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Chapter 1

Introduction

1.1 Context
Industrial companies now face a growing pressure to establish sustainability in their manufacturing
operations by reducing both their CO2 emissions and natural resources consumption. One possible
way of achieving sustainable business development in manufacturing and logistics is through the
development of closed-loop supply chains and the use of reverse logistics.

Traditional forward supply chains mainly deal with material flows going from the suppliers pro-
viding raw materials up to the retailers selling finished products to customers. On the contrary,
reverse logistics consists in the set of logistics and rehabilitation activities starting from used prod-
ucts that are no longer required by the users to products that are once again usable by customers.
It encompasses a variety of activities such as collecting the used products, sorting, disassembling,
remanufacturing, recycling and redistributing.

In particular, remanufacturing industrial products once they have reached their end-of-life is an
interesting alternative to mitigate their environmental impact. Remanufacturing is defined as a
set of processes transforming end-of-life products (used products or returns) into like-new finished
products, once again usable by customers, mainly by rehabilitating damaged components [67]. The
reuse of materials and components embedded in used products contributes both to the reduction of
pollution emissions and natural resource consumption.

However, as compared to classical manufacturing systems which produce end-products from virgin
raw materials and new components, remanufacturing systems involve several complicating features,
including a high level of uncertainty in the input data needed to make planning decisions. This is
mainly due to a lack of control on the return flows of used products, both in terms of quantity and
quality, and to the difficulty of forecasting the demand for remanufactured products. Neglecting this
aspect when managing remanufacturing operations may lead among others to a loss of economical
performance through e.g. inventory shortages and lost sales.

The present work studies one of the many problems to be addressed by industrial companies
when managing their remanufacturing operations: production planning. Within a remanufacturing
context, production planning consists in deciding about the products to be disassembled, refurbished
and reassembled, the timing and level of production as well as the resources to be used so as to meet
the customers’ demand for the remanufactured products in the most efficient and economical possible
way. Industrial managers may be overwhelmed by the complexity of this optimization problem.

Our main objective in this thesis is thus to develop mathematical models and algorithms which
could ultimately form the basis of decision support tools enabling industrial managers to efficiently
plan production activities for complex remanufacturing production systems under uncertainty. To
this aim, we consider a remanufacturing system involving three processing echelons: disassembly of
used products into parts, refurbishing of the recovered parts and reassembly into like-new products.
We investigate the problem of planning remanufacturing activities in this system over a finite and
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discrete-time planning horizon when there are uncertainties on the quantity and quality of returned
products, on the customers’ demand, and on the various production costs.

Production planning problems are particularly challenging when the production costs to be taken
into account involve fixed setup costs corresponding to setup operations (e.g. machine calibration,
cleaning, tool change) which have to be carried out on a machine before production. In this case,
determining the size of the production lots to be processed at each planning period may be a com-
plex decision. Namely, as a naive perception, to reduce these fixed setup costs, whose value does
not depend on the quantity of products processed, production should be run using large lot sizes.
However, this generates desynchronized patterns between the customers’ demand and the production
plan leading to costly high levels of inventory. Lot-sizing models thus aim at reaching the best possi-
ble trade-off between minimizing the setup costs and minimizing the inventory holding costs, taking
into account both the customers’ demand satisfaction and the practical limitations of the production
system. In the present work, we thus propose to extend previously published stochastic lot-sizing
models in order to build efficient production plans for the considered three-echelon remanufacturing
system under uncertainty on the input data.

Various approaches for optimization under uncertainty have been proposed in the literature.
Among them, stochastic programming has proved its effectiveness when tackling real world problems
with some unknown parameters. Stochastic programming approaches rely on the fact that even if
the exact value of the problem parameters cannot be perfectly known at the time the decision has
to be made, some knowledge about their possible value is available in the form of a probability
distribution. The basic idea of stochastic optimization models is thus to take advantage of this
knowledge to somehow identify the “best possible decision” to be made. The reader is referred
to [20] for an excellent introduction to this field.

Several stochastic programming approaches have been investigated to handle lot-sizing under
uncertainty. They differ among others with respect to the number of stages involved in the decision
process. In the context of stochastic programming, a stage in the decision process can be basically
defined as a future point in time at which new information on the stochastic parameters becomes
available and decisions based on this newly available information have to be made. In this thesis,
we focus on the development of multi-stage stochastic programming approaches as this seems to be
better suited to model stochastic production planning problems. Indeed, in practice, production
planning is usually carried out within a rolling horizon framework. We thus compute a production
plan for an horizon spanning T periods but only implement the decisions relative to the first T ′ < T
periods. After the end of period T ′, we update the inventory level and the demand forecasts and
recompute a new production plan for periods T ′+1...T ′+T ′ in which the decisions relative to periods
T ′+ 1...T can be modified. Hence, production planning is intrinsically a multi-stage decision process
in which production decisions are not made once and for all but rather adjusted over time according
to the actual realizations of the uncertain parameters.

Over the last decades, multi-stage stochastic programming has received a lot of attention from
scholars and practitioners. As a result, important progress has been made both on theoretical aspects
and on the development of effective and efficient solution algorithms. Nonetheless, most of this work
has been restricted to a linear setting. Consequently, multi-stage stochastic integer programs such
as the ones obtained in our study are still very challenging to solve. Thus, a large body of the work
presented in the present manuscript deals with the development of efficient and scalable solution
approaches for lot-sizing and remanufacturing planning under uncertainty.

1.2 Thesis contributions
The main purpose of the work presented here is to develop mathematical models and algorithms that
may enable industrial managers to efficiently plan production activities for complex remanufacturing
production systems under uncertainty.
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In order to achieve this, we consider a remanufacturing system involving three processing echelons.
At the first echelon, the used products returned by customers are first disassembled into parts,
some of which are discarded due to their usage state. The recoverable parts are then refurbished
on dedicated resources. Finally, the refurbished ’serviceable’ parts are re-assembled into like-new
products to satisfy the customers’ demand. We investigate the problem of planning remanufacturing
activities in this system over a finite and discrete-time planning horizon when there are uncertainties
on the quantity and quality of returned products, on the customers’ demand, and on the various
production costs. We propose to model this stochastic combinatorial optimization problem as a
multi-stage stochastic integer program and to use a scenario tree to represent the evolution of the
stochastic input process over time. This leads to the formulation of a large-size mixed-integer linear
program.

The development of a multi-stage stochastic integer programming approach for such a stochastic
multi-echelon multi-item lot-sizing problem arising in a remanufacturing context can be seen as a first
contribution of this work. Namely, most previously published works on lot-sizing for remanufacturing
considered either a deterministic setting or develop two-stage stochastic programming approaches.
Moreover, most papers considering a multi-stage decision process for stochastic lot-sizing problems
assume much simpler production planning settings involving only a single echelon or/and a single
item. Thus, to the best of our knowledge, this is one of the first works seeking to simultaneously take
into account a realistic production setting and a multi-stage stochastic decision process for planning
remanufacturing activities.

Furthermore, even if the problem under study can be formulated as a mixed-integer linear program
(MILP), its direct resolution by a mathematical programming solver poses some computational
difficulties in practice. The first difficulty comes from the problem size which, for a given planning
horizon length, is much larger in the stochastic case than in the deterministic case. Namely, the
size of the obtained MILP is proportional to the number of nodes in the scenario tree, which grows
exponentially fast with the number of stages and the number of realizations per stage taken into
account in the scenario tree. The second difficulty is linked to the presence of many big-M type
constraints in the formulation, resulting in a poor quality of the lower bounds provided by the linear
relaxation of the problem and a loss of efficiency of the generic branch-and-cut algorithms embedded
in mathematical programming solvers.

We thus investigate in this thesis two kinds of solution approaches for this problem.
We first focus on enhancing the performance of the generic branch-and-cut algorithms embedded

in mathematical programming solvers through the use of cutting plane generation approaches. The
main idea here is to improve the quality of the lower bound used by the algorithm to make branch-
ing and cutting off decisions at each node of the branch-and-bound search tree. This improvement
is achieved through the dynamic addition of problem-specific valid inequalities into the MILP for-
mulation via a cutting-plane generation algorithm run at each node of the search tree. Here, our
contributions are twofold:

• We exploit and extend previously known inequalities proposed in [66] for the deterministic
single-item single-echelon lot-sizing problem with lost-sales. These inequalities can be used as
such or can be mixed with one another to obtain stronger inequalities expressed on sub-trees of
the scenario tree. We provide an efficient cutting-plane generation strategy to identify the useful
subset of inequalities to be added at each node of the search tree and develop two customized
branch-and-cut algorithms. Our computational experiments show that the proposed method is
capable of significantly decreasing the computation time needed to obtain guaranteed optimal
solutions for small to medium-size instances of the problem.

• We try to go one step further by developing several families of new valid inequalities for our
problem. These valid inequalities seek to take into account two important aspects of our
problem which are overlooked by the inequalities proposed in [66]: the fact that our production
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system comprises multiple echelons and the fact that the production on a resource is limited
by the availability of the used products returned by customers. In view of the theoretical and
numerical difficulties lying ahead, we focus on the deterministic variant of the remanufacturing
planning problem under investigation. Our numerical results enable us to identify a family
of valid inequalities which are efficient at strengthening the formulation of the deterministic
problem and which would thus be promising candidates for further improving our customized
branch-and-cut algorithms for the stochastic problem.

Second, in order to solve larger instances of our problem, we investigate a second kind of solution
approach based on a decomposition of the original problem into a series of small sub-problems
linked together by dynamic programming equations. Each of these sub-problems focuses on making
decisions for a small subset of nodes belonging to the same scenario and the same decision stage,
taking into account not only the current cost of these decisions but also their future cost which is
represented by an expected cost-to-go function. The Stochastic Dual Dynamic integer Programming
(SDDiP) algorithm recently published in [105] provides a way of iteratively building a piecewise linear
approximation for each of the expected cost-to-to functions involved in the decomposition. Our main
contributions here consist in two extensions of this algorithm to improve its numerical efficiency on
lot-sizing problems:

• Considering the complexity and novelty of the SDDiP algorithm, we first study how to use it
to solve the stochastic single-item uncapacitated lot-sizing (SULS) problem, which can be seen
as the simplest and most investigated multi-stage stochastic lot-sizing problem. We propose an
extension of this algorithm which mainly relies on a partial decomposition of the scenario tree
into sub-trees and on the exploitation of existing knowledge on the polyhedral structure of the
SULS problem. Our computational results show that the proposed extended SDDiP algorithm
significantly outperforms the initial SDDiP algorithm in terms of solution quality on large-size
instances .

• We then come back to our initial stochastic remanufacturing planning problem and investigate
how the extended SDDiP algorithm may be adapted to provide good-quality solutions to this
more complex lot-sizing problem.

Finally, we present an on-going exploratory work on risk-averse multi-stage stochastic lot-sizing.
Namely, risk-neutral models based on the minimization of the expected costs may lead to production
plans displaying a good performance on average, but providing very poor results, i.e. production costs
much higher than the expected value, in some unfavorable scenarios. In case the production manager
is more concerned about these potential large monetary losses than about the average performance
of the production plan, it might be useful to introduce risk measures in the problem modeling. We
thus study several ways of incorporating risk aversion in the multi-stage stochastic uncapacitated
lot-sizing (SULS) problem and show how the risk-averse SULS can be reformulated as a mixed-
integer linear program in each case. We finally provide some preliminary results seeking to assess
the practical usefulness of using a risk-averse formulation rather than a risk neutral formulation.

1.3 Thesis organization
The manuscript comprises four parts.

Part I comprises two chapters: the present introductory chapter and Chapter 2. This latter intro-
duces the necessary background on lot-sizing and multi-stage stochastic programming to understand
the work presented here.

Part II presents our work focusing on improving the performance of implicit enumeration methods
through cutting plane generation algorithms. Chapter 3 first provides a detailed description of the
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stochastic remanufacturing planning problem which is at the core of this thesis. It then presents
the proposed cutting-plane generation algorithms based on the valid inequalities introduced in [66].
Chapter 4 investigates three new sets of valid inequalities that may be used to further strengthen
the MILP formulation of the deterministic variant of our remanufacturing planning problem and
identifies one promising candidate family of valid inequalities.

Part III is dedicated to the development of decomposition-based methods to solve very large
instances of stochastic lot-sizing problems. In Chapter 5, we turn out attention to the resolution of
the stochastic uncapacitated single-echelon lot-sizing problem (SULS) through a new extension of
the SDDiP algorithm. Chapter 6 focuses on adapting this extended SDDiP algorithm to our initial
stochastic remanufacturing planning problem.

Part IV comprises a single chapter, Chapter 7. This one provides a preliminary report of our
on-going work on risk-averse multi-stage stochastic lot-sizing.

Finally, Chapter 8 provides a general conclusion and discusses some directions for further research.
It is worth mentioning that, at the end of this manuscript, we provide a list of notations used

throughout the manuscript. These are organized following the structure of the manuscript and
grouped by studied problems and solution approaches. We thus invite the reader to consult it when
necessary during the reading.
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Chapter 2

Preliminaries

This chapter provides some fundamental knowledge about lot-sizing and multi-stage stochastic pro-
gramming. It introduces the necessary background on the models and solution approaches which
form the starting point of this thesis and will thus be frequently used throughout this dissertation.
In order to ease the understanding, we focus our explanations on the simplest available lot-sizing
model, which is the single-item Uncapacitated Lot-Sizing problem (ULS).

2.1 Deterministic lot-sizing
In the ULS, we consider a production system involving a single production resource and assume that
this resource transforms raw materials into a single type of item through a single processing step.
The ULS aims at planning the production of this item over a finite discrete-time planning horizon
involving a set T = {1...T} of periods. Producing a positive amount in period t ∈ T incurs a fixed
set-up cost ft together with a production cost gt per unit produced and an inventory holding cost ht
per unit held in stock between two consecutive periods. The objective is to build a production plan
such that the customers’ demand dt is met in each time period t and the total costs, i.e. the sum of
setup, production, and inventory holding costs over the whole planning horizon, are minimized.

This problem can be formulated as a mixed-integer linear program by introducing the following
decision variables:

• Xt: quantity produced in period t for t ∈ T .

• Yt: set-up state of the resource. Yt = 1 if the resource is set-up to produce the item in t, Yt = 0
otherwise, for t ∈ T .

• St: inventory level at the end of period t for t ∈ T .

With this notation, the ULS can be formulated as follows:

Z∗ = min
T∑
t=1

(
ftYt + gtXt + htSt

)
(2.1)

Xt ≤MtYt ∀t ∈ T (2.2)
St = St−1 +Xt − dt ∀t ∈ T (2.3)
Xt ≥ 0 ∀t ∈ T . (2.4)
St ≥ 0 ∀t ∈ T . (2.5)
Yt ∈ {0, 1} ∀t ∈ T . (2.6)

The objective function (2.1) minimizes the sum of the set-up, production and inventory holding
costs over the whole planning horizon. Constraints (2.2) ensure that, if production takes place in
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period t, the corresponding setup costs are incurred. Note that the value of constant Mt can be set
to the value of the cumulative remaining demand to be satisfied till the end of the horizon, i.e. to∑T
τ=t dτ . Constraints (2.3) are the inventory balance constraints. Together with Constraints (2.5),

they ensure the timely satisfaction of the demand.
The ULS is known to be solvable in polynomial time. A simple dynamic programming algorithm

was proposed by Wagner and Within [100]. It is based on the zero-inventory-ordering property, i.e.
production is undertaken in a period only if the entering inventory level drops to zero, and runs
in O(T 2) time. This time complexity was later improved to O(T log T ) in [3] and [99]. Moreover,
Barany et al. [16] proposed a family of valid inequalities, known as the (`,S ) inequalities. These
inequalities, when added to Constraints (2.2)-(2.5), provide a full description of the convex hull of
the feasible space of ULS.

Many extensions of the ULS have been proposed since the seminal work of Wagner andWithin [100]
in order to improve its applicability in real-life situations by taking into account complicating features
relative among others to the costs, the production resource or the demand service policy. We refer
the reader to [22] and [21] for comprehensive surveys on the single-item dynamic lot-sizing problem
and to [35], [57] and [24] for introductions on multi-item dynamic lot-sizing problems.

In the present work, we focus on an extension of the ULS, denoted SULS, in which the input
parameters (cost and demand) are subject to uncertainty. Namely, in practice, these parameters,
which are relative to the future, are often estimated through a forecasting procedure so that their
value is not perfectly known at the time the production plan should be built. Hence, in many
applications, it is necessary to handle lot-sizing as an optimization problem involving uncertainty.

A wide variety of approaches have been proposed to handle production planning and lot-sizing
under uncertainty: see [13] for a general overview and [96] and [21] for literature reviews focusing on
single-item dynamic lot-sizing problems. In what follows, we assume that an accurate probabilistic
description of the random input parameters is available under the form of probability distributions
and focus on the development of multi-stage stochastic programming approaches for lot-sizing under
uncertainty.

2.2 Multi-stage stochastic lot-sizing

2.2.1 Nested formulation
Many practical decision problems such as lot-sizing problems involve making a sequence of decisions
that react to outcomes evolving over time with only partial information about the future condi-
tions (such as unknown demands, costs, inventory reservations ...). Multi-stage stochastic integer
programming (MSIP) is a framework for sequentially making decision under uncertainty of future
conditions ([95], [20]).

In the context of stochastic programming, a stage in the finite horizon sequential decision process
can be basically defined as a future point in time at which new information on the stochastic input
parameters becomes available and decisions based on this newly available information have to be
made. Note that stages do not necessarily coincide with planning periods, in particular a stage
may comprise several periods. This is of particular interest for lot-sizing problems as the time
discretization used by the decision-makers to plan production activities is indeed usually finer than
the one used to update the demand and cost forecasts and readjust the production plan. A planning
period may thus typically correspond to an 8-hours shift or a day whereas a stage may correspond
to a week or a month. We thus consider a decision process involving Σ decision stages and denote
by S = {1, ...,Σ} the set of stages. A stage may correspond to one or several consecutive planning
periods. Let T σ be the set of time periods belonging to stage σ ∈ S: tF (σ) (resp. tL(σ)) denotes
the first (resp. the last) time period belonging to stage σ. Note that the sets {T σ, σ ∈ S} form a
partition of T .
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The basic scheme of dynamic decision process in which observations and decisions are alternated
has the following form

Observation of random parameters for stage 1→ Decision for stage 1
· · · Observation of random parameters for stage σ → Decision for stage σ

· · · Observation of random parameters for stage Σ → Decision for stage Σ

At stage σ, we thus make production decision xσ = {(Xt, Yt, St), t ∈ T σ} based only on the infor-
mation available at stage σ. We assume that this information is given by a discrete time stochastic
process {ξσ}Σ

σ=1 where ξσ = {(ft, gt, ht, dt), t ∈ T σ} describes the realization of the stochastic costs
and demand for all periods belonging to stage σ. Thus, the information available at stage σ consists
of the past realization of the random vector up to stage σ, ξ[1,σ] = {ξ1, . . . , ξσ}, and the stochastic
decision xσ at stage σ should depend only on ξ[1,σ]. This property is called non-anticipativity.

The feasible region for the production decisions to be made at stage σ depends on the decision
xσ−1 made at stage σ − 1 and on the information ξσ available at the beginning of stage σ. Let us
denote it by Fσ(xσ−1, ξσ). We have:

Fσ(xσ−1, ξσ) ={(Xt, Yt, St), t ∈ T σ s.t. Xt ≤MtYt ∀t ∈ T σ

St = St−1 +Xt − dt ∀t ∈ T σ

StF (σ)−1 = StL(σ−1)

Xt, St ≥ 0, Yt ∈ {0, 1} ∀t ∈ T σ}

Note how the entering stock at stage σ, StF (σ)−1, is imposed by the leaving stock at stage σ − 1,
StL(σ−1). As for the cost relative to stage σ, we denote it by Cσ(xσ, ξσ) = ∑

t∈T σ(ftYt + gtXt + htSt).
Finally, we use ξ[σ,σ′] to denote the sequence of random data vectors corresponding to stages σ
through σ′ and ξ[σ,σ′] to denote a specific realization of this sequence of random vectors.

Using this notation, the decision dynamics described above leads to the following nested formu-
lation.

min
x1∈F1

{
C(x1, ξ1) + Eξ[2,Σ]|ξ[1,1]

[
min

x2∈F2(x1,ξ2)

{
C(x2, ξ2) + · · ·

+ Eξ[σ,Σ]|ξ[1,σ−1]

[
min

xσ∈Fσ(xσ−1,ξσ)

{
Cσ(xσ, ξσ) + Eξ[σ+1,Σ]|ξ[1,σ]

[
· · ·

+ Eξ[Σ,Σ]|ξ[1,Σ−1]

[
min

xΣ∈FΣ(xΣ−1,ξΣ)

{
CΣ(xΣ, ξΣ)

]}]}]}]}
(2.7)

where Eξ[σ,Σ]|ξ[1,σ−1] denotes the expectation in stage σ with respect to the conditional distribution
of ξ[σ,Σ] given the realization ξ[1,σ−1] up to stage σ − 1. Thus, in (2.7), at each stage σ, we seek
to plan production for all periods of T σ, i.e. to decide about the value of xσ, given the realization
of the stochastic input process described by ξ[1,σ]. This production decisions should lie within the
feasible set Fσ(xσ−1, ξσ). Moreover, they should minimize the sum of the immediate production
costs Cσ(xσ, ξσ) and of the expected future costs computed as the expected value, over all possible
realizations of ξ[σ+1,Σ] given ξ[1,σ], of the random production costs up to stage Σ.

2.2.2 Uncertainty representation by a scenario tree
One way to develop computationally tractable solution approaches for Problem (2.7) consists in
approximating the stochastic process {ξσ}Σ

σ=1 by a process having finitely many realizations in the
form of a scenario tree.
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With a slight abuse of notation, we will refer to this scenario tree (and all other scenario sub-trees
involved in the present work) by mentioning only its set of nodes V . Each node n ∈ V corresponds
to a single time period tn and a single decision stage σn. Let V t be the set of nodes belonging to time
period t. Each node n has a unique predecessor node denoted an belonging to time period tn − 1.
By convention, the root node of the scenario tree is indexed by 1 and a1 is set to 0. Any non-leaf
node n of the tree has a set C(n) of immediate children. Let V(n) the sub-tree of V rooted in n and
L(n) the set of leaf nodes belonging to V(n). The set of nodes on the path from node n to node m
is denoted by P(n,m).

Each node n represents the state of the system that can be distinguished by the information
unfolded up to time period tn. More precisely, for each leaf node ` ∈ L(1), the set of nodes ∪t∈T σV t∩
P(1, `) corresponds to a realization ξ[1,σ] of the stochastic input process up to stage σ. Thus, the
value of the stochastic costs and demand observed at period t ∈ T σ in realization ξ[1,σ] can be
associated to the node n = V t ∩ P(1, `) and denoted by (fn, gn, hn, dn). This node n also has a
probability denoted by ρn which corresponds to the probability of realization ξ[1,σ]. Moreover, at
node n = V tL(σ) ∩ P(1, `) belonging to the last period of stage σ, there are one or several branches
describing the possible outcomes of the stochastic process over stages σ + 1 to Σ, ξ[σ+1,Σ], given the
realization up to stage σ described by ξ[1,σ]. Finally, a scenario is defined as a path P(1, `) from the
root node to a leaf node ` ∈ L(1) in the scenario tree and represents a possible outcome ξ[1,Σ] of the
stochastic input parameters over the whole planning horizon.

The reader can refer to Figure 2.1 for an illustration of these notations on a small scenario tree.
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Figure 2.1: Scenario tree structure

Now recall that, thanks to the non-anticipativity property, the production decisions xσ made at
stage σ should depend only on the realization of the stochastic input process up to this stage, i.e.
should depend only on ξ[1,σ]. Let ∪t∈T σV t ∩ P(1, `) be the set of nodes corresponding to realization
ξ[1,σ] in V . The production decisions made for period t in xσ(ξ[1,σ]) can be associated to node
n = V t ∩ P(1, `) and will be denoted by (Xn, Y n, Sn).

In what follows, we briefly present two alternative reformulations of Problem (2.7) based on this
representation of the stochastic process evolution by a scenario tree. The first one is an exten-
sive mixed-integer linear programming formulation for which cutting-planes based on strong valid
inequalities have been proposed. The second one is a dynamic programming formulation and is
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the starting point of a solution approach called the Stochastic Dual Dynamic integer Programming
(SDDiP) algorithm based on the decomposition of the problem into a series of smaller sub-problems.

2.3 Cutting-planes generation approach

2.3.1 Extensive MILP formulation
By associating the input parameters (fn, gn, hn, dn) and decision variables (Xn, Y n, Sn) to nodes of
the scenario tree and by unnesting the different expectation terms involved in (2.7), it is possible to
reformulate the SULS as an equivalent deterministic model in the form of an MILP as follows:

min
∑
n∈V

ρn(fnY n + hnSn + gnXn) (2.8)

Xn ≤MnY n ∀n ∈ V (2.9)
Sn + dn = Xn + Sa

n ∀n ∈ V (2.10)
Xn, Sn ≥ 0, Y n ∈ {0, 1} ∀n ∈ V (2.11)

The objective function (2.8) aims at minimizing the expected total setup, inventory holding and
production costs over all nodes of the scenario tree. Constraints (2.9) link the production quantity
variables to the setup variables. Note that the value of constant Mn can be set by using an upper
bound on the quantity to be processed at node n, usually defined as the maximum future demand
as seen from node n, i.e. Mn = max`∈L(n) d

n`, where dn` = ∑
m∈P(n,`) d

m. Constraints (2.10) are the
inventory balance constraints. Constraints (2.11) provide the decision variables domain.

Note that the size of the above formulation depends on the number of nodes in the scenario tree.
As this one grows exponentially fast with respect to the number of stages, the obtained MILP can
be of extremely large size (involving e.g. several millions of variables and constraints). Moreover,
due to the presence of big-M type constraints (2.9), the bound provided by its linear relaxation are
of rather poor quality. This negatively impacts the performance of a branch-and-cut algorithm so
that the direct resolution of Problem (2.8)-(2.11) by a mathematical programming solver may thus
pose some numerical difficulty.

2.3.2 Valid inequalities
One possible way of addressing this difficulty is to strengthen the MILP formulation through a set
of valid inequalities so as to obtain linear programming bounds of a better quality and improve
the performance of a branch-and-cut algorithm at solving the problem. In this section, we discuss
two previously published classes of valid inequalities. These valid inequalities take advantage of
the scenario tree structure in order to generate valid inequalities for individual scenarios (Path
inequalities) or for a set of scenarios (Tree inequalities).

Path inequalities

A path inequality is essentially an inequality valid for the feasible region of a deterministic multi-
period problem defined by those constraints that correspond to the nodes on the path P(1, n) for
each n ∈ V . This deterministic multi-period problem is a relaxation of Problem (2.8)-(2.11). Hence,
inequalities valid for this deterministic multi-period problem are also valid for the stochastic problem.

Thus, Formulation (2.8)-(2.11) can be strengthened by applying valid inequalities known for the
deterministic ULS to each path of the scenario tree. The (`,S ) inequalities developped by Barany
et al. [16] to strengthen the linear programming relaxation of the ULS can be easily adapted to the
SULS (see [46]).
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Proposition 1
Given ` ∈ V and S ⊆ P(1, `), the following inequality is valid for Problem (2.8)-(2.11):

S0 +
∑
n∈S

Xn +
∑
n∈S̄

dn`Y n ≥ d1` (2.12)

with dn` = ∑
m∈P(n,`) d

m and S̄ = P(1, `) \S .

For the deterministic ULS, the (`,S ) inequalities provide a full description of the convex hull of
the feasible space. It is however not the case for the SULS. Guan et al. [45] thus proposed to further
strengthen formulation (2.8)-(2.11) by exploiting its tree structure. To do this, they consider a set
of valid inequalities, each one expressed on a path in the scenario tree, and combine them to obtain
a stronger valid inequality expressed on the sub-tree of the scenario tree.

Tree inequalities
Proposition 2

Given a subset O = {n1, ..., nO} ⊆ V which is partially ordered such that 0 = d1n0 ≤ d1n1 ≤ ... ≤
d1nO and a subset SO of nodes belonging to ∪o=1,...,OP(1, nO), the following inequality is valid for
Problem (2.8)-(2.11):

S0 +
∑
n∈SO

Xn +
∑
n∈S̄O

∆n(O)Y n ≥ d1nO (2.13)

with ∆n(O) = ∑
mo∈O∩V(n)(d1mo − d1mo−1).

Note that inequalities (2.12) can be seen as a special case of inequalities (2.13) in which O
comprises a single node `. Guan et al. [44] showed that a particular case of inequalities (2.13) suffices
to fully describe the convex hull of the two-period SULS. However, this is not the case anymore when
more than two planning periods are involved in the problem.

In practice, the number of inequalities (2.12) and (2.13) is too large to allow adding all of them
a priori to the MILP formulation. Guan et al. [45] proposed to add them to the formulation using a
cutting-plane generation algorithm, which resulted in the development of a customized branch-and-
cut algorithm. The reader is referred to [45] for more detail about this algorithm.

2.4 Decomposition-based approach
Implicit enumeration methods, such as branch-and-cut algorithms, do not generally scale up well with
the size of the scenario tree. Decomposition methods, such as Benders’ decomposition, are thus an
attractive alternative to tackle instances with large-size scenario trees. In particular, the Stochastic
Dual Dynamic Programming (SDDP) approach proposed by Pereira and Pinto [75] has been widely
used to solve large-size multi-stage stochastic linear programs. This approach relies on a dynamic
programming formulation of the stochastic problem. In this formulation, the overall problem is
decomposed into a series of single-node sub-problems in which the future costs of the decision made
at node n are represented by an expected cost-to-go function. In a linear setting, the expected
cost-to-go functions are piecewise linear convex and can thus be under-approximated through a set
of supporting hyperplanes. Recently, Zou et al. [105] proposed a new extension called Stochastic
Dual Dynamic integer Programming (SDDiP) of this method in order to solve multi-stage stochastic
integer programs with binary state decision variables and non-convex expected cost-to-go functions.
One of their main contributions was to introduce a new class of cutting-planes, called Lagrangian
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cuts, which satisfies the validity, tightness and finiteness conditions ensuring the convergence of the
algorithm.

In what follows, we briefly present how the SDDiP algorithm can be used to solve the SULS.
Note that, for the sake of simplicity, we assume throughout this section that there is only one time
period t at each stage, i.e., T = Σ.

2.4.1 Dynamic programming formulation
An alternative to the extensive formulation of the stochastic ULS discussed above is a dynamic
programming formulation involving nested expected cost-to-go functions. This approach decomposes
the original problem into a series of single-node sub-problems which are linked together by dynamic
programming equations.

More precisely, the sub-problem related to node n focuses on defining the production plan for
node n based on the entering stock level, San , imposed by its parent node an in the scenario tree. Its
objective value comprises two terms: a term related to the setup, production and inventory holding
costs incurred at node n and a term called the expected cost-to-go function which represents the
expected future costs, over all m ∈ C(n), incurred by the production decisions made at node n.

The sub-problem for the root node n = 0 is expressed as follows:

min(f 0Y 0 + h0S0 + g0X0) +
∑

m∈C(0)
ρ0mQm(S0) (2.14)

subject to:

X0 ≤M0Y 0 (2.15)
S0 + d0 = X0 (2.16)
X0, S0 ≥ 0 (2.17)
Y 0 ∈ {0, 1} (2.18)

Note that we assume, without loss of generality, that the entering stock at the root node is zero.
For each node n ∈ V \ {0}, the sub-problem is formulated as:

Qn(San) = min(fnY n + hnSn + gnXn) +
∑

m∈C(n)
ρnmQm(Sn) (2.19)

subject to:

Xn ≤MnY n (2.20)
Sn + dn = Xn + Sa

n (2.21)
Xn, Sn ≥ 0 (2.22)
Y n ∈ {0, 1} (2.23)

Here Qn(San) represents the optimal objective value at node n as a function of the entering stock
level San . The expected cost-to-go function at node n is defined as Qn(·) = ∑

m∈C(n) ρ
nmQm(·). Note

that for all leaf nodes, i.e. for all n ∈ VΣ, Qn(·) ≡ 0.

2.4.2 Stochastic Dual Dynamic integer Programming for SULS
The main idea of this algorithm is to solve the problem by solving a sequence of single-node sub-
problems in which the expected cost-to-go function Qn(·) is approximated by a piece-wise linear
function. Note that a key assumption for developing this algorithm is that the scenario tree satisfies
the stage-wise independence property, i.e., for any two nodes n and n′ in Vσ the set of children nodes
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C(n) and C(n′) are defined by identical data and conditional probabilities. In this case, the expected
cost-to-go functions depend only on the stage rather than on the nodes, i.e., we have Qn(·) ≡ Qσ(·)
for all n ∈ Vσ. As a result, only one expected cost-to-go function has to be approximated per stage
and the cuts generated at different nodes n belonging to Vσ are added to a single set of cuts defining
the piece-wise linear approximation of function Qσ(·).

Each iteration of the SDDiP algorithm comprises a sampling step, a forward step and a backward
step. In the sampling step, a subset of scenarios is sampled from the scenario tree. In the forward
step, the algorithm then proceeds stage-wise from σ = 1 to Σ by solving, at each node of the sampled
scenarios, a dynamic programming equation with an approximate expected cost-to-go function. At
the end of this step, the state decision variables are stored and a statistical upper-bound of the
problem is computed as the weighted average over all sampled scenarios. In the backward step, we
proceed stage-wise from the last stage Σ to the root node and solve at each node a suitable relaxation
of the forward problem. The algorithm then adds supporting hyperplanes to the approximate cost-
to-go functions of the previous stage. Finally, the nodal problem solved at the root node provides a
lower bound of the overall problem. The algorithm stops when the upper and lower bound are close
enough, according to a convergence criteria.

In the stochastic ULS, the state variables are the inventory variables, Sn, which are defined as
continuous decision variables. Hence, in order to be able to apply the SDDiP algorithm to this
problem, we resort to a binary approximation of the state variables. This binarization is obtained by
replacing the continuous variable Sn by a set of binary variables Un,β such that Sn = ∑

β∈B 2βUn,β,
where B = {1, . . . , B}. Here Un,β = 1 if coefficient 2β is used to compute the value of Sn, 0 otherwise.
Moreover, in order to generate the cuts during the backward step of the algorithm, we introduce local
copies of the binary state variables. More precisely, Ûn,β is an auxiliary decision variable representing
the value of the state variable at the parent node of n, i.e. it is a local copy at node n of the state
variable Uan,β. This leads to the following reformulation of the nodal sub-problem for node n ∈ V :

Qn(Uan) = min(fnY n + hnSn + gnXn) +
∑

m∈C(n)
ρnmQm(Un) (2.24)

subject to:

Xn ≤MnY n (2.25)∑
β∈B

2βUn,β + dn = Xn +
∑

β∈B
2βÛn,β (2.26)

Ûn,β = Uan,β ∀β ∈ B (2.27)
Xn, Sn, Ûn ≥ 0;Y n ∈ {0, 1} (2.28)
Un,β ∈ {0, 1} ∀β ∈ B (2.29)

where Un denotes the vector of binary variables Un = (Un,0, ..., Un,β, ..., Un,B).
We now describe in more detail the 3 steps comprised within an iteration υ of the SDDiP algo-

rithm.

Sampling step

In the sampling step, a number of W scenarios, i.e. a number W of paths from the root node to the
leaf nodes, are randomly selected. Let Ωυ = {ωwυ , ..., ωWυ } be the set of sampled scenarios and ωwυ be
the set of nodes belonging to scenario w at iteration υ.

Forward step

At iteration υ, the forward step proceeds stage-wise from σ = 1 to Σ and solves the dynamic
programming recursion (2.24)-(2.29) with an approximate expected cost-to-go function for each node
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in the sampled set Ωυ.
Let ψσυ (Un) be the approximation of the expected cost-to-go function available at iteration υ for

stage σ. It is defined by the set of supporting hyperplanes generated until iteration υ. We thus have:

ψσυ (Un) = min{θσ : θσ ≥
∑

m∈C(n)
ρnm(νmu + (πmu )ᵀUn) ∀u = {1, ..., υ − 1}} (2.30)

where νmu and πmu are the coefficients of the cuts generated at iteration u < υ.
At each sampled node n, we thus solve the following nodal sub-problem denoted by P n

υ (Uan

υ , ψσυ ).
Here, Uan

υ denotes the binary approximation vector providing the level of ending stock in the solution
of the nodal sub-problem at the parent node an during iteration υ of the algorithm.

Qn
υ(Uan

υ ) = min(fnY n + hnSn + gnXn) + ψσυ (Un) (2.31)

subject to (2.25)-(2.29).
Note that this sub-problem is a small-size mixed-integer linear program than can be solved by a

standard mathematical programming solver.
The forward step ends when the nodal sub-problems for all nodes in Ωυ have been solved. Its

output is thus a state variable solution Un
υ for each node in Ωυ.

Backward step

The aim of the backward step is to update the approximate expected cost-to-go function ψσυ (·) for
each stage σ. This step starts from the last stage Σ and goes back to stage 2. Note that the last
stage nodal sub-problems do not have an expected cost-to-go function, therefore ψΣ

υ ≡ 0 for all
iterations υ. At each stage σ = Σ, ..., 2, the algorithm solves a suitable relaxation for each node
n ∈ Vσ. This enables the algorithm to collect the cut coefficients {νnυ , πnυ} and generate a new linear
inequality to strengthen the approximation of ψσ−1

v+1 (·). The backward step continues iteratively until
the approximation of the expected cost-to-go function at stage σ = 1 is updated.

Since the linear cuts (2.30) are under-approximations of the true expected cost-to-go function
Qσ(·), the optimal value of the forward problem at the root node provides a lower bound of the
optimal value (2.24).

Stopping criteria

We consider three stopping criteria that are used in the literature. At each iteration υ, a statistical
upper bound (UB) is computed by the forward step and a lower bound (LB) of the optimal value
is generated at the root node at the end of the backward step. A first stopping criterion imposes
the termination of the algorithm when the gap |UBυ−LBυ |

LBυ
is lower than a convergence threshold ε. A

second stopping criterion stops the algorithm when the lower bound becomes stable during a fixed
number of iterations. Finally, a limit on the number of iterations is also enforced. In what follows,
we detail three different families used to strengthen the approximation of the expected cost-to-go
function.

Integer Optimality Cuts

Let Un
υ be a solution of problem P n

υ (Uan

υ , ψσv ) solved during iteration υ at sampled node n in the
forward step. To generate an integer optimality cut at node n, we solve, for each m ∈ C(n), problem
Pm
υ (Un

υ , ψ
σ
v+1), i.e. the original nodal subproblem with an updated approximation ψσv+1. Let νmv+1

be its optimal objective value and ν̄nv+1 = ∑
m∈C(n) ρ

nmνmv+1. The integer optimality cut generated at
iteration υ in the backward step takes the following form:

θσ ≥ (ν̄nv+1)
( B∑
β=0

(Un,β
v − 1)Un,β +

B∑
β=0

(Un,β − 1)Un,β
v

)
+ ν̄nv+1 (2.32)

21



where Un,β corresponds to the β-th entry of the binary approximation of Sn.

Lagrangian Cuts

Zou et al. [105] introduced a Lagrangian cut family. They proved that these cuts display the valid-
ity, tightness and finiteness conditions ensuring the theoretical convergence of the algorithm to the
optimal solution. A Lagrangian cut is generated at node n in the backward step at iteration υ by
considering the Lagrangian relaxation of each problem Pm

υ (Un
υ , ψ

σ
v ), m ∈ C(n), in which the copy

constraints (2.27) have been dualized. Each corresponding Lagrangian dual problem is then solved
to optimality. The generated Lagrangian cut takes the form (2.30), where νmυ corresponds to the
optimal value of the Lagrangian dual problem and πmυ to the Lagrangian dual optimal solution.

Strengthened Benders’ cuts

This family of cuts have been deduced by the observation that for any fixed dual solution πn = {πn,β :
β ∈ B}, solving the Lagrangian relaxation created by relaxing the set of constraints Ûn,β = Uan,β

v

yields a valid cut. A strengthened Benders’ cut is generated at node n in the backward step at
iteration υ by solving the linear relaxation of problem Pm

υ (Un
υ , ψ

σ
v ), m ∈ C(n). The value of each

coefficients πm,βυ is set to the dual value of the copy constraint Ûm,β = Un,β in this linear relaxation.
The value of νmυ is obtained by solving the Lagrangian relaxation of problem Pm

υ (Un
υ , ψ

σ
v ) in which all

copy constraints (2.30) have been dualized and the Lagrangian multiplier of constraint Ûm,β = Un,β

set to πm,βυ .
As a synthesis, the main steps of the SDDiP algorithm applied to the stochastic ULS are sum-

marized in Algorithm 1.

2.5 Conclusion
We provided in this chapter some background on the multi-stage stochastic uncapacitated lot-sizing
problem in order to ease the reading of the manuscript. We also presented an introduction to two
solution approaches that may be used for this problem. The first one relies on a mixed-integer linear
programming formulation and corresponds to a customized branch-and-cut algorithm based on path
and tree valid inequalities. The second one, called the SDDiP algorithm, uses a dynamic programming
formulation as a starting point and basically consists in fully decomposing the problem into a set
of small single-node sub-problems. In Chapter 5, we propose a solution approach which combines
the SDDiP algorithm with the polyhedral approach, in order to further improve the quality of the
solutions obtained for large-size instances. Note that the proposed algorithm, called the extSDDiP
algorithm, relies on a partial decomposition of the problem.

Moreover, as mentioned in the introduction, we also study in this thesis a more realistic multi-
stage stochastic lot-sizing problem aiming at planning production for a multi-echelon multi-item
remanufacturing system. For this problem, we first discuss in Chapter 3 the development of cus-
tomized branch-and-cut algorithms similar to the one discussed in Section 2.3.2. These algorithms
are based on path and tree inequalities obtained from inequalities previously known for the determin-
istic uncapacitated single-item single-echelon lot-sizing problem with lost sales. In order to further
strengthen the MILP formulation of the problem, we then investigate in Chapter 4 new valid inequal-
ities which seek to take into account the multi-echelon aspect of the production system and the fact
that the production on a resource is limited by the availability of the returned products. However, in
view of the theoretical and numerical difficulties lying ahead, we focus on the deterministic variant of
the remanufacturing planning problem investigated in Chapter 3. Namely, before seeking to extend
valid inequalities to a multi-stage stochastic problem expressed on a scenario tree, it is necessary
to identify valid inequalities which are efficient at strengthening its deterministic counterpart and
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Algorithm 1: SDDiP algorithm
1 Initialize LB ← −∞, UB ← +∞, υ ← 1
2 while no stopping criterion is satisfied do
3 Randomly select W scenarios Ωυ = {ω1

υ, ..., ω
W
υ }.

4 for w = 1, ...,W do
5 for n ∈ ωwυ do
6 Solve P n

υ (Uan , ψσ
n

υ )
7 Collect (Xn

υ , Y
n
υ , S

n
υ , U

n
υ )

8 end
9 υw ← ∑

n∈ωwυ (fnY n
υ + hnSnυ + gnXn

υ )
10 end
11 µ̂← ∑W

w=1 υ
w and σ̂2 ← 1

W−1
∑W
w=1(υw − µ̂)2

12 UB ← µ̂+ zα/2
σ̂√
W

13 for σ = Σ− 1, ..., 1 do
14 for w = 1, ...,W do
15 for n ∈ Vσ ∩ ωwυ do
16 Generate an integer optimality cut, a Lagrangian cut and a strengthened

Benders’ cut considering all nodes m ∈ C(n)
17 end
18 end
19 Add the generated cuts to ψσυ to get ψσυ+1.
20 end
21 LB ← P 0

υ (0, ψ1
υ+1)

22 υ ← υ + 1
23 end

to study how to solve the corresponding separation problem. Finally, we present in Chapter 6 an
adaptation of the extSDDiP algorithm introduced in Chapter 5 for the SULS to solve the stochastic
remanufacturing planning problem.
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Part II

Cutting planes generation approaches
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Chapter 3

Stochastic multi-echelon lot-sizing
problem with remanufacturing and lost
sales

This chapter first introduces the stochastic remanufacturing planning problem which is at the core
of this thesis. We describe the studied remanufacturing system which comprises three production
echelons: disassembly, refurbishing and reassembly and model the problem of planning production
on this system as an uncapacitated multi-item multi-echelon lot-sizing problem with returns and lost
sales. We then seek to explicitly take into account uncertainties on the input data of this optimization
problem. To this aim, we propose a multi-stage stochastic integer programming approach relying
on scenario trees to represent the uncertain information structure. Finally, we develop customized
branch-and-cut algorithms in order to solve the resulting mixed-integer linear program to optimality.
These branch-and-cut algorithms are based on a new set of tree inequalities obtained by combining
valid inequalities previously known for each individual scenario of the scenario tree. These inequalities
are used within a cutting-plane generation procedure run at each node of the branch-and-cut search
tree. Our computational experiments show that the proposed method is capable of significantly
decreasing the computation time needed to obtain guaranteed optimal solutions. Additionally, rolling
horizon simulations are carried out to assess the practical performance of the multi-stage stochastic
planning model with respect to a deterministic model and a two-stage stochastic planning model.

3.1 Introduction
Industrial companies face an increasing pressure from customers and governments to become more
environmentally responsible and mitigate the environmental impact of their products. One way of
achieving this objective is to remanufacture the products once they have reached their end-of-life.
Remanufacturing is defined as a set of processes transforming end-of-life products (used products or
returns) into like-new finished products, once again usable by customers, mainly by rehabilitating
damaged components [67]. By reusing the materials and components embedded in used products, it
both contributes in reducing pollution emissions and natural resource consumption.

In this work, we study a remanufacturing system which involves three key processes: disassembly
of used products brought back by customers, refurbishing of the recovered parts and reassembly into
like-new finished products. We aim at optimizing the production planning for the corresponding
three-echelon system over a multi-period horizon. Production planning involves making decisions
about the production level (i.e. which products and how much of them should be made), the timing
(i.e. when the products should be made) and the resources to be used. Within a remanufacturing
context, production planning includes making decisions on the used products returned by customers,
such as how much and when used products should be disassembled, refurbished or reassembled in
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order to build new or like-new products. The main objective is to meet customers’ demand for the
remanufactured products in the most cost-effective way.

Lot-sizing problems arise in production situations which involve set-up operations such as tool
changes, machine calibration or machine installation incurring fixed set-up costs. As a naive per-
ception, to reduce these set-up costs, production should be run using large lot sizes. However, this
generates desynchronized patterns between the customers’ demand and the production plan leading
to costly high levels of inventory. Lot-sizing models thus aim at reaching the best possible trade-off
between minimizing the set-up costs and minimizing the inventory holding costs, under constraints
on customers’ demand satisfaction and practical limitations of the system. In the present work we
investigate the problem of minimizing the set-up cost and the inventory holding cost together with a
penalty cost for the lost sales induced by the demand not satisfied on time within a remanufacturing
environment. We thus investigate a 3-echelon lot-sizing problem with returns and lost sales.

As compared to classical manufacturing systems which produce end-products from virgin raw
materials and new components, remanufacturing systems involve several complicating characteristics,
among which is a high level of uncertainty in the input data needed to make planning decisions. This
is mainly due to a lack of control on the return flows of used products, both in terms of quantity and
quality, and to the difficulty of forecasting the demand for new (or like-new) products. Even in cases
where companies apply special policies to collect the used products from customers, e.g. product
life-cycle contracts or collecting incentives, these parameters remain difficult to accurately predict.
The fact that production planning and control activities are more complex for remanufacturing
firms due to uncertainties is extensively discussed in [49] and [48]. Lage and Filho [64] provided a
recent literature review about production planning and control for remanufacturing systems. They
analyzed whether the gap identified by Guide [48] was fully investigated and concluded that no work
deals simultaneously with all of the complicating characteristics involved in production planning and
control activities in a remanufacturing environment. In the same way, Ilgin and Gupta [56] provided
a review of the state of the art in environmentally conscious manufacturing and product recovery
and investigated the production planning field within a remanufacturing environment. Most works
reported in [56] for planning production activities did not take into account any uncertain parameters
and the authors concluded that more studies are needed to better control the effects of uncertainties in
remanufacturing systems. Hence, this work is an attempt at closing this gap. Namely, we investigate
a production planning model where uncertainties related to the quantity and quality of returned
products, the customers’ demand, and the costs are simultaneously taken into account and seek
to develop an approach where the multi-stage aspect of the decision making process is explicitly
considered.

Note that such multi-stage decision making processes have already been considered for stochastic
production planning problems displaying features similar to our problem. Thus, Denizel et al. [33]
studied a production planning problem for a company remanufacturing large-scale mailing equipment.
They considered uncertainty in the quality of the returns and developed a multi-stage stochastic pro-
gramming approach. Kazemi et al. [60] investigated a sawmill production planning problem with
uncertainty on both the demand and the raw materials quality and also proposed a multi-stage
stochastic programming approach. Production planning for remanufacturing under stochastic de-
mand and returns was studied by Li et al. [65]. They proposed a stochastic dynamic programming
based model for this problem. However, these three works all assume linear production costs, which
enable them to formulate the optimization problem using only continuous decision variables. In con-
trast, we consider fixed production set-up costs in our problem modeling, leading to the formulation
of a lot-sizing problem involving a set of binary decision variables. In what follows, we thus focus on
reviewing previously published works on stochastic lot-sizing for remanufacturing systems.
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3.1.1 Related work
In recent years, stochastic lot-sizing problems for remanufacturing or hybrid manufacturing/ reman-
ufacturing systems have been studied under several modeling and uncertainty assumptions. Multi-
period single-echelon single-item stochastic lot-sizing problems have been studied in [61], [62] and
[74], taking under consideration both stochastic demand and returns quantity. Kilic [61] and Kilic
et al. [62] included customer service level constraints and developed a heuristic approach based on
a static-dynamic uncertainty strategy. Naeem et al. [74] introduced a backlogging cost to be paid
whenever the demand is not satisfied on time. They proposed a stochastic dynamic programming
approach to deal with the uncertain parameters. Subsequently, Macedo et al. [68] and Hilger et al.
[52] studied a multi-item variant of the problem taking into account both stochastic demand and
returns quantity. Macedo et al. [68] extended the previous works ([61], [62] and [74]) by considering
also stochastic set-up costs and proposed a two-stage stochastic programming model that assumes
production and set-up as first-stage decision variables and inventory, disposal, and backlogging as
second-stage decision variables. Hilger et al. [52] studied the multi-item variant under capacity
constraints and proposed a nonlinear model formulation that is approximated by two models. In
the first approximation, the nonlinear functions of the expected values are approximated by piece-
wise linear functions such that the problem can be converted into a mixed-integer problem that can
be solved using a standard mixed-integer programming (MIP) solver. The second approximation
uses an approach based on sample averages where the random variables are represented by samples
of independently generated scenarios. In contrast to the above mentioned works which considered
single-echelon production systems, Wang and Huang [101] and Fang et al. [38] studied multi-period
multi-echelon multi-product stochastic lot-sizing problems for remanufacturing systems comprising
several operations such as disassembly, recycling and reassembly. Both works focused on stochastic
demand. Wang and Huang [101] developed a two-stage stochastic programming model aiming at find-
ing a compromise between the expected cost and the solution robustness. Fang et al. [38] proposed a
multi-stage stochastic programming approach which resulted in the formulation of a large-size MILP
and developed a Lagrangian relaxation-based heuristic algorithm to solve it.

We focus on a multi-echelon system with not only disassembly and reassembly operations, but
also refurbishing operations. We explicitly consider uncertain input parameters and propose a multi-
stage stochastic programming approach. Our work is therefore closely related to the one of Fang
et al. [38]. However, these authors focused only on stochastic demand and developed a heuristic
solution approach. In contrast, we consider the uncertainty on the demand, the return quantity and
quality and the production costs and we aim at developing an exact solution method for the problem.

Multi-stage stochastic integer programming approaches usually rely on scenario trees to represent
the uncertain information structure and result in the formulation of large-size mixed integer linear
programs. One key element in efficiently solving large-size MILP to optimality is the quality of
the bounds provided by the linear relaxation of the problem as it has a strong impact of the nu-
merical efficiency of the branch-and-bound algorithm. Linear programming relaxation strengthening
techniques focused on stochastic lot-sizing problems expressed on scenario trees have been studied
in [46], [45], [34] and [102]. Guan et al. [46] investigated an uncapacitated lot-sizing problem and
extended the (`, S) valid inequalities known for the deterministic variant to a general facet-defining
class called (Q,SQ) for the stochastic variant. Later, Di Summa and Wolsey [34] studied a capaci-
tated lot sizing problem and extended the work of Guan et al. [46] by proving that the (Q,SQ) valid
inequality is dominated by a mixing inequality. Additionally, Guan et al. [45] proposed a general
method for generating cutting planes for multi-stage stochastic integer programs based on combining
valid inequalities for the individual scenarios. Zhang et al. [102] investigated a dynamic stochastic
lot-sizing problem with service level constraints and formulated the problem as a multi-stage chance-
constrained program. The authors developed a branch-and-cut method for the multi-stage setting
based on a set of valid inequalities obtained by a mixing procedure. Nonetheless, all these works
have focused on single-echelon production systems and do not consider used product returns nor
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lost sales. In contrast, we investigate a multi-stage stochastic integer programming approach dealing
with a multi-echelon multi-item stochastic lot-sizing problem with lost sales within a remanufacturing
environment.

3.1.2 Contributions
The contributions of the present work are threefold. Firstly, we propose a multi-stage stochastic
integer programming approach for a stochastic lot-sizing problem arising in a remanufacturing con-
text. This is in contrast with most previously published works on lot-sizing for remanufacturing which
consider either a deterministic setting or develop two-stage stochastic programming approaches. Sec-
ondly, we consider a multi-echelon multi-item setting, whereas most papers dealing with a multi-stage
decision process for stochastic lot-sizing problems assume either a single-echelon or a single-item set-
ting. Finally, we propose a branch-and-cut framework to solve the resulting large-size mixed integer
linear program. The algorithm relies on a new set of valid inequalities obtained by mixing previously
known path inequalities [66]. The number of these valid inequalities increases exponentially fast with
the size of the scenario tree. We provide an efficient cutting-plane generation strategy to identify the
useful subset of this class. Our computational experiments show that the proposed method is capable
of significantly decreasing the computation time needed to obtain guaranteed optimal solutions.

The remaining part of this paper is organized as follows. Section 3.2 formally describes the
problem and proposes a mixed integer linear programming model. In Section 3.3, a reformulation of
the problem based on the echelon-stock concept is presented. This reformulation allows us to identify
a series of single-echelon subproblems embedded in the general multi-echelon problem. Section
3.4 introduces a new class of valid inequalities to strengthen the linear relaxation of each single-
echelon subproblem. Cutting-plane generation algorithms are developed in Section 3.5. Section 3.6
reports the results of computational experiments and discusses the performance of our branch-and-cut
algorithm. Finally, Section 3.7 gives the conclusions with possible issues for further research.

3.2 Problem description and mathematical formulation

3.2.1 System description
We consider a remanufacturing system comprising three main production echelons (see Figure 1):
disassembly, refurbishing and reassembly, and seek to plan the production activities in this system
over a multi-period horizon. We assume that there is a single type of used product which, in each
period, is returned in limited quantity by customers. These used products are first disassembled into
parts. Due to the usage state of the used products, some of these parts are not recoverable and have to
be discarded during disassembly. In order to reflect the variations in the quality of the used products,
the yield of the disassembly process, i.e. the proportion of parts which will be recoverable, is assumed
to be part-dependent and time-dependent. The remaining recoverable parts are then refurbished on
dedicated refurbishing processes. The serviceable parts obtained after refurbishing are reassembled
into remanufactured products which have the same bill-of-material as the used products. These
remanufactured products are used to satisfy the dynamic demand of customers.

All the production processes are assumed to be uncapacitated. However, the system might not
be able to satisfy the customer demand on time due to part shortages if there are not enough used
products returned by customers or if their quality is low. In this situation, the corresponding demand
is lost incurring a high penalty cost to account for the loss of customer goodwill. Moreover, note that
some used products are allowed to be discarded before being disassembled: this option might be useful
in case more used products are returned that what is needed to satisfy the demand for remanufactured
products. Similarly, some of the recoverable parts obtained from the disassembly process may be
discarded. In case there is a strong unbalance between the part-dependent disassembly yields, this
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Figure 3.1: Illustration of studied remanufacturing system

option might be used in a production plan to avoid an unnecessary accumulation in inventory of the
easy-to-recover parts.

We aim at finding an optimal production plan, i.e. a production plan complying with all the
practical limitations of the system while minimizing the total production cost. This cost comprises
the production fixed set-up costs to be incurred each time a production takes place on a process, the
inventory holding costs for all the items involved in the system, the lost-sales costs penalizing the
unsatisfied demand and the disposal costs for the discarded used products and parts.

Ahn et al. [5] studied a deterministic and particular case of the problem, in which the quantity
of returned products is unlimited and the lost sales and the discarding quantities are assumed to be
zero. The authors proved that, under these assumptions, the problem is NP-hard. Therefore, our
problem is NP-hard as well.

3.2.2 Uncertainty
As mentioned in above, one of the main challenges to be faced when planning remanufacturing
activities is the high level of uncertainty in the problem parameters. In what follows, we propose a
production planning model in which all problem parameters, except the bill-of-material coefficients,
are subject to uncertainty.

We consider a multi-stage decision process corresponding to the case where the value of the
uncertain parameters unfolds little by little following a discrete-time stochastic process and the
production decisions are adapted progressively as more and more information is collected. This leads
to the representation of the uncertainty via a scenario tree. With a slight abuse of notation, we will
refer to this scenario tree by mentioning only its set of nodes V . Each node n ∈ V corresponds to
a single time period tn and a single-stage σn and it represents the state of the system that can be
distinguished by the information unfolded up to time period tn. Let C(n) be the set of immediate
children of node n, V(n) the sub-tree of V rooted in n and L(n) the set of leaf nodes belonging to
V(n). We refer the reader to Section 2.2.2 for a detail description of a scenario tree.

We use the following notations for the problem formulation:

• I: number of part/items involved in one product,
• I: set of all products involved in the system, I = {0, ..., 2I + 1}, where i = 0 corresponds to

returned product and i = 2I + 1 corresponds to remanufactured product,
• Ir: set of recoverable parts provided by the disassembly process, Ir = {1, ..., I},
• Is: set of serviceable parts provided by the refurbishing processes, Is = {I + 1, ..., 2I},

31



• J : set of production processes, J = {0, ..., I + 1}, where p = 0 corresponds to the disassembly
process, p = 1, ..., I correspond to the refurbishing processes and p = I + 1 corresponds to the
reassembly process.

The deterministic parameter is:

• $i: number of parts i embedded in a returned/remanufactured product.

The stochastic parameters are introduced as follows:

• rn: quantity of used products (returns) collected at node n ∈ V ,

• dn: customers’ demand at node n ∈ V ,

• δni : proportion of recoverable parts i ∈ Ir obtained by disassembling one unit of returned
product at node n ∈ V ,

• ln: unit lost-sales penalty cost at node n ∈ V ,

• fnp : set-up cost for process p ∈ J at node n ∈ V ,

• hni : unit inventory cost for part i ∈ I at node n ∈ V ,

• qni : unit cost for discarding a recoverable part or a returned product i ∈ Ir∪{0} at node n ∈ V ,

• gn: unit cost for discarding the unrecoverable parts obtained while disassembling one unit of
returned product at node n ∈ V .

Note that due to the unknown quality of the returned product, there exists an implicit flow of unrecov-
erable parts generated when disassembling used products. We thus introduce gn = ∑I

i=1 q
n
i (1−δni )$i

which represents the unit cost of the parts that cannot be recovered when a returned product is
disassembled. Moreover, we assume that at each stage, the realization of the random parameters
happens before we have to make a decision for this stage, i.e. we assume that the values of rn, dn,
δni , ln, fnp , hnp , qn and gn are known before we have to decide on the production plan at node n ∈ V .
We also assume that ln � gn for all n ∈ V .

3.2.3 MILP formulation
We propose a multi-stage stochastic integer programming model based on the uncertainty represen-
tation described above. The decision variables involved in the model are:

• Xn
p : quantity of parts processed on process p ∈ J at node n ∈ V ,

• Y n
p ∈ {0, 1}: set-up variable for the process p ∈ J at node n ∈ V ,

• Sni : inventory level of part i ∈ I at node n ∈ V ,

• Qn
i : quantity of part i ∈ Ir ∪ {0} discarded at node n ∈ V ,

• Ln: lost sales of remanufactured products at node n ∈ V .

The mixed integer linear programming model is given below.

min
∑
n∈V

ρn
( ∑
p∈J

fnp Y
n
p +

∑
i∈I

hni S
n
i + lnLn +

∑
i∈Ir∪{0}

qni Q
n
i + gnXn

0

)
(3.1)
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subject to

Xn
p ≤Mn

p Y
n
p ∀p ∈ J , ∀n ∈ V (3.2)

Sn0 = Sa
n

0 + rn −Xn
0 −Qn

0 ∀n ∈ V (3.3)
Sni = Sa

n

i + δni $iX
n
0 −Xn

i −Qn
i ∀i ∈ Ir, ∀n ∈ V (3.4)

Sni = Sa
n

i +Xn
i−I −$iX

n
I+1 ∀i ∈ Is,∀n ∈ V (3.5)

Sn2I+1 = Sa
n

2I+1 +Xn
I+1 − dn + Ln ∀n ∈ V (3.6)

S0
i = 0 ∀i ∈ I (3.7)
Sni ≥ 0 ∀i ∈ I,∀n ∈ V (3.8)
Qn
i ≥ 0 ∀i ∈ Ir ∪ {0},∀n ∈ V (3.9)

Ln ≥ 0 ∀n ∈ V (3.10)
Xn
p ≥ 0, Y n

p ∈ {0, 1} ∀p ∈ J ,∀n ∈ V (3.11)

The objective function (3.1) aims at minimizing the expected total cost, over all nodes of the scenario
tree. This cost is the sum of the expected set-up, inventory holding, lost sales and disposal costs.
Constraints (3.2) link the production quantity variables to the set-up variables. Constraints (3.3)-
(3.6) are the inventory balance constraints. Constraints (3.3) (resp. (3.4) and (3.5)) involve a term
corresponding to a dependent demand Xn

0 (resp. Xn
i and $iX

n
I+1) whereas Constraints (3.6) only

involve an independent demand term dn. Without loss of generality, we assume that the initial
inventories are all set to 0. Finally, Constraints (3.8)-(3.11) provide the domain of the decision
variables.

The value of Mn
p can be set by using an upper bound on the quantity that can be processed on

process p at node n. This quantity is limited by two elements: the availability of the used products
already returned by customers and the future demand for remanufactured products. Thus, for a
given process p and a node n, Mn

p is computed as the minimum between:

• A value provided by the maximum amount of input product (used product, recoverable part
or serviceable part) that can be available for processing on process p at node n. This value is
computed by summing the values of rν on the nodes ν belonging to the path from the root
node to the node n.

• A value provided by the maximum demand for the output product (recoverable part, serviceable
part or remanufactured product) of process p at node n. This value is computed by considering
the maximum future demand for the output product over the set P(n, `). It is the maximum,
over all leaf nodes ` in L(n), of the cumulated demand on the path from the node n to the leaf
node `.

This leads to the following expressions for constants Mn
p :

• Mn
0 = min

 ∑
ν∈P(0,n)

rν , max
`∈L(n)


∑

ν∈P(n,`)
dν

mini=1...Iδni




• Mn
p = min

{ ∑
ν∈P(0,n)

($pr
ν max
µ∈P(ν,n)

δµp ), max
`∈L(n)

{ ∑
ν∈P(n,`)

$pd
ν

}}
, for p = 1, ..., I.

• Mn
I+1 = min

{
min

p∈{1,...,I}

{ ∑
ν∈P(0,n)

(rν max
µ∈P(ν,n)

δµp )
}
, max
`∈L(n)

{ ∑
ν∈P(n,`)

dν
}}

Even if the problem (3.1)-(3.11) is a mixed-integer linear program displaying a structure similar to
the one of its deterministic counterpart, its resolution by a mathematical programming solver poses
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some computational difficulties in practice. This first comes from the problem size which, for a given
planning horizon length, is much larger in the stochastic case than in the deterministic case. Namely,
in the stochastic case, the mixed-integer linear programming formulation involves O(|V||J |) binary
variables, O(|V||J |) continuous variables and O(|V||J +I|) constraints. The size of the scenario tree
|V| is in O(cT+1) with c is the number of children per node and T the number of stages. The MILP
formulation size thus grows exponentially fast with the number of decision stages T . Moreover, the
presence of the big-M type constraints (2) leads to a poor quality of the lower bounds provided by
the linear relaxation of the problem.

In what follows, we propose a branch-and-cut algorithm in order to solve to optimality medium-
size instances of the problem. We first describe a reformulation of the problem that provides a way to
decompose the multi-echelon problem into a series of single-echelon subproblems. We then investigate
two sets of valid inequalities (path inequalities and tree inequalities) that can be used to strengthen
the formulation of each of these single-echelon subproblems. These valid inequalities are added to
the problem formulation using a cutting-plane strategy during the course of the branch-and-bound
search.

3.3 Mathematical reformulation
The concept of echelon stock has been widely used to develop solution approaches for multi-echelon
lot-sizing problems (the reader is referred to [79] for further details). The main advantages of the re-
formulation is that it helps decomposing the multi-echelon problem into a series of single-echelon lot-
sizing problems for which formulation strengthening techniques such as valid inequalities or extended
reformulations are available. As each subproblem is a relaxed version of the overall multi-echelon
problem, valid inequalities strengthening the linear relaxation of each subproblem will strengthen
the linear relaxation of the overall multi-echelon problem.

3.3.1 Echelon stock reformulation
The echelon demand edni for an intermediate product can be understood as the translation of the
external demand for the finished product into an independent demand for the intermediate product.
For each product i = 1...2I, we straightforwardly define the echelon demand as edni = $id

n. We
note however that, in our case, it is not possible to properly define such an echelon demand for the
used product i = 0. Namely, this demand could be defined as edn0 = dn

mini∈Ir δ
n
i
by considering that

the amount of used product to disassemble to satisfy the external demand dn is determined by the
disasssembly yield of the item i ∈ Ir which is the most difficult to recover at node n. However, as
the disassembly yields are time-varying and stochastic, the actual amount of used product needed
to satisfy the external demand dn depends on the period in which it is disassembled and might be
larger or smaller than dn

mini∈Ir δ
n
i
. Hence, using the echelon demand edn0 might lead to inconsistent

disassembly production decisions. We thus focus in what follows on defining echelon stock variables
for products i ∈ {1, ..., 2I + 1}.

The echelon stock of a product in a multi-echelon production system corresponds to the total
quantity of the product held in inventory, either as such or as a component within its successors in
the bill-of-material. For each product i ∈ {1, ..., 2I + 1}, we define the echelon inventory variables as
follows:

• En
i = Sni + En

I+i = Sni + SnI+i +$iS
n
2I+1, for i ∈ Ir, for n ∈ V

• En
i = Sni +$iE

n
2I+1 = Sni +$iS

n
2I+1, for i ∈ Is, for n ∈ V

• En
2I+1 = Sn2I+1, for n ∈ V
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Moreover, we define the unit echelon inventory holding cost ehni as follows:

• ehni = hni , for i ∈ Is, for n ∈ V

• ehni = hni − hni−I , for i ∈ Ir, for n ∈ V

• ehn2I+1 = hn2I+1 −
∑
i∈Ir $ih

n
i , for n ∈ V

This leads to the following mixed-integer linear programming formulation:

Z∗ = min
∑
n∈V

ρn
( ∑
p∈J

fnp Y
n
p + hn0S

n
0 +

∑
i∈I\{0}

ehni E
n
i + lnLn +

∑
i∈Ir∪{0}

qni Q
n
i + gnXn

0

)
(3.12)

subject to:

Xn
p ≤Mn

p Y
n
p ∀p ∈ J ,∀n ∈ V (3.13)

Sn0 = Sa
n

0 + rn −Xn
0 −Qn

0 ∀n ∈ V (3.14)
En
i = Ean

i + δni $iX
n
0 −$id

n +$iL
n −Qn

i ∀i ∈ Ir,∀n ∈ V (3.15)
En
i = Ean

i +Xn
i−I −$id

n +$iL
n ∀i ∈ Is,∀n ∈ V (3.16)

En
2I+1 = Ean

2I+1 +Xn
I+1 − dn + Ln ∀n ∈ V (3.17)

En
i − En

I+i ≥ 0 ∀i ∈ Ir,∀n ∈ V (3.18)
En
i −$iE

n
2I+1 ≥ 0 ∀i ∈ Is,∀n ∈ V (3.19)

En
2I+1 ≥ 0 ∀n ∈ V (3.20)

S0
0 = 0 (3.21)
E0
i = 0 ∀i ∈ I \ {0} (3.22)

Sn0 ≥ 0, Ln ≥ 0 ∀n ∈ V (3.23)
Qn
i ≥ 0 ∀i ∈ Ir ∪ {0},∀n ∈ V (3.24)

Xn
p ≥ 0, Y n

p ∈ {0, 1} ∀p ∈ J ,∀n ∈ V (3.25)

As in the previous formulation, the objective function (3.12) aims at minimizing the expected
cost, over all nodes of the scenario tree. Constraints (3.13) are defined as Constraints (3.2) of
the (3.1)-(3.11) formulation. Constraints (3.14)-(3.17) are inventory balance constraints. Con-
straints (3.14) use the classical inventory variables, whereas Constraints (3.15)-(3.17) make use of
the echelon inventory variables. Contrary to Constraints (3.4)-(3.5) of the natural formulation, Con-
straints (3.15)-(3.17) do not involve a dependent demand term but only an external demand term.
Constraints (3.18)-(3.20) ensure consistency between the echelon inventory at the different levels of
the bill-of-material and guarantee that the physical inventory of each product remains non-negative.
Finally, Constraints (3.23)-(3.25) define the domain of the decision variables.

3.3.2 Single echelon subproblems
The introduction of echelon inventory variables leads to the elimination of the dependent demand
term in the inventory balance equations of the (3.1)-(3.11) formulation. This induces that the
constraint matrix of (3.12)-(3.25) displays a specific structure: it can be decomposed in a series
of single-echelon single-resource lot-sizing subproblems coupled by the linking constraints (3.14),
(3.18)-(3.20). The single-echelon subproblems are defined as follows.

For each refurbishing/reassembly process p, we have the following subproblem:

Z∗p = min
∑
n∈V

ρn
(
fnp Y

n
p + ehnp+IE

n
p+I + lnLn

)
(3.26)
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subject to:

Xn
p ≤Mn

p Y
n
p ∀n ∈ V (3.27)

En
p+I = Ean

p+I +Xn
p −$pd

n +$pL
n ∀n ∈ V (3.28)

E0
p+I = X0

p −$pd
0 +$pL

0 (3.29)
En
p+I ≥ 0 ∀n ∈ V (3.30)

Ln ≥ 0, Xn
p ≥ 0, Y n

p ∈ {0, 1} ∀n ∈ V (3.31)

For the disassembly process, for each item i ∈ Ir, we have the following subproblem:

Z∗0 = min
∑
n∈V

ρn
(
fn0 Y

n
0 +

I∑
i=1

ehni E
n
i +

I∑
i=1

qni Q
n
i + lnLn + gnXn

0

)
(3.32)

subject to:

Xn
0 ≤Mn

0 Y
n

0 ∀n ∈ V (3.33)
En
i = Ean

i + δni $iX
n
0 −$id

n +$iL
n −Qn

i ∀n ∈ V (3.34)
E0
i = δ0

i$iX
0
0 −$id

0 +$iL
0 −Q0

i (3.35)
En
i ≥ 0 ∀n ∈ V (3.36)

Ln ≥ 0, Xn
0 ≥ 0, Qn

i ≥ 0, Y n
0 ∈ {0, 1} ∀n ∈ V (3.37)

Each subproblem (3.26)-(3.31) or (3.32)-(3.37) is an uncapacitated single-echelon single-item lot-
sizing problem with lost sales. The deterministic variant of this problem was studied by Loparic et
al. [66] who proposed a family of valid inequalities called (k, U) inequalities, to strengthen the linear
relaxation. We discuss in Section 3.4 how these inequalities known for the deterministic variant of
the problem can be used to solve the stochastic problem expressed on a scenario tree.

3.4 Valid inequalities
In this section, we provide (k,U) inequalities for each single-echelon subproblem described in Section
3.3.2. We first exploit these (k,U) inequalities considering their application to each individual sce-
nario, i.e. to each individual path from a non-terminal node n to a leaf node ` ∈ L(n) in the scenario
tree V . Next, we extend them to a more general class of inequalities. This is done by exploiting the
scheme proposed by Guan et al. [45] for generic multi-stage stochastic integer programs. The idea is
to mix valid inequalities corresponding to different individual scenarios to obtain valid inequalities for
the whole scenario tree (or for a subtree). Throughout this section we will refer to a (k,U) inequality
applied to an individual scenario as a path inequality and to a (k,U) inequality applied to a subtree
as a tree inequality.

3.4.1 Path inequalities
We first recall the relevant notation introduced in Section 3.2.2. Each node k of the scenario tree V ,
except for the root node, has a unique parent, and each non-terminal node k is the root of a subtree
V(k), with V(1) = V . Let L(k) be the set of leaf nodes such that there exists a path from the node
k ∈ V to the leaf node and let c`k be the immediate successor of node k belonging to the set P(k, `),
for ` ∈ L(k). Let Uk,` ⊆ P(c`k, `) be a subset of nodes belonging to the path from the node c`k to the
leaf node `, not necessarily consecutive.

For each process p ∈ {1, ..., I + 1}, we have the following proposition:
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Proposition 3
Let k ∈ V and ` ∈ L(k). Let Uk,` ⊂ P(c`k, `). The following (k,U) inequality

Ek
p+I ≥ $p

∑
µ∈Uk,`

[
dµ
(

1−
∑

m∈P(c`
k
,µ)
Y m
p

)
− Lµ

]
(3.38)

is valid for the problem (3.12)-(3.25).

The proof is direct following the proof in [66].
The intuition underlying path inequalities can be understood as follows. We consider the inventory

level of the product p + I of node k and look for the future demands for this product in the path
originated from the node k to the leaf node `. For a node µ ∈ Uk,`, if

∑
m∈P(c`

k
,µ) Y

m
p ≥ 1, the demand

of node µ, $pd
µ, can be satisfied by a production in one of the nodes m ∈ P(c`k, µ) and does not have

to be in stock at the node k. But if ∑m∈P(c`
k
,µ) Y

m
p = 0, the demand $pd

µ cannot be produced in any
node m ∈ P(c`k, µ) meaning that the portion of this demand which will be satisfied by a production
$p(dµ − Lµ), should already be in stock at node k.

Moreover, for process p = 0 and each part i ∈ Ir, we also have a path inequality defined as
follows:

Ek
i ≥ $i

∑
µ∈Uk,`

[
dµ
(

1−
∑

m∈P(c`
k
,µ)
Y m

0

)
− Lµ

]

We note that the right-hand side of this inequality has the same expression for each i ∈ Ir. In order
to exploit this fact and limit the number of valid inequalities to be investigated, we consider only
the inequality corresponding to the item i ∈ Ir for which the value Ek

i /$i is minimum. This leads
to the following proposition.

Proposition 4
Let k ∈ V and ` ∈ L(k). Let Uk,` ⊂ P(c`k, `). The following (k,U) inequality

min
i∈Ir

[
Ek
i

$i

]
≥

∑
µ∈Uk,`

[
dµ
(

1−
∑

m∈P(c`
k
,µ)
Y m

0

)
− Lµ

]
(3.39)

is valid for the problem (3.12)-(3.25).

3.4.2 Tree inequalities

Now, we investigate a new family of valid inequalities obtained by considering a subtree of the scenario
tree as proposed by Guan et al. in [46] and [45]. The authors proposed a general scheme to obtain
valid inequalities for multi-stage stochastic integer programs by mixing several path inequalities. In
what follows, we apply this scheme to derive a new set of tree inequalities based on a mixing of the
path inequalities discussed above. We first introduce additional notations to properly define this
new set of valid inequalities. Let V(k) be the subset of nodes belonging to the subtree V(k) and
U = ∪`∈L(k)Uk,` be a set of nodes defining a tree inequality. This enables us to introduce the following
proposition for each process p ∈ {1, ..., I + 1}.
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Proposition 5
Let k ∈ V and U ⊂ V(k). Let ¯s = {¯s1, ..., ¯s|L(k)|} be a sequence of leaf nodes belonging to
L(k) in increasing order of cumulative demand ∑µ∈Uk,` d

µ: ∑µ∈Uk,¯s1 d
µ ≤ ... ≤ ∑µ∈Uk,¯sι d

µ ≤ ... ≤∑
µ∈Uk,¯s|L(k)|

dµ. We set ∑µ∈Uk,¯s0 d
µ = 0. The following inequality

Ek
p+I +$p

∑
µ∈U

Lµ +$p

∑
m∈V(k)\{k}

φmY m
p ≥ $p

∑
µ∈Uk,¯s|L(k)|

dµ (3.40)

is valid for problem (3.12)-(3.25), with

φm = min
{

max
`∈L(m)

{
∑

µ∈Uam,`

dµ},
∑

ι=1...|L(k)| s.t ¯sι∈L(m)

( ∑
µ∈Uk,¯sι

dµ −
∑

µ∈Uk,¯sι−1

dµ
)}

Proof : Without loss of generality, we drop the index of the production process and assume $p = 1, for all
p ∈ {1, ..., I + 1}. Let k be a non-leaf node. For each leaf node ` ∈ L(k), we arbitrarily choose a subset
of nodes Uk,` ⊂ P(c`k, `). We thus obtain a set of |L(k)| path inequalities defined as follows:

Ek ≥
∑

µ∈Uk,`

[
dµ
(
1−

∑
m∈P(c`

k
,µ)

Y m)− Lµ] (3.41)

We rewrite the inequalities (3.41) in a form making it easier to apply Theorem 2 in [45].

Ek +
∑

µ∈Uk,`

Lµ +
∑

m∈P(c`
k
,`)

( ∑
µ∈Uam,`

dµ
)
Y m ≥

∑
µ∈Uk,`

dµ

Let ¯s = {¯s1, ..., ¯s|L(k)|} be a sequence of leaf nodes in increasing order of cumulative demand ∑µ∈Uk,` d
µ:∑

µ∈Uk,¯s1 d
µ ≤ ... ≤

∑
µ∈Uk,¯sι d

µ ≤ ... ≤
∑
µ∈Uk,¯s|L(k)|

dµ. We set ∑µ∈Uk,¯s0 d
µ = 0. Now, we use Theorem

2 in [45] to combine these |L(k)| path inequalities and derive a new tree inequality as follows:

Ek +
∑

µ∈∪`∈L(k)Uk,`

Lµ +
∑

m∈V\{k}
φmY m ≥

( ∑
µ∈Uk,|L(k)|

dµ
)

where, the coefficient φm for m ∈ V \ {k}, is given by:

φm = min
{

max
`∈L(m)

{
∑

µ∈Uam,`

dµ},
∑

`∈L(m)

( ∑
µ∈Uk,¯s`

dµ −
∑

µ∈Uk,¯s`−1

dµ
)}

with ∑µ∈Uk,¯s0 d
µ set to 0. �

The same scheme can be applied starting with the path inequalities (3.39) for the disassembly
process p = 0. This leads to the following proposition:
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Proposition 6
Let k ∈ V and U ⊂ V(k). Let ¯s = {¯s1, ..., ¯s|L(k)|} be a sequence of leaf nodes belonging to L(k)
in the increasing order of the cumulative demand ∑µ∈Uk,` d

µ: ∑µ∈Uk,¯s0 d
µ ≤ ∑

µ∈Uk,¯s1 d
µ ≤ ... ≤∑

µ∈Uk,¯sι d
µ ≤ ... ≤ ∑µ∈Uk,¯s|L(k)|

dµ. We set ∑µ∈Uk,¯s0 d
µ = 0. The following inequality

min
i∈Ir

[
Ek
i

$i

]
+
∑
µ∈U

Lµ +
∑

m∈V(k)\{k}
φmY m

0 ≥
∑

µ∈Uk,¯s|L(k)|

dµ (3.42)

is valid for problem (3.12)-(3.25), with

φm = min
{

max
`∈L(m)

{
∑

µ∈Uam,`

dµ},
∑

ι=1...|L(k)| s.t ¯sι∈L(m)

( ∑
µ∈Uk,¯sι

dµ −
∑

µ∈Uk,¯sι−1

dµ
)}

3.5 Cutting-plane generation
The number of valid inequalities (3.38), (3.39), (3.40) and (3.42) is too large to allow adding all
of them a priori to the formulation. Hence, a cutting-plane generation strategy is needed to add
only a subset of these valid inequalities into the MILP formulation. Consequently, the corresponding
separation problems must be solved in order to identify which inequalities to be incorporated in the
formulation. In what follows, we discuss an exact separation algorithm for the path inequalities and a
heuristic one for the tree inequalities. These separation algorithms will be used within a cutting-plane
generation procedure aiming at strengthening the linear relaxation of the problem (3.12)-(3.25).

3.5.1 Separation algorithm for path inequalities
Given a solution (Ỹ , L̃) of the linear relaxation of the problem, solving the separation problem for
path inequalities consists in finding the most violated inequality (3.38)-(3.39) if it exists or proving
that no such inequality exists. For a given process p, node k ∈ V and leaf node ` ∈ L(k), finding the
most violated inequality corresponds to identifying the set Uk,` maximizing the right-hand side of the
inequality. We note that the value of the term corresponding to a node µ ∈ Uk,` in the right-hand side
of (3.38)-(3.39) does not depend on the other nodes belonging to Uk,`. Hence, each node of P(c`k, `)
can be considered individually: if it has a positive contribution in maximizing the right-hand side
value of the inequality, we add it to set Uk,`, if not, it is discarded. This leads to the following exact
separation algorithm for inequalities (3.38)-(3.39):

For a given process p, node k ∈ V and leaf node ` ∈ L(k), the set Uk,` is built by adding all the
nodes in the set P(c`k, `), which satisfy the following inequality:

$p

[
dµ
(

1−
∑

m∈P(c`
k
,µ)
Ỹ
m

p

)
− L̃µ

]
> 0

We underline that the above strategy can be implemented in polynomial time [66], namely, the
running-time of the proposed separation algorithm is O(|P|2), where |P| corresponds to the number
of nodes in the set P(c`k, `).

3.5.2 Cutting-plane generation for path inequalities
Our preliminary computational experiments showed that adding all the violated inequalities of class
(3.38)-(3.39) found at each iteration of the cutting-plane generation led to the introduction of a large
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number of additional constraints in the problem formulation. Moreover, many of these inequalities
involved the same subsets of set-up variables Y n

p and had thus similar effects in terms of strengthening
the relaxation of the problem.

In order to limit the increase in the formulation size, we propose the following cutting plane
generation strategy to add violated path inequalities to the formulation. This strategy relies on two
main ideas.

The first idea consists in adding, for a given process p and node k ∈ V , at most one valid
inequality at each iteration of the cutting-plane generation, namely the inequality corresponding to
the leaf node ` ∈ L(k) providing the largest violation of the path inequality, i.e. to the leaf node
`min = arg min`∈L(k) Ẽ

k
p+I −$p

∑
µ∈Uk,`

[
dµ
(

1−∑m∈P(c`
k
,µ) Ỹ

m
p

)
− L̃µ

]
.

The second idea aims at avoiding the addition of inequalities involving similar subsets of set-
up variables Y n

p , during an iteration of the cutting-plane generation algorithm. This is achieved
by using the following strategy. During a given iteration of the algorithm, each time a violated
inequality is added to the formulation, we record µmin, the last node of the path P(c`mink , `min) added
to the set Uk,`min . The inequality added to the formulation involves a subset of set-up variables Y n

p

corresponding to nodes n belonging to the subpath P(c`mink , µmin).

Algorithm 2: Cutting-plane generation for path inequalities
Data: instances parameters and linear relaxation solution (Ẽ, Ỹ, L̃)
Result: set of path inequalities χpath

1 Initialize χpath ← ∅
2 for p ∈ J do
3 L′(·)← L(·)
4 for k ∈ V do
5 violmin ← 0
6 for ` ∈ L′(k) do
7 Uk,` ← ∅, µlast ← k
8 for µ ∈ P(c`k, `) do
9 if

[
dµ
(

1−∑m∈P(c`
k
,µ) Ỹ

m
p

)
− L̃µ

]
> 0 then

10 Uk,` ← Uk,` ∪ {µ} , µlast ← µ
11 end
12 end
13 viol← Ẽk

p+I −$p
∑
µ∈Uk,`

[
dµ
(

1−∑m∈P(c`
k
,µ) Ỹ

m
p

)
− L̃µ

]
14 if viol < violmin then
15 violmin ← viol, `min ← `, µmin ← µlast
16 end
17 end
18 if violmin < 0 then
19 χpath ← χpath ∪

{
Ek
p+I > $p

∑
µ∈Uk,`min

[
dµ
(
1−∑m∈P(c`

k
,µ) Y

m
p

)
− Lµ

]}
20 for µ ∈ P(c`mink , µmin) do
21 L′(µ)← L′(µ) \ {`min}
22 end
23 end
24 end
25 end
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As the valid inequalities generated when considering the leaf node `min at nodes n ∈ P(c`mink , µmin)
are likely to involve the same set-up variables Y n

p and have a redundant effect on the formulation
strengthening, we do not consider generating them during the current iteration. Thus, if a cut
involving leaf node `min is generated at node k at a given iteration, for all n ∈ P(k, µmin), `min
is removed temporarily, i.e. for the course of the current iteration, from the leaf node set L′(n)
considered for the search of violated valid inequalities at node n. It is then reintegrated into all leaf
node sets at the beginning of the next iteration.

Note that this cutting-plane generation strategy implies that all valid inequalities are still poten-
tially considered for inclusion in the formulation and that the separation problem is solved exactly.

The cutting-plane generation algorithm is summarized in Algorithm 2.

3.5.3 Separation algorithm for tree inequalities
Given a non-leaf node k, solving the separation problem for inequalities (3.40) (resp. (3.42)) requires
to identify a subset of nodes U ⊆ V(k) minimizing the difference between the left-hand side and
the right-hand side of inequalitie (3.40) (resp. (3.42)). This is challenging as contrary to the case
of path inequalities, it is not possible to consider each node of V(k) individually. Namely, selecting
a node v of V(k) in the set U not only changes the left-hand side of the inequality by a quantity
Lv+φvY v, but also potentially impacts the value of the coefficient φm for all other nodes in V(k)\{k}.
In addition, selecting a node v of V(k) potentially changes the order of the sequence ¯s and hence
the value of the right-hand side of the inequality. These interactions significantly complicate the
resolution of the separation problem. Therefore, we consider a heuristic separation approach based
on a neighborhood search to solve the separation problem corresponding to the tree inequalities. The
separation algorithm is summarized in Algorithm 3.

The intuition behind Algorithm 3 is the following. It first builds an initial set U containing all
nodes in V(k) that would be selected in the set Uk,` when looking for a violated path inequality: see
lines 4-9 of Algorithm 3. If this initial set is empty, we stop: see lines 10-11. Otherwise, we try to
find a tree inequality as violated as possible by removing, one by one, some nodes from set U : see
lines 12-30. More precisely, we start by computing the amount of violation (violmin) obtained with
the initial set U : this requires to determine the ordering ¯s of the leaf nodes in Lk corresponding to
set U and to compute coefficients φm for every m ∈ V(k). We then explore the neighborhood of
set U which consists of all subsets of U obtained by removing a single node. For each considered
neighbor, we compute the amount of violation of the corresponding tree inequality: this operation is
particularly time-consuming due to the fact that the ordering ¯s of the leaf nodes and the coefficients
φ need to be recomputed for each neighbor. Note that a first improvement strategy is used to explore
the neighborhood of the current set, i.e. we update the current set U as soon as a better neighbor set
U ′ is found. Finally, the algorithm stops when no neighbor set U ′ has a violation value lower than
the one of the current set U .

3.6 Computational experiments
We develop two branch-and-cut algorithms for solving problem (3.1)-(3.11). These algorithms rely
on the cutting-plane generation algorithms proposed in Section 3.5 to add valid inequalities to the
Echelon Stock reformulation discussed in Section 3.3. We provide in this Section the results of
computational experiments carried out on randomly generated instances of the problem. The main
objective of these experiments is to assess the effectiveness of the branch-and-cut algorithms by
comparing them with the one of a stand-alone mathematical programming solver.

In what follows, we introduce the setting used to randomly generate instances based on the data
presented in [5] and [58] before discussing the detailed results of our computational experiments.
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Algorithm 3: Cutting-plane generation for tree inequalities
Data: instances parameters and linear relaxation solution (Ẽ, Ỹ, L̃)
Result: set of tree inequalities χtree

1 Initialize χtree ← ∅, V ′ = {µ ∈ V : |E(µ)| > 1}
2 for p ∈ J do
3 for k ∈ V ′ do
4 U ← ∅, violcurr ←∞
5 for µ ∈ V(k) do
6 if

[
dµ
(

1−∑m∈P(c`
k
,µ) Ỹ

m
p

)
− L̃µ

]
> 0 then

7 U ← U ∪ {µ}
8 end
9 end

10 if U = ∅ then
11 break;
12 else
13 Determine the ordering ¯s of the leaf nodes for set U and compute φm for every

m ∈ V(k) \ {k}
14 violmin ← Ẽk

p+I +$p
∑
µ∈U L̃

µ +$p
∑
m∈V(k)\{k} φ

mỸ m
p −$p

∑
µ∈Uk,¯s|L(k)|

dµ

15 while violmin < violcurr do
16 violcurr ← violmin
17 for µ ∈ U do
18 U ′ ← U \ {µ}
19 Update the ordering ¯s for set U ′ and compute φm for every m ∈ V(k) \ {k}

and
20 viol← Ẽk

p+I +$p
∑
µ∈U ′ L̃

µ +$p
∑
m∈V(k)\{k} φ

mỸ m
p −$p

∑
µ∈Uk,¯s|L(k)|

dµ

21 if viol < violmin then
22 violmin ← viol, U ← U ′
23 end
24 end
25 end
26 if violmin < 0 then
27 Update the ordering ¯s for the set U and compute φm for every m ∈ V(k) \ {k}
28 χtree ← χtree∪

{
Ek
p+I > $p

∑
µ∈U L

µ+$p
∑
m∈V(k)\{k} φ

mY m
p −$p

∑
µ∈Uk,¯s|L(k)|

dµ
}

29 end
30 end
31 end
32 end
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3.6.1 Instances generation
The following test data were randomly generated based on the instances generation scheme provided
in [5].

• The demands for finished products dn at each node n were generated from the discrete uniform
distribution DU(100, 1000).

• The bill of material was generated such that $0 = $I + 1 = 1, and for each p = 1, ..., I,$p was
generated from DU(1, 6).

• The set-up costs for the disassembly process fn0 were generated from DU(50000, 70000), the
set-up costs fnp for each refurbishing process p = 1, ..., I from DU(4000, 8000), and the set-up
cost for the reassembly process fnI+1 from DU(50000, 70000).

• The unit inventory holding costs for used products hn0 were fixed and set to 1. The unit
inventory holding costs hni for each recoverable parts i ∈ Ir were generated from DU(2, 7). The
unit inventory holding costs hni for each serviceable part i ∈ Is were generated from DU(7, 12).
To ensure non negative echelon costs, we generated the unit inventory holding costs for the
remanufactured products, hn2I+1, from

I∑
i=1

$ih
n
I+i + ε where we generated ε from DU(80, 100).

For the proportion of recoverable parts δni , i ∈ Ir, obtained by disassembling one unit of used
product at node n ∈ V , we defined three intervals for the uniform probability distribution corre-
sponding to three quality levels. These intervals are based on the values presented in the case study
reported by Jayaraman [58].

- Low nominal quality level (Q1):, δni ∼ DU [8, 25]/100

- Medium nominal quality level (Q2):, δni ∼ DU [11, 58]/100

- High nominal quality level (Q3):, δni ∼ DU [21, 79]/100

Similarly, we defined three intervals for the discrete uniform distribution corresponding to three
levels of returned product volumes.

- Low nominal level of returns (R1): rn ∼ DU(335, 2150).

- Medium nominal level of returns (R2): rn ∼ DU(1738, 3454).

- High nominal level of returns (R3): rn ∼ DU(704, 7942).

Finally, we define the following probability distribution for the input parameters specific to the
problem studied in this paper.

• The lost-sales unit penalty costs ln were set to 10000, at each node n ∈ V .

• The cost for discarding one unit of recoverable part, i ∈ Ir ∪{0}, is defined at each node n ∈ V
as follows, qni = hni ∗ Tε , where ε ∼ DU [2, T ].

• The cost for discarding the unrecoverable parts generated during the disassembly process is
computed as gn = ∑I

i=1 q
n
i (1− δni )$i.
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Regarding the scenario tree structure, we used only balanced trees with Σ stages, a constant
number b = |T σ|, for all σ ∈ S, of time periods per stage and a constant number R = Rσ, for all
σ ∈ S, of equiprobable realizations per stage.

We set the number of parts in a product to I ∈ {5, 10}, the length of a decision stage to a
constant number b = |T σ| such that b ∈ {1, 2, 3} periods, for all σ ∈ S and the number of stages
to Σ ∈ {4, 5, 6, 7, 8, 9}. The number of immediate successors c of each last-period-of-stage node is
defined between 2 and 6. This leads to 16 different structures of the scenario trees. Figure 3.2
displays a scenario tree with (b,Σ, c) = (3, 3, 2). For each combination of scenario tree structure,
used product quality level and used product quantity level, we randomly generated 10 instances,
resulting in a total of 2880 instances.

b = 3

c = 2

c = 2

stage 1 stage 2 stage 3

Figure 3.2: Scenario tree structure

3.6.2 Results
Each instance was solved using the echelon stock formulation (3.12)-(3.25) discussed in Section 3 by
three alternative branch-and-cut methods:

1. The standard branch-and-cut algorithm embedded in the mathematical programming solver
CPLEX with the solver default settings.

2. BC1: a customized branch-and-cut algorithm using only Algorithm 1 to add path inequalities
at the root node of the branch-and-bound search tree.

3. BC2: a customized branch-and-cut algorithm in which Algorithms 2 and 3 are used to add path
and tree inequalities at the root node of the branch-and-bound search tree and UserConstraints
callbacks based on Algorithm 3 are used to add tree valid inequalities to the formulation during
the course of the branch-and-bound search tree. Note that Algorithm 3 is not only capable to
find valid tree inequalities, but also valid path inequalities.

We note that even though the natural formulation (3.1)-(3.11) and the echelon stock formulation
(3.12)-(3.25) have the same linear relaxation, preliminary experiments show that CPLEX performs
slightly better using the echelon stock formulation than the natural formulation on the considered
set of instances. We thus only report the results obtained using this latter formulation.

All related linear programs and mixed-integer linear program were solved by CPLEX 12.8 with
the solver default settings. The algorithms were implemented in C++ using the Concert Technology
environment. All tests were run on the computing infrastructure of the Laboratoire d’Informatique
de Paris VI (LIP6), which consists in a cluster of Intel Xeon Processors X5690. We set the cluster
to use two 3.46GHz cores and 12GB RAM to solve each instance. We imposed a time limit of 900
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seconds. The corresponding results are displayed in Tables 3.1 and 3.3 for instances with I = 5 and
Tables 3.2 and 3.4 for instances with I = 10.

For each set of instances, we report five performance measures:

1. “GapLP " is the average percentage integrality gap. It is computed as the relative difference
between the lower bound provided by the linear relaxation of the formulation and the value of
the optimal integer solution. In case the instance could not be solved to optimality, the value
of the best integer feasible solution found is used.

2. “GapMIP " is the average percentage residual gap reported by CPLEX. It is computed as the
relative difference between the best lower bound and the best integer feasible solution found
by the solver within the time limit.

3. “Time" is the average CPU time (in seconds) needed to find a guaranteed optimal integer
solution (we used the value of 900s in case a guaranteed optimal integer solution could not be
found within the computation time limit).

4. “#Opt" is the number of instances solved to optimality within the time limit.

5. “Cuts" reports the average number of cuts added to the formulation.

Tables 3.1 and 3.2 display the results according to the scenario tree structure and size. Instances
are grouped into two categories in order to be analyzed: small (between 126 and 381 nodes) and
medium (between 468 and 1022 nodes).

First, results from Table 3.1 indicate that, for small-size instances with I = 5, the two proposed
branch-and-cut algorithms perform much better than CPLEX solver. This can be seen by the
fact that the number of instances solved to optimality is more than twice the number solved by
CPLEX when using Algorithm BC1 and almost three times the number solved by CPLEX when
using Algorithm BC2. Moreover, the average residual gap is decreased from 0.15% with CPLEX to
0.07% with BC1 and 0.05% with BC2 and the average computation time is decreased from 786s with
CPLEX to 643s with BC1 and 565s with BC2. This is mainly explained by the effectiveness of the
cutting-plane generation at tightening the LP relaxation gap at the root node, as shown by the results
provided in columns GapLP . Namely, a significant tightening of the LP relaxation is achieved via
our approach since the average LP gap is reduced from over 11% to less than 2%. Moreover, we note
that on these instances, the addition of tree inequalities using Algorithm 2 during the course of the
branch-and-cut algorithm proves useful to improve its performance both in terms of solution quality
and computation time. As for the medium-size instances, we note that none of the three algorithms
could solve them to optimality within 900 seconds. However, we observe that the average residual
gap is smaller with the proposed branch-and-cut algorithms than with CPLEX solver. Namely, it is
reduced from 0.45% to 0.31%.

Second, by looking at Table 3.2, we observe that the performance of the three solution approaches
decreases when the number of items increases. This is mainly explained by the fact that the for-
mulation size strongly increases with I. However, the proposed branch-and-cut algorithms are still
able to provide optimal solutions for around 15% of the small size instances whereas CPLEX finds
optimal solutions for less than 2% of the considered instances within the imposed time limit. Re-
garding medium size instances, we note that algorithms BC1 and BC2 lead to larger residual gaps
than CPLEX. This might be due to the fact that, even if the best lower bounds are improved by the
cutting-plane generation algorithms, the residual gap remains large due to the poor quality of the
best upper bounds found within the time limit.

In Tables 3.3 and 3.4, the instances are grouped according to the nominal returns and quality
levels. These results show that these instance features have an impact on the problem resolution.
Namely, formulation (14)-(28) displays a significant dispersion of the LP gap: from 1.21% (resp.
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Table 3.1: Comparison between default CPLEX configuration and the customized branch-and-cut
algorithms for instances with I = 5. Instances are grouped according to the number of nodes in the
scenario tree.

Instances CPLEX default BC1 (Path) BC2 (Path and Tree)
Nodes GapLP GapMIP Time #Opt GapLP GapMIP Time #Opt Cuts GapLP GapMIP Time #Opt Cuts
126 10.25 0.02 338.04 68 1.83 0.01 200.50 79 1190 1.58 0.01 160.52 80 1350
189 13.35 0.07 716.55 26 1.77 0.03 429.89 58 2146 1.54 0.02 339.91 66 2315
242 10.68 0.13 856.61 7 2.34 0.06 640.80 37 1790 2.00 0.05 550.86 48 2109
254 12.25 0.16 877.31 5 2.05 0.07 693.37 33 2439 1.74 0.05 589.49 46 2778
255 8.72 0.12 810.42 12 2.30 0.06 629.43 36 1631 1.84 0.04 488.53 51 2385
255 10.68 0.15 891.51 1 1.89 0.07 801.11 16 2209 1.66 0.05 660.45 37 2427
363 11.78 0.23 900.07 0 1.90 0.12 863.67 5 3476 1.63 0.11 855.92 8 3820
381 12.91 0.28 900.24 0 1.59 0.14 888.23 3 4470 1.36 0.11 874.01 4 4837

Average 11.33 0.15 786.34 119 1.96 0.07 643.37 267 2418 1.67 0.05 564.96 340 2752
468 10.34 0.34 900.17 0 1.96 0.19 898.79 1 3778 1.70 0.18 900.69 0 4159
510 12.02 0.38 900.27 0 1.89 0.20 900.74 0 4963 1.58 0.21 899.74 1 5693
511 9.61 0.29 900.18 0 2.50 0.21 890.58 3 3332 2.02 0.21 897.06 2 4858
682 9.47 0.40 900.20 0 2.18 0.33 898.19 1 4430 1.87 0.31 900.73 0 5220
728 9.88 0.45 900.32 0 2.02 0.37 900.88 0 5421 1.73 0.37 900.74 0 6375
765 13.37 0.47 900.43 0 1.54 0.34 900.97 0 9043 1.30 0.32 900.90 0 9773
777 10.90 0.58 900.25 0 2.13 0.40 900.69 0 6019 1.88 0.42 901.07 0 6581
1022 12.75 0.68 900.48 0 1.87 0.42 901.01 0 10058 1.61 0.47 901.05 0 11537

Average 11.04 0.45 900.29 0 2.01 0.31 898.98 5 5880 1.71 0.31 900.24 3 6774

Table 3.2: Comparison between default CPLEX configuration and the customized branch-and-cut
algorithms for instances with I = 10. Instances are grouped according to the number of nodes in the
scenario tree.

Instances CPLEX default BC1 (Path) BC2 (Path and Tree)
Nodes GapLP GapMIP Time #Opt GapLP GapMIP Time #Opt Cuts GapLP GapMIP Time #Opt Cuts
126 7.71 0.14 871.23 7 1.4 0.07 571.63 46 2042 1.24 0.07 541.35 48 2288
189 9.56 0.27 895.13 1 1.23 0.15 818.65 14 3778 1.09 0.13 805.72 15 4030
242 6.81 0.26 900.37 0 1.48 0.19 880.81 4 3057 1.29 0.19 871.13 7 3540
254 8.04 0.36 900.18 0 1.37 0.25 863.01 8 4185 1.21 0.24 849.03 11 4652
255 6.15 0.24 897.71 1 1.65 0.17 815.49 14 2761 1.38 0.15 784.94 18 3900
255 7.45 0.27 900.13 0 1.32 0.19 892.65 2 3801 1.18 0.17 888.76 3 4120
363 8.81 0.46 906.08 0 1.42 0.35 900.57 0 5985 1.28 0.31 900.67 0 6183
381 8.86 0.41 906.39 0 1.07 0.31 900.63 0 7698 0.96 0.29 900.25 1 7985

Average 7.92 0.30 897.49 9 1.37 0.21 830.43 88 4163 1.20 0.19 817.73 103 4587
468 7.62 0.51 900.20 0 1.93 0.91 900.70 0 6528 1.36 0.39 900.70 0 6683
510 8.34 0.79 900.24 0 1.69 0.83 900.74 0 8528 1.43 0.67 900.66 0 9083
511 6.52 0.44 900.78 0 1.62 0.34 900.68 0 5545 1.44 0.33 900.81 0 6742
682 6.74 0.66 900.25 0 2.69 1.60 900.79 0 7509 1.65 0.65 900.72 0 7904
728 10.01 3.20 903.11 0 7.03 6.02 900.87 0 9254 4.15 3.25 900.81 0 9827
765 14.01 5.47 900.65 0 14.62 14.05 900.90 0 15556 9.42 8.91 900.96 0 16128
777 9.93 3.51 905.34 0 8.83 7.96 900.85 0 10369 5.32 4.51 900.85 0 10578
1022 18.13 10.33 900.42 0 14.64 13.91 900.96 0 17131 14.74 14.14 900.89 0 18282

Average 10.17 3.11 901.38 0 6.63 5.70 900.81 0 10052 4.94 4.11 900.80 0 10653

4.77%) for the case of a low volume and a poor quality of the returned products to 25.47% (resp.
15.82%) for the case of a large volume and a good quality of the returned products, for the instances
with I = 5 (resp. I = 10). This might be explained by the relative weight of the lost sales penalty
costs and fixed set-up costs in the objective function. Namely, we note that the integrality gap
mainly comes from the fact that the binary constraints on the set-up variables Y n

p are relaxed so
that the value of the fixed set-up costs is underestimated in the linear relaxation. The larger the
relative weight of the set-up costs in the objective function, the larger the integrality gap. Now, in
case the volume of returned products is high and their quality is good, a large part of the demand for
remanufactured products will be satisfied so that the lost sales quantity will be close to zero. This
implies that the set-up costs will make up a large portion of the overall production costs, leading to
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Table 3.3: Comparison between default CPLEX configuration and the customized branch-and-cut
algorithm for instances with I = 5. The instances are grouped according to the nominal returns and
quality levels.

Instances CPLEX default BC1 (Path) BC2 (Path and Tree)
R Q GapLP GapMIP Time #Opt GapLP GapMIP Time #Opt Cuts GapLP GapMIP Time #Opt Cuts
1 1 1.21 0.22 894.20 2 0.62 0.23 893.37 2 4908 0.64 0.25 890.65 3 5010

2 3.71 0.26 876.34 6 1.13 0.23 858.92 10 4401 1.08 0.22 839.89 14 4850
3 10.89 0.30 851.54 12 2.25 0.18 770.57 31 4133 2.01 0.17 731.14 43 4799

Average 5.27 0.26 874.03 20 1.33 0.22 840.95 43 4481 1.25 0.21 820.56 60 4886
2 1 3.38 0.20 886.32 5 0.97 0.17 856.49 14 4329 0.93 0.18 833.98 17 4778

2 12.66 0.27 807.24 23 2.20 0.13 697.91 45 3913 1.85 0.13 656.96 53 4688
3 22.71 0.47 839.15 13 3.21 0.23 766.87 32 3979 2.54 0.21 709.88 46 4785

Average 12.91 0.31 844.24 41 2.13 0.18 773.75 91 4074 1.77 0.17 733.61 116 4750
3 1 6.37 0.10 758.60 30 1.25 0.06 628.28 62 3863 1.09 0.06 589.14 67 4566

2 14.28 0.31 829.69 17 2.26 0.16 703.93 44 3858 1.84 0.15 656.43 52 4637
3 25.47 0.54 846.76 11 3.96 0.3 764.26 32 3962 3.22 0.27 685.38 48 4758

Average 15.37 0.32 811.68 58 2.49 0.17 698.82 138 3894 2.05 0.16 643.65 167 4654

Table 3.4: Comparison between default CPLEX configuration and the customized branch-and-cut
algorithms for instances with I = 10. The instances are grouped according to the nominal returns
and quality levels.

Instances CPLEX default BC1 (Path) BC2 (Path and Tree)
R Q GapLP GapMIP Time #Opt GapLP GapMIP Time #Opt Cuts GapLP GapMIP Time #Opt Cuts
1 1 4.77 3.81 903.00 0 6.11 5.81 900.70 0 7846 5.63 5.32 900.65 0 7946

2 8.20 5.00 900.15 0 10.76 10.20 900.64 0 7615 8.17 7.61 900.66 0 8009
3 8.87 0.67 900.18 0 3.64 2.36 896.34 2 7205 2.77 1.57 893.75 3 7758

Average 7.28 3.16 901.11 0 6.84 6.12 899.23 2 7555 5.52 4.83 898.36 3 7905
2 1 4.93 2.49 912.03 0 7.11 6.67 900.64 0 7313 3.98 3.56 900.73 0 7728

2 8.33 0.39 888.57 4 1.35 0.24 818.24 22 6791 1.19 0.22 805.78 26 7404
3 15.87 0.72 900.27 0 2.19 0.4 861.45 11 6924 1.85 0.35 854.26 13 7562

Average 9.71 1.20 900.29 4 3.55 2.44 860.11 33 7009 2.34 1.38 853.59 39 7564
3 1 4.86 0.97 897.64 1 0.80 0.16 844.12 15 6707 0.72 0.14 832.63 19 7301

2 9.78 0.52 894.84 2 1.67 0.43 822.14 23 6710 1.32 0.27 807.64 26 7366
3 15.83 0.80 896.65 2 2.36 0.34 846.3 15 6860 2.02 0.32 837.28 16 7507

Average 10.14 0.76 896.38 5 1.61 0.31 837.52 53 6759 1.35 0.24 825.85 61 7391

a large integrality gap. On the contrary, in case the volume of returned products is low and their
quality is bad, a large portion of the demand will not be satisfied, lost sales penalties will be high
as compared to set-up costs, leading to small integrality gaps. We would like to point out that one
advantage of our cutting-plane generation algorithm is that it is capable of reducing the integrality
gap in the same way for any product volume and quality level. We note however that the instances
corresponding to a small amount of lost sales and a large LP gap seem to be easier to solve than
the instances corresponding to a large amount of lost sales and a small LP gap. This might be due
to the fact that, over the course of the branch-and-bound search tree, the lower bound increase is
slower when the weight of the lost sales penalty in the objective function is large. Namely, in this
case, making a branching decision on a binary set-up variable has a smaller impact on the objective
function value in terms of lower bound improvement.

We note that the proposed branch-and-cut methods do not perform better than default CPLEX
for the sets of instances with more than 682 nodes and I = 10, leading to larger residual gaps. For a
better understanding of the behavior of the branch-and-cut methods BC1 and BC2, we carried out
additional computational experiments over the same sets of instances after the automatic generation
of cuts by default CPLEX was turned off. The results are reported in Table 3.5. They show that the
proposed methods perform as well as default CPLEX for instances with less than 682 nodes, showing
slightly larger residual gaps. Nonetheless, for instances with more than 682 nodes, the proposed
methods outperform default CPLEX providing much smaller residual gaps. In general, the method
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BC2 (resp. BC1) improves the residual gaps from 3.11% to 0.84% (resp. 1.16%) on average and, in
particular, for instances with 1022 nodes, the method is able to reduce the gap from 10.33% to 1.22%
(resp. 2.61%). Additionally, we test the methods on even larger scenario trees with 1093 and 1365
nodes. The results show that the method BC2 (resp. BC1) is able to decrease the gap from 11.02%
to 1.11% (resp. 1.62%) on average and for instances with 1365 nodes, the methods reduce the gap
from over 13% to less than 1% (resp 1.52%) on average. A possible explanation of the improvement
of the residual gaps is that turning off the default CPLEX cuts generation leads to a decrease of
the size of the linear programs solved at each node of the search tree. This allows more nodes to be
explored by the branch-and-bound algorithm and results in finding upper bounds of better quality.
All these results confirm the usefulness of the proposed methods in tackling large instances.

Table 3.5: Comparison between default CPLEX configuration and the customized branch-and-cut
algorithms without automatically generated cuts embedded in CPLEX for instances with I = 10.
Instances are grouped according to the number of nodes in the scenario tree.

Instances CPLEX default BC1 (Path) BC2 (Path and Tree)
Nodes GapLP GapMIP Time #Opt GapLP GapMIP Time #Opt Cuts GapLP GapMIP Time #Opt Cuts
126 7.71 0.14 871.23 7 1.40 0.23 900.63 0 2042 1.24 0.15 866.06 8 2289
189 9.56 0.27 895.13 1 1.22 0.32 900.66 0 3778 1.09 0.24 892.70 2 4030
242 6.81 0.26 900.37 0 1.48 0.49 900.54 0 3057 1.29 0.36 900.60 0 3539
254 8.04 0.36 900.18 0 1.37 0.52 900.66 0 4184 1.21 0.40 900.68 0 4653
255 6.15 0.24 897.71 1 1.66 0.67 900.68 0 2761 1.40 0.44 900.63 0 3900
255 7.45 0.27 900.13 0 1.33 0.46 900.66 0 3801 1.19 0.36 900.56 0 4119
363 8.81 0.46 906.08 0 1.45 0.74 900.67 0 5984 1.31 0.62 900.64 0 6182
381 8.86 0.41 906.39 0 1.09 0.60 900.75 0 7699 0.97 0.50 900.75 0 7985

Average 7.92 0.30 897.49 9 1.37 0.50 900.66 0 4163 1.21 0.38 895.33 10 4587
468 7.62 0.51 900.20 0 1.51 0.85 900.78 0 6528 1.40 0.71 900.70 0 6682
510 8.34 0.79 900.24 0 1.35 0.88 900.71 0 8527 1.21 0.75 900.62 0 9082
511 6.52 0.44 900.78 0 1.69 0.96 900.77 0 5545 1.47 0.78 900.64 0 6741
682 6.74 0.66 900.25 0 1.61 0.94 900.85 0 7509 1.50 0.87 900.75 0 7904
728 10.01 3.20 903.11 0 1.63 0.98 900.87 0 9253 1.47 0.86 900.98 0 9826
765 14.01 5.47 900.65 0 1.53 1.19 901.11 0 15549 1.08 0.73 901.13 0 16121
777 9.93 3.51 905.34 0 1.47 0.88 900.86 0 10369 1.40 0.83 900.89 0 10578
1022 18.13 10.33 900.42 0 2.96 2.61 900.99 0 17129 1.55 1.22 901.53 0 18279

Average 10.17 3.11 901.38 0 1.72 1.16 900.87 0 10051 1.38 0.84 900.91 0 10652
1093 13.45 8.45 900.48 0 2.46 1.72 900.98 0 7950 1.94 1.24 900.82 0 9831
1365 17.90 13.59 900.51 0 2.26 1.52 900.80 0 7690 1.74 0.98 900.89 0 9479

Average 15.67 11.02 900.49 0 2.36 1.62 900.89 0 7820 1.84 1.11 900.85 0 9655

Finally, it is worth mentioning that, in the computational experiments reported in this section,
many sources of uncertainty are considered whereas in most previously published works, only one or
two sources of uncertainty were taken into account: see e.g. [61], [62], [74], [52], [101] and [38]. We
thus carried out additional computational experiments over instances involving large scenario trees in
order to assess the performance of the proposed methods when only the demand and returns quantity
are stochastic. The corresponding results are reported in 3.8. They suggest the good performance
of the methods as compared to the mathematical programming solver CPLEX 12.8. In particular,
they show that the proposed algorithms are able to solve to optimality instances involving scenario
trees with more than 1800 nodes in a reasonable computation time.

3.6.3 Value of the stochastic solution
In this subsection, we seek to assess the practical performance of the multi-stage stochastic program-
ming model by comparing it with two simpler production planning models: a deterministic model
which completely ignores uncertainty and a two-stage stochastic programming model which consid-
ers uncertainty but does not allow to dynamically adjust production decisions over time. To build
the two-stage stochastic programming model, we made the same assumptions as the ones used by
Macedo et al. [68] for planning a hybrid manufacturing/remanufacturing system under stochastic
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demand, returns and set-up costs. More precisely, we considered the production decisions (produc-
tion quantity and set-up) as first-stage variables and all other decisions (inventory level, lost sales
and discarded quantities) as second-stage variables.

Rolling horizon simulation

This assessment is achieved by carrying out a rolling horizon simulation similar to the one used by
Brandimarte [23]. Each experiment consists in simulating the application of the first-stage planning
decisions over 12 time periods and in recording the total cost incurred when applying the planning
decisions established by the deterministic or the stochastic models. Note that the cost considered in
this simulation is not the objective function of the optimization model, but the sum over time of the
true cost incurred by the application of the first-stage planning decisions over a true scenario. We
then compute the relative difference 100(C−CMS)/CMS, where C is the total costs accumulated over
each simulation run for the deterministic or the two-stage stochastic programming model, and CMS

corresponds to the total costs accumulated over each simulation run for the multi-stage stochastic
programming model.

Table 3.6: Values of the stochastic solution for 2,3 and 4 children in the scenario tree. The
instances are grouped by returns and quality levels and the values were calculated as follows:
100(C − CMS)/CMS.

Deterministic model Two-stage stochastic model
Instances c=2 c=3 c=4 c=2 c=3 c=4
R Q Ave. MAD Ave. MAD Ave. MAD Ave. MAD Ave. MAD Ave. MAD
1 1 19.9 7.7 25.4 9.6 24.6 8.9 -1.39 15.07 -1.90 21.68 -2.97 28.27

2 36.1 18.5 33.2 16.9 36.2 17.6 16.13 16.35 15.82 13.77 20.29 19.30
3 43.4 41.1 47.8 42.6 65.2 54.6 20.79 25.41 40.18 35.22 44.45 33.44

2 1 26.7 14.5 31.0 15.6 34.3 18.6 5.93 13.62 11.59 17.17 9.50 21.00
2 74.3 61.9 66.5 54.7 74.1 56.6 12.10 21.56 21.87 24.48 28.79 24.08
3 52.0 70.5 69.2 89.7 39.8 48.5 9.65 15.93 15.27 15.94 22.72 18.41

3 1 37.1 31.8 34.0 25.8 45.5 39.8 21.76 20.26 29.39 21.10 27.36 21.89
2 60.2 62.1 46.0 44.5 65.4 69.5 15.00 18.58 23.33 19.90 46.12 29.39
3 33.2 55.9 46.1 68.6 50.0 70.7 7.94 14.10 18.78 17.41 27.16 19.83

Average 42.5 42.5 44.3 42.2 48.2 44.8 11.99 17.88 19.37 20.74 24.82 23.96

The instances are generated in the same way as in the previous subsection. Since running the
simulation is quite costly, we considered small scenario trees with at most 255 nodes in order to gain
some basic insights. More specifically, at each iteration of the rolling horizon simulation, a scenario
tree with s = 4 stages and b = 3 periods per stage is generated for the stochastic model. The number
of branches c at each stage is set between 2 and 4. The stochastic model is solved by algorithm BC2
and, to speed up the simulation, a time limit of 900 seconds is imposed. Since the deterministic
model is easy to solve for instances with 12 time periods, we use the branch-and-bound algorithm
embedded in CPLEX to solve it with no suboptimality tolerance.

We randomly generate 100 true independent scenarios for each nominal returns level, each quality
level and each scenario tree structure, resulting in a total of 2700 true scenarios. Table 3.6 reports
the average relative increase in cost, as defined before, and its Mean Absolute Deviation (MAD) for
each nominal returns level, nominal quality level and number of branches of the scenario tree.

Results from Table 3.6 suggest that the actual practical performance of the production plan ob-
tained by the multi-stage stochastic model might be significantly better than the one of the production
plan provided by a deterministic model. Namely, the average increase in the actual production cost
observed when using the deterministic model instead of the multi-stage stochastic model is 45%.
Moreover, for each nominal returns and quality level, the stochastic model outperforms the deter-
ministic model, even if simple scenario trees with two children per end-of-stage node are used. We
note that this cost decrease mainly comes from the decrease in the amount of lost sales penalty costs
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obtained when using the multi-stage stochastic model. Regarding the two-stage stochastic model, the
results also suggest an overall better performance of the multi-stage stochastic model. Indeed, the
average increase in the actual production cost observed when using the two-stage stochastic model
instead of the multi-stage stochastic model is almost 19%. We note however an exception for the
instances with the lowest returns and quality level for which the two-stage stochastic model slightly
outperforms the multi-stage stochastic model. A reasonable explanation for this is that, with low
returns of bad quality, there will be a large amount of lost sales and the positive impact on the
costs of the additional flexibility to adjust production decisions over time offered by the multi-stage
stochastic model is diminished.

Moreover, we observe a clear, but not large, average improvement when increasing the number
of branches. However, this improvement has to be counter-balanced by the increased CPU effort
required. Of course, these results should be taken carefully, given the large mean absolute deviation.
This large variability is partly due to the instance generation framework, which involves some uniform
distributions with large amplitude of their intervals. It can be easily observed by comparing the mean
absolute deviation of the instances with low nominal returns and quality levels, which have a relative
smaller amplitude of its uniform distribution, to the high nominal and quality levels.

3.7 Conclusion and perspectives
We considered an uncapacitated multi-item multi-echelon lot-sizing problem within a remanufac-
turing system involving three production echelons: disassembly, refurbishing and reassembly. We
considered a stochastic environment in which the input data of the optimization problem are sub-
ject to uncertainty and proposed a multi-stage stochastic integer programming approach relying on
scenario trees to represent the uncertain information structure. This resulted in the formulation of a
large-size mixed-integer linear program involving a series of big-M type constraints. We developed a
branch-and-cut algorithm in order to solve the obtained MILP to optimality. This algorithm relies on
a new set of tree inequalities obtained by combining valid inequalities previously known for each indi-
vidual scenario of the scenario tree. The tree inequalities are used within a cutting-plane generation
procedure based on a heuristic resolution of the corresponding separation problem. Computational
experiments carried out on randomly generated instances show that the proposed branch-and-cut
algorithm performs well as compared to the use of a stand-alone mathematical solver.

Although the proposed branch-and-cut methods provide small residual gaps for large-size scenario
tree instances, they were not able to solve them to optimality within the imposed time limit. Hence,
an interesting direction for further research could be to study other heuristic solution approaches
in order to reduce the total computation time. Moreover, we assumed in our problem modeling
uncapacitated production processes. Extending the present work in order to account for production
resources with limited capacity could also be worth investigating.

3.8 Appendix: Additional computational results on large
instances with only two sources of uncertainty

In Subsection 3.6.2, we study the performance of the proposed algorithms over a set of instances
where many sources of uncertainty, namely the returns quality and quantity, the demand and the
costs, are taken into account. However, most of the works carried out so far considered only one or
two sources of uncertainty and focused on a stochastic demand and/or a stochastic returns quantity:
see e.g. [61], [62], [74], [52], [101] and [38]. In this Appendix, we thus seek to assess the effectiveness
of the proposed branch-and-cut algorithms over a set of instances in which only two sources of
uncertainty, namely the demand and the returns quantity, are taken into account. In particular, we
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would like to evaluate whether reducing the level of stochasticity in the problem parameters could
enable us to solve instances involving larger scenario trees.

In what follows, we introduce the settings used to randomly generate this second set of instances
and present the results of the related computational experiments.

3.8.1 Instances generation
We randomly generate instances following the scheme presented in Subsection 3.6.1. The stochastic
parameters, i.e. the demand and returns quantity, are generated as described in Subsection 3.6.1. All
the other parameters may be time varying but are assumed to be deterministically known. Hence,
contrary to what is done in Subsection 3.6.1, these parameters now have the same value for each
node of the scenario tree belonging to the same time period. This value is randomly generated from
the same discrete uniform distributions as the ones used in Subsection 3.6.1.

We set the number of parts in a product to I = 5 and considered 3 scenario tree structures:
(b,Σ, c) = (1, 7, 3), (b,Σ, c) = (1, 6, 4) and (b,Σ, c) = (5, 6, 3) leading to trees involving respectively
|V| = 1093, |V| = 1365 and |V| = 1820 nodes. For each combination of scenario tree structure and
used product quantity level, we randomly generated 30 instances, resulting in a total of 270 instances.

3.8.2 Results
Each instance was solved using formulation (3.12)-(3.25) by the three alternative branch-and-cut
methods detailed in Subsection 3.6.2. The corresponding results are provided in Table 3.7. They
suggest that the proposed algorithms also outperform CPLEX for this second set of large instances.
This can be seen by the fact that the number of instances solved to optimality is much higher than
the one solved by CPLEX when using Algorithm BC1 or BC2. Specifically, Algorithm BC2 (resp.
BC1) can solve almost 25% (resp. 17%) of the tested instances to optimality whereas CPLEX can
solve less than 1.2% of these instances to optimality. Moreover, the average residual gap is decreased
from 0.56% with CPLEX to 0.28% with BC1 and 0.19% with BC2 and the average computation time
is decreased from 892.73 with CPLEX to 808.17 with BC1 and 745.25 with BC2. Moreover, we note
that Algorithm BC2 performs at least as well as Algorithm BC1 over all instance sets, in terms of
both reducing the computation time and obtaining optimal solutions.

Table 3.7: Performance of branch-and-cut algorithm over larger instances. The instances are grouped
according to the number of nodes in the scenario tree and the nominal returns levels.

Instances CPLEX default BC1 (Path) BC2 (Path and Tree)
Nodes R GapLP GapMIP Time #Opt GapLP GapMIP Time #Opt GapLP GapMIP Time #Opt
1093 1 8.05 0.21 900.18 0 2.41 0.09 841.87 6 2.05 0.06 696.38 9

2 23.90 0.55 900.21 0 6.07 0.28 708.68 8 4.82 0.22 639.78 12
3 26.74 0.68 858.23 2 7.33 0.27 756.66 6 6.12 0.20 710.99 8

1365 1 6.23 0.11 900.14 0 1.88 0.04 758.91 9 1.65 0.03 709.35 9
2 25.66 0.83 871.56 1 7.60 0.37 778.85 7 6.11 0.23 725.53 7
3 28.82 1.14 900.24 0 10.15 0.74 897.16 1 8.48 0.50 831.44 4

1820 1 19.29 0.59 900.19 0 2.18 0.48 901.64 0 1.91 0.28 901.20 0
2 34.62 0.49 901.82 0 2.11 0.10 810.30 4 1.79 0.07 712.60 10
3 34.04 0.43 902.00 0 2.03 0.12 819.63 4 1.70 0.10 780.27 6

Average 23.04 0.56 892.73 3 4.64 0.28 808.17 45 3.78 0.19 745.28 65
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Chapter 4

New valid inequalities for lot-sizing
problems with remanufacturing and lost
sales

This chapter is devoted to the development of new valid inequalities aiming at further strengthening
the MILP formulation of the deterministic variant of the problem studied in Chapter 3. We first
extend the single-echelon (k,U) inequalities introduced in Chapter 3 to a multi-echelon setting.
Second, we introduce a new class of single-echelon inequalities that exploit some specific features of
our problem, in particular the fact that the quantity processed on a resource at a given period is
limited by the availability of its input product, either stored as such or as one of its ancestor in the
bill-of-material. We then further exploit this idea and use it to strengthen the single-echelon and
multi-echelon (k,U) inequalities. Finally, extensive computational results are carried out to assess
the effectiveness of customized branch-and-cut algorithms based on the proposed valid inequalities.

4.1 Introduction
In Chapter 3, we investigated a stochastic multi-echelon lot-sizing problem with lost sales in order
to optimize the production plan of a remanufacturing system. We proposed to solve the resulting
mixed-integer linear program through customized branch-and-cut algorithms based on new valid
inequalities. Although our numerical results showed that the proposed algorithms were able to solve
to near-optimality medium-size instances of the problem, some difficulties could be observed for the
largest studied instances. In particular, the results reported in Table 3.1 showed that for the largest
studied instances, the value of the average integrality gap GapLP obtained with the formulation
strengthened by the proposed inequalities could be larger than 14% in some cases. This translated
in numerical difficulties to provide good quality solutions for the corresponding instances.

Intuitively, this might be due to the fact that the valid inequalities presented in Chapter 3 focused
only on strengthening the formulation of the single-echelon uncapacitated lot-sizing sub-problems
embedded in the general remanufacturing planning problem. Yet, this problem is intrinsically a
multi-echelon lot-sizing problem. Moreover, even if the production resources are assumed to be
uncapacitated in the model, the amount of products that can be processed on a resource at a given
period is limited among others by the amount of used products returned up to this period. Taking
into account these two aspects of the problem in the valid inequalities used to strengthen its MILP
formulation might contribute to further reduce its integrality gap and decrease the computational
effort needed to solve large instances.

We thus investigate in the present chapter the development of new valid inequalities for this
problem. However, in view of the theoretical and numerical difficulties lying ahead, we focus on the
deterministic variant of the remanufacturing planning problem investigated in Chapter 3. Namely,
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before seeking to extend valid inequalities to a multi-stage stochastic problem expressed on a scenario
tree, it is necessary to identify valid inequalities which are efficient at strengthening its deterministic
counterpart and to study how to solve the corresponding separation problem.

Throughout the last decade, several works sought to strengthen the MILP formulation of single-
echelon lot-sizing problems involving remanufacturing, either through extended reformulations or
through valid inequalities. The authors of [86] discussed several MILP formulations of the uncapac-
itated single-item single-echelon lot-sizing problem with remanufacturing and introduced new valid
inequalities by adapting the previously known (`, S,WW ) proposed in [78] to their problem. The
inequalities developed in [86] are based on the assumption that all returned products are either
processed or kept in stock and do not consider the possibility that some of the returns may be
discarded in case of an unbalance between returns quantity and demand. They can therefore not
be directly used for the problem under study here. Similarly, Cunha et al. [29] proposed a multi-
commodity reformulation and a new set of valid inequalities for this problem. In particular, they
further strengthened the (`, S,WW ) inequalities presented in [86] by considering that the amount of
finished products remanufactured in a given period t is limited by the cumulative quantity of returned
products brought back up to t. Then, Ali et al. [10] enriched the previous works by highlighting
a theoretical property with regards to the equivalence of the shortest path and facility location re-
formulations. They also carried out a polyhedral analysis of a related sub-problem based on the
single node fixed-charge network problem, proving the validity of several flow cover inequalities and
their facet-defining conditions as well. Akartunali and Arulselvan [6] studied both the uncapacitated
and capacitated variants of this single-item single-echelon lot-sizing problem. They showed that the
uncapacitated problem cannot have a fully polynomial time approximation scheme (FPTAS) and
provided a pseudo-polynomial algorithm to solve the problem. They also provided valid inequalities
based on the flow-cover inequalities for the problem with a limited production capacity. Finally, we
refer the reader to [21] for a recent survey on single-item lot-sizing problems with remanufacturing.

Polyhedral approaches for multi-echelon lot-sizing problems not taking into account a remanu-
facturing option have been recently proposed by a few works. Authors of [18] and [40] considered a
multi-echelon production planning problem involving a complex assembly product structure. They
used the concept of echelon inventory to construct a new class of valid inequalities based on the well-
known (l, S) valid inequalities. Unfortunately, due to the ‘classical’ assembly structure of our produc-
tion system, the valid inequalities introduced in [18] and [40] become the classical (l, S)-inequalities
in our setting. Zhang et al. [103] studied a multi-echelon uncapacitated lot-sizing problem with a
serial product structure in which there is a demand for both the end product and the intermediate
products. They proposed a family of two-echelon valid inequalities for this problem, which can be
separated in polynomial-time. These inequalities are a particular case of a more general class of valid
inequalities called dicut collection inequalities introduced in [85].

Thus, to the best of our knowledge, the problem of developing valid inequalities explicitly taking
into account the multi-echelon aspects of lot-sizing with remanufacturing and/or lost sales has not yet
been studied. The present work aims at partially closing this gap by proposing new valid inequalities
for this variant of lot-sizing problem. Our contributions are thus threefold. We first extend the
single-echelon (k,U) inequalities introduced in Chapter 3 to a multi-echelon setting. Second, we
introduce a new class of single-echelon inequalities that exploit some specific features of our problem,
in particular the fact that the quantity processed on a resource at a given period is limited by the
availability of its input product, either stored as such or as one of its ancestor in the bill-of-material.
We then further exploit this idea and use it to strengthen the single-echelon and multi-echelon (k,U)
inequalities. Finally, extensive computational results are carried out to assess the effectiveness of
customized branch-and-cut algorithms based on the proposed valid inequalities.

The remainder of this chapter is organized as follows. We first introduce in Section 4.2.2 two
MILP formulations for the deterministic variant of the production planning problem addressed in
Chapter 3. We then introduce a new class of multi-echelon (k,U) inequalities in Section 4.3 and new
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exponential class of single-echelon valid inequalities in Section 4.4. Then, (k,U) valid inequalities
are further strengthened in Section 4.5. Finally, computational results are presented in Section 4.7.

4.2 Mathematical formulations
We consider the remanufacturing system introduced in Subsection 3.2.1 and seek to plan production
for this system over a finite planning horizon involving a set T = {1, ..., T} of periods. Contrary
to the approach used in Chapter 3, we assume a deterministic environment and thus consider a
single possible realization of each input parameter of the production planning problem. We use the
same notation as in Subsection 3.2.2 for these input parameters as well as for the decision variables.
The only difference is that they are indexed by the corresponding time period t rather than by the
corresponding scenario node n.

4.2.1 Initial formulation
We first briefly provide the initial MILP formulation using natural inventory variables Stp.

min
∑
t∈T

( ∑
p∈J

f tpY
t
p +

∑
i∈I

htiS
t
i + ltLt +

∑
i∈Ir∪{0}

qtiQ
t
i + gtX t

0

)
(4.1)

subject to

X t
p ≤M t

pY
t
p ∀p ∈ J ,∀t ∈ T (4.2)

St0 = St−1
0 + rt −X t

0 −Qt
0 ∀t ∈ T (4.3)

Sti = St−1
i + δti$iX

t
0 −X t

i −Qt
i ∀i ∈ Ir,∀t ∈ T (4.4)

Sti = St−1
i +X t

i−I −$iX
t
I+1 ∀i ∈ Is,∀t ∈ T (4.5)

St2I+1 = St−1
2I+1 +X t

I+1 − dt + Lt ∀t ∈ T (4.6)
S0
i = 0 ∀i ∈ I (4.7)
Sti ≥ 0 ∀i ∈ I,∀t ∈ T (4.8)
Qt
i ≥ 0 ∀i ∈ Ir ∪ {0},∀t ∈ T (4.9)

Lt ≥ 0 ∀t ∈ T (4.10)
X t
p ≥ 0, Y t

p ∈ {0, 1} ∀p ∈ J ,∀t ∈ T (4.11)

The objective function (4.1) aims at minimizing the total remanufacturing cost over the whole plan-
ning horizon. This cost comprises the set-up, inventory holding, lost sales and disposal costs. Con-
straints (4.2) link the production quantity variables to the set-up variables. Note that the value
of each constant M t

p can be computed as described in Section 3.2. Constraints (4.3)-(4.6) are the
inventory balance constraints. Without loss of generality, we assume that the initial inventory, S0

i ,
is set to 0 for each item i ∈ I: see Constraints (4.7). Finally, Constraints (4.8)-(4.11) provide the
domain of the decision variables.

4.2.2 Echelon stock reformulation
We also provide a reformulation of the problem using the echelon stock concept. The echelon stock
of a product in a multi-echelon production system corresponds to the total quantity of the product
held in inventory, either as such or as a component within its successors in the bill-of-material. We
thus denote by Et

i the echelon stock level of item i ∈ I \{0} at the end of period t and define it using
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the same relationships as the ones used in Subsection 3.3.1. Replacing variables Sti by variables Et
i

in Problem (4.1)-(4.11) leads to the following MILP formulation:

min
∑
t∈T

( ∑
p∈J

f tpY
t
p + htiS

t
0 +

∑
i∈I\{0}

ehtiE
t
i + ltLt +

∑
i∈Ir∪{0}

qtiQ
t
i + gt0X

t
0

)
(4.12)

subject to

X t
p ≤M t

pY
t
p ∀p ∈ J ,∀t ∈ T (4.13)

St0 = St−1
0 + rt −X t

0 −Qt
0 ∀t ∈ T (4.14)

Et
i = Et−1

i + πti$iX
t
0 −$i(dt − Lt)−Qt

i ∀i ∈ Ir,∀t ∈ T (4.15)
Et
i = Et−1

i +X t
i−I −$i(dt − Lt) ∀i ∈ Is,∀t ∈ T (4.16)

Et
2I+1 = Et−1

2I+1 +X t
I+1 − dt + Lt ∀t ∈ T (4.17)

S0
0 = 0 (4.18)
E0
i = 0 ∀i ∈ I \ {0} (4.19)

Et
i − Et

I+i ≥ 0 ∀i ∈ Ir, ∀t ∈ T (4.20)
Et
i −$iE

t
2I+1 ≥ 0 ∀i ∈ Is, ∀t ∈ T (4.21)

Et
i ≥ 0 ∀i ∈ I, ∀t ∈ T (4.22)

Qt
i ≥ 0 ∀i ∈ Ir ∪ {0}, ∀t ∈ T (4.23)

St0, L
t ≥ 0 ∀t ∈ T (4.24)

X t
p ≥ 0, Y t

p ∈ {0, 1} ∀p ∈ J ,∀t ∈ T (4.25)

The objective function (4.12) aims at minimizing the total cost over the whole planning horizon.
Constraints (4.13) link the production quantity variables to the setup variables. Constraints (4.14)-
(4.17) are the inventory balance constraints. Constraints (4.14) use the classical inventory variables,
whereas Constraints (4.15)-(4.17) make use of the echelon inventory variables. Constraints (4.18)-
(4.19) translate the fact that the initial inventory of each item is assumed to be equal to 0. Con-
straints (4.20)-(4.21) ensure consistency between the echelon inventory at the different echelons of the
bill-of-material and guarantee that the physical inventory of each product, Sti , remains non-negative
for all i ∈ I . Finally, Constraints (4.22)-(4.25) define the domain of the decision variables.

As explained in Subsection 3.3.2, the use of the echelon stock reformulation (4.12)-(4.25) enables
us to decompose the initial problem into a series of single-echelon sub-problems by relaxing the
linking constraints (4.20)-(4.21). We refer the reader to [1, 19, 2] for a deeper discussion on single-
item lot-sizing problems with lost sales. Each of these sub-problems is an uncapacitated single-
echelon single-item lot-sizing problem with lost sales, the formulation of which can be strengthened
by the (k,U) valid inequalities proposed in [66]. However, this decomposition into single-echelon
uncapacitated sub-problems overlooks the fact that the initial problem is intrisically a multi-echelon
lot-sizing problem and that the production on each process at a given period is limited by the amount
of used products returned up to this period. In what follows, we investigate several classes of valid
inequalities in which these aspects of the problem are explicitly taken into account.

4.3 Two-echelon (k,U)-inequalities
We first investigate the extension of the single-echelon (k,U) inequalities introduced in [66] for a
single-echelon uncapacitated lot-sizing problem with lost sales to a two-echelon setting.
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Theorem 1
Let 1 ≤ k ≤ T be a period in the planning horizon and U ⊆ {k+ 1, ..., T} be a subset of periods.
Let t∗ = max{` ∈ U} denote the last period belonging to U . We partition U into 2 subsets:
U1 ⊆ U and U0 = U \ U1.

The following inequalities are valid for Problem (4.12)-(4.25) for any refurbishing process p ∈
{1, . . . , I}:

$−1
p Ek

p+I +
∑

k<t≤t∗
φt(U0)Y t

p +
∑

k<t≤t∗
φt(U1)Y t

I+1 ≥
∑
t∈U

(dt − Lt) (4.26)

$−1
p Ek

p +
∑

k<t≤t∗
φt(U0)Y t

0 +
∑

k<t≤t∗
φt(U1)Y t

p ≥
∑
t∈U

(dt − Lt) (4.27)

Moreover, the following inequality is valid for Problem (4.12)-(4.25):

min
i∈Ir

$−1
i Ek

i +
∑

k<t≤t∗
φt(U0)Y t

0 +
∑

k<t≤t∗
φt(U1)Y t

I+1 ≥
∑
t∈U

(dt − Lt) (4.28)

with

φt(Ũ) =
∑

`∈Ũ :`≥t

d`

Proof : Let (X,Y, S,E, L,Q) be a feasible solution of (4.12)− (4.25). We show that this solution complies
with inequalities (4.26) for any period k, any subset U and any partition of U into two subsets U1 and
U0.
Let τ = min{` ∈ {k+ 1, . . . , t∗} : Y `

p = 1} be the first production period of the refurbishing process p on
interval [k + 1, t∗]. By convention, τ = t∗ + 1 if no production occurs on process p during this interval.
Similarly, let τ̄ = min{` ∈ {k + 1, . . . , t∗} : Y `

I+1 = 1} be the first production period of the reassembly
process I + 1 on interval [k + 1, t∗]. By convention, τ̄ = t∗ + 1 if no production occurs on process I + 1
during this interval.

• Case (1): τ = t∗ + 1
There is no production on refurbishing process p over periods k + 1 to t∗. We thus have Xt

p = 0
for all t in [k + 1, t∗]. By summing up the inventory balance constraints (4.16) corresponding to
periods k + 1 to t∗, we have:

$−1
p Ekp+I ≥

∑
t=k+1...t∗

(dt − Lt) ≥
∑
t∈U

(dt − Lt)

• Case (2): τ̄ = t∗ + 1
There is no production on reassembly process I+1 over periods k+1 to t∗. We thus have Xt

I+1 = 0
for all t in [k + 1, t∗]. By summing up the inventory balance constraints (4.17) corresponding to
periods k + 1 to t∗, we have:

Ek2I+1 ≥
∑

t=k+1...t∗
(dt − Lt) ≥

∑
t∈U

(dt − Lt)

By Constraints (4.21), we have Ekp+I ≥ $pE
k
2I+1, so that:

$−1
p Ekp+I ≥ Ek2I+1 ≥

∑
t∈U

(dt − Lt)
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• Case (3): τ̄ ≤ τ < t∗ + 1
Similar to Case (1), there is no production on process p on interval [k+1, τ−1] so that, by summing
up Constraints (4.16) over k + 1 to τ − 1, we obtain:

$−1
p Ekp+I ≥

∑
t∈U :t≤τ−1

(dt − Lt)

Moreover, by definition of periods τ̄ and τ and by using τ̄ ≤ τ , we have:

$−1
p Ekp+I +

∑
k<t≤t∗

φt(U0)Y t
p +

∑
k<t≤t∗

φt(U1)Y t
I+1 ≥

∑
t∈U :≤τ−1

(dt − Lt) + φτ (U0)Y τ
p + φτ̄ (U1)Y τ̄

I+1

≥
∑

t∈U :t≤τ−1
(dt − Lt) +

∑
t∈U0:t≥τ

dt +
∑

t∈U1:t≥τ̄
dt

≥
∑

t∈U :t≤τ−1
(dt − Lt) +

∑
t∈U0:t≥τ

dt +
∑

t∈U1:t≥τ
dt

≥
∑

t∈U :t≤τ−1
(dt − Lt) +

∑
t∈U :t≥τ

dt

≥
∑

t∈U :t≤τ−1
(dt − Lt) +

∑
t∈U :t≥τ

(dt − Lt)

≥
∑
t∈U

(dt − Lt)

• Case (4): τ ≤ τ̄ < t∗ + 1
Similar to Case (2), there is no production on reassembly process I + 1 on interval [k + 1, τ̄ − 1]
so that, by summing up Constraints (4.17) over k + 1 to τ̄ − 1 and using Constraints (4.21), we
obtain:

$−1
p Ekp+I ≥ Ek2I+1 ≥

∑
t∈U :t≤τ̄−1

(dt − Lt)

Moreover, by definition of periods τ̄ and τ and by using τ ≤ τ̄ , we have:

$−1
p Ekp+I +

∑
k<t≤t∗

φt(U0)Y t
p +

∑
k<t≤t∗

φt(U1)Y t
I+1 ≥

∑
t∈U :≤τ̄−1

(dt − Lt) + φτ (U0)Y τ
p + φτ̄ (U1)Y τ̄

I+1

≥
∑

t∈U :t≤τ̄−1
(dt − Lt) +

∑
t∈U0:t≥τ

dt +
∑

t∈U1:t≥τ̄
dt

≥
∑

t∈U :t≤τ̄−1
(dt − Lt) +

∑
t∈U0:t≥τ̄

dt +
∑

t∈U1:t≥τ̄
dt

≥
∑

t∈U :t≤τ̄−1
(dt − Lt) +

∑
t∈U :t≥τ̄

dt

≥
∑

t∈U :t≤τ̄−1
(dt − Lt) +

∑
t∈U :t≥τ̄

(dt − Lt)

≥
∑
t∈U

(dt − Lt)

This concludes the proof for inequalities (4.26). Note that proving the validity of inequalities (4.27)
and (4.28) can be done using the same arguments and steps of the above proof. �

In order to get a more intuitive interpretation of these valid inequalities and ease the resolution of
the corresponding separation algorithm, we note that e.g. valid inequalities (4.26) may be rewritten
as:

$−1
p Ek

p+I ≥
∑
t∈U0

[dt(1−
t∑

τ=k+1
Y τ
p )− Lt] +

∑
t∈U1

[dt(1−
t∑

τ=k+1
Y τ
I+1)− Lt] (4.29)
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The intuition underlying these inequalities can be understood as follows. We consider the echelon
stock of serviceable component p + I at the end of period k and look at the future demand for the
end products. For a demand dt arising in a period t belonging to U0, if

∑t
τ=k+1 Y

τ
p ≥ 1, it means

that some refurbishing for component p + I will happen over the interval [k + 1, t] so that it will
be possible to refurbish the $p(dt − Lt) recovered components necessary to satisfy the demand at
period t. But if ∑t

τ=k+1 Y
τ
p = 0, no serviceable component p+ I might be obtained over the interval

[k + 1, t]. In this case, the $p(dt − Lt) recovered components necessary to satisfy the demand at
period t should already be in the echelon stock Ek

p+I at the end of period k. As for a demand dt

arising in a period t belonging to U1, we note that, if ∑t
τ=k+1 Y

τ
I+1 = 0, it will not be possible to

reassemble any remanufactured products between k+ 1 and t. The (dt−Lt) units of remanufactured
products needed to satisfy the demand in t must thus already be in stock at the end of period k.,
i.e. must be in Sk2I+1. As Ek

p+I = Sk2I+1 + $pS
k
p+I , this means that $p(dt − Lt) must already be in

the echelon stock Ek
p+I at the end of period k.

Separation algorithm

Regarding the separation problem for these two-echelon valid inequalities, we note that it can be
solved in O(T 2). Namely, to find e.g. the valid inequality (4.26) most violated by the current
solution(X̃, Ỹ, S̃, Ẽ, L̃, Q̃) of the linear relaxation of Problem (4.12)-(4.25), we need to find, for each
period k ∈ T , the subsets U0 and U1 maximizing the right-hand side of inequality (4.29).

We thus consider a exact separation algorithm in our computational experiments, which can be
summarized as follows. For a given process p:

Algorithm 4: Separation algorithm for two-echelon (k,U)
1 for k ∈ T do
2 for t = k + 1, ..., T do
3 compute m = min{dt(1−∑t

τ=k+1 Ỹ
τ
p )− L̃t; dt(1−∑t

τ=k+1 Ỹ
τ
I+1)− L̃t}

4 if m ≤ 0 then
5 t /∈ U
6 end
7 else
8 if m = dt(1−∑t

τ=k+1 Ỹ
τ
p )− L̃t then

9 t ∈ U0
10 end
11 end
12 else
13 t ∈ U1
14 end
15 end
16 end

Remark 1
We note that most of the single-echelon (k,U) inequalities (3.38)-(3.39) investigated in Chapter 3
can be seen as special cases of the two-echelon inequalities (4.26)-(4.28). More precisely:

• for each refurbishing process p ∈ {1, ..., I}, the single-echelon inequality (3.38) relative to
period k and set U corresponds to the two-echelon valid inequality (4.26) relative to period
k, set U and subset U1 = ∅.

• similarly, for the disassembly process, the single-echelon inequality (3.39) relative to period
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k and set U corresponds to the two-echelon valid inequality (4.28) relative to period k, set
U and subset U1 = ∅.

• however, for the reassembly process p = I + 1, the single-echelon inequality (3.38) rela-
tive to period k and set U involves the echelon stock Ek

2I+1 whereas the two-echelon valid
inequality (4.26) relative to period k, set U and subset U1 = ∅ involves the echelon stock
$−1
p Ek

p , which is such that $−1
p Ek

p ≤ Ek
2I+1. This implies that the single-echelon inequality

(3.38) might be stronger than the corresponding two-echelon valid inequality (4.26) and
thus cannot be considered as a special case of a two-echelon valid inequality (4.26).

Finally, we note that it is possible to extend the two-echelon valid inequalities (4.27) to obtain
three-echelon valid inequalities simultaneously involving set-up variables relative to the disassembly,
refurbishing and reassembly processes.

Corollary 1
Let 1 ≤ k ≤ T be a period in the planning horizon.
Let U ⊆ {k+ 1, ..., T} be a subset of periods. t∗ = max{` ∈ U} denotes the last period belonging
to U . We partition U into 3 disjoint subsets U0, U1 and U2 such that U0 ∪ U1 ∪ U2 = U .

For any refurbishing process p ∈ {1, ...I}, the following inequality is valid for Problem (4.12)-
(4.25):

$−1
p Ek

p +
∑

k<t≤t∗
φt(U0)Y t

0 +
∑

k<t≤t∗
φt(U1)Y t

p +
∑

k<t≤t∗
φt(U2)Y t

I+1 ≥
∑
t∈U

(dt − Lt) (4.30)

with φt(Ũ) = ∑
`∈Ũ :`≥t

d`.

Proof : The proof of Corollary 1 can be done by using the same arguments and steps as the ones used in
the proof of Theorem 1. �

Remark 2
It is worth noticing that inequalities (4.26)-(4.28) are closely related to the valid inequalities
(13.13) presented in Chapter 13 of [79] for a multi-echelon lot-sizing problem with a serial product
structure and no lost sales. We refer the reader to [79] for numerical and graphical examples of
this type of inequalities. Thus, inequalities (4.26)-(4.28) can be reformulated by following the
spirit of inequalities (13.13) in [79]. In this case, given the demand at time period t, rather than
assuming dt is satisfied individually for each process, we consider that dt can be partially satisfied
by each process. This idea leads to the following reformulation of inequalities (4.26),

$−1
p Ek

p+I ≥
∑
t∈U

[dt(1−
θt∑

τ=k+1
Y τ
p −

t∑
τ=θt+1

Y τ
I+1)− Lt] (4.31)

Thus, inequalities (4.31) entail to find a time period θt for each t ∈ U , which defines a sequence
of set-up variables of process p and I + 1 that aims at satisfying demand dt. As a results,
inequalities (4.26) can be seeing as a particular case of inequalities (4.31). However, the separation
of inequalities (4.31) is more time-consuming than the separation of inequalities (4.26), due to
the former entails to find the sequence of set-up variables that maximize the right-hand side of
(4.31).

On the other hand, we might consider the case when θt = θ for each t ∈ U , this leads to the
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following inequalities.

$−1
p Ek

p+I ≥
∑
t∈U

[dt(1−
θ∑

τ=k+1
Y τ
p −

t∑
τ=θ+1

Y τ
I+1)− Lt] (4.32)

However, inequalities (4.32) do not contain all inequalities (4.26). It is easy to find an example
to illustrate this fact. Let us consider the time period k and the demand for the next three
time periods k + 1, k + 2, k + 3. Given a linear relaxation with the following values for Yp,
Y k+1
p = 0.3, Y k+2

p = 0.2, Y k+3
p = 0.1 and for YI+1, Y k+1

I+1 = 0.1, Y k+2
I+1 = 0.3, Y k+3

I+1 = 0.3, we can
generate the following two inequalities for θ = {k + 1, k + 2} and U = {k + 1, k + 2, k + 3},

for θ = k + 1,

$−1
p Ek

p+I ≥ [dk+1(1− Y k+1
p )− Lk+1] + [dk+2(1− Y k+1

p − Y k+2
I+1 )− Lk+2]

+ [dk+3(1 − Y k+1
p − Y k+2

I+1 − Y k+3
I+1 ) − Lk+3]

⇒ $−1
p Ek

p+I ≥ [dk+1(1− 0.3)− Lk+1] + [dk+2(1− 0.3− 0.3)− Lk+2]
+ [dk+3(1 − 0.3 − 0.3 − 0.3) − Lk+3]

for θ = k + 2,

$−1
p Ek

p+I ≥ [dk+1(1− Y k+1
p )− Lk+1] + [dk+2(1− Y k+1

p − Y k+2
p )− Lk+2]

+ [dk+3(1 − Y k+1
p − Y k+2

p − Y k+3
I+1 ) − Lk+3]

⇒ $−1
p Ek

p+I ≥ [dk+1(1− 0.3)− Lk+1] + [dk+2(1− 0.3− 0.2)− Lk+2]
+ [dk+3(1 − 0.3 − 0.2 − 0.3) − Lk+3]

and the following inequality (4.26) can be generated by setting U1 = {k + 2},

$−1
p Ek

p+I ≥ [dk+1(1− Y k+1
p )− Lk+1] + [dk+2(1− Y k+1

I+1 − Y k+2
I+1 )− Lk+2]

+ [dk+3(1 − Y k+1
p − Y k+2

p − Y k+3
p ) − Lk+3]

⇒ $−1
p Ek

p+I ≥ [dk+1(1− 0.3)− Lk+1] + [dk+2(1− 0.1− 0.3)− Lk+2]
+ [dk+3(1 − 0.3 − 0.2 − 0.1) − Lk+3]

Clearly, the last inequalities are stronger than the previous ones and cannot be generated for
any possible value of θ. Note that it is also possible to find a stronger inequality (4.32) that
cannot be generated by any set U1, given the same set U .

4.4 Single-echelon (`,U)-returns inequalities
The valid inequalities introduced so far are primarily focused on the demand satisfaction and do not
consider a key aspect in remanufacturing systems, which is the availability of returned products in
the production system. We thus investigate a family of new single-echelon inequalities which seek to
better take into account the fact that the production quantity that can be processed on a resource
is limited by the availability of its input product. More precisely, the quantity that can be processed
on a resource p in period t is limited by the amount of used products which has been returned up
to period t but not yet processed on resource p before this period. We thus introduce, for each
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production echelon and each production resource p ∈ {0, ..., I + 1}, a set of valid inequalities stating
that the total quantity processed on p over a given time interval [`, t] is limited by the sum of the
amount of used products already returned and not yet transformed on p at the end of period ` − 1
and of the amount of used products returned during interval [`, t].

We start by defining the corresponding (`,U)-returns inequalities for the disassembly process
p = 0.
Theorem 2

Let 1 ≤ ` ≤ T be a period in the planning horizon and U ⊆ {`, ..., T} be a subset of periods.
Then, the following inequality is valid for Problem (4.1)-(4.11):

S`−1
0 +

∑
t∈U

φtY t
0 ≥

∑
t∈U

X t
0 (4.33)

with φt = ∑
`≤ν≤t

rν

Proof : Let (X,Y, S,Q,L) be a feasible solution of Problem (4.1)-(4.11). We show that this solution com-
plies with inequalities (4.33) for any period ` and any subset U . This is done by induction on the index
of the last period t that may belong to subset U .
Base step: t = ` and U ⊂ {`}.
We consider two cases:

• U = ∅
In this case, ∑τ∈U X

τ
0 = 0 whereas S`−1

0 +∑
τ∈U φ

τY τ
0 ≥ S`−1

0 ≥ 0. Inequality (4.33) is trivially
respected.

• U = {`}
- if Y `

0 = 0
There is no production in period ` so that ∑τ∈U X

τ
0 = X`

0 = 0 whereas S`−1
0 + ∑

τ∈U φ
τY τ

0 ≥
S`−1

0 ≥ 0. Inequality (4.33) is trivially respected.
- if Y `

0 = 1
In this case, the inventory balance constraint (4.3) for period ` gives:

S`−1
0 + r` −X`

0 −Q`0 ≥ S`0
S`−1

0 + r` −X`
0 ≥ 0 by non-negativity of variables S`0 and Q`0.

By noting that, under the current assumptions, φ`Y `
0 = r`, we have:

S`−1
0 + φ`Y `

0 ≥ X`
0

which corresponds to the expression of Inequality (4.33) for U = {`}.
Inequality (4.33) is thus valid for any U ⊂ {`}.

Induction step: Assume that Inequality (4.33) is valid for any U ⊂ {1, ..., t}. We show that, under this
assumption, Inequality (4.33) is valid for any U ⊂ {1, ..., t+ 1}.
We again consider two cases:

• t+ 1 /∈ U .
Using the induction hypothesis, Inequality (4.33) is valid for U .

• t+ 1 ∈ U .
- if Y t+1

0 = 0
There is no production in period t + 1 so that ∑τ∈U X

τ = ∑
τ∈U\{t+1}X

τ whereas S`−1
0 +∑

τ∈U φ
τY τ

0 = S`−1
0 +∑

τ∈U\{t+1} φ
τY τ

0 .

62



Using the induction hypothesis, we have: S`−1
0 + ∑

τ∈U\{t+1} φ
τY τ

0 ≥
∑
τ∈U\{t+1}X

τ
0 so that In-

equality (4.33) holds.
- if Y t+1

0 = 1
Summing up the inventory balance constraints (4.3) over periods ` to t + 1 and using the non-
negativity of variables S`0, Qτ0 and Xτ

0 gives:

S`−1
0 +

t+1∑
τ=`

rτ −
t+1∑
τ=`

Xτ
0 −

t+1∑
τ=`

Qτ0 ≥ S`0

S`−1
0 +

t+1∑
τ=`

rτ −
t+1∑
τ=`

Xτ
0 ≥ 0

S`−1
0 +

t+1∑
τ=`

rτ −
∑
τ∈U

Xτ
0 ≥ 0

By noting that under the current assumption, φt+1Y t+1
0 = ∑t+1

τ=` rτ and adding the non-negative
terms ∑τ∈U\{t+1} φ

τY τ
0 to the left-hand side of the previous inequality, we obtain:

S`−1
0 +

∑
τ∈U

φτY τ
0 −

∑
τ∈U

Xτ
0 ≥ 0

This shows that if Inequality (4.33) is valid for any U ⊂ {1, ..., t}, it is also valid for any U ⊂ {1, ..., t+1},
which concludes the proof. �

We now seek to generalize Inequalities (4.33) and consider (`,U)-returns inequalities for the re-
furbishing processes. Let δ̂`,ti = max

`≤v≤t
δvi denote the maximum value of δvi between the time period `

and t, i.e. the bet disassembly yield than can be obtained for item i over interval [`, t].

Theorem 3
Let 1 ≤ ` ≤ T be a period in the planning horizon. Let U ⊆ {`, ..., T} be a subset of periods
and t∗ = max{τ : τ ∈ U} the last period belonging to U . Then, for each refurbishing process
p ∈ {1, ..., I}, the following inequality is valid for Problem (4.1)-(4.11):

$pδ̂
`,t∗

p S`−1
0 + S`−1

p +$p

∑
t∈U

φtY t
p ≥

∑
t∈U

X t
p (4.34)

with φt = ∑
`≤ν≤t

(rν δ̂νtp ).

Proof : Let (X,Y, S,Q,L) be a feasible solution of Problem (4.1)-(4.11). We show that this solution com-
plies with inequalities (4.34) for any period ` and any subset U . This is done by induction on the index
of the last period t that may belong to subset U .
Base step: t = ` and U ⊂ {`}.
We consider two cases:

• U = ∅
In this case, ∑t∈U X

t
p = 0 whereas $pδ

`
pS

`−1
0 +S`−1

p +$p
∑
t∈U φ

tY t
p ≥ S`−1

p ≥ 0. Inequality (4.34)
is trivially respected.

• U = {`}
- if Y `

p = 0
There is no production in period ` so that∑t∈U X

t
p = 0 whereas $pδ

`
pS

`−1
0 +S`−1

p +$p
∑
t∈U φ

tY t
p ≥

0. Inequality (4.34) is trivially respected.
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- if Y `
p = 1

By carrying out the linear combination $pδ
`
p (4.3)` + (4.4)` of the inventory balance equations

corresponding to period ` and using the non-negativity of variables Q`0, Q`p, S`0 and S`p, we obtain:

$pδ
`
p[S`−1

0 + rl −X`
0 −Q`0] + S`−1

p +$pδ
`
pX

`
0 −X`

p −Q`p ≥ $pδ
`
pS

`
0 + S`p

$pδ
`
pS

`−1
0 + S`−1

p +$pδ
`
pr
l −X`

p ≥ 0

We note that, under the current assumptions, φ`Y `
p = δ`pr

l so that we have:

$pδ
`
pS

`−1
0 + S`−1

p +$pφ
`Y `
p ≥ X`

p

Inequality (4.34) is thus valid for any U ⊂ {`}.

Induction step: Assume that Inequality (4.34) is valid for any U ⊂ {1, ..., t}. We show that, under this
assumption, Inequality (4.34) is valid for any U ⊂ {1, ..., t+ 1}.
We consider two cases:

• t+ 1 /∈ U
Using the induction hypothesis, Inequality (4.34) is valid for U .

• t+ 1 ∈ U
- if Y t+1

p = 0
We have:

$pδ̂
`,t+1
p S`−1

0 + S`−1
p +$p

∑
t∈U

φtY t
p −

∑
t∈U

Xt
p (4.35)

= $pδ̂
`,t+1
p S`−1

0 + S`−1
p +$p

∑
t∈U\{t+1}

φtY t
p −

∑
t∈U\{t+1}

Xt
p (4.36)

≥ $pδ̂
`,t
p S

`−1
0 + S`−1

p +$p

∑
t∈U\{t+1}

φtY t
p −

∑
t∈U\{t+1}

Xt
p (4.37)

≥ 0 (4.38)

Equality (4.36) holds because there is no production in period t + 1 so that ∑t∈U φ
tY t
p =∑

t∈U\{t+1} φ
tY t
p and ∑

t∈U X
t
p = ∑

t∈U\{t+1}X
t
p. Moroever, Inequality (4.37) exploits the fact

that δ̂`,t+1
p ≥ δ̂`,tp . Finally, the induction hypothesis gives Inequality (4.38). This shows that

Inequality (4.34) is valid in this case.

- if Y t+1
p = 1

For each period τ ∈ [`, t + 1], we compute the linear combination $pδ̂
τ,t+1
p (4.3)τ + (4.4)τ of the

corresponding inventory balance equations. This gives:

$pδ̂
τ,t+1
p [Sτ−1

0 + rτ −Xτ
0 −Qτ0 ] + Sτ−1

p +$pδ
τ
pX

τ
0 −Xτ

p −Qτp = $pδ̂
τ,t+1
p Sτ0 + Sτp

Thanks to the non-negativity of variables Xτ
0 , Qτ0 and Qτp and the fact that δτp ≤ δ̂τ,t+1

p , we obtain:

$pδ̂
τ,t+1
p Sτ−1

0 + Sτ−1
p +$pδ̂

τ,t+1
p rτ −Xτ

p ≥ $pδ̂
τ,t+1
p Sτ0 + Sτp

Summing up this inequality over periods ` to t+ 1 gives:

$p(
t+1∑
τ=`

δ̂τ,t+1
p Sτ−1

0 −
t+1∑
τ=`

δ̂τ,t+1
p Sτ0 ) + St+1

p + S`−1
p +$p

t+1∑
τ=`

δ̂τ,t+1
p rτ −

t+1∑
τ=`

Xτ
p ≥ 0 (4.39)

64



Moreover, we have:

t+1∑
τ=`

δ̂τ,t+1
p Sτ−1

0 −
t+1∑
τ=`

δ̂τ,t+1
p Sτ0 = δ̂`,t+1

p S`−1
0 +

t∑
τ=`+1

(
δ̂τ+1,t+1
p − δ̂τ,t+1

p

)
Sτ0 − (δ̂t+1,t+1

p )St+1
0

≤ δ̂`,t+1
p S`−1

0 (4.40)

Replacing the corresponding terms in Inequalities (4.40) with Inequalities (4.39) we obtain:

$pδ̂
`,t+1
p S`−1

0 + S`−1
p +$p

t+1∑
τ=`

δ̂τ,t+1
p rτ −

t+1∑
τ=`

Xτ
p ≥ 0

We then note that, under the current assumptions, φt+1Y t+1
p = ∑t+1

τ=` δ̂
τ,t+1
p rτ . Moreover, by

non-negativity of variables Xτ
p , we have ∑t+1

τ=`X
τ
p ≥

∑
τ∈U X

τ
p . This leads to:

$pδ̂
`,t+1
p S`−1

0 + S`−1
p +$pφ

t+1Y t+1
p −

∑
τ∈U

Xτ
p ≥ 0

Finally, adding the non-negative term ∑
τ∈U\{t+1} Y

τ
p to the left hand side of this inequality gives:

$pδ̂
`,t+1
p S`−1

0 + S`−1
p +$p

∑
τ∈U

φτY τ
p −

∑
τ∈U

Xτ
p ≥ 0

Inequality (4.34) is thus valid in this case.

This shows that if Inequality (4.34) is valid for any U ⊂ {1, ..., t}, it is also valid for any U ⊂ {1, ..., t+1},
which concludes the proof. �

The intuition behind Inequalities (4.34) can be explained as follows. Given a time period ` and
a period t ∈ U , the maximum amount than can be processed at time period t on resource p is
limited by the availability of the input product of resource p, i.e. by the availability of recoverable
component p. This availability is computed in two steps. (1) We first look at the total quantity of
item p available in the system at the end of period ` − 1. This quantity takes into account both
the amount of product p kept in inventory as such (and recorded by S`−1

p ) and the amount of item
p available in the system under the form of an ancestor of p in the bill-of-material, i.e. under the
form of a component embedded in a used product. This second quantity, computed as $pδ̂

`,t∗
p S`−1

0 ,
corresponds to the maximum amount of item p that might be recovered by disassembling the used
products held in inventory at the end of period `− 1. It is obtained by considering that all the used
products available in stock at the end of period ` − 1, S`−1

0 , will be disassembled during the period
ν ∈ [`; t] in which the disassembly yield for item p, δνp , is the largest. (2) We then look at the used
products returned between period ` and period t. We compute an upper bound of the amount of
product p that might be recovered by disassembling these used products. This is done by assuming
that each returned quantity rτ , τ = `, ..., t, will be disassembled during the period ν ∈ [τ ; t] in which
the disassembly yield for product p, δνp , is the largest. This corresponds to the term φtY t

p in the
expression of Inequalities (4.34). Finally, we introduce (`,U)-returns inequalities for the reassembly
processes.

Theorem 4
Let 1 ≤ ` ≤ T be a period in the planning horizon. Let U ⊆ {`, ..., T} be a subset of periods and
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t∗ = max{τ : τ ∈ U} the last period belonging to U .
The following inequality is valid for Problem (4.1)-(4.11):

S`−1
0 δ̂`,t

∗

i +$−1
i S`−1

i +$−1
i S`−1

i+I +
∑
t∈U

φtY t
I+1 ≥

∑
t∈U

X t
I+1 (4.41)

with φt = ∑
`≤ν≤t

(rν δ̂ν,ti )

Proof : The proof is straightforward following the proof of (4.34) and using linear combinations of the
inventory balance equations (4.3) -(4.5). �

Separation algorithm

We note that inequalities (4.33), (4.34) and (4.41) form an exponential class of valid inequalities, i.e.
their number grows exponentially fast with the number of time periods T . However, the correspond-
ing separation problem is polynomially solvable in O(T 2). Namely, to find e.g. the violated valid
inequalities (4.34) most violated by the current linear relaxation (X̃, Ỹ, S̃, L̃, Q̃) of Problem (4.1)-
(4.11), we need to find, for each period ` ∈ T , the subset U minimizing the difference between the
left and the right-hand side of inequality (4.34). This amounts to finding the subset U minimizing∑
t∈U φ

tỸ t
p −

∑
t∈U X̃

t
p.

We thus consider a exact separation algorithm in our computational experiments, which can be
summarized as follows. For a given process p:

Algorithm 5: Separation algorithm for (`,U)
1 for ` ∈ T do
2 for t = `+ 1, ..., T do
3 if φtỸ t

p − X̃ t
p ≤ 0 then

4 t ∈ U
5 end
6 else
7 t /∈ U
8 end
9 end

10 end

Remark 3
Note that this idea differs from classical approaches, where coefficients φt are strengthened by
consider the sum of the returns from the beginning of the planning horizon to the time period
t and do not take into account actual available quantity of returned products at time period t
(see for example inequalities (32) in [30]). Therefore, these new inequalities attempt to better
approximate this quantity at each time period. On the other hand, we note that Inequalities (4.33)
significantly differ from the ones introduced in [86] to strengthen the linear relaxation of a single-
echelon hybrid manufacturing/remanufacturing production system. These inequalities namely
consider a time interval [k, `] and compute a lower bound on the inventory of returned product
S`0 at the end of the considered interval based on the past returns and remanufacturing activity :

S`0 +
∑
k≤t≤`

φtY t
0 ≥

∑
k≤t≤`

rt ∀ 1 ≤ k ≤ ` ≤ T (4.42)
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with φt = ∑
k≤ν≤t r

ν .

In contrast, Inequalities (4.33) consider a time interval denoted by [`, t∗] and use the inven-
tory of returned product S`0 at the beginning of this time interval to compute an upper bound
on the future disassembly activity. Note that Inequalities (4.42) cannot be directly applied to
our problem. They namely consider that all the returned products must be processed on the
remanufacturing resource whereas our model allows to discard some returned products without
processing them. Moreover, it is worth mentioning that we not only introduce these new valid
inequalities for the first echelon of the production system but also extend them to take into ac-
count a multi-echelon remanufacturing system, introducing valid inequalities for each echelon of
the multi-echelon system.

4.5 Single-echelon (`, k,U) inequalities
We now seek to strengthen the single-echelon (k,U) inequalities investigated in Chapter 3 by con-
sidering the limited quantity of returned products available at each time period in the system. The
resulting (`, k,U) inequalities are defined as follows:

Proposition 7
Let 0 ≤ ` ≤ k ≤ T be two periods of the planning horizon.
Let U ⊆ {k+1, ..., T} be a subset of periods and t∗ = max{τ : τ ∈ U} be the last period belonging
to U .

The following inequalities are valid for Problem (4.12)-(4.25) for each item i ∈ Ir:

S`0δ̂
`,t∗

i +$−1
i Ek

i +
∑

k<t≤t∗
φtiY

t
0 ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (4.43)

S`0δ̂
`,t∗

i + ($−1
i E`

i − E`
2I+I) + Ek

2I+1 +
∑

k<t≤t∗
φtiY

t
I+1 ≥

∑
t∈U

(dt − Lt) ∀i ∈ Ir (4.44)

with

φti = min
{ ∑
`<ν≤t

(rν δ̂ν,ti ,
∑

ν∈U :t≤ν
dν
}

(4.45)

Moreover, the following inequalities are valid for Problem (4.12)-(4.25) for any refurbishing process
p ∈ {1, ..., I}:

S`0δ̂
`,t∗

p +$−1
p (E`

p − E`
p+I) +$−1

p Ek
p+I +

∑
k<t≤t∗

φtpY
t
p ≥

∑
t∈U

(dt − Lt) ∀p ∈ {1, ...I} (4.46)

with

φtp = min
{ ∑
`<ν≤t

(rν δ̂ν,tp ,
∑

ν∈U :t≤ν
dν
}

(4.47)

Proof : Let (X,Y, S,E, L,Q) be a feasible solution of Problem (4.12)-(4.25). We show that this solution
complies with inequalities (4.43) for any pair of periods (`, k), any subset U ⊂ {k + 1, ..., T} and any
recoverable item i ∈ Ir.
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Let τ ∈ [k + 1, t∗] be the first production period in which φτi = ∑
ν∈U :τ≤ν

dν . By convention, τ = t∗ + 1 if

there is no such period.
We have φτi Y τ

0 = ∑
t∈U :τ≤t

dt ≥
∑

t∈U :τ≤t
(dt − Lt).

We consider two cases.
• Case 1: there is no production on p = 0 over interval [k + 1; τ − 1]

In this case, we have Y t
0 = 0 and Xt

0 = 0 for all periods t in [k+ 1, τ −1]. As no disassembly occurs
over [k+1, τ−1], all the recoverable items needed to satisfy the demand over this time interval, and
in particular needed to satisfy ∑

t∈U ;t≤τ−1
(dt−Lt), should already have been disassembled previously

and be in stock at the end of period k. This gives $−1
i Eki ≥

∑
t∈U :t≤τ−1

(dt − Lt).

We thus have:

S`0δ̂
`,t∗

i +$−1
i Eki +

∑
k<t≤t∗

φtiY
t

0 ≥ $−1
i Eki + φτi Y

τ
0

≥
∑

t∈U :t≤τ−1
(dt − Lt) +

∑
t∈U :t≥τ

(dt − Lt)

≥
∑
t∈U

(dt − Lt)

Inequality (4.43) is thus valid in this case.

• Case 2: there is at least one production period on p = 0 over interval [k + 1; τ − 1]

Let θ be the last period of production on p = 0 over interval [k + 1; τ − 1]. By definition of θ, we
have: φθi = ∑

`<ν≤θ
(rν δ̂ν,θi ).

By summing up the inventory balance constraints (4.15) over periods k+ 1,. . . ,τ − 1 and using the
fact that variables Eki and Qti, ∀t = k + 1, . . . , τ − 1, are non-negative, we have:

$−1
i Eki +

τ−1∑
t=k+1

δtiX
t
0 ≥

τ−1∑
t=k+1

(dt − Lt) (4.48)

By definition of τ , θ and `, we have:
τ−1∑
t=k+1

δtiX
t
0 =

θ∑
t=k+1

δtiX
t
0 ≤

θ∑
t=`+1

δtiX
t
0 (4.49)

This gives:

$−1
i Eki +

θ∑
t=`+1

δtiX
t
0 ≥

τ−1∑
t=k+1

(dt − Lt) ≥ $−1
i Eki +

τ−1∑
t=k+1

δtiX
t
0 ≥

∑
t∈U :t≤τ−1

(dt − Lt) (4.50)

We now compute an upper bound of ∑θ
t=`+1 δ

t
iX

t
0. This one is obtained by first computing the

linear combination ∑θ
t=`+1

(
δ̂t,θi

)
× (4.14)t. This gives:

θ∑
t=`+1

(
δ̂t,θi

)
St0 =

θ∑
t=`+1

(
δ̂t,θi

)[
St−1

0 + rt −Xt
0 −Qt0

]
(4.51)

By the non-negativity of variables Qt0 and St0 and the fact that δ̂t,θi ≥ δ̂
t+1,θ
i , we have:
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θ∑
t=`+1

δtiX
t
0 ≤

θ∑
t=`+1

δ̂t,θi Xt
0 (4.52)

≤
θ∑

t=`+1

(
δ̂t,θi

)
St−1

0 −
θ∑

t=`+1

(
δ̂t,θi

)
St0 +

θ∑
t=`+1

(
δ̂t,θi

)
rt (4.53)

≤
(
δ̂`,θi

)
S`0 +

θ∑
t=`+1

(
δ̂t,θi

)
rt (4.54)

≤
(
δ̂`,t
∗

i

)
S`0 + φθiY

θ
0 (4.55)

Replacing ∑θ
t=` δ

t
iX

t
0 in Inequalities (4.50) by its upper bound provided by (4.55), we have:

$−1
i Eki +

(
δ̂`,t
∗

i

)
S`0 + φθiY

θ
0 ≥

∑
t∈U :t≤τ−1

(dt − Lt) (4.56)

Finally, we have:

S`0δ̂
`,t∗

i +$−1
i Eki +

∑
k<t≤t∗

φtiY
t

0 ≥ S`0δ̂
`,t∗

i +$−1
i Eki + φθiY

θ
0 + φτi Y

τ
0

≥
∑

t∈U :t≤τ−1
(dt − Lt) +

∑
t∈U :t≥τ

(dt − Lt)

≥
∑
t∈U

(dt − Lt)

This concludes the proof of validity for Inequality (4.43). The same arguments can be used to prove the
validity of Inequalities (4.46) and (4.44). �

It is worth mentioning that the (k,U) inequalities used in Chapter 3 to strengthen the formula-
tion (4.12)-(4.25) can be seen as a particular case of the more general family of (`, k,U) inequalities
(4.43), (4.44) and (4.46). Namely, by setting ` to 0 and by computing the value of φt without taking
the returns into account (i.e. by setting φt to ∑

ν∈U :t≤ν
dν), each (`, k,U) inequality (4.43),(4.44) and

(4.46) becomes a (k,U) inequality.

Proposition 8
The linear relaxation of formulation (4.12)-(4.25) strengthened by valid inequalities (4.43),(4.44)
and (4.46) is at least as tight as the linear relaxation strengthened by the (k,U) valid inequalities
used in Chapter 3.

Proof : Let χLP be the linear relaxation of polyhedron given by inequalities (4.12)-(4.25), (4.43),(4.44),
(4.46) and χ̃LP be the linear relaxation of polyhedron given by inequalities (4.12)-(4.25) and the (k,U)
inequalities. As any (k,U) inequality is a valid inequality (4.43),(4.44), (4.46) with φt = ∑

ν∈U :t≤ν
dν and

` = 0, we have χLP ⊆ χ̃LP . �

The main implication of Proposition 8 is that the lower bound obtained by strengthening the
formulation (4.12)-(4.25) with the (`, k,U) inequalities is at least as tight as the lower bound obtained
while using the single-echelon (k,U) inequalities.
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Separation algorithm

We now briefly discuss the resolution of the separation problem for the (`, k,U) valid inequalities.
Recall that this problem consists in finding an inequality (4.43),(4.44) and (4.46) violated by a a
given solution (X̃, Ỹ, S̃, Ẽ, L̃, Q̃) of the linear relaxation of Problem (4.12)-(4.25) or prove that no
such inequality exists. In the present case, in order to find the most violated inequality among
e.g. inequalities (4.43), we should find, for each period k = 1, ..., T , the set U of time periods
and the period ` that maximize the difference between the right-hand and the left-hand side of the
inequality. This computation does not seem easy, in particular because the value of each coefficient
φti simultaneously depends on U and `.

We thus consider a heuristic separation algorithm in our computational experiments, which can
be summarized as follows. For a given process p:

Algorithm 6: Separation algorithm for (`, k,U)
1 for k ∈ T do
2 for t = k + 1, ..., T do
3 if dt(1−∑t

τ=k+1 Ỹ
τ
p )− L̃t > 0 then

4 t ∈ U
5 end
6 end
7 for ` = 0, ..., k do
8 compute the value of each coefficient φti = min

{∑
`<ν≤t r

ν δ̂ν,ti ,
∑
ν∈U :t≤ν d

ν

}
9 compute the left-hand side of the inequality (4.43) (resp. (4.44) and (4.46))

10 -Set ` to the period index which minimizes this left-hand side value.
11 end
12 end

Finally, we can combine Inequalities (4.43),(4.44) and (4.46) with the two-echelon (k,U) inequal-
ities introduced in Section 4.3 to obtain two-echelon (`, k,U) inequalities.
Corollary 2

Let 1 ≤ k ≤ T be a period in the planning horizon and U ⊆ {k+ 1, ..., T} be a subset of periods.
Let t∗ = max{` ∈ U} denote the last period belonging to U . We partition U into 2 subsets:
U1 ⊆ U and U0 = U \ U1.

The following inequalities are valid for Problem (4.12)-(4.25) for any refurbishing process p ∈
{1, ..., I}:

S`0δ̂
`,t∗

p +$−1
p Ek

p +
∑

k<t≤t∗
φtp(U0)Y t

0 +
∑

k<t≤t∗
φtp(U1)Y t

p ≥
∑
t∈U

(dt − Lt) (4.57)

S`0δ̂
`,t∗

p +$−1
p (E`

p − E`
p+I) +$−1

p Ek
p+I +

∑
k<t≤t∗

ψtp(U0)Y t
p +

∑
k<t≤t∗

φtp(U1)Y t
I+1 ≥

∑
t∈U

(dt − Lt)

(4.58)

such that

φtp(Ũ) = min
{ ∑
`<ν≤t

(rν δ̂ν,tp ),
∑

ν∈(Ũ):t≤ν

dν
}
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Moreover, for each item i ∈ Ir, the following inequalities are valid for Problem (4.12)-(4.25):

S`0δ̂
`,t∗

i +$−1
i Ek

i +
∑

k<t≤t∗
φti(U0)Y t

0 +
∑

k<t≤t∗
φti(U1)Y t

I+1 ≥
∑
t∈U

(dt − Lt) (4.59)

such that

φti(Ũ) = min
{ ∑
`<ν≤t

(rν δ̂ν,ti ),
∑

ν∈Ũ :t≤ν

dν
}

4.6 Summary of valid inequalities: class, separation prob-
lem and complexity

Before going on with the discussion on our computational results, we provide a brief summary of
the proposed valid inequalities and of their related features in Table 4.1. Column “Class” indicates
whether the number of valid inequalities in the family grows linearly or exponentially fast with respect
to the number of periods in the planning horizon. Column “Complexity” reports the difficulty of the
corresponding separation problem. Then, Column “Separation alg.” indicates whether the proposed
separation problem is solved by an exact or a heuristic algorithm in our numerical experiments.
Finally, Column “Time” reports the asymptotic time complexity of the implemented separation
algorithm.

Note that all these features have a significant impact on the numerical tractability and efficiency
of a class of valid inequalities. Namely, the simplest way of using valid inequalities to strengthen a
MILP formulation consists in directly adding all of them in the formulation. When the number of
inequalities stays low (in particular when it grows linearly fast with the problem size), this option
may be numerically efficient. But when the number of inequalities grows exponentially fast with the
problem size, it is not possible to add all of them a priori to the formulation as it would to lead to
a prohibitively large mixed-integer linear program. In this second case, it is possible to add part of
the known valid inequalities through a cutting-plane generation procedure, which iteratively removes
non-integral points of the incumbent formulation (see [79], pag. 190-191). At each iteration of this
procedure, we need to find the inequality that is the most violated by the incumbent solution (if it
exists): this consists in solving the separation problem. It is thus important to study its complexity,
to determine whether it is polynomially solvable or NP-hard and to devise a separation algorithm
which may be exact or heuristic, depending on the situation.

Table 4.1: Class and complexity

Inequalities Class Complexity Separation alg. Time
Single-echelon (k,U) Exponential Polynomial Exact O(T 2)
Two-echelon (k,U) Exponential Polynomial Exact O(T 2)
Single-echelon (`,U) Exponential Polynomial Exact O(T 2)

Single-echelon (`, k,U) Exponential unknown Heuristic O(T 2)
Two-echelon (`, k,U) Exponential unknown Heuristic O(T 2)
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4.7 Computational experiments
In this section, we focus on assessing the performance of the proposed valid inequalities. This as-
sessment is carried out in two steps. In the first step, we focus on measuring the strengthening
of the linear relaxation of Problem (4.12)-(4.25) obtained through a cutting-plane generation algo-
rithm based on these valid inequalities. This enables us to identify three promising settings for the
cutting plane generation. In a second step, we embed the three selected cutting-plane generation al-
gorithms in customized branch-and-cut algorithms and compare the performance of these customized
algorithms with the one of the generic branch-and-cut algorithm embedded in the mathematical pro-
gramming solver CPLEX 12.8. During these experiments, all the linear programs and mixed-integer
linear programs were solved by CPLEX 12.8 with the solver default settings. The algorithms were
implemented in C++ using the Concert Technology environment. All tests were run on the comput-
ing infrastructure of the Laboratoire d’Informatique de Paris VI (LIP6), which consists in a cluster
of Intel Xeon Processors X5690. We set the cluster to use two 3.46GHz cores and 12GB RAM to
solve each instance. We imposed a time limit of 3600 seconds.

We first describe the scheme used to randomly generate the input data of the problem. We then
provide computational results showing the effectiveness of the proposed valid inequalities at solving
the problem.

4.7.1 Instance Generation
We considered three sets of instances: Set 1 instances involve T = 20 and I = 5 parts, Set 2
instances involve T = 25 periods and I = 10 parts and Set 3 instances involve T = 35 periods and
I = 10 parts. Within each set, the instances were randomly generated by adapting the procedure
presented in [45]. More precisely, we considered four values of the setup-holding cost ratio f/h ∈
{600, 1200, 1800, 2400}, two values for the production-holding cost ratio g/h ∈ {2, 4} and three values
of the returns-demand quantity ratio r/d ∈ {1, 2, 3}. For each set and each possible combination of
f/h, g/h, r/d, ten random instances were generated, resulting in a total of 720 instances.

For each instance, the value of each problem parameter was set as follows.

• Demand dt was uniformly distributed in the interval [0, 100] and the returns quantity rt was
uniformly distributed in the interval [0.8(r/d)d̄, 1.2(r/d)d̄], where d̄ =

∑
dt

T
is the average

demand per period.

• The proportion of recoverable parts πti was uniformly distributed in the interval [0.4, 0.6].

• The bill-of-materials coefficients $i = $i+I , i = 1, . . . , I, were randomly generated following a
discrete uniform distribution over [1; 6] and we set $0 = $2I+1 = 1.

• The holding cost ht0 for the returned product i = 0 was fixed to 1. The holding cost hti for
each recoverable item i ∈ Ir was randomly generated following a discrete uniform distribution
over interval [2, 7]. Similarly, the holding cost hti for each serviceable item i ∈ Is was randomly
generated following a discrete uniform distribution over interval [7, 12]. Finally, in order to
ensure non negative echelon costs, we set the value of the inventory holding cost for the reman-
ufactured product, ht2I+1, to

∑I
i=1$ih

t
I+i + ε, where ε follows a discrete uniform distribution

over interval [80, 100].

• The production cost gt was uniformly distributed in the interval [0.8(g/h)h̄, 1.2(g/h)h̄], where
h̄ =

∑
ht2I+1
T

is the average holding cost.

• The set-up cost f t was uniformly distributed in the interval [0.8(f/h)h̄, 1.2(f/h)h̄].
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• Discarding costs were set to qti = 0.8h̄ti, where h̄ti = 1
T

∑T
κ=t h

κ
i

• The unit penalty cost for lost sales, ln, was fixed to 10000 per unit.

We now discuss the results of the extensive computational experiments we conducted in order to
assess the performance of the valid inequalities proposed in this chapter.

4.7.2 Cutting-plane generation algorithms: preliminary assessment on
small instances

In the first step, we focus on measuring the strengthening of the linear relaxation of Problem (4.12)-
(4.25) obtained when adding a subset of the valid inequalities discussed in Sections 4.3 to 4.5 through
a cutting-plane generation algorithm. More precisely, we start by solving the linear relaxation of
Problem (4.12)-(4.25). We then iteratively add to the formulation violated valid inequalities from one
or two of the classes discussed above until no more violated valid inequalities can be found. When the
cutting-plane generation stops, we measure the linear gap GapLP , i.e. the relative difference between
the lower bound provided by the (strengthened) linear relaxation and the optimal value, and #Cuts,
the total number of cuts generated by the algorithm.

We consider several settings for the cutting plane algorithm differing from one another by the
classes of valid inequalities generated at each iteration. We refer to each of these settings as follows:

• CPX: no cutting plane is generated.

• (k,U): we generate cutting planes based on the single-echelon (k,U) inequalities proposed in
[66].

• 2E-(k,U): we generate cutting planes based on the two-echelon (k,U) inequalities (4.26)-(4.28)

• (`, k,U): we generate cutting planes based on the single-echelon (`, k,U) inequalities with
returns (4.43),(4.44) and (4.46).

• 2E-(`, k,U): we generate cutting planes based on the two-echelon (`, k,U) inequalities with
returns (4.57)-(4.59).

• (k,U) + (`,U): we generate cutting planes based on the single-echelon (k,U) inequalities pro-
posed in [66] and the single-echelon (`,U)-returns inequalities.

• 2E-(k,U)+(`,U): we generate cutting planes based on the two-echelon (k,U) inequalities (4.26)-
(4.28) and the single-echelon (`,U)-returns inequalities.

• (`, k,U) + (`,U): we generate cutting planes based on the single-echelon (`, k,U) inequalities
with returns (4.43),(4.44), (4.46) and the single-echelon (`,U)-returns inequalities.

• 2E-(`, k,U) + (`,U): we generate cutting planes based on the two-echelon (`, k,U) inequalities
with returns (4.57)-(4.57) and the single-echelon (`,U)-returns inequalities.

Note that we do not report the individual performance of the single-echelon (`,U)-returns in-
equalities. Namely, our preliminary results showed that inequalities (4.33), (4.34) and (4.41), when
used alone, perform rather poorly at strengthening the linear relaxation of the problem. However,
their performance improves when they are used in combination with inequalities. We thus report
in Table 4.2 the results obtained with each class of (k,U) inequalities, when used alone, and in
Table 4.3 the results obtained with each class of (k,U) inequalities, when used in combination with
single-echelon (`,U)-returns inequalities. These results were obtained for the small-size instances of
Set 1.
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Results in Table 4.2 first show that the formulation improvement obtained when using the two-
echelon (k,U) inequalities instead of the single-echelon (k,U) inequalities is limited. The average
integrality gap is namely slightly reduced from 14.22% with setting (k,U) to 14.08% with setting
2E-(k,U). Moreover, this gap improvement is obtained at the expense of a significant number of
cutting planes added to the formulation: #Cuts thus increases from 166 with setting (k,U) to 376 with
setting 2E-(k,U). This suggests that the performance of the proposed two-echelon (k,U) inequalities
at solving large-size instances may be limited: the increase in the number of constraints coming from
the generation of two-echelon (k,U) inequalities will not be offset by the formulation strengthening
so that the overall computation time needed to solve the problem with a branch-and-cut algorithm
may deteriorate.

In contrast, the results displayed in Table 4.2 show that the single-echelon (k,U) inequalities with
returns perform significantly better than the initial single-echelon (k,U) inequalities. The average
integrality gap is namely significantly reduced from from 14.22% with setting (k,U) to 9.36% with
setting (k,U) + (`,U). Although this formulation strengthening is obtained through an increase in
the number of generated cuts (from 166 to 236), the resulting gap improvement may be sufficient to
observe a positive impact on the overall computation time needed to solve the problem to optimality.
Finally, we note that, similar to the the two-echelon (k,U) inequalities, the extension of the single-
echelon (k,U) inequalities with returns to the two-echelon (k,U) inequalities with returns does not
seem very promising.

Table 4.2: Performance of each cutting-plane generation setting over Set 1 instances

Instances CPX (k,U) 2E-(k,U) (`, k,U) 2E-(`, k,U)
r/d g/h GapLP #Cuts GapLP #Cuts GapLP #Cuts GapLP #Cuts GapLP #Cuts
1 2 7,95 0 5,96 185 5,92 395 3,66 240 3,58 337

4 5,44 0 3,91 205 3,89 396 2,53 250 2,47 326
Average 6,70 0 4,94 195 4,91 396 3,09 245 3,03 332

2 2 38,02 0 18,02 189 17,88 439 10,72 277 10,46 384
4 35,89 0 17,64 206 17,53 450 11,12 286 10,92 367

Average 36,96 0 17,83 197 17,70 445 10,92 281 10,69 375
3 2 40,35 0 20,99 106 20,73 280 14,31 183 14,08 261

4 34,41 0 18,77 108 18,53 293 13,86 179 13,64 270
Average 37,38 0 19,88 107 19,63 287 14,08 181 13,86 265

Total Average 27,01 0 14,22 166 14,08 376 9,36 236 9,19 324

Table 4.3: Performance of each cutting-plane generation setting over Set 1 instances

Instances (`,U) (k,U) + (`,U) 2E-(k,U) + (`,U) (`, k,U) + (`,U) 2E-(`, k,U) + (`,U)
r/d g/h GapLP #Cuts GapLP #Cuts GapLP #Cuts GapLP #Cuts GapLP #Cuts
1 2 5,53 52 2,87 323 2,84 618 2,87 321 2,83 447

4 3,73 63 1,90 348 1,88 610 1,90 341 1,87 444
Average 4,63 57 2,39 336 2,36 614 2,39 331 2,35 445

2 2 22,95 401 7,76 526 7,65 894 7,74 522 7,61 676
4 20,80 521 7,91 573 7,82 905 7,89 546 7,76 664

Average 21,87 461 7,83 550 7,74 900 7,82 534 7,69 670
3 2 31.99 357 11,33 576 11,17 912 11,30 518 11,14 699

4 28.69 376 11,42 575 11,26 942 11,41 504 11,25 706
Average 30.34 366 11,37 576 11,21 927 11,35 511 11,19 703

Total Average 18,95 295 7,20 487 7,10 814 7,19 459 7,08 606

Regarding the single-echelon (`,U)-return inequalities, we note that a significant reduction of
the integrality gap from 14.22% (setting (k,U)) to 7.20% (setting (k,U) + (`,U)) can be obtained
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when using them in combination with the single-echelon (k,U) inequalities. This shows the potential
usefulness and complementarity of these two classes of inequalities. A reduction of the integrality
gap can also be observed when using the single-echelon (`,U)-return inequalities in combination with
the single-echelon (`,U) inequalities with returns. However, this gap reduction (from 9.36% with
setting (`, k,U) to 7.19% with setting (`, k,U) + (`,U)) may not be large enough to compensate for
the strong increase in the number of generated cutting-planes (from 236 to 459).

In what follows, we will thus focus on further evaluating the performance of the studied valid
inequalities using the cutting-plane generation settings which appeared to be the most promising
during our preliminary experiments, namely CPX, (k,U), (k,U) + (`,U) and (`, k,U).

4.7.3 Branch-and-cut algorithms: assessment on medium-size instances
We now assess the performance of the proposed valid inequalities by using them in customized branch-
and-cut algorithms aiming at solving the mixed-integer linear program (4.12)-(4.25) to optimality.
As mentioned above, we considered the four settings for the cutting-plane generation algorithm
which seemed to be the most computationally promising in our preliminary tests: CPX, (k,U),
(k,U) + (`,U) and (`, k,U). Note that these cutting-plane generation algorithms are run within the
UserConstraints callback routine of CPLEX 12.8.

Table 4.4: Performance of CPLEX and branch-and-cut methods over Set 2 instances.

r/d f/h Method GapLP GaprootMIP GapMIP #Cuts #Nodes Total Time
1 2 CPX 8.26 4.10 0.06 422 415,616 898.00

(k,U) 6.08 3.66 0.05 855 180,687 1,011.79
(k,U) + (`,U) 3.59 3.37 0.04 1,059 142,688 878.31
(`, k,U) 4.17 3.55 0.03 891 238,910 792.64

4 CPX 5.38 2.49 0.06 436 768,171 1,360.48
(k,U) 3.95 2.33 0.05 816 437,563 1,088.78
(k,U) + (`,U) 2.38 2.18 0.04 1,065 464,285 1,008.08
(`, k,U) 2.84 2.22 0.04 871 468,827 1,056.29

2 2 CPX 40.86 11.28 0.97 778 537,370 2,570.62
(`, k,U) 19.36 9.17 0.46 949 354,801 1,883.71
(k,U) + (`,U) 8.67 8.38 0.33 1,517 234,589 2,028.58
(`, k,U) 11.88 8.68 0.22 1,106 345,226 1,558.09

4 CPX 37.79 10.71 2.29 843 629,586 3,280.23
(k,U) 18.39 9.25 1.06 1,030 953,407 2,856.09
(k,U) + (`,U) 8.74 8.19 0.85 1,652 449,304 2,885.18
(`, k,U) 11.89 8.48 0.94 1,205 637,218 2,883.50

3 2 CPX 41.86 13.47 0.04 502 210,487 545.15
(k,U) 20.60 9.68 0.02 705 140,289 296.65
(k,U) + (`,U) 11.07 8.80 0.02 1,658 113,575 541.58
(`, k,U) 14.16 9.11 0.02 795 119,074 250.52

4 CPX 38.29 12.44 0.09 539 655,390 817.93
(k,U) 20.81 9.71 0.02 708 368,794 458.41
(k,U) + (`,U) 12.65 8.93 0.05 1,713 152,699 736.40
(`, k,U) 15.36 8.99 0.06 801 338,830 522.70

Tables 4.4 and 4.5 report the results obtained on the medium-size instances of Sets 2 and 3.
Column Method indicates the setting of the cutting-plane algorithm used to solve the instances.
Similar to what was displayed in Tables 4.2-4.3, Column GapLP reports the gap between the objective
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Table 4.5: Performance of CPLEX and branch-and-cut methods over Set 3 instances.

r/d g/h Method GapLP GaprootMIP GapMIP #Cuts #Nodes Total Time
1 2 CPX 7.48 3.65 0.25 579 393,547 2,544.42

(k,U) 5.09 3.08 0.25 1,351 114,803 2,300.22
(k,U) + (`,U) 2.96 2.81 0.17 1,771 102,314 2,128.85
(`, k,U) 3.49 2.95 0.11 1,369 144,516 1,764.24

4 CPX 4.96 2.33 0.19 646 545,143 2,930.72
(k,U) 3.31 2.00 0.11 1,398 250,394 2,529.28
(k,U) + (`,U) 1.97 1.83 0.09 1,902 185,079 2,401.90
(`, k,U) 2.40 1.91 0.10 1384 233,612 2,319.77

2 2 CPX 44.73 12.89 6.76 888 170,434 3,599.07
(k,U) 20.10 10.00 4.34 1,387 130,088 3,508.81
(k,U) + (`,U) 9.61 9.35 4.68 2,415 40,552 3,599.46
(`, k,U) 12.85 9.54 3.77 1,590 125,340 3,362.24

4 CPX 43.15 12.54 7.29 960 209,853 3,599.07
(k,U) 20.02 10.40 5.03 1,442 259,433 3,599.54
(k,U) + (`,U) 9.56 9.11 4.39 2,600 88,832 3,599.53
(`, k,U) 13.14 9.49 4.61 1,709 149,221 3,599.44

3 2 CPX 43.25 14.11 2.67 799 274,369 3,044.18
(k,U) 18.97 9.48 0.55 1,102 177,695 1,855.28
(k,U) + (`,U) 10.52 8.75 1.32 2,950 40,543 2,423.61
(`, k,U) 13.38 9.11 0.64 1,184 178,227 1,614.35

4 CPX 37.56 11.83 1.60 773 331,016 2,802.69
(k,U) 16.82 8.30 0.19 1,062 154,567 1,035.84
(k,U) + (`,U) 10.26 7.62 0.54 3,019 52,068 1,844.06
(`, k,U) 12.67 7.86 0.20 1,149 103,955 1,029.84

value of the linear relaxation strengthened by the corresponding cutting-plane generation algorithm
and the best feasible solution found through the branch-and-bound search. For the CPX setting,
it reports the initial integrality gap of Formulation (4.12)-(4.25). Column GaprootMIP reports the gap
between the lower bound obtained at the root node of the search tree (after the generation by CPLEX
12.8 solver of its generic cuts) and the best feasible solution found through the branch-and-bound
search. Column GapMIP provides the gap between the best lower bound and the best feasible solution
found throughout the branch-and-bound search. The average number of total cuts generated during
the branch-and-bound tree is reported in Column #Cuts and the average number of total nodes
explored is reported in Column #Nodes. Column Total Time reports the average of total CPU time.

We first observe from these results that the customized branch-and-cut algorithms based on the
(k,U), (k,U) + (`,U) or (`, k,U) settings of the cutting-plane generation algorithm significantly
outperform the generic branch-and-cut algorithm embedded in CPLEX 12.8, providing solutions of
better quality within shorter computation times. Specifically, the total computation time Total Time
is reduced on average by 20% when using the (k,U) setting, by 14% when using the (k,U) + (`,U)
setting and by 26% when using the (`, k,U) setting.

Regarding the relative performance of the (k,U), (k,U) + (`,U) and (`, k,U) settings, we note
that the (k,U) + (`,U) and (`, k,U) settings outperform the (k,U) setting when the value of the
demand-returns ratio is small, ie. when r/d ∈ {1, 2}. Thus, over the 240 instances corresponding
to a value of r/d equal to 1, the total average computation time is reduced from 1732s when using
the (k,U) setting to 1604s when using the (k,U) + (`,U) setting and 1482s when using the (`, k,U)
setting. Similarly, over the 240 instances corresponding to a value of r/d equal to 2, the average MIP
gap is reduced from 2.72% when using the (k,U) setting to 2.56% when using the (k,U) + (`,U)
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setting and 2.38% when using the (`, k,U) setting.
We note however that the relative performance of the (k,U) + (`,U) and (`, k,U) settings dete-

riorates for the instances corresponding to the largest considered value of the demand-returns ratio.
Namely, when r/d is set to 3, the branch-and-cut algorithm based the (k,U) setting provides smaller
MIP gap and/or smaller computation times. This might be explained by the fact that the corre-
sponding instances involve a large amount of returned products so that the quantity processed on a
resource at a given period is not (or at least to a lesser extent) limited by the availability of the re-
turned products. This means that the proposed refinements in the expression of the valid inequalities
are less relevant in this case.

4.8 Conclusion and perspectives
In this chapter, we proposed several new classes of valid inequalities in order to strengthen the
formulation of the multi-echelon lot-sizing problem with lost sales and returns introduced in Chap-
ter 3. Our main contribution is the development of a new class of valid inequalities which take into
account, at each production echelon, the limitations on the produced quantities coming from the
limited availability of the returned products. The results of our computational experiments show
that a branch-and-cut algorithm based on these new valid inequalities performs well as compared
to the generic branch-and-cut algorithm of CPLEX 12.8 solver and to the branch-and-cut algorithm
based on previously published valid inequalities and investigated in Chapter 3.

The work presented here opens several research directions. First, it would be interesting to de-
velop an exact separation algorithm to generate the single-echelon (`, k, U) inequalities with returns
in the presented branch-and-cut algorithm. It may namely further improve its relative performance.
Second, these inequalities have shown their usefulness to solve the problem in a deterministic setting.
It might also be worth investigating whether they could also be helpful to solve its stochastic variant.
This point will be partly tackled in Chapter 6 of this manuscript. Finally, on a longer term perspec-
tive, we could seek to exploit the idea underlying the expression of these inequalities to develop valid
inequalities for a larger class of lot-sizing problems with returns.
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Chapter 5

Combining polyhedral approaches and
SDDiP

Part III of this thesis is devoted to the study of decomposition-based approaches to solve multi-stage
stochastic lot-sizing problems. More precisely, we investigate how the recently introduced stochastic
dual dynamic integer programming (SDDiP) algorithm may be useful to solve our stochastic reman-
ufacturing planning problem. However, in view of the complexity and novelty of this algorithm, we
first focus in this chapter on its application on the much simpler stochastic uncapacitated lot-sizing
problem and propose a new extension of the SDDiP algorithm in order to improve its computa-
tional performance. The SDDiP algorithm relies on a full decomposition of the problem into a set of
small sub-problems linked together by expected cost-to-go functions. The proposed extension aims
at being more computationally efficient in the management of these expected cost-to-go functions,
in particular by reducing their number and by exploiting the current knowledge on the polyhedral
structure of the stochastic uncapacitated lot-sizing problem. The algorithm is based on a partial
decomposition of the problem into a set of stochastic sub-problems, each one involving a subset of
nodes forming a sub-tree of the initial scenario tree. We then introduce a cutting-plane generation
procedure that iteratively strengthens the linear relaxation of these sub-problems and enables the
generation of additional strengthened Benders’ cut, which improves the convergence of the method.
We carry out extensive computational experiments on randomly generated large-size instances. Our
numerical results show that the proposed algorithm significantly outperforms the SDDiP algorithm
at providing good-quality solutions within the computation time limit.

5.1 Introduction
The single-item deterministic uncapacitated lot-sizing problem (ULS) is a production planning prob-
lem first introduced in [100]. It considers a single type of item and aims at determining the quantity
to be produced in each time period in order to meet demand over a finite discrete-time planning hori-
zon. Producing a positive amount in a period incurs a fixed cost, called set-up cost, together with a
production cost per unit produced and an inventory holding cost per unit held in stock between two
consecutive periods. The objective is to build a production plan such that the customers’ demand
is met in each time period and the total costs, i.e. the sum of set-up, production, and inventory
holding costs over the whole planning horizon, are minimized. This fundamental problem naturally
appears as an embedded sub-problem in many practical production planning problems. Solving it
efficiently is thus essential to develop algorithms capable of dealing with real-world problems.

As such, the deterministic ULS is known to be solvable in strongly polynomial time. A simple
dynamic programming algorithm is proposed in [100]. It is based on the zero-inventory-ordering
property, i.e. production is undertaken in a period only if the entering inventory level drops to zero,
and runs in O(T 2) time, where T is the number of time periods. This time complexity was later
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improved to O(T log T ) in [3] and [99]. We refer the reader to [21] for an updated and comprehensive
survey on the single-item dynamic lot-sizing problem.

However, in many applications, assuming deterministically known input data (demand and costs)
is not realistic. Examples of real-world lot-sizing problems with uncertain input parameters can be
found among others in [25] for the spinning industry, [55] for a manufacturing company produc-
ing braking equipment, [41] for a chemical-petrochemical case study, [62] for a remanufacturing
system, [68] for a hybrid manufacturing/remanufacturing system and [73] for humanitarian logistics.

In the present paper, we thus investigate a stochastic extension of the ULS, denoted SULS in
what follows, in which the problem parameters are subject to uncertainty. We consider a multi-
stage decision process corresponding to the case where the value of the uncertain parameters unfolds
little by little following a discrete-time stochastic process and the production decisions can be made
progressively as more and more information on the demand and cost realizations are collected. In
order to address this problem, we rely on a multi-stage stochastic integer programming approach and
assume that the underlying stochastic input process has a finite probability space. The information
on the evolution of the uncertain parameters can thus be represented by a discrete scenario tree.

5.1.1 Related literature
Scarf [91] found that, when all cost parameters are deterministically known and only the demand is
subject to uncertainty, the optimal solution of SULS can be obtained by following a (s, S) inventory
management policy. However, authors of [51] showed that a special case of SULS in which the
production and inventory holding costs are stochastic, the set-up costs are set to zero and the
uncertain demand can take only two possible values in each period is NP-Hard. It is thus unlikely
to find polynomial algorithms in the number of time periods for the problem. Guan and Miller [47]
developed a dynamic programming algorithm for solving the SULS, which is polynomial in the
number of nodes of the scenario tree. However, this number increases exponentially fast with the
number of time periods so that using their algorithm to solve problems with a medium to large
size planning horizon might lead to numerical difficulties. Moreover, this algorithm is based on
some specific properties of the optimal solutions of the SULS. As a consequence, its direct extension
to more general lot-sizing problems whose optimal solutions do not display these properties is not
straightforward. This is why other solution approaches based on mixed-integer linear programming
or nested Benders’ decomposition have also been explored. In what follows, we provide an overview
of the related literature.

Using a scenario tree to represent the evolution of the uncertain parameters namely leads to the
formulation of a Mixed-Integer Linear Program (MILP) which can be solved using mathematical
programming solvers. Consequently, several works focused on the polyhedral study of this MILP in
order to strengthen its linear relaxation and improve the computational efficiency of the branch-and-
cut algorithms embedded in MILP solvers. Valid inequalities can be found in [46], [34] and [45]. In
particular, authors of [45] proposed a general method for generating cutting planes for multi-stage
stochastic integer programs based on combining valid inequalities previously known for the deter-
ministic variant of the corresponding problem and applied it on the SULS. Their numerical results
showed that a branch-and-cut algorithm based on these new inequalities is more effective at solving
instances on medium-size scenarios than a stand-alone mathematical programming solver. Some
extended formulations have also been studied. An extended formulation using variable disaggrega-
tion was proposed in [4]. More recently, Zhao and Guan [104] developed an extended formulation
that provides integral solutions for the general SULS. However, the size of this formulation grows
exponentially fast with the number of time periods, making its use computationally unpractical for
solving instances defined on large-size scenario trees.

In general, solution approaches based on strengthening MILP formulations do not scale up well
with the size of the scenario tree. They namely entail solving very large-scale (mixed-integer) linear
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programs, with millions of variables and constraints, which leads to memory issues and/or prohibitive
computation times in practice. Decomposition methods, such as the nested Benders’ decomposition
algorithm, are thus an attractive alternative to tackle instances with large-size scenario trees. In
particular, the Stochastic Dual Dynamic Programming (SDDP) approach proposed in [75] has been
widely used to solve large-size multi-stage stochastic linear programs. This approach relies on a
dynamic programming formulation of the stochastic problem and leads to a decomposition of the
overall problem into a series of small deterministic sub-problems. Each of these problems focuses on
making decisions for a small subset of nodes belonging to the same scenario and the same decision
stage, taking into account not only the current cost of these decisions but also their future cost which is
represented by an expected cost-to-go function. In a linear setting, the expected cost-to-go functions
are convex and piecewise linear and can thus be under-approximated through a set of supporting
hyperplanes. The SDDP algorithm builds such an approximation by iteratively adding Benders’ cuts
to each sub-problem and converges to an optimal solution in a finite number of iterations.

Recently, Zou et al. [105] proposed a new extension of the SDDP algorithm, called the Stochastic
Dual Dynamic integer Programming (SDDiP) algorithm, capable of solving multi-stage stochastic
integer programs in which the state variables, i.e. the variables linking the nodes to one another, are
restricted to be binary. One of their main contributions was to introduce a new class of cutting planes,
called Lagrangian cuts, which satisfies the validity, tightness and finiteness conditions ensuring the
convergence of the algorithm to optimality. For problems in which the state variables are not binary
but continuous, the authors propose to introduce auxiliary binary variables in order to make a binary
approximation of the state variables. However, for large size scenario trees, this approximation might
be computationally inefficient and leads to large optimality gaps as shown e.g. by the numerical
results presented in [82].

5.1.2 Contributions
In the present work, we propose a new extension of the SDDiP algorithm. This extension aims at
being more computationally efficient in the management of the expected cost-to-go functions involved
in the problem, in particular by reducing their number and by exploiting the current knowledge on
the polyhedral structure of the SULS. It relies on the following three main ideas:

• Similar to the SDDiP algorithm, we exploit a dynamic programming formulation and decom-
pose the problem into smaller sub-problems. However, whereas the SDDiP algorithm fully
decomposes the original problem into small deterministic sub-problems, we partially decom-
pose the problem into a set of somewhat larger stochastic sub-problems, each one involving a
subset of nodes forming a sub-tree of the initial scenario tree. These sub-problems are more
computationally demanding to solve than the deterministic sub-problems involved in the orig-
inal SDDiP algorithm. However, this computational effort might be counterbalanced by an
improvement in the quality of the feasible solution found at each iteration of the algorithm.
Namely, when each sub-problem covers a larger portion of the planning horizon and the num-
ber of expected cost-to-go functions for which an approximation has to be iteratively built is
reduced, the feasible solution obtained at a given iteration of the algorithm will be based on a
better representation of the future costs, i.e. will be less myopic, and will tend to be of better
quality. This might have a positive impact on the global convergence speed of the algorithm.

• In the SDDiP algorithm proposed in [105], three classes of cuts are used to under-approximate
the expected cost-to-go functions, namely the Integer optimality cuts, the Lagrangian cuts and
the strengthened Benders’ cuts. In particular, the strengthened Benders’ cuts generated at
a given node of the scenario tree are linear inequalities for which part of the coefficients are
obtained by solving the linear relaxation of the sub-problems corresponding to its children nodes
and by recording the dual values of the constraints linking the sub-problems to one another. In
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addition to the strengthened Benders’ cuts generated using the initial linear relaxation of the
children sub-problems, we propose to generate additional strengthened Benders’ cuts using an
improved linear relaxation of these sub-problems. We thus introduce a cutting-plane generation
procedure that takes advantage of previously published results on the polyhedral structure of
the SULS to iteratively strengthen the relaxation of these sub-problems. Our computational
results show that the joint use of the strengthened Benders’ cuts obtained using the initial
relaxation and the ones obtained using an improved relaxation of the sub-problems leads to a
significant improvement of the computational efficiency of the SDDiP algorithm.

• Finally, as proposed e.g. in [53] and [82], before actually running the SDDiP algorithm as
defined in [105], we introduce an initial phase in which only strengthened Benders’ cuts are
generated on a dynamic programming formulation using the initial continuous state variables.
This strategy relies on the idea that, even if the obtained cuts do not satisfy the tightness
condition necessary to theoretically ensure the global convergence of the SDDiP algorithm,
they enable to build a first under-approximation of the expected cost-to-go functions with a
reduced computational effort as each sub-problem involves a limited number of binary variables.
This initial under-approximation is then further refined in a second phase based on a dynamic
programming formulation using a binary approximation of the state variables.

Note that the use of a sub-tree decomposition (or node aggregation) has been explored by several
authors in the context of stochastic dynamic programming. Cerisola and Ramos [26] studied a multi-
stage stochastic linear problem for hydro-power generation scheduling. They proposed to decompose
the scenario tree into connected sub-trees and presented several node aggregation protocols to gener-
ate these sub-trees. Later, authors of [28] considered multi-stage stochastic mixed-integer programs
and developed a stochastic dynamic programming approach in which the original scenario tree is
decomposed into sub-trees. However, their algorithm significantly differs from the SDDiP algorithm
as it builds an upper envelope of the expected cost-to-go functions and only provides a heuristic
solution whereas the SDDiP algorithm under-approximates the expected cost-to-go functions and
is capable of providing both a lower and an upper bound of the optimal value. Note that authors
of [7] and [37] recently presented an extension on the algorithm proposed in [28] aiming at exploiting
parallel computing to further reduce the computation time.

The contributions of this work are threefold following these three main ideas. First, we propose a
new extension of the SDDiP algorithm in which a partial decomposition of the scenario tree is used
to generate sub-problems. To the best of our knowledge, this is the first time such an extension is
studied in the context of the SDDiP algorithm. Second, we propose to take advantage of the tree
structure of the sub-problems to exploit results on the polyhedral structure of the SULS and generate
additional strengthened Benders’ cuts to approximate the expected cost-to-go functions. Third, we
carry out extensive computational experiments to assess the performance of the proposed algorithm
at solving the SULS. We thus compare its performance with the one of a stand-alone mathematical
solver and the one of the SDDiP algorithm proposed in [105]. The results show that this new
algorithm outperforms ILOG-CPLEX and the SDDiP algorithm at solving large-size instances of the
SULS.

The remaining part of this paper is organized as follows. Section 5.2 introduces a deterministic
equivalent mixed-integer linear programming formulation and a stochastic dynamic programming
formulation of the SULS. Section 5.3 presents the extension of the SDDiP algorithm in which a partial
decomposition of the scenario tree is used. Section 5.4 then describes two further enhancements of
the algorithm. Finally, the results of our computational experiments are reported in Section 5.5.
Conclusions and directions for further works are discussed in Section 6.6.
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5.2 Mathematical formulations
We assume a stochastic input process with finite probability space. The resulting information struc-
ture can be represented by a scenario tree. With a slight abuse of notation, we will refer to this
scenario tree (and all other scenario sub-trees involved in the present work) by mentioning only its
set of nodes V . Each node n ∈ V corresponds to a single time period tn and a single-stage σn. Let V t
be the set of nodes belonging to time period t. Each node n represents the state of the system that
can be distinguished by the information unfolded up to time period tn. Each node n has a unique
predecessor node denoted an belonging to time period tn − 1. By convention, the root node of the
scenario tree is indexed by 1 and a1 is set to 0. At any non-leaf node of the tree, one or several
branches indicate future possible outcomes of the random variables from the current node. Let C(n)
be the set of immediate children of node n, V(n) the sub-tree of V rooted in n and L(n) the set of
leaf nodes belonging to V(n). The probability associated with the state represented by node n is
denoted by ρn. A scenario is defined as a path from the root node to a leaf node in the scenario
tree and represents a possible outcome of the stochastic input parameters over the whole planning
horizon. The set of nodes on the path from node n to node m is denoted by P(n,m). The reader
can refer to Figure 3.2 in Subsection 2.2.2 for an illustration of these notations on a small scenario
tree.

The stochastic input parameters are defined as follows:

• dn: demand at node n ∈ V ,

• fn: set-up cost at node n ∈ V ,

• hn: unit inventory holding cost at node n ∈ V ,

• gn: unit production cost at node n ∈ V .

Moreover, we assume that at each stage, the realization of the random parameters happens before
we have to make a decision for this stage. This means that the values of dn, fn, hn and gn, for all
n ∈ T σ, are assumed to be known at the beginning of the first period belonging to stage σ.

5.2.1 Extensive MILP formulation
Based on the uncertainty representation described above, the SULS can be reformulated as an equiv-
alent deterministic model in the form of an MILP. We introduce the following decision variables:

• Xn: quantity produced at node n ∈ V ,

• Y n = 1 if a set-up for production is carried out at node n ∈ V , Y n = 0 otherwise,

• Sn: inventory level at node n ∈ V ,

This leads to the following MILP formulation:

min
∑
n∈V

ρn(fnY n + hnSn + gnXn) (5.1)

Xn ≤MnY n ∀n ∈ V (5.2)
Sn + dn = Xn + Sa

n ∀n ∈ V (5.3)
Xn, Sn ≥ 0, Y n ∈ {0, 1} ∀n ∈ V (5.4)

The objective function (5.1) aims at minimizing the expected total set-up, inventory holding and
production costs over all nodes of the scenario tree. Constraints (5.2) link the production quantity
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variables to the set-up variables. Note that the value of constant Mn can be set by using an upper
bound on the quantity to be processed at node n, usually defined as the maximum future demand
as seen from node n, i.e. Mn = max`∈L(n) d

n`, where dn` = ∑
m∈P(n,`) d

m. Constraints (5.3) are the
inventory balance constraints. Constraints (5.4) provide the decision variables domain.

Several MILP formulation strengthening techniques have been investigated for this problem: see
Section 2.3.2 for a detailed presentation of the valid inequalities proposed in [16] and [45].

Problem (5.1)-(5.4) can thus be solved using MILP solvers. Nonetheless, the size of the formula-
tion grows exponentially fast with the number of nodes |V| in the scenario tree, leading to prohibitive
computation times in practice. We thus investigate in what follows a dynamic programming formu-
lation which serves as a basis to develop a decomposition algorithm to solve the problem.

5.2.2 Dynamic programming formulation
An alternative to the extensive formulation of the SULS discussed above is a dynamic programming
formulation involving nested expected cost-to-go functions. This approach decomposes the original
problem into a series of smaller sub-problems linked together by dynamic programming equations.
When applying the SDDiP algorithm proposed in [105] on the SULS, a full decomposition of the
problem is carried out, resulting in a large number of small sub-problems. Each of these sub-
problems is a small deterministic lot-sizing problem aiming at planning production on a subset of
nodes corresponding to a single scenario and a single decision stage. In what follows, we propose to
consider a partial decomposition of the problem resulting in a smaller number of larger sub-problems,
each one being a stochastic lot-sizing problem aiming at planning production on a sub-tree of the
original scenario tree.

We introduce some additional notation in order to explain how this partial decomposition is
carried out. We first partition the set of decision stages S = {1, . . . ,Σ} into a series of macro-stages
G = {1, . . . ,Γ}, where each macro-stage γ ∈ G contains a number of consecutive stages denoted S(γ).
We let t(γ) (resp. t′(γ)) represent the first (resp. the last) time period belonging to macro-stage γ.

Using the set of macro-stages G defined above, we can decompose the scenario tree V into a series
of smaller sub-trees as follows. For a given macro-stage γ, each node η belonging to the first time
period in γ, i.e. each node η ∈ V t(γ), is the root node of a sub-tree defined by the set of nodes
Wη = ∪t=t(γ),...,t′(γ)V t ∩ V(η). We recall that V(η) is the sub-tree of V rooted in η, Wη is thus the
restriction of V(η) to the nodes belonging to macro-stage γ. Let L(η) =Wη ∩V t′(γ) be the set of leaf
nodes of sub-tree Wη. Finally, we denote as f = ∪γ∈GV t(γ) the set of sub-tree root nodes induced by
G.

To illustrate the notation related to the macro-stages, we use the scenario tree depicted in
Figure 5.1. The set of stages S is partitioned into Γ = 2 macro-stages with S(1) = {1, 2} and
S(2) = {3, 4}. The first time period of macro-stage γ = 1 is t(1) = 1, its last time period is
t′(1) = 6. Similarly, we have t(2) = 7 and t′(2) = 12. In this case, the set of sub-tree root
nodes is f = {1, 10, 13, 16, 19}. With this partition, node η = 1 is the root node of the sub-
tree W1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} involving the set of leaf nodes L(1) = {6, 9}. Node η = 10 is
the root node of sub-tree W10 = {10, 11, 12, 22, 23, 24, 25, 26, 27} involving the set of leaf nodes
L(10) = {24, 27}. Sub-trees W13, W16 and W19 are defined in the same way as sub-tree W10.

For each node η ∈ f, sub-problem P η is formulated as:

Qη(Saη) = min
∑
n∈Wη

ρn(fnY n + hnSn + gnXn) +
∑

`∈L(η)

∑
m∈C(`)

Qm(S`) (5.5)

Xn ≤MnY n ∀n ∈ Wη (5.6)
Sn + dn = Sa

n +Xn ∀n ∈ Wη (5.7)
Xn, Sn ≥ 0, Y n ∈ {0, 1} ∀n ∈ Wη (5.8)
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Figure 5.1: Partial decomposition of the scenario tree

Sub-problem P η thus focuses on defining the production plan on sub-tree Wη based on the
entering stock level Saη imposed by the parent node of η in the scenario tree. The objective function
comprises two terms: a term related to the expected set-up, production and inventory holding costs
over sub-tree Wη and a term which represents the expected future costs incurred by the production
decisions made in sub-tree Wη.

In (5.5), Qη(Saη) denotes the optimal value of sub-problem P η as a function of the entering
stock level Saη and Qm(S`) the optimal value of sub-problem Pm as a function of the entering stock
level S`. The expected cost-to-go function at node ` ∈ L(η) is defined as the expected value of
Qm(·) over all the children of ` in the initial scenario tree V , i.e. over all m ∈ C(`), which gives
Q`(·) = ∑

m∈C(`) Q
m(·). The expected future costs of the decisions made in Wη are thus computed

as the sum, over all nodes ` ∈ L(η), of Q`(S`).
We note that in case of G ≡ S, i.e. in case each macro-stage corresponds to a single initial decision

stage, each sub-treeWη reduces to a set of nodes belonging to a single deterministic scenario involving
T σ

η periods and we obtain a decomposition similar to the one used in [105].

5.3 Sub-tree-based SDDiP algorithm
We now present the proposed extension of the SDDiP algorithm applied to the SULS. This extension
relies on the dynamic programming formulation (5.5)-(5.8) and corresponds to a partial decomposi-
tion of the original problem into a set of smaller problems, each one expressed on a sub-tree of the
scenario tree. As described in the SDDiP proposed in [105], the main idea is to solve a sequence
of sub-problems in which the expected cost-to-go functions Q`(·), ` ∈ L(η), of each sub-problem
P η, η ∈ f, are iteratively approximated by a piece-wise linear function. However, whereas the origi-
nal SDDiP considers a large number of small deterministic sub-problems, we use a smaller number
of medium-size stochastic sub-problems.

Note that a key assumption for developing the proposed algorithm is that the scenario tree
displays the stage-wise independence property. When there are several time periods per decision
stage, this property can be defined as follows. For any two nodes m and m′ belonging to stage σ− 1
and such that tm = tm

′ = max{t, t ∈ T σ−1}, the set of nodes ∪t∈T σV t ∩ V(m) and ∪t∈T σV t ∩ V(m′)
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are defined by identical data and conditional probabilities.
Straightforwardly, when the stage-wise independence property holds, for any two nodes m and m′

belonging to the last period t′(γ − 1) of macro-stage γ − 1, the two sets ∪η∈C(m)Wη, and ∪η∈C(m′)Wη

contain Rγ = |C(m)| = |C(m′)| sub-trees defined by identical data and conditional probabilities. The
stochastic process can thus be represented at macro-stage γ by a setRγ = {1, . . . , Rγ} of independent
realizations. Each realization X γ,ζ corresponds to a subtree describing one of the possible evolutions
of the uncertain parameters over periods t(γ), . . . , t′(γ). Let ξγ,ζ denote the root node of X γ,ζ and
L(γ, ζ) denote the set of its leaf nodes.

The expected cost-to-go functions thus depend only on the macro-stage rather than on the node,
i.e. we have Qm(·) ≡ Qγ(·), for all m ∈ V t′(γ). Hence, only one expected cost-to-go function has to
be approximated per macro-stage and the cuts generated at different nodes m ∈ V t′(γ) are added to
a single set of cuts defining the piece-wise linear approximation of function Qγ(·). As a consequence,
we can define a single sub-problem P γ per macro-stage and each sub-problem P η, η ∈ f, will be
described as P γη(Saη ,X γη ,ζ) where X γη ,ζ is the realization corresponding to Wη.

5.3.1 Sub-problem reformulation
We first describe how each sub-problem P γ(Sm,X γ,ζ), for m ∈ V t′(γ−1) and ζ ∈ Rγ, can be reformu-
lated to introduce binary state variables.

Namely, in the SULS, the state variables are the continuous inventory variables Sn. As the SDDiP
developed in [105] requires the state variables to be binary, we first carry out a binary approximation
of the state variables before applying the algorithm to our problem. This binary approximation
is obtained by replacing the continuous variable Sn by a set of binary variables Un,β such that
Sn = ∑

β∈B 2βUn,β, where B = {1, . . . , B}. We have Un,β = 1 if coefficient 2β is used to compute the
value of Sn and Un,β = 0 otherwise. We note however that this binary approximation is not needed
for all inventory variables, but only for those coupling the sub-problems P γ(·, ·), to one another.
Thus, in sub-problem P γ(Sm,X γ,ζ), we use a binary approximation for the entering stock Sm at root
node ξγ,ζ and for the leaving stock S` at each leaf node ` ∈ L(γ, ζ).

Then, as indicated in [105], we introduce local copies of the binary state variables relative to root
node ξγ,ζ . More precisely, Û ξγ,ζ ,β is an auxiliary continuous decision variable representing the value
of the state variable Um,β at the parent node m. It is thus a local copy in problem P γ(Sm,X γ,ζ) of
the state variable Um,β, the value of which is considered as a given input parameter for this problem.

This leads to the following reformulation of sub-problem P γ(Um,X γ,ζ) :

Qγ,ζ(Um) = min
∑

n∈Xγ,ζ
ρn(fnY n + hnSn + gnXn) +

∑
`∈L(γ,ζ)

Qγ(U `) (5.9)

Xn ≤MnY n ∀n ∈ X γ,ζ (5.10)
Sξ

γ,ζ + dξ
γ,ζ =

∑
β∈B

2βÛ ξγ,ζ ,β +Xξγ,ζ (5.11)

Û ξγ,ζ ,β = Um,β ∀β ∈ B (5.12)
Sn + dn = Sa

n +Xn ∀n ∈ X γ,ζ \ {ξγ,ζ} (5.13)
S` =

∑
β∈B

2βU `,β ∀` ∈ L(γ, ζ) (5.14)

Û ξγ,ζ ,β ∈ [0, 1] ∀β ∈ B (5.15)
U `,β ∈ {0, 1} ∀` ∈ L(γ, ζ),∀β ∈ B (5.16)
Xn, Sn ≥ 0, Y n ∈ {0, 1} ∀n ∈ X γ,ζ (5.17)

where Un denotes the vector of binary variables Un = (Un0, . . . , Unβ, . . . , UnB).
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In this reformulation, Constraint (5.11) corresponds to the inventory balance at node ξγ,ζ in
which the entering stock level Sm is computed using the auxiliary variables Û ξγ,ζβ. Equalities (5.12)
are copy constraints ensuring that the value of each auxiliary variable Û ξγ,ζ ,β is equal to the value
of the corresponding state variable Um,β imposed by the parent node m. Constraints (5.13) ensure
the inventory balance at each node of sub-tree X γ,ζ except the root node ξγ,ζ . Constraints (5.14)
define, for each leaf node ` ∈ L(γ, ζ), the value of the binary variables U `,β, which will be used to
compute the future expected costs as Qγ(U `) = ∑

ζ′∈Rγ+1 Qγ+1,r′(U `). Note that, although variables
Û ξγ,ζ ,β and constraints (5.12) are redundant for sub-problem P γ(Um,X γ,ζ), they will play a key role
in the generation of the Lagrangian and strengthened Benders’ cuts used in the SDDiP algorithm to
approximate the expected cost-to-functions.

The main components of the proposed sub-tree-based SDDiP algorithm applied to the SULS are
described in the following.

5.3.2 Sampling step
In the sampling step, a subset of W scenarios, i.e. a set of paths going from the root node to a leaf
node, are randomly selected. Let Ωυ = {ω1

υ, . . . , ω
w
υ , . . . , ω

W
υ } be the set of sampled scenarios, ωwυ be

the set of nodes belonging to scenario w at iteration υ and ζw,γυ be the index of the realization in Rγ

containing the values of the uncertain parameters in scenario ωwυ at macro-stage γ.

5.3.3 Forward step
At iteration υ, the forward step proceeds stage-wise from γ = 1 to Γ. For each sampled scenario
ωwυ and each macro-stage γ, we solve problem P γ

υ (Um
υ ,X γ,ζw,γυ ) where m = ωwυ ∩ V t

′(γ−1) is the node
in the sampled scenario ωwυ belonging to the last period of γ. To solve this problem, the expected
future costs are computed using an approximate representation of the expected cost-to-go functions
Qγ(·).

Let ψγυ(·) be the approximation of the expected cost-to-go function Qγ(·) available at iteration υ
for macro-stage γ. It is defined by the set of supporting hyperplanes generated until iteration υ. We
thus have:

ψγυ(U `) = min{θγ` : θγ` ≥
∑

ζ∈Rγ+1

νγ+1,ζ
u + πγ+1,ζ

u U ` ∀ u = {1, . . . , υ − 1}} (5.18)

where νγ+1,ζ
u and πγ+1,ζ

u are the coefficients of the cut generated at iteration u < υ by considering
realization ζ ∈ Rγ+1. This leads to the following sub-problem P̂ γ

υ (Um
υ , ψ

γ
υ ,X γ,ζw,γυ ):

Q̂γ,ζw,γυ
υ (Um

υ ) = min
∑

n∈Xγ,ζ
w,γ
υ

ρn(fnY n + hnSn + gnXn) +
∑

`∈L(γ,ζw,γυ )
θγ` (5.19)

θγ` ≥
∑

ζ∈Rγ+1

νγ+1,ζ
u + πγ+1,ζ

u U ` ∀ u = 1, . . . , υ − 1, ∀` ∈ L(γ, ζw,γυ ) (5.20)

Constraints (5.10)− (5.17) for ζ = ζw,γυ

The forward step at iteration υ ends when sub-problem P̂ γ
υ (Um

υ , ψ
γ
υ ,X γ,ζw,γυ ) has been solved for

all sampled scenarios and all macro-stages. Its output is a feasible production plan for all nodes
belonging to a sampled scenario. In particular, it provides a value Um

υ for all state variables Um such
thatm ∈ ωwυ ∩V t

′(γ), γ ∈ G, w = 1, . . . ,W . These values will be used in the backward step to generate
additional cuts and improve the approximation of the expected cost-to-go functions Qγ(·), γ ∈ G.
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5.3.4 Backward step
The aim of the backward step is to update the current approximation ψγυ(·) of the expected cost-to-go
function Qγ(·) for each macro-stage γ by generating new supporting hyperplanes and obtain a better
approximation which is denoted ψγυ+1(·).

This step starts from macro-stage Γ and goes back to macro-stage 1. Note that the sub-problems
relative to macro-stage Γ do not have any expected future costs, therefore ψΓ

υ ≡ 0, for all υ. At each
macro-stage γ = Γ − 1, . . . , 1, the updating of the approximation of Qγ(·) is carried out as follows.
For each scenario w = 1, . . . ,W , each node m ∈ ωwυ ∩V t

′(γ) and each realization ζ ∈ Rγ+1, we solve a
suitable relaxation of P̂ γ+1

υ (Um
υ , ψ

γ+1
υ+1,X γ+1,ζ) and collect the cut coefficients {νγ+1,ζ

υ , πγ+1,ζ
υ }. These

coefficients are then used to generate a new linear inequality of type (5.18) to be added to the current
approximation of Qγ(·). The backward step continues iteratively until the approximation of the
expected cost-to-go function at macro-stage γ = 1 is updated. Since ψ1

υ+1 is an under-approximation
of the expected cost-to-go function Q1(·), the optimal value Q̂1,1

υ+1(0) of problem P̂ 1
υ (0, ψ1

υ+1,X 1,1),
provides a lower bound of the optimal value of the stochastic problem.

Cut families

We now briefly recall the three types of cutting planes used in [105] to improve the approximation
of the expected cost-to-go functions during the backward step. Let us consider a macro-stage γ, a
scenario index w and the node m = ωwυ ∩V t

′(γ). Let Um
υ be the value of the state variables Um in the

solution of problem P̂ γ
υ (Um

υ , ψ
γ
υ ,X γ,ζw,γυ ) solved in the forward step of iteration υ. The three following

cuts can be added to compute the approximation ψγυ of Qγ(·).

Integer optimality cut: The algorithm solves problem P̂ γ+1
υ (Um

υ , ψ
γ+1
υ+1,X γ+1,ζ), for each ζ ∈

Rγ+1, with an updated approximation ψγ+1
υ+1 of Qγ+1(·). Let νγ+1,ζ

υ+1 be its optimal objective value and
ν̄γ+1
υ+1 = ∑

ζ∈Rγ+1 νγ+1,ζ
υ+1 . The Integer optimality cut takes the following form:

θγ,m ≥ ν̄γ+1
υ+1

( B∑
β=0

(Um,β
υ − 1)Um,β +

B∑
β=0

(Um,β − 1)Um,β
υ

)
+ ν̄γ+1

υ+1

Lagrangian cut: We consider, for each ζ ∈ Rγ+1, the Lagrangian relaxation of problem
P̂ γ+1
υ (Um

υ , ψ
γ+1
υ+1,X γ+1,ζ) in which the copy constraints (5.12) are dualized. Each corresponding La-

grangian dual problem is solved to optimality. The generated Lagrangian cut takes the form of
inequality (5.18), where νγ+1,ζ

υ corresponds to the optimal value of the Lagrangian dual problem and
coefficient πγ+1,r,β

υ of variable Um,β to the optimal value of the Lagrangian multiplier relative to copy
constraint Û ξγ,ζ ,β = Um,β

υ .

Strengthened Benders’ cut: We solve, for each ζ ∈ Rγ+1, the linear relaxation of problem
P̂ γ+1
υ (Um

υ , ψ
γ+1
υ+1,X γ+1,ζ). The value of each coefficient πγ+1,r,β

υ is set to the dual value of the copy
constraint Û ξγ,ζ ,β = Um,β

υ in this linear relaxation. The value of νγ+1,ζ
υ is obtained by solving the

Lagrangian relaxation of problem P̂ γ+1
υ (Um

υ , ψ
γ+1
υ+1,X γ+1,ζ) in which each copy constraint Û ξγ,ζ ,β =

Um,β
υ is dualized and its Lagrangian multiplier set to πγ+1,r,β

υ .

5.3.5 Stopping criteria
Two stopping criteria are commonly used for the SDDiP in the literature. The first one is based
on a maximum number of consecutive iterations without any improvement of the lower bound, the
second one on a maximum total number of iterations.

As a synthesis, the main steps of the proposed sub-tree-based SDDiP algorithm applied to the
stochastic ULS are summarized in Algorithm 7.
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Note that depending on the partition of S, the number of macro-stages Γ can take any value
between 1 and Σ. For Γ = 1, the forward step corresponds to solving the original problem (5.1)-(5.4)
defined on the whole scenario tree V and no backward step is needed: Algorithm 7 thus directly solves
the stochastic problem as a MILP, without any decomposition. For Γ = Σ, Algorithm 7 corresponds
to the SDDiP algorithm of [105]. In general, we will have Γ < Σ, which means that the number of
expected cost-to-go functions Qγ(·) to be approximated will be smaller in Algorithm 7 than the one
to be handled in the SDDiP algorithm. This may have a positive impact on the global convergence of
the algorithm. Namely, with Γ < Σ, each sub-problem P̂ γ

υ (·, ψγυ ,X γ,ζ) covers a larger portion of the
planning horizon and uses an approximation of its expected future costs which will be globally better
as it will rely on a smaller number of approximate expected cost-to-go functions. As a consequence,
the feasible solution obtained by solving P̂ γ

υ (·, ψγυ ,X γ,ζ) at a given iteration of the algorithm will tend
to be less myopic and thus to provide lower and upper bounds LB and UB of better quality. However,
each sub-problem P̂ γ

υ (·, ψγυ ,X γ,ζ) is now an MILP expressed on a small sub-tree. In particular, the
large number of binary variables U `,β needed to carry out the binary approximation of the leaving
inventory at each leaf node ` ∈ L(γ, ζ) makes its resolution computationally more expensive than
the one of a sub-problem expressed on a deterministic scenario involving a single leaf node. In what
follows, we thus discuss two algorithmic enhancements aiming at further improving the numerical
efficiency of Algorithm 7.

5.4 Algorithmic enhancements
In this section, we aim at enhancing the numerical efficiency of Algorithm 7, mostly through a more
efficient building of the approximation of the expected cost-to-go functions. In what follows, we
detail the two proposed algorithmic enhancements.

5.4.1 Approximate sub-tree-based SDDiP
[53] and [82] both proposed to use an approximate variant of the SDDiP algorithm in which the state
variables may be continuous. In this case, the finite convergence of the algorithm is not theoretically
guaranteed but, as this approximation leads to a significant reduction of the computational effort
required at each iteration of the algorithm, it may positively impact the solution quality in practice.
We thus explain in what follows how this approximate SDDiP algorithm can be adapted to the case
where a partial sub-tree-based decomposition of the scenario tree is used.

The algorithm is based on a reformulation of problem P γ(Sm,X γ,ζ) in which a single auxiliary
variable S̃ξγ,ζ is introduced. Variable S̃ξγ,ζ can be seen as a local copy of the inventory variable at
the parent node Sm in P γ(Sm,X γ,ζ). This results in the following reformulation of P γ(Sm,X γ,ζ):

Qγ,ζ(Sm) = min
∑

n∈Xγ,ζ
ρn(fnY n + hnSn + gnXn) +

∑
`∈L(γ,ζ)

Qγ(S`) (5.21)

Sξ
γ,ζ + dξ

γ,ζ = S̃ξ
γ,ζ +X S̃ξ

γ,ζ

(5.22)
S̃ξ

γ,ζ = Sm (5.23)
Sn + dn = Sa

n +Xn ∀n ∈ X γ,ζ \ {ξγ,ζ} (5.24)
Constraints (5.6), (5.8) (5.25)

In this reformulation, the expected cost-to-go function Qγ(S`) = ∑
ζ′∈Rγ+1 Qγ+1,ζ′(S`) is a function

of the continuous state variable S`. We thus build an under-approximation of Qγ(·) through a set
of linear cuts involving continuous variables S` instead of binary variables U `,β. Let ψ̃γυ(·) be the
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Algorithm 7: SDDiP algorithm
1 Initialize LB ← −∞, UB ← +∞, υ ← 1
2 while no stopping criterion is satisfied do
3 Sampling step
4 Randomly select W scenarios Ωυ = {ω1

υ, ..., ω
W
υ }

5 Forward step
6 for w = 1, ...,W do
7 for γ = 1, ...,Γ do
8 Solve P̂ γυ (Umυ , ψγυ ,X γ,ζ

w,γ
υ ) for m = ωwυ ∩ Vt

′(γ−1)

9 Record u`υ for ` = ωwυ ∩ L(γ, ζw,γυ )
10 end
11 υw ←

∑
n∈ωwυ (fnY n

υ + hnSnυ + gnXn
υ )

12 end
13 µ̂←

∑W
w=1 υ

w and σ̂2 ← 1
W−1

∑W
w=1(υw − µ̂)2

14 UB ← µ̂+ zα/2
σ̂√
W

15 Backward step
16 for γ = Γ− 1, ..., 1 do
17 for w = 1, ...,W do
18 Let m = ωwυ ∩ Vt

′(γ)

19 for ζ ∈ Rγ+1 do
20 Solve the linear relaxation of P̂ γ+1

υ (Umυ , ψ
γ+1
υ+1,X γ+1,ζ) and collect the coefficients of

the strengthened Benders’ cut
21 Solve the Lagrangian relaxation of P̂ γ+1

υ (Umυ , ψ
γ+1
υ+1,X γ+1,ζ) and collect the constant

value of the strengthened Benders’ cut
22 Solve P̂ γ+1

υ (Umυ , ψ
γ+1
υ+1,X γ+1,ζ) and collect the coefficients of the Integer optimality

cut
23 Solve the Lagrangian dual problem and collect the coefficients of the Lagrangian cut
24 end
25 end
26 Add the three generated cuts to ψγυ to get ψγυ+1
27 end
28 LB ← Q̂1,1

υ+1(0)
29 v ← v + 1
30 end

approximation of the expected cost-to-go function Qγ(·) available at iteration υ for macro-stage γ in
the approximate SDDiP algorithm. We have:

ψ̃γυ(S`) = min{θγ` : θγ` ≥
∑

ζ′∈Rγ+1

(ν̃γ+1,ζ′
j + π̃γ+1,ζ′

j S`) ∀j = {1, ..., i− 1}} (5.26)

where ν̃γ+1,ζ′
j and π̃γ+1,ζ′

j are the coefficients of the cut generated at iteration j < υ by considering
realization ζ ′ ∈ Rγ+1. This leads to the following approximate sub-problem P̃ γ

υ (Smυ , ψ̃γυ ,X γ,ζ):

Q̃γ,ζ
υ (Sm) = min

∑
n∈Xγ,ζ

ρn(fnY n + hnSn + gnXn) +
∑

`∈L(γ,ζ)
θγ` (5.27)

θγ` ≥
∑

ζ′∈Rγ+1

(ν̃γ+1,ζ′
j + π̃γ+1,ζ′

j S`) ∀j = 1, ..., υ − 1, ∀` ∈ L(γ, ζ) (5.28)

Constraints (5.22)− (5.25) (5.29)
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In the backward step of the approximate SDDiP algorithm, only strengthened Benders’ cuts are
generated. More precisely, for each macro-stage γ = Γ− 1, . . . , 1, the updating of the approximation
of Qγ(·) is carried out as follows. For each node m ∈ Ωυ ∩ V t

′(γ) and each realization ζ ′ ∈ Rγ+1,
we first solve the linear relaxation of P̃ γ+1

υ (Smυ , ψ̃
γ+1
υ+1,X γ+1,ζ′), get the dual value of constraint (5.23)

in its optimal solution and set π̃γ+1,ζ′
j to this value. We then solve a Lagrangian relaxation of

P̃ γ+1
υ (Smυ , ψ̃

γ+1
υ+1,X γ+1,ζ′) in which constraint S̃ξγ,ζ = Sm has been dualized with a Lagrangian mul-

tiplier set to π̃γ+1,ζ′
j . We record the optimal value of this Lagrangian relaxation and set ν̃γ+1,ζ′

j

to this value. Once this procedure is carried out for all realization of ζ ′ ∈ Rγ+1, we get the cut
θγ,m ≥ ∑ζ′∈Rγ+1(ν̃γ+1,ζ′

j + π̃γ+1,ζ′
j Sm) to be added to ψ̃γυ to get ψ̃γυ+1.

In our numerical experiments, this approximate sub-tree-based SDDiP algorithm is used in an
initial phase which is carried out before actually running Algorithm 7. The objective of this initial
phase is to build a first under-approximation of each expected cost-to-go functions Qγ(·) and obtain
a good initial lower bound for the problem with a reduced computational effort. This initial lower
bound will then be further improved during a second phase in which Algorithm 7 is run and all
Integer Optimality, Lagrangian and strengthened Benders’ cuts are generated. Note that any cut
of type θγ` ≥ ∑

ζ′∈Rγ+1(ν̃γ+1,ζ′
j + π̃γ+1,ζ′

j S`) generated during the first phase provides a cut of type
θγ` ≥ ∑ζ′∈Rγ+1(νγ+1,ζ′

j +πγ+1,ζ′
j U `) which can be used in the second phase by setting νγ,ζ

′

j = ν̃γ,ζ
′

υ and
πγ,r

′,β
j = π̃γ,ζ

′
υ , for β ∈ B.

5.4.2 Leveraging the current knowledge on the polyhedral structure of
the SULS

The second enhancement of the algorithm seeks to exploit the alternative MILP formulations cur-
rently known for SULS to generate additional strengthened Benders’ cuts (and improve the approx-
imation of the expected cost-to-go functions at a relatively limited computational effort) and speed
up the resolution of the numerous MILPs to be solved over the course of Algorithm 7.

Generation of additional strengthened Benders’ cuts

Recall that to, generate a strengthened Benders’ cut to be added at a given iteration υ to the
approximation of Qγ−1(·), the algorithm first solves, for each r ∈ Rγ, the linear relaxation of prob-
lem P̂ γ

υ (Um
υ , ψ

γ
υ+1,X γ,ζ), where m is a node belonging to V t′(γ−1). This linear relaxation can be

computed using different formulations of P̂ γ
υ (Um

υ , ψ
γ
υ+1,X γ,ζ). A first option is to use the initial

MILP formulation defined in Subsection 5.3.3. Other options consist in using the initial MILP for-
mulation strengthened by path inequalities (2.12) or the initial MILP formulation strengthened
by tree inequalities (2.13). Then, the algorithm collects the dual value of the copy constraint
Û ξγ,ζ ,β = Um,β

υ in the linear relaxation and set coefficient πγ,ζ,βυ to it. The Lagrangian relaxation
of problem P̂ γ

υ (Um
υ , ψ

γ
υ+1,X γ,ζ) in which each copy constraint Û ξγ,ζ ,β = Um,β

υ is dualized with a
Lagrangian multiplier set to πγ,ζ,βυ is then solved. Its optimal value provides coefficient νγ,ζυ .

A key observation here is that the dual value of constraint Û ξγ,ζ ,β = Um,β
υ in the linear relaxation

will vary according to the MILP formulation used for P̂ γ
υ (Um

υ , ψ
γ
υ+1,X γ,ζ). Hence, for a given value

of the entering stock described by the binary vector Um
υ , by considering the three alternative MILP

formulations available for P̂ γ
υ (Um

υ , ψ
γ
υ+1,X γ,ζ), it is possible to generate three different strengthened

Benders’ cuts, i.e. three cuts corresponding to different values of coefficients {νγ,ζυ , πγ,ζυ },
We point out here that, in general, there does not seem to be a dominance relationship between

these three cuts. In other words, a cut generated using a stronger formulation of P̂ γ
υ (Um

υ , ψ
γ
υ+1,X γ,ζ)

does not necessarily lead to a better approximation of Qγ−1(·). The reader is referred to Appendix 5.7
for a small example illustrating this point. We thus propose an extension of Algorithm 7 in which
strengthened Benders’ cuts based on the three MILP formulations available for P̂ γ

υ (Um
υ , ψ

γ
υ+1,X γ,ζ)

are sequentially generated.
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Before presenting this extension, we first note that valid inequalities generated for sub-problem
P̂ γ
υ (Um

υ , ψ
γ
υ ,X γ,ζ) at a given iteration υ are valid for any sub-problem P̂ γ

j (·, ψγj ,X γ,ζ) to be solved
at iteration j ≤ υ. Namely, let us consider reformulation (5.9)-(5.17) of sub-problem P γ(Um,X γ,ζ).
Valid inequalities of type (2.12) and (2.13) can be expressed as follows:

∑
β∈B

2βÛ ξγ,ζβ +
∑
n∈SO

Xn +
∑
n∈S̄O

∆n(O)Y n ≥ d1nO (5.30)

for any subset O of X γ,ζ .
Note that inequalities (5.30) only use local copy variables û and thus remain valid for any value

of the entering stock level described by the state variable Um. Moreover, sub-problem P γ(·,X γ,ζ)
and P̂ γ

υ (·, ψγυ ,X γ,ζ) only differ with respect to the objective function evaluation and have the same
feasible space. Thus, any inequality valid for P γ(·,X γ,ζ) is also valid for P̂ γ

υ (·, ψγυ ,X γ,ζ).
Let χγ,ζυ = {∑β∈B 2βÛ ξγ,ζβ +∑

n∈SOc
Xn +∑

n∈S̄Oc
∆n(Oc)Y n ≥ d1nOc ,Oc ⊂ X γ,ζ , c = 1, . . . , Cγ,ζ

υ }
denote the set of Cγ,ζ

υ inequalities (2.12) and/or (2.13) related to sub-problem P γ(·,X γ,ζ) generated
until the beginning of iteration υ. Let P̂ γ

υ (·, ψγυ ,X γ,ζ , F ) denote problem P̂ γ
υ (·, ψγυ ,X γ,ζ) expressed

using formulation F where F = IF (∅) denote the initial formulation without any strengthening and
F = IF (χγ,ζυ ) the initial formulation strengthened by a set of inequalities χγ,ζυ .

We propose the following strategy to sequentially add strengthened Benders’ cuts based on the
three available MILP formulations to the approximations of the expected cost-to-go functions. This
strategy is based on three increasing levels of formulation strengthening :

• Level λ = 0: Algorithm 7 is run as described in Section 5.3, i.e. we solve the linear relaxation
of sub-problems P̂ γ

υ (·, ψγυ ,X γ,ζ , IF (∅)) to obtain the cut coefficients. The algorithm moves to
the next level after a predefined number of consecutive iterations.

• Level λ = 1: Algorithm 7 is run using the linear relaxation of sub-problems P̂ γ
υ (·, ψγυ ,X γ,ζ , IF (χγ,ζυ ))

to obtain the cut coefficients. In this level, at each iteration, only path inequalities (2.12) are
added to χγ,ζυ using a single run of a cutting plane generation procedure based on the separa-
tion algorithm presented in [17]. The algorithm moves to the next level after no violated path
inequalities have been found during a predefined number of consecutive iterations.

• Level λ = 2: Algorithm 7 is run using the linear relaxation of sub-problems P̂ γ
υ (·, ψγυ ,X γ,ζ , IF (χγ,ζυ ))

to obtain the cut coefficients. In this level, at each iteration, tree inequalities (2.13) are added
to χγ,ζυ using a single run of the cutting plane generation procedure presented in [45]. The
algorithm moves to the next level after no violated tree inequalities have been found during a
predefined number of consecutive iterations.

As will be shown by the numerical results to be presented in Section 5.5, the joint use of strength-
ened Benders’ cuts generated using the three alternative MILP formulations available for the sub-
problems allows to significantly improve the quality of the solution provided by the algorithm. Note
that an alternative strategy could be to simultaneously add strengthened Benders’ cuts based on
these three MILPs formulations at each iteration of the algorithm. However, this would significantly
increase the computational effort carried out at each iteration as it would require the resolution
of many additional linear and Lagrangian relaxations of problem P̂ γ

υ (·, ψγυ ,X γ,ζ , ·), namely one for
each formulation F = {IF (∅), IF (χγ,ζυ )}, each set of inequalities χγ,ζυ , each realization ζ ∈ Rγ and
each macro-stage γ ∈ G. This would lead to a strong decrease in the number of iterations carried
out by the algorithm within the allotted computation time, which could negatively impact its per-
formance. We thus chose to implement a strategy in which the strengthened Benders’ cuts based
on the alternative MILPs formulations are added sequentially to the expected cost-to-go functions
approximations.
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Sub-problem resolution with strengthened MILP formulations

Over the course of Algorithm 7, a rather large number of MILPs have to be solved. More precisely,
at each iteration of the algorithm, there are one MILP to be solved for each scenario and each macro-
stage in the forward step and two MILPS (the sub-problem itself and its Lagrangian relaxation) to
be solved for each scenario, each macro-stage and each realization per macro-stage in the backward
step. Thus, even if each of these MILPs is of moderate size, their resolution might be computationally
expensive.

Valid inequalities (2.12) and (2.13) can be used to speed up the resolution of the various MILPs
involved in Algorithm 7 through a strengthening of their linear relaxation and an improvement of
the lower bounds used at each node of the Branch & Bound search tree. In order to save the
computational effort needed to run the related cutting plane generation procedures, we propose to
strengthen the MILP formulation of each sub-problem P̂ γ

υ (·, ψγυ ,X γ,ζ) using only the valid inequalities
already added to the current set of inequalities χγ,ζυ and to solve each sub-problem using formulation
IF (χγ,ζυ ).

For the sake of clarity, in Subsection 5.4.2, we focused on explaining how this second algorithmic
enhancement is carried out in Algorithm 7. It can, however, be straightforwardly adapted for the
approximate version of Algorithm 7 described in Subsection 5.4.1.

In what follows, we will refer to the version of Algorithm 7 in which the two proposed enhance-
ments discussed in this section have been implemented as extSDDiP. A detailed description of this
algorithm is provided in Appendix 5.8.

5.5 Computational experiments
In this section, we focus on assessing the performance of the extSDDiP algorithm proposed in Sec-
tions 5.3 and 5.4. This is done by comparing it with the performance of a stand-alone mathematical
programming solver ILOG-CPLEX using the extensive MILP formulation (5.1)-(5.4) and the one of
the SDDiP algorithm using the dynamic programming reformulation (5.5)-(5.8) with G ≡ S.

In what follows, we first describe the scheme used to randomly generate instances of the SULS
and the experimental set-up. We then discuss the results of our computational experiments.

5.5.1 Instance Generation
We randomly generated instances following the same procedure as the one used in [45]. This pro-
cedure considers various scenario tree structures, several ratios of the production cost to inventory
holding cost and several ratios of the set-up cost to the inventory holding cost.

Regarding the scenario tree structure, we used only balanced trees with Σ stages, a constant
number b = |T σ|, for all σ ∈ S, of time periods per stage and a constant number R = Rσ, for all
σ ∈ S, of equiprobable realizations per stage. We generated four sets of instances corresponding to
four types of scenario tree structures:

• Instances of Set 1 involve a short planning horizon and a small number of stages, but a relatively
large number of realizations per stage: Σ = 4, b = 1 and R ∈ {10, 20}.

• Instances of Set 2 involve a short planning horizon and a medium number of stages, but a
relatively large number of realizations per stage: Σ = 6, b = 1 and R ∈ {10, 20}.

• Instances of Set 3 involve a long planning horizon with a medium number of stages and a
medium number of realization per stage: Σ = 8, b ∈ {2, 5} and R = 5.

• Instances of Set 4 involve a medium-size planning horizon with a large number of decision
stages and a small number of realizations per stage: Σ = 12, b = 1 and R = 3.
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As for the costs, we used the same numerical values as [45], i.e. a production to holding cost ratio
g/h ∈ {2, 4} and a set-up to holding cost ratio f/h ∈ {200, 400}. More precisely, the holding cost hn
at node n of the tree was generated from the uniform distribution U [0, 10]. The production cost gn
was randomly generated from U [0.8(g/h)h̄, 1.2(g/h)h̄], where h̄ = ∑

n∈V h
n/|V| is the average holding

cost. The set-up cost fn was randomly generated from U [0.8(f/h)h̄, 1.2(f/h)h̄]. The demand dn was
generated from the discrete uniform distribution DU [0, 100]. The probability ρn of node n is given
by ρn = ( 1

R
)σn−1. Finally, for each set and each considered combination of Σ, b, R, g/h and f/h, five

random instances were generated, resulting in a total of 140 instances.

5.5.2 Experimental setup
Each instance is first solved with the mathematical programming solver CPLEX 12.8 using the
extensive MILP formulation (5.1)-(5.4). For the Set 1 instances which involve less than 8000 scenarios,
we use the cutting-plane generation strategy proposed in [45] to strengthen this formulation by adding
violated path inequalities (2.12) and tree inequalities (2.13) at each node of the branch-and-cut search
tree. For the other instances, we use the standard branch-and-cut algorithm of solver CPLEX 12.8
using the initial formulation (5.1)-(5.4). Our preliminary experiments namely showed that this was
more efficient than using the customized branch-and-cut algorithm based on valid inequalities (2.12)
and (2.13) for the large instances. This solution method is denoted by CPX in what follows.

Each instance is then solved by the SDDiP algorithm proposed in [105] and by the extSDDiP
algorithm. For both algorithms, the number of scenarios sampled at each iteration is set to W = 1.
Moreover, the binary approximation of the continuous state variables sn is carried out as follows. For
each instance, we compute an upper bound of the inventory level at node n as smax = max`∈L(0)d

0,`.
The number B of binary variables un,β is set to B = dlog2(smax)e. Note that for the instances
considered in our numerical experiments, introducing this binary approximation of the inventory
variables will not lead to a sub-optimal solution. Namely, the randomly generated demand vectors
only comprise integer components and the optimal leaving inventory at each node is known to take
an integer value in this case: see [47].

Regarding the partition of the set of decision stages S into macro-stages G, we consider only
decompositions in which the number of stages per macro-stage, denoted by G, is constant, i.e.
G = |S(γ)|, for all γ ∈ G. For each instance, depending on the value of Σ, we consider values of
G = Σ/Γ in the set {2, 3, 4, 6}.

Furthermore, in order to better assess the impact of the two enhancements presented in Sec-
tion 5.4, several variants of the extSDDiP algorithm are implemented.

First, to evaluate the usefulness of the approximate subtree-based SDDiP algorithm discussed in
Subsection 5.4.1, we consider the following three implementations of the extSDDiP algorithm:

• extSDDiP-I corresponds to the case where only the approximate subtree-based SDDiP algo-
rithm based on formulation (5.5)-(5.8) with continuous state variables sn is run.

• extSDDiP-II corresponds to the case where only Algorithm 7 is run.

• extSDDiP-I/II corresponds to a 2-phase algorithm in which phase I first runs the approximate
subtree-based SDDiP algorithm to build an initial approximation of the expected cost-to-go
functions and phase II runs Algorithm 7 to further improve these approximations.

Second, we also seek to assess the impact on the algorithmic performance of exploiting alternative
MILP formulations of the SULS, as presented in Subsection 5.4.2. Each considered setting is de-
scribed by the maximum level of formulation strengthening λmax used to strengthen the sub-problem
formulation. Thus, extSDDiP-I/II-λmax denotes for instance a 2-phase implementation of the extS-
DDiP in which the sub-problem formulation strengthening levels 0, . . . , λmax are sequentially used
following the strategy described at the end of Subsection 5.4.2.
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Regarding the stopping criteria, the maximum number of consecutive iterations without any
improvement of the lower bound LB is set to 30 and the maximum total number of iterations to
1000. The algorithm stops as soon as one of these two conditions is reached. Note that at this point,
the upper bound UB is computed considering onlyK = 1 scenario and thus might not be statistically
representative. Thus, after the algorithm has stopped, we compute an updated upper bound based
on a larger number of scenarios. For Set 1 instances, a true upper bound is obtained by computing a
feasible production plan for the |L(0)| scenarios. For the other instances, a statistical upper bound
is computed as follows. We randomly sample 1000 scenarios and compute a feasible solution for each
of them using the final approximation of the expected cost-to-go functions to evaluate the objective
function at each (macro)-stage. We then construct a 95% confidence interval and report the right
endpoint of this interval as the statistical upper bound of the optimal value.

Each algorithm was implemented in C++ using the Concert Technology environment. All (mixed-
integer) linear programs were solved using CPLEX 12.8 with the default settings and the Lagrangian
dual problems were solved by a sub-gradient algorithm. All tests were run on the computing infras-
tructure of the Laboratoire d’Informatique de Paris VI (LIP6), which consists of a cluster of Intel
Xeon Processors X5690. We set the cluster to use two 3.46GHz cores and 12GB RAM to solve each
instance. We impose a time limit of 1800 seconds to method CPX to solve each instance. For the
SDDiP and extSDDiP algorithms, we impose a time limit of 900 seconds to compute a lower bound
and 900 seconds to compute the true or statistical upper bound.

5.5.3 Results
Tables 5.1-5.4 display the numerical results. Columns R and b describe the structure of the scenario
tree when needed. The corresponding number of nodes in the scenario tree, |V|, and the number of
scenarios, |L(0)|, are then provided. Column G indicates the number of stages per macro-stage in the
partial decomposition of the scenario tree and Column Method indicates the algorithm used to solve
each instance. Each line in the table thus provides the average results of the indicated resolution
method over the 20 instances corresponding to the given scenario tree structure with various values of
the ratios f/h and g/h. Column Gap displays the gap between the lower bound (LB) and the upper
bound (UB) found by each method, i.e. Gap = |UB − LB|/UB. The average total computation
time in seconds is reported in Column Time (s), the average number of iterations in Column #ite
and the total number of valid inequalities of type (2.12) and (2.13) generated are provided in Column
#VI.

Results from Table 5.1 first show that, when using the extensive formulation (5.1)-(5.4) strength-
ened by valid inequalities (2.12) and (2.13), method CPX outperforms the other methods for the
smallest considered instances, i.e. the instances corresponding to Σ = 4, R = 10 and b = 1, providing
an average gap of 1.36% within the allotted time limit. When the number of realizations per stage
increases, i.e. for the instances corresponding to Σ = 4, R = 20 and b = 1, the relative performance
of method CPX deteriorates but the average gap remains below 5%. However, when the number of
stages, and consequently the size of the scenario tree, increases, the performance of method CPX
strongly deteriorates. This can be seen from the results displayed in Tables 5.2-5.4: method CPX
namely provides gaps between 19% for the instances with Σ = 6, R = 10 and b = 1 and 94% for the
instances with Σ = 6 and R = 20 and b = 1.

We also observe from the results displayed in Tables 5.1-5.4 that method SDDiP compares well
with method CPX. It namely consistently provides average gaps between 9% and 30% for all instances
and significantly outperforms method CPX in terms of solution quality for the largest instances.

Furthermore, these results show that, on average, algorithm extSDDiP significantly outperforms
methods CPX and SDDiP. We namely first note that, whatever the partial decomposition and the
formulation strengthening setting used, i.e. whatever the value ofG ∈ {2, 3, 4, 6} and λmax ∈ {0, 1, 2},
the gap provided by algorithm extSDDiP-I/II is significantly smaller than the one provided by
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Table 5.1: Performance of each method at solving instances from Set 1 (Σ = 4, b = 1) of the SULS
problem

R |V| |L(0)| G Method Gap Time (s) # ite # VI
10 1111 1000 1 SDDiP 9.59 1,100.96 135 0

2 extSDDiP-I/II-0 4.18 875.47 90 0
extSDDiP-I/II-1 3.21 869.66 105 823
extSDDiP-I/II-2 2.81 852.25 140 867

4 CPX 1.36 1590.96 - 2642
20 8420 8000 1 SDDiP 15.62 1,074.37 77 0

2 extSDDiP-I/II-0 5.10 967.10 60 0
extSDDiP-I/II-1 3.26 964.41 79 5,106
extSDDiP-I/II-2 2.98 961.24 133 7,283

4 CPX 4.67 1,801.45 - 3224

Table 5.2: Performance of each method at solving instances from Set 3 (Σ = 6, b = 1) of the SULS
problem

R |V| |L(0)| G Method Gap Time (s) # ite # VI
10 111111 100000 1 SDDiP 21.49 1,241.18 80 0

2 extSDDiP-I/II-0 12.35 1,161.47 46 0
extSDDiP-I/II-1 7.93 1,155.39 76 1,331
extSDDiP-I/II-2 6.56 1,047.61 124 1,709

3 extSDDiP-I/II-0 7.19 1,065.16 36 0
extSDDiP-I/II-1 4.01 1,084.60 50 9,994
extSDDiP-I/II-2 4.18 1,100.41 72 22,039

6 CPX 19.28 1801.78 - 0
20 3.36× 106 3.2× 106 1 SDDiP 28.77 1,214.26 46 0

2 extSDDiP-I/II-0 13.88 1,150.22 38 0
extSDDiP-I/II-1 8.51 1,127.27 73 3,551
extSDDiP-I/II-2 7.88 1,050.58 138 11,805

3 extSDDiP-I/II-0 12.14 1,473.89 9 0
extSDDiP-I/II-1 12.01 1,526.49 8 996
extSDDiP-I/II-2 11.96 1,555.29 8 1,093

6 CPX 94.24 1,801.52 - 0

algorithm SDDiP. In particular, if we consider the results obtained with algorithm extSDDiP-I/II-2
with a partial decomposition using G = 2 stages per macro-stage, we obtain an average gap over the
140 instances of 5.07% as compared to an average gap of 19.69% obtained with algorithm SDDiP
and an average gap of 41.16% obtained with CPX. Moreover, we would like to point out that, by
considering, for each set of instances, the values of G and λmax providing the lowest gap, algorithm
extSDDiP-I/II is able to provide a solution within an average gap of 3.76%. This clearly shows that
jointly using the partial decomposition of the scenario tree into sub-trees discussed in Section 5.3
and the two algorithmic enhancements presented in Section 5.4 leads to a significant improvement
of the performance of the SDDiP algorithm proposed in [105].

We now discuss the individual impact of each of these three elements on the performance of
algorithm extSDDiP. The separate impact of the partial decomposition of the scenario tree into sub-
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Table 5.3: Performance of each method at solving instances from Set 3 (Σ = 8, R = 5) of the SULS
problem

b |V| |L(0)| G Method Gap Time (s) # ite # VI
2 195312 78125 1 SDDiP 20.08 1662.00 91 0

2 extSDDiP-I/II-0 13.08 1,669.77 52 0
extSDDiP-I/II-1 6.83 1,656.55 81 1,024
extSDDiP-I/II-2 6.21 1,604.36 115 1,121

4 extSDDiP-I/II-0 5.38 1,380.34 25 0
extSDDiP-I/II-1 2.89 1,438.71 31 7,762
extSDDiP-I/II-2 3.22 1,358.63 42 10,118

8 CPX 43.81 1,802.40 - 0
5 488280 78125 1 SDDiP 13.14 2075.09 70 0

2 extSDDiP-I/II-0 7.42 1,787.85 42 0
extSDDiP-I/II-1 2.90 1,591.52 82 4,124
extSDDiP-I/II-2 2.91 1,588.13 94 4,248

4 extSDDiP-I/II-0 4.32 1,726.38 16 0
extSDDiP-I/II-1 2.32 1,863.85 20 23,051
extSDDiP-I/II-2 1.82 1,841.01 21 26,621

8 CPX 71.04 1,803.99 - 0

Table 5.4: Performance of each method at solving instances from Set 4 (Σ = 12, b = 1, R = 3) of the
SULS problem

|V| |L(0)| G Method Gap Time (s) # ite # VI
265720 177147 1 SDDiP 29.12 1,716.06 100 0

2 extSDDiP-I/II-0 16.61 1,742.85 72 0
extSDDiP-I/II-1 8.65 1,650.81 110 142
extSDDiP-I/II-2 6.12 1,526.16 175 144

3 extSDDiP-I/II-0 13.62 1,868.93 41 0
extSDDiP-I/II-1 6.67 1,746.58 67 687
extSDDiP-I/II-2 7.01 1,705.17 105 871

4 extSDDiP-I/II-0 10.46 1,853.51 28 0
extSDDiP-I/II-1 5.25 1,853.44 47 1,543
extSDDiP-I/II-2 6.20 1,821.16 72 3,017

6 extSDDiP-I/II-0 5.28 1,625.98 17 0
extSDDiP-I/II-1 4.11 1,677.38 21 4,260
extSDDiP-I/II-2 3.90 1,557.63 29 6,601

12 CPX 53.78 1,803.29 - 0

trees on the algorithmic performance can be evaluated by looking at the results obtained by algorithm
extSDDiP-II-0: see Tables 5.10-5.13 in Appendix 5.9. We thus observe that the average gap can be
reduced from 19.68% with algorithm SDDiP to 11.16% with algorithm extSDDiP-II-0 using a partial
decomposition involving G = 2 stages per macro-stage. Moreover, in general, increasing the value of
G further improves the performance of algorithm extSDDiP-II-0: an average gap of 7.50% can thus
be observed when using algorithm extSDDiP-II-0 with G ∈ {3, 4, 6}. A noticeable exception can be
found for the instances corresponding to Σ = 6, R = 20 and b = 1 for which the increase of G from
2 to 3 leads to a strong deterioration of the algorithmic performance (see Table 5.11). This might
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be explained by the fact that, for these instances, when G = 3, each sub-tree involves 421 nodes,
among which 400 are leaf nodes. A binary approximation of the leaving inventory level has to be
used for each of these 400 nodes so that each sub-problem comprises a rather large number of binary
variables and requires a large computational effort to be solved. It is thus not possible to carry out
one full iteration of algorithm extSDDiP-II-0 within the allotted computation time.

We now focus on the impact of the first considered enhancement: the introduction of an initial
phase based on an approximate sub-tree-based SDDiP algorithm. This impact can be measured
by comparing the results obtained with algorithm extSDDiP-II-0 (see Appendix 5.9) with the ones
obtained with algorithm extSDDiP-I/II-0. When using a partial decomposition involving G = 2
stages per macro-stage, the average gap over the 140 instances is thus reduced from 11.16% with
algorithm extSDDiP-II-0 to 10.37% with algorithm extSDDiP-I/II-0. In case larger values of G ∈
{3, 4, 6} are used, a similar reduction of the gap from 7.50% with algorithm extSDDiP-II-0 to 6.60%
with algorithm extSDDiP-I/II-0 is observed. Even if the gap reduction seems to be rather limited on
average, we note that the use of this initial phase seems to be particularly interesting when the partial
decomposition of the scenario tree leads to sub-trees involving a large number of leaf nodes, as it is
the case for the instances corresponding to Σ = 6, R = 20 and b = 1. Namely, for these instances,
when G = 2, the average gap is reduced from 17.35% with algorithm extSDDiP-II-0 to 13.88%
with algorithm extSDDiP-I/II-0. Furthermore, when G = 3, algorithm extSDDiP-I/II-0 provides
solutions within an average gap of 12.14% whereas algorithm extSDDiP-II-0 does not provide any
feasible solution. The main reason for this is that the approximate sub-tree-based SDDiP algorithm
does not require the introduction of additional binary variables for the binary approximation of the
state variables. As a consequence, each sub-problem is a small-size MILP which can be solved in a
limited computation time. This enables the algorithm to carry out more iterations, to generate more
cutting-planes to approximate the expected cost-to-go functions and thus to provide better lower
bounds.

To get an assessment of the usefulness of exploiting the alternative MILP formulations available
for SULS, we first look at the results provided in Tables 5.10-5.13 in Section 5.9. We thus note
that when G = 2, the average gap is reduced from 11.16% with algorithm extSDDiP-II-0 to 7.43%
with algorithm extSDDiP-II-1. This clearly shows the positive impact of generating strengthened
Benders’ cut using a linear relaxation of the sub-problems strengthened by path inequalities (2.12).
However, for larger values of G ∈ {3, 4, 6}, we observe that the average gap is increased from 7.50%
with algorithm extSDDiP-II-0 to 8.88% with algorithm extSDDiP-II-1. This deterioration might
be explained by the large number of valid inequalities added to the sub-problem formulations: see
e.g. the instances corresponding to Σ = 6, R = 20 and b = 1 for which more than 20000 path
inequalities are added to the various sub-problems. This deterioration might be explained by the
fact that adding too many valid inequalities leads to an increase in the size of the MILPs to be
solved at each iteration of the extSDDiP algorithm so that fewer iterations can be carried out and
weaker lower bounds are provided. Moreover, results from Tables 5.10-5.13 also seem to indicate that
the use of additional sub-problem formulation strengthening techniques does not enable algorithm
extSDDiP-II-2 to provide better quality solutions.

Thus, each of the two proposed algorithmic enhancements, when used separately, has a moderate
positive impact on the solution quality. However, their combined use, in particular the use of alterna-
tive MILP formulations of the SULS to generate additional strengthened Benders’ cuts in Phase I of
the extSDDiP algorithm, seems to significantly improve the algorithmic performance. Namely, when
G = 2, the average gap is reduced from 10.37% with algorithm extSDDiP-I/II-0 to 5.89% with al-
gorithm extSDDiP-I/II-1 and 5.06% with algorithm extSDDiP-I/II-2. Similarly, when G ∈ {3, 4, 6},
the average gap is reduced from 8.34% with algorithm extSDDiP-I/II-0 to 5.32% with algorithm
extSDDiP-I/II-1 and 5.47% with algorithm extSDDiP-I/II-2. This improvement might be explained
by the fact that, when running algorithm extSDDiP-I/II with the formulation strengthening settings
1 or 2, more iterations of phase I of the algorithm are carried out than when running algorithm
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extSDDiP-I/II-0. This enables algorithms extSDDiP-I/II-1 and extSDDiP-I/II-2 to generate more
strengthened Benders’ cut in Phase I than algorithm extSDDiP-I/II-0 and consequently to obtain a
better initial lower bound at the end of phase I. All three algorithms will improve this lower bound
during phase II. However, a phase II iteration is more computationally demanding than a phase I
iteration so that only a limited number of phase II iterations might be carried out within the allotted
time. Thus, using algorithm extSDDiP-I/II-0, does not enable to generate enough cutting planes
during phase II to make up for the difference with algorithms extSDDiP-I/II-1 and extSDDiP-I/II-2
in the lower bound value obtained at the end of phase I.

Finally, we would like to point out that the approximate sub-tree based algorithm, i.e. extSDDiP-
I, when combined with the use of sub-problem strengthening techniques to generate additional
strengthened Benders’ cuts, shows a remarkable computational performance. The results provided
in Tables 5.6-5.9 (see Appendix 5.9) namely show that using algorithm extSDDiP-I-2 with G = 2,
enables to provide solutions displaying an average gap of 6.27% within an average computation time
of only 166.71s. This suggests that algorithm extSDDiP-I, even if it does not have any theoretical
guarantee of convergence, could be used as a heuristic solution approach capable of providing in
practice near-optimal solutions in reduced computation times.

5.6 Conclusion and perspectives
We investigated a multi-stage stochastic integer programming approach for the SULS problem and
focused on the resolution of instances involving large-size scenario trees. We presented a new exten-
sion of the SDDiP algorithm proposed in [105]. This new extension is based on three main features:
the partial decomposition of the stochastic problem into smaller stochastic sub-problems (rather than
into deterministic sub-problems), the introduction of an initial phase in which the state variables are
kept continuous and the exploitation of alternative MILP formulations of the stochastic sub-problems
to generate additional strengthened Benders’ cuts. Computational experiments carried out on ran-
domly generated instances show that the proposed extended algorithm significantly outperforms the
original SDDiP algorithm.

An interesting direction for further research could be to extend this work to single-item single-
echelon stochastic lot-sizing problems involving complicating features such as the possibility of back-
logging the demand, a limited production capacity or upper bounds on the inventory level. These
extensions of the SULS problem would comprise a limited number of continuous state variables at
each node and valid inequalities that could be used to obtain alternative MILP formulations. These
inequalities are known for most of them (see e.g. [80]). It should thus be possible to adapt the
two-phase algorithm extSDDiP-I/II for these problems. It might also be worth investigating whether
the proposed extended algorithm could be used to solve multi-item and/or multi-echelon stochastic
lot-sizing problems. For such problems, the number of continuous state variables for which a binary
approximation would have to be built will be much larger so that the use of the one-phase algorithm
extSDDiP-I might be more appropriate.
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5.7 Appendix A: Generation of strengthened Benders’ cuts
using alternative MILP formulations of the sub-problems

This section provides additional insights about the generation of additional strengthened Benders’
cuts using alternative MILP formulations of the sub-problems. We present a numerical example
illustrating the fact that there is no dominance between the strengthened Benders’ cuts generated
while using different MILP formulations of the SULS. To do this, we use formulation (5.21)-(5.25)
rather than formulation (5.9)-(5.17). It namely has a single continuous state variable at each node,
which facilitates the graphic representation of the approximation of the expected cost-to-go function.
Example 1. Consider the following scenario tree involving S = 4 stages and Rσ = 3 realizations at
stages 2 to 4. Each realization is described by its stage σ and its realization index r ∈ {1, 2, 3}. The
structure of the scenario tree is provided in Figure 5.2 and the corresponding values of the uncertain
parameters are provided in Table 5.5.

(σ, ζ) d f g h
(1,1) 87 934 10 0
(2,1) 69 1182 20 10
(2,2) 38 585 13 2
(2,3) 73 1259 11 1
(3,1) 7 1743 18 5
(3,2) 86 956 20 6
(3,3) 23 108 12 10
(4,1) 14 643 3 6
(4,2) 11 1583 9 0
(4,3) 91 1074 13 10

Table 5.5: Numerical values for Example 1

(1, 1)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

(4, 1)

(4, 2)

(4, 3)

Figure 5.2: Scenario tree structure for Example 1

Let us consider a partial decomposition involving Γ = 2 macro-stages with S(1) = {1, 2} and
S(2) = {3, 4}. At macro-stage γ = 1, we have a single realization X 1,1 = {(1, 1), (2, 1), (2, 2), (2, 3)}.
At macro-stage γ = 2, we have 3 realizations: X 2,1 = {(3, 1), (4, 1), (4, 2), (4, 3)}, X 2,2 = {(3, 2), (4, 1),
(4, 2), (4, 3)}, X 2,3 = {(3, 3), (4, 1), (4, 2), (4, 3)}.

At the first iteration of Algorithm 1, as ψ1
1 ≡ 0, the feasible solution obtained at the end of the

forward step is such that the leaving inventory at nodes (2, 1), (2, 2) and (2, 3) is equal to 0. The
strengthened Benders’ cuts generated during the backward step of the first iteration of Algorithm 1
to approximate Q1(s`) are provided below:

• by solving the LP relaxation of sub-problems P̃ 2
1 (0, 0,X 2,ζ , IF (∅)), r ∈ {1, 2, 3}:

θ1 ≥ 682.18− 8.24s` (5.31)
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• by solving the LP relaxation of sub-problems P̃ 2
1 (0, 0,X 2,ζ , IF (φ2,ζ

1 )), r ∈ {1, 2, 3}, in which
φ2,ζ

1 contains only path inequalities (2.12):

θ1 ≥ 882.55− 25.40s` (5.32)

• by solving the LP relaxation of sub-problems P̃ 2
1 (0, 0,X 2,ζ , IF (φ2,ζ

1 )), r ∈ {1, 2, 3}, in which
φ2,ζ

1 contains both path inequalities (2.12) and tree inequalities (2.13):

θ1 ≥ 887.88− 26.18s` (5.33)

0 10 20 30

600

800

θ1 ≥ 887.88− 26.18s`
θ1 ≥ 882.55− 25.40s`
θ1 ≥ 682.18− 8.24s`

Figure 5.3: Illustration for Example 1.

Figure 1 provides a graphic representation of the three generated cuts. We observe that there is
no dominance amongst them, i.e. none of the cuts seems to provide a better approximation of the
expected cost-to-go function for all possible value of the leaving inventory level s`. More specifically,
when s` lies in the interval [1, 7], the best approximation is obtained by the cut generated using
formulation IF (φγ,ζi ) strengthened by inequalities (2.12) and (2.13). When s` lies in [7, 12], the best
approximation is obtained by the cut generated using formulation IF (φγ,ζi ) strengthened only by
inequalities (2.12). Finally, when s` is greater than 12, the best approximation is obtained by the
cut generated using formulation IF (∅). This shows the practical interest of generated strengthened
Benders’cuts based on alternative MILP formulation of the sub-problems.
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5.8 Appendix B: Detailed description of the proposed en-
hanced sub-tree-based SDDiP algorithm

Algorithm 8: Strengthening sub-problems algorithm
1 if λ = 0 then
2 F = IF (∅))
3 else if λ = 1 then
4 Run the cutting plane procedure to generate path inequalities (2.12)
5 Add the generated inequalities to φγ,ζv to get φγ,ζv+1
6 F = IF (φγ,ζv ))
7 else if λ = 2 then
8 Run the cutting plane procedure to generate tree inequalities (2.13)
9 Add the generated inequalities to φγ,ζv to get φγ,ζv+1

10 F = IF (φγ,ζv ))

Algorithm 9: Approximate extSDDiP algorithm
1 while no stopping criterion is satisfied do
2 Randomly select W scenarios Ωv = {ω1

v , ..., ω
W
v }

3 for w = 1, ...,W do
4 for γ = 1, ...,Γ do
5 Solve P̃ γv (smv , ψ̃γv ,X γ,ζ

k,γ
v , IF (φγ,ζv )) for m = ωwv ∩ Vt

′(γ−1)

6 Record s`v for ` = ωwv ∩ L(γ, ζw,γv )
7 end
8 end
9 for γ = Γ− 1, ..., 1 do

10 for w = 1, ...,W do
11 for ζ ∈ Rγ+1 do
12 Let m = ωwv ∩ Vt

′(γ)

13 Run Algorithm 8
14 Solve the Linear relaxation of P̃ γ+1

v (smv , ψ̃
γ+1
v+1 ,X γ+1,ζ , F (φγ,ζv+1)) and collect the

coefficients of the strengthened Benders’ cut
15 Solve the Lagrangian relaxation of P̃ γ+1

v (smv , ψ̃
γ+1
v+1 ,X γ+1,ζ , F (φγ,ζv+1)) and collect the

constant value of the strengthened Benders’ cut
16 end
17 Add the generated cut to ψ̃γv to get ψ̃γv+1
18 end
19 if a criterion for Algorithm 8 is satisfied then
20 λ← λ+ 1
21 end
22 LB ← Q̃1,1

v+1(0)
23 v ← v + 1
24 end
25 end
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Algorithm 10: extSDDiP algorithm
1 Initialize LB ← −∞, UB ← +∞, v ← 1, λ← 0
2 for γ = Γ− 1, ..., 1 do
3 for ζ ∈ Rγ+1 do
4 Initialize φγ,ζ ← ∅
5 end
6 end
7 Run Algorithm 9
8 while no stopping criterion is satisfied do
9 Randomly select W scenarios Ωv = {ω1

v , ..., ω
W
v }

10 for w = 1, ...,W do
11 for γ = 1, ...,Γ do
12 Solve P̂ γv (umv , ψγv ,X γ,ζ

w,γ
v , IF (φγ,ζv )) for m = ωkv ∩ Vt

′(γ−1).
13 Record u`v for ` = ωwv ∩ L(γ, ζw,γv )
14 end
15 υw ←

∑
n∈ωwv (fnynv + hnsnv + gnxnv )

16 end
17 µ̂←

∑W
w=1 υ

w and σ̂2 ← 1
W−1

∑W
w=1(υw − µ̂)2

18 UB ← µ̂+ zα/2
σ̂√
W

19 for γ = Γ− 1, ..., 1 do
20 for w = 1, ...,W do
21 for ζ ∈ Rγ+1 do
22 -Let m = ωwv ∩ Vt

′(γ)

23 -Run Algorithm 8
24 -Solve the Linear relaxation of P̂ γ+1

v (umv , ψ
γ+1
v+1 ,X γ+1,ζ , F (φγ,ζv+1)) and collect the

coefficients of the strengthened Benders’ cut
25 -Solve the Lagrangian relaxation of P̂ γ+1

v (umv , ψ
γ+1
v+1 ,X γ+1,ζ , F (φγ,ζv+1)) and collect the

constant value of the strengthened Benders’ cut
26 -Solve P̂ γ+1

v (umv , ψ
γ+1
v+1 ,X γ+1,ζ , F (φγ,ζv+1)) and collect the coefficients of the Integer

optimality cut
27 -Solve the Lagrangian dual problem and collect the coefficients of the Lagrangian cut
28 end
29 Add the 3 generated cuts to ψγv to get ψγv+1
30 end
31 if a criterion for Algorithm 8 is satisfied then
32 λ← λ+ 1
33 end
34 LB ← Q̂1,1

v+1(0)
35 v ← v + 1
36 end
37 end
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5.9 Appendix C: Additional computational experiments
This section provides the results of additional computational experiments carried out in order to
assess the individual impact of each of the three main elements of algorithm extSDDiP, namely the
partial decomposition of the stochastic problem into smaller stochastic sub-problems, the introduc-
tion of an initial phase in which the state variables are kept continuous and the exploitation of
alternative MILP formulations of the stochastic sub-problems to generate additional strengthened
Benders’s cuts, on its overall performance.

Tables 5.6-5.9 provide the results obtained while running extSDDiP-I, i.e. running only the
approximate sub-tree based algorithm. Tables 5.10-5.13 provide the results obtained while running
extSDDiP-II, i.e. running only Algorithm 1 without an initial phase based on the approximate
sub-tree based algorithm.

Table 5.6: Performance of the approximate algorithm at solving instances from Set 1 (Σ = 4, b = 1)
of the SULS problem

R |V| # Scen G Method Gap Time (s) # ite # VI
10 1111 1000 1 SDDiP 9.59 1,100.96 135 0

2 extSDDiP-I-0 9.44 7.42 16 0
extSDDiP-I-1 6.55 12.56 33 92
extSDDiP-I-2 5.61 21.26 64 678

4 CPX 1.36 1590 - 2642
20 8420 8000 1 SDDiP 15.62 1,074.37 77 0

2 extSDDiP-I-0 8.28 25.40 18 0
extSDDiP-I-1 5.25 36.50 35 377
extSDDiP-I-2 4.43 75.93 86 5,545

4 CPX 4.67 1,801 - 3224

Table 5.7: Performance of the approximate algorithm at solving instances from Set 2 (Σ = 6, b = 1)
of the SULS problem

R |V| # Scen G Method Gap Time (s) # ite # VI
10 111111 100000 1 SDDiP 21.49 1,241.18 80 0

2 extSDDiP-I-0 13.91 23.22 23 0
extSDDiP-I-1 8.93 44.99 54 286
extSDDiP-I-2 6.73 104.13 101 1,563

3 extSDDiP-I-0 7.66 146.98 18 0
extSDDiP-I-1 4.85 288.06 38 1,886
extSDDiP-I-2 4.56 787.07 71 20,829

6 CPX 19.28 1801 - 0
20 3.36 ×106 3.2× 106 1 SDDiP 28.77 1,214.26 46 0

2 extSDDiP-I-0 15.47 71.33 30 0
extSDDiP-I-1 8.88 198.51 67 1,132
extSDDiP-I-2 7.95 621.07 137 11,762

3 extSDDiP-I-0 10.67 1,349.91 8 0
extSDDiP-I-1 10.75 1,369.64 7 0
extSDDiP-I-2 11.81 1,386.40 7 0

6 CPX 94.24 1,801 - 0
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Table 5.8: Performance of the approximate algorithm at solving instances from Set 3 (Σ = 8, R = 5)
of the SULS

b |V| # Scen G Method Gap Time (s) # ite # VI
2 195312 78125 1 SDDiP 20.08 1662.00 91 0

2 extSDDiP-I-0 15.16 40.83 21 0
extSDDiP-I-1 6.61 55.23 52 432
extSDDiP-I-2 6.30 76.85 84 1,002

4 extSDDiP-I-0 7.04 676.63 13 0
extSDDiP-I-1 3.49 1,011.61 28 6,008
extSDDiP-I-2 3.12 1,285.02 32 7,975

8 CPX 43.81 1,802.40 - 0
5 488280 78125 1 SDDiP 13.14 2075.09 70 0

2 extSDDiP-I-0 13.73 113.42 21 0
extSDDiP-I-1 2.56 130.48 49 2,196
extSDDiP-I-2 2.58 163.25 65 3,746

4 extSDDiP-I-0 6.39 1,179.24 12 0
extSDDiP-I-1 3.12 1,739.40 18 19,857
extSDDiP-I-2 2.89 1,765.80 19 21,455

8 CPX 71.04 1,803.99 - 0

Table 5.9: Performance of the approximate algorithm at solving instances from Set 4 (Σ = 12, R =
3, b = 1) of the SULS

|V| # Scen G Method Gap Time (s) # ite # VI
265720 177147 1 SDDiP 29.12 1,716.06 100 0

2 extSDDiP-I-0 24.01 73.32 20 0
extSDDiP-I-1 11.15 88.51 53 86
extSDDiP-I-2 10.32 104.50 81 137

3 extSDDiP-I-0 15.78 23.95 19 0
extSDDiP-I-1 7.87 36.14 47 235
extSDDiP-I-2 6.43 59.33 84 775

4 extSDDiP-I-0 12.82 74.63 17 0
extSDDiP-I-1 4.84 99.06 38 627
extSDDiP-I-2 4.80 196.46 64 2,535

6 extSDDiP-I-0 7.72 1,009.62 10 0
extSDDiP-I-1 4.25 1,275.45 18 3,323
extSDDiP-I-2 4.11 1,361.15 23 4,747

12 CPX 53.78 1,803.29 - 0
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Table 5.10: Performance of Algorithm 7 at solving instances from Set 1 (Σ = 4, b = 1) of the SULS
problem

R |V| #Scen G Method Gap Time (s) # ite # VI
10 1111 1000 1 SDDiP 9.59 1,100.96 135 0

2 extSDDiP-II-0 4.86 951.89 74 0
extSDDiP-II-1 3.00 908.93 77 879
extSDDiP-II-2 3.16 928.67 72 875

4 CPX 1.36 1590 - 2642
20 8420 8000 1 SDDiP 15.62 1,074.37 77 0

extSDDiP-II-0 5.54 971.92 42 0
extSDDiP-II-1 3.58 961.21 41 5,075
extSDDiP-II-2 3.70 958.20 41 5,068

4 CPX 4.67 1,801 - 3224

Table 5.11: Performance of Algorithm 7 at solving instances from Set 2 (Σ = 6, b = 1) of the SULS
problem

R |V| # Scen G Method Gap Time (s) # ite # VI
10 111111 100000 1 SDDiP 21.49 1,241.18 80 0

2 extSDDiP-II-0 12.42 1,182.40 25 0
extSDDiP-II-1 9.21 1,187.84 25 1,400
extSDDiP-II-2 8.84 1,176.92 25 1,389

3 extSDDiP-II-0 7.68 1,086.78 21 0
extSDDiP-II-1 6.11 1,179.83 15 10,557
extSDDiP-II-2 5.27 1,167.99 15 10,489

6 CPX 19.28 1801 - 0
20 3.36× 106 3.2× 106 1 SDDiP 28.77 1,214.26 46 0

2 extSDDiP-II-0 17.35 1,118.36 11 0
extSDDiP-II-1 17.50 1,274.20 10 4,081
extSDDiP-II-2 16.85 1,268.43 9 3,957

3 extSDDiP-II-0 - - - -
extSDDiP-II-1 - - - -
extSDDiP-II-2 - - - -

6 CPX 94.24 1,801 - 0

108



Table 5.12: Performance of Algorithm 7 at solving instances from Set 3 (Σ = 8, R = 5) of the SULS
problem

b |V| # Scen G Method Gap Time (s) # ite # VI
2 195312 78125 1 SDDiP 20.08 1662.00 91 0

2 extSDDiP-II-0 13.42 1,653.96 33 0
extSDDiP-II-1 6.93 1,665.12 37 1,106
extSDDiP-II-2 7.21 1,667.20 35 1,101

4 extSDDiP-II-0 6.91 1,475.52 13 0
extSDDiP-II-1 9.29 1,645.23 9 10,933
extSDDiP-II-2 8.80 1,632.74 9 11,075

8 CPX 43.81 1,802.40 - 0
5 488280 78125 1 SDDiP 13.14 2075.09 70 0

2 extSDDiP-II-0 7.76 1,780.95 29 0
extSDDiP-II-1 3.66 1,730.56 35 4,815
extSDDiP-II-2 3.53 1,703.66 37 4,831

4 extSDDiP-II-0 6.41 1,629.26 10 0
extSDDiP-II-1 24.18 1,864.58 4 20,673
extSDDiP-II-2 26.63 1,862.54 4 18,764

8 CPX 71.04 1,803.99 - 0

Table 5.13: Performance of Algorithm 7 at solving instances from Set 4 (Σ = 12, R = 3, b = 2) of
the SULS problem

|V| # Scen G Method Gap Time (s) # ite # VI
265720 177147 1 SDDiP 29.12 1,716.06 100 0

2 extSDDiP-II-0 16.32 1,693.26 60 0
extSDDiP-II-1 8.11 1,618.20 73 138
extSDDiP-II-2 8.32 1,651.21 72 138

3 extSDDiP-II-0 13.67 1,725.26 25 0
extSDDiP-II-1 7.76 1,726.47 27 741
extSDDiP-II-2 7.79 1,712.67 27 740

4 extSDDiP-II-0 11.67 1,853.11 13 0
extSDDiP-II-1 8.88 1,852.27 12 1,662
extSDDiP-II-2 8.78 1,865.50 12 1,657

6 extSDDiP-II-0 6.18 1,601.00 12 0
extSDDiP-II-1 6.28 1,760.09 10 7,264
extSDDiP-II-2 5.51 1,728.80 9 7,134

12 CPX 53.78 1,803.29 - 0
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Chapter 6

Multi-echelon stochastic lot-sizing with
remanufacturing and lost sales: a dual
dynamic decomposition approach

This chapter comes back to the initial stochastic remanufacturing planning problem and investigates
the development of a decomposition-based approach for this problem. More precisely, we consider
the multi-echelon stochastic lot-sizing problem with remanufacturing and lost sales introduced in
Chapter 3 and adapt the extended SDDiP algorithm proposed in Chapter 5 to this problem. This
adaptation mainly aims at reducing the computational burden linked to the resolution of the sub-
problems needed to build the approximation of the expected cost-to-go functions in the backward
step of the algorithm. When considering the stochastic remanufacturing planning problem, these sub-
problems are namely medium-size mixed-integer programs so that their resolution by a mathematical
solver requires a non negligible time. Some algorithmic enhancements are explored to handle this
issue. Our computational experiments carried out on large-size randomly generated instances suggest
that the proposed approximate extSDDiP algorithm is capable of obtaining near-optimal solutions
in practicable computation times and significantly outperforms both the mathematical programming
solver CPLEX 12.8 using an extensive MILP formulation and the initial SDDiP algorithm proposed
in [105].

6.1 Introduction
Chapter 5 presented a new decomposition algorithm combining the SDDiP algorithm with a poly-
hedral approach to solve a multi-stage stochastic programming extension of the simplest available
lot-sizing model, i.e. the single-item uncapacitated lot-sizing model or ULS. As mentioned in Sec-
tion 5.6, an interesting research direction would be to study how the proposed algorithm might be
used to solve more general variants of lot-sizing problems involving e.g. multiple items and multiple
production echelons.

As a first step in this direction, we propose in the present chapter to apply the extSDDiP algo-
rithm investigated in Chapter 5 to solve the stochastic multi-item multi-echelon lot-sizing problem
studied in Chapter 3 to build production planning for a remanufacturing system. We refer the reader
to Chapter 3 for a detailed description of the problem and its mixed-integer linear programming for-
mulation.

We focus here on adapting the extSDDiP algorithm to solve this multi-echelon lot-sizing problem.
This adaptation mainly aims at reducing the computational burden linked to the resolution of the
sub-problems needed to build the approximation of the expected cost-to-go functions in the backward
step of the algorithm. Many of these sub-problems are namely medium-size mixed-integer programs
so that their resolution by a mathematical solver requires a non negligible time. The proposed
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adaptation thus relies on three key elements.
First, we only use the approximate variant of the sub-tree based SDDiP algorithm which relies

on continuous state variables, i.e. the extSDDiP-I variant of the algorithm discussed in Chapter 5.
Namely, the combination of a partial decomposition of the scenario tree into sub-trees and of the
presence of multiple items leads to a significant increase in the number of continuous state variables
(corresponding to inventory level variables) for which a binary approximation would have to be built.
This would thus lead to prohibitive computation times to carry out each iteration of the extSDDiP
algorithm.

Second, we use the concept of ε-optimal cuts recently introduced in [84] to approximate recourse
functions in the context of a Benders decomposition algorithm. Basically, an ε-optimal cut is a
cut obtained by solving each sub-problem to near optimality, i.e. a cut built by using a feasible
solution of each sub-problem whose objective value is at most at ε units of the optimal value. We
thus investigate the use of ε-optimal strengthened Benders’ cuts, i.e., the generation of strengthened
Benders’ cuts obtained by using a solution of each Lagrangian sub-problem which is at most ε units
of the optimal value. Note that the use of ε-optimal strengthened Benders’ cuts is motivated from
an algorithmic standpoint by the fact that their generation might require a significantly reduced
computational effort as compared to the one needed to generate ’classical’ strengthened Benders’
cuts. Hence, these cuts may be useful as they may enable the extSDDiP algorithm to build a good
approximation of the expected cost-to-go functions with a reasonable computational effort.

Third, similarly to Chapter 5, we consider three alternative MILP formulations of the problem
in order to generate a wider set of ε-optimal strengthened Benders’ cuts in the backward step of
the extSDDiP algorithm, namely the initial MILP formulation (3.12)-(3.25), the MILP formulation
(3.12)-(3.25) strengthened by the (k, U) path inequalities (3.38)-(3.39) discussed in Chapter 3 and
the MILP formulation (3.12)-(3.25) strengthened by the (`, k, U) valid inequalities (4.43),(4.44) and
(4.46) introduced in Chapter 4.

Note that, to the best of our knowledge, this is the first attempt at developing a dynamic pro-
gramming decomposition approach for a multi-item multi-echelon stochastic lot-sizing problem.

The remaining part of this chapter is organized as follows. Section 6.2 introduces a new dynamic
programming formulation for the problem under study. Section 6.3 presents the sub-tree-based
SDDiP algorithm proposed in Chapter 5 as applied to the problem under study. The proposed
adaptation of this algorithm is then presented in Section 6.4. It combines an approximate version
of the extSDDiP algorithm based on continuous state variables with the generation of ε-optimal
strengthened Benders’ cuts relying on three alternative MILP formulations of the sub-problems.
Computational experiments are reported in Section 6.5. Finally, conclusions and directions for further
works are discussed in Section 6.6.

6.2 Dynamic programming formulation
In Chapter 3, we introduced a multi-echelon remanufacturing system and investigated a stochastic
lot-sizing problem aiming at planning production on this system under uncertain input data. We pro-
posed to use a multi-stage stochastic programming approach in which the evolution of the uncertain
parameters is represented by a scenario tree V . Based on this scenario tree representation, we for-
mulated the problem as a deterministic equivalent MILP: see formulation (3.12)-(3.25) presented in
Section 3.3, page 34. We then proposed a branch-and-cut algorithm based on new path and tree valid
inequalities (see Section 3.4) to solve this problem. Although the computational results provided in
Section 3.6 showed that the proposed algorithms were efficient at solving medium-size instances of
the problem, numerical difficulties were encountered to solve instances involving large-size scenario
trees.

In order to be able to provide good-quality solutions for larger instances, we investigate in what
follows an alternative solution approach relying on a partial decomposition of the problem into a
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series of smaller stochastic sub-problems linked together by dynamic programming equations.
The starting point of this solution approach is a partial decomposition of the scenario tree into

a set of smaller sub-trees. We recall here the notation introduced in Section 5.2.2 to describe this
partial decomposition. We first partition the set of decision stages S = {1, . . . ,Σ} into a series of
macro-stages G = {1, . . . ,Γ}, where each macro-stage γ ∈ G contains a number of consecutive stages
denoted S(γ). We let t(γ) (resp. t′(γ)) represent the first (resp. the last) time period belonging to
macro-stage γ. Using the set of macro-stages G defined above, we can decompose the scenario tree
V into a series of smaller sub-trees as follows. For a given macro-stage γ, each node η belonging to
the first time period in γ, i.e. each node η ∈ V t(γ), is the root node of a sub-tree defined by the set
of nodes Wη = ∪t=t(γ),...,t′(γ)V t ∩ V(η). We recall that V(η) is the sub-tree of V rooted in η, Wη is
thus the restriction of V(η) to the nodes belonging to macro-stage γ. Let L(η) =Wη ∩ V t′(γ) be the
set of leaf nodes of sub-tree Wη. Finally, we denote as f = ∪γ∈GV t(γ) the set of sub-tree root nodes
induced by G. We refer the reader to Figure 5.1 in page 87 for an illustration of these notations on
a small scenario tree.

The sub-problem P η related to node η ∈ f thus focuses on defining the production plan for the
nodes belonging to sub-treeWη based on the entering stock level of each item i imposed by its parent
node aη in the scenario tree. This entering stock is described by (Saη0 , Eaη) where Saη0 denotes the
natural inventory level of the used product indexed by i = 0 and Eaη = (Eaη

1 , ..., Eaη

I , ..., E
aη

2I+1) is
a vector describing the echelon inventory level for each item i ∈ I \ {0}. P η can be formulated as
follows.

Qη(Saη0 , Eaη) = min
∑
n∈Wη

ρn
( ∑
p∈J

fnp Y
n
p + hn0S

n
0 +

∑
i∈I\{0}

ehni E
n
i + lnLn +

∑
i∈Ir∪{0}

qni Q
n
i + gnXn

0

)
+

∑
`∈L(η)

∑
m∈C(`)

Qm(S`0, E`) (6.1)

Xn
p ≤Mn

p Y
n
p ∀p ∈ J ,∀n ∈ Wη (6.2)

Sn0 = Sa
n

0 + rn −Xn
0 −Qn

0 ∀n ∈ Wη (6.3)
En
i = Ean

i + δni $iX
n
0 −$id

n +$iL
n −Qn

i ∀i ∈ Ir,∀n ∈ Wη (6.4)
En
i = Ean

i +Xn
i−I −$id

n +$iL
n ∀i ∈ Is,∀n ∈ Wη (6.5)

En
2I+1 = Ean

2I+1 +Xn
I+1 − dn + Ln ∀n ∈ Wη (6.6)

En
i − En

I+i ≥ 0 ∀i ∈ Ir,∀n ∈ Wη (6.7)
En
i −$iE

n
2I+1 ≥ 0 ∀i ∈ Is,∀n ∈ Wη (6.8)

En
2I+1 ≥ 0 ∀n ∈ Wη (6.9)

Sn0 ≥ 0, Ln ≥ 0 ∀n ∈ Wη (6.10)
Xn
p ≥ 0, Y n

p ∈ {0, 1} ∀p ∈ J ,∀n ∈ Wη (6.11)

The objective function (6.1) comprises two terms: a term related to the expected production
costs over sub-treeWη and a term representing the future expected production costs incurred by the
decisions made over sub-tree Wη. More precisely, in (6.1), Qη(Saη0 , Eaη) denotes the optimal value
of sub-problem P η as a function of the entering stock level (Saη0 , Eaη) and Qm(S`0, E`) the optimal
value of sub-problem Pm as a function of the entering stock level (S`0, E`). The expected cost-to-go
function at node ` ∈ L(η) is defined as the expected value of Qm(·) over all the children of ` in the
initial scenario tree V , i.e. over all m ∈ C(`), which gives Q`(·) = ∑

m∈C(`) Qm(·). The expected
future costs of the decisions made in Wη are thus computed as the sum, over all nodes ` ∈ L(η), of
Q`(S`0, E`). Note that for all leaf nodes, i.e. for all ` ∈ VT , Q`(·) ≡ 0.
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We note that in case of G ≡ S, i.e. in case each macro-stage corresponds to a single initial decision
stage, each sub-treeWη reduces to a set of nodes belonging to a single deterministic scenario involving
T σ

η periods and we obtain a decomposition similar to the one used by [105].

6.3 Partial decomposition approach
We now investigate how the extSDDiP algorithm presented in Chapter 5 can be applied to solve the
stochastic remanufacturing planning problem.

Recall that the SDDiP and extSDDiP algorithms rely on the key assumption that the scenario
tree displays the stage-wise independence property. When there are several time periods per decision
stage, this property can be defined as follows. For any two nodes m and m′ belonging to stage σ− 1
and such that tm = tm

′ = max{t, t ∈ T σ−1}, the set of nodes ∪t∈T σV t ∩ V(m) and ∪t∈T σV t ∩ V(m′)
are defined by identical data and conditional probabilities.

This stage-wise independence property enables us to significantly reduce the number of expected
cost-to-go functions for which a piece-wise linear approximation must be build. Namely, as explained
in Section 5.3, in this case, the stochastic process can be represented at macro-stage γ by a set Rγ =
{1, . . . , Rγ} of independent realizations. Each realization X γ,ζ corresponds to a subtree describing one
of the possible evolutions of the uncertain parameters over periods t(γ), . . . , t′(γ). Let ξγ,ζ denote the
root node of X γ,ζ and L(γ, ζ) denote the set of its leaf nodes. The expected cost-to-go functions thus
depend on the macro-stage rather than on the node, i.e. we have Qm(·) ≡ Qγ(·), for all m ∈ V t′(γ),
so that only one expected cost-to-go function has to be approximated per macro-stage. Moreover,
we can define a single sub-problem P γ per macro-stage and each sub-problem P η, η ∈ f, will be
described as P γη(Saη0 , Eaη ,X γη ,ζ) where X γη ,ζ is the realization corresponding to Wη.

6.3.1 Sub-problem reformulation
Similar to what is done in Section 5.3.1 for the SULS, we modify the initial dynamic programming
formulation (6.1)-(6.11) in order to be able to apply the extSDDiP algorithm.

As this algorithm requires the state variables to be binary, we first carry out a binary approx-
imation of the state variables (Sn0 , En) . This binary approximation is obtained by replacing the
continuous variable En

i by a set of binary variables Un,β
i such that En

i = ∑
β∈B 2βUn,β

i for each
i ∈ I \{0}, where B = {1, . . . , B}. We have Un,β

i = 1 if coefficient 2β is used to compute the value of
En
i and Un,β

i = 0 otherwise. Similarly, binary variables Un,β
0 are introduced in order to build a binary

approximation of variables Si0. We note however that this binary approximation is not needed for
all inventory variables, but only for those coupling the sub-problems P γ(·, ·), to one another. Thus,
in sub-problem P γ(Sm0 , Em,X γ,ζ), we use a binary approximation for the entering stock (Sm0 , Em) at
root node ξγ,ζ and for the leaving stock (S`0, E`) at each leaf node ` ∈ L(γ, ζ).

Then, as indicated by [105], we introduce local copies of the binary state variables relative to root
node ξγ,ζ . More precisely, Û ξγ,ζ ,β

i is an auxiliary continuous decision variable representing the value of
the state variable Um,β

i at the parent node m. It is thus a local copy in problem P γ(Sm0 , Em,X γ,ζ) of
the state variable Um,β

i , the value of which is considered as a given input parameter for this problem.
Note that, in the backward step of the SDDiP algorithm, the corresponding constraints of these local
copies variables will be dualized in order to generate cuts to approximate the expected cost-to-go
functions.

This leads to the following reformulation of sub-problem P γ(Um,X γ,ζ) :

Qγ,ζ(Um) = min
∑

n∈Xγ,ζ
ρn
( ∑
p∈J

fnp Y
n
p + hn0S

n
0 +

∑
i∈I\{0}

ehni E
n
i + lnLn +

∑
i∈Ir∪{0}

qni Q
n
i + gnXn

0

)
+

∑
`∈L(γ,ζ)

Qγ(U `) (6.12)
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Xn
p ≤Mn

p Y
n
p ∀p ∈ J , n ∈ X γ,ζ (6.13)

Sξ
γ,ζ

0 =
∑
β∈B

2βÛ ξ
γ,ζ ,β

0 + rξ
γ,ζ −Xξγ,ζ

0 −Qξ
γ,ζ

0 (6.14)

Eξ
γ,ζ

i =
∑
β∈B

2βÛ ξ
γ,ζ ,β
i + δξ

γ,ζ

i $iX
ξγ,ζ

0 −$id
ξγ,ζ +$iL

ξγ,ζ −Qξ
γ,ζ

i ∀i ∈ Ir (6.15)

Eξ
γ,ζ

i =
∑
β∈B

2βÛ ξ
γ,ζ ,β
i +Xξγ,ζ

i−I −$id
ξγ,ζ +$iL

ξγ,ζ ∀i ∈ Is (6.16)

Eξ
γ,ζ

2I+1 =
∑
β∈B

2βÛ ξ
γ,ζ ,β

2I+1 +Xn
I+1 − dξ

γ,ζ + Lξ
γ,ζ (6.17)

Û ξ
γ,ζ ,β
i = Um,βi ∀i ∈ I, β ∈ B (6.18)

Sn0 = Sa
n

0 + rn −Xn
0 −Qn0 ∀n ∈ X γ,ζ \ {ξγ,ζ} (6.19)

Eni = Ea
n

i + δni $iX
n
0 −$id

n +$iL
n −Qni ∀i ∈ Ir, ∀n ∈ X γ,ζ \ {ξγ,ζ} (6.20)

Eni = Ea
n

i +Xn
i−I −$id

n +$iL
n ∀i ∈ Is, ∀n ∈ X γ,ζ \ {ξγ,ζ} (6.21)

En2I+1 = Ea
n

2I+1 +Xn
I+1 − dn + Ln ∀n ∈ X γ,ζ \ {ξγ,ζ} (6.22)

Eni − EnI+i ≥ 0 ∀i ∈ Ir, ∀n ∈ X γ,ζ (6.23)
Eni −$iE

n
2I+1 ≥ 0 ∀i ∈ Is, ∀n ∈ X γ,ζ (6.24)

En2I+1 ≥ 0 ∀n ∈ X γ,ζ (6.25)
S`0 =

∑
β∈B

2βU `,β0 ∀` ∈ L(γ, ζ) (6.26)

E`i =
∑

β∈B
2βU `,βi ∀i ∈ I \ {0}, ` ∈ L(γ, ζ) (6.27)

Sn0 ≥ 0, Ln ≥ 0 ∀n ∈ X γ,ζ (6.28)
Xn
p ≥ 0, Y n

p ∈ {0, 1} ∀p ∈ J , ∀n ∈ X γ,ζ (6.29)

Û ξ
γ,ζ ,β
i ∈ [0, 1] i ∈ I, ∀β ∈ B (6.30)

U `,βi ∈ {0, 1} ∀i ∈ I, ` ∈ L(γ, ζ), ∀β ∈ B (6.31)

where Un denotes the vector of binary variables Un = (Un0
0 , . . . , UnB

0 , . . . , Un0
2I+1, . . . , U

nB
2I+1).

In this reformulation, Constraint (6.14)-(6.17) corresponds to the inventory balance at node ξγ,ζ
in which the entering stock level Em

i (resp. Sm0 ) is computed using the auxiliary variables Û ξγ,ζβ
i

for each i ∈ I \ {0} (resp. for item i = 0). Equalities (6.18) are copy constraints ensuring that
the value of each auxiliary variable Û ξγ,ζ ,β

i is equal to the value of the corresponding state variable
Um,β
i imposed by the parent node m. Constraints (6.19)-(6.22) ensure that the inventory balance is

respected at each node of sub-tree X γ,ζ except the root node ξγ,ζ . Constraints (6.26)-(6.27) define,
for each leaf node ` ∈ L(γ, ζ), the value of the binary variables U `,β

i , which will be used to compute
the future expected costs as Qγ(U `) = ∑

ζ′∈Rγ+1 Qγ+1,ζ′(U `).

6.3.2 Sub-tree-based SDDiP algorithm
The dynamic programming reformulation (6.12)-(6.31) enables us to use the extSDDiP algorithm
presented in Section 5.3. Recall that this algorithm solves problems such as (6.12)-(6.31) by iteratively
building a piece-wise under-approximation of each expected cost-to-go function Qγ, γ ∈ G. Each
iteration of the sub-tree-based SDDiP algorithm comprises three steps:

• In the sampling step, a subset of W scenarios is sampled from the scenario tree.

• In the forward step, the algorithm proceeds stage-wise from γ = 1 to Γ by solving, for each
sampled scenario ωw and each macro-stage γ, the problem P γ(Um,X γ,ζw,γ ) with an approximate

115



expected cost-to-go function, where m = ωw ∩ V t′(γ−1) is the node in the sampled scenario ωw
belonging to the last period of γ.

• In the backward step, at each iteration v, the algorithm proceeds stage-wise from macro-stage
Γ back to macro-stage 1 and solves, for each scenario w = 1, . . . ,W , each node m ∈ ωwv ∩V t

′(γ)

and each realization ζ ∈ Rγ+1, a suitable relaxation of P̂ γ+1
v (Um

v , ψ
γ+1
v+1 ,X γ+1,ζ), where ψγ+1

v+1
represents the current approximation of the expected cost-to-go function at the stage γ+1 and
iteration υ+1. The algorithm then adds supporting hyperplanes to the approximate cost-to-go
functions of the previous stage.

Finally, the sub-problem solved at the root node provides a lower bound of the overall problem.
The algorithm stops when the upper and lower bounds are close enough, according to a convergence
criterion. The reader is referred to Section 5.3 for a detailed description of this algorithm.

6.4 Approximate partial decomposition approach
In this section, we describe the adaptations of the proposed extSDDiP algorithm to improve its
computational efficiently at solving the multi-item multi-echelon lot-sizing problem under study.
The proposed algorithmic enhancements are individually introduced in Sections 6.4.1, 6.4.3 and
6.4.4. Then, in Section 6.5.2, we describe how these enhancements work together in the approximate
extSDDiP algorithm.

6.4.1 Sub-problem reformulation
The first adaptation is similar to the one investigated in Section 5.4.1. We namely propose to use a
reformulation of each sub-problem in which the state variables are kept continuous and do not resort
to a binary approximation of these variables. In this case, the finite convergence of the algorithm
is no longer theoretically guaranteed. However, this approximation leads to a significant reduction
of the computational effort required to solve the sub-problems (6.12)-(6.31) at each iteration of the
algorithm and, hence, it may positively impact the solution quality in practice

This reformulation of problem P γ(Sm0 , Em,X γ,ζ) involves continuous auxiliary variables (S̃ξ
γ,ζ

0 , Ẽξγ,ζ).
These variables (S̃ξ

γ,ζ

0 , Ẽξγ,ζ) can be seen as a local copy of the inventory variables (Sm0 , Em) at the
parent node m in P γ(Sm0 , Em,X γ,ζ). This results in the following reformulation of sub-problem
P γ(Sm0 , Em,X γ,ζ):

Qγ,ζ(Sm0 , Em) = min
∑

n∈Xγ,ζ
ρn
( ∑
p∈J

fnp Y
n
p +hn0S

n
0 +

∑
i∈I\{0}

ehni E
n
i + lnLn+

∑
i∈Ir∪{0}

qni Q
n
i +gnXn

0

)
+

∑
`∈L(γ,ζ)

Qγ(S`0, E`) (6.32)

Sξ
γ,ζ

0 = S̃ξ
γ,ζ

i + rξ
γ,ζ −Xξγ,ζ

0 −Qξγ,ζ

0 (6.33)
Eξγ,ζ

i = Ẽξγ,ζ

i + δξ
γ,ζ

i $iX
ξγ,ζ

0 −$id
ξγ,ζ +$iL

ξγ,ζ −Qξγ,ζ

i ∀i ∈ Ir (6.34)
Eξγ,ζ

i = Ẽξγ,ζ

i +Xξγ,ζ

i−I −$id
ξγ,ζ +$iL

ξγ,ζ ∀i ∈ Is (6.35)
Eξγ,ζ

2I+1 = Ẽξγ,ζ

2I+1 +Xn
I+1 − dξ

γ,ζ + Lξ
γ,ζ (6.36)

S̃ξ
γ,ζ

0 = Sm0 (6.37)
Ẽξγ,ζ

i = Em
i ∀i ∈ I \ {0} (6.38)

Constraints (6.13), (6.19)− (6.25), (6.28)− (6.29) (6.39)
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In this reformulation, the expected cost-to-go function Qγ(S`0, E`) = ∑
ζ′∈Rγ+1 Qγ+1,ζ′(S`0, E`) is a

function of the continuous state variables (S`0, E`). We thus build an under-approximation of Qγ(·)
through a set of linear cuts involving continuous variables (S`0, E`) instead of binary variables U `.

6.4.2 Approximate sub-tree-based SDDiP algorithm
The approximate algorithm differs from the sub-tree-based SDDiP algorithm presented in Section 6.3
by two main aspects. First, it uses formulation (6.32)-(6.39) involving continuous state variables
instead of formulation (6.12)-(6.31) involving binary state variables to generate cuts in the backward
step. Second, it only generates strengthened Benders’ cuts to approximate the expected cost-to-
go functions whereas the extended SDDiP algorithm generates three types of cuts: strengthened
Benders’ cuts, integer optimality cuts and Lagrangian cuts. Namely, integer optimality cuts can
only be generated when the state variables are binary. Moreover, the generation of Lagrangian cuts,
even if possible, would imply to solve a series of dual Lagrangian problems through a sub-gradient
algorithm. The updating of the Lagrangian multipliers by the sub-gradient algorithm requires to
repeatedly solve medium-size mixed-integer linear programs, which is time consuming. This leads
to a significant increase in the computation time needed to carry out one iteration of the SDDiP
algorithm and negatively impacts its performance. In contrast, strengthened Benders’ cuts can be
generated with a limited computational effort.

More precisely, let ψ̃γυ(·) be the approximation of the expected cost-to-go function Qγ(·) available
at iteration υ for macro-stage γ in the approximate SDDiP algorithm. We have:

ψ̃γυ(S`0, E`) = min{θγ` : θγ` ≥
∑

ζ′∈Rγ+1

(ν̃γ+1,ζ′
u + π̃γ+1,ζ′

u,0 S`0 +
∑

i∈I\{0}
π̃γ+1,ζ′
u,i E`

i ) ∀u ∈ {1, ..., υ − 1}}

(6.40)

where ν̃γ+1,ζ′
u and π̃γ+1,ζ′

u,i are the coefficients of the cut generated at iteration u < υ by considering
realization ζ ′ ∈ Rγ+1. This leads to the following approximate sub-problem P̃ γ

υ (Smυ , Em
υ , ψ̃

γ
υ ,X γ,ζ):

Q̃γ,ζ
υ (Sm0 , Em) = min

∑
n∈Xγ,ζ

ρn
( ∑
p∈J

fnp Y
n
p +hn0S

n
0 +

∑
i∈I\{0}

ehni E
n
i + lnLn+

∑
i∈Ir∪{0}

qni Q
n
i +gnXn

0

)
+

∑
`∈L(γ,ζ)

θγ` (6.41)

θγ` ≥
∑

ζ′∈Rγ+1

(ν̃γ+1,ζ′
u + π̃γ+1,ζ′

u,0 S`0 +
∑

i∈I\{0}
π̃γ+1,ζ′
u,i E`

i ) ∀u ∈ {1, ..., υ − 1}, ∀` ∈ L(γ, ζ) (6.42)

Constraints (6.33)− (6.39) (6.43)

In the backward step of the approximate SDDiP algorithm, only strengthened Benders’ cuts are
generated. More precisely, for each macro-stage γ = Γ− 1, . . . , 1, the updating of the approximation
of Qγ(·) is carried out as follows.

For each node m ∈ Ωυ ∩ V t
′(γ) and each realization ζ ′ ∈ Rγ+1,

• We first solve the linear relaxation of P̃ γ+1
υ (Sm0 , Em

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′) to optimality. We then get

the dual value of each copy constraint (6.37)-(6.38) and use them to set the value of vector
π̃γ+1,ζ′
υ .

• We then solve the Lagrangian relaxation of P̃ γ+1
υ (Sm0 , Em

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′) in which each copy

constraint Ẽξγ,ζ

i = Em
i (resp. S̃ξ

γ,ζ

0 = Sm0 ) has been dualized with a Lagrangian multiplier set
to π̃γ+1,ζ′

υ,i (resp. π̃γ+1,ζ′
υ,0 ). We record the optimal value of this Lagrangian relaxation and set

ν̃γ+1,ζ′
υ to this value.
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Once this procedure is carried out for all realization ζ ′ ∈ Rγ+1, we get the cut θγ,m ≥ ∑ζ′∈Rγ+1(ν̃γ+1,ζ′
υ +

π̃γ+1,ζ′
υ,0 Sm0 + ∑

i∈I\{0}
π̃γ+1,ζ′
υ,i Em

i ) to be added to ψ̃γυ to get ψ̃γυ+1.

6.4.3 ε-optimal strengthened Benders’ cuts
In this section, we propose to generate strengthened Benders’ cuts based on sub-optimal solutions of
the Lagrangian sub-problems to approximate the expected cost-to-go functions. This approach was
recently introduced in [84] to reduce the computational burden needed to approximate recourse func-
tions in the context of a Benders’ decomposition algorithm. We thus investigate the use of ε-optimal
cuts applied to the generation of strengthened Benders’ cuts, i.e. the generation of strengthened
Benders’ cuts obtained by using a solution of each Lagrangian sub-problem which is at most ε units
of the optimal value.

These ε-optimal strengthened Benders’ cuts are generated as follows. Given an iteration υ of the
sub-tree-based SDDiP algorithm, for each node m ∈ Ωυ ∩ V t

′(γ) and each realization ζ ′ ∈ Rγ+1,

• We first solve the linear relaxation of P̃ γ+1
υ (Sm0 , Em

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′) to optimality. Then, we get

the dual value of each copy constraint (6.37)-(6.38) and use them to set the value of vector
π̃γ+1,ζ′
υ .

• We then solve the Lagrangian relaxation of P̃ γ+1
υ (Sm0 , Em

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′) in which each copy

constraint Ẽξγ,ζ

i = Em
i (resp. S̃ξ

γ,ζ

0 = Sm0 ) has been dualized with a Lagrangian multiplier set
to π̃γ+1,ζ′

υ,i (resp. π̃γ+1,ζ′
υ,0 ), until the solution found is at most ε units from its optimal solution.

We thus record in ν̃γ+1,ζ′
υ (ε) the objective value of the Lagrangian relaxation of sub-problem

P̃ γ+1
υ (Sm0 , Em

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′) given by the ε-optimal solution and set νγ+1,ζ′

υ (ε) = ν̃γ+1,ζ′
υ (ε)− ε.

• Note that νγ+1,ζ′
υ (ε) is a lower bound of the optimal value of the Lagrangian relaxation of

sub-problem P̃ γ+1
υ (Sm0 , Em

υ , ψ̃
γ+1
υ+1,X γ+1,ζ′), i.e., ν̃γ+1,ζ′

υ ≥ νγ+1,ζ′
υ (ε). The following cut is thus a

valid linear approximation of the corresponding expected cost-to-go function.

θγ` ≥
∑

ζ′∈Rγ+1

(νγ+1,ζ′
υ (ε) + π̃γ+1,ζ′

υ,0 S`0 +
∑

i∈I\{0}
π̃γ+1,ζ′
υ,i E`

i ) ∀` ∈ L(γ, ζ) (6.44)

6.4.4 Generation of strengthened Benders’ cuts using alternative MILP
formulations

We now focus on improving the numerical performance of strengthened Benders’ cuts. This is
achieved through the generation of a wider set of these cuts by exploiting the alternative MILP
formulations available for the sub-problems.

As explained above, to generate a strengthened Benders’ cut to be added at a given iteration υ
to the approximation of Qγ−1(·), the algorithm first solves, for each r ∈ Rγ, the linear relaxation
of problem P̃ γ

υ (Sm0 , Em
υ , ψ̃

γ
υ ,X γ,ζ), where m is a node belonging to V t′(γ−1). This linear relaxation

can be computed using different formulations of P̃ γ
υ (Sm0 , Em

υ , ψ̃
γ
υ ,X γ,ζ). A first option is to use

the initial MILP formulation defined in Section 6.4.2. Other options consist in using the initial
MILP formulation strengthened by (k, U) path inequalities (2.12) or the initial MILP formulation
strengthened by (`, k, U) path inequalities (3.38)-(3.39). The algorithm then collects the dual value
of the copy constraint Ẽξγ,ζ

i = Em
i (resp. S̃ξ

γ,ζ

0 = Sm0 ) in the linear relaxation for setting coefficient
π̃γ,ζυ,i .

A key observation here is that the dual value of constraint Ẽξγ,ζ

i = Em
i (resp. S̃ξ

γ,ζ

0 = Sm0 ) in the
linear relaxation will vary according to the MILP formulation used for P̃ γ

υ (Sm0 , Em
υ , ψ̃

γ
υ ,X γ,ζ). Hence,
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for a given value of the entering stock described by the vector (Sm0 , Em), by considering the three
alternative MILP formulations available for P̃ γ

υ (Sm0 , Em
υ , ψ̃

γ
υ ,X γ,ζ), it is possible to generate three

different strengthened Benders’ cuts, each one corresponding to a different value of coefficients ν̃γ,ζυ
and π̃γ,ζυ .

We point out here that, in general, there does not exist a dominance relationship between these
three different cuts. In other words, a cut generated using a stronger formulation of P̃ γ

υ (Sm0 , Em
υ , ψ̃

γ
υ ,X γ,ζ)

does not necessarily lead to a better approximation of Qγ−1(·).
As in Section 5.4.2, we propose to study an adaptation of Algorithm 7 where strengthened Ben-

ders’ cuts based on the three MILP formulations available for P̃ γ
υ (Sm0 , Em

υ , ψ̃
γ
υ ,X γ,ζ) are sequentially

generated.
It is important to note that valid inequalities generated for sub-problem P̃ γ

υ (Sm0 , Em
υ , ψ̃

γ
υ ,X γ,ζ)

at a given iteration υ are valid for any sub-problem P̃ γ
u (Smu,0, Em

u , ψ̃
γ
u,X γ,ζ) to be solved at iteration

u ≥ υ as long as they only use local variables, i.e. do not use the entering stock (Smu,0, Em
u ), but

their local copy (S̃ξ
γ,ζ

0 , Ẽξγ,ζ). Moreover, sub-problems P γ(·,X γ,ζ) and P̃ γ
υ (·, ψγυ ,X γ,ζ) only differ with

respect to the objective function evaluation and have the same feasible space. Thus, any inequality
valid for P γ(·,X γ,ζ) is also valid for P̃ γ

υ (·, ψγυ ,X γ,ζ).
As mentioned above, we consider here two families of valid inequalities to strengthen the formu-

lation of each sub-problem P γ(·,X γ,ζ).
The first one corresponds to the (k,U) path inequalities investigated in Chapter 3. Thus, for a

given sub-problem P γ(·,X γ,ζ), they can be expressed as follows.
Let k ∈ X γ,ζ and ` ∈ L(γ, ζ). Let Uk,` be a subset of P(c`k, `). For each process p ∈ J \ {0}, we

have:

Ek
p+I ≥ $p

∑
µ∈Uk,`

[
dµ(1−

∑
n∈P(c`

k
,µ)
Y n
p )− Lµ

]
(6.45)

and for p = 0, we have

min
i∈Ir

[
Ek
i

$i

]
≥

∑
µ∈Uk,`

[
dµ(1−

∑
n∈P(c`

k
,µ)
Y n
p )− Lµ

]
(6.46)

Note that k may also take the value of aξγ,ζ , in that case we replace Ek
i by Ẽξγ,ζi in (6.45) and (6.46).

The second family of valid inequalities corresponds to the extension of valid inequalities (4.5) to
a stochastic setting. We recall here that any valid inequality for deterministic problem remains valid
for each path of the scenario tree in its stochastic variant. Thus, let k and v be two nodes in X γ,ζ ,
such that v ∈ P(ξγ,ζ , k). Let ` ∈ L(γ, ζ) and Uk,` a subset of P(c`k, `).

The following inequalities are valid for each sub-problem (6.32)-(6.39):

Sv0 δ̂
v,k∗

i +$−1
i Ek

i +
∑

µ∈P(c`
k
,k∗)

φµi Y
µ

0 ≥
∑

µ∈Uk,`
(dµ − Lµ) ∀i ∈ Ir (6.47)

Sv0 δ̂
v,k∗

i +$−1
p (Ev

p − Ev
p+I) +$−1

p Ek
p+I +

∑
µ∈P(c`

k
,k∗)

φµpY
µ
p ≥

∑
µ∈Uk,`

(dµ − Lµ) ∀p ∈ {1, ...I}

(6.48)

Sv0 δ̂
v,k∗

i + ($−1
i Ev

i − Ev
2I+I) + Ek

2I+1 +
∑

µ∈P(c`
k
,k∗)

φµi Y
µ
I+1 ≥

∑
µ∈Uk,`

(dµ − Lµ) ∀i ∈ Ir (6.49)

with

φµi = min
{ ∑
n∈P(c`v ,µ)

rnδ̂n,µi ,
∑

n∈Uk,`:n≤µ
dn
}

where δ̂n,µi denotes the maximum δvi in the path P(n, µ) and k∗ = max{v ∈ Uk,`}.
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6.5 Computational experiments
In this section, we focus on assessing the performance of the proposed approximate sub-tree based
SDDiP algorithm by comparing it with the one of a stand-alone mathematical programming solver
using the extensive formulation (3.1)-(3.11) and with the one of the original SDDiP algorithm pro-
posed by Zou et al. [105].

We first describe the scheme used to randomly generate instances of the stochastic problem.
We then present in more detail the experimental set-up used for our numerical experiments. The
corresponding computational results are then discussed.

6.5.1 Instance generation
We randomly generated instances for the stochastic remanufacturing planning problem by considering
various structures for the scenario tree and various values for the production-holding cost ratio g/h,
the setup-holding cost ratio f/h and the returns-demand quantity ratio r/d.

Regarding the scenario tree structure, we used only balanced trees with Σ ∈ {4, 6, 8, 12} stages,
a constant number b ∈ {1, 2, 3, 5} of time periods per stage and a constant number R ∈ {3, 5, 10, 20}
of equi-probable realizations per stage. We considered 8 possible combinations for these parameters,
leading to scenario trees involving between 1000 and 3.2 million scenarios. Costs were generated by
using a production-holding cost ratio g/h ∈ {2, 4}, a setup-holding cost ratio f/h ∈ {200, 400} and a
returns-demand quantity ratio r/d ∈ {1, 3, 5}. For each considered scenario tree structure and each
possible combination of g/h, f/h and r/d, five random instances were generated, resulting in a total
of 480 instances.

More precisely, for each instance, we randomly generated the input data relative to each node
n ∈ V as follows.

• Demand dn was uniformly distributed in the interval [0, 100] and the returns quantity rn was
uniformly distributed in the interval [0.8(r/d)d̄, 1.2(r/d)d̄], where d̄ = 1

V
∑
dn is the average

demand.

• The proportion of recoverable parts δni was uniformly distributed in the interval [0.4, 0.6].

• The holding cost hn0 for the returned product i = 0 was fixed to 1. The holding cost hni for
each recoverable item i ∈ Ir was randomly generated following a discrete uniform distribution
over interval [2, 7]. Similarly, the holding cost hni for each serviceable item i ∈ Ir was randomly
generated following a discrete uniform distribution over interval [7, 12]. Finally, in order to
ensure non negative echelon costs, we set the value of the inventory holding cost for the reman-
ufactured product, hn2I+1, to

∑I
i=1$ih

n
I+i + ε, where ε follows a discrete uniform distribution

over interval [80, 100].

• The production cost gn was uniformly distributed in the interval [0.8(g/h)h̄, 1.2(g/h)h̄], where
h̄ = 1

V
∑
hn2I+1 is the average holding cost.

• The set-up cost fn was uniformly distributed in the interval [0.8(f/h)h̄, 1.2(f/h)h̄].

• Discarding costs qni = 0.8h̄ni , where h̄ni = 1
|V(n)|

∑
v∈V(n) h

v
i

• The unit penalty cost for lost sales, ln, was fixed to 10000 per unit.

Moreover, the bill-of-materials coefficients $i were assumed to be deterministically known and
thus node-independent. Their value was generated as follows. We set $0 = $2I+1 = 1 and randomly
generated the value of $i = $i+I , i = 1...I, following a discrete uniform distribution over [1; 6].
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6.5.2 Experimental setup
Each instance is first solved with the mathematical programming solver CPLEX 12.8 using the
extensive MILP formulation (3.1)-(3.11). This solution method is denoted by CPX in what follows.

Each instance is then solved using the SDDiP algorithm proposed in [105]. This algorithm
is based on the dynamic programming formulation (6.12)-(6.31). In our experiments, the binary
approximation of the continuous state variables (Sn0 , En) is carried out as follows. For each instance,
we compute an upper bound of the inventory level of item i ∈ I \ {0} at node n as Emax

i =
max`∈L(1)$id

1,` . The number B of binary variables Un,β
i is set to B = dlog2( max

i∈I\{0}
Emax
i )e.

Finally, each instance is solved using the proposed approximate sub-tree based SDDiP algorithm
based on the dynamic programming formulation (6.32)-(6.39). Following the notation used in Chap-
ter 5, we will refer to this algorithm as the extSDDiP-I algorithm. Several variants of this algorithm
are considered in our numerical experiments. They differ from one another with respect to several
aspects:

• First, we consider two ways of partially decomposing the scenario tree. We thus use a partition
of the set of decision stages S in which each macro-stage corresponds to a constant number
G ∈ {1, 2} of stages.

• Second, ε-optimal strengthened Benders’ cuts are generated in the backward step of the algo-
rithm to build the piece-wise linear approximation of the expected cost-to-go functions. Based
on the results of our preliminary experiments, we set the value of ε to 1%.

• Third, similar to the cut generation strategy used in Section 6.4.4, the algorithm sequentially
adds strengthened Benders’ cuts based on the three available MILP formulations for each sub-
problem P γ(·,X γ,ζ), i.e., the initial MILP formulation (6.32)-(6.39), the MILP formulation
strengthened by (k, U) path inequalities (6.45)-(6.46) and the MILP formulation strengthened
by the (v, k, U) path inequalities (6.47)-(6.49). The strategy is thus based on three increasing
levels of formulation.

– In the first level (λ = 0), the algorithm (denoted by extSDDiP-I-0) generates only strength-
ened Benders’ cuts based on the initial formulation. Then, it moves to the next level if
the lower bound has not improved a threshold ε̂ = 0.1% after a predefined number of
consecutive iterations.

– In the second level (λ = 1), the algorithm (denoted by extSDDiP-I-1) generates only
strengthened Benders’ cuts based on the initial formulation strengthened by (k, U) path
inequalities (6.45)-(6.46), i.e., at each iteration, only (k, U) path inequalities (2.12) are
added to each sub-problem P γ(·,X γ,ζ) using a single run of a cutting plane generation
procedure proposed in Subsection 3.5.2. The algorithm moves to the next level if the lower
bound has not improved a threshold ε̂ = 0.1% after a predefined number of consecutive
iterations.

– In the third level (λ = 2), the algorithm (denoted by extSDDiP-I-2) generates only
strengthened Benders’ cuts based on the initial formulation strengthened by (`, k, U) path
inequalities (6.47)-(6.49), i.e., at each iteration, only (`, k, U) path inequalities (2.12) are
added to each sub-problem P γ(·,X γ,ζ) using a single run of a heuristic cutting plane gener-
ation procedure proposed in Section 4.5, page 70. Finally, the algorithm stops if the lower
bound has not improved a threshold ε̂ = 0.1% after a predefined number of consecutive
iterations.

Moreover, in all the SDDiP and extSDDiP-I algorithms, we sample W = 1 scenarios at each
iteration and use the following stopping criteria: the algorithm stops when the lower bound LB does
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not improve after 30 iterations, or when 1000 iterations have been carried out. Note that at this
point, the upper bound UB is computed considering only W = 1 scenario and is not statistically
representative. Thus, after the algorithm has stopped, we compute an updated statistical upper
bound based on a larger number of scenarios as follows. We randomly sample W ′ = 1000 scenarios
and compute a feasible solution for each of them using the final approximation of the expected cost-
to-go functions to evaluate the objective function at each (macro)-stage. We then construct a 95%
confidence interval and report the right endpoint of this interval as the statistical upper bound of
the optimal value.

All the algorithms were implemented in C++ using the Concert Technology environment. The
MILP and LP sub-problems embedded into the SDDiP and extSDDiP-I algorithms were solved
using CPLEX 12.8. All computations have been carried out on the computing infrastructure of the
Laboratoire d’Informatique de Paris VI (LIP6), which consists of a cluster of Intel Xeon Processors
X5690. We set the cluster to use two 3.46GHz cores and 24GB RAM to solve each instance. We
impose a time limit of 7200 seconds to method CPX to solve each instance. For the SDDiP and
extSDDiP algorithms, we impose a time limit of 3600 seconds to compute a lower bound and 3600
seconds to compute the true or statistical upper bound.

6.5.3 Results
Tables 6.1-6.4 display the numerical results. Columns R and b describe the structure of the scenario
tree when needed. The corresponding number of nodes in the scenario tree, |V|, and the number
of scenarios, |L(0)|, are then provided. Column G indicates the number of stages per macro-stage
in the partial decomposition of the scenario tree and Column Method indicates the algorithm used
to solve each instance. Each line in the tables thus provides the average results of the indicated
resolution method over the 60 instances corresponding to the given scenario tree structure but to
various values of the r/d,f/h and g/h ratios. Column Gap displays the gap between the lower bound
(LB) and the upper bound (UB) found by each method, i.e. Gap = |UB − LB|/UB. The average
total computation time in seconds is reported in Column Time(s), the average number of iterations
in Column #ite and the total number of valid inequalities of type (6.45)-(6.46) or (6.47)-(6.49)
generated is provided in Column #VI.

Results from Table 6.1 first show that, when using the extensive formulation (3.12)-(3.25), method
CPX outperforms the other methods for the smallest considered instances, i.e. the instances corre-
sponding to Σ = 4, R = 10 and b = 1, providing an average gap of 0.24% within the allotted time
limit. When the number of realizations per stage increases, i.e. for the instances corresponding to

Table 6.1: Performance of each method at solving instances with Σ = 4 and b = 1

R |V| |L(0)| G Method Gap Time (s) # ite # VI
10 1,110 1,000 1 SDDiP 23.55 4,306.65 50 0

extSDDiP-I-0 7.46 1,358.58 222 0
2 extSDDiP-I-0 2.00 205.15 87 0

extSDDiP-I-1 1.20 1,696.08 173 566
extSDDiP-I-2 1.18 1,956.50 192 580

4 CPX 0.24 6,513.00 0 0
20 8,420 8,000 1 SDDiP 22.80 4,202.29 29 0

extSDDiP-I-0 6.98 1,974.58 267 0
2 extSDDiP-I-0 4.89 1,336.35 112 0

extSDDiP-I-1 5.55 3,342.38 156 1,403
extSDDiP-I-2 4.70 3,463.68 165 1,518

4 CPX 1.57 7,201.81 0 0
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Table 6.2: Performance of each method at solving instances with Σ = 6 and b = 1

R |V| |L(0)| G Method Gap Time (s) # ite # VI
10 111,110 100,000 1 SDDiP 30.37 5,641.81 31 0

extSDDiP-I-0 8.81 2,513.51 296 0
2 extSDDiP-I-0 5.88 3,507.57 224 0

extSDDiP-I-1 5.58 4,570.10 222 500
extSDDiP-I-2 5.61 4,579.56 214 462

4 CPX 68.27 7,217.53 0 0
20 3.36×106 3.2×106 1 SDDiP 35.67 5,608.54 19 0

extSDDiP-I-0 9.83 3,664.12 395 0
2 extSDDiP-I-0 8.45 4,599.68 131 0

extSDDiP-I-1 7.66 4,894.02 109 84
extSDDiP-I-2 7.59 4,814.77 111 84

4 CPX - - - -

Σ = 4, R = 20 and b = 1, the relative performance of method CPX deteriorates but the average gap
remains below 2%. However, when the number of stages, and consequently the size of the scenario
tree, increases, the performance of method CPX strongly deteriorates. This can be seen from the
results displayed in Tables 6.2-6.4: method CPX namely provides an average gap of 94% for the
instances with Σ = 8 and R = 5 and b = 2 and is not able to find any feasible solution for the largest
instances.

We also observe from the results displayed in Tables 6.2-6.4 that method SDDiP is able to provide
feasible solutions for all the considered instances and that it consistently provides average gaps smaller
than the ones obtained with method CPX for the medium to large-size instances. It thus clearly
outperforms method CPX in terms of solution quality for these instances. However, the remaining
gaps are still significant as it can be up to 55%.

Finally, these results show that the proposed approximate extSDDiP algorithm significantly out-
performs methods CPX and SDDiP. Namely, the average gap over all considered instances is signif-
icantly decreased from more than 50% with method CPX (resp. from 38.56% with method SDDiP)
to 5.19% with method extSDDiP-I-2 and G = 2.

We now deepen our analysis and seek to independently assess the impact of each proposed adap-
tation of the initial SDDiP algorithm.

We first note that a large part of the gap reduction can be obtained by using continuous (rather

Table 6.3: Performance of each method at solving instances with Σ = 8 and R = 5

b |V| |L(0)| G Method Gap Time (s) # ite # VI
2 195,311 78,125 1 SDDiP 47.76 7,151.78 24 0

extSDDiP-I-0 9.11 3,929.52 403 0
2 extSDDiP-I-0 6.31 3,501.71 220 0

extSDDiP-I-1 6.15 5,233.31 226 1,217
extSDDiP-I-2 5.64 4,965.82 252 1,529

4 CPX 93.48 7,236.10 0 0
5 488,279 78,125 1 SDDiP 41.74 7,222.84 14 0

extSDDiP-I-0 6.68 3,815.32 378 0
2 extSDDiP-I-0 4.11 5,884.19 140 0

extSDDiP-I-1 4.42 6,667.21 123 1,612
extSDDiP-I-2 4.73 6,335.19 146 2,657

4 CPX - - - -
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Table 6.4: Performance of each method at solving instances with Σ = 12 and R = 3

b |V| |L(0)| G Method Gap Time (s) # ite # VI
1 265,719 177,147 1 SDDiP 51.04 7,207.72 38 0

extSDDiP-I-0 11.00 3,313.90 356 0
2 extSDDiP-I-0 7.69 2,567.41 402 0

extSDDiP-I-1 6.34 3,807.25 424 514
extSDDiP-I-2 6.29 3,595.10 505 685

4 CPX 91.33 7,243.70 0 0
3 797,159 177,147 1 SDDiP 55.60 7,230.25 15 0

extSDDiP-I-0 9.72 3,607.37 395 0
2 extSDDiP-I-0 6.01 3,893.92 221 0

extSDDiP-I-1 5.65 5,987.09 246 2,232
extSDDiP-I-2 5.75 5,380.00 272 2,851

4 CPX - - - -

than binary) state variables. This can be seen by looking at the results obtained with the extSDDiP-
I-0 algorithm for G = 1. We observe that the gap is reduced from 38.58% with method SDDiP to
8.70% with method extSDDiP-I-0. This improvement is mainly explained by the fact that the sub-
problems expressed with continuous state variables are much easier to solve than the ones expressed
with binary state variables. This allows the extSDDiP-I-0 algorithm to carry out more iterations than
the SDDiP algorithm within the allotted time and to build better approximations of the expected
cost-to-go functions.

We then study the impact of using a partial decomposition rather than a full decomposition
of the scenario tree by comparing the results obtained with extSDDiP-I-0 for G = 1 and G = 2.
We thus observe that the average gap is reduced from 8.70% with the extSDDiP-I-0 algorithm
based a full decomposition (G = 1) to 5.67 % with the extSDDiP-I-0 algorithm based on a partial
decomposition involving G = 2 stages per macro-stage. This shows the practical interest of using a
partial decomposition of the scenario tree.

Finally, we can evaluate the impact of using valid inequalities to strengthen the linear relaxation
of each sub-problem in order to generate additional strengthened Benders’ cuts at each iteration.
Results in Tables 6.1-6.4 suggest that only a slight improvement in the performance of the extSD-
DiP algorithm is obtained by using improved MILP formulations for the sub-problems to generate
strengthened Benders’ cuts. The average gap is namely only reduced from from 5.67% with method
extSDDiP-I-0 to 5.32% with method extSDDiP-I-1 and to 5.19% method extSDDiP-I-2, for a partial
decomposition based on G = 2. Nonetheless, for some particular sets of instances, the use of valid
inequalities can still provide better lower bound on average. For instance, in the case of r/d = 5
and Σ = 12, the method extSDDiP-I-1 is able to provide lower bounds 2.47% stronger and, with the
method extSDDiP-I-2, 3.27% on average.

6.6 Conclusion and perspectives
We studied a production planning problem with remanufacturing under uncertain input data and
investigated a multi-stage stochastic integer programming approach. We proposed to adapt the
extSDDiP algorithm investigated in Chapter 5 in order to overcome the numerical difficulties arising
from the size of the sub-problems to be solved in the backward step. Computational experiments
carried out on large-size randomly generated instances suggested that the proposed approximate
extSDDiP algorithm is capable of obtaining near-optimal solutions in practicable computation times
and outperforms both the mathematical programming solver CPLEX 12.8 using an extensive MILP
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formulation and the initial SDDiP algorithm proposed in [105].
From an algorithmic standpoint, we consider that several directions might be studied. First, at

each iteration, in the backward step of the proposed algorithm, we generate a single strengthened
Benders’ cut per macro-stage. However, it would be possible to exploit the existence of alternative
MILP formulations of the sub-problems to generate several strengthened Benders’ cuts for the same
macro-stage during a given iteration of the algorithm. This multi-cut variant of the algorithm will be
worth investigating. Moreover, the question of how to identify the best cut within the pool of cuts
that we can generate at each iteration remains unanswered. In this direction and given the nature
of the sub-tree based algorithm, several solutions are available after solving a forward step. These
solutions can be also used to solve the corresponding sub-problems in the backward step in order to
generate different cuts. Hence, a selection solution strategy will be also worth investigating and it
might positively impact the performance of the algorithm.

Another important issue that might be explored is how to efficiently implement a binary expansion
of the state variables in order to generate Lagrangian and Integer Optimality cuts. These cuts are
known to be tight and guarantee that the SDDiP algorithm converges to an optimal solution when
the state variables are restricted to be binary. However, our numerical results carried out with
method SDDiP show that a binary approximation leads to a prohibitive computations times where
there are multiple items involved in the production system. Therefore, one direction could be to
study a partial binarization of the state variables, where state variables of only a few leaf nodes of
each sub-problem are subject to be binary. This will allow the generation of Integer Optimality and
Lagrangian cuts for these sub-problems, improving the lower bound. Another direction would be to
partially binarize each state variable, i.e., to represent only a part of the possible values of a state
variable trough binary variables and the rest possible values remains represented by a continuous
auxiliary variable. This also will allow the generation of Integer Optimality and Lagrangian cuts for
these sub-problems, improving the lower bound.

In terms of problem modelling, we assumed uncapacitated production processes. Extending the
present work in order to account for production resources with limited capacity could also be worth
investigating.

Finally, it is worth noting that Chapters 3 and 6 focused on solving the same stochastic lot-sizing
problem but with a different strategy. Chapter 3 presented a solution approach aiming at solving
to optimality a deterministic equivalent problem formulated as a MILP, using small to medium-size
scenario trees, i.e., using a coarse approximation of the stochastic process. In contrast, in this chapter,
we sought to solve the same problem over large-size scenario trees, i.e., using a better approximation
of the stochastic process, but the obtained solutions were of a lesser quality. This opens the following
question. In practice, is it better to solve to optimality an instance with a scenario tree of reduced
size or to solve with a good quality, but not optimal, an instance with a very large scenario tree?
We believe that this question is worth investigating and should be addressed through an extensive
simulation study comparing the solutions obtained with both approaches.
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Part IV

Risk in stochastic lot-sizing
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Chapter 7

On the risk-averse multistage stochastic
uncapacitated lot-sizing problem

We present in this chapter an on-going exploratory work on risk-averse multi-stage stochastic lot-
sizing. Namely, risk-neutral models based on the minimization of the expected costs such as the ones
investigated in the previous chapters may lead to production plans displaying a good performance
on average, but providing very poor results, i.e. production costs much higher than the expected
value, in some unfavorable scenarios. In case the production manager is more concerned about
these potential large monetary losses than about the average performance of the production plan,
it might be useful to introduce risk measures in the problem modeling. We thus study several ways
of incorporating risk aversion in the multi-stage stochastic uncapacitated lot-sizing (SULS) problem
and show how the risk-averse SULS can be reformulated as a mixed-integer linear program in each
case. We finally provide some preliminary results seeking to assess the practical usefulness of using
a risk-averse formulation rather than a risk neutral formulation.

7.1 Introduction
In the previous chapters, we represented the probability distribution of the uncertain input data
through a finite set of possible scenarios and focused on minimizing the expected cost of the pro-
duction decisions based on this representation. This approach using expected costs in the objective
function relies on two important assumptions. First, the production plans computed by the optimiza-
tion model will be repeatedly implemented under similar conditions a number of times sufficiently
large to allow the observed statistical average cost to coincide with the expected cost computed by
the model. Second, the decision-maker is risk-neutral, i.e. is ready to accept that the production
cost observed for certain unfavorable realizations of the input data is very high as long as this is
offset by a smaller production cost in more favorable realizations. However, these two assumptions
do not always hold in practice, namely, each computed production plan is implemented at most once
and this within a rolling horizon framework, which means that only the decisions pertaining to the
first periods of the planning horizon are actually implemented before a new production plan taking
into account updated information on the input data is computed. This implies that the statistical
average cost of the production decisions observed at a given point in time may significantly differ
from the expected cost provided by the model. Second, the decision-maker may be risk-averse, i.e.
may be more concerned about potential large monetary losses than about the average performance
of the production plan, and may wish to limit the probability of occurrence and/or the magnitude
of these large monetary losses.

One way to overcome these difficulties consists of incorporating risk measures in the problem
modeling, either by including terms in the objective function that can measure exposition to risk and
mitigate the effects of undesirable realizations ([88], [87], [92]) or by restricting the feasible solutions
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space to limit the probability of occurrence or the magnitude of undesirable outcomes ([43], [42], [36]).
Note that risk was initially defined as a scalar measure of the variability of outcomes and the first
risk-averse models introduced in [71, 72] used the variance of the objective function as a risk measure.
Now, the notion of risk measure has been somewhat extended and refers to a mathematical expression
reflecting the decision-maker’s preferences with respect to a set of random outcomes [9].

There exists a large variety of risk measures such as the Conditional Value-at-Risk (CVaR), the
upper partial mean or the semi-deviation that can be used in a risk-averse model. A difficulty
here comes from the fact that, as mentioned e.g. by Alem et al. [9], there does not seem to be
an unrestrictedly recommendable risk measure for production lot-sizing problems or for any other
class of problems. The justification for adopting one risk measure over another one usually relies
on the preferences of the decision-maker, the tractability of the resulting optimization model or the
theoretical properties of the risk measure. This latter point is addressed by the pioneer work of [15],
which proposes a set of desirable theoretical properties that risk measures should fulfill: translation
invariance, subadditivity, positive homogeneity and monotonicity. Measures satisfying these four
properties are called coherent risk measures. An interesting feature of coherent risk measures is that
any convex stochastic optimization problem minimizing an expected cost remains convex when its
objective function is replaced by a coherent risk measure [77].

Among existing risk measures, the Conditional Value at Risk (CVaR) or expected shortfall is
one of the most widely used: see e.g. [92], [8], [14], [11], [12], [70], [50]. Basically, the CVaR of a
random variable representing a monetary loss (or a cost) is equal to the expected loss over the worst
outcomes, i.e. over the outcomes for which the obtained loss is beyond a confidence level. The CVaR
has two main advantages: it is a coherent risk measure and, when used in a stochastic (mixed-integer)
linear programming model, it leads to the formulation of a computationally tractable (mixed-integer)
linear program [88]. Moreover, several recent works (see [8], [9] and [14]) highlighted the practical
interest of using CVaR in two-stage stochastic production planning in order to reduce exposition to
risk. In the present work, we will thus focus on the use of CVaR as a measure to quantify the risk
in a stochastic lot-sizing problem and seek to extend the previously published works by considering
a multi-stage setting.

As explained e.g. in [54], when considering two-stage stochastic programming models, the ex-
tension of a risk-neutral to a risk-averse model does not pose major modeling difficulties. Namely,
the objective function comprises a single random variable corresponding to the random second-
stage/recourse costs and it is quite natural to replace the expectation of this second-stage costs by a
risk measure such as the CVaR. Yet, the situation is different when dealing with multi-stage stochas-
tic programming models. Namely, in a sequential decision making process, the objective function
involves a series of random variables, each one corresponding to the random cost associated to a
given decision stage, so that there does not seem to be one natural and obvious way of measuring
risk [54]. Risk may be measured e.g. stage by stage, scenario by scenario or in a nested way. It
might thus be interesting to understand and evaluate the benefits and drawbacks of each alternative
way of measuring risk in a multi-stage stochastic lot-sizing problem.

In particular, one important issue encountered when dealing with risk-averse multi-stage stochas-
tic programs is that of time consistency. Time-consistency is informally defined as follows: if you
solve a multistage stochastic program today and find solutions for each node of a tree, you should
find the same solutions if you re-solve the problem tomorrow given what was observed and decided
today. Although this property may seem to be natural and desirable, it does not hold in general [93].
Specifically, Homem-de-Mello and Pagnoncelli [54] showed that two natural ways of measuring risk,
based on the application of a CVaR risk measure scenario by scenario or stage by stage, lead to
time-inconsistent models.

Time-consistent risk measures have been proposed among others in [90], [89] and [54]. However,
despite the significant scientific discussions about the relevance and theoretical advantages of time-
consistent risk measures over time-inconsistent ones, to the best of our knowledge, the question
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of how good (if so) time-consistent optimal policies are in comparison to time-inconsistent optimal
policies remains open. A first attempt to assess time-consistent vs time-inconsistent policies based on
the CVaR measure is proposed by Alonso-Ayuso et. al. [12]. The authors of [12] study a multistage
stochastic forest planning problem, in which uncertainty is in timber prices and demand, and evaluate
three CVaR-based risk measures. They conclude that the time-consistent CVaR risk measure should
be used when the main goal of the decision-maker is to obtain the highest profit, whereas the time-
inconsistent CVaR risk measure should be preferred if the main goal of the decision-maker is to bring
forward the profit to early time periods. However, as in most previous works, the authors of [12]
assess the obtained optimal policies using a static framework, i.e. using a set of scenarios forming
a single scenario tree. This approach assumes that the decisions relative to all the decision stages
will be actually implemented, whereas, in practice, only the decisions relative to the first decision
stage will be executed before a new plan is computed. Hence, the conclusions and practical insights
provided in [12] should maybe be taken with some care.

In the present work, we thus study several ways of incorporating the risk aversion of the decision-
maker in the multistage stochastic uncapacitated lot-sizing (SULS) problem and focus on the use of
CVaR-based risk measures. Our main objective is to highlight and quantify the benefit of using a
risk-averse model as compared to a more intuitive risk-neutral one and to understand the potential
advantages and disadvantages of each studied risk-averse model. In order to more accurately assess
the quality of the production plans provided by the risk-neutral and risk-averse models, we propose
to use a dynamic framework relying on a rolling horizon simulation. More precisely, similar to what
was done in Section 3.6.3 to estimate the value of the stochastic solution obtained for the stochastic
remanufacturing planning problem, we iteratively solve a series of multistage stochastic models using
a rolling horizon framework and evaluate, for the production plan computed at each iteration, the
implementation of the first-stage decisions over a scenario representing the ‘true’ realization of the
stochastic process.

Our contribution is thus twofold. First, we consider four different strategies based on the Condi-
tional Value-at-Risk to measure risk in the multistage SULS problem. In particular, we investigate
two time-inconsistent and two time-consistent risk measures, which have not been previously assessed
in the context of multi-stage stochastic lot-sizing problems. We then formulate four mixed-integer
linear programs of the multi-stage SULS problem, each one of these formulations corresponds to
the case of one of the risk measures is used as an objective function for the SULS problem. These
formulations serve as base models to investigate the practical relevance of each risk measure. Second,
we carry out a large number of rolling-horizon simulations and provide a quantitative comparison of
the production plans provided by the risk-neutral model, the time-inconsistent and time-consistent
risk-averse models. To the best of our knowledge, the issue of how better (if so) the time-consistent
policies may be in practice over time-inconsistent ones for multi-stage stochastic lot-sizing prob-
lems has not been previously addressed in the literature. We thus provide, in this chapter, some
preliminary results that might help to better understand their difference.

The remaining part of this paper is organized as follows. Section 7.2 reviews some related works
dealing with risk-averse stochastic lot-sizing problems. Section 7.3 provides some general background
on risk measures, introducing in particular the definition of coherency and time consistency. Sec-
tion 7.4 focuses on the risk-averse multi-stage SULS problem. Four mixed-integer linear programming
formulations, based on four alternative multi-stage CVaR-based risk measures, are presented. Fi-
nally, the results of our simulations are provided and discussed in Section 7.6. Conclusions and
directions for further works are given in Section 7.7.

7.2 Related works
We provide in this section a brief overview of the related literature, focusing on the papers dealing
with risk-averse stochastic production planning and lot-sizing. We propose to classify these works
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according to the number of stages (two or several) included in the decision process.
Risk management in two-stage stochastic production planning and lot-sizing problems was studied

in several works. Macedo et al. [68] investigated a hybrid manufacturing/remanufacturing problem
with stochastic demand, return and setup cost and compared a risk-averse formulation based on an
upper partial mean risk measure to the risk-neutral formulation. Their numerical results showed that
it is possible to obtain a large risk reduction through a minor increase of the expected total costs.
Alem and Morabito [8] considered a coupled lot-sizing and cutting-stock problem and explored four
strategies to handle risk aversion. They concluded that the CVaR measure is especially relevant for
minimizing the losses in the worst scenarios and for reducing the standard deviation of the production
costs. Moreover, from a computational standpoint, the authors of [8] noted that, for their particular
problem, the risk-averse MILP formulation based on the CVaR measure could be solved faster than
the risk-averse MILP formulations based on other risk measures. Amorim et al. [14] investigated two
risk-averse formulations for mitigating crucial risks in the production planning of perishable food
goods. They determined that, in their case, the CVaR measure provides a good trade-off between
the amount of spoiled products and the expected profit loss. Alem et al. [9] studied a two-stage
stochastic aggregated production planning problem. They considered four ways of incorporating the
risk aversion of the decision-maker in the model: the first two approaches correspond to mean-risk
models using either the semideviation or the conditional value at risk as a risk measure, the last two
ones use first-order and second-order stochastic dominance constraints. Alem et al. [9] numerically
compared the resulting four risk-averse formulations. In line with the above-mentioned works, their
computational results showed that the CVaR measure is the one that reduces most dramatically
the cost in the worst scenarios but they noted that this improvement was achieved at the expense
of a non-negligible increase of the expected cost. Different versions of the risk-averse capacitated
lot-sizing problem were addressed in [59], [98], [97] differing mainly in their production planning
problem setting, risk measures and solution approaches but these works did not provide a numerical
comparison of alternative risk-averse formulations.

As for risk management in a multistage stochastic setting, two recent works studied the risk-
averse SULS problem. However, both works focused on developing a solution approach for the
problem rather than on assessing the quality of the solution provided by the risk-averse model. Thus,
Guo and Ryan [50] focused on extending a scenario decomposition approach previously known for
risk-neutral models to solve risk-averse stochastic integer models involving expected conditional risk
measures (ECRMs) and evaluated it among others on SULS instances. Similarly, Mahmutoğullari et
al. [69] proposed a new methodology to find tight lower bounds for risk-averse multistage stochastic
integer programs based on a nested CVaR measure and applied it on the SULS.

The work presented here is closely related to the one of [9] as, similar to [9], our main focus is on
numerically comparing several risk-averse approaches on a given production planning problem (the
SULS in our case). However, whereas authors of [9] compare several risk-averse approaches dealing
with a single random variable (the random cost of the recourse actions in a two-stage stochastic
program), we consider a single risk measure, namely the CVaR risk measure, and seek to assess
several alternative ways of using it when the risk to take into account is related to a series of random
variables (each one representing the random cost of the production plan implemented at a given
decision stage). In particular, we focus on the comparison, in a dynamic decision setting, between
time-consistent and time-inconsistent CVaR-based risk approaches. To the best of our knowledge,
this is the first time such a numerical study is conducted for dynamic production planning and
lot-sizing problems.

7.3 Preliminaries
This section recalls some basic definitions relative to risk measures and their properties in order to
ease the understanding of the work presented in this chapter. We first discuss risk measure for a
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single random variable and recall the definition of coherency. We then consider stochastic processes
and recall several multi-stage risk functions investigated in the literature in order to measure risk
in multi-stage stochastic programming programs. We end this section by introducing the concept of
time consistency in multi-stage stochastic programming.

7.3.1 Risk measure for a single random variable
We consider a probability space (Ω,F ,P) associated to some random experiment. Ω represents the
sample space, i.e. the set of all possible outcomes of the random experiment. F is a sigma-algebra
over Ω, i.e. a collection of events or subsets of Ω. Finally, P : F → [0; 1] is a probability function
assigning to each event in F a real number in [0; 1] called its probability.

Let Z : Ω→ R be a random variable, i.e. an F -measurable function from Ω to the real numbers
R associating a real value to each possible outcome of the random experiment. A risk measure % is a
mapping from a set of random variables to the real numbers: %(Z) thus denotes the risk associated
to the random variable Z when evaluated using measure %.

As defined in [15], a risk measure % is said to be coherent if it satisfies the following properties:

• Translation invariance
For any random variable Z and any a ∈ R, %(Z + a) = a+ %(Z).

• Positive homogeneity
For any random variable Z and any c ∈ R∗+, %(cZ) = c%(Z).

• Monotonicity
For any pair of random variables Z and W such that Z ≤ W , i.e. such that Z(ω) ≤ W (ω) for
all ω ∈ Ω, %(Z) ≤ %(W ).

• Subadditivity:
For any pair of random variables Z and W , %(Z +W ) ≤ %(Z) + %(W ).

It is possible to gain some intuition about these properties by considering the case where the
random variables Z and W represent a monetary loss or a cost. The translation invariance and
positive homogeneity properties entail that the risk increases (or decreases) in the same proportion
of the random variable. Monotonicity implies that, if a random variables W consistently leads to a
monetary loss greater than the one obtained with random variable Z, then the risk associated to W
is greater than the one associated to Z. Finally, subadditivity assures that the risk of a combined
random variable is smaller than the sum of the risk of each individual random variable, which could
be stated in the brisk form “a merger does not create extra risk”.

Generalizations of coherent risk measures to different settings are discussed in the literature
(see e.g. [63], [32], [31], [27], [90]). In particular, Föllmer and Schied [39] extended the notion of
coherent risk measure to the one of convex risk measure by noting that the subadditivity and positive
homogeneity properties imply convexity, i.e. imply that:

• Convexity: For any pair of random variables Z and W , for any λ ∈ [0, 1], then %(λZ + (1−
λ)W ) ≤ λ%(Z) + (1− λ)%(W ).

The coherence and convexity of a risk measure has an important impact when considering the
incorporation of risk measures in stochastic optimization problems. Namely, any convex stochastic
optimization problem minimizing an expected cost remains convex when its objective function is
replaced by a coherent risk measure [77].

As mentioned in the introduction, a large variety of risk measures have been proposed to measure
the risk associated to a single random variable. We focus here on the one which will be used in
our computational study, namely the Conditional-Value-at-Risk or CVaR. The CVaR of a random

133



variable Z representing a cost or a monetary loss can intuitively be seen as the expected value of the
costs in the (1 − α) · 100% worst cases, where α ∈]0; 1[ is a predefined confidence level. We follow
the paper of Rockafellar and Uryasev [88] to define the CVaR.

Let FZ be the cumulative probability distribution of a random variable Z:

FZ(ϕ) = P({ω ∈ Ω : Z(ω) ≤ ϕ}) (7.1)

The Value-at-Risk at level α, or VaRα, of Z is defined by:

VaRα(Z) = min{ϕ ∈ R : FZ(ϕ) ≥ α} (7.2)

VaRα(Z) thus corresponds to the α-percentile of the probability distribution of Z. In the case where
Z represents a monetary cost, VaRα(Z) can be interpreted as the largest possible cost that may be
observed once the 1− α% worst potential outcomes have been excluded (see e.g. Fig 7.1).
The Conditional-Value-at-Risk at level α or CVaRα is defined by:

CVaRα(Z) = 1
1− α

∫ 1

α
VaRγ(Z)dγ (7.3)

A key result in [87] is the proof that CVaRα(Z) can be expressed as the optimal value of the
following optimization problem:

CVaRα(Z) = min
ϕ

{
ϕ+ 1

1− αE[(Z − ϕ)+]
}

(7.4)

where (a)+ = max(a, 0). This reformulation is widely used to reformulate scenario-based stochas-
tic integer programs involving a CVaR risk measure as mixed-integer linear programs. Namely, if
we assume that the random variable Z has a finite and discrete set of K possible realizations, each
one corresponding to a scenario Zk having a probability ρk, the term E[(Z − ϕ)+] in the CVaR for-
mula (7.4) can be replaced by the weighted sum of possible outcomes exceeding the risk level ϕ, i.e∑K
k=1 ρ

k(Zk − ϕ)+, which can easily be handled by adding a set of linear inequalities in the problem
formulation.

Figure 7.1: Value-at-risk and Conditional Value-at-risk at confidence level α = 0.95 for a normally
distributed random variable

E(Z) VaRα(Z) CVaRα(Z)
Z

7.3.2 Risk function for a stochastic process
Let us now consider a stochastic process, i.e. a collection of random variables {Zσ, σ = 1, ...,Σ}
defined on the same probability space (Ω,F ,P) and indexed by a set Σ of stages.

Recall that F is a sigma-algebra over Ω, i.e. a collection of subsets of Ω representing the set of
all events that might be considered. In a dynamic multi-stage setting, we may be interested in the
subsets of events that are observable at stage σ. An event is said to be observable at stage σ if it is
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possible to determine the corresponding subset of outcomes in Ω using only the information available
at (and including) stage σ or, in other words, if it is possible to determine whether the event has
occurred or not at stage σ without waiting till the end of the considered horizon. We thus define a
sub sigma-algebra over Ω, Fσ ⊂ F , corresponding to the subset of events observable at stage σ. The
ordered set of sub sigma-algebras of F , F1 ⊂ F2 ⊂ · · · ⊂ FΣ, is called a filtration. Note that we have
F1 = {∅,Ω}, FΣ = F and Fσ ⊂ Fσ′ for any pair of stages (σ, σ′) such that σ ≤ σ′.

The random variable Zσ corresponding to stage σ of the above-mentioned stochastic process
is thus an Fσ-measurable function from Ω to R. Let Zσ denote the space of such Fσ-measurable
functions from Ω to R and Z = Z1 × · · · × ZΣ be the cartesian product of these sets.

A multi-stage risk function F is defined as a mapping from Z to R which can be used to measure
the risk associated to a stochastic process. In other words, if (Z1, Z2, ..., ZΣ) is a set of random
variables belonging to Z, F(Z1, Z2, ..., ZΣ) is a real number measuring the total risk (over all decision
stages) associated with the corresponding stochastic process.

As mentioned in Section 7.1, there is not a unique and natural way of defining a multi-stage risk
function F. In what follows, we provide a brief overview of four alternatives for F, which have been
previously proposed in the literature.

Aggregated risk function

The first natural way of measuring the risk of a sequence of random variables {Zσ, σ ∈ Σ} is to
measure the risk of the unique random variable corresponding to the sum of all random variables.
This can be done by using one of the risk measures % defined for single random variables. This leads
to an aggregated multi-stage risk function F defined by:

F(Z1, ..., ZΣ) = %(Z1 + · · ·+ ZΣ) (7.5)

where % : ZΣ → R is a single-stage risk measure. % is a mapping from the set of FΣ-measurable
functions, ZΣ, to the real numbers and provides information about the riskiness of the random
variable equal to Z1 + · · ·+ ZΣ.

This multi-stage risk function displays an important drawback. Again, to gain some intuition
about this drawback, let us assume that {Zσ, σ ∈ Σ} represents some monetary loss. F focuses on
the risk linked to the total random loss at the end of the planning horizon and does not take into
account the point in time at which this loss may occur. It may thus assign the same risk value to a
stochastic process in which the loss is likely to display strong time variations (e.g. large losses at the
beginning of the planning horizon followed by large gains at the end) and to a stochastic process in
which the loss will be more stable in time. Yet, a decision-maker may consider the first case a lot
riskier than the second one.

Stage-wise risk function

One way to overcome this drawback is to measure the risk stage-wise by applying a one-period risk
measure %σ : Zσ → R to each random variable Zσ, σ = 2, . . . ,Σ, separately. This leads to the
following definition of F:

F(Z1, ..., ZΣ) = Z1 + %2(Z2) + · · ·+ %Σ(ZΣ) (7.6)

Note that Z1 is assumed to be deterministic so that no risk measure is applied to it.
In this case, the risk function F explicitly considers the dynamic aspect of the stochastic process

and takes into account the risk level that may be observed at each stage of the process. But it does
not exploit any potential offsetting of the risk between stages and thus may overestimate the actual
risk perceived by the decision-maker. As a consequence, when used in a stochastic optimization
problem, it may lead to an overly conservative optimal policy and to a significant increase in the
expected cost of this policy.
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Nested risk function

Another approach, which can be seen as an intermediate solution between the aggregated and the
stage-wise risk functions, consists of using nested risk functions.

This approach relies on the concept of conditional risk mapping, or one-stage conditional risk
measure, introduced in [90] and further studied in [89] and [93]. Formally, a one-stage conditional
risk measure %Zσ |Zσ−1 : Zσ → Zσ−1 is a mapping from the space of Fσ-measurable functions to the
space of Fσ−1-measurable functions defined with respect to a given realization Z[σ−1] = (Z1, . . . , Zσ−1)
of the stochastic process up to stage σ− 1. The idea underlying the definition of %Zσ |Zσ−1 is that the
evaluation of the future risk relative to stage σ carried out at stage σ−1 should take into account the
information about the history of the stochastic process available at that time. Thus, at a given stage
σ − 1, the future risk associated to a random variable Zσ ∈ Zσ is described as a random variable
%Zσ |Zσ−1(Zσ) ∈ Zσ−1 whose definition takes into account the realization of the stochastic processes
observed up to stage σ− 1. Note that %Zσ |Zσ−1(Zσ) : Ω→ R can be understood as a random variable
associating to each outcome ω a real value measuring the future risk relative to stage σ as seen from
stage σ − 1.

Ruszczynski and Shapiro [90] proposed to nest conditional risk mappings to define a multi-stage
risk function as follows:

F(Z1, ..., ZΣ) = Z1 + %2

(
Z2 + %Z3|Z2

(
Z3 + · · ·+ %ZΣ|ZΣ−1(ZΣ)

))
(7.7)

Homem-de-Mello and Pagnoncelli [54] showed that, if each conditional mapping %Zσ |Zσ−1 , σ =
2, ...T , displays convexity, translation-invariance and monotonicity properties, F is as time-consistent
risk measure for multi-stage stochastic programming problems (see Theorem 4.1 in [54]). However,
the main drawback of such risk measures is that they are in general difficult to handle in a stochastic
optimization problem from an algorithmic and computational viewpoints (see e.g. [93] and [77]).

Stage-wise composite risk function

Homem-de-Mello and Pagnoncelli [54] recently introduced a new class of stage-wise composite risk
functions, called the expected conditional risk measure, which uses a concept of conditional risk
mapping similar to the concept of one-stage conditional measure defined above. However, this class
of risk measure aims at being more computational tractable as well as displaying relevant properties
such as time-consistency. In this context, Alonso-Ayuso et al. [12] investigated a particular case of the
expected conditional risk measures introduced in [54]. Formally, they defined an one-stage conditional
risk measure %ZΣ|Zσ−1 : ZΣ → Zσ−1 as a mapping from the space of FΣ-measurable functions to the
space of Fσ−1-measurable functions defined with respect to a given realization Z[σ−1] = (Z1, . . . , Zσ−1)
of the stochastic process up to stage σ − 1. Similar to the previous case, the idea underlying the
definition of %ZΣ|Zσ−1 is that the evaluation of the future risk relative to the forthcoming stages
σ, . . . ,Σ carried out at stage σ − 1 should take into account the information about the history of
the stochastic process available at that time. Thus, their multi-period risk function F is defined as
follows:

F(Z1, ..., ZΣ) = %(Z1 + · · ·+ ZΣ) + EZ[1] [%ZΣ|Z1(Z1 + · · ·+ ZΣ)] + EZ[2] [%ZΣ|Z2(Z1 + · · ·+ ZΣ)]
+ · · ·+ EZ[σ−1] [%ZΣ|Zσ−1(Z1 + · · ·+ ZΣ)] + · · ·+ EZ[Σ−1] [%ZΣ|ZΣ−1(Z1 + · · ·+ ZΣ)] (7.8)

where the subscript in E indicates that the expectation is with respect to the corresponding vari-
ables. Note how the definition of F involves the random variable %ZΣ|Zσ−1(Z1 + · · ·+ ZΣ) represent-
ing the future risk relative to stages σ, . . . ,Σ as seen from σ − 1 and uses the expected value of
EZ[σ−1] [%ZΣ|Zσ−1(Z1 + · · · + ZΣ)] over all possible realizations Z[σ−1] of the stochastic process up to
σ − 1 to compute a real-valued risk relative to stage σ.
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Similar to the case of nested risk functions, Homem-de-Mello and Pagnoncelli [54] showed that, if
each conditional risk mapping %ZΣ|Zσ−1(Zσ), σ = 2, . . . ,Σ, displays convexity, translation-invariance
and monotonicity properties, F is as time-consistent risk measure for multi-stage stochastic program-
ming problems (see Theorem 5.1 in [54]). We refer the reader to [54] and [12] for further detail about
this expected conditional multi-period risk function.

7.3.3 Time consistency in risk-averse multi-stage stochastic program-
ming

Let us now consider the following risk-averse multi-stage stochastic optimization problem:

min
x1,...,xσ

F(f1(x1, ξ1), . . . , fΣ(xσ, ξΣ)) (K)

s.t. xσ ∈ Xσ(x[σ−1], ξ[σ]) σ = 1, . . . ,Σ.

This problem involves Σ decision stages. Let xσ ∈ Rnσ denote the decision made in stage σ and
ξσ be an mσ-dimensional random vector representing the uncertainty observed in stage σ, i.e. ξσ
is an Fσ-measurable mapping from Ω to Rmσ . We let Xσ(x[σ−1], ξ[σ]) denote the feasibility set in
stage σ, which may depend on the decisions x[σ−1] = [x1, x2, ..., xσ−1] made up to the previous stage
as well as on the uncertainty ξ[σ] = [ξ1, ξ2, ..., ξσ] observed up to stage σ. Thus, fσ is a function
from Rnσ × Rmσ to R that computes the cost of decision xσ given the observed uncertainty ξσ(ω)
in that stage. More precisely, fσ(xσ, ξσ) can be seen as a random variable Zσ ∈ Zσ associating to
each outcome ω ∈ Ω a real value Zσ(ω) = fσ(xσ, ξσ(ω)) corresponding to the cost of decision xσ
given the realization of the uncertain parameters described by vector ξσ(ω). Finally, F : Z → R
is a multi-stage risk function computing the total risk F(Z1, . . . , ZΣ) associated with the stochastic
process {Zσ = (fσ(xσ, ξσ), σ = 1 . . .Σ} representing the sequence of random cost observed at each
stage. Note that it is clear from the above definition that any feasible solution x[σ] = [x1, . . . , xσ]
for (K) is such that each x[σ] is actually a function of ξ1, . . . , ξσ, though we make that dependence
explicit only when necessary to avoid cluttering the notation.

As mentioned in Section 7.1, an important issue that arises when modeling risk-averse multistage
stochastic programs is that of time consistency: see e.g. [93], [94], [76] and [54]. Definitions of time
consistency differ in the literature by their objective and the particular properties of the risk measure
under study. In this work, we focus on the recent definition given in [54]. They informally define
time consistency as follows. If you solve a multistage stochastic program today and find solutions
for each node of a tree, you should find the same solutions if you re-solve the problem tomorrow
given what was observed and decided today. We refer the reader to examples in Section 7.5.2, which
might help to ease the understanding of the time-consistency concept.

In what follows, we recall the formal definition of time consistency provided in [54].
Let us consider the problem of solving (K) at a given stage σ, when all the information relative

to the previous stages, i.e. the past decisions x̂[σ−1] and the past observations up to stage σ, ξ̂[σ], is
known. This optimization problem, denoted by Kσ, is formulated as follows:

min
xσ ,...,xσ

Fξ̂[σ](f1(x1, ξ1), . . . , fΣ(xσ, ξΣ)) (Kσ)

s.t. xτ ∈ Xτ (x̂[σ−1], xσ, . . . , xτ−1, ξ̂[σ], ξσ+1, . . . , ξτ ) τ = σ, . . . ,Σ.

In the above, the notation Fξ̂[σ] indicates a conditional multi-period risk function, i.e., the
multi-period risk function F in (K) applied to the random vector f1(x1, ξ1), . . . , fΣ(xσ, ξΣ), condi-
tional on a given realization ξ̂1, . . . , ξ̂σ (and implicitly on x̂[σ−1]). Note that under such conditions,
f1(x̂1, ξ̂1), . . . , fσ−1(x̂σ−1, ξ̂σ−1) are constant, and so is ξ̂σ.

Let [x̄σ,x̂[σ−1],ξ̂[σ]
τ : τ = σ, . . . ,Σ] denote an optimal solution of (Kσ). We include σ, x̂[σ−1] and ξ̂[σ]

as superscripts to emphasize that such a solution is calculated at time σ, given the previous stages
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decisions x̂1, . . . , x̂σ−1 and conditional on a given realization ξ̂1, . . . , ξ̂σ. Moreover, as mentioned
earlier, each x̄σ,x̂[σ−1],ξ̂[σ]

τ , τ = σ, . . . ,Σ, is a function of ξσ+1, . . . , ξτ .
We now introduce the inherited optimality property, which will serve to define the time consistency

property as defined in [54].
Definition 1

The Inherited Optimality Property (hence-forth called IOP) holds for an instance of problem
(K) if, given any stage σ such that 1 < σ ≤ Σ and any realization ξ̂1, . . . , ξ̂σ, there exists an
optimal solution x∗ of (K) such that the solution “inherited" from x∗ at ξ̂2, . . . , ξ̂σ (denoted as
[x∗τ (ξ̂2, . . . , ξ̂σ, ·) : τ = σ, . . . , T ], where “(·)” indicates this is a function of ξσ+1, . . . , ξτ ) coincides
with an optimal solution of (Kσ) for those σ, ξ̂, and x̂ = x∗.

It is important to observe in the above definition that, in general, the problem (K) may have
multiple optimal solutions. When solving a problem (Kσ), one might hit upon an optimal solution
which is different from the one inherited from period 1. The IOP only requires that one of the optimal
solutions of (Kσ) coincides with some inherited solution from period 1. Of course, when (K) and (Kσ)
have unique optimal solutions, then the optimal solution of (Kσ) must be the solution “inherited”
from the optimal solution in period 1. We thus now introduce the definition of time consistency as
is done in [54]:
Definition 2

We say that the multi-period risk measure F is consistent for a problem of the form (K) if the
IOP holds for any particular instance of that problem.

Note that the definition of consistency in [54] is independent of any particular instance of the
problem; for example, when working with scenario trees, a multi-period risk measure F is consistent
no matter which tree we use to represent the input process. It should be mentioned that if the
time consistency property does not hold, it does not mean that the corresponding policies are not
implementable. We only would like to point out that there is an additional consideration, associated
with a chosen optimality criterion, which is worthwhile to keep in mind [93]. We refer the reader to
Section 7.5.2 for examples of time-consistent and time-inconsistent solutions.

In what follows, we present four mathematical formulations of the risk-averse multi-stage SULS
problem, considering the four different ways of measuring the risk of a stochastic process discussed
in 7.3.2.

7.4 Mathematical formulations
We now focus on the multi-stage SULS problem and investigate how to incorporate the risk aversion
of the production planner into the problem.

Following the definitions introduced in Subsection 7.3.3, the multi-stage SULS problem involves Σ
decision stages, each one corresponding to a single production planning period. The decisions made
at stage σ correspond to a vector (Xσ, Yσ, Sσ) describing the production quantity, setup state and
inventory level at this stage. The uncertainty observed at stage σ is described by a random vector
ξσ = (dσ, fσ, gσ, hσ) giving the realization of the demand and costs at this stage. The feasibility space
for the decisions relative to stage σ is given by Xσ(X[σ−1], Y[σ−1], S[σ−1], ξ[σ]) = {(Xσ, Yσ, Sσ)|Xσ ≤
Yσ, Sσ = Sσ−1 + Xσ − dσ, Xσ ≥ 0, Sσ ≥ 0, Yσ ∈ {0, 1}}. Finally, the random cost relative to stage σ
is given by Zσ(ω) = fσ(ω)Yσ + gσ(ω)Xσ + hσ(ω)Sσ.

Using this notation, we can formulate the risk-averse SULS investigated here as:

minF(Z1, . . . , ZΣ) (7.9)
(Xσ, Yσ, Sσ) ∈ Xσ(X[σ−1], Y[σ−1], S[σ−1], ξ[σ]) σ = 1, . . . ,Σ (7.10)
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Zσ = fσYσ + gσXσ + hσSσ σ = 1, . . . ,Σ. (7.11)

The objective function (7.9) aims at minimizing a general risk measure over the random variables
Z1, . . . , ZΣ.

In order to obtain a tractable mathematical program, we assume as done in Chapter 5 that the
stochastic process described by ξ has a finite probability space and that its evolution can be described
by a scenario tree V . Let dn, fn, hn and gn denote the value of the demand and cost parameters at
node n ∈ V . As in Chapter 5, we introduce the following decision variables:

• Xn: quantity produced at node n ∈ V ,

• Y n = 1 if a setup for production is carried out at node n ∈ V , Y n = 0 otherwise,

• Sn: inventory level at node n ∈ V .

We now discuss how to reformulate Problem (7.9)-(7.11) into a mixed-integer linear program depend-
ing on the expression chosen for the risk function F. We provide a reformulation for each expression
of F introduced in Subsection 7.3.2. Moreover, we use the Conditional Value-at-Risk (CVaR) as
single-stage risk measure. Namely, as mentioned in the introduction of this chapter, the CVaR dis-
plays many advantages, both from a theoretical and practical point of view. It is a coherent risk
measure and its value can be computed rather easily in a stochastic optimization problem thanks to
the reformulation (7.4). Moreover, its practical interest for two-stage stochastic production planning
problems has been highlighted by several recent works (see [8], [9] and [14]).

7.4.1 Aggregated scenario-wise risk formulation
We first consider the case where F is an aggregated risk function measuring the global risk as the
CVaRα of a single random variable corresponding to the total cost over the whole planning horizon.
F is thus defined as:

F(Z1, ..., ZΣ) = CVaRα(Z1 + · · ·+ ZΣ) (7.12)

Using the reformulation (7.4) of the CVaR and expressing the expected value as the weighted sum
over the set of scenarios described by L(1), we have:

F(Z1, ..., ZΣ) = min
ϕ

{
ϕ+ 1

1− αE[(Z1 + · · ·+ ZΣ − ϕ)+]
}

(7.13)

= min
ϕ

{
ϕ+ 1

1− α
∑

`∈L(1)
ρ`
( ∑
n∈P(1,`)

(fnY n + hnSn + gnXn)− ϕ
)+}

(7.14)

This allows us to reformulate Problem (7.9)-(7.11) as a mixed-integer linear program.
We introduce the following additional decision variables to measure the risk:

• ϕ: risk level or value-at-risk for confidence level α,

• V `: risk of scenario ` ∈ L(1), i.e. overcost of scenario ` with respect to the value-at-risk ϕ.

This leads to the following MILP formulation:

minϕ+ 1
1− α

∑
`∈L(1)

ρ`V ` (7.15)

∑
n∈P(1,`)

(fnY n + hnSn + gnXn)− ϕ ≤ V ` ∀` ∈ L(1) (7.16)
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Xn ≤MnY n ∀n ∈ V (7.17)
Sn + dn = Xn + Sa

n ∀n ∈ V (7.18)
Xn, Sn ≥ 0 ∀n ∈ V (7.19)
Y n ∈ {0, 1} ∀n ∈ V (7.20)
V ` ≥ 0 ∀` ∈ L(1) (7.21)

The objective function (7.15) comprises the sum of the value-at-risk ϕ and the expected overcost
over all scenarios ∑`∈L(1) ρ

`V ` multiplied by factor 1
1−α . Constraints (7.16) ensure that each variable

V ` is equal to the overcost of scenario ` with respect to the value-at-risk ϕ if this one is positive,
and to 0 otherwise. Constraints (7.17) link the production and setup variables. Note that the value
of constant Mn can be set by using an upper bound on the quantity to be processed at node n,
usually defined as the maximum future demand as seen from node n, i.e. Mn = max`∈L(n) d

n`, where
dn` = ∑

m∈P(n,`) d
m. Constraints (7.18) are the inventory balance constraints. Constraints (7.19)-

(7.21) provide the decision variables domains.

7.4.2 Stage-wise risk formulation
Second, we consider the case where F is a stage-wise risk function in which we compute the risk at
each stage separately using CVaRα as the risk measure and then sum over all stages the value of the
risk measured at each stage. This leads to the following definition of F:

F(Z1, ..., ZΣ) = Z1 + CVaRα(Z2) + · · ·+ CVaRα(ZΣ) (7.22)

Using the reformulation (7.4) of the CVaR and expressing the expected value as the weighted sum
over all nodes belonging to stage σ , we have:

F(Z1, ..., ZΣ) = Z1 +
Σ∑
σ=2

min
ϕσ

{
ϕσ + 1

1− αE[(Zσ − ϕσ)+]
}

(7.23)

= f 1Y 1 + h1S1 + g1X1

+
Σ∑
σ=2

min
ϕσ

{
ϕσ + 1

1− α
∑
n∈Vσ

ρn
(
fnY n + hnSn + gnXn − ϕσ

)+}
(7.24)

In order to reformulate Problem (7.9)-(7.11) as a mixed-integer linear program, we introduce the
following decision variables.

• ϕσ: risk level or value-at-risk at stage σ,

• V n: risk of node n ∈ V , i.e. overcost at node n with respect to the value-at-risk ϕσn corre-
sponding to its stage σn.

This leads to the following MILP formulation:

min f 1Y 1 + h1S1 + g1X1 +
Σ∑
σ=2

(ϕσ + 1
1− α

∑
n∈Vσ

ρnV n) (7.25)

fnY n + hnSn + gnXn − ϕσn ≤ V n ∀n ∈ V (7.26)
V n ≥ 0 ∀n ∈ V (7.27)
Constraints (7.17)− (7.20) (7.28)
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The objective function (7.25) computes the risk as the sum, over all stages, of the Conditional
Value-at-Risk of the random cost at each stage. The one is equal to the sum of the Value-at-Risk
ϕσ for each stage σ and of the expected overcost over all nodes belonging to stage σ multiplied by
coefficient 1

1−α . Note that the first stage cost is assumed to be deterministic so that the objective
function only comprises the production, set-up and inventory holding cost of its production decision.
Similar to the previous case, equations (7.26)-(7.27) ensure that V n accurately computes the overcost
(if any) at node n with respect to the Value-at-Risk ϕσ corresponding to its stage σn.

7.4.3 Nested risk formulation
We now present a MILP formulation for the case where F is a nested risk function based on the use
of conditional risk mappings. These ones measure the future risk relative to each stage σ as seen
from the previous stage σ−1 taking into account the realization of the stochastic process up to stage
σ − 1.

We focus here on the particular case where these conditional risk mappings are computed using
a CVaR risk function. Recall that, in our context of multi-stage stochastic optimization, the random
variable Zσ represents the cost at stage σ and is a function of the production decisions at stage σ
and of the realizations ξ[σ] of the stochastic input parameters up to stage σ. For each stage σ − 1,
the conditional risk mapping %Zσ |Zσ−1 thus corresponds to the conditional one-stage CVaR denoted
by CVaRξ[σ−1]

α . Using the reformulation (7.4) of the CVaR risk measure, CVaRξ[σ−1]
α can be expressed

as:

CVaRξ[σ−1]
α (Zσ) = min

ϕ
ξ[σ−1]
σ

ϕξ[σ−1]
σ + 1

1− αEξσ
[(
Zσ − ϕ

ξ[σ−1]
σ

)+
∣∣∣∣ξ[σ−1]

] (7.29)

When the evolution of the stochastic process ξ is described by a scenario tree, the realizations
of the stochastic process up to stage σ − 1 corresponds to a node n belonging to Vσ−1. Thus, the
Value-at-Risk at stage σ given a realization ξ[σ−1], ϕ

ξ[σ−1]
σ , can be denoted by ϕnσ. Similarly, the

conditional expectation over all possible realizations of ξσ given a realization ξ[σ−1], Eξσ
[
· · ·

∣∣∣ξ[σ−1]
]
,

can be computed as a weighted sum using the conditional probability ρm|n giving the probability
of a transition from node n to its child node m in the scenario tree. This gives: Eξσ

[
· · ·

∣∣∣ξ[σ−1]
]

=∑
m∈C(n) ρ

m|n(· · · ). We thus have, for each node n ∈ Vσ−1:

CVaRξ[σ−1]
α (Zσ) = CVaRn

α(Zσ)

= min
ϕnσ

{
ϕnσ + 1

1− α
∑

m∈C(n)
ρm|n(fmY m + hmSm + gmXm − ϕnσ)+

}
(7.30)

Let us now consider the risk function F defined by nesting conditional one-stage CVAR risk
measures as follows:

F(Z1, ..., ZΣ) = Z1 + CVaRα(Z2 + [CVaRξ[2]
α (Z3 + [CVaRξ[3]

α (Z4

+ · · · + [CVaRξ[Σ−1]
α (ZΣ)])])]) (7.31)

The multi-stage risk function (7.31) can be integrated within a mixed-integer linear programming
formulation as follows.

We first compute the conditional one-stage CVaR at node m ∈ VΣ−1, CVaRξ[Σ−1]
α (ZΣ) by us-

ing (7.30) and introducing continuous variable V µ for each node µ ∈ C(m) as follows.

CVaRm
α (ZΣ) = min

ϕmΣ

{
ϕmΣ + 1

1− α
∑

µ∈C(m)
ρµ|mV µ

}
(7.32)
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fµY µ + gµXµ + hµSµ − ϕmσ ≤ V µ ∀µ ∈ C(m) (7.33)

We then compute the conditional one-stage CVaR at node n ∈ VΣ−2, CVaRξ[Σ−2]
α [ZΣ−1 +

CVaRξ[Σ−1]
α (ZΣ)], as follows:

CVaRn
α[ZΣ−1 + CVaRξ[Σ−1]

α (ZΣ)]

= min
ϕnΣ−1

{
ϕnΣ−1 + 1

1− α
∑

m∈C(n)
ρm|n

(
fmY m + gmXm + hmSm

+ min
ϕmΣ
{ϕmΣ + 1

1− α
∑

µ∈C(m)
ρµ|mV µ} − ϕnΣ−1

)+
}

(7.34)

fµY µ + hµSµ + gµXµ − ϕaµσ ≤ V µ ∀µ ∈ C(m) (7.35)

By moving the inner minimization term out of the brackets and introducing a continuous variable
V m for each node m ∈ C(n), we get:

CVaRn
α[ZΣ−1 + CVaRξ[Σ−1]

α (ZΣ)]

= min
ϕnΣ−1,ϕ

m
Σ

{
ϕnΣ−1 + 1

1− α
∑

m∈C(n)
ρm|nV m

}
(7.36)

fµY µ + hµSµ + gµXµ − ϕaµσ ≤ V µ ∀µ ∈ C(m),m ∈ C(n)
(7.37)

fmY m + gmXm + hmSm + ϕmΣ + 1
1− α

∑
µ∈C(m)

ρµ|mV µ − ϕnΣ−1 ≤ V m ∀m ∈ C(n) (7.38)

0 ≤ V µ ∀µ ∈ C(m),m ∈ C(n)
(7.39)

0 ≤ V m ∀m ∈ C(n) (7.40)

We then repeat this unnesting operation stage by stage, starting from stage Σ− 2 and going up
to stage 1, and introduce the following set of decision variables:

• ϕmσ : risk level or Value-at-Risk at stage σ measured at node m ∈ Vσ−1.

• V n: risk at node n ∈ V \ {1}, i.e. overcost at node n with respect to the risk level ϕanσ fixed by
its parent node an in the scenario tree.

This leads to the following MILP formulation:

min(f 1Y 1 + h1S1 + g1X1) + (ϕ2
1 + 1

1− α
∑

n∈C(1)
ρ1|nV n) (7.41)

fnY n + hnSn + gnXn

+ ϕσ
n+1
n + 1

1− α
∑

m∈C(n)
ρm|nV m − ϕσnan ≤ V n ∀n ∈ Vσ, σ ∈ {2, ...,Σ− 1} (7.42)

fnY n + hnSn + gnXn − ϕσnan ≤ V n ∀n ∈ VΣ (7.43)
V n ≥ 0 ∀n ∈ V (7.44)
Constraints (7.17)− (7.20) (7.45)
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Similar to the two previous cases, the objective function (7.41) comprises two terms: the first
one aims at minimizing the cost over the first stage, which is assumed deterministic, and the second
one seeks to minimize a multi-stage risk measure. This later computes the risk in a nested way. In
the objective function, we thus have a term ϕ2

1 + 1
1−α

∑
n∈C(1) ρ

1nV n corresponding to the evaluation
of the risk at stage 1. Note how this evaluation takes into account the risk at all the subsequent
stages thanks to inequalities (7.42) which link together the variables computing the risk level at two
subsequent stages.

7.4.4 Expected conditional risk formulation
Finally, we present a MILP formulation for the case where F is a stage-wise composite risk function
based on the Expected Conditional Risk Measure (ECRM) introduced in [54]. The ECRM measures
the risk stage by stage in a composite way. It namely computes the risk at stage σ−1 as the expected
value of a conditional risk mapping measuring the future risk relative to stages σ · · ·Σ as seen from
stage σ − 1 taking into account the realization of the stochastic process up to stage σ − 1. We thus
focus on the Expected Conditional Value-at-Risk measure (ECVaR) presented in [12], which belongs
to the family of ECRMs investigated in [54].

The multi-stage risk function F can be written as:

F(Z1, ..., ZΣ) =
Σ∑
σ=1

Eξ[σ−1]

[
CVaRξ[σ−1]

α (Z1 + · · ·+ ZΣ)
]

(7.46)

=
Σ∑
σ=1

∑
m∈Vσ−1

ρm
(

min
ϕmσ

{
ϕmσ +

1
1− α

∑
`∈L(m)

ρ`|m(
∑

n∈P(1,`)
fnY n + hnSn + gnXn − ϕmσ )+

})
(7.47)

=
Σ∑
σ=1

∑
m∈Vσ−1

(
min
ϕmσ

{
ρmϕmσ +

1
1− α

∑
`∈L(m)

ρ`(
∑

n∈P(1,`)
fnY n + hnSn + gnXn − ϕmσ )+

})
(7.48)

In order to formulate Problem (7.9)-(7.11) with the stage-wise composite risk measure (7.48) as
a mixed-integer linear program, we introduce the following decision variables:

• ϕmσ : Value-at-Risk at stage σ ∈ S, given the realization of the stochastic process up to stage
σ − 1 corresponding to node m ∈ Vσ−1,

• V `: risk of scenario ` ∈ L(1), i.e. overcost of scenario ` with respect to the value-at-risk ϕσnan
defined for its stage σn and by its ancestor node an.

This leads to the following MILP formulation:

min
Σ∑
σ=1

∑
m∈Vσ−1

(
ρmϕmσ + 1

1− α
∑

n∈C(m)
ρnV n

)
(7.49)

∑
n∈P(1,`)

fnY n + hnSn + gnXn − ϕamσm ≤ V ` ∀` ∈ L(m),m ∈ V (7.50)

V n ≥ 0 ∀n ∈ V (7.51)
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Constraints (7.17)− (7.20) (7.52)

In this case, the objective function (7.49) seeks to minimize a stage-wise composite risk measure.
Thus, for each stage σ = 1, ...,Σ, the risk function computes the expected value, over all nodes
m ∈ Vσ−1 belonging to the previous stage, of CVaRm

α (Z1 + · · ·+ZΣ), i.e the CVaR of the random cost
Z1 + · · ·+ZΣ at stage σ conditional to the realization of the stochastic input process corresponding to
nodem. For each stage σ and each nodem ∈ Vσ−1, CVaRm

α (Z1+· · ·+ZΣ) is computed as the minimum
of the sum of the Value-at-Risk ϕmσ evaluated at node m and of the expected overcost over the
scenarios in the associated subtree rooted in node m multiplied by coefficient 1

1−α . Equations (7.50)
ensure that V ` accurately computes the overcost (if any) corresponding to scenario P(1, `) with
respect to the Value-at-Risk ϕanσn corresponding to its stage σn and its ancestor node an.

7.5 Small illustrative examples
Before providing our preliminary computational results, we present two small examples. The first
one illustrates how the production plan may vary according to the risk function used in the objective
function. The second shows that in some cases, the obtained production plan does not display the
inherited optimality property.

7.5.1 Comparison of production plans obtained with risk-neutral and
risk-averse formulations

Consider a decision-maker trying to plan the production over a three time-period horizon. For the
sake of simplicity, all costs are assumed to be deterministic and time invariant. The unit production
cost is set to g = 1 and the unit inventory holding cost to h = 1. A setup cost f = 100 is to be paid
in each time period where there is a strictly positive production. The stochastic demand at time
period 2 is revealed at the beginning of time period 2 and the stochastic demand d at time period 3
is revealed at the beginning of time period 3. Suppose that the stochastic process representing the
evolution of the demand can be described by the following scenario tree, in which the conditional
probability of transition from a node to any of its child is set to 0.5. The confidence level used in the
CVaR computation is set to α = 0.95.

Figure 7.2: Small illustrative example. Values between brackets represent the demand dn a each
node of the scenario tree.
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Risk-neutral production plan Let us first consider the production plan obtained while using
the risk-neutral formulation (5.1)-(5.4) and provided in Figure 7.3. This production plan corresponds
to an expected optimal cost of 447.5. Note in particular how the production plan partially antic-
ipates the demand in stage 3 by increasing the production in stage 2 to avoid carrying out some
costly setups at nodes 4 and 6. However, in the obtained production plan, the total production costs
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in the worst-case scenarios, which correspond to the paths P(1, 7) and P(1, 5) in the scenario tree,
are equal to 540 and 510 respectively, which is significantly higher than the expected value of 447.5.
This may not be satisfying for a risk-averse production planner.

Figure 7.3: Optimal production plan for the illustrative example using the risk-neutral formulation
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Risk-averse production plan using a scenario-wise risk function In order to propose
a production plan taking into account this risk aversion, we first solve the SULS using the for-
mulation (7.15)-(7.21) based on the scenario-wise risk function. Figure 7.4 describes the obtained
production plan.

Figure 7.4: Optimal production plan given by the risk-averse formulation based on a scenario-wise
risk function
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This solution corresponds to an optimal aggregated risk equal to CVaR0.95(Z1 + Z2 + Z3) = 500.
This value is computed using a value-at-risk equal to ϕ = 500 and an expected overcost, over the 4
scenarios, equal to 0. Namely, the cost of each individual scenario P(1, `), ` ∈ {4, 5, 6, 7}, is equal
to {420, 500, 500, 470}, which gives v` = 0 for each ` in {4, 5, 6, 7}. Note in particular how the total
cost in scenario P(1, 7) has been reduced from 540 in the previous solution to 470 in the current
one through a full anticipation at node 3 of the future demand at node 7. Similarly, the production
quantity at node 2 has been reduced from 70 to 60 in order to reduce the inventory holding costs
in scenario P(1, 5). However, these two changes negatively impact the costs on the two remaining
scenarios, P(1, 4) and P(1, 6), as there is now some useless leaving inventory at node 6 and an ad-
ditional setup at node 4. This translates in an increase of the expected total cost from 447.5 in the
risk-neutral solution to 472.5 in this solution, which illustrates among others how the risk reduction
may come at the expense of an increase in the expected cost of a production plan.

Risk-averse production plan using a stage-wise risk function Let us now consider the
production plan obtained by solving the risk averse formulation (7.25)-(7.28) based on a stage-wise
risk function. Figure 7.5 describes the obtained production plan.
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Figure 7.5: Optimal production plan given by the risk-averse formulation based on a stage-wise risk
function
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This solution gives a total risk value equal to Z1 + CVaR0.95(Z2) + CVaR0.95(Z3) = 520 obtained
as follows. At stage 1, the risk corresponds to the production cost at node 1, which is equal to 150.
We then have CVaR0.95(Z2) = 200 with ϕ2 = 200, v2 = v3 = 0. Finally, we have CVaR0.95(Z3) = 170
with ϕ3 = 170 and v4 = v5 = v6 = v7 = 0. Note how the risk value at stage 2 is mainly driven by the
production costs at node 3 whereas the risk value at stage 3 is determined by the production costs
at node 5, which is not in the sub-tree rooted at node 3. As the stage-wise risk function considers
the risk stage by stage, it overlooks the fact that the largest demand at stage 2 does not happen in
the same scenario as the largest demand at stage 3. This allows to gain some intuition about the
reason why the risk value provided by this model is larger than the one provided by the model based
on the scenario-wise risk measure.

Moreover, as in the previous risk-averse model, we note that the expected cost of the production
plan displayed in Figure 7.5 is larger (467.5) than the one obtained with the risk-neutral model
(447.5).

Risk-averse production plan using a nested risk function Finally, we provide the pro-
duction plan obtained with the risk-averse formulation (7.41)-(7.45) based on a nested risk function.
This one is displayed in Figure 7.6

Figure 7.6: Optimal production plan given by the risk-averse formulation based on a nested risk
function

1

2

3

4

5

6

7

50

60

160

10

90

0

0

This solution corresponds to a total risk value equal to Z1 +CVaR0.95
(
Z2 +CVaRξ[2]

0.95(Z3)
)

= 500.
This value is obtained as follows. The production cost at stage 1 is equal to 150. The aggregated
risk value CVaR0.95

(
Z2 + CVaRξ[2]

0.95(Z3)
)
is equal to 350, with ϕ1

1 = 350, v2 = v3 = 0. Moreover, the
conditional one-stage CVaR at node 2, CVaR2

0.95(Z3), is equal to 190 with ϕ2
3 = 190 and v4 = v5 = 0

and the conditional one-stage CVaR at node 3, CVaR3
0.95(Z3), is equal to 190 with ϕ2

3 = 30 and
v6 = v7 = 0.
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We note in particular that, in the formulation (7.41)-(7.45) , the overcost value computed at node
3, v3, does not depend on the value of conditional one-stage CVaR at node 2, CVaR2

0.95(Z3). This
allows the model to build a production plan in the sub-tree rooted in 3 without taking into account
the large value of the demand arising at node 5 and to provide a production plan with an overall
risk value smaller than the one obtained with the model based on a stage-wise risk measure.

7.5.2 Illustration of time inconsistent production plans
In order to illustrate the time inconsistency issues that may arise with some risk-averse formulations,
we now study a second small instance of the SULS. This one is similar to the one discussed above
and only differs with respect to the value of the demand at each node (see Figure 7.7) and the value
of the confidence level which is set to α = 0.5.

Figure 7.7: Small illustrative example. Value between brackets represent the demand dn a each node
of the scenario tree.
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Risk-averse production plan using a scenario-wise risk function We first solve the pro-
duction planning problem at the beginning of period 1 using the formulation (7.15)-(7.21) based on
the scenario-wise risk function and obtain the production plan presented in Figure 7.8. It corresponds
to an optimal aggregated risk equal to CVaR0.95(Z1 + Z2 + Z3) = 483. This value is obtained with
a value-at-risk ϕ = 446 corresponding to the total cost of scenario P(1, 4) and overcosts equal to
v4 = v5 = v6 = 0 and v7 = 74.

Figure 7.8: Optimal production plan computed at the beginning of period 1 using a scenario-wise
risk measure
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Let us now move forward one time period and consider the production planning problem at the
beginning of time period 2, once the demand for period 2 has been observed. Since X̂1 = 50, there is
no stock at the beginning of period 2 and we have to determine how many units to produce at time
periods 2 and 3 in order to satisfy the demand. Figure 7.9 describes the production plans obtained
in case d2 = 80 (Problem K2

2) and in case d2 = 100 (Problem K3
2).
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Figure 7.9: Optimal production plans computed at the beginning of period 2 using a scenario-wise
risk function
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We note that the solution of Problem K2
2 coincides with the one of Problem K given in Figure 7.8.

The optimal production plan computed at the beginning of period 2 is the same as the optimal
production plan computed at the beginning of period 1 for this part of scenario tree.

This is however not the case for the solution of Problem K3
2 which completely differs from the

one of Problem K for this part of the scenario tree. The solution of K3
2 corresponds to a risk value

equal to CVaR0.95(Z2 + Z3) = 360 with a value-at-risk equal to 310 and an overcost at node 6 equal
to 50. We note in particular that:

• The production plan computed at the beginning of period 1 for the sub-tree V(3) is not optimal
for Problem K3

2 as it leads to a higher risk value equal to 370.

• The production plan computed at the beginning of period 2 for V(3) is not optimal for the
initial problem K as it leads to an overvall risk value equal to 485.

The IOP thus does not hold in this case. This is intuitively explained as follows. In the solution
of Problem K displayed in Figure 7.8, the value of the production quantity at node 3 is mainly
determined by the fact that we seek to limit the overcost in the scenarios P(1, 6) and P(1, 7) with
respect to a value-at-risk ϕ whose value is determined by the cost of scenario P(1, 4). Yet, when
we are at node 3, we already know that the state described by 4 will not happen as node 4 does
not belong to V(3). We are thus letting a production decision relative to node 3 depend on states
of the stochastic demand process that cannot happen in the future. This is contradiction with
the principle of time consistency defined in [93] which defines that at every state of the system, the
optimal decision should not depend on scenarios which we already know cannot happen in the future.

Risk-averse production plan using a stage-wise risk function We now illustrate that the
same issue may arise when using a stage-wise risk function. We first solve the production planning
problem at the beginning of period 1 using the formulation (7.25)-(7.28) based on a stage-wise risk
function. Figure 7.10 describes the obtained production plan. This one corresponds to a total risk
of Z1 +CVaR0.95(Z2) +CVaR0.95(Z3) = 499 obtained as follows. The cost relative to stage 1 is equal
to 150. The risk at stage 2 is equal to CVaR0.95(Z2) = 320 with ϕ2 = 320 and v2 = v3 = 0. The risk
a stage 3 is equal to CVaR0.95(Z3) = 29 with ϕ3 = 8 and v5 = v7 = 0 and v6 = 42.

Let us now move forward one time period and consider the production planning problem at the
beginning of period 2, once the demand for period 2 has been observed. Since X̂1 = 50, there is no
stock at the beginning of period 2 and we have to determine how many units to produce at time
periods 2 and 3 in order to satisfy the demand. Figure 7.11 describes the production plans obtained
in case d2 = 80 (Problem K2

2) and in case d2 = 100 (Problem K3
2).

We note that the solution of Problem K2
2 coincides with the one of Problem K given in Figure 7.10.

This is however not the case for the solution of Problem K3
2 which differs from the production

plan computed for V(3) by Problem K. This production plan corresponds to a risk value of Z2 +
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Figure 7.10: Optimal production plan computed at the beginning of period 1 using a stage-wise risk
function
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CVaR0.95(Z3) = 360 with a cost equal to 200 at stage 2 and a risk value relative to stage 3 equal to
CVaR0.95(Z3) = 160. This latter is obtained with a value-at-risk equal to ϕ3 = 160 and overcosts
v6 = 0 and v7 = 0. We note in particular that:

• The production plan computed at the beginning of period 1 for the sub-tree V(3) is not optimal
for Problem K3

2 as it leads to a higher risk value equal to 370.

• The production plan computed at the beginning of period 2 for V(3) is not optimal for the
initial problem K as it leads to an overall risk value equal to 573.

Figure 7.11: Optimal production plans computed at the beginning of period 2 using a stage-wise risk
function
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The IOP thus does not hold in this second case. The explanation is similar to the one provided
above for the scenario-wise risk function. Namely, in the production plan presented in Figure 7.10,
the production planning decisions at node 3, and in particular the fact that the production of all the
demand relative to nodes 6 and 7 is anticipated at node 3, is driven by the need to decrease as much
as possible the overcosts at nodes 6 and 7 with respect to the value-at-risk ϕ3 = 8 whose value is
determined by the cost observed at node 4. As node 4 does not belong to V(3), it means that we are
again letting a production decision at node 3 depend on states of the stochastic demand process that
cannot happen in the future as seen from node 3. This goes against the time consistency principle
as enunciated in [93].

Risk-averse production plan using a nested risk function Finally, we solve the same
production planning problem using with the formulation (7.41)-(7.45) based on a nested risk function.
This one is displayed in Figure 7.12

This solution corresponds to a total risk value equal to Z1 +CVaR0.95
(
Z2 +CVaRξ[2]

0.95(Z3)
)

= 510.
This value is obtained as follows. The production cost at stage 1 is equal to 150. The aggregated
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Figure 7.12: Optimal production plan given by the risk-averse formulation based on a nested risk
function
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risk value CVaR0.95
(
Z2 + CVaRξ[2]

0.95(Z3)
)
is equal to 360, with ϕ1

2 = 296 and v2 = 0 and v3 = 64.
Moreover, the conditional one-stage CVaR at node 2, CVaR2

0.95(Z3), is equal to 180 with ϕ2
3 = 0 and

v4 = 8 and v5 = 0 and the conditional one-stage CVaR at node 3, CVaR3
0.95(Z3), is equal to 160 with

ϕ3
3 = 160, v6 = 0 and v7 = 0.
Let us now move forward one time period and consider the production planning problem at the

beginning of period 2, once the demand for period 2 has been observed. Since X̂1 = 50, there is no
stock at the beginning of period 2 and we have to determine how many units to produce at time
periods 2 and 3 in order to satisfy the demand. Figure 7.13 describes the production plans obtained
in case d2 = 80 (Problem K2

2) and in case d2 = 100 (Problem K3
2).

Figure 7.13: Optimal production plans computed at the beginning of period 2 using a nested risk
function
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We note that the solutions of Problems K2
2 and K3

2 coincide with the one of Problem K given in
Figure 7.13. This means that the IOP holds in the present case, which is line with the fact that the
nested risk measure used in the formulation is time-consistent.

Finally, note that we omit the illustration of the production plans provided by the expected
conditional risk measure (7.8) as it provides the same solution as the nested risk measure (7.7) for
the considered small numerical example.

7.6 Computational experiments
In this section, we present some preliminary computational results aiming at assessing the relative
performance of the production plans provided by each risk-averse model when implemented within
a rolling horizon framework. This assessment is carried out through simulation and focuses on
evaluating both the obtained risk reduction, i.e. the decrease of the cost observed in the worst cases,
and the potential deterioration of the average cost.
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We first present the rolling horizon framework and the experimental setup used in our simulations.
We then discuss our preliminary computational results.

7.6.1 Rolling horizon simulation
In order to obtain a quantitative assessment of the performance of the risk averse models discussed
in this chapter, we rely on a rolling horizon simulation similar to the one used in [23].

Each simulation run consists in first generating a scenario representing a possible evolution of the
stochastic input process over a simulation horizon involving Σ′ stages. We then iteratively simulate,
for each simulated stage σ′ = 1...Σ′, the application of the first-stage decisions computed by a risk-
averse or risk-neutral model which uses a production planning horizon involving Σ stages. At each
simulated stage σ′, we record the cost Ctrue(σ′) incurred by the application of the first-stage planning
decisions over the simulated scenario: note that this cost does not correspond to the objective function
of the optimization model but to the true cost of implementing the first-stage decisions computed
by the optimization model when the realization of the stochastic parameters are equal to the value
corresponding to the stage σ′ of the simulated scenario. We finally compute the total ’true’ cost over
all simulated stage Ctrue = ∑Σ′

σ′=1C
true(σ′).

More precisely, each simulation run consists of the following steps:

1. Generate a simulated ’true’ scenario involving Σ′ stages which will represent the actual evolution
of the stochastic process over the simulation horizon.

2. For each σ′ = 1...Σ′:

2.1 Generate a scenario tree involving Σ stages and |V| nodes in which the nodes relative to
the first stage of the scenario tree correspond to the same realization of the stochastic
parameters as the nodes corresponding to stage σ′ of the simulated scenario.

2.2 For each considered production planning model:
• solve the corresponding MILP formulation over the scenario tree V taking into account

a non-negative entering inventory at node 1.
• simulate the implementation of the production planning decisions corresponding to

the first stage of V in the situation described by stage σ′ of the ’true’ scenario. Then,
compute the corresponding true cost Ctrue(σ′) and record the non-negative leaving
inventory.

3. Compute the total simulated cost Ctrue = ∑Σ′
σ′=1C

true(σ′) for each considered production plan-
ning model.

Note that, at each iteration of the rolling horizon simulation, each production planning model
is solved using exactly the same scenario tree V to represent the possible future evolution of the
stochastic process over the next Σ stages. Thus, any difference in the first-stage solutions provided
by the various production planning models may only be due to the fact that they differ with respect
to their (risk-neutral or risk-averse) objective function. Figure 7.14 illustratives this simulation
procedure in case Σ′ = 5, Σ = 3 and |V| = 7.

7.6.2 Experimental setup
We use a simulation horizon involving Σ′ ∈ {6, 12, 18} stages with a single period per stage. Each
simulated true scenario is randomly generated as follows. We consider deterministic and time-
invariant costs and set the setup cost to f = 1200, the production cost to g = 2 and the inventory
holding cost to h = 1. The demand dσ′ , σ

′ = 1...Σ′, is assumed to be uniformly distributed in the
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Figure 7.14: Illustration of a rolling horizon simulation
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interval [0,100]. For each simulation horizon length, we generated 400 true scenarios, resulting in a
total of 1200 true scenarios

At each iteration of a simulation run, i.e. at each simulation stage σ′, we generate a scenario
tree to represent the future evolution of the stochastic process over the next stages. This scenario
tree involves Σ = 7 stages, b = 1 time period per stage and c = 3 children for each non-leaf node,
which corresponds to |L(1)| = 729 individual scenarios and |V| = 1093 nodes. The demand at node
1 of this scenario tree, d1, is set to the value dσ′ observed at stage σ′ of the simulated scenario. The
demand for nodes 2 to |V| is generated following the same procedure as the one used to generate the
simulated true scenarios.

Finally, we consider two different values, α ∈ {0.5, 0.95}, for the confidence level used to define
the CVaR-based risk functions used in the various risk-averse production planning models.

For each generated true scenario and each considered value of α, we carried out one simulation
run. Note that the corresponding computational effort is very significant. Namely, each simulation
run requires to solve Σ′ mixed-integer linear programs, and this for each of the 5 studied production
planning models. This means that we solve a total of 144000 mixed-integer linear programs, each
one corresponding to a SULS problem formulated on a scenario tree involving |V| = 1093 nodes.

This simulation procedure was implemented in C++. All mixed-integer linear programs were
defined using the Concert Technology environment and solved using the MILP solver CPLEX 12.8.
All the parameters of the solver were kept to their default value, except for the computation time
limit which was set to 600 seconds and the relative MIP gap tolerance which was set to 1%. All
tests were run on the computing infrastructure of the Laboratoire d’Informatique de Paris VI (LIP6),
which consists of a cluster of Intel Xeon Processors X5690. We set the cluster to use two 3.46GHz
cores and 12GB RAM to solve each instance.
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7.6.3 Preliminary computational results
Tables 7.1-7.4 display the preliminary computational results of our rolling horizon simulations. In
each table, Column Model indicates the corresponding production planning model: RN represents
the risk-neutral formulation (5.1)-(5.4), A-CVaR the risk-averse formulation (7.25)-(7.28) using an
aggregated CVaR risk measure, S-CVaR the risk-averse model (7.15)-(7.21) using a stage-wise CVaR
risk measure, N-CVaR the risk-averse model (7.41)-(7.45) using a nested CVaR risk measure and
E-CVaR the risk-averse model (7.49)-(7.52) using an expected CVaR risk measure.

Table 7.1 focuses on assessing the quality of the production plans obtained by solving the MILP
formulation corresponding to each considered production planning problem. This quality is evaluated
by looking at the optimality gap, i.e. at the relative difference between the best found integer feasible
solution and the best known lower bound when the computation time limit is reached. We thus report,
for each production planning model and each value of the confidence level α, the average optimality
gap over all corresponding solved MILPs in Column Ave.MIPGap together with the standard deviation
in Column Std.Dev. and the maximum observed gap in Column Max.MIPGap. Overall, these results
show that the solutions of the production planning problems solved over the course of a simulation
run are of good quality as they are on average within less than 1.5% of the optimal solution value.
Thus, even if each production planning problem is not solved exactly in our simulation procedure
to reduce the total computational effort, the obtained sub-optimal solutions seem to be of a quality
sufficiently high to avoid introducing large bias in our analysis.

Table 7.1: Quality of the solutions obtained for each production planning problem within the allowed
computation time

α Model Ave. MIPGap Std. Dev. Max. MIPGap
0.50 RN 1.54 0.27 2.56

A-CVaR 2.28 0.43 4.39
S-CVaR 2.65 0.48 4.68
N-CVaR 1.77 0.84 3.86
E-CVaR 1.40 0.26 2.79

0.95 RN 1.55 0.29 2.65
A-CVaR 0.87 0.10 1.53
S-CVaR 0.98 0.02 1.00
N-CVaR 1.69 0.76 3.67
E-CVaR 0.44 0.12 0.86

We now focus on assessing the ability of each considered risk-averse production planning model
at actually reducing the risk when implemented in a rolling horizon framework. This ability is
measured by comparing, for each risk-averse model, Cx%

RA, the cost over the x% most costly true
scenarios obtained with this model, with Cx%

RN , the cost over the x% most costly true scenarios
obtained with the risk-neutral model. Tables 7.2-7.4 thus report the value of the relative difference
RDx% = 100(Cx%

RA−Cx%
RN)/Cx%

RN for x ∈ {5, 10, 20, 30, 40, 50, 100} for each risk-averse model and each
value of α.

Results from Tables 7.2-7.4 first suggest that using the studied risk-averse production planning
models in a rolling horizon dynamic framework does not always lead to the risk reduction one may
have hoped for when formulating them in a static setting. This can be seen e.g. by looking at the
results displayed in Column RD50% of these tables for the simulations carried out with α = 0.5.
Indeed, we note that RD50% takes an average positive value of 2.5%, which means that the average
cost over the 50% worst-case true scenarios increases when using a risk-averse model instead of a risk-
neutral model to plan production, and this even if the risk-averse models relied on CVaR0.50-based
risk functions seeking to reduce the risk over the 50% worst-case true scenarios.
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Table 7.2: Performance of each risk-averse model within a rolling horizon simulation with Σ′ = 6 .

α Model RD5% RD10% RD20% RD30% RD40% RD50% RD100%

0.5 A-CVaR 2.61 -1.78 -10.67 -7.13 -4.37 -2.47 1.87
S-CVaR 2.78 -5.13 -11.76 -7.20 -4.05 -1.74 3.47
N-CVaR 1.80 0.58 -2.77 1.37 3.70 5.31 6.15
E-CVaR 2.47 0.22 -7.90 -4.02 -1.25 0.79 4.55

0.95 A-CVaR -7.19 -6.22 -5.16 2.60 7.30 10.12 2.89
S-CVaR -6.06 -6.73 -7.40 -0.45 3.89 6.97 3.70
N-CVaR -4.89 -4.91 -3.99 3.53 7.93 9.94 3.01
E-CVaR -2.31 -2.76 -2.82 4.24 8.01 9.01 3.23

However, the results obtained for a confidence level of 95% are more encouraging. Namely, the
average value of RD5% over all simulations carried out with α = 0.95 is equal to -2.7%, which means
that the average cost over the 5% worst-case true scenarios decreases when using a risk-averse model
instead of a risk-neutral model to plan production. We observe that this reduction is obtained at
the expense of an increase in the expected cost, which can be measured by the fact that the average
value of RD100%, over all the simulation runs corresponding to α = 0.95, is equal to 0.84%.

It is also relevant to mention that the cost reduction in the worst-case scenarios is smaller for
the planning horizon with 12 and 18 stages than the one obtained with a shorter planning horizon
involving only 6 stages. This might be explained by the size of the scenario tree used to approximate
the stochastic process. We only consider scenario trees with Σ = 7 stages and 3 children par stage.
Hence, the risk-averse models might provide first-stage solutions too conservative because they might
not be able to see that they could compensate their first-stage decisions in further stages.

Additional computational experiments and a thorough in-depth analysis of the production plan-
ning decisions made by each type of model are thus needed to better understand the behavior observed
in these preliminary results.

Table 7.3: Performance of each risk-averse model within a rolling horizon simulation with Σ′ = 12.

α Model RD5% RD10% RD20% RD30% RD40% RD50% RD100%

0.5 A-CVaR -2.86 -5.86 -3.57 -0.91 0.63 1.63 3.35
S-CVaR -4.81 -6.11 -2.64 0.27 1.99 3.09 4.91
N-CVaR 0.71 -0.61 1.67 4.06 5.23 5.82 4.73
E-CVaR -2.94 -4.82 -1.82 0.81 2.37 3.31 4.04

0.95 A-CVaR -4.10 -4.77 -1.47 1.69 3.24 4.10 -1.34
S-CVaR 2.02 1.18 0.69 1.92 2.62 3.25 0.23
N-CVaR -3.10 -3.64 -0.50 2.50 3.93 4.60 -0.76
E-CVaR -1.42 -2.38 0.32 2.93 3.84 3.96 -0.02

7.7 Conclusion and perpsectives
In this chapter, we presented four alternative risk-averse formulations of the stochastic single-echelon
uncapacitated lot-sizing problem. All these formulations sought to minimize the risk that the actual
cost of the production plan might be much higher than the expected cost computed by the model.
They differed with respect to the way risk may be measured in a multi-stage setting. We focused on
assessing the performance in terms of risk reduction of the four studied production planning models
when implemented in a rolling horizon framework. Our preliminary results suggest that the risk
reduction observed in a rolling horizon dynamic setting may not always be as significant as one may
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Table 7.4: Performance of each risk-averse model within a rolling horizon simulation with Σ′ = 18

α Model RD5% RD10% RD20% RD30% RD40% RD50% RD100%

0.5 A-CVaR -4.13 -4.09 -0.61 1.04 2.01 2.58 1.62
S-CVaR -2.93 -2.58 1.15 2.71 3.63 4.21 2.30
N-CVaR 0.83 0.39 3.12 4.09 4.42 4.43 2.25
E-CVaR -3.01 -2.72 0.89 2.43 3.20 3.63 1.49

0.95 A-CVaR 0.09 -1.38 0.53 1.44 1.99 2.05 -1.10
S-CVaR 1.27 1.73 3.82 3.00 2.48 2.07 0.36
N-CVaR 0.09 -0.80 1.21 2.07 2.57 2.55 -0.47
E-CVaR 0.26 0.28 2.34 2.90 3.00 2.69 0.45

have hoped for when considering these risk-averse models in a static setting. Additional research
work is thus needed to better understand this behavior, to determine which risk function may have
the best practical performance and assess the potential advantages and disadvantages of using a time-
consistent rather than a time-inconsistent risk function. We also consider that extending this analysis
to more complex stochastic lot-sizing problem, such as the lot-sizing problem with remanufacturing
studied in Chapters 3 and 6 is also worth investigating.
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Chapter 8

Conclusion and perspectives

8.1 Conclusion
In this thesis, we studied two lot-sizing problems: a multi-echelon lot-sizing problem with remanu-
facturing and lost sales and the uncapacitated single-echelon lot-sizing problem. Our main purpose
was to develop models and solution approaches for the first problem. But the latter provided us a
useful basis to develop novel algorithms and explore new risk-averse formulations.

For these two combinatorial optimization problems, we considered a stochastic environment in
which the input data are subject to uncertainty and proposed a multi-stage stochastic integer pro-
gramming approach relying on scenario trees to represent the uncertain information structure. This
resulted in the formulation of large size mixed-integer linear programs, which cannot be solved di-
rectly by a state-of-the-art commercial MILP solver. We therefore investigated advanced MILP based
solution approaches to solve these challenging stochastic lot-sizing problems.

We first investigated the underlying polyhedral structure of the multi-echelon stochastic prob-
lem with remanufacturing and lost sales. We proposed a new class of valid inequalities (the tree
inequalities (2.13) presented in Chapter 3) that, when used as cutting-planes in a branch-and-cut
algorithm, are able to solve medium-size instances of the multi-echelon stochastic lot-sizing problem
with remanufacturing to optimality. It is worth noting that the proposed tree inequalities are valid
not only for the stochastic lot-sizing problems with remanufacturing under study here but also for a
larger class of capacitated stochastic lot-sizing problems with lost sales. These results were published
in Computers & Operations Research and can be found in [83].

The production system structure of the multi-echelon lot-sizing problem with remanufacturing
is then further investigated in Chapter 4. We proposed several new families of valid inequalities in
order to strengthen the formulation of the problem. In particular, we introduced two new classes
of valid inequalities, Inequalities (4.33), (4.34) and (4.41) and Inequalities (4.43)-(4.46), which take
into account, at each production echelon, the limitations on the produced quantities coming from
the limited availability of the returned products. The results of our computational experiments
showed that a branch-and-cut algorithm based on these new valid inequalities performs well as
compared to the generic branch-and-cut algorithm of CPLEX 12.8 solver and to the branch-and-cut
algorithm based on the path inequalities (2.12) investigated in Chapter 3. It is worth mentioning that
Inequalities (2.12) can be seen as a particular case of Inequalities (4.43),(4.44),(4.46) and that the
proposed new inequalities thus extend previous results on lot-sizing problem with lost sales. These
results will be presented as a full paper at the International Conference on Computational Logistics
2021 and will be published in Springer’s Lecture Notes in Computer Science.

Although our computational results showed that the proposed branch-and-cut algorithms were
able to solve to near-optimality medium-size instances of the problem, some numerical difficulties
could be observed for larger instances. This motivated the development of decomposition-based
solution approaches such as the recently proposed SDDiP algorithm [105].
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In view of the complexity and novelty of this algorithm, we first focused on applying the SDDiP
algorithm on the stochastic uncapacitated single-echelon lot-sizing problem (SULS) which is much
simpler than our original problem. We proposed in Chapter 5 a new extension of this algorithm wich
mainly relies on a partial decomposition of the scenario tree into sub-trees and on the exploitation
of existing knowledge on the polyhedral structure of the SULS problem. Our computational results
showed that the proposed extended SDDiP algorithm significantly outperforms the initial SDDiP
algorithm in terms of solution quality on large-size instances. A preliminary version of this work was
presented at the International Conference on Automated Planning and Scheduling 2019 [82] and the
completed version has been accepted for publication in INFORMS Journal on Computing.

We then came back to the multi-echelon lot-sizing problem with remanufacturing and lost sales
and proposed in Chapter 6 a dual dynamic decomposition approach to solve (very) large size in-
stances of this problem. In particular, we adapted the extSDDiP algorithm introduced in Chapter 5
with the main objective of reducing the computational burden linked to the resolution of the sub-
problems obtained after the partial decomposition of the original problem. Numerical results showed
that the algorithm is capable of obtaining near-optimal solutions in practicable computation times
and outperforms both the mathematical programming solver CPLEX 12.8 and the initial SDDiP
algorithm. A preliminary version of this work obtained a best paper award at the 6th International
Conference on Control, Decision and Information Technologies (CoDIT 2019) [81]. More recent re-
sults have been accepted for presentation at the International Conference on Advances in Production
Management Systems (APMS 2021).

Finally, we presented an on-going exploratory work on risk-averse multi-stage stochastic lot-sizing.
In this work, we studied several ways of incorporating the risk aversion of the decision-maker in the
multistage stochastic uncapacitated lot-sizing (SULS) problem and focused on the use of CVaR-
based risk measures. For each considered multi-stage risk function, we showed how to reformulate
the problem as a computationally tractable mixed-integer linear program. We then presented some
preliminary computational results obtained by carrying out rolling horizon simulations. These results
indicated that using a risk-averse model rather than a risk-neutral model does not always appear
to lead to a clear risk reduction when it is implemented in a rolling horizon framework. Additional
research work is thus needed to better understand this behavior.

8.2 Perspectives
The work presented in this thesis opens several research directions.

Regarding the cutting-plane generation based approaches, it would first be interesting to develop
an exact separation algorithm for the (`, k, U) inequalities introduced in Chapter 4. It may namely
further improve their performance when used in a branch-and-cut algorithm. Second, these inequal-
ities have shown their usefulness to solve the problem in a deterministic setting. It might thus be
worth investigating whether they could also be helpful to solve its stochastic variant. On a longer
term perspective, we could seek to exploit the idea underlying the expression of these inequalities to
develop valid inequalities for a larger class of lot-sizing problems with returns, such as e.g. lot-sizing
problems with backlogging, safety stocks or minimum production levels.

As for the decomposition-based approaches, several interesting research directions might be stud-
ied.

First, at each iteration of the proposed extSDDiP algorithm, we generate a single strengthened
Benders’ cut per macro-stage during the backward step. However, it would be possible to exploit
the existence of alternative MILP formulations of the sub-problems to generate several strengthened
Benders’ cuts for the same macro-stage during a given iteration of the algorithm. This multi-cut
variant of the extSDDiP algorithm is worth investigating as it might lead to a faster convergence.
Similarly, in the sub-tree based algorithm, the solution obtained at each macro-stage provides a value
of the leaving inventory at each leaf nodes of the considered sub-tree. Currently, only the value of
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the leaving inventory at the leaf node belonging to the sampled scenario is used in the backward step
to generate cuts. However, it would be possible to generate more cuts by considering the value of the
leaving inventory at all or parts of the leaf nodes of the sub-tree. This would also lead to a multi-cut
variant of the extSDDiP algorithm. Furthermore, in both cases, the question of how to identify the
best cut within the pool of cuts that we can generate at each iteration remains unanswered. Hence, a
cut selection strategy will be also worth investigating as it might positively impact the performance
of the algorithm.

Another important issue that might be explored is how to efficiently implement a binary expansion
of the state variables in order to generate Lagrangian and Integer Optimality cuts. These cuts are
known to be tight and guarantee that the SDDiP algorithm converges to an optimal solution when
the state variables are restricted to be binary. However, our numerical results carried out with the
SDDiP algorithm showed that a binary approximation leads to prohibitive computations times when
there are multiple items involved in the production system. Therefore, one direction could be to
study a partial binarization of the state variables, in which we would use a binary representation
of the state variables for only a few leaf nodes of each sub-problem. Another direction would be to
carry out a partial binarization of each state variable, i.e. to use only the first digits of the base 2
representation in the binarization of each stage variables and to use an auxiliary continuous variable
for the remaining value. These two ideas would make it possible to generate Integer Optimality and
Lagrangian cuts in the backward step of the algorithm, which may potentially improve the quality
of the lower bound.

Furthermore, it is worth noting that Chapters 3 and 6 focused on solving the same stochastic
lot-sizing problem but used solution approaches relying on different strategies. Chapter 3 presented
a solution approach aiming at solving to optimality a deterministic equivalent problem formulated
as an MILP, using small to medium-size scenario trees, i.e. using a coarse approximation of the
stochastic process. In contrast, in Chapter 6, we sought to solve the same problem using large-size
scenario trees providing a better approximation of the stochastic input process, but the obtained
solutions were of a lesser quality. This opens the following question. In practice, is it better to solve
the problem to near-optimality using a scenario tree of reduced size or to solve it with a good but not
optimal quality using a very large scenario tree? We believe that this question is worth investigating
and should be addressed through an extensive simulation study comparing the solutions obtained
with both approaches.

Finally, there are also some interesting research perspectives regarding the modeling of the re-
manufacturing planning problem. Many additional realistic features may namely be added in our
model in order to further reduce the gap between the academic state of the art and the industrial
need. For instance, extending the present work in order to account for production resources with
a limited capacity and for stochastic processing times could also be worth investigating. We may
also try to consider multiple types of used and/or remanufactured products and additional processes
such as sorting and inspecting the used products before disassembling them or hybrid manufactur-
ing/remanufacturing on the reassembly resource.
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Notations

In this chapter, we summarize the notation used throughout the manuscript. The notations are
grouped by subject as follows. We first recall the general notation used throughout the manuscript.
We then recall the notations linked to the multi-echelon lot-sizing problem with remanufacturing
and lost sales and the notation used for describing the proposed valid inequalities in Part II. Later,
we describe the notation related to the decomposition approaches used in Part III. Finally, notation
related to the risk-averse approach in Part IV is recalled.

General notation

Basis notation

T denotes the number of time periods in the planning horizon.
Σ denotes the number of decision stages in the stochastic process.
S denotes the set of stages of the stochastic process, i.e., S = {1, . . . ,Σ}.
T denotes the set of time periods, i.e, T = {1, . . . , T}.
T σ denotes the set of time periods belonging to stage σ ∈ S.
ξσ denotes a realization of the stochastic process at stage σ ∈ S.
ξ[σ] denotes a sequence of realizations of the stochastic process from stage 1 up to stage σ ∈ S.
ξ[σ′,σ] denotes a sequence of realizations of the stochastic process from stage σ′ up to stage

σ ∈ S.
ξ[σ,σ′] denotes the sequence of random data vectors corresponding to stages σ through σ′

Scenario tree related notation

V denotes a set of nodes in a scenario tree.
V t denotes the set of nodes belonging to time period t ∈ T .
Vσ denotes the set of nodes belonging to stage σ ∈ S.
V(n) denotes the set of nodes belonging to the sub-tree of V rooted in n.
n denotes a node in the scenario tree, i.e. n ∈ V .
ρn denotes the probability associated with the state represented by node n.
ρnm denotes the transition probability associated with the transition from the state represented

by node n to node m.
tn denotes the time period t ∈ T of node n ∈ V .
σn denotes the stage σ ∈ S of node n ∈ V .
an denotes the predecessor node of a node n in the scenario tree.
C(n) denotes the set of immediate children of node n ∈ V .
P(n,m) denotes the set of nodes on the path from node n to node m.
cnm denotes a the immediate successor of node n belonging to the set P(n,m).
L(n) denotes the set of leaf nodes belonging to V(n).
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Multi-echelon lot-sizing problem related notation

Production system related notation
i denotes an item or part of a returned product.
I denotes the number of part involved in one product
I denotes the set of all products involved in the remanufacturing production system.
Ir denotes the set of recoverable parts provided by the disassembly process.
Is denotes the set of serviceable parts provided by the refurbishing processes.
J denotes the set of production processes.
$i denotes the number of parts i embedded in a returned/remanufactured product.

Stochastic parameters
dn denotes the customers’ demand at node n ∈ V .
dnm denotes the sum of demand in the path from node n to node m.
fn denotes the setup cost in a node n ∈ V .
gn denotes the unit cost for discarding the unrecoverable parts obtained while disassembling

one unit of returned product at node n ∈ V .
hn denotes the inventory holding cost in a node n ∈ V .
ehn denotes the unit echelon inventory holding cost in a node n ∈ V .
qn denotes the unit cost for discarding a recoverable part or a returned product at node

n ∈ V .
rn denotes the quantity of used products (returns) collected at node n ∈ V
ln denotes the unit lost-sales penalty cost at node n ∈ V
δni denotes the proportion of recoverable parts i ∈ Ir obtained by disassembling one unit of

returned product at node n ∈ V .

Decision Variables
En
i denotes a echelon stock decision variable for items i ∈ I at node n ∈ V .

Sni denotes a decision variable determining the inventory level at node n ∈ V .
Ln denotes a decision variable determining the lost sales of remanufactured products at node

n ∈ V .
Qn
i denotes a decision variable determining the quantity discarded of item i ∈ Ir ∪ {0} at

node n ∈ V .
Xn
p denotes a decision variable determining the quantity to be produced for each process

p ∈ J at node n ∈ V .
Y n
p denotes a binary decision variable that takes the value 1 is a setup cost must be paid at

node n ∈ V for each process p ∈ J .
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Valid inequalities related notation
dnm denotes the sum of demand in the path from node n to node m.
S denotes the subset of nodes in a path inequality, i.e., S ⊆ P(1, n) for a node n ∈ V .
S̄ denotes the subset of node in P(1, `) \S for a node n ∈ V .
U denotes a subset of node from a sub-tree rooted in k, i.e., U ⊂ V(k)
Uk,` denotes a subset of node from the path between a node c`k and `, i.e., Uc`

k
,` ⊂ P(k, `)

O denotes a subset of node in a tree inequality, i.e., O ⊆ V .
SO denotes the subset of time periods in a tree inequality, i.e., S ⊆ ∪n∈OP(1, n).
¯s denotes a sequence {¯s1, ..., ¯s|L(k)|} of leaf nodes belonging to L(k) in increasing order of

cumulative demand ∑µ∈Uk,` d
µ: ∑µ∈Uk,¯s1 d

µ ≤ ... ≤ ∑µ∈Uk,¯sι d
µ ≤ ... ≤ ∑µ∈Uk,¯s|L(k)|

dµ.
∆n(O) denotes the ∑mo∈O∩V(n)(d1mo − d1mo−1).
χ denotes a set of constraints
φ denotes the coefficient associated with the decision variable Y
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Decomposition approach related notation
SDDiP algorithm related notation

W denotes the number of sampled scenarios in the forward step.
Ωυ denotes the set of sampled scenarios in the forward step of the SDDiP algorithm at

iteration υ.
ωwυ denotes a sampled scenario in Ωυ at iteration υ
P n denotes a sub-problem defined by the constraint and cost parameters at node n
Qn(·) denotes the optimal objective value of a problem Pn(·) for a node n ∈ V .
Qn(·) denotes the expected cost-to-go function at a node n ∈ V and it is defined as Qn(·) =∑

m∈C(n) ρ
nmQm(·).

Qσ(·) denotes the expected cost-to-go function at stage σ ∈ S.
ψσυ (·) denotes the approximation of the expected cost-to-go function available at iteration υ for

stage σ.
Qn
υ(·) denotes the lower bound of a problem Pn(·) for a node n ∈ V with an approximate

cost-to-function ψσυ (·).
νnυ denotes a cut coefficient obtained from solving a problem at node n at iteration υ.
πnυ denotes a Lagrangian multiplier from solving a Lagrangian relaxation of problem P n

υ at
iteration υ

B denotes the number of values used to generate a binary approximation of a continuous
decision variable.

B denotes the set of possible values to generate a binary approximation of a continuous
decision variable.

Sub-tree-based decomposition

Γ denotes the number of macro-stages.
G denotes a set of macro-stage, which corresponds a partition of the set of decision stages

S.
γ denotes a specific macro-stage in G.
S(γ) denotes a number of consecutive stages denoted for macro-stage γ ∈ G.
t(γ) denotes the first time period belonging to macro-stage γ.
t′(γ) denotes the last time period belonging to macro-stage γ.
η denotes the root node of a sub-tree defined by the set of nodes Wη.
Wη denotes the set of nodes of the sub-tree V(η) belonging to macro-stage γ, i.e., Wη =

∪t=t(γ),...,t′(γ)V t ∩ V(η).
L(η) denotes the set of leaf nodes of sub-tree Wη, i.e, L(η) =Wη ∩ V t′(γ).
f denotes the set of sub-tree root nodes induced by G, i.e, f = ∪γ∈GV t(γ).

Decision Variables
Unβ denotes a binary decision variable used to compute the binary approximation of a contin-

uous decision variable Sn, for β ∈ B.
Un denotes a vector of binary decision variable used to compute the binary approximation of

a continuous decision variable Sn.
Ûn denotes an auxiliary continuous decision variable used to represent the value of a parent

state decision variable U .
Zn,β is an auxiliary decision variable representing the value of the state variable at the parent

node of n.
θ denotes a decision variable that takes the minimum value among a set of available linear

supporting hyper-planes.
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Risk-averse related notation
Ω denotes the sample space, i.e. the set of all possible outcomes of the random experiment.
F denotes a sigma-algebra over Ω, i.e. a collection of events or subsets of Ω.
Fσ ⊂ F denotes the subset of events observable at stage σ.
P denotes a probability function assigning to each event in F , i.e., a real number in [0; 1]

called its probability.
Z denotes a random variable, i.e. a F -measurable function from Ω to the real numbers

R associating a real value to each possible outcome of the random experiment.
Zσ denotes the space of Fσ-measurable functions from Ω to R.
% denotes a risk measure, i.e., a mapping from a set of random variables to the real

numbers.
%Zσ |Zσ−1 denotes a mapping from the space of Fσ-measurable functions to the space of Fσ−1-

measurable functions defined with respect to a given realization Z[σ−1] = (Z1, . . . , Zσ−1)
of the stochastic process up to stage σ − 1.

F denotes a multi-stage risk function defined as a mapping from Z to R which can be
used to measure the risk associated to a stochastic process.

Fξ̂[σ] denotes a conditional multi-period risk function.
FZ denotes the cumulative probability distribution of a random variable Z.
VaRα denotes the Value-at-Risk at level α and corresponds to the α-percentile of the proba-

bility distribution of Z.
xσ denotes a decision made in stage σ
Xσ denotes the feasibility set in stage σ, which may depend on the decisions x[σ−1] =

[x1, x2, ..., xσ−1] made up to the previous stage as well as on the uncertainty ξ[σ] =
[ξ1, ξ2, ..., ξσ] observed up to stage σ.

fσ denotes a function from Rnσ × Rmσ to R that computes the cost of decision xσ given
the observed uncertainty ξσ(ω) in that stage.

(K) denotes a generic risk-averse multi-stage stochastic optimization problem.
(Kσ) denotes a generic risk-averse multi-stage stochastic optimization problem for a given

stage σ, when all the information relative to the previous stages, i.e. the past decisions
x̂[σ−1] and the past observations up to stage σ, ξ̂[σ], is known.

Decision Variables
ϕ denotes a decision variable determining the risk level or value-at-risk for confidence level

α.
V ` denotes a decision variable determining the risk of scenario ` ∈ L(1), i.e. overcost of

scenario ` with respect to the value-at-risk ϕ.
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