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la ligne 6 (ça commence déjà), et tu ne rassemblera plus aux corbeaux que tu détestes
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Introduction

An autumn day in 2013, in the small town of Mělnı́k, there was a group of high school
friends that were all just 18, which in the Czech Republic means they were finally al-
lowed to vote. And the parliamentary elections were just around the corner! Of course,
our friends were very excited about it - they spent every little free time between two
classes discussing about politics, and about who they were going to vote for. But one
of them mostly kept out of these discussions. Artist in his body and soul, he was too
much above the fray to get distracted by something as mundane as a parliamentary
election. When the others finally asked him directly who he was going to vote for, he
replied : “Well, I’m going for a walk around Mělnı́k on Friday afternoon, and I’ll vote
for whoever has the nicest posters.”

Social choice is a field which, among other things, studies, analysis or aggregates in-
dividual opinions, with the aim of reaching a common decisions which would be “the
best one” in some sense. But actually, what does it mean to be “the best”? Should it
be a solution preferred by the majority of voters? Or maybe a solution that is the best
compromise? But in such a case, how “the degree of compromise” is measured? Should
all voters be treated equally? And the candidates? How do we express our preferences?
And what happens if some voter is not sincere? How do we ensure that the election is
not manipulated?

Many questions arise if we think a bit about the election process (or, more generally,
any decision making where a group of individuals have to choose together among a
set of available alternatives), and we can have many requirements on the properties a
“good” election system should fulfill. It is hence not a surprise that the first and most
famous works in the field deal with identifying and formulating desirable properties
(also called axioms) of electorates and voting rules. But of course, it is useless to come
out with a theoretically perfect voting rule for which we are unable to compute the
winner - and that is what computational social choice will deal with. More generally,
this field, lying between social choice theory and theoretical computer science, studies
computational problems arising from collective decision making (the winner determi-
nation, preference elicitation, manipulation issues etc.).

But back to looking for “an ideal” voting rule. Actually, social choise is full of para-
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Introduction

doxes and impossibility theorems. One of the oldest one, the so-called Condorcet para-
dox (or also Condorcet cycle), was observed at the end of the 18th century by Marquis
de Condorcet. Let us consider the situation where a majority of voters prefer candidate
c1 to candidate c2, and candidate c2 to candidate c3. One would then expect that a ma-
jority of voters would prefer c1 to c3. However, Condorcet noticed that it is possible to
have the majority of voters that prefer c3 to c1.

Probably the most famous impossibility theorem is Arrow’s impossibility theorem1 (Ar-
row, 1951). Basically, Arrow assumes that each voter gives a complete ranking over the
set of candidates, and a voting rule returns a single global societal ranking. He consid-
ers the following properties, reasonable for a “fair” voting rule:

• Unanimity: If candidate c1 is preferred to candidate c2 by each voter, then c1
should be ranked better than c2 in the global ranking.

• Independence of irrelevant alternatives: The preference between c1 and c2 in
the global ranking should only depend on how c1 and c2 are ranked by the vot-
ers, regardeless of the other candidates (in other words, if some voter change her
preference for c3, it should not impact the global preference between c1 and c2).

• Universality: Each voter can give any possible complete ranking over the set of
candidates.

Arrow proves that when there are at least 3 candidates, the only preference aggregation
rule (returning a complete ranking over the set of candidates) satisfying these proper-
ties is a dictatorship. It should be emphasized that this does not mean that there is
no possible “good” voting rule, but that any voting rule behaves “badly” from time to
time. Despite that, the result may seem destabilizing, as each of the properties seems
quite reasonable, while most of the readers will probably not find a dictatorship to be
an appropriate voting rule.

Another famous result is the Gibbard–Satterthwaite theorem (Gibbard (1973), Satterth-
waite (1975)). It states that, as soon as there are three or more candidates, any non-
dictatorial voting rule can be manipulated - it basically means that it may be beneficial
for some voter not to give her true opinion about candidates. Which is quite bad news...

... And that is where structured preferences come on the scene. They are natural to try
to circumvent impossibility results and paradoxes, as an assumption of a common un-
derlying preference structure shared by all voters relaxes for instance the universality
condition of Arrow’s impossibility theorem. We will present some popular preference
structures in Chapter 1, but let us give here a brief overview.

1What kind of thesis dealing with social choice this would be if Arrow’s theorem was not mentioned...
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One of the most popular preference stuctures is called single-peaked domain. This struc-
ture has been introduced by Black (1948) and independently by Arrow (1951). Basi-
cally, it assumes that the candidates can be ordered on an axis (for instance, we can
imagine a left-right political axis). Each voter has her most preferred candidate some-
where on the axis - this position is called a peak. The more we move from the peak
to the left or, independently, to the right, the worse the candidates are ranked by the
voter. Under the assumption of single-peaked preferences, the Arrow’s theorem does
not hold, there is no Condorcet cycle and we can find some non-manipulable voting
rules.

Another popular preference structure is the so-called single-crossing domain. The idea
is similar to single-peaked domain, but this time, it is the set of voters that can be or-
dered on the axis, which can be seen as some scalable (sociological) “criterion” (as for
instance the wealth, or the level of education). Then we suppose that for each pair of
candidates c1 and c2, there is a threshold value of the “criterion” beyond which each
voter prefers c1 to c2 (resp. c2 to c1). On the other hand, all voters below the treshold
value will prefer c2 to c1 (resp. c1 to c2). If the number of voters is odd, there is no
Condorcet cycle.

Since good things always come in threes, we present here another preference struc-
ture. These are one-dimensional Euclidean preferences (or 1-Euclidean preferences), first
introduced by Coombs (1950). The idea is similar to single-peaked preferences. The
candidates are ordered on an axis. Each voter is identified with a point of this axis
called ideal point (note that this point is arbitrary, and there is in particular no reason
it corresponds to any candidate position). The further the candidate is from this ideal
point, the less it is appreciated by the voter. Note that, contrary to the notion of single-
peakedness, the left and right axis part (separated by the most preferred candidate)
are not treated independently. It is well-known that if the preferences are 1-Euclidean,
they are both single-peaked and single-crossing (the reverse implication is false, as we
will see later). Therefore, they benefit from all the good properties of these domains.

The interest of structured preferences goes further. Actually, some problems of compu-
tational social choice that are NP-hard in the general case can become polynomial-time
solvable under some assumptions on the preference structure. For instance, as single-
peaked preferences always admit a Condorcet winner, all Condorcet consistent voting
rules become polynomial time computable under the assumption of single-peakedness.
Last but not least, it is interesting to know the underlying preference structure of a
given profile for better analysis, interpretation and understanding of data. Indeed, the
knowledge of the structure can be used in recommender systems, voting advice appli-
cations, etc. For instance, if the preferences are known to be single-peaked and the
recommender system knows the most preferred alternative A of a given voter, it will
recommend her one of the alternatives lying next to A on the axis.
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To sum up, structured preferences are undoubtedly worth attention, providing many
appealing properties and interesting applications. Too good to be true? Unfortunately,
the three aforementioned structures are nearly impossible to observe in real world col-
lective decision making problems (at least, in the strict sense). Actually, it is not dif-
ficult to see why - to get the first insight, let us go back to the first paragraph of this
introduction - even though the majority of voters might agree on the common structure
(for instance, the left-right political axis), there will always be a person who decides in
function of the beauty of the posters. More generally, real world applications are often
complex, with many decision criteria to be taken into account, some of them being very
subjective or non-scalable, some of them being relevant for only a part of the popula-
tion... without forgetting the fact that some voters are not “rational”.

One of the goals of this thesis is to try to deal with these issues. The idea is simple:
we relax the structure in order to make it less restrictive, and hence more likely to fit
a real world data. Of course, the more the structure is relaxed, the more likely it will
be observed, but on the other hand, many good properties, as well as structural in-
formation, will be lost. It is hence important to find a relaxation that achieves a good
trade-off.

Part I is an introduction to the topic of structured preferences. In Chapter 1, we define
the general framework of an election (or a decision making problem) that will be used
in the whole thesis. We also introduce formally the three preference structures men-
tioned above, providing a state of the art and several examples. In Chapter 2, we dis-
cuss the relation between single-peaked, single-crossing and 1-Euclidean preferences.
While most of the results are already known, we reinterpret and visualize them using
graphs. The idea is to provide more insights on structured preferences, to illustrate the
type of problems one can face while studying structured preferences, and to motivate
the reader to dive deeper into the topic. In addition, some (marginal) new results are
given in this chapter.

Part II focuses on single-peaked domain relaxations. In Chapter 3, we relax the axis
structure by considering the notion of single-peakedness on a graph. A preference profile
is single-peaked with respect to a given graph G if each of its preferences is a traversal
of G. Trivially, any profile is single-peaked with respect to the complete graph. How-
ever, such a result is useless for data analysis purposes. Indeed, the sparser the graph
is, the more structural information it provides. Two notions of sparsity are introduced
in Chapter 3, and we are looking for solutions minimizing (one of) them. The works
presented in this chapter has been published in Escoffier et al. (2020) (a full version is
currently under evaluation in a journal).

In Chapter 4, a different approach is considered: this time, we keep the axis struc-
ture, but we allow the voters to derive a bit from it. We find then an axis which is the
“nearest” to the set of preferences. This approach is known as nearly single-peakedness.
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Obviously, we loose the good axiomatic properties of single-peaked preferences, but
it is still interesting to capture the underlying structure of preferences in order to un-
derstand the data. Several metrics of single-peakedness have been considered in the
literature. We introduce here a new metric, inspired directly by the definition of single-
peakedness, we study its theoretical and computational properties, and we position it
with respect to existing metrics of nearly single-peakedness. The works presented in
this chapter has been published in Escoffier et al. (2021).

Another possible way to make the structure less restrictive is to add more dimensions.
This is what we do in Part III. This time, we focus on multidimensional Euclidean pref-
erences. We introduce the topic in Chapter 5. The works presented in the last section
of this chapter has been published in Escoffier et al. (2022b).

In Chapter 6, we propose a heuristic algorithm for recognizing two-dimensional Eu-
clidean preferences with respect to the norm ℓ2. In Chapter 7, we study two-dimensional
Euclidean preferences with respect to the norm ℓ1. We mainly focus on geometrical and
structural properties of this domain. The works presented in this chapter are available
in Escoffier et al. (2022a), and currently under evaluation in a journal.

Finally, Part IV is devoted to the general conclusion where we discuss somme possi-
ble research directions arising from our works.

How to read this document Let us terminate this introduction with some tips on how
to read the document. My goal was to write it as “a book”, with the chapters following
logically one another. However, it should be also possible to read the chapters inde-
pendently. In this case, the reader should first read Section 1.1 of Chapter 1, where the
common notations are introduced. It is also recommended (but not necessary) to read
Section 1.2 of Chapter 1, devoted to the single-peaked preferences, if one is interested
in Chapter 3 or Chapter 4.

Each chapter provides its own introduction; however, as in Part III both Chapters 6
and 7 deal with multidimensional Euclidean preferences, a common introduction is
given in Section 5.2. Although the most important notations are quickly recalled at the
beginning of each chapter, it is highly recommended to read this common introduction
for better understanding. Also, each chapter provides a very brief conclusion whose
main purpose is to summarize the principal contributions. Possible research directions
are discussed in more details in the general conclusion of the thesis.

Another specificity of this document is that the reader is not alone - indeed, he or she
is accompanied by a little tortoise named Mathilde. It is well-known that tortoises are
quite slow animals. Hence, if you are in a hurry, you can skip the tortoise interventions
- they are somehow “a bonus” to the text, and are not necessary for understanding.
However, if you have the time and you want to go further, please do not hesitate to
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read Mathilde’s comments. She is there to point out some interesting details, cause you
to ask questions, give you more intuition or, on the contrary, make you hesitate.

A Curious Tortoise Intervention

Hello reader, nice to meet you!

Finally, let me allow one more personal note. I make no secret on the fact that, as for the
style of writing, I have been inspired by the book of Jiřı́ Matoušek and Jaroslav Nešetřil
entitled Invitation to Discrete Mathematics. I discovered this book when I was 14 years
old, and I read it (nearly) in one go. It is clearly one of my favourite books that has a
honour place in my library and to which I return when I need to be heartened. I always
admired the ease of writing and the gentle humour this book is filled with. Everything
is explained very clearly, with a great emphasis on intuition. It is affordable to a wide
audience, but despite that, it is impeccably rigorous.

For me, intuition and visualization are extremely important. That is why my thesis
is full of figures and examples, and I try to give as much motivation and intuition as I
can. Of course, it would be extremely pretentious to want to do as good as Matoušek
and Nešetřil. But I did my best...
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Chapter 1

Preliminaries

1.1 Preference profile

Let us introduce basic notions and notations that will be used in the whole thesis. We
consider a set V = {v1,v2, . . . , vn} of n voters. Each voter expresses her preference over
the set of m candidates C = {c1, c2, . . . , cm}. The preference of a voter vi , denoted by >i ,
is a total strict order on C.

A Curious Tortoise Intervention

For convenience, les us recall what a total strict order is. It corresponds to
a binary relation (denoted here by >i) on the set C that has the following
properties:

• irreflexive: for any cj , we do not have cj >i cj - in other words, no
candidate can be strictly preferred to herself.

• antisymmetric: we cannot have at the same time cj >i ck and ck >i cj
- if cj is strictly preferred to ck , then ck cannot be strictly preferred
to cj .

• transitive: if cj >i ck and ck >i cl , then cj >i cl .

• total: any couple of candidates cj and ck can be compared - we have
cj >i ck or ck >i cj .

The multi-set1 P = {>1,>2, . . . ,>n} is called a preference profile.

It is worth mentioning that other types of preferences exist in the literature. For in-
stance, we can consider incomplete rankings where the voters may not give a complete
ranking but only its upper part. We can also consider rankings (complete or not) with

1Indeed, the elements of P are not necessarily pairwise distinct, as several voters can give the same
preference.
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ties - in such a case, the voters have a possibility to express indifference between several
candidates. However, only complete preferences without ties (corresponding to total
strict orders) are considered in this thesis.

We write c1 >i c2 if voter vi prefers c1 to c2. Moreover, given a set of candidates S,
we write S >i c if for each c′ ∈ S, we have c′ >i c. The preference >i , called also the
ranking of vi , writes cj >i ck >i . . . >i cl . For brevity, we will often write it as (cj , ck , . . . , cl).

Let us define, for each voter vi , her ranking application ri : {1, . . . ,m} → C, where ri(k)
is the k-th most preferred candidate of vi . This application is obviously a bijection be-
tween the candidates and the ranks, so we can define its inverse r−i , where r−i (ck) is the
position of candidate ck in the ranking >i . Finally, we denote by c∗i the most preferred
candidate of vi (i.e., the candidate ri(1)).

Example 1.1.1. Let us consider a profile P = {>1,>2,>3,>4} of 4 preferences over 5 candi-
dates with:

>1: (c2, c3, c1, c4, c5)

>2: (c3, c4, c5, c2, c1)

>3: (c4, c5, c3, c2, c1)

>4: (c2, c3, c1, c4, c5)

We have, for instance, c∗1 = c2, r1(2) = c3 and r−1 (c4) = 4. We also note that preferences of
voters v1 and v4 are the same.

Given two preferences >i and >j , it is natural to want to measure the “similarity” be-
tween them. A classical way to do so is to introduced the so called Kendall tau distance
which counts the number of pairwise disagreements between two preferences. The
greater this number is, the less >i and >j are similar. More formally, we have the fol-
lowing definition:

Definition 1.1.1: Kendall tau distance

Given two preferences >i and >j , we define the Kendall-tau distance between >i
and >j , denoted dKT (>i ,>j ), as the number of pairs of candidates {c,c′} such that
c >i c

′ and c′ >j c, or vice versa:

dKT (>i ,>j ) = |{{c,c′} : c >i c′ and c′ >j c, or vice versa}

Example 1.1.2. To illustrate this notion, let us consider two preferences >i= (c1, c2, c3, c4)
and >j= (c3, c1, c2, c4). The only pairs ranked in different order in >i and >j are {c1, c3} and
{c2, c3}. We have thus dKT (>i ,>j ) = 2.

Given a preference profile P, we call a subprofile of P any preference profile that can
be obtained from P by removing some preferences. We call a restriction of P on a set
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C′ ⊂ C a preference profile P′ obtained from P by removing from each preference >v
all the candidates of C \ C′.

Definition 1.1.2: Subprofile

Let P be a profile of n preferences over the set ofm candidates C = {c1, c2, . . . , cm}.
A preference profile P′ over the same set C of candidates is a subprofile of P if,
for each >v∈P′, we have >v∈P.

Definition 1.1.3: Restriction of profile P on a set C′ ⊂ C

Let P = {>1,>2, . . . ,>n} be a profile of n preferences over the set of m candidates
C = {c1, c2, . . . , cm}, and let C′ ⊂ C. A preference profile P′ = {>′1,>

′
2, . . . ,>

′
n} over

the set of candidates C ⊂ C′ is a restriction of P on C′ if for each i ∈ {1, . . . ,n}, and
for each pair of candidates (cj , ck) of C′,

cj >
′
i ck iff cj >i ck .

With these notions, we can finally define a minor of P as a subprofile of a restriction of
P. In other words, we remove some candidates from each preference of P, as well as
some preferences of P.

Example 1.1.3. Let us consider the profile P = {>1,>2,>3,>4} of 4 preferences over the set
of 5 candidates defined in Example 1.1.1. The profile P′ = {>1,>3} of 2 preferences over the
set of 5 candidates is a subprofile of P.

Let us now consider a profile P′′ of 4 preferences over the set of candidates C′′ = {c1, c3, c4}
with:

>′′1 : (c3, c1, c4)

>′′2 : (c3, c4, c1)

>′′3 : (c4, c3, c1)

>′′4 : (c3, c1, c4)

We have C′′ ⊂ C, and P′′ is a restriction of P on C′′.

Finally, P′′′ = {>′′1 ,>
′′
3 } is a minor of P.

We end this chapter by the definition of a domain restriction. We use in this thesis the
definition given by Elkind et al. (2022), however, note that another definitions of this
notions exist in the literature (see for instance Puppe (2018)).

Definition 1.1.4: Domain restriction (Elkind et al., 2022)

A domain restriction is a set of preference profiles.
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As said in the introduction, this thesis deals with structured preferences. Each pref-
erence structure S can be associated to a domain restriction DS in the following way:
a preference profile P is conform to the given structure S if and only if P ∈ DS . As
emphasized by Elkind et al. (2022), a domain restriction can be viewed as a property of
a profile. Typically, this property imposes some structure on the profile. In the rest of
this chapter, we will present some of the most popular domain restrictions.

1.2 Single-peaked preferences

We will now formally introduce the notion of single-peakedness. This notion was orig-
inally introduced by Black (1948), and independently rediscovered by Arrow (1951).
The underlying idea is simple: we suppose that voters decide according to a unique
scalable criterion. The different alternatives can be ordered on an axis using the differ-
ent values of the criterion. Let illustrate this idea on a classical example:

Example 1.2.1. The decision to take is here very straightforward - we want to decide about
the temperature to be set on a collective thermostat. Unless the voter is a tortoise or an-
other poikilotherm animal, it seems very natural that she has her most preferred temperature
somewhere on the scale, and that her preference will decrease is we lower (or, independently,
increase) the temperature. For instance, if the ideal temperature of the voter is 18◦C, it would
be quite strange if her second most preferred temperature would be 24◦C and the third one,
let us say, 20◦C. That is why we call this structure single-peaked - if we plot the graph of the
level of preference in function of the attribute value, 18◦C will be here a peak, and if we move
to the left (or to the right), the preference will decrease. Therefore, there will be no other local
maximum, i.e., peak. It is important to note that if two values are not on the same side of
the peak, they can be ordered in both possible ways - for instance, we can have, in the above
example, two preferences >v and >v′ with the same peak 20◦C such that 16◦C >v 22◦C, but
22◦C >v′ 16◦C. However, for both >v and >v′ , we have 18◦C >v 16◦C.

For a better visualisation, let us go back to the profile of Example 1.1.1. We will associate to
each ci a temperature, namely c1 = 16◦C,c2 = 18◦C,c3 = 20◦C,c4 = 22◦C and c5 = 24◦C.
In Figure 1.1, we can see that the profile is indeed single-peaked with respect to the axis where
the temperatures are ordered increasingly from left to right.

A Curious Tortoise Intervention

Another well-known example that should definitely be mentioned is the
example of left-right political axis. Each candidate can be positioned
somewhere on the left-to-right policital spectrum. Each voter has her
most preferred candidate, and her preference then decreases if we move
towards the left or right extremity.
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16◦ 18◦ 20◦ 22◦ 24◦

5

4

3

2

1

Axis on the alternatives

R
an

ks

Figure 1.1: The profile from Example 1.1.1 is single-peaked with respect to the axis
c1 ◁ c2 ◁ . . . ◁ c5.

We did not choose it for the introductory example, as it is much
more complex. Firstly, it is not always evident to place the candidates
exactly on the axis. For instance, some candidates may be indistinguish-
able on the political axis, while opinions of other ones may vary from left
to right, depending on the subject. Also, decisions of voters are typically
very complex in a real-world election, and all decision criteria are not
necessarily covered by (or in correlation with) the left-right position.
Actually, it is often discussed whether the voter really decide according
to the left-right axis and if so, to which extent. In particular, if we collect
real-world election data, can we identify the underlying political axis?
This point will be discussed in Chapter 4.

We are now ready to give the formal definition of single-peakedness. We start by defin-
ing an axis. Given a set of m candidates C = {c1, c2, . . . , cm}, an axis A on the set C is
a total strict order ◁A on C. We write ci ◁A cj if ci is on the left of cj . Given an axis
A = ci ◁A cj ◁A . . . ◁A ck , its leftmost and rightmost candidates (here ci and ck) are called
the extremities of the axis A. When no confusion is possible, we omit the index A in the
notation - in other words, we write ◁ instead of ◁A.

We can now give the original definition of single-peakedness introduced by Black (1948):

25



Chapter 1 – Preliminaries

Definition 1.2.1: Single-peaked preferences (Black, 1948)

Let P = {>1,>2, . . . ,>n} be a preference profile over the set of m candidates
C = {c1, c2, . . . , cm}, and let A be an axis on C. The profile P is single-peaked with
respect to A if for any preference >i and any couple of candidates cj , ck such that
ck ◁A cj ◁A c

∗
i or c∗i ◁A cj ◁A ck , we have cj >i ck .

We say that a preference profile is single-peaked if there exists an axis A
such that the profile is single-peaked with respect to A.

As said earlier, this notion has been rediscovered by Arrow (1951) who formulated
it in a slightly different way - instead of requiring the preferences to be decreasing
while moving towards the extremities from the peak, he states that if a candidate cj lies
between candidates cl and cr on the axis, then she is never ranked worse than both cl
and cr :

Definition 1.2.2: Single-peaked preferences (Arrow, 1951)

Let P = {>1,>2, . . . ,>n} be a preference profile over the set of m candidates
C = {c1, c2, . . . , cm}, and let A be an axis on C. The profile P is single-peaked with
respect to A if for any preference >i and any triple of candidates cl ◁A cj ◁A cr , we
have cj >i cl or cj >i cr - in other words, cj is never ranked last among these three
candidates.

Again, a preference profile is single-peaked if there exists an axis A such
that the profile is single-peaked with respect to A.

It is easy to see that both definitions are equivalent. Hence, we will use them inter-
changeably, depending on the context. We say that a preference is compatible with axis
A if it is single-peaked with respect to A. Symmetrically, an axis A is compatible with a
given preference (resp. profile) if this preference (resp. profile) is single-peaked w.r.t.
A.

1.2.1 Axiomatic and algorithmic properties

Condorcet winner There are many desirable properties that hold under the assump-
tion of single-peaked preferences. For instance, any single-peaked profile with an odd
number of voters admits a Condorcet winner. A Condorcet winner is a candidate that
beats all the other candidates in pairwise comparison. It is often advocated that if such
a candidate exists, she should win the election. The notion of Condorcet winner was
first proposed by Marquis de Condorcet at the end of the 18th century. He also noticed
that some profiles do not admit a Condorcet winner: actually, there can be a cycle in

26



Chapter 1 – Preliminaries

the majority relation, as shown in the following example.

Example 1.2.2. Let us consider a profile of 3 preferences over 3 candidates:

>1: (c1, c2, c3)

>2: (c2, c3, c1)

>3: (c3, c1, c2)

We have a majority of voters that prefer c1 to c2, a majority of voters that prefer c2 to c3 and a
majority of voters that prefer c3 to c1. In other words, we get c1 > c2 > c3 > c1 - there is a cycle
in the majority relation >. Note that we can easily check that this profile is not single-peaked.

Impossibility theorems We have already seen in the introduction that Arrow’s im-
possibility theorem does not hold under the assumption of single-peakedness. We have
also stated that the Gibbard–Satterthwaite theorem does not hold in such a case either
- indeed, non-manipulable voting rules (called also strategyproof voting rules in lit-
erature) can be found if the preferences are known to be single-peaked. To give an
example, let us consider the so called median voter rule. This rule returns the Con-
dorcet winner (which is unique under the assumption of an odd number of voters): to
do so, it finds an axis A w.r.t that the profile is single-peaked, and then it orders the
voters according to their peaks (where the order on peaks is determined by A). It turns
out that the Condorcet winner is the peak of the median voter (Black, 1948). Later,
Moulin (1980) proved that this voting rule is non-manipulable.

Example 1.2.3. To illustrate this rule, let us consider the subprofile of the profile P of Exam-
ple 1.1.1 containing its first three preferences >1,>2 and >3.2 We have seen that this profile is
single-peaked w.r.t the axis A = c1◁c2◁c3◁c4, so if we want to order the preferences according
to their peaks, we first take all preferences with the peak c1, then all preferences with the peak
c2, etc. Finally, the preferences with the peak c5 are put to the end of this order. It turns out
that the order (>1,>2,>3) respects already the order on peaks determined by A. The median
voter (resp. median preference) is then v2 (resp. >2), so the Condorcet winner is the peak of
>2, i.e., c3. We can check that this candidate is a Condorcet winner - it is preferred to c1 by
all three voters, to c2 by voters v2 and v3, to c4 by voters v1 and v2, and to c5 by voters v1
and v2. In particular, we see that it is the unique Condorcet winner of this profile.

A Curious Tortoise Intervention

It is quite easy to see why the median voter rule is non-manipulable. Let
c∗ be the Condorcet winner, and let us consider a voter v whose most pre-
ferred candidate c′ is on the left of c∗ on axis A. There are two possibilites

2For the simplicity, the fourth preference is omitted here to have an odd number of voters, which
guarantees the uniqueness of Condorcet winner. However, note that any single-peaked profile admits a
(weak) Condorcet winner.
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for v to lie about her most preferred candidate:

• v declares that her most preferred candidate is cl with cl ◁A c
∗. In

such a case, the preference of v is still ordered on the left of the
median voter - in other words, the number of preferences ranked on
the left of the median voter does not change, hence the median voter
remains the same

• v declare that her most preferred candidat is cr with c∗◁Acr . In such a
case, the preference of v moves from the left side to the right side of
the (true) median voter in the ordering. Hence, the median voter ei-
ther remains the same, or moves to the right - in other words, further
from the true preference of v. As the preference of v is single-peaked
w.r.t. A, the new Condorcet winner can only be worse for her (or, in
the best case, it remains the same).

To sum up, v has nothing to gain by manipulating. We reason the same
for any voter whose most preferred candidate lies on the right of the Con-
dorcet winner. Finally, we note that a voter whose peak corresponds to the
Condorcet winner has no motivation to lie.

Computational aspects From the computational point of view, it is known that single-
peaked preferences help to simplify some NP-hard problems. For instance, there are
many NP -hard voting rules (for instance, Kemeny rule (Brandt et al., 2015), Dodg-
son rule (Brandt et al., 2015) or Young rule (Peters and Lackner, 2020)) that become
polynomial-time solvable for single-peaked preferences.

Preferences elicitation Another important topic of decision theory that we have not
yet discussed, and that is actually not tackled in this thesis, is preference elicitation.
Obviously, the preference profile is the key element of a social choice problem. How-
ever, it can be quite tricky to collect the preferences - especially with an important
number of candidates, it can be a complex task for a voter to determine what is ex-
actly her preference over the whole set of candidates. One of the interests of preference
elicitation is to ask the voter good questions (called queries) about her preferences (for
instance, one can ask if the voter prefers candidate c to candidate c′) in order to get
enough information to build voter’s complete ranking. It has been shown (when no
preference structure is assumed) by Conitzer and Sandholm (2005) that, in the worst
case, it is necessary to question the voter about all her pairwise preferences to build her
complete ranking of candidates. In contrast, Conitzer (2009) showed that if a prefer-
ence is known to be single-peaked with respect to a known axis, it can be elicited using
only a linear number (in terms of the number of candidates) of comparison queries.
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1.2.2 Recognition of single-peaked preferences

In the case of the thermostat problem introduced in Example 1.2.1, the single-peaked
axis is known a priori - different values of temperature are simply ordered increasingly.
Also in the case of an election, the political left-right axis can be built a priori, as each
candidates takes in general a position on the left-right spectrum. However, for some
preference profiles, we can believe that they might be single-peaked, without knowing
the underlying axis. Given a preference profile, it is thus natural to want to decide
whether it is single-peaked, and, if so, to identify a compatible axis. This problem is
called a recognition problem.

The question of the computational complexity of recognizing single-peaked prefer-
ences has been widely studied. Bartholdi III and Trick (1986) have proposed anO(nm2)
algorithm to compute a compact representation of all axes on which a collection of n
preferences over m candidates are single-peaked, or state that none exists. This com-
plexity was then improved to O(n2 + nm) by Doignon and Falmagne (1994). It can be
decreased to O(nm) if one looks for only one possible axis (Escoffier et al., 2008).

Moreover, there exists an elegant characterization of the domain of single-peaked pref-
erences using the so called forbidden minors - a given profile is single-peaked if and only
if it does not contain any of these minors. This result has been found by Ballester and
Haeringer (2011):

Theorem 1.2.1: Characterization of the single-peaked domain (Ballester and
Haeringer, 2011)

A preference profile P of n preferences over the set of m candidates C is single-
peaked if and only if:

• There does not exist any triple of candidates {ci1 , ci2 , ci3} and any triple of
voters {vj ,vk ,vl} such that

{ci1 , ci2} >j ci3 , {ci1 , ci3} >k ci2 and {ci2 , ci3} >l ci1 .

In other words, for any triples of candidates, at most two of them can be
ranked last in the votes that make up the preference profile.

AND

• There does not exist any quadruple of candidates {ci1 , ci2 , ci3 , ci4} and any
pair of voters {vj ,vk} such that

{ci1 , ci4} >j ci2 >j ci3 and {ci3 , ci4} >k ci2 >k ci1 .
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Strictly speaking, this theorem does not give explicitely the forbidden minors. How-
ever, they can be derived easily from it - namely, there are 5 explicit forbidden minors
(up to renaming the candidates). For conciseness, we display each minor Si as a matrix,
where preferences are given in columns:

S1 =


c1 c1 c3
c2 c3 c2
c3 c2 c1

 , S2 =


c1 c2 c3
c2 c3 c1
c3 c1 c2

 , S3 =


c4 c4
c1 c3
c2 c2
c3 c1

 , S4 =


c4 c3
c1 c4
c2 c2
c3 c1

 , S5 =


c1 c3
c4 c4
c2 c2
c3 c1


A Curious Tortoise Intervention

Without giving a proof of this theorem, let us visualize it a little bit - to
get more insight, we will see why these subprofiles cannot be contained
in a single-peaked profile. This is the necessary condition. We leave aside
why this condition is sufficient.

At first, let us make an easy observation: if a candidate c is ranked
last by at least one voter vi , she must be an extremity of any compatible
axis. Indeed, in the opposite case, there is at least one candidate cl on the
left and one candidate cr on the right of c. We have cl ◁ c ◁ cr , but cl >i c
and cr >i c. This is in contradiction with Definition 1.2.2.

In particular, there are at most two candidates ranked last in any
single-peaked profile. Note that this remains valid for any subprofile
on any subset of candidates - in particular, in a subprofile on a triple of
candidates, at most two of them can be ranked last. But this is nothing
but the first two forbidden minors.

The second type of forbidden minors uses the same observation in a
more complex way. Let us suppose that there are two voters vi and vj
such that {c1, c4} >i c2 >i c3 and {c3, c4} >j c2 >j c1. As c3 and c1 are ranked
last, we have necessarily (up to an axis reversal) c1 ◁ {c2, c4} ◁ c3. However,
if c2 ◁ c4, the candidates c1, c2 and c4 do not fulfill Definition 1.2.2 for >i ,
and if c4 ◁ c2, the triple {c4, c2, c3} does not fulfill the definition for >j .

However, as emphasized by Feld and Grofman (1986), single-peaked preferences are
very difficult to observe in practice. Indeed, single-peakedness in the strictest sense re-
quires that no individual preference deviates (even slightly) from the single-peakedness
condition. Given an axis A, the number of rankings consistent with A is 2m−1, over m!
possible rankings in total. The proportion of consistent rankings within all possible
rankings thus quickly becomes tiny when m increases (e.g., for m = 7, 2m−1/m! ≈ 0.01).
Hence, a natural idea is to relax, hopefully just a little bit, the condition of single-
peakedness, in order to get a structure that would be more likely to appear in prac-
tice, while conserving as many good properties as possible. This problem is studied in
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Part II. In Chapter 3, we extend the notion of single-peakedness on an arbitrary graph.
This idea is not completely new - several classes of structured preferences have been
proposed to generalize the single-peaked domain with respect to an axis, i.e., a path,
to more general graphs. For instance, Demange (1982) studied single-peakedness on a
tree, Peters and Lackner (2017) on a circle. In Chapter 4, we study the so called nearly
single-peakedness: we keep the structure of axis, but we allow a profile to derive from
it if necessary. A distance measure needs then to be introduced to evaluate the distance
of a profile from a given axis.

1.3 Single-crossing preferences

Another popular domain restriction is known as single-crossing preferences. The under-
lying idea of this structure is similar to single-peaked preferences. However, this time,
it is the set of voters that is ordered on an axis. The motivation for doing that is the fol-
lowing: in some specific context, we can suppose that voters can be ordered according
to some “ideological” aspect. For instance, if we go back to our thermostat example,
the preferences could be governed by the level of environmental concern. Voters who
care more about ecology will probably tend to prefer lower temperatures than voters
who do not care about it. More generally, it is quite natural to assume that preferences
somehow depend on the level of environmental concern - for each couple of candidates
ci and cj , we can identify a level such that all voters situated above this level will prefer
ci to cj (resp. cj to ci), and all voters below this level will prefer cj to ci (resp. ci to
cj ). Visually, suppose that we write the preferences as columns in the single-crossing
ordering, and for each candidate, we connect her occurences in each of the preferences
by a polygonal chain. Then, for each couple of candidates, their corresponding chains
will cross at most once - up to some ideological position, one of them will be preferred
to the other by each voter, and then the preference will reverse (see Figure 1.2). Let us
now formalize this idea:

Definition 1.3.1: Single-crossing preferences

A preference profile P = {>1,>2, . . . ,>n} over a set C of m candidates is single-
crossing if there exists an ordering π = (>i1 ,>i2 , . . . ,>in) of the preferences such
that, for each couple of candidates c and c′, the sets {ik |c >ik c

′} and {ik |c′ >ik c}
form intervals of π.

The profile from Example 1.1.1 is single-crossing for the following order on voters:
(>1,>4,>2,>3). We can check that for each pair of candidates, the definition holds. For
instance, we have c3 >i c5

3 for i ∈ {1,2,4}, and c5 >i c3 for i ∈ {3}. These two sets both
form an interval of the given ordering.

3We recall that in the example of the thermostat, we have associated to each ci a temperature, namely
c1 = 16◦C,c2 = 18◦C,c3 = 20◦C,c4 = 22◦C and c5 = 24◦C.
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>1 >4 >2 >3

18◦C 18◦C 20◦C 22◦C

20◦C 20◦C 22◦C 24◦C

16◦C 16◦C 24◦C 20◦C

22◦C 22◦C 18◦C 18◦C

24◦C 24◦C 16◦C 16◦C

Figure 1.2: The profile from Example 1.1.1 is single-crossing for the following order on
the voters: (>1,>4,>2,>3).

Pioneered by Mirrlees (1971) and Roberts (1977), this domain restriction also guaran-
tees some desirable properties. For instance, the majority relation is transitive for odd
profiles, and, what is more, any (odd) profile contains a voter which coincides with this
majority relation (note that this is not a case for single-peaked preferences) (Rothstein,
1991).

Similarly as for single-peaked preferences, it is natural to want to decide whether a
given profile is single-crossing or not. We recall that this problem is called a recognition
problem. It has been widely studied in the literature: Bredereck et al. (2013) give an
O(nm2) recognition algorithm for single-crossing preferences by reducing the problem
to the consecutive ones problem (see Booth and Lueker (1976) for more details on the con-
secutive ones problem). Elkind et al. (2022) show that this complexity can be refined
to O(nmlog(m)). Contrary to single-peaked preferences, there is no known recognition
algorithm that performs in O(nm).

Similarly to the single-peaked domain, the single-crossing domain can be character-
ized by forbidden minors (Bredereck et al., 2013):
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Theorem 1.3.1: Characterization of the single-crossing domain (Bredereck et al.,
2013)

A preference profile P of n preferences over a set C of m candidates is single-
crossing if and only if:

• There do not exist candidates ci1 , . . . , ci6 and voters vi ,vj ,vk such that:

ci2 >i ci1 , ci1 >j ci2 , ci1 >k ci2
ci3 >i ci4 , ci4 >j ci3 , ci3 >k ci4
ci5 >i ci6 , ci5 >j ci6 , ci6 >k ci5

AND

• There do not exist candidates ci1 , ci2 , ci3 , ci4 and voters vi ,vj ,vk ,vl such that:

ci1 >i ci2 , ci2 >j ci1 , ci1 >k ci2 , ci2 >l ci1
ci3 >i ci4 , ci3 >j ci4 , ci4 >k ci3 , ci4 >k ci3

Again, the explicit list of forbidden minors can be inferred from the theorem (however,
this time, there are 30 forbidden minors).

1.4 1-Euclidean preferences

The last domain restriction we present in this section is the so called 1-Euclidean do-
main. This domain was introduced by Coombs (1964) under the name unidimensional
unfolding. Each candidate and voter is associated to a position on the real line. The po-
sition of voter v is also called the ideal point of v. The idea here is that the nearer a voter
v is to a candidate c, the higher c is ranked in the preference of v. For instance, imag-
ine that you are in Paris, somewhere between Place d’Italie and Denfert-Rochereau. So
basically, you walk along the metro line 6 which can be seen here as a straight line. If
you want to take the metro (it is a cold, rainy afternoon and you are in a hurry), you
will probably prefer to go to the nearest station. If by misfortune this station is closed,
you would probably opt for the second nearest station. And so on.4 This is exactly the
idea behind 1-Euclidean preferences. Let us now give a formal definition:

4Hopefully not the whole metro line 6 is closed... which would not surprise me!
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Definition 1.4.1: 1-Euclidean preferences

A profile P = {>1,>2, . . . ,>n} of n preferences of a set V of n voters over a set C
of m candidates is 1-Euclidean if there exists a mapping

f : V ∪ C→R

such that for each voter vi ∈ V and each couple of candidates cj , ck ∈ C, we have

cj >i ck iff |f (vi)− f (cj )| < |f (vi)− f (ck)|.

The following example shows that the profile P of Example 1.1.1 is 1-Euclidean.

Example 1.4.1. Figure 1.3 gives an example of a 1-Euclidean mapping of P. For instance,
for >1= (c2, c3, c3, c4, c5), we see that c2 is the nearest candidate to v1. The second nearest can-
didate to v1 is c3, followed by c1 (note that the difference between the quantities |f (c3)−f (v1)|
and |f (c1)− f (v1)| is very small). The fourth nearest candidate to v1 is then c4, and the fur-
thest candidate to v1 is c5.

More precisely, we can give the values taken by f on C and V : we have f (c1) = 0, f (c2) =
5, f (c3) = 9, f (c4) = 11, f (c5) = 12, and f (v1) = 4.9, f (v4) = 5.1, f (v2) = 9.4 and f (v3) =
10.9.5 We can check numerically that this mapping satisfies Definition 1.4.1.

1 2 3 4 5 6 7 8 9 10 11 12

f (c1) f (c2) f (c3) f (c4) f (c5)

f (v1) f (v4) f (v2) f (v3)

Figure 1.3: A 1-Euclidean mapping f of the profile P from Example 1.1.1. The po-
sitions of candidates are drawn with red circles and the positions of voters are drawn
with blue squares.

A Curious Tortoise Intervention

While for single-peaked preferences we are not able to state a preference
between a candidate on the left-hand side of the peak and a candidate on
the right-hand side of the peak, this is no more true for 1-Euclidean pref-
erences. Contrary to the single-peaked axis which only gives an order on
candidates, 1-Euclidean representation provides also information about
the distance between candidates. For instance, in the above example, we

5Actually, it would be even easier to put f (v1) = f (v5) = f (c2), f (v2) = f (c3) and f (v3) = f (c4) - indeed,
several voters or candidates can share the same position. However, we preferred to have all positions
distinct to get a more readable plot of f in Figure 1.3.
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have found a mapping f according to which c3 is closer to c4 than c2 is to
c1. If we go back to the thermostat example once again, the interpretation
would be that the impact of changing from 20◦C to 22◦C is perceived as
less important than the impact of changing from 16◦C to 18◦C.

However, this is only one possible mapping that fulfills the defini-
tion. Does it remain true for any convenient mapping, or can we find a
mapping f ′ according to which c2 will be closer to c1 than c3 to c4? We
will come back to this question in Chapter 2.

We have seen that the profile of Example 1.1.1 was also single-peaked and single-
crossing. Actually, this is not a simple coincidence. It is well-known that any 1-
Euclidean profile is both single-peaked and single-crossing (Grandmont, 1978) (note
that the reverse is not true - we will detail this point in Chapter 2). This observation is
actually used in all recognition algorithms for 1-Euclidean preferences that have been
devised so far. Doignon and Falmagne (1994) combine the information that the profile
must be single-peaked and single-crossing. They obtain an order on both candidates
and voters which allows them to formulate a linear program to find the exact posi-
tions of voters/candidates. Knoblauch (2010) uses only the information that the profile
needs to be single-peaked, and she then builds a linear program from a single-peaked
order. Finally, Elkind and Faliszewski (2014) use the single-crossing order to formulate
their linear program.

So far, no purely combinatorial algorithm (i.e., without using linear programming) has
been found. As noticed by Peters (2017), this question seems closely related to whether
there exists a good characterization of 1-Euclidean preferences. Chen et al. (2017)
showed that contrary to single-peaked and single-crossing preferences, 1-Euclidean
preferences cannot be characterized by finitely many forbidden minors - in other words,
there are infinitely many forbidden minors. We say that a characterization (of a given
domain by a, possibly infinite, set of forbidden minors) is good if there exists a polynomial-
time algorithm to decide whether a given profile contains or not a forbidden minor.
These questions highlight the fact that the 1-Euclidean domain is much less under-
stood (from the structural point of view) than both single-peaked and single-crossing
domains. We are going to discuss this issue in Chapter 2.
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Chapter 2

Relations between single-peaked,
single-crossing and 1-Euclidean
preferences

2.1 Introduction

The aim of this short chapter is to deepen the state of the art concerning the domain
restrictions introduced in Chapter 1. More precisely, we focus here on the relations be-
tween single-peaked, single-crossing and 1-Euclidean domains. Indeed, we have seen
at the end of Chapter 1 that the 1-Euclidean domain is undoubtedly less understood,
from the structural point of view, than the single-peaked or the single-crossing do-
main. For instance, contrary to both the single-peaked domain and the single-crossing
domain, the 1-Euclidean domain cannot be characterized by finitely many forbidden
minors (Chen et al., 2017). Moreover, no purely combinatorial (i.e., without using lin-
ear programming) recognition algorithm for 1-Euclidean preferences has been found
so far.

We recall that it is well-known that any 1-Euclidean preference profile is both single-
peaked and single-crossing (Grandmont, 1978). In other words, the 1-Euclidean do-
main is contained in the domain of profiles that are single-peaked and single-crossing.
This domain will be denoted as the SPSC domain in which follows. Understanding the
SPSC domain seems essential to better grasp the 1-Euclidean domain.

The SPSC domain is actually quite well understood. Recently, Elkind et al. (2020) gave
a characterization of this domain - they proved that a preference profile is SPSC if and
only if it can be obtained from a minimally rich single-crossing profile by deleting some
voters (a profile is minimally rich if each candidate is ranked first by at least one voter).
They also recall that the SPSC domain can be viewed as a “combinatorial” approxima-
tion of the 1-Euclidean domain. Actually, Chen et al. (2017) showed that a preference
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profile over a set of at most 5 candidates is 1-Euclidean if and only if it is SPSC. They
also provide a counterexample to show that this result no longer holds for m ≥ 6.

Bredereck et al. (2013) explained how one can generate every possible single-crossing
preference profile (up to renaming candidates). In fact, this result follows directly
from a well-known connection between single-crossing preferences and the so called
weak Bruhat order (see Definition 2.2.3 below). Indeed, several works (see for instance
the works of Abello (1991) or Galambos and Reiner (2008)) come with a result that
can be formulated as follows: in terminology of social choice theory, the problem of
deciding whether a given preference profile is single-crossing can be reduced (in poly-
nomial time) to the (shortest) path problem in a given, well-defined graph. This point
will be detailed in Section 2.3.2. A direct combination of this result with results given
by Elkind et al. (2020) yields an algorithm to generate all possible SPSC profiles (up to
renaming candidates).

In this chapter, we reinterpret some of the known results by using a common frame-
work, and we highlight the links between them. Our aim is to provide the reader a
more global structural understanding of the relations between single-peaked, single-
crossing and 1-Euclidean preferences. Actually, the existing works use several different
terminologies of different fields as, for instance, combinatorics, group theory or social
choice. Therefore, it is not always particularly easy to get a unified and global state of
the art on the topic. The chapter is organised as follows: in Section 2.2, we introduce
two main combinatorial structures, namely the permutohedron and the weak Bruhat or-
der, that are often use to study restricted domains. Indeed, these structures help to
grasp various (theoretical) properties of different domain restrictions and to under-
stand the connexion between them. For the purposes of this chapter, we do not need
to go deeply into the theory of permutohedra, or weak Bruhat orders. Instead, we will
provide a quite high-level presentation of these notions, by focusing on visualisation
and intuition issues.

We discuss then some known results on the SPSC domain in Section 2.3, and we ex-
plain how they can be reinterpreted using the common framework established in Sec-
tion 2.2. Furthermore, we implemented the algorithm described by Bredereck et al.
(2013) to enumerate all SPSC profiles up to 8 candidates. Using linear programming,
we could then decide for each of these profiles whether or not it was 1-Euclidean. We
provide the results of this numerical analysis to give some elements of answer to the
question of how well the SPSC domain approximates the 1-Euclidean domain.

2.2 Combinatorial structures behind restricted domains

In this section, we introduce several notions that will be central in the remainder of the
chapter. Let us start by introducing the notion of a maximal preference profile. In which
follows, we consider that all preferences of a given profile are pairwise distinct. With

38



Chapter 2 – Relations between single-peaked, single-crossing and 1-Euclidean
preferences

this assumption, we can define a maximal single-peaked (resp. single-crossing, SPSC,
1-Euclidean) profile as follows:

Definition 2.2.1: Maximal profile

A single-peaked (resp. single-crossing, SPSC, 1-Euclidean) profile is maximal if
for any preference >i<P, the profile P∪ {>i} is not single-peaked (resp. single-
crossing, SPSC, 1-Euclidean) anymore.

2.2.1 Permutohedron of order m

As stated above, a common framework is set in this chapter in order to provide an
overview of existing results. For this purpose, we use the notion of permutohedron (see
Definition 2.2.2 below). These idea is not novel - the permutohedron is a classical struc-
ture in combinatorics and group theory. To the best of our knowledge, it was first used
by Guilbaud and Rosenstiehl (1963) in the social choice context, and became quickly
a useful1 tool to study structural aspects of domain restrictions - for instance, see the
excellent survey of Monjardet (2009) providing a detailed overview on the topic, or the
more recent (and no less excellent!) work of Puppe and Slinko (2019) studying Con-
dorcet domains.

Before introducing the notion of permutohedron, we need to define the notion of swap:
given a permutation π = (i1, i2, . . . , im) of the set {1,2, . . . ,m}, the operation of swap be-
tween two elements of π consists in exchanging their positions in π. For instance, ap-
plying the operation swap(1,4) on the permutation (1,2,3,4,5) yields the permutation
(4,2,3,1,5). In the remainder of the chapter, only the swaps of adjacent elements will
be allowed. For instance, given the permutation (1,2,3,4,5), the only possible swaps
are swap(1,2), swap(2,3), swap(3,4) and swap(4,5).

We are now ready to introduce the notion of permutohedron:

Definition 2.2.2: Permutohedron of order m

Let m be an integer. The permutohedron of order m is a graph Pm = (Vm,Em)
where the set of vertices corresponds to the set of all permutations of the set
{1,2, . . . ,m} (in particular, |Vm| = m!), and we have {u,v} ∈ Em if and only if the
permutation v can be obtained from the permutation u by making a unique swap
of adjacent elements of u.

Example 2.2.1. We give here the permutohedron of order 3 and of order 4. For more read-
ability, the vertices of P4 are not labeled - the labels can be found by assuming, without loss
of generality, that the circle vertex corresponds to the permutation (1,2,3,4).

1but, in my humble opinion, perhaps not used enough by the social choice community.
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(b) permutohedron of order 4

Figure 2.1: The permutohedra of order 3 and 4. The circle vertex corresponds to the
permutation (1,2,3,4). The label ij on edge {u,v} indicates that i and j are swapped
between the permutations associated to the vertices u and v.

Each vertex of Pm can be identified with one possible preference over the set of can-
didates {c1, c2, . . . , cm}, by simply associating the vertex corresponding to a permutation
(i1, i2, . . . , im) to the preference (ci1 , ci2 , . . . , cim). For conciseness and by abuse of language,
we will use the terms preference >i and vertex associated to preference >i indifferently.
Note also that given two preferences >i ,>j , the Kendall-tau distance dKT (>i ,>j ) corre-
sponds to the length of any shortest path between the vertices >i and >j .

The single-peaked domain and the permutohedron Obviously, as Pm contains all
possible permutations, each preference profile forms a subset of vertices of Vm. More
precisely, each preference profile P = (V ,E) can be seen as a subgraph of Pm induced
by V . In particular, each domain restriction can be viewed as a set of subgraphs of Pm.

A Curious Tortoise Intervention

It should be noted, however, that other graphs have been proposed in the
literature to represent a preference profile P. For instance, Puppe and
Slinko (2019) use the following definition: given two preferences >,>′ of
P, and denoting by [>,>′] the set of preferences that are between >,>′ (i.e.,
the set of preferences >′′ such that ci >′′ cj whenever we have both ci > cj
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and ci >
′ cj ), they say that > and >′ are neighbours if [>,>′] ∩ V = {>,>′},

(i.e., there is no preference between > and >′ in P).

They then visualise P by a graph ΓP = (V ,EP) such that there is an
edge {>,>′} in EP iff > and >′ are neighbours in P.

With this definition, is is obvious that the graph corresponding to
P may not be a subgraph of Pm, as there can be some edges in EP that are
not in Em.

We denote by SPm the set of subgraphs of Pm corresponding to all maximal single-
peaked profiles. Indeed, the single-peaked domain can be characterized by the set of
maximal single-peaked profiles, as any single-peaked profile is a subprofile of a maxi-
mal single-peaked profile. In terms of subgraphs of Pm, any (not necessarily maximal)
single-peaked profile is then a subgraph of an element of SPm.

Given an axis A, we denote by SPm(A) the subgraph of Pm corresponding to the (unique)
maximal profile single-peaked with respect to A. If we denote by AC the set of all axes
on the set of candidates C, we have

SPm = {Sm(A) : A ∈ AC}

It is worth noting that, given two different axes A and A′, SPm(A′) can be obtained from
SPm(A) by renaming candidates. In other words, all elements of SPm are the same,
up to renaming of candidates. For this reason, we consider in which follows the axis
A = c1 ◁ c2 ◁ . . . ◁ cm, and the graph SPm(A) corresponding to the maximal profile single-
peaked w.r.t. A.

It is well-known that there are 2m−1 pairwise distinct preferences compatible with a
given axis - therefore, SPm(A) has 2m−1 vertices. We also recall that any maximal single-
peaked profile contains a unique pair of reverse preferences, corresponding to the order
A and its reversal. These preferences will be denoted by >A and >Ā in which follows.

A straightforward way to build SPm(A) is to simply enumerate all preferences single-
peaked with respect to A, which yields the set Vm(A) of vertices. SPm(A) is then the
subgraph of Pm induced by Vm(A). Note that the single-peaked domain viewed as a
subset of Pm (or a set of subsets of Pm) was studied by Nembua et al. (1989). For an
illustration, we give a visualization of SP5(A) in Figure 2.2, and of SP6(A) and SP7(A) in
Appendix 2.A.
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Figure 2.2: The visualisation of SP5(A)

2.2.2 Distributive lattice and weak Bruhat order

Another mathematical structure that will be useful in the remainder of this chapter is
the so called weak Bruhat order. Let us recall that a partial (strict) order is a transitive
antisymmetric binary relation ≺ defined on the set S. In other words, for x,y ∈ S, we
have either x ≺ y, or y ≺ x, or x and y are incomparable. The transitivity ensures that
x ≺ y and y ≺ z imply x ≺ z.

A partially ordered set (poset), denoted by (S,≺) is a set with a partial order. Let us
consider two elements x and y of S such that x ≺ y. x is called a predecessor of y and
y is called a successor of x. An element of S without predecessors is called a minimal
element. An element of S without successors is called a maximal element.

We will now introduce a partial order known as weak Bruhat order. It is an order de-
fined on the set of all permutations of the set {1,2, . . . ,m}, denoted here by Vm (to refer
to the set of vertices of Pm, which is nothing but the set of all permutations of the set
{1,2, . . . ,m}). Let us denote by π0 the identity permutation (1,2, . . . ,m). The weak Bruhat
order is then defined as follows:

Definition 2.2.3: The weak Bruhat order

We say that a permutation π1 is between permutations π2 and π3 if for each pair
{i, j} ⊂ {1, . . . ,m}, if i is ranked better (resp. worse) than j in both π2 and π3, it is
also ranked better (resp. worse) than j in π1.

Let us denote by π0 the identity permutation (1,2, . . . ,m). The weak Bruhat order
≺ on the set Vm of all permutations of the set {1,2, . . . ,m} is defined as follows:
For each π,π′ ∈ Vm, we have π ≺ π′ if and only if π is between π0 and π′.

This weak order can be seen as an orientation of the graph Pm: actually, an edge {>,>′}
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is converted into an arc (>,>′) if > lies on a shortest path between >0 and >′ in Pm (we
recall that >0= (1,2, . . . ,m)). This high-level interpretation of the weak Bruhat order
will be used in the remainder of this chapter; however, note that one can go further:
Guilbaud and Rosenstiehl (1963) showed that the partially ordered set (Vm,≺) is a dis-
tributive lattice. Even though we do not need this information in which follows, for
completeness, Mathilde will now present you the notion of distributive lattice.

A Curious Tortoise Intervention

A partially ordered set (S,≺) is a lattice if each pair of elements {x,y} ⊂ S
has a unique supremum (also called join), denoted by x∨ y, and a unique
infimum (also called meet), denoted by x∧ y.

Formally, for {x,y} ⊂ S, we define the join (∨) and the meet (∧) bi-
nary operations on S as follows:

x∨ y :=z ∈ S such that x ≺ z,y ≺ z
and z ≺ z′ for each z′ ∈ S such that x ≺ z′ , y ≺ z′;

x∧ y :=z ∈ S such that z ≺ x,z ≺ y
and z′ ≺ z for each z′ ∈ S such that z′ ≺ x,z′ ≺ y.

With these notions, (S,≺) is a lattice if for each pair of elements {x,y} ⊂ S,
x ∨ y and x ∧ y exist. Note that in such a case, the values x ∨y and x ∧ y
are unique. In particular, each lattice has a unique minimal element and
a unique maximal element.

Finally, a partially ordered set (S,≺) is a distributive lattice if for
each x,y,z ∈ S, we have:

x∧ (y ∨ z) = (x∧ y)∨ (x∧ z)

We can check that the set Vm with the weak Bruhat order is actually a dis-
tributive lattice. To this purpose, let as denote by s the application which
associates to each preference π the set of consecutive swaps that need to
be done to transform π0 into π. For instance, s((2,3,1)) = {{1,2}, {1,3}}.
We can show that s is well-defined: even if there exist several “ways”
to transform π0 into π, they all yield the same set of consecutive swaps
s(π). Moreover, s is injective. If we denote by im(s) the image of the
application s, we can thus define an inverse application s−1 from im(s)
to Vm that associates to a given a set of consecutive swaps from im(s)
the permutation obtained when applying these consecutive swaps on
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π0. For instance, we have s−1({{1,2}}) = (2,1,3), as (2,1,3) is obtained
from π0 = (1,2,3) by performing the swap {1,2} (we note that 1 and 2 are
consecutive in (1,2,3), so this swap is possible). Moreover, s−1({{1,3}}) is
not defined, as {{1,3}} is not in im(s); indeed, there is no permutation that
can be obtained from (1,2,3) by performing the consecutive swap (1,3),
as 1 and 3 are not consecutive in (1,2,3).

With these notions, we can check that following operations make
from (Vm,≺) a distributive lattice:

π∨π′ = s−1(s(π)∪ s(π′))

and
π∧π′ = s−1(s(π)∩ s(π′)).

It is well known that the weak Bruhat order has the permutation π0 = (1,2, . . . ,m) as a
(unique) minimal element and the permutation π̄0 = (m,m− 1 . . . ,1) as a (unique) max-
imal element. A list of elements (π1,π2, . . . ,πk) is a chain of weak Bruhat order if for
each i < k, πi ≺ πi+1. It is well-known that each maximal chain in the weak Bruhat
order (i.e., each longest path from π0 to π̄0 in the graph of the weak Bruhat order) con-
tains m(m−1)

2 + 1 elements.

Let us finish this section with a concrete example of weak Bruhat order for m = 3.
Its illustration is given in Figure 2.3a. Actually, it can be seen as an oriented graph on
the set of vertices Vm with an arc from π to π′ iff π ≺ π′. We note that if we remove the
transitivity arcs in such a graph, we obtain an oriented version of the graph Pm, where
an edge {π,π′} is converted into an arc {π,π′} if π lies on a shortest path from π0 to π′,
as shown in Figure 2.3b.

The minimum element is (1,2,3) and the maximum element is (3,2,1). We have, for
instance, (2,1,3) ≺ (2,3,1), as (2,1,3) lies on a shortest path from (1,2,3) to (2,3,1). On
the other hand, (2,1,3) and (3,1,2) are not comparable, as (2,1,3) does not lie on any
shortest path between (1,2,3) and (3,1,2), and vice versa. Finally, there are two max-
imal chains in the weak Bruhat order for m = 3, both of the length 3. These chains
correspond to the longest paths (from π0 to π̄0) in the graph of weak Bruhat order (see
Figure 2.3a), or to the paths from π0 to π̄0 in the oriented version of Pm (see Figure 2.3b).

2.3 The SPSC domain: state of art

After this long introduction, let us finally take a closer look at the SPSC domain. As
said at the beginning of this chapter, one of the interests of the SPSC domain is that
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(a) A graph associated to the
weak Bruhat order.
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Figure 2.3: The graph on the left visualizes the weak Bruhat order for m = 3. There is
an arc from π to π′ iff π < π′. On the right side, we have the orientation of the graph P3
obtained from the weak Bruhat order: there is a path from π to π′ iff π ≺ π′. In other
words, the graph on the left is the transitive closure of the graph on the right.

it contains the 1-Euclidean domain. We recall here some important known results. To
provide a more unified and visual overview, we reinterpret these results by using the
notions of permutohedron and weak Bruhat orders.

2.3.1 Characterization of the SPSC domain and permutohedron

The SPSC domain is the intersection of the single-peaked domain and the single-crossing
domain. As both these domains can be characterized by finitely many forbidden mi-
nors, this is thus also the case for the SPSC domain. However, as emphasized by Elkind
et al. (2020), such a characterization is not particularly intuitive. Instead, Elkind et al.
(2020) come with the following result:2

Proposition 2.3.1: Characterization of the SPSC domain (Elkind et al., 2020)

A preference profile is both single-peaked and single-crossing if and only if it
can be obtained from a minimally rich single-crossing profile by deleting some
voters.

Actually, Puppe (2018) (and implicitly Barberà and Moreno (2011)) already observed
the right-left implication, i.e., that a minimally rich single-crossing profile was single-
peaked with respect to the axis corresponding to the first preference in the single-
crossing order. Mathilde is here to provide more insights on this observation.

2We recall that a preference profile is minimally rich if each candidate is ranked first by at least one of
the voters.
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A Curious Tortoise Intervention

To provide more insights on this latter observation, let us quickly recall
the proof given by Elkind et al. (2020). The observation is proven by
contradiction - we suppose for a contradiction that there is a minimally
rich single-crossing profile that is not single-peaked.

Formally, consider a single-crossing preference profile P where
>A= (c1, c2, . . . , cm) is the first preference in the single-crossing order.
Assume (for contradiction) that:

1. P is not single-peaked w.r.t. A = c1 ◁A c2 ◁A . . . ◁A cm,

2. P is minimally rich.

Put another way:

1. There exists a preference >v and indices i < j < k (i.e., ci ◁A cj ◁A
ck) such that ci >v cj and ck >v cj (see Arrow’s definition of single-
peakedness - Definition 1.2.2).

2. There exists a preference >v′ such that cj >v′ ci and cj >v′ ck .

The pair of candidates {ci , cj} implies that >v is between >A and >v′ in
any single-crossing order in which >A is ranked first: indeed, we have
ci >A cj , ci >v cj , but cj >v′ ci .

On the other hand, the pair of candidates {cj , ck} requires that >v′ is
between >A and >v . It is a contradiction because the two betweeness
relations cannot hold simultaneously. Consequently, any minimally rich
single-crossing preference profile is single-peaked.

Obviously, the converse of this observation is not true - any SPSC profile remains SPSC
if we remove any subset of its preferences. In particular, we can remove all preferences
ranking a given candidate c first, to ensure that the profile is not minimally rich. So in
other words, there are SPSC profiles that are not minimally rich.

However, Elkind et al. (2020) provide a constructive algorithm which allows to ex-
tend any SPSC profile to a minimally rich single-crossing profile. Their algorithm can
be decomposed into two main steps:

1. Given a SPSC preference profile P over the set C = {c1, c2, . . . , cm} of candidates,
we check whether the profile is single-peaked with respect to the first preference
of the single-crossing order. If so, there is nothing to do in Step 1. Otherwise,
Elkind et al. (2020) prove that there exists actually an axisAwith respect to which
the profile P ∪ {>A} remains SPSC. In other words, we can always ensure, by
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adding a new preference to P if necessary, that P contains the preference >A
corresponding to an axis A with respect to which P is single-peaked. Obviously,
>A will become the first preference in the single-crossing order.

A Curious Tortoise Intervention

Even though this step might seem as a “technical” step useful for
the proof, it is actually more important than one could think at first
sight: if a profile is single-peaked with respect to an axis A, the
only preference which ranks the leftmost candidate of A first is >A.
Therefore, >A must necessarily be in the profile if we want it to be
minimally rich. By the way, the same holds for >Ā.

2. In the second step, Elkind et al. (2020) explain how to add preferences to P in
order to make it minimally rich (without loosing the single-crossing property).
Actually, they take the smallest i ∈ {1, . . . ,m} such that ci is never ranked first in
P. We know that i , 1, as >A∈P.3 Let us denote by >i−1 the last preference
in the single-crossing order ranking ci−1 first. It is written (ci−1, . . . , ci−k , ci , . . .).
Elkind et al. (2020) prove that the preference >i : (ci , ci−1, . . . , ci−k , . . .) can be added
to P without loosing the SPSC property - note that >i is inserted just after >i−1 in
the single-crossing order.

Elkind et al. (2020) thus provide a polynomial time algorithm for constructing a mini-
mally rich single-crossing profile from which a given SPSC profile can be obtained. In
particular, a direct corollary of their result is that any maximal SPSC profile contains
exactly m(m−1)

2 + 1 pairwise distinct preferences and is minimally rich.

Note that these results can be visualised/reinterpreted by using the permutohedron Pm.
Actually, the first step of the previous algorithm consists in identifying an axis A such
that a given SPSC preference profile P is a subgraph of SPm(A). For each preference >
of P, we can then compute its Kendall tau distance from >A, denoted by dKT (>A,>). It
is easy to see that a profile is SPSC if and only if these distances are pairwise distinct -
in such a case, we obtain the single-crossing order by ordering the preferences increas-
ingly with respect to the Kendall tau distances.

With this observation, any maximal SPSC profiles corresponds to a shortest path in
SPm(A) between >A and >Ā - we note that each such path contains exactly m(m−1)

2 + 1

vertices, as dKT (>A,>Ā) = m(m−1)
2 . In particular, given two preferences >i and >j that are

consecutive in the single-crossing order of P, there exists a (not necessarily unique)
path between >i and >j . Any vertex >k lying on this path can be added to P without
loosing the single-crossing property (note that >k is inserted between >i and >j in the
single-crossing order). This idea is actually behind several lemmas used by Elkind et al.
(2020) to prove the algorithm above.

3We recall that, up to renaming of candidates, we can suppose that A = c1 ◁ c2 ◁ . . . ◁ cm.
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Example 2.3.1. Let us illustrate the ideas described above on the following profile P of 3
preferences over 5 candidates:

>1: (c1, c2, c3, c4, c5)

>2: (c2, c3, c1, c4, c5)

>3: (c3, c2, c4, c1, c5)

The profile is presented in a single-crossing order. It is also easy to check that P is single-
peaked with respect to the first preference of this order, i.e., the preference >1. So there is
nothing to do in Step 1.

A Curious Tortoise Intervention

What a cheat!

In particular, P is contained in a graph SP5(A), with A = c1 ◁ c2 ◁ c3 ◁ c4 ◁ c5, as shown in
Figure 2.4 (the preferences of P are framed).
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Figure 2.4

We have seen that any maximal SPSC profile is minimally rich. Moreover, any maximal
SPSC profile on 5 candidates (and single-peaked with respect to A) corresponds to a short-
est path in SP5(A) between >A and >Ā. In this example, we can therefore start by adding
>Ā: (c5, c4, c3, c2, c1) to P. There is a unique shortest path between >1 and >2, two paths be-
tween >2 and >3, and five paths between >3 and >Ā. There are hence 1×2×5 = 10 maximal
SPSC profiles containing P.

In practice, Elkind et al. (2020) only look for a minimally rich single-crossing profile, not
a maximal minimally rich single-crossing profile. In this example, it is hence sufficient to
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find a preference >4 of most preferred candidate c4, so that P∪{>4}∪{>Ā} is minimally rich.
Obviously, any convenient preference >4 must lie on a shortest path between >3 and >Ā.
But in practice, we do not even need to construct a path from >3 to >Ā - as discussed above,
Elkind et al. (2020) explain how to construct >4: in this example, >3 is the last preference
of P ranking c3 first. It is written (c3, c2, c4, c1, c5). The result of Elkind et al. (2020) states
that >4: (c4, c3, c2, c1, c5) can be added to P without loosing the SPSC property. Note that >4
is obtained from >3 by simply placing c4 to the first position of >3, i.e., by performing a swap
between c4 and c2 and then a swap between c4 and c3. Indeed, we see that all edges corre-
sponding to these swaps come “after” the node corresponding to >3 in SP5(A). And this is not
a coincidence: one can actually rediscover the result of Elkind et al. (2020) by generalizing
this last observation to SPm(A).

A Curious Tortoise Intervention

Note that although the approach using the permutohedron has an advantage to
be visual, it is not to be used in practice. Indeed, its implementation requires the
construction of the graph SPm(A) which has 2m−1 vertices! Step 2 of algorithm
of Elkind et al. (2020) allows to find a minimally rich single-crossing profile
containing P in polynomial time, without the construction of SPm(A).

2.3.2 The SPSC domain and weak Bruhat orders

In the previous section, we have introduced the so called weak Bruhat orders. Ac-
tually, there is a well-known connection between weak Bruhat orders and the single-
crossing domain. More precisely, there is a bijection between the maximum chains in
the weak Bruhat order (σm,≺) and the maximum single-crossing profiles of preferences
over the set of candidates {c1, c2, . . . , cm} containing the unique pair of reverse prefer-
ences (c1, c2, . . . , cm) and (cm, cm−1, . . . , c1) - see for instance Abello (1991) or Galambos
and Reiner (2008).4 As already pointed out by Bredereck et al. (2013), one can thus
enumerate all (maximum) single-crossing profiles (up to renaming of candidates).

Example 2.3.2. Let us go back to the example of the weak Bruhat order for m = 3 (see
Figure 2.3). It contains two maximum chains O1,O2:

O1 = ((1,2,3), (2,1,3), (2,3,1), (3,2,1)) (2.1)

O2 = ((1,2,3), (1,3,2), (3,1,2), (3,2,1)) (2.2)

The corresponding maximal single-crossing profiles over the set of 3 candidates are:

P1 = {(c1, c2, c3), (c2, c1, c3), (c2, c3, c1), (c3, c2, c1)} (2.3)

P2 = {(c1, c2, c3), (c1, c3, c2), (c3, c1, c2), (c3, c2, c1)} (2.4)

Note that the profile P1 is minimally rich, so by the characterization of Elkind et al. (2020),
it is single-peaked with respect to the axis A = c1 ◁ c2 ◁ c3. The profile P2 is not minimally

4Note that this result is also mentioned, for instance, by Doignon and Falmagne (1994)
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rich, and it is maximum, so it cannot be single-peaked, as any SPSC profile can be completed
to a minimally rich single-crossing profile. Note indeed that P2 cannot be single-peaked, as
there are more than two candidates ranked last at least once in it.

From here, it is just one step from enumerating all (maximum) SPSC profiles: one can
enumerate all maximum chains in the weak Bruhat order, and keep only those chains
that correspond to a minimally rich preference profile. In practice, these chains of the
weak Bruhat order all correspond to paths (if we remove the orientation) in SPm(A).
Therefore, enumerating all maximum SPSC profiles (up to renaming of candidates) is
equivalent to listing all shortest paths from >A to >Ā in SPm(A), as we have already seen
at the end of Section 2.3.1.

We implemented an algorithm to put this idea into practice. In particular, we could
enumerate all maximum SPSC profiles (up to renaming of candidates) up to 8 candi-
dates. We have then determined (with the help of linear programming) how many of
these SPSC profiles were actually 1-Euclidean. The results are summarised in Table 2.1.

m 4 5 6 7 8

SPSC 2 12 286 33 592 23 178 480
Euclidean 2 12 168 (59 %) 4680 (14%) 229 468 (1%)

Table 2.1: The number of maximum SPSC, resp. 1-Euclidean, profiles on m candidates
(w.r.t. a given axis A).

According to these results, the SPSC domain seems to approximate the 1-Euclidean
domain quite badly. A natural question is whether we can characterize the paths in
SPm(A) leading to a 1-Euclidean profile. Note that solving this problem is equivalent
to answering the open question of Chen et al. (2017) of whether or not there exists a
good characterization of the 1-Euclidean domain. We provide some insights into this
problem in the general conclusion.
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2.A Graphs SP6(A) and SP7(A)

123456 213456 231456 234156 234516 234561

321456 324156 324516 324561

342156 342516 342561

345216 345261

345621432156

432516 432561

435216 435261 435621

453216 453261 453621 456321

543216 543261 543621 546321 564321 654321

12 13 14 15 16

14 15 16

15 16

16

23 23 23 23

24 24 24

25 25

26

15

25

35

45

25

35

45

35

45 45

16

16 26

16 26 36

16 26 36 46 56

34

34 34

34 34

34

Figure 2.A.1: The visualisation of SP6(A). For more readability, the lower half of the
graph is shifted to the left.
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Figure 2.A.2: The visualisation of SP7(A). For more readability, the labels of nodes (cor-
responding to all possible preferences on the set of candidates {c1, c2, c3, c4, c5, c6, c7})
are not displayed. The most top-left (circle) node corresponds to the preference
(c1, c2, . . . , c7)
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Preamble of Part II

We have introduced in Chapter 1 the structure of single-peaked preferences as well
as its theoretical and computational advantages. On the other hand, we have seen
that single-peaked preferences were very unlikely to appear in real-world applications.
Therefore, we would like to make the structure less restrictive while preserving as
much of its good properties as possible. As we will see, unfortunately, the majority
of these properties are lost if we relax the notion of single-peakedness. Nevertheless,
it is still interesting to, given a preference profile, understand its underlying structure,
in particular for data analysis purposes. This can be useful, for instance, for a recom-
mendation system or voting advice applications, as already discussed in Chapter 1.

In this part, we propose two different approaches of structural relaxation:

1. In Chapter 3, it is the structure of the axis itself that is relaxed. A single-peaked
axis is seen as a graph (more precisely a path), and we introduce the notion of
the single-peakedness with respect to an arbitrary graph as follows: a preference
profile is single-peaked with respect to a given graph G if each of its preferences
is a traversal of G.

Trivially, any profile is single-peaked with respect to the complete graph. How-
ever, such a result is useless for data analysis purposes. Indeed, the sparser the
graph is, the more structural information it provides. Two notions of sparsity are
introduced in Chapter 3, and we look for solutions minimizing (one of) them.

2. In Chapter 4, we keep the axis structure, but we allow the preference to slightly
deviate from it if necessary. Different distance measures have been proposed in
the literature in order to quantify the distance of a profile from the an axis. Typ-
ically, we are looking for an axis which is the nearest possible to the profile in
sense of a given distance measure. Several distance measures of (nearly) single-
peakedness exist in literature. We propose here a new distance measure, we com-
pare it with existing measures and study its theoretical and computational prop-
erties.
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Chapter 3

Single-peaked preferences on an
arbitrary graph

3.1 Introduction

As already said at the beginning of the part, this chapter is devoted to the extension
of the notion of single-peakedness on an arbitrary graph. Indeed, a single-peaked axis
can be seen as a graph (or, more precisely, a path). If a preference is not compatible
with an axis, we allow to add more adges to the graph in order to make the preference
compatible with it.

This idea is not completely new - several classes of graphs have been considered to
generalize the classical single-peakedness with respect to an axis, i.e., a path. Given
a set C = {c1, . . . , cm} of candidates, a preference order ≻ over C is single-peaked on an
undirected graph G=( C,E) if it is a traversal of G, i.e., for each cj ∈ C the upper-contour
set {ci ∈ C : ci ≻ cj} is connected. A preference profile is then single-peaked on G if ev-
ery preference is single-peaked on G. Demange (1982) studied single-peakedness on a
tree, Peters and Lackner (2017) on a circle.

Some good axiomatic properties remain valid when preferences are single-peaked on a
tree: if the number of voters is odd, such profiles still admit a Condorcet winner (a can-
didate who is preferred over each other candidate by a majority of voters) (Demange,
1982), and returning this Condorcet winner is a strategyproof voting rule. On the
contrary, every majority relation can be realized by a collection of preferences single-
peaked on a circle (Peters and Lackner, 2017), hence single-peaked preferences on a
circle do not inherit the good axiomatic properties of single-peakedness on an axis re-
garding voting rules that are based on the majority relation. In particular, the class of
trees is somehow a maximal class of graphs keeping the most of good axiomatic prop-
erties - whenever a graph contains a cycle, there is no more the guarantee of Condorcet
winner.
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Some algorithmic advantages of single-peakedness on an axis also remain valid for
different generalizations of single-peakedness, while others vanish. For instance, the
winner determination problem for the Dodgson rule and the Young rule remain easy
for single-peaked preferences on a tree with an odd number of voters, by Condorcet
consistency (if a Condorcet winner exists, then it is the winner of the election for both
rules), while determining an aggregate ranking with the Kemeny rule becomes NP-
hard. Computing the winners for the Young rule is also easy if the preferences are
single-peaked on a circle (Peters and Lackner, 2017). For single-peaked electorates on
a tree, diverse variants of the proportional representation problem are in class FPT with
respect to the number of internal vertices of the tree (Peters and Elkind, 2016), and in
class XP with respect to the number of leaves (Yu et al., 2013). For single-peaked elec-
torates on a circle, they are in class P because the corresponding integer linear program
has a totally unimodular constraint matrix in this case, and therefore the integrality
constraints can be relaxed (Peters, 2018; Peters and Lackner, 2017).

Our goal is to study the recognition problem for single-peaked preferences on arbi-
trary connected graphs. Although one cannot expect social choice theoretic guaran-
tees from single-peakedness on arbitrary graphs (as it does not result in a domain re-
striction, any profile being single-peaked on the complete graph), a sparse graph gives
some insights on the relations between candidates/items. This could be used, e.g., in
recommendation systems: assume that one discovers that the preferences over movies
{c1, c2, c3, c4, c5} are single-peaked w.r.t. axis c1◁c2◁c3◁c4◁c5; if ones knows that an agent
likes movies c3 and c5, then it is natural to recommend movie c4. More generally, one
can take advantage of single-peakedness on a sparse graph to make recommendations
in the neighbourhood of liked items. Note that, as already said, any preference profile
is single-peaked on a complete graph, but it is obviously of no use in the example of a
recommendation system.

Thereby, we focus here on determining a graph that minimizes the number of edges
or the maximum degree of a vertex. This choice is motivated by the fact that these
criteria are measures of sparsity of a graph (the sparser the graph is, the more infor-
mative), but also because they generalize known cases such as paths, cycles and trees.
Let us indeed emphasize that the mathematical programming approach we propose to
identify a graph generalizes the best known classes of the single-peaked recognition
problem and provides a uniform treatment of them, leading to simple polynomial time
algorithms. Last but not least, stating the recognition problem as an optimization prob-
lem is all the more interesting that the single-peakedness property on a path, a tree or
a circle is a strong requirement that is rarely met in practice.

Our contribution We propose Integer Linear Programming formulations (ILP) of find-
ing a compatible graph that minimize the number of edges (1) or the maximum degree
of a vertex (2), and we show that both of them are NP-hard (Section 3.3). Nevertheless,
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if the optimal value for problem (1) is m−1 (where m is the number of candidates), we
prove the integrality of the optimal basis solution of the linear program (LP) obtained
by relaxing the integrality constraint (Section 3.4). This provides an alternative poly-
nomial time method, based on a simple LP solver, to recognize single-peakedness on
a tree, as a connected graph with m vertices and m−1 edges is a tree. By adding some
constraints on the maximum degree of a vertex, we obtain the same result for the case
of paths. As a last theoretical result, we prove that single-peakedness on a pseudotree
(a connected graph containing at most one cycle) is recognizable in polynomial time
(Section 3.5). We also provide some experimental results on real-world and synthetic
datasets, where we measure the density of the graphs depending on the diversity of
preferences of voters (Section 3.6).

Related work We briefly describe here some previous contributions that have ad-
dressed the concept of single-peakedness on arbitrary graphs, the optimization view
of the recognition problem and the use of ILP formulations for computational social
choice problems related to structured preferences:
• Nehring and Puppe defined a general notion of single-peaked preferences based on
abstract betweenness relations between candidates (Nehring and Puppe, 2007). In their
setting, it is possible to define single-peaked preferences on a graph G by considering
the graphic betweenness relation: candidate cj is between candidates ci and ck if and only
if cj lies on a shortest path between ci and ck in G. A preference profile is then single-
peaked on G if for every preference ≻, if c∗ is the most preferred candidate w.r.t. ≻ and
cj is on a shortest path between c∗ and ck then cj ≻ ck . This definition enables them to
state general results regarding strategyproofness on restricted domains of preferences.
Note that this definition of single-peakedness on a graph does not coincide with the
one we use, as we will see in Section 3.2.
• Peters and Elkind showed how to compute in polynomial time a compact represen-
tation of all trees with respect to which a given profile is single-peaked (Peters and
Elkind, 2016). This structure allows them to find in polynomial time trees that have,
e.g., the minimum degree, diameter, or number of internal nodes among all trees with
respect to which a given profile is single-peaked. On the contrary, they show that it
is NP-hard to decide whether a given profile is single-peaked on a regular tree (where
each vertex has degree either 1 or d), or if a profile is single-peaked on a tree isomor-
phic to a given tree. We provide here alternative proofs for some of the polynomial
time results, based on linear programming arguments.
• Peters recently proposed ILP formulations for proportional representation problems,
and showed that the binary constraint matrix is totally unimodular if preferences are
single-peaked, because the matrix has then the consecutive ones property (Peters, 2018).
We recall that the vertices of a polyhedron defined by a totally unimodular constraint
matrix are all integer, thus solving the linear programming relaxation yields an optimal
solution to the original ILP problem. We also rely on linear programming for proving
the polynomial time complexity of some of the recognition problems we tackle here.
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Although we do not rely on the consecutive ones property in our analysis.

Organization of the chapter The chapter is organized as follows: in Section 3.2, we
start by introducing the notion of single-peakedness on an arbitrary graph. We note
that any profile is single-peaked with respect to complete graph, and we motivate why
we focus on solutions minimizing the number of edges (1) or the maximum degree of
a vertex (2). We then provide in Section 3.3 an ILP formulation for the both problems
(1) and (2), and we show that these problems are NP-hard in a general case. But it is
well-known that they are polynomial-time solvable for some specific classes of graph -
namely trees (i.e., connected graphs with exactly m− 1 edges) or cycles (i.e., connected
graphs with m edges and the maximum degree of a vertex equals to 2). Indeed, we
prove in Section 3.4 that if a profile is single-peaked on a tree, the ILP formulation can
be relaxed, which provides an alternative recognition polynomial-time algorithm for
preferences single-peaked on a tree. Similarly, we show that the ILP relaxation remains
integral if the profile is single-peaked on a cycle or a path.

We study it Section 3.5 the recognition of pseudotrees (which are connected graphs
containing at most one cycle), and we provide a polynomial-time recognition algo-
rithm. Moreover, we show that, contrary to the case of trees, the continuous relaxation
of the ILP formulation does not remain integral in the case of pseudotrees.

Finally, we perform numerical tests on both real and synthetic data in Section 3.6 to
understand what type of graphs (in terms of a sparsity) we are supposed to obtain in
practice.

3.2 Problem definition

As emphasized in the introduction, several definitions of single-peakedness on an ar-
bitrary graph can be found in the literature. In our study, we are using the following
one (Elkind et al., 2017):

Definition 3.2.1: Single-peakedness on an arbitrary graph (SP)

Let C be a set of m candidates and P a profile of preferences of n voters. Let
G = ( C,E) be a connected undirected graph. We say that P is single-peaked (SP)
on the graph G if every >i∈P is a traversal of G, i.e., for each >i∈P and for
each k ∈ {1, . . .m}, the subgraph of G induced by the vertices {ri(1), . . . , ri(k)} is
connected.

Example 3.2.1. To illustrate this notion, let us consider the following profile of only 2 pref-
erences over 5 candidates:

>1: (c1, c2, c3, c4, c5)

>2: (c1, c4, c5, c2, c3)
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c1

c2

c3 c4

c5

(a) >2 is not traversals of G1: in-
deed, the subgraph induced by
{r2(1), r2(2)} is not connected.

c1

c2

c3 c4

c5

(b) Both >1 and >2 are traversals of
G2.

Figure 3.2.1: Illustration of Example 3.2.1: we recall that >1: (c1, c2, c3, c4, c5) and >2:
(c1, c4, c5, c2, c3).

Let us check whether this profile is single-peaked on the graph G1 = ( C,E1) of Figure 3.2.1a,
where {ci , cj} ∈ E1 iff j = i + 1 - we note that G1 is nothing but the axis c1 ◁ c2 ◁ c3 ◁ c4 ◁ c5. It
is easy to see that >1 fulfills the definition: for each i ∈ {1,2,3,4,5}, we have r1(i) = ci , and
the subgraph of G1 induced by {c1, c2, . . . , ci} is connected.
However, the preference >2 does not fulfill the definition - as the edge {c1, c4} is not in E1, the
subgraph of G1 induced by {r2(1), r2(2)} = {c1, c4} is not connected. Therefore, the profile is
not single-peaked w.r.t. graph G1.

Nevertheless, we can see that the profile is single-peaked on the graph G2 = ( C,E2) of Fig-
ure 3.2.1b, where E2 = {{c1, c2}, {c2, c3}, {c1, c4}, {c4, c5}}. This time, G2 is nothing but the axis
c3 ◁ c2 ◁ c1 ◁ c4 ◁ c5.

Example 3.2.1 illustrates that Definition 3.2.1 coincides with the standard definition
of single-peakedness (Black, 1948) when G is a path. Similarly, it coincides with the
definition of preferences single-peaked on a cycle (Peters and Lackner, 2017) (resp.
tree (Trick, 1989)) when G is a cycle (resp. tree). Note that the definition based on
shortest paths (Nehring and Puppe, 2007) mentioned earlier does not generalize single-
peakedness on a circle as defined in (Peters and Lackner, 2017), as shown in the follow-
ing example:

Example 3.2.2. Let us consider the cycle G = (V ,E) with V = {c1, c2, c3, c4, c5} and E =
{{c1, c2}, {c2, c3}, {c3, c4}, {c4, c5}, {c5, c1}}.

The preference >: (c1, c2, c3, c4, c5) is single-peaked w.r.t G when we use Definition 3.2.1,
but not when we use the definition of Nehring and Puppe (2007): we recall that according to
their definition, a preference profile is single-peaked on G if for every preference > of peak c∗,
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we have cj > ck whenever cj is on a shortest path between c∗ and ck in G. But here we have
c5 on a shortest path between c1 and c4, but c4 > c5.

c1

c2

c3 c4

c5

Figure 3.2.2: The preference (c1, c2, c3, c4, c5) is not single-peaked with respect to the
cycle G = (V ,E) with V = {c1, c2, c3, c4, c5} and E = {{c1, c2}, {c2, c3}, {c3, c4}, {c4, c5}, {c5, c1}}
in terms of the definition introduced by Nehring and Puppe (2007).

When a profile P is single-peaked w.r.t. G, for conciseness we say that P is compatible
with G (or that G is compatible with P).

Example 3.2.3. Consider the following profile of 3 preferences over 5 candidates:

>1: (c1, c2, c3, c4, c5)

>2: (c1, c4, c5, c2, c3)

>3: (c2, c3, c4, c5, c1)

We saw in Example 3.2.1 that preferences >1 and >2 are compatible with the graph G2 =
( C,E2) (where E2 = {{c1, c2}, {c2, c3}, {c1, c4}, {c4, c5}}).1 However, when adding >3, this graph
is no more compatible: indeed, there must be an edge between c4 and c2 or c3 so that the
subgraph induced by {c2, c3, c4} = {r3(1), r3(2), r3(3)} is connected. In this case, for any other
i ∈ {1,2,4,5}, it is easy to check that the subgraph induced by {r3(1), . . . , r3(i)} is connected.
Therefore, the profile is single-peaked on G3 = ( C,E3) (resp. G4 = ( C,E4)), where E3 =
E2 ∪ {c2, c4} (resp. E4 = E2 ∪ {c3, c4}).
We see that there are in general several graphs on which the preference profile is single-peaked.
In this concrete example, the graphs G3 and G4 are minimal in the sense that removing any
edge of G3 (resp. G4) would lead to a graph not compatible with the profile. Besides, we can
find many others solutions by just adding more edges to G3 (resp. G4).

Example 3.2.3 points out the following issue: obviously, any profile is single-peaked
w.r.t. the complete graph. However, this case is not interesting because it does not
provide any information about the preference structure. That is why we are looking for
a minimal graph on which the profile is single-peaked. The notion of minimality needs
to be made more precise. In our study, we focus mainly on minimizing the number
of graph edges. Another criterion we consider is the minimization of the maximum

1By the way, one can easily show that this is the only path both these preferences are compatible with.
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degree of vertices. Put another way, given a preference profile P, we want to determine
a graph G on which the profile is SP, so as to minimize either the number of edges of
G, or its (maximum) degree. We emphasize the fact that:

• minimizing the number of edges allows to detect when the profile is compatible
with a tree (this occurs iff the minimum number of edges is m−1, since G is
necessarily connected);

• minimizing the degree of G allows to detect when the profile is compatible with
a cycle (this occurs iff there exists a graph G with maximum degree 2);

• combining the objective allows to detect when the profile is compatible with an
axis: this occurs iff there is a graph G with maximum degree 2 and m−1 edges.

So the tackled problems generalize the most well known (tractable) recognition prob-
lems of single-peakedness.

A Curious Tortoise Intervention

The argument “these minimization criteria are good because they general-
ize the most well known recognition problems of single-peakedness” may
not satisfy a curious reader (at least, it does not satisfy me). So let us try to
give some more intuition about them. It seems quite natural to minimize
the number of edges. What about maximal degree minimization? Let us
consider a profile single-peaked with respect of the axis c1 ◁c2 ◁ . . . ◁cm: the
corresponding graph is hence a path, each vertex (except the extremities)
being of degree 2. In terms of single-peaked preferences, given a peak ci ,
the subrankings on sets {c1, c2, . . . , ci−1} and {ci+1, . . . , cm} can be merged in
any way. In other words, given two candidates cj and ck with j < i and
k > i, we cannot decide whether cj is preferred to ck or ck is preferred to
cj . In particular, a recommendation system which knows that the voter’s
most preferred candidates is ci will recommend her ci+1 and ci−1, without
any information on whether one of these two candidates could be more
relevant - in terms of graph, there is a kind of incomparability among the
neigbors of a given vertex.
The higher the vertex degree is, the more there are such “incomparable”
candidates. Let us consider the following profile:

>1: (c3, c1, c4, c2, c5)

>2: (c2, c1, c4, c3, c5)

>3: (c3, c1, c5, c4, c2)

>4: (c1, c2, c5, c3, c4)

It is single-peaked on a special tree called star graph GS = ( C,ES ), where
ES = {{c1, ci} | 1 < i ≤ 5} (see Figure 3.2.3a). One can check that this is the
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c1 c2

c3

c4

c5

(a) Minimizing the number of
edges.

c1

c2

c3

c4c5

(b) Minimizing the maximal vertex de-
gree.

Figure 3.2.3: Different solutions in function of the minimization criterion (we consider
here the profile {(c3, c1, c4, c2, c5), (c2, c1, c4, c3, c5), (c3, c1, c5, c4, c2), (c1, c2, c5, c3, c4)}).

only tree compatible with the profile - in terms of minimization of the
number of edges, it is hence the best we can do. However, the vertex c1
is of degree 4: the only information provided by GS is that c1 is a very
popular candidate, but we do not have any relation between the other
candidates. While minimizing the maximal degree, we obtain the graph
GD = ( C,ED ) with ED = {{c1, c2}, {c1, c3}, {c2, c4}, {c3, c4}, {c2, c5}, {c3, c5}} (see
Figure 3.2.3b). There are two more edges than in GS , but the maximal
vertex degree is three. We note that more structural information can
be read from this graph: for example, if the most preferred candi-
date of voter vi is c1, then her second most preferred candidate must
be c2 or c3 (and not c4 nor c5 as in the case of GS ). We also note that
c2 and c3 seem to be quite similar, as they have the same set of neighbours.

Besides motivating the minimization of maximum degree, we point
out here another question: different solutions provide different informa-
tion about the preference profile - if there are several solutions, how can
we know which one fits the best our profile? Although this question is not
really studied in this thesis, we will discuss it in the general conclusion.

3.3 ILP formulation and complexity

3.3.1 ILP Formulation

We now present an ILP formulation of the tackled problems. We are looking for a graph
G with m vertices (because there are m candidates). For each pair {k, l} ⊆ {1, . . . ,m}, we
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define a binary variable x{ck ,cl } which is equal to 1 if the edge {ck , cl} is present in graph
G, and 0 otherwise. By abuse of notation, we will often write x{k,l} instead of x{ck ,cl }.
Hence, if we are minimizing the number of graph edges, the objective function f (x) is

f (x) =
∑

{k,l}⊆{1,...,m}
x{k,l}.

If we are minimizing the maximum degree, then

f (x) = max
k∈{1,...,m}

m∑
l=1,l,k

x{k,l}.

In this latter case, the classical way of linearizing f (x) is to minimize an auxiliary vari-

able z with the constraints
m∑

l=1,l,k
x{k,l} ≤ z, for all k∈{1, . . . ,m}.

Regardless of the objective function, the other constraints of the problem remain the
same: for each i ∈ {1, . . . ,n} , >i: (ri(1), . . . , ri(m)) has to be a graph traversal. In other
words, for each k ∈ {2, . . .m}, there is an edge between ri(k) and at least one of the
vertices ri(1), . . . , ri(k − 1). In terms of linear programming constraints, this yield for
i ∈ {1, . . . ,n} and for k ∈ {2, . . . ,m}

k−1∑
j=1

x{ri (j),ri (k)} ≥ 1.

To sum up, the ILP formulation of the tackled problems is

minf (x)

s.t.


k−1∑
j=1

x{ri (j),ri (k)} ≥ 1 ∀i ∈ {1, . . . ,n},∀k ∈ {2, . . . ,m}

x{k,l}∈{0,1} ∀{k, l} ⊆ {1, . . . ,m}

Example 3.3.1. Consider again the profile from Example 3.2.3:

>1: (c1, c2, c3, c4, c5)

>2: (c1, c4, c5, c2, c3)

>3: (c2, c3, c4, c5, c1)

For minimizing the number of edges, the objective function is:

f (x) = min x{1,2} + x{1,3} + x{1,4} + x{1,5} + x{2,3} + x{2,4} + x{2,5} + x{3,4} + x{3,5} + x{4,5}

Figure 3.3.1 shows the constraints relatives to the preference >1. The constraints relative to
preferences >2 and >3 can be obtained similarly.
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c1

c2

c3 c4

c5


x{1,2} ≥ 1

x{1,3} + x{2,3} ≥ 1

x{1,4} + x{2,4} + x{3,4} ≥ 1

x{1,5} + x{2,5} + x{3,5} + x{4,5} ≥ 1

Figure 3.3.1: Constraints given by preference >1: (c1, c2, c3, c4, c5). Any graph compati-
ble with the profile must contain at least one edge of each color.

Note that for each voter >i , we have necessarily xri (1),ri (2) = 1, as by Definition 3.2.1,
the candidate ri(2) must be connected to at least one of her predecessors in >i . In other
words, there is the corresponding edge {ri(1), ri(2)} in any graph G with respect to which
>1 is single-peaked. More formally, we have the following definition:

Definition 3.3.1: Necessary edge

Let P be a profile of n preferences over the set C of m candidates. Let G = (V ,E)
with V = C. An edge {c,c′} ∈ E is called a necessary edge if there exists a voter
>i∈P such that {ri(1), ri(2)} = {c,c′}.

3.3.2 Minimizing the number of edges

In this section, we study the computational complexity of the problem of minimizing
the number of edges of G. A natural question while dealing with an ILP is to ask if
its continuous relaxation can be used to solve the problem (here, it would consist in
replacing the integrality constraints xk,l ∈ {0,1} by xk,l ∈ [0,1]). We recall that if this
can be done, the problem is solvable in polynomial time. Unfortunately, it would be
too good to be true: indeed, the following example shows that the optimal solution
(when minimizing the number of edges) of the continuous relaxation is not necessarily
integer.

Example 3.3.2. Consider the profile of 3 preferences over 4 candidates:

>1 : (c1, c2, c4, c3)

>2 : (c2, c3, c4, c1)

>3 : (c1, c3, c4, c2)

From the first two candidates of each voter, we see immediately that the edges {c1, c2}, {c2, c3}
and {c1, c3} are necessarily present in the graph. Then, we observe that vertex c4 needs to be
connected to at least one of vertices c1 and c2, at least one of vertices c2 and c3 and finally
at least one of vertices c1 and c3. Consequently any integer solution of the problem will be
a graph with at least 5 edges. However, there exists a fractional solution of the continuous
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relaxation with value 4.5: we set x{1,2} =x{1,3} =x{2,3} = 1 and x{1,4} =x{2,4} =x{3,4} = 0.5 (see
Figure 3.3.2).

c1 c2

c3c4

1

1
10.5

0.5

0.5

Figure 3.3.2: The continuous relaxation of the ILP for minimizing the number of edges
can lead to fractional optima.

We now show that the problem is actually NP-hard.

Theorem 3.3.1

Given a preference profile P, it is NP-hard to find a graph compatible with P
with a minimum number of edges.

Proof. We use a polynomial time reduction from the set cover problem, known to be
NP-hard (Garey and Johnson, 1979), where given a finite set U= {e1, . . . en} of elements,
a set S = {S1, . . . ,Sm} of subsets of U and k ∈ N, the question is to determine if there
exists a subset K⊆S of size k such that ∪S∈KS= U.

From an instance of set cover, we define a preference profile P as follows (see Figure
3.3.3 for better visualisation):

(i) Let {S1, . . . ,Sm, z} be a set of candidates.

(ii) Let {v1, . . . , vn} be a set of voters. Let Si1 , . . .Sil be the subsets in S containing element
ei ∈U, and Sil+1

, . . . ,Sim the remaining subsets in S (which do not contain ei). Then,
the preference of voter vi is defined as >vi : (Si1 , . . . ,Sil , z,Sil+1

, . . . ,Sim).

(iii) We add m·(m−1)
2 voters v{i,j}, {i, j}⊆{1, . . . ,m} such that

>v{i,j} : (Si ,Sj ,S1, . . . ,Sm︸     ︷︷     ︸
except Si ,Sj

, z).

We prove that there exists a set cover of size k if and only if there exists a graph G

compatible with P that has m·(m−1)
2 + k edges. Let K be a set cover solution of size k.

We build a graph G compatible with P in the following manner:
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Km

S2

S1

Si1

Si2

Si3

Sm

z

Figure 3.3.3: Any graph G compatible with the reduction profile P contains a com-
plete subgraph on {S1, . . . ,Sm} in order to be compatible with preferences >v{i,j} . To be
compatible with preference >vi , there must be at least one edge between z and a vertex
corresponding to one of the sets containing ei .

a) For each {i, j} ∈ {1, . . . ,m}2, i , j, the edge {Si ,Sj} is in G - this is necessary for the
preferences of type (iii) above to be SP on G.

b) For each i ∈{1, . . . ,m}, the edge {Si , z} is in G if and only if Si ∈K.

Hence, the subgraph formed by vertices {S1, . . . ,Sm} is a clique having m·(m−1)
2 edges, and

there are exactly k more edges adjacent to z - in total, G has m·(m−1)
2 + k edges. As k >0,

the graph is connected and all preferences of type (iii) are SP on G. Let >vi be one of
the preferences of type (ii). We need to prove that z is connected to at least one of the
vertices Si1 , . . . ,Sil . As the sets Si1 , . . . ,Sil are the only sets of S containing the element
ei , and as K is a solution of the set cover instance, this is true thanks to b). So, G is a
graph compatible with P that has m·(m−1)

2 +k edges.To prove the other implication, let

G be a graph compatible with P that has m·(m−1)
2 + k edges. As G is compatible with

P, the subgraph induced by the set of vertices {S1, . . .Sm} must be a clique so that the
preferences >v{i,j} of type (iii) are SP on G. Hence, this subgraph contains m·(m−1)

2 edges,
and so, there are exactly k edges adjacent to z. Let us define K containing Si iff Si is
adjacent to z in G. As G is compatible with P, each preference >vi of type (ii) is SP on
G. It means that at least one of Si1 , . . . ,Sil is adjacent to z, so is in K. As all these sets
contains ei , there is an element of K that covers ei . The subset K⊆S is thus a solution
of size k of the set cover instance.
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c1 c2

c3

1

0.5 0.5

Figure 3.3.4: The continuous relaxation of the ILP for minimizing the maximum degree
can lead to fractional optima.

3.3.3 Minimizing the Maximum Degree

We now consider our second objective function, namely the maximum degree of a ver-
tex in the graph (to be minimized). We come up with similar results.

First, the same as for the minimization of the number of edges, the ILP formulation
we have proposed in Section 3.3.1 is not integral, as we can see in the following exam-
ple.

Example 3.3.3. Consider a profile with 3 candidates and one voter with ranking (c1, c2, c3).
The ILP formulation of the problem of determining a graph G of minimum max-degree com-
patible with P is:

min z

s.t.



x{1,2} + x{1,3} ≤ z
x{1,2} + x{2,3} ≤ z
x{1,3} + x{2,3} ≤ z

x{1,2} ≥ 1

x{1,3} + x{2,3} ≥ 1

x{k,l}∈{0,1} ∀{k, l}⊂{1,2,3}

The value of an optimal integer solution is z= 2, but there exists a fractional solution of the
continuous relaxation of value 1.5 (x{1,2} = 1,x{1,3} = x{2,3}=0.5 - see Figure 3.3.4).

Here again we show that the problem of minimizing the degree of G is NP-hard, by
using a similar reduction.

Theorem 3.3.2

Given a preference profile P, it is NP-hard to find a graph compatible with P
with a minimum max-degree.
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Proof. Let U = {e1, . . . en}, S= {S1, . . . ,Sm}, k ∈N be an instance of the set cover problem.
Consider the profile P defined as follows:

(i) Let {S1, . . . ,Sm, z, t1, . . . , tm} be a set of candidates.

(ii) Let {v1, . . . , vn} be a set of voters. Let Si1 , . . .Sil be the subsets in S containing the
element ei ∈ U, and Sil+1

, . . . ,Sim the other subsets in S. Then, the preference of
voter vi is defined as

>vi : (Si1 , . . . ,Sil , z,Sil+1
, . . . ,Sim , t1, . . . , tm).

(iii) We add m·(m−1)
2 voters v{i,j}, {i, j}⊆{1, . . . ,m} such that

>v{i,j} : (Si ,Sj ,S1, . . . ,Sm︸     ︷︷     ︸
except Si ,Sj

, z, t1, . . . , tm).

(iv) We add m voters vt1 , . . . , vtm where the preference of vti is defined as

>vti : (z, ti , t1, . . . , tm︸   ︷︷   ︸
except ti

,S1, . . . ,Sm),

and a voter w with preference (t1,S1,S2, . . . ,Sm, z, t2, . . . , tm).

Figure 3.3.5 illustrates that in any graph G compatible with the profile:

a) the vertices Si form a clique (edge {Si ,Sj} is enforced by voter v{i,j}),

b) z is adjacent to all ti (due to voter vti ),

c) {S1, t1} is in the graph (due to w).

Anctually, these edges are all necessary edges (see Definition 3.3.1). We claim that there
exists a set cover of size (at most) k iff there is a graph compatible with the profile with
degree at most m+ k.

Suppose that there is a set cover K of size at most k. Then, beyond the necessary
edges mentioned above, we put an edge {Si , z} iff Si is in K. Then the vertex with maxi-
mum degree is z, with degreem+k. The graph G is compatible with each preference >vi
because K is a set cover. It is compatible with preference >v{i,j} thanks to the necessary
edges (and k >0, so z is connected as well). It is compatible with >vti and >w thanks to
the necessary edges.

Now suppose that there is a solution G with degree at most m + k. In particular, z
has degree at most m + k, hence is adjacent to at most k vertices Si . The preference of
voter vi imposes that z is adjacent to some Si which contains ei . In other words, the set
K of these (at most) k sets Si is a set cover of size at most k.
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Km

S2

S1

Si1

Si2

Si3

Sm

z

t1

t2

...

tm

w

Figure 3.3.5: Any graph G compatible with the reduction profile P contains a com-
plete subgraph on {S1, . . . ,Sm} in order to be compatible with preferences >v{i,j} . To be
compatible with preference >vi , there must be at least one edge between z and a vertex
corresponding to one of the sets containing ei . The set of vertices ti ensures that the
degree of z will be greater or equal to the degree of any other vertex. Finally, w is a
“technical” vertex to establish the connection between the clique Km and the set of ver-
tices ti .
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3.4 Recognition of trees and paths

In this section, we focus on the recognition of trees and paths - given a profile P, we
are looking for a tree (or a path) on which the profile if SP.

Recognizing single-peaked preferences on a tree can be done using the combinatorial
algorithm proposed by Trick (Trick, 1989). As an alternative proof of this result, we
show in this section that the continuous relaxation of the ILP formulation given in Sec-
tion 3.3.1 can be used to solve this recognition problem in polynomial time: in fact, all
(optimal) extremal solution are integral (Theorem 3.4.1). We show in Theorem 3.4.2
that a similar result holds for the recognition of profiles SP on a path.

We start by recalling Trick’s procedure (Trick, 1989), as we will use it in the proof
of the two previously mentioned theorems.

Recognition of profiles SP on a tree (Trick, 1989) Let P = {>1, . . . ,>n} be a profile
of n preferences over m candidates. Let cl be a candidate ranked last by at least one
voter. Trick shows that, if preferences are SP on a tree, then cl must necessarily be a
leaf. More formally, for each i ∈ {1, . . . ,n}, let us denote by A(cl)i the set of candidates
ranked better than cl by voter vi if cl is not ranked first by vi ; if cl is ranked first by vi ,
then A(cl)i is the singleton containing the second most-preferred candidate of vi . From
A(cl)=

⋂n
i=1A(cl)i , the following conclusions can be drawn:

• if A(cl)=∅, there does not exist a tree solution.

• Otherwise, A(cl) is the set of vertices to which the leaf cl can be connected.

In the latter case, the algorithm of Trick deletes cl from all preferences, and repeats this
process on the modified profile with preferences over m−1 candidates.

A Curious Tortoise Intervention

Obviously, we do not give here the proof of Trick’s procedure (and we
invite the reader to consult the original result of Trick (1989)). However,
we think it can be useful for which follows to give some informal intuition
of it. Here are some questions (and answer) that can arise while reading
the previous paragraph:
Question 1: Why any candidate cl ranked last at least once must be a leaf?
Answer: Suppose there is an optimal solution (i.e., a tree) in which cl is
not a leaf. Then it has at least two neighbours, let say ci and cj . We note
that there is a path from ci to cj going throuhg cl . But cl is ranked last by
a voter v. In other words, v ranks both ci and cj better than cl . Without
loss of generality, let us assume ci >v cj . There is then a path from ci to cj
that does not go through cl . Put together, there is a cycle in the solution,
which is a contradiction with the optimality of the solution.
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We highlight the parallel with the classical notion of single-peakedness
(on an axis) - in any single-peaked profile, there are at most two candi-
dates ranked last. Indeed, any path graph has only two leafs.
Question 2: Why is there no tree solution if A(cl) = ∅ ?
Answer: Well, we have just seen that cl must be a leaf. But if A(cl) = ∅,
there is no candidate ranked better than cl in all preferences, so cl
need to be connected to at least two vertices to satisfy the definition of
single-peakedness on a graph. So it cannot be a leaf.
Question 3: Why can we remove ck at the end of the iteration?
Answer: As ck is ranked last at least once, it will never be in A(ci) for any
other candidate ci . So removing it does not change anything.

Example 3.4.1. Consider the profile P= {>1,>2,>3} defined by:

>1: (c1, c2, c3, c4)

>2: (c2, c1, c3, c4)

>3: (c4, c1, c2, c3)

1. The candidate c4 is ranked last by at least one voter - we will determine the set A(c4):

A(c4) = {c1, c2, c3} ∩ {c1, c2, c3} ∩ {c1} = {c1}

The candidate c4 is then deleted from all preferences and we continue next iteration
with the subprofile >1

1: (c1, c2, c3), >1
2: (c2, c1, c3) and >1

3: (c1, c2, c3).

2. The only candidate ranked last by at least one voter is now c3. We see that

A(c3) = {c1, c2}.

We continue with the subprofile >2
1: (c1, c2), >2

2: (c2, c1), >2
3: (c1, c2).

3. We get A(c2) = {c1}, and the algorithm stops as we obtain a subprofile involving only
one candidate.

To sum up, we have obtained A(c4) = {c1} (first iteration), A(c3) = {c1, c2} (second iteration)
and A(c2) = {c1} (third iteration). Consequently, in any tree compatible with P, vertex 2
and vertex 4 have to be connected to vertex 1, and vertex 3 has to be connected to vertex 1 or
2. Hence, there exist two trees2 on which profile P is single-peaked, and these are:

c1 c2

c3c4

c1 c2

c4 c3

2one of them being actually a path
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Using LP to recognize SP preferences on a tree or a path Let us consider the fol-
lowing continuous relaxation LP-SP (linear program for single-peakedness) of the ILP
introduced in Section 3.3.1:

min
∑
{k,l}⊆{1,...,m} x{k,l}

(LP-SP) s.t.


∑k−1
j=1 x{ri (j),ri (k)} ≥ 1 ∀i ∈{1, . . . ,n}, k∈{2, . . . ,m}

x{k,l}∈ [0,1] ∀{k, l}⊆{1, . . . ,m}

We show in Theorem 3.4.1 that we can use LP-SP to solve in polynomial time the prob-
lem to determine, given a profile, whether or not there exists a tree compatible with
it.

Theorem 3.4.1

If a profile P is compatible with a tree, then any extremal optimal solution x of
LP-SP is integral, i.e., x{k,l}∈{0,1} for any {k, l}⊆{1, . . . ,m}.

Proof of Theorem 3.4.1. The proof is based on two properties of optimal solutions of LP-
SP when the profile is compatible with a tree. These two properties allow to come up
with a reformulation of the problem as a maximum flow problem, where there is a bi-
jection between the solutions of LP-SP of value m − 1 and the (optimal) flows of value
m− 1. The result then comes from the fact that any extremal solution of the flow prob-
lem (with integral capacity) is integral (Ahuja et al., 1988).

The first property states that all constraints of LP-SP are tight in a solution of value
m− 1.

Property 1

If the optimal value of LP-SP is m−1, then all constraints are tight in an optimal
solution x∗:

∑k−1
j=1 x

∗
{ri (j),ri (k)}=1.

Proof of Property 1 Let vi be a voter. There are m−1 constraints associated with vi , and
each variable x{k,l} appears in exactly one of these constraints. Since on the one hand
the sum of all variables is m−1 (objective function), and on the other hand the sum of
variables in each of these m−1 constraints is at least one, each constraint must be tight.
This concludes the proof of Property 1.

Let us now consider that the profile is single-peaked with respect to a tree. The recog-
nition procedure recalled above starts by identifying a candidate, say cm, ranked last in
at least one preference and such that A(cm),∅. We recall that cm is then removed from
all preferences. This procedure is applied recursively, till there is only one candidate
left. For simplicity, let us assume that the first removed (identified) candidate is cm, the
second cm−1, and so on. Let us now focus on the step when candidate ck is identified as a
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leaf (and then removed from the profile). To avoid confusion, we denote by B(ck) the set
A(ck) at this step, i.e., when considering the profile restricted to the first k candidates.

Property 2

If the profile is SP on a tree, then in an optimal solution of LP-SP, for any candi-
date ck≥2 we have

∑
cj∈B(ck)

x{cj ,ck}=1, and x{cj ,ck}=0 for any cj ∈{c1, . . . , ck−1} \B(ck).

Proof of Property 2. Let us consider some candidate ck (with k ≥ 2) and some optimal
solution X of LP-SP. The proof is organized as follows :

• Step 1: first, we consider the restriction of the problem to the candidates c1, c2, . . . , ck
and we show that the restricted solution Xk is a feasible and optimal solution for
it.

• Step 2: We prove then the statement for the problem restriction.

Step 1: Let us define LP-SP(k) as the linear program corresponding to the problem
restricted to the candidates c1, c2, . . . , ck . We first show that the optimal solution X re-
stricted to the first k candidates, let us call it Xk , is feasible and optimal for LP-SP(k).

A Curious Tortoise Intervention

Actually, it is not obvious why Xk should be feasible: let us consider the
preference >1: (c2, c1, c5, c4, c3). Any graph compatible with this preference
must contain one of the edges {c2, c4}, {c1, c4} or {c5, c4}. In terms of LP
constraint, one gets:

x{2,4} + x{1,4} + x{5,4} ≥ 1

In LP-SP(4), the candidate c5 has been removed, and the above constraint
becomes:

x{2,4} + x{1,4} ≥ 1

Imagine that in some optimal solution X of LP-SP, it is necessary to set
x{2,4} = x{1,4} = 0 and x{5,4} = 1. In such a case, X4 would not be a solution
of LP-SP(4) (which is the profile restricted to first 4 candidates)! So why
can we assume that the restricted solution X4 is still feasible? That is the
goal of the first part of this proof...

If k =m, Xk = X, so there is nothing to do and we can directly continue to step 2 proving
the property.

If k < m, assume that the properties are true for any k′ > k. We will show that they
are also true for k. To do this, let us consider a constraint of LP-SP(k) for connecting
candidate cj (with j < k) for some voter i. As all candidates ck′ with k′ > k have been
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removed, this constraint only involves the variables xl,j with l ≤ k. However, the corre-
sponding constraint in the initial program LP-SP possibly contains some other variables
xk′ ,j with k′ > k. Let us suppose that there is such a variable xk′ ,j . It means that ck′ is
ranked better than cj by vi .
Suppose that xk′ ,j = 1 in the solution X. As we assumed the property true for k′ > k, we
have xk′ ,j ∈ B(ck′ ) - in other words, cj is ranked better than ck′ by all voters - but this is
a contradiction, as we have just said above that ck′ is ranked better than cj by the voter
vi . Therefore, xk′ ,j = 0 in X. More generally, all “removed variables” in the constraint
was set to 0 in X - the only variables responsible for the feasibility of X are still present
in Xk . Hence Xk is feasible for LP-SP(k). We can now easily see that it is optimal: each
time a candidate ck′ with k′ > k has been removed,

∑
cj∈B(c′k)

xcj ,ck′ = 1 so the total weights
of (remaining) variables reduce by 1. Thus Xk is a feasible solution of LP-SP(k) of value
k − 1.

Step 2: Now we can focus on Xk on LP-SP(k).3 Note that the profile is trivially SP on
the first k candidates (as it is SP on the whole set of candidates). Candidate ck is ranked

in last position by some voter vi , so we have
k−1∑
j=1

x{cj ,ck} ≥ 1 (constraint of connecting ck

for voter vi), and by Property 1 we have
k−1∑
j=1

x{cj ,ck} = 1. If all candidates c1, c2, . . . , ck−1

are in B(k) then we are done. Otherwise, consider a candidate cℓ < B(ck). Then cℓ is
ranked after ck by some other voter vj (and, for this voter vj , ck and cℓ are not the best
two candidates, as we have supposed k ≥ 2). Then, if x{ℓ,k} > 0 we get

∑
cj<{cℓ ,ck}

x{cj ,ck} =

1−x{cℓ ,ck} < 1, and the constraint associated to vj for connecting ck to its predecessors
is violated. So x{cℓ ,ck} = 0 for any cℓ < B(ck), and consequently

∑
cj∈B(ck)

x{cj ,ck} = 1. This

concludes the proof of Property 2.

Back to the proof of Theorem 3.4.1.
We are now done with the proof of Property 2 and we return back to the proof of the
theorem. We reformulate the problem as a flow problem. From P, we build a network
(directed graph) R with:

• A source s, a destination t, and for each candidate k two vertices ℓk and rk .

• We have an arc from s to each ℓk with capacity 1, and an arc from each rk to t with
capacity∞.

• For each candidate k, we have an arc (ℓk , rj ) for each j <k. The capacity of this arc
is 1 if j ∈B(k), and 0 otherwise.

The reader can consult Figure 3.4.1 for a better visualisation of the network R. Let us

3Let us note that the proof of this step also applies to the special case k = m. That justifies why we
could assume in the previous step that the property was true for any k′ > k.
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Figure 3.4.1: Reformulation of LP-SP as a maximum flow problem: the capacity of an
arc {li , rj}corresponds to the value of LP-SP variable x{i,j}; the capacities of arcs from s
to li equal 1.

denote by φ a flow on this network, with φ(e) the flow on edge e. Note that ℓ1 has no
outgoing edge, so the optimal flow is at most m−1.

We show that the correspondence x{k,j}=φ(k, j) (for each j <k) is a bijection between
solutions of value m− 1 of LP-SP and (optimal) flows of value m−1 in R.

Let φ be a flow of value m−1. As there is no flow through ℓ1, there is a flow of value
1 through each ℓk , k > 1. Since arc (k, j) has capacity 0 if j <B(k), by flow conservation
we have

∑
j∈B(k)φ(k, j) = 1, which means that

∑
j∈B(k) x{k,j} = 1. Now consider a voter vi

for which k is not ranked first. By the procedure of Trick, when k is identified as a leaf,
all candidates in B(k) are ranked before k, and the corresponding constraint is satisfied.
This is true for all candidates and voters, so x is a feasible solution of LP-SP, of value
m−1.

Conversely, let x be a feasible solution of LP-SP of value m−1. From Property 2, we
have

∑
j∈B(k) x{j,k} = 1 for each candidate k ≥ 2. This immediately gives a flow of value

m−1.

By integrality of extremal flows (any non integral optimal flow is a convex combina-
tion of integral flows), any extremal optimal solution of LP-SP is integral (when there
exists a tree compatible with P).

Let us now turn to the recognition of profiles SP on a path. A (connected) graph is
a path iff it is a tree with degree at most 2. Hence, we consider the following ILP
formulation where we minimize the number of edges and add constraints on the vertex
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Figure 3.4.2: Two tree solutions of the profile P of Example 3.4.1 and their associated
flow solutions.
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degrees:

min
∑

{k,l}⊂{1,...,m}
x{k,l}

s.t.


∑k−1
j=1 x{ri (j),ri (k)} ≥ 1 ∀i ∈{1, . . . ,n}, k∈{2, . . . ,m}∑m
l=1,l,k x{k,l} ≤ 2 ∀k∈{1, . . . ,m}

x{k,l}∈{0,1} ∀{k, l}⊆{1, . . . ,m}

Clearly, a profile is compatible with a path iff the optimal value of the previous ILP is
m−1. Let us call LP-SP2 the continuous relaxation. As well as LP-SP, we can refurmulate
the problem as a flow problem, using a very similar network: from P, we build a
network (directed graph) R with:

• A source s, a destination t, and for each candidate k two vertices ℓk and rk .

• We have an arc from s to each ℓk with capacity 1, and an arc from each rk to t with
capacity 2 (this is the only difference with the flow reformulation of LP-SP where
the capacity of arcs (rk , t) was unlimited).

• For each candidate k, we have an arc (ℓk , rj ) for each j <k. The capacity of this arc
is 1 if j ∈B(k), and 0 otherwise.

If we suppose in Property 2 that the profile is compatible with a path, the proof remains
true if we replace the LP-SP flow reformulation by the LP-SP2 one. We get then tho
following result:

Theorem 3.4.2

If a profile P is compatible with a path, then any extremal optimal solution of
LP-SP2 is integral, i.e., x{k,l} ∈ {0,1} for any {k, l}⊆{1, . . . ,m}.

3.5 Recognition of pseudotrees

So far, we have seen that our minimization problem was NP-hard in the general case,
but polynomially solvable in the case where the optimal solution is a tree. As a natural
extension, we consider the problem to recognize profiles that are single-peaked with
respect to a graph with m − 1 + k edges, for some fixed k, thus allowing k more edges
than in a tree. In this section, we consider the case k = 1. A graph on m vertices with
m edges is called a pseudotree. We show that recognizing if there exists a pseudotree
compatible with a given profile can be done in polynomial time. We leave as open
question the parameterized complexity of the problem when k is the parameter: would
the problem be in XP? Or even in FPT?

Let us now deal with the case of pseudotree. Hence, the set of solutions we want to
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recognize is the class of connected graphs having (at most) m edges. To solve the prob-
lem in polynomial time, we devise an algorithm that first identifies the leaves of the
pseudotree and then the cycle on the remaining vertices. The second step (cycle recog-
nition) is done using the polynomiality of recognizing single-peakedness on a cycle
(Peters and Lackner, 2017). For the first step, we need to modify the Trick’s procedure
recalled in Section 3.4. This procedure was able to correctly identify leaves when the
profile was compatible with a tree, but it fails to correctly identify leaves when the
underlying structure is a pseudotree. With a slight modification though, we obtain
in Proposition 3.5.1 a necessary and sufficient condition for a candidate to be a leaf
in a pseudotree. This is the stepping stone leading to the polynomiality of detecting
whether or not a given profile is compatible with a pseudotree, stated in Theorem 3.5.1.

Example 3.5.1. Let us consider the following profile with 4 voters and 5 candidates:

>1: (c1, c2, c3, c4, c5)

>2: (c1, c3, c4, c2, c5)

>3: (c2, c5, c3, c4, c1)

>4: (c3, c5, c4, c2, c1)

Regarding the first two candidates of each voter, we see that any solution contains the edges
{c1, c2}, {c1, c3}, {c2, c5} and {c3, c5} - i.e., the cycle (c1, c2, c5, c3, c1). From here it is easy
to see that there is a unique pseudotree compatible with the profile. Trick’s procedure for
recognizing single-peaked preferences on a tree focuses on candidates ranked last at least once
in order to detect leaves. Here, that would be c1 and c5. However, we have A(c1) = A(c5) = ∅.
Note also that the whole profile is not compatible with a cycle, so we need somehow to first
detect c4 as a leaf, and then detect that the remaining candidates are single-peaked on a cycle.

The central property that allows to recognize profiles compatible with a pseudotree is
given in the following proposition.

Proposition 3.5.1

Let P be a preference profile, and suppose that a candidate ci is such that A(ci) ,
∅. Then P is compatible with a pseudotree if and only if it is compatible with a
pseudotree where ci is a leaf.

Proof. Let G be a pseudotree compatible with P where ci is not a leaf. We transform G
into a pseudo-tree G′ compatible with P where ci is a leaf. Let cj ∈ A(ci).
Case 1: {ci , cj} ∈ G.
Let us first consider an easy case, where {ci , cj} ∈ G. Then we build G′ from G by simply
replacing each edge {ci , ck} (with k , j) by the edge {cj , ck}. We need to justify why for
each voter v, >v is still a traversal of G′:

1. Let cl be a vertex not adjacent to ci in G. Then the modifications of G do not have
any impact on cl , and cl can still be connected (in the same manner it was done in
G) to one of the candidates ranked better than her in >v .

80



Chapter 3 – Single-peaked preferences on an arbitrary graph

2. Similarly, the modifications have no impact on the candidate cj , as we did not
remove any of its neighbours while creating G′.

3. Let us consider the vertex corresponding to the candidate ci , and its neighbour in
G called here ck . In G′, we have replaced the edge {ci , ck} by {cj , ck}. We need to
show that both ci and ck can still be connected to one of their predecessors in G′.
There are two cases to distinguish:

(a) Suppose that ck is ranked better than ci by the voter v: then the edge {ci , ck}
was used in G to connect the candidate ci to one of its predecessors - i.e.
ck . But we have cj ∈ A(ci), so cj is ranked better than ci by v4, so ci can is
connected to one of its predecessors, i.e. cj , in G′ by the edge {ci , cj}.

(b) Suppose that ci is ranked better than ck by the voter v: then {ci , ck} was used
in G to connect ck to its predecessor ci . But as cj ∈ A(ci), cj is also a prede-
cessor of ck , so we are done.

We have shown by the case distinction that the graph G′ is compatible with all the
preferences. Note that G′ has (at most) as many edges as G, so it is a pseudotree (or a
tree, and we can add any edge to create a pseudotree).
Case 2: {i, j} < G.
Let us now consider the case where {ci , cj} < G. Note that then cj is ranked before i in
all preferences (otherwise ci is first and cj is second, which leads A(ci) = {ci}, and the
edge {ci , cj} is forced to be in any compatible graph - a contradiction). Then we first
transform G into a graph G′ which is a pseudotree solution containing the edge {ci , cj},
and then we apply Case 1 to G′.
As G contains exactly one cycle, there are at most two (simple) paths between each
couple of vertices. This gives us two subcases to distinguish:
Case 2a: ) Let us suppose that there is a unique simple path from cj to ci in G. Let us
denote by cu the predecessor of ci on this path. Then we create G′ by replacing the edge
{cu , ci} by the edge {ci , cj}. Consider a voter v. The only candidates possibly touched by
transforming G to G′ are ci and cu . But ci is connected to its predecessor cj by the new
edge {ci , cj}. Regarding cu , the modification does not affect this vertex - indeed, it does
not wee the edge {cu , ci} in G because it is ranked better than ci in >v (the subgraph
induced by ci and the candidates ranked before her by v is connected and contains ci
and cj , so it contains the whole path connecting these edges, in particular cu).
Case 2b. In the other case, in G there are two simple paths from cj to ci . If on both of
them, the predecessor of ci is the same vertex cu , the same reasoning as in the previsous
subcase applies.
Suppose that the predecessor of ci is cu1

in the firts path and cu2
in the second one (with

cu1
, cu2

). We build G′ from G by deleting edges {cu1
, c1} and {cu2

, ci}, and adding edges
{ci , cj} and {cu1

, cu2
}. See Figure 3.5.1.

4The only way to have ci ranked better than cj is to rank them first and second in v . But this would be
a contradiction with ck >v ci .
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cj

cu1
cu2

ci

cj

cu2
cu1

ci

Figure 3.5.1: Edge swap.

Consider a voter v. Since v prefers cj to ci and the subgraph of G induced by the
candidates up to ci in the ranking >v is connected, then cu1

or cu2
is ranked before ci

by v, say cu1
(we assume wlog that cu1

is preferred to cu2
by v). Then we see that G′ is

compatible with the preference of v: indeed, when considering candidates one by one
in the order of v, the only modification holds for cu2

, which is now connected to cu1

(ranked before her), and for ci , which is now connected to cj (ranked before her).

Note that ci can be connected to any vertex cj ∈ A(ci). Before giving the procedure
that recognizes preferences compatible with a pseudotree, we need to establish another
property regarding such preferences.

Proposition 3.5.2

If a profile P is compatible with a pseudotree, then either there exists a candi-
date ci such that A(ci) , ∅, or P is compatible with a cycle.

Proof. Let G be a pseudotree compatible with P. If G is not a cycle, then there exists a
candidate ci which is a leaf in G. Let cj be the unique neighbour of ci in G.
Suppose for contradiction that cj < A(ci). There exists a voter v such that:

• either ci is not the most preferred candidate of v and ci >v cj : The subgraph
induced by the candidates up to ci (in the ranking of v) is not connected.

• or ci is the most preferred candidate of v and cj is not ranked second: in this
case, the subgraph induced by the first two candidates (in the ranking of v) is not
connected.

We get a contradiction in both cases, so cj is necessarily in A(ci).

Consider now the following procedure Detect PseudoTree:
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Algorithm 1 Detect PseudoTree

Input : a preference profile P
Output: A pseudotree compatible with P if it exists, NO otherwise.
Set E′ = ∅
while there are at least 4 candidates, and a candidate ci such that A(ci) , ∅ do

E′←− E′ ∪ {ci , cj} for some (arbitrary) cj ∈ A(ci)
remove ci from the profile

end while

if the remaining profile is compatible with a cycle C then
return E′ ∪C

else
return NO

end if

Theorem 3.5.1

Given a preference profile P on at least 3 candidates, the procedure De-

tect PseudoTree is polynomial-time and returns a pseudotree compatible with
P if some exists, or returns NO otherwise.

Proof. Detect PseudoTree obviously runs in polynomial time. We proceed by induc-
tion on the number of candidates. If there are three candidates the procedure outputs a
cycle on these 3 candidates. Now suppose that the result is true up to m−1 candidates,
and consider a profile P on m ≥ 4 candidates.

Suppose that P is compatible with a pseudotree G.

• If there exists a candidate ci with A(ci) , ∅, then by Proposition 3.5.1, there exists
a pseudotree G′ compatible with P where ci is a leaf. Then the profile obtained
from P by removing ci is compatible with a pseudotree ( G′ \ ci), and adding the
edge {cj , ci} as done by Detect PseudoTree gives a pseudotree compatible with
P.

• Otherwise, by Proposition 3.5.2, P is compatible with a cycle, which is found by
Detect PseudoTree (Step 3).

Suppose now that Detect PseudoTree does not output NO. If there were no candidate
i with A(ci) , ∅, then P is compatible with the cycle C. Otherwise, let ci be the candi-
date in the first iteration of the loop in Step 2 (A(ci) , ∅). Then, on the profile P where
i is removed, Detect PseudoTree outputs a pseudotree, compatible with this profile
without i by induction. Since cj ∈ A(ci), adding edge {cj , ci}makes the pseudotree com-
patible with P.
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A Curious Tortoise Intervention

An attentive reader may have noticed that we do not need the hypothesis
of pseudotree in the proof of Proposition 3.5.1. Indeed, this proposition
can be reformulated in the following more general way: Let P be a
preference profile and ci a candidate such that A(ci) , ∅. Then there exists
a graph compatible with P in which ci is a leaf.

In other words, we can always start by identifying leaves. When
there is no more candidate ci such that A(ci) , ∅, the procedure De-

tect PseudoTree checks if the restricted profile is single-peaked on
a cycle. But maybe we could modify the procedure in a way that it
checks the compatibility with a (no-leaf) graph with m + k edges. This
is discussed in the following, and also in the last paragraph of this section.

The generalization of this polynomiality result to connected graphs with (m−1+k) edges
seems to require new techniques (even for fixed k, i.e. to show that the problem is in
XP when parameterized by k). Indeed, an enumeration of all subsets of k edges does
not allow to reduce the problem to trees. Procedure Detect PseudoTree does not seem
to generalize either, as it specifically relies on the decomposition of the solution into
one cycle and leaves.

Using LP to recognize SP preferences on a pseudotree A natural question is whether
the continuous relaxation of the ILP introduced in Section 3.3.1 can be used to recog-
nize pseudo-trees. Unfortunatelly, this is not possible: we will now show that, contrary
to the case of trees, there may exist some non integrap solution of LP-SP in the case of
pseudo-trees.

To this purpose, let us consider the following profile P of 4 preferences over 6 can-
didates:

>1: (c1, c2, cf , c3, c4, c5)

>2: (c2, c3, c4, cf , c1, c5)

>3: (c4, c3, c5, cf , c2, c1)

>4: (c5, c3, c2, cf , c4, c5)

These preferences enforce 4 necessary edges : {c1, c2}, {c2, c3}, {c3, c4} and {c3, c5}. The
connectivity constraints of cf induced by >1 and >3 implies that :

xc1,cf + xc2,cf ≥ 1

xc3,cf + xc4,cf + xc5,cf ≥ 1
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c1 c2

c3

c4 c5

cf

1

1 1 1

0.5 0.5 0.5 0.5

Figure 3.5.2: Example of a non-integral extremal solution of LP-SP

As {xc1,cf ,xc2,cf } and {xc3,cf ,xc4,cf ,xc5,cf } are disjoint variable sets, the optimum solution
value (of both ILP and LP-SP) is at least 6. We obtain f (x) = 6 for the feasible vector x
such that :

xc1,c2
= xc2,c3

= xc3,c4
= xc3,c5

= 1

xc1,cf = xc2,cf = xc4,cf = xc5,cf =
1
2

xc,c′ = 0 otherwise

(See also Figure 3.5.2 for an illustration). Hence x is an optimal solution of LP-SP.
What’s more, x is an extremal solution : the only integral solution of value 6 x′ such
that x′c1,cf , 0 is :

x′c1,c2
= x′c2,c3

= x′c3,c4
= x′c3,c5

= x′c1,cf = x′c3,cf = 1

x′c,c′ = 0 otherwise

Thus, if x is a convex combination of optimal integral solutions, x′ should be among
them. But xc3,cf = 0. Hence, x is not a convex combination of optimal integral solution,
and consequently there exists some extremal optimal solution which is not integral.

3.6 Experimental study

We carried out numerical experiments5 on real and randomly generated instances of
the problems tackled in the paper. In the case of real data, we compare the optimal
solution of the ILP to that of its continuous relaxation. We also focus on the ability to
detect structure in voters’ preferences depending on the election context.

5All tests were performed on an Intel Core i7-1065G7 CPU with 8 GB of RAM under Windows OS. We
used the IBM Cplex solver for the solution of ILPs.
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To go further, we use randomly generated instances to study structural aspects of solu-
tions; we notably study the graph density depending on the number of voters and on
the dispersion of their opinions.

3.6.1 Numerical tests on real data

We used PrefLib data sets available on www.preflib.org (Mattei and Walsh, 2013) to
perform our numerical tests on real data. While this database offers four different
types of data, only the ED (Election Data) type is relevant for our study. Among the ED
data sets, we used the complete strict order lists (which correspond to files with .soc

extension). At the time we carried out these experiments, 315 data files of this type
were available in PrefLib, however, many of them were not adapted to our study for
several reasons. The first one is that many elections dealt with only 3 or 4 candidates
and a great number of voters, hence the obtained graph was, unsurprisingly, always
complete. We also met the opposite problem when there were very few voters, typically
4, so there was no point in looking for some general structure. Thus, in practice, there
were 25 real data files usable for our purposes, namely:

• 20 files from the ED-00006 data set, which contains figure skating rankings from
various competitions during the 1998 season including the World Juniors, World
Championships, and the Olympics.

• 2 files from the ED-00009 data set, which contains the results of surveying stu-
dents at AGH University of Science and Technology (Krakow, Poland) about their
course preferences.

• 1 file from the ED-00012 data set, where individuals ranked T-shirt designs.

• 1 file from the ED-00014 data set, which contains preferences about various kinds
of sushi (survey conducted by Toshihiro Kamishima).

• 1 file from the ED-00032 data set, which contains the results of surveying stu-
dents in the Faculty of Informatics, Instituto Superior Politécnico José Antonio
Echeverrı́a (Cujae, Havana, Cuba), about the most important criteria affecting
their performances as students.

We now present the results obtained for these 25 instances. The tackled optimization
problem was to determine a graph with a minimal number of edges. For all instances con-
sidered here, an optimal graph has been obtained in about 40 milliseconds for the ILP
formulation and 20 milliseconds for its LP relaxation. In fact, the linear programming
formulation always returned an integer solution. Table 3.6.1 summarizes the obtained
results.
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ED-00006 data set. The number of candidates (skaters) varies from 14 to 30, and the
number of voters (judges) from 7 to 9. For the 20 instances considered, a tree has been
obtained 14 times, a pseudotree 5 times, and a solution with 23 edges for 19 candi-
dates (vertices) has been obtained once. The possible interpretation of these results is
that, even though the rankings are based on subjective opinions of the judges, there
is something like a “true ranking” behind as some skaters are objectively better than
other ones. Thus, the rankings given by the judges can be viewed as biased observa-
tions of the true ranking, so that they are quite close. In addition, it should be noted
that even when the solution was not a tree, the LP continuous relaxation gave an integer
solution (identical to the one of the ILP). Finally, let us mention that we also checked
compatibility with an axis, and no profile was single-peaked with respect to an axis.

ED-00009 data set. Each student provided a rank ordering over all the courses with
no missing elements. There were 9 courses to choose from in 2003 and 7 in 2004, and
about 150 students. For both years, the optimal solution was a tree, more specifically
a star. This is easily explained from the fact that, in both years, there was one course
which was the most preferred for every student.

ED-00012 and ED-000014 data sets. The optimal solution for the preferences over the
T-shirt designs had 25 edges, which is quite a lot regarding the number of candidates
(11) and voters (30). However, it is consistent with the intuition that there is probably
no structure behind T-shirt designs. The same can be said for the preferences over the
kinds of sushi, where 5000 voters were asked for their preferences about 10 kinds of
sushi (the optimal solution is a complete graph in this case).

ED-00032 data set In the single instance with no tie nor missing element, there were
15 students that ranked the 6 criteria affecting their performances. In both the ILP and
LP formulations, a solution with 8 edges has been returned.
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Set File #candidates #votvoters #edges

ED-00006 3 14 9 13 (tree)
ED-00006 4 14 9 13 (tree)
ED-00006 7 23 9 22 (tree)
ED-00006 8 23 9 22 (tree)
ED-00006 11 20 9 20 (pseudotree)
ED-00006 12 20 9 20 (pseudotree)
ED-00006 18 24 9 23 (tree)
ED-00006 21 18 7 17 (tree)
ED-00006 22 18 7 17 (tree)
ED-00006 28 24 9 23 (tree)
ED-00006 29 19 9 23
ED-00006 32 23 9 23 (pseudotree)
ED-00006 33 23 9 22 (tree)
ED-00006 34 23 9 22 (tree)
ED-00006 35 18 9 17 (tree)
ED-00006 36 18 9 17 (tree)
ED-00006 37 19 9 18 (tree)
ED-00006 44 20 9 19 (tree)
ED-00006 46 30 9 30 (pseudotree)
ED-00006 48 24 9 23 (tree)
ED-00009 1 9 146 8 (tree-star)
ED-00009 2 7 153 6 (tree-star)
ED-00012 1 11 30 25
ED-00014 1 10 5000 45 (clique)
ED-00032 2 6 15 7

Figure 3.6.1: Minimal number of edges (fifth/last column) on real data sets from Pre-
fLib. Specific structures are indicated in parentheses.

3.6.2 Experimental study on randomly generated data

The experimental study on real data revealed some interesting information. Neverthe-
less, it is limited by the small amount of data available. Here, we conduct experiments
on random data in order to study the structure of solutions. As mentioned above, in
some contexts we can assume that the voter’s preferences are biased observations of
a “true” ranking. This idea can be modeled using the Mallows distribution on rank-
ings. In this model, the “true” ranking is called central permutation and its probability
is the highest one. The probability of other permutations decreases with the Kendall-
tau distance from the central permutation. Formally, let >0 be the central permutation
(preference). The probability of a permutation (preference) > is P (>) = exp(−θdKT (>,>0))

ψ(θ) ,
where dKT (., .) is the Kendall-tau distance (see Definition 1.1.1), θ ≥ 0 is a dispersion
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parameter modeling the opinion heterogeneity, and ψ(θ) is a normalisation constant.
If θ = 0, the uniform distribution is obtained. The greater the value of θ, the more the
voters agree on the central permutation.

We used the PerMallows R package6 for generating the random data according to
the Mallows model. The number of candidates was set to m= 20, the value of θ varied
from 0 to 1 by step of 0.1. The number of voters n varied from 20 to 100 by step of 10.
For each pair (θ0,n0) of parameter values, the results are averaged over 1000 randomly
drawn preference profiles. The curves in Figure 3.6.2 show the evolution of the graph
density according to these parameter values.

Figure 3.6.2: Density of the graph according to parameters θ and n (with m=20).

In the best case, the obtained solution is a tree, hence, the density is (m−1)/ m(m−1)
2 =

2
m . As we set m = 20, this corresponds to a density of 0.1. The function representing
the graph density seems indeed to converge to the constant function of value 0.1 while
the value of θ increases and the preferences in the profile become similar (the curves
get closer and closer to the x-axis). Put another way, the density captures the similarity
of voters’ preferences, as clearly the higher θ the lower the curve. On the contrary, the
graph density becomes of course higher when the number n of voters increases. Never-
theless, note that, even for 100 voters, the graph is still quite far from being complete.
Besides, the slope of the curve decreases with n. During our experiments, we plotted
functions 1− log(density) and obtained a set of (approximate) straight lines, thus indi-
cating that the convergence towards density 1 (complete graphs) is of the form 1−e−λθn,

6https://cran.r-project.org/web/packages/PerMallows/index.html
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where λθ >0 is a parameter decreasing with θ.

We now give some theoretical arguments that support this observation. Let us recall
that if a voter ranks cj first and ck second (or the opposite), then edge {cj , ck} must be
present in the graph and is called necessary edge. Assuming that the preferences in
the profile are generated with the Mallows model, let us now estimate the number of
necessary edges in the graph for n voters and m candidates, which gives us an under-
estimation and hopefully good approximation of the total number of edges. Let θ be
the model parameter and >0 the central permutation. The probability that a preference
induces the necessary edge {cj , ck} is

P ({cj , ck}) =
1

ψ(θ)

∑
>∈R{j,k}

exp(−θdKT (>,>0)) (3.1)

where R{j,k} is the set of permutations of {c1, . . . , cm} that ranks cj and ck in the first two
positions. In a profile with n voters, the probability that no preference induces the nec-
essary edge {cj , ck} is then written (1− P ({cj , ck}))n.

Hence, by switching to the complement, the probability that {cj , ck} is a necessary edge
is

Pn({cj , ck}) = 1− (1− P ({cj , ck}))n.

Finally, we obtain the expected value of the number of edges as

∑
{cj ,ck}⊆{c1,...,cm}

Pn({cj , ck}) =
(
m
2

)
−

∑
{cj ,ck}⊆{c1,...,cm}

(
1− P ({cj , ck})

)n
. (3.2)

For θ = 0, as the distribution is uniform, we get that P ({j,k}) = 1/
(m

2
)
. Then, we di-

rectly obtain that the average number of necessary edges is
(m

2
)
(1− e−αn) with α =

− ln
(
1− 1/

(m
2
))

, thus contributing for (1− e−αn) in the density, in accordance with the
experiments. The curves in Figure 3.6.3 shows the evolution of the expected contribu-
tion of necessary edges in the graph density according to the values of θ and n. The
result extends to any value of θ but requires a dedicated algorithm to compute effi-
ciently P ({j,k}) in Equation 3.2 (see Appendix 3.A). As expected, we can see that the
shapes of the curves coincide in Figures 3.6.2 and 3.6.3. Note, however, that the scale
of the y-axis in Figure 3.6.3 slightly differs from the one in Figure 3.6.2 (the curves
in Figure 3.6.3 indeed only account for necessary edges, thus the analytical values are
smaller than the experimental ones).
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Figure 3.6.3: Expected number of necessary edges according to parameters θ and n
(with m=20).

By using the formula in Equation 3.2, we can have an idea of the evolution of the num-
ber of necessary edges in the graph for up to 1000 voters whose preferences follows
the Mallows model. The obtained curves for various values of θ are shown in Fig-
ure 3.6.4. For instance, if one assumes that all votes are equally likely (impartial culture
assumption, corresponding to θ = 0), then the graph becomes complete for a thousand
voters, while only around 45% of the edges are present if one sets θ= 0.3 (i.e., a lower
preference heterogeneity).
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Figure 3.6.4: Expected number of necessary edges for up to n= 1000 voters following
the Mallows model of parameter θ (with m = 20).
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3.7 Conclusion

In this section, we have studied the single-peakedness on an arbitrary graph. In Sec-
tion 3.2, we have introduced this notion, as well as two different measures of graph
sparsity, namely the number of edges and the maximum vertex degree. In Section 3.3,
we have proposed an ILP formulation for the both problems of minimizing the number
of edges and of minimizing the maximum degree of a vertex. We have shown that these
problems are NP-hard in a general case.

In Section 3.4, if the optimal value of the number of edges minimization equals m− 1,
we prove the integrality of the continuous relaxation of the ILP. This provides an al-
ternative polynomial time method to recognize single-peakedness on a tree. By adding
some constraints on the maximum degree of a vertex, we obtain the same result for the
case of paths.

In Section 3.5, we have provided a polynomial time recognition algorithm of prefer-
ences single-peaked on a pseudotree. Moreover, we have shown that the linear relax-
ation of the ILP formulation does not remain integral in the case of pseudotrees, and
cannot thus be used for recognition of the single-peakedness of this class of graph.

Finally, we have performed numerical tests on both real-world and synthetic data in
Section 3.6. The results are quite promising - the obtained solutions are generally quite
sparse (in terms of the number of edges), and the theoretical analysis providing a bound
on the number of edges seems to support this observation. Moreover, it is interesting
to note that even when using the ILP continuous relaxation, there were almost no frac-
tional edges the most of the time.

Several research directions, concerning mostly the interpretability of solutions and the
impact of different sparsity measures to the solution, are discussed in the global con-
clusion.
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Chapter appendix

3.A Computation of the expected number of necessary edges

In practice, it is computationally cumbersome to enumerate all permutations to com-
pute P ({cj , ck}) according to Equation 3.1 (page 90). We present here another approach
to compute efficiently this value. Note that the maximal value Kendall-tau distance be-
tween two permutations of lengthm ism(m−1)/2. For each value δ ∈ {1, . . . ,m(m−1)/2},
let Nm(δ) denote the number of permutations > such that dKT (>,>0) = δ, and Nm

{cj ,ck}
(δ)

the number of permutations >i such that {ri(1), ri(2)} = {cj , ck} and dKT (>i ,>0) = δ. Then,
P ({cj , ck}) can be computed as

P ({cj , ck}) =

m(m−1)/2∑
δ=0

Nm
{cj ,ck}

(δ)exp(−θδ)

ψ(θ)
. (3.3)

The value Nm
{j,k}(δ) can be computed as follows:

• Firstly, we define the permutation >1 such that r1(1) = cj , r1(2) = ck and for each
pair ci , cl of candidates different from cj and ck , we have

r−1 (ci) < r
−
1 (cl) if and only if r−0 (ci) < r

−
0 (cl).

Similarly, we define the permutation >2 such that r2(1)=ck , r2(2)=cj and for each
pair ci , cl of candidates different from cj and ck , we have

r−2 (ci) < r
−
2 (cl) if and only if r−0 (ci) < r

−
0 (cl).

We denote by δ1 (resp. δ2) the Kendall-tau distance between >0 and >1 (resp. >2).

• As >1 (resp. >2) is between7 >0 and any permutation >i such that ri(1) = cj and
ri(2) = ck (resp. ri(1) = ck and ri(2) = cj ), we have dKT (>0,>i) =dKT (>0,>1) + dKT (>1
,>i) (resp. dKT (>0,>i)=dKT (>0,>2)+dKT (>2,>i)) because the Kendall-tau distance

7A ranking >i is between rankings >j and >k if, for any pair c,c′ of candidates, r−j (c) < r−j (c′) and r−k (c) <

r−k (c′) implies that r−i (c) < r−i (c′).
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satisfies the betweenness condition8 (Kemeny, 1959). Consequently, the number
of permutations > inducing the necessary edge {cj , ck} and such that dKT (>0,>)=δ
can be computed as

Nm
{cj ,ck}(δ) =Nm−2(δ − δ1) +Nm−2(δ − δ2)

because d(>0,>1)=δ1 and d(>0,>2)=δ2 by definition of δ1 and δ2.

Note that this equation is well defined because Nm(δ) is fully characterized by
m and δ. The problem consists now in determining the values Nm−2(δ − δ1) and
Nm−2(δ − δ2). In this purpose, for any value m and distance δ, Nm(δ) can be com-
puted thanks to the following recursion principle:

– Regardless of the length m of the permutations considered, Nm(0) = 1 as
there is only one permutation at distance 0 of >0 - it is >0 itself.

– Letm>1 and δ>0. Let > be an arbitrary permutation of lengthm at distance
δ from >0. The distance between >0 and > can be calculated as the number
δ′ of swap operations needed to move r0(1) to the first position in >, to which
one adds the distance between the restrictions of >0 and > to their (m−1) last

elements. We have 0 ≤ δ′ ≤m− 1, and so Nm(δ) =
∑min(δ,m−1)
δ′=0 Nm−1(δ − δ′).

Overall, after a single preprocessing step inO(m4), each probability P ({cj , ck}) can
be computed in O(m2). The preprocessing step consists in determining N i(δi)
for each i ∈ {1, . . . ,m} and δi ∈ {1, . . . , i(i − 1)/2}. Hence, there are N (m) ∈O(m3)
values to compute, and each of them is obtained in O(m). Once these values
are computed, Equation 3.3 allows us to compute P ({cj , ck}) in O(m2). This is a
significant improvement compared to the brute force implementation inO(m!) of
Equation 3.1.

8A distance d satisfies the betweenness condition if for all >,>′ ,>′′ such that >′ is between > and >′′ we
have d(>,>′′) = d(>,>′) + d(>′ ,>′′).
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Nearly single-peaked preferences :
forbidden triples

4.1 Introduction

Although the approach presented in Chapter 3, consisting in generalization of single-
peaked preferences on an arbitrary graph, seems quite promising (judging according
to experiences held in Section 3.6), it still has some weak points. The main problem
consists in the fact that each preference must be perfectly compatible with the graph.
Therefore, the voters with a very specific preferences may force the presence of edges
that are not “useful” for the majority of population. We could consider a weighted ver-
sion of a graph, where each edge would be labeled with the number of voters for which
the edge is necessary to ensure their compatibility with the graph. In such a case, we
would probably observe that some edges seem more “relevant” than others, in the sense
that their removing would make the structure incompatible for a great proportion of
voters. An idea could be to remove a subset of edges in order to obtain a sparser graph.
But how do we decide which subset should be removed? Actually, we need to mea-
sure the impact of this action - in other words, the distance of the profile from such a
modified graph. This leads us to the notion of nearle single-peakedness which will be
studied in this chapter.

Actually, removing some edges can be justified as follows: we assume that there is some
exact underlying theoretical structure of preferences, which is in practice “noised” by
real preferences of voters. In fact, the voters can more or les perceive the underlying
structure, or can also more or less agree on it (typically, a voter can globally agree with
the structure, with some minor deviations). In this chapter, we assume that the under-
lying structure is an axis. We will then study the question how to find the axis which is
“nearer” to a given preference profile. Let us now set the framework of this topic in a
more formal way:

As emphasized by Feld and Grofman (1986), the assumption that preferences are per-
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fectly single-peaked is indeed very strong if the alternatives are candidates in an elec-
tion (the case of numerical alternatives, such as tax levels, is obviously different). Single-
peakedness in the strictest sense thus requires that no individual preference deviates
(even slightly) from the single-peakedness condition. Given an axis A, the number of
rankings consistent with A (i.e., such that condition 2 holds) is 2m−1, over m! possible
rankings in total, where m is the number of alternatives. The proportion of consis-
tent rankings within all possible rankings thus quickly becomes tiny when m increases
(2m−1/m!≈0.01 form=7), as well as the likelihood that no voter deviates from this sub-
set of preferences. This observation is also corroborated by the numerical tests carried
out by Sui et al. (2013) on 2002 Irish General Election data in Dublin West and Dublin
North, where the best axes explain only 2.9% and 0.4% of voters’ preferences.

Conitzer (2009) distinguishes between two interpretations of nearly single-peaked-
ness (see e.g. Erdélyi et al. (2013) for a systematic study of nearly single-peaked elec-
torates): an interpretation where preferences are said nearly single-peaked if only a
few voters’ preferences deviates from a given axis A and the other voters’ preferences
are perfectly single-peaked w.r.t. A (the numerical tests reported above corresponds to
this interpretation); another interpretation where one allows all voters’ preferences to
deviate to some extent from a given axis A. The distance measure we propose in this
chapter falls under the second interpretation, which has been less studied and tested
than the first one.

Given an axis A on the candidates and a set P of preferences, the idea is to measure
how far from single-peakedness w.r.t. A each individual preference is. Put another way,
each preference in the electorate partially fits with the axis (according to a non-binary
measure), and one sums up the degrees of fitness of preferences in P to obtain the
“degree of single-peakedness” of P w.r.t. A. More precisely, one defines a distance to
single-peakedness, i.e. the degree is 0 if P is single-peaked w.r.t. A. We are thus seek-
ing a procedure that returns both a degree of single-peakedness of a profile and an axis
that witnesses the obtained value. This outputs allow the analysis of a political land-
scape, by answering the questions: How close to single-peakedness is an electorate?
How the voters perceive the ideological proximities between candidates?

Related work While recognizing perfectly single-peaked preferences is a polynomial
time problem (Bartholdi III and Trick, 1986; Doignon and Falmagne, 1994), determin-
ing the distance to single-peakedness (according to various measures) is often NP-hard.
Various notions of nearly single-peakedness are present in the literature. We briefly re-
view here notions that do not relax the assumption of a one-dimensional axis on all the
candidates. Most of them have been introduced and/or studied by Faliszewski et al.
(2011), Erdélyi et al. (2013) and Elkind and Lackner (2014). Faliszewski et al. (2011)
studied k-voter deletion single-peakedness, also known as partial single-peakedness in eco-
nomics (Niemi, 1969). One says that an electorate is k-voter deletion single-peaked
consistent if all but k of the voters preferences (“maverick” voters) are consistent with
a common axis on the candidates. The smallest number k such that there exists an
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axis w.r.t. which the electorate is k-voter deletion single-peaked can be viewed as a
distance to single-peakedness. Erdélyi et al. (2013) as well as Bredereck et al. (2016)
have proved that determining this distance is NP-hard. Elkind and Lackner (2014)
have proposed a polynomial time 2-approximation algorithm for this distance, and
have established fixed-parameter tractability results (complexity O∗(1.28k) if k < n/2,
and O∗(2.08k) if k≥n/2, where n is the number of voters).

Erdélyi et al. (2013) introduced k-local candidate deletion single-peakedness. They
first defined single-peaked consistency of a partial preference (linear order on a subset
of candidates) w.r.t. an axis A on all candidates: a partial preference is single-peaked
w.r.t. A if it is single-peaked w.r.t. the axis obtained from A by removing the missing
candidates. Then they say that an electorate is k-local candidate deletion single-peaked
consistent if, by removing at most k candidates from each preference, one obtains a set
of partial preferences that are single-peaked with respect to a common axis. As above,
the smallest k for which the property holds can be viewed as a distance. Here again,
the authors have proved that determining this distance is an NP-hard problem.

The class of distance measures that is the closest to our work is that of swap dis-
tances. Erdélyi et al. (2013) introduced k-global swaps single-peakedness, where k is the
number of swaps of consecutive candidates that need to be performed in the prefer-
ences to make the election single-peaked. Following Faliszewski et al. (2011), they also
considered a “local budget” for swaps, i.e., they allow up to k swaps per vote. They
call k-local swaps this notion of nearly single-peakedness. For both notions, Erdélyi
et al. (2013) have proved that computing the smallest k enabling to make the election
single-peaked is NP-hard. Finally, let us mention the notion of PerceptionFlipk single-
peakedness (Faliszewski et al., 2011). An electorate is PerceptionFlipk single-peaked if
there exists an axis A such that, for each voter, the axis A can be transformed into an
axis A′ by at most k swaps of consecutive candidates in A so that the voter’s preference
is single-peaked with respect to A′. Erdélyi et al. (2013) have proved that k-local swaps
single-peakedness and PerceptionFlipk single-peakedness are equivalent, in the sense
that an electorate is k-local swaps single-peaked iff it is PerceptionFlipk single-peaked.

Our contribution The originality of the distance measure we introduce here is that
it directly follows from the very definition of Black’s single-peakedness condition. For
a given axis on the candidates, it consists in counting the number of violations of the
single-peakedness condition in the preferences. We position this new distance with
respect to existing measures of nearly single-peakedness. We provide an axiomatic
study in order to identify theoretical properties guaranteed (or not guaranteed) by this
measure. In particular, we provide some insights on the differences between this mea-
sure, k-voter deletion single-peakedness and k-global swap single-peakedness, and we
also point out the differencies with the exact single-peakedness. Moreover, we show
that under a very specific assumptions, the minimization of the distance from single-
peakedness in sense of FT can be interpreted as a maximum likelihood estimation
problem. We then tackle computational complexity: we prove that, as for most of
the proposed measures in the literature, computing an axis at minimum distance to a
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given preference profile is NP-hard for our measure. We nevertheless propose an exact
method to compute such an axis, that turns out to be efficient in practice. Then we
present the results of numerical tests on both real and synthetic election data, to eval-
uate the relevance of the returned axes on the candidates, providing also comparisons
with other notions of nearly single-peakedness.

Organization of the chapter The chapter is organized as follows. We introduce the
notion of k-forbidden triples single-peakedness (FT in which follows) in Section 4.2. As
said above, this notion consists in counting the number of triples of candidates that
violate Black’s single-peakedness condition. In Section 4.3, we give a brief overview of
existing measures of nearly single-peakedness, and we compare the k-forbidden triples
single-peakedness with them.

In which follows, we only focus on nearly single-peakedness measures resulting in a
(complete) axis. Namely, we consider the measures of k-voter deletion single-peakedness,
k-global swaps single-peakedness, k-local swaps single-peakedness and, of course, k-
forbidden triples single-peakedness. In Section 4.4, we highlight some common points
and differences between k-forbidden triples single-peakedness and other notions re-
sulting in a complete axis. In the first time, we provide a set of properties that hold,
resp. do not hold, for any considered measure of single-peakedness. Moreover, all
these properties hold for a perfectly single-peaked preferences. This gives a reader a
first idea of what is lost by relaxing the notion of single-peakedness. We provide then a
second set of properties such that each of them holds (or does not hold) for each mea-
sure except one. This gives a reader an idea of differencies in behaviour of considered
measures.

We show in Section 4.5 that under some very specific assumptions, the axis minimizing
the number of forbidden triples can be interpreted as a maximum likelihood estimation
of a “true” hidden axis A, where each vote is viewed as a noisy estimate of a preference
single-peaked w.r.t. A.

In Section 4.6, we study so-called evaluation and consistency problems. Given an axis
A, a preference profile P and a nearly single-peakedness measure X, the evaluation
problem consists in determining the distance (in sense of the measure X) of P from
A. The consistency problem decides, given a profile P, a measure X and an integer k,
whether there exists an axis A such that the distance of P from A is at most k. We show
that the evaluation problem is polynomial-time solvable for FT , while the consistency
problem is NP-complete. Nevertheless, we provide an ILP formulation of the consis-
tency problem which reveals quite efficient in practice, as we will see in Section 4.7.
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4.2 Preliminaries

We start by recalling the definition of single-peakedness, as this notion will be central
in this chapter.

Definition 4.2.1: Single-peakedness

Let an axis A be a total order ◁A over a set C = {c1, . . . cm} of candidates. Let >v
denote the preference relation (total order) of a voter v over C. Let c∗v denote
the most preferred candidate of v (also called the peak of v), i.e., c∗v >v c for all
c,c∗. The preference >v is single-peaked with respect to A if for any ci , cj ∈C, such
that cj ◁A ci ◁A c∗v or c∗v ◁A ci ◁A cj , we have c∗v >v ci >v cj . A profile P is said to be
single-peaked with respect to A if every vote is single-peaked with respect to A.

The subscript A in ◁A emphasizes that this relation is defined with respect to an axis A.
We recall that, by abuse of language, the relation ◁A will be simply denoted by ◁ if no
confusion is possible.
Another very important notion of this chapter is the so-called betweenness relation:

Definition 4.2.2: Betweenness relation

The betweenness relation induced by an axis A is the ternary relation RA defined
by:

RA= {(ci , cj , ck) ∈ C3 : ci ◁A cj ◁A ck or ck ◁A cj ◁A ci}.

Put another way, (ci , cj , ck) ∈RA means that cj is between ci and ck on the axis A (note
that ci , cj and ck do not need to be consecutive on A). By definition of RA, (ci , cj , ck) ∈
RA implies (ck , cj , ci) ∈ RA, and conversely.1 The notion of A-forbidden triple that we
introduce below will make it possible to measure the consistency of a profile with an
axis:

Definition 4.2.3: A-forbidden triple

Let c∗v be the peak of a voter v. If c∗v >v ci >v cj and (c∗v , cj , ci)∈RA, then the triple
T =(c∗v , ci , cj ) is called A-forbidden in >v .

Counting the number of A-forbidden triples in a preference profile P (i.e., the number
of A-forbidden triples in >v for >v∈ P) amounts to counting the number of violations
of the definition of single-peakedness with respect to A. We denote by FT (>v ,A) the

1Actually, we may notice here a (small) abus of language: while we talk about triples (i.e., (unordered)
sets of 3 elements), the relationRA is defined by 3-tuples (i.e., (ordered) sequences of 3 elements). However,
we keep the notion of triple in which follows, as we are only interested in the middle position of each tuple
in practice. Indeed, as we will see, the tuples (ci , cj , ck) and (ck , cj , ci ) are counted as one in the notion of
k-forbidden triples single-peakedness.
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number of A-forbidden triples in the preference >v , and by FT (P,A) the number of
A-forbidden triples in the whole profile P.

Example 4.2.1. Consider the following profile P of 2 voters over 4 candidates:

>1: (c1, c3, c4, c2)

>2: (c2, c1, c4, c3)

Let us consider the axis A = c1◁c2◁c3◁c4. The preference >1 is not single-peaked with respect
to A (see Figure 4.2.1a) due to the candidate c2 who is placed between the peak c1 and the
two remaining candidates c3, c4, both preferred to c2 by the voter v1. Indeed, we count here
two violations of the single-peakedness definition, i.e. two forbidden triples (c1, c2, c3) and
(c1, c2, c4) - see Figure 4.2.1a. Hence, we write FT (>1,A) = 2.
In the same manner, we easily check that FT (>2,A) = 1 - the (unique) forbidden triple here is
(c2, c3, c4) (see Figure 4.2.1b). Put together, we have FT (P,A) = FT (>1,A) +FT (>2,A) = 3.
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(a) (c1, c2, c3) and (c1, c2, c4) are A-
forbidden in >1.
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(b) (c2, c3, c4) is A-forbidden in >2.

Figure 4.2.1: Illustration of A-forbidden triple definition. Here we have a profile con-
taining three forbidden triples - two forbidden triples in >1 and one forbidden triple in
>2.

We can now introduce the notion of k-forbidden triples single-peakedness:

Definition 4.2.4: k-forbidden triples single-peakedness

We say that a profile P is k-forbidden triples single-peaked consistent if there exists
an axisAwith respect to which the number ofA-forbidden triples in P is at most
k.

We denote by FT (P) the smallest k such that P is k-forbidden triples single-peaked
consistent, and by AFT (P) the axis for which we get FT (P) forbidden triples (actually,
there can be several such axes). The distance of P to single-peakedness is FT (P).
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4.3 Positioning with respect to other metrics

The aim of this section is to compare the k-forbidden triples single-peakedness metric
with other measures. We start by giving a brief overview of existing metrics of nearly
single-peakedness. A more detailed, formal and elaborate version can be found in
(Erdélyi et al., 2017):

• k-Voter Deletion (VD): A profile P is k-VD single-peaked with respect to an axis
A if there exists a set of k preferences {>i1 ,>i2 , . . . ,>ik } such that P\ {>i1 ,>i2 , . . . ,>ik }
is single-peaked with respect to A.

• k-Candidate Deletion (CD): A profile P is k-CD single-peaked with respect to
an axis A if there exists a subset of k candidates C′ ⊂ C such that the profile
restricted to C \ C′ is single-peaked with respect to A restricted to C \ C′.

• k-Local Candidate Deletion (LCD): A profile P is k-LCD single-peaked with
respect to an axis A if for each voter v there exists a subset of k candidates Cv ⊂ C
such that the preference >v restricted to C \ Cv is single-peaked with respect to
A restricted to C \ Cv .

• k-Additional Axes (AA): A profile P is k-AA single-peaked if there exist k axes
A1,A2, . . . ,Ak such that each preference >v is single-peaked with respect to at least
one of them.

• k-Global Swaps (GS): A profile P is k-GS single-peaked with respect to an axis A
if it can be made single-peaked with respect to A by performing at most k swaps
of consecutive candidates in the profile.

• k-Local Swaps (LS): A profile P is k-LS single-peaked with respect to an axis A
if each preference >v can be made single-peaked with respect to A by performing
at most k swaps of consecutif candidates in it (in other words, we allow k swaps
per vote, while we required k swaps for the whole profile in case of GS).

• k-Candidate Partition (CP): A profile P is k-CP single-peaked with respect to an
axis A if there exists a partition of C into k sets C1, C2, . . . , Ck such that for each
i ∈ {1, . . . , k}, the profile restricted to Ci is single-peaked with respect to the axis A
restricted to Ci .

• k-Clones (CL) A cloneis a set of candidates that are ranked consecutively in all
preferences (but not necessarily in the same order). By replacing a clone set by a
unique candidate, the profile may become single-peaked. With such a substitu-
tion (also called decloning), we will loose l − 1 candidates if the size of the clone
set is l.

A profile P is k-CL single-peaked if there exist k clones such that at most k can-
didates are lost in the decloning procedure leading to a single-peaked profile.
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• k-Width (WI) A profile P is k-WI single-peaked if there exists a set of clone sets
leading to a single-peaked profile (when applying the decloning procedure) with
each clone set involving at most k candidates.

Erdélyi et al. (2017) then gives the Hasse diagram in which measureX is above measure
Y if for each profile P, we have Y (P) ≤ X(P) - in other words, Y is upper bounded by
X, which is denoted by Y <l eqX. Intuitively, when a metric Y is upper bounded by
a metric X, the metric X is somehow more expressive, with a larger scale of possible
values. For instance, the maximal value taken for VD is obviously n− 1, as any profile
of only one voter is single-peaked, while for GS, an example where more than n − 1
swaps are needed can be found. Indeed, we have VD ≤ GS, and GS should provide a
finer grading of profiles.
The Hasse diagram, which can be found in (Erdélyi et al., 2017), is represented in in
Figure 4.3.1. It has been proved in the original paper that this diagram is complete in
the following sense: if there is no arc (or path) between two metrics X and Y , then one
cannot be upper bounded by the other. Proposition 4.3.1 makes it possible to add FT
to the diagram in Figure 4.3.1:

FT CL GS

VD WI CD LS

AA CP LCD

Figure 4.3.1: The Hasse diagram given by Erdélyi et al. (2017): X is above Y (and there
is an arc from Y to X) if Y is upper bounded by X. The new metric FT is added in red
into the diagram.

Proposition 4.3.1

The metrics upper bounded by FT are VD, CD, AA, CP and LCD.
For X ∈ {CL,GS,W I,LS}, neither X is upper bounded by FT , nor the opposite.

Proof. Let us start by proving the first part of the proposition. By transitivity of Hasse
diagram, it is sufficient to prove that VD and CD are upper bounded by FT :

• Let AFT (P) be an optimal axis with respect to which P is k-FT single-peaked.
There are at most k voters that are not single-peaked with respect to AFT (P).
Hence, the profile is k-VD single-peaked.

• Let P be k-CD single-peaked with respect to an axis A. There are k candi-
dates ci1 , ci2 , . . . , cik that must be removed to make P single-peaked w.r.t. A. That
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means that each of these candidates violates at least once the definition of single-
peakedness: for each l ∈ {1, . . . , k} there is a voter v such that c∗v >v cj >v cik with
(c∗v , cik , cj ) ∈ RA. In other words, there is at least one forbidden triple caused by
each of the removed candidates.

For X ∈ {CL,GS,W I,LS}, we need now to find two profiles PX and P
′

X such that
X(PX) < FT (PX) and FT (P

′

X) < X(P
′

X):

• X = CL or WI : To show that we can have X(P) < GS(P), Erdélyi et al. (2017)
consider the following profile of 3n voters over 3 candidates:

n voters : (c1, c2, c3)

n voters : (c1, c3, c2)

n voters : (c2, c3, c1)

We now show that this counterexample still works if we replace GS by FT . There
are indeed 3 candidates ranked last, so no matter the axis, there will always be n
voters not compatible with it (we recall that in any single-peaked profile, at most
two candidates can be ranked last). We have therefore FT (P) ≥ n. On the other
hand, the profile becomes single-peaked if we declone the clone set {c2, c3} - we
have CL(P) =WI(P) = 1.
Similarly, the profile P′ proposed by Erdélyi et al. (2017) to show that we can
have GS(P′) < X(P′) also shows that we can have FT (P) < X(P). For conve-
nience, we recall their counterexample here - it is a profile of 4 preferences over
m candidates:

>1: (c1, c2, . . . , cm−1, cm)

>2: (cm, cm−1, . . . , c2, c1)

>3: (c1, c2, . . . , cm−2, cm, cm−1)

>4: (cm−1, cm−2, . . . , c1, cm)

Again, there are 3 candidates ranked last, so the profile is not single-peaked.
However, it is 1-FT single-peaked w.r.t. A = c1 ◁ c2 ◁ . . . ◁ cm, as there is only one
forbidden triple (c1, cm, cm−1) for the preference >3. Regarding the metrics CL and
WI, at least two of the three candidates ranked at least once in last position (i.e.,
c1, cm and cm−1) must be in the same clone set to make the profile single-peaked.
It is easy to check that in such a case, CL(P′) ≥m− 1 and WI(P′) ≥m− 1.

• X = GS or LS : Let us consider the profile P of 2n + 1 preferences over 6 voters
(with n “sufficiently great”2) - see Figure 4.3.2a for an illustration:

n voters : (c1, c2, c3, c4, c5, c6)

n voters : (c6, c5, c4, c3, c2, c1)

>2n+1: (c6, c1, c2, c3, c4, c5)

2The exact value will be given below.
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The profile P is not single-peaked, as there are 3 candidates ranked last. The sec-
ond group preference is the reverse order of the first group preference - therefore,
the only axis (up to a reversal) w.r.t. which these two groups of preferences are
both single-peaked isA = c1◁c2◁. . .◁c6. For any other axis, one of these groups will
not be compatible, so we will have at least n forbidden triples or swaps. Hence,
if n is greater than the distance of the preference >2n+1 from A, A is the unique
optimal solution (up to a reversal).

Regarding GS, one can easily check that the optimal way (in terms of number
of swaps) to make >2n+1 compatible with A is to swap c6 consecutively with
c5, c4, c3, c2 and c1 - in other words, the most preferred candidate of v2n+1 becomes
her worst ranked candidate. We have therefore GS(P) = 5. As >2n+1 is the only
preference not compatible with A, we also have LS(P) = 5.

On the other hand, (c6, ci , cj ) is a forbidden triple for each i < j ≤ 5. Hence,
there are 10 forbidden triples. Thus, FT (P) = 10, and GS(P) < FT (P) (resp.
LS(P) < FT (P)).

We give now a profile P′ such that FT (P′) < GS(P′) (resp. FT (P′) < LS(P′)).
For this purpose, let us consider the following profile of 2n+1 preferences (again,
with n sufficiently great) over 6 voters (see Figure 4.3.2b for an illustration):

n voters : (c1, c2, c3, c4, c5, c6)

n voters : (c6, c5, c4, c3, c2, c1)

>2n+1: (c3, c1, c4, c5, c6, c2)

As in the previous case, for n sufficiently great, the axis A = c1 ◁ c2 ◁ . . . ◁ c6 is the
only optimal axis (up to a reversal) for both FT and GS, resp. LS, metrics. Indeed,
the only preference not compatible with A is >2n+1. The only forbidden triple is
(c3, c2, c1), so FT (P′) = 1. On the other hand, 4 swaps need to be done in order to
make this preference compatible with A - c2 needs to be consecutively swapped
with c6, c5, c4 and c1. We have hence GS(P′) = 4. This reasoning also holds for
LS metrics, as there is only one preference not compatible with A. Therefore, we
have FT (P′) < GS(P′) (resp. FT (P′) < LS(P′)).

A Curious Tortoise Intervention

This proof points out some differences and particularities in the be-
haviour of both FT and GS metrics: To prove that GS < FT , we use the
preference >2n+1: (c6, c1, c2, c3, c4, c5) on the axis A = c1 ◁ c2 ◁ . . . ◁ c6. If the
candidate c6 was deleted, the restricted preference would be perfectly
single-peaked w.r.t. A. So the voter agrees with the structure imposed by
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(a) FT (P,A) = 10 and GS(P,A) = 5
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(b) FT (P′ ,A) = 1 and GS(P′ ,A) = 4

Figure 4.3.2: Two profiles showing that FT cannot be upper bounded by GS (resp. LS)
and vice-versa.

A on this subset of candidates. But she must rank the candidate c6 as the
last one to stay compatible with this structure. This seems to be a strong
contradiction, as c6 is actually her most preferred candidate - it seems
quite irrational to agree with a structure which ranks your most preferred
candidate as your worst one. More generally, a voter is rarely wrong
about her most preferred candidate, but GS is here moving it down in the
preference to make it compatible with A. From this point of view, this
preference seems intuitively quite far from A. The FT metrics seems to
better take into account this issue: basically, it takes two consecutively
ranked candidates ci , cj (on the same side of the peak), and it counts the
number of candidates ranked worse than both ci , cj and lying between
them on the axis - visually, the wider the “depression” between ci , cj is,
the less the preference fits to the axis. See Figure 4.3.3 for an illustration.

On the other hand, while FT considers the “width” of incompatibilities
with the axis, it is blind to the depth of them. This is used above to prove
that FT < GS. We have here the preference >2n+1: (c3, c1, c4, c5, c6, c2) and
the axis A = c1 ◁ c2 ◁ . . . ◁ c6. We note that the worst candidate of this voter,
i.e. c2, is ranked between her two most preferred candidates c1 and c3.
This is intuitively quite a big deviation from the structure, however, the
FT metrics only counts forbidden triples without taking into account the
difference between ranking positions of candidates forming a given triple.
For instance, the preferences (c3, c1, c4, c5, c6, c2) and (c3, c1, c2, c5, c6, c4) con-
tain both a unique forbidden triple (c3, c2, c1) and (c3, c4, c1) w.r.t. A, but in-
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tuitively, the second preferences seems to be more compatible with A than
the first one. Note that the metric GS considers this issue. See Figure 4.3.4
for an illustration.
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(a) FT = 1 and GS = 1
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(b) FT = 3 and GS = 3

c1 c2 c3 c4 c5

6

5

4

3

2

Axis

R
an

ki
ng

(c) FT = 6 and GS = 4

Figure 4.3.3: The FT measure penalizes a lot “wider depressions” caused by forbidden
triples. This issue seems to be less important for the GS measure.
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(a) FT = 1 and GS = 1
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(b) FT = 1 and GS = 2
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(c) FT = 1 and GS = 3

Figure 4.3.4: The FT measure does not take into account the depth of triples, contrary
to the GS measure. This is due to the fact that the FT measure treats independently
the left side and the right side of the peak.

4.4 Axiomatic Examination

We have seen at the end of the previous section some differences between GS and FT .
In this section, our aim is to tackle this question in a more formal way. Concretely,
we highlight some common points and differences between k-forbidden triples single-
peakedness and other notions of nearly single-peakedness. For comparison purposes,
we focus only on the notions resulting in a complete axis - hence, the notions considered
here are k-voter deletion single-peakedness (VD), k-global swaps single-peakedness
(GS), k-local swaps single-peakedness (LS), and of course k-forbidden triples single-
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peakedness (FT ).3 We first focus on common points of all considered metrics: we give
a list of natural and desirable properties (here called axioms) one could expect to hold
for a nearly single-peakedness metric. Actually, we will see that all these properties
hold for single-peaked profiles, but some of them do not hold anymore for any of the
considered nearly single-peakedness metric. This gives a reader an idea of what is lost
by relaxing the structure of single-peakedness.

In a second time, we focus on differencies between the considered metrics. In par-
ticular, we give a set of three properties such that each of them holds (or does not hold)
for each metrics except one. It turns out that these properties allow us to differenciate
the metrics, as there are no two metrics verifying the same subset of them. Again, all of
these properties hold for single-peaked profiles, which helps us to better understand
what is lost using each of the metrics.

We introduce now some notations used in what follows. Given a distance measure X, a
profile P and an axis A, we denote by X(P,A) the distance of P to single-peakedness
w.r.t. A. Given X and P, an optimal axis is one that minimizes X(P,A). By abuse of
notation, we write X(>v ,A) for X({>v},A).

For the convenience of the reader, we formally defineGS(P,A), LS(P,A) and VD(P,A):

GS(P,A) =
∑
>v∈P

GS(>v ,A),

LS(P,A) = max
>v∈P

LS(>v ,A),

V D(P,A) =
∑
>v∈P

VD(>v ,A),

where GS(>v ,A) (resp. LS(>v ,A)) is the minimum number of swaps of consecutive
candidates required to make >v single-peaked w.r.t. A, and VD(>v ,A)=0 if >v is single-
peaked w.r.t. A, otherwise VD(>v ,A) = 1. We denote by swap(c,c′) the swap of two
candidates c,c′ that are consecutive in >v .

Example 4.4.1. To illustrate these measures, we go back to the profile P from Example 4.2.1:

>1: (c1, c3, c4, c2)

>2: (c2, c1, c4, c3)

We recall that with respect to the axis A = c1 ◁ c2 ◁ c3 ◁ c4, we have FT (>1,A) = 2 and FT (>2
,A) = 1 (see Figure 4.2.1). Let us now determine X(>1,A), X(>2,A) and X(P,A) for X ∈
{GS,LS,VD}:

3Note that other metrics mentioned above do not result in a complete axis: for instance, the candidate
deletion metric (CD) will give an axis on a subset of candidates and this axis can be completed by adding
removed candidates arbitrarily - this leads to many different axis (all equivalent for CD); it is not obvious
how to compare such a class of axes with the output given by FT (which is a complete axis).
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• X = VD: Obviously, we have VD(>i ,A) = 1 for i ∈ {1,2}, as none of the preferences
is compatible with A. VD(P,A) = 2 - at least two preferences need to be removed to
make the profile compatible with A.

• X = GS: We have GS(>1,A) = 2: making swap(c2, c4), we obtain a preference >1′ :
(c1, c3, c2, c4). Applying swap(c2, c3) on >1′ yields a preference >1′′ : (c1, c2, c3, c4) single-
peaked with respect to A. It is easy to check that we cannot make >1 compatible with A
by performing only one swap, so GS(>1,A) = 2.

We can make >2 compatible with A by swapping c3 and c4. Therefore, GS(>2,A) = 1.
We have GS(P,A) = 2 + 1 = 3.

• X = LS: We have LS(>i ,A) = GS(>i ,A), as the both measures count the number of
swaps of consecutive candidates required to make >i single-peaked w.r.t. A. However,
LS(P,A) = max{LS(>1,A),LS(>2,A)} = 2.

4.4.1 Common points of nearly single-peakedness measures and compari-
son with single-peakedness

As said above, we will first introduce three properties which either hold for FT , GS, LS
and VD together, or for none of them:

Property 1 (Reinforcement). Let P1 and P2 be two preference profiles on the same set of
candidates (with P1∩P2 =∅). Suppose that there exists an axis A∗ optimal for both of them.
Then A∗ is also optimal for the profile P1∪P2.

Property 2 (Heredity). Let P be a profile over a set C of candidates and C′⊂ C. If an axis
is optimal for P, its restriction to C′ stays optimal for the profile restriction to C′.

Property 3 (Monotony). Let >v ,>v′ be two preference relations over C with the same peak,
let X be a measure of single-peakedness and let X(>v ,A)≤X(>v′ ,A) be their respective dis-
tances to single-peakedness w.r.t. an axis A. Let >v′′ be another preference relation such that
>v′′ is between >v and >v′ (which means that a>v b and a>v′ b⇒ a>v′′ b). Then:

X(>v ,A) ≤ X(>v′′ ,A) ≤ X(>v′ ,A).

As all these properties hold for single-peaked preferences, we get an idea of what is
lost by relaxing single-peakedness (at least for the existing distance measures in the
literature). For instance, from the computational viewpoint, the failure of the hered-
ity property prevents the development of a dynamic programming procedure based on
examining subsets of candidates for minimizing X(P,A).
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Figure 4.4.1: A subprofile of a single-peaked profile remains single-peaked.

A Curious Tortoise Intervention

Let us comment these properties in a less formal way. The reinforcement
property simply states that if two different groups of voters agree on
their optimal axis, it remains optimal in the profile that merges these two
groups together. This property seems very natural and actually holds for
any considered measure.

The heredity property basically states that a subsolution of an opti-
mal solution should remain optimal. While it may seem appealing at first
sight and it is verified by single-peaked profiles, we will see that it does
not hold for nearly single-peaked measures.

Finally, the monotony property assumes that we have two preferences >v
and >v′ , and a preference >v′′ between them. Intuitively, one might see
>v′′ as a “compromise” between >v and >v′ . It seems then natural that
the distance of >v′′ from the axis A would also be between X(>v ,A) and
X(>v′ ,A). In other words, one could expect the distance fonction to be
monotonous while “transforming” >v into >v′ . However, this is not true
for any of the considered notions of nearly single-peakedness.

We first show that these three properties hold for single-peaked profiles, i.e. for profiles
P such that X(P,A∗=0) for any single-peakedness measure X and an optimal axis A∗:

– Reinforcement: If all the preferences in P1 and in P2 are single-peaked w.r.t. A,
then P1∪P2 is obviously single-peaked w.r.t. A.

– Heredity: If a preference relation > over C is single-peaked w.r.t. an axis A, then
its restriction to C′ is single-peaked w.r.t. the restriction of A to C′.
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– Monotony: As > and >′ share the same peak and >′′ is between > and >′, the peak
of >′′ is the same as the one of > and >′; for the pairs of candidates that are both on
the left or on the right side of the peak on A, > and >′ share the same preference
consistent with A, and therefore also >′′; hence >′′ is single-peaked w.r.t. A.

Let us now see what happens for different notions of nearly single-peakedness:

Proposition 4.4.1

Reinforcement holds for any X ∈ {FT ,GS,LS,VD}. On the other hand, Heredity
and Monotony do not hold for any of these measures of nearly single-peakedness.

Proof.

• Reinforcement:
Assume that A∗ is an optimal axis for ( C,P1) and ( C,P2). Let A be an arbitrary
chosen axis. For X ∈ {FT ,GS,VD}, X(P,A) =

∑
>∈PX(>,A), thus X(P1∪P2,A) =

X(P1,A)+X(P2,A).
By optimality of A∗ for P1 and P2, we have X(P1,A

∗)≤X(P1,A) and X(P2,A
∗)≤

X(P2,A). Consequently, X(P1 ∪P2,A
∗) ≤ X(P1 ∪P2,A), hence A∗ is optimal for

( C,P1∪P2). For LS, we have that LS(P,A)=max>∈PLS(>,A) and LS(P1∪P2,A)=
max{LS(P1,A),LS(P2,A)}. The proof is then similar.

• Heredity:
– To prove that the property is false for FT and GS, consider the following profile
P with 5 voters and 4 candidates:

>1: (c4, c3, c2, c1)

>2: (c4, c3, c2, c1)

>3: (c1, c2, c3, c4)

>4: (c3, c4, c1, c2)

>5: (c4, c3, c1, c2)

By enumerating all 12 axis (up to a reversal), we find out that the unique optimal
solution is the axis A∗ = c1 ◁ c2 ◁ c3 ◁ c4. For X ∈{FT ,GS}, we have dXP,A∗)=2 due
to >4 and >5 (containing forbidden triples (c3, c2, c1), resp. (c4, c2, c1)). However, if
we delete the candidate c4, the restricted axis A′ = c1 ◁ c2 ◁ c3 is no more optimal.
Denoting by P′ the profile P where c4 has been deleted, we still have indeed
X(P′ ,A′) = 2, while X(P′ ,A) = 1 for the axis A defined by c1 ◁A c3 ◁A c2 (only >3 is
problematic).
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– To prove that the property is false for LS, consider the profile P with 2 prefer-
ences over 5 candidates:

>1: (c5, c1, c2, c3, c4)

>2: (c5, c4, c3, c2, c1).

Consider the axis A = c2◁c1◁c5◁c4◁c3. As P is not single-peaked and LS(P,A)=1
(by swapping c3 and c4 in >1, and c1 and c2 in >2), the axis A is optimal for LS.
However, if we delete c5 from P, the restricted axis A′ = c2 ◁ c1 ◁ c4 ◁ c3 is no more
optimal. Denoting by P′ the profile P where c5 has been deleted, we still have
indeed LS(P′ ,A′)=1, while P′ is single-peaked w.r.t. c1 ◁ c2 ◁ c3 ◁ c4.

– To prove that the property is false for VD, consider a profile P with n= 4p+3
voters (where p is a multiple of 3) and 12 candidates:

p voters of type 1 : (c1, c3, c2, c6, c4, c5, c7, c9, c8, c10, c12, c11)

p voters of type 2 : (c2, c3, c1, c4, c6, c5, c7, c9, c8, c10, c12, c11)

2p/3+1 voters of type 3 : (c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12)

2p/3+1 voters of type 4 : (c1, c2, c3, c5, c6, c4, c8, c9, c7, c10, c12, c11)

2p/3+1 voters of type 5 : (c1, c2, c3, c5, c4, c6, c8, c9, c7, c11, c12, c10).

A profile cannot be single-peaked if there exists a triple of voters vi ,vj ,vk and
a triple of candidates c,c′ , c′′ such that c (resp. c′, c′′) is the least preferred in
{c,c′ , c′′} according to >i (resp. >j ,>k)4. It implies that three different types of
voters at least have to be deleted to make the election single-peaked since:

- voters of types {1,2,3}, {1,2,4} and {1,2,5} are made incompatible by triple
c1, c2, c3;

- voters of types {2,3,4}, {1,3,4}, {2,4,5} and {1,4,5} are made incompatible by
triple c4, c5, c6;

- voters of types {2,3,5} and {1,3,5} are made incompatible by triple c7, c8, c9;

- voters of types {3,4,5} are made incompatible by triple c10, c11, c12.

The optimal solution consists in deleting all voters of types 3, 4 and 5 (the less
numerous ones); the voters of types 1 and 2 are for instance single-peaked w.r.t.
axis A defined by

c6 ◁ c1 ◁ c3 ◁ c2 ◁ c4 ◁ c5 ◁ c7 ◁ c9 ◁ c8 ◁ c10 ◁ c12 ◁ c11,

hence VD(P,A) = 2p+3. Now, assume that candidate c12 is removed from the
election, and denote by P′ the obtained profile. Then the voters of types {3,4,5}

4We recall that this result is a consequence of the characterization of the single-peaked domain by
forbidden minors - see (Ballester and Haeringer, 2011)).
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become compatible in P′; they are for instance single-peaked w.r.t. axis A′ de-
fined by

c10 ◁ c7 ◁ c6 ◁ c5 ◁ c1 ◁ c2 ◁ c3 ◁ c4 ◁ c8 ◁ c9 ◁ c11,

hence VD(P′ ,A′) = 2p. Note that the other triples of types remain incompatible,
thus A′ is optimal for P′. The voters of types {3,4,5} are not single-peaked w.r.t.
the axis obtained from A by removing c12, thus the restriction of A tp C \ {c12} is
suboptimal for P′ .

• Monotony:
To prove that the property does not hold for any of the studied measures, consider
the axis A = c1 ◁c2 ◁c3 ◁c4 ◁c5 and the following preferences (see also Figure 4.4.2):

>1: (c3, c2, c1, c4, c5, c6)

>2: (c3, c2, c1, c6, c5, c4)

>3: (c3, c1, c2, c4, c5, c6)

It can easily be checked that >1 is between >2 and >3. For X ∈ {FT ,GS,LS,VD},
we have X(>1,A)= 0,X(>2,A)=3 and X(>3,A)=1, which contradicts the property.

A Curious Tortoise Intervention

The counter-example of this proof (see also Figure 4.4.2) points out
why the first intuition was wrong: the preference >2 is compatible
with the axis on the left of the peak, while the preference >3 is com-
patible with the axis on the right of the peak. The preference >1
that is between >2 and >3 is therefore single-peaked with respect to
the axis. Indeed, the issue is that the left-peak and right-peak side
of preferences are somehow independent, so there are two indepen-
dent ways to be incompatible with the axis.

4.4.2 Differences between nearly single-peakedness measures

In this section, we will study another three properties in order to give some insights on
the differences between VD, GS, LS and FT . Actually, each of these properties holds
for a single distance measure among the VD, GS, LS and FT . As already said above,
we note that all these properties hold for (perfectly) single-peaked preferences, which
gives us a more precise idea of what is lost using each of the metrics.

Property 4 (Unpopularity). Let P be a preference profile and c∈ C a candidate such that:

• c is never ranked in first position;
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Figure 4.4.2: The monotony property does not hold for nearly single-peakedness: >2 is
compatible with the axis on the left of the peak c3 and >3 is compatible with the axis
on the right of the peak c3, so >1 (that is between >2 and >3) is perfectly single-peaked.

• c is ranked in last position by more than half of the voters.

Then there exists an optimal axis where c is one of the extremities.

Property 5 (Archimedean). Let P be a preference profile, X a single-peaked measure and
A an axis. If k preference relations in P are not single-peaked w.r.t. A, then X(P,A)≥k.

Property 6 (Stability). Let P be a preference profile and > a preference relation on C. There
exists an optimal axis that stays optimal for the profile P∪{>v}. In particular, if the optimal
axis for P is unique, it stays optimal for P∪{>v}.

A Curious Tortoise Intervention

The unpopularity property can be seen as a generalization of the well-
known result that in a single-peaked profile, a candidate ranked last at
least once is necessarily an extremity of any optimal axis. This is in fact a
very strong constraint, as in a real-world election with a great number of
voters, it is very unlikely only two candidates are ranked last by at least
one voter.

This restriction is circumvented by considering nearly single-peaked
preferences. It is interesting to note that in the case of the FT measure,
there is still some property related to the unpopularity of candidates. The
unpopularity property states that beyond a certain level of unpopularity
(a candidate never ranked in first position and often last) a candidate can
hardly be viewed as intermediate between others, and thus there should
be an optimal axis where she is an extreme candidate. Note that, by
definition, there is at most one unpopular candidate. The FT measure is
the only one for which the property holds.
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FT GS LS VD

Reinforcement True True True True
Heredity False False False False

Monotony False False False False
Unpopularity True False False False
Archimedean True True False True

Stability False False False True

Table 4.4.1: Properties of distance measures.

The archimedean property states that X(P,A) is lower bounded by
the number of preferences not compatible with A - intuitively, the
distance of a profile from an axis strictly increases with the number of
non compatible preferences. The LS measure is the only one for which
the property does not hold because it is not defined from a sum operation
over the preferences but from a maximum. This behaviour is specific to
local measures and can be an advantage as well as an inconvenient: the
good point is that a local measures will most likely tend to find a more
consensual axis: an axis with respect to which almost all the preferences
are almost single-peaked may be more interesting than an axis which is
perfect for a part of the voters and non relevant for another part. On
the other hand, the problem of local measures is that they do not take
into account the size of these parts - an axis perfectly compatible with
the great majority of preferences and not compatible with a very few
preferences may be more suitable than an axis from which all preferences
are quite near but none of them is perfectly compatible.

The stability property requires some robustness of the solution: the
preference relation of a single voter should not change a strictly optimal
axis into a suboptimal one. This property may seem quite desirable,
especially for large profiles. However, it only holds for the VD measure
because each preference relation is viewed as either compatible or not
with an axis, while the other measures use a degree of compatibility of
each preference relation with the considered axis.

An overview of which properties are satisfied by which measures is given in Table 4.4.1.
The proofs are detailed below.
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Proposition 4.4.2: Unpopularity

The unpopularity property only holds for the FT measure, and does not hold for
GS,LS nor VD.

Proof.

• Let us first prove that this property holds for FT . Let c be a candidate never
ranked in first position, and ranked in last position by at least half of the voters.
Let A be an arbitrary axis such that c is not one of its extremities. Let us denote
by n1 the number of candidates on the left of c in A, and by n2 the number of
candidates on the right of c. We define two axes Al and Ar obtained from A by
putting c respectively on the extreme left position of Al , and on the extreme right
position of Ar . We prove that at least one of the axes Al ,Ar is at least as good as
A. To do so, for each voter v, we count the difference of the number of forbidden
triples with respect to A and with respect to Al and Ar . It consists in counting
for each of the axes the number of triples involving the candidate c. In fact, as
c is never ranked first and the restrictions of A, Al and Ar on C \ {c} lead to the
same axis, we observe that the triple (ci , cj , ck) (with ci , cj , ck different from c) is
forbidden with respect to A if and only if it is forbidden with respect to Al (resp.
Ar ). Let v be an arbitrary voter and c∗ be the most preferred candidate in >v . Four
configurations are possible:
(i) v ranks c in last position and c∗ is on the left of c in A;
(ii) v ranks c in last position and c∗ is on the right of c in A;
(iii) v does not rank c in last position and c∗ is on the left of c in A;
(iv) v does not rank c in last position and c∗ is on the right of c in A.
Table 4.4.2 expresses FT (>v ,Al) and FT (>v ,Ar ) in function of FT (>v ,A) - if the ex-
act value cannot be given, an upper bound (representing the worst case) is given.
For v of type (i), (c∗, c, c′) is forbidden (w.r.t. A) if and only if c′ is on the right
of c in A (there are n2 such positions). The candidate c is not involved in any
forbidden triple with respect to an axis Al or Ar , as it is placed on the extremity.
The same reasoning applies to a voter v of type (ii). For a voter v of type (iii),
in the worst case c is not involved in any forbidden triple with respect to A, but
moving it on the left (resp. right) extremity will create up to n1−1 (resp. n2) new
forbidden triples. We reason the same way for type (iv).
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type FT (>v ,Al) FT (>v ,Ar )

(i) FT (>v ,A)−n2 FT (>v ,A)−n2
(ii) FT (>v ,A)−n1 FT (>v ,A)−n1
(iii) ≤ FT (>v ,A)+n1−1 ≤ FT (>v ,A)+n2
(iv) ≤ FT (>v ,A)+n1 ≤ FT (>v ,A)+n2−1

Table 4.4.2: Values of FT (>v ,Al) and FT (>v ,Ar ) in function of FT (>v ,A), according to
the type of v.

Assume first that n1 ≤ n2. We prove that Al is always at least as good as A, i.e.
FT (P,Al)≤FT (P,A), which is written:

∑
>v∈P

FT (>v ,Al) ≤
∑
>v∈P

FT (>v ,A).

Thanks to Table 4.4.2 it is sufficient to prove that:

m(i)n2 +m(ii)n1 ≥ (m(iii) +m(iv))n1 −m(iii)

where mt is the number of voters of type t. By assumption, m(i) +m(ii)≥ m2 . As we
assume that n1≤n2, the inequality holds.

If n1≥n2, we prove in the same manner that Ar is always at least as good as A.

• Let us now prove that the property is not true forGS. Let us consider a preference
profile P over 5 candidates such that there are :

– 2 voters with preference (c1, c2, c3, c4, c5),

– 3 voters with preference (c1, c4, c3, c5, c2),

– 2 voters with preference (c3, c4, c1, c5, c2),

– 2 voters with preference (c5, c2, c1, c4, c3).

By enumerating all 24 axes (up to a reversal) having the unpopular candidate 2
on one extremity, we can prove that the axis c5 ◁ c2 ◁ c1 ◁ c4 ◁ c3 is (strictly) better
than any of these. We note that this counter-example works also to prove that the
property is false for LS.

• Finally, to prove that the property is false for VD, let us consider the following
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counter-example :

>1: (c1, c2, c3, c4, c5, c6, cd)

>2: (c1, c3, c2, c6, c5, c4, cd)

>3: (c2, c3, c1, c4, c6, c5, cd)

>4: (c2, c1, c3, c5, c4, c6, cd)

>5: (c3, c1, c2, c6, c4, c5, cd)

>6: (c3, c2, c1, c5, c6, c4, cd)

>7: (c1, c2, c3, cd , c4, c5, c6)

>8: (c1, c2, c3, cd , c4, c5, c6)

>9: (c6, c5, c4, cd , c3, c2, c1)

>10: (c6, c5, c4, cd , c3, c2, c1)

Voters 7, 8, 9 and 10 are compatible with the axis c1 ◁ c2 ◁ c3 ◁ cd ◁ c4 ◁ c5 ◁ c6.
We prove that there is no axis with the unpopular candidate cd at an extremity
that allows us to delete at most 6 voters. The voters 1 to 6 have been created in
such a way that at most 3 of them are compatible with the same axis. Hence, if
there is an axis with cd at an extremity such that 4 voters (or more) are single-
peaked with respect to it, one of the preferences 7 to 10 must be compatible with
it. Assume that >7 - and then >8 - are compatible with the axis. The extremities
are then cd , c6. Then, >9 and >10 are not compatible with the axis which is of the
form cd ◁ {c1, c2, c3} ◁ c4 ◁ c5 ◁ c6. At least two preferences among {>1, . . . ,>6} must
be compatible with the axis, however, only >1 can be single-peaked with respect
to the axis in construction. Let us assume that >9 - and then >10 - are compatible
with the axis. Analogously, the axis is of the form cd ◁{c4, c5, c6}◁c3◁c2◁c1. As there
are no two preferences among {>1, . . . ,>6} ranking {c4, c5, c6} in the same order,
only one of these can be compatible with the axis.

Proposition 4.4.3: Archimedean

The archimedean property holds for the FT , GS and VD measures. It does not
hold for the LS measure.

Proof. The property holds for FT and GS because GS(>v ,A) ≥ 1 (resp. FT (>v ,A) ≥ 1)
if >v is not single-peaked w.r.t. to A. It obviously holds for VD by definition of this
measure.

To prove that the property does not hold for LS, consider the following profile P:

>i for i ∈ {1, . . . ,p} : (c1, c2, c3)

>i for i ∈ {p+1, . . . ,2p} : (c1, c3, c2)

>i for i ∈ {2p+1, . . . ,3p} : (c2, c3, c1)
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For any axis A, there are p voters not compatible with it, while

LS(P,A)= max
i∈{1,...,3p}

LS(>i ,A)=1

because LS(>i ,A) ≤ 1 for all i and there exists k ∈ {0,p,2p} such that LS(>i ,A) = 1 for
i ∈{k+1, . . . , k+p}.

Proposition 4.4.4: Stability

The stability property only holds for the VD measure, and it does not hold for
FT , GS and LS.

Proof. We first prove that the property holds for the VD measure. Let P be a pref-
erence profile over the set of candidates C and A∗ be an optimal axis on C such that
VD(P,A∗)=k. Given an additional preference relation > on C, there are two possibili-
ties:

• if there exists A such that VD(P∪{>},A)=k, then A is also optimal for P because
VD(P,A)≤VD(P∪{>},A);

• otherwise VD(P∪ {>},A∗) = k + 1 (only one vote is added), thus A∗ stays optimal
for P∪{>}.

To prove that the property does not hold for the other measures, consider the following
profile P :

>1: (c1, c2, c3, c4)

>2: (c4, c3, c2, c1)

This profile is single-peaked with respect to the unique axis A∗ = c1 ◁c2 ◁c3 ◁c4, which is
therefore optimal for the three measures. Consider now the profile obtained by adding
preference >3= (c1, c4, c3, c2) to P. For X ∈{FT ,GS}, it can easily be checked that X(P∪
{>},A∗)=3 whileX(P∪{>},A)=2 for the axisA = c2◁c1◁c4◁c3. ThusA∗ is not optimal for
P∪ {>}. The same counter-example works for LS; the only difference is that LS(P∪ {>
},A)=1.

4.5 A Maximum likelihood estimator

In the same manner as Condorcet interpreted the ranking of candidates returned by
Kemeny’s voting rule as a maximum likelihood estimation of a “true” ranking (Young,
1988), where the votes (individual preferences of the voters) are viewed as noisy obser-
vations of this true ranking, the axis A minimizing the number of A-forbidden triples
can be interpreted as a maximum likelihood estimation of an “hidden” axis, where
each vote is viewed as a noisy estimate of a preference single-peaked w.r.t. A. To this
purpose, the following assumptions are required:
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c1 c2 c3 c4

c1 > c2 – –
�� ��6

�� ��4

c1 > c3 – 10 –
�� ��6

c1 > c4 – 10 15 –

c2 > c3

�� ��18 – –
�� ��4

c2 > c4

�� ��19 – 12 –

c3 > c4

�� ��22
�� ��15 – –

Table 4.5.1: A voting matrix of a profile of 100 preferences over 4 candidates. We
assume that for each ci , there are 25 preferences with ci as peak. The value in each cell
is the number of pairwise preferences corresponding to the header of the raw, among
the 25 voters whose peak corresponds to the header of the column. For instance, the
cell at the intersection of the row “c2 > c4” and the column “c3” states that there are 12
preferences with peak c3 that rank c2 better than c4. The notation “–” stands for 25 or
0 depending on the peak.

1. Each voter has a peak (a candidate that she prefers to all the other candidates).

2. Let A be the hidden axis. For each voter v with peak c∗:

• for any triple ci ,cj ,ck such that ci ◁Acj ◁Ack , if c∗=ci (resp. c∗=ck), then cj >v ck
(resp. cj >v ci) with probability p>1/2 (the same for all voters); this require-
ment simply means that the triple is more likely to be compatible with the
“real” axis than forbidden.

• for any pair ci ,cj of candidates such that ci ◁Ac∗◁Acj or cj ◁Ac∗◁Aci , the prob-
ability that ci >v cj is 1/2. In other words, the candidates on the left side of
the peak and on the right side of the peak are treated independently.

3. Every voter’s judgment on every pair of candidates that does not involve her peak
is independent of her judgment on every other pair.

4. Each voter’s judgment is independent of the other voters’ judgments.

Each voter judges every pair of candidates and the results can be summarized in a table
where one counts the number of times each pairwise preference is observed.

Example 4.5.1. Consider for instance Table 4.5.1, that provides a synthesized view of pair-
wise preferences for an election with 100 voters and 4 candidates. The peaks of the voters are
assumed to be uniformly distributed among the candidates (each candidate ci is the peak of 25
voters). The framed numbers are those that matter for counting the number of A-forbidden
triples in the profile, if A is defined by c1 ◁A c2 ◁A c3 ◁A c4. The number of A-forbidden triples
is here:

(25−18)+(25−19)+(25−22)+(25−15)+6+4+6+4=46
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(for instance, as 18 voters of peak c1 judge that c2>c3, the other 25−18=7 voters of peak c1
judge that c3>c2, which is not compatible with A).

If assumptions 1–4 hold, the likelihood L(A) to observe the voting matrix in Ta-
ble 4.5.1 if the profile is nearly single-peaked with respect to the axis c1 ◁A c2 ◁A c3 ◁A c4
is:

L(A)=
(
25
18

)
p18(1−p)7

(
25
19

)
p19(1−p)6

(
25
22

)
p22(1−p)3
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1
2

)10(1
2

)15(25
10

)(1
2

)10 (1
2

)15 (25
15

)
p15(1−p)10(

25
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)
p19(1− p)6

(
25
15

)(1
2

)15 (1
2

)10 (25
12

)(1
2

)12 (1
2

)13

(
25
21

)
p21(1−p)4

(
25
19

)
p19(1−p)6

(
25
21

)
p21(1−p)4

= K
(

1
2

)100

p154(1− p)46

where K is the product of binomial coefficients. The likelihood L(A′) that the profile is
nearly single-peaked w.r.t. the axis A′ defined by c2 ◁A′ c1 ◁A′ c4 ◁A′ c3 is:

L(A′)=
(
25
18

)(
1
2

)18(1
2

)7(25
19

)(
1
2

)19(1
2

)6(25
3

)
p3(1−p)22(

25
10

)
p10(1−p)15

(
25
10

)
p10(1−p)15

(
25
10

)
p10(1−p)15...

= K
(

1
2

)100

p66(1− p)134

where K is here again the product of binomial coefficients. Note indeed that, for all
4!/2 = 12 axes (the division by 2 is because an ordering and the reverse ordering cor-
respond to the same axis), the binomial coefficients are the same because

(n
k

)
=

( n
n−k

)
.

Besides, the product of fractions 1/2 is (1/2)100 for all axes. Hence, axis A is more
likely than A′ because p>1/2. More generally, the following formula is obtained for the
likelihood of an axis:

122



Chapter 4 – Nearly single-peaked preferences : forbidden triples

Proposition 4.5.1

If assumptions 1– 4 hold and the peaks are equally distributed in the considered
sample of voters (i.e., each candidate is the peak of n/m voters), the likelihood of
an axis A on m ≥ 3 candidates is:

K

(
1
2

)n(m−1)(m−2)/6

pn(m−1)(m−2)/3−t(A)(1− p)t(A)

where the value of K only depends on the voting matrix and is the same for all
axes, and t(A) is the number of A-forbidden triples.

Proof. Let us consider the component, say α, on row ci > cj and column (peak) ck of the
voting matrix. In the likelihood expression of an axis A, this entry yields the term:

•
(n/m
α

)
1/2n/m if ck is between ci and cj in A;

•
(n/m
α

)
pα(1− p)n/m−α if ci is between ck and cj in A;

•
(n/m
α

)
pn/m−α(1− p)α if cj is between ck and ci in A.

The term 1/2n/m (first case) occurs exactly once for each triple {ci , cj , ck} of candidates
(when in A the peak is between the two others). As there are m(m−1)(m−2)/6 triples of
candidates, the product of these terms is therefore 1/2n(m−1)(m−2)/6.

In the second case (resp. third case), the exponent n/m−α (resp. α) of (1−p) is the
number of A-forbidden triples involving ci , cj , ck when ck is the peak. The total number
of A-forbidden triples is t(A), hence, when making the product of the terms, the sum
of the exponents of (1−p) is t(A).

The sum of the exponents of p can then be inferred from the total number of triples
involving ci , cj , ck when ck is the peak and ck is not between ci and cj in A. This number
of triples is equal to n/m multiplied by the number of components of the voting matrix
such that the peak ck is not between ci and cj in A (the number of “framed numbers”
in the voting matrix). The number of such components is equal to

∑m
i=1(

(i−1
2
)
+
(m−i

2
)
),

where i is the position of ck on the axis, and
(i−1

2
)

(resp.
(m−i

2
)
) is the number of pairs

{ci , cj} on the left (resp. right) of ck . This is equivalent to 2
∑m−1
i=0

(i
2
)

=m(m−1)(m−2)/3.
Multiplying by n/m, one deduces that there are n(m−1)(m−2)/3 triples where the peak
ck is not between ci and cj . Consequently, there are n(m−1)(m−2)/3−t(A) triples that
are not A-forbidden, which is the exponent of p.

The Proposition 4.5.1 yields then the following corollary:
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Corollary 4.5.1

Assuming that p>1/2, we have (1−p)< p and hence, if the peaks are equally dis-
tributed in the sample of voters, the most likely axis is the one with the lowest ex-
ponent of (1−p), which is the one that minimizes the number t(A) of A-forbidden
triples.

For instance, if one computes t(A) for all axes A based on the data of Table 4.5.1, one
finds that the answer is c1 ◁A c2 ◁A c3 ◁A c4.

4.6 Computational aspects

So far, we have studied theoretical properties of the FT measure and its positioning
with respect to existing measures. We will now see how do we deal with this measure
in practice. We first show that, given a preference profile P, it is actually NP-hard
to find an axis A minimizing the number of A-forbidden triples in P. Nevertheless,
we give an ILP formulation of the problem which will later reveal quite efficient in
practice.

4.6.1 FT Single-peaked Evaluation and Consistency

Given a preference profile P, we study here the computational complexity of deter-
mining FT (P,A) for a given axis A (evaluation problem), and that of determining if
FT (P) ≤ k for a given integer k (consistency problem). We show that the evaluation
problem can be handled in polynomial time while the consistency problem is NP-
complete.

The evaluation problem is formulated as follows:

FT Single-peaked Evaluation

Input: A profile P and an axis A.
Output: FT (P,A).

Clearly, this problem can be solved in O(nm2), where n = |P| and m= |C|, by brute force
enumeration of all triples. This complexity can be improved to O(nm

√
logm), as stated

in the following proposition:

Proposition 4.6.1

The FT single-peaked evaluation problem can be solved in O(nm
√

logm).

Proof. Let >v ∈ P and c∗ be the candidate at the top of >v . Let Cl (resp. Cr ) denote
the set of candidates on the left (resp. right) of c∗ on A. Formally, c ◁A c∗ (resp. c∗ ◁A c)
for any c∈ Cl (resp. c∈ Cr ). We denote by ◁l and >l (resp. ◁r and >r ) the restrictions of
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◁A and > to Cl (resp. Cr ). We have:

FT (>,A) = δKT (<l , ◁l)+δKT (>r , ◁r )

where δKT (·, ·) is the classical Kendall-tau distance function (number of pairwise dis-
agreements between two orders) and <l is the reverse of >l . Now, noticing that

FT (P,A)=
∑
>∈P

FT (>,A),

the O(nm
√

logm) complexity follows because the Kendall-tau distance between two
permutations of sizem can be computed in O(m

√
logm) (Chan and Pătraşcu, 2010).

A Curious Tortoise Intervention

The proof of Proposition 4.6.1 sheds light on the difference between
FT and GS measures. While the FT measure treats the sets Cl and Cr
independently, these sets interact in the case of the GS measure. Note that
this issue has been already illustrated in Figure 4.3.4, without providing
a more detailed explanation.

Consequently, given a preference profile P, it is easy to evaluate its
distance from a given axis A in terms of the FT measure - as we have just
seen, it equals the sum of the FT -distances of the restrictions of P on sets
Cl (resp. Cr ) to the restricted axis ◁l (resp. ▷r ).

Regarding the GS measure, the evaluation problem is much less
straightforward - given a preference > and an axis A, one needs to find
a preference >′ single-peaked w.r.t. A which minimizes the Kendall
tau distance dKT (>,>′) to evaluate the GS-distance of the preference >
from the axis A. Erdélyi et al. (2017) proposed a dynamic programming
algorithm to solve this problem. Its complexity is in O(m3). Therefore,
given a profile P of n preferences, and an axis A, the evaluation of the GS
measure is in O(n ·m3).

The consistency problem is formulated as follows:

FT Single-peaked Consistency

Input: A profile P and an integer k.
Output: Yes if FT (P)≤k, otherwise no.

The following result holds for this decision problem (yes/no question):

Theorem 4.6.1

The FT single-peaked consistency problem is NP-complete.
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Proof. By Proposition 4.6.1, the problem is clearly in NP. We show that it is NP-complete
by a reduction from the max cut problem:

Max Cut

Input: An undirected graph G = (V ,E) and an integer k.
Output: Yes if there exists a partition of V into two sets S,T such that at least k edges
have one endpoint in S and one in T , otherwise no.

Given such an instance of the max cut problem, with V = {v1, . . . , vn}, we build the fol-
lowing instance of the FT single-peaked consistency problem:

• There are 2n + 1 candidates: a candidate c0, and for each vertex vi we have two
candidates ci and ci .

• We haveM voters (for a sufficiently largeM, to be specified later), called α-voters,
with the following preference: c0 > c1 > c1 > c2 > c2 > · · · > cn > cn.

• Similarly, we have M voters, called β-voters, with the following preference: c0 >
c1 > c1 > c2 > c2 > · · · > cn > cn.

• For each edge (vi ,vj ) with i < j, we have an edge-voter eij whose preference is built
from an α-voter by moving up cj just below ci , and moving down ci just above cj :
c0 > c1 > · · · > ci−1 > ci > cj > ci+1 > · · · > cj−1 > ci > cj > . . . .

Let K = 2
∑

(vi ,vj )∈E |j− i−1|, and fixM = K+m+1. We show that there is a cut (S,T ) with
at least k edges if and only if there is an axis with at most K + |E| − k forbidden triples.

Let us call an axis regular if (1) c0 is in the middle position n + 1 and (2) for each i,
both ci and ci are at distance i from c0 (i.e., one in position n+ 1− i and one in position
n+ 1 + i).

There is a bijection h between partitions (S,T ) of V and regular axes, where in the
axis A = h(S,T ) ci is on the left of c0 and ci on the right iff vi ∈ S. For instance, if there
are 5 vertices and S = {v2,v5} (T = {v1,v3,v4}), then h(S,T ) is the axis

c5 ◁ c4 ◁ c3 ◁ c2 ◁ c1 ◁ c0 ◁ c1 ◁ c2 ◁ c3 ◁ c4 ◁ c5

Let (S,T ) be a partition of V inducing a cut with at least k edges. Let us count the
number of forbidden triples in the axis h(S,T ). Note first that α-voters and β-voters are
compatible with any regular axis, so they induce no forbidden triples. Let us consider
an edge-voter eij (with i < j):

• For each ℓ such that i < ℓ < j, there is exactly one forbidden triple {c0, cℓ, ci} or
{c0, cℓ, ci}, and exactly one forbidden triple {c0, cℓ, cj} or {c0, cℓ, cj}. This gives in
total 2|j − i − 1| forbidden triples.

• If ci and cj are on the same side of c0 in the axis, then there is a forbidden triple
(c0, ci , cj ). Otherwise, if ci and cj are not on the same side of c0, there is no new
forbidden triple.
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Considering all the edges, the first item correspond in total to K forbidden triples. For
the second item, each edge not in the cut gives one more forbidden triple. If there are
(at least) k edges in the cut, then there are (at most) K +m− k forbidden triples.

Conversely, let us assume that there is an axis A with at most M + m − k forbidden
triples. We first notice that, asM > K+m, A is necessarily regular. Indeed, if for some i,
candidates ci and ci were on the same side of c0, then either α-voters or β-voters induce
forbidden triples, so at least M of them. Similarly, if for some i < j a candidate cj or cj
were closer to c0 than ci or ci , then again α-voters or β-voters induce at least M forbid-
den triples.

Since A is regular, we consider the cut (S,T ) such that A = h(S,T ). As before, for each
voter eij there are exactly 2|j − i − 1| forbidden triples involving candidates cℓ or cℓ for
i < ℓ < j, so K in total. Again, if ci and cj are on the same side of c0 there is one more
forbidden triple.

Since there are (at most) K +m − k forbidden triples, there must be at least k edges
in the cut (S,T ).

4.6.2 An Integer Program to Determine FT (P)

The FT single-peaked consistency problem can be formulated as an Integer Program
(IP). For each pair {ci , cj} of candidates (with i, j ∈{1, . . . ,m}), we introduce a binary vari-
able xij describing their relative position on the sought axis A. More precisely, the
constraints of type 1 and type 2 detailed below will ensure that:

xij =

1 if ci ◁A cj ,

0 otherwise.

Additionally, for each voter v∈{1, . . . ,n} and each pairwise preference ci >v cj with π(v)<
{i, j}, where cπ(v) is the peak of v, we define a binary variable zvij related to the triple
(cπ(v), ci , cj ). More precisely, the constraints of type 3 and type 4 detailed below will
ensure that:

zvij =

1 if (cπ(v), ci , cj ) is A-forbidden in v,

0 otherwise.

The sum of variables zvij is the number of forbidden triples in the profile P. The IP
objective function is therefore:

min
n∑
v=1

m∑
i=1

m∑
j=1

zvij .

We now detail the four types of constraints in the program:
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1. For each pair {ci , cj} of candidates, one and only one of the variables {xij ,xji} equals
1 (the relation ◁A is antisymmetric - we cannot have ci ◁ cj and cj ◁A ci).

2. For each tuple (ci , cj , ck), if xik=1 and xkj =1 then xij =1 (the relation ◁ is transitive
- ci ◁A ck and ck ◁A cj imply ci ◁A cj ).

3. For each tuple (v, i, j) such that π(v)< {i, j} and ci >v cj , if cπ(v)◁Acj and cj ◁Aci then
zvij =1 ((cπ(v), ci , cj ) is A-forbidden in v, on the right of the peak).

4. For each tuple (v, i, j) such that π(v)< {i, j} and ci >v cj , if ci◁Acj and cj◁Acπ(v) then
zvij =1 ((cπ(v), ci , cj ) is A-forbidden in v, on the left of the peak).

Putting together the objective function and the constraints, we obtain the following IP:

min
n∑
v=1

m∑
i=1

m∑
j=1

zvij

subject to:
xij + xji = 1 ∀{ci , cj} (1)

xij ≥ xik + xkj − 1 ∀(ci , cj , ck) with i, j,k (2)

zvij ≥ xπ(v)j + xji − 1 ∀v, i, j with ci >v cj (3)

zvij ≥ xjπ(v) + xij − 1 ∀v, i, j with ci >v cj (4)

xij ∈{0,1} ∀i, j, zvij ∈{0,1} ∀v, i, j

A Curious Tortoise Intervention

Note that in practice, it is actually sufficient to define the variables zvij as
continuous variables (in other words, we replace zvij ∈ {0,1} by zvij ≥ 0).
This reduces the number of binary variables.

Example 4.6.1. For a better visualisation, let us consider the following profile of two prefer-
ences over 4 candidates:

>1: (c1, c2, c3, c4)

>2: (c4, c1, c2, c3)

We do not give the antisymmetric and transitivity constraints, and we will only give the
constraints of type 3 and 4 for the first voter v1:

• A-forbidden triples constraints on the right of the peak: We have π(v1) = 1. If c3 is on
the right side of the peak (i.e., x13 = 1), we cannot have c3 between c2 and c1 (i.e., c2 is
on the right of c3, so we have x32 = 1). This is written:

zv23 ≥ x13 + x32 − 1.
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By the same reasoning, we find

zv24 ≥ x14 + x42 − 1,

and
zv34 ≥ x14 + x43 − 1.

• A-forbidden triples constraints on the left of the peak: Analogously, if c3 is on the left
of the peak (i.e., x31 = 1), we cannot have c2 on the left of c3 (i.e., x23 = 1), in which
case c3 would be between c1 and c2. This is written:

zv23 ≥ x31 + x23 − 1.

By the same reasoning, we find

zv24 ≥ x41 + x24 − 1.

and
zv34 ≥ x41 + x34 − 1.

The formulation is straightforward, however, it can become less efficient when the
number of voters increases due to the important number of variables that need to be
created for each voter.It is possible that a formulation where the number of variables
does not depend on the number of voters could be found, for example by adapting the
ILP proposed by Kratica et al. (2010).

Note that this formulation is also valid for determining an axis when the preference
profile only consists of top orders (i.e., when each voter does not provide a complete
ranking but only the upper part of his/her preferences). In this case, one can just
assume that, for any candidate c that is inside the top order of a voter v, and any candi-
date c′ that is outside the top order, the preference is c>v c′; besides, we can not decide
whether c >v c′ or c′ >v c if both c and c′ are outside the top order - the both relation
between c and c′ are possible.

Finally, note that the optimal value of the ILP continuous relaxation always equals
0, by setting xij = 1

2 for each ordered pair (i, j).

4.7 Experimental study

We carried out numerical tests on real and randomly generated preference profiles in
order to compare experimentally the various distance measures discussed above, ex-
cept the LS distance measure, whose logic differs from that of the others. For measuring
the VD distance, we used the C++ code developed by Sui et al. (2013), made available
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on the web5. For measuring the FT distance, we used the Gurobi software to solve the
IP formulation given in Section 4.6.2. Finally, for measuring the GS distance, we used
a brute force algorithm - to the best of our knowledge, no more efficient algorithm is
known for this problem so far.

We study the quality of optimal axes on real data, compared to reference axes whose
design is detailed below. To evaluate the quality of an axis, we measure the proportion
of the betweenness relation (see Definition 4.2.2) that is common to the optimal axis
and the reference axis. This proportion is expressed in percentage in the sequel, and
we call it recognition rate. More formally, let us recall that given an axis A, we introduce
in Definition 4.2.2 the relation RA as a set of triples (ci , cj , ck) such that i < k and cj is
between ci and ck on the axis A (we recall that cj and ck do not need to be consecutive
on A). Given two axes A and A′ defined on the same set of candidates, the proportion
of the betweennes relation, denoted by δ(A,A′), is defined as follows:

δ(A,A′)= |RA ∩RA′ |/ |RA|.

Note that |RA|= |RA′ |. More precisely, for any axis A on the set of m candidates, we have

|RA| = 2
m∑
i=1

(i − 1) · (m− i)

Indeed, let us consider the i-th leftmost candidate c of A. There are i − 1 candidates on
the left of her, and m− i candidates on the right of her. This yiedls 2 · (i − 1) · (m− i − 1)
triples in which c is in the middle position (we recall that RA is defined for ordered
tuples - in other words, (ci , cj , ck) ∈ RA if and only if (ck , cj , ci)).

In practice, it is easy to see that without loss of generality, the tuples (ci , cj , ck) and
(ck , cj , ci) can be considered as a unique tuple in the evaluation of δ. Therefore, we
considered in this section the following version of RA:

RA = {(ci , cjck) ∈ C3 : i < k and ci ◁A cj ◁A ck or ck ◁A cj ◁A ci}.

This yields |RA| =
m∑
i=1

(i − 1) · (m− i).

Example 4.7.1. To illustrate the notion of recognition rate, let us consider three axis defined
on the set of candidates C = {c1, c2, c3, c4}:

A = c1 ◁A c2 ◁A c3 ◁A c4

A′ = c1 ◁A′ c3 ◁A′ c2 ◁A′ c4

A′′ = c3 ◁A′′ c1 ◁A′′ c2 ◁A′′ c4

5http://www.cs.toronto.edu/˜lex/code/asprgen.html
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We have:

RA = {(1,2,3), (1,2,4), (1,3,4), (2,3,4)},
RA′ = {(1,2,4), (3,2,4), (1,3,2), (1,3,4)},
RA′′ = {(2,1,3), (3,1,4), (1,2,4), (3,2,4)}.

We see that

|RA| = |RA′ | = |RA′′ | = (1− 1) · (4− 1) + (2− 1) · (4− 2) + (3− 1) · (4− 3) + (4− 1) · (4− 4) = 4.

Moreover, we have |RA∩RA′ | = 2, |RA∩RA′′ = 1 and |RA′∩RA′′ | = 2. This yields δ(A,A′) = 0.5,
δ(A,A′′) = 0.25 and δ(A′ ,A′′) = 0.5. In other words, A is nearer (in terms of the distance δ)
to A′ than to A′′, while A′ is at the same distance from both A and A′′.

To go further and better understand the impact of the characteristics of the profiles
on the numerical results obtained, we also study the quality of optimal axes on pro-
files randomly generated according to diverse probability distributions for structured
preferences.

4.7.1 Numerical tests on real data

The real data sets were taken from the 2007 Glasgow city council election, the 2002
Irish general election as well as a 2017 voting experiment during the French presiden-
tial election. The two first data sets are available on the PrefLib website6. The French
presidential election data set is available on the website of the experiment called Voter
autrement7 (Bouveret et al., 2018).

Both the Glasgow election and the Irish election were separated by voting districts
(with one list of candidates per district): 21 wards for the Glasgow election, one of
which has been discarded in our tests because there were too many candidates - 13 -
for measuring the GS distance; 42 constituencies for the Irish election, among which
we investigate here only 2 constituencies where electronic voting machines were used
(Dublin North and Dublin West). Each ward (resp. constituency) involved different
candidates and voters, and elected 3 or 4 councillors (resp. between 3 and 5 deputies)
using the Single Transferable Vote (STV) system. This implies that some political par-
ties had several candidates for the same voting district. A ballot consists in a ranking
of the k most preferred candidates of a voter, for varying values of k according to the
voter. In order to fit the data with our setting, we restricted ourselves to the ballots for
which k =m (complete rankings of the candidates). The number of candidates in the
Glasgow (resp. Irish) data set ranges from 8 (resp. 9) to 11 (resp. 12), and the number
of complete votes from 320 (resp. 3662) to 1003 (resp. 3800).

6https://www.preflib.org/data/index.php
7https://zenodo.org/record/1199545
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In the Voter autrement data set, one file was usable for our purpose (file stv111.csv,
here also reporting the results of an experiment about STV), with 11 candidates from
as many distinct political parties and 4068 complete votes.

For each election (at the level of a ward, a constituency or a country), we built a refer-
ence left-right axis on the candidates. To do so, we used Wikipedia as external source.
The free encyclopedia provides indeed a political position (of course debatable) for
each political party (e.g., left wing, right wing, centre, centre right, etc.). We assumed
that the political position of an affiliated candidate corresponds to that of the belonging
party, and we built an axis over the affiliated candidates based on these positions. We
excluded the non-affiliated candidates from the data sets because we were not able to
define a political position for them. Actually, the “Wikipedia axis” is not unique since
several parties can be labeled by the same political position on Wikipedia, or some
parties can have several candidates in an election. For instance, a Wikipedia axis reads
((c1, c3), c2, (c4, c5)), where candidates {c1, c3} as well as {c4, c5} have indistinguishable po-
litical positions. This corresponds to a set of 2 · 2 = 4 compatible axes:

c1 ◁ c3 ◁ c2 ◁ c4 ◁ c5, c3 ◁ c1 ◁ c2 ◁ c4 ◁ c5,

c1 ◁ c3 ◁ c2 ◁ c5 ◁ c4, c3 ◁ c1 ◁ c2 ◁ c5 ◁ c4.

Note that indistinguishable political positions do not mean here that the candidates
share the same position on the political spectrum, but that we have a partial knowl-
edge of the exact axis. The sets of candidates with indistinguishable political positions
(as {c1, c3} and {c4, c5} above) are called blocks in the following. Given a distance measure
X (in {VD,FT ,GS}) and a profile P, the recognition rate is formulated in the following
manner to take into account blocks:

min{δ(AX(P),A′) :A′ compatible with the Wikipedia axis}

where AX(P) is an optimal axis according to X. We recall that, given two axes A,A′, we
denote by δ(A,A′), and call recognition rate, the proportion of the betweenness relation
that is common to A and A′.

Apart from the recognition rate, we also distinguish three classes of results for the
axis obtained by minimizing a given distance measure:

• C (Correct): The optimal axis is compatible with the Wikipedia axis, e.g. c3 ◁ c1 ◁
c2 ◁ c4 ◁ c5 for ((c1, c3), c2, (c4, c5)).

• EE (Exchanged Extremities): The optimal axis can be made compatible with the
Wikipedia axis by exchanging the block on the left extremity with the one on the
right, e.g. c5 ◁ c2 ◁ c6 ◁ c4 ◁ c3 ◁ c1 for ((c1, c3), c2, c6, c4, c5)).

• F (False): The optimal axis is called false otherwise.
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d C EE F Recognition Rate

2007 Glasgow city council

VD 2 1 17 57.25%
FT 5 5 10 67%

2002 Irish general election

VD 0 0 2 75.35%
FT 0 0 2 71.5%

2017 French presidential election

VD 0 0 1 58.8%
FT 0 0 1 74.6%

Table 4.7.1: Results obtained on real election data.

We have chosen to distinguish class EE because the experiments revealed a difficulty in
recognizing the two extreme positions. To get an intuition of what is going on, consider
for instance a profile where the two “extreme” candidates are ranked in the two last
positions by a large number of voters, in an arbitrary order, and the voters who rank
one of them in first position do not want to rank anyone else. In such a situation, the
voting data do not provide much information that might help to distinguish who is left
wing and who is right wing.

The results obtained are summarized in Table 4.7.1. Note that only the results for
the VD and FT measures are given in the table, because the brute force algorithm used
for the GS measure was not able to compute an axis in a reasonable amount of time for
more than 8 candidates.

Regarding the two profiles with 8 candidates in the Glasgow data set, the results ob-
tained with the GS measure are in class EE, while with FT one result is in class C and
the other in class EE (the result is in class F in both cases with VD).

Table 4.7.1 also indicates how many times each class occurs for the VD and FT
measures (over 20 preference profiles for the Glasgow city council election, 2 for the
Irish general election, and 1 for the French presidential election), as well as the average
recognition rate. More detailed tables are given in Appendix 4.A.

Let us detail now in a more down-to-earth manner the results obtained on the vot-
ing data from the French election.

The Wikipedia axis is ((c1, c10, c11), c6, c9, (c7, c5), (c2, c4), c8), 8 with one non-affiliated can-

8For the following candidates: c1 - Arthaud, c2 - Asselineau, c3 - Cheminade, c4 - Dupont-Aignan, c5 -
Fillon, c6 - Hamon, c7 - Lassalle, c8 - Le Pen, c9 - Macron, c10 - Mélenchon, c11 - Poutou.
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didate (candidate 3) excluded from the voting data. The axis AVD minimizing VD is
c5 ◁ c2 ◁ c9 ◁ c6 ◁ c10 ◁ c11 ◁ c1 ◁ c7 ◁ c4 ◁ c8, which is not compatible with the Wikipedia axis.
The axis AFT minimizing the FT measure is c2 ◁ c1 ◁ c11 ◁ c10 ◁ c6 ◁ c9 ◁ c7 ◁ c4 ◁ c5 ◁ c8 - if
we follow the classification introduced above, this axis should be also classified as not
recognized. Nevertheless, we observe here that AFT is much better than AVD , in the
sense that, by swapping candidates 4 and 5 and moving candidate 2 in AFT , an axis
compatible with the Wikipedia axis can be obtained, while many more fixes are needed
in AVD . Note that this observation is supported by recognition rate values - the recog-
nition rate for the axisAVD is 58.8%, while the recognition rate for the axisAFT is 74.6%

The results tend to show that the recognition ability of the FT measure is better than
that of VD. When the FT measure is used, an axis perfectly compatible with Wikipedia
is recognized in 21.7% of cases, and one reaches 50% if one adds the cases when the
extremities are swapped. Yet, one should not conclude from this latter observation that
the proposed measures are unsuitable for recognizing an axis from voting data, as it
may come from the data themselves, if the preferences are too poorly structured (as for
instance in some local elections).

To assess if there is a positive correlation between the “level of structure” of a pro-
file P and the recognition rate obtained with the FT measure, we evaluated the level
of structure of P as the ratio FT (P)/E[FT (P,A)], where E[FT (P,A)] denotes the ex-
pected value of FT (P,A) if A is an axis chosen at random according to the uniform
distribution. The closer this ratio is to 0 (resp. to 1), the more (resp. the less) struc-
tured are the input preferences (note that FT (P) = 0 if the preferences are perfectly
single-peaked). This ratio is easy to compute from FT (P) because E[FT (P,A)] is sim-
ply n

(m−1
2

)
/3, where n (resp. m) is the number of voters (resp. candidates). For a

preference relation >∈P of peak c∗, there are indeed
(m−1

2
)

triples c∗>ci >cj to consider,
and the probability that a triple is forbidden is 1/3 because it happens if cj is between c∗

and ci on A. Thus E[FT (>,A)]=
(m−1

2
)
/3. As E[FT (P,A)]=

∑
>∈PE[FT (>,A)] by linearity

of expectation, the result follows: E[FT (P,A)]=n
(m−1

2
)
/3.

The average value of this ratio is 0.60 (resp. 0.58) for the 2007 Glasgow city council
election (resp. 2002 Irish general election), and 0.33 for the 2017 French presidential
election. We recall that lower the ratio if, more the preferences are structured (in sense
of single-peakedness). In other words, French presidential election data seem much
more structured that Glasgow and Irish elections. This result is compliant with in-
tuition, as it seems easily conceivable that preferences in local elections (as for the 20
wards of Glasgow) are less sensitive to the left-right spectrum than in national elections
(as indicated above, the Irish general election yields a national result, but the election
is divided into local voting districts with one list of candidates per district).
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4.7.2 Numerical tests on synthetic data

In order to deepen the analysis of the recognition abilities of the VD, FT and GS mea-
sures, we also generated synthetic election data. The aim is to model situations where
the preferences are noisy but there is a strong structure behind them. Given an axis
A on the candidates, each preference relation in a synthetic profile is generated in two
steps:

1. A candidate c∗ is drawn uniformly at random in C and an auxiliary preference
relation >0 of peak c∗ single-peaked w.r.t. A is generated uniformly at random.

2. A preference relation > is drawn from the Mallows model centered around >0.

We recall that the Mallows model defines a probability distribution on rankings. A
central ranking >0 has the highest probability, and the probability of other rankings de-
creases in a Gaussian manner with the Kendall-tau distance from >0. Formally, given
a dispersion parameter θ ≥ 0, the probability P (>) of a ranking > is proportional to
e−θdKT (>,>0), where dKT is the Kendall-tau distance. If θ = 0, the uniform distribution
is obtained. The greater the value of θ, the higher the probabilities of the rankings
around >0.

It is known that using the Mallows model with parameters >0 and θ is equivalent to
generating a binary relation R where, for each pair ci , cj of candidates, if ci >0 cj , then
ciRcj with probability p = eθ/(1 + eθ), otherwise cjRci ; if the obtained binary relation
R is transitive then stop and return the corresponding ranking, otherwise repeat the
process until R is transitive. For the sake of interpretability, in the tables, we give the
value of p instead of θ.

We used the PerMallows R package9 for generating rankings according to the Mallows
model. For a fast generation of the profiles, the number of voters is set to 100 and the
number m of candidates varies from 5 to 9. The above probability p takes its values in
{0.7,0.75,0.8,0.85,0.9} (obtained by setting θ=ln(p/(1− p)) in the Mallows model). For
each couple (m,p) of parameter values, 100 instances were generated and we counted
the number of instances for which the axis is perfectly recognized. As the brute force
algorithm for the GS measure is not usable in practice for more than 7 candidates (due
to excessive computation times for 100 voters), only the results for VD and FT are
given from 8 candidates.

The results are reported in Table 4.7.2. It appears that the FT and GS measures be-
haves quite similarly, while the VD measure is the one for which axis A is the most
often recognized. This result was quite unexpected because it is well-known, as men-
tioned in the introduction, that an optimal axis for VD explains only a few percentage
of voter preferences in real election data. Nevertheless, the good behaviour of VD can

9https://cran.r-project.org/package=PerMallows
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be simply explained by the manner in which the preferences are generated here: the
probability that a voter preference is perfectly compatible with A is low but is the high-
est among all the preferences, thus the law of large numbers plays in favor of the VD
measure, and this with all the more intensity as probability p is high.

To refine the analysis, we also studied the obtained recognition rates for the various
measures, since it is a smoother criterion than the previous one. The results are re-
ported in Table 4.7.3. The differences between the three considered measures are then
much narrower, which means that, for the instances where the axis A is not perfectly
recognized by using the FT or GS measure, the optimal axis is very similar to it.

d
p

0.7 0.75 0.8 0.85 0.9

5 candidates

VD 69 % 91 % 100 % 100 % 100 %
FT 42 % 79 % 96 % 99 % 98 %
GS 40 % 78 % 98 % 100 % 100 %

6 candidates

VD 56 % 92 % 100 % 100 % 100 %
FT 23 % 61 % 94 % 100 % 98 %
GS 29 % 65 % 94 % 100 % 100 %

7 candidates

VD 39 % 85 % 100 % 100 % 100 %
FT 9 % 46 % 93 % 98 % 100 %
GS 19 % 56 % 94 % 99 % 100 %

8 candidates

VD 26 % 74 % 98 % 100 % 100 %
FT 5 % 29 % 81 % 98 % 100 %

9 candidates

VD 12 % 58 % 91 % 100 % 100 %
FT 3 % 16 % 67 % 95 % 100 %

Table 4.7.2: Percentage of profiles where the axis is perfectly recognized, w.r.t. distance
measure d and probability p. The preferences in the profiles are generated with steps
1-2.

We have then studied what happens when one sticks with the assumptions made
in the interpretation of an optimal FT axis as a maximum likelihood estimator. In this
purpose, we used the following alternative to step 2 in the generation of preferences:

2’. Let >′0 denote the ranking >0 where the peak c∗ has been removed. A preference
relation >′ is drawn from the Mallows model centered around >′0. Return the preference
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d
p

0.7 0.75 0.8 0.85 0.9

5 candidates

VD 83,5 % 95,5 % 100 % 100 % 100 %
FT 72,4 % 90,2 % 97,9 % 99,4 % 98,8 %
GS 74,1 % 91,1 % 99,1 % 100 % 100 %

6 candidates

VD 88,5 % 97,8 % 100 % 100 % 100 %
FT 82,2 % 93,1 % 98,4 % 100 % 99,5 %
GS 82,9 % 93,5 % 98,3 % 100 % 100 %

7 candidates

VD 83,5 % 96 % 100 % 100 % 100 %
FT 75 % 89,1 % 99,1 % 99,8 % 100 %
GS 77,8 % 90,6 % 99,2 % 99,9 % 100 %

8 candidates

VD 77,5 % 93,7 % 99,5 % 100 % 100 %
FT 72 % 86,7 % 97,3 % 99,9 % 100 %

9 candidates

VD 72 % 58 % 91 % 100 % 100 %
FT 69,1 % 83,2 % 96,2 % 99,7 % 100 %

Table 4.7.3: Recognition rates w.r.t. measure d and probability p. The preferences are
generated with steps 1-2.

137



Chapter 4 – Nearly single-peaked preferences : forbidden triples

relation >′ with c∗ added in first position.

It amounts to using the Mallows model to make noisy the preferences on the left side
and on the right side of the peak on the axis A, without changing the peak. The results
are reported in Tables 4.7.4 and 4.7.5. It appears clearly that optimizing the FT or GS
measure is then the most effective manner to recognize the axis because, contrary to the
VD measure, they are not sensitive to the number of candidates nor to the probability
p ≥ 0.7: they almost systematically recognize perfectly the axis A from the generated
preference profile.

d
p

0.7 0.75 0.8 0.85 0.9

5 candidates

VD 99 % 99 % 100 % 100 % 100 %
FT 100 % 98 % 97 % 98 % 98 %
GS 100 % 100 % 100 % 100 % 100 %

6 candidates

VD 83 % 95 % 100 % 100 % 100 %
FT 100 % 99 % 99 % 100 % 100 %
GS 100 % 100 % 100 % 100 % 100 %

7 candidates

VD 72 % 95 % 100 % 100 % 100 %
FT 100 % 100 % 100 % 100 % 100 %

8 candidates

VD 48 % 83 % 100 % 100 % 100 %
FT 100 % 100 % 100 % 100 % 100 %

9 candidates

VD 30 % 65 % 97 % 100 % 100 %
FT 100 % 100 % 100 % 100 % 100 %

Table 4.7.4: Percentage of profiles where the axis is perfectly recognized, w.r.t. distance
measure d and probability p. The preferences in the profiles are generated with steps
1-2’.

Another type of situations that can make single-peaked preferences noisy is the pres-
ence of clones among the candidates. Clones are relatively similar candidates (e.g., can-
didates belonging to the same political party), that share the same political positioning
in the eyes of voters (see e.g., Elkind et al., 2012). In our numerical tests, we studied
the robustness to the presence of clones of each of the considered measures. Let us call
weak axis an axis where several candidates are clones, and describe such an axis with
the same notation used for Wikipedia axes. We considered weak axes where the blocks
contained approximately the same number of candidates - that means there were no
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d
p

0.7 0.75 0.8 0.85 0.9

5 candidates

VD 99 % 99 % 100 % 100 % 100 %
FT 100 % 99 % 98 % 99 % 99 %
GS 100 % 100 % 100 % 100 % 100 %

6 candidates

VD 95.2 % 98.7 % 100 % 100 % 100 %
FT 100 % 100 % 99 % 100 % 100 %
GS 100 % 100 % 100 % 100 % 100 %

7 candidates

VD 94 % 98.7 % 100 % 100 % 100 %
FT 100 % 100 % 100 % 100 % 100 %

8 candidates

VD 86 % 95 % 100 % 100 % 100 %
FT 100 % 100 % 100 % 100 % 100 %

9 candidates

VD 78.5 % 89.1 % 99 % 100 % 100 %
FT 100 % 100 % 100 % 100 % 100 %

Table 4.7.5: Recognition rates w.r.t. measure d and probability p. The preferences are
generated with steps 1-2’.
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political position shared by (considerably) more candidates than the others. More pre-
cisely, we worked with the axes to simulate elections with the prefense of clones among
the candidates:

for 6 candidates: ((c1, c2), (c3, c4), (c5, c6)),

for 7 candidates: ((c1, c2), (c3, c4, c5), (c6, c7)),

for 8 candidates: ((c1, c2), (c3, c4), (c5, c6), (c7, c8)),

for 9 candidates: ((c1, c2), (c3, c4, c5), (c6, c7, c8), (c9, c10))

(without loss of generality, as the labeling of the candidates does not matter). For each
weak axis, number of voters and number of candidates, we generated 1000 profiles
compatible with the corresponding weak axis. To do so, for each new voter, we first
picked a (complete) axis A compatible with the corresponding weak axis at random
uniform. Then the preference >v was chosen, still at random uniform, from the set of
all preferences single-peaked with respect to A.

We computed an optimal axis according to each of the three measures for up to 7 can-
didates, and only the FT and VD measures beyond 7 candidates. For each measure,
we counted the number of times the returned axis was compatible with the weak axis.
Regarding the FT an GS measures, the optimal axis was compatible with the weak axis
in all tests performed, independently of the number of voters or candidates. In con-
trast, the VD measure is much less robust to the presence of clones: the percentages of
profiles for which the optimal axis for VD was compatible with the weak axis are given
in Table 4.7.6, where “#cand.” stands for “number of candidates”.

As in the case of real-world tests, we computed the average level of structure as the ra-

#cand.
#voters

100 200 500 1000

6 47 % 25 % 23 % 10 %
7 39 % 23 % 19 % 9 %
8 17 % 8 % 0 % 0 %

10 8 % 1 % 0 % 0 %

Table 4.7.6: Percentages of profiles for which the optimal axis for VD was compatible
with the weak axis.

tion FT (P)/E[FT (P,A)]10 on 100 randomly generated profiles (using steps 1-2 for gen-
erating preferences), for a number n∈ {100,200,300} of voters, a number m∈ {5, . . . ,10}
of candidates, and a probability p varying from 0.7 to 0.9. The results are reported in
Table 4.7.7. There is a clear anticorrelation between the value of p (the closer to 1, the
more single-peaked the generated preferences) and the computed level of structure.

10See p. 134 for more details
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m
p

0.7 0.75 0.8 0.85 0.9

100 voters

5 0.735 0.66 0.57 0.42 0.279
6 0.75 0.66 0.558 0.441 0.297
7 0.762 0.696 0.588 0.459 0.309
8 0.762 0.702 0.606 0.462 0.318
9 0.768 0.714 0.603 0.477 0.318

10 0.771 0.711 0.621 0.486 0.336

200 voters

5 0.759 0.651 0.546 0.411 0.267
6 0.762 0.681 0.564 0.438 0.288
7 0.786 0.705 0.588 0.453 0.306
8 0.789 0.717 0.597 0.465 0.315
9 0.792 0.726 0.603 0.48 0.321

10 0.792 0.726 0.618 0.492 0.333

300 voters

5 0.753 0.675 0.549 0.411 0.288
6 0.765 0.696 0.576 0.429 0.3
7 0.786 0.711 0.588 0.453 0.306
8 0.786 0.72 0.612 0.465 0.318
9 0.795 0.729 0.597 0.477 0.324

10 0.807 0.732 0.618 0.48 0.336

Table 4.7.7: The average number of triples normalized by n
3
(m−1

2
)
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4.8 Conclusion

In this chapter, we have proposed a new distance measure to single-peakedness, based
on counting the number of violations of Black’s definition of single-peaked preferences.

In Section 4.4, we have undertaken an axiomatic comparison with other popular single-
peakedness measures. More precisely, we have identified some theoretical properties
that are (or not) guaranteed by each of the considered measures. In particular, we
have seen that all these properties were guaranteed by perfectly single-peaked prefer-
ences, which provides some insights on what is lost by relaxing the notion of single-
peakedness.

In Section 4.5, we have suggested a probabilistic model for nearly single-peaked pref-
erences where the probability that a voter prefers a candidate to another depends on
the position of his/her most preferred candidate on the left-right political spectrum. It
has allowed us to interpret the axis minimizing the number of violations as a maximum
likelihood estimate of the “correct” axis.

From the computational viewpoint, we have shown in Section 4.6 that determining
an optimal axis for this measure is NP-hard. We have then presented an IP formula-
tion of the problem. Besides, we have carried out numerical experiments on real and
synthetic data, that show that the proposed measure compares favourably to other pop-
ular measures. In particular, it has an operational IP formulation while no procedure
is known for the minimization of the number of swaps in the preferences to make them
single-peaked; and it is more robust to noise in preferences than the minimization of
the number of votes to delete to make the preference profile single-peaked.

Finally, we have held various numerical experiments in Section 4.7 on both real-world
and synthetic data to evaluate the efficiency of the FT measure in practice, and also
to provide a comparison with the VD measure and GS measure. Very briefly, the GS
measure provides very good results, but, to our best knowledge, there does not exist
an algorithm for the GS single-peaked consistency that would be efficient in practice.
This makes this method (nearly) unusable, especially for the instance involving more
than 8 candidates. On the other hand, VD single-peaked efficiency can be computed
very efficiently, however, the results quality seems to be a step behind the results pro-
vided by theGS measure. The FT measure seems to be a good compromise between the
GS measure and the VD measure, combining the good computational efficiency with
promising results quality.

For future work, it would be interesting to extend the maximum likelihood approach
to other distance measures and preference structures, in order to get a better intuition
of which measure and which structure to consider in a given voting context. The same
analytical objective may also be pursued by pushing further the axiomatic study.
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4.A Detailed results on real data
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Table 4.A.1: Results with VD for 20 wards of the Glasgow city council election. File
N is ED-00008-000000NN in the PrefLib library, m the number of candidates, n the
number of complete votes, Type the class of result, Rec. rate the recognition rate. For
conciseness, we only give the indices of candidates in axis descriptions (ci is denoted
by i).
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Table 4.A.2: Results with FT for 20 wards of the Glasgow city council election. File
NN is ED-00008-000000NN in the PrefLib library, m the number of candidates, n the
number of complete votes, Class the class of result, Rec. rate the recognition rate.
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Chapter 5

An introduction to
multidimensional preferences

In the previous part, we have presented several relaxations of the single-peaked do-
main, in order to make the domain “richer” in terms of expressivity - indeed, we recall
that the single-peaked domain restriction relies on strong assumptions, and hence is
very difficult to observe in real-world situations.

In this part, we present another way to relax classical domain restrictions. In Chapter 1,
we have already emphasized the idea that in case of single-peaked preferences, the axis
can be interpreted as a decision criterion. However, in real-world decision problems,
there are usually more than one criterion to take into account. It seems then really nat-
ural to simply add more dimensions to the structure1. But is it really so simple? Well,
let us see...

5.1 Some words about multidimensional single-peaked pref-
erences

Even though we do not deal with multidimensional single-peaked preferences in this
thesis, we present here briefly this domain restriction. Multidimensional single-peaked
preferences were introduced by Barberà et al. (1993) for the first time. They consider
that the set of candidates form a multidimensional grid (in other words, every point in
the grid is a candidate). More formally, let d ≥ 1 be a dimension. For each i ∈ {1, . . . ,d},
we define an interval of mi integers Ii = ⟦ai ,bi⟧. The set of candidates C is then written
as the cartesian product of these intervals :

C = I1 × I2 × . . .× Id

We can now define multidimensional single-peakedness, after recalling the defini-
tion of the so-called city block (or Manhattan) norm, also known as ℓ1−norm: given

1More precisely, we focus in this part on a multidimensional “extension” of Euclidean preferences.
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a d−dimensional real space Rd and a vector x = {x1, . . . ,xd} ∈ Rd , we define ∥x∥ℓ1
=

|x1|+ |x2|+ . . .+ |xd |.

Definition 5.1.1: Multidimensional Single-Peakedness (Barberà et al., 1993)

Let d ≥ 1 be an integer, and for each i ∈ {1, . . . ,d}, let us consider an interval of
mi integers Ii = ⟦ai ,bi⟧. Given a voter v, we denote by >v her preference and by
c∗v her most preferred candidate. The preference >v over the set of candidates
C = I1 × I2 × . . .× Id is d-single-peaked with respect to the box B = I1 × I2 × . . .× Id
if for each couple of candidates c,c′ such that

∥c∗v − c′∥ℓ1
= ∥c∗v − c∥ℓ1

+ ∥c − c′∥ℓ1
,

we have c >v c′.
A preference profile P is d-single-peaked with respect to the box B if each pref-
erence of P is d-single-peaked with respect to B.

In other words, this definition generalizes the classical idea of single-peakedness: if c
lies between c∗v and c′, then c is preferred to c′ by v. Here, the notion of betweeness is
defined using the ℓ1 norm - c is between c∗v and c′ if it lies in the “bounding box” of c∗v
and c′. See Figure 5.1.1 for illustration.

A Curious Tortoise Intervention

In particular, if d = 1, we have C = I1, with T1 = ⟦a1,b1⟧. In other words,
there are m1 candidates a1, (a1 + 1), (a1 + 2), . . . , b1. This interval can be
actually seen as an axis a1 ◁a1 +1◁ . . . ◁ b1. We get hence a generalization of
the classical one-dimensional single-peakedness.

Later, this definition has been generalized by Sui et al. (2013) to profiles over a set
of candidates C that can be embedded in a grid (i.e., non every point in the grid is a
candidate). Thus, contrary to the previous case, we have a set of m candidates C =
{c1, c2, . . . , cm} and d axis A1,A2, . . . ,Ad on C (i.e., the axes are not intervals of integers,
but (total) orderings of C). Denoting by pi(cj ) the position of cj in the axis Ai , the
candidate ci is mapped to the grid point (p1(cj ),p2(cj ), . . . ,pm(cj )). The idea remains
then similar - c is preferred to c′ whenever it lies in the “bounding box” of c∗v and c′ -
see Figure 5.1.2 for illustration.

Definition 5.1.2: Multidimensional Single-Peakedness (Sui et al., 2013)

Let C = {c1, c2, . . . , cm} be a set of candidates, d ≥ 1 be an integer and A1,A2, . . . ,Ad
be d different axis (i.e., linear orders ◁Ai for i ∈ {1,2, . . . ,d}) on C. A preference
>v is d-single-peaked with respect to A = (A1,A2, . . . ,Ad) if c >v c′ whenever we
have, for each axis Ai (where i ≤ d), c′ ◁Ai c ◁Ai c

∗
v or c∗v ◁Ai c ◁Ai c

′.
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Figure 5.1.1: Multidimensional single-peakedness by Barberà et al. (1993): for any
candidate c in the bounding box of c∗v and c′, we have c >v c′.
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Figure 5.1.2: Multidimensional single-peakedness by Sui et al. (2013) (the example is
taken from there): c2 is in the bounding box of c1 and c5. Therefore, for any preference
>v with c∗v = c1 (resp. c5), we have c2 >v c5 (resp. c2 >v c1).
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Finally, since good things come in threes, Elkind et al. (2022) recently noticed that this
second definition was not closed under alternative deletion - indeed, if we remove the
most preferred candidate c∗v of the voter v, the definition may not be satisfied for the
new most preferred candidate of v - see for instance the Example 20 of Elkind et al.
(2022). That is why a new definition is proposed, in which all triples of voters are
considered, and not only those involving c∗v :

Definition 5.1.3: Multidimensional (Hereditary) Single-Peakedness (Elkind
et al., 2022)

Let C = {c1, c2, . . . , cm} be a set of candidates, d ≥ 1 be an integer and A1,A2, . . . ,Ad
be d different axis (i.e., linear orders ◁Ai for i ∈ {1,2, . . . ,d}) on C. A preference
>v is d-single-peaked with respect to A = (A1,A2, . . . ,Ad) if for any triple of can-
didates c,c′ , c′′ , such that c ◁Ai c

′ ◁Ai c
′′ for every i ≤ d, we do not have both c >v c′

and c′′ >v c′.

It goes without saying that the domain of multidimensional single-peaked preferences
is much less restrictive than the classical one-dimensional version. Indeed, the restric-
tion is maybe even weaker than one would like it to be. Concretely, Elkind et al. (2022)
showed that any profile with at most 22d−1

candidates is d-single-peaked. From the
practical point of view, the empirical tests carried out on real-world elections by Sui
et al. (2013) showed that up to 65% of votes could be explained by using 2-single-
peaked preferences, and a nearly perfect fit was obtained by combining with a low
degrees of local candidate deletion measure.

It is worth mentioning that many nice properties of classical single-peakedness are
lost by adding more dimensions. For instance, the transitivity of the majority relation
cannot be guaranteed for 2-single-peaked elections.

5.2 Multidimensional Euclidean preferences

The next two chapters focus on multidimensional Euclidean preferences (also known
as spatial preferences or multidimensional unfolding models). Although the adjective
Euclidean usually involves the use of the ℓ2 norm (which is also called Euclidean norm),
several different norms are considered in our works. By abuse of language, no matter
what norm ∥ · ∥ is used, we call the resulting domain restriction Euclidean preferences
(with respect to the norm ∥ ·∥), in order to refer to the original idea of spatial preferences.

5.2.1 The State of the Art

The study of spatial models is an important stream of research in social choice, pio-
neered by the works of Hotelling (1929) and Downs (1957). The most widely studied
Euclidean preferences are those that are derived by measuring the distances with the ℓ2
norm. In seminal works, Bennett and Hays (1960), as well as Hays and Bennett (1961)
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discussed some structural questions - among others, they established that the maximal
size (number of distinct votes) of a Euclidean profile in function of the number m of
candidates is equal to

∑m
k=m−d |s(m,k)| where s(m,k) are the (unsigned) Stirling numbers

of the first kind (the same result has been found by Good and Tideman (1977)). Also,
given a preference profile, the authors asked themselves which is the minimal dimen-
sion d such that the profile is d-Euclidean. They gave some techniques to obtain bounds
on d. Some decades later, Bogomolnaia and Laslier (2004) showed that d ≥min{m,n−1}
is necessary to ensure that any profile of n votes on m candidates is d-Euclidean (i.e.,
Euclidean in dimension d). They also showed that any profile of at most 2 voters or 3
candidates is 2-Euclidean. These results were deepened by Bulteau and Chen (2022):
they proved that any profile of 3 voters on at most 7 candidates is 2-Euclidean. Finally,
let us mention that Kamiya et al. (2011) studied the question of counting and enumer-
ating d-Euclidean profiles of maximal size2 in function of the number m of candidates.
They provided a formula for the number of profiles of maximal size if d = m − 2, and
they were able to enumerate them for m = 4 (and d = 2). Regarding the computational
aspects, Peters (2017) studied the recognition problem (i.e., deciding whether or not a
preference profile is d-Euclidean) for d > 1. He proved that the recognition problem
is equivalent to the existential theory of reals, and thus ∃R-complete. Actually, some
Euclidean preference profiles require exponentially many bits in order to specify any
Euclidean embedding, so it is even not clear if the decision version of the problem is in
NP.

We note that there are also some works focusing on Euclidean preferences using ℓ1
and ℓ∞ norms: Recently, Chen et al. (2022) showed that each preference profile with
m alternatives and n voters is d-Euclidean with respect to the norm ℓ1 whenever d ≥
min{n,m− 1}. Also, they studied the smallest non-Euclidean profiles (still with respect
to the norm ℓ1) in case of d = 2. Peters and Lackner (2017) proved that the recognition
problem is in NP for d-Euclidean preferences with respect to the ℓ1 norm and the ℓ∞
norm; the precise complexity of these problems (in particular, if it is in P or not) re-
mains an open question.

From a more operational point of view, spatial representations are used in particular
in voting advice applications (e.g., Wahl-O-Mat in Germany, Smartvote in Switzerland,
Vote Compass in the United States, and many others in multiple countries), i.e., online
tools that helps the voter to choose the candidate closest to her political stances, and
actually often provides her a full ranking of candidates according to her answers to a
survey on a range of policy statements. The answers are indeed converted into posi-
tions on different dimensions, each position reporting on the level of agreement on a
particular policy statement. The ℓ1 norm is typically used when there are many di-
mensions, while the ℓ2 norm is used when the number of dimensions is lower (Moreno
et al., 2022; Isotalo, 2020). For an overview of the topic of voting advice applications,
the reader may refer to the survey by Garzia and Marschall (2019).

2in terms of the number of pairwise distincts preferences
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5.2.2 Definitions

We denote by d ≥ 2 the space dimension and by ∥ · ∥ : Rd → R+ a norm application.
With these notations, we can define d-Euclidean preferences with respect to the norm ∥ · ∥:

Definition 5.2.1: d-Euclidean preferences with respect to the norm ∥ · ∥

Let d ≥ 1 be an integer. A preference profile P of a set V of n voters over a set C of
m candidates is d-Euclidean with respect to the norm ∥ · ∥ if there exists a mapping
f : V ∪C→Rd such that for each v ∈ V and each couple of candidates ci , cj ∈ C:

ci >v cj ⇔ ∥f (v)− f (ci)∥ < ∥f (v)− f (cj )∥.

Note that in the sequel we will assume, w.l.o.g., that no couple of voters have the same
preference (if so, we can simply remove one of them). The norms considered in our
works are norms ℓ1, ℓ2 and ℓ∞. For convenience, let us give their definitions - we
denote by x = (x1,x2, . . . ,xd) a vector of Rd :

∥x∥ℓ1
= |x1|+ |x2|+ . . .+ |xd |

∥x∥ℓ2
=

√
x2

1 + x2
2 + . . .+ x2

d

∥x∥ℓ∞ = max{x1,x2, . . . ,xd}

Note that in which follows, the used norm will always be specified. Nevertheless, if no
confusion is possible, we will only write d-Euclidean preferences instead of d-Euclidean
preferences with respect to the norm ∥ · ∥.

Example 5.2.1. To illustrate the notion of multidimensional Euclidean preferences, let us
consider a profile of 3 preferences over 3 candidates:

>1: (c1, c3, c2)

>2: (c3, c2, c1)

>3: (c1, c2, c3)

This profile is 2-Euclidean with respect to the norm ℓ2: we can for instance set f (v1) =
(2,5), f (v2) = (11,2), f (v3) = (2,9), f (c1) = (3,3), f (c2) = (8,6) and f (c3) = (6,2). We check
easily that the definition of a 2-Euclidean profile is satisfied, as illustrated on Figure 5.2.1
for the first two voters. Intuitively, the idea is still the same as in the case of 1-Euclidean
preferences: the voters and candidates are embedded in the same space, and the closer the
voter v is to the candidate c, the better c is ranked in >v .

The mapping f is called a d-Euclidean representation of P . Obviously, such a mapping
is not necessarily unique. Let us interpret the definition in a slightly different way:
imagine that the position f (c) is fixed for each candidate c ∈ C. Our goal is now to
extend f on C ∪ V (i.e., define the positions of the voters v ∈V ) in such a way that f
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(b) voter v2

Figure 5.2.1: The mapping f satisfies the definition of a 2-Euclidean profile with re-
spect to the norm ℓ2 (here it is only illustrated for voters v1 and v2).

fulfils the condition of Definition 5.2.1. For each voter v, we define the set Dℓ
f (v) of

possible positions f (v):

Dℓ
f (v) = {p ∈Rd : ∀ci , cj ∈ C,ci >v cj ⇒ ∥p − f (ci)∥ℓ < ∥p − f (cj )∥ℓ}

Clearly, mapping f is a d-Euclidean representation of P (with respect to the norm ℓ) if
and only if Dℓ

f (v) , ∅ for each v ∈ V . If no confusion is possible, we only write Df (v)

instead of Dℓ
f (v). We note that, following this idea, to build a Euclidean representation

of P , we somehow only need to define the positions of the candidates in such a way that
each Dℓ

f (v) is non-empty. For this purpose, we introduce the following notations:

Definition 5.2.2

Let d ≥ 1 be an integer, ∥ · ∥ℓ be a norm of Rd and f : C→Rd be a mapping. For a
pair {ci , cj}⊆C of candidates mapped in positions f (ci) and f (cj ), the set of points
p ∈Rd such that ∥f (ci) − p∥ℓ = ∥f (cj ) − p∥ℓ is called the boundary hypersurface of
ci and cj (or just hypersurface in what follows), and is denoted by Hℓ

f (ci , cj ). We

denote then byDℓ
f (ci , cj ) the set of points p∈Rd such that ∥f (ci)−p∥ℓ < ∥f (cj )−p∥ℓ,

and by Dℓ
f (cj , ci) the set of points p∈Rd such that ∥f (ci)− p∥ℓ > ∥f (cj )− p∥ℓ.

In no confusion is possible, we only write Hf (ci , cj ) instead of Hℓ
f (ci , cj ). With the nota-

tions of Definition 5.2.2, we have Dℓ
f (v) =

⋂
ci>vcj

Dℓ
f (ci , cj ). The notations are illustrated

in Figure 5.2.2.
Definition 5.2.1 can be now reformulated as follows :
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B(c1, c2)

B(c1, c3)

B(c2, c3)c1

c2

c3

Figure 5.2.2: A Euclidean representation of the profile consisting of the 6 possible pref-
erences on 3 candidates c1, c2, c3. The area with a solid background corresponds to
Df (c1, c3), and the area with a downward (resp. upward) diagonal hatching to Df (c1, c2)
(resp. Df (c3, c2)). The intersection of these areas corresponds to Df (v) for c1 >v c2 >v c3.

Definition 5.2.3

A preference profile P is d-Euclidean with respect to the norm ℓ if there exists a
mapping f : C→Rd such that the set Dℓ

f (v) induced by f is non-empty for each
v ∈ V .

5.2.3 Weighted majority tournaments and Kemeny rankings with 2-Euclidean
preferences

As for the other domain restrictions, we are interested in determining whether d-
Euclidean preferences (with respect to a given norm) allow to circumvent some NP-
hardness results in social choice problems. Unfortunately, no such result has been
identified so far to the best of our knowledge, and several results were proved to re-
main NP-hard for d-Euclidean preferences. We prove in this section that the Kemeny
ranking problem, NP-hard in general but polynomial-time solvable if the preferences
are 1-Euclidean3, is still NP-hard for 2-Euclidean preferences under norms ℓ1, ℓ2 and
ℓ∞; we then mention at the end of the section other NP-hardness results for d-Euclidean
preferences.

Organization of this section. Several notions first need to be introduced:

1. We first define the Kemeny ranking problem.

3actually, single-peaked is sufficient
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2. Then we introduce the Feedback arc set problem (FAS): A classical way to prove
that the Kemeny ranking problem is NP-hard in the general case is to provide
a polynomial time reduction from FAS to the Kemeny ranking problem. FAS
is a problem formulated on (general) directed graphs. It turns out that the deci-
sion version of this problem remains NP-hard on bipartite weighted tournaments,
which is a special class of directed graphs the definition of which we will recall
below.

Once these notions are introduced, we prove the NP-hardness of the Kemeny ranking
problem for 2-Euclidean preferences. Actually, we prove that any weighted tournament
(resp. bipartite weighted tournament) is inducible (see Definition 5.2.5 below) by a
2-Euclidean profile with respect to the norm ℓ1 (resp. ℓ2, ℓ∞). As FAS is known to
remain NP-hard on bipartite weighted tournaments, it follows that the Kemeny ranking
remains NP-hard for 2-Euclidean preferences.

Kemeny ranking Given two preferences >1 and >2, let dKT (>1,>2) denote the Kendall-
tau distance between >1 and >2, i.e., the number of pairs of candidates {ci , cj} such that
ci >1 cj and cj >2 ci , or vice versa. The Kendall-tau distanceKT (>,P) between a ranking
> and a profile P is then defined as

KT (>,P) =
∑
>v∈P

dKT (>,>v)

Now, we are able to define the Kemeny ranking problem:

Definition 5.2.4: Kemeny ranking problem

In the Kemeny ranking problem, given a preference profile P, we want to deter-
mine a ranking > on the candidates that minimizes KT (>,P). Such a ranking is
called Kemeny ranking.

In the decision version of the Kemeny ranking problem, given some integer k, we want
to determine whether there exists a ranking > such that KT (>,P) ≤ k, or not. As stated
before, we recall that this problem is known to be NP-complete (Bartholdi et al., 1989).

Example 5.2.2. Let us consider the following profile P of 3 preferences on 4 candidates:

>1: (c1, c2, c3, c4)

>2: (c3, c2, c4, c1)

>3: (c2, c3, c4, c1)

Let us consider the ranking c2 > c3 > c4 > c1. We have:

KT (>,P) = dKT (>,>1) + dKT (>,>2) + dKT (>,>3) = 3 + 1 + 0 = 4
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Let us now consider another ranking c1 >
′ c2 >

′ c3 >
′ c4. We have:

KT (>′ ,P) = dKT (>′ ,>1) + dKT (>′ ,>2) + dKT (>′ ,>3) = 0 + 4 + 3 = 7

It appears therefore that > is nearer to P than >′ (in terms of dKT ). Actually, > is a Kemeny
ranking for P. We can check that P is single-peaked w.r.t. the axis A = c1 ◁ c2 ◁ c3 ◁ c4. It is
well-known (see Black (1958)) that the majority relation of a single-peaked profile with an
odd number of voters is transitive. But when the majority relation is transitive, the Kemeny
ranking is unique and corresponds to the majority relation.

It is easy to check that > is the majority relation of P. In particular, we see that the Ke-
meny ranking problem is polynomial time solvable for single-peaked preferences.

Feedback arc set problem In the decision version of the feedback arc set problem
(FAS), we are given a directed graph G and an integer k, and we want to determine
whether we can delete (at most) k arcs in G in such a way that the resulting graph
is acyclic. This problem is NP-complete (Ausiello et al., 1980). It is well known that
it remains NP-hard in bipartite graphs, as one can replace each arc ei = (u,v) by two
arcs (u,wi), (wi ,v) where wi is a new vertex associated to ei , and obtain an equivalent
instance in a bipartite graph.

Weighted tournaments A tournament is a directed graph G = (N,A) where for each
pair {ui ,uj} of vertices, there is exactly one arc - either (ui ,uj ) or (uj ,ui). The name tour-
nament refers to a situation where a game (without tie) was organized between each
pair of nodes {ui ,uj} and the arc represents who won the game (i.e., the arc (ui ,uj ) rep-
resents the situation in which ui wins over uj ).

Weighted tournaments are then a generalization where each game is won by a cer-
tain margin which defines the integer weight w(ui ,uj ) ≥ 0 of arc (ui ,uj ). Note that this
generalization allows ties - w(ui ,uj ) = 0 if ui and uj are ex æquo - in this case, there
is actually no arc between ui and uj . A weighted tournament is bipartite if the partial
digraph with edges with non-zero weightscis bipartite.

Definition 5.2.5: Inducible weighted tournament

A weighted tournament on a set N = {u1, . . . ,um} of nodes is inducible if there ex-
ists a preference profile P of n preferences on a set C = {c1, . . . , cm} of candidates
such that for any pair {ui ,uj} of nodes, w(ui ,uj ) = |{v ∈ V : ci >v cj}|− |{v ∈ V : cj >v
ci}|.

It is known (Debord, 1987), (McGarvey, 1953) that a weighted tournament is inducible
if and only if all the weights are of the same parity. In the following, we refer to odd
(resp. even) weighted tournaments if all the weights are odd (resp. even). Note that
when |N | ≥ 3, a bipartite weighted tournament is necessarily even (as there is at least
one pair {ui ,uj} with w(ui ,uj ) = 0).
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>1: (c1, c2, c3, c4)

>2: (c3, c2, c4, c1)

>3: (c2, c3, c4, c1)

Figure 5.2.3: The tournament induced by the profile from Example 5.2.2.

Debord’s theorem apply to 2-Euclidean preferences We actually prove a version of
Debord’s theorem (Debord, 1987) (refining McGarvey’s theorem (McGarvey, 1953)) for
2-Euclidean profile (the proof is on page 161):

Theorem 5.2.1

Every weighted tournament with weights of the same parity is inducible by a
2-dimensional ℓ2-Euclidean profile. Every weighted bipartite tournament with
even weights is inducible by a 2-Euclidean profile w.r.t. norm ℓ1, and by a 2-
Euclidean profile w.r.t. norm ℓ2.

Basically, this theorem states that every weighted (bipartite) tournament can be seen as
a 2-Euclidean profile (under one of considered norms). Thus, essentially, hardness re-
sults for computational social choice problems that can be formulated on the (weighted)
majority tournament are still true if preferences are 2-dimensional Euclidean because
this assumption is not restrictive with regard to the weighted majority tournament.4.
In particular, this is the case of the Kemeny ranking problem - as said above, FAS is
NP-hard on (bipartite) weighted tournaments, so the classical reduction from FAS to
the Kemeny ranking problem can be used in case of 2-Euclidean preferences:

Corollary 5.2.1

Under norms ℓ1, ℓ2 and ℓ∞, the Kemeny ranking problem on 2-Euclidean pref-
erences is NP-hard. This is true even if a 2-dimensional representation of prefer-
ences is given in the input.

Another example of a problem that remains NP-hard for 2-Euclidean preferences is the
Slater rule problem. The Slater rule asks for a consensus ranking which minimizes the
number of disagreements with pairwise majority comparisons (Slater, 1961). While

4In other words, the hypothesis of 2-Euclidean preferences does not provide us a restriction on a “good”
subset of weighted majority tournaments on which these problems might become polynomial time solv-
able.
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this rule is often considered as a tournament solution concept (the Slater set consists of
the winning candidates), it also defines a consensus ranking given a preference profile
(Conitzer, 2006). Using Theorem 5.2.1, we get the following result:

Corollary 5.2.2

Under norms ℓ2, ℓ1 and ℓ∞, the Slater ranking problem on 2-Euclidean prefer-
ences is NP-hard. This is true even if a 2-dimensional representation of prefer-
ences is given in the input.

A classical way to build a profile that induces a given weighted tournament G is to
convert the nodes ofG into candidates and the arcs into voters. More precisely, consider
an even weighted tournament5, and suppose that we build a profile such that:

• There is one candidate ci for each vertex ui ;

• For each arc (ui ,uj ), there are w(ui ,uj )/2 (identical) copies of 2 voter fij and gij .

• All copies of fij and gij prefer ci to cj ;

• For any other pair {c,c′} of candidates, exactly one voter among fij and gij prefers
c to c′ (and one prefers c′ to c).

Then such a profile clearly induces the desired weighted tournament. If preferences are
unrestricted, such properties for the preferences of fij and gij can be obtained for in-
stance by following the approach proposed by McGarvey (1953): it consists in defining
the preferences

fij = (ci , cj , c1, c2, . . . , cn︸       ︷︷       ︸
except ci and cj

)

and

gij = (cn, cn−1, . . . , c1︸          ︷︷          ︸
except ci and cj

, ci , cj )

In other words, gij is the reverse ranking of fij , except the relative order of ci and cj
which remains the same in both rankings.

In the sequel, we show that we can still obtain the previous properties with an Eu-
clidean profile under norms ℓ1, ℓ2 or ℓ∞.

5If the tournament is odd, then we can add one voter to the construction, and use pairs fij and gij to
adjust the weights as needed.
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Proof of Theorem 5.2.1 under ℓ1 We start with a weighted bipartite tournament (thus
necessarily even, as mentionned earlier) G with vertex set L∪R and arc set A (each arc
having one extremity in L and one in R). We denote by n the number of vertices, and
by m the number of arcs. We build an instance where candidates and voters lie on a
square, whose sides are parallel to the axes, (see Figure 5.2.4). More precisely:

• Each vertex ui corresponds to a candidate ci . If ui ∈L (resp. ui ∈R), ci will be on
the vertical left side (resp. right side) of the square. We will say that ci ∈L (resp.
ci ∈R) if ui ∈L (resp. ui ∈R)

• Each arc (ui ,uj ) correspond to two voters fij and gij . Point fij will be on the
horizontal upper side of the square, while gij will be on the horizontal lower side
of the square.

Let us consider an arc (ui ,uj ), with ui ∈L and uj ∈R. We call Aij the point on the upper
horizontal side such that ∥ci −Aij∥ℓ1

=∥cj −Aij∥ℓ1
(note that such point indeed exists on

the horizontal side of the square). Similarly, we call Bij the point on the lower horizon-
tal side such that ∥ci −Bij∥ℓ1

= ∥cj −Bij∥ℓ1
.

We put two voters fij and gij which are positioned on the edges at ε (to be specified) to
the left of Aij and Bij , respectively. If the arc had been (uj ,ui), then the voters fji and
gji would have been at ε to the right of Aij and Bij .

ci

cj

Aij

Bij

fij

gij

Figure 5.2.4: The construction with two vertices ui ∈ L, uj ∈ R, and an arc (ui ,uj ).

Assume that we choose the vertical positions of candidates in such a way that all Aij are
distinct (and equivalently, all Bij are distinct), see below for an explicit construction.
Note that as Bij is the symmetric of Aij with respect to the center of the square, the
order of A-points on the upper side is the inverse order of B-points on the lower side.
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A Curious Tortoise Intervention

Wait... why is Bij the symmetric of Aij with respect to the center of the
square ? Well, it is actually very easy: let us denote by dA (resp. dB) the
ℓ1-distance between Aij and ci , cj (resp. Bij and ci , cj ), and let ∆ be the side
length. We have

2dA + 2dB = 4∆.

In other words, dA + dB = 2∆, or also the half-perimeter of the square.
Let Ac (resp. Bc) be the midpoint of the horizontal upper side (resp.
horizontal lower side) of the square. Suppose without loss of generality
that Aij is on the left of Ac. Then Bij must be “shifted” by the same
distance to the right of Bc so that we still have dA + dB = 2∆:

ci

cj

Aij

BijBc

Ac

Then we choose ε sufficiently small so that between fij andAij there is no otherA-point.
Similarly, between gij and Bij there is no other B-point.

Let us consider an arc (ui ,uj ) with ui ∈ L and uj ∈ R (the other case being completely
symmetric). Then:

• Both voters fij and gij prefer ci to cj (as Aij is equidistant from ci and cj , the same
for Bij ).

• For any other pair {c,c′} of candidates, exactly one voter among fij and gij prefers
c to c′ (and one prefers c′ to c). This is easy to see if both c and c′ belong to L, or if
both belong to R. If c∈L and c′ ∈R, we use the fact that A-points and B-points are
symmetric with respect to the center of the square. Therefore, if Aij is on the left
of Acc′ , Bij is on the right of Bcc′ . But as there is no other A-point (resp. B-point)
between Aij and fij (resp. Bij and gij ), we also have fij on the left of Acc′ and gij
on the right of Bcc′ . In other words, fij prefers c to c′ and gij prefers c′ to c (see
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Figure 5.2.5). The case of Aij on the right of Acc′ (and so Bij on the left of Bcc′ ) is
treated symmetrically.

ci

cj

Aij

Bij

c

c′

Acc′

Bcc′

fij

gij

Figure 5.2.5: c ∈ L and c′ ∈ R: fij is on the left of Acc′ , so she prefers c to c′. Voter gij is
on the right of Bcc′ , so she prefers c′ to c.

Thus, this construction fulfills the conditions 1-4 given above, and yields a profile in-
ducing the desired (bipartite) tournament. We now give an explicit (polynomial time)
construction which ensures that A-points are distinct. Consequently, all B-points are
distinct as they are symmetric to A-points with respect to the center of the square.

Explicit construction:
We consider a square with side lengths ∆= 2n+1, where n is the number of vertices of
the graph. Let us consider that the bottom left corner of the square has coordinates
(0,0).

We set the y-coordinate of candidate ci to yi = 2i . Then the x-coordinate xij of Aij is
such that xij +∆− yi = ∆− xij +∆− yj , meaning that:

xij =
∆+ yi − yj

2
.

Then we can verify that these y-values are such that all A-points are distinct. Indeed,
for any distinct pairs {i, j} and {k,ℓ} of indices, yi + yj , yk + yℓ. To see this, if say ℓ is the
largest among the indices, then:

• If j = ℓ, then i , k (as the pairs are distinct), and yi + yj , yk + yℓ.
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• If i, j < ℓ, then yi + yj ≤ 2(2ℓ−1) = 2ℓ = yℓ < yℓ + yk .

Then all the values xij =
yi−yj

2 are distinct. Note that as y-values and ∆ are even inte-
gers, xij is an integer, and we can choose ε= 1

2 (and multiply everything by 2 if we want
integers).

As the coordinates can be encoded with a polynomial number of bits, the reduction
is polynomial.

Proof of Theorem 5.2.1 under ℓ∞ We use a construction which is similar to the case
of ℓ1, but positioning candidates and voters on a square which is oriented as in Fig-
ure 5.2.6. The diagonal of the square has length 2∆ with ∆=2n+1.

We position a candidate ci ∈ L on the lower left side, at position (−2i ,2i − ∆). A can-
didate cj ∈R is on the upper right side, at position (2j ,∆− 2j ).

Then we define two points Aij and Bij , respectively on the upper left side and on the
lower right side, both being equidistant (under ℓ∞) from ci and cj . Namely, the coor-

dinates of Aij are (2i+2j
2 −∆, 2i+2j

2 ). Point Bij is the symmetric of Aij with respect to the
center O of the square. See Figure 5.2.6 for an illustration.

A Curious Tortoise Intervention

How did we computed the coordinates of Aij , and how can we be sure
that such a point always exists? Well, let us do some calculations...

Suppose that we have an arc (vi ,vj ), with vi ∈ L and vj ∈ R. We
have ci = (−2i ,2i − ∆) and cj = (2j ,∆ − 2j ). We want to find a point
Aij = (xA, yA) equidistant from ci and cj under norm ℓ∞. If we denote by
(xi , yi), resp. (xj , yj ), the coordinates of ci , resp. cj , it is easy to see that
|xA − xi | < |yA − yi |, resp. |xA − xj | > |yA − yj | - see the scheme below for a
better visualization:
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|y − yi | < |x − xi |

|x − xi | < |y − yi |

|y − yi | < |x − xi |

|x − xi | < |y − yi | ci

cj

Aij

Bij

y = −x+ xi + yi

y = x − xi + yi

We have thus
yA − (2i −∆) = 2j − xA.

As the point Aij is on the upper left side of the square, we have

yA = xA +∆.

Put together, we get
xA +∆− 2i +∆ = 2j − xA.

Finally, we obtain

xA =
2i + 2j

2
−∆,

and

yA =
2i + 2j

2
.

Moreover, −∆ ≤ xA ≤ 0, so Aij is on the upper left side of the square.
Similar computations can be done for Bij .

Nevertheless, there is a more elegant way to obtain the positions of
Aij and Bij . If you compare Figure 5.2.4 and Figure 5.2.6, maybe you see
how to do it. Otherwise, we will come back to this point in Chapter 7.

As previously, if there is an arc (vi ,vj ) with vi ∈ L and vj ∈ R, we create two voters fij
and gij , point fij being positioned on the edge of Aij at ε to the bottom/left of Aij , and
gij being positioned on the edge of Bij at ε to the bottom/left of Bij . If there is an arc
(vj ,vi) with vi ∈ L and vj ∈ R, then fji and gji are positioned on the edges at ε to the
right/up of Aij and Bij .
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The choice of the coordinates of candidates ensure that all the A-points and B-points
are distinct (for the same reason as in the proof for norm ℓ1), and integral, so we can
choose ε=1/2 to ensure that there is no A-points between fij and Aij (neither B-points
between gij and Bij ).

∆

O

7

7

9

9

c1

c2
A12

B12

fij

gij

Figure 5.2.6: The construction with only two vertices v1 ∈ L and v2 ∈ R, and the arc
(vi ,vj ).

Proof of Theorem 5.2.1 under ℓ2 We now start with an even weighted tournament,
and will position candidates and voters on a circle, centered at point O of coordinates
(0,0). More precisely (see Figure 5.2.7):

• Each vertex vi corresponds to a candidate ci positioned on the circle.

• Let us call Dij the line of equidistant points (under ℓ2) between ci and cj , and
Aij and Bij the two points of Dij on the circle. Each arc (vi ,vj ) correspond to two
voters fij and gij , both positioned on the circle. Point fij is on the same side of Dij
as ci , with an angle ε between Aij and fij . Similarly, gij is on the same side of Dij
as ci , with an angle ε between Bij and gij .
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O

Aij

Bij

ci

cj

Dij
fij

gij

Figure 5.2.7: The construction with two vertices vi ,vj and an arc (vi ,vj ).

As previously, suppose that we choose the positions of candidates in such a way that all
the points Aij and Bij are distinct.

Then we choose ε sufficiently small such that each A-point or B-point lies neither be-
tween fij and Aij , nor between gij and Bij .

Let us consider an arc (vi ,vj ). Then:

• Both voters fij and gij prefer ci to cj (as Aij is equidistant from ci and cj , the same
for Bij ).

• For any other pair {c,c′} of candidates, exactly one voter among fij and gij prefers
c to c′ (and one prefers c′ to c). This follows from the fact that all D-lines intersect
in O, and that we have fixed ε in a way that there is no other A-point (resp. B-
point) between fij and Aij (resp. gij and Bij ). Therefore, fij and gij cannot be on
the same side of the D-line corresponding to {c,c′}.

Explicit construction Let us call Θi the angle (polar coordinate, in radian) of ci (i.e.,

the angle between the horizontal axis and
−−−→
Oci ). Then we shall choose Θi in such a way

that all the points Aij and Bij are distinct. This appears as soon as (Θi +Θj ) are distinct,

as the angle of the line Dij is
Θi+Θj

2 .

Let us fix Θi = 2i
2n = 2i−n. By the same reasoning as in the proof for norm ℓ1, all (Θi +Θj )

are distinct (note that 0 ≤Θi ≤ π/2 so (Θi +Θj ) are indeed distinct modulo 2π). We can
fix ε = 1/2n+1, to fulfill the property for fij and gij .
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We note that the actual preference profile can be easily built from this embedding of
points in the 2-dimensional space. Indeed, if i > j, voter fij has angle 2i+2j+1/2

2n , and she
prefers ck to cl iff |2k − aij | < |2l − aij |, where aij = 2i + 2j + 1/2 (if i < j it is the same with
aij = 2i + 2j −1/2). Voter gij has the reverse preference on all pairs but {ci , cj}. Thus, the
construction is polynomial time.

Some concluding words We have shown that the result of McGarvey (1953) and De-
bord (1987) about inducible weighted tournaments is still true for 2-Euclidean prefer-
ences under ℓ2 norm, and that every even weighted bipartite tournament is inducible
by 2-Euclidean preferences under ℓ1 norm and ℓ∞ norm. These results allowed us to
answer an open problem when the input preferences are 2-Euclidean (under ℓ1, ℓ2 or
ℓ∞).

It would be interesting to investigate the impact of 2-Euclidean preferences on the
complexity of other NP-hard social choice problems that cannot be formulated on an
induced weighted tournament; for instance, Godziszewski et al. (2021) showed that
computing the result of a number of multiwinner voting rules remains NP-hard with
2-dimensional Euclidean preferences, without resorting to weighted majority tourna-
ments. Recently, Chen and Roy (2022) showed that the 2-Euclidean stable roommates
problem is NP-hard for d ≥ 3. As we can see, so far, there is no known NP-hard prob-
lem which would become polynomial time solvable for 2-Euclidean (resp. d-Euclidean
preferences). This question is worth investigating.

The expressivity of d-Euclidean domain is studied in the following chapters. More pre-
cisely, we study in Chapter 6 the recognition problem of 2-Euclidean preferences with
respect to norm ℓ2, while Chapter 7 is dedicated to the study of 2-Euclidean preferences
with respect to norms ℓ1 and ℓ2. As already discussed in the introduction, even though
we cannot expect some appealing theoretical properties or computational guarantees
for 2-Euclidean preferences, it is always interesting to identify an underlying structure
of a given preference profile. For instance, such a knowledge can be useful for data
analysis, voting advice applications or recommendation systems.
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Chapter 6

A Heuristic algorithm for
recognizing 2-Euclidean preferences
with respect to the norm ℓ2

6.1 Introduction

This chapter deals with the recognition of 2-Euclidean preferences with respect to the
norm ℓ2. Given a specific domain restriction and a set of preferences (also called prefer-
ence profile hereafter), a recognition algorithm aims at deciding whether the preferences
belong or not to the domain restriction, and if possible also provides a concise certifi-
cate of membership or non-membership. Recognition algorithms have been proposed
for various domain restrictions in social choice, among which single-peaked prefer-
ences on an axis (Bartholdi III and Trick, 1986) or on a tree (Trick, 1989) or on a circle
(Peters and Lackner, 2020), single-crossing preferences (Doignon and Falmagne, 1994),
intermediate preferences on median graphs (Clearwater et al., 2015), etc.

In contrast with all these results, the domain of d-Euclidean preferences, especially
when d ≥ 2, remains much less understood from the theoretical point of view. Despite
the fact that Euclidean preferences were widely studied (we refer the reader to the Sec-
tion 5.2.1), the recognition problem appears to be very challenging and remains widely
open from an algorithmic perspective:

• From a theoretical viewpoint, Chen et al. (2017) conjectured that the domain can-
not be characterised by finitely many forbidden minors, contrary to, for example,
the single-peaked domain (Ballester and Haeringer, 2011). Peters (2017) showed
the validity of this conjecture. More than that, he proved that for any d ≥ 2, the
set of d-Euclidean preference profiles does not admit a good characterisation by
forbidden minors. He also showed that the recognition problem (under ℓ2) is in
∃R, and that some Euclidean preference profiles require exponentially many bits
in order to specify any Euclidean embedding.
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• From a practical viewpoint, dealing with exact resolution, Peters (2017) pointed
out that using an ETR-solver to recognize Euclidean profiles for d = 2 or d = 3
reveals unfeasible in practice, and to the best or our knowledge no efficient algo-
rithm is known even for small size instances. Several attempts, starting with Kruskal
(1964), were made to find an efficient heuristic algorithm to give an approximate
multidimensional Euclidean representation of a given profile (which may or may
not be Euclidean). However, these algorithms encountered all the same problems
: they tend to give a degenerate solution, typically all candidates placed on a
circle and all voters forming a cluster around the circle center. As this kind of so-
lution is generally not far (in terms of the sum of distance errors) from an optimal
solution, it does not provide any information about the structure behind prefer-
ences, and typically does not allow to determine if preferences are d-Euclidean or
not. Some recent approaches (see for example Borg and Groenen (2005) or Busing
et al. (2005)) tried to overcome these difficulties.

In this chapter, we propose a new approach to recognize 2-Euclidean preferences. The
underlying idea is simple: we fix the candidates’ positions randomly in the plane, we
determine the set of votes that are compatible with these positions, and then we check
if our input profile is included in this set of votes. If so, the input is 2-Euclidean. We
repeat this test a certain number of times (since the random positions of candidates
might not be the good ones) to detect 2-Euclidean profiles. We complement this with a
test aiming at detecting when an input profile is not 2-Euclidean. Although the naive
implementation of this idea is not very efficient, we propose several theoretical and
algorithmic improvements to make it more operational. We made some experiments
both on real datasets and synthetic ones. In addition, this algorithmic tool allowed us
to provide some new insights on questions about 2-Euclidean preferences, such as the
number of inclusion-wise maximal profiles for a given number of candidates.

The chapter is organized as follows: we introduce some preliminaries in Section 6.2
(we recall that more detailed introduction on multidimensional Euclidean preferences
can be found in Chapter 5, Section 5.2). Then we present our algorithm in Section 6.3.
Experimental results are provided and discussed in Section 6.4.

6.2 Preliminaries

We will use in this chapter the notions introduced in Section 5.2.2. We recall briefly
that given a preference profile P over the set of candidates C, we need to find a map-

ping f : C→R2 such that for each preference >v∈P, the area Df
v corresponding to this

preference is non-empty. If such a mapping exists, the profile P is 2-Euclidean.

Actually, each mapping f defines a preference profile associated to it, and in prac-
tice, we need just to ensure that the input profile P is a subprofile, up to a renaming of
candidates. Let us now formalize this idea - to begin, we give a definition of profile Pf
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associated to the mapping f :

Definition 6.2.1

Let C be a set of candidates, and f : C→ R2 be a mapping. We define the profile
Pf associated to f as the set of all rankings v such that Df (v) is non-empty.

We have then the following property, used in our algorithm.

Property 7. A profile P is 2-Euclidean if and only if there exists a mapping f : C → R2

such that P⊆Pf .

Furthermore, we will use the notation [P] to refer to any profile obtained by a per-
mutation of the names of the candidates in P. By extension, we will write P⊆ [Pf ]
(resp. P= [Pf ]) to state that P is included in (resp. is equal to) a profile obtained by
renaming the candidates of Pf . For instance,{

c2 ≻ c3 ≻ c1,
c1 ≻ c3 ≻ c2

}
=

[{
c1 ≻ c2 ≻ c3,
c3 ≻ c2 ≻ c1

}]
because the profile on the left hand side is obtained from the profile on the right hand
side by renaming c1 (resp. c2, c3) in c2 (resp. c3, c1). Property 7 remains clearly true if
we replace P⊆Pf by P⊆ [Pf ].

Finally, let us define the notion of (inclusion-wise) maximal 2-Euclidean profile (we
recall that the preferences are pairwise distinct):

Definition 6.2.2: Maximal profile

A 2-Euclidean profile P = {>1,>2, . . . ,>n} is maximal is for any vote >v<P, the
profile P′ = P∪ {>v′ } is not 2-Euclidean.

Let us call a representation function f degenerate if either three points f (ci), f (cj ) and
f (ck) are aligned, or at least 4 bisectors intersect in the same point. By slightly moving
the positions of candidates, it is easy to see that for any 2-Euclidean profile there exists
a non-degenerate representation of it. Note that if the representation function f is
non-degenerate, then the profile Pf is maximal.1

6.3 2-Euclidean recognition heuristic

Assume that we have a profile P in input, and we want to decide whether it is 2-
Euclidean or not. We propose here an algorithm based on the following principles.

1Indeed, it can be shown that then |Pf |=ub(m), where ub(m)=m(3m−10)(m−1)(m+1)/24+m(m−1)+1
is the maximal number of pairwise distinct votes in a 2-Euclidean preference profile onm candidates (this
can be easily derived (see for instance Escoffier et al. (2022a)) from a result by Bennett and Hays (1960)).
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First, as some necessary conditions for a profile to be 2-Euclidean have been identified
in the literature, the algorithm checks if these conditions are fulfilled. If it is not the
case, the profile is not 2-Euclidean and the algorithm returns NO. Otherwise, the al-
gorithm tries to “guess” the set of positions f (c1), f (c2), . . . , f (cm) of candidates. It then
builds the (maximal) 2-Euclidean profile Pf associated to the representation f , and fi-
nally checks if P⊆ [Pf ]. If this is the case, the profile is 2-Euclidean and the algorithm
returns YES. Otherwise, we reiterate this process of guessing positions of candidates.
Finally, if none of the tests succeeded, then the status is undefined and the algorithm
returns UNKNOWN. The pseudocode of this heuristic is given in Algorithm 2.

Algorithm 2 is euclid(P)

Input : a preference profile P
Output: NO if P is not 2-Euclidean, YES if P is 2-Euclidean, UNKNWON if not
decided
if there is a NO-certificate for P then

return NO
end if
while timeout not reached do

Generate a random 2-Euclidean representation f of candidates
Build the profile Pf associated to f
if P⊆ [Pf ] then

return YES
end if

end while
return UNKNOWN

We now detail how each step of this heuristic is performed, explaining the main ideas
used to make it as efficient as possible.

6.3.1 NO-Certificates

As explained above, the first step of the algorithm is to detect, as much as possible,
profiles that are not 2-Euclidean. To do so, we use in our algorithm two necessary con-
ditions (also called NO-certificates in which follows, as they guarantee that the profile
is not 2-Euclidean) known in the literature, based on the size of the profile and on
some forbidden substructures. We will discuss possible improvements of this step of
the algorithm in the global conclusion of the thesis.

• Cardinality condition: Using the maximum number ub(m) of pairwise distinct
votes in a 2-Euclidean profile on m candidates (see footnote 1 p. 171), the algo-
rithm simply outputs NO if n > ub(m). Note that this is actually tested for any
restriction of the profile to a subset of candidates. Given a profile P over a set
C of m candidates (which is supposed to contain only pairwise disctint prefer-

172



Chapter 6 – A Heuristic algorithm for recognizing 2-Euclidean preferences with
respect to the norm ℓ2

ences), and given S⊆C, we denote by P|S the restriction of P to S.2 Any subset S
of candidates such that |P|S |>ub(|S |) is a NO-certificate for P.

• Condition on profile restrictions on 4 candidates: Kamiya et al. (2011) showed
that for 4 candidates, there are only 3 maximal 2-Euclidean profiles P1,P2,P3
(up to a permutation of candidates). Consequently, a profile P on 4 candidates
is 2-Euclidean if and only if there exists i ∈ {1,2,3} for which P⊆ [Pi]. We use
this characterization to derive a NO-certificate, as follows. We say that P′ is a k-
restriction of P if there exists S⊆C of cardinal k such that P′=P|S . We will note
by Pk the set of all k-restrictions of a given profile P: Pk = {P|S : S ⊆ C, |S | = k}.

Obviously, if P is 2-Euclidean, then for each k, any k-restriction of P is also 2-
Euclidean. We use the characterization of 2-Euclidean profiles on 4 candidates
to identify non-Euclidean profiles P on m candidates: we generate all

(m
4
)

ele-
ments of P4 and check if they are subprofiles of [P1], [P2] or [P3], one of the 3
maximal 2-Euclidean profiles on 4 candidates. Any 4-restriction of P that is not
2-Euclidean is a NO-certificate for P.

6.3.2 The random generation of the representation f

The most straightforward idea consists in picking up the positions f (c1), f (c2), . . . , , f (cm)
according to a uniform distribution in the square [0,M]× [0,M] (for some constant M).
However, this turns out to be inefficient in practice because it does not take into account
the input profile P , which yields a low chance that the positions are correctly guessed.
This led us to adapt the random generation process by observing that, if a candidate ci
is ranked last by at least one voter v, then for any 2-Euclidean representation f , point
f (ci) must be a vertex of the convex hull of the set {f (c1), f (c2), . . . , f (cm)}. This is shown
in Lemma 6.3.1. We therefore generate positions of candidates by imposing that the
number of vertices of the convex hull of the set of positions of candidates is at least the
number of candidates ranked last by at least one voter in P .

Lemma 6.3.1

Let C = {c1, . . . , cm} be a set of candidates and f : C → R2 an injective mapping
of the candidates in the plane. Let c ∈ C and {i0, i1, . . . , ik} ⊆ {1, . . . ,m} such that
f (ci0) is a convex combination of f (ci1), f (ci2), . . . , f (cik ). For each possible position
f (v) of a voter v in the plane (i.e., inducing a strict order >v), there exists iv ∈
{i1, i2, . . . , ik} such that ci0 >v civ . In particular, ci0 is never ranked last in the profile
Pf associated to f .

Proof. By definition, f (ci0) = λ1f (ci1) + . . .+λkf (cik ) with λ1 + . . .+λk = 1 and λi ≥ 0 for
each i ∈ {1, . . . , k}. Let f (v) be any possible position of a voter v in the plane. By the

2We recall that P|S is a copy of P in which we have kept only the candidates of S - see Definition 1.1.2.
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Cauchy-Schwarz inequality, we have:

∥f (v)− f (ci0)∥ = ∥f (v)− (λ1f (ci1) + . . .+λkf (cik ))∥
≤ ∥λ1(f (v)− f (ci1)) + . . .+λk(f (v)− f (cik ))∥
≤ λ1∥f (v)− f (ci1)∥+ . . .+λk∥f (v)− f (cik )∥
≤ (λ1 + . . .+λk) max

i∈{i1,...,ik}
∥f (v)− f (ci)∥

= max
i∈{i1,...,ik}

∥f (v)− f (ci)∥

By setting iv = argmaxi∈{i1,...,ik} ∥f (v)−f (ci)∥, we have thus ∥f (v)−f (ci0)∥≤∥f (v)−f (civ )∥.
As >v is a strict order, this inequality is actually strict, and, by Definition 5.2.1, ci0 >v civ .
In particular, ci0 is not ranked last by v.

Hence, to generate a random 2-Euclidean representation, we take into account the
number of vertices that the convex hull of the set of points {f (c1), f (c2), . . . , f (cm)} should
have. We call this number the size of the convex hull in the following. More precisely,
we proceed as follows:

1. We go through the input profile P and we determine the set CL⊆C of the candi-
dates ranked last at least once in P.

2. We pick randomly, according to a given probability distribution π, an integer
k ∈ {L, . . . ,m}, where L= |CL|. In fact, as there are L candidates ranked last at least
once in P, the convex hull of any representation of P must contain at least L
vertices (and possibly more if P is not maximal).

3. Using Valtr’s algorithm (see Valtr (1995)), we generate uniformly at random a
polygon with k vertices in a square [0,M] × [0,M] (for some constant M). We
assume that the set of positions of vertices corresponds to {f (c1), f (c2), . . . , f (ck)}.
We choose then (uniformly at random) m − k points inside the polygon in or-
der to fix the remaining positions f (ck+1), . . . , f (cm). We recall that, according to
Lemma 6.3.1, only the candidates c1, . . . , ck can be ranked last in the associated
profile Pf .

A Curious Tortoise Intervention

Still by using Lemma 6.3.1, the above procedure could be generalized:
for the moment, we only care about the last ranked candidates, but we
continue to pick the remaining points at random (inside the polygon).
However, if a candidate is ranked second to last by a voter >v , it cannot
lie inside the polygon determined by the set of candidates ranked better
than her by >v . And of course, this generalizes for any position.

It might be interesting to see if this observation (not implemented
in our code) could improve the algorithm performance in practice.
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Let us now specify the probability distribution π used in step 2 above. We propose
here three different distributions (the efficiency of which will be compared in the ex-
perimental study):

• Uniform distribution: We pick the size of the convex hull between L andm using
the uniform distribution πU . Formally, for each k ∈ {L, . . . ,m}, we have πU (k) =
1/(m− |CL|+ 1).

• Vertex-based distribution: The idea is to fit the probability distribution of the
size of the convex hull that we would get by picking m points uniformly at ran-
dom points in the plane (this distribution of the sizes has no reason to be uni-
formly distributed). Denoting by πm(k) the probability of having a convex hull of
size exactly k form randomly drawn points, we define the conditional probability
distribution πLm as follows, as we want to consider only instances with a convex

hull of size at least L: πLm(k) =

0 if k < L,
πm(k)∑m
i=Lπm(i) if k ≥ L.

.

To evaluate the values πm(k), we used a Monte Carlo simulation: we generated
N random instances (with N = 106). Denoting by nk the number of instances for
which the size of the convex hull was equal to k, we set πm(k) = nk

N .

• Profile-based distribution: The idea is to fit the probability distribution of the
number of candidates ranked last in the set of maximal 2-Euclidean profiles on
m candidates, distribution that we estimate here also using a Monte Carlo simu-
lation. More formally, let Em = {P1, . . . ,Pq} (with Pj ⊈ [Pi] for j , i) denote the
set of maximal 2-Euclidean profiles on m candidates, i.e., a profile P on m can-
didates is 2-Euclidean if and only if there exists i ∈ {1, . . . , q} for which P⊆ [Pi],
and let nk denote now the number of profiles of Em with exactly k candidates
ranked last. Ideally, we would like to randomly draw the size of the convex hull
by considering the probability nk/ |Em| of having exactly k candidates ranked last
in a maximal 2-Euclidean profile. This probability has no reason to coincide with
πm(k) because some profiles [Pf ] may occur more frequently than others when
a 2-Euclidean representation f of candidates is randomly drawn. As there is no
known characterization of maximal 2-Euclidean profiles form ≥ 5 (and no known
way to generate all of them), the cardinality of Em is unknown for m ≥ 5. Thus,
we approximate each probability nk/ |Em| by using again a Monte Carlo simulation
method. More precisely, we start by generating a set Ẽm ⊆ Em (as large as possi-
ble) of maximal 2-Euclidean profiles (see the next subsection for a description of
how to generate Pf from a randomly drawn f ). Then we compute ñk , the num-
ber of profiles of Ẽm with exactly k candidates ranked last, and the probability is
approximated by π̃m(k) = ñk

|Ẽm|
. Finally, as we want to consider only instances with

a convex hull of size at least L, we use the following distribution:

π̃Lm(k) =

0 if k < L,
π̃m(k)∑m
i=L π̃m(i) if k ≥ L.

175



Chapter 6 – A Heuristic algorithm for recognizing 2-Euclidean preferences with
respect to the norm ℓ2

6.3.3 The profile Pf associated to a mapping f

The previous method generates a random representation function f :C→R2. We now
describe how, given the points f (c1), f (c2), . . . , f (cm), we determine the (unique) maxi-

mal 2-Euclidean profile Pf associated to f . As any preference area Df
v borders at least

one intersection point of bisectors, we examine the different intersection points to de-
termine the set of all preference areas induced by f . If we assume w.l.o.g. that f is non-
degenerate3, it amounts to consider all triples (item (1) below) and pairs (item (2) be-
low) of candidates, because four or more bisectors do not intersect in a non-degenerate
representation.

1. “Triple-intersection preferences”: For each triple of candidates ci , cj , ck , we com-
pute the point Iijk which is the circumcenter of the triangle {f (ci), f (cj ), f (ck)}. As
f is non-degenerate (i.e., the points f (ci), f (cj ) and f (ck) are not aligned), this
point exists and is unique. We define a fictitious voter vijk such that f (vijk) = Iijk .
By circumcenter definition, vijk is indifferent between candidates ci , cj and ck be-
cause ∥f (vijk)−f (ci)∥ = ∥f (vijk)−f (cj )∥ = ∥f (vijk)−f (ck)∥. Let us denote by d (resp.
dc) this common distance (resp. ∥f (vijk) − f (c)∥ ). The preference of vijk is of the
form

R1 >vijk {ci , cj , ck} >vijk R2

where R1 (resp. R2) is the ranking on candidates c ∈ C such that dc < d (resp.
dc>d), induced by the distances dc.

As said above, Iijk is the only point at equal distance from ci , cj and ck . It is easy
to see that there exists ε>0 such that moving vijk within the open ball Ball(Iijk , ε)
will only impact the order of ci , cj and ck in >vijk , without changing the order of
the other candidates (see Figure 6.3.1). More formally, for any strict order Rijk
on the set {i, j,k}, there is a point p ∈ Ball(Iijk , ε) such that the preference order
>vp of a voter vp positioned in p is of the form R1 >vp Rijk >vp R2. Each point Iijk
thus allows us to determine 6 preferences of the profile Pf , one per each of the 6
possible strict orders Rijk .

2. “Double-intersection preferences”: We compute the point Iij,kl =B(ci , cj )∩B(ck , cl)
for each quadruple of candidates ci , cj , ck , cl (see Figure 6.3.2 for an illustration).
We define a fictitious voter vij,kl such that f (vij,kl) = Iij,kl . Let us define dij =
∥f (vij,kl)− f (ci)∥ = ∥f (vij,kl)− f (cj )∥, and dkl = ∥f (vij,kl)− f (ck)∥ = ∥f (vij,kl)− f (cl)∥.
Assuming w.l.o.g. that dij < dkl , the preference of vij,kl is of the form

R1 >vij,kl {ci , cj} >vij,kl R2 >vij,kl {ck , cl} >vij,kl R3

where R1 (resp. R2,R3) is the ranking on candidates c such that dc < dij (resp.
dij < dc < dkl , dc > dkl). Using the same arguments as in the case of 3-intersections,

3In practice, we can get a degenerate representation while using random generation. However, it is
easy to detect, so we can simply reject it. As this phenomenon almost never occurs, it has no impact on
the performance of the algorithm in practice.
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Figure 6.3.1: Left part: there are 6 preference areas around the intersection point Iijk .
Right part: there exists a neighbourhood of Iijk not crossed by any other perpendicular
bisector.

this allows us to determine 4 preferences of the profile Pf , namely strict orders
of the form R1 > Rij > R2 > πkl > R3, where Rij (resp. Rkl) is ci > cj (resp. ck > cl)
or the opposite.
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Figure 6.3.2: 2-intersection I13,24 with 4 preference areas around it.

As each preference area Dv can be adjacent to more than one intersection point, the
two steps (1) and (2) above will give us some duplicates. The procedure is therefore
completed by deleting duplicate preferences in the resulting profile.

6.3.4 Testing if the profile P is a subprofile of [Pf ]

Finally, we need to check if P⊆ [Pf ]. This operation reveals to be very time-consuming
(thus making the heuristic non-operational) if it is not optimized. The following pro-
cedure allows us to greatly alleviate the computational burden. Let us denote by >v0
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a preference arbitrarily chosen in P. Assume that P is a subprofile of [Pf ]. Then >v0

necessarily corresponds to some preference >v of Pf , up to a permutation σ of the can-
didates in Pf . If ci1 >v0

ci2 >v0
. . . >v0

cim and cj1 >v cj2 >v . . . >v cjm , then the permutation
is defined by σ (cjk )=cik for k∈{1, . . . ,m}. By applying the permutation σ to all the pref-
erences of Pf , we have then P⊆Pσ

f , where Pσ
f denotes the profile obtained from Pf

by permuting the candidates according to σ . Denoting by σv the permutation obtained
for a preference v in Pf (for the same choice of v0 in P), testing whether P ⊆ [Pf ] thus
amounts to testing if there exists v∈Pf such that P⊆P

σv
f .

In practice, we actually perform symmetrically, i.e., we test if there exists v ∈P such
that Pσv ⊆Pf for an arbitrarily chosen preference v0 ∈Pf (testing whether [P]⊆Pf

is equivalent to testing whether P⊆ [Pf ]). This indeed allows us to take advantage
of precomputing all profiles of [P], which avoids repeated computation of profile per-
mutations. We store these profiles in a lookup table where they can be found quickly.
Instead of performingO(m4) profile permutations for each profile Pf (because there are
O(m4) votes v in Pf , by the result of Bennett and Hays (1960)), only m! permutations
of P are computed once in the precomputation phase. For the small values of m we are
working with (profiles involving up to 9 candidates), it represents a significant saving
in computation time. Indeed, by storing the permuted profiles of P in a lookup table,
we can consider about a thousand times more profiles Pf per a fixed period of time than
without this table.

6.4 Experimental study

The heuristic algorithm has been implemented in C++. To analyse how it performs in
practice, several numerical tests were carried out on an Intel Xeon X5677 (3.46 GHz
base, 3.73 GHz turbo). Besides the computation time, we paid a special attention to
the recognition rate of the algorithm, defined as the fraction of instances for which it
was able to conclude (yes or no) within a given timeout, fixed at one hour in the results
we present. The section is organized as follows. We first present our results on real-
world data from the PrefLib library (Mattei and Walsh (2013)) in Section 6.4.1. In
Section 6.4.2, we give the results on synthetic data: we start by explaining how the
data were generated, and then we study the recognition rate and execution time in
function of the number of voters and candidates. While the recognition rate turned
out to be high in most cases both on the real-world and synthetic datasets, we also
noted some weak points for specific values ofm and n, where many instances remained
undecided. To detect whether this was mainly due to the no-test or the yes-test, we
made also some experiments on 2-Euclidean profiles, to study the recognition rate on
these instances. Moreover, we make a brief comparison with the Gurobi Quadratic
Constraint Optimizer, which is outperformed by our heuristic in both running time
and recognition rate. Finally, in Section 6.4.3, we discuss several observations made
from our experiments about the number of maximal profiles over 5 and 6 candidates.
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6.4.1 Experimental study on real-world data

As mentioned earlier, PrefLib is a reference library that contains several types of pref-
erence data. For our experiments, we focused only on the complete strict order datasets
(SOC data files). There are 7741 such files.

About 4% of the instances were detected as 2-Euclidean and 91.5% as non-Euclidean,
while 4.5% remained undecided after the timeout of one hour. More detailed informa-
tion about the recognition rates on the different datasets as well as some characteristics
of instances are summarized in Table 6.4.1.

As a first comment, these tests show that a large majority of profiles in Preflib are not
2-Euclidean, even though it contains many datasets of small/medium size. Moreover,
all the profiles that were recognized as 2-Euclidean contain at most 3 candidates, or
at most 2 voters, or at most 3 voters and 7 candidates. These profiles are “trivially”
2-Euclidean, in the sense that Bulteau and Chen (2022) proved that any such profile is
2-Euclidean (and in our tests we actually directly answered yes on such profiles).

Second, the results show that our algorithm performs well on these datasets, as it was
able to conclude for 95.5% of the instances4. Looking towards possible improvements,
we focused on the undecided instances. Two types emerged:

1. First, the algorithm performs badly on instances with 3 voters, when the number
of candidates is large. This might be surprising at first sight but there is actually
a clear explanation: as any profile with 4 candidates and 3 voters is 2-Euclidean,
our NO-certificate based on the subprofiles on 4 candidates cannot conclude neg-
atively when there are 3 voters. Hence the NO-test is not efficient, and in datasets
00049 and 00056 many instances with 3 voters and a large number of candidates
(like 100) remained undecided. We note that this problem basically disappears
for more voters, even for instances with 4 voters (most of the instances with 4
voters were detected as non-Euclidean).

2. Then, we note that our algorithm seems to struggle on profiles with about 10 vot-
ers and 10-20 candidates (see the results for datasets 00006 and 00042). Strength-
ening the NO-certificate by adding more forbidden subprofiles would probably
help to solve these instances.

As a final remark on these instances, we saw that all the instances that violate the car-
dinality condition (first NO-certificate) also contain a forbidden subprofile on 4 candi-
dates (second NO-certificate). Thus, the most important NO-certificate is the second
one, the cardinality condition being interesting only to conclude negatively in an in-
stant for profiles with a large number of voters.

4and several undecided instances were actually solved within slightly more than the timeout of one
hour.

179



Chapter 6 – A Heuristic algorithm for recognizing 2-Euclidean preferences with
respect to the norm ℓ2

d m n ALL YES NO ? RR

04 3 (4) 6 (24) 200 100 100 0 1
06 14-24 7-9 20 0 4 16 0.2
09 9 (7) 123 (70) 2 0 2 0 1
11 103-242 5 3 0 3 0 1
12 11 30 1 0 1 0 1
14 10 4926 1 0 1 0 1
15 10 - 242 3-5 79 0 38 41 0.48
24 4 24 4 0 4 0 1
25 4 24 4 0 4 0 1
32 6 15 1 0 0 1 0
35 15 41-42 6 0 6 0 1
41 885 130 1 0 1 0 1
42 1-16 1-19 96 6 1 89 0.07
43 5-177 6-28 123 0 121 2 0.98
44 266-1080 8-12 36 0 34 2 0.94
45 55-71 36-45 29 0 29 0 1
46 38-208 18-19 4 0 4 0 1
47 13-28 33-54 362 0 362 0 1
48 7-160 1-31 642 1 637 4 0.99
49 1-102 1-146 610 14 546 50 0.92
50 216 12 1 0 1 0 1
51 22-117 12-16 12 0 12 0 1
52 5-32 5-21 67 0 59 8 0.88
53 6-24 14-76 454 0 454 0 1
54 15-353 5-131 951 0 947 4 0.99
55 47-353 50-992 53 0 53 0 1
56 6-353 1-21 3979 191 3662 126 0.97

all 7741 312 7086 343 0.955

Table 6.4.1: The recognition rates (RR) on different Preflib datasets. Columnm (resp. n)
gives the range of the numbers of candidates (resp. voters) in the dataset 000d. Column
“ALL” gives the number of instances in the dataset, whereas column “YES” (resp. “NO”,
“?”) gives the number of times the algorithm returns YES (resp. NO, UNKNOWN).
Only two types of combinations m,n appear in datasets 00004 and 00009, hence the
separate notation convention.
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6.4.2 Experimental study on synthetic data

To generate a random profile of n preferences over m candidates, we draw n rankings
uniformly at random from the m! possible rankings (impartial culture assumption). In
all the tests, the timeout was again set at one hour (note that it was also the time bound
set in Peters (2017) for the experiments with the ETR-solver nlsat by Jovanović and
de Moura (2012)). For each couple of values (n,m), the results are averaged over 10000
instances (preference profiles).

Probability distribution used to position the candidates

As discussed in the Section 6.3.2, in the heuristic, several probability distributions have
been considered to pick up randomly m two-dimensional points representing the po-
sitions of candidates, namely the uniform distribution (on the size of the convex hull,
imposed to be greater than or equal to the number L of candidates ranked last by at
least one voter), the vertices-based distribution and the profile-based distribution.

The profile-based distribution outperformed the two others for 5 candidates. For
a larger number of candidates, as it was computationally hard to estimate this dis-
tribution with a sufficient precision, we compared the performances of the heuristic
with the uniform distribution on the one side and the vertices-based distribution of
the other side. It turns out that, in general, the time needed to recognize a profile (i.e.,
detect whether it is 2-Euclidean or not) is shorter using the uniform distribution. Nev-
ertheless, this has hardly any impact on the recognition rate for profiles with up to 6
candidates because the recognition time remains below the timeout set to one hour. The
difference in the recognition rates obtained for the two distributions grows for profiles
with more candidates, as the recognition time then approaches the timeout.

Phase transition

We now give the recognition rates (proportion of positive, negative and undecided in-
stances) for profiles with 5, 6, 7 and 8 candidates, depending on the number of vot-
ers. The results are given in Figure 6.4.1. We observe a phase transition: below some
threshold (that depends on m) almost all the inputs are 2-Euclidean, whereas above
some other threshold almost all the inputs are not, and there is a phase transition in
between. We note that the phase transition is done very quickly: it occurs between 7
and 9 voters for profiles with 5 candidates, between 5 and 7 voters with 6 candidates,
between 5 and 6-7 voters with 7 candidates and between 4 and 6 voters for profiles
with 8 candidates.

Concerning the recognition rates, quite unsurprisingly, we observe that the largest
proportions of undecided instances occur in the phase transition. Figure 6.4.1 gives the
curves of the recognition rate in function of the number of voters, for profiles involving
5 to 8 candidates. Clearly, the proportion of undecided instances in the phase transition
increases with the number of candidates (see the peaks of the curves of the proportions
of undecided instances in the four plots).
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Figure 6.4.1: Recognition rates for random profiles on 5, 6, 7 and 8 candidates, w.r.t.
the number of voters.

Running times

First note that testing the NO-certificate is performed very quickly (typically less than
1 second for instances with up to 8 candidates and 10 voters). Thus, for the couples
(m,n) that are beyond the phase transition in Figure 6.4.1, as almost all the instances
are recognized as non-Euclidean, the median running time of the algorithm is very
small (typically less than 1s). We recall that the median of a set of ordered values is the
value such that 50% of the values in the set are greater, and 50% are smaller.

In any case, the NO-certificate part of the algorithm does not significantly impact the
global running time. Thus, we found more interesting to focus on the (median) run-
ning time of the YES-part of the heuristic. To do this, we measure the running time
of the algorithm on the yes-instances (i.e., recognized as 2-Euclidean). The results are
given in Table 6.4.2. We note that the running time is very far from the timeout of
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3600 seconds. The dash mark means that we could not get meaningful information:
indeed, they correspond to cases where the proportion of 2-Euclidean profiles is very
small (after the phase transition), and we could not produce enough 2-Euclidean in-
stances to get a relevant value of the median (note that, as said before, in these cases
the NO-certificates allow anyway to reach a very small median running time for the
heuristic).

m
n

4 5 6 7 8 9 10

5 0 0 0.003 0.015 0.082 0.68 0.81
6 0 0.2 0.3 24 85 392 443
7 3.543 8.6 19.9 193.3 - - -
8 6.2 31.275 - - - - -

Table 6.4.2: The median running time [s] for random instances where the answer is
YES.

Performance of the heuristic on 2-Euclidean input profiles

The problem of the random generation of input profiles with the impartial culture as-
sumption is that we do not know if the generated profile is 2-Euclidean or not. Hence,
we cannot distinguish the non-Euclidean profiles not detected by the NO-certificate
from the 2-Euclidean profiles not recognized by the heuristic. In consequence, we do
not know if we should focus more on improving the YES-part of the heuristic (finding
a representation) or on finding out a more efficient NO-certificate to reduce the pro-
portion of undecided instances. For this reason, we did another set of tests, with only
2-Euclidean profiles as input, to have some ideas on the performance of the YES-part
of the heuristic. These 2-Euclidean inputs are generated as follows: We pick m random
points in the plane that represent the candidate positions and we calculate the asso-
ciated profile Pf . We then randomly draw n (distinct) preferences of Pf , to obtain a
2-Euclidean profile of n preferences over m candidates.

Regarding the recognition rate, any 2-Euclidean profile of at most 25 voters over 5
candidates has been recognized within the fixed timeout (one hour). For 6 candidates,
all the instances with at most 8 voters were also recognized, and then the recognition
rate decreased very slowly with the number of voters for instances involving between
9 and 25 voters, while remaining greater than 97%. The recognition rates for profiles
with 7, 8 and 9 candidates are given in Table 6.4.3 (upper table). For 9 candidates, the
recognition rate decreases from 7 voters, due to the fact that we often reach the timeout.
Globally, we note that the recognition rates are pretty good (including the “grey areas”
in the phase transitions), which makes us believe that the heuristic performs quite well
for recognizing 2-Euclidean profiles with up to 9 candidates, and that one should focus
more on improving the NO-certificates to reduce the proportion of undecided profiles.

The medians of running times are summarized in Table 6.4.3 (lower table). The
table stops at 10 voters, but we could go further. Indeed, for 5 candidates, whatever
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the number of voters, the median time did not exceed 10 seconds. For 6 candidates,
the profiles with up to 25 voters could be recognized in the median time of 60 seconds,
and for 7 candidates, the profiles with up to 16 candidates were recognized in the
median time of 300 seconds. Comparing the recognition times of Table 6.4.2 to those of
Table 6.4.3 (lower table), we note that the second ones are better. This is not surprising
as the profiles are not generated in the same way. The way they are generated here,
with random points in the plane, is closer to the way the heuristic recognizes them.

m
n

4 5 6 7 8 9 10

7 1 1 1 1 0.99 0.99 0.97
8 1 1 0.98 0.95 0.89 0.81
9 1 0.96 0.81 0.63 0.21

m
n

4 5 6 7 8 9 10

5 0 0 0 0 0.0006 0.0006 0.001
6 0 0.004 0.01 0.03 0.05 0.09 0.13
7 0.04 0.26 0.94 2.76 7 16.75 29.6
8 3.5 7.5 38.1 108 415 1417
9 43.3 254 592 691 1824

Table 6.4.3: The recognition rate (upper table) and median running time [s] (lower
table) for 2-Euclidean input profiles.

Comparison with the Gurobi Quadratic Constraint Optimizer

We have implemented a Gurobi QCP model to recognize 2-Euclidean profile5. The
model is based on the following idea: given a preference profile P, we add a quadratic
constraint for each inequality implied by Definition 5.2.1. Let A≤B be a symbolic de-
scription of such a constraint γ . We add a positive variable dγ on the right side of the
constraint γ , and we minimize the sum of variables dγ over the set of all constraints.
If the profile is 2-Euclidean, all the constraints can be satisfied and the optimum will
then be equal to 0. In the opposite case, there is at least one constraint γ1 that cannot
be satisfied - necessarily, dγ1

> 0, so the optimum value will be strictly positive.

At first, we have performed a set of experiments with random profiles as input. How-
ever, no profile was detected as non-Euclidean within the timeout of one hour by the
solver (the solver was only able to identify some 2-Euclidean instances). So the solver
is not able to identify non-Euclidean instances, in contrast with our heuristic.

Then, we evaluated the efficiency of the solver on 2-Euclidean instances. The results

5To the best of our knowledge, there is no algorithm available in the literature that would guarantee to
return an exact solution if it exists.
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are summarised in Table 6.4.4. We give here only the results on profiles involving 5 to
7 voters and 5 or 6 candidates: in fact, the solver recognized almost no profile within
the timeout of 1 hour with more voters or candidates. We observe that our heuristic
significantly outperforms the QCP-model. Although we do not pretend that this is the
most efficient model, it is a positive and encouraging news for future development and
improvement of our heuristic.

Heuristic Gurobi QCPsolver

5 candidates

voters RR median [s] RR median [s]
5 1 0 0.53 14
6 1 0 0.49 66
7 1 0 0.34 118

6 candidates

voters RR median [s] RR median [s]
5 1 0.004 0.22 186
6 1 0.01 0.2 234
7 1 0.03 0.06 926

Table 6.4.4: Recognition rates (RR) and median running times of the heuristic and the
Gurobi QCP model, for 2-Euclidean input profiles.

6.4.3 Maximal 2-Euclidean profiles for 5 and 6 candidates

As explained before, with 4 candidates, it is known that there are 3 maximal 2-Euclidean
profiles (up to a permutation of candidates). This gives a simple characterization of 2-
Euclidean profiles on 4 candidates. As far as we know, nothing is known on the number
of maximal 2-Euclidean profiles with more than 4 candidates. For m= 5 or 6, we use
the idea of our heuristic to build a set of maximal 2-Euclidean profiles, thus providing
a lower bound on this number. More precisely, we repeat (until a timeout is reached)
the following procedure. We first generate m random points in the plane (using the
uniform distribution on the convex hull size). If the positions are non-degenerated,
we built the (maximal) 2-Euclidean profile associated to these positions. We add this
profile to our set, after having tested that it is not already contained in it (up to a per-
mutation of candidates).

With this heuristic, we could find 543 maximal profiles on 5 candidates, and about
230 000 maximal profiles on 6 candidates! These lower bounds already indicate that
the number of maximal profiles seem to grow incredibly fast with the number of can-
didates.

For 5 candidates, we conjecture that 543 is the exact number, as all these 543 profiles
were found within 3 hours and the timeout was set up to one week (see Figure 6.4.2
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giving the convergence speed). Note that if the conjecture is true, then we would get a
characterization of the 2-Euclidean profiles on 5 candidates. One could this would in
turn give a potentially powerful NO-certificate using subprofiles on 5 candidates: we
will discuss this point in the global conclusion.
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(a) total overview

(b) detail

Figure 6.4.2: The number of discovered maximal profiles over 5 candidates in function
of the number of iterations
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As another point, our experiments indicate that, not surprisingly, some profiles appear
much more frequently than others: while 519 solutions were discovered in 93 792 it-
erations, 710 192 iterations were needed to get 536 solutions, and we made 7 129 863
iterations to get all 543 solutions. We recall that if the distribution over k solutions
were uniform, the expected number of iterations would be approximately k logk.

For 6 candidates, we think that the lower bound of 230 000 is actually very far from
the correct number. Indeed, we found these profiles in about 250 000 iterations only,
clearly without reaching convergence (we stopped here as with such a high number of
profiles the test of uniqueness becomes time-consuming).

6.5 Conclusion

In this chapter, we provided a heuristic for recognizing 2-Euclidean profiles, and eval-
uated its performance on both real-world and synthetic datasets. A first question that
arises from our work concerns the phase transition we observed in the experiments.
It would be very interesting to find some mathematical arguments proving bounds on
this phenomenon. This would allow us to see how this transition evolves with the num-
ber of candidates.

A second question concerns the characterization of 2-Euclidean profiles on 5 candi-
dates. We were able to generate a set of 543 maximal 2-Euclidean profiles, but we do
not know if this list is exhaustive or not. Finding such a characterization would pos-
sibly improve the NO-test of the heuristic (hence in particular the recognition rate),
which seems to be, from our experiments, the key point to address. More generally, we
can think of adding forbidden structures in the NO-certificates.

Finally, it would be of course a natural extension of our work to provide a heuristic
able to recognize d-Euclidean preferences for d = 3 or bigger.
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Chapter 7

Euclidean preferences in the plane
under ℓ1, ℓ2 and ℓ∞ norms

7.1 Introduction

We introduced in Chapter 5 the concept of multidimensionnal Euclidean preferences as
well as well the state of art of this domain. We have then proposed in Chapter 6 a recog-
nition heuristic for 2-Euclidean preferences. In this chapter, we focus on 2-Euclidean
preferences with respect to the norms ℓ1 and ℓ∞, with some results generalized for any
dimension d ≥ 2. Indeed, as already said in Chapter 5, most of the existing works focus
on Euclidean preferences with the ℓ2 norm, while the domain of d-Euclidean prefer-
ences using the norm ℓ1 (resp. ℓ∞) remains quite unexplored. However, d-Euclidean
preferences w.r.t. the norm ℓ1 are often used in voting advice applications (e.g., Wahl-
O-Mat in Germany, Smartvote in Switzerland, Vote Compass in the United States, and
many others in multiple countries), i.e., online tools that helps the voter to choose the
candidate closest to her political stances, and actually often provides her a full rank-
ing of candidates according to her answers to a survey on a range of policy statements.
The answers are indeed converted into positions on different dimensions, each position
reporting on the level of agreement on a particular policy statement. The ℓ1 norm is
typically used when there are many dimensions (Moreno et al., 2022; Isotalo, 2020).

In this work, we consider the norms ℓ2, ℓ1 and ℓ∞, and we try to identify the (structural)
differences between them. For instance, we are interested in the following questions:

• Are there forbidden structures that make a profile not Euclidean, under some of
the three norms?

• Given a set of m candidates, what is the maximal size (in terms of the number of
pairwise distinct preferences) of profiles that are Euclidean?

• Are there some differences or similarities between the norms in the expressivity
of Euclidean preferences? Put another way, are there profiles that are Euclidean
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with one norm and not with another one?

As the majority of this chapter deals with the dimension 2, we will generally omit the
reference to the dimension, and say Euclidean preferences for 2-Euclidean preferences.
Each time we use d ≥ 2, we mention it explicitly to avoid any confusion. On the other
hand, and contrary to the previous chapter, we work with three different norms. That
is why we shorten the notation introduced in Chapter 5: we say ℓ-Euclidean preferences
instead of Euclidean preferences with respect to the norm ℓ.

The chapter is organized as follows: In Section 7.2, we define the analogue of ℓ2 bi-
sector (in R2) for the norm ℓ1, called boundary hypersurface. We then observe that a
preference profile is ℓ1-Euclidean in R2 if and only if it is ℓ∞-Euclidean.

In Section 7.3, we prove that this equivalence between ℓ1-Euclidean preferences and
ℓ∞-Euclidean preferences no more holds in Rd for d ≥ 3. Actually, we prove that
in an ℓ∞-Euclidean rofile there are at most 2d candidates ranked last by at least one
voter, while there are at most 2d such candidates for an ℓ1-Euclidean profile, and that
these upper bounds are tight. We note that this provides a strong difference with ℓ2-
Euclidean preferences where each candidate can be ranked last at least once for any
d ≥ 2. Also, it it is an interesting generalization of the case of 1-dimensional Euclidean
preferences, where it is well known that at most 2 candidates can be ranked last. We
also give some first geometric insights on the differences between Euclidean profiles
under ℓ1 (resp. ℓ∞) and ℓ2. We then focus on the case d = 2. As said just above, in this
case a profile is ℓ1-Euclidean if and only if it is ℓ∞-Euclidean. That is why from Sec-
tion 7.4, we will only work with norms ℓ1 and ℓ2. We first present in Section 7.4 some
geometric properties of ℓ1-Euclidean representations that will be useful for the results
of subsequent sections. As it can easily be seen that every profile with 2 or 3 candi-
dates is ℓ1-Euclidean (thus ℓ∞-Euclidean) and ℓ2-Euclidean (Bogomolnaia and Laslier,
2004), we focus in Section 7.5 on the case of m= 4 candidates. We first give an explicit
example of a profile which is ℓ1-Euclidean but not ℓ2-Euclidean. We then focus on the
maximal size (in terms of the number of pairwise distinct preferences) of profiles on 4
candidates that are Euclidean. It is known since the work of Bennett and Hays (1960)
that the maximal size is 18 for ℓ2. We show that this maximal size is exactly 19 for ℓ1.
Then, we give a new proof that a profile on 4 candidates is ℓ2-Euclidean if and only if
it is a subprofile of one of three voter-maximal two-dimensional Euclidean profiles (in-
volving 18 voters). Kamiya et al. (2011) proved the same result, but they rely on a link
they establish with the problem of enumerating chambers of hyperplane arrangements
(for an introduction to the topic, see, e.g., Stanley et al. (2004)), while we use simpler
and purely geometrical arguments.

Finally, in Section 7.6, we focus on the case m ≥ 5, namely on the the maximal size
of profiles which are Euclidean. We show that, despite the strong restriction on the
number of candidates ranked last by some voter (at most 2d = 4), the maximal size of
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an ℓ1-Euclidean profile is Θ(m4), i.e., of the same order of magnitude as for ℓ2, as shown
by Bennett and Hays (1960).

7.2 Hypersurfaces under ℓ1 (resp. ℓ∞) in the plane

We introduce in this section the notion of boundary hypersurfaces under ℓ1 that will be
studied in more details in the next sections. After defining formally the hypersurfaces
, we present their different types and give their classification. We also prove a result
that ensures that without loss of generality, only one of the three possible types can be
considered, which will simplify significantly our further studies in the remaining of
this chapter.

7.2.1 Reminder on notations

For convinience, let we briefly recall the main notions that will be used in this chapter
- the complete and formal introduction to the topic can be found in Chapter 5, Sec-
tion 5.2.

To prove that a given preference profile P is ℓ-Euclidean (with ℓ ∈ {ℓ1, ℓ2, ℓ∞}, and
d = 21), we need to find a mapping f : C→R2 such that for each voter v, the area Df (v)
corresponding to the preference >v is non-empty. We recall that

Dℓ
f (v) = {f (v)∈Rd : ∀{c1, c2}⊆C,c1>v c2⇒ ∥f (v)− f (c1)∥ℓ < ∥f (v)− f (c2)∥ℓ}.

In other words, given preference >v and two candidates ci , cj such that ci >v cj , any
point of the (non-empty) area Dℓ

f (v) is nearer to ci than cj .

So in practice, given the positions of candidates f (c1), f (c2), . . . , f (cm), we need to iden-
tify and enumerate the non-empty areas. We have seen in Chapter 6 how to do this
with d = 2 and ℓ = ℓ2 - it is sufficient to draft, for each couple of candidates ci , cj , the
bissector of the segment of extremities f (ci) and f (cj ). It divides the plane into two
half-planes, the first one where ci is preferred to cj , and the second one where cj is
preferred to ci . Each (non-empty) preference area is then a (non-empty) intersection of
such half-planes. In particular, we have seen that the areas are convex.

Now we would like to extend this idea to ℓ1-Euclidean preferences. But how does
“an ℓ1-bissector” look like? Before we answer this question, let us introduce some addi-
tional notations. We will call ℓ-boundary hypersurfaces (or only boundary hypersurfaces if
no confusion is possible) the “ℓ-bissectors” by which the preference areas are delimited:

1However, the definition can be of course announced for any d ≥ 2.
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Definition 7.2.1

For a pair {c1, c2} ⊆C of candidates mapped in positions f (c1) and f (c2), the set
of points p ∈ Rd such that ∥f (c1) − p∥ℓ = ∥f (c2) − p∥ℓ is called the ℓ-boundary
hypersurfaceof c1 and c2 (or just hypersurface in what follows), and is denoted
by Hℓ

f (c1, c2). We denote then by Dℓ
f (c1, c2) the set of points p ∈ Rd such that

∥f (c1) − p∥ℓ < ∥f (c2) − p∥ℓ, and by Dℓ
f (c2, c1) the set of points p ∈ Rd such that

∥f (c1)− p∥ℓ > ∥f (c2)− p∥ℓ.

For convinience, we recall that

Dℓ
f (v) =

⋂
ci>vcj

Dℓ
f (ci , cj )

For conciseness, and only if no confusion is possible, we will omit the representation
function f and/or the norm ℓ in the notions introduced in Definition 7.2.1. Thus, we
will write H(ci , cj ), resp. D(ci , cj ) and D(v), instead of Hℓ

f (ci , cj ), resp. Dℓ
f (ci , cj ) and

Dℓ
f (v). Also, by abuse of notation, the terms area and (its corresponding) preference

ranking will be used interchangeably. Finally, for ease of notation, when the position
of candidates are fixed, ci will denote both the candidate and her position in R2 (i.e.,
f (ci) in the above notation).

7.2.2 Types of hypersurfaces

We first focus on the description of the hypersurfaces in sense of the norm ℓ1 (resp.
ℓ∞) separating two points c1 and c2, with d = 2. We recall that under the ℓ2 norm, the
hypersurface (called bisector in this case) is always a straight line. Actually, it can be
defined as the intersection of ℓ2-balls centred respectively in c1 and c2, with the radius
varying over R+. This point of view can be applied to ℓ1 (resp. ℓ∞) hypersurfaces , by
simply replacing ℓ2-balls by ℓ1-balls (resp. ℓ∞-balls).

Formally, if we denote by Sℓ(x,δ) the ℓ-ball centred in x ∈ R2 of rayon δ, the ℓ2-
hypersurface formalizes as follows:

Hℓ(c1, c2) = {Sℓ(c1,δ)∩Sℓ(c2,δ)|δ > 0}. (7.1)
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(a) ℓ1 unit ball
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(b) ℓ2 unit ball

−2 −1 1 2
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−1

1

2

(c) ℓ∞ unit ball

Figure 7.2.1: Unit balls for ℓ1, ℓ2 and ℓ∞ norms.

It is well-known that a ℓ2-ball is a circle, and that two circles (centred in two different
points) do not intersect, or intersect at exactly one or two points. A ℓ1-ball is a square.
We see that, contrary to the previous case, the intersection of two squares (of the same
size) centred in two different points may be a segment - indeed, they can “share” (a
part of) their sides. In other words, this intersection depends on the relative positions
of the centres of the squares. Therefore, the shape of hypersurface depends on the
relative positions of c1 and c2 when using the ℓ1 metrics, as we will now show. We de-
note by (x1, y1) (resp. (x2, y2)) the coordinates of c1 (resp. c2), and we use the notations
∆x = |x1 − x2| and ∆y = |y1 − y2|.

1. Let us first consider the case ∆x ,∆y, with ∆x > 0 and ∆y > 0. This case is illus-
trated in Figure 7.2.2.

1 2 3 4 5 6 7 8 9

1

2

3
4

5

6

7

8

9

∆y

∆x

c1

c2M1

M2

C

Figure 7.2.2: A (boundary) hypersurface separating c1 and c2: ∆x , ∆y,∆x > 0,∆y > 0.

Without loss of generality, assume that ∆x > ∆y (the case ∆x < ∆y can be treated
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analogously). The positions c1 and c2 can be seen as two opposite vertices of a
rectangle (see Fig. 7.2.2).

• By definition of the ℓ1 metrics, there are two points M1,M2 on the rectangle
boundary that belong to H(c1, c2): these are the points that are at distance
∆x+∆y

2 from both points c1 and c2. Points M1 and M2 are symmetric with
respect to the rectangle centre, and we observe that the segment [M1,M2]
belongs to H(c1, c2) - in fact, we note that this segment is the intersection of
the balls of rayon ∆x+∆y

2 centred respectively in c1 and c2:

[M1,M2] = Sℓ1(c1,
∆x+∆y

2
)∩Sℓ1(c2,

∆x+∆y

2
)

• The half-line {(xM1
, y) : y ≥ yM1

} also belongs to H(c1, c2), where xM1
and yM1

denote the coordinates ofM1, as for y ≥ yM1
, each point (xM1

, y) is at distance
∆x+∆y

2 + y − yM1
both from c1 and c2.

• Similarly, the half-line {(xM2
, y) : y ≤ yM2

} belongs to H(c1, c2).

To sum it up, we have identified three parts of H(c1, c2): two vertical half-lines
connected by a diagonal segment. We can easily prove that for each z ∈ R2 that
does not belong to one of these parts, we have ∥z−c1∥ℓ1

, ∥z−c2∥ℓ1
. More precisely,

the points to the left-hand side of the hypersurface are closer to c1, while the ones
on the right-hand side are closer to c2.

A Curious Tortoise Intervention

Without giving the formal proof of the fact that these three parts
determine completely the hypersurface , we can convince ourselves
about it by returning to the formal definition. Indeed, the hyper-
surface is the intersection of ℓ1-balls of the same diameter δ (which
we vary over R+) centred in c1 and c2. If δ < ∆x+∆y

2 , the balls are

too small to intersect. With δ = ∆x+∆y
2 , the intersection of balls

correspond to the segment [M1,M2]. Finally, with δ greater than
this value, the balls will only intersect in two different points:
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2. Let us now consider the case ∆x = ∆y > 0. This case is illustrated in Figure 7.2.3.
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∆y

∆x

c1

c2M1

M2

Figure 7.2.3: The hypersurface separating c1 and c2 if ∆x = ∆y > 0.

In this special case, the rectangle is a square where c1 and c2 are opposite vertices,
and M1 and M2 are the two other opposite vertices. The hypersurface H(c1, c2) is
then composed of the three following parts:

(a) the quadrant {(x,y) ∈R2 : x ≤ xM1
, y ≥ yM1

},
(b) the segment [M1,M2],

(c) the quadrant {(x,y) ∈R2 : x ≥ xM1
, y ≤ yM1

}.

A Curious Tortoise Intervention

As in the previous case, if δ < ∆x+∆y
2 , the ℓ1-balls centered respec-

tively in c1 and c2 do not intersect, and the intersection is a segment
[M1,M2] if δ = ∆x+∆y

2 . Let see what happens if δ > ∆x+∆y
2 :
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3. Consider now the case ∆x=0 or ∆y=0. Then the segment [M1,M2] is reduced to
a unique point, and the hypersurface is then the same as for the ℓ2 metrics (i.e., a
straight line at equal ℓ2 distance from c1 and c2), as shown at Figure 7.2.4.
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∆x

c1 c2M

Figure 7.2.4: The hypersurface separating c1 and c2 if ∆y = 0. If ∆ = 0, the hypersurface
is a horizontal line.

This is rather bad news if we want to study ℓ1-Euclidean preferences: it becomes tricky
to identify non-empty areas from given positions f (c1), f (c2), . . . , f (cm) if the hypersur-
faces form depends on these positions. Fortunately, we can prove that any ℓ1-Euclidean
profile admits a representation f such that all hypersurfaces are of type 1 (i.e., ∆x , ∆y
and ∆x,∆y > 0). Therefore, all hypersurfaces can be assumed to be of type 1 in the rest
of this chapter (when dealing with d = 2):

Lemma 7.2.1

Let P be an ℓ1-Euclidean profile. There exists a representation of P in which all
hypersurfaces are of type 1, i.e., ∆x , ∆y and ∆x,∆y > 0.

Proof. In an ℓ1-Euclidean representation of a preference profile, as we consider only
strict preferences, we have for any candidates ci , cj and voter v:

∣∣∣ ∥f (v)− f (ci)∥ℓ1
− ∥f (v)− f (cj )∥ℓ1

∣∣∣ > 0 (7.2)

Then, let us denote by εd the minimum difference in absolute value of distances as
in (7.2), over all pairs {ci , cj} of candidates and voters v. Moreover, let (xi , yi) be the
position of candidate ci in the representation, and Sx (resp. Sy , Sxy) the set of pairs of

candidates {ci , cj} with |xi − xj | > 0 (resp. |yi − yj | > 0,
∣∣∣∣|xi − xj | − |yi − yj |∣∣∣∣ > 0). We define

also:
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εx = min
{ci ,cj }∈Sx

|xi − xj |,

εy = min
{ci ,cj }∈Sy

|yi − yj |,

and εxy = min
{ci ,cj }∈Sxy

∣∣∣∣|xi − xj | − |yi − yj |∣∣∣∣.

If there is a pair {ci , cj} such that xi = xj (in other words, {ci , cj} < Sx), we can move
one of these candidates, say ci , by adding ε to xi with ε= 1

2 min{εd , εx, εy , εxy}. We then
get |xi − xj | > 0. We note that after this operation, we have Sx ← Sx ∪ {{ci , cj}} and Sy
and Sxy are not modified. An analogous reasoning can be done for every pair {ci , cj} of
candidates such that {ci , cj} < Sy (by moving one candidate on the y-axis), resp. {ci , cj} <
Sxy (by moving one candidate on one axis). This way, by iterating these modifications,
we finally get a representation without the degenerated cases ∆x = ∆y, ∆x = 0, or ∆y =
0.

7.2.3 Classification of the hypersurfaces under ℓ1 in the plane

We can now go further into the classification of the different hypersurfaces of type
1. There are 4 case to distinguish, depending on whether y1 < y2 or y1 > y2, and
whether ∆x < ∆y or ∆y > ∆x. This is illustrated in Figure 7.2.5; the four cases are
called H−,V −,H+ and V +.

First, notice that if ∆x < ∆y, both half-line parts of the hypersurface are horizontal.
In the opposite case, when ∆x > ∆y, these half-lines are vertical.

Now, let us look at the segment [M1,M2] of the hypersurface. In the following, the
numbering of the quadrants of the Cartesian coordinate system goes counter-clockwise
starting from the upper right quadrant. Without loss of generality, assume that x1 < x2,
where c1 = (x1, y1) and c2 = (x2, y2). If y1 < y2, the segment [M1,M2] is parallel to the
II-IV quadrant diagonal, also called the “minus diagonal” (see the upper part of Fig-
ure 7.2.5). If y1 > y2, the segment [M1,M2] is parallel to the I-III quadrant diagonal,
also called the “plus diagonal” (see the lower part of Figure 7.2.5).
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Figure 7.2.5: The different ℓ1-hypersurfaces for x1 < x2.

7.2.4 Hypersurfaces under ℓ∞ in the plane

Let us do the same classification for the ℓ∞-norm. Actually, it can be done very easily
- it is sufficient to notice that a ℓ∞-ball is also a square, just differently rotated. More
formally, for d = 2, for all δ≥0 and p∈R2, the spheres S

ℓ1
δ (p) and S

ℓ∞
δ/
√

2
(p) are homoth-

etic via the rotation of 45° (see Figure 7.2.6). Using the characterisation of H(c1, c2) in
Equation (7.1), this yields the following observation, already noted by Lee and Wong
(1980).

Observation 7.2.1: (Lee and Wong, 1980)

A preference profile is ℓ1-Euclidean in R2 if and only if it is ℓ∞-Euclidean in R2.
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p

Sℓ1(p,δ)

Sℓ∞(p,δ/
√

2)

δ

δ√
2

Figure 7.2.6: For d = 2, the spheres Sℓ1(p,δ) and Sℓ∞(p,
√

2
2 δ) are homothetic via the

rotation of 45°.

A Curious Tortoise Intervention

Therefore, all results for d = 2 will be announced using the norm ℓ1 in the remain-
ing of thich chapter, keeping in mind that they also hold for ℓ∞.

A very natural question is to ask if this equivalence generalizes for d ≥ 3. We will
prove in the following section that it does not.

7.3 Relations between different norms

We start this section by comparing an ℓ1 and an ℓ2 representation of the profile on 3
candidates that includes all 3!=6 possible strict preferences (see Figure 7.3.1).
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(a) A ℓ1-Euclidean representation of the complete
profile on 3 candidates.
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(b) A ℓ2-Euclidean representation of the complete
profile on 3 candidates.

Figure 7.3.1

Although in this case the profile is both ℓ1 and ℓ2-Euclidean, a natural question is if
there is a profile that would be ℓ1-Euclidean but not ℓ2-Euclidean, and vice-versa.

Put together with what we have seen in the previous section, there are two questions to
be answered:

• Do we have the equivalence between ℓ1-norm and ℓ∞-norm for d ≥ 3 ?

• Is there a profile that is ℓ1-Euclidean but not ℓ2-Euclidean, and vice-versa?

The first of them is studied in Section 7.3.1, while the second one in Section 7.3.2.

7.3.1 Relation between norms ℓ1 and ℓ∞

Let us show that the domain of ℓ1 and ℓ∞-Euclidean profiles are not equivalents for d≥
3. This is actually a corollary of the following proposition, which provides a structural
property of ℓ∞-Euclidean and ℓ1-Euclidean profiles in Rd .

Proposition 7.3.1

In an ℓ∞-Euclidean profile in Rd , at most 2d candidates are ranked last by at least
one voter. In an ℓ1-Euclidean profile in Rd , at most 2d candidates are ranked last
by at least one voter. These bounds are tight for all d.

Proof. Let us first consider an ℓ∞-Euclidean profile P, and a corresponding mapping
f . We denote by fi(x) the position of candidate/voter x on the ith coordinate. For
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i = 1, . . . ,d, let us denote by cmji and cMji the candidates that have minimal and maximal

ith coordinate. There are at most 2d of them (some candidates may be extremal on
several coordinates). Take a candidate c which is not among these extremal candidates,
and take a voter v. We show that c cannot be ranked last by v. Let i be such that
∥f (c)− f (v)∥ℓ∞ = |fi(c)− fi(v)|.

If fi(c) ≥ fi(v), then

∥f (c)− f (v)∥ℓ∞ = fi(c)− fi(v) ≤ fi(cMji )− fi(v) ≤ ∥f (cMji )− f (v)∥ℓ∞ .

As the two distances cannot be the same (no tie in the preferences), c is ranked before
cMji by v.

If fi(c) < fi(v), then

∥f (c)− f (v)∥ℓ∞ = fi(v)− fi(c) ≤ fi(v)− fi(cmji ) ≤ ∥f (cmji )− f (v)∥ℓ∞ .

Again, c is ranked before cmji by v. In both cases, c is not ranked last.
To show the tightness of the bound, we consider a profile on 2d candidates where

f (c2i−1) is −1 on coordinate i and 0 on all other coordinates, and f (c2i) = −f (c2i−1).
There are also 2d voters, with f (vi) = f (ci) for i = 1, . . . ,2d. Then it is easy to see that
c2i−1 is ranked last by v2i , and c2i is ranked last by v2i−1.2

Let us now focus on ℓ1-Euclidean profiles. For each vector u in {−1,1}d , let cu be a
candidate which maximizes u · f (c) =

∑d
i=1ui · fi(c). As previously, consider a candidate

c which is not among these (at most) 2d extreme candidates, and take a voter v. We
show that c cannot be ranked last by v. By definition, ∥f (c)− f (v)∥ℓ1

=
∑d
i=1 |fi(c)− fi(v)|.

Define the vector u as ui = 1 if fi(c) ≥ fi(v) and ui = −1 otherwise. Then:

∥f (c)− f (v)∥ℓ1
=

∑d
i=1ui · (fi(c)− fi(v)) = u · f (c)−u · f (v)

≤ u · f (cu)−u · f (v) ≤
∑d
i=1 |fi(cu)− fi(v)| = ∥cu − v∥ℓ1

.

As the two distances must be different (no tie in the preferences), c is not ranked last
by v.

To show the tightness, let us consider the following profile on 2d candidates and
2d voters. For each vector u ∈ {−1,1}d , we define a candidate cu with f (cu) = u, and a
voter vu with f (vu) = −u. Then we have ∥f (cu) − f (vu)∥ℓ1

= 2d, while if u , u′ we have
∥f (cu′ )−f (vu)∥ℓ1

≤ 2(d−1) (as fi(cu′ ) = fi(vu) on at least one coordinate i). So cu is ranked
last by vu3.

2Note that, defined like this, there are some ties in the distances among the candidates that are not
ranked last, but these can be easily broken by slightly moving the positions, for instance moving c2i−1
(resp. c2i ) by −ϵi (resp. +ϵi ) on the ith coordinate, with ϵi , ϵj for i , j.

3As previously, the ties between distances among candidates that are not ranked last can be removed
by slightly moving the positions.
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A Curious Tortoise Intervention

Note that for d = 1, we get two known result: there are at most two
candidates ranked last in any ℓ∞-Euclidean profile (2d = 2 ·1 = 2) and any
ℓ1-Euclidean profile (2d = 21 = 2). Indeed, all three norms ℓ1, ℓ2, ℓ∞ coin-
cide for d = 1. But a ℓ2-Euclidean profile is in particular single-peaked, so
there are at most two candidates ranked last.

For d = 2, we have 2 · 2 = 22, which is consistent with Observation 7.2.1.

A Curious Tortoise Intervention

It’s me again! Notice that this proposition proves that there are some
ℓ1-Euclidean profiles that are not ℓ∞-Euclidean, as more candidates can
be ranked last in an ℓ∞-Euclidean profile.

Would there be any ℓ∞-Euclidean profile that would not be ℓ1-Euclidean?
Even though I am convinced such a profile exists, I was not able (so far!)
to find it...

7.3.2 Relation between norms ℓ1 and ℓ2

In this section, we show that for d = 2, there are ℓ2-Euclidean profiles that are not ℓ1-
Euclidean, and vice-versa.

To build an ℓ2-Euclidean profile that is not ℓ1-Euclidean, we can use Proposition 7.3.1
given in the previous section - there are at most 4 candidates ranked last at least once
in any ℓ1-Euclidean profiles. However, it is easy to build an ℓ2-Euclidean profile in
which each candidate is ranked last at least once. For instance, we can fix the values
f (c1), f (c2), . . . , f (cm) in a way that they form a regular polygon - hence, these points will
all lie on a circle. We add then m voters on this circle with the circular angle between
f (ci) and f (vi) equals to π − ε, where ε < π

m . Therefore, ci is ranked last by vi . In other
words, each candidate is ranked last at least once. Note that the role of ε is to obtain a
preference profile without ties.

We now give a profile that is ℓ1-Euclidean but not ℓ2-Euclidean. Let us consider the
following profile P of 9 preferences over 4 candidates:
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>v1
: (c4, c3, c1, c2) >v2

: (c3, c4, c1, c2)

>v3
: (c4, c3, c2, c1) >v4

: (c3, c4, c2, c1)

>v5
: (c2, c1, c4, c3) >v6

: (c2, c1, c3, c4)

>v7
: (c1, c2, c4, c3) >v8

: (c1, c2, c3, c4)

>v9
: (c2, c3, c1, c4)

Let us show that this profile is not ℓ2-Euclidean in R2. By contradiction, assume that a
ℓ2-Euclidean representation in R2 exists. The points c1, c2, c3 form necessarily a (non-
degenerate) triangle, as 5 different rankings over {c1, c2, c3} are present in the profile,
and at most 4 can be represented if c1, c2, c3 are aligned in R2. Figure 7.3.2 illustrates
the different preference areas obtained from candidates c1, c2, c3 forming a triangle.

c1

c2

c3

A

c1 > c3 > c2

H(c1, c3)
c3 > c1 > c2

H(c1, c2)

c3 > c2 > c1

c2 > c3 > c1

c2 > c1 > c3c1 > c2 > c3

H(c2, c3)
>1,>2

>3,>4

>5,>6>7,>8

Figure 7.3.2: The different preference areas obtained from candidates c1, c2 and c3
forming a triangle. Each preference Rv is a subset of an area, the precise contours of
which depends on the position of c4 in R2.

Note that for each i ∈{1,2,3,4}, we obtain >2i−1 from >2i
4 by swapping c3 and c4. Thus,

H(c3, c4) has to go through the area c3 > c1 > c2 to separate >1 and >2, through the
area c3 > c2 > c1 to separate >3 and >4 and finally through the areas c2 > c1 > c3 and
c1 > c2 > c3 to separate >5 and >6, and >7 and >8 (see Figure 7.3.2 for more clarity).
This is not possible, as any straight line can cross at most 3 of these 4 areas. Indeed, if
a straight line crosses both the area containing {>7,>8} and the one containing {>5,>6},

4These pairs correspond to rows in the display of the profile given above
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then it must intersect H(c1, c2) below point A. Similarly, if it crosses both the area con-
taining {>1,>2} and the one containing {>3,>4}, then it must intersect H(c1, c2) above
point A. Thus, to cross the 4 areas, it must intersect H(c1, c2) twice, a contradiction.

Hence, no ℓ2-Euclidean representation of P exists in R2.

However, this profile is ℓ1-Euclidean: we give a possible representation of it in Fig-
ure 7.3.3.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

H(c1, c3)

H(c1, c2)

H(c1, c4)

H(c2, c3) H(c2, c4)

H(c3, c4)

>1
>2

>3>4

>5

>6

>7

>8

>9

c1

c2

c3

c4

Figure 7.3.3: A ℓ1-Euclidean representation of the profile P
.

A Curious Tortoise Intervention

Let us see how is it possible to find an ℓ1-representation of P. We proceed
as in the case of ℓ2-representation, and we start with the candidates c1, c2
and c3 forming a triangle:
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1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
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>1,>2

>3,>4

>5,>6

>7,>8

c1

c2

c3

As in the case of ℓ2-representation, we need H(c3, c4) to go through area
containing >1 and >2, >3 and >4, >5 and >6, and finally >7 and >8. In
particular, it must intersect H(c1, c2) in two distinct points. We note that
this time, it is possible (see carefully Figure 7.3.3 again).

7.4 Properties of hypersurfaces under ℓ1 in the plane

It will come as no surprise that many geometrical properties holding for ℓ2 do not hold
for ℓ1-hypersurfaces. Let us mention some of them that will be useful for the rest of
this paper.

7.4.1 Intersection of two hypersurfaces

It is well-known that given two distinct straight lines (i.e., ℓ2-hypersurfaces), the in-
tersections of these lines is either empty (if the lines are parallel) or contains a unique
point. In the case of ℓ1-hypersurfaces, more situations may arise, as stated in the follow-
ing proposition (several examples of possible intersections are given in Figure 7.4.1 for
illustration. The proof, as well as complete figures illustrating the different situations,
are given in Appendix 7.A.1).

Proposition 7.4.1

The intersection of two distinct ℓ1-hypersurfaces is either empty, or contains a
unique point, or two distinct points, or an infinite number of points.

The following result states that, to recognise a ℓ1-Euclidean profile, we can assume
without loss of generality that the last case of Proposition 7.4.1 (corresponding to a
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(a) Example of
empty intersection
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(c) Example of in-
tersection containing
two points
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(d) Example of in-
tersection containing
an infinite number of
points

Figure 7.4.1: The intersection of two distinct ℓ1-hypersurfaces : several examples.

degenerate case) never occurs. Thus, in the remainder of the chapter, we assume w.l.o.g.
that hypersurfaces intersect in at most 2 points.

Lemma 7.4.1

Let P be an ℓ1-Euclidean profile. There exists a representation of P in which
any pair of hypersurfaces intersect in at most 2 points.

Proof. The proof is similar to that of Lemma 7.2.1. Let us suppose that for a given
ℓ1-Euclidean representation f , there are two hypersurfaces H(ci , cj ) and H(ck , cl) that
intersect in infinitely many points. We will show that it is always possible to slightly
change the position of one of the points f (ci), f (cj ), f (ck) and f (cl) so that the hypersur-
faces intersect in at most two points, without modifying the types of hypersurfaces and
the set of representation areas.

Suppose that one of the hypersurfaces, say H(ci , cj ), is vertical (the other case being
symmetrical). We move the point f (ci). To do so, we denote

εt = min
ck∈C\{ci }

∣∣∣∣|xi − xk | − |yi − yk |∣∣∣∣
and, as in the Lemma 7.2.1,

εd = min
v∈V

min
ci ,cj∈C

∣∣∣ ∥f (v)− f (ci)∥ℓ1
− ∥f (v)− f (cj )∥ℓ1

∣∣∣ .
As we consider only strict preferences, εd > 0. Also, thanks to Lemma 7.2.1 that ex-
cluded a degeneration ∆x = ∆y, we have εt > 0. Let ε = 1

2 min{εd , εt}.5 We can now
move the point f (ci) by adding ε to xi . As ε < εd , we do not change the set of prefer-
ences corresponding to representation areas. As ε < εt, we do not change the type of any

5For completeness, we should also choose ε smaller than εx, εy and εxy introduced in Lemma 7.2.1, to
ensure that we do not create any degeneration excluded by this Lemma while moving the point f (ci ).
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hypersurface involving ci . Finally, as xi increased by ε > 0, the value of |xi −xj |+ |yi −yj |
changes, and the hypersurface (both the vertical extremities and the middle segment)
slightly moves to the right on the x−axis. Therefore, H(ci , cj ) and H(ck , cl) no more
intersect in an infinity of points.

7.4.2 Intersection of three hypersurfaces

Under the norm ℓ2, the bisectors of the three sides of a non-degenerate triangle intersect
in a unique point, called circumcenter. Otherwise (i.e., in the case where the three
points are aligned), they do not intersect. In terms of hypersurfaces, given three points
c1, c2 and c3, the hypersurfaces H(c1, c2), H(c1, c3) and H(c2, c3) intersect in at most one
point under ℓ2. It is possible to find an analogous result under ℓ1-hypersurfaces : the
three hypersurfaces also intersect in at most one point. However, the “degenerate” case
is different under this norm. To introduce it, the following notion of diagonal rectangle
associated with the positions of 2 candidates (see Figure 7.4.2 for an illustration) is needed.

Definition 7.4.1

Let ci and cj be two candidates, and (xi , yi), (xj , yj ) their positions in the two-
dimensional plane. Let us denote by:

• d+
i = {(x,y)|y = x − xi + yi} the “+” diagonal going through the point ci ,

• d−i = {(x,y)|y = −x+ xi + yi} the “-” diagonal going through the point ci ,

• d+
j = {(x,y)|y = x − xj + yj} the “+” diagonal going through the point cj ,

• d−j = {(x,y)|y = −x+ xj + yj} the “-” diagonal going through the point cj .

Let us call A the intersection point of d+
i and d−j and B the intersection point of

d−i and d+
j (see Figure 7.4.2). We call diagonal rectangle determined by ci and cj the

rectangle whose sides are parallel to the diagonals and whose vertices are ci ,A,cj
and B, and we denote by paral(ci , cj ) the interior of the diagonal rectangle.

Note that as we consider non degenerated profile following Lemma 7.2.1, no point (be-
sides ci and cj ) lies on one of the 4 diagonals - and in particular on the boarder of the
diagonal rectangle. Moreover, cj does not lie on d+

i and d−i , and ci does not lie on d+
j

and d−j .
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d+
i : y = x − xi + yi

d−i : y = −x+ xi + yi

d+
j : y = x − xj + yj

d−j : y = −x+ xj + yj

ci

cj

B

A

Figure 7.4.2: The diagonal rectangle determined by ci and cj .

Then we have the follwoing result:

Proposition 7.4.2

Given three points c1 = (x1, y1), c2 = (x2, y2) and c3 = (x3, y3):

• If c1, c2 or c3 is inside the diagonal rectangle determined by the two other
points, then H(c1, c2), H(c1, c3) and H(c2, c3) do not (pairwise) intersect.

• Otherwise, the intersection of the three hypersurfaces is a unique point.

To prove Proposition 7.4.2, we will proceed as follows:

Step 1: We prove that given three points, the intersection of the three corresponding hy-
persurfaces is empty if and only if they are all vertical (resp. horizontal). Other-
wise, they intersect in a unique point.

Step 2: We finally prove that if one point lies inside the diagonal rectangle determined
by two remaining points, then all three corresponding hypersurfaces are vertical
(resp. horizontal).

Before we prove the Step 1, let us prove the following easy lemma, that we will use in
the proof of Step 1, as well as in some other proofs:
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Lemma 7.4.2

Given three points c1, c2 and c3, we have:

H(c1, c2)∩H(c1, c3)∩H(c2, c3) =H(ci , cj )∩H(cj , ck)

for all i, j,k such that {i, j,k} = {1,2,3}.

Proof. The left-right inclusion is obvious. For the right-left inclusion, without loss of
generality, assume that i=1, j=2 and k=3, and consider x ∈H(ci , cj )∩H(ci , ck). Then,

∥x − c1∥ℓ1
= ∥x − c2∥ℓ1

= ∥x − c3∥ℓ1

because
x∈H(ci , cj )⇒ ∥x − ci∥ℓ1

= ∥x − cj∥ℓ1
,

x∈H(ci , ck)⇒ ∥x − ci∥ℓ1
= ∥x − ck∥ℓ1

.

Hence, x ∈H(c1, c2)∩H(c1, c3)∩H(c2, c3).

We can now prove Step 1 - as it is an interesting result in itself that will also be used
several times in the remaining of this chapter, we announce it as a proposition:

Proposition 7.4.3

Given three points c1, c2 and c3:

• If H(c1, c2), H(c1, c3) and H(c2, c3) are all vertical (or all horizontal), then
the intersection of each pair of hypersurfaces is empty. In particular, the
intersection of the 3 hypersurfaces is empty.

• If two of them are vertical and one is horizontal (or vice-versa), then the
intersection of the 3 hypersurfaces is a unique point.

Proof. Assume first that the three hypersurfaces are vertical. Let (x1, y1), (x2, y2) and
(x3, y3) denote the positions in the plane of c1, c2 and c3. Without loss of generality, we
assume that x1 < x2 < x3 and that H(c1, c3) is of type V −.
Given a vertical hypersurface H(ci , cj ), for each point (x,y)∈H(ci , cj ) we have xi <x<xj ,
because xi <xM1

<xj and xi <xM2
<xj for the extremities M1,M2 of the middle segment

of the hypersurface (see Figure 7.2.2, page 193). Thus, H(c1, c2) and H(c2, c3) do not
intersect, as we have x1 < x2 < x3. Using Lemma 7.4.2 (page 209), we conclude that
H(c1, c2)∩H(c1, c3)∩H(c2, c3) = ∅.

Let us now assume that two hypersurfaces are vertical (resp. horizontal) and the
third one is horizontal (resp. vertical). Without loss of generality, we can assume
that H(c1, c2) is horizontal and both remaining hypersurfaces H(c1, c3) and H(c2, c3) are
vertical. Any vertical hypersurface intersects any horizontal hypersurface in a unique
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point (by assuming w.l.o.g. that the representation is non-degenerate, see Lemma 7.4.1).
In particular, |H(c1, c2) ∩H(c1, c3)| = 1. Lemma 7.4.2 states that H(c1, c2) ∩H(c1, c3) ∩
H(c2, c3) =H(ci , cj )∩H(ci , ck) for {i, j,k}= {1,2,3}. We have therefore the three hypersur-
faces intersecting in a unique point.

We can finally prove the Step 2 and conclude the proof of Proposition 7.4.2. As this
is very long and quite technical case analysis type proof that does not provide any
interesting insight into the topics, we only give a sketch of the proof here. The detailed
version can be found in Appendix 7.A

Property 7.4.2 - sketch of proof. To prove the first point, we assume without loss of gen-
erality that c2 lies inside the diagonal rectangle determined by c1 and c3, and we prove
that in this case, the three hypersurfaces are all vertical or horizontal. More precisely,
we do case distinction on the type of H(c1, c3), and we prove that every time it is verti-
cal (resp. horizontal), the remaining two hypersurfaces H(c1, c2) and H(c2, c3) are also
vertical (resp. horizontal). Proposition 7.4.3 then implies that they do not (pairwise)
intersect.

To prove the second point, we suppose that any point does not lie in the diagonal
rectangle determined by the remaining two points, and we show that in such a case,
there is necessarily at least one horizontal and one vertical hypersurface. As a vertical
hypersurface and a horizontal hypersurface intersect in a unique point, Lemma 7.4.2
allows us to conclude that the three hypersurfaces intersect in a unique point.

A Curious Tortoise Intervention

Let us discuss a little bit the difference with ℓ2-norm. We have already
seen that under ℓ2-norm, the hypersurfaces H(c1, c2), H(c1, c3) and
H(c2, c3) do not intersect if and only if c1, c2 and c3 are aligned. In other
words, if one of these points, let say c2, lies on the segment c1, c3. But
actually, what does the notion of segment look like in ℓ1-geometry?

In ℓ2-geometry the segment [AB] is the (unique) shortest path con-
necting the points A and B. But it is well-known that in ℓ1-geometry,
there are infinitely many shortest paths from A to B:
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So intuitively, one could expect that the hypersurfaces do not intersect
under the norm ℓ1 if and only if one of the points, let say c2, lies on (some)
shortest path connecting c1 and c3. However, we have just proven that this
is not true - actually, it would mean that c2 lies inside the rectangle with
sides parallel to the axis determined by c1 and c3, while we have seen that
it lies inside the diagonal rectangle determined by c1 and c3:
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7.4.3 Some corollaries and further results

Propositions 7.4.2 and 7.4.3 have some interesting corollaries that will be usefull in the
remaining of the chapter. The next result is a direct corollary of Proposition 7.4.3:

Corollary 7.4.1

Given three points ci , cj , ck , the hypersurfaces H(ci , cj ) and H(ci , ck) intersect in
at most one point. In other words, given four points ci , cj , ck and cl , if two
hypersurfaces H(ci , cj ) and H(ck , cl) intersect in two different points, then ci , cj , ck
and cl are all distinct.

Proof. By contradiction, assume thatH(ci , cj ) andH(ci , ck) intersect in two distinct points.
According to Lemma 7.4.2 (page 209), |H(ci , cj )∩H(ci , ck)∩H(cj , ck)| ≥ 2. We get a con-
tradiction with Proposition 7.4.3 which states that if the three hypersurfaces intersect,
then the point of intersection is unique.
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Proposition 7.4.2 has a direct consequence on the preferences within an ℓ1-Euclidean
profile. It is given in the following corollary, which will be used in Section 7.6 to show
an upper bound on the number of candidates ranked last by at least one voter in a
ℓ1-Euclidean profile.

Corollary 7.4.2

Let P = (V ,C) be an ℓ1-Euclidean profile, and consider three candidates c1 =
(x1, y1), c2 = (x2, y2) and c3 = (x3, y3) in a given ℓ1-Euclidean representation of P.
If c2 ∈paral(c1, c3), then there is no voter v ∈V for who both c1>v c2 and c3>v c2.
In other words, c2 is never ranked last among c1, c2, c3.

Proof. Assume that c2 is inside the diagonal rectangle determined by c1 and c3. Propo-
sition 7.4.2 implies that H(c1, c2), H(c1, c3) and H(c2, c3) do not (pairwise) intersect.
Hence, they are all horizontal, or all vertical (as a vertical hypersurface always inter-
sects a horizontal one). Without loss of generality, assume that all three hypersurfaces
are vertical, and that x1 < x2 < x3. As each point (x,y) of H(ci , cj ) satisfies xi < x < xj , we
have H(c1, c2) on the left of H(c2, c3).

We now show by contradiction that H(c1, c3) lies between these two hypersurfaces.
Assume the left-to-right order of hypersurfaces is H(c1, c3),H(c1, c2),H(c2, c3). As c1
lies in the leftmost area, it is necessarily the top-ranked candidate there. The second-
ranked candidate in this area must be c3, the leftmost hypersurface being H(c1, c3).
Thus, the ranking of the leftmost area is c1 > c3 > c2. By moving from the leftmost
to the rightmost area, we obtain consecutively (by crossing the hypersurfaces one by
one) the four following rankings: (c1, c3, c2) (the leftmost one), (c3, c1, c2) (after crossing
H(c1, c3)), (c3, c2, c1) (after crossing H(c1, c2)) and finally (c2, c3, c1) (the rightmost one,
after crossing H(c2, c3)). We get a contradiction: as c3 lies in the rightmost area (be-
cause we have x1 < x2 < x3), it must be a top-ranked candidate there.

The case where H(c1, c3) is the rightmost hypersurface can be treated similarly. Hence,
the only possible order of hypersurfaces is H(c1, c2),H(c1, c3),H(c2, c3), and we see, with
similar arguments as previously, that c2 is never ranked last.

A Curious Tortoise Intervention

One can see here a similarity with the definition of multidimensional
single-peakedness briefly introduced in Chapter 5: if c2 lies inside the
so called bounding box determined by c1 and c3, then c2 is never ranked
last among c1, c2 and c3.

Before ending this section, we give here one more result that will be useful in what
follows: actually, note that Proposition 7.4.1 only gives the possible number of inter-
section points between two hypersurfaces, however, it does not specify the conditions
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in which each of the cases appears. The following result (see Appendix 7.B.2 for the
proof) gives a more precise statement, which will be needed in the next sections in
order to compute, based on geometrical arguments, the maximal size of ℓ1-Euclidean
profiles.

Proposition 7.4.4

Given four points c1, c2, c3 and c4, there is at most one pair of hypersurfaces
H(ci , cj ),H(ck , cl) (with {i, j,k, l} = {1,2,3,4}) intersecting in two distinct points.

This is a technical (but very useful!) result, with a long, not really interesting, proof.
Basically, we suppose that there are two pairs of hypersurfaces H(ci , cj ),H(ck , cl) and
H(ci′ , cj ′ ),H(ck′ , cl′ ) (with {i, j,k, l} = {i′ , j ′ , k′ , l′} = {1,2,3,4}) intersecting in two distinct
points. We have hence two pairs of vertical (resp. horizontal) hypersurfaces, and one
pair of vertical and one pair of horizontal hypersurfaces. We prove (by a case analysis)
that none of these configurations is possible. The detailed proof can be found in Ap-
pendix 7.A.

A Curious Tortoise Intervention

What is the number of double-intersections with 5 candidates? With 6
candidates? And with m candidates?

Given the complexity of the proof with only 4 candidates, this ques-
tions seems pretty challenging - at least if we keep the same approach to
answer it...

7.5 Euclidean profiles on 4 candidates in the plane

As we have seen, all the profiles with 3 candidates are ℓ2-Euclidean and ℓ1-Euclidean
(see Section 7.3). We focus here on the case with 4 candidates. In Section 7.5.1, we
study the maximum size of ℓ-Euclidean profiles (for ℓ = ℓ1 and ℓ = ℓ2). In Section 7.5.2,
we provide a concise characterization of ℓ2-Euclidean profiles.

7.5.1 Maximum size of a Euclidean profile on 4 candidates

Bennett and Hays (1960) gave a recursive formula to compute the maximum cardinality
of ℓ2-Euclidean profiles in Rd . For d = 2 and 4 candidates, their formula gives the
following result:
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Proposition 7.5.1: (Bennett and Hays, 1960)

The maximum cardinality of a ℓ2-Euclidean profile on 4 candidates is 18.

We examine this question for the norm ℓ1, and show that the maximum cardi-
nality is 19 (Theorem 7.5.1). The core of the proof is to show that it is at most 19
(Lemma 7.5.1): this is done by counting the (maximal) number of areas delimited by
hypersurfaces. For this, we use several results of Section 7.4, as well as Euler’s formula
for planar graphs. An explicit construction of a ℓ1-Euclidean profile with 19 prefer-
ences is then given in Lemma 7.5.2, which shows that the upper bound of Lemma 7.5.1
is tight.

Lemma 7.5.1

Any ℓ1-Euclidean profile on 4 candidates has at most 19 (pairwise distinct) pref-
erences.

Sketch of proof: The proof of this lemma can be divided into several steps. A complete
version of the proof is given in Appendix 7.B.

Step 1: Transforming a Euclidean geometric representation into a planar graph.
Given a geometric representation, i.e., the positions of candidates, we build a planar
graph based on the hypersurfaces between pairs of candidates. For this purposes, we
identify the points of intersections of hypersurfaces - this will give us the set of graph
vertices. We connect then two vertices of the graph if and only if the corresponding
intersections are connected by a portion of a hypersurface in the geometric represen-
tation that does not cross any other intersection. This gives us the set of edges. By
construction, this graph is planar. See Figure 7.5.1 for an example of construction.

Step 2: Adaptation of the Euler’s formula: We recall the Euler’s formula for planar
graphs which establishes the relation between the number of edges, vertices and areas
the plane is divided into by a (planar) graph. More precisely, Euler’s formula is:

nf = ne −nv + 2

with ne the number of edges, nv the number of vertices and nf the number of faces of
a planar graph. We then slightly modify Euler’s formula so it applies to the Euclidean
representation. Actually, the (unique) “outer” area of a planar graph is divided into
12 areas by unbounded parts of hypersurfaces in the geometric representation (we re-
call that there are 6 hypersurfaces , each of them having two unbounded parts in the
geometric representation). Therefore, the unique outer area of the planar graph must
be counted for 12 geometric areas of the representation, which yields the following
formula:

nz = ne −nv + 13
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with nz the number of areas obtained by the representation (i.e., the number of differ-
ent preferences whose corresponding area is non-empty). For better visualisation, see
Figure 7.5.1. We have on the left side an ℓ1-Euclidean geometric representation and
on the right side its associated planar graph. This planar graph has 7 vertices and 12
edges. The Euler formula gives hence nf = 12− 7 + 2 = 7. The modified Euler formula
gives then nz = 12− 7 + 13 = 18 areas the plane is divided into by the ℓ1-Euclidean rep-
resentation.

Step 3: Types of intersections we argue that for each Euclidean profile, there exists
a Euclidean representation of it in which at most 3 different hypersurfaces intersect in
the same point.

Step 4: Number of intersections We enumerate the maximal possible number of inter-
sections (of two hypersurfaces , or of three hypersurfaces ).

Step 5: Finally, we derive from the maximal number of intersections (i.e., vertices
of the graph) the maximal number of non-empty areas, using the modified Euler’s
formula. This gives us an upper bound on the maximal number of pairwise distinct
preferences in a given ℓ1-Euclidean profile.
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Figure 7.5.1: A ℓ1-Euclidean representation of a profile P, and its corresponding graph.
The intersection of H(ci , cj ), H(ci , ck), H(cj , ck) (resp. H(ci , cj ) and H(ck , cl)) yields a ver-
tex Ii,j,k (resp. Ii,j ∩ Ik,l).

We will now show that this upper bound is tight - for this purpose, let us consider the
following profile P∗0 with 19 voters and 4 candidates (for more conciseness and read-
ability, preferences are in columns, so for instance the first preference is (c1, c2, c3, c4)).

P∗0 =


c1 c1 c1 c1 c1 c1 c2 c2 c2 c2 c3 c3 c3 c4 c4 c4 c4 c4 c4
c2 c2 c3 c3 c4 c4 c1 c1 c4 c4 c1 c4 c4 c1 c1 c2 c2 c3 c3
c3 c4 c2 c4 c2 c3 c3 c4 c1 c3 c4 c1 c2 c2 c3 c1 c3 c1 c2
c4 c3 c4 c2 c3 c2 c4 c3 c3 c1 c2 c2 c1 c3 c2 c3 c1 c2 c1
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Lemma 7.5.2

P∗0 is ℓ1-Euclidean.

Proof. Figure 7.5.2 provides a ℓ1-Euclidean representation of P∗0. Preference p1 cor-
responds to (c1, c2, c3, c4) (the first column in P∗0), preference p7 to (c2, c1, c3, c4) (the
7th column in P∗0) as we cross H(c1, c2) to go from p1 to p7, etc. The representation
function f : C → R2 leading to Figure 7.5.2 corresponds to the following positions:
f (c1) = (0,8), f (c2) = (10,10), f (c3) = (4,1) and f (c4) = (8,3). These positions are suffi-
cient to plot the hypersurfaces and to convince ourselves that there are 19 non-empty
preference areas. For example, let us place a voter v in the area corresponding to pref-
erence p2, concretely on the coordinates (5.5,8). We will check that her preference is
indeed p2. Denoting by Pv the position of voter v (i.e., the point (5.5,8)), we have

∥Pv − f (c1)∥ℓ1
= |5.5− 0|+ |8− 8| = 5.5,

∥Pv − f (c2)∥ℓ1
= |5.5− 10|+ |8− 10| = 6.5,

∥Pv − f (c1)∥ℓ1
= |5.5− 4|+ |8− 1| = 8.5,

∥Pv − f (c1)∥ℓ1
= |5.5− 8|+ |8− 3| = 7.5.

We see that, indeed, the preference of voter v corresponds to p2 =(c1, c2, c4, c3).

1 2 3 4 5 6 7 8 9 10 11

1
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4
5
6
7
8
9
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11

H(c1, c2)

H(c1, c3)

H(c1, c4)

H(c2, c3)

H(c2, c4)

H(c3, c4)

p1

p2p3

p4

p5p6

p7 p8

p9

p10

p11 p12

p13

p14p15
p16

p17p18

p19

c1

c2

c3

c4

Figure 7.5.2: An ℓ1-Euclidean representation of a profile with 4 candidates and 19
(pairwise) distinct preferences.
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As a direct consequence of Lemmata 7.5.1 and 7.5.2, we have the following result,
which concludes the section.

Theorem 7.5.1

The maximum cardinality of an ℓ1-Euclidean profile on 4 candidates is 19.

We note that P∗0 is another example of a preference profile on 4 candidates which is
ℓ1-Euclidean but not ℓ2-Euclidean (because there are more than 18 preferences). More-
over, we conjecture that P∗0 is the unique maximal ℓ1-Euclidean profile on 4 candidates
in terms of inclusion:

Conjecture 7.5.1

Let P be a ℓ1-Euclidean profile of pairwise distinct candidates on 4 candidates.
Then P⊂P∗0, up to renaming of candidates.

Even though we were not able to prove this conjecture formally, we performed some
numerical tests to support (or disprove) the statement. A random ℓ1-Euclidean profile
P was generated as follows: first, we picked the positions of candidates c1, c2, c3 and
c4 at random uniform. Then we used a Monte-Carlo based method to generate the ℓ1-
Euclidean profile corresponding to these positions of candidates. More precisely, we
picked 100 000 points at random, and for each point v, we evaluated its distance to the
positions of c1, c2, c3 and c4, which yielded the preference >v .6 >v were then added in
P (if not already in it). Finally, we checked if P was contained in P∗0 up to renaming
of candidates.

We generated several millions of instances without finding a profile that would dis-
prove the conjecture. A discussion about how to prove formally the conjecture is pro-
vided in the global conclusion.

7.5.2 Characterization of ℓ2-Euclidean profiles

A central question in structured preferences is to determine whether a given profile is
structured or not. As we have seen before, with 4 candidates, any profile with more
than 18 (resp. 19) preferences is not ℓ2-Euclidean (resp. not ℓ1-Euclidean). However,
there are smaller profiles which are not ℓ1- or ℓ2-Euclidean (we have seen two examples
of such profiles in Section 7.3).

6We can make a comparison with the heuristic presented in Chapter 6: to generate a random ℓ2-
Euclidean profile, it was sufficient to generate the positions of candidates, from where we were able
to enumerate all 2-intersections and 3-intersection and therefore list all preferences compatible with
the representation. However, in case of ℓ1-Euclidean, the problem of enumerating all intersections of
hypersurf aces is much more tricky, as the number of intersections as well as types of hypersurfaces de-
pend on the relative position of candidates.
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In the sequel, we give a concise description of all ℓ2-Euclidean profiles on 4 candidates,
that moreover enables to easily determine whether a given profile on 4 candidates is
ℓ2-Euclidean or not. As noted in the introduction, this result has also been proved
by Kamiya et al. (2011). The interest of the proof presented below is that it is based
on simpler and purely geometrical arguments. Furthermore, it might be possible to
consider the same type of approach to prove a result of the same nature for m≥5 can-
didates in the plane, while the result by Kamiya et al. only applies for d=m−2 (thus for
4 candidates in the plane). Moreover, this approach could also be used to prove similar
results under the norm ℓ1.

Back to ℓ2-Euclidean profiles on 4 candidates, we show that the number of maximal
Euclidean profiles is very small. More precisely, we prove that there are only 3 maxi-
mal ℓ2-Euclidean profiles P∗1, P∗2 and P∗3 (up to a permutation of the candidates), each
of them of size 18. Thus, a profile is ℓ2-Euclidean if and only if it is a subprofile of P∗1,
P∗2 or P∗3 (up to a permutation of the candidates).

We say that two profiles are isomorphic if they contain the same set of preferences up
to a permutation of the candidates. Let us consider the three following profiles P∗1, P∗2
and P∗3:

P∗1 =


c1 c1 c1 c2 c2 c2 c2 c2 c2 c3 c3 c3 c4 c4 c4 c4 c4 c4
c2 c2 c4 c1 c1 c3 c3 c4 c4 c2 c2 c4 c1 c1 c2 c2 c3 c3
c3 c4 c2 c3 c4 c1 c4 c1 c3 c1 c4 c2 c2 c3 c1 c3 c1 c2
c4 c3 c3 c4 c3 c4 c1 c3 c1 c4 c1 c1 c3 c2 c3 c1 c2 c1

 ,

P∗2 =


c1 c1 c1 c1 c1 c1 c2 c2 c3 c3 c3 c3 c3 c3 c4 c4 c4 c4
c2 c2 c3 c3 c4 c4 c1 c3 c1 c1 c2 c2 c4 c4 c1 c1 c3 c3
c3 c4 c2 c4 c2 c3 c3 c1 c2 c4 c1 c4 c1 c2 c2 c3 c1 c2
c4 c3 c4 c2 c3 c2 c4 c4 c4 c2 c4 c1 c2 c1 c3 c2 c2 c1

 ,

P∗3 =


c1 c1 c1 c1 c2 c2 c2 c2 c2 c2 c3 c3 c3 c3 c4 c4 c4 c4
c2 c2 c3 c4 c1 c1 c3 c3 c4 c4 c1 c2 c2 c4 c1 c2 c2 c3
c3 c4 c2 c2 c3 c4 c1 c4 c1 c3 c2 c1 c4 c2 c2 c1 c3 c2
c4 c3 c4 c3 c4 c3 c4 c1 c3 c1 c4 c4 c1 c1 c3 c3 c1 c1

 .
Theorem 7.5.2

A profile on 4 candidates is ℓ2-Euclidean if and only if it is isomorphic to a sub-
profile of P∗1, P∗2 or P∗3.

The proof of this theorem is very long, however, I decided not to move it to appendix,
as it is one of my most favourite proofs of this thesis. To help the reader to follow it
without getting lost, we will start by summarising the proof into several steps:
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Step 1: We justify that any maximal ℓ2-Euclidean profile admits a representation in
which there are no parallel hypersurfaces (that are simple lines while using l2 norm).
In particular, each pair of hypersurfaces intersects in a unique point. We have then
three different 2-intersections and four different 3-intersections.

Step 2: We focus on the relative positions of the 3-intersections. We note that there
are two possible cases - the four 3-intersections form a convex quadrilateral (case 1), or
there is one of the 3-intersections inside the triangle of the three others (case 2). See
Figure 7.5.3 for an illustration.

We study then the case 1. This part can also be divided into several steps:

Step Case 1-1: We draw the hypersurfaces and justify that whatever the positions
of candidates are, the partitionning of the plane will always look like in Figure 7.5.4.

Step Case1-2: We show that, up to renaming candidates, there are two possible la-
belings of hypersurfaces - see Figure 7.5.5. We justify that these two labelings are sym-
metric - one can be obtain from the other by renaming candidates. Therefore, one of
them can be chosen without loss of generality.

Step Case1-3: Once the hypersurfaces are labeled, we list the preferences associated
with the different areas, which gives us the profiles P∗1 and P∗2.

Finally, we deal with the case 2 using the same techniques. We obtain the profile P∗3.

The reader can continue directly to Section 7.6, or to dive into the detailed version
of proof.

Proof. Step 1:

For any ℓ2-Euclidean profile there is a representation of it such that no pair of hy-
persurfaces (which are simple lines of the plane in the present case) are parallel. In
fact, there will be two parallel lines if there are (at least) three aligned candidates, or if
two pairs of candidates are the extremities of two parallel segments. In each of these
cases, we can always slightly move one of the candidates (using the same technique as
in Lemma 7.2.1) so that the two concerned lines are no more parallel and such a modi-
fied mapping is still a representation of the given profile.
Assuming that, we have:

• One 2-intersection H(ci , cj )∩H(ck , cl) for each pair of hypersurfaces with i, j,k, l
pairwise distinct. For 4 candidates, it yields three 2-intersections (because there
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are three such pairs).

• One 3-intersection Ii,j,k = H(ci , cj ) ∩H(ci , ck) ∩H(cj , ck) for each triple of hyper-
surfaces with i, j,k pairwise distinct. For a profile on 4 candidates, it yields four
3-intersections (because there are four such triples).

A Curious Tortoise Intervention

Even though this step can seem quite trivial, it is actually crucial in the
proof. We prove that, in particular, for any number of candidates m (here
m = 4), all maximal profiles are of the same size - this size equals the
maximal number of areas the plane can be partitioned into by the set of
hypersurfaces (for m = 4, this number equals 18). Also, the number of
3-intersections and 2-intersections can be easily counted for any m.

Note that this step does not work for ℓ1-norm. Indeed, two ℓ1-
hypersurfaces are “parallel” if and only if one point lies inside the
diagonal rectangle determined by two other points (see Section 7.4.2, or
more precisely Proposition 7.4.2, for more details). Given a representation
of a profile, it is not sufficient to slightly move one of the points - we must
move the point enough to get it outside of the diagonal rectangle. The
distance to its new position may be too big, so the set of non-empty areas
can change!

For this reason, it is not clear if all maximal ℓ1-Euclidean profiles
are of the same size...

Step 2:

Let us study the relative positions of the 3-intersections in the plane. There are two
possible scenarios (see Figure 7.5.3):

1. The 3-intersections are the vertices of a convex quadrilateral (left part of Fig-
ure 7.5.3). By the assumption made in Step 1, no pair of opposite sides of this
quadrilateral are parallel.

2. Three of the 3-intersections are the vertices of a triangle, and the fourth one is
inside this triangle (right part of Figure 7.5.3).
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Figure 7.5.3: The possible relative positions of the 3-intersections in the plane.

We will now take a closer look to each of these cases, and we will construct all max-
imal profiles corresponding to each of them.

Case 1:
Step Case 1-1:

Assume that the 3-intersections are the vertices of a convex quadrilateral (see Figure
7.5.4), as described above. There are

(4
2
)

= 6 hypersurfaces, each of them goes through
exactly two 3-intersections (because, for an hypersurface H(ci , cj ), there are two ways
to choose ck with k < {i, j}). We recall that, without loss of generality, we can assume
that there is no pair of parallel hypersurfaces. There are then four hypersurfaces that
form the sides of the convex quadrilateral. Each of the two pairs of hypersurfaces cor-
responding to opposite sides of the quadrilateral results in an intersection outside the
quadrilateral, which yields two distinct 2-intersections. The remaining two hypersur-
faces represent the diagonals of the quadrilateral, and will hence intersect inside it
- it results in the third (and last) 2-intersection. Whatever the positions of the four
candidates, if the 3-intersections form a convex quadrilateral, the partitioning of the
plane will always look like in Figure 7.5.4a (where c1 = (1,5), c2 = (4,2), c3 = (6,8) and
c4 = (9,3)): one 2-intersection lies inside the convex quadrilateral, and the two remain-
ing 2-intersections (of hypersurfaces forming opposite sides of the quadrilateral) out-
side of it.

Note that in Figure 7.5.4a some areas are small. For readability reasons, in what
follows, we use instead Figure 7.5.4b (with a similar arrangement of areas) where the
areas are larger but without the explicit positions of candidates.
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(a) An example of area partitioning with ex-
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(b) An example of area partitioning without
candidate positions

Figure 7.5.4: Case 1: The plane is divided into 18 areas, with the 3-intersections
forming a convex quadrilateral. The candidates are plotted with empty circles, 3-
intersections with blue circles and 2-intersections with red squares.

Step Case 1-2:

To enumerate all possible maximal profiles corresponding to this configuration of the
3-intersections, the hypersurfaces (and hence the intersections) need to be labeled so we
can list the preferences corresponding to the different areas (see Figure 7.5.5). Without
loss of generality, we label one of the 3-intersections as I1,2,3 (we recall that it corre-
sponds to the intersection H(c1, c2)∩H(c1, c3)∩H(c2, c3)), and one of the hypersurfaces
going through it as H(c1, c2). The second 3-intersection involving H(c1, c2) is then nec-
essarily I1,2,4. The two remaining hypersurfaces going through I1,2,3 are H(c1, c3) and
H(c2, c3), that we can arbitrarily label (because it will turn out to be symmetrical). From
these labels I1,2,3, I1,2,4, H(c1, c2), H(c1, c3) and H(c2, c3), we can infer the labels of the
two remaining 3-intersections, and so the labels of the remaining hypersurfaces. As
mentioned earlier, both ways of labeling H(c1, c3) and H(c2, c3) are symmetric: it is suf-
ficient to rename c1 as c2 and c2 as c1 to switch from one complete labeling to the other
one (see Figure 7.5.5). Hence, the labels of H(c1, c3) and H(c2, c3) can be fixed without
loss of generality, and there is only one possible complete labeling, up to a renaming of
the candidates.
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(b) the second possible labeling

Figure 7.5.5: Labeled representation: H(ci , cj ) is noted as ij due to lack of space.

Step Case 1-3:

Once the hypersurfaces are labeled, we can list the preferences associated with the
different areas. Let us focus on the areas A1,A2,A3 and A13, as well as on the corre-
sponding preferences p1,p2,p3 and p13 in Figure 7.5.6. To switch from p1 to p2, candi-
date c3 is swapped with c4 (becauseH(c3, c4) is crossed between areas A1 and A2), while
c4 is swapped with c2 to switch from p2 to p3 (as H(c2, c4) is crossed between areas A2
and A3), and finally c4 is swapped with c1 to obtain p13. Necessarily, c4 is ranked either
in the first or in the last position in p1 (resp. p4), as it is successively swapped with
all the remaining candidates. Hence, the area A1 corresponds to one of the following
preferences:

• p1 = (c1, c2, c3, c4),

• p′1 = (c4, c3, c2, c1).

Once at least one preference is known, we can list all the preferences of the profile.
Both profiles P= {p1, . . . ,p18} and P′ = {p′1, . . . ,p

′
18} are listed in Table 7.5.1. Profile P

corresponds to P∗1 in the statement of the theorem, while P′ corresponds to P∗2.

Note that, for each 1 ≤ i ≤ 18, pi is the “opposite” of p′i . Nevertheless, P′ can not be
obtained from P by renaming the candidates: indeed, while in P candidates c1 and c3
are each ranked first 3 times, and c2 and c4 ranked first 6 times, in P′ in contrast, we
have c1 and c3 that are ranked first 6 times, c2 ranked first 2 times and c4 ranked first 4
times.
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Figure 7.5.6: Listing the different areas A1, . . . ,A18 into which the plane is divided in
case 1.

i pi p′i

1 (c1, c2, c3, c4) (c4, c3, c2, c1)
2 (c1, c2, c4, c3) (c3, c4, c2, c1)
3 (c1, c4, c2, c3) (c3, c2, c4, c1)
4 (c2, c1, c3, c4) (c4, c3, c1, c2)
5 (c2, c1, c4, c3) (c3, c4, c1, c2)
6 (c2, c3, c1, c4) (c4, c1, c3, c2)
7 (c2, c3, c4, c1) (c1, c4, c3, c2)
8 (c2, c4, c1, c3) (c3, c1, c4, c2)
9 (c2, c4, c3, c1) (c1, c3, c4, c2)

i pi p′i

10 (c3, c2, c1, c4) (c4, c1, c2, c3)
11 (c3, c2, c4, c1) (c1, c4, c2, c3)
12 (c3, c4, c2, c1) (c1, c2, c4, c3)
13 (c4, c1, c2, c3) (c3, c2, c1, c4)
14 (c4, c1, c3, c2) (c2, c3, c1, c4)
15 (c4, c2, c1, c3) (c3, c1, c2, c4)
16 (c4, c2, c3, c1) (c1, c3, c2, c4)
17 (c4, c3, c1, c2) (c2, c1, c3, c4)
18 (c4, c3, c2, c1) (c1, c2, c3, c4)

Table 7.5.1: The two maximal profiles P= {p1, . . . ,p18} and P′= {p′1, . . . ,p
′
18} obtained in

case 1.

Case 2:
To begin, we need to label the intersections and hypersurfaces as we did it in the pre-
vious case. This yields the representation given in Figure 7.5.7.

Let us denote by T the triangle consisting of areas A5,A6,A7,A8,A9 and A10 in Fig-
ure 7.5.7. Using the same argument as in the previous case, we note that there are two
possible rankings for area A1 (see Figure 7.5.7, and the succession of areas A1,A2,A4
and A15):

• p1 = (c1, c2, c3, c4),

• p′1 = (c4, c3, c2, c1).

However, if p′1 = (c4, c3, c2, c1), candidate c2 is ranked in last position inside the triangle
T : in fact, none of the hypersurfaces crossing the triangle involves c2. Let us now
discuss the position of c2 to show that p′1 is not feasible:
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• Denoting by D(ci , cj ) the set of points that are closer to ci than to cj , we have:

D(c2, c1) = A1 ∪A2 ∪A3 ∪A4 ∪A11 ∪A15.

In fact, c1 is preferred to c2 in triangle T . Therefore, c1 must lie on the same side
of H(c1, c2) as this triangle, and c2 must then lie on the opposite side of H(c1, c2),
i.e. on the same side as the area A1.

• Analogously, candidate c2 is necessarily on the same side of H(c2, c3) as the area
A3:

D(c2, c3) = A3 ∪A11 ∪A12 ∪A13 ∪A14 ∪A18.

• Finally, candidate c2 is necessarily on the same side of H(c2, c4) as the area A4:

D(c2, c4) = A4 ∪A14 ∪A15 ∪A16 ∪A17 ∪A18.

As c2 ∈D(c2, ci) for each i ∈ {1,3,4}, and as D(c2, c1)∩D(c2, c3)∩D(c2, c4) = ∅, we cannot
have p′1 = (4,3,2,1).

The case p1 = (1,2,3,4) is feasible, leading to the profile described in Table 7.5.2,
which corresponds to profile P∗3 in the statement of the theorem.
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Figure 7.5.7: Listing the different areas A1, . . . ,A18 into which the plane is divided in
case 2.
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i pi

1 (c1, c2, c3, c4)
2 (c1, c2, c4, c3)
3 (c1, c3, c2, c4)
4 (c1, c4, c2, c3)
5 (c2, c1, c3, c4)
6 (c2, c1, c4, c3)
7 (c2, c3, c1, c4)
8 (c2, c3, c4, c1)
9 (c2, c4, c1, c3)

i pi

10 (c2, c4, c3, c1)
11 (c3, c1, c2, c4)
12 (c3, c2, c1, c4)
13 (c3, c2, c4, c1)
14 (c3, c4, c2, c1)
15 (c4, c1, c2, c3)
16 (c4, c2, c1, c3)
17 (c4, c2, c3, c1)
18 (c4, c3, c2, c1)

Table 7.5.2: The maximal profile obtained in case 2.

7.6 Euclidean profiles on m≥5 candidates in the plane

Let us now focus on the general case, by giving some results on the relative expres-
sive power of ℓ2-Euclidean and ℓ1-Euclidean preference profiles. We first note that,
as shown in Proposition 7.3.1, at most 4 candidates are ranked in last position (by at
least one voter), regardless of the number of candidates in ℓ1-Euclidean profiles. This
is in sharp contrast to the ℓ2-Euclidean case, in which profiles where each candidate is
ranked last at least once can easily be built, as mentioned in the introduction.

This property might indicate that being Euclidean is much more restrictive for ℓ1
than for ℓ2. We show however that if we are interested in the maximum size of a Eu-
clidean profile, then there is no such difference. We show indeed that the maximum
size of a ℓ1-Euclidean profile on m candidates is Θ(m4) (Theorem 7.6.1), which is the
same asymptotic bound as the one found by Bennett and Hays (1960) for ℓ2.

Actually, a precise formula can be easily derived from their result: this maximal size
is precisely m(3m−10)(m−1)(m+1)

24 +m(m− 1) + 1. While such a precise formula seems to be
tricky to establish for ℓ1 and is left as an open question, we show that the asymptotical
bound is the same:

Theorem 7.6.1

The maximum size of an ℓ1-Euclidean profile in R2 over m candidates is in
Θ(m4).

Sketch of proof. We first show that the size of such a profile is inO(m4). There are m(m−1)
2

hypersurfaces. With a non-degenerated profile, each pair of hypersurfaces intersects at
most twice, hence, there are at most 2(m(m−1)

2 )2 points of intersections. As in the case of
norm ℓ2, we have (in a non-degenerated profile) at most 3 hypersurfaces intersecting in
one point. If a point is at the intersection of 2 (resp 3) hypersurfaces, it is incident to 4
areas (resp. 6 areas). Then, as each area has at least one intersection point in its border,
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the number of areas is upper bounded by 6 times the number of intersection points,
i.e., in O(m4).

Let us now show a profile for which this bound is reached. The idea is quite straight-
forward: as there are only vertical or horizontal hypersurfaces, and as each vertical and
each horizontal hypersurface intersect, the positions of candidates c1 to cm will be itera-
tively fixed in such a way that approximately half of hypersurfaces are vertical and half
are horizontal. The number of intersections will then be in Θ(m4), and the construction
ensures that the number of areas is in Θ(m4).

The explicit construction of this profile is deferred to Appendix 7.C.1.

7.7 Conclusion

In this chapter, we have studied 2-Euclidean preferences w.r.t. the norm ℓ1 and the
norm ℓ∞. We have started the chapter by defining, in Section 7.2, boundary hypersur-
faces in R2 and under the norm ℓ1. We have then recalled that there is an equivalence
between the 2-Euclidean preferences w.r.t. the norm ℓ1 and the 2-Euclidean preferences
w.r.t. the norm ℓ∞. We have then shown in Section 7.3 that this equivalence does not
hold anymore for d-Euclidean preferences with d ≥ 3. More precisely, we have shown
that there are at most 2d candidates ranked last by at least one voter in a d-Euclidean
profile w.r.t. the norm ℓ∞, and at most 2d candidates ranked last by at least one voter
in a d-Euclidean profile w.r.t. the norm ℓ1.

From Section 7.4, we focused only on 2-Euclidean preferences under the norm ℓ1 (or ℓ∞,
as there is the equivalence between ℓ1-Euclidean preferences and ℓ∞-Euclidean prefer-
ences in dimension 2). In Section 7.4, we have studied several geometric properties
of ℓ1-Euclidean representations. In Section 7.5, we focus on ℓ1-Euclidean profiles on
4 candidates. We prove that a (inclusion-wise) maximal ℓ1-Euclidean profile contains
at most 19 (pairwise distinct) preferences, and we conjecture that there is actually a
unique maximal ℓ1-Euclidean profile on 4 candidates. This is in contrast with the case
of the norm ℓ2: it is well-known that there are three maximal ℓ2-Euclidean profiles on
4 candidates, each of them containing 18 (pairwise distinct) preferences (see Kamiya
et al. (2011)). We provide an alternative proof of this results at the end of Section 7.5.

Finally, we focus on ℓ1-Euclidean profiles on at least 5 candidates. In particular, we
show that the maximal size of an ℓ1-Euclidean profile is ‘Θ(m4), i.e., of the same order
of magnitude as for ℓ2, as shown by Bennett and Hays (1960).

Because of their novelty, multiple avenues of research regarding ℓ1-Euclidean prefer-
ence profiles can be considered. For instance, the conjecture that there is a unique
maximal ℓ1-Euclidean preference profile for four candidates remains to be proved. A
broader research question is to investigate the existence of a general formula giving
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the maximal size of a ℓ1-Euclidean preference profile (as there is for ℓ2). Regarding
the computational aspects, Peters (2017) proved that the problem of recognising ℓ1-
Euclidean preference profiles in Rd is in NP, but a more specific complexity class re-
mains to be determined, and efficient recognition procedures are still to be proposed.
Also, it would be natural to extend our works on d-Euclidean preferences with respect
to the norms ℓ1 and ℓ∞ for d ≥ 3. These and other possible research directions are dis-
cussed in the global conclusion.
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Chapter appendix

7.A Missing proofs of Section 7.4

7.A.1 Proof of Proposition 7.4.1

Proposition 7.4.1. The intersection of two distinct ℓ1-hypersurfaces is either empty or con-
tains a unique point, two distinct points or an infinite number of points.

Proof. We can assume, without loss of generality, that the hypersurfaces are given by
two distinct pairs of points. Let us denote by ci = (xi , yi), i ∈ {1,2,3,4} these points and
their coordinates. Still without loss of generality, let H(c1, c2) be of type V −. There are
four basic cases to distinguish (see Figs 7.A.1–7.A.4 for illustrations):

1. H(c1, c2) is of type V − and H(c3, c4) of type H+ (see Figure 7.A.1):
In this case, the hypersurfaces intersect in a unique point as the half-lines (resp.
the middle segments) of H(c1, c2) and H(c3, c4) are of opposite orientations.

2. H(c1, c2) is of type V − and H(c3, c4) of type H− (see Figure 7.A.2):
As in the previous case, there will be at least one intersection as a horizontal
hypersurface and a vertical hypersurface always intersect. Contrary to the above,
the middle segments of both hypersurfaces have the same orientation, so they can
overlap: in such a case, the intersection contains this overlapping segment, thus
an infinite number of points.

3. H(c1, c2) is of type V − and H(c3, c4) of type V + (see Figure 7.A.3):
In this case, the hypersurfaces may not intersect: let us assume that max{x1,x2}<
min{x3,x4}. By definition, we have x ∈ [min{xi ,xj},max{xi ,xj}] for each (x,y) ∈
H(ci , cj ). The above inequality then implies that the intersection of H(c1, c2) and
H(c3, c4) is empty (graphically, H(c1, c2) will be “on the left” of H(c3, c4) - see the
first case of Figure 7.A.3).
The hypersurfaces may also intersect in a unique point: a middle segment of one
of the hypersurfaces can intersect one of the half-lines of the second hypersurface,
or its middle segment, as the middle segments are not of the same type (see the
second case of Figure 7.A.3).
Finally, as the half-lines of both hypersurfaces are of the same type, one of the
half-lines of H(c1, c2) may (partially) overlap one of the half-lines of H(c3, c4) (see
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the third case of Figure 7.A.3). In this case, the intersection will contain an infin-
ity of points.

4. Both hypersurfaces H(c1, c2) and H(c3, c4) are of type V − (see Figure 7.A.4):
This is the most complex case. For the same reason as above, the hypersurfaces
may not intersect. They may also intersect in a unique point if the middle segment
of one hypersurface intersects one of the half-lines of the second one (see the first
case of the Figure 7.A.4). As the types of half-lines and middle segments are both
the same for H(c1, c2) and H(c3, c4), they can also intersect in two distinct points
if the middle segment of H(c1, c2) intersects one of the half-lines of H(c3, c4) and
the middle segment ofH(c3, c4) intersects one of the half-lines ofH(c1, c2) (see the
second case of Figure 7.A.4). Finally, the intersection can contain an infinity of
points: as the half-lines are of the same type, a half-line ofH(c1, c2) may (partially)
overlap a half-line of H(c3, c4). In addition, the middle segments being also of the
same type, they can (partially) overlap. See cases 3 and 4 of Figure 7.A.4 (the
case when both the half-lines and the middle segments overlap is not presented
in Figure 7.A.4, but it is obviously possible).
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Figure 7.A.1: Intersection of two hypersurfaces: H(c1, c2) is of type V − and H(c3, c4) of
type H+.
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Figure 7.A.2: Intersection of two hypersurfaces: H(c1, c2) is of type V − and H(c3, c4) of
type H−.
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Figure 7.A.3: Intersection of two hypersurfaces: H(c1, c2) is of type V − and H(c3, c4) of
type V +.
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Figure 7.A.4: Intersection of two hypersurfaces: both hypersurfaces H(c1, c2) and
H(c3, c4) are of type V −.

7.A.2 Missing proof of Property 7.4.2

Proposition 7.4.2. Given three points c1 = (x1, y1), c2 = (x2, y2) and c3 = (x3, y3):

• If c1, c2 or c3 is inside the diagonal rectangle determined by the two other points, then
H(c1, c2), H(c1, c3) and H(c2, c3) do not (pairwise) intersect.

• Otherwise, the intersection of the three hypersurfaces is a unique point.

Proof of Poposition 7.4.2 . To prove the first point, we assume without loss of generality
that c2 lies inside the diagonal rectangle determined by c1 and c3, and we prove that in
this case, the three hypersurfaces are all vertical or horizontal - Proposition 7.4.3 then
implies that they do not (pairwise) intersect.
Up to exchanging the roles of c1 and c3, we can assume, still without loss of generality,
that x1 < x3. There are then 4 cases to distinguish (see Figure 7.A.5):

(a) H(c1, c3) is of type V − (see Figure 7.A.5a).
In this case, we have y1 < y3 (see the classification of hypersurfaces given in Fig-
ure 7.2.5). Moreover, we have x1 < x2 < x3. In the diagonal rectangle given in
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Figure 7.A.5a, c2 lies then above the diagonal d−1 (i.e, y2 > −x2 +x1 +y1) and below
the diagonal d+

1 (i.e, y2 < x2 − x1 + y1). Put together, we get

−x2 + x1 < y2 − y1 < x2 − x1.

In other words, |y1 − y2| < x2 − x1, hence H(c1, c2) is vertical. We show similarly
that H(c2, c3) is vertical, as c2 lies above the diagonal d+

3 and below the diagonal
d−3 . All three hypersurfaces being vertical, they do not (pairwise) intersect.

(b) Let us now suppose that H(c1, c3) is of type H− (see Figure 7.A.5b).
We have y1 < y2 < y3. As c2 lies above diagonals d−1 and d+

1 , we have y2 > −x2 +
x1 + y1 and y2 > x2 − x1 + y1. Put together, we have y2 − y1 > x1 − x2 and y2 −
y1 > −(x1 − x2) - in other words, y2 − y1 > |x1 − x2|. Therefore, the hypersurface
H(c1, c2) is horizontal. We show similarly that H(c2, c3) is horizontal, as c2 lies
below diagonals d+

3 and d−3 , so we obtain y3 − y2 > |x2 − x3|.

(c) We suppose here that H(c1, c3) is of type V +. We have y1 > y3 and x1 < x2 < x3.
Analogously to the previous case, we show that x2 − x1 > |y2 − y1|, so H(c1, c2) is
vertical, and that x3 − x2 > |y2 − y3|, which implies that H(c2, c3) is also vertical.

(d) Finally, we consider H(c1, c3) of type H+. We have y1 > y2 > y3. As in previous
cases, we show that H(c1, c2) is horizontal as c2 lies below diagonals d+

1 and d−1 ,
and H(c2, c3) is also horizontal as c2 lies above diagonals d+

3 and d−3 .
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(a) H(c1, c3) of type V −
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(b) H(c1, c3) of type H−
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(c) H(c1, c3) of type V +
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c1
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(d) H(c1, c3) of type H+

Figure 7.A.5: The diagonal rectangle determined by c1 and c3 with x1 < x3: 4 cases to
distinguish.

To prove the second point of the proposition, we suppose that any point does not
lie in the diagonal rectangle determined by the remaining two points, and we will
show that in such a case, there is at least one horizontal and one vertical hypersur-
face. As a vertical hypersurface and a horizontal hypersurface intersect in a unique
point, Lemma 7.4.2 allows us to conclude that the three hypersurfaces intersect in a
unique point.
Suppose first that H(c1, c3) is vertical (see Figure 7.A.6a). The diagonals d+

1 ,d
−
1 ,d

+
3 and

d−3 divide the plane into 9 areas A1,A2, . . . ,A9. The point c2 does not lie in A1 (resp.
A5, A9) because c1 (resp. c2, c3) does not lie in the diagonal rectangle determined
by the remaining two points. If c2 lies in area A2, A3, A4 or A7, the hypersurface
H(c1, c2) is horizontal, so it intersects the vertical hypersurface H(c1, c3). If c2 lies in
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one of the remaining areas A6 or A8, the hypersurface H(c2, c3) is horizontal, so it inter-
sects H(c1, c3). We note that whether the oblique middle-segment of the hypersurface
H(c1, c3) is ascending (case (c) of Figure 7.A.5) or descending (case (a)) has no impact
on this reasoning and it can therefore be used without change for both cases (a) and (c)
of Figure 7.A.5.
Analogously, we treat the case in which H(c1, c3) is horizontal: c2 cannot lie in areas A3,
A5 and A7 as any point does not lie within the diagonal rectangle determined by the
remaining two points. If c2 lies inA1, A2, A6 orA9, the hypersurfaceH(c1, c2) is vertical.
If it lies in one of the two remaining areasA4 orA8, the hypersurfaceH(c2, c3) is vertical.
To sum up, there is always at least one horizontal and one vertical hypersurface.
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(a) H(c1, c3) is vertical
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(b) H(c1, c3) is horizontal

Figure 7.A.6: The diagonal rectangle determined by c1 and c3 with x1 < x3, and the
possible placements of c2.

7.B Missing proofs of Section 7.5

7.B.1 Detailed proof of Lemma 7.5.1

Proof. Step 1: Transforming an ℓ1-Euclidean geometric representation into a planar
graph:

To prove this proposition, given an ℓ1-Euclidean representation of a profile P, we de-
fine a graph whose vertices are all hypersurface intersections, and where there is an
edge between two intersections (denoted by I1 and I2) if and only if both I1 and I2 lie
on the same hypersurface, and there is any other intersection on the segment of extrem-
ities I1 and I2 (see Figure 7.B.1 for an illustration).
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Figure 7.B.1: A ℓ1-Euclidean representation of a profileP, and its corresponding graph.
The intersection of H(ci , cj ), H(ci , ck), H(cj , ck) (resp. H(ci , cj ) and H(ck , cl)) yields a ver-
tex Ii,j,k (resp. Ii,j ∩ Ik,l).

The corresponding graph is by construction planar. We note that each inner face
of the graph corresponds to a bounded area in the representation of the profile, while
unbounded areas in the representation of the preference profile are all merged into the
outer face of the planar graph.

Step 2: Adaptation of the Euler’s formula:

We can then use Euler’s formula in the corresponding graph. It states that the num-
ber of faces of a planar graph is nf = ne−nv +2, where ne is the number of edges and nv
the number of vertices.

Let us denote by nz the number of areas in the ℓ1-Euclidean representation of the
profile. Note that each area corresponds to a single preference, so n ≤ nz. For 4 candi-
dates, there are 6 hypersurfaces, leading to at most 12 unbounded areas. As mentioned
above, these 12 unbounded areas are merged into the outer face of the planar graph.
As the bounded areas yield nf −1 inner faces, we have nz ≤ nf − 1 + 12 = nf + 11, and
therefore (by Euler’s formula):

nz ≤ ne −nv + 13 (7.3)

Types of intersections:

If k different hypersurfaces intersect in a common point, we call this point a k-intersection.
We can assume, without loss of generality, that there are only 2-intersections and 3-
intersections:

Let f be a representation of a given ℓ1-Euclidean profile containing a 4-intersection
I . As 3 points give only 3 different hypersurfaces, the 4 hypersurfaces intersecting in
I involve the four points f (c1), f (c2), f (c3), f (c4) corresponding to the positions of the
four candidates c1, c2, c3, c4. By definition, I is equidistant from all candidates - more
formally, we have ∥f (c) − I∥ℓ1

= δ > 0 for each c ∈ {c1, c2, c3, c4}. As in the Lemma 7.2.1,
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we define:
εd = min

v∈V
min
ci ,cj∈C

∣∣∣ ∥f (v)− f (ci)∥ℓ1
− ∥f (v)− f (cj )∥ℓ1

∣∣∣ .
As we consider only strict preferences, εd > 0. We can then add ε = εd

2 to x1.7 Doing
that, I will be no more equidistant from all four points and therefore, there will no
more be a 4-intersection in such a modified representation. By iterating the processus,
all k-intersections can be excluded for any k ≥ 4.

Step 4: Number of intersections

As there are 4 candidates, there are at most four 3-intersections:

• I123 =H(c1, c2)∩H(c1, c3)∩H(c2, c3),

• I124 =H(c1, c2)∩H(c1, c4)∩H(c2, c4),

• I134 =H(c1, c3)∩H(c1, c4)∩H(c3, c4),

• I234 =H(c2, c3)∩H(c2, c4)∩H(c3, c4).

By Lemma 7.4.2, we have covered all intersections of type H(ci , cj ) ∩ H(ci , ck). That
means, all 2-intersections will be of type H(ci , cj ) ∩H(ck , cl) with i, j,k, l pairwise dis-
tinct. There are 3 pairs of hypersurfaces of this type:

• H(c1, c2)∩H(c3, c4),

• H(c1, c3)∩H(c2, c4),

• H(c1, c4)∩H(c2, c3).

Each of these three pairs can give us one 2-intersection. In addition, Proposition 7.4.4
implies that at most one of these pairs of hypersurfaces can intersect twice. To sum up,
we have at most four 2-intersections. Therefore nv≤8 (at most four 3-intersections and
four 2-intersections).

Step 5:

If nv = 8, there are four 2-intersections and four 3-intersections. Each 2-intersection
generates four outgoing half-lines, and each 3-intersection generates six outgoing half-
lines. We then get 4·4+4·6 = 40 outgoing half-lines. However, 12 of them are delimiting
outer non-bounded areas, so they are not responsible for any graph edge. Therefore,
40−12 = 28 half-lines are left for forming edges. We observe that each of these half-lines
is used in the creation of exactly one edge, and that each edge is a segment correspond-
ing to the common part of exactly two half-lines (as each edge has two extremities

7More precisely, ε should be smaller than the minimum of εd and min{εx, εy , εxy } as defined in
Lemma 7.2.1, to ensure that we do not create one of the degenerations excluded by this Lemma.

236



Chapter 7 – Euclidean preferences in the plane under ℓ1, ℓ2 and ℓ∞ norms

which are two different intersections). Thus, we have ne = 28/2 = 14. Finally, using
Equation 7.3:

nz ≤ 14− 8 + 13 = 19.

It is easy to check that if nv < 8, then nz < 19: in fact, each 2-intersection (resp. 3-
intersection) generate four (resp. six) outgoing half-lines. In both cases at most a half of
them are delimiting outer non-bounded areas - which means that at least half of them
has another 2-intersection or 3-intersection lying on it. Therefore, each vertex allows
to create at least two edges, so in the Euler formula the benefit of deleting a vertex is
outweighted by the drawback of deleting two edges. Thus, in any case, nz ≤ 19. The
size n of the profile therefore satisfies n ≤ nz ≤ 19.

7.B.2 Missing proof of Proposition 7.4.4

Proof. For i ∈ {1,2,3,4}, we denote by (xi , yi) the position of candidate ci in the plane.
Assume there are two pairs of hypersurfaces intersecting in two distinct points. Thanks
to Corollary 7.4.1, we can assume, w.l.o.g., that the first pair involves the hypersurfaces
H(c1, c2) and H(c3, c4). Moreover, still w.l.o.g, we can assume that they are both of type
V −, and thatH(c1, c2) is “on the left” ofH(c3, c4) (as in Figure 7.B.2), and that x1 < x2 and
x3 < x4. According to the classification of hypersurfaces (see Figure 7.2.5, page 198),
as H(c1, c2) and H(c3, c4) are of type V −, we have y1 < y2 and y3 < y4. Note that we
necessarily have:

{x1,x3} < {x2,x4} (7.4)

and

y2 > {y1, y4} > y3. (7.5)

Equation (7.4) directly follows from the fact that for each point (x,y) of a hypersurface
H(ci , cj ), we have x ∈ [xi ,xj ]: indeed, if x3 > x2, we would have x1 < x2 < x3 < x4 and the
x-coordinate of each point of H(c1, c2) would be smaller than the x-coordinate of each
point of H(c3, c4). In other words, the hypersurfaces would not intersect. An analogous
reasoning can be done to show that x1 < x4. Equation (7.5) follows from the fact that
the hypersurfaces do not even intersect if these inequalities are not satisfied.

Furthermore, Equation (7.5) means that when two vertical hypersurfaces H(c1, c2)
and H(c3, c4) intersect twice, if the highest point in {c1, . . . , c4} belongs to {c1, c2} (resp.
{c3, c4}) then the lowest point belongs to {c3, c4} (resp. {c1, c2}).
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Figure 7.B.2: Two intersecting hypersurfaces.

Assume first that the second pair of hypersurfaces that intersect twice are also ver-
tical. As y3 = min{y1, y2, y3, y4} and y2 = max{y1, y2, y3, y4}, by the discussion above
H(c2, c3) and H(c1, c4) cannot intersect twice vertically. So the unique possibility is
that H(c1, c3) and H(c2, c4) intersect twice. This is, however, not possible: any point in
H(c1, c3) has x-coordinate in [x1,x3], any point in H(c2, c4) has x-coordinate in [x2,x4],
but [x1,x3]∩ [x2,x4] = ∅ by Equation (7.4).

Suppose now that the second pair of hypersurfaces that intersect twice are horizon-
tal. This pair can be either H(c1, c4) and H(c2, c3), or H(c1, c3) and H(c2, c4).

• Let us first consider the case where it is H(c1, c4) and H(c2, c3), which is illus-
trated in Figure 7.B.3. Let us look at the preference p1 in the upper left part. We
have c1 > c2 and c3 > c4 (by the positions of H(c1, c2) and H(c3, c4)). As H(c2, c3)
is horizontal, we have c2 > c3 (because y2 > y3 from Equation (7.5), see also Fig-
ure 7.B.2). Therefore p1 = (c1, c2, c3, c4). As H(c1, c4) and H(c2, c3) are horizontal,
H(c2, c3) is necessarily above H(c1, c4) on the (infinite) left part of the figure, since
starting from p1 = (c1, c2, c3, c4) and going down we need to cross H(c2, c3) before
H(c1, c4): in fact, going down from the area corresponding to p1, we will not cross
nor H(c1, c2) neither H(c3, c4) as they are vertical. We can only cross the remain-
ing hypersurfaces H(c1, c3),H(c1, c4),H(c2, c3) and H(c2, c4). However, the hyper-
surface H(c1, c3) (resp. H(c1, c4), H(c2, c4)) cannot be the first hypersurface to be
crossed, as c2 is ranked between c1 and c3 (resp. c2 and c3 are ranked between c1
and c4, c3 between c2 and c4). Therefore, the first hypersurface to be crossed is
necessarily H(c2, c3) (c2 and c3 are ranked one next to other in p1, so they can be
swapped).

Similarly, we get p2 = (c4, c3, c2, c1) in the lower right part, thus H(c2, c3) is be-
low H(c1, c4) on the (infinite) right part of the figure, since starting from p2 =
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(c4, c3, c2, c1) and going up we need to cross H(c2, c3) before H(c1, c4), using the
same reasoning as in the case of p1.
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H(c1, c4)
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p2

Figure 7.B.3: Relative positions of H(c1, c4) and H(c2, c3).

Hence, H(c2, c3) and H(c1, c4) cannot intersect twice (otherwise the same hyper-
surface would be above the other one both on the left part and the right part of
the figure).

• Let us finally focus on the case whereH(c1, c3) andH(c2, c4) are horizontal and in-
tersect twice. They are necessarily both of type H+ or both of type H− (otherwise,
they cannot intersect in two different points). We will show that none of these
two cases is possible - in other words, that we cannot have H(c1, c3) and H(c2, c4)
intersecting twice.

1. Firstly, let us assume that H(c1, c3) and H(c2, c4) are of type H−:
We recall that y2 > {y1, y4} > y3 and {x1,x3} < {x2,x4} (see Equations 7.5 and
7.4). However, the information on the type of H(c1, c3) and H(c2, c4) allows
us to complete these partial orders on the coordinates of the candidates:
using the classification of hypersurfaces (see Figure 7.2.5), we must have
x3 < x1 and x4 < x2 if the hypersurfaces are of type H−. Put together, we
have x3 < x1 < x4 < x2. Moreover, the necessary order on y-coordinates is
y2 > y1 > y4 > y3 - if the order would be y2 > y4 > y1 > y3, H(c1, c3) and
H(c2, c4) would not intersect as any point of H(ci , cj ) has its y-coordinate

in [xi ,xj ]. Let we denote by U ij = (U ij
x ,U

ij
y ) (resp. Lij = (Lijx ,L

ij
y )) the up-

per extreme point (resp. the lower extreme point) of the middle-segment
of H(ci , cj ). As H(c1, c2) and H(c3, c4) are of type V − and intersect twice,
the given orders on both x-coordinates and y-coordinates of candidates im-
plies that U12

x < U34
x and L12

x < L34
x (see Figure 7.B.2). When we express the
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segment extremities positions using the candidates coordinates, these two
inequalities rewrite, after simplifying, as follows:

x2 + x1 + y1 − y2 < x4 + x3 + y3 − y4

x1 + x2 + y2 − y1 < x3 + x4 + y4 −w3

If we sum the both inequalities, we get:

2(x4 + x3) > 2(x1 + x2),

in other words,
x4 − x1 > x2 − x3.

But this is in contradiction with the order on x-coordinates which states that
x3 < x1 < x4 < x2. Therefore, the hypersurfaces H(c1, c3) and H(c2, c4) cannot
be of type H−.

2. Let us now assume that H(c1, c3) and H(c2, c4) are of type H+:
This case is illustrated in Figure 7.B.4. Note that the “upper” horizontal part
ofH(c1, c3) (starting at the x-position x3) is below the line (c1,L

12), as y3 < y1.
Similarly, the lower horizontal part of H(c2, c4) (ending at the x-position x2)
is above the line (U34, c4) as y2 > y4. If H(c1, c3) and H(c2, c4) intersect, then
H(c1, c3) is above H(c2, c4) in the central part, see Figure 7.B.4.
Then in the (non empty) rectangle delimited by the 4 hypersurfaces (in the
center of Figure 7.B.4), we have: c1 > c2, c4 > c3, c2 > c4 and c3 > c1, which
yields c1 > c2 > c4 > c3 > c1, a contradiction.

To conclude, we have proved by contradiction that H(c1, c3) and H(c2, c4) can nei-
ther be both of type H+ nor both of type H−. Therefore, they cannot intersect
twice.
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Figure 7.B.4: The case where H(c1, c3) and H(c2, c4) are horizontal and intersect twice.
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7.C Missing proofs of Section 7.6

7.C.1 Missing part in the proof of Theorem 7.6.1

Explicit construction of a family of profiles with Θ(m4) distinct preferences

Proof. We set c1 = (0,0) and c2 = (1,2). According to the classification of hypersurfaces,
H(c1, c2) is horizontal (more precisely of type H−). We then place c3 in such a way that
both H(c1, c3) and H(c2, c3) are vertical. To do so, we need to fix the values of x3 and y3
(coordinates of c3) such that:

|x1 − x3| > |y1 − y3|
and |x2 − x3| > |y2 − y3|.

This can be done by setting, for instance,

y3 =
y1 + y2

2

and
x3 = max{x1,x2}+ 2|y1 − y2|

We check that, indeed, for i ∈ {1,2}, we have

|x3 − xi | = |max{x1,x2} − xi + 2|y1 − y2| |

≥ 2|y1 − y2| >
1
2
|y1 − y2| ≥ |

y1 + y2

2
− yi | = |y3 − yi |

where the strict inequality follows from the fact that y1,y2. Geometrically, choosing y3
between y1 and y2 ensures that |y3 − yi | is upper bounded by |y1 − y2|. To guarantee that
|xi − x3| > |yi − y3|, it is then sufficient that x3 is taken large enough - here, the distance
from max{x1,x2} (and so in particular from both x1 and x2) to x3 is greater than the
above mentioned upper bound |y1 − y2|.
We will now generalize the idea: we want H(c2k , ci) to be horizontal for all k ≥ 1, i < 2k,
andH(c2k+1, ci) to be vertical for k ≥ 1, i < 2k+1. Let us detail only the case of horizontal
hypersurfaces (the case of vertical ones being symmetric).
We set

x2k =
max
i<2k
{xi}+ min

i<2k
{xi}

2

and

y2k = max
i<2k
{yi}+ 2

(
max
i<2k
{xi} −min

i<2k
{xi}

)
.

The geometrical intuition remains the same - as we need, for all i <2k, |x2k−xi | < |y2k−yi |,
we choose the value of x2k so that |x2k−xi | is upper bounded by maxi<2k{xi}−mini<2k{xi},
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and we chose then y2k in such a way that |y2k − yi | is greater than this upper bound.
Formally, we have:

|y2k − yi | =
∣∣∣∣∣max
i<2k
{yi}+ 2

(
max
i<2k
{xi} −min

i<2k
{xi}

)
− yi

∣∣∣∣∣
=

∣∣∣∣∣max
i<2k
{yi} − yi + 2

(
max
i<2k
{xi} −min

i<2k
{xi}

)∣∣∣∣∣
≥ 2

(
max
i<2k
{xi} −min

i<2k
{xi}

)
>

1
2

(
max
i<2k
{xi} −min

i<2k
{xi}

)
≥

∣∣∣∣∣∣∣∣
max
i<2k
{xi}+ min

i<2k
{xi}

2
− xi

∣∣∣∣∣∣∣∣ = |x2k − xi |

Therefore we have |y2k − yi | > |x2k − xi |, so H(c2k , ci) is horizontal.
Analogously, we set

y2k+1 =
max
i<2k+1

{yi}+ min
i<2k+1

{yi}

2
and

x2k+1 = max
i<2k+1

{xi}+ 2
(

max
i<2k+1

{yi} − min
i<2k+1

{yi}
)
.

We prove as above (just by swapping the roles of x and y) that, in this case, the hyper-
surfaces H(c2k+1, ci) are all vertical.

For k ≤ m, we denote by Hk (resp. Vk) the number of horizontal (resp. vertical)
hypersurfaces after adding the k-th candidate.

As all horizontal hypersurfaces intersect all vertical hypersurfaces, these intersec-
tions already define (Hk + 1)(Vk + 1) different areas (with distinct preferences). Hence,
denoting by Am the number of areas after adding the k-th candidate, we have Am ≥
(Hm + 1)(Vm + 1).

Each time we add a candidate ck , we obtain k − 1 new hypersurfaces H(c1, ck), . . . ,
H(ck−1, ck), all horizontal if k is even, or all vertical if k is odd. Consequently:

• if k is even, Hk =Hk−1 + (k − 1) and Vk = Vk−1;

• if k is odd, Hk =Hk−1 and Vk = Vk−1 + k − 1.

We can deduce that Hm∈Θ(m2) and Vm∈Θ(m2), and thus Am∈Ω(m4).
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Final thoughts
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Chapter 8

Conclusion

All (good) things come to an end, so does this thesis. But it is well-known that every
end is a new beginning, and every solved problem raises new questions.

We started this thesis with a basic opening problem - there was a group of friends
discussing who they are going to vote for in the upcoming parliamentary election.1

This example brought us to the social choice theory, a field which studies, among other
things, the problems connected to the decision making where a group of individuals
have to choose together among a set of available alternatives.

We have seen that even though some questions and problems tackled by social choice
can seem very natural and even “basic”, the solution is often not obvious to find from
a theoretical or computational point of view. To circumvent computational difficul-
ties or impossibility results and paradoxes, an assumption of a common underlying
structure in the preferences is often made. In this regard, we have presented some
of the most common preference structures (namely, single-peaked preferences, single-
crossing preferences and 1-Euclidean preferences), as well as some of their most im-
portant theoretical and computational interests.

Before the final goodbye, let us recall the main results of this thesis and discuss the
research directions that open to us. This conclusion is organized as follows: there are
three sections, one for each part of the thesis. We recall very briefly the background of
each part, as well as our main contributions, at the beginning of the corresponding sec-
tion. Our aim here is to help the reader to get back to the swing of things by refreshing
her/his memory. If needed, more details can be found in the corresponding parts and
chapters. On the other hand, the reader is free to skip these two paragraphs if (s)he
remember perfectly the corresponding part.

1By the way, I’m writing these lines nearly 10 years later, and about a week before the Czech presiden-
tial elections; my deer friends from the opening example are spread all over Europe and... I still do not
know who I am going to vote for!
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The rest of each section is then dedicated to some possible research directions and
open questions arising from our works.

8.1 Looking back to Part I

Reminder of the content Part I is an opening part. Chapter 1 is purely introduc-
tory - its aim is to introduce the notion and notations used in the remainder of the
thesis. Also, it introduces formally the domains of single-peaked, single-crossing and
1-Euclidean preferences, and provides a state of the art.

Chapter 2 is there to deepen the state of art from the previous chapter by focusing
on the relations between the three domain restrictions mentioned above. The starting
point of this chapter is the fact that the 1-Euclidean domain is undoubtedly less un-
derstood (from the structural point of view) than the single-peaked domain and the
single-crossing domain. Several works shed light on the structural comprehension of
1-Euclidean domain. In particular, it is well-known that 1-Euclidean preferences are
both single-peaked and single-crossing. Therefore, the understanding of the domain of
preferences that are both single-peaked and single-crossing (denoted by SPSC) seems
essential for a better understanding of the 1-Euclidean domain. Indeed, the SPSC do-
main is quite well understood. In particular, Elkind et al. (2020) give a characterization
of the SPSC domain. By combining the results of Elkind et al. (2020) with the technique
of Bredereck et al. (2013) (based on works of Abello (1991) and Galambos and Reiner
(2008)) describing how to enumerate all single-crossing profiles, it is in particular pos-
sible to enumerate all maximal SPSC profiles w.r.t. a given single-peaked axis A.

8.1.1 1D-Euclidean preferences: towards a characterization

At the end of Chapter 2, we have enumerated numerically all SPSC profiles (up to
renaming of candidates) on at most 8 candidates. We have then checked (by using
linear programming) for each of these profiles whether or not it was 1-Euclidean. These
results seem to reveal that a very small proportion of SPSC profiles are actually 1-
Euclidean. For completeness, and to avoid the reader to return back to Chapter 2, we
recall these results in Table 8.1.1.

m 4 5 6 7 8

SP-SC 2 12 286 33 592 23 178 480
Euclidean 2 12 168 (59 %) 4680 (14%) 229 468 (1%)

Table 8.1.1: The number of maximal SPSC, resp. 1-Euclidean, profiles on m candidates
(w.r.t. a given axis A).

We recall that Chen et al. (2017) proved that the 1-Euclidean domain cannot be char-
acterized by finitely many forbidden minors, and asked whether or not there is a good
characterization of this domain, i.e., a polynomial time algorithm that would identify
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whether or not a given preference profile contains a forbidden minor.

We have investigated this question, and we came with a conjecture stating that the
problem of deciding whether or not a given maximal preference profile is 1-Euclidean
can be reduced (in polynomial time) to a problem of cycle detection in a directed
graph.2

A very natural, short-term future work, would be to prove (or disprove) the conjec-
ture. We explain here how the conjecture was found, and we provide some numerical
results supporting it.

The starting point comes from the paper by Doignon and Falmagne (1994). They
have noticed that given a maximal SPSC profile P single-peaked w.r.t. an axis A =
c1 ◁ c2 ◁ . . . ◁ cm, any mapping f providing a 1-Euclidean representation of P, if it exists,
verifies:

f (c1) < f (c2) < . . . f (cm).

In other words, the candidates are placed on the line in the single-peaked order. Any
voter v such that f (v) < f (c1)+f (c2)

2 has the preference >v= (c1, c2, . . . , cm). Moving towards
the candidate c2, the voter crosses at some point the bisector between the two candi-
dates c1 and c2 (denoted here by B(c1, c2)). As a consequence, her preference becomes
(c2, c1, c3, . . . , cm) - the candidates c1 and c2 are swapped. Moving more and more to the
right, another bisector will be crossed and hence another pair of candidates swapped -
see Figure 8.1.1 for an illustration (with m = 3). Therefore, deciding whether a profile
is (maximal) 1-Euclidean boils down to finding an order on the candidates (i.e., an axis)
as well as a single-crossing order on the preferences, and then determining if there are
possible values f (c1), f (c2), . . . , f (cm) inducing the order of bisectors corresponding to
the single-crossing order.

Indeed, the single-crossing order <O gives us an order on consecutive swaps of candi-
dates. If a pair of candidates {ci , cj} is swapped before {ck , cl} in <O, then the bisector
B(ci , cj ) must lie on the left of the bisector B(ck , cl). More formally, for two pairs of
candidates {ci , cj} and {ck , cl}, we have the following constraint:

f (ci) + f (cj ) < f (ck) + f (cl) iff {ci , cj} <O {ck , cl}.

Doignon and Falmagne (1994) show that the profile is 1-Euclidean iff the system of in-
equalities induced by all couples of pairs {ci , cj} and {ck , cl} (together with the constraint
f (c1) < f (c2) < . . . f (cm)) has a solution. Scott (1964) provides a general mathematical
(namely, linear-algebraic) technique allowing to decide whether or not such a system
has a solution. We will now investigate the question from a “structural” point of view.

2Note that the restriction to maximal profiles is possible thanks to the results of Doignon and Falmagne
(1994) and their direct corollaries.
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c1 c2 c3

B(c1, c2) B(c1, c3) B(c2, c3)

c1 > c2 > c3 c2 > c1 > c3 c2 > c3 > c1 c3 > c2 > c1

Figure 8.1.1: An example of a Euclidean embedding with respect to the axis A = c1 ◁c2 ◁
c3.

Towards the conjecture Let us consider a maximal SPSC profile P (w.r.t. A) with the
following order of swaps (induced by the single-crossing order):

O = (c1c2, c1c3, c2c3, c1c4, c2c4, c3c4, c1c5, c2c5, c1c6, c3c5, c4c5, c2c6, c3c6, c4c6, c5c6) (8.1)

The first preference of this order is >o1
= (c1, c2, . . . , cm). The second preference is >o2

=
(c2, c1, c3, . . . , cm) as c1 and c2 are swapped. The third preference is >o3

= (c2, c3, c1, c4, . . . , cm)
as c1 and c3 are swapped, and so on to the last preference >om= (cm, cm−1, . . . , c1).

The profile P is not 1-Euclidean, as the system of inequalities given by Doignon and
Falmagne (1994) has no solution. Indeed, let us suppose for contradiction that there
exists a 1-Euclidean representation f of P. In particular, it verifies the three following
inequalities (the corresponding arcs are in red in Figure 8.1.2):

f (c2) + f (c3) < f (c1) + f (c4), as B(c2, c3) is on the left of B(c1, c4). (8.2)

f (c1) + f (c6) < f (c3) + f (c5), as B(c1, c6) is on the left of B(c3, c5). (8.3)

f (c4) + f (c5) < f (c2) + f (c6), as B(c4, c5) is on the left of B(c2, c6). (8.4)

If we sum these inequalities, we obtain 0 < 0. In other words, they cannot all hold to-
gether, so the profile is not 1-Euclidean. Let us now define a graph denoted by Cm(A,O)
(an example relative to the order O given in 8.1 and axis A = c1 ◁ c2 ◁ . . . ◁ cm is given in
Figure 8.1.2; the arcs corresponding to the inequalities 8.2 - 8.4 are given in red):
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Definition 8.1.1: Graph Cm(A,O)

Let m be the number of candidates, O a single-crossing order and A = ci1 ◁ ci2 ◁
. . . ◁ cim (with {i1, i2, . . . , im} = {1,2, . . . ,m}) an axis. We define a graph Cm(A,O) as
follows:

• There is one vertex for each couple of candidates cik , cij such that cij ◁ cik .
This vertex is denoted by ikij .

• There is an arc (ikij , ik+1ij ) for any two vertices ikij and ik+1ij .

• There is an arc (ikij+1, ikij ) for any two vertices ikij+1 and ikij .

• Each couple of swaps cij cik and cipciq (with cij ◁ cip ◁ ciq ◁ cik (resp. cip ◁ cij ◁
cik ◁ ciq ) such that cij cik is before cipciq in O, there are two arcs (ikiq, ipij ) and
(ikip, iqij ) (resp. (ij ip, iqik) and (ikip, iqij )) in Cm(A,O).

A Curious Tortoise Intervention

The Definition 8.1.1 is given for an arbitrary axis on the set of candidates
{c1, c2, . . . , cm}. However, we have assumed that A = c1 ◁ c2 ◁ . . . ◁ cm, which
simplifies the notations: the definition rewrites as follows:

• There is one vertex for each couple of candidates cj , ci such that i < j.
This vertex is denoted by ji.

• There is an arc (ji, (j + 1)i) for each i < m− 1 and j > i.

• There is an arc (j(i + 1), ji) for each i < m− 1 and j > i + 1.

• Each couple of swaps cicj and ckcl with i < k < l < j (resp. k < i <
j < l) such that cicj is before ckcl in O, there are two arcs (jl,ki) and
(jk, li) (resp. (ik, lj) and (jk, li)) in Cm(A,O).

This graph can be interpreted as follows: each vertex ji corresponds to the quantity
f (cj )− f (ci) for any possible representation function f . There is an arc from ji to j ′i′ if
f (cj )− f (ci) < f (cj ′ )− f (ci′ ).

Indeed, with this interpretation (and still under the assumption that A = c1◁c2◁. . .◁cm):

• The first set of arcs simply states that for any j > i, f (cj )− f (ci) < f (cj+1)− f (ci), in
other words, f (cj ) < f (cj+1).

• The second set of arcs is also implied by the (set of) condition(s)

f (c1) < f (c2) < . . . f (cm)
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It actually states that for any j > i + 1, f (cj )− f (ci+1) < f (cj )− f (ci); in other words,
f (ci) < f (ci+1).

• Finally, if the swap cicj is before ckcl in O, we have the bisector B(ci , cj ) on the left
of B(ck , cl). This is written ci + cj < ck + cl . If i < k < l < j, this can be rewritten as
cj − cm < ck − ci and cj − ck < cl − ci , which yields two arcs from the last point of
Definition 8.1.1 (the case of k < i < j < l is treated similarly).

21 31 41 51 61

32 42 52 62

43 53 63

54 64

65

Figure 8.1.2: O is a single-crossing order given in 8.1, the axis A = c1 ◁ c2 ◁ . . . ◁ cm).
C6(A,O) contains a circuit. We note that for “diagonal” arcs, only the arcs correspond-
ing to consecutive couples of candidates in O are given - the others can be obtained by
transitive closure. For more readability, diagonal arcs not important for this example
are greyed.

We can now go back to the profile P and build its corresponding graph Cm(A,O) (see
Figure 8.1.2). If we focus on the three “problematic” constraints 8.2-8.4, we notice that
they are together responsible for a circuit in Cm(P ). Indeed, it is not difficult to see
that if there is a circuit in Cm(A,O), then the order of bisectors induced by O is not
feasible (as a circuit in Cm(A,O) can be interpreted as a circuit in constraints needed to
be verified by any representation function f ), and hence the profile is only SPSC but not
1-Euclidean. The question is now whether this results is just a new, stronger necessary
condition for a profile to be Euclidean, or if this condition is actually sufficient.3 We
conjecture that this condition is sufficient:

Conjecture 8.1.1

Let P be a maximal SPSC profile on m candidates w.r.t. an axis A and an order
of swaps (induced by the single-crossing order) O. This profile is Euclidean if
and only if the corresponding graph Cm(A,O) is acyclic.

3Indeed, intuitively, one can imagine that the order of bisector might involve a more complicated con-
straints that can not be expressed by a simple circuit.
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Numerical results We performed numerical experiments in order to support our con-
jecture, or to find a counter-example. To do so, we reused our simple code designed in
Chapter 2 to enumerate all SPSC profiles.

For m ≤ 7, we have listed all SPSC profiles. For each of them, we have performed
the cycle detection in Cm(A,O) as well as a linear programming resolution. Therefore,
we have proved experimentally that the conjecture holds for m ≤ 7.

For m = 8, although we were able to list all SPSC profiles (we recall that there are 23
178 480 such profiles), the circuit detection approach was very time consuming. Our
code was originally designed as a basic tool to help us understand the relation between
the single-peaked domain, the SPSC domain and the 1-Euclidean domain. Therefore,
it was not optimized to perform serious numerical experiments.

A Curious Tortoise Intervention

In other words, the code is as slow as a tortoise... But I have nothing to do
with it !

While the code can be clearly optimized to check if the conjecture also holds for m = 8,
it seems quite tricky to have analogous experimental results for m > 8. To get more
insights, we have performed more experiments on randomly generated SPSC profiles
on m candidates with m varying between 8 and 13. We have proceeded as follows: We
first set m at random, uniformly between 9 and 13. Then we built a random maximal
SPSC profile on m candidates, and the corresponding graph Cm(A,O). Finally, we have
checked if Cm(A,O) contained a circuit, and we compared with the result of linear
programming. We have performed 1 000 000 tests and observed that the conjectured
held for all of them. Even though 1 000 000 tests is clearly not enough (let us recall that
it represents about 4% of all SPSC profiles on 8 candidates), the results are encouraging,
and it seems that the conjecture is worth further study.

A Curious Tortoise Intervention

Before ending this section, let us discuss some ideas about how to prove
the conjecture. A natural idea is to make a proof by construction. Let us
consider a SPSC profile with respect to an axis A and an order of swaps
(induced by the single-crossing order) O. If Cm(A,O) does not contain a
circuit, we can find a topological order on its vertices. Quite a straightfor-
ward idea would be to order the quantities f (cj ) − f (ci) where j > i (i.e.,
the vertices of Cm(A,O)), and then somehow define the values of f (with-
out using linear programming) in such a way that all the quantities fit
together while respecting the fixed order. However, the topological order
on vertices of Cm(A,O) is not necessarily unique. The following example
shows that we cannot just take any of them - actually, as we will see, the
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topological order adds more constraints on the values of f , and these may
not be feasible. To this purpose, let us consider a preference profile P that
is maximal single-peaked single-crossing and induces the following order
O of swaps:

O = (c1c2, c1c3, c2c3, c1c4, c2c4, c3c4, c1c5, c1c6, c2c5, c2c6, c3c5, c3c6, c4c5, c4c6, c5c6)

The corresponding graph Cm(A,O) does not contain a circuit, so it is Eu-
clidean (we recall that we have proved the conjecture numerically for
m ≤ 7). Let us build a topological order on vertices of Cm(A,O). For in-
stance, we can take the following order T :

T = (65,32,21,31,54,43,42,41,64,53,63,52,62,51,61)

However, there is no representation f respecting this order. In fact, we
have:

f (c3)− f (c2) > f (c6)− f (c5)

and
f (c4)− f (c3) > f (c5)− f (c4).

If we sum up these two conditions, we obtain

f (c4)− f (c2) > f (c6)− f (c4).

But the vertex 64 is ordered after the vertex 42 in T . Thus, T is not feasi-
ble. We can check that there is another feasible topological order T ′ that
consists simply in putting 64 just before 42:

T ′ = (65,32,21,31,54,43,64,42,41,53,63,52,62,51,61)

Let us fix the values of f in the most naive and straightforward way
(that obviously does not work all the time, as we will discuss later):
The first element of T ′ is 65 - we can hence fix the value f (c6) − f (c5)
arbitrarily, let say, f (c6) − f (c5) = 1. Then we have f (c3) − f (c2) > 1, so
we can choose, for instance, f (c3) − f (c2) = 2. Using the same strategy,
we fix f (c2) − f (c1) = 3. The next vertex is 31, and from the values fixed
so far, we have f (c3) − f (c1) = f (c3) − f (c2) + f (c2) − f (c1) = 5. We fix
then f (c5) − f (c4) = 6, and f (c4) − f (c3) = 7. However, this last choice
is problematic - the next vertex is f (c6) − f (c4), and from previously
fixed values, we have f (c6) − f (c4) = 7. We need hence to come back and
change the value of f (c4) − f (c3) to, for instance, 6.5. We see then that
all remaining values can be inferred from previous ones, and that the
order is respected. Moreover, if we put f (c1) = 0, we obtain the following
values:
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f (c1) = 0, f (c2) = 3, f (c3) = 5, f (c4) = 11.5, f (c5) = 17.5, f (c6) = 18.5.

Note that from there, all bisectors can be drawn up, which will divide the
real line into m(m−1)

2 − 1 segments and two half-lines. For each voter v, we
can then identify her corresponding segment (resp. half-line), and fix f (v)
within it.
This example raises two (main) questions:

1. Can we characterize feasible (resp. non-feasible) topological orders?

2. Once the topological order is fixed, how to obtain values of f on the
set of candidates? Actually, in the example of T ′, we were very lucky
to fix the values (nearly) iteratively. However, there was one case
where the value of f (c4)− f (c3) was conditioned by the value f (c6)−
f (c4); this second value came after the first one in the topological
order, but was already determined by the values f (c6) − f (c5) and
f (c5)− f (c4) (coming both before 43 in T ′). We were forced to make
a step back to correct the value of f (c4)− f (c3) in function of f (c6)−
f (c4). Can we bound the number of such steps back? Or, better, can
we prevent them?

Note that, in particular, a positive answer to both these questions would
yield a combinatorial algorithm for recognizing 1-Euclidean preferences.

8.2 Looking back to Part II

Reminder of the content Even though single-peaked preferences guarantee many
good theoretical and computational properties, they have an important drawback: they
are very unlikely to appear in real-world applications if the preferences are not for nu-
merical values. That is why we try to make the structure less restrictive. Even though
the majority of desirable properties are lost, the knowledge of an underlying structure
is still interesting, in particular for data analysis purposes.

In this part, we proposed two different extensions of single-peaked preferences. In
Chapter 3, it is the structure of the axis itself that is relaxed: an axis is seen as a graph
(more precisely a path), and we introduce the notion of the single-peakedness with re-
spect to a graph as follows: a preference profile is single-peaked with respect to a given
graph G if each of its preferences is a traversal of G. Trivially, any profile is single-
peaked with respect to the complete graph. However, such a result is useless for data
analysis purposes. Indeed, the sparser the graph is, the more structural information it
provides. Two notions of sparsity were introduced in this chapter, and we looked for
solutions minimizing (one of) them.
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In Chapter 4, we studied the so-called nearly single-peakedness. This time, we kept
the axis structure, but we allowed the preferences to slightly deviate from it if nec-
essary. A distance measure needs then to be introduced to evaluate the distance of a
profile from a given axis. In particular, given a preference profile, we looked for an
axis that minimizes this distance. Several measures of single-peakedness of a profile
exists in the literature. We proposed a new measure of single-peakedness called k-
forbidden triple single-peakedness (FT) that directly follows from the very definition of
Black’s single-peakedness condition.

Our contribution In Chapter 3, we proposed Integer Linear Programming formu-
lations (ILP) finding a compatible graph that minimizes the number of edges (resp.
the maximum degree of a vertex). We show that both corresponding problems are NP-
hard. Nevertheless, if an optimal solution is a tree (resp. a path or a cycle for the second
ILP), we prove the integrality of any optimal basic solution of the linear program ob-
tained by relaxing the integrality constraints. This provides an alternative polynomial
time recognition algorithm for preferences single-peaked on a tree (resp. a path or a
cycle). We also provide a polynomial time recognition algorithm for preferences single-
peaked on a pseudotree. We performed numerical experiments on both real-world and
synthetic elections, in order to evaluate the relevance and efficiency of these methods
in practice.

As said above, a new measure of single-peakedness is proposed in Chapter 4. In or-
der to compare it to existing measures of nearly single-peakedness, we undertook an
axiomatic study to identify some theoretical properties that are (or not) guaranteed by
this measure. In particular, it allowed us to formalize some differences between this
measure, k-voter deletion single-peakedness and k-global swap single-peakedness.

Regarding computational aspects, we proved that, as for most of the proposed mea-
sures in the literature, it is NP-hard to find an axis minimizing the k-forbidden triples
measure. Nevertheless, we proposed an ILP formulation of this problem which reveals
efficient in practice. We performed various numerical tests on both real-world and syn-
thetic data to evaluate the efficiency of the FT measure in practice, and also to provide
a comparison with some other notions of nearly single-peakedness.

8.2.1 Single-peaked preferences on an arbitrary graph: combining mini-
mization criteria, the likelihood of solutions, and even more

The approach introduced in Chapter 3 raises several questions. Most of them are re-
lated to the interpretability of the results - indeed, we have emphasized that identify-
ing the underlying structure of a given profile may be useful for data analysis. Let us
now discuss some natural issues, and propose therefore several possible, mainly short-
term/middle-term, research directions:
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How do we choose the minimization criterion?
We propose in Chapter 3 two different measures of graph sparsity that we would like
to minimize - namely, the number of edges and the maximum vertex degree. However,
we cannot simply state that we will minimize both of them at the same time, as these
criteria can be antagonist. Mathilde has already noticed in Chapter 3 that, unsurpris-
ingly, different minimization criteria yield different solutions, and that is not always
evident which minimization criterion to prefer.

For instance, one can argue that minimizing the number of edges should be preferred,
as it is a very natural and easy to interpret measure. However, one may also argue that
the maximum degree minimization somehow takes into account the minimization of
number of edges. Indeed, the sum of degrees of all vertices equals twice the number of
edges. In particular, if we havem vertices and a maximal degree equal to k, the number
of edges is upper bounded by km

2 . On the other hand, minimizing the number of edges
does not provide any guarantee on the maximal vertex degree. From this point of view,
the maximum degree minimization might seem a better criterion.

From another point of view, the minimization of the number of edges guarantee to
return an acyclic solution if it exists. This can be a strong argument to promote this
criterion, as several desirable theoretical and computational properties are guaranteed
for acyclic graphs - for instance, there will always be a Condorcet winner.

In practice, there is not a clear answer as to which criterion is better. For instance,
we can imagine a profile compatible with a star graph, i.e., a tree T = (VT ,ET ) for which
there exists a vertex c ∈ VT such that {c,c′} ∈ ET for each c′ ∈ VT . We have already seen
that the only information provided by this graph was that the star center (i.e., the vertex
c) was ranked first or second by any voter. However, we do not have any information on
relations between the others candidates. If we allow to add some more edges, we can
obtain a more “decentralized” graph providing structural information on more candi-
dates. More generally, the minimization of the maximum degree will tend to give more
“equitable” solutions (in the sense that each vertex will have approximately the same
degree), while the minimization of the number of edges may tend to identify some
“hub” vertices with a strong degree that will ensure the connection of many (possibly
“isolated”) vertices.

Depending on the context, one or the other solution can be preferred. For instance,
the minimizing the maximum degree may be more convenient for a recommendation
system, while minimizing the number of edges can be suitable for an election context
(as, typically, the “central” vertices will correspond to very popular candidates).

It would be interesting to deepen this question and to study if there are some prob-
lems for which one of the criteria seems more suitable. Alternatively, we could try to
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Figure 8.2.1: There are three graphs minimizing the number of edges compatible wtih
the profile P.

combine both criteria, which would yield multidimensional optimization problems, or
minimizing the number of edges with an upper bound on the degree.

How to decide which solution is “the best” if several solutions exist?
Let us suppose that we have a profile of preferences, and we want to find a graph with
respect to which this profile would be single-peaked. Assume that we have answered
the previous question and chose the most suitable criterion for our problem. For in-
stance, let us assume that we minimize the number of edges, and that we have the
following profile P of 4 preferences over 5 candidates:

>1: (c1, c2, c3, c4, c5)

>2: (c5, c1, c2, c3, c4)

>3: (c5, c4, c1, c2, c3)

>4: (c3, c2, c1, c5, c4)

Any graph compatible with P contains the following necessary edges: {c1, c2}, {c1, c5},
{c2, c3} and {c4, c5}. Moreover, the vertex c4 needs to be connected to one of the vertices
c1, c2 or c3 so that the definition of single-peakedness on a graph is satisfied. Put to-
gether, there are 3 possibles graphs G1, G2, G3 with respect to which P is single-peaked
- see Figure 8.2.1.

But each of these graph provides a different structural information. Our preference
profile can actually be seen as a statistical sampling of a population sharing a common
hidden structure. More visually, we can imagine that there is a “hidden” graph (here
G1, G2 or G3) from which each preference ranking was generated as a random traver-
sal. But we only have access to the resulting profile P, and we would like to learn the
structure behind, i.e., to identify the most likely graph from which P was generated.4

This problem raises in particular two questions that yield an interesting research direc-

4Note that a similar problem was recently studied by Sliwinski and Elkind (2019) for the profiles
single-peaked w.r.t. trees.
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Figure 8.2.2: An illustration of a graph with fractional edges. The dashed edges have a
capacity 0.5, while the full edges have a capacity 1.

tion: first, we need to determine the set of all possible solutions. For instance, we have
seen in the above example that there were three possible graphs minimizing the num-
ber of edges. Second, we need to evaluate, for each of these solutions, the likelihood
that this graph has generated a given profile. In other words, the “true” solution would
be a graph G that maximize the probability to obtain P if we generate randomly the
preferences single-peaked with respect to G.

Continuous relaxation of ILP formulations: interpretation of fractional edges

We have defined the single-peakedness on an arbitrary graph by using the notion of
traversals of graphs. In particular, given a preference (ci1 , ci2 , . . . , cim), then for each cik ,
there must be an edge connecting it to one of its predecessors ci1 , ci2 , . . . , cik−1

. The edges
are seen here as binary objects - each edge is or is not in the graph.

However, it seems possible to allow the presence of fractional edges by giving them
a suitable interpretation. In a continuous version, each edge has a capacity between 0
and 1, and (ci1 , ci2 , . . . , cim) is a traversal of the graph if for each cik , the sum of the capaci-
ties of edges {cij , cik }with j < k is greater than or equal to 1. For instance, let us consider
the graph G given in Figure 8.2.2. The preference (c1, c5, c4, c2, c3) is a traversal of G in
a fractional sense: even if the candidate c2 is not connected to any of its predecessors
(namely, c1, c5, c4) by an integral edge, we have x12 = x24 = 0.5, so x12 + x24 + x25 ≥ 1 -
the sum of capacities of edges {c1, c2}, {c2, c4} and {c2, c5} is greater than or equal to 1.

In other words, there can be synergies between several edges. In this example, c2 cannot
be directly connected to either c1 or c4. However, having both c1 and c4 in the prefer-
ence prefix allows us to connect c2. A natural question that is worth investigating is
whether there is any social choice context in which this interpretation could be useful?

Note also another particularity of fractional edges. They somehow add a kind of “one-
way” neighbourhood relationship: for instance, if the first and second most preferred
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candidates of a given voter v are c2 and c3, her third most preferred candidate can
be c1. However, conversely, if the most preferred candidate of another voter v′ is c1,
her second most preferred candidate can be neither c2 nor c3. We can once more ask
ourselves the question of whether this interpretation may reveal useful in some context.

An alternative interpretation of fractional edges consists in assuming that the proba-
bility of using an edge somehow involves its capacity. This could be used, for instance,
by a recommendation system. For illustration, let us consider that the preference struc-
ture is given by the graph G in Figure 8.2.2. Let us assume that there is a voter whose
most preferred candidate is c2. Strictly speaking, we should only recommend her the
candidate c3, as any (possibly fractional) traversal of G starting by c2 must have c3 in
second position. However, we could consider a variant in which c1 or c4 can also be pro-
posed to the voter, just with less probability than c3 - typically, we could recommend c3
with probability 0.5, or also c1 or c4, each with the same probability 0.25. Maybe this
kind of interpretation might provide a generalisation where the preference structure is
probabilistic and thus less restrictive?

What about partial preferences /preferences with ties?
The assumption that the preferences are strict complete orders is actually quite strong.
In practice, voters are rarely asked to give a complete ranking on the whole set of can-
didates. Worse, voters often do not know their complete preference - for instance, we
often have a precise idea about who is our most preferred candidate, and, on the other
hand, which candidate would be unacceptable to us. However, there may be several
candidates (typically in the middle of our ranking) who leave us indifferent. It may be
very difficult to rank them exactly, and if we are asked to do so, we may be tempted to
rank them more or less randomly, which will introduce noise disturbing the structure
recognition.

There are several possibilities to circumvent this issue. We propose here two possi-
bilities, and provide a brief discussion for each of them:

• We can ask the voters to only provide the top-orders: each voter will give a strict
incomplete ranking (ci1 , ci2 , . . . , cik ) on the set of candidates {c1, c2, . . . , cm}. Each
candidate c′ that does not appear in this top order is less preferred than any of
the candidates ci1 , ci2 , . . . , cik . However, the candidates that do not appear in the
top order are not comparable between them.

There are several issues to deal with. One of the most important issues is the
following one: while we can of course generalize the single-peakedness to sub-
sets of candidates by requiring each top order (ci1 , ci2 , . . . , cik ) to be a traversal of
a subgraph restricted to the set of vertices {ci1 , ci2 , . . . , cik }, the resulting graph on
the whole set of candidates may not be connected. An interpretation of such a
solution would be required. Note that the less candidates the voters rank in their
top orders, the more challenging it will be to build a graph providing a relevant
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information - for instance, if each voter gives only her most preferred candidate,
an empty graph will be compatible with the profile, but would not provide any
structural information.

• We can ask the voters to rank all candidates by allowing ties. Given a preference
>v with ties, we can enumerate a set of preferences > compatible with >v defined
as follows: c > c′ whenever c >v c′, and we can fix arbitrary c > c′ or c′ > c for any
tie c ∼v c′. For instance, there are two preferences >1 and >2 compatible with the
preference c1 >v c2 ∼v c3, namely c1 >1 c2 >1 c3 and c1 >2 c3 >2 c2. The notion of
single-peakedness on a graph can then be generalized as follows: a preference >v
(possibly with ties) is single-peaked with respect to a given graph G if there exist
a strict preference > (i.e., without tie) compatible with >v that is single-peaked
with respect to G.

Given a preference profile P = {>1,>2, . . . >m}, let us denote by Pi the set of prefer-
ences compatible with >i . A preference profile P is single-peaked with respect to
a given graph G if there exists a compatible profile P′ = {>′1,>

′
2, . . . ,>

′
m} with >′i∈ Pi

single-peaked with respect to G.

Obviously, the straightforward algorithm consisting in checking all compatible
profiles would be very computationally consuming: for instance, if we have a pro-
file of n preferences >1,>2, . . ., each of them containing a unique tie between a pair
of candidates, there are two compatible strict preferences for each >i . This yields
2n compatible profiles to check. Clearly, a more sophisticated method would be
needed to check whether a profile with ties is single-peaked with respect to a
given graph. While it seems to us that such a method could be found quite eas-
ily, this questions becomes a little bit harder when it comes to finding an optimal
graph (in terms of a given sparsity criterion).

8.2.2 Nearly single-peaked preferences on an arbitrary graph

The main motivation for introducing the notion of nearly single-peakedness can be
summarized as follows: the main problem of (generalized) single-peaked preferences
is that each voter must be perfectly compatible with the graph. Therefore, the voters
with very specific preferences force the presence of edges that are not necessary for the
majority of the population. In Chapter 4, we have tried to circumvent this problem
by introducing the notion of nearly single-peakedness. We have assumed that there is
a true hidden underlying structure, and that the preferences can be seen as its noisy
observations. More precisely, we have assumed that the underlying structure is an axis.

This idea can be generalized by supposing that the underlying structure can be an ar-
bitrary graph. In such a case, we tackle a multi-objective optimization problem, as our
aim is to minimize both the sparsity of graph (for instance, in terms of the number of
edges or the maximum vertex degree) and the distance of the profile from this graph.
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Obviously, these two criteria are in conflict: it will be necessary to make a trade-off
between the graph sparsity (i.e., the amount of structural information provided by a
solution) and the distance of the profile from the graph (i.e., the level of relevance of
the structure for a given profile).

This problem, combining both approaches studied in Part II, represents a promising
research direction which could possibly be useful, especially in real-world applications
(as, for instance, recommendation systems). Indeed, the assumptions that a profile is
single-peaked with respect to a very restrictive structure (as, for instance, an axis), and
that each preference is perfectly compatible with it, are too strong and hence unlikely
to be verified by a real-world preference profile.

8.3 Looking back to Part III

Reminder of the content In this part, we present another way to make classical do-
main restrictions “richer” in terms of expressivity. It consists in adding more dimen-
sions to the structure. We focus in this part on Euclidean preferences - more precisely,
we study multidimensional Euclidean preferences with respect to norms ℓ1, ℓ2 and ℓ∞,
mainly in the 2-dimensional case.

Our contribution In Chapter 5, we answered the open question of the complexity of
the Kemeny ranking problem. More generally, we showed that every weighted (bipar-
tite) tournament can be seen as the (weighted) majority graph of a 2-Euclidean pro-
file. Thus, essentially, hardness results for computational choice problems that can be
formulated on the (weighted) majority tournament are still true if preferences are 2-
Euclidean.

In Chapter 6, we proposed a heuristic algorithm for recognizing 2-Euclidean prefer-
ences with respect to the norm ℓ2. We recall that Peters (2017) showed that this prob-
lem is ∃R-hard. Several algorithms providing an approximate 2-Euclidean embedding
exist, but they often encounter the following problem: they tend to provide a degenerate
solution.

Our heuristic works in two steps. First, we check if necessary conditions to be 2-
Euclidean are fulfilled. If not, the profile is not 2-Euclidean, and we stop here. Oth-
erwise, it might be 2-Euclidean, and we try to “guess” a 2-Euclidean representation of
the profile. If a representation is not found within a given timeout, the profile remains
undecided.

The idea of this heuristic is obviously straightforward, and it is with no surprise that
its naive implementation provides very poor performance. Our main contribution con-
sists in developing an optimized version of this heuristic that can reasonably deal with
profiles up to 8 candidates. We could also get some theoretical insights into the 2-

260



Conclusion

Euclidean domain.

In Chapter 7, we studied 2-Euclidean preferences with respect to the norm ℓ1. We
recall that for d = 2, the notions of Euclidean profile with respect to the norm ℓ1 and
with respect to the norm ℓ∞ are equivalent. We then focused on geometrical properties
of 2-Euclidean representations with respect to the norm ℓ1, which yield several struc-
tural properties of this domain. Namely, we proved that any 2-Euclidean profile w.r.t.
the norm ℓ1 on 4 candidates contains at most 19 pairwise distinct preferences, and we
actually conjecture that there is a unique maximal profile on 4 candidates. We proved
that at most 4 candidates can be ranked last in a 2-Euclidean profile w.r.t. the norm ℓ1.
We generalized this result for d ≥ 2 - in such a case, there are at most 2d candidates
ranked last if the norm ℓ∞ is used, and 2d candidates ranked last if the norm ℓ1 is used.
We also pointed out some similarities and differences between 2-Euclidean preferences
w.r.t. the norm ℓ1 and 2-Euclidean preferences w.r.t. the norm ℓ2.

8.3.1 A heuristic algorithm for recognizing 2-Euclidean preferences with
respect to the norm ℓ1: further studies

The heuristic for recognizing 2-Euclidean preferences (with respect to the norm ℓ2)
studied in Chapter 6 could provide quite promising results. Several questions and pos-
sible improvements arise from this study. We now discuss some of them in more details.

Improving the NO-test of the heuristic
Our experiments show that improving the NO-certificates seems to be the key point
to address. Indeed, although we cannot prove it formally, we believe that most of the
profiles for which the algorithm cannot decide are actually not 2-Euclidean. Providing
tighter necessary conditions on being 2-Euclidean would help to identify these profiles.

In its present form, the heuristic uses two NO-certificates. The first one uses the well-
known formula (Bennett and Hays, 1960) giving the maximal number of pairwise dis-
tinct preferences in a 2-Euclidean profile in function of the number of candidates m.
Any profile containing more pairwise distinct preferences cannot be 2-Euclidean. In
practice, this NO-certificate is outperformed by the second NO-certificate based on the
characterization of 2-Euclidean profiles on 4 candidates (Kamiya et al., 2011). There
are actually 3 maximal 2-Euclidean profiles (w.r.t. the norm ℓ2) on 4 candidates; hence,
given a preference profile P, any restriction of P on four candidates must be a subpro-
file of one of the three maximal profiles.

A natural extension would be to use a characterization of 2-Euclidean profiles on 5
candidates. However, such a characterization does not yet exist in the literature. We
could experimentally conjecture that there are 543 maximal 2-Euclidean profiles on 5
candidates. Proving this conjecture seems to be a challenging question. Moreover, it
might be of limited interest for our heuristic: indeed, we have carried an additional ex-
periment where we have assumed that our experimentally found characterization held,
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turning it into a new NO-certificate (note that some 2-Euclidean input instances could
then possibly be wrongly identified as non 2-Euclidean, as some maximal profiles are
possibly missing in our list), and we did not observe any significant improvements of
the recognition rate.

Similarly, we could identify some forbidden minors on 6 candidates (we could prove
that these profiles on 6 candidates were not 2-Euclidean by using geometrical argu-
ments showing that there was no possible representation mapping). Several dozens of
such minors were turned into NO-certificates, but this did not improve significantly
the recognition rate as well.

Put together, it seems that the NO-certificates based on forbidden minors (or on the
characterizations of profiles with small number of candidates) are not efficient enough.
One should probably identify another type of (more “structural”) conditions to obtain
more tight certificates. This question seems difficult, although very stimulating.

Improving the YES-test of the heuristic
Although the YES-test of the heuristic was quite optimized (and seems indeed to pro-
vide decent performances, especially for profiles with up to 8 candidates), there is still
room for improvement.

From the theoretical point of view, one could reiterate the idea that for any represen-
tation function f and any candidate ci ranked last at least once, f (ci) is a vertex of the
convex hull of the set {f (c1), f (c2), . . . , f (cm)}. In practice, the positions of the candidates
ranked last at least once are chosen to form a polygon, and the remaining positions are
picked at random inside this polygon.

But if we denote by CL the set of candidates ranked last at least once, the same idea
applies on the profile PL restricted on C \CL. Therefore, we can do better than picking
the positions of candidates in C \CL at random - we can reiterate the process and de-
termine the set CL2

of candidates ranked last at least once in PL. The positions of the
candidates of CL2

will then be chosen to form a polygon (inside the “first” polygon with
vertices corresponding to the positions of the candidates of CL), and we will consider a
new profile restriction PL2

on the set CL \CL2
.

The idea of an “iterative” convex-hull seems promising, because we could see that the
heuristic performed very badly if all positions were picked at random, without taking
into account the size of convex-hull.

More generally, our code was developed and optimized to deal with profiles involv-
ing at most 9 candidates. Significant code changes would be required if we want to
make it operational for profiles involving more candidates.
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Improving the experimental studies and the interpretability of the results

We have performed numerical experiments on data sets available in Preflib (Mattei
and Walsh, 2013). Unsurprisingly, none of these instance has been recognized as 2-
Euclidean5. More precisely, the NO-test was in general sufficient to conclude that a
given instance were not 2-Euclidean. Consequently, these experiments do not allow us
to conclude about the performance of the YES-test on real-world instances. To improve
our study, we could consider as input subprofiles of Preflib instances. Indeed, with
smaller profiles, we have more chance to identify 2-Euclidean profiles. Moreover, we
have seen that our algorithm seems to struggle on profiles with about 10 voters and
10-20 candidates. Providing more instances of this size could possibly support this ob-
servation even more, or identify more precisely the range of values m and n for which
the algorithm struggles. Note that another main difficulty we encounter is that we do
not know if an input (real-world) profile is 2-Euclidean or not. Hence, if such a profile
remains undecided, there is no way to know if it is because of the NO-test that could
not be able to detect a non-Euclidean profile, or because of the YES-test that was not
able to find a convenient 2-Euclidean representation. Therefore, it is quite challenging
to independently evaluate the performances of the NO-test and the performances of
the YES-test.

Also, it would be meaningful to better position our heuristic with respect to multi-
dimensional unfolding algorithms (see for instance Busing et al. (2005)). Although this
issue may seem straightforward, it is not clear how it should be undertaken. Actually,
there are several algorithms that, given a preference profile, provide an approximate
2-Euclidean representation of it. Note that the starting point is not the same: actually,
these algorithms do not tackle the decision question of whether or not a given profile is
2-Euclidean. In particular, they do not allow to distinguish 2-Euclidean instances from
non-Euclidean ones (they are not guaranteed to return an exact representation when
the profile is 2-Euclidean), so we cannot define in a simple way a proper recognition
rate for them, and compare it with our (exact) method.

Last but not least, the question of interpretability of the representation returned by
the heuristic deserves attention. Given a 2-Euclidean profile, the heuristic returns a
random representation of it. In other words, different executions of the algorithm yield
different representations of the same profile. A natural question is whether all these
representations share some common structural aspects. For instance, we know that
in any representation f , each candidate ranked last at least once will lie on the convex
hull of the set {f (c1), f (c2), . . . , f (c3)}. Are there other theoretical/geometrical properties
verified by any possible representation? This challenging question should definitely be
studied: any element of answer would shed light into the structural comprehension of
the 2-Euclidean domain.

5except those that were trivially 2-Euclidean.
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8.3.2 d-Euclidean preferences with respect to the norm ℓ1 and ℓ∞

In Chapter 7, we studied 2-Euclidean preferences with respect to the norm ℓ1 and ℓ∞.
So far, this domain restriction has not received much attention in the literature. The
novelty of the topic opens hence several exciting, mostly middle-term or even long-
term research directions.

Characterization of profiles on 4 candidates: maximal profile size

A first natural step would be to prove the conjecture that there is a unique maximal
profile on 4 candidates under the norm ℓ1 (containing 19 pairwise distinct preferences).
We have conducted a preliminary study of this question. At first sight, the conjecture
could be proven numerically - one could enumerate all possible profiles of 19 (pairwise
distinct) preferences, and check (by using an ILP formulation) if each of this profile is
2-Euclidean with respect to the norm ℓ1. Putting aside computational aspects of this
method, there is a serious theoretical issue that makes this approach insufficient.

Actually, there is no reason that all (inclusion-wise) maximal 2-Euclidean profiles con-
tain the same number of pairwise distinct preferences. We recall that, for instance,
in case of single-peaked preferences, it is well-known that any maximal profile6 on m
candidates contains 2m−1 pairwise distinct preferences. Any maximal single-crossing
(resp. 1-Euclidean) profile on m candidates contains m(m−1)

2 + 1 pairwise distinct pref-
erences. Last but not least, Bennett and Hays (1960) provides a formula for the size of
any maximal 2-Euclidean profile with respect to the norm ℓ2. However, an analogous
result is not known for 2-Euclidean preferences with respect to the norm ℓ1.

This question seems quite challenging. In the case of the ℓ2 norm, we could enumerate
all 2-intersections and 3-intersections of boundary hypersurfaces. We could then use
the Euler’s formula to obtain the number of different preference areas (see Chapter 7
for more details). In the case of the ℓ1 norm, it is not easy to establish the (maximal)
number of 2-intersections and 3-intersections; we have seen in Chapter 7 that this task
was already quite complex with only 4 candidates. Note also that these numbers may
vary from one representation to another, while there was always the same number of
intersections for any non-degenerate representation in the sense of ℓ2.

There is another issue to deal with in the case of the ℓ1 norm. Assume that we have
somehow enumerated all 2-intersections and 3-intersections of boundary hypersur-
faces. We can then count the number of different areas into which the plane is divided.
However, contrary to the case of the ℓ2 norm, two different areas can correspond to
the same preference - see for instance Figure 8.3.1 where there are two different areas
corresponding to the same preference (c4, c3, c1, c2). In other words, the number of ar-
eas provides an upper bound on the number of pairwise distinct preferences, but this

6Actually, there is a unique maximal profile, up to a renaming of candidates.
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Figure 8.3.1: A 2-Euclidean representation f with 4 candidates. Both yellow areas
correspond to the same preference (c4, c3, c1, c2). The red hypersurface corresponds to
H(c3, c4) and the blue one to H(c1, c2). For a simpler and less crowded look, the other
hypersurfaces are not labeled.

bound may not be reached.

We started with the question of whether or not all maximal profiles contain the same
number of pairwise distinct preferences, and we have identified several related ques-
tions. This example illustrates that the domain of 2-Euclidean preferences with respect
to the norm ℓ1 remains quite unexplored, and offers a very beautiful and challenging
research direction that is definitely worth being followed.

Characterization of profiles on 4 candidates: the 2-Euclidean domain w.r.t. ℓ1 and
the permutohedron

We have actually investigated the question of characterization of profiles on 4 can-
didates. The maximal profile containing 19 pairwise preferences corresponds to the
subgraph of permutohedron that is in red in Figure 8.3.2 (up to the renaming of candi-
dates). We denote this subgraph by G∗ in which follows.
To prove that this profile is the unique maximal 2-Euclidean profile w.r.t. ℓ1 on 4 can-

didates, it would be sufficient to prove that any 2-Euclidean profile corresponds to a
subgraph of G∗0. More generally, it would be interesting to characterize the 2-Euclidean
domain with respect to the norm ℓ1 as a set of subgraphs of the permutohedron. We
recall that analogous problems were studied for instance for single-peaked or single-
crossing preferences.
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Figure 8.3.2: The maximal 2-Euclidean profile P∗0 as a subgraph G∗0 (red vertices) of the
permutohedron.

Recognition of 2-Euclidean preferences with respect to the norm ℓ1

While Peters (2017) showed that the recognition problem for 2-Euclidean preferences
w.r.t. ℓ1 is in NP, the question of whether or not the problem is polytime solvable
remains open. Answering this question is another interesting research topic. In partic-
ular, it could be insightful (from the structural point of view) to develop a, hopefully
efficient, recognition algorithm for this domain restriction. We note that a parallel with
the single-peaked domain can be found: there are at most 2 candidates ranked last
in a single-peaked profile. One of the underlying ideas of the recognition algorithm
proposed by Doignon and Falmagne (1994) for single-peaked preferences consists in
identifying these candidates corresponding to the extremities of a single-peaked axis.
We have seen that there are at most 4 candidates ranked last in any 2-Euclidean profile
w.r.t. the norm ℓ1. Maybe this information could be used to design a recognition algo-
rithm.

d-Euclidean preferences with respect to the norm ℓ1 and ℓ∞

Finally, a very natural, broad research direction is to study d-Euclidean preferences
for d > 2. For instance, we have seen that there were profiles that are d-Euclidean with
respect to the norm ℓ1 but not with respect to the norm ℓ∞. Does the opposite hold?
Answering this question would require a deeper structural comprehension of both d-
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Euclidean preferences w.r.t. to norm ℓ1 and w.r.t. the norm ℓ∞. This questions seems
very challenging, as we have seen that already for d = 2, the encountered problems
were anything but easy.
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