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Abstract

Nowadays, the proliferation of handheld devices embedded with multiple mobile

sensors and the growth of fast communication and data processing technologies

have contributed to the emergence of a wide variety of online services, including

location-based services. These services facilitate users’ daily lives with a broad

range of applications that offer users personalized and customized information about

their surroundings according to their location. While these services have undeniably

become essential and indispensable to our society today and especially in the future,

it is necessary to underline and understand the risks and threats affecting users.

Indeed, large amounts of mobility data are being gathered, stored, and processed

by service providers or third parties without necessarily the users’ consent. As a

consequence, users’ privacy is threatened, and thus many sensitive information, such

as the user’s identity, home or workplace address, or even religious beliefs or health

status can be inferred and leaked.

In this context, it becomes urgent to devise mechanisms that allow users to securely

and safely access location-based services without disclosing their private lives. To

address this challenge, many efforts aim to enhance privacy by proposing new location

privacy protection mechanisms (LPPMs). These efforts are not only motivated by

the research community, but authorities and organizations increasingly establish new

laws and regulations to reframe the collection, storage, and manipulation of users’

mobility data. In this direction, location privacy risk assessment (LPRA) is defined

to assess the privacy risks of sharing mobility data to raise users’ awareness about

their privacy. In this manuscript, we use the re-identification risk, which aims at

re-linking an anonymous mobility data to its originating user as a means of LPRA.

In this thesis, we first propose MOOD, a centralized user-centric protection

system that aims to protect the mobility data of all users and in particular those who

are not protected by any individual LPPM. MOOD uses the composition of several

LPPMs and incorporates the re-identification risk assessment before publishing the

protected data. However, it requires a trusted proxy server to perform both the

obfuscation process and the re-identification risk assessment. Although existing

protection methods aim to eliminate the trusted proxy server, the privacy risk

assessment still needs to centralize the mobility data. That is why we propose

v
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SAFER, a novel privacy risk assessment metric, developed on the user side, to

estimate how unique a user’s mobility data is among a group of participating users.

SAFER follows a federated learning approach to build a global knowledge without

accessing raw users’ mobility data in a central entity. Finally, we propose EDEN, a

user-side mobility data protection system that automatically selects the best LPPM

and its corresponding configuration that resists the re-identification risk assessment

without sending the raw mobility data outside the user’s device thanks to the

federated learning paradigm.

Keywords: privacy, location-based services, mobility data, protection mecha-

nisms, location privacy risk assessment, re-identification attacks, uniqueness, data

utility.
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Résumé

De nos jours, la prolifération des appareils mobiles embarquant de multiples capteurs

et la croissance rapide des technologies de communication et de traitement de la

donnée ont contribué à l’émergence d’une grande variété de services en ligne, dont

les services basés sur la localisation. Ces services facilitent la vie quotidienne des

utilisateurs en leur offrant des informations personnalisées et customisées sur leur

environnement en fonction de leur localisation. Tout en reconnaissant qu’il est

indéniable que ces services sont devenus incontournables et indispensables à notre

société actuelle et surtout future, il y a lieu de souligner et d’appréhender les risques

et les dangers quant à la vie privée des utilisateurs. En effet, de grandes quantités de

données de mobilité sont collectées, stockées et traitées par des fournisseurs de services

ou des tiers, sans forcément respecter le cadre consenti par les utilisateurs. Par

conséquent, la vie privée de ces derniers est menacée et donc plusieurs informations

sensibles telles que l’identité de l’utilisateur, son lieu de domicile ou de travail ou

même ses croyances religieuses ou son état de santé peuvent être inférées de ces

données.

Dans ce contexte, il devient urgent de concevoir des mécanismes de protection

qui permettent aux utilisateurs d’accéder en toute sécurité aux services basés sur la

localisation sans la crainte de dévoiler leur intimité. Pour relever ce défi, de nombreux

efforts visent à développer des mécanismes de protection appelés ”Location Privacy

Protection Mechanisms (LPPM)”. Ces efforts ne sont pas seulement motivés par la

communauté scientifique mais sont de plus en plus imposés par les autorités et les

pouvoirs publics en établissant de nouvelles règles et lois pour recadrer la collecte, le

stockage et la manipulation de ces données. Dans ce sens, l’évaluation des risques

liés à la confidentialité de la mobilité appelée ”Location Privacy Risk Assessment

(LPRA)” est définie afin de sensibiliser les utilisateurs aux risques engendrés par

le partage de leurs données de mobilité. Dans le cas de notre étude, cette notion

se traduit par l’évaluation du risque de ré-identification, c’est-à-dire le risque de

réassocier une donnée de mobilité anonyme à son utilisateur d’origine.

Dans ce cadre, nous proposons tout d’abord MOOD, un système de protection

centralisé centré sur l’utilisateur qui a pour but de protéger les données de mobilité

de tous les utilisateurs et, en particulier, les utilisateurs orphelins qui ne sont protégés

vii
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par aucun LPPM individuel. MOOD utilise la composition de plusieurs LPPM

et intègre l’évaluation du risque de ré-identification avant de publier les données

protégées. Cependant, il requiert un serveur proxy de confiance pour procéder à la

protection et à l’évaluation du risque de ré-identification. Bien que les méthodes de

protection actuelles tendent à éliminer ce serveur proxy de confiance, l’évaluation du

risque d’atteinte à la vie privée a toujours besoin de centraliser les données de mobilité.

Pour cette raison, nous proposons SAFER, une nouvelle mesure d’évaluation du

risque de confidentialité, développée du côté utilisateur pour estimer le risque de

confidentialité en utilisant l’unicité des données de mobilité appelée ”uniqueness”.

SAFER suit une approche basée sur l’apprentissage fédéré pour construire une

connaissance globale sans avoir accès aux données brutes des utilisateurs de façon

centralisée. Enfin, nous proposons EDEN, un système de protection des données de

mobilité, développé du côté utilisateur. Il sélectionne automatiquement le meilleur

LPPM et sa configuration correspondante sans envoyer les données de mobilité brutes

en dehors du dispositif de l’utilisateur grâce au paradigme de l’apprentissage fédéré.

Mots-clés: vie privée, services basés sur la localisation, donnée de mobilité,

mécanismes de protection, évaluation du risque de ré-identification, unicité de la

mobilité, utilité de la donnée.
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1.1 Context: Widespread Adoption of Hand-

held Devices and Location-based Services

In the last decade, information and communication technologies have known a

widespread development. Most people are now equipped with handheld devices (e.g.,

smartphones, tablets, smartwatches) embedded with high-precision mobile sensors

(e.g., GPS chip) to interact with their environment. According to the french institute

for statistics and economic studies (INSEE), 94% of the young population (between

15-29 years old) was possessing a smartphone in 20211. In addition, 75.44 billion

connected devices are registered as a forecast for 20252. The usage of connected

devices has drastically contributed to the wide use of location-based services (later

abbreviated LBSs). The latter offers users contextual and personalized information

about their environment according to their location. They have changed users’

daily life with a broad range of applications. Users are now able to get the optimal

direction to any destination in real-time [12], forecast the weather for tomorrow

or next week [120], discover nearby friends in social networks, track their physical

fitness [121], play geosocial games [178], or use dating applications to meet people

in their vicinity [103]. Users can also participate in crowd sensing campaigns where

measurements related to their environment are linked to their locations [151, 46].

All these applications are based on the location of users which is an endless source

of information. Indeed, it represents a valuable resource for urban planners, business

marketers, and researchers as it can be used for traffic or health monitoring [167, 18],

targeted advertising [28] or for research purposes [111]. It feeds companies such as

Meta, Twitter, and Instagram, to better serve their clients and offer customized

services. These companies have made and still make a dizzying profit in the business

line of LBSs. It constitutes half of the global economic impact which is estimated to

be 400 billion dollars in 2016 for the geospatial industry3. Thus, the market linked

to this gold mine is huge and promising. However, the large amounts of locations

gathered and stored intentionally (or not) by LBSs or any entity that may have

access to the collected data constitute a real privacy threat to users.

1https://www.insee.fr/en/statistiques/6047983
2https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
3https://alphabeta.com/wp-content/uploads/2017/09/GeoSpatial-Report Sept-2017.pdf
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1.2. Privacy Threats on Mobility Data 5

1.2 Privacy Threats on Mobility Data

The extensive usage of LBSs has generated huge amounts of information regarding

users’ locations. This data is continuously and increasingly gathered, stored, and

manipulated by service providers. The latter or other entities that might have

access to the collected data (e.g., accidentally or through an attack) may exploit it

fraudulently to infer and leak sensitive information about individuals [132, 239]. For

instance, mobility data may very well reveal a user’s home and workplace, health

status, or even religious or sexual preferences if the latter regularly visits health

centers, worship places, or libertine places respectively [99, 79]. In addition, the

mobility prediction threat can put the user at risk. For instance, a malicious adversary

can track the user’s whereabouts, build a prediction model [54, 251] and then guess

the next location of the user. This information may help a potential robber who

wants to break into a user’s house when the latter is not at home [234]. Moreover,

other curious attackers aim at discovering social relationships between users (e.g.,

friends, coworkers etc.,) [35, 233] or inferring points-of-interest (POIs) and their

semantics to deduce relevant personal information about users without getting their

consent [259, 133].

Furthermore, the disclosure of a user’s identity is also jeopardized by re-identification

attacks, i.e., attacks where an anonymous location data is re-associated to its origi-

nating user based on previously collected data [152, 193]. For example, the journalists

from the New York Times were able to re-identify and track the whereabouts of

ex-president Trump from a dataset of more than 50 billion location pings from

more than 12 million users’ mobile devices [225]. Also in 2019, 460 million mobility

records from more than 140,000 phones and tablets were leaked to the Norwegian

broadcaster NRK4 from which many individuals were re-identified. This is because

human mobility acts as a fingerprint that uniquely identifies users as demonstrated

by De Montjoye et al. [64]. In this paper, the authors show that only four randomly

selected mobility points are sufficient to re-identify more than 95% of the users in a

dataset of 1.5 million users. In this context, it is becoming increasingly important to

devise mechanisms to address, deal with these threats and preserve users’ location

privacy.

4https://www.bbc.com/news/technology-59063766
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6 Chapter 1. Introduction

1.3 Countermeasures: Location Privacy Pro-

tection and Risk Assessment

Due to the high number of attacks and threats affecting mobility data, location

privacy became one of the main concerns of authorities and organizations and has

known considerable attention from users’ perspectives [27]. Many privacy-enhancing

technologies (known as PETs) are devoted to safeguarding users’ private lives. Some

of them act on legal aspects by introducing new laws and regulations to strengthen

data privacy. For instance, the California Consumer Privacy Act (CCPA) in the

United States and the European Union general data protection regulation (EU

GDPR). The latter established a regulation to integrate privacy-by-design in the

development of new applications and location-based services (Article 78 in EU GDPR

regarding technical and organizational data protection measures [183]). In addition,

the EU legislation also encouraged organizations collecting or processing personal

data to assess privacy risks for individuals before data release (Article 35 in EU

GDPR regarding risk assessment [182]). This was also recommended by the National

Institute of Standard and Technology (NIST) [114] and widely enforced by the

National Commission on Informatics and Liberty (CNIL) in France. It states that a

data controller shall carry out a privacy impact assessment, when the processing of

users’ data leads to disclosing personal information about them, for example, work

performance, financial situation, health status, and sensitive mobility patterns. This

risk is evaluated thanks to procedures and guidelines proposed by the CNIL.

In addition to regulations, technologies provide a practical way to enforce data

privacy. In this direction, many efforts in the literature aim to develop location

privacy protection mechanisms (LPPMs) that act directly on data by applying a

set of techniques such as anonymization, perturbation, generalization, and fake data

generation. Their main goal is to protect users’ location privacy against several

attacks. Therefore, they are complementary to the legal framework and are likely

to become mandatory for companies that process the data to protect users’ rights.

However, the application of such LPPMs may have an impact on the utility of the

resulting data and thus on the quality of the proposed service. Specifically, the higher

the distortion of obfuscated data the lower its exploitability. Therefore, the best

LPPM is the one that achieves the best privacy vs. utility tradeoff while assessing

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0089/these.pdf 
© [B. Khalfoun], [2022], INSA Lyon, tous droits réservés
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the privacy risks before sharing the mobility data.

1.4 Problem Statement

No One-size-fits-all LPPM. After an extensive review of the literature on

LPPMs and their effectiveness, we have noticed that users’ mobility data is af-

fected differently by LPPMs. Even more, the mobility of the same user is not

protected to the same degree by two different LPPMs. This is due to the sensitivity

of mobility data which generally changes according to multiple factors. For instance,

the semantic of visited locations, the frequency of visits, and their duration may

impact the effectiveness of protection methods (e.g., being at a HIV center is more

sensitive than being at the supermarket). Therefore, a data privacy officer (DPO)

may decide to increase the protection level by adding more noise or by generating

more fake data to confuse the attacker or by simply deleting data which is subject to

privacy threats. However, the former can lead to overprotecting mobility data while

deteriorating its utility and the latter may engender a large data loss. Unfortunately,

few existing LPPMs try to adapt their configuration parameters to achieve the

privacy vs. utility tradeoff. The focus is generally on the majority of users, and little

attention is given to the minority of users, called orphan users who are still subject

to privacy threats despite the use of LPPMs (e.g., re-identification threat). In this

direction, we propose MOOD, a novel user-centric solution that aims at protecting

all users’ mobility data and in particular orphan users. MOOD splits mobility traces

into multiple sub traces and protects them by combining off-the-shelf LPPMs. The

selected composition of LPPMs is assessed by the resilience to the re-identification

risk.

Centralization of Location Privacy Risk Assessment and Protection. Lo-

cation privacy risk assessment (LPRA) ensures that only protected mobility data is

shared. It consists of several metrics that evaluate the privacy exposure engendered

by sharing the mobility data. To reach this objective, companies, and organizations

that exploit mobility data generally rely on guidelines and existing procedures that

lack quantitative values. That is why the research community has been actively

proposing quantitative metrics which better assess the privacy risk and thus improve
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the anonymization process of mobility data. In this direction, uniqueness is a well-

recognized metric to quantify the privacy bound of human mobility. It measures the

similarity between users’ mobility in the spatial and temporal space using randomly

selected data points. The main concern of such a metric is that it requires central-

izing raw users’ mobility data in a single entity to verify the similarities between

users’ mobility. It further constitutes a single point of failure that may cause serious

privacy breaches and data leakage if the entity holding and processing the data is

compromised. To avoid centralizing raw data for the LPRA, we propose SAFER, a

federated location privacy risk assessment based on the concept of uniqueness. We

rely on a classifier trained in a federated learning way to learn about users’ mobility

while the latter remains private on the users’ devices. The classifier helps in the

construction of anonymity sets whose size reflects the uniqueness of mobility data.

Although some existing LPPMs do not centralize mobility data in a trusted

entity to obfuscate it, they do lack the LPRA. Therefore, we propose EDEN, a

federated approach to enforce location privacy protection through location privacy

risk assessment. It is a user-side protection system that performs a re-identification

risk assessment in a federated learning way. The latter helps in comparing LPPMs

and thus choosing automatically the one which passes the re-identification test while

maintaining a good utility.

1.5 Summary of Contributions

This manuscript consists of three contributions that fall on two axes: location privacy

protection and location privacy risk assessment. Specifically, we propose new privacy-

preserving protocols for mobility data while assessing the privacy risk of sharing it.

Our solutions maximize privacy while maintaining a high utility of the protected

data. First, we design a fine-grained user-centric protection mechanism where the

data is centralized in a trusted entity that performs re-identification as a means of

LPRA. Then, we propose a federated approach to conduct LPRA using the concept

of uniqueness. Finally, we present a user-side privacy protection mechanism through

re-identification risk assessment following the federated learning approach. In this

section, we briefly describe the three contributions of the thesis. The following

chapters will go deeper into each work with an extensive experimental evaluation of
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real-world mobility datasets.

(C1) MOOD: A Centralized Location Privacy Protection

We propose MOOD, a centralized user-centric fine-grained multi-LPPM system for

data publishing. Its main objective is to protect all users’ mobility data, and in

particular orphan users who are vulnerable to re-identification despite the application

of LPPMs. MOOD combines multiple off-the-shelf LPPMs to protect a mobility

dataset in front of state-of-the-art re-identification attacks. Specifically, MOOD

applies various LPPMs on a given trace and chooses the combination which better

resists the re-identification risk assessment while distorting the mobility data the

least. It can reach between 97.5% and 100% of effectively protected data on various

real-world mobility datasets with a reasonable data utility and a low data loss.

(C2) SAFER: a Federated Learning Approach for Location Privacy Risk

Assessment

SAFER, a novel privacy risk assessment system that allows users to determine locally,

on their device, how unique their mobility data is among a group of participating

users, thereby raising awareness of privacy risks associated with sharing this data.

In contrast to state-of-the-art solutions, SAFER does not require centralizing

the mobility data of all users in a trusted server, but rather follows a federated

learning approach, which allows assessing the uniqueness of mobility data while the

latter remains private on the user’s premises. Specifically, to assess the uniqueness

of mobility data, SAFER trains a machine learning classifier to determine how

many other users hold similar mobility data and infer anonymity sets. We carry

out extensive experiments on four real-world mobility datasets of different types

(GPS data, call detail records). Additionally, we consider the uniqueness of entire

trajectories rather than just picking random data points (i.e., exact locations or

points-of-interest). The results of our experiments show that SAFER can successfully

quantify the uniqueness of mobility data in a distributed manner, with comparable

results to that of a well-established centralized baseline. We evaluate SAFER with

up to 10,000 mobile users and demonstrate its scalability. Finally, through the

implementation of a state-of-the-art re-identification attack, we illustrate that the

data estimated as unique by SAFER is indeed at high risk of re-identification if it

falls between the hands of a malicious entity.
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10 Chapter 1. Introduction

(C3) EDEN: Enforcing Location Privacy Protection through Location

Privacy Risk Assessment: a Federated Learning Approach

We present EDEN, a user-side mobility data protection system for crowd sensing

applications. It is the first solution that selects automatically the best LPPM and

its corresponding configuration (i.e., among a set of LPPMs/configurations) without

sending raw mobility traces outside the user’s device. We reach this objective

by relying on a federated learning approach. Specifically, for a given mobility

trace, EDEN applies each LPPM to the raw trace and evaluates both : (1) the

re-identification risk of the trace using this LPPM thanks to a federated user re-

identification attack model and (2) the corresponding data utility. The evaluation

of EDEN on five real-world mobility datasets shows that EDEN outperforms

state-of-the-art single LPPMs reaching a better privacy vs. utility tradeoff.

1.6 Thesis’s Results

The contributions of the thesis were the basis for four publications in international

conferences/journals and workshops, as well as for three publications in national

conferences and workshops.

1.6.1 Publications

International Conferences and Workshops

• Besma Khalfoun, Sonia Ben Mokhtar, Sara Bouchenak, and Vlad Nitu. 2021.

EDEN: Enforcing Location Privacy through Re-identification Risk Assessment:

A Federated Learning Approach. Proc. ACM Interact. Mob. Wearable

Ubiquitous Technol. 5, 2, Article 68 (June 2021), 25 pages.

DOI: https://doi.org/10.1145/3463502

• Besma Khalfoun, Mohamed Maouche, Sonia Ben Mokhtar, and Sara Bouchenak.

2019. MooD: MObility Data Privacy as Orphan Disease: Experimentation

and Deployment Paper. In Proceedings of the 20th International Middleware
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Conference (Middleware ’19). Association for Computing Machinery, New

York, NY, USA, 136–148.

DOI: https://doi.org/10.1145/3361525.3361542

• Besma Khalfoun, Sonia Ben Mokhtar, Sara Bouchenak, Towards User-Side

Uniqueness Assessment of Mobility Data with a Federated Learning Approach,

the 16th EuroSys Doctoral Workshop (EuroDW 2022).

• Amina Ben Salem, Besma Khalfoun, Sonia Ben Mokhtar, Afra Mashhadi:

poster: Quantifying Fairness of Federated Learning LPPM Models, the 20th

ACM International conference on Mobile Systems, Applications, and Services

(Mobisys 2022 Posters).

DOI: https://doi.org/10.1145/3498361.3538788

National Conferences and Workshops

Those conferences have peer reviews but no proceedings.

• Besma Khalfoun, Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak:

MooD: MObility Data Privacy as Orphan Disease. Compas’2019.

• Yanis Meziani, Besma Khalfoun, Sara Bouchenak, Sonia Ben Mokhtar And

Vlad Nitu: Enforcing Adaptive Location Privacy With Federated Learning.

Compas’2020.

• Besma Khalfoun, yanis meziani, Sara Bouchenak, Sonia ben mokhtar, Vlad

Nitu: Enforcing Adaptive Location Privacy with Federated Learning. The 10th

Atelier sur la Protection de la Vie Privée (APVP’2020).

Ongoing Submissions

• (Under Review) Besma Khalfoun, Sonia Ben Mokhtar, Sara Bouchenak: SAFER:

User-Side Uniqueness Assessment of Mobility Data with a Federated Learning

Approach. Ubicomp 2022
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1.6.2 Developed Software

• EDEN: A toolkit that runs a federated user re-identification risk assessment

(FURIA) on mobility traces and uses its results to select the appropriate LPPM.

Accessible LPPMs are (Geoi, Promesse, and TRL) and accessible utility metric

is area coverage.

https://github.com/bkhalfoun/EDEN

• MOOD: A toolkit that runs the location privacy protection on a given mobility

dataset for data publishing. It provides access to LPPMs (HMC, Geoi, TRL)

and re-identification attacks: AP-Attack, POI-Attack and PIT-Attack.

https://github.com/bkhalfoun/mood

• SAFER: A toolkit that computes uniqueness in FL by constructing anonymity

sets whose the size reflects its uniqueness. It offers a script to run the centralized

baseline system of De Montjoye [64].

https://github.com/bkhalfoun/safer (private for the moment for double

blind review)

1.6.3 Communications

Our contributions were presented in different national and international conferences,

workshops, and winter schools. The list of communications is listed in Table 1.1.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0089/these.pdf 
© [B. Khalfoun], [2022], INSA Lyon, tous droits réservés

https://github.com/bkhalfoun/EDEN
https://github.com/bkhalfoun/mood
https://github.com/bkhalfoun/safer


1.7. Structure of the Manuscript 13

Table 1.1: List of communications

Event Date Location Title

Eurosys Doctoral

Workshop 2022
April, 2022 Rennes, France

Towards User-Side Uniqueness Assessment of

Mobility Data with a Federated Learning Approach

GDR, RSD ASF

Winter School
March, 2022 Pleynet, France

SAFER: User-Side Uniqueness Assessment of

Mobility Data with a Federated Learning Approach

Ubicomp’21 September, 2021 Virtual
EDEN: Enforcing Location Privacy through Re-identification

Risk Assessment: A Federated Learning Approach

IRIXYS Workshop December, 2021 Lyon,France
EDEN: Enforcing Location Privacy through Re-identification

Risk Assessment: A Federated Learning Approach

IRIXYS Workshop January, 2021 Virtual
EDEN: Enforcing Location Privacy through Re-identification

Risk Assessment: A Federated Learning Approach

APVP’2021 June, 2021 Virtual
EDEN: Enforcing Location Privacy through Re-identification

Risk Assessment: A Federated Learning Approach

IRIXYS Workshop June, 2020 Virtual MOOD: Mobility data privacy for orphan desease

GDR, RSD ASF

Winter School
February, 2020 Pleynet, France MOOD: Mobility data privacy for orphan desease

Middleware’19 December, 2019 California, USA MOOD: Mobility data privacy for orphan desease

Compas’19 June, 2019 Biarritz, France MOOD: Mobility data privacy for orphan desease

1.7 Structure of the Manuscript

The thesis is structured as follows. First, in Chapter 2, we present a state of

the art on location privacy. We first introduce mobility data with its diverse

forms and the privacy threats affecting it and in particular the re-identification

threat. Then we review the literature on location privacy protection and location

privacy risk assessment and we finish with a background on the federated learning

paradigm. In Chapter 3, we present MOOD, a centralized user-centric method that

combines multiple LPPMs to protect mobility traces in a fine-grained way against

re-identification attacks. Then we introduce SAFER in Chapter 4, a novel metric to

conduct LPRA in a federated learning approach leveraging the concept of uniqueness.

After that, we present EDEN in Chapter 5, a novel user-side privacy protection

system to enforce location privacy through re-identification risk assessment following
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a federated learning approach. Finally, in Chapter 6, we conclude the manuscript

with a summary of the contributions and a discussion of future research directions.
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2.1 Background on Mobility Data and Privacy

Threats

With the pervasiveness of handheld devices and the continuous growth of commu-

nication networks, location-based services are becoming more and more prominent

in users’ daily lives. They provide contextual and customized information to users’

requests according to their location. These services are data-greedy, which pushes

users to actively and increasingly disclose their mobility data to enjoy a better service.

Hence, large amounts of mobility data are gathered, stored, and manipulated, which

is a double-edged sword. On one side, mobility data helps LBS providers to improve

the quality of their services, but on the other side, a misuse of the data by a curious

LBS provider or a malicious entity that might have access to the collected data may

reveal sensitive and private insights that violate users’ privacy. In this section, we

define mobility data in its diverse forms and present the main threats affecting it

with a particular focus on the re-identification threat.

2.1.1 Mobility Data in its Diverse Forms

A mobility record or a location record is a spatio-temporal point r = (lat, lng, t)
associated to a given user, where lat and lng respectively correspond to the latitude

and the longitude of GPS coordinates, and t is a timestamp. A mobility record may

correspond to (i) the actual location of a user extracted thanks to the GPS sensor

embedded in the user device, (ii) the location of the closest cell tower from which a

user is phoning or texting i.e., a call detail record (CDR) (as depicted in the left part

of Figure 2.1), or (iii) the centroid of a point-of-interest (POI), i.e., a place where

a user stopped for a significant time (as depicted in the central part of Figure 2.1).

Finally, a sequence of mobility points {r1, r2, .., rn} constitutes a mobility trace or

a trajectory T , as illustrated in the right part of Figure 2.1. Trajectories can be

limited to a given duration (i.e., length), such as trajectories of 30 minutes, 1 hour,

and so on.

In addition to the spatial and temporal information of mobility data (record

or trajectory), there are other possible attributes, such as the speed of the user’s

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0089/these.pdf 
© [B. Khalfoun], [2022], INSA Lyon, tous droits réservés



2.1. Background on Mobility Data and Privacy Threats 17

movement, the direction of travel, and the altitude . . . . In the context of crowd sensing

applications [89], mobility data can be mapped to environmental measurements, such

as air pollution measurements [68] and radioactivity level [46].

Call detail records (CDR) Points-of-interest (POI) Trajectories 

Mobility point

Figure 2.1: Different representations of mobility data

Mobility Datasets

A mobility dataset is a set of mobility traces of multiple users. There are various

sources to obtain mobility datasets, either public or private. Examples of public

repositories giving access to mobility datasets include the Crawdad project [213] and

the Safecast project [46]. Private mobility datasets are generally provided on-demand.

They are collected by manufacturers of devices with a geolocation system, by LBS

providers, geosocial network APIs (e.g., Twitter), or by establishing agreements with

telecom operators to get a call detail records dataset (CDR). All these datasets are

pseudonymized, i.e., the real identity of users is replaced by a random identifier.

In this thesis, for our experimental evaluation, we mainly used Geolife [257] that

contains the mobility of users in the city of Beijing, MDC [135] that contains the

mobility of users in the city of Lausanne, Privamov [169] that contains the mobility

of users in the city of Lyon and Cabspotting [213] that contains the mobility of cab

drivers in the city of San Francisco. In addition, we request two private datasets: the

first one contains air pollution measurements in the city of Toulouse collected from

bike trips [31] and the second one is a CDR dataset gathered by a major telecom

operator in Shanghai, China [1].
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2.1.2 Threats on Mobility Data

The mobility data faces multiple threats, which differ in their adversary knowledge

and goals [238, 199]. The work of Wernke et al. [238] classifies threats on mobility

data according to the attacker’s knowledge: (1) Whether the attacker has access

to a single or multiple mobility records. (2) Whether the attacker has access to

only contextual information such as traffic statistics, road maps, and yellow pages.

Each piece of information can help the attacker to target a specific attribute in

the mobility record (identity, location, time). For instance, the attacker can track

the exact location of a user from multiple obfuscated locations or areas (location

attacks [219]) by leveraging time to derive information such as the speed of the

user’s movement [98] or by analyzing the contextual information attached to her

mobility [220].

Differently in the work of Primault et al. [199], the authors categorize the location

privacy threats into four practical threats according to the perspectives and objectives

of the attacker. In the following, we describe each one of them.

Point of Interest Inference

Points of interest (POIs) represent meaningful locations where a user stays for a

significant time, such as home, workplace, or worship place. Many techniques are

developed in the literature to extract POIs. Both heuristics and clustering algorithms

are examples of such techniques [260, 123, 84, 131, 170, 216]. POIs are particularly

sensitive as they can easily reveal valuable personal information about users, such

as their hobbies, gender, religious beliefs, sexual orientations, political preferences,

and health status. For instance, Figure 2.2 illustrates the mobility of a user in Paris.

By just visually analyzing the spatial mobility of the user, we can infer the home

location and deduce the religious beliefs of that user as he visited the big mosque of

Paris. Indeed, more powerful tools exist to get the exact home address thanks to

reverse geocoding [4] combined with temporal analysis to get accurate results.

In the same direction, Gambs et al. [85] showed how the home address of some

taxi drivers in the city of San Francisco can be inferred. They validated their results

thanks to satellite views which show where yellow cars are parked. Also in [79], the
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authors can distinguish between Muslim and non-Muslim taxi drivers by correlating

their movements with the five prayers of the day. The authors in [133] design Placer

to classify locations semantically by giving significant labels (e.g., home, workplace,

shopping center, hospital, etc.,). The model reached up to 74% accuracy thanks to

”home” and ”workplace” which are the most visited locations. Keles et al. [125] use a

bayesian model that considers the duration of stay at a POI, the day of the week,

and the arrival time to predict the category of the POI.

Home

Mosque

POI

Mobility record

Figure 2.2: Example of POIs inference.

Social Relationships Inference

Mobility data is also used to discover social ties and interactions between users.

Generally, it states that if two users visit a location at similar moments, they are likely

to be socially linked. For instance, family members stay at the same house at night,

colleagues work together in the same area during the day, and friends meet at the same

bars/ restaurants on weekends. Bilogrevic et al. [35] classify relationships between

students of the EPFL campus using WiFi access points. They used two thresholds

to detect stops and proximity of users and thus could detect meetings between users.

Then, they built a classifier to infer the social links between students, whether they

are classmates, friends, or others. They used a questionnaire and a database of

courses as a ground truth. Similarly, Wang et al. [233] build a decision tree model

where the interaction time and the physical proximity between individuals are used

to classify social relationships between users. Moreover, many other works have been

proposed to infer social relationships and demographic attributes relying on mobility
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data combined with online or offline social networks [126, 188, 179, 145, 140, 141] to

cite a few.

Future Mobility Prediction

Predicting human mobility has received a lot of attention in the last decade. The

research community has been actively proposing novel models to predict the mobility

or activity of a user [251, 148]. These models generally rely on historical mobility

data, transformed into diverse forms. For instance, Gambs et al. and many other

works [86, 158, 54] have widely used Mobility Markov Chains (MMC) and their

variants to model the movement habits of people and predict future human mobility.

However, these models were later criticized for being ineffective over the long term. To

handle this limitation, Gambs extended the work by considering n past POIs instead

of only a POI in the MMC. In addition, Sadilek and Krumm [209] propose far out, a

system based on Fourier transformation and principal component analysis (PCA) to

capture meaningful mobility patterns to predict long-term mobility (i.e., months or

years). Recently, with the advent of deep learning, Feng et al. [76] present DeepMove,

a mobility prediction model based on recurrent neural networks (RNN) combined

with a historical attention network to capture meaningful periodical patterns at

different granularities. Also, Li et al. [137] design a long-short-term memory model

(LSTM) with a hierarchical temporal attention model to predict future locations. For

the same purpose, Dang et al. [61] propose a framework that builds a spatial-temporal

embedding and a dual attentive network to learn sequential patterns in a trajectory

and its correlation with other ones. Similarly, in [77], the authors present a predictive

model based on spatial-temporal embedding and sequential modeling with LSTM in

a federated learning approach.

Re-identification Risk

The re-identification risk is defined as the ability of an attacker to associate an

anonymous mobility trace to its originating user based on background knowledge

previously built using past mobility data. According to the NIST, re-identification

is the process of matching anonymized data and its originating user by leveraging

publicly available information and auxiliary data. This thesis focuses on mobile user
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re-identification risk as a means of location privacy risk assessment. Thus, we define

and review the re-identification risk throughout the next section as a first step. Later

on, we present related work on assessing the privacy risk using the re-identification

threat in the context of mobility data in Section 2.3.1.

2.1.3 User Re-identification Risk

In the last decade, the research community has been remarkably active in mitigat-

ing privacy threats. While some researchers continuously enhance users’ privacy

by proposing powerful protection mechanisms to effectively anonymize sensitive

data while preserving its utility [258], others keep discovering ways to break such

anonymity [199]. A seminal work in the theme of re-identification is the work of

Narayanan et al. [173] where more than 80% of users in the Netflix dataset (con-

taining movies rating) are re-identified by matching them to a publicly available

Internet Movie Database (IMDb). After that, the re-identification risk has affected

several contexts where multiple kinds of data are at risk. For instance, some works

study the re-identification risk on web search engines through individual search

queries [92, 230], others on medical data [62, 202], social networks [174, 222, 117], or

even on re-identifying programmers from their source code or executable binaries

styloemetry [19, 47].

In the context of location privacy, mobility data has been the origin of many

re-identification attacks. Several studies have been conducted on re-identifying users

based on their mobility data. They generally move through two phases [152]: (i) a

mobility profile construction phase and (ii) a re-identification phase, as depicted in

Figure 2.3. In the first phase, the past mobility data of known users is transformed

into meaningful representations, called mobility profiles. Then, once an anonymous

mobility trace is received, the re-identification process consists of comparing its

anonymous mobility profile to known ones (i.e., previously built in the first phase)

thanks to similarity metrics and retrieving the identity of the closest known profile.

We formally define the re-identification risk in Equation 2.1. It is a function that

takes as input an anonymous mobility trace T and a set of historical mobility traces

H, known by the attacker (i.e., background knowledge), and returns the identity of a

user among a set of existing users U.
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Phase A : Construction of known mobility profiles Phase B : Re-identification
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Figure 2.3: Re-identification process.

A : (R2 × R+)∗ → U
T 7→ A(T,H) = Ua

(2.1)

In the literature, several mobility profiles are considered to extract discriminating

mobility patterns from raw mobility data. Examples of mobility profiles are illustrated

in Figure 2.4. Specifically, in the work of Gambs et al. [87], they model the mobility

of users as Mobility Markov Chains (MMCs) where the states are POIs, and the

edges represent the probability of transition between each pair of POIs. Multiple

distance metrics are defined to compare MMCs. They are used to re-identify users by

associating each MMC built from an anonymous trace to the identity of the closest

MMC belonging to a known user. Moreover, Chen et al. [56] propose a density-based

hidden Markov Chain model to capture hidden personalized mobility patterns by

considering the spatial and temporal information of the mobility data. Primault

et al. [194] characterize the mobility of a user as a set of POIs. The similarity

between sets of POIs is based on the minimum geographical distance between their

respective POIs. In the work of Naini [172], users are re-identified by matching their

statistical characteristics between anonymous and known mobility data. They rely on

a weighted bipartite matching algorithm to solve the problem of re-identification. In

the same spirit of the previous work, Maouche et al. propose AP-Attack [152]. It is a

re-identification attack that uses a heat map structure to represent the mobility traces

of users. It divides a map into cells of approximately equal size. Each cell represents

the proportion of time the user spent in that region. Then, they compare heat maps

using the Topsoe Divergence metric [72]. In addition, the authors in [207] have

developed a series of techniques for the re-identification of users in location-based
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social networks. They mainly exploit the GPS coordinates of check-ins and the

frequency of location visits to successfully recognize the user’s identity. Moreover,

Jin et al. formalize the re-identification problem as a k-nearest neighbor search based

on similarity of mobility profiles [122]. Other works use side channels (i.e., external

information) to re-identify users. For instance, in the work of Srivatsa et al. [222],

the authors use social network information such as contact graphs to re-identify

users. They assume that a user may be recognized by those she meets. Also, in

the work of Cecaj et al. [49], they present a probabilistic approach to re-identify

users from anonymized CDR datasets by matching them to geo-referenced social

networks data. Recently, the authors in [80] propose DART, a scalable framework

to re-identify anonymous mobility traces by transforming them into sets of POIs

using [101] and by associating these POIs to sparse known social trajectories thanks

to spatio-temporal closeness scores. Furthermore, in the work of Massart et al. [157],

the concept of re-identification attacks is revisited. They consider a combination

of information-theoretic and security metrics to capture internal and external data

leakage from a pseudonymized database to identify users.

0.33
0.20.5

0.4 0.66

0.5 

POIs Mobility Markov Chains Heatmap

Original trace

Figure 2.4: Examples of mobility profiles.
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2.2 Related Work on Location Privacy Pro-

tection

Mitigating threats affecting location privacy has attracted the interest of many

researchers. As a result, various location privacy protection mechanisms (LPPMs)

have been proposed in the literature. Their main goal is to preserve user’s privacy

with a broad range of techniques such as perturbation, generalization, and fake data

generation. More formally, an LPPM is defined as a function that takes as input one

or multiple mobility records of T and produces T ′, an obfuscated version of this data.

We formulate an LPPM as in Equation 2.2, where T ∈ (R2×R+)∗ can be a single

mobility record or a mobility trace, and Ω is a set of parameters.

L : (R2 × R+)∗ → (R2 × R+)∗

T 7→ L(T,Ω) = T ′
(2.2)

2.2.1 LPPM Application Use Cases

There are various scenarios where LPPMs are applied to protect users’ location

privacy. According to Primault et al. [199], there are three types of LPPMs: online,

offline, and semi-online, as illustrated in Figure 2.5. In the online or interactive

use case, LPPMs obfuscate mobility data, record by record on the fly in real-time.

The obfuscation process can be performed locally on the user’s device or via a trusted

proxy server (i.e., anonymizer) or a P2P network. Thus, the LBS provider only

receives the protected data and responds accordingly. Examples of applications that

adopt online LPPMs include navigation, ride-sharing and POI retrieval systems,

etc.,. The main challenge of these LPPMs is to operate rapidly so as to preserve the

reactivity of the requested service. In the offline or data publishing use case,

large amounts of mobility data, previously collected by the LBS provider or a telecom

operator, need to be published for several purposes (e.g., dataset analysis, dataset

collection [213]). Therefore, the data publisher utilizes several LPPM techniques to

ensure that the entire dataset is protected. These LPPMs can alter the user’s data

intrinsically, without the need for other users’ mobility data, or exploit the knowledge
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regarding other users to achieve some privacy guarantees such as k-anonymity. Finally,

the semi-online or crowd sensing use case is an intermediate scenario where an

LPPM is applied periodically on a batch of mobility records (e.g., every hour) before

reaching the service provider. It is possible that the user’s response will be delayed

until the anonymizer receives data from other users to run the LPPM effectively in

this scenario. Once the service provider has received users’ data, it performs different

analyses and aggregations to inform users about their environment (e.g., road traffic

information, pollution maps, crowded places etc.,).

Furthermore, we have observed that some use cases are more constrained than others.

Specifically, we can order them in the following way: offline → semi-online → online.

Online LPPMs are more constrained than other types of LPPMs, simply because they

are designed to handle real-time scenarios that require a responsive service. Using

them for semi-online and data publishing use cases is possible. For instance, Huang

et al. [118] propose a dummy-based mechanism that replaces the user’s location with

three randomly generated positions surrounding the real one. This mechanism is

directly used on the user device for an online location searching use case and can be

extended to offline or semi-online scenarios. However, an offline or semi-online LPPM

can not be applied for an interactive scenario. For instance, Primault et al. [195]

propose Promesse, a perturbation mechanism that uses a batch of mobility records

to erase POIs. This can be used for an offline scenario. However, it is impossible for

a online use case where the user only knows her current location.

Actual location    Obfuscated location

Online LPPM

Semi-online
LPPM

Offline LPPM

Online / semi-online use case Data publishing use case 

LBSUser Data analyst
No LPPM

No LPPM

Figure 2.5: The usage of LPPMs in different use cases
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2.2.2 LPPM Techniques

In the literature, there are a number of LPPMs based on various techniques to

combat privacy threats affecting mobility data. Some of them need knowledge about

the mobility of other users following a centralized or decentralized approach, while

others do not need any external knowledge and are applied directly on the user’s

device. In this section, we review a non-exhaustive list of LPPM techniques.

Anonymization-based

Anonymization is the process of protecting the user’s identity without altering their

mobility data. To achieve this objective, pseudo-anonymization is first introduced

by Gruteser et al. [105]. Essentially, it replaces the real identity of the user with

a random and fictive identifier (ID), commonly referred to as a pseudonym. This

process is managed by a centralized proxy server that knows all real IDs. As a result,

it constitutes a single point of failure. In addition, this technique was criticized for

being insufficient to ensure the privacy of the user’s identity. Indeed, an attacker

can easily link trajectories belonging to the same user or re-identify the owner of a

mobility trace when the data is pseudonymized [75, 235, 64]. After that, Mix-zone

is introduced by Beresford and Stajano [30] to improve pseudo-anonymization. A

mix-zone is an area designed by an LPPM either statically or dynamically. In the

mix-zone, the IDs of users are shuffled so that the LBS provider cannot track users’

movements. In other words, when a user enters a mix-zone, the data is not shared and

her ID is automatically mixed with the IDs of other users inside the same mix-zone.

Several works are proposed to implement mix-zone mechanisms for online interactive

use cases. Some of them focus on studying their optimal placement [81, 243], others

rely on contextual information such as road network, and speed [181]. Additionally,

Salas et al. [211] propose SwapMob as a mix-zone method for data publishing use

case. In this work, the intersection of users’ mobility traces is viewed as the location

of mix-zones where IDs are exchanged. Thus, at the end of the process, a resulting

mobility trace is made of multiple small segments of different users who have met

during the day.

Unfortunately, the mix-zone mechanism has several drawbacks. Specifically, raw

mobility data must be centrally processed via a trusted server. In addition, the
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number of mix-zones placed in the city, has a considerable impact on the protection

of users. In particular, if the number of mix-zones is low, an attacker may threaten

the gathered segments when the user is outside a mix-zone. On the contrary, if the

number of mix-zones is high, it may lead to a significant data loss (i.e., little data is

gathered since it is not shared when a user is inside a mix-zone). Furthermore, this

approach is insufficient for user-centric analysis because mobility traces are shuffled

between users. This may lead to compromised results.

Generalization-based

Generalization-based mechanisms have been widely used to ensure location privacy

protection. In these techniques, instead of sending the exact location of a mobility

record to the LBS provider, the LPPMs send coarse location information surrounding

the user location aiming at enforcing k-anonymity, i.e., making the user location

indistinguishable among at least k − 1 other users’ location [224]. For this purpose,

they either use cloaking regions in which the exact location of the user is hidden among

at least k − 1 different real users’ locations, or they use dummy-based techniques in

which fake locations are generated to simulate surrounding users.

Cloaking Region. It is first introduced by Gruteser and Grunwald [104] where the

main idea is to report a coarse spatial region that contains k users instead of the

exact user’s location to the LBS provider. Numerous works on cloaking regions are

proposed in the literature. For instance, Gedik et al. [91] propose Clique cloaking, a

centralized solution based on spatial-temporal cloaking where a proxy server generates

clique graphs of k users and can delay queries to achieve k-anonymity. Mokbel et

al. [168] propose Casper, a centralized solution that allows users to specify their

privacy requirements (level of k-anonymity) to create spatial cloaking regions using a

tree-based data structure. The same authors propose a decentralized spatial cloaking

where users collaborate in a peer-to-peer protocol to generate cloaked regions [58].

These methods are designed for cloaking single locations in an online interactive use

case. That is why Abul et al. propose Never Walk Alone [14], and its extension W4M

(Wait for Me) [15] to consider k-anonymity for trajectories. They guarantee that at

each instant, there are at least k users walking inside a cylindrical volume of radius σ.

Also, Gramaglia and Fiore [102] use a spatial distance to merge mobility traces with

generalization zones to achieve k-anonymity. One interesting and different work to
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cloak trajectories for data publishing purposes is to use semantic cloaking [25]. It is

based on a machine learning approach to predict the most probable semantic label

that will replace each location to release.

In summary, cloaking methods enable users to hide their precise location. However,

they suffer from several vulnerabilities. For instance, a malicious entity may analyze

the consecutive cloaked regions the user has visited and intersect them to track and

re-identify the target user. In addition, these techniques need to be applied in areas

with high density i.e., high number of active users in the region. Otherwise, larger

cloaking regions are created, which are useless for the data analyst. These techniques

are based on trust of either a proxy server or neighbors in case of P2P networks.

Dummy-based Mechanisms. The concept of dummies is first introduced by Kido

et al. [129]. It states that, instead of relying on users’ actual location to achieve

k-anonymity, multiple fake locations, called ”dummies” are used to hide the user’s

actual location from the service provider. Many works are proposed in this direction.

For instance, Shankar et al. present SybilQuery [217], a decentralized solution that

generates fake trips suited for navigation applications. It creates k − 1 fake trips

using external knowledge (e.g., databases of past traffic information, road maps, etc.,)

while preserving the properties of the effective one (e.g., length, semantics of starting

and ending points). In the work of Bindschaedler et al. [36], they design a generative

model of synthetic mobility traces that share statistical features with the real mobility

traces used in the learning phase. Moreover, Huang et al. [119] propose trilateration

(TRL), a new way to achieve k-anonymity by generating dummy locations locally on

the user’s device. Specifically, for each location l the user actually occupies, TRL

generates three random locations l1, l2, and l3 that are within a range of r from the

actual one. After that, the fake locations are sent to the service provider instead of

the real location. This method is commonly used in location-based search services

where trilateration is used to calculate the exact distance between the user’s actual

location and the results related to the fake ones.

The main advantage of dummy-based mechanisms is that users can generate

dummies without the need of any trusted proxy server. However, their main challenge

is the ability to produce realistic indistinguishable dummy locations. In the work of

Peddinti et al. [185], the authors identify the fake trips with 93% accuracy when k = 5
(4 fake trips for every real one) and past mobility is known to the attacker, which is
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used to train a machine learning classifier. In addition, these methods suffer from a

consequent overhead as they increase the quantity of data to process. For example,

SybilQuery multiplies the number of trips sent to the LBS by its parameter k. In

TRL, the trajectory length is multiplied by three, which increases the loading and

the processing time on the server side. Also, this type of mechanisms is inadequate

for some specific analyses, such as counting the number of unique users in a given

place. This may lead to incorrect results.

Perturbation-based

Perturbation or alteration methods are a kind of LPPMs that alter mobility data

either spatially (i.e., latitude and longitude) or temporally (i.e., timestamp) before

reaching the LBS provider. The alteration can be done locally on the user’s device

without a privacy proxy server. It consists of adding random noise to mobility data.

The amount of added noise has an impact on the privacy vs. utility tradeoff. In

particular, the higher the amount of noise, the better the level of privacy. However,

the perturbed data deteriorates the quality of the offered service on one side and

becomes useless to a data analyst on the other side. Many related works based on

perturbation have been presented in the literature. Pingley et al. [189] propose a

context-aware privacy protection system for online usage. It transforms mobility data

from two dimensions space (location and time) to single dimension space (Hilbert

space), adds noise to the transformed data, converts it back to two dimensions space,

and sends it to the LBS provider. In the work of Micinski et al. [162], mobility

data is perturbed by reducing the precision of GPS coordinates. It truncates the

decimals from both the latitude and longitude values. Moreover, Andres et al. [22]

adapt the concept of differential privacy [69] in the context of mobility data. They

propose Geo-indistinguishability (GEOI), a mechanism that perturbs the spatial

information of data by adding Laplacian spatial noise to each GPS coordinate. The

amount of noise is calibrated by a privacy budget ε (the lower the ε, the higher

the privacy level). This perturbation is done on the user’s device without the

implication of any external proxy server. Furthermore, the same authors propose

an extension of ε-GEOI [53], where they calibrate the amount of noise thanks to

contextual information about users’ environment. This method is effective against

location attacks. However, if an attacker exploits the correlation between successive

locations, the privacy budget ε loses its power to a n ∗ ε (n being the number of
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mobility points). In addition, Primault et al. [195] propose a temporal perturbation

of mobility data. It erases user’s POIs by smoothing the speed of the mobility trace.

It ensures that two successive mobility points are equidistant (i.e., constant speed),

and thus it is difficult for a malicious entity to guess where a user stopped or what

their POIs are. In the same spirit, Maouche et al. [153] propose HeatMap Confusion

LPPM (HMC) to protect trajectories. It represents the mobility trace of each user

as a heat map. Each user’s heat map is altered in such a way that it looks similar

to that of another user. As a final step, it converts the altered heat map into a

mobility trace by leveraging mobility traces of multiple users. Moreover, the authors

in [206] use machine learning techniques (i.e., generative adversarial networks) to

obfuscate mobility data. They build a generator network to produce noise to perturb

mobility data, and a discriminator classifier to evaluate the re-identification risk of

the perturbed data. The above works (i.e., [153, 206]) provide a reasonable privacy

vs. utility tradeoff. However, they require centralizing raw mobility traces in a proxy

server which is not desirable.

Protocol-centric LPPMs

The protocol-centric LPPMs are mechanisms that focus on setting up proper protocols

to preserve privacy by design in mobile applications and services. Most of the solutions

found in the literature make use of either cryptographic techniques or secure multi-

party computation principles. Specifically, Mascetti et al. [155] propose two protocols

to discover nearby friends in social networks. Users share cryptographic keys instead

of disclosing their current location. The work of Ghinita [97] presents private queries

for neighbor searching in LBS relying on a practical and optimized implementation

of private information retrieval (PIR) [57]. It retrieves data items from a database

without revealing the retrieved data to the LBS. In other words, if a user sends a

query asking for a specific place or searching for nearby friends, the LBS provider

will prepare the answer without knowing the user’s request. Guha et al. [108] present

KOI, a protocol involving two non-colluding servers where each of them holds parts

of the user request content. Specifically, the former knows about user identities and

locations but it does not know the association between them. The latter knows the

mapping between anonymized users and encrypted locations but nothing about actual

identities or locations. The system employs a privacy-preserving protocol that enables

its two components to match without knowing the mapping between users and their
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locations. In addition, the authors in [17] use homomorphic encryption combined with

secure multi-party computation to build a privacy-preserving ride-sharing system.

Furthermore, the work of kulkarni et al. [134] proposes a hardware-based technique

where they developed a private location-based service using intel SGX1. The service

retrieves the nearest POIs to the user’s location. This process is performed within an

enclave where all the exchanged messages (e.g., user request containing her location,

response) are encrypted. The authors argue that this approach is a promising solution,

as it maximizes privacy with a high data utility and a marginal overhead.

In general, protocol-based mechanisms offer robust privacy guarantees for specific

use cases. However, the computational complexity, and the overhead generated

by these protocols are their main limitations. In addition, the applicability and

integration of these protocols with existing systems and infrastructures is not an

easy task.

User-centric LPPMs

In the last decade, the research community has observed that one-size-fits-all LPPMs

are insufficient to protect all users’ mobility data. For instance, fixing a similar value

of ”k” in k-anonymity methods or the same noise amount in perturbation methods may

lead to overprotecting some mobility data and under-protecting the rest. As a result,

the overprotected data decreases its utility needlessly, and the under-protected one is

still subject to aggressive attacks. Maouche et al. [152] conduct an experiment where

they launch re-identification attacks on mobility datasets protected with individual

LPPMs. The results show that despite the protection with existing LPPMs, the

percentage of re-identified mobility data can reach up to 78%.

That is why LPPMs need to be more adaptive to each user. Existing and emerging

works propose user-centric approaches where each user’s mobility trace is protected

according to its sensitivity, characteristics, and preferences in terms of privacy and

data utility. In the work of Maouche et al. [152], they propose HybridLPPM, a user-

centric LPPM that protects each user mobility trace against re-identification attacks

using a set of state-of-the-art LPPMs (e.g., Promesse [195], GEOI [22], HMC [153],

etc.,) with a predefined order. The order is given according to the degree of data

1Intel SGX: https://software.intel.com/en-us/sgx
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distortion caused by each LPPM after obfuscating data. Finally, the LPPM that

degrades mobility data the least is selected. At the end of this process, all users are

protected by different LPPMs (i.e., not only by one). Moreover, SmartMask [139] is

a system designed to automatically learn users’ privacy preferences under different

contexts (e.g., location semantic, frequency of visits, duration of visits, time). Once

the privacy level is determined, different techniques of LPPMs obfuscate mobility

data. LP-guardian is also an example of a user-centric solution [74]. It is implemented

on Android users’ smartphones, where a decision tree is used to choose the adequate

action to perform against different threats. SmartMask and LP-guardian require

richer datasets and not only timestamped mobility traces. Another complementary

approach is to play on the configuration of LPPMs to protect the users’ mobility

data. To this end, it is more efficient to adapt an LPPM configuration to each user’s

behavior rather than considering an LPPM with the same configuration for all users’

mobility data. In this direction, some authors exploited optimization algorithms

to find the appropriate configuration for a given LPPM that ensures the tradeoff

between privacy and data utility objectives. For instance, ALP is a framework

that enables an automatic configuration of the LPPM parameters using simulated

annealing [198]. PULP is another framework, which automatically configures LPPMs

until reaching users’ objectives in terms of privacy and utility [51].

2.2.3 Evaluating the Effectiveness of LPPMs

The effectiveness of LPPMs can be measured in terms of privacy, utility and per-

formance. In this section, we provide a list of commonly used metrics to assess the

effectiveness of LPPMs. This list is not exhaustive and additional metrics can be

found in [199, 232].

Privacy Metrics

It corresponds to the evaluation of the privacy protection level offered by LPPMs

relying either on theoretical metrics based on formal guarantees (e.g., k-anonymity

or differential privacy) or more practical ones.

Theoretical Metrics. Theoretical metrics are based on formal guarantees to
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measure the privacy level of mobility data. At present, there are two main concepts

that ensure a level of privacy protection offered by an LPPM: k-anonymity and

differential privacy with their respective variants. Specifically, k-anonymity is first

introduced by Samarati and Sweeney [224] in the context of database systems. It

states that a user is hidden among at least k − 1 other users with similar properties

in the database. In the context of location privacy, this translates to cloaking a

given user’s exact location in a geographical zone where there is at least k − 1 other

users’ location. The larger the value of k, the higher the level of privacy, i.e., the

probability of identifying the query initiator is under 1
k
. After that, many variants of

k-anonymity are developed. For instance, l-diversity [149] and location diversity in

particular [244]. The latter states that in a given cloaking region, there should be at

least l distinct semantic locations to prevent homogeneity attacks [67].

In addition, differential privacy ensures that the result of an aggregate query over

a database should not be influenced by the presence or absence of a single element

in the database [69]. In the context of location privacy, Andres et al. [22] propose

Geo-indistinguishability, an instance of differential privacy to guarantee a certain

level of location privacy. Through this concept, LPPMs attempt to protect the

presence or absence of individual locations. Hence, their main goal is not anymore

to hide that a user is part of a database but to hide where they have been. Thus, it

is possible to control the reported locations with a privacy parameter ε. The lower

the value of ε, the higher the level of privacy protection.

Practical Metrics. Unlike the theoretical metrics that rely on formal guarantees,

practical metrics are measurements that assess how valuable data is after its obfusca-

tion. Precisely, they measure what can be disclosed or leaked after the application

of an LPPM. For instance, the resilience to adversary attacks has been used to

assess LPPMs. In this direction, Primault et al. [195] use re-identification attacks to

evaluate the re-identifiability of users before and after obfuscation. Moreover, POIs

retrieval [195] is also a possible way to assess mobility data. POIs are sensitive pieces

of information, and their disclosure may compromise users’ privacy. That is why an

LPPM that minimizes the retrieval of POIs after obfuscation is promising. Other

additional metrics are discussed in the work Wagner et al. [232].
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Utility Metrics

There are two categories of utility metrics proposed in the literature to measure the

quality of the generated data by an LPPM [199]: (i) Data-centric or quantitative

metrics that measure the distortion between the original and the obfuscated mobility

data. Examples of such metrics include spatial distortion in the work of Primault

et al. [196], spatiotemporal distortion (STD) in the work of Maouche et al. [153]

where a spatial error is calculated under a temporal constraint, and finally the area

coverage metric (AC) [198] which computes the overlap between the obfuscated

and the original mobility trace using the F1-score. (ii) Application-centric or

qualitative metrics which compare the result of a given application before and

after applying an LPPM. Examples of such metrics include the range queries metric,

a classical operation that counts the number of unique users who go through areas

during a time window before and after obfuscation [196]. Also, the work of Riboni et

al. [203] measures the quality of venue recommendation before and after applying

noise. In the same direction, the work of Boukoros et al. [42] measures the level of

radioactivity before and after applying a defense mechanism in the context of mobile

crowdsourcing applications.

Performance Metrics

The protection of mobility data requires a lot of resources. We can measure the con-

sumption of such resources using several metrics depending on the use case scenario.

For instance, the running time of an LPPM is a significant performance metric in

the case of real-time and interactive usage of mobile applications. Communication

overhead and energy consumption are also critical elements to consider, especially

when the processed data is exchanged through the network or the LPPM is imple-

mented locally on the user’s mobile device. Finally, scalability is a crucial aspect to

evaluate. This is because existing LPPMs are applied increasingly by numbers of

users and thus should be able to handle a large volume of data load.

In the remainder of this thesis, we define the metrics for privacy, utility, and

performance used in every evaluation in its corresponding section.
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2.3 Related Work on Location Privacy Risk

Assessment

Human mobility data is a source of sensitive and personal information, and its

misuse may lead to serious privacy violations, revealing many insights about an

individual’s private life. That is why data protection authorities (e.g., CNIL [63]),

regulators (e.g., EU GDPR in Article 35 regarding risk assessment2), Data Privacy

Officers (DPO) and the research community (e.g., OWASP [240]) have been actively

proposing algorithms, methodologies, and tools for privacy risk assessment. In the

context of location privacy, location privacy risk assessment (LPRA) has evolved

from qualitative decisions [65] to quantitative metrics that allow better quantifying

the privacy bounds of human mobility and thus improving the privacy policies for

protecting that data. In the following, we present two practical means of LPRA,

namely re-identification and uniqueness assessment.

2.3.1 Re-identification as a Means of Privacy Risk Assess-

ment

In the context of location privacy, re-identification attacks have been widely used

to quantify the privacy risk of re-identifying individuals. In the work of Pratesi

et al. [192], they propose PRUDENCE, a system for assessing privacy risks in

the data sharing ecosystems [192]. It empirically measures the probability of re-

identifying an individual user in the dataset, using all possible background knowledge

an adversary can collect. The system uses a perfect matching function between the

data in each background knowledge and the tested user data and then returns the

highest re-identification risk across all backgrounds. The proposed framework is

effective, however, it has a high computational complexity as it considers all possible

combinations of data to construct multiple backgrounds that the adversary might

collect from the user mobility data. In addition to that, it centralizes raw users

data. EXPERT is precisely proposed to overcome the aforementioned problem of

computational complexity [175], through an extension of a previous system that

allows privacy risk assessment of mobility data with a binary result (i.e., low or

2The EU General Data Protection Regulation can be found at https://rb.gy/jntsfr
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high) [186, 187]. For each user, EXPERT builds a mobility profile that captures

individual mobility patterns extracted from a user’s mobility data. Then, it uses a

decision tree-based ensemble model to predict privacy risks. Despite the improvement

made in EXPERT, it still requires centralizing raw data, as depicted in the left part

of Figure 2.6.

2.3.2 Uniqueness as a Means of Privacy Risk Assessment

Another well-recognized metric to quantify privacy risks is the uniqueness assessment

metric. It has been used in several fields such as web search [71, 247], fingerprinting

for criminal investigation [248], and smartphone sensor fingerprinting [38]. In the

context of mobility data, several techniques for privacy risk assessment have been

proposed in the last years. A well-known study on the uniqueness of CDR data,

collected from 1.5 million users, demonstrates that with only four mobility points,

a user is highly distinguishable from other users [64] and can be re-identified in

95% of the cases. It means that human mobility acts as a fingerprint that uniquely

identifies users, thus raising their awareness of privacy risks. An interesting study

extensively analyzes anonymized CDR data, collected from 1.37 million users in

2000 applications, and demonstrates that the fingerprints of mobile application usage

are highly unique, and most users are uniquely re-identified [228]. Other similar

studies were conducted on GPS data [43, 208], on large-scale CDR data [250], on

trajectories inferred from cyberspace cookie logs [234], or on POIs [48]. Furthermore,

the uniqueness metric was also used for evaluating the effectiveness of anonymizing

location data [221]. Moreover, uniqueness can also be related to k-anonymity [224]

and precisely to historical k-anonymity where the historical data is used to construct

anonymity sets, i.e., a group of users sharing similar properties (e.g., similar spatial

and temporal information). In this context, the size of the anonymity set reflects

how unique the user’s data is. In this direction, Bettini et al. [32, 249] found

that the history of mobility data can act as a quasi-identifier, which may uniquely

identify a user and lead to serious privacy violations. Moreover, in the work of

Xu et al. and Mascetti et al. [242, 154], instead of using the current locations of

k neighbors of the query initiator in a location-based service, they exploit k historical

locations of different mobile nodes previously collected to construct anonymity sets.

In addition, Masoumzadeh et al. [156] consider a time window to achieve historical
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k-anonymity. The main drawback of the above solutions is that they are based

on a trusted proxy server (i.e., anonymizer) that has a complete knowledge of all

users mobility, as depicted in the left part of Figure 2.6. That is why decentralized

architectures were proposed to achieve k-anonymity where the need of a trusted

proxy server was not required anymore (central part of Figure 2.6). To this end,

many related works rely on peer-to-peer communication between users to create

anonymity sets [58, 95, 96]. However, these approaches generally assume that users

are honest and share raw data between each other (e.g., their current location). More

recent works use encryption techniques [94], secret sharing [78] or blockchains [245]

to release the trust assumptions between users. However, the above decentralized

solutions only exploit the current location of the user and hence can only assess

instantaneous k-anonymity instead of historical k-anonymity.

In this thesis, one of our objectives is to estimate the uniqueness using historical

k-anonymity without centralizing raw mobility data. We push our contributions to a

federated learning architecture as depicted in the right part of Figure 2.6 and that

we will present its background in the following section.

Centralized Architecture Peer-to-Peer Architecture Federated Architecture

......

User 2

User m User 1 

Anonymizer

User 2 User m 

User 4 

User 1
User 3 

......
User 1 User m 

Aggregator

User 2

Raw mobility data Model updates

Figure 2.6: Different architectures of uniqueness assessment systems

2.4 Background on Federated Learning

In the following, we present a background on the federated learning paradigm (FL).

We first define and describe the FL workflow in Section 2.4.1. Then, we present
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its different architectures and types in Section 2.4.2 and Section 2.4.3, respectively.

We finally discuss the main threats and attacks related to FL and list the common

countermeasures to mitigate such threats in Section 2.4.4.

2.4.1 Definition and Workflow

Federated learning (FL for short) was initially introduced by [159]. It is a relatively

new machine learning paradigm that enables training machine learning models on

data from different sources without the need to store the data at a central server.

FL is performed in several rounds where a set of clients (i.e., known as workers)

and a central server (known as the federator) are involved. At the beginning, as

illustrated in Figure 2.7, the federator initiates the same model on all workers with

either random parameters or predefined ones. For each FL round, the workers train

locally the received model with their own local data to improve the machine learning

model and send the updated model to the central server. The latter aggregates the

received local models by averaging them, and produces a new version of the global

model, which is sent back to the clients’ devices. After that, a new FL round starts

and the FL training process is repeated until the aggregate global model converges.

2.4.2 Federated Learning Architectures

We distinguish two main architectures of the FL protocol, namely: client-server

architecture and peer-to-peer architecture. Client-server architecture, also known

as the centralized FL, as illustrated previously in Figure 2.7. It requires a central

server whose role is to initiate a global model, share it with clients for local training

and wait for a predefined number of users (synchronously or asynchronously) to

aggregate their models’ updates to produce a new version of the global model.

Nowadays, almost the implementations of FL follow client-server architecture, on top

of them, the Google Gboard for Android [112, 55, 246]. The main advantage of this

architecture is that it incurs low communication overhead. However, the central server

presents a single point of failure and may leak sensitive information inferred from

models’ updates. We discuss these threats in Section 2.4.4. Unlike the centralized

FL architecture, the peer-to-peer architecture, also known as the decentralized
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update
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Figure 2.7: A typical FL protocol

FL, does not require a central server to maintain a global aggregate model. Instead,

each client in the FL round has its own model and updates it thanks to information

obtained from its neighbors [229, 147]. The downside of this architecture is that it

leads to more communication overhead to achieve synchronization among multiple

clients and opens the door to additional threats especially if the model falls between

the hand of malicious parties. In this thesis, we opt for the client-server architecture

to implement the FL protocol.

2.4.3 Federated Learning Types

There are three types of FL approaches; horizontal FL (HFL), vertical FL (VFL), and

federated transfer learning (FTL). This classification is based on the data structure

held by the clients, which may differ in the sample space and/or the feature space.

Specifically, in the HFL, datasets owned by each client share the same feature space

but differ in the sample space. For instance, the datasets from different hospitals
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represent the same feature space, i.e., the same attributes (e.g., name, age, address,

blood pressure), but of different samples, i.e., each hospital holds data of its patients.

In contrast, the VFL deals with clients whose data structure has the same sample

space but with a different feature space. This category of FL is suitable to train a

machine learning model for two or more organizations that have the same clients but

hold distinct data types. Finally, the FTL involves datasets that differ in both the

sample and feature space [144]. In this thesis, as users have different samples in the

same feature space (i.e., spatial or temporal features etc.,), we opt for the HFL to

implement the FL protocol.

2.4.4 Threats and Countermeasures

In the last decade, the FL paradigm has attracted a widespread attention from both

the research community and industry. It has significantly improved data privacy of

multiple clients while benefiting from a global machine learning model in a privacy

preserving way. Although the FL paradigm can avoid direct data leakage, it faces

several vulnerabilities from both the central server and the clients. In the following,

we provide a non-exhaustive list of attacks and threats affecting FL and present

countermeasures to mitigate them.

Threats and Attacks in FL

There are mainly two categories of attacks which may occur during the training or

inference phase of the FL protocol: (i) poisoning attacks and (ii) inference attacks.

These attacks can be conducted by a curious/malicious user and/or the central server.

Poisoning Attacks. There are two categories of poisoning attacks: model poisoning

and data poisoning. They are both performed by compromised clients. Specifically,

in model poisoning attacks, the attacker tries to affect the FL model performance

without being noticed during the local training process. The latter manipulates and

modifies the model parameters either to minimize the accuracy of the global model

on any test input [107, 73] or to misclassify specific inputs while maintaining high

accuracy for the rest of the testing data [34, 23]. In data poisoning attacks, the

attacker tries to affect the aggregated model fraudulently by injecting poisonous data
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during the local data collection phase [215, 210, 218]. Compromised clients achieve

this objective either by changing the data labels to predict an adversary’s desired

class (e.g., labeling 20 km/h speed limit images as 80 km/h [218]) or by making

imperceptible changes to the training data samples [210].

Inference Attacks. In the FL protocol, inference attacks are generally performed

by a compromised central server. They aim to infer private information about users

from their gradients. Indeed, a gradient may reveal sensitive information since it

is derived from the client’s local private data, For instance, it may reveal sensitive

locations visited by a user in the case of human mobility prediction [77, 136]). There

are various attacks proposed in the literature. Some of them try to determine if a

specific training sample is used in the training process. This is known as membership

inference attacks [201, 176, 143]. Others try to discover properties, specific attributes,

or class representatives of the training samples in the FL protocol [115, 261, 88].

Privacy Preserving FL

Privacy-preserving FL is an emerging research area. Many protection methods are

developed to prevent the privacy issues affecting FL. These methods target either

a compromised aggregator or compromised clients. Specifically, the compromised

aggregator might be curious/malicious to infer sensitive and private information

from users’ updates, as presented in the previous section. To mitigate these threats,

perturbation is an example of privacy-preserving methods. It adds noise to users’

updates using differential privacy [69]. Many works are proposed in this direction [227,

214, 171]. However, their main drawback is their impact on the accuracy of the

global model, which might deteriorate the quality of the proposed service. To

avoid this issue, the secure aggregation primitive is used to mask users’ updates so

that the federator has only access to the aggregated model instead of individual

model updates [255, 184, 124] and thus, the accuracy of the global model is not

affected. In the same spirit, Bonawitz et al. show that participating users in

FL can act as parties involved in the secure multi-party computation (SMC) [39].

Similarly, zhang et al. [254] apply SMC with homomorphic encryption to preserve the

privacy of individual contributions, and the aggregator can only decrypt the global

model once a threshold number of users have shared their updates. Although SMC

provides good privacy guarantees in FL, its main drawback is its high communication
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overhead. Furthermore, clients in the FL protocol might be curious/malicious for

either inferring sensitive information or altering the global model to produce their

desired result. To handle these users, the aggregator analyses users’ updates by

leveraging different techniques. Some of them are based on distance measurements,

such as cosine metrics to detect unusual poisonous updates [83]. Others rely on

clustering [218, 37] or anomaly detection [20]. Finally, hardware solutions are also

a promising alternative, which consists of using trusted execution environments

(TEEs) in an end-to-end manner both on the client side using solutions such as

DarkneTZ [165] or GradSec [161] and on the server side using solutions such as

Sear [256]. In these solutions, all the model parameters are encrypted and are

manipulated in clear only inside hardware enclaves. TEEs have the advantage of

preserving the accuracy of the trained model but they still require strong trust

assumptions regarding the installation of the TEE and has limited resources (i.e.,

limited trusted memory).
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3.1 Motivation

In Chapter 1, we presented the privacy threats engendered by sharing exponen-

tially growing amounts of information regarding users’ locations. Furthermore, we

described in Chapter 2 a state of the art of the privacy threats affecting mobility

data with a focus on user re-identification attacks as a means of location privacy

risk assessment. We also presented a state of the art on location privacy protection

mechanisms (LPPMs) which try to tackle the privacy threats relying on a wide

variety of techniques [110, 199].

To evaluate the effectiveness of these techniques, a variety of privacy risk assess-

ment metrics are usually used and the resilience against re-identification attacks

is one of them. The more an LPPM is able to protect against re-identification

attacks, the better. However, when LPPMs are evaluated against re-identification

attacks the focus is generally put on the protection of the crowd, i.e., protecting

the larger proportion of users possible, and little attention is given to users that

remain unprotected. This minority of vulnerable users may have uncommon mobility

behavior which makes them easily distinguishable and re-identifiable.

Considering a set of state-of-the-art attacks and LPPMs at the disposal of a data

privacy officer (DPO) aiming at the protection of a given dataset, the question that

the latter may ask is: What should be done with mobility traces that are subject to

re-identification despite the use of LPPMs?. A straightforward, and safe solution that

the DPO may adopt is to delete these vulnerable mobility traces from the protected

dataset. However, this solution would engender a large data loss (42% in average

and can reach up to 95%, as presented in Section 3.2).

In this chapter, we propose MOOD (MObility Data Privacy as Orphan Disease),

a centralized user-centric multi-LPPM system which aims at protecting the mobility

of orphan users, i.e., users that are not protected against re-identification attacks

while using individual LPPMs. The originality of MOOD is that it combines off-

the-shelf LPPMs and applies a fine-grained protection. The LPPMs’ combination

is realized with the application of various LPPMs on the same trace in the form

of function composition, while the fine-grained protection implies the application

of various LPPMs on contiguous sub-traces. MOOD’s choices are driven by the

resilience to state-of-the-art re-identification attacks and the data utility metrics set
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by the DPO.

We evaluate MOOD on four real-world mobility datasets and compare its perfor-

mance to the application of individual and hybrid LPPMs [22, 118, 153, 152]. The

results of our experiments show that MOOD is able to protect users’ data in a

range between 97.5% and 100% on the four datasets with an acceptable data utility

and negligible data loss in comparison to the best competitor (HybridLPPM) which

protects users’ data in a range between 64% and 95% on the same datasets with

lower data utility.

The work proposed in this chapter has been published and presented in Middleware

Conference 2019 [127].

Roadmap The remainder of this chapter is structured as follows. First, we illustrate

the handled problem with numbers in Section 3.2. Then, we present the design

principles of MOOD in Section 3.3 and a detailed description of its component in

Section 3.4. Further, in Section 3.5, we proceed to the experimental evaluation of

our solution. Finally, we conclude this chapter in Section 3.6.

3.2 Problem Illustration

In this section, we want to showcase the ineluctable risk of re-identification of even

protected mobility data with existing state-of-the-art LPPMs and measure the data

loss caused by a conservative policy which relies on data suppression.

To this end, we consider a DPO that has to protect a given mobility dataset

before its publication. The latter has access to a set of LPPMs and a set of user

re-identification attacks found in the literature. In order to assess the effectiveness of

the LPPMs in front of the attacks, the expert may decide to run the re-identification

attacks on the protected dataset and choose the LPPM that better protects her

original dataset. We performed such an experiment on four real-world mobility

datasets protected using three state-of-the-art LPPMs (i.e., Geo-I [22], TRL [118]

and HMC [153]) and a hybrid solution proposed in [152] on which we ran three

state-of-the-art attacks (i.e., POI-Attack [193], PIT-Attack [87] and AP-Attack [152]).
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The details of the used LPPMs and attacks are presented in Section 3.5. The results

of this experiment are depicted in Figure 3.1. These results show, on each dataset,

the number of users for whom at least one of the attacks was able to disclose their

identities. From these results, overall the datasets, there are several users, from 19%

to 88% that are not protected in front of re-identification attacks despite the use of

single LPPMs.

The question that the DPO may ask in this situation is what should be done

with these vulnerable portions of the respective datasets?. A safe answer would be to

delete these parts of the datasets in order to prevent eventual user re-identifications

that an attacker may perform on the published data. However, this may generate a

massive data loss that ranges from 13% to 95% of the overall datasets, as depicted

in Figure 3.2.

A closer look to the protected datasets shows that LPPMs perform differently

from one user to another. Hence, a second step considered was to move to a

user-centric approach where the hybridLPPM [152] is applied to each user of the

considered datasets. The latter selects an LPPM among a set of LPPMs that resists

to re-identification attacks (if any) with the best utility in terms of spatial and

temporal distortion [153]. Column HybridLPPM of Figure 3.1 shows the ratio of

non-protected users on the four datasets for which the best LPPM was chosen (i.e.,

an LPPM that protects against all the three considered attacks with the lowest

spatio-temporal distortion). This result shows that despite the use of an hybrid

LPPM for protecting mobility datasets, there is still a large portion of users that

are vulnerable to re-identification attacks (from 5% to 36%). Consequently, the

generated data loss, as depicted in Figure 3.2 and that varies between 5% and 42%

on the four datasets is still high.

The objective of this chapter is thus to design a novel methodology that combines

off-the-shelf LPPMs to protect a given mobility dataset in front of a set of user

re-identification attacks while minimizing the eventual data loss. In this way, we

protect the crowd as it has been done in the literature and in addition, we provide

other tools to protect orphan users.
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Figure 3.1: Ratio of non-protected users with state-of-the-art LPPMs and Hybrid LPPM

on four real-world mobility datasets

Figure 3.2: Ratio of Data Loss with state-of-the-art LPPMs and Hybrid LPPM on four

real-world mobility datasets

3.3 MOOD Design Principles

In the following, we start by describing the system model of MOOD including the

required background definitions in Section 3.3.1. Then, we present an overview of

MOOD in Section 3.3.2.

3.3.1 System Model

Let U = {U1, U2, ..., UN} be the set of users in the system. Each user is represented

by two mobility traces, TUi
the one she wants to share and HUi

a past mobility trace

used to control the risk of user re-identification. A mobility trace is a sequence of
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mobility points including latitude, longitude and timestamp associated to a given

user. To simplify, a mobility trace is considered as a time series T ∈ (R2 × R+)∗.

Definition of a User Re-identification Attack:

To recall, the risk of user re-identification is formally defined in Equation 3.1 where

T is an anonymous mobility trace, H is a set of past mobility traces of known users

and U is the set of users in the system.

A : (R2 × R+)∗ → U
T 7→ A(T,H) = Ua

(3.1)

Definition of a Composition of LPPMs:

A composition of p LPPMs {Li1 ,Li2 , . . . ,Lip}, i.e., a subset of all available LPPMs

in L, noted Cp(Lik
) is the application of p LPPMs sequentially and gradually on a

mobility trace. As described in Equation 3.2, it means that we start by applying the

first LPPM Li1 . The resulting data is used as an entry for the second LPPM Li2

and so on. The order of the LPPMs is important since it is similar to a composition

of functions1.

Cp(Lik
)(T ) = Lip ◦ Lip−1 ◦ . . . ◦ Li2 ◦ Li1(T )

= Lip(Lip−1(...Li1(T )))
(3.2)

From L, a set of n LPPMs, the set of all possible compositions is denoted C
where its size is given by the following expression:

|C| =
n∑

i=1

n!
(n− i)! (3.3)

1 To simplify the notations we omit the parameters of each LPPM.
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Definition of a Fine-Grained Protection:

The fine-grained protection splits the mobility trace into multiple sub-traces and

protects each sub-trace independently with different LPPMs (from L or C) as

illustrated in figure 3.3. The objective of splitting traces is to separate discriminative

mobility patterns. To this end, several techniques can be used, e.g., splitting traces

according to time, distance or inter-POIs.

- Mobiliy Trace -

𝓛1 𝓛3 𝓛2o𝓛1 𝓛2

𝓛i

Figure 3.3: Fine-grained protection of a mobility trace

Definition of an Orphan User:

A user U ∈ U is an orphan user with respect to a set of LPPMs L, a set of re-

identification attacks A and a background knowledge H, if she satisfies the property

described in Equation 3.4, which states that for each one of the LPPMs, it exists at

least one attack that successfully re-identifies the owner of the mobility trace TU .

∀Lj ∈ L,∃Ak ∈ A,Ak(Lj(TU),H) = U (3.4)

Definition of a Protected User with Single-LPPM:

A user U is said to be protected by a single-LPPM if she satisfies the property

in Equation 3.5, which states that there exists at least one LPPM in the set of

considered LPPMs L that makes all the considered attacks in A fail at re-identifying

the user.

∃Lj ∈ L,∀Ak ∈ A,Ak(Lj(TU),H) 6= U (3.5)
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Definition of Protected User with Multi-LPPM:

A user U is said to be protected by multi-LPPM if she satisfies the property of the

Equation 3.6. It states that it exists at least a composition of LPPMs that makes all

the attacks fail at re-identifying the user where H is the background knowledge of

the attacks.

∃Cj ∈ C− L,∀Ak ∈ A,Ak(Cj(TU),H) 6= U (3.6)

Definition of Data Loss:

We define the data loss over a dataset D = {T1, T2, . . . , TN}, with the set of LPPMs

L against the set of re-identification attacks A as the ratio of data size (counted

by records) of non-protected mobility traces in D. In other words, it is the amount

of data which should be erased to avoid the re-identification risk. As described in

Equation 3.7 (with |D|r computes the number of records in D).

data loss(D,L,A) = |DNP |r
|D|r

DNP = {T ∈ D | ∀Lj ∈ C, ∃Ak ∈ A,Ak(Lj(TU),H) = U}
(3.7)

3.3.2 MOOD Overview

MOOD (MObility Data Privacy as Orphan Disease) is a fine-grained multi-LPPM

user-centric protection system. Its main objective is to protect the mobility trace

of all users and in particular orphan users who are not protected by any available

single LPPM. The architecture of MOOD is depicted in Figure 3.4 and its behavior

is described in Algorithm 1. MOOD takes as inputs: the mobility trace of a user,

denoted TU , a set of LPPMs L of size n, a set of user re-identification attacks A of size

m and a utility metric M. It returns obfuscated mobility data as an entire mobility

trace T ′ or as multiple sub-traces {T ′1, T ′2, . . .}. It has three main components, the
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Inputs Outputs

MOOD

  Multi-LPPM Composition Search

𝓛1

𝓛1 𝓛2 𝓛1
...

𝓛1 𝓛2

𝓛n

Choose LPPM composition with
best utility

Is it protected?

  Fine-Grained Data Protection   Best LPPM Selection

< lat1,lng1,t1>
< lat2,lng2,t2>
< lat3,lng3,t3>

...
< latn,lngn,tn>

< lat1,lng1,t1>
< lat2,lng2,t2>
< lat3,lng3,t3>

...
< latn,lngn,tn>

< lat1,lng1,t1>
< lat2,lng2,t2>
< lat3,lng3,t3>

...
< latn,lngn,tn>

Protected Mobility Traces
No Yes

LPPMs

Attacks

Utility Metric

A2...

A1

Am

 𝓛1

 𝓛2...
 𝓛n

< lat1,lng1,t1>
< lat2,lng2,t2>
< lat3,lng3,t3>

...
< latn,lngn,tn>

< lat1,lng1,t1>
< lat2,lng2,t2>
< lat3,lng3,t3>

...
< latn,lngn,tn>

< lat1,lng1,t1>
< lat2,lng2,t2>
< lat3,lng3,t3>

...
< latn,lngn,tn>

Raw Mobility Traces

Figure 3.4: MOOD architecture

first component Multi-LPPM Composition Search aims at finding a composition

of multiple LPPMs for orphan users. The second component Fine-Grained Data

Protection manages mobility traces for which the first component was not able to

find a protecting composition of LPPMs and uses the fine-grained protection. In this

case, the latter splits the original trace into a set of sub-traces and sends each one

back to the first component as depicted in Figure 3.4. Finally, in the last component

Best LPPM Selection, only the protected mobility trace or sub-trace (i.e., using

either a single-LPPM or a multi-LPPM) against all the attacks with the best utility

value is retained.

3.4 MOOD Detailed Description

In this section, we dive into a detailed description of each component involved in

MOOD, namely, the multi-LPPM composition search (Section 3.4.1), the fine-grained

data protection (Section 3.4.2) and the best LPPM selection (Section 3.4.3).
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3.4.1 Multi-LPPM Composition Search

The Multi-LPPM Composition Search is the main component in our system. It

takes as input the mobility trace of a user T , the set of LPPMs L and the set

of re-identification attacks A. First (lines 4 - 7), we start by applying LPPMs

independently to search if there exists an LPPM that can protect the mobility trace

against re-identification. Then (lines 15- 23), we apply all possible combinations

of the considered LPPMs in an incremental and exhaustive manner so that the

output mobility trace of the current LPPM becomes the input mobility trace of

the next LPPM. For n = |L|= 3, the number of different compositions is |C|= 15
(given by Equation 3.3). After that, once a mobility trace T is obfuscated by each

composition of LPPMs, all the re-identification attacks { Ak }k=1..m are launched in

order to evaluate the resilience of each composition of LPPMs and keep only ones

that prevent from re-identification (if any). If all re-identification attacks fail in

re-associating the obfuscated mobility trace T ′ to its originating user, the privacy

protection process is done and the user’s mobility trace is protected by MOOD. In

this case, the Best LPPM Selection component chooses the candidate that maximizes

the utility metric (Section 3.4.3). However, if at least one re-identification attack

succeeds, it means that the user is still vulnerable. In this case, the mobility trace of

the user is undertaken by the following component.

3.4.2 Fine-Grained Data Protection

The Fine-Grained Data Protection is a complementary component in our system

(line 28- 34). It is launched when the user’s mobility trace is protected by neither a

single LPPM nor a multi-LPPM. The idea we adopt is to split the original trace into

a set of sub-traces and try to protect each sub-trace separately. For that purpose,

several techniques can be used or combined for splitting the original trace, such as

the fixed time slices where we split the mobility trace according to fixed times (e.g.,

every hour) or to fixed distances (e.g., every 1 km). In our work, we opt for the fixed

time slices. The assumption behind going towards a fine-grained protection is that

short mobility traces may contain less discriminating information than longer ones.

Therefore, re-identification attacks which are based on profiling user mobility will be

less successful at re-identifying users because the discriminating mobility patterns
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Algorithm 1 MOOD algorithm.

1: functionMOOD(TU ,L,A,C,M,δ)

2: distortion←∞
3: out← ∅
4: for Ljin L do Single-LPPM Protection

5: T ′ Lj(TU)
6: k ← 1
7: limit |A|
8: while Ak(T ′) 6= U and k 6 limit do

9: k k + 1
10: end while

11: if k > limit then out← out ∪ {T ′}
12: end for

13: if out 6= ∅ then

14: return {arg max
T ′∈out

(M(TU , T
′))[0]}

15: else Composition of multi-LPPMs

16: for Cjin C− L do

17: T ′ ← Cj(T )
18: k ← 1
19: while Ak(T ′) 6= U & k 6 limit do

20: k ← k + 1
21: end while

22: if k > limit then out← out ∪ {T ′}
23: end for

24: end if

25: if out 6= ∅ then

26: return {arg max
T ′∈out

(M(TU , T
′))[0]}

27: else if length(TU) ≥ δ then

28: S Split in half(TU)
29: Fine-Grained protection

30: out ∅
31: for Tiin S do

32: out out ∪MOOD(Ti,L,A,C,M, δ)
33: end for

34: return renew Ids(out)
35: else

36: return ∅
37: end if

38: end function
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collected from the mobility trace of the user are separated. This way, a user can still

participate in the published dataset or in the crowd sensing campaign but only with

multiple protected sub-traces that seem to come from different users. In practice,

MOOD cuts the trace in half according to time and recursively calls for MOOD

(line 32) with new user IDs in order to prevent a merging by the attacker (line 34).

When the length of a mobility trace is shorter than δ, the protection process for

this trace is stopped and the corresponding mobility records are either erased from

the published dataset or not sent to the crowd sensing server. The main role of the

parameter δ is to stop the recursive split of traces. Moreover, in real use cases, the

value of δ can be chosen according to the type of analysis the data will go through.

For instance, in traffic congestion analysis (or count queries in general) there is no

particular limit since the length of each sub-trace is not important to count the

presence of users in particular places. But, if the application needs to study human

mobility habits, a more reasonable value of δ is likely to be more than 24 hours.

3.4.3 Best LPPM Selection

It is important to protect data while maintaining high utility of the resulting trace. For

that purpose, the Best LPPM Selection component is added to MOOD. Its main role

is to choose T ′, a protected version of a mobility trace with one among all the resilient

LPPMs or multi-LPPMs against re-identification attacks, while maximizing the data

utility. To this end, we rely on an utility metric M that measures the distortion of

obfuscated data in comparison with the original data. The lower the distortion the

better the quality of the resulting data. In MOOD, we measured the utility using

the spatial-temporal distortion metric (STD) [153]. As defined in Equation 3.8, the

STD is the average distance between each record of T ′ and its temporal projection

into T . The temporal projection of the record x = (latx, lonx, tx) in T ′ is the

expected position re in T at time t. Specifically, we search for ri = (lati, loni, ti)
and ri+1 = (lati+1, loni+1, ti+1) in T such as ti ≤ tx ≤ ti+1, then we compute re the

interpolation with the ratio (tx − ti)/(ti+1 − ti).

ST D(T, T ′) = 1
|T ′|

∑
x∈T ′

dtemporal projection(x, T ) (3.8)
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3.5 Experimental Evaluation

In the following, we evaluate the effect of MOOD on the protection against re-

identification attacks. In Section 3.5.1, we describe the experimental environment

and configuration settings for the LPPMs and attacks considered in the experiments.

Then, we describe the datasets in Section 3.5.2. To better understand the impact

of the composition of LPPMs and the fine-grained protection on orphan users, we

evaluate these parts of our system separately. Specifically, we evaluate MOOD’s

composition effect against single and multiple attacks in Sections 3.5.3 and 3.5.4,

respectively. Then, for the remaining unprotected users, we analyze the effect of

MOOD’s fine-grained protection in Section 3.5.5. We finally study the impact of

MOOD in terms of data utility and data loss in Section 3.5.6.

To resume, our evaluation answers the following questions:

• What is the effect of MOOD’s multi-LPPM composition search in compar-

ison to competitors on the protection against one re-identification attack?

(Section 3.5.3)

• What is the effect of MOOD’s multi-LPPM composition search in comparison

to competitors on the protection against multiple re-identification attacks?

(Section 3.5.4)

• How does the fine-grained protection handle orphan users? (Section 3.5.5)

• What is the impact of MOOD on data utility and data loss? (Section 3.5.6)

3.5.1 Experimental Setup

All the experiments were carried out in a computer running an Ubuntu 16.04 LTS OS

with 5GB of RAM and 4 cores of 1.8Ghz each. The chosen LPPMs and attacks to

conduct the experiments were taken from an open-source library [200] or the authors’

own source code.
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User Re-identification Attack Configuration

In our experiments, we have considered three re-identification attacks, namely: AP-

attack, POI-attack, and PIT-attack. Each attack has a set of parameters, described

below. POI-Attack and PIT-Attack have two parameters for the extraction of POIs

from mobility traces [259]. These parameters are the diameter of the clustering area

and the minimum time spent inside it. These parameters are respectively set to

200 meters and 1 hour to accommodate small traces. AP-Attack has a configuration

parameter that corresponds to the square cell size. It was set to 800 meters (default

value in [152]).

In the evaluation scenario of the multi-LPPM composition search, we first consid-

ered AP-attack as the most aggressive attack among the chosen ones. Then for the

rest of experiments, we combined all the attacks to form their union. We suppose

that the DPO knows the ground truth about users’ identities as the latter has access

to all users traces stored in a central entity, known as the privacy proxy server (i.e.,

anonymizer).

LPPM Configuration

To evaluate MOOD, we selected three representative LPPMs, namely: (1) Geo-

indistinguishability (GEOI) [22], (2) Trilateration (TRL) [118] and (3) Heat Map

Confusion (HMC) [153]. Each LPPM belongs to a class of protection methods.

GEOI is a data perturbation-based mechanism, TRL is a dummy-based mechanism

for online services, and finally HMC is a combination of perturbation-based and

dummy-based techniques.

Each LPPM has its own configuration parameters. These parameters have an

impact on the privacy vs. utility tradeoff. In our experiments, we chose medium

values of parameters because the objective of our study is not to find the best

configuration as previous works did [50, 197] but to show that it is possible with a

reasonable configuration and a relevant combination of LPPMs to reach an adequate

tradeoff between privacy and utility. Specifically, GEOI has ε as a privacy parameter,

which tunes the amount of noise added to the mobility data, (the lower the value

of ε the higher the protection). We have fixed it to 0.01 which corresponds to a
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medium privacy level. TRL has a radius r from the real user’s position where the fake

locations are generated. The latter is set to 1 km. Finally, as HMC is based on heat

maps, the cell size of the heat map is set to 800 meters as in the original paper [153].

Moreover, we compared MOOD to the HybridLPPM [152] with slight variations.

Briefly, we selected the above LPPMs with the same configuration. Then, we ordered

them according to the degree of data distortion they generate after obfuscation:

(HMC→ GEOI→ TRL). Finally, we opt for the LPPM which degrades the least the

mobility data while protecting it against re-identification, using the defined order.

3.5.2 Mobility Datasets

In our experiments, we used four real-world mobility datasets with a summary

depicted on Table 3.1. These datasets are MDC [135], Privamov [169], Geolife [257],

and Cabspotting [190].

In our experiments and for a fair comparison, we considered the 30 most active

successive days of each dataset. After that, we split the mobility trace of each user

chronologically into a period of 15 days used as a training dataset (i.e., background

knowledge) and the remaining 15 days used as a testing dataset (i.e., data to be

published). Only active users during those periods were considered.

Moreover, a mobility trace that is not protected by a Multi-LPPM in MOOD is split

into sub-traces of 24 hours length before applying the recursive splitting algorithm

presented previously. We choose chunks of 24 hours to simulate the scenario of a

crowd sensing application where users send their data daily. Besides, we set the value

of δ to 4 hours in MOOD’s algorithm.

Table 3.1: Description of datasets

Name Cabspotting Geolife MDC Privamov

# users 531 41 141 41

location San Francisco Beijing Lausanne Lyon

# records 11 179 014 1 468 989 904 282 948 965
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3.5.3 Evaluation of Resilience to a Single Re-identification

Attack

As a first step in our evaluation, we want to showcase the problem of orphan users

when a single attack is used by the DPO. We consider a set of state-of-the-art

LPPMs (n = 3) and we select AP-attack as - the most powerful re-identification

attack currently known in the literature - in order to evaluate the robustness of the

generated data. We compared the result of MOOD’s multi-LPPM composition

search with the existing LPPMs applied individually on the four datasets. The results

are depicted in Figure 3.5.
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Figure 3.5: Resilience to one attack – MOOD vs. competitors
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In the MDC dataset (Figure 3.5a), 96 out of 141 users are re-identified when

no LPPM is applied, which means that 45 users are naturally insensitive to AP-

attack. Additionally, 95, 79 and 14 users are re-identified while applying GEOI,

TRL, and HMC respectively. Whereas these numbers are lower (i.e., 10 users) when

HybridLPPM is used. All of those users are protected when using MOOD.

In the Privamov dataset (Figure 3.5b), 32 out of 41 users are exposed to re-

identification threat. 31, 26 and 9 users are re-identified when GEOI, TRL and HMC

are applied as a single LPPM respectively. Whereas in the case of HybridLPPM,

only 4 users remain unprotected.

Similarly, in the Geolife dataset (Figure 3.5c), 32 out of 41 users are re-identified

when no LPPM is applied against AP-Attack. Then 4 users are still unprotected by

neither a single LPPM nor a HybridLPPM, whereas with MOOD’s composition of

LPPMs, only one user is still re-identifiable with AP-attack.

Finally, in the Cabspotting dataset (Figure 3.5d), nearly half of the dataset is

naturally protected against AP-Attack (242 out of 536), this is due to the homo-

geneity of cab drivers moving patterns. After applying a single LPPM, almost all

the remaining unprotected users became protected except 4 users, for which the

application of MOOD with its multi-LPPM composition succeeds in protecting all

of them.

3.5.4 Evaluation of Resilience to Multiple Re-identification

Attacks

In this experiment, we consider a stronger virtual attacker where multiple re-

identification attacks are used (i.e., m = 3) to assess whether the protected users are

uncovered by at least one of the attacks. This is possible because MOOD knows the

ground truth about the real identity of the users. Indeed, all users’ mobility data is

stored in a privacy proxy server where MOOD is applied. The results are shown in

Figure 3.6.

Specifically, in the MDC dataset, as depicted in Figure 3.6a, 107 out of 141 users

are re-identified when no LPPM is applied. This means that 34 users are naturally
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protected without the application of LPPMs. Thereafter, 107, 86 and 65 users are

non-protected against at least one-attack among the considered ones when GEOI,

TRL and HMC are applied individually. Then, 51 out of 141 users are still re-

identified when HybridLPPM is applied. Whereas only 3 users remain non-protected

with the MOOD’s multi-LPPM composition.

In the Privamov dataset, as depicted in Figure 3.6b, 37 out of 41 users are

vulnerable to the re-identification risk when no LPPM is used to protect the mobility

data. Then, 36 users are re-identified when GEOI is applied. The latter is not

resilient to the re-identification risk and its only way to be effective is to increase

its level of privacy (i.e., reduce its privacy parameter ε) at the expense of data

utility. Moreover, 29 and 20 users are non-protected when TRL and HMC are

applied, respectively. These numbers decrease to 10 non-protected users when the

HybridLPPM is considered. Finally, only 3 users remain re-identified with MOOD.

Similarly, in the Geolife dataset, as illustrated in Figure 3.6c, 32 users out of

41 users are unprotected against at least one among all the attacks. Then, the

number of re-identified users decreases slightly to 28, 23 and 15 users when GEOI,

TRL and HMC are individually applied, respectively. Furthermore, the application

of HybridLPPM generated 10 non-protected users and finally, only 2 users are still

vulnerable to the re-identification risk when MOOD is considered.

Finally, in the Cabspotting dataset, as depicted in Figure 3.6d, more than half of

the whole users are re-identified in case of no LPPM. After that, 263, 131 and 65 users

are re-identified when GEOI, HMC, and TRL are individually applied, respectively.

Then, the number of re-identified users declines to 27 users with HybridLPPM. Lastly,

while considering the multi-LPPM composition of MOOD, no users left unprotected.

It means that MOOD is able to protect the whole mobility dataset including orphan

users against all the considered attacks.

3.5.5 Evaluation of Fine-Grained Data Protection

As there are still few users who are vulnerable to the re-identification risk, we zoom

on this category of users and apply the fine-grained data protection of MOOD. We

start by splitting their mobility traces into multiple sub-traces of 24 hours length
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Figure 3.6: Resilience to multiple attacks – MOOD vs. competitors

(as explained in Section 3.4.2). Then, each sub-trace feeds MOOD’s multi-LPPM

composition search component in order to protect it independently.

The results of Figure 3.7 illustrate how each user sub-traces are protected. Specifi-

cally, in the MDC dataset (Figure 3.7a), three users are not protected with MOOD’s

multi-LPPM composition, denoted {A,B,C}. Overall the three users, there are

68% of protected sub-traces with MOOD and the remaining sub-traces are still

unprotected. Precisely, we can see that user A became protected. User B almost

protected (92% of her sub-traces are protected), whereas User C is still unprotected

(only 11% of her sub-traces are protected). Thus, the granularity of the considered
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traces has an impact on privacy protection.

With the Privamov dataset (Figure 3.7b), three users {D,E, F} are not pro-

tected when the MOOD’s multi-LPPM composition is used. After the fine-grained

protection, the results show that 67%, 43% and 50% of the sub-traces of user D, E

and F are protected respectively. Thus, the remaining users are partially protected.

Finally, in the Geolife dataset (Figure 3.7c), only two users {G,H} are not protected

by MOOD’s multi-LPPM composition. Then, after splitting their mobility traces,

we obtain 4 sub-traces (i.e., 2 sub-traces for each user), the results show that only

one sub-trace is protected by MOOD.
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Figure 3.7: Fine-grained data protection with MOOD

3.5.6 Evaluation of Mobility Data Utility and Data Loss

It is important to evaluate the effectiveness of MOOD in terms of data utility and

data loss. In this chapter, as discussed in Section 3.4.3, data utility is measured using

the spatio-temporal distortion metric [153] and the data loss is computed as defined in

Section 3.3.1. After that, we compare MOOD to state-of-the art LPPMs, previously

described in Section 3.5.1. We consider four different levels of the spatial-temporal

distortion: low (i.e., < 500m), medium (i.e., < 1000m), high (i.e., < 5000m) and

extremely high (i.e., > 5000m).

Overall datasets, as depicted in Figure 3.8, the results show that for all the

protected users (i.e., 754 users in the four datasets), 53.47% have a high utility using

MOOD (i.e., < 500m) compared to its competitors, i.e., 38%, 12%, 45% and 49%
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with GEOI, TRL, HMC and HybridLPPM, respectively. Moreover, with medium

utility (i.e., < 1000m), MOOD outperforms its competitors with a ratio of 78%

as to GEOI, TRL, HMC and HybridLPPM with 38%, 70%, 48% and 74%. This

means that MOOD can provide a good balance between privacy and data utility in

comparison to its competitors.

Depending on the degree of distortion, we can imagine several scenarios of data

publishing and crowd sensing applications using MOOD. For instance, measuring

the level of noise in a city when the distortion is low [150]. For medium distortion,

MOOD can be used in an application that measures the level of pollution in a

specific area. Finally, for high distortion, an application could be related to weather

forecasting where the spatial precision of the protected data is not as sensitive as in

the previous scenarios.
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Figure 3.8: Utility of protected data with MOOD vs. competitors

In addition, we compared the data loss generated by MOOD and its competitors.

The results are depited in Figure 3.9. In this figure, we found that a data loss between

14% and 95% is caused by the application of a single LPPM (i.e., GEOI, TRL, and

HMC). Furthermore, when HybridLPPM is used the generated data loss is between

5% and 42%. In contrast, MOOD generates a data loss between 0% and 2.5% which

is a negligible amount of data compared to its competitors.
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Figure 3.9: Data loss of MOOD vs. competitors.

3.6 Summary

In this chapter, we presented MOOD, a centralized approach for location privacy

protection. It is a user-centric multi-LPPM fine-grained protection system. Its

main objective is to protect all users mobility data and in particular the minority

of orphan users who are not protected by any single LPPM. MOOD can be used

either for data publishing use case or for a crowd sensing campaign. It consists of

three main components: The multi-LPPM composition search component which

combines multiple LPPMs. The output of the first LPPM becomes the input of

the following one, and so on until it finds a composition of LPPMs that succeeds

the re-identification risk assessment. If the mobility trace is still vulnerable to re-
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identification, the fine-grained protection component splits the mobility trace into

sub-traces. We argue that short mobility traces may contain less discriminating

information than longer ones. Therefore, re-identification attacks which are based

on profiling will be less successful at re-identifying users because the discriminating

mobility patterns extracted from the mobility trace of the user are separated and the

sub-traces are assigned different IDs which makes them unlinkable to the original

user. Finally, the best LPPM selection component chooses the candidate (single

LPPM or multi-LPPM) that protects mobility data against re-identification while

maximizing its utility. In our evaluation, we used the spatio-temporal distortion

metric to measure the utility of the generated data.

In this chapter, we conducted experiments on four real-world mobility datasets to

evaluate the effectiveness of MOOD. The results show that the proposed system is

resilient to multiple re-identification attacks and can achieve a high level of privacy

protection while maintaining an acceptable utility level and a low data loss. However,

the main inconvenient of MOOD is that it assumes a trusted proxy server as the

existing re-identification attacks require a centralized knowledge of users mobility

data to construct mobility profiles. This is considered as a single point of failure

because if the server is compromised, all users’ mobility data is leaked and thus

users’ privacy can be violated. In the next chapter, we eliminate the assumption

of the trusted proxy server which has access to raw mobility data and propose a

novel location privacy risk assessment model to evaluate the privacy risks of sharing

mobility data following a federated learning approach without accessing the raw

mobility data.
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4.1 Motivation

In this chapter, we are interested in carrying out a privacy risk assessment for

mobility data. It has been widely encouraged by the legislation (e.g., Article 35 of

the EU GDPR regarding risk assessment), and recommended by standardization

institutes (e.g., the NIST recommends to assess privacy risks for individuals arising

from processing their data [114]). In this work, we present the concept of uniqueness

as a means of location privacy risk assessment. It has been first introduced by

De Montjoye et al. [64] on a dataset involving more than a million users. They

demonstrate that only four spatio-temporal points, randomly drawn from a mobility

trace, are enough to uniquely identify the originating user of the data in 95% of

the cases. This study was performed on a CDR dataset where a subset of 2,500

mobility traces was used to compute the uniqueness. The same metric was used

in [221] on the mobility data of more than half a million users to evaluate the

effectiveness of anonymization techniques. In the same direction, another study has

been conducted on smaller datasets over multiple types of sensors available in a

smartphone (e.g., GPS, WiFi, cellular data) [43]. While the above studies help raising

the general public awareness about the sensitivity of mobility data, they can not

be used as privacy risk assessment metrics as they require centralizing raw mobility

data on a trusted server to analyze them. This raises serious privacy violation and

data leakage risks, if the entity holding the whole raw data is compromised [6, 8, 3].

In this context, it is becoming increasingly important to devise mechanisms that

avoid centralizing raw data in remote infrastructures.

In this chapter, we propose SAFER, the first solution for assessing the uniqueness

of mobility data while keeping the data on the user’s premises. To reach this objective,

we model the uniqueness assessment problem as a machine learning classification

problem and implement it using the FL paradigm where data remains on the user side.

Specifically, SAFER consists of two main components: (i) an identity classification

model based on mobility data and trained using the FL principles, and (ii) a local

uniqueness evaluation component that is based on the computation of user anonymity

sets.

SAFER’s identity classifier is locally trained by mobile users before being aggre-

gated by the FL server to build a global classification model that aims at identifying
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to which user, a mobility data is likely to belong. In order to assess the uniqueness of

mobility data for a given user, SAFER’s FL classifier is used to produce a confidence

vector with probabilities for the considered mobility data to belong to each class

(i.e., user). Using this vector, SAFER builds an anonymity set of users, namely a

set of users whose probability of owning the mobility data is sufficiently close to the

probability of owning the mobility data by the originating user. Thus, SAFER is

able to determine that a given mobility data is unique if its anonymity set consists of

a single element. Consequently, SAFER warns the user of a high privacy risk if that

data is shared. Furthermore, besides the binary characterization of mobility data

uniqueness as commonly performed in state-of-the-art solutions [64], SAFER is able

to further analyze privacy risks. For that purpose, both the size and the entropy

of the anonymity set of mobility data are considered. The higher the size and the

entropy of the anonymity set, the lower the privacy risk of sharing that data.

We evaluate SAFER on four real-world mobility datasets [135, 169, 257, 1], with

up to 10,000 mobile users and consider various representations of mobility data,

namely GPS locations, POIs and trajectories. In order to assess the accuracy of

SAFER, we compare its uniqueness estimation with a well-established centralized

baseline [64]. Our experiments show that (i) SAFER estimates the uniqueness

similarly to the state-of-the-art centralized solution while keeping users data private

on their devices; (ii) SAFER’s FL identity classifier is able to efficiently scale to

thousands of users and (iii) SAFER is able to determine not only if but how

much a mobility data is indistinguishable from other users’ data. This last point

is complemented by an evaluation of the privacy exposure of mobility data where

a state-of-the-art re-identification attack (i.e., AP-Attack [152]) is carried out to

assess whether data that is considered as unique by SAFER is more subject to

re-identification. Results show a clear correlation between the uniqueness estimated

by SAFER and the re-identification attack success rate.

Roadmap The remainder of the chapter is organized as follows. We first describe

the design principles of SAFER in Section 4.2. Then, we dive to a detailed description

of SAFER in Section 4.3. Afterwards, we present our extensive experimental results

in Section 4.4. Finally, we discuss the privacy limitations of SAFER and possible

countermeasures in Section 4.5 and we draw our conclusions in Section 4.6.
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4.2 SAFER Design Principles

In the following, we start by recalling some preliminary definitions in Section 4.2.1.

Then, we describe the system and threat model in Section 4.2.2 and provide an

overview of SAFER in Section 4.2.3.

4.2.1 Preliminary Definitions

Mobility Data. Mobility data can be a single timestamped mobility point or a

sequence of multiple mobility points forming a trajectory. The data point may

correspond to the actual GPS location of a user, to the location of a cell network

tower extracted from a CDR dataset, or to a POI extracted thanks to clustering

algorithms [193] and represented by its centroid. A detailed description of mobility

data is provided in Chapter 2, Section 2.1.1.

Federated Learning. To recall, FL is a new machine learning paradigm that

enables training machine learning models on data from different sources without the

need to store the data at a central server. FL is performed in several learning rounds

where set of users (known as workers) and a server (known as the federator) are

involved. At the beginning, the FL server initiates the same model on all workers.

For each FL round, the workers train locally the model with their private local

data to improve the machine learning model and send the updated model to the

federator. The latter then aggregates the received local models by averaging them,

and produces a new version of the global model [159, 142, 112]. After the clients

receive the aggregated model, a new FL round starts and the FL process is repeated

until the aggregated global model converges. A background of the FL paradigm is

provided in Chapter 2, Section 2.4.

4.2.2 System and Threat Model

Let U = {U1, U2, . . . , UN} be a set of users of the system. Each user Ui has its own

mobility data stored locally on her device. This data can be collected at various times

and using various sensors available on the user’s device, depending on the actual
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used mobile application. Specifically, in SAFER we consider three representations of

mobility data: (i) mobility points corresponding to actual locations visited by a user,

(ii) points-of-interest (POIs), and (iii) trajectories of a user. Using their mobility

data, users participate in a federated training process (as defined in §4.2.1). The

FL server is assumed to be honest-but-curious. It aggregates users model updates

honestly without altering them but remains curious to inspect users updates in order

to infer a training sample from a client’s private dataset and thus can discover any

private sensitive information about the user. To avoid this threat, we consider that

users updates sent to the FL server are masked thanks to the secure aggregation

protocol [39, 254]. Therefore, the FL server can only learn about aggregate client

updates, which preserves the privacy of individual user contributions. In addition, the

communication channels between the users and the server are encrypted. We assume

that the training process is orchestrated periodically by the FL server (e.g., each

night) when users devices are available to perform computations (i.e., they are likely

to be idle, charging and connected to WiFi). These criteria are usually met at night

and they are considered in many existing works [112, 40, 33]. With the advances of

smartphone technologies, recent works discard these criteria and leverage the actual

network connection of each device to provide a more dynamic federated learning

protocol that evolves more rapidly and during the day [60]. These solutions are

complementary to SAFER and could be considered in future work. We assume

that users’ devices are trusted. The case of malicious users is considered out of

the scope of this chapter and is discussed in §4.5 where existing state-of-the-art

countermeasures are listed. SAFER can be used by a user before sharing its mobility

data, in an interactive way, to assess data uniqueness as further described in the

following section.

4.2.3 SAFER Overview

SAFER (uniquenesS Assessment with a FEderated leaRning approach) is a user-

side privacy risk assessment metric for mobility data. Its main objective is to

locally measure, on users’ devices, how unique is a given mobility data without

accessing the other users’ data. To reach this objective, SAFER operates in two

distinct phases: a training phase and a uniqueness-evaluation phase as depicted in

Figure 4.1. The training phase (depicted in the left part of Figure 4.1) is responsible
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for training an identity classifier ID Classifier using the FL approach. During this

phase, users exploit their local mobility data to train the ID Classifier, mask the

model updates (∆i) and send the masked gradients (Xi) to a FL server. The latter

aggregates the received gradients without revealing users individual updates by

following secure aggregation [39, 254] and sends back the resulting aggregate model

to all the participants. This process is periodically repeated and is generally executed

when user’s devices are idle, charging and connected to WiFi (e.g., at night time).

The objective of the ID Classifier is to compute the probability that a given mobility

data belongs to a given class (i.e., a user). The ID Classifier is itself composed

of two machine learning models that differ in the type of input data that is used

(i.e., mobility points or trajectories). Details about these two models are given in

Section 4.3.1 and 4.3.2, respectively.

c

Secure aggregation

FL server
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Figure 4.1: SAFER overview

Contrary to the training phase, which operates periodically on the background,

the uniqueness-evaluation phase is an interactive phase that operates each time a

user wants to assess the uniqueness of a given mobility data, say IP (right part of

Figure 4.1). During this phase, the Uniqueness-EVAL component of SAFER uses

the latest version of the ID Classifier to compute a confidence vector that contains

the probability of IP belonging to each user of the system. Using this confidence

vector, the Uniqueness-EVAL component creates an anonymity set, the size of which

reflects how unique is IP . Details about how the anonymity set is computed and how

the uniqueness is inferred by Uniqueness-EVAL are further described in Section 4.3.3.
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4.3 SAFER Detailed Description

In the following, we dive into the detailed description of the main components of

SAFER as depicted in Figure 4.2. Particularly, we present DataPoint-CLASSIF

for mobility data points (Section 4.3.1). Then, we propose Trajectory-CLASSIF

as an alternative model to DataPoint-CLASSIF for trajectory data (Section 4.3.2),

and finally we present Uniqueness-EVAL component (Section 4.3.3).

4.3.1 DataPoint-CLASSIF: Federated Identity Classifier for

Data Points

The first type of classifier proposed by SAFER is called DataPoint-CLASSIF. It

is a federated identity learning classifier for mobility data points, as depicted in the

top left part of Figure 4.2. It takes as input a mobility point (i.e., actual GPS location,

a POI, or a CDR location) or a set of mobility points, and transforms them into a

feature vector. This feature vector captures the spatial and temporal behavior of the

user, in the form of a heat map to represent the mobility points. Precisely, a map is

divided into cells of equal size. Each cell represents a spatial feature that has a value

of either 1 or 0, depending on the presence or absence of the user at that location,

respectively. In addition, DataPoint-CLASSIF considers a temporal feature to

differentiate similar spatial mobility patterns occurring at different times, e.g., a user

visiting a museum where another user works. Here, the average hour of the day is

used as temporal information. In the case of POIs, DataPoint-CLASSIF adds

additional features which are the total number of actual points in a POI to represent

its density and the POI duration to differentiate between short and long-length POIs.

Once the feature extraction step is prepared, DataPoint-CLASSIF uses a

multi class logistic regression classifier (LR). We chose LR because it is a simple, yet

effective model that can be trained locally on constrained devices. Periodically, when

participants finish training their local model, they send their local model updates

(i.e., gradients) to the FL server. The latter aggregates users’ model updates with the

classical federated averaging method and produces an updated global model. This

process is repeated over time, which allows DataPoint-CLASSIF to continuously

learn new discriminating mobility patterns that make users more distinguishable
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from each other. Finally, the classification model outputs a confidence vector that

contains the probability for input data to belong to each user (i.e., class) of the

system. These probabilities reveal those users who hold similar data that allows

SAFER to construct anonymity sets (§4.3.3).
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Figure 4.2: Detailed description of SAFER

4.3.2 Trajectory-CLASSIF: Federated Identity Classifier for

Trajectory Data

In addition to individual mobility points or sets of individual mobility points, SAFER

allows to evaluate the uniqueness of a trajectory as a whole. This can be considered

in the context of data publishing use case where the user instead of assessing the

uniqueness of each mobility point separately or by randomly choosing ones, the

user evaluates the uniqueness of the whole trajectory at once before releasing it.

To handle this complex data type, SAFER proposes Trajectory-CLASSIF, an

alternative model to the DataPoint-CLASSIF previously presented in §4.3.1. This

model relies on a recurrent neural network (RNN), and precisely on a bidirectional

LSTM (Bi-LSTM) [116], which has been successfully used in the past to compute the

similarity between mobility trajectories [90]. There are several reasons to use this

architecture. First, it avoids extracting features that might lack relevant information.

Second, it helps in processing long-term variable-length (i.e., long mobility sequences).

And last but not least, it captures recurrent movements and identifies the moving

patterns thanks to the memory underlying LSTM (long short-term memory), e.g., if

a user visits locations corresponding to her home, work, then home again. Bi-LSTM

is more complex than LR, however, its performance concerning trajectory data is
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much better.

As depicted in Figure 4.2, Trajectory-CLASSIF takes as input a trajectory

data. Each trajectory is transformed into a sequence of cells. A cell is a location

with a unique cell identifier (cellID). Roughly speaking, a trajectory model aims at

predicting a sequence of successive cells, namely a cellID that follows another cellID,

etc.,. Here, we apply a simple yet effective technique inspired by natural language

processing (NLP). Indeed, similarly to words in NLP, the frequency of locations

follows a power law distribution [90]. For this reason, we embed each cellID using

the word2vec technique to learn location associations [163]. We apply the common

bag of words (CBOW) model where transformed trajectories are the context, and

the cellID is the word to predict. Once the embedding is done, the latter produces

for each cell, its feature vector that is used to feed the federated Bi-LSTM model.

To link trajectories to their users, Trajectory-CLASSIF uses a dense output

layer. The size of this layer corresponds to the number of classes in the system (i.e.,

one output value for each class). Then the softmax function is used as an activation

function [41] for multiclass classification. It provides probabilities of membership of

an input trajectory to each class (i.e., user identity label).

4.3.3 Uniqueness-EVAL: Anonymity Set Constructor

The last component of SAFER is Uniqueness-EVAL, as depicted in the right

part of Figure 4.2. Uniqueness-EVAL first computes anonymity sets, then infers

uniqueness based on the anonymity set size. To illustrate how Uniqueness-EVAL

computes the uniqueness of mobility data, let U = {U1, . . . , UN} be the set of

users participating in SAFER, Ck the current version of the ID Classifier, IP a

mobility data (mobility points or trajectory) belonging to a user Ui ∈ U . let Pr(Ui)
be the probability that IP belongs to the user Ui. This probability is computed

by the classifier Ck. Note that the used ID Classifier depends on the type of IP .

Uniqueness-EVAL formally computes the uniqueness of IP as follows:

Uniqueness(IP , Ck) =

1, if |AnonymitySet(IP , Ck)| = 1
0, otherwise

(4.1)
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where

AnonymitySet(IP , Ck) = {Uj; |Pr(Uj)− Pr(Ui)|≤ ε} (4.2)

In the above formula, the anonymity set AnonymitySet(IP , Ck), contains users

Uj with probabilities Pr(Uj) equal to the probability of IP belonging to Ui plus-minus

a parametric ε. These users hold mobility data that is spatially and temporally

similar to IP , such a similarity is detected thanks to the classifier Ck. Obviously, a

user is unique if its anonymity set consists of a single element. Such users are more

sensitive to privacy risks. In contrast, similar users are more likely to be in the same

anonymity set and, thus, less distinguishable (i.e., non-unique).

In this chapter, the uniqueness computation is based on anonymity set construc-

tion. Contrary to existing solutions that require sharing raw mobility data either

with a trusted server (i.e., centralized architectures) or with peers (i.e., decentralized

architectures), as discussed in Chapter 2, Section 2.3.2, SAFER does not require

users to share their data. Instead, only vectors of probabilities produced by a fed-

erated learning model are used to form anonymity sets based on historical trained

data, which is a novel way to compute uniqueness.
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Figure 4.3: Example of anonymity set construction in SAFER

Figure 4.3 illustrates an example of how the uniqueness is computed in SAFER,

where 4 users U1, U2, U3 and U4 are involved. Here, user U3 wants to assess the

uniqueness of a set of mobility points IP (depicted in the left part of the figure). To

this end, U3 uses the latest version of the ID classifier (step 1 in the figure), which

produces a confidence vector for IP , (0.02, 0.45, 0.5, 0.03) (step 2 in the figure). In

this vector, Pr(Ui) represents the probability that IP belongs to the user Ui. From

this figure, we observe that U3 is the most likely owner of IP according to the classifier
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Ck. Then, given ε, SAFER evaluates the uniqueness in step 3 and constructs the

corresponding anonymity set, e.g., when ε = 0.2, AnonymitySet(IP , Ck)={U3, U2}
(step 4 in the figure). Consequently, IP is not unique and it has an anonymity set

of size two containing both U3 and U2. Intuitively, this means that IP is likely to be

re-associated to either U3 or U2 with the same probability plus-minus 0.2.

4.4 Experimental Evaluation

In the following, we first present the implementation details of SAFER and our

experimental environment in §4.4.1. Then, we present the evaluation of SAFER,

which aims at answering the following questions:

• What is the impact of SAFER configuration parameters on the uniqueness of

mobility data? (§4.4.2)

• How does the uniqueness measured by SAFER compare to a centralized

baseline? (§4.4.3)

• Can we use SAFER dynamically? (§4.4.4)

• What can SAFER say about privacy risks beyond the binary measure of

uniqueness? (§4.4.5)

• What is the potential re-identification risk of unique mobility data? (§4.4.6)

• Does SAFER scale in the number of mobile users and what is its computational

cost? (§4.4.7)

4.4.1 Implementation and Experimental Environment

SAFER Implementation

Our system is developed in Python using different libraries, mainly including Py-

torch [10] and Keras [7] for implementing the LR and the Bi-LSTM models, respec-

tively. We use the S2Geometry library [11] for the conversion of mobility points into
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cells of approximately equal size ranging between 100 meters and 200 meters. Addi-

tional libraries are also used for data preprocessing (e.g., Pandas, Numpy, Word2Vec).

In SAFER, we include participating users by considering the data coming from

real-world mobility datasets.

In our implementation, we experimented different machine learning models for

mobility data points including logistic regression (LR) [130], decision trees [82], and

random forests [45]. The LR model was empirically chosen. It was a simple, yet

effective choice in our work. In the FL protocol, the training process is performed

by rounds. A round is a learning cycle where participating users train their model

locally with their local data. In datasets with 30 days like MDC, Privamov, and

Geolife, the training process is done chronologically every 24 hours (i.e., 30 rounds),

and in the MCOC-Shanghai dataset with 11 days of mobility, the training process is

done every 6 hours (i.e., 44 rounds). The uniqueness evaluation can be performed

at any point in time using the latest version of the global model. For instance, if

a user wants to test a given mobility data at round i, the user retrieves the latest

generated model Ci−1 to assess the uniqueness. For both the LR and the Bi-LSTM

model, we used a stochastic gradient descent optimizer with a learning rate ranging

between 0.001 and 0.01 and a batch size equal to one. We considered the categorical

cross-entropy loss function. In the Bi-LSTM model, the trajectories are embedded

into feature vectors of size 300 with a window of size 50. We set the number of hidden

layers to 250 layers. These values are empirically found after several experiments.

To ease the reproducibility of our results, our system is available as an open source1.

Experimental Setup

Our experiments are carried out on a well-known academic cluster of machines [24]

using machines with 2 CPUs intel Xeon E5-2650 v4, 12 core/CPU, and 128GB RAM.

To accelerate the training process of our federated ID Classifier, the machines were

equipped with a GPU of type GeForce RTX 2080 Ti. In all the experiments, we set

the parameter ε to 0.001 unless specified differently. In addition, in our evaluation

scenario, we vary P i.e., the size of the tested set containing mobility points between 1

and 5 for both SAFER and the baseline system. The latter is set to 3 when the focus

is not on P unless specified differently. The number of draws in both SAFER and

1https://gitlab.liris.cnrs.fr/bkhalfoun/safer (Private Access)
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the baseline system is set to 100 draws (i.e., for each user trace, we select randomly P

points 100 times). The length of tested trajectories for trajectory-based uniqueness

is set to 6, 12, and 24 hours.

Datasets

In our experiments, we use four real-world mobility datasets, namely Geolife [257],

MDC [135], Privamov [169], and MCOC-Shanghai dataset collected from a major

cellular operator in China in the city of Shanghai [1]. The latter contains call detail

records of users initiating or receiving calls, messages, or any data. In all the datasets,

each user has one mobility trace. In our experiments, we select only the most active

month (i.e., 30 days) of Geolife, MDC, and Privamov datasets and sample them

with a resolution of 1 hour (i.e., select a mobility point each 1 hour). Due to the

large volume of the MCOC-Shanghai dataset, we processed it as follows: we removed

redundant GPS coordinates and kept only users with more than 20 records. After

that, we selected the most active users in the dataset. Details about each dataset’s

characteristics are described in Table 4.1. For the POI-based data representation, we

used an existing spatio-temporal clustering algorithm to extract POIs [193]. It has

two parameters: the diameter of the clustering area, and the minimum time spent

inside a POI. They are respectively set to 200 meters and 15 minutes.

Dataset Type of data Location Area (km2) #Users/Traces #POIs #Records

MDC [135] GPS Lausanne 41 144 4950 13788

Privamov [169] GPS Lyon 48 48 3123 4588

Geolife [257] GPS Beijing 16,411 42 1458 3084

MCOC-Shanghai [1] CDR Shanghai 6,340 10,000 N/A 846,239

Table 4.1: GPS and CDR datasets

Baseline System

In order to assess the accuracy of the uniqueness measurement performed by SAFER,

we use the well-established centralized solution proposed in [64] as a ground truth

baseline. In this baseline system, the uniqueness of mobility data is measured in

the following way. For a given dataset D containing one mobility trace T for each

user, a random set of points IP picked from a trace T is considered as unique in
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D (i.e., uniquebaseline(IP )=1), if there is exactly one trace in D that contains IP .

If another mobility trace T ′ that has a set of points similar to IP is found, then,

IP is considered non-unique. In this definition, the notion of similarity between

mobility points is defined with respect to a spatial resolution Rspatial and a temporal

resolution Rtemporal. Rspatial is a distance under which two data points are considered

as geographically similar while Rtemporal is a time difference under which two data

points are considered as temporally similar. In our experiments, as we want to

evaluate the uniqueness of a whole dataset with respect to a set size of P points

(where P is a parameter), the above operation (i.e., uniquebaseline(IP )) is done for

all the traces of the dataset by randomly picking sets of P mobility points in each

mobility trace and repeating this process a given number of iterations. The number

of iterations is set to 100 iterations (i.e., draws). In addition, the spatial and the

temporal resolution are set to 200 meters and 2 hours respectively.

Evaluation Metrics

In this section, we formally define the metrics used to evaluate our system.

Uniqueness rate . The uniqueness rate of a dataset D is computed, as described in

Algorithm 2. There are two additional parameters that are used in the computation

of the uniqueness rate of D that are P , the number of mobility points on which

the uniqueness is computed and x the number of iterations. Specifically, for each

mobility trace T belonging to a user in D (line 3), x iterations are performed (line 4).

In each iteration, P points forming a set IP are randomly extracted from T (line 5)

and their uniqueness is computed (line 6). The uniqueness rate of D is increased

each time a random pick IP is identified as unique (line 7).

SAFER Accuracy . The accuracy of SAFER is the ratio between the correct

predictions of SAFER while considering the baseline system as ground truth and

the total set of tested mobility data. The good predictions represent true positives

(TP) and true negatives (TN) i.e., what SAFER predicts the same as the baseline

system. The accuracy of SAFER is defined as in Equation 4.3.

Accuracy SAFER = TP + TN

|D| ∗ x
(4.3)

Classifier accuracy . This metric measures the accuracy of the ID classifier.
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Algorithm 2 Uniqueness rate of mobility data

1: function UniquenessRate(D, P , x )

2: cpt = 0 initialize a counter of unique data

3: for each user’s trace T in D do

4: for each iteration it in range(x) do

5: IP = GenRandom(T, P ) generate randomly P mobility points from T .

6: if uniqueness(IP , Ck)=1 then

7: cpt = cpt+ 1
8: end if

9: end for

10: end for

11: rate = cpt
|D|∗x

12: Return rate

13: end function

Specifically, it measures the amount of data that the ID classifier can re-associate to

its originating user (i.e., when the originating user class got the highest probability

of owning the data, i.e., top 1). More formally, let D be a mobility dataset, IP the

randomly selected P mobility points, Ck the current version of the ID classifier and

the id function, an oracle capable of revealing for each anonymous mobility data IP ,

its owner identity. The classifier accuracy is defined as in Equation 4.4.

Accuracy IDClassifier =

∑
IP∈D

1, if Ck(IP ) = id(IP )
0, otherwise

|D| ∗ x
(4.4)

4.4.2 Preliminary Evaluation of SAFER

Since SAFER comes with a set of configuration parameters, one could ask what is

the impact of these parameters on the uniqueness of mobility data. To answer this

question, we first study the impact of P on the uniqueness metric while ε is set to

0.1. Then, we study the impact of ε on the uniqueness metric while P is set to 2.

We also evaluate the accuracy of the ID classifier to assess its effectiveness. All the

experiences are conducted on raw GPS data of MDC, Privamov and Geolife datasets.
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Impact of the number of points P

We depict in Figure 4.4 the uniqueness rate of SAFER while increasing the number

of points P. Over all the datasets, we observe that the higher the value of P , the higher

the uniqueness of mobility data. Specifically, in the MDC dataset (Figure 4.4a),

the uniqueness considerably increases from 41% to 74% when P varies between 1

and 5. This illustrates that users’ mobility data becomes more distinguishable and

thus more unique when P is higher, which may lead to a higher privacy exposure

e.g., unique mobility data is more subject to re-identification. The same observation

can be made in the Privamov dataset (Figure 4.4b). In particular, the uniqueness

rate increases with +16% when P ranges between 1 and 5. Finally, in the Geolife

dataset (Figure 4.4c), the uniqueness is already high (82%) when P=1 and reaching

up to 92% when P=3. This is due to the nature of the dataset, which contains 42

users, distributed over a large surface (16,411 km2). As a result, each user’s mobility

behavior is distinct, and the visited locations are relatively sparse and thus more

distinguishable.
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Figure 4.4: Impact of P on uniqueness results

Impact of ε Parameter

In Figure 4.5, we illustrate the evolution of the uniqueness rate while varying the

parameter ε. The results show a similar tendency to the parameter P . In particular,

in the MDC dataset (Figure 4.5a), the uniqueness rate increases considerably (+17%)

while reducing the ε value from 0.1 to 0.0001. Decreasing ε leads to minimizing

the distance between the probability of being the originating user of the mobility

data and the probability of owning the data by others in the system. In addition,
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the number of users influences the impact of ε. Specifically, MDC has a higher

number of users in comparison to Privamov and Geolife datasets (i.e., 144 users vs.

48 and 42 users), distributed over a small area of 41 km2. Thus, it is more likely

that the remaining 43% of non-unique mobility data (around 6192 mobility records

when ε=0.1) become unique when ε is set lower. Whereas in the Privamov and

Geolife datasets (Figure 4.5b and Figure 4.5c), the uniqueness rate slightly increases

(+9% and +7% respectively). This is due to the lower number of users (48 and 42

respectively), distributed over a relatively large area (i.e., 48 km2 and 16,411 km2).

Thus, when reducing the value of ε, it is less likely to create singleton anonymity

sets, as users have sparse locations. Specifically, there are only 27% and 10% (in

comparison to 43% in MDC) of non-unique mobility data for the Privamov and

Geolife datasets (i.e., around 1296 and 420 records, respectively).

0.1 0.01 0.001 0.0001
ε

0

20

40

60

80

100

Un
iq

ue
ne

ss
 (%

)

57 61 66
74

(a) MDC

0.1 0.01 0.001 0.0001
ε

0

20

40

60

80

100

Un
iq

ue
ne

ss
 (%

) 73 75 79 82

(b) Privamov

0.1 0.01 0.001 0.0001
ε

0

20

40

60

80

100

Un
iq

ue
ne

ss
 (%

)

90 92 95 97

(c) Geolife

Figure 4.5: Impact of ε on uniqueness results

Accuracy of the ID Classifier

As SAFER is based on an ID classifier, we evaluate how the latter is accurate

using the metric defined in Section 4.4.1. Towards that purpose, we consider the

latest FL model of the ID classifier and the same tested data for P ranging from

1 to 5 as in the previous experiments. Figure 4.6 illustrates the accuracy of the

ID classifier on raw GPS data taken from MDC, Privamov, and Geolife datasets.

Specifically, for the MDC dataset, the accuracy increases from 41% to 72% while

increasing the size of P , which means that the ID classifier can learn discriminative

and distinguishable mobility patterns from one user to another. Increasing P leads to

higher discrimination between users. In the Privamov dataset, the accuracy increases

slightly from 57% to 64%, and finally, in the Geolife dataset, we record a higher
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accuracy reaching up to 93%, which is due to the nature of the dataset. These results

confirm that our approach relies on an effective ID classifier.
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Figure 4.6: The accuracy of the ID classifier of SAFER

4.4.3 SAFER Accuracy

In this section, we evaluate the uniqueness rate of SAFER in comparison to a

centralized well-established baseline system in Figure 4.7. Then, we measure the

accuracy of SAFER while considering the baseline as ground truth in Table 4.2.

We conducted these experiments on raw GPS data of MDC, Privamov, and Geolife

datasets. Further, we analyze the uniqueness of different mobility data representations

taken from the same datasets using SAFER. To recall, we set the value of ε to 0.001.

SAFER vs. the Baseline System

In this experiment, we compare SAFER and the baseline system in terms of

uniqueness rate using the same randomly selected mobility points for both systems.

In addition, for a fair comparison between the latter two systems in terms of mobility

background knowledge, we consider the latest ID classifier of SAFER, which has

been trained on the whole users’ mobility dataset after multiple rounds, as for the

baseline system, which already knows the raw mobility dataset. Results are depicted

in Figure 4.7. They show that SAFER behaves similarly to the baseline system when

increasing P except at P=1, SAFER provides a higher uniqueness rate. Specifically,

in the MDC dataset (Figure 4.7a), the uniqueness rate increases for both systems

with an average negative gap of -9% for SAFER from P=3 to P=5. In contrast,

we notice that for P=1, SAFER exceeds the baseline with +18%. This behavior
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is acceptable because the ID classifier learns the presence or absence of a user at

different locations and times. Therefore, the classifier knows where the user mobility

is concentrated over time. As a result, SAFER can distinguish unique mobility

data earlier. In the Privamov dataset (Figure 4.7b), the evolution of the uniqueness

between the baseline and our system is relatively different until P=3. More precisely,

in the beginning, SAFER provides a higher uniqueness rate than the baseline (77%

vs. 52%). This is for the same reasons mentioned for the MDC dataset. After P=3,

both systems yield almost the same result. In the Geolife dataset (Figure 4.7c), both

SAFER and the baseline provide a high uniqueness rate whatever the value of P .

This behavior is due to the nature of the dataset, where the distribution of a small

number of users’ mobility points over a large area makes the users’ mobility data

more unique and thus easily distinguishable.
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Figure 4.7: Uniqueness with SAFER vs. the baseline system

Observation 1 : SAFER provides similar results of uniqueness compared to the

well-established centralized system for computing uniqueness of mobility data [64]

Accuracy of SAFER

To better compare the uniqueness measurements of SAFER with the baseline system,

we compute the accuracy, previously defined in Section 4.4.1. We consider the baseline

system results as a source of ground truth for our comparison. The results are shown

in Table 4.2. Overall datasets, the accuracy increases when P is high. Specifically,

in the MDC dataset, SAFER already achieves a high accuracy (75%) when P=3 or

higher. It means that SAFER tends to produce similar predictions to the baseline

system. This is because SAFER can approach the baseline system thanks to its

learning paradigm. It builds a global knowledge about users’ mobility that helps in
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uniquely characterizing users without accessing their raw data. Similar behavior is

observed in the Privamov dataset with 81% of accuracy when P=3. In the Geolife

dataset, the results are high reaching up to 94% accuracy when P=3. As previously

explained, this is because users’ mobility data is naturally distinguishable.

Observation 2 : From P = 3, SAFER provides accurate results in comparison to

the baseline as a source of ground truth.

Dataset MDC Privamov Geolife

P 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Accuracy SAFER (%) 59% 66% 75% 79% 82% 64% 78% 81% 83% 84% 79% 91% 94% 95% 96%

Table 4.2: Accuracy of SAFER

Analyzing Different Mobility Data Representations with SAFER

In the following, our objective is to evaluate the uniqueness rate of different mobility

data representations using SAFER. Specifically, we measure uniqueness for (i) raw

GPS data and POI-based data, then (ii) trajectory-based data with different lengths

of trajectories (6 hours, 12 hours, and 24 hours). Results are shown in Figure 4.8.

Overall datasets, we observe that POI-based data is more unique than raw GPS

data when P=3 and ε=0.001. Specifically, 81%, 82%, and 95% of POIs are unique

in MDC, Privamov, and Geolife, respectively. This is because POIs are semantically

sensitive locations such as home or workplace that uniquely identify a user and

characterize their mobility behavior.

(a) MDC (b) Privamov (c) Geolife

Figure 4.8: SAFER with mobility data points.
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Observation 3 : POIs are the most sensitive mobility data representation – even

more sensitive than actual location data points –, they allow to better and uniquely

distinguish users from each other.

For trajectory-based data, results are depicted in Figure 4.9. In this experiment,

we measure the uniqueness of all trajectories, where each of them is considered as

a whole instead of using random data points. For that purpose, SAFER involves

a specific ID model (i.e., Trajectory-CLASSIF) to handle trajectories. The

results show that the uniqueness rate increases when the trajectory length is longer

(+9% in MDC and +20% in Geolife), which means that longer trajectories allow

capturing recurrent mobility habits that uniquely identify the user. Unlike MDC

and Geolife datasets, in the Privamov dataset, trajectories with a length of 12 hours

provide a higher uniqueness rate than trajectories of 6 hours or 24 hours. This is

because shorter traces (6 hours) contain less discriminative patterns in comparison to

trajectories of 12 hours. However, trajectories with 24 hours length are less unique

than the latter (-3%). This is because the Trajectory-CLASSIF model detects

similar moving patterns that it could not detect on shorter traces. As a consequence,

users’ trajectories become non-unique.

(a) MDC (b) Privamov (c) Geolife

Figure 4.9: SAFER with trajectory data.

4.4.4 SAFER in a Dynamic Use Case

In this section, our objective is to compute the uniqueness of mobility data points

in a dynamic use case. A dynamic use case may correspond to scenarios where

users want to share their POIs in real-time (e.g., when a user visits a HIV center,
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participates in a manifestation, or takes a drink at a gay bar). Before posting such

locations, the user may wonder about their location privacy and thus perform a

location privacy risk assessment. To this end, we experiment SAFER with P=1 and

ε=0.001 on POI-based data of the MDC, Privamov, and Geolife datasets. Results

are depicted in Figure 4.10 and present the uniqueness rate per round. In each round,

we compute the uniqueness of POIs extracted on that day using the ID model of

the previous day (i.e., the latest model in our configuration). Overall datasets, we

observe a significant variation in the uniqueness rate between rounds with a tendency

to increase. This is due to the spatio-temporal locality of the generated POIs. In

other words, if the tested POIs are similar spatially/temporally to the past mobility

of other users, this creates a negative slope, whereas when the tested data is different

from the past trained data by the FL model, in this case, the uniqueness rate has a

positive slope. In particular, the uniqueness rate varies between 14% - 69% for the

MDC, 58% - 100 % for Privamov, and 6% - 80% for Geolife dataset.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Rounds (days)

0

20

40

60

80

100

Un
iq

ue
ne

ss
 (%

)

(a) MDC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Rounds (days)

0

20

40

60

80

100

Un
iq

ue
ne

ss
 (%

)

(b) Privamov

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Rounds (days)

0

20

40

60

80

100

Un
iq

ue
ne

ss
 (%

)

(c) Geolife

Figure 4.10: Uniqueness with SAFER over multiple rounds

Observation 4 : SAFER can be used dynamically in real-time to evaluate the

uniqueness of mobility data points.

4.4.5 Beyond Uniqueness: Evaluation of Anonymity Sets

This section focuses on non-unique users’ mobility data within each data representa-

tion. Precisely, we aim at measuring the size of anonymity sets for the remaining

non-unique mobility data in raw GPS, POI-based, and trajectory-based data in

MDC, Privamov, and Geolife datasets. We set P to 3 and ε to 0.001. The results

are illustrated in Figure 4.11 and present the size of anonymity sets in the form of
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boxplots with a mean value represented with a red line. The results show that raw

and POI-based non-unique data are blended with many other users when compared

with trajectories. Specifically, the size of anonymity sets is almost equal to the total

number of users in MDC, Privamov, and Geolife datasets with a mean value around

130, 47, and 37, respectively.

Observation 5 : Non-unique POIs and actual location data points are mostly hidden

in large anonymity sets. These locations usually correspond to public locations that

are frequently visited by most of the users.
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Figure 4.11: Anonymity set size of non-unique data for different data representations

For trajectories, the anonymity set size shows a high variability in the MDC

dataset (Figure 4.11a). Specifically, it varies between 2 and 125 users on average,

with a mean value ranging between 58 and 65 users in the anonymity set. Larger

anonymity sets reflect a similar mobility behavior of humans (low privacy risk),

for instance, when users borrow the same paths (e.g., highway) to go to work. In

contrast, the small anonymity sets reflect an uncommon mobility behavior (high
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privacy risk), for example, going to the emergency center at night. In the Privamov

and Geolife datasets (Figure 4.11c and Figure 4.11b), there is less variability in the

anonymity set size. Particularly, the Privamov dataset represents the mobility of

students, staff members, and their relatives from three universities in Lyon. The

participants are distributed over a small area of 48 km2. As a result, non-unique

trajectories are more likely to be similar and thus grouped in the same anonymity

set, e.g., students living in the same residence and studying at the same university.

For the Geolife dataset, non-unique trajectories are grouped in anonymity sets of

size almost the total number of users in the dataset, which means that the selected

value of the parameter ε is relatively optimal as it separates between unique and

non-unique trajectories while there are only few outliers.

4.4.6 Evaluation of Privacy Exposure of Mobility Data

In this section, we study the potential re-identification risk of sharing mobility data

if the latter falls between the hands of a malicious entity. To this end, we use an

existing state-of-the-art re-identification attack, called AP-Attack [152]. This attack

assumes a background knowledge for each user from which the attack constructs a

mobility profile in the form of a heat map synthesizing the user’s past mobility. Then,

upon receiving anonymous mobility data, the attacker tries to guess to which user the

data belongs. We use this attack to assess whether mobility data that is considered

unique by SAFER is indeed re-identified by an adversary who runs this attack. The

results are depicted in Figure 4.12. This figure illustrates both the re-identification

rate obtained by the adversary and the uniqueness estimated by SAFER on mobility

data taken from MDC, Privamov, and Geolife datasets when ε=0.001. Specifically,

the green bar represents unique and re-identified data, the red bar represents unique

and not re-identified data, the blue bar represents non-unique and re-identified data,

and finally, the orange bar represents non-unique and not re-identified data. From

these results, we observe that the green color dominates in most datasets with values

ranging between 33% - 63% for MDC, 57% - 76% for Privamov, and 77% - 90% for

Geolife. In other words, a large portion of unique data by SAFER is re-identified

by a potential adversary. For the unique and not re-identified mobility data (i.e., red

color), SAFER has a relatively conservative approach to assess the uniqueness of

mobility data with a small portion of data. Specifically, we record an average of 21%,
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15%, and 10% of data that falls in this case. Nevertheless, there is still a portion of

data (blue color) that SAFER could not consider as unique but that an adversary

was able to re-identify. This amount of data ranges between 4% and 14% on average

overall the datasets.
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Figure 4.12: Re-identification and uniqueness correlation.

4.4.7 SAFER Scalability and Computational Cost

In this section, we evaluate the scalability of SAFER when increasing the number

of users and study its computational cost.

Scaling the Number of Users in SAFER

In this section, we evaluate the uniqueness rate while scaling the number of mobile

users from 500 to 10,000 in the MCOC-Shanghai dataset. In addition, we compare

our results to the baseline system when P= 3 and ε= 0.0001. Results are depicted

in Figure 4.13. They illustrate that increasing the number of users affects the

uniqueness rate moderately. Specifically, for both SAFER and the baseline system,

the uniqueness decreases by -17% and -15%, respectively. It means that a crowded

place with the mobility of many users makes the user mobility more probable to be

similar to the mobility of the others and thus less distinguishable. Despite this slight

slope, the uniqueness is still high and close to the baseline with an average gap of

4%. This result demonstrates that our ID classifier is still effective when there is
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a large number of classes (i.e., users), and it is still able to discover discriminating

mobility patterns, which uniquely identify users even in the crowd.

Observation 6 : SAFER and its federated ID classifier are able to handle a large

number of users and their underlying classes.
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Figure 4.13: Uniqueness with SAFER vs. baseline system at different scales

Computational Cost of SAFER

In this section, we want to answer the following question: ”What is the computational

cost of SAFER while scaling the number of mobile users?”. To this end, we measure

the run-time induced by both SAFER and the baseline system, considering 500,

1,000, 3,000, and 10,000 users of the MCOC-Shanghai dataset. In SAFER, the

computation of uniqueness includes: (i) converting the data to feature vectors,

(ii) loading the latest ID classifier and predicting the confidence vector of the mobility

data, and finally, (iii) building the anonymity set. In the baseline system, we consider

the scenario where the algorithm has to verify the mobility trace of each user in

the dataset (i.e., worst-case scenario). The results are illustrated in Figure 4.14a

where we present the average execution time of uniqueness computation in both the

baseline system and SAFER. The results show that SAFER has a considerably

lower execution time (between 22 ms and 85 ms) in comparison to the baseline,

which reaches up to 8,126 ms while increasing the number of users from 500 to

10,000. Thus, we notice that increasing the number of users by 20 times increases
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the execution time by only 4 times, which is negligible in comparison to the baseline,

which increases the execution time by up to 20 times. Therefore, SAFER is less

costly because, instead of iterating over all users’ data to evaluate uniqueness, our

system uses the trained classifier to generate a confidence vector that constructs

the anonymity set. The size of the confidence vector and the different operations

mentioned above have a low influence on the execution time.

In addition, as SAFER follows the FL protocol, we measure the execution time

of the ID classifier during a learning round per user. The results are depicted in

Figure 4.14b. They show that the training time of a learning round per user increases

considerably, from 467 ms to 3,861 ms, when the number of users scales in the system.

This is due to the complexity of the model (higher number of classes and features).

Our results are acceptable since we train the model periodically at night, when the

user’s device is idle, charging, and connected to WiFi. Furthermore, this experiment

is conducted on a desktop machine (see Section 4.4.1), but it is still practical while

using a smartphone. Indeed, there exist frameworks for on-device optimized model

training which may help us in the future to deploy SAFER. Examples of existing

FL systems include Apple’s Core ML [2], the model used by Google’s Gboard [13],

or the one used for adaptive brightness on Google Pixel [5].
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Figure 4.14: Local computational cost of SAFER vs. baseline system
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4.5 Privacy Discussion

Although SAFER has promising results, we are aware that there is still room for

improvement. We discuss in the following the privacy limitations of SAFER and

possible countermeasures which could be combined with SAFER in the future.

4.5.1 Compromised Users in SAFER

In the FL protocol, participating users are considered as a critical component

of the architecture. They can possibly act as passive or as active adversaries.

Passive adversaries are honest-but-curious (i.e., semi-honest), they try to infer

private information about other users relying only on the aggregated model without

deviating from the FL protocol. In this direction, inference attacks are classified

into white-box and black-box attacks. Users have a full access to the FL model

in the former and can only query it in the latter [26]. Unlike passive adversaries,

active adversaries or malicious users try to learn private information of other honest

users [252] and may deviate from the FL protocol. Specifically, malicious adversaries

can either inject poisonous data to affect the aggregated model during the training

phase [106, 215, 83, 226] or can send a malicious model instead of the trained model to

the aggregator so that it outputs the target result desired by the adversary [37, 34, 23].

To mitigate such threats, many techniques are proposed in the literature. Some

techniques aim at detecting poisoned inputs that deviate from benign inputs [83].

Others rely on clustering [218, 37] and anomaly detection [20] to capture malicious

model updates. However such solutions require analyzing the FL client inputs

in clear while SAFER is based on secure aggregation which aims to mask these

inputs. Therefore, these solutions do not fit with SAFER. Alternative solutions

are proposed to verify model updates while keeping them protected [177]. Moreover,

homomorphic encryption can also be considered [124] in addition to masking-based

secure aggregation where users are grouped into clusters and the aggregation is

done per cluster [255, 231]. Finally, hardware solutions based on trusted execution

environments (TEEs) are also solutions that are effective and complementary with

SAFER. Indeed, TEEs can be used to protect the FL system in an end-to-end manner

both on the client side using solutions such as DarkneTZ [165] or GradSec [161]

and on the server side using solutions such as Sear [256]. In these solutions, all the
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model parameters are encrypted and are manipulated in clear only inside hardware

enclaves. These solutions also protect against poisoning attacks as the code can not

be modified by adversaries even with root privileges (e.g., the operating system).

4.5.2 Malicious Aggregator in SAFER

In this chapter, we consider the honest-but-curious threat model, which does not

protect against a malicious aggregator that would tamper with the FL model to

reveal sensitive information about a target user [184]. An attacker can also infer

sensitive information by exploiting the joint model to run membership inference

attacks or reconstruction attacks [176, 143]. To prevent such attacks, three categories

of methods are proposed in the literature. Differential privacy (DP) is one of

them [171, 16, 227, 214]. It adds noise to the local trained models before reaching the

malicious aggregator. However this method affects the accuracy of the global model

and thus can deteriorate the quality of the proposed service. Secondly, the secure

aggregation protocol is also an established security primitive in FL. However, it is

not sufficient as a malicious aggregator can select specific values for the aggregated

model so that to disclose the input of a target user [184]. To avoid such a behavior,

a verification of the aggregation result is required. Existing solutions are proposed in

this direction for FL applications [109, 241, 253]. Specifically, the authors in [241, 253]

use a homomorphic hash function (HHF) to verify the aggregation outcomes. However,

it needs an increasing computation and communication overhead due to the increasing

dimension of input data which is a clear limitation since the performance of the ML

model highly depends on its size (i.e., number of parameters). To handle this issue,

the authors of VeriFL [109] focus on designing a verification scheme dedicated for

secure aggregation of FL applications with high dimension inputs. They proposed

a commitment/decommitment scheme to verify the aggregation combined with the

HHF proposed in [29] to reduce the communication overhead. Finally, hardware

solutions (TEEs) can also be used to protect against a malicious FL server [256, 166].

TEEs have the advantage of preserving the accuracy of the trained model and they

are compatible with SAFER.
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4.6 Summary

In this chapter, we presented SAFER, the first distributed user-side privacy risk

assessment metric for mobility data. SAFER considers different types of mobility

data (GPS or CDR), and different representations of data (actual locations, POIs,

trajectories). Unlike state-of-the-art solutions, SAFER is able to determine not

only if but how much a mobility data is indistinguishable from other users’ data.

To this end, it follows a federated learning approach, to locally and periodically

train, on users’ devices, a classification model that aims at identifying to which user

a mobility data is likely to belong. The underlying model differs according to the

input mobility data. For single data points, SAFER uses a simple, yet effective LR

model, whereas for trajectories with sequential data points, SAFER uses a Bi-LSTM

model to capture recurrent moving patterns. Both models allow building anonymity

sets, which are used by SAFER to estimate the uniqueness of mobility data. Our

experimental evaluation on four real-world mobility datasets show that SAFER

is able to provide comparable results to a well-established centralized baseline and

to efficiently scale to thousands of users. In addition, there is a clear correlation

between the uniqueness estimated by SAFER and the re-identification success rate

performed by a potential adversary.
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5.1 Motivation

In this chapter, we are interested in addressing the challenge of location privacy

in the use case of crowd sensing applications. A crowd sensing application is an

application where a set of (paid or volunteer) users carry a device equipped with

a GPS and an environmental sensor (e.g., an NO2 sensor), which could be their

own smartphone or a dedicated device. Along their journey, the application collects

timestamped, geo-located traces with the corresponding environmental measurements

(e.g., pollution measurements). Then, it periodically sends this data to a central

server called the Mobile Crowd sensing Server (MCS), which aggregates the collected

data and provides updated information to its clients. The updated information

can be related to traffic congestion monitoring [100], air quality monitoring [66]

or radioactivity level monitoring near nuclear sites [46]. However, the downside

of these applications is that the collected data may constitute a serious threat to

the participants’ privacy if this data falls between the hands of curious/malicious

adversaries. Indeed, various studies have shown the privacy threats affecting mobility

data. This has been extensively presented in Chapter 2 with a particular attention

on re-identification attacks which jeopardize user’s identity disclosure.

To overcome the above threats, the research community has been actively propos-

ing diverse LPPMs offering different guarantees in terms of privacy, utility and

performance [199, 21, 196, 119]. In this context, a problem that mobile app develop-

ers aiming at enforcing privacy-by-design have to solve is : ”how to objectively compare

the privacy vs. utility tradeoff offered by different LPPMs and choose the right one

?” For instance, how to decide whether an LPPM enforcing k-anonymity [212] (with

a given value of k) is better than another one enforcing ε-differential privacy [69]

(with a given value of ε)? To answer this question, the regulator (e.g., the EU GDPR

in article 35) requires to carry out privacy risk assessment, which in our context

translates into assessing which solution yields the smallest re-identification risk.

In practice, solutions that have been explored in the literature to select among a

set of LPPMs generally rely on re-identification attacks [127, 192, 206]. Specifically,

these solutions apply various LPPMs on a given trace and choose the LPPM (and

its corresponding configuration) that better resists a given set of re-identification

attacks [87, 193, 152]. The role of these attacks is to link anonymous traces to past

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0089/these.pdf 
© [B. Khalfoun], [2022], INSA Lyon, tous droits réservés



5.1. Motivation 99

user data. However, to reach this objective, the proposed solutions assume a trusted

proxy server as existing re-identification attacks are centralized: they build user

profiles using past unprotected mobility data and use them to estimate to whom a

given protected trace belongs to.

In this chapter, we overcome this assumption and propose EDEN, the first

effective privacy-preserving solution for mobility data that performs re-identification

risk assessment without requiring to send raw data to a remote server and that

provides high data utility. Specifically, EDEN operates in two phases: (1) a phase

on which a re-identification risk assessment model called FURIA is periodically

trained on the users’ devices and (2) a second phase where the latest joint model is

used along with utility metrics to choose the best LPPM (among a set of LPPMs

and corresponding configurations) each time a user wants to send a geo-located trace

to the MCS. To avoid centralizing raw data in a trusted proxy server, we design

FURIA using the FL paradigm [159].

We extensively evaluate EDEN using three real-world mobility datasets. We

compare the performance of EDEN, both in terms of privacy and utility to the

one of three off-the-shelf LPPMs using three configurations for each LPPM to cover

the spectrum from strong privacy guarantees (despite the resulting impact on data

utility) to strong utility objectives (with weaker privacy guarantees). For measuring

the privacy offered by EDEN, we considered three state-of-the-art re-identification

attacks (i.e., POI-attack [193], PIT-attack [87] and AP-attack [152]) and combine

them in a single, stronger attack that relies on majority voting. This attack is run on

the MCS (considered as an adversary) and is different from FURIA. For measuring

utility, we use two types of metrics: a quantitative metric and a qualitative metric.

The quantitative metric, i.e., area coverage, evaluates how far the area covered by a

protected mobility data overlaps with the one of the original data. The qualitative

metric captures the degradation in pollution measurements taken from a fourth

real-world air pollution dataset [31]. An additional qualitative metric is considered,

i.e., range queries. It counts the number of users going through regions. This metric is

useful for analyzing traffic congestion in a city, and it is taken from a fifth cab drivers

mobility dataset in the city of San Francisco. In addition to comparing EDEN to

state-of-the-art LPPMs, we consider two extreme solutions: a Privacy Oracle, which

knows the attack run by the MCS and chooses the best LPPM accordingly and a

Utility Oracle (referred to as NOBF), which sends pseudonymized raw data to the
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MCS without applying any LPPM. The results show that EDEN provides a better

tradeoff between privacy and data utility compared to individual LPPMs with a fair

behavior for almost the users in the system (i.e., users with similar mobility patterns

receive similar privacy gain by EDEN).

The work proposed in this chapter has been published and presented in Ubicomp

Conference 2021 [128].

Roadmap The remainder of this chapter is structured as follows. First, we illustrate

our research problem in Section 5.2. Then, we describe the system model and an

overview of our solution in Section 5.3. Further, in Section 5.4, we present a detailed

description of EDEN and FURIA. An experimental evaluation of our solution is

then presented in Section 5.5 and finally, we discuss the privacy limitations of EDEN

in Section 5.6 and conclude the chapter in Section 5.7.

5.2 Problem Illustration

In crowd sensing applications, users contribute mobility data, which contains the

user ID (e.g., the device MAC address), the user location (e.g., GPS latitude and

longitude), the time at which the data has been collected, and the actual environ-

mental measurement (e.g., NO2 measurements). Despite the pseudonymization of

the user identity and techniques to hide the IP address of the originating device (e.g.,

by using anonymous communication protocols such as TOR [205]), sharing mobility

data may still leak information about users as discussed in the following section.

Consider an app developer, say Bob, who has to integrate privacy-by-design in

a crowd sensing application. Bob needs to choose an LPPM with the appropriate

configuration to protect users’ mobility data before sharing it with a MCS. Bob does

not want to implement yet another LPPM as there already exists a variety of LPPMs

proposed by the research community. However, the actual level of privacy offered

by each LPPM and the impact of the latter on data utility can dramatically vary

according to how these LPPMs are configured.

To better illustrate this problem, we perform (on behalf of Bob) an experiment
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Figure 5.1: Impact of LPPMs on privacy vs. utility tradeoff in the Privamov dataset.

on the Privamov dataset [169]. We compare the privacy vs. utility tradeoff offered

by three state-of-the-art LPPMs: Geo-Indistinguishability [21], Trilateration [119]

and Promesse [196] noted Geoi, TRL and PROM, respectively. In order to find

a satisfactory compromise between privacy and utility, we configure each of these

LPPMs with an average privacy level, i.e., ε = 0.005, r=2km and α=100m for Geoi,

TRL and PROM, respectively. We provide more details about further configurations

in Section 5.5.1. In addition to these three LPPMs, we also evaluate two alternatives:

NOBF, which represents pseudonymized raw data without any additional obfuscation

and Privacy Oracle, which is an oracle that selects the best LPPM for each individual

trace (the LPPM which prevents re-identification and maximizes the data utility).

We measure privacy as the ratio of user’s mobility data which is not re-identified

by the MCS-side attacker over all mobility data. The attacker applies a majority

voting using three state-of-the-art attacks, namely, POI-Attack, PIT-Attack and

AP-Attack. We refer to this attack as Mv-Attack (for majority voting attack). On

the other hand, we evaluate utility with the area coverage (AC) metric [198]. In

Figure 5.1, an aggregate value of AC is depicted in the x-axis. It is computed as in

Equation 5.1; where F =
(
0 0.25 0.5 0.75 1

)
refers to the vector of utility factors

and U =
(
u0 u0.25 u0.5 u0.75 u1

)
refers to the data proportion with AC = 0 or AC

∈ ]0 0.25] , ]0.25 0.5] , ]0.5 0.75] and ]0.75 1] of the raw mobility data, respectively.

Utility = F T .U (5.1)
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Note that Equation 5.2 is verified:

∑
i∈F

ui = 1 (5.2)

If no LPPM protects against Mv-Attack, the Privacy Oracle chooses to drop the

data instead of sending it to the MCS. Privacy Oracle constitutes the best choice

that can be done (from a privacy perspective) if Mv-attack is known by the defender

and if all the data is centralized in a trusted proxy server. On the other side of the

spectrum, NOBF is the best choice that can be done to preserve the data utility.

Results are depicted in Figure 5.1. In these results, we can observe that the

Privacy Oracle protects 100% of the data and provides 65% of AC, which is better

both in terms of privacy and data utility compared to individual LPPMs. In practice,

the Privacy Oracle finds an LPPM resisting the attack for 96% of the traces and

drops 4% of the remaining traces.

Therefore, we conclude that a Privacy Oracle has the potential to outperform

all other state-of-the-art LPPMs in terms of privacy vs. utility tradeoff. However,

the latter assesses the privacy using the Mv-Attack, which needs to centralize the

raw data to a proxy server. The goal of this chapter is to design a solution that is as

close as possible to the Privacy Oracle without centralizing the raw data in a proxy

server.

5.3 EDEN Design Principles

In the following, we first present an overview of EDEN and its architecture in

Section 5.3.1 and then we describe the threat model we considered in Section 5.3.2.

5.3.1 EDEN Overview

EDEN is a user-side mobility data protection system for crowd sensing applications.

Its architecture is depicted in Figure 5.2. To better illustrate how it operates, let us

consider Alice (depicted in the center of the figure), a participant in a crowd sensing

campaign. Along her journey, Alice collects geo-located environmental measurements.
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At a given point in time, the crowd sensing application decides to send the collected

data (depicted at the bottom of the figure) to the MCS. Before sending this data

to the MCS, EDEN automatically sanitizes the data without the implication of

Alice. It applies a given LPPM among a set of available choices. For each LPPM,

EDEN considers various configurations going from configurations that enforce strong

privacy to ones that rather try to preserve data utility. Specifically, EDEN applies

each LPPM to the raw trace and evaluates both: (1) the re-identification risk of the

trace using this LPPM and (2) the corresponding data utility. For evaluating the

re-identification risk, EDEN uses FURIA, a federated learning model, trained as

depicted in the left part of Figure 5.2. When Alice’s device fulfills a set of predefined

requirements to participate in the FURIA training process (e.g., her device is idle,

charging, and connected to WiFi), it downloads from a server called the FURIA

Master Server, the latest FURIA global model, trains the model using its own

collected data and sends the updated model back to the server. Once the server

receives a predefined number of users’ responses, it aggregates by averaging them and

provides a new version of FURIA model. This way, FURIA continuously learns

and dynamically improves its global knowledge with new discriminating mobility

patterns of incoming users. The training process of FURIA is performed by night

independently from the process of protecting mobility traces using EDEN, which is

illustrated on the right part of Figure 5.2. In this part of the figure, EDEN prepares

batches of protected mobility data and sends a batch periodically (if any) to the

MCS. This batch of geo-located data has been protected by using an LPPM for which

the re-identification risk assessment performed using FURIA passed (i.e., FURIA

could not re-identify Alice as the originating user of this trace). If two LPPMs (or

two variants of the same LPPM) pass the risk assessment, the one that has the best

data utility is chosen. If no LPPM passes the FURIA risk assessment, then EDEN

makes a decision according to a given configuration policy. For instance, it would

drop the data if it is configured with a conservative policy. We describe other policies

than the conservative one in Section 5.4.2. The configuration policy choice in EDEN

can be set by the participant according to their preferences.

In this chapter, we considered three state-of-the-art LPPMs, each having three

configurations, and we used three utility metrics further described in Section 5.5.

Though, EDEN is not tight to a given set of LPPMs or utility metrics. More LPPMs,

with their corresponding configurations and more utility metrics whether quantitative

or application-dependent can be easily used in EDEN.
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Figure 5.2: EDEN overview

5.3.2 Threat Model

As depicted in Figure 5.2, EDEN uses FURIA to assess the re-identification risk

of a protected trace. FURIA is designed following a traditional client-server FL

protocol using a master server. The communication channels between the clients and

this server are encrypted.

Furthermore, we assume that users’ devices are trusted and that the data protected

by EDEN is sent anonymously to the MCS (e.g., using an anonymous communication

protocol such as TOR [205]). We consider the MCS as an adversary and we assume it

to be honest-but-curious (i.e., semi-honest [191]). Specifically, the MCS collects and

processes geo-located environmental measurements to produce aggregate data for its

clients. It performs this task honestly, i.e., without deleting or altering the received

data. However, it is curious because he may exploit the received data to learn valuable

private information which may interest him or any third party (to whom he might

sell the data for advertising purposes). For instance, the adversary may conduct

inference attacks on the received data and consequently reveal the user identity or

other sensitive attributes (e.g., POIs, social links, etc.,), even if the participant is

using the application anonymously [131]. Specifically, we assume that the MCS tries

to link the received data to known mobility profiles he has previously built based on
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leaked mobility data. To reach this objective, we consider that the MCS implements

the latest available user re-identification attacks he found in the literature. Precisely,

it combines three state-of-the-art attacks, namely, AP-Attack [152], POI-Attack [193]

and PIT-Attack [87] in a single, stronger majority voting attack (Mv-Attack). Then

upon receiving a trace protected by EDEN, Mv-Attack runs the three attacks and

performs a majority voting between the predicted values of these attacks and returns

the identity label that received more votes.

5.4 EDEN Detailed Description

In this section, we dive into a detailed description of how the re-identification

risk assessment is done with FURIA in Section 5.4.1 and how mobility traces are

protected with EDEN in Section 5.4.2.

5.4.1 Re-identification Risk Assessment with FURIA

FURIA’s global model is a crucial part of our contribution. It applies FL principles

to build a re-identification risk assessment model. The latter learns discriminating

mobility patterns that uniquely identify users and helps our system to assess LPPMs

in a privacy-preserving way. As depicted in Figure 5.4, FURIA involves two parties:

(i) mobile user devices where raw mobility data is stored and where model updates are

computed, (ii) the FURIA Master Server where model updates provided by various

users are aggregated. FURIA operates as follows. First, the FURIA Master Server

initializes a classification algorithm with random parameters. In this chapter, we use

multi class logistic regression, a simple yet effective multi class classification method

that satisfies very well our objectives, after an empirical experiment. Precisely, we

compared three methods of classification, namely, multi class logistic regression

(LR) [160], random forest (RF) [45] and a multi-layer perceptron neural network

(NN) [180]. Figure 5.3a shows the re-identification rate over three unprotected

datasets: Geolife, MDC and Privamov, described in Section 5.5.1. LR is slightly

better than RF with +3% of re-identification rate in Geolife and both LR and RF

are better than NN with up to +11%. Thus, the retained model for the rest of our

work is LR.
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The FURIA Master Server sends this model to all participants (step 1 and

2 in Figure 5.4). This model is denoted as AF0. Each participant Uj transforms

its raw mobility data of the day to feature vectors (step 3 ) and trains the model

AF0 locally on the generated feature vectors. Once all participants have finished the

first learning round, they send their local updates (i.e., gradients) to the FURIA

Master Server, (step 4 ). Upon receiving model updates, the FURIA Master Server

aggregates users’ gradients and produces an updated model, denoted AF1, ready to

use at the following day. This process is iteratively done and generally takes place

at night time in order to avoid any interference with other applications running on

the user’s device. Indeed, model updates are computed when the user’s device is

idle, plugged in and connected to WiFi, which is generally the case at night time.

FURIA processing is inspired by active/online learning where daily mobility data is

unrolling between the train set of the current learning round and the testing set of

the following one.

In FURIA, three types of features are considered: (i) spatial features (ii) temporal

features and (iii) aggregated features. Spatial features. To synthetically capture

spatial information, records (i.e., lat and lng) are projected on a heat map. A heat

map is a set of cells of equal size. For each cell, the proportion of mobility records

in a given trace T that belongs to that cell is computed. This corresponds to the

cell visit rate. Temporal features. The temporal information is considered to

differentiate similar mobility patterns but at different times of the day. In FURIA

we use the average time of the day of all the records in T . This is convenient in the

case of crowd sensing applications, where mobility traces are generally in the order

of minutes or hours length without exceeding a day. Aggregated features. Other

types of information are extracted to enrich the user mobility profile. For instance,

the number of mobility records in T is considered. This allows to represent service

usage intensity. We also extract the centroid of the mobility trace T (i.e., centroid’s

latitude and longitude), to capture a central position of the user’s mobility in a map.

The spatial features are usually considered in related work [152, 138, 172]. In addi-

tion to this type of features, we explore several other types of features (e.g., temporal

and aggregated features) and evaluate their benefits for the user re-identification

model, as presented in Figure 5.3b. The results show that temporal and aggregated

features improve the re-identification rate of the attack. Specifically, the use of

combined spatial, temporal and aggregated features increases the re-identification
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success rate with +2%, +7% and +8% in comparison to the use of only spatial

features in Privamov, Geolife and MDC datasets, respectively.
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Figure 5.3: Empirical experiments.

5.4.2 Protecting Mobility Traces with EDEN

The detailed architecture of EDEN is depicted in Figure 5.5 and its behavior is

described in Algorithm 3. EDEN takes as input a user mobility trace T and a set of

LPPMs L with various configurations (i.e., low, medium, and high impact on privacy

vs. utility tradeoff) and returns as output a protected mobility trace T ′i , which

will be sent to the MCS. EDEN has four main components, the first component

Apply LPPMs applies exhaustively all the LPPMs implemented in EDEN with their

configuration variants on the raw mobility trace T stored on the user smartphone

(step 1 in Figure 5.5). As a result, it produces a set of obfuscated versions of the

same raw mobility trace i.e., C= {T ′1, T ′2, . . . , T ′n}. The second component Format

Data transforms the different obfuscated traces available in the set C into feature

vectors (step 2 in the figure). The third component Global Model FURIA uses the

latest version of the model AFi as a privacy risk assessment metric. Specifically, it

evaluates the user re-identification risk of each feature vector of the obfuscated data,

(step 3 ). If the model fails in predicting the right identity label associated with the

transformed mobility trace, the latter is potentially elected to be sent to the MCS.
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Figure 5.4: FURIA architecture

Otherwise, if the model succeeds in predicting the right identity label associated

with the mobility trace for all the considered LPPMs, three different policies can be

adopted by EDEN (step 4 ) as described later.

Finally, the last component in EDEN is Best Coverage. It selects the protected

mobility trace candidate that maximizes data utility. EDEN can consider various

utility metrics. In this chapter, we use the area coverage metric (AC) [198]. It

is computed between the original and the obfuscated mobility trace, T and T ′i
respectively, to measure how much the alteration caused by an LPPM affects the

regions visited by a user (step 5 ). We provide more details about the AC metric

in Section 5.5.1. Finally, the obfuscated mobility trace that better resists the re-

identification test performed by FURIA and that has the best utility is sent to the

MCS. The latter processes the received data and produces useful information for

users (step 6 ).

EDEN Policies

Three policies are considered by EDEN if a mobility trace is re-identified by FURIA.

The first policy is EDEN-pessimistic (EDEN-pes): it is the most conservative

policy as it simply deletes a mobility trace that FURIA is able to re-identify. The
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rationale behind this policy is that if FURIA is able to re-identify a mobility trace,

an external attacker could very well reach the same result. The downside of this

solution is that it causes data loss from the application perspective.

The second policy is EDEN-optimistic (EDEN-opt): an opposite solution to

the previous one where the mobility traces that FURIA is able to re-identify are

also sent to the MCS without applying any LPPM or by applying a default LPPM.

We use this policy as a baseline to assess the impact of sending traces despite the red

flag raised by FURIA regarding the re-identification risk of some mobility traces.

The third and last intermediary policy is EDEN-balanced where sending or

dropping mobility traces is based on a local metric evaluating how a considered

mobility trace is similar to past mobility traces of the same user. Towards this

purpose, we use the Topsoe divergence metric [52]. The latter is computed between

two probability distributions : (1) the heat map of the current raw mobility trace T

and the heat map corresponding to the past mobility data of the same user, which

is stored on the user’s device, (see Equation 5.3). It is a derived symmetric version

of the Kullback Leibler divergence [52] which measures the information deviation

between the user’s past mobility and the current one. If the deviation is high (greater

than a threshold empirically set to 0.8), the mobility trace is sent to the MCS,

otherwise, it will be deleted. The set value of the threshold fits well the distribution

of Topsoe deviation values.

dT opsoe(P,Q) =
∑

i

[
Pi ln ( 2Pi

Pi +Qi

) +Qi ln ( 2Qi

Pi +Qi

)
]

(5.3)
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Algorithm 3 EDEN algorithm.
INPUT:

T : mobility trace, L: a set of LPPMs, AFi: i
th model, AC: utility metric, policy:

{EDEN-opt, EDEN-pes, EDEN-balanced}, H: past user data, δ: deviation threshold

OUTPUT:

T ′: protected mobility trace.

1: function EDEN (T ,L,AFi,AC, policy, H,δ)

2: Candidates← ∅
3: for Lin L do Apply LPPMs

4: T ′ ← L(T )
5: V ′ ← FormatData(T ′) Transform T’ to a Feature vector V’

6: if AFi(V ′) 6= U then Candidates← Candidates∪{T ′} Re-identification

Risk assessment

7: end for

8: if Candidates 6= ∅ then

9: return { arg max
T ′∈Candidates

(AC(T, T ′))[0]}
10: else EDEN Policies

11: if policy =”EDEN-pes” then return ∅
12: if policy =”EDEN-opt” then return T or L(T ).
13: if policy =”EDEN-balanced” then

14: P Heatmap(T )
15: Q← Heatmap(H)
16: deviation dT opsoe(P,Q)
17: if deviation > δ then

18: return T

19: else

20: return ∅
21: end if

22: end if

23: end if

24: end function
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5.5 Experimental Evaluation

We start this section by describing our implementation and experimental setup in

Section 5.5.1 and then, our evaluation answers the following questions:

• How does EDEN perform against an adversary attack compared to competitors?

(Section 5.5.2)

• What is the impact of EDEN on data utility compared to competitors?

(Section 5.5.3)

• What are the LPPMs used by EDEN to effectively protect mobility data?

(Section 5.5.4)

• What is the run-time overhead of EDEN? (Section 5.5.5)

• How EDEN is fair in the protection of mobility data of similar users? (Sec-

tion 5.5.6)

5.5.1 Implementation and Experimental Environment

Experimental Setup

All the experiments related to the MCS attacker are carried out on a server running

an Ubuntu 14.04 OS with 50GB of RAM and 16 cores of 1.2GHz each. Both EDEN

and FURIA are developed in Python using the Pytorch library [10]. We used

S2Geometry library [11] for the decomposition of the map into cells of approximately

equal size. The cell edge length ranges from 212m to 296m. To accelerate the training

process of our federated learning model, we use a machine with NVIDIA TESLA

V100 GPU. Participating users are simulated by considering the data coming from

real-world mobility datasets.
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Mobility Datasets

In our experiments, we use three real-world publicly available mobility datasets with

a summary given in Table 5.1. These datasets are: Geolife [257], MDC [135] and

Privamov [169]. In our experiments, we extracted only the most active month (i.e.,

30 days) of each dataset for a fair comparison.

In the context of location privacy, these datasets are used by many state-of-the-art

LPPMs in order to assess the effectiveness of their approach [196, 127, 153, 193].

That is why, we decide to evaluate our approach on these datasets to be in line with

the research community.

Table 5.1: Description of datasets

Name Geolife MDC Privamov

# users 42 144 48

location Beijing Geneva Lyon

# records 1,468,989 904,282 774,401

area (km2) 16,808 41.37 47.87

Evaluation Scenario

We simulate mobile users that correspond to the users of the previously described

datasets. We assume that the data corresponding to the first 15 days of each dataset

has been leaked to the MCS. Using this data, the MCS builds user profiles. The

same data is used to train the first FURIA model (i.e., AF0) to be in the same

conditions as the adversary. The remaining 15 days of each dataset are then used

as a test set. Specifically, FURIA is inspired by active/online machine learning.

Its training/testing mobility data is unrolled with a time window of 24 hours. For

example, the 16th day mobility data is used to test AF0 and to train AF1, the 17th

day mobility is used to test AF1 and to train AF2 and so on. It means that our

training set of mobility data is incremented day by day and many phases of test

occur on each newly trained model AFi.

Moreover, as sharing data with the MCS in real-time is energy-consuming [89, 236],

we assume that the user’s crowd sensing application prepares batches of 30 minutes
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in length to be as close as real-time data transmission use cases, protects this data

using EDEN and periodically sends it to the MCS.

Upon receiving a geo-located trace, the MCS uses this trace to update its target

map. Simultaneously, the MCS tries to re-associate the received trace to one of the

user mobility profiles it has previously built, using Mv-Attack. We compare EDEN

to LPPMs that are either applied blindly on users’ mobility data or assisted with a

Privacy Oracle.

Utility Metrics

To evaluate the impact of EDEN and its competitors on the quality of the generated

data, there are two categories of utility metrics, proposed in the literature [199].

(i) Data-centric or quantitative metrics which measure the distortion between the

original and the obfuscated mobility data. In this chapter, as previously mentioned

in Section 5.4.2, we use the AC metric. To recall, it computes the overlap between

the obfuscated and the original mobility trace using the F1-score. This metric is

able to capture the degradation in data utility caused both by LPPMs that remove

data points (e.g., PROM), and the degradation caused by LPPMs that add data

points or move them spatially (e.g., TRL and Geoi). Thus, this metric can be used

in various applications, such as in transportation mobile applications where a data

analyst can use the AC metric to adapt the availability of public transportation

in areas according to visiting user density. (ii) Application-centric or qualitative

utility metrics, which compare the result of a given application before and after

applying an LPPM. In this chapter, we consider two real-world use cases. In the

first use case, we visualize the air pollution degradation map before and after the

application of EDEN and state-of-the-art LPPMs on a crowd sensing air pollution

dataset [31]. This map allows to detect areas where the level of gaseous pollutants is

high (e.g., hotspots of NO2 or CO). This dataset is described in Section 5.5.3. In the

second use case, we use range queries metric, a classical operation which compares

the number of unique users who go through areas during a time window before and

after obfuscation [196]. An illustrative example is provided in Figure 5.6, where two

range queries Q1 and Q2 of different radius are performed (the temporal dimension

is not represented). Before the obfuscation process, Q1 and Q2 return 3 and 1 users,

respectively, whereas after obfuscation, Q1 and Q2 return 1 and 3 users. Thus, the
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utility is measured as the range query distortion defined in [15]. In our example, the

distortion of Q1 is |3−1|
3 = 2

3 and the distortion of Q2 is |1−3|
1 = 2. Then, the average

query distortion is computed, i.e.,
2
3 +2

2 ≈ 1.333.

User A User B User C User D

Q1

Q2

(a) Before obfuscation

User A User B User C User D

Q1

Q2

(b) After obfuscation

Figure 5.6: Illustrative example of the range queries metric.

FURIA Configuration

To build FURIA, we opt for the multi class logistic regression (LR) algorithm.

The training of our global model is done over multiple rounds (Ri). Each round

represents a 1-day training, except the first round (R0) where a training set of 15 days

is used. The latter is considered as historical data stored on the user device and

previously leaked to the adversary (i.e., Mv-Attack has access to 50% of the mobility

dataset). Thus, we decide to start the training process with the same knowledge of

the adversary to be in the same conditions. We assume that users train the model

at the end of the day (e.g., at night time) with the data collected during that day

in order to prepare the model of the following day. Thus, the model is actively

trained by incoming mobility data and improves its global view day by day. In each

round, we run 100 epochs/user with a variable batch size. We tune the batch size

according to the number of collected traces per user participating in the given round.

In addition, we use the stochastic gradient descent optimizer (SGD) with a learning

rate of 0.001. These parameters are fixed empirically after several experiments.
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User Re-identification Attack Configuration

Mv-Attack is made by the combination of three state-of-the-art attacks, namely,

AP-Attack [152], POI-Attack [193] and PIT-Attack [87]. By combining these attacks,

we obtain an attack that is stronger than considering the attacks separately as the

adversary gets more confidence about the result of the re-identification process. Each

attack has a set of parameters, described below. POI-Attack and PIT-Attack have

two parameters for the extraction of POIs [259]. These parameters are the diameter

of the clustering area set to 500 meters and the minimum time spent inside a POI set

to 5 minutes to accommodate small traces. AP-Attack has a configuration parameter

that corresponds to the square cell size set to 800 meters (default value [152]).

Competitors

To evaluate EDEN, we select three state-of-the-art LPPMs, namely, Geo-Indistinguishably

(Geoi) [21], Trilateration (TRL) [119] and Promesse (PROM) [196]. We select these

LPPMs because they can be run on the user side (i.e., without any external knowl-

edge about other users’ mobility) and they provide diverse guarantees: differential

privacy, dummy-based obfuscation, and POI erasure, respectively. Each LPPM has

its own configuration parameters. These parameters have an impact on the privacy

vs. utility tradeoff. In our experiments, for Geoi, we set the privacy parameter ε to

0.01, 0.005 and 0.001. A lower value of ε leads to a higher level of noise added to

mobility records and consequently ensures a higher level of privacy. For TRL, there

is a circular region with a radius of r, that surrounds the real location of the user.

The chosen values of this parameter are 1 km, 2 km, and 3 km. A higher value of r

generates a bigger region for location dummies and consequently ensures a higher

protection level. And finally, for PROM, which has a parameter α that specifies the

distance between two successive mobility points, we set α to 50, 100, and 200 meters.

A higher value of α leads to a larger distance between points in a mobility trace and

thus ensures a higher protection level. However, the latter can cause serious data

loss, especially if a mobility trace is recorded in a short distance over a short period.

In addition to the above three LPPMs with their configurations, we also evaluate

two baselines: a Utility-centric baseline, referred to as NOBF, which corresponds to

sending the data to the MCS without obfuscation (i.e., sending raw, pseudonymized
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data); and a Privacy-centric baseline, referred to as Privacy Oracle. This baseline

is only used in the evaluation of the privacy vs. utility tradeoff. It represents a

solution where the selection of the best LPPM is driven by the attack performed by

the adversary. As such, perfect privacy can be reached but the chosen LPPMs can

still degrade data utility.

5.5.2 Evaluation of Data Privacy

In this section, we evaluate the effectiveness of EDEN in terms of privacy in

comparison to state-of-the-art LPPMs. For that purpose, we measure the data

protection rate of EDEN’s variants and its competitors against Mv-Attack. To recall

from Section 5.2, the data protection rate is the percentage of mobility data that is

not re-identified by the MCS. Results are depicted in Figure 5.7.

From this figure, we observe that on the Privamov dataset (Figure 5.7a), 55% of

the data sent without obfuscation (NOBF ) is not re-identified by the MCS. This

percentage is the same when Geoi-0.01 is used and slightly increases when Geoi-0.005

and Geoi-0.001 are used (56% and 64% of protected data, respectively). This is

due to the dependency between successive mobility records which makes the ε-Geoi

guarantee loses its power to n ∗ ε-Geoi (n being the number of records). The most

privacy-protective LPPMs from the literature are TRL with an increased range r or

PROM with a large distance α between points in the mobility trace. Specifically, the

proportion of protected traces reaches up to 74% when TRL-3km is used and 91%

when PROM-200m is used. In the case of EDEN, 85%, 86%, and 87% of protected

mobility data are recorded with the optimistic, balanced, and pessimistic variants of

EDEN, respectively. We notice that PROM-200m outperforms EDEN’s variants

with +5% on average, this is due to the fact that PROM is based on the re-sampling

of mobility traces by erasing points according to the distance parameter α. Thus, if

a mobility trace does not exceed 50, 100, or 200 meters of traveling distance, the

latter will be deleted. The deleted data is not sent to the MCS and is considered

protected. However, this dramatically degrades data utility, as further discussed in

Section 5.5.3.

In the Geolife dataset (Figure 5.7b), 61% of mobility data is naturally protected

against the Mv-attack. The application of Geoi and TRL with their different
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configurations, does not improve the protection rate compared to the baseline.

Using PROM-50m, PROM-100m and PROM-200m increases the protection rate

with +4%, +6% and +10%, respectively. This is also due to the suppression of chunks

where the mobility data does not exceed 50, 100, or 200 meters in a lap of 30 minutes.

In this dataset, applying EDEN significantly improves the data protection rate

reaching up to 87% and 90% of protected mobility data with EDEN-balanced and

EDEN-pes, respectively. Finally, in the MDC dataset (Figure 5.7c), 68% of the

mobility data is naturally protected. The application of EDEN’s variants improves

the protection rate with +10% on average compared to the NOBF baseline. This

result has the same trend for the other LPPMs except with PROM which provides a

higher protection rate (+4% on average). This result is due to the suppression of

mobility traces.

Here, we observe that PROM-50m provides better protection with the MDC

dataset compared to Privamov and Geolife datasets. MDC involves 144 users in

a quite small area (around 41 km2). Such a high population density naturally

reduces user re-identifiability which, thus, enables higher protection. In contrast, the

Privamov dataset has three times fewer users than MDC, and the Geolife dataset

has only 42 users in a large geographical area (16,808 km2). This makes users in

these two datasets more distinguishable and, thus, harder to protect.

5.5.3 Evaluation of Data Utility

As described in Section 5.5.1, we measure the data utility using two types of metrics:

a quantitative metric which is AC metric and a qualitative metric where we capture

the degradation in pollution measurements taken from a real-world air pollution

dataset [31]. In addition, we measure the number of cab drivers going through regions

taken from a real-world mobility dataset [190].

Utility Evaluation Using AC Metric

In Figure 5.8, we evaluate the data quality of sent/not sent data to the MCS (the

privacy dimension is not considered in this figure). In this figure, the AC equal to 0

corresponds either to the data deleted by the LPPM (e.g., the case of promesse) or
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Figure 5.7: Mv-Attack evaluation on EDEN vs. competitors.

protected data that has no intersection with the original data. Further, we group

AC values into four intervals. The best LPPMs are those that maximize AC in the

interval [0.75, 1] while minimizing the data loss (AC = 0).

In the Privamov dataset, we notice that EDEN’s variants produce a balanced data

quality. Specifically, EDEN-opt, EDEN-balanced, and EDEN-pes lose an average of

21.4% of mobility data and produce an average of 46% of data with an AC < 0.75.

And finally, an average of 32% of the generated mobility data has an AC > 0.75.

However, PROM with its different configurations has predominately darker bars. In

particular, 50% and 74% of the generated mobility data has AC=0 with PROM-100m
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and PROM-200m respectively. Promesse chooses to not share with the MCS a larger

proportion of the generated data due to its suppression process. In contrast, the data

chosen to be shared closely mirror the original mobility data: up to 65% of protected

mobility data by PROM-50m has an AC > 0.75. Geoi and TRL degrade the quality

of almost generated data. Specifically, in Geoi-0.01, Geoi-0.005 and Geoi-0.001, an

average of 92% of the resulting mobility data has an AC < 0.75. Even worst with

TRL where an average of 95% of mobility data has an AC < 0.5.

In the Geolife dataset, the difference between EDEN’s variants is more prominent.

The data loss is reduced from 41% in EDEN-opt to around 10% in EDEN-pes. More

than 79%, 58%, and 48% of the generated data by EDEN-opt, EDEN-balanced,

and EDEN-pes, respectively, have an AC > 0.75. However, PROM-50m, PROM-

100m and PROM-200m cause a data loss of 10%, 16% and 25%, respectively. The

remaining data (i.e., 85%, 76% and 62%) has an AC > 0.75. We observe that PROM

has a better AC than EDEN. This is because EDEN prioritizes privacy over data

utility. Finally, Geoi and TRL with their different configurations generate on average

89% and near 98% of mobility data with an AC < 0.75. Only 26% of the generated

data by Geoi-0.01 has an AC > 0.75.

In the MDC dataset, unlike PROM with its different configurations which cause

32%, 41%, and 50% of data loss, EDEN’s policies reduce these amounts to 7%, 8%

and 10%. They outperform all other LPPMs in terms of AC metric. Specifically, it

protects an average of 67% of all data with AC > 0.75 compared to an average of

0%, 14% and 39% with TRL, Geoi and PROM, respectively.
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Figure 5.8: Impact of EDEN vs. competitors on the data utility using AC metric

Macro-benchmark on Air Pollution Measurements

We study the impact of LPPMs on the quality of air pollution data using a dedicated

dataset [31]. In addition to mobility data, two application-specific measurements are
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collected: the concentration of NO2 and CO. The dataset involves 13 metropolitan

bikes which have been equipped with pollution monitoring sensors for a duration of

112 days.

We compute the average CO measurements over the duration when the NO2 value

is above 40µg/m3, which is the toxicity threshold defined by the WHO1. In Figure 5.9,

we show the average CO measurements when using the raw data (NOBF baseline)

and after the application of EDEN and its competitors. We can observe that Geoi

and TRL spread the measurements and, as the noise or the range increases, they

create additional hotspots, i.e., areas where the CO value is high. The application

of PROM-50m creates around six new hotspots where the level of CO is now above

the toxicity threshold. Thus, although the good privacy vs. utility tradeoff offered

by PROM-50m on synthetic mobility data, including the CO measurements yields

poor performance. The use of PROM-100m can be harmful to public health because

it eliminates existing high pollution hotspots from the original data. However, the

application of EDEN can closely mirror the CO measurements of NOBF; only one

hotspot is missed.

Macro-benchmark on the Number of Cab Drivers in San Francisco

We study the impact of EDEN and its competitors on the mobility of 50 cab drivers

from the Cabspotting dataset [190]. The objective, for example, is to find bottleneck

locations that cab drivers go through in the city of San Francisco. For that purpose,

we use the range queries metric, previously defined in Section 5.5.1. It counts how

many unique users cross an area during a time window. We choose time windows

ranging from 2 hours to 8 hours and circle areas whose radius range from 500 meters

to 5,000 meters. We report the average query distortion in Table 5.2, which is

the average distortion over 1,000 randomly generated queries. The results show

that EDEN provides the smallest average distortion with 0.55% in comparison to,

respectively, PROM which can reach 1.39%, TRL which can reach 16.45%, and Geoi

which can reach 19.88%.

1World Health Organization, URL: https://www.who.int/fr/news-room/fact-sheets/detail/ambient-(outdoor)-

air-quality-and-health
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(a) NOBF (b) EDEN

(c) Geoi-0.01 (d) Geoi-0.005 (e) Geoi-0.001

(f) TRL-1km (g) TRL-2km (h) TRL-3km

(i) PROM-50m (j) PROM-100m (k) PROM-200m

Figure 5.9: Macro-benchmark on air pollution dataset (CO gas)
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Table 5.2: Average query distortion of EDEN vs. competitors.

LPPM Average Query Distortion

EDEN 0.55%

PROM-50 1.1%

PROM-100 1.28%

PROM-200 1.39%

TRL-1 6.96%

TRL-2 12.13%

TRL-3 16.45%

Geoi-01 1.07%

Geoi-005 2.73%

Geoi-001 19.88%

Privacy vs. Utility Tradeoff

In Figure 5.10, we evaluate the privacy vs. utility tradeoff of EDEN compared to

its competitors. To this end, we use a scatter plot where a point corresponds to an

LPPM configuration defined by two coordinates x and y; x represents an aggregate

value of the AC utility metric computed as in Section 5.2; y represents the percentage

of protected data (i.e., data that is not re-identified by the MCS-side attacker). We

consider that an LPPM reaches a good privacy vs. utility tradeoff if it belongs to

the top right gray rectangle ”R”, i.e., a rectangle where only LPPMs that have a

protection rate greater than 80% with an AC greater than 40% are considered. We

represented the Privacy Oracle in order to show the maximum utility that can be

attained by a specific dataset when all mobility traces are protected. In the same

vein, NOBF represents the maximum privacy that can be attained by a specific

dataset when no LPPM is applied.

In the Privamov dataset, as depicted in Figure 5.10a, EDEN’s variants (illustrated

by purple stars) provide the best privacy vs. utility tradeoff. Specifically, All EDEN’s

variants belong to ”R” whereas only PROM-100 (illustrated by a green square)

belongs to the low border of ”R”. In the Geolife dataset, as depicted in Figure 5.10b,

only EDEN-pes and EDEN-balanced belong to ”R”. However, the rest of the LPPMs

have a privacy value concentrated around 62% and a utility varying from 26% to 88%.

Finally, in the MDC dataset, as depicted in Figure 5.10c, EDEN-pes and PROM with
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its different configurations are inside ”R”. However, all EDEN’s variants achieve a

better privacy vs. utility tradeoff with a privacy level close to PROM but a utility

value close to Privacy Oracle. To conclude, in the three considered datasets, EDEN

achieves a better privacy vs. utility tradeoff than any other individual LPPM with

at least one of EDEN’s variants belonging to the target rectangle ”R”.
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Figure 5.10: Privacy vs. utility tradeoff.

5.5.4 Fine-Grained Analysis of EDEN

In this section, we perform a fine-grained analysis of EDEN’s variants. Unlike the

other LPPMs, which are applied individually and blindly on the whole mobility data,

EDEN protects users’ mobility traces in a fine-grained way by choosing the most

appropriate LPPM for each mobility trace. In Figure 5.11, we represent EDEN’s

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0089/these.pdf 
© [B. Khalfoun], [2022], INSA Lyon, tous droits réservés



5.5. Experimental Evaluation 125

variants with multi-color bars where the hashed part is the re-identified portion

of the mobility data, and the plain part is the portion of protected data against

Mv-Attack. The color black represents the mobility data that FURIA is always able

to re-identify regardless of the chosen LPPM. This data is deleted and considered as

data loss from the MCS point of view. Each LPPM is represented with a different

color and its intensity expresses the strength of the LPPM’s configuration: darker

colors are used for stronger LPPM configurations. From this figure, we observe that

orange is the dominant color that refers to NOBF. Indeed, when FURIA is not able

to identify a raw mobility trace, EDEN prioritizes this choice because it provides

the maximum utility.

By focusing on the Geolife dataset, we observe that the data loss of EDEN-pes

is about 31% (i.e., mobility traces that are always re-identified by FURIA). On

the other extreme, EDEN-opt sends this portion of data without any protection or

with a default LPPM. Roughly, 10% of mobility data is protected with the chosen

LPPM while 20% of them are re-identified. However, we highlight that EDEN-opt

ensures zero data loss. Finally, the balanced solution shows a tradeoff between data

suppression and data publishing with a gain of +7% of protection and a raise of

+3% of re-identification while the data loss is reduced to 21%.

Concerning the MDC dataset, the effect of EDEN’s policies is not visible because

the amount of data that FURIA is always able to re-identify is negligible (4%). In

the Privamov dataset, the colors distribution is more balanced: around 20%, 11%,

8% and 3% of data are naturally protected, or protected with PROM, TRL and Geoi,

respectively. However, the effect of EDEN’s variants is the same as in the MDC

dataset, with around 3% of re-identified mobility data.

A similar evaluation is done where the choice of NOBF is excluded and the

default LPPM used to send data in case FURIA is always able to re-identify the

mobility trace is PROM-50m. Results are depicted in Figure 5.12. Specifically, in

Privamov and MDC datasets, LPPMs with low configurations (TRL-1km, Geoi-0,01

and PROM-50m) replaces NOBF choice over EDEN’s variants and the choice of

PROM-50m as a default LPPM in EDEN-opt and EDEN-balanced does not impact

the re-identification rate. However, in the Geolife dataset, the choice of PROM-50m

to protect the 41% of deleted data in EDEN-pes increases the re-identification rate by

+20% and the protection rate by +21% in EDEN-opt. In contrast, EDEN-balanced
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registers only +5% of the former and +15% of the latter.
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Figure 5.11: Fine-grained analysis of EDEN’s variants.
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Figure 5.12: Fine-grained analysis of EDEN’s variants without the NOBF choice.

5.5.5 Evaluation of Performance Overhead

EDEN is a user-side protection approach that operates directly on edge devices. In

this section, we measure the run-time induced by EDEN on different sizes of mobility

data ranging from one mobility record, i.e., equivalent to real-time crowd sensing

applications, to longer mobility traces (up to 1,600 records). Table 5.3 provides

more statistics about the considered datasets. The run-time overhead of EDEN
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mainly includes the run-time for (1) the protection process where a set of LPPMs

with different configurations are executed (i.e., Geoi, TRL, PROM ) and (2) the

computation of AC metric to choose the best LPPM. In addition, the run-time for

data processing (i.e., converting data to feature vectors) and for the FURIA risk

assessment are insignificant (nanoseconds). Results in Figure 5.13a with a logarithmic

scale on the y-axis (for readability of small values) show that the longer a mobility

trace, the longer it takes to protect it. Precisely, a mobility trace length ranging

from 200 to 1,600 mobility records can take from 3 to 9 seconds to protect. This

takes 15 milliseconds to protect a single mobility record which is acceptable in the

context of real-time mobile crowd sensing applications. Moreover, we measure the

execution time of the training phase in FURIA. Figure 5.13b illustrates the average

training time per user in each learning round of different datasets. Overall datasets,

we record a training time between 2 and 4 seconds per user. Specifically, in the

Geolife dataset, the training time is slightly higher than Privamov and MDC, this

is due to a higher number of participants in comparison to Privamov (i.e., 19 users

vs. 13 users) and denser mobility traces in comparison to MDC (i.e., 323 records

vs. 46 records in average). Our experiment is conducted on a desktop machine (see

Section 5.5.1) and it is still practical while using a smartphone. For instance, the

average time of applying an LPPM on an edge device is in order of milliseconds [44].

Also, the authors in [59] evaluate the computation time of a learning round on

different smartphones. The latter is in order of seconds. Thus, EDEN which uses a

simple, yet effective LR model can be deployed on real devices in future work.

Table 5.3: Mobility dataset statistics.

Dataset
Average records

per user

Standard

deviation

Minimum

records

Maximum

records

Average #Users

per round

Geolife 323 288 1 1,800 19

Privamov 117 60 1 180 13

MDC 46 43 1 412 95

5.5.6 Quantifying the Fairness of EDEN

To push our evaluation further, we consider in this section another equally important

aspect rarely addressed in the literature, that is, the concept of fairness [70]. It states
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Figure 5.13: EDEN run-time overhead

that similar individuals should be treated similarly regarding their specific task [204].

In most of the cases, measuring the similarity between individuals is not a trivial

task. In our context, we need two sets of definitions corresponding to the similarity

between users’ trajectories, and the similarity of the outcome of EDEN. We consider

that individuals who are similar in terms of their mobility, should receive an equal

privacy gain from EDEN. We define the similarity of trajectories by borrowing

tenets from mobility literature and measure entropy of users as a measure of their

maximum predictability. To this end, we use the Shannon Entropy (SE). The higher

its value, the lower the predictability of an individual’s movements [237, 146]. It is

measured as in Equation 5.4.

Eh = −
n∑

i=1
P (xi) log2[P (xi)] (5.4)

where n is the length of probability vector, P (xi) is the probability of visiting location

xi considering only the spatial pattern (i.e., latitude and longitude).

In our evaluation, we hypothesize that users with similar entropy should receive

similar privacy gain after applying EDEN. In an ideal setting we expect the entropy

to increase for all the users (i.e., predictability to decrease). Thus, we compare the

entropy of similar user traces to their output by EDEN and we study in detail the

percentage of users for whom the entropy decreases because of EDEN. We refer to
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this group as the disadvantaged group

The results are depicted in Figure 5.14. We present the entropy before and after

applying EDEN for Privamov, Geolife and MDC datasets. We observe that overall

the datasets EDEN increases the entropy of most users. Indeed the cases where we

find outcome of EDEN to disadvantaged users (decrease their entropy) are 8% for

Privamov, 7% for Geolife, and 3% for MDC. Next, we study the fairness for those

traces that correspond to the disadvantaged group.
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Figure 5.14: Entropy level before and after the application of EDEN.

Figure 5.15 illustrates the entropy decline for the disadvantaged users of all the

datasets grouping them into entropy intervals. As we can see, the users with lower

raw entropy (i.e., prior to applying EDEN) receive a relatively less decline in their

entropy after applying EDEN as well as smaller variations. In this plot, the size of
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each box presents the fairness as measured by the difference in outcome after applying

EDEN. Specifically, users who initially had lower predictability (high raw entropy)

exhibit a larger variation in their entropy after applying EDEN, corresponding to

different treatments (i.e., unfair behavior of EDEN). Likewise, users with highly

predictable patterns (low raw entropy) receive a similar outcome from EDEN (i.e.,

fair behavior).

(a) Privamov

(b) Geolife

(c) MDC

Figure 5.15: The entropy decline of disadvantaged groups.
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5.6 Privacy Discussion

On the protection against compromised users. EDEN does not protect

against compromised users who might alter the FURIA model to reduce its perfor-

mance. Nevertheless, the research community proposes several solutions to handle the

issue of malicious users in the FL protocol with extensive countermeasures, presented

in Chapter 2, Section 2.4.

On the protection against a corrupted FURIA Master Server. We assume

that the FURIA Master Server is trusted. Nevertheless, there are solutions that

protect against a compromised aggregator in the FL protocol. Secure aggregation

protocols [39], differential privacy [93], and hardware solutions using trusted ex-

ecution environments (TEEs) [164] are examples of these solutions and they are

complementary to EDEN.

On the protection against a malicious MCS. In this work, EDEN aims to

protect users’ mobility data for crowd sensing applications where the MCS is honest-

but-curious, i.e., it faithfully provides the target service to its clients but tries to

extract sensitive information from the received data. A harmful attacker may though

take control of the MCS and perform arbitrary attacks such as publishing fake

aggregate maps. This problem is orthogonal to EDEN and solutions such as using

TEEs (e.g., Intel SGX) can be considered to secure the computations performed on

the MCS side.

On the MCS running stronger attacks. In this work, we considered Mv-Attack

as the most powerful attack that the MCS may run to re-identify anonymous mobility

data. However, the MCS may hold stronger attacks not published yet, leading to

different results than the ones presented in this chapter. Nevertheless, as the MCS

can become stronger by implementing new attacks, EDEN can also become stronger

by implementing the latest LPPMs and their respective configurations.
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On the theoretical guarantees offered by EDEN. EDEN builds on top of

state-of-the-art LPPMs each of which comes with its own theoretical guarantees (e.g.,

k-anonymity, differential privacy). EDEN adds on top of these guarantees a location

privacy risk assessment, which allows choosing the most appropriate LPPM and its

configuration to protect mobility traces according to the user re-identification risk

and utility of the generated data.

5.7 Summary

In this chapter, we presented EDEN, a user-side protection system for mobility data

in crowd sensing applications. It protects mobility data by choosing the best LPPM

and configuration among a set of LPPMs without relying on a trusted proxy server.

Instead, EDEN relies on the FL paradigm to train FURIA. It enables end-devices

to train their local models using locally preserved mobility data while sharing the

benefits of a global aggregated model across all users. This model is then used on

the user’s device to locally compare LPPMs for each mobility trace to protect and

select the one which is resilient to FURIA. EDEN also relies on a utility metric to

ensure a good quality of the resulting data.

We evaluated EDEN by performing a set of experiments on real-world mobility

datasets. The results show that EDEN outperforms individual LPPMs both in terms

of privacy measured by the resilience against a strong attack run by the MCS-side

attacker and in terms of data utility measured using the AC metric. In addition,

EDEN was also evaluated on a crowd sensed air pollution dataset. The results show

that EDEN better preserves the distribution of gaseous pollutants compared to its

competitors. Moreover, we also quantified the fairness of EDEN in our evaluation.

The results show that EDEN has a fair behavior for almost the users (i.e., increasing

entropy of users’ mobility and thus reducing their predictability). However, there is

still a minority of users’ mobility traces where EDEN fails to achieve fairness.
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Chapter 6

Conclusion & Perspectives

6.1 Conclusion

In this thesis, we tackled the problem of location privacy in location-based services.

First, we introduced some preliminaries and generalities about mobility data and

how this resource is collected, stored, and processed by service providers. Specifically,

an LBS is a double-edged weapon. On one side, it facilitates users’ daily lives with a

broad range of applications that provide personalized and customized information to

users according to their location. But on the other side, a curious LBS or any entity

that might have access to the gathered data may exploit it fraudulently to run several

attacks and disclose sensitive and personal information about users. One of the most

common threats highlighted in this thesis is the user re-identification risk. It aims to

re-associate an anonymous mobility trace to its originating user based on historical

mobility data. To overcome the privacy threats affecting mobility data, the research

community has been actively proposing location privacy protection mechanisms

(LPPMs). We defined LPPMs and classified them into three categories according

to their use case scenarios. Specifically, there are online LPPMs for interactive and

real-time use cases, semi-online LPPMs for crowd sensing campaigns, and offline

LPPMs for data publishing use cases. These LPPMs transform mobility data with

various techniques such as anonymization, perturbation, generalization, and fake

data generation. To evaluate the effectiveness of these techniques, we presented three

categories of metrics, namely privacy, utility and performance metrics. Moreover, we

observed that each LPPM has its strengths and weaknesses, and the sensitivity of

mobility data may differ from one user to another. That is why the protection of

mobility data should be user-centric or even trace-centric. To reach this objective,

authorities and organizations have strongly recommended conducting location privacy

risk assessment (LPRA). The latter helps raising users’ awareness and improving

the protection by choosing the appropriate LPPM before sharing mobility data with

service providers.
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In this thesis, we proposed MOOD, a centralized approach for location

privacy protection of data publishing use cases. It is a user-centric approach

that aims to protect all users’ mobility data, particularly orphan users who are not

protected using individual LPPMs against re-identification attacks. It consists of

two principles: a multi-LPPM composition where a set of LPPMs are combined

sequentially and incrementally on a mobility trace and fine-grained protection where

mobility traces are split into multiple sub-traces to separate discriminating mobility

patterns. The obfuscation process is repeated until a stop criterion is verified. The

latter can be the failure of the re-identification risk assessment (i.e., the protected

mobility trace or sub-trace is not re-identified) or the minimum length for mobility

data. Finally, we demonstrated with extensive experiments that MOOD effectively

protects mobility datasets with a good privacy vs. utility tradeoff.

Furthermore, existing works including MOOD rely on a centralized trusted server

to carry out both the obfuscation process and the location privacy risk assessment.

This constitutes a single point of failure because, if the server is compromised, mobility

data can be leaked and users’ privacy may be threatened. To avoid centralizing

data, we proposed SAFER, a federated approach to assess the privacy risk

of sharing mobility data while keeping it on the user’s premises. SAFER evolves

a federated identity classifier and a uniqueness evaluation. The federated identity

classifier is trained on mobility data using the FL principles to build a global

knowledge about users’ mobility behavior. It produces a confidence vector that

contains the probabilities of owning the considered mobility data by different users

in the system. Then, to evaluate the uniqueness of that data, the confidence vector

allows constructing anonymity sets by grouping users whose probabilities are close.

The size of the anonymity set reflects how unique mobility data is and thus can

quantify the privacy bounds of human mobility in a privacy-preserving way with

scalable and comparable results to that of a well-established baseline system.

Finally, to enforce location privacy without centralizing raw mobility

data, we proposed EDEN. In the latter, the protection process and the location

privacy risk assessment are performed on the edge device thanks to the FL paradigm.

Specifically, EDEN goes through two phases. The first phase consists of a re-

identification risk assessment where a federated model called FURIA is periodically

trained on the users’ devices to learn the mobility patterns of each user (i.e., class).

The second phase is a protection phase where the latest aggregate model is used
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along with utility metrics to automatically choose the appropriate LPPM with its

corresponding configuration each time a user wants to send a geo-located trace to

the service provider. We evaluated EDEN on five real-word mobility datasets and

demonstrated its effectiveness in terms of privacy, utility and performance.

6.2 Perspectives

By the end of this thesis, many areas and perspectives still need to be explored in

the literature. We consider both short and long-term perspectives.

6.2.1 Short-term Perspectives

Although we believe that our contributions can improve location privacy with effective

results, we are aware that there is still room for improvement. We discuss in the

following the main possible improvements that we plan to consider shortly.

Improving Data Protection with MOOD

MOOD is a promising solution for the research community on location privacy. It

can be extended with the latest state-of-the-art LPPMs, attacks, and utility metrics.

However, increasing the number of LPPMs and attacks is time-consuming as MOOD

is based on a brute force search to find the most optimal composition of LPPMs

(the one that passes the re-identification risk assessment and maintains the highest

data utility). Fortunately, MOOD concerns data publishing use cases where time

is not a constraint. However, the application of MOOD in other use cases such as

interactive or crowd sensing requires optimizing the search by exploring machine

learning techniques to build predictive models. The latter would automatically select

the most appropriate LPPM in order to avoid the exhaustive search. In addition,

MOOD follows fine-grained data protection. It splits mobility traces into sub-traces

using fixed time slices. In this direction, our objective is to explore other relevant

ways of data splitting, such as considering the semantics of visited locations, the gap

between them etc.,.
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Assessing Uniqueness with SAFER

SAFER is a user-side, location privacy risk assessment. It is suitable for interactive

use cases where an end user evaluates the uniqueness of a given data point in real-time

before leaving the mobile device. It exploits the latest version of the federated model,

generated at night to evaluate the uniqueness of mobility data. In the future, we

should investigate how to adapt the training frequency of the global model according

to the performance of users’ devices in a realistic FL environment. Specifically,

mobile devices with low performance should continue to train at night, while those

with high performance could update the model whenever they wish to assess privacy

risks. In addition, SAFER is currently applied to raw mobility data. As a future

work, we should study the impact of SAFER when mobility data is obfuscated

with protection mechanisms, such as perturbation, generalization, and fake data

generation. Furthermore, the current work, as previously mentioned in Section 4.5,

does not consider compromised users and a malicious aggregator in the FL protocol.

In this direction, SAFER should be implemented using TEEs in an end-to-end

manner both on the client side and on the server side. In this way, all the exchanged

messages are encrypted and they are only used in clear inside enclaves.

Protecting Mobility Data with EDEN

EDEN is based on a simple yet effective location privacy risk assessment model called

FURIA. In the future, we should investigate advanced models to train FURIA

without the feature engineering step which might lack relevant information that

discriminates human mobility. In this direction, recurrent networks is a good starting

point, previously used with effective results for the uniqueness assessment. The latter

captures recurrent moving patterns in human mobility, especially if we manipulate

long trajectories. In addition, the architecture of FURIA requires a trusted master

server that might infer sensitive information about users. That is why it is necessary

to implement and combine security primitives, such as secure aggregation, differential

privacy, or even secure hardware (e.g., TEEs) to prevent any information leakage or

inference attacks. Specifically, EDEN could be combined with other state-of-the-art

orthogonal techniques in order to face compromised users [23, 223, 34], or to counter

model information leakage attacks [39, 93, 164].
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6.2.2 Long-term Perspectives

The research area on location privacy has known unprecedented growth in the last

decade. The progress of LPPMs is in perpetual competition with the development

of novel attacks that try to break these mechanisms along with the advance in

information and communication technologies. That is why there is still a long way

to go until location privacy can be democratized and controlled politically by raising

people’s awareness and technically by producing software where privacy requirements

are integrated by design and default. Specifically, people become highly dependent

on geo-located services. They can freely share their mobility data at the cost of their

privacy. This is due to users not being sufficiently aware of the value of their mobility

data and the amount of sensitive knowledge that can be derived from it. In this

sense, it is essential to increase users’ awareness of the sensitivity of their mobility by

proposing intuitive and convenient tools to highlight privacy issues and the benefits

of using LPPMs. For instance, Please Rob Me1 is a website to raise users’ awareness

about what can be revealed from shared geolocated tagged tweets. The latter may

inform potential robbers about the presence or absence of a target user at home.

On the other side of the spectrum, companies that manipulate mobility data do

not miss out on the opportunity to infer sensitive information about users from the

collected data or sell it to third parties for unauthorized purposes. Hence, legislation

and regulations are likely needed to prevent users’ privacy from being violated. This is

a fundamental right that companies should respect with complete transparency about

the usage of the gathered data. In this thesis, we encourage and enforce these laws

by proposing practical systems to better preserve users’ privacy while maintaining a

good data utility. These solutions might be used by companies and practitioners to

enhance their privacy policies in compliance with the GDPR’s recommendations.

In such a way, existing LPPMs are already used in real-life scenarios such as

Geo-indistinguishability [21] which has been implemented by its authors as a browser

extension [9]. This allows users to benefit from some privacy when using LBSs

through their web browser. In this context, it would be interesting to deploy SAFER

or EDEN in a real-life environment using libraries and frameworks to implement

LPPMs and machine learning models on edge devices. For that purpose, Android

1https://pleaserobme.com/
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supports a wide variety of helpful tools such as python, ML-Kit2, etc.,.

However, there are still challenges to make these solutions suitable for real-life

use cases. For instance, SAFER uses a fixed number of classes in the federated

identity classifier. In the future, it would be interesting to investigate how to build

incremental online models, which are able to handle larger numbers of incoming

users (order of millions) without forgetting their past knowledge, previously learned.

In addition, with the growth of collected mobility data generated by users’ devices, a

completely decentralized learning model (i.e., gossip learning model [113]) may be a

promising alternative to federated learning as the latter generally relies on a central

entity that may engender bottlenecks, inhibit scalability of the system, and cause

privacy issues.

Last and not least, a challenging research direction is to develop learning methods

that combine different data modalities. Specifically, the majority of existing studies in

the literature assume a single data modality, e.g., trajectories, geolocated social media

data (posts, pictures, or videos). In reality, data come in several modalities from

different sources, and combining those can be used to extract richer representations

and build more accurate models. However, it may open the door to more privacy

threats in the future. For instance, a user requesting a target destination on Google

maps application using her microphone (voice data) combined with her location may

reveal more sensitive information about the user (e.g., gender, physical condition,

emotions, etc.,).

2https://developers.google.com/ml-kit
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Show me how you move and i will tell you who you are. In Proceedings of the

3rd ACM SIGSPATIAL International Workshop on Security and Privacy in

GIS and LBS, pages 34–41, 2010. 18
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mage. Federated learning for mobile keyboard prediction. arXiv preprint

arXiv:1811.03604, 2018. 38, 70, 71
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tories for mobility anonymization. In International Conference on Privacy in

Statistical Databases, pages 331–346. Springer, 2018. 26

[212] Pierangela Samarati. Protecting respondents identities in microdata release.

IEEE transactions on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

98

[213] James Scott, Richard Gass, Jon Crowcroft, Pan Hui, Christophe Diot, and

Augustin Chaintreau. Crawdad dataset cambridge/haggle (v. 2006-09-15).

CRAWDAD wireless network data archive, 2006. 17, 24

[214] Mohamed Seif, Ravi Tandon, and Ming Li. Wireless federated learning with lo-

cal differential privacy. In 2020 IEEE International Symposium on Information

Theory (ISIT), pages 2604–2609. IEEE, 2020. 41, 95

[215] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph

Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0089/these.pdf 
© [B. Khalfoun], [2022], INSA Lyon, tous droits réservés

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4845
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4845


170 Bibliography

label poisoning attacks on neural networks. Advances in neural information

processing systems, 31, 2018. 41, 94

[216] Zhangqing Shan, Weiwei Sun, and Baihua Zheng. Extract human mobility

patterns powered by city semantic diagram. IEEE Transactions on Knowledge

and Data Engineering, 2020. 18

[217] Pravin Shankar, Vinod Ganapathy, and Liviu Iftode. Privately querying

location-based services with sybilquery. In Proceedings of the 11th international

conference on Ubiquitous computing, pages 31–40, 2009. 28

[218] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against

poisoning attacks in collaborative deep learning systems. In Proceedings of the

32nd Annual Conference on Computer Security Applications, pages 508–519,

2016. 41, 42, 94

[219] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-

Pierre Hubaux. Quantifying location privacy. In 32nd IEEE Symposium on

Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA,

pages 247–262. IEEE Computer Society, 2011. doi: 10.1109/SP.2011.18. URL

https://doi.org/10.1109/SP.2011.18. 18

[220] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre

Hubaux. Quantifying location privacy. In 2011 IEEE symposium on security

and privacy, pages 247–262. IEEE, 2011. 18

[221] Yi Song, Daniel Dahlmeier, and Stephane Bressan. Not So Unique in the Crowd:

A Simple and Effective Algorithm for Anonymizing Location Data. In The

First International Workshop on Privacy-Preserving IR: When Information

Retrieval Meets Privacy and Security (PIR 2014), 2014. 36, 68

[222] Mudhakar Srivatsa and Michael Hicks. Deanonymizing mobility traces: us-

ing social network as a side-channel. In Ting Yu, George Danezis, and

Virgil D. Gligor, editors, the ACM Conference on Computer and Com-

munications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012,

pages 628–637. ACM, 2012. doi: 10.1145/2382196.2382262. URL https:

//doi.org/10.1145/2382196.2382262. 21, 23

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0089/these.pdf 
© [B. Khalfoun], [2022], INSA Lyon, tous droits réservés

https://doi.org/10.1109/SP.2011.18
https://doi.org/10.1145/2382196.2382262
https://doi.org/10.1145/2382196.2382262


Bibliography 171

[223] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.

Can you really backdoor federated learning? arXiv preprint arXiv:1911.07963,

2019. 136

[224] Latanya Sweeney. k-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–

570, 2002. 27, 33, 36

[225] Stuart A. Thompson and Charlie Warzel. How to Track President Trump,

2019. URL https://www.nytimes.com/interactive/2019/12/20/opinion/

location-data-national-security.html. 5

[226] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data Poi-

soning Attacks Against Federated Learning Systems. In European Symposium

on Research in Computer Security, pages 480–501. Springer, 2020. 94

[227] Aleksei Triastcyn and Boi Faltings. Federated learning with bayesian differential

privacy. In 2019 IEEE International Conference on Big Data (Big Data), pages

2587–2596. IEEE, 2019. 41, 95

[228] Zhen Tu, Runtong Li, Yong Li, Gang Wang, Di Wu, Pan Hui, Li Su, and

Depeng Jin. Your Apps Give You Away: Distinguishing Mobile Users by

Their App Usage Fingerprints. Proc. ACM Interact. Mob. Wearable Ubiquitous

Technol., 2(3):138:1–138:23, 2018. doi: 10.1145/3264948. URL https://doi.

org/10.1145/3264948. 36
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