NCCN3CCN(CC3)C(=O)

Nc4cc(nn4c5ccc(cc5)C)C(C)(C)C 

II 

4F70 3.00 0ST Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)NCCN3CCOCC3 II 

4F7J 2.60 0SU Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)NCCO II 

4F7L 2.90 0SO Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)NCCCNC(=O)OC(C)(C)C II 

4F7N 2.65 0SV Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)NCCCCCO II 

4F7S 2.20 0SW c1ccc(cc1)CCNc2c3ccccc3ncn2 I 

4G6L 2.70 0SO Cc1ccc(cc1)n2c(cc(n2)C(C)(C)C)NC(=O)NCCCNC(=O)OC(C)(C)C N.A.e 

5BNJ 2.64 4TV Cn1cc(cn1)c2ccc(cc2)c3cncc(c3N4CCC5(CCNC5=O)CC4)Cl I 

5CEI  50R CNC(=O)c1cc2c(cncc2s1)Oc3ccc(cc3)I I 

5FGK 2.36 5XG c1cc2c(cc1c3cncc(c3N4CCC5(CCNC5=O)CC4)Cl)n[nH]c2N I 

5HBE 2.38 5Y6 CN1c2ccc(cc2CS1(=O)=O)c3cncc(c3N4CCC5(CC4)CNC(=O)O5)Cl I 

5HBH 2.50 5Y7 

CN1c2ccc(cc2CS1(=O)=O)c3cncc(c3N4CCC5(CCCN5CCOC)CC4)

Cl 

I 

5HBJ 3.00 5Y8 Cn1c2ccc(cc2cn1)c3cnc(c(c3N4CCC5(CCNC5=O)CC4)Cl)N I 

5HNB 2.35 62M Cc1cccc(c1)Cc2c3cc(c(cc3[nH]n2)O)C(=O)N4CCC(C4)O I 

5HVY 2.39 66X 

CNc1nccc(n1)N2CCC(C2)NC(=O)Nc3ccc(c(c3)C(F)(F)F)CN4CCO

CC4 

II 

5I5Z 2.60 68U CNC(=O)c1ccc2cncc(c2n1)c3ccc4c(c3)CS(=O)(=O)N4C I 

5ICP 2.18 69Z Cc1ncc2n1nc(s2)C(=O)N3CCCC3c4ccc(cc4)Cl I 

5IDN 2.26 6A7 Cc1c2cc(cnc2[nH]n1)C(=O)N3CCCC3c4ccc(cc4)Cl I 

5IDP 2.65 6A6 c1cc(ccc1C2CCCCN2C(=O)c3ccc4c(c3)c(n[nH]4)N)F I 

5XQX 2.30 8CC CNC(=O)c1cc(c[nH]1)c2ccncc2 I 

5XS2 2.04 8D6 c1cnccc1c2c[nH]c(c2Cl)C(=O)N I 

6QTG 2.70 JH8 CN(C)C(=O)Cn1cc(cn1)c2ccc(cc2)c3cncc4c3cccc4 I 

6QTJ 2.48 JHK CN(C)C(=O)Cn1cc(cn1)c2ccc(cc2)c3cncc4c3cncc4 I 

6R3S 2.19 JRE CC(c1c(cncc1Cl)c2cc3c(nc2)N(CCC3)C(=O)N)O I 

6T41 2.45 MFE c1ccc2c(c1)c(ncn2)NCc3ccc(cc3)Cl I 

a PDB identifier. 

b Higher limit resolution, Å. 

c Chemical component three-letter code. 

d Structure classification. 

e not available (ligand-free structure)  
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Table S2. Filtering rules to select drug-like compounds 

#/********************************************************************** 

#Copyright (C) 2004-2020, 2020 by OpenEye Scientific Software, Inc. 

#***********************************************************************/ 

#This file defines the rules for filtering multi-structure files based on 

#properties and substructure patterns. 

MIN_MOLWT      200         "Minimum molecular weight" 

MAX_MOLWT      600         "Maximum molecular weight" 

 

MIN_NUM_HVY   15         "Minimum number of heavy atoms" 

MAX_NUM_HVY   35         "Maximum number of heavy atoms" 

 

MIN_RING_SYS    0      "Minumum number of ring systems" 

MAX_RING_SYS    5      "Maximum number of ring systems" 

 

MIN_RING_SIZE    0      "Minimum atoms in any ring system" 

MAX_RING_SIZE    20      "Maximum atoms in any ring system" 

 

MIN_CON_NON_RING    0      "Minimum number of connected non-ring atoms" 

MAX_CON_NON_RING    15     "Maximum number of connected non-ring atoms" 

 

MIN_FCNGRP       0      "Minimum number of functional groups" 

MAX_FCNGRP       18      "Maximum number of functional groups" 

 

MIN_UNBRANCHED   0      "Minimum number of connected unbranched non-ring atoms" 

MAX_UNBRANCHED   6      "Maximum number of connected unbranched non-ring atoms" 

 

MIN_CARBONS      7      "Minimum number of carbons" 

MAX_CARBONS      35      "Maximum number of carbons" 

 

MIN_HETEROATOMS    2      "Minimum number of heteroatoms" 

MAX_HETEROATOMS    20      "Maximum number of heteroatoms" 

 

MIN_Het_C_Ratio    0.10    "Minimum heteroatom to carbon ratio" 

MAX_Het_C_Ratio    1.0      "Maximum heteroatom to carbon ratio" 

 

MIN_HALIDE_FRACTION      0.0      "Minimum Halide Fraction" 

MAX_HALIDE_FRACTION      0.5      "Maximum Halide Fraction" 

 

#count ring degrees of freedom = (#BondsInRing) - 4 - (RigidBondsInRing) - (BondsSharedWithOtherRings) 

#must be >= 0, from JCAMD 14:251-265,2000. 

ADJUST_ROT_FOR_RING     true      "BOOLEAN for whether to estimate degrees of freedom in rings" 

 

MIN_ROT_BONDS    0      "Minimum number of rotatable bonds" 

MAX_ROT_BONDS    20      "Maximum number of rotatable bonds" 

 

MIN_RIGID_BONDS    0      "Minimum number of rigid bonds" 

MAX_RIGID_BONDS    35      "Maximum number of rigid bonds" 

 

MIN_HBOND_DONORS  0      "Minimum number of hydrogen-bond donors" 

MAX_HBOND_DONORS  6      "Maximum number of hydrogen-bond donors" 
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MIN_HBOND_ACCEPTORS  0      "Minimum number of hydrogen-bond acceptors" 

MAX_HBOND_ACCEPTORS  8      "Maximum number of hydrogen-bond acceptors" 

 

MIN_LIPINSKI_DONORS  0      "Minimum number of hydrogens on O & N atoms" 

MAX_LIPINSKI_DONORS  5      "Maximum number of hydrogens on O & N atoms" 

 

MIN_LIPINSKI_ACCEPTORS  0      "Minimum number of oxygen & nitrogen atoms" 

MAX_LIPINSKI_ACCEPTORS  10      "Maximum number of oxygen & nitrogen atoms" 

 

MIN_COUNT_FORMAL_CRG    0      "Minimum number formal charges" 

MAX_COUNT_FORMAL_CRG    3      "Maximum number of formal charges" 

 

MIN_SUM_FORMAL_CRG   -2      "Minimum sum of formal charges" 

MAX_SUM_FORMAL_CRG    2      "Maximum sum of formal charges" 

 

MIN_CHIRAL_CENTERS   0   "Minimum chiral centers" 

MAX_CHIRAL_CENTERS   4   "Maximum chiral centers" 

 

MIN_XLOGP      -5.0      "Minimum XLogP" 

MAX_XLOGP       6.0      "Maximum XLogP" 

 

#choices are insoluble<poorly<moderately<soluble<very<highly 

MIN_SOLUBILITY      moderately      "Minimum solubility" 

 

PSA_USE_SandP   false    "Count S and P as polar atoms" 

MIN_2D_PSA      0.0      "Minimum 2-Dimensional (SMILES) Polar Surface Area" 

MAX_2D_PSA      150.0    "Maximum 2-Dimensional (SMILES) Polar Surface Area" 

 

AGGREGATORS    true      "Eliminate known aggregators" 

PRED_AGG       true      "Eliminate predicted aggregators" 

 

#secondary filters (based on multiple primary filters) 

GSK_VEBER      true      "PSA>140 or >10 rot bonds" 

MAX_LIPINSKI   1         "Maximum number of Lipinski violations" 

MIN_ABS 0.5              "Minimum probability F>10% in rats" 

PHARMACOPIA    true      "LogP > 5.88 or PSA > 131.6" 

 

ALLOWED_ELEMENTS  H,C,N,O,F,S,Cl,Br 

ELIMINATE_METALS Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd 

 

#acceptable molecules must have <= instances of each of the patterns below 

 

#specific, undesirable functional groups 

 

RULE  0  quinone 

RULE  0  

pentafluorophenyl_esters 

RULE  0  

paranitrophenyl_esters 

RULE  0  HOBT_esters 

RULE  0  triflates 

RULE  0  lawesson_s_reagent 

RULE  0  phosphoramides 

RULE  0  

beta_carbonyl_quat_nitrogen 

RULE  0  acylhydrazide 

RULE  0  

cation_C_Cl_I_P_or_S 

RULE  0  phosphoryl 

RULE  0  alkyl_phosphate 

RULE  0  phosphinic_acid 

RULE  0  phosphanes 

RULE  0  phosphoranes 

RULE  0  imidoyl_chlorides 

RULE  0  nitroso 

RULE  0  N_P_S_Halides 

RULE  0  carbodiimide 

RULE  0  isonitrile 

RULE  0  triacyloxime 

RULE  0  cyanohydrins 

RULE  0  acyl_cyanides 
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RULE  0  sulfonylnitrile 

RULE  0  phosphonylnitrile 

RULE  0  azocyanamides 

RULE  0  beta_azo_carbonyl 

RULE  0  polyenes 

RULE  0  saponin_derivatives 

RULE  1  

cytochalasin_derivatives 

RULE  4  

cycloheximide_derivatives 

RULE  1  

monensin_derivatives 

RULE  1  

squalestatin_derivatives 

 

#functional groups which often 

eliminate compounds from 

consideration 

 

RULE  0  acid_halide 

RULE  0  aldehyde 

RULE  0  alkyl_halide 

RULE  0  anhydride 

RULE  0  azide 

RULE  0  azo 

RULE  0  di_peptide 

RULE  0  michael_acceptor 

RULE  0  beta_halo_carbonyl 

RULE  0  nitro 

RULE  0  oxygen_cation 

RULE  0  peroxide 

RULE  0  phosphonic_acid 

RULE  0  phosphonic_ester 

RULE  0  phosphoric_acid 

RULE  0  phosphoric_ester 

RULE  0  sulfonic_acid 

RULE  0  sulfonic_ester 

RULE  0  tricarbo_phosphene 

RULE  0  epoxide 

RULE  0  sulfonyl_halide 

RULE  0  halopyrimidine 

RULE  0  perhalo_ketone 

RULE  0  aziridine 

RULE  1  oxalyl 

RULE  0  alphahalo_amine 

RULE  0  halo_amine 

RULE  0  halo_alkene 

RULE  0  acyclic_NCN 

RULE  0  acyclic_NS 

RULE  0  SCN2 

RULE  0  terminal_vinyl 

RULE  0  hetero_hetero 

RULE  0  hydrazine 

RULE  0  N_methoyl 

RULE  0  NS_beta_halothyl 

RULE  0  propiolactones 

RULE  0  iodoso 

RULE  0  iodoxy 

RULE  0  noxide 

 

 

#groups of molecules 

 

RULE  0  dye 

 

#functional groups which are 

allowed, but may not be 

wanted in high quantities 

#common functional groups 

 

RULE  6  alcohol 

RULE  4  alkene 

RULE  4  amide 

RULE  4  amino_acid 

RULE  2  amine 

RULE  4  primary_amine 

RULE  4  secondary_amine 

RULE  4  tertiary_amine 

RULE  2  carboxylic_acid 

RULE  6  halide 

RULE  0  iodine 

RULE  2  ketone 

RULE  4  phenol 

RULE  1  imine 

RULE  1  methyl_ketone 

RULE  1  alkylaniline 

RULE  4  sulfonamide 

RULE  1  sulfonylurea 

RULE  0  phosphonamide 

RULE  0  alphahalo_ketone 

RULE  0  oxaziridine 

RULE  1  cyclopropyl 

RULE  2  guanidine 

RULE  0  sulfonimine 

RULE  0  sulfinimine 

RULE  1  hydroxamic_acid 

RULE  0  sulfinylthio 

RULE  0  disulfide 

RULE  0  enol_ether 

RULE  0  enamine 

RULE  0  organometallic 

RULE  0  dithioacetal 

RULE  1  oxime 

RULE  0  isothiocyanate 

RULE  0  isocyanate 

RULE  3  lactone 

RULE  3  lactam 

RULE  1  thioester 

RULE  1  carbonate 

RULE  0  carbamic_acid 

RULE  1  thiocarbamate 

RULE  0  triazine 

RULE  1  malonic 

 

#other functional groups 

 

RULE  2  alkyne 

RULE  4  aniline 

RULE  4  aryl_halide 

RULE  2  carbamate 

RULE  3  ester 

RULE  5  ether 

RULE  1  hydrazone 

RULE  0  nonacylhydrazone 

RULE  1  hydroxylamine 

RULE  2  nitrile 

RULE  2  sulfide 

RULE  2  sulfone 

RULE  2  sulfoxide 

RULE  0  thiourea 

RULE  1  thioamide 

RULE  0  thiol 

RULE  2  urea 

 

RULE  0  hemiketal 

RULE  0  hemiacetal 

RULE  0  ketal 

RULE  1  acetal 

RULE  0  aminal 

RULE  0  hemiaminal 

 

#protecting groups 

 

RULE  0  

benzyloxycarbonyl_CBZ 

RULE  0  

t_butoxycarbonyl_tBOC 

RULE  0  

fluorenylmethoxycarbonyl_Fm

oc 

RULE  1  dioxolane_5MR 

RULE  1  dioxane_6MR 

RULE  1  

tetrahydropyran_THP 

RULE  1  

methoxyethoxymethyl_MEM 

RULE  2  benzyl_ether 

RULE  2  t_butyl_ether 

RULE  0  trimethylsilyl_TMS 
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RULE  0  

t_butyldimethylsilyl_TBDMS 

RULE  0  

triisopropylsilyl_TIPS 

RULE  0  

t_butyldiphenylsilyl_TBDPS 

RULE  1  phthalimides_PHT 

RULE  2  arenesulfonyl 

 

 

Table S3. In-house catalog of commercially available drug-like compounds. 

Supplier Compoundsa Cleanedb Uniquec Drug-liked 

AbamaChem 1 496 973 1 389 444 1 355 715 1 112 527 

Alinda 893 780 884 805 7 064 2 451 

AnalytiCon 46 513 44 108 39 726 23 185 

Aronis 26 848 26 757 45 21 

Asinex 530 881 525 110 525 102 342 471 

AsisChem 2 109 738 2 089 223 1 720 870 556 376 

BCH Research 1 496 546 1 453 617 1 366 307 1 118 354 

Bionet 208 417 207 322 196 734 84 429 

Cayman 14 603 14 444 9 225 2 650 

Chembridge 1 250 334 1 242 437 1 133 887 883 008 

ChemDiv 1 601 806 1 586 112  1 369 021 817 491 

CNRS 75 554 71 777 63 942 30 721 

Enamine 2 701 170 2 660 152 2 565 862 1 820 949 

ExiMed 60 872 60 708 3 221 2 484 

InterBioScreen 555 658 545 481 348 868 174 137 

Intermed 900 691 840 422 759 154 629 819 

LifeChemicals 492 739 490 408 339 706 233 220 

Maybridge 53 352 52 777 41 920 17 408 

Otava 263 238 261 029 65 402 32 567 

PBMR_Labs 1 532 541 1 505 095 427 795 208 920 

Pharmeks 374 473 363 888 47 752 21 691 

Specs 210 228 206 727 176 871 94 270 

Synthon_Lab 32 275 32 063 6 374 2 623 

TimTec 994 852 972 738 160 298 58 846 

Vitas-M 1 413 073 1 383 087 19 535 9 575 

Total 19 337 425 18 909 731 12 750 396 8 280 193 

a compounds downloaded on June 8th 2020 from supplier websites.  

b removal of compounds with erroneous structures and more than 2 undefined chiral centers. 

c removal of salt-free duplicates according to canonical SMILES strings. 

d drug-like compounds according to rules in Table S2. 
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Table S4. List of 37 commercially available compounds, structurally similar or identical to round-1 

library members.  

 

Originala Commercialb # IDc 

  1 BAS00100999 

  2 BAS00127920 

  3 BAS03714607 

  4 BAS06103407 

  5 AS-13577 

  6 AS-57570 

  7 AS-65001 

  8 BS-4424 

  9 5238792 

  10 5238793 

  11 6387127 

  12 6736415 
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  13 Z1024584854 

  14 Z1513812283 

  15 Z166719114 

  16 Z169544550 

  17 Z1838235103 

  18 Z229192428 

  19 Z229315974 

  20 Z2312274216 

  21 Z236575354 

  22 Z359299432 

  23 Z361879486 

  24 Z3899831400 

  25 Z432530210 
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  26 Z513796046 

  27 Z54748481 

  28 Z737854118 

  29 Z85517130 

  30 Z91149516 

  31 6668547 

  32 AE-848/02279007 

  33 AF-407/03092027 

  34 AH-487/42191575 

  35 AJ-292/42152689 

  36 AL-398/12677080 

  37 AN-652/05929028 

a Original R1 library compound. b Closest commercial analogue. c Commercial catalogue identifier. 
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Table S5. List of 151 round-2 library members (SMILES strings) 

CCOc1ccc(C(=O)Oc2cncc(-c3cc(-c4ccccc4)c(C)s3)c2)cc1 

CCOc1ccc(C(=O)Oc2cccnc2Cc2c[nH]cn2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(C)=Cc2ccc(C)c(C#CCO)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(N3CC(c4ccccc4)C3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-n3nnc(-c4ccccc4O)n3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(N)=[NH+]C(=[NH2+])Nc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=Cc2ccc(C)c(C#CCO)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2N(CC)C(=O)N2CCc3cc(O)ccc3C2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3nnc(-c4cn[nH]c4)nn3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=[NH2+])Nc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=O)NC(=O)Nc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C2=CCN=C2c2ccc(C)c(C#CCO)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cc(C)n(-c3ccccc3)n2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2N(C)C(=[NH2+])Oc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2c[nH]cc2-c2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)c2ccccc2O)cc1 

CCOc1ccc(C(=O)Oc2cncc(NOC(=O)n3ccnc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3cc(-c4ccccc4)co3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)Nc2ccccc2O)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=[NH2+])Oc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cc(C)c(-c3ccccc3)s2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)c2ccc3c(=O)[nH]c(C)nc3c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2[nH]cc(-c3ccccc3)c2N)cc1 

CCOc1ccc(C(=O)Oc2cncc(-n3nnc(N4CCC(O)CC4)n3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3ccn(-c4ccccc4)n3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2n[nH]nc2N2CCc3cc(O)ccc3C2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2ccc(-c3ccccc3)o2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=O)Nc3cc(O)ccc3F)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3ccc(-c4ccccc4)s3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2N(N)C(=O)Oc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C3CCN(c4ccccc4)CC3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(OC(=O)Oc3cc(O)ccc3F)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)Oc2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(C)=Cc2ccc(C#CCO)c(C)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(N)=[NH+]C(=O)Nc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)N(O)c2cccc(C(C)(C)C)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3[nH]cc(-c4ccccc4)[nH+]3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cc(-c3ccccc3)sn2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=O)C(=O)Oc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3cc(C)n(-c4ccccc4)c3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2nn(N)cc2-c2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=[NH2+])NC(=O)Nc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(CSC(=[NH2+])N3CCC(O)CC3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=O)N(C)c3cc(O)ccc3F)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2ccn(-c3ccccc3)n2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC3=[NH+]CC=C3c3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2ccccc2-c2c(Cl)cccc2Cl)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3cnn(-c4ccccc4)n3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=[NH2+])c2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=[NH2+])Nc3ccccc3O)c2)cc1 
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CCOc1ccc(C(=O)Oc2cnccc2-c2nc(C)c(-c3ccccc3)s2)cc1 

CCOc1ccc(C(=O)Oc2cccnc2-c2ccccc2-c2ccccc2O)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2n[nH]c(N3CCC(O)CC3)n2)cc1 

CCOc1ccc(C(=O)Oc2cncc(ON=C(S)n3ccnc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=O)Oc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)Nc2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2N2CC(c3ccccc3)C2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)Nc2ccccc2O)cc1 

CCOc1ccc(C(=O)Oc2cnccc2N=C(O)c2ccc(C)c(C#CCO)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3cc(C)n(-c4ccccc4)n3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)N2CC(c3cnc[nH]3)C2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C3=NC(c4ccccc4)=[NH+]C3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3sc(-c4ccccc4)cc3N)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2Cc2ccc3c(=O)[nH]c(C)nc3c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C2=CC(c3ccccc3O)=CC2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2csc(-n3ccnc3)n2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=C(C)c2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)Oc2c(O)ccc3c2OCO3)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=Cc2ccc(C#CCO)c(C)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)Nc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cnn(-c3ccccc3O)c2C)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(N)=[NH+]C(=O)Nc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(C#N)=Cc2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)NC(=O)c2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)C(=O)Nc2c(O)ccc3c2OCO3)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)Oc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2SOC(=O)N2CCC(O)CC2)cc1 

CCOc1ccc(C(=O)Oc2cncc(OC(=O)Oc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3ccn(-c4ccccc4)c3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cccc(N3CCC(O)CC3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)NC(=O)c2ccccc2O)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)Sc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2CSC(=[NH2+])N2CCC(O)CC2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C=Cc3ccccc3O)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=O)Nc3ccccc3O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cnn(-c3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3coc(-c4ccccc4)n3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cc(C)n(-c3ccccc3O)n2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C2=CCN=C2c2ccc(C#CCO)c(C)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C=NC(=[NH2+])Nc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2csc(-c3ccccc3)n2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=O)c3cc(O)ccc3F)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2N(C)C(=[NH2+])N2CCc3cc(O)ccc3C2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=Cc2ccccc2O)cc1 

CCOc1ccc(C(=O)Oc2cccnc2Cc2cnc(C)nc2N)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=O)Nc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C2=NCC=C2c2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)Nc2ccc3c(=O)[nH]c(C)nc3c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3cc(-c4ccccc4)n[nH]3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cccc(-c3c(O)ccc4c3OCO4)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)Nc2cc(O)ccc2F)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2csc(-c3c(O)ccc4c3OCO4)n2)cc1 

CCOc1ccc(C(=O)Oc2cccnc2Cc2ccccc2O)cc1 
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CCOc1ccc(C(=O)Oc2cnccc2C(=O)Nc2ccc(C#CCO)c(C)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C2=NCC=C2C2CCCC2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2CC(=[NH2+])N2CCc3cc(O)ccc3C2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=O)NC(=O)Nc3cn[nH]c3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3nc(-n4ccnc4)n[nH]3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=[NH2+])NC(=O)Nc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2nccc(-c3c(O)ccc4c3OCO4)n2)cc1 

C=C(C(=[NH2+])N1CCc2cc(O)ccc2C1)c1ccncc1OC(=O)c1ccc(OCC)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2nc(-c3ccccc3)sc2C)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)Nc2cc(O)ccc2F)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3nc(-c4ccccc4)cs3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NC(=S)c3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2ncn(-c3ccccc3)n2)cc1 

CCOc1ccc(C(=O)Oc2cncc(NNC(=O)n3ccnc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=Cc2ccc3c(=O)[nH]c(C)nc3c2)cc1 

CCOc1ccc(C(=O)Oc2cccnc2C(=[NH2+])Nc2ccccc2O)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=[NH2+])Nc3cc(O)ccc3F)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(SC(=O)Oc3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2n[nH]cc2-c2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)Oc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-n3nc(-c4ccccc4)[nH]3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=[NH2+])N=Cc3ccccc3O)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3ccc(N4CCC(O)CC4)cc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2ccc(-c3c(O)ccc4c3OCO4)o2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)c2ccc(C#CCO)c(C)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)Nc2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)N2CC(n3ccnc3)C2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=Cc2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)N2CCc3cc(O)ccc3C2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2nnc(N3CCC(O)CC3)o2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)Nc2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2N(C)C(=O)Oc2c(C)cccc2C)cc1 

CCOc1ccc(C(=O)Oc2cnccc2OC(=O)c2ccc(C)c(C#CCO)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=C(C#N)c2ccc(C#CCO)c(C)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3cc(-c4ccccc4O)nnn3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(O)=Cc2ccc(C)c(C#CCO)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(-c3cccc(N4CCC(O)CC4)c3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)NC(=O)c2ccccc2)cc1 

CCOc1ccc(C(=O)Oc2cncc(OC(=O)Nc3ccccc3O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=[NH2+])Nc2ccc(O)c(O)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C(=O)N(C)c2ccc3c(=O)[nH]c(C)nc3c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cccc(-c3cnc[nH]3)c2)cc1 

CCOc1ccc(C(=O)Oc2cncc(N=[SH]c3ccccc3)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2C=C(C#N)c2ccc(C)c(C#CCO)c2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2NC(=O)Oc2c(C)cccc2C)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2cc(C)n(-c3cc(O)ccc3F)n2)cc1 

CCOc1ccc(C(=O)Oc2cnccc2-c2nc[nH]c2N2CCc3cc(O)ccc3C2)cc1 

CCOc1ccc(C(=O)Oc2cncc(C(=O)Nc3ccccc3)c2)cc1 
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4.3. Identifying the first inhibitors of a bacterial quinolinate 

synthase 

 

4.3.1.  Project description and structural aspects 

Quinolate synthase (NadA) is a mainly-prokaryotic enzyme that catalyzes the formation of quinolinic 

acid (Figure 4.1), a precursor for the essential cofactor NAD.20 Because of its role and its absence in 

eucaryotes, it appears as an interesting potential target for selective antibacterial design. To date, there 

is no pharmacological inhibitor of this enzyme.21 Known ligands are either substrate analogs or 

derivatives of reaction intermediates. This project was started in collaboration with a Biology team at 

the Grenoble University (Dr. S. Ollagnier de Choudens, Laboratoire de Chimie et Biologie des Métaux, 

UMR5249) with the goal of identifying selective pharmacological inhibitors of NadA. Previous studies 

have characterized the structure of bacterial NadA. The catalytic site adopts an active open or close 

conformation and contains a [4Fe-4S] cluster necessary for its activity.22 We thought that the small 

cavity of NadA (< 300 Å3) constitutes a challenge for classical virtual screening approaches and offers 

a difficult case study to evaluate the POEM workflow. 

 

Figure 4.1. Structure of Thermotoga maritima quinolinate synthase. A) Cartoon and surface 

representation (PDB ID: 4P3X). The [4Fe-4S] cluster is depicted by spheres in the catalytic pocket 

(yellow circle). B) VolSite cavity represented by warm pink spheres annotated by one of eight possible 

pharmacophoric features (hydrophobic, aromatic, h-bond acceptor, h-bond donor, h-bond acceptor or 

donor, negative or positive ionizable, dummy). The envelope available for inhibitor binding is 

represented by a solid surface, illustrating the narrowness of the pocket.  C)  2D structure of quinolinic 

acid. 
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4.3.2. Materials and methods 

We aimed at designing molecules that can bind to Helicobacter Pylori NadA (hpNadA) catalytic site. 

Since no structure is available for that target, a homology model was built with Swiss-model23 using an 

open-conformation 3D structure of Thermotoga maritima MSB8 (PDB ID: 4P3X) as template. Although 

sequence alignment with ClustalO yielded 35% identity, the binding site is generally conserved with a 

few amino acid changes (Annex 4.1). The structure was protonated with Protoss v.4.24 The cavity points 

were computed with IChem VolSite25 v.5.2.9 and pruned to avoid areas behind the iron-sulfur cluster 

(Figure 4.1).  

The NadA cavity was compared to 31 384 sc-PDB subpockets and the cognate fragments were 

transferred into the target cavity using ProCare26 v.0.1.2 with the three alignment descriptors (color c-

FH, shape FPFH and hybrid c-FPFH), as described in section 4.2.  

 

 

4.3.3. Results and discussion 

Following the subpockets comparison to the hpNadA pocket, we first observed that the number of 

subpockets candidates decreases by two third in comparison with CDK8 but this is not surprising 

knowing of overrepresented protein families in the PDB. However, it raises questions on the chances to 

generate hit ideas. After removing a majority of cofactor-derived moieties, four to eight hundred 

fragments (including 2D duplicates) were considered for each descriptor. Consistent with previous 

observations, that shape-only descriptor yielded the fewest propositions. Given the small volume 

occupied by the pocket points (~200 Å3), it was not possible to join fragments occupying adjacent 

subpockets as they often overlap. Fragments that could be subjected to linking were imidazole 

derivatives and benzene. We then pursued a different strategy where transferred fragments that occupy 

the entire cavity were directly considered as putative hits. To this end two selections were visually 

checked: (i) consensus fragments whose subpockets scored over the previously validated similarity 

threshold of 0.47 for all the three descriptors (n=186) and (ii) those who in addition to being compliant 

with rule (i) exhibited a buriedness over 50% into the target cavity cloud (n=39) (Figure 4.2).  
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Figure 4.2. Selection of NadA virtual hits. 

 

It is important to note that a scoring-based consensus does not necessarily mean that the fragments adopt 

the same alignment. Therefore, pose-based consensus (RMSD < 3 Å) was used as additional filter. 

Associated points of the same pharmacophoric features between the target pocket and the fragment 

subpocket were computed and visually analyzed alongside the fragments. Preference was given to 

fragments whose pharmacophoric features match that of cavity points. Fragments that orient lone pairs 

toward the [4Fe-4S] cluster susceptible to coordinate the later (e.g., moieties containing nitrogen, 

oxygen, sulfur atoms) were discarded, in order to increase NadA specific binding. Finally, after visual 

check of all ProCare poses, six compounds identical or very similar (Morgan2 Tanimoto > 0.48) to 

predicted hits were purchased for future in vitro evaluation (Table 4.2). 

 

Table 4.2. Structure of six commercially available virtual hit selected for experimental validation. 

Identifier Supplier Structure 

Z769001730 Enamine 

 

CAY10009880-1 Biomol 
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Z5109253219 Enamine 

 

Z104484866 Enamine 

 

EN300-17770 Enamine 

 

EN300-27258 Enamine 

 

 

 

 

4.3.4. Conclusion 

In this study, we attempted to design a focused library for identifying pharmacological ligands of 

Helicobacter Pylori NadA catalytic site. As a second case study to validate POEM, the target pocket 

was narrow and contains an iron-sulfur cluster, adding difficulty to the application. The dimensions of 

the cavity did not facilitate linking fragments occupying adjacent subpockets but instead suggested to 

use directly proposed fragments as putative hits. By not applying a generative linking, a lower number 

of molecule ideas was expected, decreasing the chances to identify actual hits. In computational 

screening, final selection of virtual hits is often subjective. The current study did not escape this rule. In 

this scenario, mapping aligned cavity points to the fragment atoms offered a supplemental quality check 

out of which six hits were prioritized to test their ability to inhibit in vitro the catalytic activity of the 

enzyme (ongoing work). 
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4.4. Hit prediction for the WD40 domain of leucine-rich repeats 

kinase 2 

 

4.4.1. Project description and structural aspects 

This project was started as part of the CACHE (Critical Assessment of Computational Hit-finding 

Experiments) international challenge.27 It aims at publicly benchmarking computational methods ability 

to predict hits for relevant targets by confronting predictions to experimental validations. For this first 

round whose production phase occurred from March 9th to May 9th of 2022, the WD40 repeats (WDR) 

domain of the human leucine-rich repeats kinase 2 (LRRK2) was chosen. Mutations in the LRRK2 gene 

are commonly associated with Parkinson’s disease whether it was inherited or appeared sporadically.28 

To this current date, therapeutics in preclinical or more advanced phases against LRRK2 are either small 

molecules inhibiting the kinase domain or biologics.28–30 The WDR domain, a β-propeller of seven 

blades (Figure 4.3), was shown to mediate LRRK2 protein-protein interactions with microtubules and 

vesicles trafficking in neurons.31 Therefore, it appears as a promising drug target.32 The goal of this 

challenge is to target the core cavity (Figure 4.3) with small molecules. The first experimental results 

of our predictions are expected no earlier than this fall, hence we will discuss here the problems and 

solutions encountered by applying POEM to this target. 

 

Figure 4.3. Structure of LRRK2 WD40 domain. Cartoon and surface representation of PDB entry 

6DLO; (left) top view showing the core cavity, (right) side view. 

 

 

4.4.2. Materials and Methods 

 

Structures preparation 

The dimeric structure of LRRK2 WDR (PDB ID: 6DLO, X-ray resolution: 2.7 Å)33 indicated as starting 

structure was downloaded from the PDB (https://www.rcsb.org), as well as the monomeric full length 

https://www.rcsb.org/
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cryo-EM structure 7LHT (3.5 Å). The WDR chains were extracted, aligned to be in the same coordinates 

frame with Maestro v.2019-3 (Schrödinger, New York, NY 10036, U.S.A.), protonated with Protoss 

v.424 and converted into mol2 format with SYBYL-X v.2.1.1 (Certara USA, Inc., Princeton, NJ 08540, 

U.S.A.). The pocket point clouds were generated with IChem VolSite v.5.2.9.25 

 

sc-PDB fragments and subpockets v.2022 

Starting from the latest sc-PDB v. 2022 release, IChem fragments and subpockets were prepared from 

the protein-ligand complexes as described in section 4.2. Additionally, fragments originating from 3D 

RECAP fragmentation34 (in-house implementation) were added, removing 3D duplicates with IChem 

fragments—duplicates are the same fragments (by topological fingerprints) occupying the same 

subpocket of the same PDB entry. Exit dummy atoms resulting from the fragmentation were converted 

into hydrogen atoms with SYBYL-X v.2.1.1 (Certara Inc., Princeton, U.S.A.). Computed subpockets 

with IChem VolSite25 v.5.2.9 were filtered as previously, by discarding those with less than 3 points. 

The new version (v.2022) of the sc-PDB subpocket-fragment database consists of 107 828 entries, three 

times more than the previous 2016 version.35 

 

Pocket comparison 

sc-PDB subpockets were compared to the WDR cavity with ProCare26 v.0.1.2, using the 3 descriptors 

(color c-FH, shape FPFH and hybrid c-FPFH) and default scoring scheme. The alignment matrices 

obtained were next applied to the corresponding fragments to pose them in the target cavity. Aligned 

target/query cavity points were extracted with ProCare tools. 

 

Interactions detection 

Protein-fragment interactions (h-bond, ionic, aromatic, hydrophobic) were detected with IChem36 

v.5.2.9 IFP module with default angle and distance parameters. Interaction triplets were detected with 

INTS module. 

 

Buriedness 

Fragments buriedness in the WDR pocket were computed with the IChem 5.2.9 Utils module.  

 

sc-PDB entries annotation 

Protein annotations of sc-PDB35 entries (name, Uniprot37 accession, function keywords) were extracted 

via the RCSB PDB application programming interface (API) with inhouse scripts. The chain identifier 

associated to the ligand in the PDB (author chain) was corrected from the mmCIF file of the entry, to 

finally assign the correct assembly ID. 
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Target enrichment 

For each target represented by their Uniprot accession (polyprotein are disregarded) the enrichment rate 

was calculated as the proportion of their PDB entries for which a subpocket scored higher than the 

selection threshold (Ntop) relative to the initial number in the sc-PDB database (Ntotal): 

 

𝑟 (%) =  
𝑁𝑡𝑜𝑝

𝑁𝑡𝑜𝑡𝑎𝑙
 × 100                                                         eq. 4.1 

 

 

Search in commercial libraries 

The Enamine REAL diverse set of 38 million molecules was downloaded 

(https://enamine.net/compound-collections/real-compounds/real-compound-libraries, accessed on April 

20th 2022) and filtered for druglikness (Section 4.2, Supporting Table S2) with OpenEye Filter 

v.3.0.1.2 (OpenEye Scientific Software, Santa Fe, NM 87508, U.S.A.) yielding 24 million druglike 

molecules. Similarly, the in stock list from MCULE database (https://mcule.com/database/) was 

prepared as backup, yielding 2.3 million druglike molecules. These compounds were compared to the 

designed molecules using RDKit v.2019.03.4.0 (http://www.rdkit.org) Morgan2 fingerprint. Pairs were 

considered similar when the Tanimoto metric was higher than 0.7. 

 

Docking 

Hits candidates were ionized at physiological pH with OpenEye Filter v.3.0.1.2 and finally converted in 

3D structures (mol2 file) with Corina v.3.40 (Molecular Networks GmbH, 90411 Nürnberg, Germany). 

Possible stereoisomers and ring conformers were generated simultaneously. The prepared molecules 

were docked into the WD40 cavity with PLANTS38 v.1.2. The search space was set at 20 Å from the 

binding site center with a search speed of 1 (highest accuracy). Ten poses ranked by the ChemPLP 

scoring function were generated per ligand. A root-mean square deviations (RMSD) of 2 Å on ligand 

heavy atoms was used to cluster solutions. The flipped/rotated side chains were considered in the protein 

structure for each corresponding PLANTS pose. 

 

Shape-based alignment of molecules 

Commercial compounds found similar to potential hits were aligned with OpenEye ROCS v.3.0.1.2 

(OpenEye Scientific Software, Santa Fe, NM 87508, U.S.A.) to the pair of seed fragments, optimizing 

the shape and chemical features overlap by conformational search. The alignments were ranked with the 

Tanimoto combo score. 
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4.4.3. Results and discussions 

 

Choice of the WDR structure 

The starting WDR structure 6DLO is a dimer with missing loops at both the top and down sides of the 

mouth surface (Figure 4.4). For this study, the chain A was selected over chain B as it was missing less 

residues, after careful alignment and inspection. Contrarily, the low-resolution cryo-EM structure 

(7LHT) was not missing residues. Consequently, VolSite cavity points extended towards the loop region 

modifying the shape of the cloud (Figure 4.4). We expected this to affect alignment of the subpockets. 

Whether these extra cavity points are important is unknown, in the absence of any structure with bound 

ligands. Unresolved loops due to high flexibility does not exclude that those residues might play a crucial 

role for ligand binding. One particularity of these pockets is their high proportion of h-bond donor 

features (30%). The two other most abundant features in similar proportions were hydrophobic and 

undetermined dummy features. Although the pockets of these two structures were found similar (highest 

ProCare Score: 0.70), the two pockets were kept for parallel library design.  

 

Figure 4.4. Overlay of WDR-LRRK2 protein structures and cavities. A) The 6DLO X-ray structure 

(light blue) is missing loops (orange, red arrows) present in the cryo-EM structure 7LHT (dark blue). B) 

The VolSite cavity points of 7LHT structure (warm pink) extended to the outer bottom region of the 

core, compared to the 6DLO cavity (green). 

 

 

Fragments selection 

The first step for elaborating molecules is the selection of seed fragments. Distributions of ProCare 

similarity scores showed similar trends for the color and hybrid histograms (c-FH and c-FPFH), 

compared to the shape descriptor. This observation is in accordance with all previous studies. Given the 

high proportion of polar features in the pockets, alignments by the color descriptor were chosen. 

Consistently, only subpockets scoring over the similarity threshold of 0.47 were considered, yielding 
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two lists (6DLO and 7LHT) of ~2 700 (2.5%) entries. No ligand is yet known for this target, therefore 

co-factors were kept at this stage, since they can provide useful information. Four different analyses 

were carried. Firstly, the 294 fragments common to the two lists were inspected. When considering the 

coherence of the alignments, this count decreased to 64. It appeared that top or bottom sides of the cavity 

were differently prioritized for alignment to the two templates. These differences are probably due to 

the extension of the cavity points toward flexible loops in one of the pockets but might also be related 

to the random sampling procedure in the ProCare method suggesting other alternatives for alignment. 

Secondly, we checked for the fragments buriedness. Even if they were not optimally positioned, a clear 

distinction between buried and accessible fragments is to be expected. However, the cylinder-shaped 

cavity yielded poor buriedness, that could not be interpreted. The third source of information was 

enrichment in certain targets. High rates were obtained by kinase-bound nucleotide-like fragments. The 

fourth and final analysis to prioritize a few fragments for linking was to assess their likelihood to interact 

with surrounding protein residues. Given the approximation in the fragments positioning regarding 

interaction detection with the target, we did not initially consider interactions with target residues 

according to strict angle/distance rules. Fragments atoms were converted into equivalent 

pharmacophoric features (more description in Chapter 5) as the pocket. Keeping fragments having at 

least half of their polar features identical to and within 3 Å of an aligned cavity point in the target 

(threshold set by retrospective analysis of the fragments in their original pockets) led to 389 non-cofactor 

fragments for 6DLO, and 1016 for 7LHT. According to the previous conclusions, a few co-factor-

derived fragments were added by visual selection to compile two final lists of 412 and 1048 candidates 

to be linked for 6DLO and 7LHT respectively. 

 

 

Library enumeration and virtual hit selection 

Linking fragments requires to cluster them by target areas and to identify connectable areas. To this end, 

we defined a procedure to automatically identify areas where selected fragments were frequently aligned 

(the consensus from the two templates were used). Target cavity points that were aligned by more than 

25-30% of subpocket hits defined two main areas. The first area is located around residue Y2249 

(bottom side) and curiously overlap with a hotspot detected by the fragment-hotspot tool39 of Cambridge 

Crystallographic Data Centre (https://fragment-hotspot-maps.ccdc.cam.ac.uk). The second area lay at 

the opposite side, around M2301 (top side), a conserved motif across species (Figure 4.5).33 
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Figure 4.5.  Frequently aligned areas of WDR-LRRK2 to sc-PDB subpockets. Two areas were defined 

for fragment annotation prior to linking: around M3201 on top side and Y2249 on bottom side. PDB 

entry: 6DLO. 

 

Fragments were assigned areas based on their distance to the consistent points, and those more or less 

equally distant were assigned ‘middle’ area (Table 4.3). Given the high number of fragments in the 

7LHT bottom area, we could apply additional filtering by keeping fragments that exhibit at least one 

polar interaction (IChem IFP module36) with the target. 

 

Table 4.3. Assignment of pocket areas to aligned fragments. 

PDB reference top middle bottom 

6DLO 134 34 244 

7LHT 51 63 934 (195)a 

a 934 fragments were assigned to bottom area, a sampling based on detected polar interaction with WDR 

reduced the list to 195 fragments. 

 

It is not realistic that a high-affinity ligand would specifically bind right in the middle of the cylindric 

pocket. However, to evaluate the automatic design, we did not bias the selection of the fragments. In the 

current case, there is not a clear definition of the binding site. Available β-propeller structures showed 

that molecular partners bind at the very outer surface32 (www.rcsb.org), but it is unclear whether the top 

or bottom side should be prioritized. A few studies suggested that one side (top)  might be more prone 

to protein-protein interactions.33,40 

While investigating the two sides, four connectivity schemes were defined to generate molecules of 

acceptable sizes: top-top, top-middle, bottom-bottom, bottom-middle (Figure 4.6). Identifying 

connectable atoms among seed fragment pairs is not a simple combinatory problem because it also aims 

at avoiding geometrically irrelevant connections while calibrating the size of the final library.  
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In addition to rules implemented in the CDK8 study, pairs of connectable fragments must display a 

cumulative size of 13 to 25 heavy atoms. This prevents from connecting two very small fragments. For 

future applications, a filter can be applied to the fragments database prior to alignment. Almost colinear 

and overlapping fragments planes are not desirable since that would require distorted linkers. 

Subsequently, fragment pairs displaying a least 3 pairwise distances between 0 and 2 Å were discarded. 

Theses implementations clearly improved the list of fragments to be linked. 

 

 

Figure 4.6. POEM connectable areas in the WDR-LRRK2. PDB entry: 6DLO. 

 

The DeLinker generative program41 was applied to generate 900 k (7LHT) and 1.9 million (6DLO) 

complete molecules, out of which 400 k and 123 k were druglike with decent linkers and synthetic 

accessibility. The two lists shared 2316 molecules. To achieve a list of ca. 150 commercial compounds 

(as requested by the CACHE challenge organizers), POEM 6DLO virtual hits were searched in the 

druglike diverse set of Enamine REAL database (Morgan2 Tanimoto > 0.7) to retrieve similar 

compounds and a backup list was  compiled from MCULE in stock database using the 7LHT virtual hits 

as queries (Morgan2 Tanimoto > 0.8). The most similar compounds were then subjected to a series of 

filters (removing chiral compounds and molecules with more than six rotatable bonds) and last clustered 

according to their Bemis-Murcko scaffolds (Agnes method, Pipeline Pilot, Dassault Systèmes, France). 

Finally, 100 compounds were prioritized for the synthesis costs, as estimated by Enamine (Figure 4.7). 
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Figure 4.7. Library design and virtual hits selection for WD40-LRRK2. (1) Similar compounds to 

generated molecules were retrieved with Morgan2 Tanimoto > 0.7 (6DLO vs. Enamine REAL diverse 

set) and Morgan2 Tanimoto > 0.8 (7LHT vs. MCULE in stock set). 

 

At this stage, docking of virtual hits showed no privileged subpockets (top/bottom/middle) and could 

not be used for interpretation. Likewise, ROCS similarity searches could not be exploited as well since 

shape and chemical property alignment of commercial compounds onto fragments showed that 

generated conformers do not always overlap with the two original fragments when the linker induced 

incompatible conformation.  

 

 

 

4.4.4. Conclusion 

The CACHE challenge offers a fully blind case study to the practicability and reliability of POEM to 

generate pocket-focused molecule ideas. Starting from a hardly druggable target with very little 

information, we adapted the workflow to assemble molecules thought to have chances to bind to the 

target. The fragments selection and linking protocol included new steps to rule out unreasonable 

fragment pair combination. Under different project constraints (e.g. timing), other studies such as 

molecular dynamic simulations despite its limitations could have helped to model the shape of the 

pocket, providing different starting structures for screening. 
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4.5. Critical evaluation of the three POEM validation studies 

In these projects, we aimed at validating POEM, a new workflow to generate a library of molecules 

tailored to a target pocket, by linking pre-positioned 3D fragments from protein-ligand X-ray structures 

according to their subpocket resemblance with the target pocket. 

 

 

4.5.1. Novelty 

Although the POEM idea falls within the concept of target-based de novo drug design since the 1990s,42 

it differs from existing methods by a combination of several aspects: (1) no reference ligand is required 

for the target while some methods (e.g., BREED43, KinFragLib44) rely on reference protein-ligand 

complexes for molecular hybridization, (2) pairs of fragments are directly used for elaboration, as 

opposed to (grid-based) sampling of atoms as in BUILDER,45 CONCEPTS46 or Ramensky et al.,47  (3) 

the fragments templates are derived from existing protein-ligand complexes in their X-ray conformation, 

instead of using a library of template fragments as in LUDI,48 LigBuilder,49 or FastGrow,50 (4) fragments 

are positioned according to the similarity of their subpocket to the target cavity and are not scored by 

any energy criteria (e.g., GroupBuild51, LUDI48),  (5) the fragments linking is based on a 3D-constrained 

variational autoencoder to generate potential linker graphs, instead of strict topological generators 

guided by explicit bond and torsion angle ranges.52 The closest implementations to POEM are the work 

by Moriaud et al.53 and Durrant et al.,54 suggesting building block fragments to link on the basis of their 

environment similarity with the target site, albeit with a different site representation and comparison 

algorithm.55  Moreover, the latter methods do not enumerate fully connected molecules from the position 

of seed fragments. 

 

 

4.5.2. Fragment database: ligand deconstruction 

The ligand fragmentation protocol influences the content of the designed library in different manners: 

the subpockets definition, alignment, and linker generation. To study these effects, a different 3D 

fragmentation scheme based on RECAP retrosynthetic rules34 was implemented in our lab as alternative 

to IChem to reproduce the CDK8 case study. The IChem fragmentation56 method used here breaks single 

bonds more or less around rings and discards acyclic structures. Substituents or linker groups are kept 

attached to the core ring. To ensure that the fragments reflect the pharmacophoric features of the 

subpocket, only those interacting with lining residues were used. However, we draw special attention to 

the cases where the presence of some chemical groups on the fragments, not particularly involved in 

interactions with the original target, may be rather making bad contacts once aligned to the target cavity. 
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Clashes were also observed due to the subpocket only partially overlapping with the fragment, typically 

a subpocket missing points in areas of low buriedness according to VolSite implementation. We solved 

these issues by either computing clashes with the target upon alignment, or by estimating the embedding 

of the fragments in the subpockets/pockets. As a solution to avoid useless fragments or substituents and 

reduce the chances of bad contacts, the fragment-subpocket database can be improved by scoring the 

matching between pharmacophoric features of the fragment atoms (more details in Chapter 5) and the 

subpocket points. The high occurrence of certain fragments such as adenine (17% of IChem fragments) 

prompts to analyze fragment-subpocket redundancy in the database. Finally, analysis of the fragment 

space coverage with respect to commercial fragment databases or deconstructed compounds in public 

repositories would provide useful information regarding prospective applicability. 

 

 

4.5.3. Fragments positioning 

We purposedly linked the direct ProCare-based alignment of the fragments to demonstrate it already 

contained rich information across different target families for molecule design. However, the fragments 

position can be optimized in the pocket prior to the linking procedure. For instance, we achieved this 

goal using OpenEye Szybki energy refinement (OpenEye Scientific Software, Santa Fe, NM 87508, 

U.S.A.). Indeed, on the CDK8 case, 71% of selected fragments have deviated by more than 2 Å upon 

optimization, effect that can affect the linker generation. Another idea would be to redock the selected 

fragments into the target pocket. In either case, only solutions close to the original subpocket-based 

fragment positioning should be considered to not entirely lose the pocket comparison logic. We recall 

that such optimizations are subjected to a force-field implementation and add complexity to the 

workflow. While the binding of close conformations (RMSD-based) of a fragment to structurally distant 

pockets still remains a rare event,57 we interestingly observed cases where the same fragments originally 

bound to different proteins were closely aligned (fragments RMSD < 3 Å) into the CDK8 pocket. On 

the other hand, the same fragments from different protein subpockets were aligned at different locations 

as well. We cannot computationally assess the accuracy of these predictions, but it can simply be 

explained by the dissimilarity between these original subpockets. We underline that this is consistent 

with the well-known promiscuity of fragments in experimental screenings.58,59 The issue observed was 

when the same fragments from the same subpocket in the same protein align to different target pocket 

areas. This highlights the noises in the subpocket definition and sampling effects in the comparison 

algorithm discussed in Chapter 2.  
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4.5.4. Fragments linking 

The deep generative linking algorithm (DeLinker41) employed in the current version offers the advantage 

of being flexible. Indeed, the positions of the fragment rely on the performance of the pocket alignment. 

Even assuming that the pocket alignment is perfect (which is clearly not the case), it should not be 

expected that the fragments would systematically adopt the exact pose nor the same conformation upon 

binding in its new pocket. Therefore, it is not sound to use torsion-based linking approaches. Previous 

attempts with stricter methods such as ReCore60 (BioSolveIT GmbH, Sankt Augustin, Germany) on 

carefully chosen examples led to unsuccessful linking. Although DeLinker attempts to propose linkers 

likely to match inputs 3D constraints, final molecules are enumerated as SMILES strings, thereby losing 

the initial target coordinates frame.  To assess that the linking procedure is still compatible with the 

initial fragment poses proposed by ProCare, each enumerated compound must be generated in 3D (using 

the RDKit routine of DeLinker or other conformer generators) and docked or aligned to the cavity of 

interest. This workaround being impractical at a high-throughput level, development a true 3D linking 

method from ProCare fragment poses would constitute a true added value to the current POEM 

workflow. 

While pairing, all fragments were treated equally, without considering their relative buriedness and 

solvent accessibility in the target. Given the enthalpic nature of fragments binding,61 connecting two 

loosely buried fragments decreases the chances to observe the same binding mode in the obtained 

molecules. The consistency between the poses of the fragments and that of the fully enumerated 

molecule is a bottleneck for fragment based approaches.3,62 The designed linker can as well induce 

changes in the binding mode but these are hard to predict prior to complete enumeration of the molecule. 

This effect was hypothesized by docking in the second round of the CDK8 study while docking first 

round experimental hits showed consistent poses with predicted binding subpockets. 

 

 

4.5.5. Synthetic accessibility 

The synthetic accessibility is the most crucial characteristic of the library members as nice-looking 

molecules predicted to interact with the target are useless unless they can be synthetized for experimental 

assays. Although estimating synthesis hardness with the knowledge-based Ertl and Schuffenhauer 

method,63 we were herein limited by available commercial compounds highly similar to designed 

molecules, at least to evaluate the workflow as quickly as possible. In future production use, it is highly 

desirable to increase the proportion of really synthesizable molecules via retrosynthetic rules even if 

challenges regarding rewards and chemical conditions optimization still remain. To achieve this goal, 

designed molecules can be fragmented and analyzed according to predefined reactions, availability and 
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cost of building blocks. Another benefit of a such filtering is the reduction of the library size and easier 

prioritization of virtual hits. 

 

 

4.5.6. Chemical diversity 

One of the important characteristics of a library are the diversity of the molecules. There are different 

definitions of diversity but for the sake of simplicity, we will only refer to the Bemis-Murcko scaffolds.64 

Here, the diversity of the designed library is a consequence of both the diversity of the original fragments 

pool, fragments connectivity and the diversity of the generated linkers. The problem is almost 

combinatorial. Theoretically, starting from a pool of F different (two-dimensional based identity) 

fragments, an average C connectable atoms per fragment and L possible linkers, the maximum size N 

of the library is : 

𝑁 = 𝐹2 × 𝐶2 × 𝐿                                                          eq. 4.2 

In the CDK8 study, around 200 different fragments representing a hundred scaffolds were used. 

Interestingly, few fragments are shared between the four pocket areas, reducing the combinations. Not 

surprisingly, the most promiscuous fragments were benzene and substituted phenols as a consequence 

of practices in small molecule ligand design and the fragmentation approach.  

 

 

4.5.7. Computing time 

We report here the most time-consuming steps in the design process (Table 4.4). Filtering and data 

processing were instantaneous to a few minutes-lasting. 

 

Table 4.4. Running time of different POEM steps. 

Step Resources Average time 

Pocket-fragment alignment with 

ProCare 

Intel® Xeon® Silver  4114 

CPU @ 2.20GHz 

1 thread, 4 Go 

Computer cluster 

1 s – per pair of fragments 

Identification of connectable 

atoms 

Intel® CoreTM i5-4590 

4 threads, 16 Go 
0.19 s – per pair of fragments 
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Local 

Linking with DeLinker 

Intel® Xeon® Silver 4114 

CPU @ 2.20GHz 

+ 

NVIDIA Tesla K80 GPU, 24 

Go 

Computer cluster 

20 s – per pair of atoms 

 

 

 

4.5.8. Towards a fully automated method? 

This POEM approach is not fully automatized. The definition of ‘linkable fragments’ is left to the 

appreciation of the user with respect to the pairs of subpockets to connect. The relative orientation of 

fragments exit vectors is also a tunable parameter although an aperture of π/2 have shown to be 

consistent. The present workflow offers enough flexibility to adapt to the target specifications. 

Throughout these three studies, the fragments selection was the most difficult step. We hope that these 

studies, supported by experimental validation, as well as considerations for improvement discussed here 

will provide a strong basis for decision making. 
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Annex 4 

Annex 4.1. Sequence alignment of Thermotoga maritima, Helicobacter Pylori and Mycobacterium leprae quinolate synthase. 
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5.1. Context 

At the earlier phases of drug discovery programs, structure-based virtual screening is one of the deployed 

strategies if the target structure is available and a binding pocket characterized. It popularized since it 

aims at identifying initial hits with minimal cost and experimental efforts.1 Starting from a carefully 

designed virtual library, a few-steps workflow is often implemented to progressively filter bad 

propositions out and focus more computational resources on promising compounds. At the later stages, 

heavier computational methods such as binding free energy calculations (e.g., MM-GBSA, FEP) which 

consider the bound and unbound states of the receptor-ligand complexes in simulated dynamics can be 

carried on a few candidates for final prioritization.2 Contrarily, the initial steps of the workflow require 

faster methods which can process many molecules in a comparatively short space of time. 

Three-dimensional (3D) pharmacophore screening is adapted to this task, is intuitive to human 

understanding and can be fuzzy enough to escape problems known to structure-based methods (target 

flexibility, target-dependent parametrization, accuracy of scoring functions in ranking).3–6 According to 

the International Union of Pure and Applied Chemistry (IUPAC), a pharmacophore is “an ensemble of 

steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a 

specific biological target and to trigger (or to block) its biological response”.7 Pure ligand-based 

pharmacophores are generated from a set of known ligands that exhibited the investigated biological 

activity8,9 but are quickly limited by two factors: (i) diversity of the training set, (ii) absence of the 

receptor constraints, (iii) inapplicability to apo target structures for which no bound ligand is available. 

When protein-ligand complexes are available, 3D structure-based pharmacophore incorporate 

interaction and hindrance information to select or exclude features but are concerned by the limitations 

stated above in (i) and (iii).8,9 Still, orphan proteins would benefit from pharmacophore modelling that 

relies on the protein structure only. The prediction of areas in apo proteins, that are favorable or that 

would highly contribute to binding (hotspot) is performed by analyzing properties (molecular fields, 

pharmacophoric features) at atomic level on 3D lattice (e.g., GRID,10 SuperStar,11 VolSite12), at 

fragment level (e.g. FTMAP13) or processing predictions of other methods (Radoux et al. based on 

GRID).14 Attributes are defined by interaction potentials with probes (e.g., FLAP4) or empirically by 

analyzing the relative position of the cavity features (HS-Pharm,15  Snooker,16 VolSite12). Some methods 

integrate pharmacophoric patterns from molecular dynamics trajectories (GRAIL,17 MCSS,18 SILCS19). 

Following the pharmacophores definition, small molecules are screened by confronting the ligand to the 

target space, either by fingerprint comparison (FLAP) or by 3D alignment (LigandScout,20 PHASE,21 

Shaper222).23 In most cases, the generation of multiple conformations of the ligands are required prior 

to the screening but some methods can generate them on the fly.9 Strikingly, several of the available 

methods to achieve pharmacophore modeling and screening are part of commercial software without 

free academic license: e.g., Radoux et al.14 (The Cambridge Crystallographic Data Centre, Cambridge, 

UK), FLAP4 (Molecular Discovery, Borehamwood, UK), LigandScout20 (Inte:Ligand, Vienna, Austria), 
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Catalyst24 (Dassault Systèmes Biovia, Velizy-Villacoublay, France), Molecular Operating Environment 

(Chemical Computing group, Montréal, Canada), PHASE21 (Schrödinger, New York, USA). 

The idea that VolSite cavities12 mimic some ligand features in the volumetric ligand space led to the 

definition of pharmacophores and alignment-based screening in a recent study of my host laboratory.22 

By default, VolSite cavities are dense (~300 points) but remain comparable to ligand atoms (~30). The 

ideal method would be able to pick the relevant areas from these dense clouds and match them to 

consistent ligand features. Previous attempts by global shape matching (Shaper) failed to reproduce 

known X-ray poses.22 Indeed, visual inspection of hundreds of cavities showed that VolSite points are 

spread to areas not occupied by ligand atoms, which add complexity to the search. Reducing the cavity 

by selecting or grouping points that would match with the ligand features led to: (i) a visually 

interpretable pharmacophore that can serve for many purposes, and (ii) an improvement of the 

subsequent alignments. However, we herein wished to overcome two limitations : 

(a) the resulting VolSite-derived pharmacophores were defined by empirical rules parametrized 

on a few cases and which might not generalize on certain targets, 

(b) the alignments were optimized and scored in the receptor binding site by potential energy 

minimization using the MMFF94 force field25 in OpenEye Szybki (OpenEye Scientific 

Software, Santa Fe, USA). 

As a continuation of our previous work26 in Chapter 2 and inspired by the machine-learning-based 

pharmacophore modelling method HS-Pharm,15 we herein aimed at developing a purely topological tool 

for ligand-cavity alignment and a model for denoising VolSite cavities. 
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5.2. Materials and methods 

Datasets 

The sc-PDB database27 of curated protein-ligand complexes were used in versions 2016 (16 150 entries) 

and 2022 (37 922 entries, Bret et al., unpublished). Entries were protonated according to Protoss v.4 

rules and saved into TRIPOS mol2 format. 

The sc-PDB diverse set was compiled from the sc-PDB 2016.22 Following the pairwise comparisons of 

the complexes interaction graphs using IChem Grim,28 the agglomerative clustering of the similarity 

(GrimScore) matrix with a threshold of 0.70 was applied to obtain 176 protein-ligand complexes 

exhibiting diverse and non-redundant interaction patterns. 

 

 

Representations of protein cavities 

Protein cavities were represented by four images (Figure 5.1):  

• VolSite cloud of points (‘cavity ALL’), the default VolSite implementation described in 

Chapters 1-4.12,29 

• VolSite pharmacophores ('cavity pharm') obtained by recently described post-processing 

rules.22 Briefly, a set of 213 protein-ligand complexes were used to learn the properties of an 

ideal pharmacophore defined by the ligand atoms. The ‘cavity ALL’ points were then pruned 

according to these rules and refined by considering the directionality of polar interactions and 

sufficient hydrophobic neighborhood for this feature. Points not fulfilling these rules were 

removed. In a later stage, the remaining points were hierarchically clustered to yield cavities of 

less than 50 points (version used in this work). Contrarily to default VolSite cavities, ‘cavity 

pharm’ are assigned seven possible VolSite properties (hydrophobic, aromatic, h-bond donor, 

h-bond acceptor, h-bond acceptor, and donor, positive ionizable, negative ionizable) and an 

additional ‘metal’ property. 

• Projected points ('cavity projected') obtained by projecting cavity-lining atoms into the ligand 

space instead of sampling a grid. The ‘cavity projected‘ points were generated by first 

delimitating the protein heavy atoms within 3.5 Å from any ‘cavity ALL’ point, keeping track 

of the residues they originate from. The centroid of the cavity was calculated as the center of 

mass of these atoms. In a similar fashion to KRIPO pharmacophores,30 these atoms were defined 

as ‘root’ and projected (3.5 – 4 Å from the root) into the cavity space by ensuring that the angle 

point-root-centroid falls within 90°. Aromatic rings were represented by their center of mass. 

Points were annotated by seven features to be complementary to the properties of the protein 

atom they originate from according to VolSite rules (hydrophobic, aromatic, h-bond donor, h-

bond acceptor, h-bond acceptor, and donor, positive ionizable, negative ionizable). 
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• VolSite simplified cloud of points ('cavity pruned’) generated from the ‘cavity ALL’ by keeping 

only points of identical features within d Å, d ∈ {1.5, 2} from the ligand interacting atoms. 

Interactions were detected with IChem29. This representation mimics the ideal pharmacophoric 

points that match the ligand features and geometry. 

 

 

 

Figure 5.1. Different representations of a protein cavity. Spheres represent the cavity points of eight 

possible features: hydrophobic, aromatic, h-bond acceptor, h-bond donnor, h-bond acceptor or donor, 

positive, negative, dummy. A) VolSite ‘cavity ALL’, B) VolSite ‘cavity pharm’, C) ‘cavity projected', 

D) VolSite ‘cavity pruned’ determined at 1.5 Å from the ligand. PDB entry: 4CCB. For this entry, the 

number of points were respectively 164, 38, 40, and 16  in cavities A) to D). 

 

 

Representation of ligands 

Ligands in TRIPOS (Certara, Princeton, USA) mol2 format were processed to assign pharmacophoric 

features to atomic positions, according to their connectivity and atom types. Briefly aliphatic carbon, 

sulfur, halogen atoms were assigned hydrophobic features if not bounded to any heteroatom. Aromatic 

features were defined by aromatic atoms (C.ar and N.ar atom types). Aromatic-labelled points were by 
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extension also annotated as hydrophobic. Nitrogen and oxygen atoms were assigned h-bond donor 

feature if they are connected to hydrogen atoms, otherwise h-bond acceptor. Positions which satisfy both 

h-bond donor and acceptor were additionally annotated ‘donor and acceptor’ features (e.g. sp3 oxygen 

connected to a hydrogen atom). Positively charged heteroatoms were assigned ‘positive’ features and h-

bond donor if applicable, whereas negatively charged heteroatoms were annotated with ‘negative’ 

feature and H-bond acceptor. A particular treatment was applied to ring systems to cluster their atoms 

of the same feature into their center of mass. Atoms that could not be assigned any feature were 

disregarded. According to these rules, multiple features can be assigned to the same position. We later 

refer to this representation as ‘lig pharm’ (Figure 5.2). 

 

 

Figure 5.2. Representations of a ligand. A) two-dimensional structure highlighting pharmacophoric 

features by dots. B) X-ray conformation processed into 3D pharmacophoric representations: C) ‘lig 

pharm’ and D) ‘ligvoxel+’. PDB entry: 4CCB. Red points correspond to h-bond acceptor or negative 

ionizable, blue h-bond donor or positive, cyan aromatic or hydrophobic, white dummy. 

 

An augmented representation of the ligands was generated by extending the ‘lig pharm’ points 

(‘ligvoxel+’). The ‘lig pharm’ was put into a 3D grid of step r (r = 1 and 1.5 Å). Then, each voxel of the 

grid two-step away of a point (scanning through the x, y, z axes direction) was represented by its centroid 

and annotated by the features of the closest point. If annotation is ambiguous, compatibility rules are 

checked to prioritize one feature (e.g. aromatic will be preferred over hydrophobic, positive ionizable 

over h-bond donor, negative over h-bond acceptor) or ‘dummy’ is assigned in case of incompatibility 

(e.g., aromatic versus h-bond acceptor). In the version discussed here, only one feature is hence assigned 

per position (Figure 5.2). 
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Point cloud registration 

Ligands and ‘ligvoxel+’ were translated (10 Å) and rotated (180° flip along the x axis) into different 

coordinate frames. Then ProCare (default parameters)26 was used to realign the ‘ligvoxel+’ to the 

VolSite cavity for each entry. The resulting transformation matrices are applied to align the 

corresponding ligands. The root mean square deviations (RMSD) to the ligand X-ray positions were 

reported considering symmetry. 

 

Graph matching 

The protein cavity and ligand pharmacophoric points were represented as two separated graphs of all 

pairwise connections. Points, annotated by the same sets of pharmacophoric features formed the nodes. 

Edges were labelled by the Euclidian distance between these nodes. A product graph was built by 

comparing all possible combinations of nodes and edges in the two graphs, while tolerating a distance 

deviation of d = 2 Å by default (d is an adjustable parameter) and a strict match of the nodes' 

pharmacophoric features. Then using the Bron-Kerbosh algorithm,31 all maximal cliques were found in 

the association graph. From the pairs of corresponding points between the cavity and the ligand 

representation obtained, a transformation matrix was applied to align the ligand representation points 

and atoms onto the cavity frame. The translation vectors were estimated by aligning the centroids of the 

correspondence sets, and the rotation matrices by the Kabsch algorithm32 implemented in SciPy 

v.1.7.2.33 Several scoring schemes were hierarchically implemented: the size of the clique nodes (eq 

5.1), the root mean square error of the clique (eq 5.2), the coverage of the aligned ligand atoms (eq 5.3), 

a pharmacophoric score (eq 5.4), and a combo score (eq 5.5). 

 

𝑆 =  |𝑀|                                                                          eq 5.1 

where M is the set of the maximal clique pairs of nodes. 

 

 

 𝑅𝑀𝑆𝐸 =  √∑ (𝑃𝑖
𝐶−𝑃𝑖

𝐿)²𝑁
𝑖

𝑁
                                                        eq 5.2 

where 𝑃𝑖
𝐶 and 𝑃𝑖

𝐿 are respectively the cartesian coordinates of the points in the cavity and aligned ligand 

representation for each correspondence 𝑖. 

 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
|𝐴𝑏|

|𝐴|
                                                               eq 5.3 

where Ab is the set of aligned ligand atoms buried in the cavity cloud within 2 Å of any cavity points 

and A is the set of all ligand atoms. 
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𝑝ℎ4𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑤𝑖
𝐸
𝑖                                                              eq 5.4 

where 𝑤𝑖 are the weights of the edges E of the maximal clique. 𝑤𝑖 is arbitrarily set to 1 when a pair of 

polar features is involved, 0.5 when the edge connects hydrophobic nodes. In a different setting, 𝑤𝑖 

corresponds to the inverse of the frequency of the point feature in the sc-PDB. 

 

𝑐𝑜𝑚𝑏𝑜𝑠𝑐𝑜𝑟𝑒 =  
𝑝ℎ4𝑠𝑐𝑜𝑟𝑒× 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑅𝑀𝑆𝐸
                                                 eq. 5.5 

 

The RMSD of the aligned ligands to the X-ray pose were reported considering the symmetry. 

  

Cavity point descriptors 

Staring from the VolSite ‘cavity ALL’ of the sc-PDB v. 2022, a set of descriptors were computed for 

each point: 

(a) FP1 is an 8-bit fingerprint which encodes the VolSite physicochemical features of the point 

(hydrophobic, aromatic, h-bond donor, h-bond acceptor, h-bond acceptor and donor, 

positive ionizable, negative ionizable, dummy). Additionally, some points can activate more 

than one bit by compatibility rules: aromatic points are additionally considered 

hydrophobic, negative are h-bond donor, positive are h-bond acceptors, acceptor-donor 

additionally activates both the donor and acceptor bits.  

(b) FP2 is the 12-bit fingerprint encoding the buriedness of the point. A set of 114 regular rays 

of equally-spaced solid angles (22.5°) and 8 Å length were projected from the point in focus. 

Then, the buriedness is estimated as the number of rays that pass less than 1.5 Å away from 

any protein atom. The buriedness values were binned from the lowest value 0 to the highest 

value 114 with an increment of 10 units. The corresponding bit of the point buriedness is 

activated. 

(c) FP3 is a 24-position fingerprint counting each of the eight pharmacophoric features in three 

concentric neighborhoods of 1.5, 3 and 4.5 Å distance from the point. 

(d) FP4 is a 288-bin histogram which encodes the proportion of points for each combination of 

pharmacophoric features and buriedness intervals, in the three concentric neighborhoods. 

(e) descriptor FP5 is the Euclidean distance of the point to the centroid of the cavity. 

Accordingly, a total of 333 descriptors were obtained for each point. 

 

Cavity point prediction 

A thousand of ‘cavity ALL’ entries were randomly extracted from the sc-PDB as application test set. 

Then, the remaining entries (36 922) were processed to positively label points within 1.5 Å to a ligand 

atom interacting with the protein according to IChem29 and of the same pharmacophore feature (‘lig 
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pharm’). Any other point is labeled as negative. Points from all cavities were pooled to generate a set 

for each of the seven VolSite features (dummy points were disregarded) and the data was balanced by 

randomly sampling the same number of negative and positive in each set. It was verified that the 

sampling did not overrepresent particular PBD entries. 

Random Forest models were trained to classify VolSite ‘cavity ALL’ points as interacting (positive 

class) or non-interacting (negative class), using the 333 descriptors. The above-described data of 

labelled points were split into a training (75%) and external test set (25%). The training set was subjected 

to a five-fold cross-validation (CV) using the Scikit-learn classifier with 100 trees and a number of splits 

equal to the square root of the number of descriptors. The final model trained on all the training set was 

applied to the external test set. The prediction accuracy (eq 5.6) of the CV training, CV test and external 

test sets, as well as the features importance were reported. The sensitivity, specificity and balanced 

accuracy were reported on the application set (eq 5.7-5.9). 

 

𝐴𝐶𝐶 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
                                               eq 5.6 

where TN is the number of true negatives, TP true positives, FN false negatives and FP false positives. 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                   eq 5.7 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                   eq 5.8 

 

𝐵𝐴 =  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
                                                eq 5.9 

 

The models were saved and applied to the 1000 cavities in the application test set to save the predicted 

positive points for each cavity in mol2 files. A baseline model was implemented with the Gaussian naïve 

Bayes classifier in Scikit-learn, trained on the training set and evaluated on the external test set. 

 

Scripts and packages 

Inhouse scripts were used to process entries and analyze results in Python 3.7, using the following main 

packages and their dependencies: Matplotlib v.3.0.2, NetworkX v.2.6.3, NumPy 1.16.2, ProCare v.0.1.2, 

Scikit-learn v.0.24.2, SciPy v.1.7.2, maximal_clique (https://gist.github.com/abhin4v/8304062) after 

validation on easy synthetic data. The RMSD of ligands were computed with OpenEye Python API 

(OpenEye Scientific Software, Santa Fe, USA) when symmetry is considered. 
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5.3. Discussions and perspectives 

We herein present preliminary results and discuss future directions. 

 

Being able to properly align ligand atoms to the VolSite cavities, by solely considering topological and 

pharmacophoric features can offer an interesting alternative to the docking problem. A recent method 

was proposed to achieve this goal, relying on Gaussian shape (OpenEye Shape TK) alignment of the 

ligands on empirically-pruned VolSite pharmacophores, followed by energy minimization refinement 

(OpenEye Szybki).22 Previous attempts of shape-only (topological and pharmacophoric) alignments 

failed to propose solutions close the X-ray pose of the ligands. It was therefore considered to apply a 

different algorithmic paradigm, such as discrete geometric pattern matching, instead of global shape 

matching. The point cloud registration approach implemented in ProCare,26 and graph matching were 

investigated. The success of an alignment depends on three factors: finding the right correspondences, 

estimating a correct rotation and translation, top-scoring the right solutions. To evaluate the algorithms 

in their initial developments, the X-ray conformation of the ligands were used. 

 

 

5.3.1.  Point cloud registration of ligands to protein cavities 

VolSite cavities are grid-based sampled points which adopt a regular disposition and do not correspond 

to mol2 atom types and relative positions in the ligand conformations. Contrary to the homogeneous 

comparison of protein cavity clouds, the solid point-to-point comparison of ligand features to protein 

cavity clouds requires a conversion into comparable objects, where the ligand space is similarly 

represented as the target space. This was achieved at two levels: (i) the featurization of ligand atoms 

into pharmacophoric types and (ii) a geometric transformation into grid voxels. 

At step (i), ligand atoms were converted into seven possible VolSite features according to their atom 

types (‘lig pharm’, see methods section). Since ProCare first searches for initial alignment by 

associating the nearest neighbors according to the shape-pharmacophoric histograms (c-FPFH),26 we 

first analyzed whether the c-FPFH of the ‘lig pharm’ and the cavities ‘cavity ALL’ (Figures 5.1, 5.2) 

can establish good correspondences. A good correspondence is a pair of ligand and cavity point, which 

are each other’s nearest neighbor in the c-FPFH descriptor space and are less than 2 Å apart in the X-

ray pose. A minimum of three good correspondences are necessary to estimate a rotation. Analysis of 

the 16,000 sc-PDB v.2016 entries showed that only 25 % of the ligands were assigned more than 3 

correspondences to theoretically enable a good alignment (Figure 5.3). 
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Figure 5.3. Analysis of the chances to correctly align ligand atoms to VolSite cavities. A) Description 

of a good c-FPFH-based correspondence, B) bad correspondence. C) Distribution of the count of good 

correspondences for each sc-PDB ligands. 

 

These results were still encouraging since some ligands already contain shape and feature information, 

but not surprising as the few atoms of the ligand (10-30) could not properly describe a local shape and 

property neighborhood experienced in the cavities of more than 100 points. To apply the ProCare 

method, in step (ii) the ligand features were augmented in a grid by occupying the adjacent voxels of 

each atom along the x, y and z axes (‘ligvoxel+’, Figure 5.2). Starting from a different coordinates 

frame, the 176 ‘ligvoxel+’ of the sc-PDB diverse set were realigned to the cavities ‘cavity ALL’ with 

ProCare default parameters and the resulting alignment matrices were used to align the corresponding 

ligands. Figure 5.4 shows that 30 % of the ligands (53 entries) were aligned closed to their X-ray pose 

(RMSD ≤ 2 Å) using the FPFH34 descriptor. Increasing the grid resolution to 1 Å to better sample shapes 

did not improve the results. This posing approach is clearly less accurate than that achieved by state-of-

the-art docking tools that commonly pose ca. 75% of ligands within 2 Å RMSD.35,36 
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Figure 5.4. Prediction of the X-ray pose of the 176 sc-PDB diverse ligands by point cloud registration 

(ProCare)26 to the target cavities. A) Cumulative percentage of ligands aligned within a threshold RMSD 

to the X-ray pose. At a threshold of 2 Å, 30%, 22% and 15% of the ligands were correctly aligned by 

the respective descriptors: shape-only FPFH,34 hybrid c-FPFH26 and features-only c-FH.26 B) Violin plot 

distribution of the RMSDs showed a median value around 6 Å. C) The distribution of the RMSDs with 

respect of the size of the VolSite cavities does not show a size bias. D) Example (PDB ID: 2FPT) of c-

FPFH correct alignment of the ligvoxel+ (cyan cloud) to the target cavity (warm pink cloud, masked 

ligand was shown for illustration but not used in the alignment) resulting in a good overlay with the 

ligand X-ray pose (transparent dark cyan), RMSD: 0.94 Å. 
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In summary, this section described the first attempts to align ligands to VolSite cavities using point 

cloud registration. Although originally skeptical about this approach, we showed that a minimal 

information is encoded in the ligand atoms and cavity points to allow relevant matches. Contrarily to 

the cavity-to-cavity comparison where the feature-only descriptor c-FH yielded equal to better results 

in some cases, the shape information of the FPFH seem to be crucial for the ligand-to-cavity alignment. 

Possible reasons for failure are: 

(i) the assignment of the pharmacophoric features to the ligand atoms ‘lig pharm’, 

(ii) the accuracy of the ligand representation ‘ligvoxel+’, 

(iii) the presence of noise in VolSite cavities while features are more uniformly grouped and the 

local shapes more rounded in the augmented ligands,  

(iv) the inadequacy of the c-FPFH descriptors to properly capture resemblances in this setting. 

The above-derived conclusions can also be biased by highly represented ligands (e.g., nucleotide 

derivatives) in the sc-PDB diverse set. A proper study requires to compare the performances to other 

methods such as shape alignment and docking, starting from multiple conformations on several datasets. 

However, besides the poor performance, a practical limitation of this approach is the computing time. It 

takes approximately 1 to 2 seconds to align a single ligand conformation to a cavity point cloud. 

Therefore, its usage in large scale screening is hardly appealing, unless it would provide particular 

solutions unseen by other methods. 

 

To escape the reasons evoked above (ii and iv), we applied a graph matching algorithm to the problem. 

 

 

5.3.2. Graph matching of ligands to protein cavities 

Contrarily to the ProCare approach where the exploration of the solutions is partially related to the 

transformation estimation (iterative closest point refinement), the search for common subgraph is 

independent of alignment estimation. However, graph matching algorithms are known to be 

computationally costly. Thus, we sequentially investigated the following aspects: 

(i) the ligand to cavity alignment speed,  

(ii) the identification of correct correspondences,  

(iii) the top-scoring of good solutions, and  

(iv) the estimation of rotation/translation.  

Graphs of the two ligand representations (‘lig pharm’ and ‘ligvoxel+’) were compared to the graphs of 

the protein representations (‘cavity ALL’, ‘cavity pharm’ and ‘cavity projected’) following the 

algorithm described in the Methods section. Initial tests on three entries (PDB IDs: 2RH1, 2FV9, 3DKC) 

ruled out any comparison with the entire cavity ‘cavity ALL’ in a setting where all pairwise distances 

were investigated (Table 5.1). Restricting the graph definition to a certain interval of distances (1.5 - 
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4.1 Å) and to the connection of a certain nodes (e.g., discard hydrophobic-hydrophobic connections) 

would reduce the graph density and faster the search. This resulted in an acceptable running time (~1 s) 

to compare the ‘lig pharm’ to the ‘cavity ALL’. We note that adjusting these parameters require an 

extensive study to generalize to many cases. 

 

Table 5.1. Computing time of protein cavity and ligand pharmacophore graphs comparison. 

Representations 
Ligand 

lig pharm ligvoxel+ 

Protein 

cavityALL 9 s (1 s)a > 4 min 

cavity pharm 0.5 s 29 s 

cavity projected 0.3 s 0.3 s 

Green cells were considered acceptable time. The maximal time observed was reported. 

a Reducing the graph density improved the running time. 

 

 

In the next step, the performance of the algorithm to identify good correspondences (pairs of cavity and 

ligand points of the same feature, within 2 Å distance from the X-ray pose) was investigated on the 176 

entries of the sc-PDB diverse set. Encouragingly, at least one good set of correspondences of more than 

three pairs could be found for 151 entries (86 %). However, for a successful comparison, these cliques 

must be top-ranked among many decoys (400 to 700 000 cliques). To this end, different scoring schemes 

(eq 5.1-5.5) were tested unsuccessfully. It proved hard to discriminate the correct cliques from the 

irrelevant ones by considering the size of the cliques and geometric constraints such as the coverage and 

RMSE after alignment. Comparison of the ‘lig pharm’ to the ‘cavity pharm’ and ‘cavity projected’ led 

to the same conclusions. Given that the RMSE and coverage are dependent on the alignment, we 

investigated the accuracy of the transformation estimation. In this final step, the ligand ‘lig pharm’ were 

transferred from their X-ray frame into a different coordinate frame and realigned to the ‘cavity ALL’ 

using the retrospectively known correspondences from the initial X-ray poses. Rotation and translation 

were estimated and applied to the ligand atoms using the Kabsch32 implementation in SciPy (see 

Methods). The RMSD to the X-ray poses showed that even when knowing the pairs of points to 

associate, the estimation of rotation and translation barely yielded alignments within 2 Å from the X-

ray poses (median RMSD: 5.5 Å), irrespective of the size of the ligands (Figure 5.5A-C). In contrast, 

the quality of the cavity delimitation with respect to the ligand might affect the propension to obtain 

good alignments in prospective searches where the cavity does not cover all the ligand substructures 

(Figure 5.5D). Visualization of several entries showed sub-optimal rotation estimation (Figure 5.5E). 

The reasons of these results are under investigation. Possible hypotheses are the planarity of the points, 

the bijectivity of the correspondences, or the use of other optimization algorithms to find 

correspondences. However, a spectacular improvement should not be expected: the topology of the 
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cavity and the ligands are not identical; therefore, transformation estimation, which is a minimization 

problem would always yield residuals that are not null, but rather the best compromises. 

 

 

 

Figure 5.5. Best alignments of ‘lig pharm’ to ‘cavity ALL’ obtained using the X-ray correspondences 

for the 176 complexes in the sc-PDB diverse set. Obtained alignments were applied to the corresponding 

ligands, to compare their poses to the X-ray coordinates. A) The ligand RMSDs correlates well with the 

‘lig pharm’ RMSD (Pearson r = 0.98), therefore only the ligands were further analyzed. B) Distribution 

of the ligands RMSDs: only 3% have a RMSD below 2 Å. C) Ligand RMSD with respect to ligand size. 

D) Ligands RMSD with respect to the quality of the cavity, defined as the percentage of ligand heavy 

atoms within 2 Å to a cavity point in the X-ray pose. E) Example of alignment estimation (PDB ID: 

2RH1) showing the ‘lig pharm’ (light blue) superposed to the cavities (warm pink) using the 

correspondences (big spheres). Sub-optimal rotation of the tail (red arrow) led to a RMSD of 2.83 Å to 

the X-ray pose. 
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In a nutshell, this study revealed four key points:  

• the ligand and cavity representations contain exploitable information for their point-to-point 

comparison and superposition by graph matching, 

• the graph definition should be optimized to allow millisecond comparison of ligand features to 

entire VolSite cavities, otherwise other cavity representations should be used, 

• the graph search can identify good point-to-point correspondences between the cavity and the 

ligand, 

• a robust scoring needs to be investigated to top-rank the correct poses and later for 

discriminating between active and inactive molecules, 

• the alignment estimation needs to be improved. 

 

 

5.3.3. Prediction of pharmacophoric points from the apo target cavity 

Predicting key points from the VolSite cavities can be valuable for different applications: better 

definition of the binding site for cavity-to-cavity comparisons (Chapter 2), improvement of ligand-to-

cavity comparisons (sections 5.3.1 and 5.3.2 above), and rescoring of docking poses. By defining 

important points as those that match with the interacting ligand features in proximity (modeled by 

‘cavity pruned’), Random Forest (RF) models were trained to discriminate the important from the so 

called unused points using a set of 333 descriptors. The datasets from the sc-PDB 2022 were prepared 

and split into training, external test and application set as described in the Methods section. A sample 

was used to train the model and a remaining sample which did not see the model was used for evaluation. 

As the number of entries were balanced in the negative and positives classes, the accuracy was reported 

in these earlier analyses. Initial models trained on a balanced ensemble of the seven features data 

(randomly sampling 6120 from each feature data) yielded a poor accuracy below 0.7 on the external test 

set. Contrarily, training a separate model for each feature (then using FP2 to FP5, Methods) improved 

the accuracy on the external test set although the models clearly overfitted the training sets (Table 5.2). 
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Table 5.2. Accuracy of pharmacophoric points predictions. 

Featurea Dataset sizeb  

(# unique PDB entries) 

ACC ± std (5-fold CV) 
 

ACC 

Training (60 %) Test (15 %) Ext. test (25 %) 

CA 254 416 (35 734) 1 ± 0 0.742 ± 0.003 0.740 

CZ 14 856 (9124) 1 ± 0 0.781 ± 0.007 0.797 

N 103 126 (30 550) 1 ± 0 0.733 ± 0.004 0.729 

NZ 6120 (4312) 1 ± 0 0.784 ± 0.007 0.782 

O 158 094 (33 011) 1 ± 0 0.734 ± 0.003 0.735 

OD1 57 070 (19 098) 1 ± 0 0.766 ± 0.006 0.769 

OG 69 346 (25 675) 1 ± 0 0.694 ± 0.004 0.699 

a VolSite pharmacophoric features: CA: hydrophobic, CZ: aromatic, N: h-bond donor, NZ: positive, O: 

h-bond acceptor, OD1: negative, OG: h-bond donor or acceptor. 

b The number of points (positive and negative classes). 

 

In contrast to the RF models, the baseline models obtained from the Bayesian classifier yielded lower 

accuracy values (0.63) on the external test set. To verify the relevance of the predictions, randomly 

shuffling the content of the descriptors and of the classes in the training set respectively led to an 

accuracy of 0.5 on the external test set. Finally, the obtained models were applied to 1000 VolSite 

‘cavityALL’ cavities from the application set. For each cavity, the seven RF models were applied, and 

points predicted to be important were saved into a new cavity file. On average, more than two third of 

the cavities’ points were trimmed independently of their original frequency (Figure 5.6A). Analysis of 

the true positive rates showed that the few positive points are often kept (few loss) while improvements 

are to be made on removing more negative points (Figure 5.6B-C). Still, the observed accuracy values 

were encouraging. We pay careful attention to these metrics as negative points clearly outnumbered 

positive points. 
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Figure 5.6. Statistics of predicting interacting points in VolSite cavities from the application set. A) 

Proportion of points kept (predicted as important) with respect to the number of points in the cavity. B) 

Specificity (true negative rate, eq 5.8) of the predictions with respect to the sensitivity (true positive rate, 

eq 5.7). C) Balanced accuracy (eq. 5.9). 

 

Examples of predictions on three different proteins are shown in Figure 5.7. The first two examples 

illustrate cases where the models restricted the cavity points to fit the X-ray ligand. In the last example, 

the important points were not correctly defined (at least according to that ligand). 
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Figure 5.7. Prediction of important points in VolSite cavities from the application set. Seven RF 

machine learning models were trained and applied to classify interacting (kept) and non-interacting 

(removed) points, taking as input the VolSite cavitied detected on the apo structures (clouds on the left) 

and yielding a pruned cavity (cloud on the right). The masked X-ray ligand is illustrated in the 

background (transparent blue). 

 

In summary, the results presented herein were the first steps towards the development of a machine 

learning model to discriminate between interacting and non-interacting cavity points. These initial 

results are encouraging to pursue a thorough study. Due to the bias in the PDB towards certain protein 

cavities (e.g., Adenine-binding, phosphate sites), the predictive models might achieve better results on 

related cavities (e.g. protein kinases, ATP sites). The data splitting should account for the distribution 

of the protein families instead of the PDB IDs. Other splitting scenarios are possible (e.g., time-split). 

Different baseline models will be implemented for comparison, while assessing the sensitivity and 

precision of the predictions. Finally, the applicability of the models should be assessed on proteins in 

complex with different congeneric ligands that might exhibit different binding modes, as well as new 

target structures. 
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General conclusions 

This thesis has proposed novel computational approaches for molecular design, by exploiting available 

protein cavities represented as clouds of points. Starting from the idea to investigate the application of 

image recognition approaches to compare protein cavities represented as point clouds, the projects were 

progressively built to tackle several problems: (1) estimation of protein cavities similarity at the 

structural proteome scale and their prospective applications to (2) secondary target prediction and (3) 

target-focused library design, (4) comparison of ligands to protein cavities, (5) prediction of interacting 

cavity points (Figure 6.1). 

 

Figure 6.1. Computational strategies based on point cloud processing implemented in this thesis and 

their prospective applications. 

 

Literature review of state-of-the-art methods revealed the intricacies of estimating the similarity between 

protein cavities and the need for methods enabling subpockets comparison. By developing ProCare to 

this end, we showed that sampling-based point cloud registration, originally applied to other computer 

vision tasks can identify common motifs between subpockets of unrelated proteins. From the initial 

retrospective validations, we went on to evaluating our method by confronting the computational 

predictions to experimental validations. As a result, the similarity between the binding sites of two 

functionally and structurally unrelated targets, the cytokine tumor necrosis factor-alpha (TNF-α) and the 

HIV-1 reverse transcriptase (RT) could be identified for the first time. Direct in vitro binding 

measurement showed two HIV-1 non-nucleoside inhibitors interacting with TNF-α trimer with an 

affinity comparable to a high-throughput screening hit. Moreover, we developed a workflow, POEM, to 

design a focused library of small molecules based on subpocket similarity prediction. Cognate fragments 
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of the most similar subpockets were used as building blocks and linked to generate fully connected 

molecules. By applying POEM to the cyclin-dependent kinase 8 (CDK8), we successfully designed a 

new nanomolar ligand in just two rounds. Finally, the application of POEM to orphan targets 

(quinolinate synthase, WD40 repeats domain of leucine-rich repeat kinase 2), for which no 

pharmacological ligand is known to this date enables to improve the workflow while providing a fully 

blind challenge to delineate limitations regarding the fragments’ selection. The biological assays of the 

predicted compounds are ongoing. The representation of the protein cavities as clouds of points 

occupying the entire ligand space can be explored to develop computational methods for small 

molecules screening. In this perspective, we studied point cloud registration and graph matching of 

ligands to protein cavities. Although ligands pharmacophoric points alignment to protein cavities is a 

difficult task since structurally different objects are being compared, the information contained in the 

cavity clouds proved to be rich for comparison to small molecules and supported the investigation of 

machine learning models to predict important cavity points corresponding to pharmacophores in the 

ligands. Some of these preliminary results were encouraging and have suggested further analyses to 

investigate these research questions, and have opened the perspective for other target classes. 

The volumetric point-cloud representation of the protein pockets presented advantages and drawbacks. 

By working around the latter, we showed a variety of applications of subpocket clouds comparison in 

drug design under the constraint of experimental and collaborative resources available. We would have 

liked to pursue some questions that arose from the results presented herein, even if they fall out of the 

scope of this thesis. Finally, feedback from more prospective applications would be beneficial to 

improve the implementations according to and beyond what has been already discussed in this thesis. 

To conclude on the scientific level, we hope that the novel contributions of this thesis to the state-of-

the-art have provided useful insights as part of the general pursuit of computational drug design. The 

different evaluations provided herein have suggested improvements and new research ideas, that will be 

investigated by future work in our lab. 

To conclude on the personal level, this thesis allowed me to learn at different levels: the process of 

scientific research, from the identification of questions to the investigation and communication of results 

in different formats, the flexibility to adjust to mishaps, collaborative multidisciplinary work, teaching, 

supervision, gaining knowledge of concepts in related fields (computer science, geometry, medicinal 

chemistry), while I was venturing out of my comfort zone as a dominantly trained biologist. The 

exchange of scientific reflections with colleagues and my advisor have always filled me with wonder. 

This experience came with its ups and downs; even so, I found that science is exciting and applies to 

everyday life. I also had the chance to be involved in non-research activities such as representing my 

fellow PhD students in our Doctoral School and lab committees, and volunteering in the ADDAL PhD 

association, while helping with solving problems and developing important transversal skills.



 

ix 
 

  



 

x 
 

 





 
Kossiwa Ikafui Merveille EGUIDA 

Comparaison de cavités protéiques 
par traitement numérique de nuages 

de points : principes et applications en 
drug design 

 

 

Résumé 

Les cavités de protéines sont au cœur d’interactions moléculaires nécessaires aux fonctions 
biologiques du vivant. Grâce à l’augmentation incessante des données structurales, les méthodes de 
comparaison de cavités protéiques offrent diverses applications en conception de molécules 
bioactives mais doivent relever plusieurs défis. 
Cette thèse propose de nouveaux algorithmes basés sur le traitement d’images tridimensionnelles 
pour comparer les motifs globaux et locaux de (sous-) cavités protéiques, représentées en nuages 
de points. Leurs applications concrètes, validées par des essais biologiques in vitro, illustrent leurs 
utilisations pour prédire des cibles secondaires à l’échelle du protéome structural et pour générer 
des chimiothèques focalisées permettant d’augmenter le taux de touches en criblage virtuel. A partir 
de la caractérisation des cavités, l’élaboration de pharmacophores et le développement de 
méthodes de criblage virtuel ont été investigués. 

Mots-Clés : comparaison de sites de protéines, nuage de points, alignement 3D, prédiction de cible 
secondaire, chimiothèque focalisée, criblage virtuel, pharmacophore, alignement de graphe, 
intelligence artificielle, conception de molécules bioactives, structure, Chémoinformatique. 

 

 

Résumé en anglais 

Protein cavities are the heart of molecular interactions that trigger and regulate biological processes 
in living organisms. Supported by the constant augmentation of characterized pockets in three-
dimensional protein structures, methods to assess the similarity between protein cavities have 
multiple applications in drug design but face many challenges. 
This thesis proposes new algorithms based on three-dimensional (3D) image processing to compare 
global and subtle patterns in different protein (sub-) pockets represented by point clouds. Through 
prospective applications validated by in vitro biological experiments, we showed how these methods 
can predict a secondary target at the proteome scale and design a target-focused library for faster 
small molecule hit identification. In the next stages, better characterization of the cavities for 
pharmacophore elaboration and the development of virtual screening methods were investigated. 

Keywords: protein subpocket comparison, point cloud, 3D alignment, secondary target prediction, 
focused library, virtual screening, pharmacophore, graph matching, machine learning, drug design, 
structure-based, Cheminformatics. 

 




