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Résumé

Le contrôle avancé des procédés (ou Advanced Process Control - APC en anglais) est une
direction de recherche dans l’industrie de la fabrication de semi-conducteurs (ou Semicon-
ductor Manufacturing - SM en anglais) engagée dans le développement de diagnostics de
processus automobiles et de solutions de gestion de produits pour préserver un rendement
élevé en fin de ligne et réduire le risque de défaillance de l’équipement.

Dans cette thèse, nous nous concentrons sur l’étude des approches basées sur l’apprenti-
ssage machine (ou Machine Learning en ML) pour développer un cadre unifié pour l’analyse
et la modélisation des processus à partir de données SM multi-vues très diverses (provenant
de différentes sources).

Les fonctionnalités multi-vues globales donnent une description plus complète d’un
phénomène, et l’apprentissage multi-vues est généralement mieux adapté que l’apprentissage
mono-vue (ou à vue unique), ce qui motive ce travail. L’un des principaux défis ouverts
dans le domaine APC dans SM est la capacité à tirer parti de la richesse des informations
pour caractériser pleinement le processus et déterminer la valeur des nouvelles métriques.
Dans cette thèse, nous analysons les techniques de traitement de données existantes et nous
exposons une stratégie qui consiste en des étapes de nettoyage des données, d’extraction
des caractéristiques et de sélection de variables pour faire face aux imperfections des
données;telles que le bruit, les étapes d’échantillonnage irrégulières dans les données de
séries chronologiques sensorielles et les enregistrements incomplets, tous dus au taux
d’erreur de corruption naturelle des outils d’enregistrement.

Cette thèse vise également à élargir le champ de la modélisation des processus tradition-
nels en SM grâce à l’analyse inter-processus. La fabrication du produit est une procédure
séquentielle d’application de processus ordonnés pour déposer de nouvelles couches de
fonctionnalité qui permettent d’utiliser l’historique des précédents pour connaître son im-
pact sur la cible de modélisation actuelle d’intérêt. Dans ce sens, nous proposons une
méthodologie qui bénéficie non seulement de différents types de mesures, mais également
des dépendances entre les différentes étapes du processus pour rendre les processus plus
prévisibles et productifs.

De plus, nous étudions le problème des données manquantes, principalement lorsqu’une
des vues est manquante, ce qui est un autre défi ouvert dans le domaine de l’apprentissage.
Certaines études abordent ce problème en supposant l’existence de fonctions de génération
de vues pour compléter approximativement les vues manquantes. Cependant, ces fonctions
nécessitent généralement une ressource externe pour être définies, et leur qualité impacte
directement les performances du modèle prédictif final appris sur l’ensemble d’apprentissage
terminé. Au lieu de cela, dans ce travail, nous proposons d’aborder ce problème en apprenant
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conjointement les vues manquantes et l’estimateur cible multi-vues en utilisant une approche
d’apprentissage antagoniste inspirée par la capacité des réseaux antagonistes génératifs (ou
Generative Adversarial Netwotks - GAN en anglais) à saisir la distribution sous-jacente des
données et créer de nouveaux échantillons.

Finalement, nous considérons les tâches APC telles que la métrologie virtuelle et la main-
tenance prédictive pour mener des expériences en utilisant les collections de données réelles
fournies par les principales compagnies de fabrication de fabrication de semi-conducteurs en
Europe avec lesquelles nous avons collaboré, dans le cadre du projet “Metrology Advances
for Digitized Electronic Components and Systems (ECS) Industry 4.0 (MADEin4)”. De plus,
étant donné que le problème des données manquantes dans les collections multi-vues est
répandu dans différents ensembles de données au-delà de l’industrie SM, nous envisageons
des expériences avec des ensembles de données similaires (par défis et nature des données),
comme les collections de données multilingues et les données médicales.
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Abstract

Advanced Process Control (APC) is a research direction in the Semiconductor Manufac-
turing (SM) industry engaged in developing automotive process diagnostic and product
management solutions to preserve high end-of-line yield and reduce the risk of equipment
failure.

In this thesis, we focus on investigating Machine Learning (ML) based approaches to
developing a unified framework for process analysis and modeling from highly diversified
multi-view (that comes from different sources) SM data. Overall, multi-view features
give a more comprehensive description of a phenomenon, and a well-designed multi-view
learning strategy has better generalization ability than single-view learning, which justifies
an appropriate research effort.

One of the leading open challenges in the APC field in SM is the ability to leverage
the wealth of information in order to fully characterize the process and determine the value
of new measurements. Accordingly, we start with the analysis of existing data treatment
techniques and their limitations. Then, we focus on proposing a strategy that consists of data
cleaning, features extraction, and features selection steps to deal with data imperfections
usually expected in the field, like noise, irregular sampling steps in sensory time series data,
and incomplete records, all due to natural corruption-error rate of recording tools.

Next, this thesis intends to expand the scope of traditional process modeling in SM by
cross-process analysis. Product manufacturing is a sequential procedure of applying ordered
processes to deposit new layers of features; then, one can use the precedent history to learn
its impact on the current modeling target of interest. Accordingly, we propose a methodology
that benefits not only from different types of measurements but from dependencies between
different process steps to make processes more predictable and productive.

Moreover, we study the problem of missing data, mainly when one of the views is
entirely missing, which is another open challenge in the field. Some studies tackle this
problem by assuming the existence of view generation functions to approximately complete
the absent views. However, these functions generally require an external resource to be set,
and their quality directly impacts the performance of the final predictive model learned over
the completed training set. Instead, in this work, we propose to address this problem by
jointly learning the missing views and the multi-view target estimator using an adversarial
learning approach inspired by the ability of Generative Adversarial Networks Generative
Adversarial Networks (GANs) to seize the underlying distribution of the data and create
new samples.

Finally, for all the hypotheses introduced above in this work, we consider the APC tasks
like Virtual Metrology (VM) and Predictive Maintenance (PdM) to conduct experiments
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using the real data collections provided by leading in Europe Semiconductor Manufacturing
fabrication facilities that we collaborated with, within the scope of the Metrology Advances
for Digitized Electronic Components and Systems (ECS) Industry 4.0 (MADEin4) Project.
Moreover, since the problem of missing data in multi-view collections is widespread in
different data sets beyond the SM industry, we consider experiments with similar data sets
(by challenges and data nature), like multi-lingual data collections and real world Electronic
Health Record (EHR) data.
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Chapter 1

Introduction

1.1 Research Context
A Semiconductor Manufacturing (SM) is an industry that is engaged in designing and
fabrication of Integrated Circuits (ICs), or so-called chips. They are sets of interconnected
microelectronic components, such as resistors, transistors, capacitors, and inductors, made
of layers deposited on tiny (10 millimeters scale on average) but complex single units. Their
manufacturing starts with an empty wafer sawed out of an ingot of pure crystalline silicon
or other semiconductor material, designed in the form of a 300 millimeters disc. Then,
a rectangular pattern is printed on the wafer, where each small block, called die, serves
for growing there the IC, and it takes from 90 up to 150 days to assemble normally 30
or more layers of nanoscale features toward the final IC. Figure 1.1 describes the entire
process flow of enabling silicon wafers into functional chips in a manufacturing facility -
fab. Particularly, sets of chemical and physical process operations like polishing, material
deposition, modification, metallization, lithography, etching, and more are performed in a
chain to build each new layer of microelectronic features upon the wafer. Then, depending
on the design requirements for the number of different feature layers, such operations are
repeatedly performed several times to gradually convert raw materials into finished electronic
products. Once fabricated, the wafer undergoes electrical testing, or the so-called wafer
acceptance test (WAT), to discard dies on the wafer with a lack of requested functionality.
The fraction of accepted (successfully produced) chips is called yield. Finally, qualified
products are packaged and shipped in the electronic systems for further use.

Nowadays, SM companies tend to move to high-volume production environments as
they follow an increasing demand for electronic components in the modern world. It implies
the development and utilization of specialized material technologies and modern equipment
that allow the production of denser wafers of more complex designs for ICs. Then, with
the introduction of new, often marginal and difficult-to-control processes, into advanced
manufacturing, reaching a sufficiently high and competitive productivity level has become,
and will continue to be, a serious challenge. The value of wafers is increasing; therefore,
the impact of equipment failures resulting in tool downtime and loss of wafers is a major
concern.

Accordingly, mastering productivity within the SM industry has two main research

12



Figure 1.1: Schematic representation of the SM ecosystem.

directions to develop:

• strategies for equipment maintenance to reduce the risk of equipment failure;

• solutions for product monitoring to preserve high end-of-line yield.

1.1.1 Equipment Maintenance
Equipment maintenance is crucial to guarantee the proper functioning of performing tools.
Any unplanned downtime of manufacturing machinery at any stage of the fab ecosystem is
crucial for the business, as it downgrades the production capacity and demands additional
costs to repair or sometimes even replace ruptured components. Therefore, systematic (pre-
scheduled) equipment inspection - Preventive Maintenance (PvM), was introduced to prevent
unexpected outages. According to PvM, manufacturing tools are being controlled by relying
on conventional mathematical models and programming methods, so that maintenance
is scheduled when predefined statistically selected criteria is reached (like duration of
machine’s running time hits a threshold of the average equipment operational time without
any abnormalities). However, an obvious limitations of PvM for the process control is the
possibility of conducting unnecessary maintenance and an inability to detect and prevent
failures that may happen before the planned maintenance time.

1.1.2 Product Monitoring
Regarding product monitoring, a domain of metrology analysis could be considered as the
‘eyes and ears’ in the SM fabs because its requirement is to support all processes steps
toward the final product. In particular, at each of the production stages, an excellence of
corresponding process equipment performance can be monitored by measuring critical
characteristics of the deposited new layer on processed wafers, such as thickness, stress,
concentration, critical dimension, and more - altogether called metrology. Such analysis
assures the quality of produced devices leading to high end-of-line yield and stability of
process equipment. However, the large volume of multi-stage manufacturing systems and
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Figure 1.2: Schematic representation of the full chain of processes applied to one wafer to
fabricate ICs on it. Then, in order to perform a high-quality process control at any stage, full
coverage of all of the different metrology measurements is needed. However, in practice,
collecting metrology for each wafer causes a high cost of production and significantly
increases the fabrication cycle time. Therefore, a common method of monitoring consists of
using only a few periodically sampled wafers and measuring there only a few dies.

nanometric 2D and 3D scales of taken measurements makes metrology monitoring as one
of the challenging forms, time-consuming and expensive. Therefore, in practice, only very
sparse metrology is used for process control, described in Figure 1.2. It means that for any
given electronic component and system technology, there is a significant trade-off between
its productivity to its metrology precision and accuracy. For example, gaining in precision
and accuracy reduce the measurement cycle time (productivity) significantly, and cause a
yield risk to the final product due to low sampling.

1.2 Motivation
On the other hand, Advanced Process Control (APC), in its turn, is a likely productivity
booster in manufacturing sectors that use Machine Learning (ML) model as a base approach
to exploit the information already present in the SM process system, like physical sensors
measurements, tool settings or design characteristics, in order to infer the value of a costly or
unmeasurable variable, like metrology, which is important for the decision making in process
control or for characterizing the production quality. Usually, this goal is achieved by means
of supervised learning methods where a ML model is created by leveraging labeled data
where both the input and the output have been physically measured from past process runs.
In this way, APC solutions facilitate a replacement of conventional PvM with Predictive
Maintenance (PdM) schedules activities that are based on collected data from sensors
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and analysis algorithms; and improve the total metrology coverage by providing values at
other sample locations in addition to those currently performed - Virtual Metrology (VM)
technology. Together PdM and VM solutions help limit the number of human interventions,
minimize equipment downtime, lower the number of defects in produced items, and improve
overall reliability.

For the past three years, the Metrology Advances for Digitized Electronic Components
and Systems (ECS) Industry 4.0 (MADEin4) Project has developed next-generation pro-
cesses and metrology tools, ML methods and applications in support of Industry 4.0, also
known as smart manufacturing for the semiconductor fabs. Within the MADEin4 Project, we
collaborated with the teams of European leading SM companies working on key application
areas such as the automotive industry to

1. investigate and demonstrate the shortcomings of the real industrial data collections
from the SM fabs for PdM and VM tasks;

2. analyse different ML methods commonly used in PdM and VM tasks;

3. propose and deliver innovative solutions for APC framework consisting of the software
architectures for processes like data gathering, data pre-processing, and data analysis
in SM industry.

1.2.1 Problem Formulation
1.2.1.1 Predictive Maintenance (PdM)

PdM, also known as condition-based maintenance (CBM) [29], that typically involves
condition monitoring, anomaly detection, fault prognosis, and maintenance plans, aims to
predict when the equipment is likely to fail and decide which maintenance activity should
be performed such that a good trade-off between maintenance frequency and cost can be
achieved. Particularly, PdM is engaged in developing methodologies for identification if
a system status is considered anomalous or faulty through ML models as a function of
process-related data. Accordingly, at considered time t the estimated system status ŝ(t)
could be expressed as

ŝ(t) = f(p1(t), p2(t), ..., pm(t), u(t)) (1.1)

where p1(t), p2(t), ..., pm(t) refer to measurements of m different sensor parameters of
considered system at time t, and u(t) consists of any additionally available information
about operating equipment, like a recipe - set of tool instructions which specify how a
processing step is to be performed.

SM industry has reported that with the introduction of advanced anomaly detection, a
fab could have 25% reduction in time to yield maturity, 10% increase in manufacturing
capacity, and 35% decrease in a number of quality problems [17] that justifies an appropriate
research effort.

1.2.1.2 Virtual Metrology (VM)

Every machine in a fab is equipped with sensors for regular automatic measurements of
process conditions inside the operating chamber. This data, considered as process variables,
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is automatically saved and already used for manually driven conventional programming
methods of APC. However, additionally to that, recent state-of-the-art metrology domain
developments propose to apply ML solutions with the data collected form the equipment
sensors for metrology values estimation - VM. This direction of research and development,
also known as a soft sensor, is engaged in predictive diagnostics of the process and tool
performances. Accordingly, VM is engaged in developing robust methods for metrology
output in the function of process variables and other information available for the process
and/or the product, so that the estimated target metrology measurement at the (x, y) location
of i-th wafer wi on the tool, m̂(wi, x, y), is given by

m̂(wi, x, y) = f(p1(wi, x, y), p2(wi, x, y), ..., pm(wi, x, y), u(wi, x, y)) (1.2)

where p1(wi, x, y), p2(wi, x, y), ..., pm(wi, x, y) are the parameter records taken from m in
total chamber sensors during the processing of wafer k, and u(wi, x, y) that refers to any
other available auxiliary information, like recipe or design - set of product specifications.

Some studies state that the implementation of VM in a fab is estimated to increase the
production volume output by nearly 10% [21] that justifies an appropriate research effort.

1.2.2 Challenges
Although, ML models are being widely investigated in the semiconductor manufacturing
field for VM and PdM tasks, a few of them are actually being deployed in the fab, and
not to substitute existing conventional methods for equipment maintenance and product
monitoring, but to augment them. This is due to the following challenges that are present in
the field.

Challenge 1. Abundant multi-view process characterization data treatment.
Manufacturing machinery is equipped with recording tools and sensors measuring

process state-related information, which is ready to be used without any delays. This data
comes from various sources and is of different types, like Equipment Sensory Data (ESD)
that consists of recordings of sets of parameters from process sensors, recipe information,
and other numerical and categorical process/equipment characteristics; design requirements;
defects inspection maps; past maintenance diagnostic results; history of equipment failures,
and more. Then, in order to assure the stability and effectiveness of the developed ML
solutions based on such highly diversified data, it is necessary to perform preliminary data
transformation of the raw records collections.

For example, ESD forms the core of industrial SM data sets. In particular, the data is
given by the time sequences of several sensors that consist of hundreds of recorded values.
This means that one wafer ESD consists of thousands of features on average. Accordingly,
it is a problem where the features space dimension is of the same order as the number of
samples, since the number of labeled observations (wafers) in the SM data collections for
supervised ML strategies reaches a few thousand maximum due to high cost of extracting
the labels. Therefore, measures must be taken to face the high dimensionality of the problem,
both for the accuracy of the solutions and to avoid oversmoothing.

Then, missing data and outliers are to be expected due to natural tool variability and
since recording tools of different sensors may collect data unevenly and with a fluctuating

16



time step that usually may vary in a tolerance range of few seconds/minutes. Besides, some
records are expensive and time-consuming to measure due to their nanometric scale and
precision, and therefore only a subset of observations shall be subject to corresponding
analysis, while the rest is left without the data being provided.

Outliers, in turn, are observations significantly distinct from a given population of
records and are very common in different data collections beyond semiconductor industrial
sets. They can be efficiently detected by statistical tests, and usually, analysis shows that
outliers are due to the natural corruption-error rate of recording tools, so that can be removed
for further problem research. However, it happens that such observations actually indicate
anomalies in tool functioning. Then, in this case, since productivity is the primary concern,
such records are required for further investigation. And therefore, it is necessary to provide
a reliable mechanism for classifying abnormal observations for data-cleaning purposes
without losing any critical information.

Challenge 2. Generalization guarantees for VM and PdM predictive models.
The constant change and introduction of new products and recipes to production require

predictive models to be retrained automatically as new data comes in to meet generalization
guarantees. Besides, some process hardware exhibits a drift that implies a distribution shift
specifically of the sensory data over time. Therefore, it is essential to define maintenance/re-
calibration conditions with deployed ML framework for VM and PdM tasks in the SM fab
in order to preserve their reliability.

Challenge 3. Interpretability.
Analyzing the existing process monitoring schemes, the prediction accuracy of the

process status is usually the primary focus, while the explanation (diagnosis) of a detected
fault is relegated to a secondary role. Nevertheless, model interpretability is considered to
be an important issue because engineers who actually operate the semiconductor tools prefer
a model that can be easily understood and displays the underlying causal interactions of a
process system in an easily interpretable graphical form.

1.3 Thesis Structure
In this thesis, we showcase a practical ML methodology for PdM and VM problem that
combines process, metrology, and design information within a single framework to learn
about the process and design contributions affecting manufacturing, with the ultimate objec-
tive of the research to have a sufficiently complete virtual representation of the process and
the measurements that define if the process is operating within the pre-defined budgets, and
provide the infrastructure to enable process analysis, defect analysis, process optimization,
and process control. Additionally, we focus on investigating the value of missing information
in the SM data collections to affect the accuracy of the developed predictive strategies and
propose the methodologies to address the challenge.

The rest of the thesis consists of the following.

• In Chapter 2, we provide a review of different existing ML approaches that are
commonly applied for building VM and PdM predictive applications, which includes
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both: methods for data pre-processing and methods for target modeling. Moreover,
in this Chapter, we review different solutions in literature for the multi-view ML
applications and how they are affected by the missing data. In this respect, we
provide an investigation on the Generative Adversarial Networks (GANs) that allows
reconstructing the missing view from the available ones by solving the domain transfer
problem.

• Chapter 3 describes activities within the MADEin4 Project related to the development
of the PdM framework for modeling process drift from its initial state that is observed
after the latest PvM event in order to detect deviations from normal conditions. The
proposed approach consists of two parts: features extraction and modeling, which both
leverage several state-of-the-art statistical and ML methods integrated into a rather
complex framework. First, we operated the raw parameters data with a windowing
strategy, Gaussian Mixture Models (GMM) split into signal modes and centering with
respect to PvM events to remove all the possible sources of systematic variations
retaining only random variations and to have a compact and uniform representative as
much as possible information on the process state in order to generate better quality
input for the modeling part. Then, the core approach for a predictive diagnostic of
the tool in our work is based on the Gradient Boosted Decision Trees (GBDT) that is
an efficient method for regression and classification tasks in ML from the family of
ensemble algorithms.

• Chapter 4 is based also on the MADEin4 Project case studies, where we present a
fusion of electronic design, process, and metrology data ML-based framework for
improved process optimization and control with VM modules for individual process
applications. Moreover, in this Chapter, we propose to expand the scope of traditional
process modeling in the SM by cross-process analysis, called Virtual Cross Metrology
(VCM).

• In Chapter 5 we discuss the problem of missing data in the multi-view ML frameworks
when the view may be missing completely. We introduce a conditional GAN model
with two generators and a common discriminator for multi-view learning problems
where observations have two views, but one of them may be missing for some of the
training samples. Experimentally, we show that the approach that jointly learns the
missing data imputation and target estimation leads to better performance (based on
the target accuracy estimation) compared to the methodologies that consider the two
tasks separately.

• In Chapter 6 we discuss the problem of partially missing data in the multi-view
ML frameworks. Particularly, we study the problem with Electronic Health Record
(EHR) data and we present a data imputation technique based on a clinical conditional
GAN (ccGAN) capable of imputing missing values of observed characteristics condi-
tioned by fully-available characteristics values to be then employed for predicting the
probable diabetes complication.
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Chapter 2

Related background

In this Chapter we provide a review of different existing ML approaches applied for building
VM and PdM predictive applications. Overall, both frameworks consist of two main parts:
data treatment and modeling, which are equally important for building accurate estimators.
Accordingly, in Section 2.1 we, first, discuss data pre-processing methodologies and features
extraction techniques for transformation of raw semiconductor collections of records into a
proper data format for building an efficient ML model from. Next, in Section 2.2 we provide
a survey on different families of ML algorithms for VM and PdM problems solving.

Finally, in Section 2.3 we describe the state-of-the-art methods to deal with one of the
main problems in SM data collections as well as in many industrial data sets in general
- missing data. In particular, we consider the case of multi-view ML tasks when during
training some samples may have one of the views missing. Accordingly, we provide a review
of the multi-view learning strategies in ML and approaches that usually are employed to
overcome data incompleteness.

2.1 Process Characterization in Semiconductor Manufac-
turing Data Collections

2.1.1 Equipment Sensory Data (ESD)
One of the most important factors that lead to a more sustainable VM or PdM strategy in
a production environment is the level of data pre-processing required. As anticipated in
the Introduction, the SM data for VM and PdM tasks is an abundant multi-view collection.
The core of it is Equipment Sensory Data (ESD) collected from sensors mounted on the
manufacturing equipment, and it is one of the challenges to make effective use of ESD
due to its irregular sampling, high dimensionality, presence of outliers, missing data and
impermanent length.

In a fab, a recording of ESD is triggered by a presence of a wafer in a processing tool,
then it lasts until all operations on the wafer are finished, which usually takes a few minutes
and generally depends on a recipe. As a result, one parameters data sample pi - one wafer
process cycle ESD - is generated for a wafer wi (while it was treated in the processing
equipment), which is a collection of sensory parameter values as a function of time. If P is
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(a) (b)

Figure 2.1: (a) Example of a one wafer cycle ESD that consists of recordings of 7 different
sensory parameters. (b) A fragment of several ESD cycles that consist of recordings of 7
different sensory parameters collected from 6 subsequently processed wafers on the tool.
(Both figures were generated from the real fab data analyzed in the MADEin4 Project.)

a total number of sensory parameters, then pi is defined by Equation 2.1.

pi(wi) = {ps(wi)}Ps=1 (2.1)

Then, each ps(wi) is a time series:

ps(wi) = {ps(tT (wi))}N(s,wi)
T=0 , t0(wi) ≤ tT (wi) ≤ t0(wi) + ∆t(wi),

where t0(wi) indicates the time when the process started for the wafer wi and ∆t(wi) denotes
its duration. It is to be stressed that the time sequences ps are not equispaced in time

tT+1(wi)− tT (wi) ̸= const , ∀T ∈ {1, ..., N(s, wi)} ∀s ∈ {1, ..., P} (2.2)

and may not be aligned, because the recording system collects sensory values with a
fluctuating time step that usually may vary in a tolerance range of a few seconds. Figure
2.1a shows the example of one wafer ESD from the data collection of the MADEin4 Project
analyzed in this thesis, and it is clear that the sampling frequency varies depending on the
parameter.

After one wafer is processed, the recording system stays in "waiting" regime until the
next wafer comes into the tool. The same tool can process wafers of several designs, and
therefore it is common that different recipes are switched on a tool between processing
consecutive wafers of different designs. As a result, duration (tN(s,wi)(wi)− t0(wi)), and
as a consequence length |ps(wi)|, of the ESD samples is different for every wafer wi due
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Figure 2.2: Preliminary operation, called feature extraction or in case of ESD - process
characterization, where a set of informative values is extracted from the raw data, and then
casted into a design matrix X.

to the presence of different recipes and natural variability of the sampling frequency of the
recording tool (Figure 2.1b).

Traditional ML techniques that are usually employed in this context are not suitable to
deal with these highly inconsistent input data, while high dimensionality is the additional
concern. In fact, the average number of data (length) for each ESD sequence sample (that
corresponds to one wafer and one type of sensor parameter) is around hundreds of records.
Then if tens of different parameters are to be collected, a process characterization set for one
wafer contains around thousands of data in the average. In practice, there exists a problem
where the number of samples is of the same order as the number of explanatory variables
(Equation 2.3).

1

N

N∑
i=1

P∑
s=1

|ps(wi)| ≥ N (2.3)

Therefore measures have to be taken to face the high dimensionality of the problem, both
for the accuracy of the solutions and to avoid oversmoothing.

2.1.2 ESD Feature Extraction Methodologies
One of the most popular methods for reducing the number of variates is to deal with
the features extracted from the process signals instead of the original ones, casted into a
matrix X (Figure 2.2). Let gs denote a transformation applied to the sensory parameter s,
s ∈ {1, ..., P}, then X is defined as

X =
{(

g1(p1(wi)), g
2(p2(wi)), ..., g

P (pP (wi))
)}N

i=1
(2.4)

and the outcome of gs(ps(wi)) is constant across all the wafers wi, i ∈ {1, ..., N}. Then, if
xs(wi) = gs(ps(wi)) and |gs(ps(wi))| = ds, the X can be express in the following form

X =
{(

x1(wi),x
2(wi), ...,x

P (wi)
)}N

i=1
, xs ∈ Rds . (2.5)

23



The most traditional method of features extraction consists of computation of relatively
basic statistical and descriptive characteristics computed on a set of values of each ESD
sequence sample of each sensor parameter, such as mean, variance, skewness, kurtosis,
peak-to-peak values, step durations and more. Particularly, features described in Table 2.1
are commonly used for PdM and VM models development, and are intended to catch the
main characteristics of the signal, also attempting to get basic local information on the
sequence. As a result, feature-based PdM and VM strategies naturally address common
challenges like high dimensionality as well as unequal signal lengths and/or unsynchronized
wafers process trajectories. Moreover, in [65] study, the authors argue that the feature-based
approaches can better capture process characteristics and dynamic behaviors.

Nevertheless, more advanced features are considered as well, which aim at picking
more detailed information on the signals. For example, a well-known in the literature, the
wavelet transform gives a very accurate representation of the signal in time and frequency,
and therefore wavelet theory has been widely used in fault detection [77] and process
monitoring [16] applications. Roughly speaking, it is able to give the local role of the
frequency composing a signal by means of a linear combination of some special basis
functions (wavelets) that are obtained from a unique function by dilation and translation.
Wavelet representation offers excellent theoretical properties in terms of approximation of a
function and decorrelation of the coefficients of the representation. Efficient discrete wavelet
transform is basically defined for dyadic (length power of 2) and equispaced time sequences,
which is may not be the case for the ESD collections in some applications, like ones that we
worked with during the MADEin4 Project. Therefore a special approach was developed in
[1, 2] to handle such cases of non-equispaced sequences and of generic length.

Next, the Fourier transform shares many of the properties of the Wavelet transform,
in that it gives a representation of a signal in terms of a basis of trigonometric functions
rather than wavelet ones. Such basis functions represent frequencies that compose the signal.
Fourier transform has worse theoretical properties than Wavelets as far as the degree of
approximation and decorrelation of coefficients of the basis trigonometric functions are
concerned; in addition, it is not a local representation of the signal, in that each coefficient
represents a frequency all over the domain of the function. However, it can be effective
for functions showing oscillatory behavior. From the computational point of view, also
(discrete) Fourier transform is basically defined for dyadic and equispaced time sequences.
To work with nonequispaced and nondyadic sequences an approach can be pursued similar
to the Wavelet transform proposed in [1, 2].

Recently, more sophisticated automatic feature extraction methods, like Autoencoders
(AE), has been proposed for SM process characterization tasks [48, 47, 78]. Generally, the
AE is a Artificial Neural Network (ANN) that is trained to reconstruct its input. In the
particular case of time-series based task, Convolutional Neural Network (CNN) [78, 34] and
Long Short-Term Memory Network (LSTM) recurrent neural network are employed in order
to effectively learn from the sequential type of input that usually require some preliminary
operations, like resampling or moving average, in order to make them equispaced. Then,
the hidden layers of the network usually perform dimensionality reduction on the input,
learning relevant features that allow a good reconstruction. Moreover, deep AEs exploit
multiple non-linear representational layers that learn complex hierarchical features from
the data with high informative content [48, 47]. However, the use of deep models requires
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Feature Name Significance
AverageValue Average of the parameter’s values along the entire time sequence.
AverageLeft Average of the parameter’s values along the first half of the time

sequence.
AverageMiddle Average of the parameter’s values along the central 50% part of the

time sequence (discarding the 25% left and right parts)
AverageRight Average of the parameter’s values along the second half of the time

sequence.
AverageDelta Difference AverageRight – AverageLeft.
FirstValue First recorded value in the parameter’s time sequence.
LastValue Last recorded value in the parameter’s time sequence.
Kurt Kurtosis of the parameter’s values along the entire time sequence.
Skew Skewness of the parameter’s values along the entire time sequence.
MedianValue Median of the parameter’s values along the entire time sequence.
SD Standard deviation of the parameter values along the entire time

sequence.
SDLeft Standard deviation of the parameter values along the first half of the

time sequence.
SDMiddle Standard deviation of the parameter values along the central 50% part

of the time sequence (discarding the 25% left and right parts).
SDRight Standard deviation of the parameter values along the second half of

the time sequence.
ValueMin Minimum of the parameter values along the entire time sequence.
ValueMax Maximum of the parameter values along the entire time sequence.
Time1 First available time of the parameter’s time sequence.
Time2 Last available time of the parameter’s time sequence.
Duration Difference Time2 – Time1.
Length/Size Total number of values collected in the entire time sequence.
TimeMin The time when the minimum value of the time sequence recorded.
TimeMax The time when the minimum value of the time sequence recorded.
Area Total area under the curve of the parameter’s time sequence.

Table 2.1: Description of the commonly used statistical and descriptive features extracted
from SM sensory data for process characterization.
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big data collection during training which is not all the time the case with the SM data sets.
Moreover, another limitation of the AE feature-extraction approaches is the difficulty in
extracting process knowledge from the new feature space once it has been transformed, so
that we are compromising on interpretability.

2.1.3 Features Selection Methodologies
Some of the extracted features (especially statistical ones) can measure similar quantities,
therefore, can show high correlations. Then, there is a high chance that the performance
of a predictive model can be impacted by a problem called multicollinearity, which may
lead to possibly unstable predictive models. To overcome the obstacle, a lot of feature
selection mechanisms are proposed in the literature. For example, in [53], authors compared
state-of-the-art model-building techniques such as Forward Selection Regression (FSR),
Ridge regression, LASSO, and Forward Selection Ridge Regression (FCRR); and validated
them on a benchmark semiconductor plasma etch dataset in highly correlated input spaces,
showing that the FSR provides the best result.

A method of fitting multiple regression models known as stepwise regression offers
a way to choose the optimal subset of explanatory variables. In particular, one predictor
is added at a time until no more increase in the selected accuracy score is observed. The
estimate of coefficients of the predictors and of the accuracy score has to be performed on
separate data sets: training and testing ones respectively, because otherwise the accuracy
always decreases with the number of explanatory variables. A semi-exhaustive trial method
is used to include more predictors; at each stage, all variables that have not previously been
incorporated into the model at a previous phase are tested, and the variable (if any) with the
highest accuracy score is chosen — a process known as forward selection. In contrast, there
is another variation of the stepwise regression by backward elimination, when the procedure
starts with fitting the regression model with a full set of predictors and then iteratively one
variable is removed at a time.

Other methods use regularization that relies on functional arguments to select variables.
The rationale comes that for the observation in high-dimensional settings, the solution can be
controlled by introducing ancillary constraints under the form of a regularizing function and
a corresponding regularization coefficient. In mathematical terms, the quadratic optimization
problem that is at the basis of regression is replaced by the following regularized problem

min
w
∥y −wX∥22 + λp(w), (2.6)

with p and λ being, respectively, the regularization function and the regularization coefficient.
The prototype of such regression methods is LASSO, where p(w) = ∥w∥1. This regular-
ization term yields sparse solutions, in the sense that some (possibly most) coefficients are
set to 0, and therefore corresponding predictors do not enter the model and are not selected.
Some generalizations of LASSO have been proposed aimed at fixing the bias inherent in
LASSO and at improving accuracy, through different choices of the regularization function
and even replacing the L2 norm with different loss functions.

In all methods a second regularization term may also be included as the L2 norm with
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its regularization coefficient (elastic net):

min
w
∥y −wX∥22 + λp(w) + α∥w∥22. (2.7)

which fixes the drawbacks of regularization methods with a high number of predictors
and highly correlated predictors. Both regularization coefficients λ and α are estimated by
cross-validation.

2.2 Modelling
Maintenance issues can be completely different in nature, as well as metrology predictive
tasks may have different specifications depending on the type of target. Therefore, the
predictive information to be fed to the PdM or VM module has, in general, to be tailored
to the particular problem at hand. This observation justifies the presence in the overview
papers of both PdM [57] and VM [72, 25] of many different approaches that are discussed
further in this Section.

2.2.1 Predictive Maintenance (PdM)
The PdM is engaged in developing methodologies for identification if a system status is
considered anomalous or faulty through ML models as a function of process-related data.
However, it is very rare that the PdM task is considered as a binary classification problem,
since this scenario requires a sufficient number of examples in both categories ("faulty"
and "normal" observations) in the training data. Generally, error events are very rare to
be observed since a lot of efforts in a SM fab are directed to prevent breakdowns, which
makes corresponding data sets to be hugely unbalanced or skewed. Nevertheless, in [14, 64]
authors suggest choosing larger values for the failure horizon, so that instead of only labeling
the last iteration before the error event as "faulty", they label the last n iterations (wafers
that equipment produced before it went off). Then overall, the such methodology does not
impose any restrictions on the choice of a classification algorithm. In literature, Support
Vector Machines (SVM), k-Nearest Neighbors (KNN) or ANN were demonstrated to provide
competitive results [64, 52, 14]. However, Decision Tree (DT) ensemble models may be
preferable in case of major class imbalance, since this ensemble algorithm allows to form
subsets with majority class down-sampling to train trees. Moreover, in [64] authors propose
to repeat the procedure for k different values of the horizon n to build k different classifiers
respectively, each one facing a different classification problem and therefore providing
different performance outcomes.

Next, regression-based formulations of PdM are more frequent in practice as described
in [57] and generally arise when predicting a Remaining Useful Life (RUL), time-to-
failure (TTF), or health indicator (HI) using commonly applied traditional regression ML
models, like SVMs, ANNs, DTs and KNNs. However, training to predict RUL is only
possible when the same conditions as for classification problem formulation are valid -
there is enough data of pre-failure observations. While normally, the SM fabs are operating
under failure preventive measures, meaning that PvMs are regularly performed leading to
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unnecessary equipment interventions. Therefore, corresponding data usually consists of
"normal" schemes of equipment functioning until it is stopped before actually reaching
crucial degradation in its performance.

Thus, when dealing with essentially faultless data sets, the most optimal solution is to
consider learning ML model to estimate the future values of some quantities that characterize
a system progression in case the tool is functioning in "normal" conditions. In fact, many
processes exhibit inevitable steady drifts in nature because of the gradual wearing-out
phenomena or build-up of material on the components of the tools [16]. That is, the process
drift might be caused by the process itself or induced by the process tool. It results in
variations in the fabrication outcomes from wafer to wafer. Hence, the process drift must be
estimated. Since the SM usually suffers from a high level of nonlinearity, in recent years
artificial neural networks have evoked great interest in the areas of process modeling because
of their ability to learn complex nonlinear functions [9, 16]. In this direction, recent research
demonstrates that CNNs are of the best for sequence modeling [8]. Then, several methods
are available in the literature to analyze the predictive outcome with the goal to identify
anomalies, like analysis of the residuals [52].

Another way, proposed in [18, 57], is to train AE with data that represents normal system
dynamics, which learns how to compress and reconstruct this data. Then, the processing of
anomalous data with the trained AE results in a reconstruction error analysis.

2.2.2 Virtual Metrology (VM)
The VM as a novel method, was introduced in 2005 [20] for Wafer-to-Wafer (W2W) control
enhancement. It was defined as a correlation model between tool historical data (like
temperature, power, flow rate, pressure, optical emission spectrum, and plasma impedance;
initially collected for equipment failure detecting problem) and acquired properties of wafers
(e.g. thickness, depth, critical dimension of a deposited layer) after the corresponding process
is complete. Experimentally on simulation data of a shallow trench isolation deposition
process the authors estimated deviation improvement up to 65% from using VM. The first
VM correlation method was tested on data from solely one specific process and it triggered
different teams to investigate the methodology on different industrial case scenarios.

Next, in 2007 VM mathematically was defined as a regression problem [37, 35]. In
[37], authors were comparing Multiple Linear Regression (MLR), principal component
regression (PCR), and partial least squares (PLS) methods in solving VM problem for
lithography and plasma etch processes. While in [35], authors suggested using Radial Basis
Function Network (RBFN) in VM scheme for the chemical vapor deposition process. Later
in 2009 a study [30] was published again for the chemical vapor deposition process where
authors showed that Feed Forward Neural Networks (FFNN) with sigmoid nonlinearities
outperform MLR and RBFN approaches in metrology predictability. While following the
work [45] in 2010 shows that gaussian process regression (GPR) can outperform a very good
result of ANNs. The same result was later obtained for chemical vapor deposition process
metrology predictions in 2014 [73], also compared to MLR and least absolute shrinkage
and selection operator (LASSO) results. And the same year, another study [54] shows
compatible results of support vector regression (SVR) for VM for chemical vapor deposition
process monitoring.
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The most recent research on VM includes also Deep Neural Network (DNN), like in the
[34] of 2021 the authors argue that traditional ML methods, including FFNN, require feature
selection process is required to extract the predictors and their performance improvement
has its limits, while if CNN can replace FFNN in the VM system, not only the issue of time
and labor consuming for feature selection can be improved, but the prediction accuracy can
also be enhanced.

2.2.3 A Brief Review of Existing ML-based Approaches for PdM and
VM

This Section is engaged in introducing the main concepts behind the most common ap-
proaches that are proposed in the literature to solve PdM (see Section 2.2.1) and VM (see
Section 2.2.2) tasks.

Linear Regression

Simple and multiple linear regression (SLR and MLR respectively) are the most basic and
consolidated modeling tools for explaining a response variable (regressor) from one (SLR)
or more (MLR) numerical and/or categorical explanatory variables (predictors) by fitting a
linear equation on the observed data

ŷ = wX, (2.8)

where a coefficient vector w is estimated using the least squares method:

min
N∑
i=1

(yi − ŷi)
2 (2.9)

SLR and MLR have excellent and well-studied theoretical properties, besides being
very intuitive in explaining a resulting model. Such fast models define the simplest relation
between input variables and target. Of course, they are limited in all problems where a
nonlinear relationship between the regressor and the predictors is expected. Furthermore,
MLR can be used only in a context where the number of predictors is much less than the
size of the available samples. Otherwise, due to intrinsic illconditioning arguments, the
variance of the estimated coefficients grows up to make them meaningless. Additionally, in
the case when some explanatory variables show high correlations, there is a high chance that
the performance of MLR can be impacted by a problem called multicollinearity. Then, the
estimated w can be very unstable, which leads to poor predictions of the response variable.
A way to face illconditioning and multicollinearity is to select a small smaller subset of
predictors, for example, with stepwise regression or LASSO.

Support Vector Regression

Support Vector Regression (SVR), unlike most linear regression models, operates to mini-
mize the L2 norm of the coefficient vector under additional constrain for error margin ε that
allows defining an “acceptable” level of error to fit the data. Moreover, the regularization

29



term for the values outside of ε is introduced, which is controlled by hyperparameter C. As
a result, the objective function is the following:

min
1

2
∥w∥2 + C

N∑
i=1

|ξi|

under constraints:
|yi − wixi| ≤ ε+ |ξi|

Additionally, the kernel function can be applied to transform the data to make it possible
to fit with a linear model. The kernel functions exist of different types, but in this work, the
Radial Basis Function (RBF) is used:

K(xi, xj) = exp
(
− ∥xi − xj∥2

2σ2

)
Ensemble Trees Models

The algorithms based on DTs non-parametric supervised models are of big interest in the
SM modeling tasks as they are simple and can provide stable results and perform well even
for small data sets.

Random Forest (Random Forest) combines a multitude of decision trees - "weak"
learners, at learning time. Each tree is trained independently in parallel on the randomly
subsampled small set of the data, so that it allows for improved variance and provides
an unbiased estimate of the generalization error. Generally, Random Forest is considered
as highly accurate estimator in many tasks; it can successfully handle high-dimension
feature input and a large proportion of missing data. However, it has a risk of overfitting
for especially noisy data sets, and in case categorical data with many different levels are
included Random Forest has an “absent levels” problem (some categories may not have
their representatives in the random subset). Therefore, for a more efficient use of categorical
variables, the next ensemble method is considered.

In contrast, Gradient Boosted Decision Trees (GBDT) relies in making predictions on a
combination of decisions trees that are trained sequentially one at a time, in a way that every
new one is trained to reduce the error of the ensemble of previous learners. Specifically, at a
step k the existing k models form the following predictive function:

f(x) = f1(x) + f2(x) + ...+ fk(x),

where fi,i ∈ 1, .., k is the decision tree estimator added at a step i. Then, when the next
decision tree fk+1 is added to GBDT model, the k existing “weak” learners are fixed and
left unchanged, while the new one is trained to reduce the error of the updated ensemble - it
is trained on the following set:

Sk+1 = {(xi, yi −
k∑

j=1

fj(x
i))}.

Accordingly, boosting is an optimization approach that aims to minimize a loss of the
model by adding weak learners using a gradient descent like procedure. Trees, in turn, are
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constructed in a greedy manner, choosing the best split points based on purity scores like
Gini or minimizing the loss.

One of the advantages of this method is that it can manage highly correlated features.
Moreover, it also can manage missing values, which means that observations that have one
or several parameters entirely missing are kept for training.

Categorical Boosted Regressor (CBR) is a new gradient boosting algorithm that success-
fully handles categorical features and takes advantage of dealing with them during training
as opposed to preprocessing time. Another advantage of the algorithm is that it uses a new
schema for calculating leaf values when selecting the tree structure, which helps to reduce
overfitting.

Artificial Neural Networks

The ANN is a model exploiting layers of weighted neuron connections aggregated with
the nonlinear activation function to generate the next layer of neurons. The first layer of
neurons is formed of the input variables to be fed to the model. Then, if gl+1 denotes an
activation function to create the next l + 1 layer in the ANN, then one neuron xl+1

j of this
layer is computed as:

xl+1
j = gl+1

( N l∑
i=1

(wl+1
ji xl

i + bl+1
j )

)
,∀j ∈ {1, ..., N l+1} (2.10)

where N l is a number of neurons xl
i in the prior layer l, and wl+1

ji together with bl+1
j refer to

the weights and bias respectively that are to be learned from the data. Eventually, the final
layer of the ANN is defined by the target. The learning of the ANN is performed iteratively
by updating the weights to minimize loss function using gradient descent algorithm.

In the past decades, ANNs gained much importance in fault diagnosis and virtual
metrology tasks as they provide a good approximation of the nonlinear relationship between
predictors and regressor. Besides, being applied on the feature space inputs, there exists an
active investigation of ANNs like CNNs and LSTMs that use the temporal data that hold the
most abundant information as an input data. Then, CNN automatically extracts subtle yet
important features from temporal data through the convolutional and pooling layers. After
flattening these features to get the prediction result. While LSTM is capable of learning
long-term dependencies of the input sequences to estimate the target outcome.

2.2.4 Performance measures
Throughout the project, the Coefficient of Determination (R2) has been a main error indicator
to measure the performance of the predictive models and to compare the approaches with
each other. Given a regression problem with yi being the real value of a target variable in
the set of size N , the Coefficient of Determination is defined as

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
, (2.11)

31



with ŷi being an estimate obtained by a regression model of choice and ȳ = 1
N

∑N
i=1 yi being

an average of observed target values. Stated in other words, if the variable y to be estimated
has a variance due to noise, the R2 score tells how much of this variance is explained by
the employed model with respect to a simple model where the estimate is just given by the
average value ȳ. Then, R2 = 1 only in case when the predictive model perfectly fits all data
- yi = ŷi for all i = 1, ..., N . When the regression model gives as a solution the average
value of y, (ŷ), then R2 = 0, and no variance is explained by the model with respect to the
average. It is possible to observe that R2 could even assume negative values, despite its very
definition, when the solution of the model is worse than the constant estimate given by the
average value.

Accordingly, as closer the R2 score to 1 as better the model is. However, it is to be
mentioned that a value R2 = 1 could be misleading when the problem setting is affected
by a phenomenon called oversmoothing. In this case, an excess of fit, due in general to the
use of many variables and of a data set both for estimating the regression model and R2,
makes that once computed on a newly, never seen by the model, set of data, it collapses to
low values.

Therefore, the Coefficient of Determination maybe not used as a stand-alone indicator
of the effectiveness of the model, but together with other performance measures, like Root
Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (2.12)

MAPE =
1

N

N∑
i=1

∣∣∣yi − ŷi
yi

∣∣∣× 100%, (2.13)

in order to provide an additional evaluation to quantify the performance of ML models.

2.3 Multi-View Learning with Missing Data

2.3.1 Learning with Multiple Data Modalities
Nowadays a big variety of modern technologies provide the possibility to collect observations
that corresponds to the same phenomenon from multiple sources. More information we
have - the more accurate predictions for this phenomenon we can make. This idea leads to
the growth of interest in multi-view learning algorithms during these past few years.

Many advances have been made on both theoretic and algorithmic sides [11, 33]. The
three main families of techniques for (semi-)supervised learning are (kernel) Canonical
Correlation Analysis (CCA), Multiple Kernel Learning (MKL) and co-regularization. CCA
finds pairs of highly correlated subspaces between the views that is used for mapping the data
before training, or integrated into the learning objective [6, 28]. MKL considers one kernel
per view and different approaches have been proposed for their learning. In one of the earliest
works, [7] proposed an efficient algorithm based on sequential minimization techniques
for learning a corresponding support vector machine defined over a convex nonsmooth
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optimization problem. Co-regularization techniques tend to minimize the disagreement
between the single-view classifiers over their outputs on unlabeled examples by adding a
regularization term to the objective function [60]. Some approaches have also tackled the
tedious question of combining the predictions of the view-specific classifiers [68].

All these techniques assume that the views of a sample are complete and available during
training and testing. In fact, in real-world multi-view data collections missing observation
occurs for single or multiple views, so that the corresponding modality is incomplete or
missing entirely. Often researchers address this issue by including in the analysis only
complete observations. In this way, case deletion methods (i.e., instances with missing
elements are removed) are among the simplest approaches, but they may potentially lose
some valuable information in the data, and as a result, we get biased and low-quality
predictions. Instead of simply dropping instances lacking on information, a more convenient
strategy would be to replace the missing values.

2.3.2 Incomplete Views
Various traditional imputation strategies have been successfully applied to complete partially
missing, data on a view, which include statistical methods, like imputation with a mean,
median, extra value substitution, as well as expectation maximization, full information
maximum likelihood and multiple imputations approaches; and linear, polynomial, back-
ward/forward, padding interpolation methods. All of them have been largely adopted in
literature to impute missing values in different kinds of data. Another principled method of
dealing with missing data is Multivariate Imputation by Chained Equations (MICE) [42],
which adopts a chained equation over various iterations to estimate the missing values after
an arbitrary initialization. However, a major limitation of these approaches is that they deal
with a low percentage of missing values, thus the imputation accuracy decreases as the
percentage of missing values increases. This drawback originates because these strategies do
not always succeed in capturing non-linear relationships between observed and unobserved
features.

Also, among the most common ML-based imputation models is KNN [49], which
replaces missing values with an average of corresponding missing variables data among
k closest in a space neighbor observations according to selected distance metric (usually
Euclidean). While KNN works only with numerical data input and requires tuning of the
parameter k, MissForest (MissF) [62] was proposed as a non-parametric missing values
imputation method to deal with mixed-type of data, and was proven to be an effective
solution in many types of applications. MissF, based on the Random Forest (RF) algorithm,
is robust to noisy data and multicollinearity since tree-based approaches have built-in feature
selection mechanisms. However, MissF does not consider any multivariate information
among features to capture the missing mechanism.

Recently, many studies suggest completing missing parts from available data using
Generative Adversarial Networks (GANs) [32]. As a matter of fact, GANs stand for the
state-of-the-art solutions to distribution modeling tasks defined by a collection of data of
any complexity. These models take their origin from the game theory and are formulated
as a two players game formed by a generator and a discriminator neural networks. The
generator, denoted as G, takes a random vector from a simple distribution, like Gaussian or
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uniform, as an input and is supposed to produce a sample from a distribution defined by a
given data, usually formed of complex objects like images, texts, or time-series. But it is not
trained directly by qualitative comparison of distributions of real and generated samples.
Besides, there is the discriminator, denoted as D, that determines whether a sample comes
from the true distribution of the data or if it is synthetic objects that came from the generator.
The classification error by the discriminator is the basis metric for the training of both
networks. Accordingly, the discriminative network is trained to maximize the probability of
assigning the correct label to both real samples and generated ones, while at the same time,
the generative network is trained to minimize the probability of D labeling the synthetic
sample by G into the "generated" class. Accordingly, a so-called two-player minimax game
with the loss function L(G,D) can be written as the following :

min
G

max
D

L(G,D) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] . (2.14)

In the direction of problems with partially missing data, several advanced GAN-based
models were proposed to learn a distribution of interest even from lossy observations only
[12, 41]. In this respect, in AmbientGAN model [12], a simulated random measurement
function, or so-called corruption process, is introduced, so that the discriminator must
distinguish a real incomplete observation from a simulated measurement of a complete
generated sample - corrupted full sample by G. In this way, AmbientGAN assumes the
measurement process is known or parameterized, which is not the case in general missing
data problems. Therefore, authors of MisGAN [41] proposed to model the missing data
process using one GAN for masks vectors generation indicating which entries of x are
observed; and then they train the complete data generator adversarially by masking its
outputs using generated masks and comparing to real incomplete data - a second GAN
model.

Both AmbientGAN and MisGAN are proposed to learn a generation function to provide
a sample from the distribution of complete observations. However, to solve the data
imputation task, an additional setup, like learning one more GAN in the case of MisGAN
model, is required, which make those model too expensive in terms of memory and time to
train. On the other hand, an efficient model for missing data imputation called Generative
Adversarial Imputation Net (GAIN) [76] proposes a much more compact model architecture.
Its generator aims to impute missing components of the real incomplete sample and outputs
a completed vector. Then its discriminator is modified to take a completed vector by G
with the objective of determining which components were actually observed and which
were imputed. The authors tested the method on various datasets and found that GAIN
significantly outperforms state-of-the-art imputation methods.

2.3.3 Missing Views
As for the tasks where a view may be missing completely, recently, many studies have
considered the generation of multiple views from a single input image using GANs and have
demonstrated the intriguing capacity of these models to generate coherent unseen views.
The former objective, first, was to propose the method for learning a joint distribution of
multi-domain observations (usually images) with the data of unpaired samples of several
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domains. Particularly, for a problem when two views are available, in Coupled Generative
Adversarial Network (CoGAN) model [44] it was proposed to couple two GANs together
by enforcing weight-sharing constrain for both generators and discriminators.

The next approaches were focused more on the problem of missing view imputation,
which usually is considered as a domain transfer task when the missing view is aimed to be
generated from the other one or more available views [43, 80, 75, 38, 36, 67]. In that respect,
in [43], authors suggested an unsupervised image-to-image translation model UNIT based
on CoGAN with incorporation to it the Variational Autoencoder (VAE) in order to map
different domains into a common latent space that then both views can be recovered from.
Then, unlike UNIT, authors of DualGAN [75] and CycleGAN [80] propose a more generic
solution by dropping the assumption about the shared embedding space, by introducing
one-to-one correspondence (bijective) mapping and dual learning. Particularly, they define
one generator to learn a mapping from one domain to another, whereas a separate generator
maps it back to the original domain, which allows to include an additional term to the
value function standing for reconstruction error or cycle consistency loss in DualGAN and
CycleGAN respectively.

Additionally, there were more works proposed in the same direction, like like to discover
cross-domain relations with GAN, called DiscoGAN or a pix2pix [36] method for supervised
setting when the model can be trained with paired data. Moreover, several approaches stated
to outperform the CycleGAN, like Domain Transfer Network (DTN)[67] that differs by
enforcing a consistency not only on the reconstructed sample but also on the embedding
itself, or a missing view imputation with generative adversarial networks (VIGAN) model
that additionally uses a Denoising Autoencoder (DAE) to learn latent spaces for each view
for better missing view reconstruction.

The models mentioned above have shown their performance efficiency on the data sets
consisting of two domains, while most of them may have limited scalability due to the
necessity to learn the transfer function for each pair of domains. To address this limitation,
in StarGAN [22], authors propose a framework to perform transfer methods to one domain
from multiple different views using a single model, particularly using a single discriminator
to control multiple domains. However, there are fundamental differences between image
imputation and image translation, since transferring is still performed pairwise without
considering the remaining domain data set. Therefore, a year after a Collaborative GAN
(CollaGAN) [40] model was proposed, that shares the ideas of StarGAN, but solves the
missing data imputation problem.

These are very exciting models, however, our learning objective for the part of missing
views problem investigation in this thesis differs as we are mostly interested in the joint
learning of the target label together with the multi-view data imputation task. The most
similar work that uses GANs for multi-view classification is a multi-view bidirectional
generative adversarial network (MV-BiGAN) [19]. This approach, first, introduces a con-
ditional BiGAN model to learn the target label conditioned on one view or aggregation of
multiple views, and second, it introduces a mapping function that allows mapping the set of
non-missing views into a representation space.
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Chapter 3

Predictive Maintenance

As anticipated in the Introduction, the outlay for maintenance and abrupt equipment outages
in the SM industry (being a supportive expense that does not generate a profit) represent a
quite big percentage of the total costs, since machinery components and skilled labor are
expensive, while equipment downtime being an exponentially larger threat to production
cost. The three major types of maintenance are reactive, preventive (PvM), and predictive
(PdM), and the last one is the most attractive in terms of cost saving as well as productivity
improvement. The objective of this chapter is to describe the methodologies and tools
investigated as part of the PdM framework for the past three years of the MADEin4 Project,
which is engaged in developing next-generation processes and metrology measurement tools,
ML methods and applications in support of Industry 4.0, that stands for smart manufacturing
for the semiconductor fabs.

3.1 Contributions
Within the MADEin4 Project we collaborated with the teams of European leading SM
companies to analyze real fab data with the goal to propose a framework for predictive
control and maintenance of process tools, particularly for the injection valve used for
the Chemical Oxide Deposition (CDO).The study has commonalities with most of the
maintenance problems, where heterogenous data coming from in-line equipment sensors
and/or measurements on the manufactured device get too large and often too complex to
be analyzed through human inspection. However, they have been specifically selected for
the different nature of data (spatial vs. temporal data) and the different impacts on the
manufacturing process (equipment downtime vs. cost-of-replacement).

During the project, first, we worked on understanding and visualization of ESD data
collections from CDO equipment sensors, consisting of algorithms for automatic data-
cleaning filtering, interpolation, outlier removal, and features extraction. We proposed a
methodology for better process characterization, in terms of capturing necessary features to
describe equipment performance degradation, that uses Gaussian Mixture Models (GMM)
for multi-mode signal tracking.

Next, we investigated different statistical and ML approaches for data processing and
modeling, including clusterization, classification, and regression models, with the goal to
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propose a framework for CDO PdM problem. Their performance was tested and evaluated
with the real tools sensory data, and the best practices - ones that reliably can reduce the
mismatch between the machine tests and the maintenance system indicators in the given data
- were selected and are described in this Chapter. Finally, a fab analytics and optimization
tool based on ML algorithms was proposed and deployed in the fab for the evaluation with
the new data (unseen during development), while many proposed approaches in the literature
are missing a real-world validation [27].

3.2 Predictive Maintenance for the Chemical Oxide Depo-
sition (CDO) Equipment

Figure 3.1: APC of interceptor monitoring (by
STMicroelectronics).

The (CDO) system is a key tool for the
power production line. Currently, to keep
under control the injection valve status, a
direct parameters that can be measured and
monitored does not exist. An indirect way
to monitor the CDO system status was iden-
tified in a so-called interceptor variable,
which can be used by APC as a conven-
tional method for process maintenance with
an automatic stop in case of value out of
control (see Figure 3.1). However, the interceptor monitoring, unfortunately, fails in some
cases, both with False Positive (FP) and False Negative (FN) estimations. The FP stands for
the case when the interceptor value is out of control, but the CDO system is clean. Then,
FP causes an unnecessary maintenance cost. On the other hand, the FN refers to the case
when case the interceptor value is in the "normal" range, but the injection valve is clogged.
Then, FN causes, even worst, production losses leading to the discharge of a big amount of
processed wafers under a corrupted system state. In order to reduce the mismatch between
the machine tests and current maintenance system indicators (interceptor) in the given data,
within the MADEin4 Project it was proposed to develop a more robust and reliable ML
based PdM approach relying on the exploitation of any information already present in
the system (such as gas flow, chamber pressure, throttle valve steps, process temperature,
foreline pressure).

In particular, we propose to build a framework for modeling process drift from its initial
state that was observed after the latest Preventive Maintenance (PvM) event in order to
detect deviations from normal conditions. To perform accurate prognostics, two important
conditions must be satisfied: accurate characterization of the current system state and a model
which describes the progression of the characteristics. Accordingly, our framework consists
of two parts: features extraction and modeling, that both leverage several state-of-the-art
ML methods integrated in a rather complex framework. Finally, predictions are supposed to
undergo analysis and comparison with actual observations from the sensors with the goal to
generate error warnings in case of detected anomalies, to consider scheduling maintenance
on the tool. The ability to predict such maintenance events reflects the capability of building
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dynamic maintenance schedules for yield optimization during manufacturing, which justifies
the research effort.

3.3 Statistical Methods for ESD Feature Engineering
Any PdM strategy takes as an input raw Equipment Sensory Data (ESD), which is a collection
of time series of different sensory parameters records as shown in Figure 3.2. Then, different
methodologies have been explored, which aimed at detecting the best features of ESD
indicating the upcoming of failure of the injection valve. As well in this study, we focused
on extracting features from the raw ESD signals, in order to have a compact and uniform
representative of as much as possible information on the process state.

Common techniques for process characterization in the SM data collections are de-
scribed in Section 2.1. They propose considering methods for feature extraction (traditional
statistical, signal decomposition, or representation learning) on a wafer basis of granularity.
Accordingly, one observation of the ESD is one wafer cycle of sensory parameters records
that are a subject for feature extraction methodology. However, in the PdM use case (when
system state estimation is not necessarily to be done after each processed wafer) we argue
that this approach may bring systematic noize or variation to the process characterization.

3.3.1 ESD Data Windowing Strategy
In fact, there exists a natural variation of the ESD signals depending both on chamber
and recipe, despite the equivalence of measured sensory parameters among chambers
as well as recipes. Particularly, one wafer’s ESD records are aligned and have equal

Figure 3.2: The very left plot is a fragment of several ESD wafer cycles that consist of
recordings of 9 different sensory parameters collected from 12 subsequently processed
wafers on the CDO tool. Different colors on the very left plot represent different recipes
that the corresponding wafers were processed with. The rest of the plots shows a duration
variability of the wafer cycles depending on the choice of their recipe.
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Figure 3.4: Variability of incompleteness (missing data) of wafer ESD cycles.

duration, while the duration of sequences of all the wafers generally depends on their
recipes. To show such a variability, Figure 3.2 gives examples of several parameter records

Figure 3.3: Variability of the wafer
cycle lengths (total number of sam-
pling points) of the ESD data.

that were recorded while processing three different
wafers on the same equipment but with different
recipe settings. Additionally, there exists a varia-
tion in lengths of wafer cycles ESD recordings of
the same recipe (Figure 3.3), since the recording tool
may have a fluctuating sampling frequency due to nat-
ural tool variability, as well as incomplete ESD wafer
cycles may occur accidentally (Figure 3.4). Then, all
of the factors mentioned above cause a huge variance
of the extracted features.

Therefore, we operated the ESD data with a win-
dowing strategy to remove all the possible sources
of systematic variations retaining only random vari-
ations due to the natural variability of processes in order to generate better quality input
for the modeling part. Accordingly, the granularity of the ESD is modified, so that one
observation becomes a window of fixed size (based on time, or a number of records, or a
number of wafer cycles) of considered time series, rather than one wafer cycle ESD. The
size of windows is a tunned parameter which is a compromise between two objectives: 1)
provide predictions with as small as possible frequency, and 2) have enough data in the
window to generate an accurate characteristic for the tool state with less variance as possible.

39



3.3.2 Gaussian Mixture Models (GMM) for Multi-mode Signal Track-
ing

In order to build a set of features that characterize tools functioning conditions, several
feature extraction methodologies are applied to the ESD data of considered windows. In
this work, statistical features (mean, std, median, min, max, skewness, kurtosis, and other
characteristics) are computed on a distribution of subsets of parameters’ values, instead of
full parameters time series of the windows. Specifically, we assume that the distribution
of parameter’s values observed in windows is a mixture of a finite number of several
distributions (Figure 3.5c), that reflect the different operating modes of the CDO system
(Figure 3.5b). Then, similarly to [13, 63], we propose to treat modes, or so-called phases,
separately which will allow for changes in each of the CDO operating stages to be tracked
over time.

To do so, we used a Gaussian Mixture Models (GMM) - a probabilistic model that
assumes all the data points are generated from a mixture of a finite number of Gaussian
distributions with unknown parameters – for so-called clustering of the parameter’s values
observed in corresponding windows. Specifically, at each iteration for every parameter in
the ESD collection, the best-fit mixture of Gaussian distributions is determined which best
describes the underlying distribution of the parameter’s values within the window. Then,
the features are extracted for each of the identified clusters defined by identified Gaussian
distributions from the found mixture. And as a result, this approach gives an automatic way
to split a signal into multiple modes and extract the characteristics of each of the modes
separately.

Figure 3.6a shows an example of a progression of one the parameters from the ESD
through full time span of the CDO system functioning starting from one PvM until the next
one. While, Figures 3.6b and 3.6c show how well this progression is represented through
statistical features extracted traditionally and by mode splitting respectively. Accordingly,
the traditional feature extraction way shows much higher variation than the mode-wise
features extracted after the GMM clusterization.

Finally, in order to reduce a distribution difference/shift associated with different kinds
of events on the equipment – maintenance, and tool recalibrations, we propose to center
the extracted features accordingly. In this work, we operated the progression of extracted
features shift through their delta values regarding the initial state of the system after its last
maintenance event (PvM), as depicted in Figure 3.6d.

The advantages of the selected approach (that includes data windowing, GMM modes
split and centering with respect to PvM events) for raw data processing are the following:
the methodology is not affected by the inconsistent length of the sensory records, and it does
not require parameters time series to be equispaced; extracted characteristics were proven to
accurately highlight trends in data with the minimum noise observed.

3.4 Modeling Approach
As anticipated before, in this work the predictive model is built to estimate the process
parameters features drift from their initial values that were extracted after the latest PvM
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(a) A 4 hours window of ESD recordings of one of the sensory parameters.

(b) Zoomed wafer cycle ESD of the parameter sequence depicted above.

(c) Distribution of values of the considered parameter inside the 4 hours window (see Figure
3.5a).

Figure 3.5: Analysis of values of one of the ESD signals in the time-window of 4 hours.

event. Therefore the historical training data timeline was divided by the PvM schedule. Then,
there were identified the parameters that do not change (in terms of modes’ distribution drift)
in-between two sequential PvM events; and the rest of the parameters were taken for further
processing (like one that is shown in Figure 3.6). Selected parameters then are those that
have any king of progression/evolution of their process characterization features in-between
two sequential PvM events which we assume can be prognosed (in case of normal tool
functioning conditions).

The core approach for a predictive diagnostic of the CDO tool that we used in this work
was selected as Gradient Boosted Decision Trees (GBDT), which is an ensemble-based
method for regression and classification tasks, where trees are trained in sequence over
residuals of the loss function. Trees, in turn, are constructed in a greedy manner, choosing
the best-split points based on purity scores like Gini or to minimize the loss, and the main
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(a) Display of the ESD raw values of the parameterA signal as a function of time
in between the span of one machinery processing cycle.

(b) Display of the parameterA signal (from Figure 3.6a) decomposition into the
traditional statistical charachteristics.

(c) Display of the parameterA signal (from Figure 3.6a) decomposition into the
modes’ (identified by the GMM) charachteristics.

(d) Progression of a deviation of the parameterA signal modes from their initial
setting.

Figure 3.6: The progression of the ESD parameterA and its features decomposition withing
two consecutive PvM events.
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cost of GBDT is the construction of decision trees and the most time-consuming part is
finding the best-split points for each node. More details about the approach are provided in
Section 2.2.3.

The advantages of the selected approach of modeling are the following: it was experi-
mentally proven to be an accurate estimator for considered use case (shown next in Section
3.5); it deals effectively with different types of data (numerical and categorical) and can
successfully handle high-dimension features input; it can provide a good estimate even in
case of missing data, which is a common issue of the manufacturing collections of records;
it is interpretable, and more importantly, it provides an explanation of the contribution to the
prediction of every variable in the features set.

3.5 Experimental Results
The proposed framework has experimented with the real SM data collection provided by
STMicroelectronics, which consists of the ESD records of several chambers of the 9 months
time interval, which includes five full machinery processing periods without interruptions,
that we denote in this work as a system running cycle. One out of the five was ended
because of equipment failure which the interceptor monitoring, unfortunately, failed to
detect/prevent.

Importantly, for the training phase of the developed framework requires a collection of
records that covers several equipment running cycles - from one preventive maintenance till
the next one, that has a successful quality check. It is principal to create a diverse collection
of “normal” tool functioning conditions for better modeling.

Thus, for the experiments, all four "healthy" machinery running cycles given in the
data for this project were selected for model learning. In order to have a correct setup that
avoids overfitting, the following cross-validation scheme was adopted: the former data set
of "healthy" machinery running cycles was split by 4-fold group cross-validation as training
and validation, meaning that all records of one cycle out of four formed the validation subset
and the remaining ones were assigned to the training subset. The 4-fold cross-validation is
used in the framework to train the model on the training folds and then to evaluate it on the
validation ones for choosing hyperparameters. In the end, once the hyperparameters have
been tuned, the regression model is again estimated once on the full training+vaidation set
using these hyperparameters. Finally, this last model predicts the progression of the selected
process parameters features for every next 4 hours window of tool functioning on the test set,
which is independent of observations used to train the model and tune its hyperparameters,
and is one that has failure occurrence in it.

In a predictive phase, the estimated values of the drift are predicted and compared
with the numbers that are actually observed on the tool. The comparison is performed by
measuring an absolute error for every prediction-observation. In order to estimate if the
error is within the acceptable range, we performed a statistical analysis of the errors across
the entire time span of the training data, and decided to normalize the observed error by
dividing them by the average absolute error on the training. Then, in case the normalized
error is bigger than a threshold equal to 1 - a warning is raised; in case the error is bigger
than threshold 2 - a failure alarm is raised; otherwise - the tool is functioning normally.
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Figure 3.7: Display of the absolute difference between the prediction values by the developed
PdM framework and the actual observations on the testing equipment. The reported testing
time span is one cycle of the machinery functioning period, independent from training
observations, that has a failure record at its end.

Figure 3.8: Display of the absolute difference between the prediction values by the developed
PdM framework and the actual observations on the testing equipment. The reported time
span is one cycle of the machinery functioning period in the real fab test environment,
independent from training observations, that has a failure record at its end.

Finally, Figure 3.7 displays the performance of the developed PdM application on the
test set. The result shows the ability of the framework to alarm the upcoming equipment
failure a day ahead which may give time for intervention to the process preventing the
manufacturing outage.

3.6 Discussion
At the beginning of the MADEin4 project, maintenance of the CDO equipment was cyclically
performed according to the rigid scheduling and conventionally developed process alarm
system. However, the offtimes PvMs and not predicted machinery faults result in a limited
availability efficiency (AE):

AE =
Uptime

Operation T ime
.

Within the project, we proposed the practical methodology for the CDO process charac-
terization, which combines the GMM clusterization of ESD records and traditional features
extraction technique based on distribution summary statistics, allowing to define the infor-
mative predictors for the modeling of the natural system state progression to identify its
deviation from the normal tool functioning.
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The developed framework was adapted to STMicroelectronics fab infrastructure and
tested in a demo environment. The results, presented in Figure 3.8 demonstrate the efficiency
of the proposed approaches to catch in advance the upcoming issue and consequently to
increase the AE by 30% with respect to the pre-MADEin4 value. Increasing the AE and
anticipating unscheduled downtime it is possible to preserve potential electrical drift on
devices and improve the products’ yield. Furthermore, the developed IT architectures can
be reused for the next developments in this field, which can be:

• An investigation of a transfer learning approaches to enhance the generalization
through making more accurate predictions when the new processing cycle is started;

• Better use of maintenance (both PvM and PdM) data that affect time series of ESD
for better identification and characterisation of the process drift.
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Chapter 4

Improved Semiconductor Process
Characterization Using Virtual Cross
Metrology

In this Chapter, we introduce a multi-view methodology to combine process, and design
information within a single Virtual Metrology (VM) framework for metrology modeling
that utilizes ML techniques to learn about the process and design contributions affecting
manufacturing. This chapter is based on the following papers [Ana21, Ana22a, Ana22b].

4.1 Motivation
As anticipated in the introduction, the Virtual Metrology (VM) is a key enabler for productiv-
ity enhancement as its goal is to exploit a piece of information already present in the system
(eg. equipment sensory data, tool settings, recipe specifications, design information) in order
to infer the value of a costly or unmeasurable variable that is important for characterizing
the production quality, without physically conducting the measurements. In state-of-the-
art literature, many linear and non-linear ML predictive methods are investigated on the
efficiency to solve VM tasks in the SM processes regarding different use cases, such as
chemical vapor deposition, factory-wide control, etch depth prediction, and more (described
in Chapter 2.2.2). However, the introduction of new, usually more complex, individual
operations requires considering every new particular use case at hand, as it may require
different or adapted to the use case VM framework approaches.

For the past three years, the MADEin4 Project has developed next-generation processes
and metrology measurement tools in support of Industry 4.0 aka Smart Manufacturing
for the semiconductor fabs. As modern processes have become more compound, more
individual operations are needed to manufacture each level in a semiconductor product.
Thus, in order to improve the precision of VM strategies, the ability to leverage the wealth of
information to fully characterize the process, and determine the value of new measurements,
has become an ongoing activity across SM companies participating in the MADEin4 Project.
Accordingly, it allowed the delivery of practical ML applications for the VM framework
consisting of the architectures for processes like data gathering, data pre-processing, and
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data analysis in the semiconductor industry that are discussed in this Chapter.

4.2 Contributions
First, within the MADEin4 Project, we collaborated with the teams of European leading
SM companies to analyze real fab data provided by engineers from STMicroelectronics,
which is of a particular process of the advanced manufacturing, called Copper Electroplating
Deposition (CuECD). In 1980-90s IBM’s researchers proposed to utilize Cu - Copper, as
a replacement for aluminum, in manufacturing electronic devices to improve their speed
and performance [5], and since then it is widely used in the VM fabs. Our objective was to
eliminate tests on wafers through measurements of thickness on CuECD by post-metrology
control with VM predictions of the Cu deposited thickness, using data on process and
equipment parameters measured during the ongoing process. Accordingly, we proposed a
methodology for the CuECD process characterization. Moreover, we provided a technique
for a design features extraction that helped to explain better the observed variance in the
target.

Then, we investigated and compared different ML and statistical families of functions
on their ability to fit system data for the metrology outcome. Particularly, we were focused
on methodologies, like ensemble decision models, that are explainable and permit a deter-
mination of the main predictors to contribute to the estimated outcome, which can serve
to assist the APC systems during manufacture. After, the best practices were selected to
propose a fab analytics and optimization tool based on the ML algorithms for an analysis
of highly diversified equipment sensory data together with design features that facilitates
process modeling and management tasks in the SM fab. The developed framework was
actually deployed and tested in the STMicroelectronics fab (in a demo environment), while
many proposed approaches in the literature are missing a real-world validation [27].

Next, we worked on expanding the scope of traditional process modeling in SM by
cross-process analysis. As product manufacturing is a sequential procedure of applying
ordered processes to deposit new layers of features, one can use the precedent history to
learn its impact on the current modeling target of interest. This was being done by analyzing
the real fab data of the full wafer production cycle, provided by engineers from IMEC, and
harnessing the ability to leverage the wealth of prior-to-the-moment information on wafers
to be able to determine and extract value/ranking of current and past measurement that drive
the outcome (metrology estimation). Accordingly, we introduced a methodology, called
Virtual Cross Metrology VCM, that benefits not only from different types of measurements,
but from dependencies between different process steps, in order to make processes more
predictable and productive.

4.3 Virtual Metrology for Copper Electroplating Deposi-
tion (CuECD)

The work presented in this Section of the current Chapter, concerning the development of
a framework for in-line controlling direct Copper deposition by electrochemical methods
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for the manufacturing of semiconductor devices, was carried out on the data collected in
the production lines of STMicroelectronics enterprise. These data are mainly guided by
the experience of process engineers in assessing the condition of the wafers during the
manufacturing process.

4.3.1 Problem Formulation
A CuECD system generally has several process units, called chambers. Individually, the
chamber is where CuECD is performed for one wafer at a time. It contains a liquid coming
from its related tank, and the deposition is performed once the wafer is inside in contact
with the liquid while it rotates. Accordingly, each chamber is functioning independently and
has its local schedule/frequency of maintenance, recalibrations, and metrology sampling,
and therefore it can be considered as a stand-alone machine itself, and CuECD system may
operate with some chambers being off process.

One machinery usually performs the deposition for many of the different products being
produced in the fab. In this respect, the chamber is operating with different configurations to
be set, called recipes, depending on what is the requested design of the wafer is currently in
production. Accordingly, the expected outcome of the deposited layer is ruled by the design
and the recipe. Overall, there are many different products being produced in parallel in the
SM facility, and therefore wafers in a queue to the chamber usually require different recipes
than the one being used prior to.

Figure 4.1: Scheme of a section of device
after CuECD process.

In the fab production routine, wafers are trav-
eling from one process to the next one in batches,
called lots, normally formed of 25 wafers max-
imum of the common product type (design).
While during CuECD, wafers of one lot are pro-
cessed in parallel in all available functioning
chambers. Once a wafer is processed with one
of the chambers of CuECD equipment, it under-
goes a quality inspection performed by measur-
ing a thickness (metrology) on the just deposited

feature layer (Figure 4.1), which is of great interest, as it helps to validate outgoing product
proper functioning, as well as exploring and validating productivity enhancement opportuni-
ties. Due to the nanometer precision of the measurements and novel advanced technologies
involved in the inspection, the thickness sampling for each wafer in a lot leads to a high
cost of production and significantly increases the fabrication cycle time. Therefore, a few
wafers (5 on average) are usually sampled for the inspection, and then are considered to
represent the whole lot. However, such interpolation for the unmeasured wafers in the lot
may cause undetected product defects, since the processing conditions of wafers within one
batch are different (due to different chambers involved and their natural tool variability and
disturbances).

The VM, in its turn, aims to provide more coverage at a lower cost by utilizing ML
methodologies to learn from the available data on the system, like Equipment Sensory Data
(ESD, which leads to an increased number of sample points that can be analyzed in order to
have improved product monitoring or better process control. From a mathematical point of
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view, the VM problem can be stated as a regression one, where metrology output (thickness)
is linked in a function f with the process variables and other information available for the
process and/or the product in the system, so that the estimated target metrology of i-th wafer
wi on the tool, m̂(wi), is given by

m̂(wi) = f(p1(wi),p
2(wi), ...,p

P (wi),u(wi)) (4.1)

where ps(wi) refers to a vector of the parameter records of one of the sensors s ∈ {1, ..., P}
taken while wafer wi was under the process treatment in the chamber, and u(wi) that
refers to any other available auxiliary information, like recipe or design - set of product
specifications.

4.3.2 CuECD Data Processing
The SM data regarding the CuECD process that is present in the system for APC tasks
is a collection of records and characteristics of different types and from multiple sources.
Essentially there are two main modalities of the data given for the VM task. First is
metrology data - thickness, which has to be predicted. And second, are the process time
sequences that are measured during the growth of process on the semiconductor -ESD, and
are used to build a predictive model from for the metrology outcome. In the present Chapter,
such data is addressed using statistical terminology as predictors. Among such predictors
also so-called ancillary variables are included, such as a recipe, design, chamber, and
maintenance information. They are not measured during the growth of the CuECD process,
but depend on the semiconductor to be produced. Table 4.1 provides a short description
of different kinds of predictors available in the task, while further they are explained in
detail, as well as their importance and preprocessing/treatment strategy in the developed
framework.

4.3.2.1 Metrology

Since metrology measurements represent chip characteristics, it is expected that the whole
die grid on the wafer would be sampled. For the same reasons that just a percentage of
the wafers in a batch are measured, metrology is sparingly sampling the die granularity.
Particularly in this work, on every sampled for the metrology investigation wafer there
are only 5 spots, each located at one of 5 specific devices (chips), where the thickness is
measured at. The selection of dies for the metrology measurements is driven by a goal to
have full coverage for the variability of the outcome across the wafer (depicted in Figure
4.2), which exists and depends on the die/wafer treatment protocol of the particular process.
It is common that there exists a dependency of the die metrology response to its distance
from the center of the wafer. Hence, the devices for the metrology inspection normally are
selected one from the center and a few at a certain radius, the same is observed in this work.
We assume that measurements at the 5 spots are taken always at the same coordinates across
different lots and wafers.

Then, if there are predictors to explain the metrology outcome variability at a die
granularity available in the data collection, the VM task is being solved to predict the
metrology for every die on a wafer. Exactly this kind of problem is being discussed in the
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Data Group Type Description

Process time series

• ESD formed of multivariate sequences (as a function of
time) of values collected from equipment sensors for critical
process parameters, like temperature, pressure, gas concen-
tration, and more

Recipe
categorical

• recipe ID

• any categorical feature to describe a recipe

continuous

• duration

• numbers to be set on the chamber to run the required process
specifications

Design
categorical • product ID

continuous
• general properties from the layout design, which we know

are characteristics that drive a specific process

Chamber categorical • chamber ID

PvM
categorical

• type of the latest PvM event (on chamber or total; scheduled
or due to alarm; and more )

• chamber/system state ("failure"/"success") prior to the latest
PvM event

continuous

• time elapsed since the latest PvM event

• number of produced wafers since the latest PvM event

• initial system/chamber state (by a set of sensory values) after
the latest PvM event

• maintenance indicators test results

Table 4.1: Description for the variability of groups of the Semiconductor manufacturing
data and its types.
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Figure 4.2: A diagram to describe a routine in the SM fab of wafers traveling through the
production chain of process and how the validation of the processed devices is organized
using metrology tools.

next Section 4.4 of this Chapter. While in the CuECD use case, the predictors are missing
the local characteristics of the wafers, and therefore the target is defined as an average
thickness (mean value over 5 measurements at the preselected spots).

In Figure 4.3 a distribution of the average thickness from the data collection used in this
work is presented. It is possible to observe that the shape of the thickness distribution is not
compatible with a Gaussian, which suggests the presence of more intricate components. It
will be possible to see further that the thickness depends on recipe and product type, and its
distribution highly concentrated on a few recipes and products produce the non-Gaussian
distribution shown in Figure 4.3.

Figure 4.3: Histogram and distribution of average thickness (metrology data set).
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4.3.2.2 Process Characterization

The core of the data of predictors consists of process sensory parameters records - ESD.
Specifically, each chamber of the CuECD process machine is equipped with the same set
of sensors that record numerical values of critical process parameters as a function of time
when the chamber is running. If P is the total number of sensors, then corresponding process
conditions at a time t (at a specific chamber) can be described as a P -dimensional vector:

(p1(t), p2(t), ..., pP (t))⊤,

where ps is the parameter value recorded from sensor s ∈ {1, ..., P} at a time t.
Lets assume that wafer wi was processed at the chamber starting at time t0(wi) with a

specific duration ∆t(wi) (defines by a recipe), then

ps(wi) = {ps(tT (wi))}N(s,wi)
T=0 , t0(wi) ≤ tT (wi) ≤ t0(wi) + ∆t(wi),

where s ∈ {1, ..., P} and ps(wi) stands for a collection of values of the parameter ps that
were collected from the sensor s while treatment of the wafer wi. Then process conditions xi

of a single i-th wafer in production is a multivariate time sequence denoted in the following
way:

xi = {p1(wi),p
2(wi), ...,p

P (wi)}.

Features Extraction
To assure the quality and effectiveness of the VM application it is necessary to perform

a transformation of the preliminary process data X = {xi}Ni=1 into a suitable form of
input variables for predictive models, both for accuracy of the solutions and to avoid
oversmoothing. Due to the following issues, as was previously anticipated, the timing of
different parameters as a result of natural tool variability:

• time series are of different lengths
|ps(wi)| ≠ const, ∀i ∈ {1, ..., N} ∀s ∈ {1, ..., P};

• time series sampling is not equispaced and not aligned
tT+1(wi)− tT (wi) ̸= const ∀T ∈ {1, ..., N(s, wi)} ∀i ∈ {1, ..., N} ∀s ∈ {1, ..., P};

• dimensionality of features (average number of values in xi) is higher than number of
observations
1
N

∑N
i=1

∑P
s=1 |ps(wi)| ≫ N ;

• missing values may occur.

While missing values is an issue that is deeply discussed in the next Chapter 5, for now,
we exclude the incomplete observations (that are missing completely the records of one
or more sensory process parameters) from consideration. Then, one of the most popular
methods for reducing the number of variates is to deal with features extracted from the
time series instead of the original ones. Section 2.1 in the previous Chapter describes
all the possible features (statistical and descriptive) that are usually used in different VM
frameworks, which we also employed in this project. Such features are intended to catch
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the main characteristics of the signal, also attempting to get basic local information on the
sequence. While they could be used with all of the parameters ps ∀s ∈ {1, ..., p}, some
"special" features were also investigated specifically to some parameters shapes presented
below.

Overall in the CuECD VM task, the ESD collection of 10 different sensory parameters
that are depicted in Figure 4.4 was given.

First, the shape of the parameters 9-10 (see Figure 4.4) implies an additional computation
of their slope (angle).

Moreover, as from Figure 4.4, parameters 6 and 9 are potentially one of the most
interesting as far as predictivity is concerned, because it shows the greatest variability among
sequences. Looking at the plot in more detail, the process sequence is composed by one or
more almost straight lines not consecutive but interrupted. Therefore some specific features
have been extracted on the number of these straight lines, their start, and the jump between
interruptions.

Finally, it is possible to see that the curves of parameters 1-6 are essentially a square
inside the signal, with start, end, and duration slightly depending on the actual wafer/lot
(besides recipe and product explained further). Specific features were extracted on so-called
"jumps", on the values across "jumps" and their differences. To this purpose, a tool for
accurate "jump" detection was also used as described in [66]. Moreover, the GMM features

Figure 4.4: Example of a one wafer cycle ESD of the CuECD process that consists of
recordings of 10 different sensory parameters.
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extraction method proposed in Section 3.3 of the previous Chapter was applied, since the
distribution of their values was assumed to be compatible with a mixture of Gaussians.

Features Selection
Some of the extracted features can measure similar quantities, therefore, can show

high correlations. Then, there is a high chance that the performance of a predictive model
can be impacted by a problem called multicollinearity. How to proceed with correlated
features is a matter of choice and depends on many factors, starting from the regression
framework. LASSO-type methods or boosted trees algorithms, for example, are immune to
multicollinearity by nature, while linear regression can possibly be numerically unstable
due to highly correlated predictors.

In all cases removing highly correlated variables reduces the feature set size, therefore
saving computational time for running predictive models and possibly giving more accurate
solutions. In this work, a threshold of the maximum admissible correlation to 0.9 (in absolute
value) was set in order to identify strong positive or negative relationships between features.
Accordingly, the highly correlated groups of features were identified and only one predictor
out of the such group was selected for the final set of features used by the VM solver. The
selection was driven by the best performance of the SLR model for the metrology outcome.

4.3.2.3 Design Characterization

How the presence of different product designs in the data influencing the distribution
statistics of the metrology values is depicted in the Figure 4.5 created using the data
collection available in this work consisting of 146 different designs. In practice, the ESD
predictors may not be able to describe the variation of the metrology outcome across all of
the designs, which is shown in Section 4.3.4. Therefore, "product ID" is usually additionally
included as a categorical feature to the set of predictors to boos the precision of the developed
VM framework.

Then, the presence of different product designs in the manufacturing fab is driven by
the market request, and for this reason, we can expect significant variations in the ratio of
different products in the collected data over different years. Moreover, even new designs
normally are introduced in the production line that are not present in past years. In this
respect, using "product ID" as a categorical feature may affect the generalization, because

Figure 4.5: Display of the distribution summary of the wafers average thickness values by
sets of different product designs.

54



Figure 4.6: Example of a die layout of a specific design and its layout design characteristics
extracted by Siemens.

the model may show poor performance while predicting for new (not seen during training)
product designs.

A viable alternative could be the use of layout information on the design. The idea is
to use the layout characteristics as numerical predictors instead of (or together with) the
"product ID" information in the regression problems so that when a new design is introduced
into the production line of the fab that has no correspondent in the training data set, then
layout features (that would be available in the test data set) could be resorted and improve
the accuracy of VM prediction.

As the matter of fact, each device has a specific layout, as depicted in Figure 4.6 and we
can assume that the semiconductor has a reference system with a well-determined origin.
Then, thickness represents a pointwise measure in a certain position (coordinate) of the
chip belonging to a specific grid cell (die) on the wafer, depending on the spot. Such
coordinates can be considered fixed across lots and wafers, but the specific coordinates of
the semiconductor can be different for different spots (because for different spots, different
coordinates of the semiconductor can be measured).

To replace important categorical information on the product with (as much as possible)
equivalent numerical available information, we proposed to investigate layouts of several the
most populated products (10 in total in this work) by dividing the entire region in a number
of subregions (up to 4k), and for each subregion, some structural features have been ex-
tracted/estimated (see Figure 4.6). Once redundant Features have been discarded, 4 Features
remain available (sampled in around up to 4k subregions), and mean values, variance and
skewness are finally provided as tables. Since the up to 4k values are averaged all over the
subregions, they represent global values, representative of the entire semiconductor, which
is enough in case the target is an average thickness.

A different procedure is to consider for one particular spot thickness prediction. To that
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spot a specific semiconductor in the cell grid corresponds, and the thickness depends on the
position in the semiconductor (better, in a specific subregion of the semiconductor, whose
area depends on δ). Therefore, in order to be consistent, Layout parameters should be given
not globally, but for the subregion where Thickness measurement is taken. Operationally,
the proposed approach can be described with the following steps:

1. Estimate δ making some assumptions on the region underlying δ and on the spatial
accuracy of the thickness measurement;

2. Determine the coordinated of measurement on the semiconductor concerning a fixed
reference system on the semiconductor that could depend on the layout;

3. Ont the layout grid, select the subregion of the semiconductor determined in 1) and
2);

4. Provide layout features (predictors for the developed VM framework) for that subre-
gion.

The benefit of using the proposed continuous features describing design in the VM
solver is shown experimentally further in Section 4.3.4.1.

4.3.2.4 Auxiliary Data

Recipe

The recipe is a configuration to be set on the processing equipment and generally depends on
the product design of the considered wafer. In this work, there exist 26 different recipes in
the data set that are used to treat 146 different products. The number of recipes is normally
smaller or equal then the number of products, as two distinct products may share common
functionalities.

Figure 4.7a shows the variation of the thickness distribution characteristics depending on
their recipe. Additionally, Figure 4.7b displays an evidence that wafers of different designs
processed with a one common CuECD recipe may acquire different CuECD thickness
outcome due to dependencies with the previously deposited layers that are different. This
kind of influence is investigated in the next Section 4.4.

Since recipe and product design are somewhat related, "recipe ID" as a categorical
feature (similarly to the "product ID") is an uninformative predictor or doesn’t contribute to
the generalization, since new recipes are always introduced with time in production. Thus,
continuous predictors are considered, that represent the numbers to be set on the chamber in
order to run the required process specifications.

Chamber

There is a bias in the metrology result depending on which chamber is used for the deposition,
even if the chambers are thought to be equal and the usage of a specific one depends on the
engineering process and its availability. The clear evidence of this phenomenon is depicted
in Figure 4.8. The data available in this work was collected over 6 chambers of one CuECD
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(a) The wafers average thickness statistics of sets formed of distinct CuECD process recipes.

(b) The wafers average thickness statistics of sets formed of distinct wafer designs but of one
common CuECD process recipe.

Figure 4.7: Display of the distribution summary of the wafers average thickness values by
sets of different groups (recipes, products).

(a) (b)

Figure 4.8: Display of the distribution summary of the set of the wafers average thickness
values (a) of all the designs (b) of only one design, depending on the chamber they were
processed at.

equipment. Then, we show in Figure 4.8 descriptive statistics of the sets of the wafers
average thickness measurements collected from different chambers, and their difference is
evident in both cases: when every wafer from every design in the data collection is used for
statistics; when only one kind of product design is chosen for comparison.
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Therefore, "chamber ID" is a necessary variable to be included in the set of predictors in
order to explain the variability of the product outcome inside the equipment, and it is enough
to keep it as categorical one (unlike "recipe ID" and "product ID"), since the machinery
remain unchanged.

4.3.3 VM Solver
Mathematically the VM problem is defined as a regression one, and a lot of ML regres-
sion strategies discussed in Section 2.2.2 were adapted and proposed to develop the VM
frameworks for CuECD application.

The predictive framework for CuECD VM problem in this thesis was experimented with
the real SM data collection provided by STMicroelectronics, which consists of the ESD
records of several chambers collected during 2019-2020 years. First, the given data was
preprocessed accordingly to the methods described in the previous Section 4.3.2. Moreover,
this case study operates with over a hundred product labels, tens of distinct recipes and
several different chambers, all are denoted in the dataset by unique names. Then, categorical
feature embedding methods are used to transform the names into numerical labels, for
example, the One-Hot-Encoding approach or encoding with a method that associates each
category with a unique discrete number (randomly or using some defined process, for
example, bigger numbers are assigned to more populated categories).

As far as regression is concerned, in models where only uncorrelated features should
enter, only the uncorrelated features are considered, together with one representative feature
from each cluster of highly correlated ones. The one is chosen according to the best
predictive power based on univariate Linear Regression (LR), eventually with "chamber ID",
"Recipe ID", and "product ID" as control variables.

4.3.3.1 Experimental Setup

In the entire project, it is assumed that data from 2019 are used to train regression. In
addition, the models are also tested on data from 2020 (Test data set), that are close to
industrial conditions since far away enough from the training data set and with new devices.
Most models require an estimate of hyperparameters; this is accomplished by splitting the
2019 data into two disjoint data sets, a Training one and a Validation one. This methodology,
consolidated in scientific research, avoids overfitting due to estimating error indicators on
data sets that have been used in setting a model and tuning its parameters.

The number of available samples (wafers) for the 2019 (Training + Validation) and
2020 (Test) data set includes 10000 ESD wafers. One of the most consolidated methods
for splitting a data set into Training and Validation subsets is K-fold Cross Validation (CV),
in particular a 10-fold CV with K=10. Essentially the entire data set (2019) is split into
K=10 disjoint groups approximately of the same size. They generate 10 different sets of
Validation and Training data; in each one, the Validation set is given by one of the 10 groups
with 10% of data, and the Training set is made of the remaining 90% of data. In this way,
Training and Validation data are disjoint for each group. To estimate an error indicator, the
model is run 10 times, each time on a couple of Training-Validation, where the Training
data set is used to train the model (and hyperparameters, eventually), and error is estimated
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on the Test data set. The final estimate of the error indicator is obtained by averaging the
error indicators of the 10 run.

Despite its simplicity, the random generation of K-fold groups needs a deeper under-
standing in some circumstances. In fact, nothing was said about how the K groups are
randomly selected from the original samples. However, a plain random selection can cause
troubles with the representativeness of other variables both in the Training and Validation
groups. This is exactly the case of the SM data collections, namely with the presence of the
variables "recipe ID" or "product ID". It can happen that in one of the Validation data sets
randomly chosen, there exist "recipe ID"s or "product ID"s that are not represented in the
corresponding Training data set. In this case estimate for such a "recipe ID"s or "product
ID"s on the Validation data set is not possible, and the resulting error indicator is biased.
Another problem arises with "recipe ID"s or "product ID"s that are less populated, let us
say less than K samples. In this case, it is sure that for some CV groups, the corresponding
"recipe ID" or "product ID" will be missing, again producing a bias in the error indicator.
To overcome these problems, the following actions were taken:

• Randomly select CV groups stratifying by "recipe ID" or "product ID". In other words,
random selection is not made on the whole sample, by "recipe ID" by "recipe ID"
(or "product ID" by "product ID"), so that it is sure that all "recipe ID"s (or "product
ID"s) are present both in the Training and Validation data sets

• In the case of less populated "recipe ID"s (or "product ID"s; less than K), the sample
is artificially increased up to K by random selection of K samples with repetitions.
Some bias is still introduced in the error indicator, however, experiments show that
it is much better controlled. As an alternative, such less populated "recipe ID"s or
"product ID"s can be removed from the analysis.

Comparison of different VM methods in this work is accomplished by estimating the
coefficient of determination R2. It is a statistical measure in the range [0,1], which shows a
percentage of the dependent variable variation that a linear model explains:

R2 = 1−
∑n

i=1(y
i
real − yipredicted)

2∑N
i=1(y

i
real − 1

N

∑N
i=1 y

i
real)

2
.

Higher R2 values represent smaller differences between the observed data and the fitted
values.

4.3.4 Experimental Results
In this Section, we present a comparison of the methods to predict CuECD VM. For each
case estimate of R2 will be provided on the train data set; for these experiments, the training
data set is rather improperly composed of the entire year 2019, also used for validation.
Then an estimate of R2 is shown on the test data set composed of the entire year 2020. In
this case, the test data set is totally disjoint from the training data set.

First, we investigate the results with some Basic models in Table 4.2, where Basic is
intended for models that do not involve process information, but only ancillary variables
(chamber, recipe, product).
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Table 4.2: Predictability of basic models: regression involving only ancillary variables
(recipe, product and chamber information without any ESD). The average value computed
on the Training data set stratified by "chamber ID" and "product ID".

Model Validation score (2019) Test score (2020)

"recipe ID" 0.633 0.309
"recipe ID" + "chamber ID" 0.641 0.325

"product ID" 0.756 0.484
"product ID" + "chamber ID" 0.764 0.598

It is possible to observe that the simple Basic models are immediately useful, since
they give some indication of the R2 that it is possible to expect from more accurate and
elaborated models, and also because they easily compare different models based on different
involved ancillary variables. Not shown in the Table, models with interactions between
all recipes, products, and chambers have also been run. Despite the slight increase of R2

in the Training data set with respect to models without interaction, sometimes a decrease
of R2 in the Test data set is observed. This is probably justified by the higher number of
predictors, which induces some overfit of the model. Analogously, a model with both recipe
and product (without interaction) does not improve R2 obtained with only Product as a
predictor. Results are not shown for the sake of brevity.

Table 4.3: Predictability of different models: regression involving both ancillary variables
(recipe, product, and chamber information) and ESD. The average value computed on the
Training data set stratified by "chamber ID" and "product ID".

Model Validation score (2019) Test score (2020)

GBDT 0.895 0.652
RF 0.874 0.613

SVR 0.786 0.272
Full Stepwise Regression 0.700 0.478

Penalisation 0.769 0.520
Group Penalization 0.764 0.484

SLR 0.794 0.339
ANN 0.863 0.614

Next, 8 different Regression methodologies have been compared and reported in Table
4.3, and the one yielding top performance is GBDT, with a rate as high as 91% of explained
variance on the 2019 Validation data set, with RF and ANN showing very close performance.
Noteworthy, simple models were already able to give decent results; they are easier in the
interpretation of the model, and allow one to get a good insight into the system.

It is to be mentioned that in all models categorical variables "recipe ID" and or "product
ID" (or corresponding dummy variables when used) have the highest influence in predicting
thickness. This explains why simple models like Basic or linear reach comparably high
performance on the Validation data set and on the Test one.
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Table 4.4: Predictability of GBDT model depending if product descriptive features are
included or not in the set of input predictors.

Test Product
Without Design Features With Design Features
R2 MSE R2 MSE

prod56 0.112 (± 0.086) 0.019 (± 0.002) 0.464 (± 0.054) 0.011 (± 0.001)
prod81 0.245 (± 0.094) 0.017 (± 0.004) 0.349 (± 0.073) 0.014 (± 0.003)
prod157 -5.105 (± 1.223) 0.015 (± 0.014) -3.447 (± 0.808) 0.011 (± 0.007)
prod325 -3.014 (± 0.389) 0.176 (± 0.017) -2.013 (± 0.214) 0.135 (± 0.009)
prod1221 -2.126 (± 0.216) 0.074 (± 0.004) -3.024 (± 0.238) 0.083 (± 0.005)
prod1306 -0.905 (± 0.216) 0.05 (± 0.004) -0.649 (± 0.222) 0.039 (± 0.003)
prod1312 0.12 (± 0.084) 0.022 (± 0.008) 0.135 (± 0.061) 0.022 (± 0.007)
prod1321 0.298 (± 0.084) 0.013 (± 0.002) 0.362 (± 0.065) 0.013 (± 0.001)
prod1336 -0.186 (± 0.151) 0.045 (± 0.005) 0.12 (± 0.098) 0.031 (± 0.003)
prod1337 -0.988 (± 0.273) 0.036 (± 0.003) 0.298 (± 0.093) 0.013 (± 0.002)

As for the predictability of the 2020 data set, never seen by the Training data set,
presented in order to test the real use of the tools in an industrial environment. Despite the
presence of new "recipe ID"s and "product ID"s, not included in the learning 2019 data
set, and some variability in the ESD, predictability is still acceptable, as high as 66% by
Gradient Boosting.

4.3.4.1 Design Features Importance

Here, we investigated the possibility to boost the performance of the VM solver by introduc-
ing additional predictors of design characteristics explained in Section 4.3.2. We preselected
10 of the most populated product groups in the given data set (extracting proposed features
for all of the 146 designs available in the full data fn the project would be very expensive and
therefore only a few were considered for the assumption proof) and for them, we extracted 4
continuous descriptional features.

Our main focus was to check if we can enhance the generalization (accuracy rate
evaluated with 2020, which is affected mostly by the presence of new products) with the use
of the product predictors, and in particular, if we can improve the accuracy of metrology
estimation for new product designs (not seen during training). Accordingly, a "leave one
design out" experiment was proposed, where 10 different models were trained with the
wafers data set composed of only 9 different products while leaving the last one for testing.
Then, each of the models was trained with a different predictor, once including the extracted
design characteristics and without them. The results were compared and reported in Table
4.4. The improvement is obvious except for the one product (prod1221).

In order to find a possible explanation why for some of the products the improvement
is observed and why for some not, in parallel, we analyzed "closeness" of the considered
designs based on the distance between them in the reduced dimension space of the extracted
design charachteristics (see Figure 4.9). From this experiment we learned that the boost
in accuracy of predicted metrology values for a new product is more probable in case the
new design is "not far" from at least one product already presented in the training set. The
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Figure 4.9: PCA representation of design features of 10 different products.

evidence for that is given if the Figure 4.9 is followed with the Table 4.4.

4.4 Virtual Cross Metrology
Now, to improve the predictability, we investigate the assumption that the variability of
the outcome observed across final measurements can be explained not only by the product
variability but also can be derived by analyzing the full history of a wafer. Accordingly, it
may better characterize manufacturing operations and help identifying root causes effects
outside the environment of the considered process step. As the process layers on a wafer are
sequentially manufactured (see Figure 4.10), one can use the prior history to gain insight in
the root causes affecting the final target.

In this Section, we introduce a Virtual Cross Metrology (VCM) approach that provides
an objective quantification of the benefits of different measurements, detection, and quan-
tification of dependencies between different process steps, and the opportunity to make
processes more predictable and productive. In other words, the VCM system, presented in
Figure 4.10, has to be a set of models that get generated, so that they are able to complete
the full stack of all of the different processes metrology steps. The difference between those
models compared to the individual processes step VM is that they carry around metrology
information from the prior processes steps with the goal to improve the accuracy and inter-
pretability by studying what is the relative contribution of prior information to the target
estimation.

4.4.1 Experimental Results
The work presented in this Section was carried out on data collected in the production lines
of IMEC enterprise. These data are mainly guided by the experience of process engineers
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in assessing the condition of the wafers during the manufacturing process. Overall, for
a collection of 20 wafers of one specific product, we were given data from 12 different
consecutive process steps with their corresponding metrology sampling for most of the fields
(that are in total 140 on one wafer). For each process-metrology pair two different models
were trained: the first one refers to the VM approach introduced in the previous Section
4.3; and the second one refers to the VCM approach when the input set for the model is
extended with respect to predictors and targets of all the prior process-metrology pairs to
the considered one.

The experimental setup repeats the one introduced in the previous Section 4.3.4, while
the predictive model was chosen to be GBDT as it is the one that provided the best predictive
performance for the VM use case (see Section 4.3.4). Importantly, it has to be noted that
not all wafers have their metrology probes sampled at every process step, then the missing
values are imputed by the predictive models created at the corresponding process step in
order to be used further for the VCM methodology.

In Table 4.5 and Figure 4.11 we show the accuracy results for the metrology estimation
for the final 12-th process of the considered data set for both VM and VCM methodologies.
As the considered process finishes the manufacturing of the IC, its metrology probes are
the final electrical testing results to validate the proper functioning of the produced product.
In total, we conducted the experiment for 14 different electrical tests predictions, and in
most of the cases the VCM approach outperforms the VM framework as high as 6% on the
average improvement of R2.

However, for some of the targets, like Metrology08, Metrology10, and Metrology12,
it is observed that the VCM approach is worst than the VM. This is probably justified by
the higher number of predictors used by the VCM model that may cause some overfit of
the model under low sample conditions (20 wafers only in the considered data collection).
Indeed, the results are presented for the last in the production chain metrology values, then

Figure 4.10: Schematic representation of the full chain of processes applied to one wafer to
fabricate ICs on it.
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Table 4.5: Predictability comparison with the VM and VCM approaches.

Electrical test
VM VCM

R2 RMSE R2 RMSE
Metrology01 0.5333 0.0057 0.5808 0.0053
Metrology02 0.7057 4.4609 0.8641 2.9958
Metrology03 0.4863 8.1513 0.6122 7.0774
Metrology04 0.6686 96.6611 0.6966 92.5615
Metrology05 0.7037 88.6968 0.7341 83.9846
Metrology06 0.2835 73.4609 0.3661 69.0785
Metrology07 0.3005 70.9557 0.3698 67.3049
Metrology08 0.3369 199.2691 0.3343 199.6938
Metrology09 0.2979 147.4196 0.3013 147.127
Metrology10 0.7174 0.0073 0.6691 0.0078
Metrology11 0.1291 0.6709 0.1415 0.6656
Metrology12 0.2169 75.0395 0.1068 80.1292
Metrology13 0.7533 7.7545 0.7841 7.2791
Metrology14 0.7134 6.1605 0.7681 5.5462

(a) Display of the predictability of different metrology electrical tests results with VM approach.

(b) Display of the predictability of different metrology electrical tests results with VCM approach.

Figure 4.11: Predictability comparison with the VM and VCM approaches.

in the case of VCM approach the predictors and targets from all of the prior processes are
included as an input, which in our case means that the size of predictors set grows in 12
times on average.

As a result, the VCM proves the benefit of leveraging the wealth of information collected
during the full cycle of the manufacturing procedure to fully characterize the process
outcome, while an overfitting is a possible limitation of the proposed approach in case of
low sampling.
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Figure 4.12: Display of the VCM model SHAP analysis for the Metrology01.

After we have generated such models we can identify the value of prior information
and what are the characteristics or what are parameters that lead to low or high thickness
conditions. ML techniques, like SHAP analysis, allow us to determine what are the main
contributors among the full set of given predictors on the model output. An example of such
analysis is given in the left plot in Figure 4.12, where the top-ranked predictors are depicted
in the ordered manner form the most to the least important ones.

Then, identifying what are the top features impacting the model outcome for each of the
targets at each of the process steps allows for determining how the processes are dependent
on each other. For example, Table 4.6 shows the processes in which features are present
in the top 30 predictors influencing the prediction of each of the electrical test predictions
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Table 4.6: Display of the results of the SHAP analysis conducted per each metrology VCM
model in order to discover the processes steps that contribute the most to explaining the
electrical test data.

ETest Process
P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11

Metrology01 ✓ ✓ ✓ ✓
Metrology02 ✓ ✓ ✓ ✓
Metrology03 ✓ ✓ ✓
Metrology04 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Metrology05 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Metrology06 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Metrology07 ✓ ✓ ✓ ✓ ✓
Metrology08 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Metrology09 ✓ ✓ ✓ ✓ ✓ ✓
Metrology10 ✓ ✓ ✓ ✓ ✓ ✓
Metrology11 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Metrology12 ✓ ✓ ✓ ✓ ✓ ✓
Metrology13 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Metrology14 ✓ ✓ ✓ ✓

by the VCM model. Why is it important? Because it allows identifying the processes like
Process02 from the Table 4.6 that don’t impart the estimation of the final target, therefore
metrology may not be measured at the process step in order to increase productivity unless
they are important in any other control task.

4.4.2 Discussion
At the beginning of the MADEin4 project, in the fab protocol it was mandatory to measure
at least six wafers for each lot in order to keep it under control chambers performance.
The developed CuECD VM framework proposes a practical ML solutions allowing to the
addition of virtual measurements to all wafers belonging to the same lot. Moreover, we
proposed a novel approach to introduce design characteristics that were proven in practice
to enhance the accuracy of the estimated values.

The framework was deployed to the STMicroelectronics infrastructure and was tested
in a demo environment to reduce the sampling frequency in a way that real metrology
automatically activated only when a critical issue emerges in the VM analysis. The results
demonstrate the efficiency of presented practical approaches to catch in advance the upcom-
ing issue and consequently to increase the operational efficiency (OE), defined in Equation
4.2, more than 20% with pre-MADEin4 value at the beginning of the project.

OE =
Processing time

Uptime
(4.2)

Increasing the OE it is possible to preserve potential process drift on devices production and
improve the products’ yield.

Additionally, we proposed to expand the scope of traditional process modeling in the
SM by cross-process analysis, called VCM. The experiments conducted with the real fab
data given by the IMEC enterprise show the average increase by the VCM approach as high
as 6% reaching its maximum up to 16%.
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Figure 4.13: Pre-MADEin4 shows the sparsity of the current metrology sampling during the
manufacturing in order to conduct process and product control related tasks. Post-MADEin4
indicates the results of using design metrology and process information of previous processes
steps to generate the full view of the wafer history.

As a result, in this Chapter, we showed that by having the same number of physical
measurements we can fill in the "blanks" by generating intermediate (for every process
step) VM models to improve the coverage of the metrology sampling. We showed that the
benefit of design features aids in the intermediate probes models, which in turn reduces the
uncertainty of the predictions. However, the major benefit is also found in the application
of the cross metrology technique which enables the full stack characterization, when we
can create models that now utilize prior real and virtual measurements to improve accuracy.
Furthermore, the developed IT architectures can be reused for the next developments in this
field, which can be:

• An improvement of the VM method for handling several recipes or products through
gradient boosting endowed with mixed effect models;

• An investigation of a transfer learning approaches to enhance the generalization
through making more accurate predictions when the new recipes and products appear;

• Better use of maintenance (both PvM and PdM) data that affect time series of ESD
for better identification and characterisation of the process drift.

67



Chapter 5

Generative Adversarial Networks for
Multi-view Learning with Missing Views

This chapter is based on the paper [DA20].

5.1 Motivation
During the last years, the number of ML tasks that employ data from several different sources
has increased considerably. Accordingly, a direction, called multi-view learning, was defined
to propose different methods that can effectively learn from diverse sets of features that
define very the same object; and many advances have been made on both theoretic and
algorithmic sides in this direction. The three main families of techniques for multi-view
learning are: 1) CCA that finds pairs of highly correlated subspaces between the views that
is used for mapping the data before training, or integrated into the learning objective [6, 28];
2) MKL that considers one kernel per view and different approaches have been proposed for
their learning [7]; and 3) co-regularization that tend to minimize the disagreement between
the single-view classifiers over their outputs by adding a regularization term to the objective
function [60, 71].

Overall, well designed multi-view learning strategy has better generalization ability
than single-view learning [74]. However, all mentioned above techniques assume that the
views of samples are complete and available during training and testing. But in practice
observations often have missing data, which raises a multi-view learning problem in the case
where some observations may have missing views without there being an external resource
to complete them. This is a typical situation in many applications where: 1) one/some of
the different sources that generate the views are not available at a time (like all Wikipedia
pages contain text information, while images content is more scarce); 2) different sources
generate different views of samples unevenly (like equipment sensors in the semiconductor
manufacturing fab). Moreover, it can be expensive to collect data from all available sources,
which is mostly the case for many industrial problems, and therefore companies should
compromise between predictive accuracy to its cost.

Previous works supposed the existence of view-generating functions to complete the
missing views before deploying a learning strategy [3]. However, the performance of the
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global multi-view approach is then biased by the performance quality of the generating
functions, which generally require external resources to be set. The challenge is hence
to learn an efficient model from the multiple views of training data without relying on an
extrinsic approach to generate altered views for samples that have missing ones.

In this direction, GANs provide a propitious and broad approach with a high ability to
seize the underlying distribution of the data and create new samples [32]. These models
have been mostly applied to image analysis, and major advances have been made on
generating realistic images with low variability [23, 51, 56]. In the direction of learning
from a different view, some works included an inverse mapping from the input to the latent
representation, mostly referred to as BiGANs, and showed the usefulness of the learned
feature representation for auxiliary discriminant problems [24, 26]. This idea paved the way
for the design of efficient approaches for generating coherent synthetic views of an input
image [69, 46, 19]. For instance, GANs are successfully applied for image domain transfer
or missing pixels imputation, which made us to assume that they also can serve for missing
views imputation and be adapted for joint learning.

One common example of multi-view tasks with missing views, that we consider in
this chapter to study the challenge of joint learning of missing view imputation and target
prediction, is a multilingual text classification where documents are available in several
languages and share the same set of classes while some are just written in one or more, but
not all languages.

5.2 Contributions
We propose a cGAN-based model, called Cond2GAN, that employs two generators and a
common discriminator to solve multi-view learning problems where observations have two
views, but one of them may be missing for some of the training samples.

Particularly, we consider a bilingual text classification problem, where majority of
training documents are written in only one language; and the proposed model learns the
representation of missing versions of bilingual documents jointly with the association to their
respective classes. As mentioned, Cond2GAN is composed of two generators G1 and G2 and
one discriminator D formulated as a tripartite game. For a given document with a missing
version in one language, the corresponding generator induces the latter conditionally on
the observed one. The training of the generators is carried out by minimizing a regularized
version of the cross-entropy measure proposed for multi-class classification with GANs [61]
in a way to force the models to generate views such that the completed bilingual documents
will have high class assignments. At the same time, the discriminator learns the association
between documents and their classes and distinguishes between observations that have their
both views and those that got a completed view by one of the generators. This is achieved
by minimizing an aggregated cross-entropy measure in a way to force the discriminator to
be certain of the class of observations with their complete views and uncertain of the class
of documents for which one of the versions was completed. The regularization term in the
objectives of generators is derived from an adapted feature matching technique [59], which
is an effective way of preventing from situations where the models become unstable; and
which leads to fast convergence.
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We demonstrate that generated views allow achieving state-of-the-art results on a subset
of Reuters RCV1/RCV2 collections compared to multi-view approaches that rely on Ma-
chine Translation (MT) for translating documents into languages in which their versions do
not exist; before training the models. Importantly, we exhibit qualitatively that generated
documents have meaningful translated words bearing similar ideas compared to the original
ones; and that, without employing any large external parallel corpora to learn the translations
as it would be the case if MT were used. More precisely, this work is the first to :

• Propose a new tripartite GAN model that makes class prediction along with the
generation of high-quality document representations in different input spaces in the
case where the corresponding versions are not observed (Section 5.4);

• Achieve state-of-the-art performance compared to multi-view approaches that rely
on external view generating functions on multilingual document classification; and
which is another challenging application than image analysis which is the domain of
choice for the design of new GAN models (Section 5.5);

• Demonstrate the value of the generated views within our approach compared to when
they are generated using MT (Section 5.5);

• Showcase the use of the proposed tripartite GAN model with the image data as well
as semiconductor data collections.

5.3 Problem Setting
We consider the multi-label bilingual text classification problem, where documents are
represented as feature vectors using a TFIDF-based weighting scheme. Accordingly, one
document in a data collection, considering one of the languages l ∈ {1, 2}, is a feature
vector xl - being a bag of words representation in a corresponding language vocabulary of
size dl. Then, a bilingual document is defined as a sequence x = (x1, x2) ∈ X that belongs
to one and only one out of K different classes. The class membership indicator vector
y = (yk)1≤k≤K ∈ Y = {0, 1}K , of each bilingual document, has all its components equal
to 0 except the one that indicates the class associated with the example which is equal to
one. Since we consider a specific setting when a majority of documents are written in only
one language, we suppose that X = (X1 ∪ {⊥})× (X2 ∪ {⊥}), where xl =⊥ means that
the l-th language representation is missing (the corresponding view is not observed). Hence,
each observed view xl ∈ x is such that xl ̸=⊥ and it provides a representation of x in a
corresponding input space Xl ⊆ Rdl .

We assume that each example (x,y) is identically and independently distributed (i.i.d.)
according to a fixed yet unknown distribution D over X × Y , and that at least one of its
views is observed. Furthermore, following the conclusions of the co-training study [11], our
work is based on a next main assumption :

Assumption 1 ([11]). Observed views are not completely correlated, and are equally
informative.
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In our framework, we suppose to have access to a training set S = {(xi,yi); i ∈
{1, . . . ,m}} = SF ⊔ S1 ⊔ S2 of size m drawn i.i.d. according to D (Figure 5.1), where

• SF = {((x1
i , x

2
i ) ,yi) | i ∈ {1, . . . ,mF}} denotes the subset of training samples with

their both complete views;

• S1 = {((x1
i ,⊥) ,yi) | i ∈ {1, . . . ,m1}} is the subset of training samples with their

only first view available

• S2 = {((⊥, x2
i ) ,yi) | i ∈ {1, . . . ,m2}} is the subset of training samples with their

only second view available;

• and m = mF +m1 +m2.

Figure 5.1: Graphical explanation how data is
divided into S1, S2, and SF subsets.

Overall, it is possible to fit such classi-
fication problem using existing techniques.
For example, by learning single view clas-
sifiers independently on the examples of
S ⊔S1 and S ⊔S2 for class label estimation
based on each of the views independently.
Then, to make predictions, one can then
combine the outputs of the classifiers (or
learn a fusion of labels) [68] if both views
of a test example are observed, or otherwise,
use one of the outputs corresponding to the observed view. Another solution is to apply
multi-view approaches over the training samples of SF only; or over the whole training set
S by completing the views of examples in S1 and S2 before using external view generation
functions (like MT approach considering working with textual data). Accordingly, those
existing techniques will serve for us to compare our proposed model within the experimental
Section .

5.4 Cond2GAN
As an alternative, the learning objective of our proposed approach is to generate the missing
views of examples in S1 and S2, jointly with the learning of the association function between
the multi-view samples (with all their views complete or completed) and their classes.
The proposed model consists of three neural networks that are trained using an objective
implementing a three players game between a discriminator, D, and two generators, G1 and
G2. The game that these models play is depicted in Figure 5.2 and it can be summarized as
follows. At each step, if an observation is chosen with a missing view, the corresponding
generator – G1 (respectively G2) if the first (respectively second) view is missing – produces
the view from random noise conditionally on the observed view in a way to fool the
discriminator. On the other hand, the discriminator takes as input an observation with both
of its views complete or completed and, classifies it if the views are initially observed or tell
if a view was produced by one of the generators.
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Figure 5.2: A visual representation of the proposed GAN model composed of three neural
networks; a discriminator D and two generators G1 and G2. The missing view of an
observation is completed by the corresponding generator conditionally on its observed view.
The discriminator is trained to recognize between observations having their views completed
and those with complete initial views as well as their classes.

5.4.1 Generators
Formally, both generators G1 and G2 take as input; samples from the training subsets S2
and S1 respectively; as well as random noise drawn from a uniform distribution defined over
the input space of the missing view and produce the corresponding pseudo-view, which is
missing:

• G1(z
1, x2) = x̃1,

• G2(x
1, z2) = x̃2,

where z1 and z2 being an input random noise vectors to the generators G1 and G2 respectively.
These models are learned in a way to replicate the conditional distributions p(x1|x2, z1) and
p(x2|x1, z2); and inherently define two probability distributions, denoted respectively by
pG1 and pG2 , as the distribution of samples if both views where observed i.e. (x̃1, x2) ∼
pG1(x

1, x2), (x1, x̃2) ∼ pG2(x
1, x2).

5.4.2 Discriminator
On the other hand, the discriminator takes as input a training sample; either from the set
SF , or from one of the training subsets S1 or S2 where the missing view of the example
is generated by one of the generators accordingly. The task of D is then to recognize
observations from S1 and S2 that have completed views by G1 and G2 and to classify
examples from SF to their true classes. To achieve this goal we add a fake class, K + 1, to
the set of classes, Y , corresponding to samples that have one of their views generated by G1

or G2. The dimension of the discriminator’s output is hence set to K + 1 which by applying
softmax is supposed to estimate the posterior probability of classes for each multiview
observation (with complete or completed views) given in input. For an observation x ∈ X ,
we use DK+1(x) = pD(y = K + 1|x) to estimate the probability that one of its views is
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generated by G1 or G2. As the task of the generators is to produce good quality views such
that the observation with the completed view will be assigned to its true class with high
probability, we follow [59] by supplying the discriminator to not get fooled easily as stated
in the following assumption :

Assumption 2 ([59]). An observation x has one of its views generated by G1 or G2; if and
only if DK+1(x) >

∑K
k=1Dk(x).

In the case where; DK+1(x) ≤
∑K

k=1Dk(x) the observation x is supposed to have its
both views observed and it is affected to one of the classes following the rule:

max
k={1,...,K}

Dk(x)

.

5.4.3 The Tripartite Game
The overall learning objective of Cond2GAN is to train the generators to produce realistic
views indistinguishable with the real ones, while the discriminator is trained to classify
multi-view observations having their complete views and to identify view-generated samples.
If we denote by preal the marginal distribution of multi-view observations with their both
views observed (i.e. (x1, x2) = preal(x

1, x2)); the above procedure resumes to the following
discriminator objective function VD(D,G1, G2) :

max
D

VD(D,G1, G2) = E(x1,x2,y)∼SF

[
log pD(y|x1, x2, y < K + 1)

]
+

1

2
E(x̃1,x2)∼pG1

[
log pD(y = K + 1|x̃1, x2)

]
(5.1)

+
1

2
E(x1,x̃2)∼pG2

[
log pD(y = K + 1|x1, x̃2)

]
.

In this way, we stated minmax game over K +1 component of the discriminator. In addition
to this objective, we made generators also learn from the labels of completed samples.
Therefore, the following equation defines objective for the generators VG1,2(D,G1, G2) :

max
G1,G2

VG1,2(D,G1, G2) =
1

2
E(x2,y)∼S2,z

[
log pD(y|G1(x

2, z), x2)
]

(5.2)

+
1

2
E(x1,y)∼S1,z

[
log pD(y|x1, G2(x

1, z))
]
.

Note that, following Assumption 1, we impose the generators to produce equally informative
views by assigning the same weight to their corresponding terms in the objective functions
(Eq. 5.1, 5.2).

5.4.4 Theoretical Background and Convergence
From the outputs of the discriminator for all x ∈ X we build an auxiliary function D(x) =∑K

k=1 pD(y = k | x) equal to the sum of the first K outputs associated to the true classes.
In this following, we provide a theoretical analysis of Cond2GAN involving the auxiliary
function D under non-parametric hypotheses.
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Proposition 1. For fixed generators G1 and G2, the objective defined in (Eq. 5.1) leads to
the following optimal discriminator D∗

G1,G2
:

D∗
G1,G2

(x1, x2) =
preal(x

1, x2)

preal(x1, x2) + pG1,2(x
1, x2)

, (5.3)

where pG1,2(x
1, x2) = 1

2
(pG1(x

1, x2) + pG2(x
1, x2)).

Proof. The proof follows from [32]. Let

∀x = (x1, x2),D(x) =
K∑
k=1

Dk(x)

From Assumption 2, and the fact that for any observation x the outputs of the discriminator
sum to one i.e.

∑K+1
k=1 Dk(x) = 1, the value function VD writes :

VD(D, G1, G2) =

∫∫
log(D(x1, x2))preal(x

1, x2)dx1dx2

+
1

2

∫∫
log(1−D(x1, x2))pG1(x

1, x2)dx1dx2

+
1

2

∫∫
log(1−D(x1, x2))pG2(x

1, x2)dx1dx2

The equation above can be simplified to the following function form:

f(z) = α log z +
β

2
log(1− z) +

γ

2
log(1− z),

where (α, β, γ) ∈ R3\{0, 0, 0}. To find its maximum, we set its derivative to zero, hence:

f ′(z) = 0⇒ α

z
+

β

2(1− z)
+

γ

2(1− z)
= 0⇒ z =

α

α + 1
2
(β + γ)

,

which ends the proof as the discriminator does not need to be defined outside the supports
of pdata, pG1 and pG2 . Since f has a unique maximizer on the interval of interest, optimal
D∗

G1,G2
is unique as well.

By plugging back D∗
G1,G2

(Eq. 5.3) into the value function VD we have the following
necessary and sufficient condition for attaining the global minimum of this function :

Theorem 1. The global minimum of the function VD(G1, G2) is attained if and only if

preal(x
1, x2) =

1

2
(pG1(x

1, x2) + pG2(x
1, x2)). (5.4)

At this point, the minimum is equal to − log 4.
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Proof. By plugging back the expression of D∗ (Eq. 5.3), into the value function VD, it
comes

V (D∗, G1, G2) =

∫∫
log

(
preal(x

1, x2)

preal(x1, x2) + pG1,2(x
1, x2)

)
preal(x

1, x2)dx1dx2

+

∫∫
log

(
pG1,2(x

1, x2)

preal(x1, x2) + pG1,2(x
1, x2)

)
pG1,2(x

1, x2)dx1dx2

Which from the definition of the Kullback Leibler (KL) and the Jensen Shannon divergence
(JSD) can be rewritten as

VD(D
∗, G1, G2) =− log 4 +KL

(
preal

∥∥∥∥ preal + pG1,2

2

)
+KL

(
pG1,2

∥∥∥∥ preal + pG1,2

2

)
=− log 4 + 2JSD

(
preal

∥∥ pG1,2

)
The JSD is always positive and JSD

(
preal

∥∥ pG1,2

)
= 0 if and only if preal = pG1,2 which

ends the proof

From Equation 5.4, it is straightforward to verify that preal(x1, x2) = pG1(x
1, x2) =

pG2(x
1, x2) is a global Nash equilibrium but it may not be unique. In order to ensure the

uniqueness, we add the Jensen-Shannon divergence between the distribution pG1 and preal
and pG2 and preal the value function VD (Eq. 5.1) as stated in the corollary below.

Corollary 1. The unique global Nash equilibrium of the augmented value function :

V̄D(D, G1, G2) = V (D, G1, G2) + JSD(pG1||preal) + JSD(pG2||preal), (5.5)

is reached if and only if

preal(x
1, x2) = pG1(x

1, x2) = pG2(x
1, x2), (5.6)

where VD(D, G1, G2) is the value function defined in Equation (5.1) and JSD(pG1||preal)
is the Jensen-Shannon divergence between the distribution pG1 and preal.

Proof. The proof follows from the positiveness of JSD and the necessary and sufficient
condition for it to be equal to 0. Hence, V̄D(D, G1, G2) reaches it minimum − log 4, iff
pG1 = preal = pG2 .

This result suggests that at equilibrium, both generators produce views such that obser-
vations with their completed view follow the same real distribution than those which have
their both views observed.

5.5 Experimental Results
In this Section, we present experimental results aimed at evaluating how the generation of
views by Cond2GAN can help to take advantage of existing training examples, with many
having an incomplete view, in order to learn an efficient classification function.
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5.5.1 Experimental Setup
Particularly in our experiments, we focus on the case when the number of training documents
having their two versions is much smaller than those with only one of their available
versions (i.e. mF ≪ m1 +m2). This corresponds to the case where the effort of gathering
documents in different languages is much less than translating them from one language
to another. Accordingly, we randomly select mF = 300 samples having their both views,
m1 = m2 = 6000 samples with one of their views missing and the remaining samples
without their translations for testing. The choice of values for mF , m1, and m2 is explained
by the size of the collection (and distribution of its classes as well) that we work with
described in the following Section 5.5.1.1 and Table 5.1.

5.5.1.1 Data

Table 5.1: The statistics of RCV1/RCV2 Reuters data collection used in our experiments.

Language # docs (%) vocab dim
EN 18, 758 16.78 21, 531
FR 26, 648 23.45 24, 893
GR 29, 953 26.80 34, 279
IT 24, 039 21.51 15, 506
SP 12, 342 11.46 11, 547

Total 111, 740

Class Size (all lang.) (%)
C15 18, 816 16.84
CCAT 21, 426 19.17
E21 13, 701 12.26
ECAT 19, 198 17.18
GCAT 19, 178 17.16
M11 19, 421 17.39

We perform experiments on a publicly available collection, extracted from Reuters
RCV1/RCV2, that is proposed for multilingual multiclass text categorization 1. The data
set contains numerical feature vectors of documents originally presented in five different
languages: English (EN), French (FR), German (GR), Italian (IT), and Spanish (SP) (Table
5.1). Documents in different languages belong to one and only one class within the same
set of classes (K = 6); and they also have translations into all the other languages. These
translations are obtained from a state-of-the-art Statistical MT system [70] trained over
the Europal parallel collection using about 8.106 sentences for the 4 considered pairs of
languages.2

5.5.1.2 Model and Algorithm Implementation

Architectures of employed neural networks are summarised in Table 5.2. We initialized
the generative components of the Cond2GAN as two layers neural networks with one dense
hidden layer with a sigmoid activation function and the final dense output layer without
any activation. Since the values of the generated samples are supposed to approximate any
possible real value, we do not use the activation function in the outputs of both generators.

1https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingu
al,+Multiview+Text+Categorization+Test+collection

2http://www.statmt.org/europarl/
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Table 5.2: Description of different specifications used for the neural networks to define each
of the components in the Cond2GAN. Here lang_dimv denotes a dimension of feature
vectors in language that corresponds to the view v. Also note that a dimension for the input
in generators is 2×lang_dimv, since we use noise vector z with the same dimension as
the view v respectively.

Component
of Cond2GAN Layer (type) Input dim Activation Output dim

G1
hidden (dense) dlang1 + dlang2 sigmoid 200
output (dense) 200 - dlang1

G2
hidden (dense) dlang1 + dlang2 sigmoid 200
output (dense) 200 - dlang2

D
hidden (dense) dlang1 + dlang2 sigmoid 200
output (dense) 200 sigmoid 7

The discriminator in the Cond2GAN is initialized in the same fashion, expert it includes a
sigmoid activation function at the output dense layer as well.

During training, in order to avoid the collapse of the generators [59], we perform
minibatch discrimination by allowing the discriminator to have access to multiple samples
in combination. From this perspective, the minmax game (Eq. 5.1, 5.2) is equivalent to the
maximization of a cross-entropy loss, and we use minibatch training to learn the parameters
of the three models. The corresponding empirical errors estimated over a minibatch B that
contains mb samples from each of the sets SF , S1 and S2 are :

LD(B) = −
1

mb

∑
x∈B∩SF

1

K + 1

K∑
k=1

yk log
[
Dk(x

1, x2)
]

− 1

2mb

∑
x∈B∩S1

log
[
DK+1(G1(z

1, x2), x2))
]

− 1

2mb

∑
x∈B∩S2

log
[
DK+1(x

1, G2(x
1, z2))

]
(5.7)

LG1(B) = −
1

mb

∑
x∈B∩S2

1

K + 1

K∑
k=1

yk log
[
Dk(G1(z

1, x2), x2)
]
+ L1

FM (5.8)

LG2(B) = −
1

mb

∑
x∈B∩S1

1

K + 1

K∑
k=1

yk log
[
Dk(G2(z

2, x1), x1)
]
+ L2

FM (5.9)

In order to be inline with the premises of Corollary 1; we empirically tested different
solutions and the most effective one that we found was the feature matching technique
proposed in [59], which addressed the problem of instability for the learning of generators
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Figure 5.3: Loss of all Cond2GAN components during training for (EN, IT) .

by adding a penalty terms:

L1
FM = ∥Eprealf(x

1, x2)− EpG1
f(Gv(x

1), x2)∥,
L2

FM = ∥Eprealf(x
1, x2)− EpG2

f(x1, Gv(x
2))∥,

(5.10)

to their corresponding objectives (Eq. 5.8, 5.9). Where, ∥.∥ is the ℓ2 norm and f is the
sigmoid activation function on an intermediate layer of the discriminator. The stability of
the training with described above losses was confirmed experimentally as well (Figure 5.3).

The overall algorithm of Cond2GAN is shown above. The parameters of the three neural
networks are first initialized using Xavier. For a given number of iterations T , minibatches
of size 3mb are randomly sampled from the sets SF , S1 and S2. Minibatches of noise vectors
are randomly drawn from the uniform distribution. Models parameters of the discriminator
and both generators are then sequentially updated using Adam optimization algorithm
[39] with its parameters to be set to α = 10−4, β = 0.5. Those settings promise a good
convergence of losses (Figure 5.3).

Algorithm 1: Minibatch stochastic training of Cond2GAN
Data: A training set S = SF ⊔ S1 ⊔ S2
Initialize size of minibatches - mb;
Use Xavier initializer to define initial parameters of discriminator - θ(0)d ;
Use Xavier initializer to define initial parameters of generators - θ(0)g1 , θ

(0)
g2 ;

for i = 0 . . . T − 1 do
Sample randomly a minibatch Bi of size 3mb from S1, S2 and SF ;
Create minibatches of noise vector z1, z2 from U(−1, 1);
θ
(i+1)
d ← Adam(LD(Bi), θ(i)d , α, β) ; /* Update D */

θ
(i+1)
g1 ← Adam(LG1(Bi), θ

(i)
g1 , α, β) ; /* Update G1 */

θ
(i+1)
g2 ← Adam(LG2(Bi), θ

(i)
g2 , α, β) ; /* Update G2 */

end
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5.5.2 Summary of Results
In our experiments, we consider four pairs of languages with always English as the fist view
and one of the rest of the languages as the second; accordingly, four different Cond2GANs
are trained with each of data sets S(EN,FR), S(EN,SP), S(EN,IT), and S(EN,GR). Then for every new
observation x ∈ X(EN,l), where l ∈ {FR,SP,IT,GR}, the corresponding Cond2GAN(EN,l)

does both: provides a "synthetic" view in case a representation of the sample in one
of the languages is missing (by one of the generators), and predicts the class label (by
discriminator).

For Cond2GANs performance evaluation, we employ along with them the following
classification approaches: one single-view approach, and four multi-view approaches. In the
case of using the single-view approach, classifiers are the same as the discriminator and they
are trained on the part of the training set with examples having their corresponding view
observed. The multi-view approaches are MKL [7], co-classification (co-classif) [4],
unanimous vote ( mvb) [3]..

In order to evaluate the quality of "synthetic" documents produced by generative com-
ponents in every model, we focus on comparing the classification scores obtained by other
than Cond2GAN multi/single-view classification approaches trained on the very the same
pairs of languages. Accordingly, we have two test scenarios:

1. one (denoted by TENl̃) aims to evaluate English documents generation functions
in models by pairs of views with English and any other available language (l ∈
{FR,GR,IT,SP});

2. second (denoted by TẼNl) similarly aims to test on documents generated in another
language than English by considering their corresponding English equivalent is pro-
vided.

Results are evaluated over the test set using the classification accuracy and the F1

measure which is the harmonic average of precision and recall. The reported performance
are averaged over 20 random train(80%)/test(20%) data splits

5.5.2.1 On the value of the generated views

We start our evaluation by comparing the F1 scores over the test set, obtained with
Cond2GAN and a neural network having the same architecture as the discriminator D
of Cond2GAN trained over the concatenated views of documents in the training set where
the missing views are generated by MT. Figure 5.4 shows these results.

Each point represents a class, where its abscissa (resp. ordinate) represents the test F1

score of the Neural Network trained using MT (resp. one of the generators of Cond2GAN) to
complete the missing views. All of the classes, in the different language pair scenarios, are
above the line of equality, suggesting that the generated views by Cond2GAN provide higher
value information than translations provided by MT for learning the Neural Network. This
is an impressive finding, as the resources necessary for the training of MT is large (8.106

pairs of sentences and their translations); while Cond2GAN does both view completion
and discrimination using only the available training data. This is mainly because both
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Figure 5.4: F1-score per class measured for test predictions made by a neural network, with
the same architecture than the discriminator of Cond2GAN, and trained over documents
where their missing views are generated by MT, or by G1 or G2.

generators induce missing views with the same distribution than real pairs of views as stated
in Corollary 1.

5.5.2.2 Comparison between multi-view approaches.

We now examine the gains, in terms of accuracy, of learning the different multiview ap-
proaches on a collection where for other approaches than Cond2GAN the missing views
are completed by one of the generators of our model. Table 5.3 summarizes these results
obtained by Cond2GAN, MKL, co-classif, and mvb for both test scenarios. In all cases
Cond2GAN, provides significantly better results than other approaches. This provides em-
pirical evidence of the effectiveness of the joint view generation and class prediction of
Cond2GAN. Furthermore, MKL, co-classif and Cond2GAN are binary classification
models and tackle the multiclass classification case with one vs all strategy making them to
suffer from class imbalance problem. Results obtained using the F1 measure are in line with
those of Table 5.3 and they are not reported for the sake of space.

5.5.2.3 Impact of the increasing number of observed views.

In Figure 5.5, we compare F1 measures between Cond2GAN and one of the single-view
classifiers with an increasing number of training samples, having the view corresponding to
the single-view classifier observed; while the number of training examples with the other
observed view is fixed. With an increasing number of training samples, the corresponding
single-view classifier gains in performance. On the other hand, Cond2GAN can leverage the
lack of information from training examples by having their other view observed, making
the difference in performance between these models for a small number of training samples
higher.
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Table 5.3: Test classification accuracy averaged over 20 random training/test sets. For
each of the pairs of languages, the best result is in bold, and a ↓ indicates a result that is
statistically significantly worse than the best, according to a Wilcoxon rank sum test with
p < .01.

Approaches
(EN,l = FR) (EN,l = GR) (EN,l = IT) (EN,l = SP)
TENl̃ TẼNl TENl̃ TẼNl TENl̃ TẼNl TENl̃ TẼNl

MKL 75.6↓ 77.3↓ 79.4↓ 79.6↓ 78.4↓ 79.8↓ 81.2↓ 83.5↓

co-classif 81.4↓ 83.2↓ 84.3↓ 81.6↓ 82.7↓ 82.5↓ 85.1↓ 86.2↓

mvb 83.1↓ 84.5↓ 85.2↓ 79.9↓ 84.3↓ 82.1↓ 84.4↓ 86.2↓

Cond2GAN 85.3 85.1 86.6 82.9 85.3 84.5 86.5 88.3
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(a) mEN = 6000 (b) mEN = 6000 (c) mGR = 6000

Figure 5.5: F1 measure of Cond2GAN and a single view classifier (cl) for an increasing
number of training samples with the corresponding view that is observed. The number of
training examples corresponding to the other view (ml\ = 6000); and the number of training
examples with their both views observed is mF = 300.

5.5.2.4 Quality of the generated views.

Moreover, we present some documents in English as well as the top 20 words in the feature
characteristics of the generated vector in different languages for each of the documents
(Table 5.4). Words that are in the English vocabulary which served for the initial bag-of-word
representation of the documents. In this way, it was exhibited qualitatively that generated
documents have meaningful translated words bearing similar ideas compared to the original
ones; and that, without employing any large external parallel corpora to learn the translations
as it would be the case if MT were used.

5.5.2.5 Experiments with MNIST data set

Additionally, the performance of proposed Cond2GAN was tested with MNIST data set. We
considered that images can be presented with two halfs as two views, and some images can
be corrupted meaning that one of the parts is missing. As a result of training Cond2GAN we
got a discriminator that can classify full images with the average accuracy 98.68% which
is compatible with the state-of-art methods; generators that can impute missing parts of
images (Figure 5.6(b), 5.7(b)), so that discriminator classify them with the average accuracy
94.39% and 94.71% in case left or right part is missing respectively. It gives a prove that
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Original documents in English Top 20 words in the feature characteristics of gener-
ated vectors by Cond2GAN

Fleet Financial Group and National Westminster
Bank PLC said Tuesday they signed an agreement
that will allow both companies to provide banking
services to corporate customers in Britain and the
United States. Under the agreement, NatWest will
set up a representative office in Boston to provide
Sterling and foreign currency account and cash man-
agement services to American companies that either
have a physical presence in Britain or trade there.
Desks also will be created in Boston, New York and
London, where each bank’s customers can receive
quick help in opening accounts and cash manage-
ment. The offices will be staffed by employees who
will bring specific expertise in their country’s bank-
ing system to each marketplace, the companies said.
Fleet will provide U.S. dollar accounts and cash man-
agement services to the U.S. subsidiaries and offices
of British-based companies. Fleet currently markets
U.S. cash management services directly to British
companies from its office in London. NatWest sup-
plies commercial banking services to about one-third
of the companies in Britain and is the second largest
retail bank in the country with over 2,000 branches.

FR: succursale gestion société bureau marché tré-
sorerie échange commerciale accord service ban-
caire client banque filiale permettre entreprise sys-
tème signature devise compte

GR: konto zweig management tochtergesellschaft
unternehmen büro markt fiskus austausch kom-
merziell währung vereinbarungservice bankwesen
kunde bank erlauben unternehmen system unter-
schrift

SP: sucursal oficina efectivo acuerdo intercambio
comercial administración servicio bancario cliente
banco filial compañía estadounidense empresa firma
americano británico moneda cuenta

IT: accordo servizio bancario cliente banca ufficio
commerciale filiale mercato contante scambio so-
cietà controllata azienda americana gestione conto
valuta personale clienti

World oil prices eased on Tuesday in a market where
refineries stung by high crude oil premiums and poor
margins began to buy a cheaper barrel. The North
Sea World Benchmark October Brent Blend crude
oil futures closed 38 cents at 20.43 a barrel, after
not exceeding the daily high of 20.80. There was
a general feeling in the marketplace that Brent was
overheated and a trader had to say. On the unofficial
futures market for Brent, the timing or physical dif-
ferences for Brent declined, suggesting that cargoes
would earn lower premiums in the coming weeks.
This could avert the risk that refineries use less crude
oil through their systems to increase the price of
their products. The market was also waiting for in-
structions from US stocks to be released later on
Tuesday. Fuel oil and diesel reserves are predicted
to increase by 1.3 million barrels in the run up to
the winter season, as gasoline fuel oil will soften
the lead for crude oil prices. Low inventories in the
United States largely supported the markets in the
North Sea and West Africa. In the last week alone,
5.0 million barrels of distilled North Sea varieties
were on their way across the Atlantic.

FR: pétrole prix marché brut baril commercant
diminué cargaison diesel réserve prédit augmenter
hiver saison essence carburant distillé mer produit

GR: diesel reservieren ol preis markt raffinerien roh
fass handler abgelehnt ladung vorhergesagt erhohen
ansteigen jahreszeit benzin treibstoff destilliert meer
produkt

SP: comerciante invierno temporada gasolina rec-
hazado carga diesel reserva petróleo precio mercado
refinerias crudo barril predicho incrementar com-
bustible destilado instrucción producto

IT: carburante distillata istruzione prodotto raf-
finerie greggio barile commerciante diminuito carico
diesel riserva olio prezzo mercato previsto au-
mentare inverno stagione gasolio

Table 5.4: Example of the generated views.
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Cond2GAN can be successfully applied with data sets of images.

Figure 5.6: Examples of pictures with right half missing (a) that were imputed by G1 (b)
and result can be compared with real images (c).

Figure 5.7: Examples of pictures with left half missing (a) that were imputed by G2 (b) and
result can be compared with real images (c).

5.5.2.6 Results in Virtual Metrology

As anticipated in Section 4.3.4 and specifically in Section 4.3.4.1, one of the biggest drivers
toward better generalization is the ability to provide the design characterization. However,
such measurements are too expensive to extract. Therefore, for the use case study described
in Section 4.3.4.1 we were given the feature characteristics for only 10 of the most populated
designs out of 146 total products given in the full data collection. Then it was proven that the
presence of the predictor variables describing the design allowed boosting the predictability
as high as 30% of increase in the R2 for unseen during training products.

In this Section, we consider the rest of the products with their design features missing.
For them, we investigate the possibility of completing their design characteristics by the
Cond2GAN. In particular, the two views are the product features, and the ESD extracted
features where the first view may be completely missing during training or testing.

As Cond2GANis proposed for the joint learning of both missing view imputation and
target prediction, that is the classification task, while the VM task is initially defined as
a regression one, we used a target discretization to define categories. Then, instead of
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predicting a numeric value, the model estimates the probability that a sample belongs to a
set of fixed bins, where the acceptable error rate defines the size of the bin. Particularly, the
CuECD thickness is distributed between 8 and 12, and the acceptable error rate defined by
the enterprise is 0.2; accordingly, 20 classes were created, which finishes the preparation
setup for the Cond2GAN.

The quality of the completed data by the Cond2GANis verified by the comparison of the
predictability on new products in the Test set of the GBDT-based VM framework proposed
in the Section 4.3. In the first experiment, the model is trained with the data set where
most of the observations have their product information missing. Next, we use a set where
most of the observations have missing product information. Next, we use Cond2GANto
complete the missing information in the training and test data and train the VM framework
to compare the results with the previous performance. This result is reported in Table 5.5,
which shows that Cond2GAN-bases imputation allows boosting the predictability as high as
13% of increase in the R2 for unseen during training products.

Table 5.5: Predictability of GBDT model on the Test set of the CuECD VM use case for the
observations that have their product information missing.

Approaches
Test set where product features missing
R2 RMSE

GBDT (with no imputation) -0.0231 0.1536
Cond2GAN+ GBDT 0.1146 0.1459

5.6 Discussion
In this Chapter, we presented Cond2GAN for multi-view multi-class classification where
observations may have missing views. The model consists of three ANNs implementing a
three players game between a discriminator and two generators. For an observation with
a missing view, the corresponding generator produces the view conditionally on the other
observed one. The discriminator is trained to recognize observations with a generated
view from others having their views complete and to classify the latter into one of the
existing classes. Experiments on a subset of Reuters RCV1/RCV2 show the effectiveness of
Cond2GAN to generate high-quality views allowing to achieve significantly better results,
compared to the case where the missing views are generated by Machine Translation which
requires a large collection of sentences and their translations to be tuned.
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Chapter 6

A missing data imputation approach
based on conditional GANs applied to a
real challenging EHR dataset

Similarly to the SM industry, the missing data is a relevant and established problem also in
biomedical informatics communities. Several real-world Electronic Health Record (EHR)
data sets comprise several missing values, thus revealing a high level of spatio-temporal
sparsity in the predictors’ matrix. In light of these factors, the following submitted paper
presents a data imputation method based on a clinical conditional Generative Adversarial
Network (ccGAN) that can impute missing values by using non-linear and multivariate data
from various patients [BDaEFA22].

6.1 Motivation
Given the increasing and unavoidable digital transformation process of national healthcare
system management, the huge size of structured EHR data is beginning to be available.
In predictive and precision medicine, Machine Learning (ML) techniques are capable of
managing real EHR data and providing disease predictions. On the other hand, the potential
of ML may be limited from the low quality of the EHR data, i.e. high sparsity, imbalanced
setting, noisy and redundant features, and irregular time sampling characteristics. This
challenging scenario is emphasized in routine EHR data (i.e., general practitioners, diabetic
centers, clinics) where not all laboratory exams are prescribed uniformly over time. Given
these reasons, an adequate and effective missing data imputation stage assumes crucial
importance within the data preprocessing pipeline. Specifically, a suitable data imputation
strategy may positively influence the effectiveness of the ML algorithm for prognosis and
disease prediction.

This study seeks to offer a data imputation technique based on a clinical conditional
Generative Adversarial Network (ccGAN) capable of imputing missing values of observed
characteristics conditioned by fully-available characteristics values to be then employed for
predicting the probable diabetes complication.

We investigate our proposed strategy via the lens of a specific clinical use case (i.e.,
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diabetic retinopathy (DR) prediction) of diabetes complications. DR caused by chronically
high or variable blood sugar is the most typical and insidious diabetes microvascular
complication. With the worldwide increasing incidence of diabetic patients with DR and
consequential visual impairments, early diagnosis of DR and timely appropriate treatment
are progressively becoming an effective measure to prevent DR and alleviate the economic
burden over the national healthcare systems [58]. Physicians typically diagnose the DR
through by directly evaluating fundus images, but this gold standard process, usually carried
out when the DR has already been delineated, remains expensive, time-consuming, and
sometimes unnecessary [55]. Thus, the early prediction of developing DR by employing
only routine EHR data and ML techniques may result in a convenient and effective strategy
for follow-up diabetic patients within a screening scenario.

6.2 Contribution
The main contributions to biomedical informatics are threefold and can be summarized as
follows:

• we propose a ML approach to impute missing values from EHR data and provide the
prediction of DR. The data imputation strategy is based on a novel ccGAN architecture
that exploits the fully-available clinical features among different patients to infer other
missing clinical features. The prediction phase is realized by implementing and
comparing different ML classifiers;

• we evaluate the quality of the imputed values predicted by ccGAN versus other
state-of-the-art GAN-based missing data imputation strategies;

• we show how the proposed ccGAN approach overcomes other state-of-the-art data
imputation strategies to solve disease prediction tasks using a real challenging EHR
dataset. Moreover, the employed ML models may support the clinician by revealing
the most discriminative features by also taking into account the missing values.

6.3 EHR Dataset
The missing data mechanism can be categorized into the following three cases: completely
at random, at random, or not a random [76]. In our case, we provide results under the
missingness completely at random (MCAR) assumption. Moreover, experimental results
are also provided under the real-clinical scenario where laboratory exams are not prescribed
uniformly over time.

The EHR data, we worked with during this project, consist of 120K diabetic patients
and are structured in demographics field (i.e., patient’s identificative number (ID patient),
gender, year of birth, diabetes diagnosis date); pathological field (i.e., ID patient, ICD-9
codes, pathology diagnosis date); lab tests field (i.e., ID patient, lab tests codes, lab tests
values, lab tests prescription date).
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6.3.1 Definition of control and DR patients
The diabetologist selected all the ICD-9 codes pathological field associated with DR: the
univocal ICD-9 code indicates a non-DR condition, while all the other ICD-9 codes indicate
a DR condition.

All the ICD-9 codes that did not specify DR or non-DR conditions were removed from
pathological field. Then, for every patient, both ICD-9 and lab tests codes were removed if
pathology diagnosis date and lab tests prescription date preceded the diabetes diagnosis date.
Figure 6.1 describes the inclusion criteria to select the time-window of interest (TWOI) for
both control and DR patients.

Control 
Patients

Diabetes 
diagnosis

Earliest
non-DR code 

Latest 
non-DR code 

time
TWOI

DR 
Patients

Diabetes 
diagnosis

Earliest
non-DR code 

Earliest
DR code 

time
TWOI

Figure 6.1: Observational time window of interest (TWOI) for control and DR patients.

Control patients - TWOI: A control patient was defined by at least two consecutive
ICD-9 codes of non-DR and none of the DR codes within the TWOI. A TWOI of a control
patient (see Figure 6.1 - upper side) is delimited by the earliest ICD-9 code of non-DR and
the latest ICD-9 code of non-DR.

DR patients - TWOI: A DR patient was defined by at least an ICD-9 code of non-DR
followed by one ICD-9 code of DR. A TWOI of a DR patient (see Figure 6.1 - bottom side)
is delimited by the earliest ICD-9 code of non-DR and the earliest ICD-9 code of DR. A
patient was included in the study only if the date of the earliest ICD-9 code of non-DR
preceded the earliest date of ICD-9 code of DR.

6.3.2 Preprocessing
Following the definition of control and DR patients, the EHR data consists of 40555 patients
(31611 control patients, 8944 DR patients) and 60 demographical and lab tests features
(predictors). The preprocessing procedure consists of features analysis and patient selection
stages.

Features analysis

A subset of 48 predictors was chosen by two diabetologists, based on their experience in
the clinical task of interest. Thus, the predictors were grouped by the distribution of their
missing values (see Figure 6.3). Predictors were split in green (Xg), yellow (Xy) and red
(Xr) predictors in according to the following criteria (see Figure 6.2):
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Figure 6.2: Missing values (NaNs) distribution over patients (blue) and over the whole EHR
dataset (orange).

• Xg contains less than 2% of missing values per patient and less than 50% of missing
values for the whole dataset;

• Xy contains between 3% and 40% of missing values per patient and between 50%
and 80% of missing values for the whole dataset;

• Xr contains more than 40% of missing values per patient and more than 80% of
missing values for the whole dataset.

Patient selection

In order to obtain the Xg predictors fully filled (i.e., no missing values) across all the patients,
we removed the 2981 patients (i.e., ∼ 80% control patients, 20% DR patients) that do not
contain simultaneously all the Xg predictors. Table 6.1 describes the statistics of the EHR
data after the patient selection preprocessing stage.
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Figure 6.3: Green predictors (Xg) indicate a very low presence of missing values, yellow
predictors (Xy) indicate a mild presence of missing values, and red predictors (Xr) indicate
a high presence of missing values according to the criteria defined.
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Table 6.1: Statistics of the EHR dataset.

Description Statistics

Total patients 37574
Control: 78%
DR: 22%

Gender
Male: 56%
Female: 44%

Age (years) 68(±12)

Diabetes duration (years) 12(±8)
# of observations per patient 19(±15)

Predictors 48
Xg: 8
Xy: 13
Xr: 27

6.4 Method
The amount of observations for each patient in our real clinical EHR dataset is limited and
sparsely distributed over time (see Table 6.1). By computing the auto-distance correlation
and basing our decision on this supporting data, we attempt to rule out the possibility of
temporal connections between different observations of the same patient throughout time
(see Section 6.4.1). Afterward, we presented our ccGAN for data imputation on the selected
EHR dataset.

6.4.1 Auto-distance correlation function
Auto-distance correlation function (ADCF) measures temporal correlation accross univari-
ate time series [79]. The ADCF can be expressed as a V-statistic of order two, which
under the null hypothesis of independence is degenerate. Thus, considering a traditional
autocorrelation plot where the confidence intervals are got simultaneously, may turn to be
a complex task. Given this motivation, the (1 − α)% confidence intervals are computed
simultaneously adopting the Monte Carlo simulation and the independent wild bootstrap
approach [31]. We set the significance level α = 0.05 and the number of bootstrap replica-
tions b = 499 to obtain the (1− α)% empirical critical values. By exploring different lags
(MaxLag=5, 10, 15, 20, 25) for computing the ACDF function within multiple observations
of the same patient, we did not find any feature that overcome the critical value for more than
the 5% of patients. Thus, the non-temporal correlation among the values of the predictors
was evidenced.

By taking into account this finding, we employed a non-temporal configuration of the
EHR dataset, where a single value for each predictor is considered for the i-th patient.
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6.4.2 Clinical conditional Generative Adversarial Network (ccGAN)
In the standard cGAN formulation, two players minimax game between generative neural
network G (generator) and discriminative neural network D (discriminator) is defined as
following:

min
G

max
D

V (D,G) = Ex,y∼pdata(x,y)

[
logD(x,y)

]
+ Ez∼pz(z),y∼pdata(y)

[
log(1−D(G(z|y), y))

]
.

(6.1)

G and D, both conditioned on some extra information y, are trained simultaneously. Gen-
erator learns a function that perform mapping for z from simple distribution like U(0, 1)
to the distribution defined by data collection pdata. Thus, generator’s objective is to learn
to produce samples indistinguishable form real data observations. In contrary, discrim-
inator’s objective is to accurately separate generated samples from the real data. Let
xg, xy and xr are samples of green, yellow and red predictors that are taking values in
X g = X g

1 × ... × X g
dg

, X y = X y
1 × ... × X y

dy
and X r = X r

1 × ... × X r
dr

spaces respec-
tively. Distribution of the random variables xg, xy and xr are defined by corresponding
data collections Xg, Xy, Xr and will denote P (Xg), P (Xy), P (Xr). Taking into account
the highly limited amount of information provided by the matrix Xr (more than 40% of
patients do not contain these features), we decided to impute only Xy predictors, condi-
tioned on extra information given by Xg predictors. It is worth noting that, differently
from the state-of-the-art literature the imputation of Xy still represents a challenging task,
where the available information is highly limited and the proposed ccGAN approach should
accurately impute between the 3% and 40% of missing values per patient. Accordingly,
we consider a data collection S = {(xy

i ,x
g
i )}Ni=1 = SF ∪ S⊥ of size N that consists of

two subsets SF = {(xy
i ,x

g
i ) ∈ X y × X g}NF

i=1 and S⊥ = {(xy
i ,x

g
i ) ∈ X̃ y × X g}N⊥

i=1, where
X̃ y = (X y

1 ∪ {⊥})× ...× (X y
dy
∪ {⊥}) and symbol ⊥ indicates unobserved components

(N = NF + N⊥ and NF ≪ N⊥). Then further in our explanation, when referring to a
sample (xy,xg) drawn from S⊥, we will simply use (x̃y,xg).

Architecture for our ccGAN-based imputation strategy is shown in Figure 6.4 and
consists of two-players neural networks. First is a G : X̃ y × X g × {0, 1}dy → X y -
generative neural network - that, conditionally on extra information given by green predictors
xg and partially available values of yellow predictors x̃y, performs mapping for random
variable z from distribution U(0, 1) to corresponding complete vector xy

gen. Accordingly, if
m ∈ {0, 1}dy is a mask vector that indicates an availability of each predictor value in x̃y,
then

xy
gen = G(m⊙ x̃y,m⊙ z,xg),

where m denotes a complement of m. Since output of G consist of predictions of even
non-missing values, the imputed vector is

x̂y = m⊙ x̃y +m⊙ xy
gen.

Next, similarly to cGAN, we define a discriminative neural network D : X y ×X g → [0, 1] -
an adversary to train G - which objective is to distinguish real full observations (xy,xg) ∈ SF

from incomplete but imputed by G observations (x̂y,xg), where (x̃y,xg) ∈ S⊥. Particularly,
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Figure 6.4: The proposed ccGAN architecture.

D and G are trained jointly in a way that D is optimized to maximize a probability of D
predicting a correct label for real or synthetic sample, while G is optimized to minimize a
probability of D to identify generated samples. Then, discriminative loss for minimax GAN
optimization problem in ccGAN model is the following:

Ld(G,D) = E(xy ,xg)∈SF

[
logD(xy,xg)

]
+ E(x̃y ,xg)∈S⊥,z

[
log(1−D(G(x̃y,xg,m, z),xg)

]
.

(6.2)

Moreover, by taking into account that in our setup NF ̸= 0 and data is missing com-
pletely at random (MCAR), we use an additional term in the objective function - masked
reconstruction loss - computed over real full samples in order to stabilise training of the
introduced model. Specifically, lets define an operator fnan that introduce missing values to
the full vector of yellow predictors xy from (xy,xg) ∈ SF with respect to the mask m:

fnan(x
y,m) = xy ⊙m+ nan ⊙m.

Accordingly, if m is sampled from the collection of masks in S⊥, which is MCAR, then
(fnan(x

y,m),xg) ∈ X̃ y × X g, where (xy,xg) ∈ SF ; and masked reconstruction loss is
defined by:

Lr(G) = ||G(fnan(x
y,m),xg,m, z)⊙m− xy ⊙m||2. (6.3)

Finally, in ccGAN imputation strategy two players minimax game between generator G
and discriminator D is defined by two-part loss:

min
G

max
D

(
Ld(G,D) + Lr(G)

)
, (6.4)

which we solve in a minibatch stochastic iterative manner described in Algorithm 2. Pro-
posed method shares with the original GAN a property that global minimum is achieved if
and only if pdata(xy,xg) = pg(x

y
gen,x

g), which can be proven as shown in [32].
Xg and the imputed Xy represent the predictors for each patient, while the label is repre-
sented in terms of control (0) and DR (1) patients.

92



Algorithm 2: Pseudo-code of ccGAN.

Data: training set S = SF ∪ S⊥

Initialization: θ(0)D , θ
(0)
G # weights for G and D respectively

for i = 0, . . . , Nepochs do
Draw minibatch BF = {xy

j ,x
g
j}

mb
j=1 from SF

Draw minibatch B⊥ = {x̃y
j ,x

g
j}

mb
j=1 from S⊥

for B⊥ do
mj ← 1− 1⊥(x̃

y
j )

x̂y
j ← G

(
mj ⊙ x̃y

j +mj ⊙ zj,x
g
j

)
x̂y
j = mj ⊙ x̃y

j +mj ⊙ x̂y
j

end
LD =

∑
BF

logD(xy
j ,x

g
j ) +

∑
B⊥

log(1−D(x̂y
j ,x

g
j ))

LG =
∑

B⊥
log(1−D(x̂y

j ,x
g
j ))

for BF do
x̂y
j ← G

(
mj ⊙ xy

j +mj ⊙ zj,x
g
j

)
end
LG = LG + 1

mb

∑
BF

(mj ⊙ x̂y
j −mj ⊙ xy

j )
2

θ
(i+1)
D ← Adam(−LD, θ

(i)
D , α, β) # update of D

θ
(i+1)
G ← Adam(LG, θ

(i)
G , α, β) # update of G

end

6.5 Experimental Results
In this section we introduce the comparisons in terms of data imputation and classification
ML models techniques.

6.5.1 Experimental Comparisons
Data Imputation Techniques

We start experimental analysis by comparing the quality of imputed values predicted by
ccGAN method versus other state-of-the-art GAN-based missing data imputation strategies
- baselines like GAIN and MisGAN. In this experiment, all the algorithms are trained with
S⊥ set together with randomly selected subset of SF . The rest of full observations, in their
turn, form a set for testing. In other words, SF = S train

F ∪ S test
F , where we set train size

proportion equal to 0.8. Then, after the model of choice g∗ is trained, an accuracy on the test
set is evaluated by computing masked mean squared error (MSE) between estimated values
of missing yellow predictors in a set {(fnan(xy

i ,m),xg
i )}(xy

i ,x
g
i )∈S test

F
and their real values:

1

∥S test
F ∥

∑
(xy

i ,x
g
i )∈S test

F

(
g∗(fnan(x

y,m),xg)⊙m− xy ⊙m
)2
, (6.5)

where m is sampled from the set of masks in S⊥.
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Moreover, once evaluated the ccGAN in terms of data imputation performance with
respect to the state-of-the-art GAN-based missing data imputation strategies, we compared
our proposed ccGAN with other state-of-the-art data imputation techniques such as KNN
[49], MissF [62], and MICE [42]. In this case, our goal was to compare performance
accuracy of the target label prediction in case of training on complete data imputed by
different imputation strategies. This experimental setup is explained next.

ML models, metrics, and experimental procedure

In the prediction stage, we used state-of-the-art ML models widely adopted for disease
prediction [10], such as eXtreme Gradient Boosting (XGB), RF, DT, Linear and Gaussian
SVM, LR, KNN. The predictive performance was evaluated by the following metrics: Accu-
racy, macro-F1 (F1), macro-Precision (Precision), macro-recall (Recall), Area Under the
receiver operating characteristic Curve (AUC), and Area Under the Precision-Recall Curve
(PRAUC). We implemented a 10-fold Cross Validation (CV-10) experimental procedure.
The hyperparameters of the ML models were tuned in a nested Fivefold Cross-Validation by
implementing a grid-search [15] and optimizing the PRAUC metric.

6.5.2 Imputation Performance
According to the result of averaged masked MSE computed over 20 different random splits
of SF , ccGAN outperforms the baseline models GAIN and MisGAN (see Table 6.2).

Table 6.2: Predictive performance in terms of masked MSE of different GAN-based models
for missing data imputation and proposed ccGAN model averaged over 20 random train-
ing/test data splits.

Imputation Model masked MSE

GAIN 0.192± 0.018
MisGAN (the imputer) 0.203± 0.015
ccGAN 0.154± 0.015

The imputation performance comparisons highlighted how the proposed ccGAN strategy
was a reliable solution with respect to baseline GAN-based strategies for imputing missing
values in the EHR dataset under the MCAR assumption. Next, we present the results of the
proposed ccGAN in terms of predictive performance.

6.5.3 Predictive Performance
The XGBoost and RF achieved the best performance among other tested supervised classi-
fiers, such as DT, SVM, LR and KNN. Thus, we show the predictive performance of the
proposed data imputation approach by applying XGB (see Table 6.3) and RF (see Table 6.4)
as ML classification models. It is worth noting that we exploited the proposed ccGAN for
imputing the value of Xy predictors. The overall best predictive performance was reached
by the RF model in Xg+Xy setting adopting our proposed ccGAN imputation technique
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(PRAUC = 66.16±1.09). The best imputation technique competitor is represented by MICE
(PRAUC = 65.53±1.04). The employment of single Xy or Xg predictors leads to a decrease
in performance. The same trend was reached by the XGB model but with globally lower
predictive performance than RF model. However, ccGAN imputation technique in Xg+Xy

setting (PRAUC = 65.20± 1.09) keeps on remaining the best strategy.

Table 6.3: Predictive performance of XGB model in Xg, Xy, and Xg+Xy settings: compari-
son between our proposed data imputation techniques and other competitors. Best predictive
performance result in terms of PRAUC is reported in bold.

Predictors Accuracy F1 Precision Recall AUC PRAUC

Xy (KNN) 83.12± 0.39 66.95± 0.86 80.51± 1.18 64.06± 0.67 76.09± 0.68 58.16± 1.22
Xy (missF) 82.88± 0.35 66.90± 0.73 79.14± 1.06 64.10± 0.57 76.27± 0.76 58.44± 0.87
Xy (MICE) 82.79± 0.38 67.20± 0.91 78.25± 0.93 64.43± 0.74 77.53± 0.73 59.41± 1.40
Xy (ccGAN) 83.06± 0.47 67.85± 1.07 78.89± 1.21 64.96± 0.88 77.89± 0.55 60.25± 1.22

Xg+Xy (KNN) 83.66± 0.42 69.18± 0.86 80.36± 1.21 66.04± 0.71 79.69± 0.69 62.85± 1.06
Xg+Xy (missF) 83.78± 0.41 69.59± 0.83 80.41± 1.08 66.42± 0.68 80.08± 0.70 63.35± 1.23
Xg+Xy (MICE) 83.81± 0.55 69.89± 0.98 80.16± 1.54 66.73± 0.78 80.97± 0.50 64.15± 1.39
Xg+Xy (ccGAN) 84.12± 0.45 70.68± 0.75 80.67± 1.29 67.43± 0.59 81.40± 0.45 65.20± 1.09

Xg 82.67± 0.49 67.90± 0.80 76.95± 1.45 65.20± 0.63 74.70± 0.80 57.28± 1.09

Table 6.4: Predictive performance of RF model in Xg, Xy, and Xg+Xy settings: comparison
between our proposed data imputation techniques and other competitors. The best predictive
performance result in terms of PRAUC is reported in bold.

Predictors Accuracy F1 Precision Recall AUC PRAUC

Xy (KNN) 83.84± 0.32 65.70± 0.89 89.55± 0.86 62.80± 0.65 78.12± 0.71 59.03± 1.09
Xy (MissF) 83.74± 0.31 65.80± 0.93 88.77± 0.68 62.90± 0.68 78.76± 0.57 60.00± 1.21
Xy (MICE) 83.74± 0.34 66.30± 0.86 87.20± 1.20 63.33± 0.63 79.54± 0.69 60.84± 1.21
Xy (ccGAN) 83.70± 0.44 66.00± 1.17 86.60± 1.23 63.10± 0.86 80.00± 0.78 61.60± 1.31

Xg+Xy (KNN) 84.23± 0.37 68.10± 0.84 86.43± 1.35 64.75± 0.64 81.10± 0.82 64.16± 1.23
Xg+Xy (MissF) 84.28± 0.27 68.21± 0.59 86.64± 1.06 64.81± 0.45 81.38± 0.76 64.65± 1.03
Xg+Xy (MICE) 84.30± 0.39 68.36± 0.86 86.47± 1.36 64.94± 0.65 82.28± 0.50 65.53± 1.04
Xg+Xy (ccGAN) 84.30± 0.45 68.60± 1.05 86.10± 1.29 65.14± 0.81 82.67± 0.58 66.16± 1.09

Xg 83.91± 0.28 67.89± 0.70 84.28± 0.77 64.66± 0.55 78.12± 0.54 60.50± 1.05

6.5.4 Statistical Analysis
The PRAUC scores in the CV-10 experimental procedure deviate from normality according
to the Anderson-Darling test (p < .01). Hence, Accordingly, the statistical comparison
between our proposed ccGAN data imputation approach and the best data imputation
competitors was performed by means of a non-parametric, one-sided Wilcoxon signed-rank
test (α = 0.05) for the RF and XGB models. The performance of the ccGAN (Xg + Xy

setting) is significantly greater (p < 0.05) than MICE (Xg +Xy setting) by applying the
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RF model. Furthermore, the performance of the ccGAN (Xg +Xy setting) continues to be
significantly greater (p < 0.05) than MICE (Xg +Xy setting) by applying the XGB model.

6.6 Discussion
We proposed a ccGAN architecture capable to impute missing values from routine EHR data
collected from a multi-diabetic centers platform. We demonstrated how the proposed data
imputation strategy is consistent for predicting DR in conditions of high missingness rates
(i.e. where between 3% and 40% of patients have the candidate feature missing). Within a
DR screening programme, our method is currently integrated into a clinical decision support
system and permits to discover the most discriminative predictors by also taking into account
the missing information.

Our proposed ccGAN data imputation strategy turned out to be robust and effective
in dealing with challenging real EHR datasets, characterized by high sparsity, imbalanced
setting, noisy and redundant features. This fact motivates that a correct and ad-hoc missing
values imputation mechanism could be potentially crucial to obtain a satisfactory predictive
performance on routine EHR data.

A limitation of this work might be the exclusion of the Xr predictors (i.e., more than
40% of missing values per patient and more than 80% of missing values for the whole
dataset) in the data imputation mechanism. These features, also if selected as important by
the diabetologists, were not imputed due to too high missingness rates. Another important
limitation might be the exclusion of other EHR fields such as exam and drug prescriptions.
These fields may potentially contain a huge amount of missing information related to the
availability of a generic drug code (parent code) and the missing of a specific unique drug
code (child code). As future work, we aim to exploit a multi-view learning strategy that
encapsulates our ccGAN data imputation approach for imputing missing values conditioned
to different (eventually missing) views of the EHR dataset and exploiting the structure of
a related unlabeled training data [50]. The ccGAN data imputation strategy will also be
extended to other diabetes complications by figuring to develop a fully-equipped clinical
platform for the management of the diabetic patient.
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Chapter 7

Conclusions

Firstly, application-wise, this thesis investigated practical ML solutions for semiconductor
manufacturing tasks, like predictive maintenance and virtual metrology. The work high-
lighted the main challenges in the area of study for the learning algorithms to be used
effectively, which are: a level of sensory data pre-processing required for abundant raw
equipment sensory data; and a treatment of highly diversified data collections provided for
learning; which moreover are collected at a different cost, and therefore, some modalities
are not available for all the observations. As a result, we:

• proposed process characterization method that combines clusterization technique
employing Gaussian Mixture Models algorithm to perform equipment sensory data
segmentation and traditional features extraction technique, allowing to define the
informative predictors for the modeling of the natural system state progression and
virtual metrology predictions;

• presented experimental results highlighting the benefits of adding design-aware fea-
tures with in-fab data;

• defined a virtual cross metrology system in which measurements of present and past
process steps are incorporated to better characterize the full process sequence.

Secondly, we deeply investigated the last mentioned challenge that is a common problem
in many applications besides semiconductor manufacturing tasks – multi-view learning with
missing views and :

• proposed a novel tripartite GAN model for applications with two views that makes
class prediction along with the generation of missing view in both input spaces in the
case when the corresponding modalities are not observed;

• presented experimental results highlighting a state-of-the-art performance compared
to multi-view approaches that rely on external view-generating functions, as well as
to other GAN-based models that solve missing data imputation problems;

• showcased the proposed model’s use in different application domains.
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As for future work, the proposed ML solutions for advanced process control tasks are
planned to be experimented with other semiconductor processes data, as well as the proposed
approaches are planned to be investigated for the use with transfer learning techniques for
better generalization purposes. Then, the contributions in the multi-view learning with
missing views set a promising direction for further investigation and research to propose a
straightforward approach to deal with more than two views in the problem using GAN joint
learning strategy as a base.
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