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General introduction

Industrial motivation

The design of new tire ranges, for areas such as emerging countries where usage conditions can be particularly severe (overloading, road conditions, humidity, high temperature, etc.) is confronted with the management of complex trade-offs such as the need to reduce material quantities while keeping implicit performance such as endurance at a level equivalent or even superior to what it is on current ranges. Such a design approach implies making significant progress on endurance performance, notably by re-exploring the material modelling strategies currently implemented in our mechanical simulation chain. In this perspective, revisiting the thermomechanical description of the reinforcement plies is an important step.

Reinforcement plies are one of the main components of tires. Therefore, the performance and durability of tires are directly related to the mechanical strength of these plies. These objects are subjected to various extreme stresses (extension/compression, shear or bending) from the manufacturing process to the actual use in tires. In our mechanical simulation chain, the reinforcement plies are modelled as homogenized composite materials, with as main assumption the approximation of the exact geometry of the layer (fig. 1-a) by a two-dimensional geometry (fig. 1-b) which keeps the same volume fraction of reinforcements [START_REF] Lignon | Modélisation multi-échelles de nappes fibrées en compression[END_REF]). In other words, the cylindrical reinforcements are approximated by straight blocks of the same length as the sheets. If this model correctly accounts for the extensional behaviour of the cables, it does not allow for example to describe the transverse shear stiffening at very large deformations (typically simulation of breaking energy, perforation or pinch shock tests). The industrial objective of this thesis will be to propose an approach to improve the current homogenization model of a fibred layer through numerical approaches in order to better predict their behaviour at high deformations.

Scientific motivation

The existence of fiber-reinforced rubber-like composites in natural and artificial materials and structures has long been known, and several fields, including manufacturing, plants, geomechanics, and biomechanics, have attested to this fact. At a macroscale observation scale, some fiber reinforced rubber-like composites, such as soft tissues [START_REF] Fung | Biomechanics: mechanical properties of living tissues[END_REF], appear homogeneous, yet at a specific microscale length, they exhibit fibrous microstructure behaviour. At a macroscopic observation scale, several other reinforced rubber-like composites, such as the fiber-reinforced layers in the tyres that serve as the subject of this thesis [START_REF] Lignon | Modélisation multi-échelles de nappes fibrées en compression[END_REF], appear heterogeneous. These materials and structures are classified as fiber-embedded composites and can be physically represented as a pliable matrix material with aligned cylindrical stiffer fiber inclusions. Two methodologies can be used to model the mechanical behaviour of these materials: micro-mechanical [START_REF] Nemat-Nasser | Micromechanics: overall properties of heterogeneous materials[END_REF] and macro-mechanical phenomenology [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]. The micro-macro or homogenization technique is useful for comprehending and designing the physical behaviour of materials. However, this method is expensive for commercial use, particularly for nonlinear material behaviour [START_REF] Marc | Homogenization methods and multiscale modeling: nonlinear problems[END_REF]. The macro-mechanical phenomenological continuum technique, where the model's parameters are calibrated using data from macroscopic experiments, is an effective and straightforward way to construct constitutive equation [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]. Despite having these desirable characteristics, these phenomenological models are hampered by a lack of actual knowledge about the microstructure of fiber-reinforced rubber-like composites.

Thus, the scientific objective of this thesis is the development of a mechanical and numerical methodology linking the micromechanical and the macromechanical phenomenological approaches while keeping their advantages and reducing their inconveniences. This is the decoupled homogenization method. To do this, the fiber and the matrix will be considered as hyperelastic materials. This is a first approximation which can be enriched in other works.

Classical homogenization theory [START_REF] Douglas | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]; [START_REF] Douglas | The elastic field outside an ellipsoidal inclusion[END_REF]; [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF]; [START_REF] Sánchez-Palencia | Non-homogeneous media and vibration theory[END_REF]; [START_REF] Sanchez-Palencia | Homogenization method for the study of composite media[END_REF]; [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] has long been an essential tool to characterize the behaviour of composite materials with periodic or quasi-periodic microstructures and to derive numerical approximations at reasonable costs, especially in the context of linear materials where homogenized constitutive laws can often be identified with a limited number of parameters to be determined.

In the context of the homogenization of hyperelastic composites [START_REF] Hill | Elastic properties of reinforced solids: some theoretical principles[END_REF]; [START_REF] Hill | On constitutive macro-variables for heterogeneous solids at finite strain[END_REF]; [START_REF] Rw Ogden | On the overall moduli of non-linear elastic composite materials[END_REF] apart for very specific situations in terms of constitutive laws used at the microscopic scale and even in terms of loading (see [START_REF] Chu | Plastic behavior of composites and porous media under isotropic stress[END_REF]; [START_REF] De | Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues[END_REF]; [START_REF] He | Uniform strain fields and microstructure-independent relations in nonlinear elastic fibrous composites[END_REF]; [START_REF] He | Exact results for the homogenization of elastic fiber-reinforced solids at finite strain[END_REF]; [START_REF] Debotton | Neo-Hookean fiberreinforced composites in finite elasticity[END_REF]; [LPI10]), it is not possible to identify the homogenized law in the nonlinear case which makes the decoupling between the micro and macroscopic scales impossible to reach. This has given rise to the development of the so-called computational homogenization, which has motivated a very large number of studies [START_REF] Doghri | Finite strain mean-field homogenization of composite materials with hyperelastic-plastic constituents[END_REF]; [START_REF] Nezamabadi | Solving hyperelastic material problems by asymptotic numerical method[END_REF]; [START_REF] Monteiro | Hyperelastic large deformations of two-phase composites with membrane-type interface[END_REF]. We refer for instance to the monograph [START_REF] Yvonnet | Computational homogenization of heterogeneous materials with finite elements[END_REF] and the reference therein for an overview of computational homogenization techniques. A classical numerical strategy to keep the micro-macro coupling is the use of the so called FE 2 approximation [RM87]; [START_REF] Robert | Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling[END_REF]; [START_REF] Feyel | Multiscale FE2 elastoviscoplastic analysis of composite structures[END_REF]; [START_REF] Feyel | FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials[END_REF]; [START_REF] Terada | A class of general algorithms for multi-scale analyses of heterogeneous media[END_REF]. This type of strategy (also called multilevel finite element method) consists in solving a finite element approximation on the RVE (representative volume element of the microstructure) at each integration point of a finite element method for the macroscopic problem. It gives very good results, but is extremely expensive in terms of computational resources, even when model reduction strategies are applied (as proposed for instance in [START_REF] Yvonnet | The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains[END_REF]; [START_REF] Monteiro | Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction[END_REF]; [START_REF] Hernández | High-performance model reduction techniques in computational multiscale homogenization[END_REF]; [START_REF] Ekre | Numerical Model Reduction with error estimation for computational homogenization of non-linear consolidation[END_REF]). A discussion of the extension to second order homogenization for an enhanced accuracy can be found for instance in [START_REF] Otero | Multiscale computational homogenization: review and proposal of a new enhanced-firstorder method[END_REF] and the reference therein, however, this kind of strategy is even more computationally expensive which can represent a serious obstacle to its use.

Within this frame of reference, the decoupled numerical method introduced by Terada et al. [START_REF] Terada | A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials[END_REF] allows to recover a computational cost comparable to a classical structural mechanics calculation with a homogeneous material (see also [START_REF] Poreba-Sebastjan | Decoupled homogenization of hyperelastic composite with carbon black inclusion[END_REF]; [START_REF] Saito | A decoupling scheme for two-scale finite thermoviscoelasticity with thermal and cure-induced deformations[END_REF] for further developments). This is at the cost of an additional approximation on the homogenized law whose shape is preselected with a more or less important number of parameters. This law aims at characterizing the global response of the micro-structure at the RVE level, at least in the solicitation range of interest for the macroscopic level. The method can be used either with simple homogenized laws, in the case such a specific simple law can be expected, or either with more complex or even fully parametric laws. A possibility in order to identify a fully parametric law is to take advantage of the approximation property of artificial neural network (see [START_REF] Ba Le | Computational homogenization of nonlinear elastic materials using neural networks[END_REF]; [Kal+22]). An optimization of the homogenized law parameters is performed off-line on a training set composed of numerical experiments coming from a finite element approximation of the boundary value problem (BVP) defined at the micro-scale on the RVE. The shape of the chosen homogenized law is obviously crucial for the proper functioning and efficiency of the method. Once the parameters of the homogenized law have been identified, it can be used to represent the microscale response and then to evaluate the macro-scale response.

In the context of modern continuum mechanics [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF], Rivlin developed in a series of papers [START_REF] Rivlin | Large elastic deformations of isotropic materials. I. Fundamental concepts[END_REF]; [START_REF] Ronald S Rivlin | Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure, homogeneous deformation[END_REF]; [START_REF] Ronald S Rivlin | Large elastic deformations of isotropic materials IV. Further developments of the general theory[END_REF]; [START_REF] Ronald S Rivlin | Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber[END_REF]; [START_REF] Rs Rivlin | Mechanics of large elastic deformations with special reference to rubber[END_REF] a formalism for the modelling of large elastic deformations of isotropic materials. The main idea of this theory is based on Georges Green's method established in 1840 [START_REF] Truesdell | The mechanical foundations of elasticity and fluid dynamics[END_REF] by modelling the elastic behaviour with a strain energy function: the elastic material is named hyperelastic material. The effect of fiber reinforced material was first analyzed by resolving some boundary value problems of an isotroipic hyperelastic matrix reinforced with inextensible cords [START_REF] Edward | Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords[END_REF]. This exact analytical approach uses the semi-inverse method. Another way to model the effect of fiber reinforced material was initiated by [START_REF] Jl Ericksen | Large elastic deformations of homogeneous anisotropic materials[END_REF]. The strain energy is assumed to be a function of some strain invariants that are used to model the fibres directions effect with some structural tensors [START_REF] James | Deformations of fibre-reinforced materials[END_REF]; [START_REF] Boehler | A simple derivation of representations for nonpolynomial constitutive equations in some cases of anisotropy[END_REF]. This phenomenological approach was used to develop some popular hyperelastic anisotropic models [START_REF] Weiss | Finite element implementation of incompressible, transversely isotropic hyperelasticity[END_REF]; [START_REF] Bonet | A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations[END_REF]; [Kal00a]; [HGO00]; [START_REF] Holzapfel | Comparison of a multi-layer structural model for arterial walls with a Fungtype model, and issues of material stability[END_REF]; [START_REF] Cornelius | A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids[END_REF]. The analysis of the ellipticity, convexity, polyconvexity or other inequality [START_REF] Marsden | Mathematical foundations of elasticity[END_REF] of constitutive law was extended to anisotropy in [START_REF] Schröder | Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions[END_REF]; [START_REF] Balzani | A polyconvex framework for soft biological tissues. Adjustment to experimental data[END_REF] among others.

The thesis plan will be presented in the following: The first chapter is an overview on the different multi-scales and homogenization methods. The first part of this chapter is a survey on the different multi-scales and homogenization approaches existing in the literature. On the other hand, the second part presents in the most explicit way a presentation of coupled and decoupled homogenization in large deformations.

The second chapter is dedicated for the isotropic and anistropic hyperelasticity. Focusing on hyperelastic behaviour, a brief recall is made for the mathematical tools for the modeling of such mechanical behaviour.

The third chapter is devoted to the development of a decoupled computational homogenization methodology. A comparison of some different homogenized tranverse isotropic potentials in term of local error is performed. The original version of the tranverse isotropic potentials from litterature are improved in order to get a better calibration.

In the fourth chapter, tests on the macro-scale of a fiber reinforced layer are performed. A comparison is done both in term of local and global error with a fully discretized heterogeneous layer. An iterative correction method is developed and tests of its effectiveness in term of local and global error are achieved.

Chapter 1

Homogénéisation et approche multi-échelle 1.1 Introduction

La modélisation multi-échelle du comportement non linéaire des matériaux est un sujet tellement vaste qu'il est presque impossible de fournir une vue d'ensemble exhaustive de toutes les méthodes développées dans le passé. Nous allons plutôt en donner un bref aperçu, en nous concentrant sur quelques méthodes sélectionnées qui seront discutées plus en détail dans ce chapitre. La mise à l'échelle de la réponse mécanique non linéaire de matériaux hétérogènes est le domaine d'application considéré ici. L'objectif principal de ce chapitre est de résumer les stratégies d'homogénéisation couplée et découplée. Le chapitre est organisé comme suit : La première section présente un survol des différentes méthodes multi-échelle. La section 2 présente l'homogénéisation numérique nonlinéaire trouvée dans les ouvrages de référence. Dans la section 3, on introduit la définition de l'homogénéisation couplée classique en grandes déformations. La section 4 décrit l'homogénéisation computationnelle découplée et un diagramme résumant la méthodologie d'homogénéisation proposée par cette thèse.

Classification des méthodes multi-échelle

Les méthodes multi-échelles ne peuvent pas être classées dans une seule catégorie. Différentes catégories de méthodes multi-échelles peuvent être identifiées d'un point de vue méthodologique, [START_REF] Vanden-Eijnden | Heterogeneous multiscale methods: a review[END_REF] [Wei11][Fis06][Fis10a], en fonction de l'emplacement et de la géométrie de l'échelle hétérogène. Trois catégories de problèmes peuvent être mentionnées :

• Problèmes comportant des détails isolés (par exemple, des défauts, des cavités et des fissures) qui doivent être traités avec une résolution et une précision élevées. Le problème à échelle trés petite "fine" est alors contraint à une petite région du domaine global. Ce type de problème est fréquemment appelé "Problème à échelles multiples" plutôt que "Problème multi-échelles".

• Problèmes dans lesquels la réponse macroscopique doit être extraite du comportement sous-jacent à petite échelle dans de grandes parties du domaine. L'échelle macroscopique effective est déterminée en sondant la "micro-échelle".

• Problèmes mixtes, combinant les deux catégories précédentes, dans lesquels une auto-similarité à travers l'échelle est observée [START_REF] Vanden-Eijnden | Heterogeneous multiscale methods: a review[END_REF].

Pour une illustration plus complète, le lecteur peut consulter [START_REF] Fish | Bridging the scales in nano engineering and science[END_REF]; [START_REF] Fish | Multiscale methods: bridging the scales in science and engineering[END_REF]. Une autre classification connue dans la littérature est basée sur la "Formulation du problème" [START_REF] Marc | Homogenization methods and multiscale modeling: nonlinear problems[END_REF].

• Les méthodes concurrentes : les méthodes concurrentes formulent le problème tout en traitant simultanément les deux échelles. En général, différentes échelles de temps et de longueur sont appliquées à un domaine unique ou à plusieurs domaines. En réalité, le terme "concurrent" est souvent limité aux procédures où différentes échelles (et méthodologies) sont employées dans différents domaines.

• Les méthodes hiérarchique : les deux échelles sont liées de manière hiérarchique, ce qui implique que différentes échelles sont prises en compte et couplées dans la même zone d'un domaine. Le lien hiérarchique peut être créé, par exemple, par la moyenne en volume des variables du domaine ou par la simple identification des paramètres.

• Les méthodes hybrides : les méthodes hybrides, telles que les méthodes multigrilles [START_REF] Miehe | On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers[END_REF], les méthodes par éléments finis généralisées [START_REF] Plews | Bridging multiple structural scales with a generalized finite element method[END_REF], les méthodes basées sur les ondelettes et les méthodes quasi-continu, révèlent généralement des propriétés de diverses classes Parmi les méthodes multi-échelles énumérées ci-dessus, une attention particulière sera accordée aux méthodes d'homogénéisation numérique. Cette classe de méthode est considérée comme hiérarchique, même si les processus de résolution du problème non-linéaire sont itératives et imbriqués, c'est-à-dire que l'équilibre aux deux échelles est établi simultanément. Ces méthodes sont essentiellement basées sur l'intégration sur de petites échelles de longueur (par exemple, sur un volume élémentaire représentatif VER microstructurale).

Homogénéisation numérique nonlinéaires

La théorie classique de l'homogénéisation [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]; [START_REF] Sánchez-Palencia | Non-homogeneous media and vibration theory[END_REF]; [START_REF] Sanchez-Palencia | Homogenization method for the study of composite media[END_REF] est depuis longtemps considérée comme un outil essentiel pour caractériser le comportement des matériaux composites à microstructures périodiques ou quasi-périodiques. Pour dériver des approximations numériques à des coûts raisonnables, surtout dans le cas des matériaux linéaires où des lois de comportement homogénéisées peuvent souvent être identifiées avec un nombre limité de paramètres.

En dehors de situations très spécifiques en termes de lois de comportement utilisées à l'échelle microscopique et en termes de conditions aux limites (de chargement) [START_REF] Chu | Plastic behavior of composites and porous media under isotropic stress[END_REF]; [START_REF] De | Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues[END_REF]; [START_REF] He | Uniform strain fields and microstructure-independent relations in nonlinear elastic fibrous composites[END_REF]; [START_REF] He | Exact results for the homogenization of elastic fiber-reinforced solids at finite strain[END_REF], il n'est pas possible d'identifier une loi homogénéisée dans le cas non linéaire ce qui rend impossible le découplage entre les échelles microscopique et macroscopique. Ceci a donné lieu au développement de technique d'homogénéisation dite computationnelle ou numérique (Computational Homogenization CH).

Au cours des dernières décennies, des progrès substantiels ont été réalisés dans l'homogéneisation numérique (HN) à deux échelles de solides multiphases complexes [START_REF] Marc Gd Geers | Multi-scale computational homogenization: Trends and challenges[END_REF]. Cette méthode est essentiellement basée sur la résolution imbriquée de deux problèmes aux limites, à chaque échelle (échelle macroscopiqueéchelle microscopique). Bien que coûteuses en calcul, les procédures développées permettent d'évaluer l'influence macroscopique des paramètres microstructurels de manière assez directe. La technique du premier ordre de cette méthode est maintenant bien établie et largement utilisée par la communauté scientifique et technique [START_REF] Suquet | Local and global aspects in the mathematical theory of plasticity[END_REF]; [START_REF] Ghosh | Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[END_REF] [START_REF] Terada | A class of general algorithms for multi-scale analyses of heterogeneous media[END_REF]; [START_REF] Miehe | Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation[END_REF]. Depuis la fin des années 1990, de nombreuses contributions dans le cadre de l'homogénéisation numérique de différents matériaux ont été développées pour, par exemple, les milieux poreux [START_REF] Ehlers | From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses[END_REF] [START_REF] Ehlers | From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses[END_REF], les matériaux cellulaires [START_REF] Ebinger | Modeling macroscopic extended continua with the aid of numerical homogenization schemes[END_REF] Bien que CH soit une technique multi-échelle extrêmement puissante, elle s'accompagne d'un coût de calcul élevé. Néanmoins, la CH est naturellement parallélisable [START_REF] Mosby | Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers[END_REF] et la méthode a démontré une excellente évolutivité, comme on le verra plus loin dans ce chapitre. Par ailleurs, l'accent est mis de plus en plus sur l'efficacité de cette méthode, qui fait appel à des techniques de calcul avancées et à des modèles d'ordre réduit [START_REF] Yvonnet | The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains[END_REF]; [START_REF] Fritzen | Reduced basis hybrid computational homogenization based on a mixed incremental formulation[END_REF]; [START_REF] Fritzen | GPU accelerated computational homogenization based on a variational approach in a reduced basis framework[END_REF]; [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF].

; [GLR01]; [SBM98]; [MSS99a]; [MSS99b]; [FC00]; [Ter+00]; [KBB01];
Dans ce contexte, la méthode numérique découplée introduite par Terada et al. [START_REF] Terada | A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials[END_REF] permet de retrouver un coût de calcul comparable à celui d'un calcul classique de mécanique des structures avec un matériau homogène (voir également [START_REF] Poreba-Sebastjan | Decoupled homogenization of hyperelastic composite with carbon black inclusion[END_REF]; [START_REF] Saito | A decoupling scheme for two-scale finite thermoviscoelasticity with thermal and cure-induced deformations[END_REF] pour plus de développements). Ceci au prix d'une approximation supplémentaire sur la loi homogénéisée dont la forme est présélectionnée avec un nombre plus ou moins important de paramètres. Cette loi vise à caractériser la réponse globale de la micro-structure au niveau VER, au moins dans le domaine de sollicitation qui intéresse le niveau macroscopique. La méthode peut être utilisée soit avec des lois simples homogénéisées, dans le cas où l'on peut s'attendre à une telle loi simple spécifique, soit avec des lois plus complexes ou même entièrement paramétriques. Une possibilité pour identifier une loi entièrement paramétrique est de tirer parti de la propriété d'approximation des réseaux neuronaux artificiels (voir [START_REF] Ba Le | Computational homogenization of nonlinear elastic materials using neural networks[END_REF]; [Kal+22]). Une optimisation des paramètres de la loi homogénéisée est effectuée hors ligne sur un ensemble d'entraînement composé d'expériences numériques provenant d'une approximation par éléments finis du problème aux limites 1 défini à l'échelle micro sur le VER. La forme de la loi homogénéisée choisie est évidemment cruciale pour le bon fonctionnement et l'efficacité de la méthode. Une fois les paramètres de la loi homogénéisée sont identifiés, celle-ci peut être utilisée pour représenter la réponse à micro-échelle et ensuite pour évaluer la réponse à macro-échelle. Les deux méthodes ont été appliquées, dans le cas de matériaux hyperélastiques ou pour la viscoélasticité linéaire. Afin d'introduire l'homogénéisation à deux échelles pour la grande déformation d'un matériau composite micro-structuré, nous décrivons d'abord le problème à l'échelle macroscopique, puis à l'échelle microscopique et enfin le couplage entre les deux échelles. 

Problème macroscopique

= ∇ X ( ũ(X)) = F -1 (1.4)
Pour un corps hétérogène macroscopique, soumis à un chargement et à des contraintes et en l'absence d'effets d'inertie, l'équation d'équilibre à l'échelle macro s'exprime comme suit ∇ X . P + b = 0 in B0 , (1.5) où

• ∇ X : désigne l'opérateur de divergence par rapport à la configuration initiale.

• P : est le premier tenseur de contraintes de Piola-Kirchhoff à l'échelle macroscopique.

• 

∂ BN 0 ∪ ∂ BD 0 = ∂ B0 ∂ BN 0 ∩ ∂ BD 0 = ∅ (1.7)

Problème microscopique

Le comportement mécanique de la micro-structure du matériau est identifié par un Volume Élémentaire Représentatif (VER2 ). Idéalement, ce VER doit inclure un échantillonnage représentatif de toutes les hétérogénéités micro-structurelles qui se produisent dans le matériau à une échelle de longueur qui devrait être plus petite que la longueur caractéristique de la variation de champ macroscopiquement, mais suffisamment grande que la physique à micro-échelle. En particulier, il est très important dans l'homogénéisation d'un matériau fibreux que le rapport fibre/matrice soit maintenu aux deux échelles, voir les manuels classiques sur la théorie de l'homogénéisation : [START_REF] Nemat-Nasser | Micromechanics: overall properties of heterogeneous materials[END_REF]; [START_REF] Fish | Multiscale methods: bridging the scales in science and engineering[END_REF] 

; Y) = H(X).Y + u * (X; Y) + c(X), (1.9) 
• H est le gradient de déplacement à macro-échelle défini par (1.4).

• u * désigne le déplacement de fluctuation (voir section suivante)

• c est un vecteur constant indépendant de Y, dérivé de l'intégration du gradient de déformation à micro-échelle défini par 

F(X; Y) = ∇ Y ϕ(X; Y) = ∇ Y w(X; Y) + 1 = H(X; Y) + 1, ( 
|B 0 | = 1).
Le tenseur de déformation macro-homogène F est lié au tenseur de gradient de déformation à micro-échelle pour chaque point à micro-échelle par

F(X; Y) = F(X) + ∇ Y u * (X; Y).
(1.12) En l'absence de forces volumiques, l'équation d'auto-équilibre à micro-échelle pour la cellule unitaire VER en termes de premier tenseur de contraintes de Piola-Kirchhoff à micro-échelle P et de sa fonction de réponse F (F) est donnée par

∇ Y .P = 0 ∀Y ∈ B 0 P = F (F) ∀Y ∈ B 0 (1.13)

Couplage Macro-micro : cinématique

L'homogénéisation par couplage au premier ordre est basée sur l'idée que les quantités microscopiques sont reliées à leurs contreparties macroscopiques par le biais d'une moyenne volumique sur le VER : [START_REF] Hill | On constitutive macro-variables for heterogeneous solids at finite strain[END_REF]; [START_REF] Rw Ogden | On the overall moduli of non-linear elastic composite materials[END_REF]. L'une des relations de transition d'échelle les plus couramment utilisées pour établir le couplage macro-micro est la relation de moyenne cinématique. Elle exige que la moyenne volumique3 du tenseur gradient de transformation à l'échelle microscopique F soit égale au tenseur de gradient de transformation F à l'échelle macroscopique correspondante(1.10), c'est-à-dire

F = 1 |B 0 | B 0 FdV = H + 1. (1.14)
L'insertion du tenseur de gradient de déformation à micro-échelle (1.12) dans (1.14) conduit à

1 |B 0 | B 0 FdV = F + 1 |B 0 | B 0 ∇ Y u * (X; Y)dV = F + 1 |B 0 | ∂B 0 u * (X; Y) ⊗ NdA, (1.15) 
où nous utilisons le théorème de divergence pour transformer l'intégrale de volume en intégrale de surface sur la frontière non déformée ∂B 0 du VER avec le vecteur normal extérieur N. Pour satisfaire la relation de transition d'échelle, les conditions aux limites sur le VER doivent être choisies de manière à faire disparaître la contribution du champ de microfluctuation u * dans l'équation (1.15). Ceci peut être réalisé de différentes manières. Voici quelques-unes présentées et utilisées dans la littérature :

1. Éliminer les fluctuations u * microstructurelles dans le VER

u * = 0, ∀Y ∈ B (1.16)
Cette condition oblige le volume entier à se déformer selon la macrotransformation prescrite F (connue sous le nom d'hypothèses de Taylor/Voight).

F = F, ∀Y ∈ B (1.17)
2. Éliminer les fluctuations u * sur le bord du VER ∂B 0 uniquement, tout en laissant les changements microstructurels du volume inconnu du problème.

u * = 0, ∀Y ∈ ∂B 0 (1.18) L'équation (1.15) sera transformée en y = F • Y ∀Y ∈ ∂B 0 (1.19)
Cette condition est connue sous le nom de condition de déplacement uniforme.

Les déplacements de la frontière VER sont complètement dictés par la transformation F à l'échelle macroscopique.

3. Dans le cas d'un VER avec une frontière géométriquement périodique, le bord peut être divisé en parties " + " et " -" définies par des vecteurs normaux extérieurs opposés définis par ce qui suit

N + = -N - (1.20)
La condition aux limites dans ce cas est connue sous le nom de condition aux limites périodique. Elle est imposée en exigeant la périodicité du champ de fluctuation. Dans notre cas avec un VER tridimensionnel cubique

u * | ∂B [J] 0 = u * | ∂B [-J] 0 (J = 1, 2, 3).
(1.21) où J désigne la paire constituée des faces opposées du VER. Sur le bord les deux équations (1.8) et (1.9)

y| ∂B [J] 0 -y| ∂B [-J] 0 = F • Y| ∂B [J] 0 -Y| ∂B [-J] 0 (1.22)
4. La condition limite la plus faible possible, connue sous le nom de "conditions limites cinématiques minimales" introduite par [MP05]

∂B 0 u * ⊗ Nd∂B 0 = 0 (1.23)
Deux autres conditions aux limites simples sont parfois utilisées dans la la littérature, mais qui ne s'inscrivent pas directement dans la la transition macro-micro cinématique :

5. une condition de contrainte aux limites connue sous le nom d'hypothèse de Sachs ou de Reuss. Dans ce cas, on suppose une contrainte constante identique comme suit P = P, ∀Y ∈ B (1.24)

6. La dernière est connue sous le nom de conditions limites de traction uniforme.

Elle consiste à prescrire des tractions sur le VER en fonction d'une contrainte macroscopique donnée P.

p = P. Ñ, ∀Y ∈ ∂B 0 (1.25)
D'autres approches pour imposer les conditions aux limites nécessitent de résoudre le problème aux limites sur le VER tout en permettant l'intégration des caractéristiques microstructurelles locales. L'application de conditions aux limites de déplacement uniforme sur une cellule microstructurale conduit généralement à une surestimation des propriétés effectives, tandis que les conditions aux limites cinématiques minimales et les conditions aux limites de traction uniforme conduisent à une sousestimation de ces propriétés. Les conditions aux limites (5) et (6) sont connues pour être sensibles à des détails microstructuraux particuliers près du bord de VER. Les conditions aux limites périodiques sont connues pour fournir la meilleure estimation des propriétés globales ]. Des types avancés de BC sur RVE ont été développés pour des problèmes spécifiques basés sur la combinaison des BC ci-dessus [START_REF] Larsson | Computational homogenization based on a weak format of micro-periodicity for RVE-problems[END_REF], [START_REF] Ewc Coenen | Novel boundary conditions for strain localization analyses in microstructural volume elements[END_REF].

[Slu+00], [Ter+00], [MK02], [Kan+03], [Kan+06], [KOS06], [ Per+11 

Couplage micro-macro : Condition de Hill-Mandel

La relation de transition entre les échelles micro et macro est généralement établie sur la base de la condition dite de Hill-Mandel ou condition de macrohomogénéité ([Hil63], [START_REF] Suquet | Local and global aspects in the mathematical theory of plasticity[END_REF]). Cette condition exige que la moyenne en volume de l'incrément (ou de la variation) du travail effectué sur le VER soit égale à l'incrément (ou à la variation) du travail local à l'échelle macroscopique. Formulé en termes d'un ensemble conjugué de travail, c'est-à-dire, le gradient de déformation et du premier tenseur de contraintes de Piola-Kirchhoff, la condition de Hill-Mandel est la suivante

1 |B 0 | B 0 P : δF T dV = P : δ FT .
(1.26)

A partir de l'équations d'équilibre à l'échelle microscopique (1.13), on peut obtenir facilement en utilisant le théorème de divergence, la moyenne volumique du travail virtuel à l'échelle microscopique qui peut être exprimée en termes de quantités de surface du VER. Ainsi, le premier tenseur de contrainte de Piola-Kirchhoff à l'échelle macroscopique P peut être défini comme la moyenne volumique de la contrainte correspondante à l'échelle microscopique P sur la cellule unitaire VER [START_REF] Marc | Homogenization methods and multiscale modeling: nonlinear problems[END_REF], comme suit

P = 1 |B 0 | B 0 PdV. (1.27)
En considérant la condition de périodicité (1.21), le vecteur de traction micro Piola T satisfait une condition d'antipériodicité sur la limite de la cellule unitaire ∂B 0 avec N étant le vecteur normal unitaire extérieur sur la surface correspondante dans la configuration de référence

T [J] + T [-J] = 0 où T [J] = P.N [J] ,
(1.28) à partir duquel le vecteur de traction moyen de Piola peut être dérivé

T[J] i = PiJ = N [i] . T[J] = N [i] .( P.N [J] ) = N [i] . 1 |∂B 0 | ∂B 0 P.N [J] dA = 1 |∂B [J] 0 | ∂B [J] 0 T [J] i ds, (1.29) où |∂B [J] 0 | est l'aire de la limite du VER ∂B [J]
0 et PiJ est la composante iJ du premier tenseur de contrainte de Piola-Kirchhoff à l'échelle macro, la moyenne surfacique du vecteur de traction de Piola à micro-échelle correspondant T

[J]

i à la limite de la cellule unitaire ∂B Les conditions aux limites du VER satisfont la condition de Hill-Mandel d'où elles sont déterminées à l'aide du lemme de Hill

1 |B 0 | B 0 P : δF T dV -P : δ FT = ∂B 0 [δϕ -δ F.Y].[P.N -P.N]dA. (1.30)
Dans notre cas, les conditions aux limites de déplacement périodiques(1.21), de traction antipériodique et (1.27) sont suffisantes pour satisfaire la condition de Hill-Mandel (d'homogéinisation). Ainsi le problème couplé micro-macro-homogénéisé peut être résumé comme suit ; le problème aux valeurs limites à l'échelle micro doit être résolu pour chaque X ∈ B0 pour l'ensemble des solutions w, F, H qui satisfont l'équation d'équilibre à l'échelle micro (1.13) avec la condition de périodicité (1.21), tandis que le problème aux valeurs limites à l'échelle macro est résolu pour F, P qui satisfait (1.14), (1.27) et (1.5). Il est à noter que le problème aux valeurs limites à l'échelle micro ne peut être résolu que si la solution à macro-échelle est donnée et vice versa. Cette méthode d'homogénéisation couplée permet de définir le comportement effectif analytique des matériaux hétérogènes pour des classes simples et spéciales de conditions aux limites uniformes et des modèles de comportements des constituants des matériaux. Ces résultats analytiques ont une importance à la fois théorique et pratique et seront utilisés dans ce travail. Pour les situations complexes, des méthodes de calcul ont été développées (voir une revue intéressante dans [START_REF] Marc | Homogenization methods and multiscale modeling: nonlinear problems[END_REF]) mais elles restent très coûteuses pour les applications industrielles.

Méthode découplé proposée

Pour la méthode que nous proposons la condition préalable au découplage4 est que nous soyons en mesure de prendre un modèle constitutif (potentiel hyperélastique anistrope) pour caractériser correctement le comportement du matériaux à l'echelle macro qui est obtenu à partir de l'analyse numérique par la méthode des éléments finis d'un problème aux valeurs limites à l'échelle micro. Il est à noter que, d'un point de vue pratique (industriel), les modèles constitutifs approximatifs permettent des alternatives, car il se peut qu'il n'y ait pas de modèle rigoureux disponible selon le type de matériaux composites. Une fois que la forme fonctionnelle d'une équation constitutive macro appropriée est supposée, plusieurs analyses numériques à l'échelle micro sont effectuées sur un VER afin d'obtenir les paramètres du matériau homogénéisé via des procédures d'optimisation. L'ensemble des analyses numériques par la méthodes des éléments finis à l'échelle micro à cette fin peut être considéré comme test numérique des matériaux. Les étapes de la procédure de la méthode (figure 1.3) sont décrites comme suit : (E0): On suppose un modèle constitutif "potentiel hyperélastique anistrope" approprié pour le comportement macroscopique du matériau considéré.

(E1): Une série de test est effectuée sur un modèle de VER (maillage élément finis), qui est considéré comme un "spécimen numérique", pour obtenir le comportement homogénéisé ou macroscopique du matériau. Notez bien que différentes conditions aux limites cinématiques sont utilisées. 

Conclusion

Dans ce chapitre, nous avons résumé les différentes approches d'homogénéisation. Dans une première partie, une brève classification des méthodes multi-échelle est proposée. Puis dans une seconde partie un survol bibliographique des méthodes homogénéisation numérique non-linéaires a été proposé. La troisième partie a été consacrée à l'application de ces méthodes, principalement la méthode découplée, dans un cadre non-linéaire en grande déformation. Dans la dernière partie nous avons détaillé schématiquement la méthode proposée afin de faciliter la lecture des chapitres 3 et 4 qui présentent en détails l'application de cette méthode pour identifier des potentiels anisotropes hyperélastiques.

Chapter 2

Isotropic and anisotropic hyperelasticity 2.1 Introduction

The following chapter is devoted to the introduction of the mechanical framework of the thesis. In the first part we introduce the equilibrium for a deformable body undergoing a finite deformation. Physically hyperelastic media are in general rubberlike materials bodies, so a survey is dedicated to the physical properties of these materials in the second part of the chapter. Both incompressible and compressible class of material behaviour are presented in this second part. In the last one a literature survey of anisotropic hyperelastic class of behaviour is presented. Some anisotropic potential will be used to test homogenization method proposed in this work.

Nonlinear elasticity equilibrium problem

Kinematics

In order to derive the equilibrium equation, let a body occupying a reference configuration B 0 and each point M of the body in B 0 is labelled by X = (X 1 , X 2 , X 3 ) in a cartesian coordinate systems. If the body is deformed quasi-statically from B 0 to B (Figure 2.1) the deformation of the body can be described by

u (X, t) = x (X, t) -X, (2.1) 
where x (X, t) = (x 1 , x 2 , x 3 ) is the position vector of the point M in B and u (X, t) de- note the displacement vector. To describe the deformation, the second order tensor F can be written

F = Grad X (x) F iJ = ∂x i ∂X J , (2.2)
Grad X in (2.2) being the gradient operator in B 0 . The transformation tensor F should be non-singular to assure the invertibility of the transformation between the two configurations B 0 and B of the body. Then we adopt the usual convention that

J = det (F) > 0. (2.3) Equation (2.1) written in the form dx = FdX (2.4) FIGURE 2.1: 3D body deformation
describes the linear transformation of an infinitesimal line element dX at the point M (X) into the line element dx at M (x). Surface transformation can be deduced using the Nanson's formula and a vector surface element NdS 0 in the undeformed configuration B 0 is transformed to

ndS ndS = JF -T NdS 0 , (2.5) 
where F -T = F -1 T denote the transpose of the inverse of the deformation tensor.

If dV 0 denote volume elements in B 0 , the volume change to dV on B can be deduced dV = JdV 0 .

(2.6)

To define a general measure of deformation, let dX a and dX b be two elementary vectors that deform to dx a and dx b , respectively. The deformation can be decomposed into two different deformations ;

• Stretching: change in length.

• Changes in the enclosed angle between the two vectors (dX a , dX b ).

The scalar product in the deformed configuration dx a • dx b can be found in terms of the vectors dX a and dX b in the undeformed configuration

dx a • dx b = (F • dX a ) • (F • dX b ) = dX T a • F T • F • dX b = dX T a • C • dX b , (2.7)
where C is the right Cauchy-Green tensor. Conversely, the scalar product dX a • dX b in the initial configuration B 0 can be obtained in term of the left Cauchy-Green tensor

B = F • F T dX a • dX b = dx T a • B -1 • dx b . (2.8)
To assess the change in scalar product in terms of material vectors dX a and dX b the Lagrange 1 strain tensor

E E = 1 2 (C -I) (2.9)
1 Also called Green tensor.

and then

dx a • dx b -dX a • dX b = 2dX a • E • dX b .
(2.10)

The same change can be expressed in terms of spatial vectors dx a and dx b and the Almansi strain tensor2 

dx a • dx b -dX a • dX b = 2dx a • A • dx b , (2.11)
where the spatial tensor

A A = 1 2 I -B -1 .
(2.12)

The tensor F can be decomposed into rotational and stretching part

F = R. U = V. R (2.13)
Equation (2.13) is called the polar decomposition of tensor F. Where R the rotation tensor is orthogonal R T = R -1 and U, V denote respectively right (material), left (spatial) stretch tensor. It can be shown easily that U and V are two positive definite tensors. Right and left Cauchy-Green tensors C can be written

C = U 2 , (2.14) B = V 2 . (2.15)
From equations (2.14) and (2.15) we can deduce that Lagrange strain tensor E and Almansi strain tensor A do not include information about rotation. In practical case to obtain the tensor U from equation (2.14) an eigenvalue problem should be solved. Let {N i } i=1,2,3 denote the triad eigenvector of tensor C and {λ 2 i } i=1,2,3 are their corresponding eigenvalues. Then we can write

C = 3 ∑ i=1 λ 2 i N i ⊗ N i . (2.16)
Bearing in mind the symmetry of tensor C, the triad {N i } i=1,2,3 are orthogonal vectors. Then, combining the two equations (2.14) and (2.16) the stretch tensor U can be obtained by the following equation

U = 3 ∑ i=1 λ i N i ⊗ N i .
(2.17)

After determining the stretch tensor U, using equation (2.13) the rotation tensor R can be easily evaluated using the following relation

R = F U -1 . (2.18)
Combining the deformation (2.1) and the polar decomposition equation (2.13)

dx = F dX = R (U dX) . (2.19)
In the above equation the vector U dX can be considered as a material stretched vector rotated to the spatial configuration by R.

Stress tensors

In continuum mechanics, stress denote a physical quantity expressing the internal forces between particles. The stress has the physical dimension of force per unit area and for every surface a stress vectors t and T can be defined for static problem (steady state problem). Then, let d f denote an element of force acting in an element of area ds in the spatial (current) configuration B

d f = t (x, n) .ds = T (X, N) .dS (2.20)
Where

• t represents the Cauchy traction vector (force measured per unit surface area defined in the current configuration B).

• T represents the first Piola-Kirchhoff traction vector (force measured per unit surface area defined in the reference configuration B 0 ).

• n, N are the outward normal vectors of ds (surface element in the current configuration B) and dS (surface element in the reference configuration B 0 ), respectively.

The pseudo traction vector T does not describe the actual intensity. It describes the internal forces acting in the current configuration in terms of the reference configuration position X and the outward normal vector N. Using the introduced traction vectors in (2.20) Cauchy's stress tensor and first Piola-Kirchhoff stress tensor can be written

t = t (x, n) = σ • n, (2.21) 
T = T (X, N) = τ • N.
(2.22) Using Nanson's formula (2.5) the relation between Cauchy stress tensor and first Piola-Kirchhoff can be derived

σ = 1 J τ • F T , τ = Jσ • F -T . (2.23)
It can be shown that σ is a symmetric tensor (from balance laws) and τ is asymmetric and satisfy the following relation

τ • F T = F • τ T . (2.24)
The tensor τ is an unsymmetric two-point tensor and is not completely considered as a material configuration tensor. It is possible to derive a totally symmetric stress tensor known as the second Piola-Kichhoff stress tensor by pulling back the spatial element of force f in the equation (2.20). Then a material stress vector f 0 will be obtained

d f 0 = F -1 • d f . (2.25)
Then, combining equations (2.23), (2.20) and (2.25) and the second Piola-Kirchhoff stress tensor can be obtained as

S = J F -1 • σ • F -T .
(2.26)

After defining stress concept for a deformable body, conservation of mass , translational and rotational equilibrium equations will be derived in the next section.

Equilibrium equations

Mass conservation

The mass of a deformable body undergoing a finite deformation process remains unchanged. To derive an expression for the conservation of mass; let ρ 0 and ρ denote respectively the density in the reference B 0 and current configuration. Then the mass of the body can be obtained in both configurations by the following equality

m 0 = B 0 ρ 0 • dV = B ρ • dv = m.
(2.27) Thus, for isotropic body the local formulation of the conservation of mass can be written as

ρ 0 = J • ρ.
(2.28)

Translational static equilibrium

To derive the static equilibrium equation let v and ∂v denote respectively the element volume and the element surface of a deformable body in its current configuration.

Assuming that the body is under the action of body forces f and stress vector t. The translational equilibrium implies that the sum of t and f vanishes (2.31)

The above equation can be equally applied to any enclosed region of the body. In fact the integrand function must vanish

divσ + f = 0.
(2.32)

Rotational static equilibrium

Symmetry of the Cauchy stress is established by considering the rotational equilibrium of the body under the action of internal forces t and body forces f . This implies that the total moment of forces about any arbitrary point must vanish. The total moment of forces about any arbitrary point should vanish. In the origin point the rotational equilibrium give us

∂v x × tds + v x × f dv = 0. (2.33)
where cross product × of a force with a position vector x yields the moment of that force about the origin. Using relation (2.21) the above equation can be rewritten

∂v x × (σ • n) ds + v x × f dv = 0. (2.34)
Using the Gauss theorem and Levi-Civita symbol E equation (2.34) becomes

v x × (div (σ)) dv + v E : σ T dv + v x × f dv = 0. (2.35) So the vector E : σ T is E : σ T =   σ 32 -σ 23 σ 13 -σ 31 σ 21 -σ 12   (2.36)
Rearranging terms in equation (2.35) and take into account the translational equilibrium (2.30). For any enclosed of the body this equality is obtained

E : σ T = 0 (2.37)
Then, in view of (2.36), equation (2.37) implies the symmetry of the Cauchy stress tensor σ.

Homogeneous Hyperelasticity

For hyperelastic material the constitutive behaviour is only a function of the current state of deformation. To define the basic materials stress-strain relationships, the deformation gradient F and its conjugate first Piola-Kirchhoff stress measure τ can be used

τ = τ (F, X) (2.38)
The direct dependency of the first Piola-Kirchhoff stress tensor τ on X can translate an inhomogeneity. For hyperelastic material admit a path-independent behaviour and then we can write

W (F, X) = t t 0 τ (F, X) : Ḟdt (2.39)
where Ḟ denotes the time derivative of deformation tensor. Giving the stored elastic energy W (F, X) the Piola-Kirchhoff stress tensor

τ = ∂W (F) ∂F , τ iJ = ∂W ∂F iJ ∀{i, J} ∈ {1, 2, 3} (2.40) 
The above equation can be rewritten in spatial (current

) configuration B σ = J -1 ∂W (F) ∂F • F T (2.41)
According to objectivity the stored energy W must remain invariant when a rigid body rotation is applied. This implies that W depends on F3 only via the stretch tensor U. Recalling the right Cauchy-Green deformation tensor, which is given in terms of the deformation gradient

F C = F T F = U T R T R U = U T U (2.42)
Where R is an orthogonal tensor R T R = I. For convenience, the energy function W is expressed as a function of the right Cauchy-Green deformation tensor (2.42)

W (F (X) , X) = W (C (X) , X) (2.43)
The second Piola-Kirchoff stress tensor [START_REF] Bonnet | Nonlinear continum mechanics for finite element analysis[END_REF] can be obtained

S = 2 ∂W ∂C (2.44)

Incompressible isotropic hyperelasticity

The isotropy implies that the relationship between W and C must be independent of the material axes chosen and consequently, W must only be a function of the C invariants I 1 = tr (C) (2.45a)

I 2 = 1 2 tr (C) 2 -tr C 2
(2.45b)

I 3 = det (C) = det C 2 = J 2 (2.45c)
Then in the case of isotropy (2.43),

W (F (X) , X) = W (C (X) , X) = W (I 1 , I 2 , I 3 , X) (2.46)
Then, the second Piola-Kirchhoff stress tensor can be rewritten under the restriction of isotropy

S = 2 ∂W ∂C = 2 ∂W ∂I 1 ∂I 1 ∂C + 2 ∂W ∂I 2 ∂I 2 ∂C + 2 ∂W ∂I 3 ∂I 3 ∂C (2.47)
Expression (2.47) of the second Piola-Kirchhoff stress tensor can be evaluated as4 

S = 2I ∂W ∂I 1 + 4C ∂W ∂I 2 + 2J 2 C -1 ∂W ∂I 3 (2.48)
In practice the Cauchy-stresses that are of engineering significance are used. This can be obtained indirectly by using the following transformation

σ = J -1 F • S • F T (2.49)
For incompressible hyperelastic materials det (F) = 1, equations (2.45) to (2.49) are reduced and then

I 3 = det (C) = J 2 = 1 , W (C (X) , X) = W (I 1 , I 2 , X) S = 2I ∂W ∂I 1 + 4C ∂W ∂I 2 , σ = ∂W ∂F • F T -p I (2.50)
and the first Piola-Kirchhoff stress tensor can be obtained using equation (2.23)

τ = ∂W ∂F -pF -T (2.51)
where p denote a scalar representing a Lagrange multiplier that elucidate the incompressibility constraint. After exposing relation between stress tensors and deformation tensors in (2.50) and (2.51), some constitutive models5 are presented in the following section.

Constitutive models for incompressible hyperelacticity

For constitutive model only strain energy model for incompressible material will be presented. One of the first and simplest constitutive model was the neo-Hookean model [START_REF] Rivlin | Large elastic deformations of isotropic materials. I. Fundamental concepts[END_REF]. Its strain energy function is

W (I 1 , I 2 , I 3 ) = W (I 1 ) = µ 2 (I 1 -3) (2.52)
where µ > 0 denote the shear modulus. 

W (I 1 , I 2 ) = C 01 (I 1 -3) + C 10 (I 2 -3) . (2.54)
Where the shear modulus µ = 2 (C 01 + C 10 ). It has been shown by [Moo40a] that the form represented by (2.54) reflects the undeformed state for large deformations of an incompressible isotropic hyperelastic material. Others authors proposed a generalized neo-Hookean strain energy functions6 . A generalized neo-Hookean model has the the following form W (F) = W (I 1 ) .

(2.55)

From the phenomenological point of view neo-Hookean models can be devided in two classes:

• Limiting chain extensibility models.

• Power-law chain models.

For the first class of models, [START_REF] Gent | A new constitutive relation for rubber[END_REF] proposed the following strain energy density

W (I 1 ) = - µ 2b G ln [1 -b G (I 1 -3)] .
(2.56)

Where µ denote the shear modulus and b g > 0 a constant parameter representing polymeric chain extensibility limit. In biomechanics and for soft tissues, a widely used model was proposed by [START_REF] Fung | Elasticity of soft tissues in simple elongation[END_REF] W

(I 1 ) = µ 2b F exp [b F (I 1 -3) -1] (2.57)
here b F > 0 a dimensionless constant reflecting stiffening and µ is the shear modulus. For small deformation and small value of b G and b F Both models behave like neo-Hookean solids. For carbon filled rubber [START_REF] Yeoh | Characterization of elastic properties of carbon-blackfilled rubber vulcanizates[END_REF] proposed a generalized neo-Hookean strain energy function

W (I 1 ) = C 10 (I 1 -3) + C 20 (I 1 -3) 2 + C 30 (I 1 -3) 3 .
(2.58)

Higher order terms in (2.58) improved the ability to capture moderate and large deformations. Another power model to describe both stiffening and softening effects in biological tissues and rubber-like materials, was proposed by [Kno77] as follows

W (I 1 ) =                    µ 2αβ (1 + β (I 1 -3)) α -1 if α = 0 and β = 0 µ 2β log (1 + β (I 1 -3)) if α = 0 and β = 0 µ 2 (I 1 -3) ifβ = 0, ∀α (2.59)
Many experimental data suggest that generalized neo-Hookean models have a limited applicability in the engineering application, nevertheless their application to obtain analytical solution for many problems facilitate understanding of mechanical properties of elastomeric solids and leads to benchmarks problems for complex numerical solutions. Other authors [START_REF] Valanis | The Strain-Energy Function of a Hyperelastic Material in Terms of the Extension Ratios[END_REF] proposed strain energy function expressed in term of principle streches

W (λ 1 , λ 2 , λ 3 ) = w 1 (λ 1 ) + w 2 (λ 2 ) + w 3 (λ 3 ) , (2.60) 
where functions w i (λ i ) are the same by symmetry for each extension ratios. Ogden in [START_REF] Rw Ogden | Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[END_REF] proposed a general form of incompressible hyperelasticity to model the behaviour of rubber, polymers and biological tissues. The strain energy W in terms of principal stretches:

W (λ 1 , λ 2 , λ 3 ) = n ∑ i=1 µ i α λ α i 1 + λ α i 2 + λ α i 3 -3 . (2.61)
Shear modulus µ can be obtained by the following equation

µ = 1 2 n ∑ i=1 µ i α i . (2.62)
Many strain energy form can be deduced from the generalized form (2.61) ; for example Mooney-Rivlin model (2.54) can be deduce from (2.61) by taking: N = 2 , α 1 = 2 and α 2 = -2, and replacing λ i with I i 7 .

Compressible isotropic hyperelasticity

For compressible hyperelastic materials, the development of strain energy function is subjected to more constraints than those cited below. In fact, the constitutive model W(I 1 , I 2 , I 3 ) must approach infinity if the local volume tends to infinity or zero, i.e., to expand a body infinitely or to compress it to a point an infinite energy is necessary. These constraints are called commonly Growth Condition. 7 Mooney-Rivlin parameter ;

C 01 = µ 1 2 , C 10 = - µ 2 2
Chapter 2. Isotropic and anisotropic hyperelasticity One class of rigorously mathematical developed model concerns the so-called Hadamard hyperelastic models introduced by [HG03] and named by [START_REF] John | Plane elastic waves of finite amplitude. Hadamard materials and harmonic materials[END_REF] characterized by its capacity to propagate infinitesimal longitudinal waves in every direction under an arbitrary state of finite static homogeneous deformation. This strain energy is defined by:

W H (I 1 , I 2 ) = µ(1 -ε) 2 (I 1 -3) + µε 2 (I 2 -3) + h(I 3 ) (2.63)
To satisfy the strong ellipticity condition, the growth condition and to recover the infinitesimal behaviour law, the functional h(I 3 ) should verify the following requirements [START_REF] Jiang | A class of compressible elastic materials capable of sustaining finite anti-plane shear[END_REF]:

h (I 3 ) + 2I 3 h " (I 3 ) 0 ∀I 3 ∈]0, +∞[ with h(I 3 → 0) → +∞ and h(I 3 → +∞) → +∞ h (1) = - µ 2 (1 + ε) and h " (1) = µ 2 + λ 4
(2.64)

If the parameter ε = 0, the strain energy defined by (2.64) governs a compressible material behaviour and corresponds to the special cases of the Hadamard materials called reduced order Hadamard hyperelastic potential (compressible Neo-Hookean potential) and studied extensively by [START_REF] John | Plane elastic waves of finite amplitude. Hadamard materials and harmonic materials[END_REF]. A particular and a popular mathematical Hadamard hyperelastic potential is the Ciarlet-Geymonat hyperelastic potential by setting a particular choice for the function h(I 3 ):

h CG (I 3 ) = µε 2 + λ 4 (I 3 -1) -µ + λ 2 ln I 1/2 3 (2.65)
Others particular functions of h(I 3 ), which do not necessary verify the Growth Conditions constraints, are introduced in the literature as:

h(I 3 ) = A I 1/2 3 -1 2 h(I 3 ) = B ln I 1/2 3 h(I 3 ) = C ln I 1/2 3 2 (2.66)
The second constitutive model is the Blatz-Ko hyperelastic model developed for highly compressible foam rubber like materials [START_REF] Blatz | Application of finite elastic theory to the deformation of rubbery materials[END_REF]. Their experimental data has shown that the axial and lateral stretches under uniaxial tension can be related by a power law relationship and then the model of general behaviour of a hyperelastic material is based on its response to uniaxial tension. Its strain energy density function, which is based on a coupled function of volumetric and isochoric parts, is given by:

W BK (I 1 , I 2 , I 3 ) = µ(1 -ε) 2 (I 1 -3) + 1 η (I -η 3 -1) + µε 2 I 2 I 3 -3 + 1 η (I η 3 -1) , (2.67) where η = ν 1 -2ν
and ν is the Poisson coefficient such that ν ∈]0, 1 2 [. [START_REF] Milliard F Beatty | The Poisson function of finite elasticity[END_REF] have shown that the Blatz-Ko material is the unique hyperelastic potential where the response of the Cauchy stress σ versus the deformation B depends only on volume changes, i.e., through the local volume ratio J. A generalization of this model to auxetic materials was done by [START_REF] Ciambella | A continuum hyperelastic model for auxetic materials[END_REF]. A subclass of the Blatz-Ko hyperelastic model (2.67) when η = 2 and ν = 1 4 will be used in this work. Further original investigations of the of Blatz-Ko material properties can be found in [START_REF] Milliard F Beatty | The Poisson function of finite elasticity[END_REF] and in the review article by [START_REF] Millard | Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples[END_REF].

One of the main differences between the Ciarlet-Geymonat and Blatz-Ko hyperelastic potentials can be investigated by calculating these models mechanical responses for a state of uni-axial large stretch tension in a pure homogeneous plane deformation. The local volume variation J = det(F) is then determined:

J CG → J 0 = cst and J BK → +∞ (2.68)

Anisotropic Hyperelasticity

Transversely isotropic hyperelasticity

In this thesis, the fiber reinforced composites are composed of a matrix material and one family of fibers and have one single preferred direction. The induced anisotropy is the simplest one called transversely isotropic, i.e., the properties of the material in the transverse direction are isotropic. From mechanical behaviour viewpoint, the stiffness of the material effective behaviour in the preferred direction is much greater than in the direction orthogonal to the fibers. Hence, the local macroscopic constitutive law modelling the effective RVE behaviour depends on the transformation gradient F and on the fiber direction defined by a unit vector A in the reference configuration figure 2.2. Therefore, the material response remains unaffected under (2.69)

According to the invariant theory [START_REF] James | Deformations of fibre-reinforced materials[END_REF]; [START_REF] James | Constitutive theory for strongly anisotropic solids[END_REF] and for unconstrained behaviour, the hyperelastic potential (2.69) is expressed as:

W = W(I 1 , I 2 , I 3 , I 4 , I 5 ), (2.70)
where the invariants (I 1 , I 2 , I 3 ) characterize the isotropic material response and the new invariants (I 4 , I 5 ) describe the anisotropic material response, i.e., the properties of the fiber family and its interaction with the other material constituents:

I 4 = ACA , I 5 = AC 2 A.
(2.71)

Here, the invariant I 4 has a physical sense and is equal to the square of the stretch λ in the fiber direction. Therefore, the material is in extension if I 4 > 1 and in compression if I 4 < 1. The invariant I 5 has, in general, no simple interpretation. Holzapfel, Merodio and Ogden have shown in [START_REF] Merodio | Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation[END_REF] and [START_REF] Holzapfel | Constitutive modelling of arteries[END_REF] that in some choices of the preferred direction A and the deformation C, I 5 may be regarded to model the shearing deformation on the preferred direction.

Incompressible transversely isotropic hyperelastic models

For incompressible behaviour, I 3 = 1, the hyperelastic potential (2.69) is expressed as:

W = W(I 1 , I 2 , I 4 , I 5 ), (2.72)
and the Cauchy stress tensor is given by:

σ = -p1 + 2 ∂W ∂I 1 B + 2 ∂W ∂I 2 (I 1 B -B 2 ) + 2 ∂W ∂I 4 FA ⊗ FA + 2 ∂W ∂I 5 (FA ⊗ BFA + BFA ⊗ FA).
(2.73) The incompressible transversely isotropic hyperelastic constitutive law composed by the strain energy (2.72) and the Cauchy stress tensor (2.73) should respect some conditions. Firstly, in the reference stress free configuration, the strain energy (2.72) and the Cauchy stress (2.73) are identically zero. It will be required:

W 0 = 0 , 2 ∂W 0 ∂I 1 + 4 ∂W 0 ∂I 2 = p 0 , ∂W 0 ∂I 4 + 2 ∂W 0 ∂I 5 = 0, (2.74)
where the 0 superscript indicates evaluation for I 1 = I 2 = 3,I 4 = I 5 = 1 and p 0 is the value of Lagrange multiplier in the reference configuration. Secondly, in the case of infinitesimal deformation, this incompressible transversely isotropic hyperelastic constitutive law composed by the strain energy (2.72) and the Cauchy stress tensor (2.73) should be compatible with the incompressible transversely isotropic linear elastic constitutive law [START_REF] James | Deformations of fibre-reinforced materials[END_REF]; [START_REF] James | Constitutive theory for strongly anisotropic solids[END_REF] given by:

W = µ T tr(ε 2 ) + 2(µ L -µ T )A(ε 2 A) + 1 2 (E L -4µ L + µ T )(A(εA)) 2 , (2.75) σ = -p1 + 2µ T ε + 2(µ L -µ T )(εA ⊗ A + A ⊗ εA) + (E L -4µ L + µ T )(A(εA))A ⊗ A.
(2.76) Here, ε denotes the infinitesimal deformation tensor. Notice that the theory of linear, incompressible, transversely isotropic elasticity governed by relations (2.75) and (2.76) is a three constant theory: the Young's modulus in the longitudinal (preferred) direction E L and the infinitesimal shear moduli for shearing along the fiber direction and in plane normal to the fiber (µ L , µ T ) respectively.

By linearizing the incompressible transversely isotropic hyperelastic constitutive law composed by the strain energy (2.72) and the Cauchy stress tensor (2.73) and identifying it with the incompressible transversely isotropic linear elastic constitutive law, some required conditions are deduced: (see extended discussions in [START_REF] Murphy | Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants[END_REF]; [START_REF] Murphy | Exploitation of the linear theory in the non-linear modelling of soft tissue[END_REF]; [START_REF] Saccomandi | Nonlinear elasticity for soft fibrous materials[END_REF]; [START_REF] Co Horgan | The complex mechanical response of anisotropic materials in simple experiments[END_REF]; [START_REF] Co Horgan | Incompressible transversely isotropic hyperelastic materials and their linearized counterparts[END_REF]):

p = -2 ∂W 0 ∂I 1 + ∂W 0 ∂I 2 (εA)A (2.77) E L = 6 ∂W 0 ∂I 1 + 6 ∂W 0 ∂I 2 + 4 ∂ 2 W 0 ∂ 2 I 4 + 16 ∂ 2 W 0 ∂I 4 ∂I 5 + 16 ∂ 2 W 0 ∂ 2 I 5 + 8 ∂W 0 ∂I 5 (2.78) µ L = ∂W 0 ∂I 1 + ∂W 0 ∂I 2 + ∂W 0 ∂I 5 (2.79) µ T = 2 ∂W 0 ∂I 1 + ∂W 0 ∂I 2 (2.80)
The choice of the independent material properties of the three constants incompressible transversely isotropic linear elasticity theory is not unique [START_REF] Co Horgan | Incompressible transversely isotropic hyperelastic materials and their linearized counterparts[END_REF]. Another triads are commonly exploited [START_REF] Co Horgan | Incompressible transversely isotropic hyperelastic materials and their linearized counterparts[END_REF]: (E L , E T , µ T ) and (µ L , µ T , µ TT ) among others where E T is the Young's modulus in the plane normal to the fibers and µ TT is the Poisson ratio. Notice from relations (2.79) and (2.80) that if the strain energy (2.72) is independent from the invariant I 5 , i.e., W = W(I 1 , I 2 , I 54 ) which is a classical assumption adopted in [START_REF] Humphrey | A new constitutive formulation for characterizing the mechanical behavior of soft tissues[END_REF]; [START_REF] Humphrey | Determination of a constitutive relation for passive myocardium: I. A new functional form[END_REF], the longitudinal µ L and the transverse µ T infinitesimal shear modulus are equal. This is clearly an unphysical prediction.

Thirdly, the strain energy should respect some classical inequalities to ensure the existence and the uniqueness of the local and the global solution and to ensure a physically meaningful material behaviour: Baker-Ericksen, strong ellipticity and strict polyconvexity inequalities [START_REF] Marsden | Mathematical foundations of elasticity[END_REF]. For incompressible transversely isotropic hyperelastic potential, the strong ellipticity is assured by the following conditions [START_REF] Jay R Walton | Sufficient conditions for strong ellipticity for a class of anisotropic materials[END_REF]:

               ∂W ∂I * k > 0 for k = 1, 2, 4, 5 ∂W ∂I * 1 + γ ∂W ∂I * 4 0 ∀γ > 4 det ∂ 2 W ∂I * k ∂I * I > 0 (2.81)
where the new invariants I * k (k = 1, 2, 4, 5) are defined as:

I * 1 = I 1 2 , I * 2 = I 2 1 2 -I 2 , I * 4 = I 4 , I * 5 = I 5 .
(2.82)

The art of constructing a strain energy density (2.72) respecting the conditions listed below and modelling the material behaviour is crucial to design complex hyperelastic structures. Since the appearing of the Rivlin's series [START_REF] Rs Rivlin | Experiments on the deformation of rubber large elastic deformations of isotropic materials VII[END_REF] and later the Ogden model [START_REF] William | Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids[END_REF] based on elongations and a power law development, the development of anisotropic hyperelastic models has been formulated in different ways based in various functional forms such as a series of polynomials or exponentials within the framework of invariant theory. Two general models, coupling the effect and the interaction of the different invariants, are of the form [JT01]:

W = ∑ k,l,m,n C klmn (I 1 -3) a k (I 2 -3) b l (I 4 -1) c m (I 5 -1) d n ,
(2.83)

Chapter 2. Isotropic and anisotropic hyperelasticity

W = ∑ k,l,m,n C klmn (I a k 1 -3 a k )(I b l 2 -3 b l )(I c m 4 -1)(I d n 5 -1), (2.84)
where (C klmn , a k , b l , c m , d n ) are material parameters whose identification is complex. Some way to simplify these models (2.83) and (2.84) is to decouple the invariants effect: The exponential development of hyperelastic model is a key property of the constitutive modelling of soft tissues which are fibres-reinforced composites "per excellence". The pioneering work of Fung [START_REF] Fung | Elasticity of soft tissues in simple elongation[END_REF][Fun67] was used by numerous researchers to develop more sophistically models, see [START_REF] Weiss | Finite element implementation of incompressible, transversely isotropic hyperelasticity[END_REF]; [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF]; [START_REF] Helfenstein | On non-physical response in models for fiberreinforced hyperelastic materials[END_REF] among others. Here, the Holzapfel-Gasser-Ogden (HGO) model [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF], which is based on a micro-mechanically formulation, is specified for transversely isotropic behaviour:

W = ∑ k A k (I 1 -3) a k + ∑ l B l (I 2 -3) b l + ∑ m C m (I 4 -1) c m + ∑ n D n (I 5 -1) d n , (2.85) W = ∑ k A k (I a k 1 -3 a k ) + ∑ l B l (I b l 2 -3 b l ) + ∑ m C m (I c m 4 -1) + ∑ n D n (I d n 5 -1)
W = µ 2 (I 1 -3) + k 1 2k 2 exp(k 2 (I 4 -1) 2 ) -1 , (2.87)
where µ is the infinitesimal shear modulus and (k 1 , k 2 ) are material parameters. The strain energy form (2.87) belongs to the uncoupled isotropic/anisotropic hyperelastic model class: W(I 1 , I 2 , I 4 , I 5 ) = W iso (I 1 , I 2 ) + W aniso (I 4 , I 5 ).

(2.88)

This class of hyperelastic model (2.88) decouples the energy contributions of the matrix and the fibers. In this case, the coupling influence and interaction between the fibers and the matrix is neglected.

Another way to construct incompressible transversely isotropic hyperelastic model is to exploit the corresponding linear theory. This idea is not new and the isotropic Saint-Venant Kirchoff model is an example of generalization of the Hooke's law for large deformation. The key point of the methodology is to replace the infinitesimal strain ε in the constitutive law of incompressible transversely isotropic linear elasticity, for example (2.75) or (2.76) which are based on the linear material properties triad (E L , µ L , µ T ), by a nonlinear strain measure. The resulting hyperelastic model depends on the choice of the linear material properties triad, the strain measure and the linear constitutive law to be used in the substitution of the infinitesimal strain ε by an appropriate nonlinear strain measure (Cauchy stress, second Piola-Kirchoff stress or strain energy) [START_REF] Murphy | Exploitation of the linear theory in the non-linear modelling of soft tissue[END_REF]; [START_REF] Co Horgan | Incompressible transversely isotropic hyperelastic materials and their linearized counterparts[END_REF]. To illustrate this methodology, two examples will be analyzed. In the first example, the Green-Saint Venant strain tensor E = 1 2 (C -1) replaces the infinitesimal strain ε in the strain energy (2.75). The corresponding Cauchy stress tensor is obtained from stress-strain relation (2.73):

σ = -p1 + µ T (B 2 -B) + 1 2 [(E L -4µ L + µ T )I 4 -E L + 3µ T ]FA ⊗ FA +(µ L -µ T )(FA ⊗ BFA + BFA ⊗ FA).
(2.89)

In the second example, the Eulerian strain measure tensor d = 1 2

(1 -B -1 ) replaces the infinitesimal strain ε in the Cauchy stress tensor (2.76):

σ = -p1 -µ T B -1 - 1 2 [(E L -4µ L + µ T )I -1 4 -E L + 3µ T ]I -1 4 FA ⊗ FA -(µ L -µ T )I -1 4 (FA ⊗ B -1 FA + B -1 FA ⊗ FA).
(2.90)

It is clear that these two examples give two different Cauchy stress tensors and show the complexity of an anisotropic hyperelastic modelling.

All the anisotropic hyperelastic models listed in this chapter and in the references are phenomenological and have developed to model the directional homogenized responses of the fiber-reinforced composites. These phenomenological models could eventually simulate the effects fibers reinforcement. However, these models generally lack of the microstructural constituents informations. In the papers of [CRF15]; [Cha+17]; [START_REF] Helfenstein | On non-physical response in models for fiberreinforced hyperelastic materials[END_REF]; [START_REF] Feng | On the accuracy and fitting of transversely isotropic material models[END_REF]; [START_REF] Ka Gan Açan | A comparative study of anisotropic hyperelastic models of biological soft tissues[END_REF]; [START_REF] Dal | An in silico-based review on anisotropic hyperelastic constitutive models for soft biological tissues[END_REF]; [START_REF] Castillo | Role of anisotropic invariants in numerically modeling soft biological tissues as transversely isotropic hyperelastic materials: A comparative study[END_REF], more interesting reviews and critics about these anisotropic hyperelastic models are done.

To overcome the deficiency of the phenomenological approach, the micromechanical modelling approach is widely used. Its objective is to connect the composite structure microscale response to its macroscale directional homogenized response [START_REF] Fish | Multiscale methods: bridging the scales in science and engineering[END_REF]; [START_REF] Nemat-Nasser | Micromechanics: overall properties of heterogeneous materials[END_REF]. In the case an RVE composed by a matrix and a fiber modelled by two different NewHookean potentials, an explicit analytical expression for the homogenized hyperelastic potential was given [START_REF] Debotton | Neo-Hookean fiberreinforced composites in finite elasticity[END_REF]:

W = µ 1 2 (I 1 -3) + µ 2 -µ 1 2 I 4 + 2 √ I 4 -3 , (2.91)
where (µ 1 , µ 2 ) are two homogenized material parameters depending on the matrix and fiber shear modulus.

Standard slight compressible transversely isotropic hyperelastic models

On way to develop hyperelastic models is to extend existing incompressible hyperelastic models to compressible behaviour. This is done by assuming an additive split of the strain energy into two parts: a volumetric W vol strain energy depending on volume change invariant J and a isochoric (deviatoric) W isc one function of isochoric strain C. This is inspiring by the multiplicative decomposition of the deformation gradient introduced by [Flo61a]:

W(J, C; A) = W vol (J) + W isc (C; A), (2.92)
where the isochoric unimodular are defined by

F = J -1/3 F , C = J -2/3 C, (2.93)
and the corresponding invariants:

I 1 = I -2/3 I 1 , I 2 = I -4/3 I 2 , I 4 = I -2/3 I 4 , I 5 = I -4/3 I 5 .
(2.94) Thus, the decomposition can be expressed as: W(J, C; A) = W vol (J) + W isc (I 1 , I 2 , I 4 , I 5 ).

(2.95)

This decomposition (2.92), originally proposed for isotropic behaviour when the hydrostatic Cauchy stress is a function only of J [START_REF] Rw Ogden | Nearly isochoric elastic deformations: application to rubberlike solids[END_REF]; [START_REF] Cornelius | Constitutive modeling for moderate deformations of slightly compressible rubber[END_REF], should verify some constraints. For incompressible behaviour J = 1, the strain energy W(J = 1, C, A) should recover a known incompressible hyperelastic model with the constraint W vol (J = 1) = 0. In the case of linear behaviour, the strain energy (2.92) should be compatible with the linear elasticity theory. Notice that the split into bulk and deviatoric strain energies (2.92) has the convenience of facilitating material identification through bulk and shear responses. This decoupled sum of strain energies is also crucial for improving the finite element implementation to avoid numerical locking problems for nearly incompressible analysis [START_REF] Simo | Variational and projection methods for the volume constraint in finite deformation elastoplasticity[END_REF]. Attention should be made for material behaviour that is not nearly incompressible, the decomposition leads to unphysical responses [START_REF] Ehlers | The simple tension problem at large volumetric strains computed from finite hyperelastic material laws[END_REF].

The key question addressed here is if the decomposition (2.92), assumed by [START_REF] Weiss | Finite element implementation of incompressible, transversely isotropic hyperelasticity[END_REF]; [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF], is also available for anisotropic behaviour. For the moment, the strain energy decoupled form (2.92) is adopted since this assumption is used by commercial Finite Element codes.

In fact, it seems that the decomposition (2.92) was generalized to anisotropic behaviour [START_REF] Weiss | Finite element implementation of incompressible, transversely isotropic hyperelasticity[END_REF]; [HGO00] without theoretical, numerical and experimental analysis. Firstly, it is shown that the fibers play no role for a cube or a sphere under hydrostatic tension [START_REF] Helfenstein | On non-physical response in models for fiberreinforced hyperelastic materials[END_REF]; [START_REF] Ní | Deficiencies in numerical models of anisotropic nonlinearly elastic materials[END_REF]; [START_REF] Vergori | On anisotropic elasticity and questions concerning its finite element implementation[END_REF]; [START_REF] David R Nolan | A robust anisotropic hyperelastic formulation for the modelling of soft tissue[END_REF]; [START_REF] Gilchrist | Modelling the slight compressibility of anisotropic soft tissue[END_REF]; [START_REF] Pierrat | Finite element implementation of a new model of slight compressibility for transversely isotropic materials[END_REF]. Secondly, the decomposition (2.92) is not compatible with anisotropic linear elastic theory [START_REF] Sansour | On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy[END_REF]; [START_REF] Federico | Volumetric-distortional decomposition of deformation and elasticity tensor[END_REF]; [START_REF] Thomas | Distortion of anisotropic hyperelastic solids under pure pressure loading: compressibility, incompressibility and nearincompressibility[END_REF]; [START_REF] Murphy | Modelling slight compressibility for hyperelastic anisotropic materials[END_REF] as it is expected to be for any nonlinear theory [START_REF] Quintanilla | The importance of the compatibility of nonlinear constitutive theories with their linear counterparts[END_REF].

To overcome these drawbacks, different approaches was formulated. The first one is based on the enrichment of volumetric strain energy in (2.92) with anisotropic invariants: W(J, C; A) = W vol (J, I 4 , I 5 ) + W isc (I 1 , I 2 , I 4 , I 5 ).

(2.96) Notice this enrichment was proposed in [START_REF] Gilchrist | Modelling the slight compressibility of anisotropic soft tissue[END_REF] by assuming that the hydrostatic Cauchy stress is a function of volume change and anisotropic invariants. The second approach consists on the substitution of the isochoric anisotropic invariants by classical ones:

W(J, C; A) = W vol (J) + W isc (I 1 , I 2 , I 4 , I 5 ) (2.97)
This enrichment of the anisotropic part of hyperelastic model (2.97) was first proposed in [START_REF] David R Nolan | A robust anisotropic hyperelastic formulation for the modelling of soft tissue[END_REF]; [START_REF] Wang | Compressible hyperelastic models for soft biological tissue: a review[END_REF] and its prediction capability was attested in [START_REF] Dr Nolan | On the compressibility of arterial tissue[END_REF]. There are also others theoretical contributions to overcome the drawback of the volumetric/deviatoric strain energy decomposition (2.92) done in [START_REF] Thomas | Distortion of anisotropic hyperelastic solids under pure pressure loading: compressibility, incompressibility and nearincompressibility[END_REF]; [START_REF] Murphy | Modelling slight compressibility for hyperelastic anisotropic materials[END_REF].

Compressible transversely isotropic hyperelastic models

An alternative approach to avoid the drawback of the volumetric/isochoric multiplicative decomposition of the deformation gradient can be described well by the fiber reinforced continuum mechanics theory of [START_REF] Rs Rivlin | Large elastic deformations of homogeneous anis-tropic materials[END_REF]; [START_REF] James | Constitutive theory for strongly anisotropic solids[END_REF]. To do this, a phenomenological approach is usually adopted and the anisotropic compressible hyperelastic potential is expressed in various functional forms such as a series of polynomials or exponentials within the framework of invariant theory [START_REF] Schröder | Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions[END_REF] 

W = ∑ k,l,m,n C klmn (I 1 -3) a k (I 2 -3) b l (I 4 -1) c m (I 5 -1) d n + Γ(J),
(2.98)

W = ∑ k,l,m,n C klmn (I a k 1 -3 a k )(I b l 2 -3 b l )(I c m 4 -1)(I d n 5 -1) + Γ(J).
(2.99)

Here, Γ(J) is a convex function with Γ(J = 1) = 0 and verify the growth conditions: Γ(J) tends to infinity if J tends to zero or infinity.

Conclusion

The fiber reinforced composites subject of our study are maid of a rubber material matrix and one family of fibers and have a single preferred direction. This architecture of the material, together with the large deformation involved, lead to an anisotropic transversely hyperelastic behaviour whose main constitutive known laws have been presented in this chapter. Some of the hyperelastic potentials presented in this chapter will be used as homogenized potentials in the next chapters.

Chapter 3

Two-scale boundary-value problem homogenization

Introduction

The main objective of this chapter is to propose a computational homogenization strategy for a fiber reinforced layer in large elastic deformation having the best possible compromise in term of computational cost and reliability. For this purpose, we develop à decoupled homogenization methodology which is related to the work of Terada et al. [START_REF] Terada | A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials[END_REF]. We perform a comparison of some different homogenized transverse isotropic hyperelastic potentials with moderate number of parameters and introduce an iterative method to improve the approximation error. This method, by taking into account the deformation state of the structure at the macroscopic scale, allows to approach the coupled FE 2 method while keeping a much lower numerical cost. It is organized as follows. Section 2 introduces the homogenization in large deformations. In section 3, we develop the decoupled computational homogenization. We compare various homogenized potentials in section 4 in terms of a local inaccuracy in regard to the heterogeneous model.

Two-scale boundary-value problem homogenization

In order to introduce the two-scale homogenization for the large deformation of a micro-structured composite material, we describe first the macro-scale description, then the micro-scale one and finally the coupling between the two scales.

Macro-scale description

Consider a continuum body that occupies the reference configuration B0 with the boundary ∂ B0 and the outward unit normal vector Ñ where each point is labeled by the macro-scale reference position vector X ∈ B0 . It is mapped to the spatial current configuration Bt with the boundary ∂ Bt and the surface normal unit vector ñ, labeled by its current position x via the nonlinear deformation function φ(X) = ũ(X) + X, where ũ being the macro-scale displacement field, written as x = φ(X) ∈ Bt (see fig. 

Micro-scale description

The mechanical behaviour of the material micro-structure is identified through a representative volume element (RVE). Ideally this RVE has to include a sampling of all micro-structural heterogeneities that occur in the composite at a length scale that should be smaller than the characteristic length of the relevant macroscopic field variation, but sufficiently larger than the micro-scale physics and micro-fluctuations.

In particular, it is very important in the homogenization of a fibrous material that the fiber/matrix ratio is maintained on both scales, see classical textbooks on homogenization theory [START_REF] Nemat-Nasser | Micromechanics: overall properties of heterogeneous materials[END_REF]; is the micro-scale displacement of the unit cell, H is the macro-scale displacement gradient defined as H(X) = ∇ X ũ(X), u * is the fluctuation displacement, in our case assumed to be exposed to the periodic boundary condition on the RVE external boundary ∂B 0 and c is a constant vector independent of Y, derived from the integration of the micro-scale deformation gradient defined as

F(X; Y) = ∇ Y ϕ(X; Y) = ∇ Y w(X; Y) + 1 = H(X; Y) + 1, (3.6)
where 1 is the identity (metric) tensor and H is the micro-scale displacement gradient given by

H(X; Y) = ∇ Y w(X; Y) = H(X) + ∇ Y u * (X; Y), (3.7) 
where H = 1 |B 0 | B 0 HdV and |B 0 | is the reference volume of the RVE (in our case, |B 0 | = 1).

The macro-homogeneous deformation tensor F is related to the micro-scale deformation gradient tensor for every point at the micro-scale by

F(X; Y) = F(X) + ∇ Y u * (X; Y).
(3.8)

In the absence of body forces, the micro-scale self-equilibrium equation for the unit cell RVE in terms of the micro-scale first Piola-Kirchhoff stress tensor P and its response function F (F) is given by

∇ Y .P = 0 in B 0 P = F (F) in B 0 (3.9)
subjected to periodic boundary conditions

w| ∂B [J] 0 -w| ∂B [-J] 0 = w [J] -w [-J] = H.L [J] on ∂B [J] 0 (J = 1, 2, 3), (3.10)
where ∂B

[J] 0 and ∂B

[-J] 0
indicate a pair of opposite external faces of the RVE (see fig. 3.1) and L is called the side vector connecting the material points of a periodic boundary condition defined as

L [J] := Y| ∂B [J] 0 -Y| ∂B [-J] 0 (J = 1, 2, 3). (3.11)
Here, ∇ Y designates the divergence operator with respect to material micro-scale coordinates and F is a functional defining the constitutive law.

Micro-macro coupling

The first order coupling homogenization is based on the idea of computing the overall response of the micro-scale problem, in particular the macro-scale first Piola-Kirchhoff stress tensor P, by prescribing the macroscopic deformation gradient F onto the micro-problem. Microscopic quantities are related to their macroscopic counterparts through volume averaging over the RVE [START_REF] Hill | On constitutive macro-variables for heterogeneous solids at finite strain[END_REF]; [START_REF] Rw Ogden | On the overall moduli of non-linear elastic composite materials[END_REF].

The macro-scale deformation gradient can be written as the volume average of the corresponding micro-scale deformation gradient over the RVE derived from (3.6)

F = 1 |B 0 | B 0 FdV = H + 1. (3.12)
The insertion of the micro-scale deformation gradient tensor (3.8) into (3.12) leads to

1 |B 0 | B 0 FdV = F + 1 |B 0 | B 0 ∇ Y u * (X; Y)dV = F + 1 |B 0 | ∂B 0 u * (X; Y) ⊗ NdA,
(3.13) where we use the divergence theorem to transform the volume integral to surface integral over the undeformed boundary ∂B 0 of the RVE with outward normal vector N.

It is clear that in order to satisfy the relation between the micro-scale deformation gradient tensor and the macro-scale one (3.8), the contribution of the microfluctuation field u * (X; Y) must vanish at the macro level, which means to prescribe the following adequate boundary conditions

u * | ∂B [J] 0 = u * | ∂B [-J] 0 (J = 1, 2, 3). (3.14)
The macro-scale first Piola-Kirchhoff stress tensor P can be defined as the volume average of the corresponding micro-scale stress P over the unit cell RVE as

P = 1 |B 0 | B 0 PdV. (3.15)
Considering the periodicity condition (3.10), the micro Piola traction vector T satisfies an anti-periodicity conditions on the unit cell boundary ∂B 0 with N being the outward unit normal vector on the corresponding surface in the reference configuration T [J] + T [-J] = 0 where T [J] = P.N [J] , (3.16) from which the average Piola traction vector can be derived In our case, the periodic displacement, anti-periodic traction boundary conditions and (3.15) are sufficient to satisfy the Hill-Mandel condition.

T[J] i = PiJ = N [i] . T[J] = N [i] .( P.N [J] ) = N [i] . 1 |∂B 0 | ∂B 0 P.N [J] dA = 1 |∂B [J] 0 | ∂B [J] 0 T [J] i ds, (3.17 
The coupled micro-macro homogenized problem can be summarized as follows; the micro-scale BVP is to be solved for each X ∈ B0 for the set of solutions w,F,H that satisfies the micro-scale equilibrium equation (3.9) along with the periodic condition (3.10), while the macro-scale BVP is for F, P that satisfies (3.12), (3.15) and (3.2). It is noted that the micro-scale BVP can be solved only if the macro-scale solution is given and vice versa.

This coupled homogenization method allows to define analytical effective behaviour of heterogeneous materials for simple and special classes of uniform boundary conditions and materials constituents models behaviours. These analytic results are of both theoretical and practical importance and will be used in this work. For complexes situations, computational methods were developed (see interesting review in [START_REF] Marc | Homogenization methods and multiscale modeling: nonlinear problems[END_REF]) but they remain highly expensive for industrial applications.

Micro-macro decoupled computational homogenization

To overcome the computational cost due to the coupled homogenization method, some decoupled numerical approaches for homogenizing heterogeneous materials have been developed [START_REF] Terada | Nonlinear homogenization method for practical applications[END_REF]; [START_REF] Takano | Macro-micro uncoupled homogenization procedure for microscopic nonlinear behavior analysis of composites[END_REF]

; [TW07]; [YGH09]; [CSY12]; [Ter+13a]; [Ter+14b].
The principle of this method, which is related to the work of Terada and his co-workers [START_REF] Terada | A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials[END_REF], is the decoupling between the microscopic and macroscopic scales carried out by the a priori choice of a parametric homogenized law. The parameters of this law are adjusted to minimize the deviation with respect to a series of numerical tests (such as uniform tension, uniform compression, shearing tests and so on) performed on a finite element approximation of the microscopic problem on the RVE. Once the parameters of the law have been optimized, it can be used to compute the deformation at the macroscopic level without solving many microscopic problems simultaneously. This obviously leads to the reduction of computational cost, compared for instance with the FE 2 strategy. The quality of the approximation depends of course on the choice of the form of the parametric homogenized law as well as on the strategy of choice of the set of tests (that we will call in the following the training set). In the following sections we describe the details of this method.

Selection of a parametrized homogenized law

As shown in the previous sections, the variables exchanged between the scales are the macro displacement gradient H and the average of micro First Piola-Kirchhoff tensor P. In order to analyze the micro and macro problems separately, the macrohomogenized constitutive relationship inherent in the micro-structure and its mechanical behaviour is approximated by an appropriate constitutive model. In simple situations, including the fiber reinforced matrix we consider, a possible way to design such constitutive model is to assume that the macroscopic material responses inherit the microscopic ones except for anisotropic behaviour. Consequently, at this stage, and considering large elastic deformation, one has to select a parametrized elastic law, i.e., the macro-scale second Piola-Kirchhoff stress tensor Sh (p, H), depending on a certain number of parameters p = (p 1 , p 2 , ..., p n para ).

In the hyperelastic framework, the elastic law derives from a potential Wh (p, H), in the sense that [START_REF] Ogden | Non-linear elastic deformations[END_REF] 

Sh (p, H) = ∂ Wh ∂ Ẽ (p, H) = 2 ∂ Wh ∂ C (p, H), (3.20)
where C = ( H + 1) T ( H + 1) is the right Cauchy-Green deformation tensor and Ẽ = 1 2 ( C -1) the Green-Lagrange one. Often, for the classical invariants (Table 1), the parametrized law is linear with respect to the material coefficients, which means that it reads

Sh (p, H) = n para ∑ i=1 p i Si h (p, H), (3.21) or Sh (p, H) = 2 n para ∑ i=1 p i ∂ Wi h ∂ C (p, H), (3.22)
in the hyperelastic case, where Si

h ( H) = 2 ∂ Wi h ∂ C ( H).
When the potential Wh is decomposed into volumic and isochoric parts using the isochoric invariants (Table 1 in the appendix of this chapter) and denoting the isochoric Cauchy-Green strain tensor C = J -2/3 C, writting Wh = Wvol (J) + Wisc ( C; A, B) for A and B the fibers direction vectors and J the Jacobian of the defor- mation,

Sh (p, H) = 2 ∂ Wh ∂ C = 2 ∂ Wvol (J) ∂ C + 2 ∂ Wisc ( C; A, B) ∂ C = Svol (J) + Sisc ( C; A, B), (3.23)
where

Svol (J) = J ∂ Wvol (J) ∂J C-1 , (3.24) Sisc ( C; A, B) = J -2 3 Q : S, (3.25)
where Q and S are respectively expressed as

Q = I - 1 3 C-1 ⊗ C, (3.26) S = 2 ∂ W( C) ∂ C = γ 1 1 + γ 2 C + γ 4 A ⊗ A + γ 5 (A ⊗ CA + CA ⊗ A) +γ 6 B ⊗ B + γ 7 (B ⊗ CB + CB ⊗ B) + γ 8 (A.B)(A ⊗ B),
(3.27) along with

γ 1 = 2( ∂ W( C;A,B) ∂I 1 + I 1 ∂ W( C;A,B) ∂I 2
),

γ 2 = -2 ∂ W( C;A,B) ∂I 2 , γ 4 = 2 ∂ W( C;A,B) ∂I 4 , γ 5 = 2 ∂ W( C;A,B) ∂I 5 , γ 6 = 2 ∂ W( C;A,B) ∂I 6 , γ 7 = 2 ∂ W( C;A,B) ∂I 7 , γ 8 = 2 ∂ W( C;A,B) ∂I 8 ,                . (3.28)
where I i = J -2/3 I i for i ∈ {1, 4, 6} and I j = J -4/3 I j for j ∈ {2, 5, 7, 8}.

Even if this strategy can be applied in the case of fully parametric homogenized laws, as it is presented for instance in [START_REF] Yvonnet | Computational homogenization method and reduced database model for hyperelastic heterogeneous structures[END_REF]; [START_REF] Marc | Homogenization methods and multiscale modeling: nonlinear problems[END_REF] where interpolation functions are used to describe the homogenized potential, our objective in this study is to consider laws having a restricted number of parameters and allowing a lower cost numerical modelling of the global structure.

Numerical material testing, definition of a training set

The idea is to "train" the law (i.e. to fit its parameters) on the response of the microstructure represented on the RVE for a representative set of solicitations. This is done by solving a finite element approximation of the BVP (3.9)-(3.10) for each solicitation. In our case, we select a set of n tests gradients The tests are more or less expensive depending on the complexity of the microstructure represented in the RVE and the refinement of the finite element approximation. As far as we are concerned, the microstructure being relatively simple, the computations on the RVE are relatively cheap although on a three-dimensional RVE.

H[α] , α = 1...n test .
In our case, the chosen unit cell model for the transverse isotropic material consists of two different materials: the matrix and the fiber. The matrix is assumed to be a cubic sample filling the three dimensional space in [0, 1] 3 with an inclusion of cylindrical shape. The FE mesh is generated taking into account the interface between the fiber and the matrix, using tetrahedral elements. We employ, for the fibers and matrix, a fixed Poisson's ratio (ν f , ν m ) and Young's modulus defined as

E f = cE m , (3.30)
where c is the contrast constant and ( f , m) are indices that refer to the fibers and matrix, respectively. Finally, we can apply to each solicitation a weight w [α] > 0, so that at the end of this step we obtain a training set made of triplets

H[α] , S[α] , w [α] , α = 1...n test .
For the identification of the coefficients of the chosen potential to be as representative as possible, it is important to give a sufficiently varied panel of solicitations. We apply 6 basic patterns (and some combinations) of macroscopic strains by imposing displacement gradient H, introduced in table 3.1. Here, h and (ε 1 , ε 2 , ε 3 ) are the specified and unspecified components of the macro-scale displacement gradient Hi (i = 1, ..., 6), respectively. We choose the limiting strain level such that h ∈ [-0.5, 0.5]. The values of (ε 1 , ε 2 , ε 3 ) is fixed to (0, 0, 0) in the compressible case and is determined to satisfy the following volume conservation condition in the incompressible case:

det( H(X) + 1) = 1.

Pattern-1: Uniaxial tension in the direction of x Pattern-4: xy shear

H1 =   h 0 0 0 ε 2 0 0 0 ε 3   H4 =   ε 1 h 0 h ε 2 0 0 0 ε 3  
Pattern-2: Uniaxial tension in the direction of y Pattern-5: xz shear

H2 =   ε 1 0 0 0 h 0 0 0 ε 3   H5 =   ε 1 0 h 0 ε 2 0 h 0 ε 3  
Pattern-3: Uniaxial tension in the direction of z Pattern-6: yz shear

H3 =   ε 1 0 0 0 ε 2 0 0 0 h   H6 =   ε 1 0 0 0 ε 2 h 0 h ε 3   TABLE 3
.1: Deformation patterns on the RVE

Identification of the homogenized law

Once the training set has been determined, the identification of the coefficients of the homogenized law Sh (p, H[α] ) is performed using a least squares optimization, by minimizing the following quantity:

J(p) = 1 2ω * n test ∑ α=1 w [α] Sh (p, H[α] ) -S[α] 2 S[α] 2 , (3.31)
with ω * = ∑ n test β=1 w [β] the sum of the weights, and • the Frobenius norm for second order tensors.

This minimization can be performed with or without constraints on the values of the parameters. For instance, most constitutive laws have coefficients that are intended to remain positive and ensure interesting properties (such as polyconvexity) with positive coefficients [START_REF] Schröder | On the construction of polyconvex anisotropic free energy functions[END_REF]; [START_REF] Schröder | Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions[END_REF]. In this case, constraining the coefficients to remain positive can avoid modelling problems (such as spurious zero energy deformations).

In the specific case where the homogenized law Sh (p, H[α] ) is linear with respect to its coefficients, i.e. in the form (3.20), and if no constraints on the parameters are considered, the minimization of (3.31) leads to the following linear system:

A    p 1 . . . p n para    = L, with                A ll = 1 ω * ∑ n test j=1 w [j] 1 S[j] 2 Sl h : Sl h , A il = 1 2ω * ∑ n test j=1 w [j] 1 S[j] 2 Sl h : Si h ∀i = l, L l = -1 ω * ∑ n test j=1 w [j] 1 S[j] 2 Sl h : S[j] .
Of course, the last step of the method, once the homogenized law is identified, is to solve the macro-scale BVP using this constitutive law, generally approximated also by a finite element method. Moreover, since the homogenized law is approximated within the framework of a two-variables boundary value problem derived from homogenization theory, the macro response obtained using this model can be regarded as approximating the data of the micro problem at each material point.

Example of the NeoHookean hyperelastic law for both fiber and matrix

The validity of the micro-macro computational decoupled homogenization procedure developed in section 3.3 is investigated by comparison of its predictions with an explicit expression for the effective behaviour of fiber composites [START_REF] Hill | On constitutive macro-variables for heterogeneous solids at finite strain[END_REF]; [START_REF] Rw Ogden | On the overall moduli of non-linear elastic composite materials[END_REF] developed initially for an incompressible transverse isotropic hyperelastic behaviour (i.e. when both D 1,m and D 1, f goes to infinity) by [START_REF] Debotton | Neo-Hookean fiberreinforced composites in finite elasticity[END_REF]. For computational reasons, the fiber and the matrix of the RVE micro-structure are represented by nearly incompressible NeoHookean potential

WNH,i = C 01,i (I 1 -3) + D 1,i (J -1) 2 (i = f , m), (3.32)
where J = det( F) is the Jacobian of the deformation, I 1 = tr( C) is the invariant of the Cauchy-Green strain tensor C = Ft . F = J -2/3 Ft . F = I -1/3 3 C with F = J -1/3 F and I 3 = det( C) = J 2 , C 01,i and D 1,i are given coefficients that can be related to Young's modulus and Poisson's ratio by the formula

C 01,i = E i 4(1 + ν i ) , D 1,i = E i 6(1 -2ν i ) , (3.33)
where we take E i and ν i are the Young modulus and Poisson coefficients of the fiber and the matrix materials with E f = 203GPa and still E m = E f /c, with c the constrast.

The strain energy decomposition defined by (3.32) governs a slightly compressible material behaviour. If the material behaviour is incompressible, i.e. the coefficients D 1,i → ∞, that energy corresponds to the Neo-Hookean potential corresponding to the simplest phenomenological and molecular constitutive model function of rubber like materials [START_REF] Lrg Treloar | The elasticity of a network of long-chain molecules. I[END_REF]. However, its capability to predict experimental data is poor especially at high values of deformation. Nevertheless, the Neo-Hookean strain energy model is the most used model in finite elasticity to deduce analytic solutions of the associated boundary-value problems [START_REF] Ogden | Non-linear elastic deformations[END_REF].

The explicit expression for the effective behaviour of fiber/matrix RVE composite is developed by DeBotton and his co-workers in [START_REF] Debotton | Neo-Hookean fiberreinforced composites in finite elasticity[END_REF] exploiting the analytical homogenized method [START_REF] Hill | On constitutive macro-variables for heterogeneous solids at finite strain[END_REF]; [START_REF] Rw Ogden | On the overall moduli of non-linear elastic composite materials[END_REF]. The resulting homogenized law is an incompressible transverse isotropic NeoHookean hyperelastic model [START_REF] Debotton | Neo-Hookean fiberreinforced composites in finite elasticity[END_REF]. An extension to a nearly incompressible behaviour will be exploited in this work

Wh = μ 2 (I 1 -3) + µ - μ 2 (I 4 + 2 √ I 4 -3) + D(J -1) 2 , (3.34)
where I 4 = A. CA, A is the unit vector along the fiber, and the coefficients μ and µ are scalar-valued material parameters given by

μ = µ m (1 + c f )µ f + (1 -c f )µ m (1 -c f )µ f + (1 + c f )µ m , µ = µ f c f + µ m c m , (3.35) 
with 0 < c f < 1 the volume fraction of fiber, c m = 1c f the volume of fraction of matrix and µ f , µ m the shear modulus (Lamé coefficients) of the fiber and matrix, respectively.

For anisotropic hyperelastic behaviour, the decomposition (3.34) was firstly adopted by [START_REF] Weiss | Finite element implementation of incompressible, transversely isotropic hyperelasticity[END_REF] and [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF] and is also adopted by almost all commercial and open-source Finite Element codes. Notice that the incompressible case is recovered if the coefficient D (proportional to the bulk coefficient) tends to infinity.

The test are performed with ν = ν f = ν m varying from 0.49 to 0.4999 and with c f = 0.196. We perform the identification of the parameters of the homogeneized law (3.34) with a training set composed of 50 experiments for each simple pattern and mixed combinations from table 3.1 for a range of deformations up to 50% and compare the results with the theoretical values (3.35). The result of the identification, presented on fig. 3.3 for a Poisson coefficient ν = ν f = ν m = 0.49, shows a relatively good agreement between the identified value of μ and its theoretical value. On the contrary, there is a significant difference for μ. The differences are much smaller on fig. 3.4 for a Poisson coefficient ν = ν f = ν m = 0.4999 closer of the incompressibility limit for which the theoretical values (3.35) are valid. Overall, these numerical experiments show that the identification based on a training set allows to identify the homogenized law with a good accuracy.

Local error

In the case of the previous section, the homogenized law has been identified exactly and therefore the decoupling does not induce additional approximation. In the general case where this identification cannot be done exactly, the form of the chosen homogenized law corresponds to an additional approximation. One way to measure the approximation made once the identification is done on a particular training set, is to compute the local error between the homogenized law and the average of second Piola-Kirchhoff tensor calculated on the RVE. For this purpose, the following local error is introduced:

Err( H[α] ) = Sh (p, H[α] ) -S[α] S[α] . (3.36)
This error must be zero for any H[α] in the case of exact decoupling. In the following sections, we present numerical studies of this local error for different choices of homogenized laws.

For the rest of this study, the fiber is represented by a Saint-Venant Kirchhoff hyper-elastic law which potential reads

WSVK = λ f 2 [tr(E)] 2 + µ f tr(E 2 ), (3.37) 
with

λ f = E f ν f (1+ν f )(1-2ν f ) and µ f = E f 2(1+ν f ) and E f = 203GPa, ν f = 0.
3. This model only extends the geometrically linear Hooke elastic material model to the geometrically nonlinear region as has been presented in [START_REF] Truesdell | The classical field theories[END_REF]. Even though it appears to have deficiencies in large strain areas, it has since attracted a lot of interest

[Bat98] [Bat01] [Sau+22].
The matrix is represented by a compressible Mooney-Rivlin hyper-elastic law of potential WMR = c 01,m (I

1 -3) + c 10,m (I 2 -3) + d 1,m (J -1) 2 , (3.38) with c 01,i = E m 4(1+ν m ) , c 10,i = 0.15c 01,i , d 1,i = E m 6(1-2ν m ) and ν m = 0.49 and for different values of E m corresponding to different contrasts c = E f E m .
The incompressible version of the hyperelastic model (3.38) was first published by Melvin Mooney in [START_REF] Mooney | A theory of large elastic deformation[END_REF] and Ronald Rivlin later defined it in terms of invariants [START_REF] Ronald S Rivlin | Large elastic deformations of isotropic materials IV. Further developments of the general theory[END_REF]. It is also to be noted that the Mooney-Rivlin (MR) model is an extension of the NeoHookean model that attempts to improve the accuracy by including a linear dependence on the second invariant I 2 in strain energy [START_REF] Cornelius | The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials[END_REF].

As an experimental training set, we use 50 experiments for each of the 6 simple patterns of table 3.1 and also for 9 additional patterns which are combinations of the simple ones as Hi + Hj for i ∈ {1, 2, 3} and j ∈ {4, 5, 6}. The 50 experiments are regularly distributed in a logarithmic scale up to a deformation of 30% and we use uniform weights (ω [α] = 1 in (3.31)).

In both of the homogenized potentials bellow, we will study the difference between the local error results of the identified coefficients of the homogenized law using the Sequential Least Squares Programming (SLSQP) method with constraints on positivity of the coefficients to preserve the consistency of the law and also without these constraints.

Slightly compressible hyperelastic model : original decoupled Kaliske's transverse isotropic law

One way to develop hyperelastic models is to extend existing incompressible hyperelastic models to compressible behaviour. This is done by assuming an additive split of the strain energy into two parts: a volumetric W vol strain energy depending on volume change invariant J and a isochoric (deviatoric) W isc one function of isochoric strain C. This is inspired by the decomposition of the deformation gradient introduced in [START_REF] Flory | Thermodynamic relations for high elastic materials[END_REF]:

Wh ( C, J; A) = W vol (J) + W isc ( C; A), (3.39) 
This decomposition (3.39), originally proposed for isotropic behaviour when the hydrostatic Cauchy stress is a function only of J [START_REF] Rw Ogden | Nearly isochoric elastic deformations: application to rubberlike solids[END_REF], should satisfy some constraint. For incompressible behaviour J = 1, the strain energy Wh (J = 1, C; A) should recover a known incompressible hyperelastic model with the constraint W vol (J = 1) = 0. In the case of small transformations, the strain energy should be compatible with the linear elasticity theory. Notice that the split into bulk and deviatoric strain energies has the convenience of facilitating material identification through bulk and shear responses. This decoupled sum of strain energies is also crucial for improving the finite element implementation to avoid numerical locking problems for nearly incompressible analysis [START_REF] Simo | Variational and projection methods for the volume constraint in finite deformation elastoplasticity[END_REF]. Attention should be made for material behaviour that is not nearly incompressible, the decomposition leads to unphysical responses [START_REF] Ehlers | The simple tension problem at large volumetric strains computed from finite hyperelastic material laws[END_REF].

The key question addressed here is if this decomposition (3.39) is also available for anisotropic behaviour. For the moment, the strain energy decoupled form is adopted.

In this work, the homogenized material is modelled by a hyperelastic potential as a summation of a volumetric energy function of the Jacobian W vol which is the response of the material to volume changes and an isochoric energy function W isc depends only on the distortional part of the deformation which can be divided into W iso and W aniso for the energy contributions of the matrix as domineering ground substance and and the fibers, respectively:

W vol = D(J -1) 2 , (3.40) 
W isc = W iso (I 1 , I 2 ) + W aniso (I 4 , I 5 ; A), (3.41) 
where the isochoric invariants of C are defined as I 2 = 1 2 (tr 2 ( C)tr( C2 )), for the first layer I 4 = A. CA, I 5 = A. C2 A and A still being a unit vector along the layer fiber.

The isochoric strain energy density function of Kaliske, as presented in [Kal00a] and in particular used in a similar context for periodic unidirectional composite layer in [START_REF] Terada | A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials[END_REF], reduces to

W iso = 3 ∑ i=1 a i (I 1 -3) i + 3 ∑ j=1 b j (I 2 -3) j , (3.42) 
W aniso = 6 ∑ k=2 c k (I 4 -1) k + 6 ∑ l=2 d l (I 5 -1) l . (3.43)
and the second Piola Kirchoff tensor is

Sh = S vol + S isc = S vol + S iso + S aniso , (3.44) 
S vol = 2(J -1)J C-1 , (3.45)

S iso = I -1 3 3 ((2a 1 + 4a 2 (I 1 -3) + 6a 3 (I 1 -3) 2 )(1 - 1 3 C-1 ( C : 1)) +(2b 1 + 4b 2 (I 2 -3) + 6b 3 (I 2 -3) 2 )((I 1 1 -C) - 1 3 C-1 ( C : (I 1 1 -C)))), (3.46) 
S aniso = I -1 3 3 ((4c 2 (I 4 -1) + 6c 3 (I 4 -1) 2 + 8c 4 (I 4 -1) 3 + 10c 5 (I 4 -1) 4 +12c 6 (I 4 -1) 5 )(A ⊗ A - 1 3 C-1 ( C : (A ⊗ A))) + (4d 2 (I 4 -1) +6c 3 (I 4 -1) 2 + 8d 4 (I 4 -1) 3 + 10d 5 (I 4 -1) 4 + 12d 6 (I 4 -1) 5 ) ((A ⊗ ( C.A) + ( C.A) ⊗ A) - 1 3 C-1 ( C : (A ⊗ ( C.A) + ( C.A) ⊗ A)))).
(3.47)

The tests are performed for a range of deformations up to 30% and for three different contrast values (c = 10, c = 150 and c = 2000). The local errors shown on fig. 3.5 are quite large, except for the lowest contrast value (c = 10) and even for small deformations. Our interpretation of this very poor approximation for a high value of the contrast is that isochoric invariants I 1 , I 2 , and especially I 4 and I 5 being insensitive to uniform compression, the only term in Kaliske's law which is responsible for the response to a uniform compression is the volumic one. This means in particular that a uniform compression result in an isotropic response, even for a high value of the contrast, which is not the expected behaviour. Our conclusion is that Kaliske's law cannot be used for a high value of contrast in the context of our study (nearly incompressible matrix and compressible fiber) and therefore we propose a variant for the anisotropic part in the next section.

The analysis done above is corroborated by theoretical and numerical works. In fact, it seems that the decomposition was generalized to anisotropic behaviour [START_REF] Weiss | Finite element implementation of incompressible, transversely isotropic hyperelasticity[END_REF] and [START_REF] Holzapfel | Nonlinear solid mechanics: a continuum approach for engineering science[END_REF] without theoretical, numerical and experimental analysis. Firstly, it is shown that the fibers play no role for a cube or a sphere under hydrostatic tension [START_REF] Helfenstein | On non-physical response in models for fiberreinforced hyperelastic materials[END_REF] 

[NA+13b] [Ver+13b] [Nol+14b] [Gil+14b] [Pie+16b]
. Secondly, the decomposition is not compatible with anisotropic linear elastic theory [START_REF] Sansour | On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy[END_REF] [Fed10b] [Pen14b] [START_REF] Murphy | Modelling slight compressibility for hyperelastic anisotropic materials[END_REF] as it is expected to be for any nonlinear theory [START_REF] Quintanilla | The importance of the compatibility of nonlinear constitutive theories with their linear counterparts[END_REF].

The recent works of Annaidh et al. [START_REF] Ní | Deficiencies in numerical models of anisotropic nonlinearly elastic materials[END_REF] and Gilchrist et al. [START_REF] Gilchrist | Modelling the slight compressibility of anisotropic soft tissue[END_REF] have shown that this uncoupled form was not only physically unrealistic but also gave erroneous results; for instance, a transversely isotropic cube under hydrostatic tension deforms into another cube instead of a rectangular cuboid. The mathematical reasons of this issue have been demonstrated by Gilchrist et al. [START_REF] Gilchrist | Modelling the slight compressibility of anisotropic soft tissue[END_REF], and may be roughly explained by the fact that the dilational component W vol depends only on J (or I 3 ), which does not account for anisotropy of volumetric deformations.

Modified slightly compressible hyperelastic model : First Variant of Kaliske's transverse isotropic law

In order to address this issue, Gilchrist et al. [START_REF] Gilchrist | Modelling the slight compressibility of anisotropic soft tissue[END_REF] proposed an alternative variant in which the isochoric (deviatoric) part of W remains unchanged but the volumetric (dilatational) part is a function of J and I 4 which ensures a non-homogeneous deformation of the VER and according to Helfenstein et al. (2010), it weakens the principle of the uncoupled form and allows the fibers to highly contribute in the energy according to the total deformation. The new form for the volumetric part (3.40) of the strain energy density function may therefore be expressed as The modified first variant of Kaliske's law (3.4.2) allows a significant reduction in local error fig. 3.7 with positivity constraints and fig. 3.8 without constraints when compared to the original Kaliske's law fig. 3.5. It shows that for high contrasts and moderated deformations, the local error is greatly reduced. For combined pattern z tension-compression and xy shear and for low contrasts (c=10), the modified first variant of the Kaliske model allows to obtain relatively low error rates (of the order of 1%) for deformation rates of 90%. The error does not exceed 3% even for deformation rates exceeding 200%. An increase in the error rates is observed when the contrast increases significantly. Nevertheless, these rates, for the first Kaliske variant, remain lower than the rates obtained by the original model fig. 3 

W vol = W vol (I 4 , J) = D(J -1) 2 + D 1 J(3I 1/2 4 -4 + I -3/2 4 ) (3.48) S vol = 2DJ(J -1) C-1 + D 1 J((3I 1/2 4 -4 + I -3/2 4 ) C-1 + 3(I -1/2 4 -I -5/2 4 )A ⊗ A) (3.49) First Variant of Kaliske's law WFKV = W vol (I 4 , J) + W iso (I 1 , I 2 ) + W aniso (I 4 , I 5 ), W vol = W vol (I 4 , J) = D(J -1) 2 + D 1 J(3I 1/2 4 -4 + I -3/2 4 ) W iso = 3 ∑ i=1 a i (I 1 -3) i + 3 ∑ j=1 b j (I 2 -3) j W aniso = 6 ∑ k=2 c k (I 4 -1) k + 6 ∑ l=2 d l (I 5 -1) l ( 

Modified slightly compressible hyperelastic model : Second Variant of Kaliske's transverse isotropic law

Following the conclusion of section 3.4.1 that the deficiency of Kaliske's law comes from the fact that isochoric invariants are used even for the anisotropic part, which does not fit well with the numerical experiments on the RVE, we propose a second variant of this law replacing the strain energy density function (3.43) for the anisotropic part by the following one which uses standard invariants:

W aniso = 6 ∑ k=2 c k (I 4 -1) k + 6 ∑ l=2 d l (I 5 -1) l . (3.50) S aniso = (2c 1 + 4c 2 (I 4 -1) + 6c 3 (I 4 -1) 2 + 8c 4 (I 4 -1) 3 + 10c 5 (I 4 -1) 4 +12c 6 (I 4 -1) 5 )(A ⊗ A) + (2d 1 + 4d 2 (I 5 -1) + 6d 3 (I 5 -1) 2 + 8d 4 (I 5 -1) 3 +10d 5 (I 5 -1) 4 + 12d 6 (I 5 -1) 5 )(A ⊗ ( C.A) + ( C.A) ⊗ A) (3.51)
This enrichment of the anisotropic part of hyperelastic model (3.43) was first proposed in [START_REF] David R Nolan | A robust anisotropic hyperelastic formulation for the modelling of soft tissue[END_REF] [WL20] and its prediction capability was attested in [START_REF] Dr Nolan | On the compressibility of arterial tissue[END_REF].

There are also others theoretical contributions to overcome the drawback of the volumetric/deviatoric strain energy decomposition done in [START_REF] Thomas | Distortion of anisotropic hyperelastic solids under pure pressure loading: compressibility, incompressibility and nearincompressibility[END_REF] [START_REF] Murphy | Modelling slight compressibility for hyperelastic anisotropic materials[END_REF].

Second Variant of Kaliske's law WSKV = W vol (J) + W iso (I 1 , I 2 ) + W aniso (I 4 , I 5 ), The corresponding local errors can be seen on fig. 3.9 for the optimisation with positivity constraints on the coefficients and fig. 3.10 for the optimisation without. The error level is slightly higher for the contrast (c = 10) for moderate deformations compared to fig. 3.5 for original Kaliske law. Along with this, there is a huge improvement of the approximation for high values of contrast, with less than 5% of error and no degradation for large deformations, even compared to second variant of Kaliske [START_REF] Gilchrist | Modelling the slight compressibility of anisotropic soft tissue[END_REF]. For combined pattern z tension-compression and xy shear fig. 3.11 (a)-(d)-(g) and for simple yz shear fig. 3.11 (c)-(f)-(i) stresses for high contrasts (c=2000) , the modified second variant of Kaliske's law shows relatively low error rates (of the order of 2.5%) for deformation rates of 90%. The error does not exceed 4% even for deformation rates exceeding 200%. An increase in the error rates is observed when the contrast decreases significantly. Nevertheless, these rates, for the second Kaliske variant, remain lower than the rates obtained by the original model and first Kaliske variant. The same trend is observed for simple tractioncompression fig. 3.11 (b)-(e)-(h) stresses, which confirms that this second variant of the Kaliske model provides a better approximation of the behaviour of the fibrous layer. In the context of the rest of our study, we will focus on a high value of contrast (c = 2000) compatible with a couple of material such as rubber and steel. Consequently, we will consider only this variant of Kaliske's law instead of the original and first variant ones. Finally, on fig. 3.12, we observe slight deterioration of the local error with the augmentation of the fiber diameter, but still with a good approximation.

W vol = D(J -1) 2 W iso = 3 ∑ i=1 a i (I 1 -3) i + 3 ∑ j=1 b j (I 2 -3) j

Compressible hyperelastic model: Bonet's transverse isotropic law

An alternative approach to avoid the drawback of the volumetric/isochoric multiplicative decomposition of the deformation gradient can be described well by the fiber-reinforced continuum mechanics theory of [START_REF] Jl Ericksen | Large elastic deformations of homogeneous anisotropic materials[END_REF]; [START_REF] Anthony | Continuum theory of the mechanics of fibre-reinforced composites[END_REF]. To do this, a phenomenological approach is usually adopted and the anisotropic compressible hyperelastic potential is expressed in various functional forms such as a series of polynomials or exponentials within the framework of invariant theory [START_REF] Schröder | Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions[END_REF]

; [SNB05]; [CC19b]; [OAK19b]; [O'S+20b].
In this work, Bonet's transverse isotropic potential [START_REF] Bonet | A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations[END_REF] is considered, which is a combination of an isotropic strain energy density function W iso characterising the rubber type of materials in the large strain (Neo-Hookean potential), and a transverse one W trn defined as follows: Wh = W iso + W trn , (3.52) and the second Piola Kirchoff tensor is S iso = µ iso (1 -C-1 ) + λ iso ln(J) C-1 , (3.55)

W iso = µ iso ( 1 2 (I 1 -3) -ln(J)) + λ iso 2 (ln(J)) 2 , ( 3 
S trn = 2a tr (A ⊗ A - 1 2 (A ⊗ ( C.A) + ( C.A) ⊗ A)) + 2b tr ( 1 2 C-1 (I 4 -1) + ln(J)A ⊗ A) +4c tr (I 4 -1)A ⊗ A -2d tr ( 1 2 C-1 (I 5 -1) + ln(J)(A ⊗ ( C.A) + ( C.A) ⊗ A)), (3.56) 
where I 1 = tr( C), I 4 = A. CA, I 5 = A. C2 A, and A still being a unit vector along the fiber. Note that we consider the improved version of [START_REF] Nishi | Isogeometric analysis for numerical plate testing of dry woven fabrics involving frictional contact at meso-scale[END_REF] instead of the original one in [START_REF] Bonet | A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations[END_REF] where b tr ln(J) replaces b tr (I 1 -3) and d trn ln(J)(I 5 -1) is added to improve the identification of the homogenized material parameters. This strain energy decomposition (3.52) into isotropic (3.53) and anisotropic (3.54) parts was suggested by [START_REF] Holzapfel | A new constitutive framework for arterial wall mechanics and a comparative study of material models[END_REF] to simplify the model complexity and to facilitate model's parameters experimental identification. This hyperelastic model decoupled assumption is motivated by physical arguments coming from the fiber and matrix behaviour which are assumed isotropic. At small deformation, the fibres, which are more rigid then the matrix, are less active and then the behaviour is governed by isotropic strain energy part. At large deformation, the fibres come into play (it is their roles), the anisotropic strain energy part pilots the mechanical behaviour.

Bonet's law Wh = W iso (I 1 ; J) + W trn (I 4 , I 5 ; J), W iso = µ iso ( 1 2 (I 1 -3)ln(J)) + λ iso 2 (ln(J)) The numerical tests are identical to those performed for Kaliske's traditional decoupled model law in the previous section. After identification, the local errors are shown on fig. 3.13 for three selected deformation patterns of table 3.1 and two additional mixed ones. A local error less than 5%, for optimisation with positivity constraints, is only obtained for a low contrast (c = 10) and for small deformation (less than 1%). Moreover, for that contrast, there is an important degradation of the approximation for large deformations. For a high contrast (c = 150 and c=2000) the maximal local error is about 10% for moderate deformation. The degradation for large deformations is less important, except for the last mixed deformation pattern (compression z and xy shear). As for the optimisation without constraints as shown on fig. 3.14 for the chosen deformation patterns, the local error is remarkably lower than that with positivity constraints for high contrast (c = 150 and c=2000) but remains higher for lower contrasts (c = 10) and for moderate deformation. The results are a little better but the polyconvex character is not assured in this case. Despite same variation, the maximal local error is globally stable when the diameter of fiber vary, meaning that Bonet's law equally approximate these differents situations.

Micro-macro decoupled computational homogenization 1. Select a macroscopic anisotropic constitutive law (Homogenized Potential) 2. Conduct numerical tests on a heterogeneous (Matrix/Fiber) representative volume element (RVE) approximated by finite elements (FE) to build a training set:

• Choose a set of macroscopic deformations H [α] , and the number of tests to perform (type and intensity).

• Compute the average of 2 nd Piola-Kirchhoff tensor (S [α] ) by solving the corresponding boundary problem by integration on the heterogeneous RVE.

3. Macroscopic identification of the coefficients of the chosen potential:

• Express the 2 nd Piola-Kirchhoff tensor as a function of the chosen homogenized potential and the p [k] coefficients of the material. In the case of a potential which is linear with respect to its coefficients, we have:

Sh (p, H [α] ) = n para ∑ k p [k] g [k] ( H[α] )
where g [k] are the derivatives of the different terms of the potential.

• Identify the macroscopic coefficients using a least squares optimization method, by minimizing:

χ(p) = 1 2 n test ∑ α=1 w [α] ∑ n test β=1 w [β] S[α] h (p, H[α] ) -S[α] ( H[α] ) 2 S[α] ( H[α] ) 2 4.

Calculate the local error of the RVEs between S[α]

h (p, H[α] ) and S[α] ( H [α] ) on the training set to evaluate the capacity of the chosen potential to approximate the RVE behaviour on the desired range of deformation.

Conclusion

In this chapter, we have illustrated the ability of the decoupled homogenization method to approximate the homogenization problem of a fiber reinforced layer using two different potentials: Kaliske and Bonet potentials. We also validated the method on NeoHookean hyperelastic potential for which the homogenized law is known in the incompressible case. In spite of a reduced number of coefficients, Bonet's potential allows to reach a local error which can be in some range of deformation competitive compared to Kaliske's one, including for the modified variant that we have proposed. It can therefore be more computationally efficient to use in that cases. A better approximation can however be achieved, especially for large deformations, with the second variant of Kaliske's potential that we have proposed.

Chapter 4

Correction method for two-scale homogenization problem

Introduction

In this chapter, we test the ability of the decoupled homogenization method to approximate the deformation of a fiber reinforced layer in large deformation. To do so, we carry out a number of tests on the deformation of such a layer by comparing the deformation of a finite element method using the homogenized law obtained thanks to the method developed in the previous chapter with the deformation obtained on a (very expansive) finite element approximation of a complete heterogeneous model with a mesh taking into account the fibers.

In order to improve the approximation obtained and to get closer to a coupled homogenization method, we propose a new iterative correction method which allows to improve the homogenized laws, Bonet's law and second varaint of Kaliske's law, in the deformation regime of the fiber reinforced layer, with a much lower cost than the FE 2 method.

Test on a complete fiber reinforced layer

In order to test the relevance of the homogenization procedure developed in chapter 3, a comparative test between the deformation of a fully meshed fiber reinforced layer and of the same structure using the homogenized law is performed in the following sections. The tests are done using quadratic Lagrange elements on our finite element library GetFEM++ [START_REF] Renard | GetFEM: Automated FE modeling of multiphysics problems based on a generic weak form language[END_REF].

Denoting Ũe the approximated displacement of the complete FE fiber reinforced model and Ũh the one which uses the homogenized law, the following relative global error is considered

Err g = Ũh -Ũe Ũe , where Ũe = B0 | Ũe | 2 d Ṽ 1/2 . (4.1)
Of course, this error reflects several approximations: the finite element one, the homogenization principle itself and finally, what's interest us, the approximation due to the choice of parametric constitutive law in the decoupled homogenization.

Additionnally to this global error, we compute also some local error in the same manner as in chapter 3 with formula (3.36) except that instead of using a deformation gradient H from the training set, we use the average of deformation on a certain number of predefined volume elements of the homogenized layer (see section 4.3 for more details). We conduct two types of numerical experiments on two different fiber reinforced layers: we consider a transversal flexion in the direction of the fibers on a layer with 5 fibers and a longitudinal flexion transverse to the direction of the fibers on a layer with 5 and 10 fibers.

Test on fiber reinforced layer with 5 fibers

The meshes used for the heterogenous computation and the homogenized one are represented on fig. 4.1(b)-(c). The size of the domain is 1cm × 5cm × 10cm with regularly spaced fibers of diameter 0.5cm

A longitudinal flexion transverse to the direction of the fibers

The longitudinal flexion transverse deformation obtained for the fully 5 fibers meshed model (c), the homogenized one using Bonet's law (3.4.4) (a) and the homogenized one using second variant of Kaliske's law (3. We recall

Bonet's law Wh = W iso (I 1 ; J) + W trn (I 4 , I 5 ; J), W iso = µ iso ( 1 2 (I 1 -3)ln(J)) + λ iso 2 (ln(J)) 2 W trn = (a tr + b tr ln(J) + c tr (I 4 -1))(I 4 -1) -( 1 2 a tr + d tr ln(J))(I 5 -1)

Second Variant of Kaliske's law WSKV = W vol (J) + W iso (I 1 , I 2 ) + W aniso (I 4 , I 5 ),

W vol = D(J -1) 2 W iso = 3 ∑ i=1 a i (I 1 -3) i + 3 ∑ j=1 b j (I 2 -3) j W aniso = 6 ∑ k=2 c k (I 4 -1) k + 6 ∑ l=2 d l (I 5 -1) l
The global error obtained for Bonet's law is about 3% compared to 15.96% for the average local error on the layer's volume elements, since for second variant of Kaliske's law, the global error is about 5% and 16.67% for the average local error.

A zoom of a superposition of the three deformations is also presented on fig. 4.3 where it is possible to see that the Bonet's law allow a slightly better approximation than second variant of Kaliske's law. For this experiment, the global error found on the displacement for Bonet's law is about 31.5% and the local error on the average of deformation on the layer volume elements doesn't exceed 2%. 

Test on fiber reinforced layer with 10 fibers

The meshes used for the heterogenous computation and the homogenized one are represented on fig. 4.1(a)-(c). The size of the domain is 1cm × 4cm × 10cm with still some regularly spaced fibers of diameter 0.5cm

A longitudinal flexion transverse to the direction of the fibers

The longitudinal flexion transverse deformation obtained for the fully 10 fibers meshed model (c), the homogenized one using Bonet's law (a) and the homogenized one using 2 nd variant of Kaliske's law (b) can be seen on fig. The global error for Bonet's law is about 3.88% compared to 20% for the average local error on the layer's volume elements, as for second variant of Kaliske law, the global error is about 5.08% against 18.17% for the average local error.

A zoom of a superposition of the three deformations is also presented on fig. 4.7 where it is possible to see that the Bonet's law allow a slightly better approximation than second variant of Kaliske's law. The global error for Bonet's law is about 10.14% compared to 18.3% for the average local error on the layer's volume elements as shown in table 4.13, as for second variant of Kaliske law, the global error is about 8.32% against 18.05% for the average local error as presented in table 4.15. A zoom of a superposition of the three deformations is also presented on fig. 4.9 where it is possible to see that, for this case, the second variant of Kaliske's law allow a slightly better approximation than Bonet's law.

For this case, we tested also a change in the diameter of the fibers (both for the layer and the RVE). It can be seen in table 4.11 and table 4.12 that there is a certain increase of global and local error with respect to the diameter of the fibers (and for both the two laws), meaning that both the two laws have difficulties to model the deformation of the RVE and the layer when the ratio of fiber to matrix increase. For the rest of the chapter, we will be considering the 10 fibers layer deformation results only with fibers of diameter 0.5cm.

Correction method

In order to improve the quality of the approximation provided by the decoupled method, we develop a new iterative method whose objective is to adapt the optimization of the homogenized law to the considered structural computation at a much lower computational cost than the FE 2 method.

The reference configuration B0 of the macroscopic structure is divided into a certain number of parallelepipedic element volumes

B [α]

p , α = 1...n vol , distributed all over the structure. As far as possible, the chosen volumes should be representative of the micro-structure. However, this does not seem mandatory and their number should not be excessive in order not to penalize the calculation time. These volumes can also be placed in zones of interest of the considered structure. The proposed method can then be divided into the following steps: 3. Compute a finite element approximation u h of the displacement of the structure by solving numerically the decoupled macro-scale BVP using the homogenized law.

4. On each volume B

[α] p , compute numerically the average of deformation 

H[α] p = 1 |B [α] p | B [α]

Test with Bonet's law

Fig. 4.11 shows the error distribution between the heterogeneous reference solution and the homogenized problem solution before and after a correction step with constraints of positivity of the coefficients using Bonet's potential. The global error and the local errors on the element volumes of the layer are reported in table 4.13. We can see a significant improvement from the first iteration for all considered weights, whether on the global error or on the local errors. In the considered case, the weight of w

[α] p = 10 for the layer volumes seems to be the best compromise, a weight of w

[α] p = 100 degrades a little the results. We can also notice that the next iterations (2 and 3) do not allow to improve the errors, either global or local. These errors remain very close or even with a slight degradation. We can conclude that the main part of the correction in this case is done at the first iteration of correction. In the case of homogenization without constraints, the global error and the local errors on the element volumes of the layer are reported in table 4.14. We can see that the results are slightly degraded before correction compared to the ones with positivity constraints (even though the local error measured on the training set is necessary a bit better). Nevertheless, the results after correction are slightly better that the ones on table 4.13. This means that globally, it is possible to have a slightly better approximation without considering the constraint of positivity on the coefficients, at the risk to obtain a non consistant homogenized law. However, both the global error and the average of local error are pretty high before the correction, which means that the deformations of the RVE are not sufficiently close to incompressible ones and the fact that the homogenized law is not trained in the compressible regime do not allow to have a good approximation.

Before correction weight

It is remarkable that the correction method, by adding deformations which are not strictly incompressible, allows to rapidly correct this bias (mainly in two iterations).

Conclusion

The tests carried out in this chapter allow to evaluate the approximation made using the decoupled homogenization method presented in chapter 3 together with the proposed correction method. The results on the considered experiments, show that quite low levels of error can be reached with both Bonet and second varian of Kaliske potential with the proposed method, at the considered deformation level. Even if Bonet's potential gives slightly larger errors, it can be a good compromise since the number of parameters to be identified is lower than for the second varian of Kaliske potential (5 instead of 16) which leads to a lower computational cost.

General conclusion and outlook

The main objective of this thesis is to propose a numerical homogenisation strategy for a fiber reinforced layer in nonlinear hyperelastic framework with the best possible compromise in terms of computational cost and reliability. To this end, we have developed a new decoupled and correction methodology based on the decoupled method of Terada et al. [START_REF] Terada | A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials[END_REF]. We have performed a comparison of two different transverse isotropic homogenised hyperelastic potentials with a moderate number of parameters and introduce an iteration method to improve the approximation error. This method takes into account the deformation state of the structure at the macroscopic scale, allows to approach the coupled FE 2 [Fey99] method while keeping a much lower numerical cost.

The original Kaliske [Kal00a] and Bonet [START_REF] Bonet | A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations[END_REF] hyperelastic potentials were used to demonstrate how the decoupled homogenization approach proposed may approximate the homogenization issue of a fiber reinforced layer. The Neo-Hookean hyperelastic potential [START_REF] Debotton | Neo-Hookean fiberreinforced composites in finite elasticity[END_REF], for which the homogenized law is known in the incompressible case, was also used to further confirm the proposed technique. Despite having fewer coefficients, Bonet's potential still enables one to achieve a local error that, given the modified second variation that we have suggested, can be competitive with Kaliske's one in specific deformation ranges. Therefore, using it in certain circumstances may be more computationally efficient. But using the Kaliske's potential second variant we've suggested, especially for significant deformations, a better approximation may be made.

A number of tests on the deformation of a fiber reinforced layer was performed by contrasting the deformation obtained on a (very expansive) finite element approximation of a complete heterogeneous model with a mesh taking into account the fibers with the deformation obtained on a finite element method using the homogenized law obtained thanks to the method developed. A new correction method is proposed to overcome the lack of robustness of the proposed homogenisation method. The results on the considered experiments, show that quite low levels of error can be reached with both Bonet and Kaliske potential with the proposed method, at the considered deformation level. Even if Bonet's potential gives slightly larger errors, it can be a good compromise since the number of parameters to be identified is lower than for the Kaliske potential (5 instead of 16) which leads to a lower computational cost.

This work can be completed by the generalization of the different constitutive formulations for the hyperelastic potentials (threshold law, double layers laws ...) to take account of the inner anisotropy and more complex behaviours (plasticity, viscosity ...). Moreover, in order to better adaptation of the non-linear material behaviour, neural networks can be considered to make an adaptative approximation of the behaviour of the heterogeneous layer. Also, different boundary conditions can be considered for micro-macro transitions. Focusing on the identification part, the presented approach can be tested and ameliorated for more complex models. The methodology developed in this work can be adapted to be used with experimental data.
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Abstract

In this thesis, we propose a procedure to approximate the large elastic deformations of a fiber reinforced layer by a two-scale decoupled homogenization numerical procedure. The nonlinear micro and macroscopic scales are strongly coupled in most homogenization methods. Our method is derived from the one proposed by Terada et al.which consists in decoupling the micro and macro scales by considering separate boundary value problems and an intermediate anisotropic constitutive law optimised over a training set. We propose an iterative procedure based on this method which allows to improve the quality of the approximation to get closer to the coupled homogenization and keeping a reasonable computational cost. We perform representative numerical studies for a layer with heterogeneous hyperelastic material in order to demonstrate the capability and reliability of the proposed method and test several intermediate constitutive laws. The method can be used either with simple homogenized laws, in the case such a specific simple law can be expected, or either with more complex or even fully parametric laws. An optimization of the homogenized law parameters is performed off-line on a training set composed of numerical experiments coming from a finite element approximation of the boundary value problem (BVP) defined at the micro-scale on the RVE. The shape of the chosen homogenized law is obviously crucial for the proper functioning and efficiency of the method. Once the parameters of the homogenized law have been identified, it can be used to represent the micro-scale response and then to evaluate the macroscale response. In order to improve the quality of the approximation provided by the decoupled method, we propose an iterative method whose objective is to adapt the optimization of the homogenized law to the considered structural computation at a much lower computational cost than the FE 2 method.

Résumé

Dans cette thèse, nous proposons une approximation des grandes déformations élastiques d'une nappe hyperélastique fibrée par une procédure numérique d'homogénéisation découplée à deux échelles. Les échelles non linéaires micro et macroscopiques sont fortement couplées dans la plupart des méthodes d'homogénéisation. Notre méthode est dérivée de celle proposée par Terada et al.qui consiste à découpler les échelles micro et macro en considérant des problèmes de valeurs limites séparés et une loi constitutive anisotrope intermédiaire optimisée sur un ensemble de tests. Nous proposons une procédure itérative basée sur cette méthode qui permet d'améliorer la qualité de l'approximation pour se rapprocher de l'homogénéisation couplée et garder un coût de calcul raisonnable. Nous réalisons des études numériques représentatives pour une couche avec un matériau hyperélastique hétérogène afin de démontrer la capacité et la fiabilité de la méthode proposée et de tester plusieurs lois de comportements. La méthode peut être utilisée soit avec des lois homogénéisées simples, dans le cas où une telle loi simple spécifique peut être attendue, soit avec des lois plus complexes ou même entièrement paramétriques. Une optimisation des paramètres de la loi homogénéisée est effectuée hors ligne sur un ensemble de tests composé d'expériences numériques provenant d'une approximation par éléments finis du problème de la valeur limite (PVL) défini à l'échelle micro sur le VER. La forme de la loi homogénéisée choisie est évidemment cruciale pour le bon fonctionnement et l'efficacité de la méthode. Une fois les paramètres de la loi homogénéisée identifiés, celle-ci peut être utilisée pour représenter la réponse à micro-échelle et ensuite pour évaluer la réponse à macro-échelle. Afin d'améliorer la qualité de l'approximation fournie par la méthode découplée, nous proposons une méthode itérative dont l'objectif est d'adapter l'optimisation de la loi homogénéisée au calcul structurel considéré à un coût de calcul beaucoup plus faible que la méthode EF 2 .
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 1 FIGURE 1: Approximation of a unidirectional fiber layer geometry (a) by a two-dimensional geometry (b)
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 1 FIGURE 1.1: La méthode d'homogénéisation couplée à deux-échelles

  relation est d'un grand intérêt pour le calcul numérique de P .

(

  FIGURE 1.3: Flowchart de la procédure proposée

  relation (2.21), the equilibrium equation can be expressed in terms of the Cauchy stress tensors ∂v σ • nds + v f dv = 0. (2.30) Using the Gauss theorem the previous equation v (divσ + f ) dv = 0.
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 2 FIGURE 2.2: Transversely isotropic material

  3.1). dx = F.dX.(3.1)For a macroscopic heterogeneous body, subjected to loading and constraints and in the absence of inertia effects, the macro-scale equilibrium equation is expressed as∇ X . P + b = 0 in B0 , (3.2)where P is the macro-scale first Piola-Kirchhoff stress tensor and b is the body forces on the reference configuration B0 . Here, ∇ X designates the divergence operator with respect to material macro-scale coordinates. The body is subjected to Neumann and Dirichlet boundary conditionsP. Ñ = T0 on ∂ BN 0 , ũ = ũ0 on ∂ BD 0 , (3.3)where T0 is the given applied density on the reference configuration, ũ0 the prescribed displacement on ∂ BD 0 and {∂ BN 0 , ∂ BD 0 } are partitions of ∂ B0 .

FIGURE 3

 3 FIGURE 3.1: Two-scale Coupled homogenization

  [Fis10b]. Due to the scale independence of the equation and boundary conditions, the RVE is usually taken to be the unit cell. The spatial position, denoted Y, in the micro-scale reference configuration B 0 of the unit cell domain and the spatial position y in the micro-scale current configuration B t are introduced. They are inter-related by the micro-scale deformation as y = ϕ(X; Y) = Y + w(X; Y), (3.4) 3.2. Two-scale boundary-value problem homogenization where w(X; Y) = H(X).Y + u * (X; Y) + c(X), (3.5)

0

  | is the area of the RVE boundary ∂B[J] 0 and PiJ is the iJ component of the macro-scale first Piola-Kirchhoff stress tensor, the area average of the corresponding micro-scale Piola traction vector T[J]i at the unit cell boundary ∂B[J] 0 . This relation is of great interest for the numerical computation of P .A standard requirement is the satisfaction of the Hill-Mandel condition that requires the volume average of the variation of work performed on the RVE to be equal to the increment of local work on the macro-scale, formulated as1 |B 0 | B 0 P : δF T dV = P : δ FT . (3.18)The boundary conditions of the RVE that satisfy the Hill-Mandel condition[START_REF] Hill | On constitutive macro-variables for heterogeneous solids at finite strain[END_REF];[START_REF] Mandel | Plasticité Classique Et Viscoplasticité: Course Held at the Department of Mechanics of Solids[END_REF] must be determined in order to solve the micro-problem. These are determined using Hill's lemma 1 |B 0 | B 0 P : δF T dV -P : δ FT = ∂B 0 [δϕδ F.Y].[P.N -P.N]dA. (3.19)

  FIGURE 3.2: uni-directional fiber reinforced composite, geometry and finite element mesh

  FIGURE 3.3: Identification of the coefficients μ and μ for a Poisson coefficient ν = 0.49 and for a contrast c ∈ [1, 2500].

  FIGURE 3.5: Local error for Kaliske's transverse isotropic law with respect to the deformation and three different contrasts, with constraints on positivity of the coefficients

  FIGURE 3.6: Local error for the original vs the first variant of Kaliske's law

  .6 (a)-(d)-(g). The same trend is observed for simple shear fig. 3.6 (c)-(f)-(i) and traction-compression fig. 3.6 (b)-(e)-(h) stresses, which confirms that this first variant of the Kaliske model provides a better approximation of the behaviour of the fibrous layer.

  FIGURE 3.9: Local error for the second variant of Kaliske's transverse isotropic law with respect to the deformation and three different contrasts with positivity constraints

  FIGURE 3.11: Local error for the first vs the second variants of Kaliske's law

  .53) W trn = (a tr + b tr ln(J) + c tr (I 4 -1))(I 4 -1) -( 1 2 a tr + d tr ln(J))(I 5 -1), (3.54)

  FIGURE 3.13: Local error for Bonet's transverse isotropic law with respect to the deformation and three different contrasts with positivity constraints

  FIGURE 3.15: Local error for Bonet's transverse isotropic law with respect to the deformation and four different fiber diameters for contrast = 2000

  (a) Full 10 fibers mesh (b) Full 5 fibers mesh (c) Mesh for the homogenized layer
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 1 FIGURE 4.1: Meshes for the fiber reinforced layer: (a)-(b) mesh of the fibers and matrix for the full computation and (c) simpler mesh for the homogenized law

  4.3) (b) can be seen on fig. 4.2 for comparison.

  (a) Bonet's law (b) 2 nd variant of Kaliske's law (c) fully 5 fibers meshed model
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 2 FIGURE 4.2: Comparison of the layer's deformation obtained after homogenization with Bonets's law (a), 2 nd variant of Kaliske (b) and without homogenization with the fully 5 fibers meshed model (c).

  FIGURE 4.3: Zoom of the superposition of the deformation for the three situations: full model, homogenized one with Bonet's law, homogenized one with 2 nd variant of Kaliske's law
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 4 FIGURE 4.4: Comparison of the layer's deformation obtained after homogenization with Bonets's law (a), 2 nd variant of Kaliske (b) and without homogenization with the fully 5 fibers meshed model (c).

  FIGURE 4.5: Zoom of the superposition of the deformation for the three situations: full model, homogenized one with Bonet's law, homogenized one with 2 nd variant of Kaliske's law

  4.6 for comparison. (a) Bonet's law (b) 2 nd variant of Kaliske's law (c) fully 10 fibers meshed model
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 6 FIGURE 4.6: Comparison of the layer's deformation obtained after homogenization with Bonets's law (a), 2 nd variant of Kaliske (b) and without homogenization with the fully 10 fibers meshed model (c).
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 4 FIGURE 4.7: Zoom of the superposition of the deformation for the three situations: full model, homogenized one with Bonet's law, homogenized one with 2 nd variant of Kaliske's law
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 8 FIGURE 4.8: Comparison of the layer's deformation obtained after homogenization with Bonets's law (a), 2 nd variant of Kaliske (b) and without homogenization with the fully 10 fibers meshed model (c).
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 4 FIGURE 4.9: Zoom of the superposition of the deformation for the three situations: full model, homogenized one with Bonet's law, homogenized one with 2 nd variant of Kaliske's law

  1. Determine a training set by the choice of H[β] , β = 1...n test deformation patterns and the computation of the corresponding S[β] by n test computations on the micro-scale BVP. Choose a set of weights w [β] , β = 1...n test . 2. Perform the identification of the coefficient of the homogenized law with the considered training set by minimization of (3.31).

p

  ∇u h dV, and the corresponding average of second Piola-Kirchhoff tensor S[α] p by n vol computations on the micro-scale BVP. 5. Loop to step 2 with the initial training set completed by H[α] p , S[α] p , α = 1...n vol with some chosen weights w [α] p , α = 1...n vol .
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 4 FIGURE 4.10: The element volumes of the 10 Fibred layer
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 4 FIGURE 4.11: Error distribution before correction for Bonet's potential (left) and after correction (right)
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TABLE 1 :

 1 Summary table

		Definition	Comments
	1	2nd-order identity tensor	
	I	4th-order symmetric identity tensor	
	X	Macro-scale reference position vector	
	x	Macro-scale current position vector	
	Y	Micro-scale reference position vector	
	y	Micro-scale current position vector	
	ũ	Macro-scale displacement field	ũ(X) =

x -X φ Macro-scale nonlinear deformation function φ(X) = X + ũ(X) H Macro-scale displacement gradient d ũ = H.dX ; H(X) = ∇ X ũ(X) u *

Table 1 -Summary table Definition

 1 

1.4 Homogénéisation couplée : Application à un problème en grande déformation

  

	Pour contourner les problèmes de coût de calcul liés aux calculs imbriqués dans les
	méthodes d'homogéinisation numérique tel que FE 2 [FC00] figure1.1, des approches
	alternatives ont été introduites dans le but de développer des méthodes numériques
	découplées pour l'homogénéisation des matériaux hétérogènes avec des comporte-
	ments non linéaires ou dépendants du temps.
	• Une première approche directe, inspirée des procédures classiques
	d'identification expérimentale, utilise des tests virtuels sur des VER par
	le biais de calculs numériques élément finis pour identifier les lois de
	comportement macroscopiques empiriques [Ter+13b], [Ter+14a].
	• Une deuxième approche permettant la construction de lois constitutives effi-
	caces sans connaissance préalable de leur forme est cependant possible, mais
	dans certains cas restreints. Une deuxième classe de techniques est basée sur
	la construction d'une carte numérique matérielle entre les contraintes et les dé-
	formations effectives [TK95]; [TZO96]; [TW07]; [YGH09]; [YMH13]; [CSY12];
	[Tra+11].
	FIGURE 1.2: La méthode d'homogénéisation découplée à deux-
	échelles

  Considérons un corps continu qui occupe la configuration de référence B0 avec un bord noté ∂ B0 . Le vecteur normal unitaire extérieur au bord est défini par Ñ. Chaque 1.4. Homogénéisation couplée : Application à un problème en grande déformation 11 point est paramétré par le vecteur de position dans la configuration de référence à l'échelle macro X ∈ B0 . Il est mis en correspondance avec la configuration actuelle Bt dont le bord est limite ∂ Bt . Le vecteur unitaire normal au bord est défini par ñ.

	Chaque point matériel est paramétré par son vecteur position x dans la configuration
	actuelle Bt . Ainsi la transformation φ(X)	
	x = φ(X) = ũ(X) + X ∀X ∈ B0	(1.1)
	où ũ est le champ de déplacement à l'échelle macroscopique, (voir fig. 3.1). Sur
	le plan mathématique, la transformation φ(X) est une bijection. Le gradient de la
	déformation à l'échelle macro	
	F = ∇ X ( φ(X))	(1.2)
	où ∇ X () désigne l'opérateur gradient par rapport à la configuration initiale. Ainsi le tenseur de transformation F relie un élément dX ∈ B0 dans la configuration initiale
	à un élément dans la configuration courante dx ∈ Bt , par	
	dx = F.dX	(1.3)
	En combinant les deux équation (1.1) et (1.3) on peut définir ainsi le tenseur gradient
	de déplacement macroscopique	
	H	

  HdV et |B 0 | est le volume de référence de le VER (dans notre cas,

		1.10)
	où 1 est le tenseur d'identité (métrique) et H est le gradient de déplacement à
	l'échelle microscopique donné par	
	H(X; Y) = ∇ Y w(X; Y) = H(X) + ∇ Y u * (X; Y),	(1.11)
	où H = 1 |B 0 | B 0	

  The neo Hookean model is considered a reliable strain energy function for the non-linear deformation, although the model involve only a single parameter. Noting that the neo-Hookean model can be derived from a micromechanics point of view and the shear modulus µ is determined by

µ = nkT (2.53) To improve the fitting to experimental data, the previous model was enriched by the second invariant I 2 . And a purely phenomenological model [Moo40a]; [Riv48b]; [Riv49b]; [Riv49a] known as the Mooney-Rivlin model was introduced

  , (2.86) where (A k , a k , B l , b l , C m , c m , D n , d n ) are material parameters. The hyperelastic potentials (2.85) and (2.86) verify the strong ellipticity conditions if the materials parameters are strictly positives. It is to be noted that a variant of hyperelastic model (2.85) known as Kaliske's model [Kal00b] will used as a "candidate" for a homogenized hyperelastic model in the third and fourth chapters.

TABLE 4

 4 

		d=0.2	d=0.3	d=0.5	d=0.7
	Err g	2.793%	3.835%	10.14%	45.29%
	Err al	6.58%	7.504%	18.275%	31.664%
	TABLE 4.11: Layer's global and local error for Bonet's potential and
	four different fiber diameters for a contrast c = 2000, 10 Fibers case
	and with constraints of positivity on coefficients and four different
		fiber diameters (in cm)	
		d=0.2	d=0.3	d=0.5	d=0.7
	Err g	2.5256%	3.507%	8.223%	26.899%
	Err al	3.025%	4.721%	18.027%	56.099%

.12: Layer's global and local error for Kaliske's potential second variant for a contrast c = 2000 Flex Matrix 10 Fibers with constraints and four different fiber diameters (in cm)

TABLE 4
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	Before correction	weight	1 iteration	After correction 2 iterations 3 iterations
	Global error	1	4.356%	4.784%	4.746%
	Err g = 10.14%	10	1.659%	1.805%	1.779%
		100	1.809%	1.674%	1.683%
	Average local error on 1	12.508%	12.821%	12.79%
	layer volume elements 10	10.247%	10.098%	10.091%
	Err al = 18.275%	100	9.341%	9.26%	9.241%

.13: Layer's global and local error for Bonet's potential for a contrast c = 2000 Flex Matrix 10 Fibers with constraint of positivity on the coefficients

2 Test with second variant of Kaliske's law

  4.12: Error distribution before correction for the second variant of Kaliske's potential (left) and after correction (right)

	After correction 2 iterations 3 iterations 4.613% 4.565% 1.747% 1.728% 1.681% 1.692% 12.448% 12.399% 9.8% 9.791% 9.265% 9.241% TABLE 4.14: Layer's global and local error for Bonet's potential for a 1 iteration Global error 1 4.102% Err g = 11.067% 10 1.658% 100 1.856% Average local error on 1 12.004% layer volume elements 10 9.828% Err al = 19.582% 100 9.359% contrast c = 2000 Flex Matrix 10 Fibers without constraints weight After correction 1 iteration 2 iterations 3 iterations Global error 1 3.233% 3.503% 3.48% Err g = 8.223% 10 1.661% 1.799% 1.716% 100 1.727% 1.661% 1.663% Average local error on 1 12.988% 13.125% 13.124% layer volume elements 10 9.695% 9.783% 9.827% 4.3.Before correction Err al = 18.027% 100 9.14% 9.351% 9.274%
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.12 and table 4.15 show the same experiments but using the second variant of Kaliske's potential with positivity constraints. Overall, it can be seen that the error level is comparable and slightly lower than for Bonet's potential, although this does not represent a significant advantage. FIGURE
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 4 15: Layer's global and local error for Kaliske's potential second variant for a contrast c = 2000 Flex Matrix 10 Fibers with positivity constraintsFor Kaliske's second variant law correction without constraints, the global error and the local errors on the element volumes of the layer are reported in table 4.14. We can see that the results, in this case, are very slightly upgraded from the ones with positivity constraints. The corrected results have the same sensitivity as the ones above, gives best results from the first iteration of correction with one exception; the global error for a weight of w

		[α]			
	Before correction	weight	1 iteration	After correction 2 iterations 3 iterations
	Global error	1	2.459%	2.823%	2.788%
	Err g = 8.117%	10	5.679%	4.531%	5.044%
		100	15.592%	2.31%	14.594%
	Average local error on 1	12.968%	13.109%	13.081%
	layer volume elements 10	8.286%	8.452%	8.491%
	Err al = 18.008%	100	8.163%	7.664%	8.262%
	TABLE 4.16: Layer's global and local error for Kaliske's potential sec-
	ond variant for a contrast c = 2000, 10 Fibers case and without con-
		straints of positivity on coefficients	

p = 100.

3 Special test: incompressible training set

  In the tests presented in the tables 4.17 and 4.18, the starting training set contains only incompressible deformations, as was used in Section 3.3.4 for the NeoHokean case. Since the material of the matrix is quasi-incompressible and occupies most of the volume of the RVE, this would make sense.

	Before correction	weight	1 iteration	After correction 2 iterations 3 iterations
	Global error	1	8.756%	1.769%	2.149%
	Err g = 32.167%	10	8.709%	1.846%	1.666%
		100	8.264%	1.918%	1.705%
	Average local error on 1	24.288%	10.159%	10.195%
	layer volume elements 10	24.18%	9.628%	9.321%
	Err al = 41.272%	100	23.726%	9.6%	9.229%
	TABLE 4.17: Layer's global and local error for Bonet's potential for a
	contrast c = 2000 Flex Matrix 10 Fibers with positivity constraints
	Before correction	weight	1 iteration	After correction 2 iterations 3 iterations
	Global error	1	8.683%	2.48%	2.815%
	Err g = 106.537%	10	8.429%	1.655%	1.725%
		100	4.128%	1.686%	1.662%
	Average local error on 1	17.382%	12.196%	11.839%
	layer volume elements 10	17.153%	9.411%	9.603%
	Err al = 99.761%	100	14.806%	9.213%	9.269%
	TABLE 4.18: Layer's global and local error for Kaliske's potential sec-
	ond variant for a contrast c = 2000 Flex Matrix 10 Fibers with posi-
		tivity constraints		
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