
HAL Id: tel-04144552
https://theses.hal.science/tel-04144552

Submitted on 28 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online learning at the edge
Paul Youssef

To cite this version:
Paul Youssef. Online learning at the edge. Machine Learning [cs.LG]. Université Grenoble Alpes
[2020-..], 2023. English. �NNT : 2023GRALM007�. �tel-04144552�

https://theses.hal.science/tel-04144552
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Apprentissage en ligne pour le edge computing

Online learning at the edge

Présentée par :

Paul YOUSSEF
Direction de thèse :

Denis TRYSTRAM
Professeur des Universités, Grenoble INP

Directeur de thèse

Kim Thang NGUYEN
Professeur des Universités, Grenoble INP

Co-directeur de thèse

Rapporteurs :
OLIVIER BEAUMONT
Directeur de recherche, INRIA CENTRE BORDEAUX SUD-OUEST
GIOVANNI NEGLIA
Directeur de recherche, INRIA -SOPHIA ANTIPOLIS-MEDITERRANEE

Thèse soutenue publiquement le 13 mars 2023, devant le jury composé de :
DENIS TRYSTRAM
Professeur des Universités, GRENOBLE INP

Directeur de thèse

OLIVIER BEAUMONT
Directeur de recherche, INRIA CENTRE BORDEAUX SUD-OUEST

Rapporteur

GIOVANNI NEGLIA
Directeur de recherche, INRIA -SOPHIA ANTIPOLIS-MEDITERRANEE

Rapporteur

FLORENCE FORBES
Directeur de recherche, INRIA CENTRE GRENOBLE-RHONE-ALPES

Présidente

FRANCIS BACH
Directeur de recherche, INRIA CENTRE DE PARIS

Examinateur

DIDIER DONSEZ
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Examinateur

Invités :
KIM THANG NGYEN
Professeur des Universités, GRENOBLE INP

Online Learning At The Edge

Paul Youssef

June 9, 2023

University Grenoble Alpes

Laboratoire d’Informatique de Grenoble (LIG)
Multidisiplinary Institut of Artificial Intelligence (MIAI)

DATAMOVE team

Decentralized Online Learning

Online Learning At The Edge

Paul Youssef

1. Reviewer Olivier Beaumont
Bordeaux 1 University
LaBRI - Laboratoire Bordelais de Recherche en Informatique

2. Reviewer Giovanni Neglia
Côte d’Azur University
INRIA - National Institute for Research in Digital Science and Tech-
nology

Supervisors Nguyen Kim Thang and Denis Trystram

June 9, 2023

Paul Youssef

Online Learning At The Edge

Decentralized Online Learning, June 9, 2023

Reviewers: Olivier Beaumont and Giovanni Neglia

Supervisors: Nguyen Kim Thang and Denis Trystram

University Grenoble Alpes

DATAMOVE team

Multidisiplinary Institut of Artificial Intelligence (MIAI)

Laboratoire d’Informatique de Grenoble (LIG)

700 Av. Centrale

38400 and Saint-Martin-d’Hères

Supported by the Multidisciplinary Institute in Artificial Intelligence, Univ.Grenoble Alpes, France (ANR-

19-P3IA-0003).

Abstract
Due to the proliferation of IoT devices, the volume of data produced is becoming challenging
to transfer, store, and process in remote centralized architectures. Hence, machine learning at
the edge has recently attracted considerable interest. The goal is to process the data as close
to its source. We typically have multiple agents collaborating via peer-to-peer communication
to optimize an aggregate of loss functions with components spread over a connected network.
Many decentralized optimization algorithms, both projection and projection-free algorithms with
theoretical guarantees have been proposed in the literature, focusing mainly on offline settings.
However, for most real-world machine learning problems, the data is often revealed online, for
example, in the case of recommender systems. Therefore, we study decentralized optimization
within online settings.
We propose online decentralized Frank-Wolfe algorithms that use stochastic gradient estimates,
which achieve an asymptotically tight regret guarantee of O

(√
T
)

where T is a given time
horizon. The algorithms differ in their communication protocol, one has synchronized communi-
cation and the second has a random walk approach. Furthermore, we compare these algorithms’
performance for optimizing the online multiclass logistic regression model on real-world stan-
dard image datasets (MNIST, CIFAR10) with centralized online algorithms and the previously
best-known decentralized online algorithms. We show proof of concept by deploying the above
experiment on a cluster of devices with limited resources, namely Raspberry Pi. Finally, by
optimizing a long short-term memory neural network model, we discuss their usefulness in
typical edge applications: temperature forecasting in smart buildings.

Abstract (french)
En raison de la prolifération des dispositifs IoT, le volume de données produites devient difficile
à transférer, à stocker et à traiter dans des architectures centralisées à distance. Par conséquent,
l’apprentissage automatique dans le Edge a récemment suscité un intérêt considérable. L’objectif
est de traiter les données au plus près de leur source. En général, plusieurs agents collaborent
via une communication de pair à pair pour optimiser un agrégat de fonctions de perte dont
les composants sont répartis sur un réseau connecté. De nombreux algorithmes d’optimisation
décentralisés, à la fois des algorithmes avec et sans projection avec des garanties théoriques,
ont été proposés dans la littérature, en se concentrant principalement sur des approches offline.
Cependant, pour la plupart des problèmes d’apprentissage automatique du monde réel, les
données sont souvent révélées de manière online, par exemple, dans le cas des systèmes de
recommandation. Par conséquent, nous étudions l’optimisation décentralisée dans des contextes
online. Nous proposons des algorithmes de Frank-Wolfe décentralisés en ligne qui utilisent
des estimations de gradient stochastiques et qui garantissent un regret asymptotiquement de
O
(√

T
)
, où T est un horizon temporel donné.

v

Acknowledgement

First and foremost, I extend my deepest gratitude to my co-supervisors, Denis Trystram and
Nguyen Kim Thang. Their guidance, mentorship, and unwavering support have been instrumen-
tal in my personal and academic growth.

Denis Trystram, your consistent support and teachings have shaped me into not just a better
researcher, but a more conscientious and understanding individual. Your insights into the ethical
issues surrounding our ecological situation have enriched my worldview and instilled a greater
sense of responsibility within me. I offer my heartfelt thanks for your exceptional teachings and
dedication.

Nguyen Kim Thang, your exceptional availability and willingness to explain complex technical
matters, despite a packed schedule, is a testament to your generosity and profound expertise.
Your youthful mindset and effective teaching methods have made the learning process both
insightful and engaging. I am deeply honored to have been under your guidance and highly
appreciate your unwavering support.

I wish to express my sincere thanks to the esteemed jury members and reviewers: Giovanni
Neglia, Olivier Beaumont, Francis Bach, Florence Forbes, and Didier Donsez. Your insights,
meticulous feedback, and diligent contributions have significantly enriched this thesis.

Special recognition goes to Giovanni Neglia and Olivier Beaumont, who also served as reviewers.
Your critical assessment and constructive suggestions have significantly contributed to refining
and enhancing this work.

Giovanni Neglia, in particular, deserves special mention for his exceptional contributions in
providing constructive feedback that greatly enhanced the understanding of my manuscript.
His insightful suggestions and attention to detail were invaluable in improving the clarity and
coherence of my work. Additionally, Giovanni’s meticulous proofreading ensured the accuracy
and correctness of the final document. I am deeply grateful for his expertise and dedication,
which significantly contributed to refining and enhancing this thesis.

vii

I am grateful for the funding provided by the Multidisciplinary Institute of Artificial Intelligence
(MIAI) for this research. Their support has been essential in advancing my studies and con-
tributing to the field of artificial intelligence. I appreciate their belief in my potential and their
investment in my academic journey.

My collaborators, Abhinav Srivastav, Tuan Ahn Nguyen, and Angan Mitra, deserve a special
mention.

Tuan Ahn Nguyen, your consistent support, generosity, and light-hearted demeanor have been
truly admirable. Your readiness to assist in all circumstances made you a much-valued collabora-
tor and friend. Your jovial nature and easy-going personality always brought an aura of warmth
and reassurance, transforming any work-related stress into moments of joy and learning. You
made the journey significantly more enjoyable and nurturing, and for this, I am profoundly
grateful.

Abhinav Srivastav, your nurturing guidance and altruistic nature have been a source of comfort
and encouragement throughout this journey. Although we haven’t had the opportunity to meet
face-to-face, I look forward to doing so soon.

Angan Mitra, your energetic personality and ability to bring joy into any situation have provided
much-needed relief during our most challenging times. I extend my wishes for your success and
fulfillment in pursuing your wild aspirations.

Enikő Kevi, you have been a beacon of support, both academically and personally. Your un-
wavering willingness to assist in any way possible, as well as your companionship, have left a
lasting impact on my life. Sharing an office, a desk, and countless memorable moments with
you, transformed our professional association into a cherished friendship. You’ve enriched my
journey in more ways than words can express. As you embark on your own path, I hope all the
best for you and am confident that you will illuminate any endeavor you undertake with your
brilliance.

I would like to extend my heartfelt thanks to Etienne Dublé for his indispensable assistance with
the WalT platform. Etienne’s guidance, expertise, and provision of Raspberry Pi devices were
instrumental in the success of my research. He generously dedicated his time and knowledge to
help me overcome networking issues, ensuring the smooth operation of the platform. I am truly
grateful for his unwavering support and his significant contributions to my work.

I thoroughly enjoyed working with David Emukpere and Jizong Zhan during their time as interns.
Their dedication, enthusiasm, and willingness to learn were evident in their work. They both

viii

provided assistance that was instrumental to the success of my project. I am grateful for their
efforts and the positive energy they brought. I sincerely hope you achieve the careers you aspire
to and find fulfillment and success in your future endeavors.

I would like to express my deep appreciation for Annie Simon, whose unique ability to resolve
administrative problems has been priceless. Our philosophical discussions have added depth and
engagement to our interactions.

I express my heartfelt gratitude to my colleagues at Datamove and the Polaris team for cultivat-
ing an engaging and encouraging atmosphere that has significantly enhanced my experience
throughout my doctoral pursuit. Additionally, I am grateful for the camaraderie that developed
with my office mates, who have become cherished friends along this journey.

To the coinche players, particularly Vincent Fagnon, thank you for the delightful games that have
provided much-needed relaxation amidst research rigor.

I would also like to thank Tuan Ahn Nguyen, Enikő Kevi, Mathilde Jay, and all others who helped
organize my defense and the ensuing celebration (pot). I am also immensely grateful to all those
who participated in my farewell gift. Your thoughtfulness truly touched me, and I feel fortunate
to have had the opportunity to meet each one of you. I sincerely wish you all the best in your
future endeavors.

I extend my sincere thanks to my friends and family who have stood by me through this
journey. My brother, Pierre, deserves special mention for traveling to Grenoble to help with the
organization of my thesis celebration. His support and assistance during this crucial time have
been invaluable.

To my parents, Joseph Youssef and Mona Chedid, and to the entirety of my family - your
unconditional love, understanding, and patience throughout this arduous journey have been
my pillars of strength. Each one of you, in your unique way, has contributed to the person I am
today and the achievement we are celebrating. You have instilled in me a love for learning and
an unwavering faith in my abilities. This achievement is as much yours as it is mine.

Despite my sincere desire to express gratitude to all those who have supported me, the extensive
list of individuals deserving recognition necessitates a difficult decision. Countless names come
to mind, each deserving of heartfelt appreciation. However, in the interest of brevity and the
limits of this acknowledgment section, I must reluctantly bring this list to a close. Please know
that even if your name isn’t mentioned explicitly, your contributions have not gone unnoticed,

ix

and I am truly grateful for the impact you have made on my life and this thesis. After all, if I
continue, this thesis might turn into an encyclopedic masterpiece of acknowledgments!

x

Contents

1 Introduction 1
1.1 Edge computing paradigm . 1
1.2 Classical machine learning . 2

1.2.1 Settings . 2
1.2.2 Offline learning algorithms . 3

1.3 Online machine learning . 5
1.3.1 Online settings . 5
1.3.2 Online algorithms . 6

1.4 Decentralized machine learning . 7
1.4.1 Decentralized optimization settings . 7

1.5 Decentralized online machine learning at the edge 9
1.6 Problem statement and preliminaries . 10

1.6.1 Distributed environment . 10
1.6.2 Online decision-making in distributed environment 10

1.7 Contributions . 13
1.7.1 A decentralized online algorithm with tight regret guarantee (DMFW) . . 13
1.7.2 A random walk walk approach (RWMFW) 17
1.7.3 Experimental contributions . 18
1.7.4 Positioning of the proposed algorithms (DMFW, SDMFW and RWMFW) . 19

2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex
Optimization 23
2.1 Introduction . 23

2.1.1 Contributions . 23
2.2 Conditional Gradient based Algorithms for Decentralized Online Convex Optimiza-

tion . 24
2.2.1 An Algorithm with Exact Gradients. 24
2.2.2 Extension to Non-Smooth Functions . 27
2.2.3 An Algorithm with Stochastic Gradient Estimates 29
2.2.4 Removing the knowledge of T . 30

2.3 Analysis in Section 2.2 . 31

xi

2.4 Analysis in Section 2.2.3 . 46

3 Meta Frank Wolfe on a Random Walk Journey 53
3.1 Introduction . 53
3.2 Uniform Random Walk Meta Frank Wolfe . 53
3.3 Proof of Theorem 4 . 57

4 Experiments and Applications 65
4.1 Decentralized Online Multiclass Logistic Regression 65

4.1.1 Settings of Decentralized Online multiclass Logistic Regression 65
4.1.2 Simulated SDMFW . 66
4.1.3 Random Walk Approach of the Decentralized Online Multiclass Logistic

Regression . 73
4.1.4 Deployment of the online multi-class logistic regression on devices with

limited resources (Raspberry Pi) . 74
4.2 An IoT application: Temperature Forecasting Experiments on Thailand’s Smart

Building Dataset . 82
4.2.1 Settings and formulation . 82
4.2.2 Observation and discussion . 83

5 Conclusion 87
5.1 Summary . 87
5.2 Perspectives . 88

5.2.1 Different Classes of Functions . 88
5.2.2 Decentralized optimization with dynamic graphs 88
5.2.3 Experiments in edge computing applications 89
5.2.4 Improving the Random Walk Meta Frank Wolfe Algorithm 89

5.3 Exploring the benefits and implications of bringing machine learning to the edge 90

Bibliography 93

xii

1Introduction

1.1 Edge computing paradigm

In many modern applications, devices rely on data processing centers to provide services beyond
their technical capabilities. Typically, data is collected near the generating devices, such as IoT
sensors, but due to the low computation and storage capacity of these devices, the data must
be transferred over a network to be processed in a remote data processing center. The results
of these computations are then transmitted back through the network to the original devices.
However, this paradigm has several significant drawbacks. Firstly, it incurs high communication
costs and energy usage. For example, data center traffic accounted for over three quarters of
global internet traffic, with a significant portion of this traffic being attributed to data transfers
between data centers and devices. Additionally, data transfers can require a large amount of
energy, with estimates ranging from hundreds of kilojoules per gigabyte for short-range transfers
to thousands of kilojoules per gigabyte for longer-range transfers. Secondly, this paradigm is
limited in its ability to handle real-time data, as frequent data transfers can easily overwhelm
the system, leading to delays and increased latency. Finally, IoT devices become useless if they
lose their connection to the data processing centers, which can be a major issue for applications
that rely on real-time data or require continuous operation.

To address these issues, the distributed paradigm of edge computing has gained significant
attention in recent years. Edge computing aims to bring computation as close as possible to
the location where data is generated, thus eliminating the aforementioned drawbacks. Edge
applications rely on dispersed data on edge devices, which makes data processing more secure
and resilient. One of the main challenges of edge computing is the limited storage capacity
and computing power of edge devices. For example, many IoT devices have storage capacities
in the range of tens to hundreds of megabytes and processing capabilities limited to simple
operations. To enable the implementation of edge applications, it is important to follow the
following policies:

• Design low complex algorithms: Edge devices have limited storage capacity and computing
power. Using algorithms with high complexity can quickly exhaust the available resources,
leading to poor performance or even failure.

1

• Limit communications: Communications should be minimized in size, distance, and
number. Reducing the amount of data transmitted and the distance it must travel can help
to minimize energy usage and improve real-time performance.

• Ensure privacy by design: Edge devices should retain their personal data (i.e. edge
devices should not send their personal data to any other entity). Ensuring that personal
data remains on the edge device can help to protect privacy and reduce the risk of data
breaches.

In the following sections, we will introduce various machine learning settings and algorithms to
find the best fitting settings for the edge computing paradigm.

1.2 Classical machine learning

1.2.1 Settings

Based on the assumption that successful inferences from the past are likely to stay true in the
future, machine learning algorithms build a model using samples, known as training data. The
models capture the general patterns within the training data, exploiting the past to suggest
predictions or decisions. Machine learning problem statements are usually described as optimiza-
tion problems. Hence, the field of machine learning has a large intersection with the field of
optimization. You can read about the history of numerical optimization in the context of machine
learning in [BCN18]. A simple example is fitting the model’s parameters using a maximum
likelihood estimator. Given a set of data points, one needs to estimate the model’s parameters
through risk minimization [Vap98].

Formally, a modelMx is a multidimensional function with parameters x. The unknown future
that we want to predict is an oracle function Φ. Given an input e, the output ofMx(e) should be
as close as possible to the ground truth Φ(e). We measure the closeness of the model’s outputs
to the ground truth with a criteria function δ. The training data Btrain consists of past events,
therefore we know the outputs of Φ(e) for all e ∈ Btrain. During the training process, we want to
set the model’s parameters to closely estimate Φ. To measure the model’s closeness, we define a
loss/cost function f dependant on the training data and the criteria function δ as follows

f(x) = 1
|Btrain|

∑
e∈Btrain

δ (Mx(e),Φ(e)) . (1.1)

2 Chapter 1 Introduction

Adding constraints on a model’s parameters can be an effective method for improving the model’s
performance and prediction accuracy in machine learning. These constraints may arise naturally
from the problem being solved, or they may be chosen to promote certain desirable properties in
the model. Selecting and applying constraints carefully leads to the creation of more effective
and reliable machine learning models.

In other words, the goal of the learning algorithm is to find the best parameters x∗ within a
constraint set K, by minimizing the cost function f . This is expressed mathematically as:

x∗ ∈ arg min
x∈K

f(x). (1.2)

Additionally, it is important to note that the choice of criteria function δ and cost function f can
significantly impact the performance of the machine learning model. These functions should be
carefully chosen based on the specific goals and characteristics of the problem. For example, if
the goal is to minimize the average error between the model’s output and the ground truth, the
mean squared error function could be used as the costfunction. On the other hand, if the goal is
to maximize the probability of correct predictions, the negative log likelihood function could be
used as the cost function.

It is also important to thoroughly test the trained model on a separate set of testing data to ensure
that it is accurate enough for deployment. This helps to prevent overfitting, or the tendency of
the model to perform well on the training data but poorly on new data.

In conclusion, classical machine learning involves choosing and optimizing a model to make
predictions or decisions based on past data, using a variety of algorithms and carefully chosen
criteria and cost functions. Proper testing and evaluation of the trained model is crucial for
ensuring its accuracy and effectiveness.

1.2.2 Offline learning algorithms

This section introduces two pillars of learning algorithms :

1. Gradient Descent (GD): Gradient descent is the most popular algorithm in the context
of machine learning. Augustin-Louis Cauchy first conceived the algorithm in 1847 to
solve unconstrained optimization problems. Intuitively, GD iteratively updates the model’s
parameters according to the objective cost function’s gradient, following the slope of the

1.2 Classical machine learning 3

objective function f . Formally, let xℓ be the parameters at iteration ℓ, GD updates xℓ as
follows,

xℓ+1 ← xℓ − ηℓ∇f(xℓ) (1.3)

where ∇f(xℓ) is the gradient of f at xℓ and ηℓ is the step size of the update.

Algorithms must ensure the feasibility of all iterates xℓ when we consider constrained
optimization. A natural extension of GD is the Projected Gradient Descent algorithm (PGD)
in which each iterate is projected onto the feasible set K using the projection denoted by PK

as follows :
xℓ+1 ← PK [xℓ − ηℓ∇f(xℓ)] (1.4)

Note that the choice of projection PK is crucial to the performance of the algorithm both in
terms of computation and quality of convergence.

Recall that computing the gradient ∇f of the function f requires the execution of a sum
scaled by the size of the training set Btrain (see equation 1.1). However, in large-scale
machine learning problems in which Btrain is very large, evaluating the gradient ∇f
becomes expensive. To improve the computational cost of each iteration, an extension
to GD called Stochastic Gradient Descent (SGD) was proposed by [RM51]. Instead of
naively computing the gradient, SGD samples a subset B̃ of Btrain at each iteration, then
computes a stochastic gradient estimate ∇̃f with the sample B̃. Many other variants have
been proposed and analyzed with varying contexts (see overview [BCN18]).

2. Frank-Wolfe (FW): The Frank-Wolfe algorithm, also known as conditional gradient method,
is one of the simplest and earliest proposed algorithms to tackle constrained optimization
problems, first introduced in [FW56] and more recently revisited by [Jag13]. Like the
Projected-SGD algorithm, FW is an approximation iterative process as well. Given a
current iterate xℓ, the algorithm considers the linearization of the objective function f

(equation 1.5), then updates the iterates following the direction of a minimizer vℓ of that
linear function using a convex combination (equation 1.6):

vℓ ← arg min
v∈K

⟨v,∇f(xℓ)⟩ (1.5)

xℓ+1 ← (1− ηℓ)xℓ + ηℓvℓ (1.6)

Its success comes from its good scalability and its property to maintain its iterates xk in the
feasible set K by using linear optimizers and convex combinations instead of projections.
(see [Cla10; Jag11; Bra+22] for an overview).

4 Chapter 1 Introduction

1.3 Online machine learning

Context.

In the offline setting, we assume that the chosen model with the training and testing data is a
reliable estimate of the ground truth for the training and test procedure to be practically efficient.
This assumption is based on the idea that the training data is representative of the underlying
distribution of the data, and that the model will generalize well to new, unseen data. However,
this assumption may not always hold true in practice, especially when the data distribution is
constantly changing or when the data is generated by an adversary.

For instance, people are generally consistent with their handwriting over a long period of time,
and thus collecting a sufficient number of diverse handwritten digit images in a large enough
sample can yield training data in which offline learning approaches have proven effective in
recognizing handwritten digits. However, other learning applications may be more susceptible to
changes in the data distribution.

One example is spam filtering, where the learner’s objective is to classify emails as spam or
valid. Because spam emails are often designed to deceive, the data is generated by an adversary
who may attempt to disrupt the learner’s decision-making. In this case, the offline learning
strategy may not be able to maintain its predictive accuracy, as the data distribution is constantly
changing and the model is not able to adapt to these changes. In such scenarios, online machine
learning may be more suitable, as it allows the model to continuously update itself based on new
data and adapt to the uncertainty of the future. This is because online learning allows the model
to continuously learn and adapt to changes in the data distribution, allowing it to maintain its
predictive accuracy over time.

1.3.1 Online settings

In online learning, one needs to design an algorithm that trains a model under the uncertainty of
the future. It can be seen as a process in which a learner tries to make decisions in an evolving
environment. Analogously, the learner plays the role of the online learning algorithm that
iteratively updates the learning model. After each model update, the environment generates data
samples that challenge the model’s accuracy. The online decision making proceeds in repeated
rounds and is described as follows.

Adversarial online settings.

At each round t, the learner has to make an irrevocable decision xt from a given set K while
unaware of its corresponding outcome. Once the learner is committed to his decision, an

1.3 Online machine learning 5

adversary (the environment) generates a batch of data Bt which reveals a cost function f t,
causing the decision maker to suffer the loss f t(xt). We must restrict the choice of loss functions.
The losses chosen by the adversary must lie in some bounded region. Otherwise, the adversary
could scale the function to induce losses that are not recoverable for the learner. Moreover, the
learner’s decisions must lie in a bounded and structured set K.

Regret with hindsight.

Intuitively, an online optimizer aims to improve its decision-making by learning from its past
performance. This translates into a notion of regret that empirically measure the learner’s
performance. In particular, we consider the regret with hindsight, i.e. the difference between
the total cost that the learner has accumulated and that of the best-fixed decision in hindsight.
Formally, given

{
xt
}

t∈1,...,T the learner’s sequence of T decisions, and
{
f t
}

t∈1,...,T the cost
functions chosen by the adversary, we define the regret with hindsight of the decision maker
as:

RT =
T∑

t=1
f t(xt)− min

x∗∈K

T∑
t=1

f t(x∗) (1.7)

We say an online learning algorithm performs well when its regret is sublinear as a function of T ,
i.e. RT ∈ o (T).

1.3.2 Online algorithms

The online decision-making process has emerged as an attractive paradigm in machine learning
for tackling an extensive array of optimization problems to maintain robust solutions under the
uncertainty of the future. This captures many real-world scenarios, including machine learning.
Many machine learning papers studied online optimization (see [Haz16] as a starting point). In
this section, we will introduce the two most famous algorithms :

1. Online Gradient Descent (OGD): Online gradient descent is a straightforward extension
of gradient descent from section 1.2.2 to the general online settings. The algorithm was
first introduced and analyzed in [Zin03]. Intuitively, the online gradient descent algorithm
updates its next decision by following the slope of the previously observed cost function.
Similar to the projected gradient descent, if this decision lies outside the feasible set, the
algorithm projects it back. Formally, given the decision xt at time t and its cost f t(xt),
OGD computes its next decision xt+1 with the following :

xt+1 ← PK
[
xt − ηt∇f t(xt)

]
(1.8)

This simple approach yields sublinear regret. More precisely, the regret is bounded by
O
(√

T
)

where T is the time horizon.

6 Chapter 1 Introduction

2. Online Frank Wolfe : Online Frank Wolfe is inspired by the Frank Wolfe algorithm from
the offline settings described in 1.2.2. However, unlike the extension of gradient descent to
the online settings, a straightforward extension of the Frank Wolfe algorithm is impossible.
The online version of FW was proposed by [HK12]. At each step t, the idea is to apply
the FW step described by equation 1.5 while replacing the function f with a regularized
aggregate sum of all previous cost functions as follows :

vt+1 ← arg min
v∈K

⟨v,
t∑

τ=1
∇f τ (xt) +∇ψ(xt)⟩ (1.9)

where ψ is a regularization function.

1.4 Decentralized machine learning

Context.

Decentralized machine learning focuses on designing and analyzing optimization algorithms that
utilize local computation and communication among interconnected computing nodes without
central coordination. It plays a vital role in a wide variety of applications that arise in the
domain of machine learning [DMP16; WAP18; TLR12], control theory [LV10; Cao+13], signal
processing [Rei+19] and operations research [EB12]. The main motivation behind distributed
computing is when an optimization algorithm running on a single machine does not meet the
required performance. One solution is using multiple machines, decomposing the problem, and
running a decentralized algorithm. This approach is often the only choice for solving extremely
large optimization problems. A simple example in machine learning is the model fitting using a
maximum likelihood estimator. Given a set of data points, one needs to estimate the model’s
parameters through risk minimization [Vap98]. Here, an average of convex local loss functions
defines the global objective, such as square loss or logistic loss associated with each data point
in the set. Due to the large dataset volume, these optimization tasks cannot perform on a
single computing node. Instead, one must choose decentralized solutions that efficiently exploit
computational resources distributed in a connected network. Additionally, local computations
should be light to perform on a single node. This differs from centralized distributed optimization,
where the information from different nodes needs to be sent to a central processing unit.

1.4.1 Decentralized optimization settings

In decentralized settings, we consider n learners, also known as agents. The learners are
connected over a network represented by a graph G = (V, E) where V is a finite set of learners
and E is the set of edges. Each agent i ∈ V is given a machine learning modelM and its personal

1.4 Decentralized machine learning 7

batch of dataset Bi. However, instead of each agent optimizing its model on its local data, they
all share a common objective which is to collaboratively optimize their models as if the union of
all batches B =

⋃
i∈V Bi is stored in one place. Formally, each agent i have only access to a local

function fi defined using its local dataset Bi as follows.

fi(x) =
∑
e∈Bi

δ(Mx(e),Φ(e)) (1.10)

Hence, when all the batches are stored in one place, we would consider F defined by the union
of the batches {Bi}i∈V where F is normalized by the number of agents n as follows.

F (x) = 1
n

∑
e∈B

δ(Mx,Φ(e)) = 1
n

∑
i∈V

fi(x) (1.11)

It is natural to restrict agents’ ability to share sensitive information with others, such as personal
data. Exchanges, on the other hand, are necessary for the optimization procedure. For example,
model updates and function gradients can be exchanged. It should be noted that this does not
ensure complete privacy.

Decentralized objectives.

• Optimize F : In decentralized optimization, agents independently update their local model
with local communication and their local personal data. However, they have the same
objective which is to approach the best model parameter x∗

i that minimizes the objective
function F defined in equation 1.11. Note that the objective function F is the same for all
the agents.

x∗
i ∈ arg min

x∈K
F (x) (1.12)

• Minimize communications : Decentralized training is more efficient than centralized one
when operating on networks with low bandwidth, or high latency [Lia+17; HBJ18]. There-
fore, it is crucial when designing a decentralized algorithm to minimize the number and
the range of its communications. One natural restriction is only to exchange information
with closeness criteria; for instance, one can restrict the range by only allowing exchanges
between direct neighbors.

8 Chapter 1 Introduction

1.5 Decentralized online machine learning at the edge

Recently several studies have embedded machine learning algorithms into low-complex edge
computing devices. Such computing components exchange the parameters of their local models,
and they update their models locally [Che+17; Jin+20]. Training at the edge is also along
the line of federated learning [McM+21; Li+20]. In the latter, offline centralized training, a
star network where a central server is connected to several devices, is the currently dominant
paradigm.

The goal of this thesis is to design robust online learning algorithms directly on edge devices using
a collaborative decentralized approach, with an emphasis on data and communication proximity
and edge devices’ limited resources. We intend to develop optimizers for a decentralized online
learning model. More precisely, we investigate issues at the crossroads of two rapidly expanding
fields, namely, decentralized optimization and online learning.

It is crucial to choose the right machine learning settings to effectively fit the edge computing
paradigm in order to achieve the desired results :

• Edge devices are often connected over a network with high latency and low bandwidth
⇒ With such constraints, decentralized (section 1.4) training is more favorable than
centralized ones. (see [Lia+17; HBJ18])
⇒ It is natural to restrict the devices to communicate locally with the smallest range
possible.

• Edge devices have limited resources
⇒ Online learning (section 1.3) and decentralized learning (section 1.4) are both reliable
approaches that scale the computation with limited storage capacity and computing power.

• Edge applications often deal with dynamic environments
⇒ Dynamic evolving environments heavily motivates the online learning settings.

• Privacy preservation is desirable in edge applications
⇒ Decentralized learning settings do not allow agents to communicate their raw data.

These settings, including decentralized and online learning, are designed to address the unique
constraints and requirements of edge devices, such as limited resources, high latency and low
bandwidth networks, dynamic environments, and the need for privacy preservation. By carefully
selecting the appropriate machine learning settings, edge computing systems can be optimized
for performance, efficiency, and effectiveness.

1.5 Decentralized online machine learning at the edge 9

1.6 Problem statement and preliminaries

This section formalizes the problem statement while introducing useful definitions, notations,
and assumptions.

1.6.1 Distributed environment

We are given a set of n computing units V = {1, . . . , n} = [n], referred as agents (vertices/edge
devices) connected over a network represented by a graph G = (V, E). We assume that the graph
G is connected (i.e. for any i, j ∈ V2, there exists a path between i and j) and undirected (i.e. if
(i, j) ∈ E then (j, i) ∈ E).

1

3

2
4

5

9

6

7

8

Fig. 1.1: In the graph G with 9 agents, the agent 6 can only send messages to its neighbors (N (6) =
{2, 7, 8}) colored in red.

Agents can only communicate to their neighbors, as illustrated in figure 1.1.
We say that j is a neighbor of i when (i, j) ∈ E . We denote N (i) the set of neighbors of node i in
the graph where i /∈ N (i), and the degree of a node i is deg (i) = |N (i)|.

1.6.2 Online decision-making in distributed environment

The online decision-making process is divided into T rounds, where T is the time horizon. See
figure 1.2 that illustrates this T -round process for each agent.

10 Chapter 1 Introduction

Initialization t = 1

Start round t

Choose xt
i ∈ K

Receive
local cost
f t

i

(a)

(b)
t← t+ 1

Fig. 1.2: Diagram describing an online decision-making process for each agent i ∈ V.

Details on the online decision-making process (Figure 1.2).

A model iterate of size d is described by a vector x ∈ Rd in dimension d. We use boldface letters
(e.g. x) to represent vectors. We denote xt

i as the decision vector of agent i at time step t. We
are given a set K ⊆ Rd that represents the constraint set of the optimization. We assume that the
set K is

• convex : A set K ⊆ Rd is convex if, for all x,y ∈ K2, the line segment between x and y is
in K. In other words, let z = αx + (1− α)y where α ∈ [0, 1], if (x,y) ∈ K2 then z ∈ K.

and
• compact : The constraint set K is a bounded and closed convex set. We use the Euclidean

norm ∥ · ∥ and the diameter of the convex domain K is defined as D = supx,y∈K ∥x− y∥.

[(a) in Figure 1.2] At the start of round t, the agent i already observed f1
i , . . . , f

t−1
i . With the

help of past observations and by communicating with its neighbors, the agent i computes a
decision xt

i.
[(b) in Figure 1.2] Once the agent i commits to its decision, a private convex function f t

i :
K → R is revealed exclusively to agent i. Consequently, the agent can evaluate its decision’s
local cost f t

i (xt
i). He can also compute the corresponding gradient ∇f t

i (·), and in the case
of stochastic gradient estimates, we denote it as ∇̃f t

i (·).

The global objective of agents vs their partial knowledge.

Although each agent i observes only function f t
i , all the agents are interested in optimizing the

1.6 Problem statement and preliminaries 11

same objective function at time t, which is the normalized aggregated sum of all local functions
defined as F t(·) = 1

n

∑n
i=1 f

t
i (·). Typically, f t

i are functions defined on an agent’s local batch
of data received at time t, and F t is the function defined on the union of all the batches. It is
important to note that each agent can only observe its own local function and does not fully
observe or get access to its objective function in the optimization process. We still require the
decision vectors to be in the same constraint set denoted as K.

The objective is to minimize the total cost via local communication where each agent i ∈ V can
only communicate with its immediate neighbors, i.e., adjacent agents in G. We say an algorithm
is R(T)-regret if

T∑
t=1

F t(xt
i)−min

x∈K

T∑
t=1

F t(x) ≤ R(T) ∀1 ≤ i ≤ n.

Intuitively, we look for an algorithm where every agent, with only local information exchange, has
a regret R(T) = o(T) compared to the best solution in hindsight, which has the full information
overall functions f t

i for 1 ≤ i ≤ n at every time t.

Assumptions on the feedback functions.

For the theoretical analysis, we assume that the objective functions are convex. Additionally, our
analysis requires lipschitzness and smoothness.

Lipschitzness : A function f is G-Lipschitz with respect to the ℓ2-norm that is, x,y ∈ K, |f(x)− f(y)| ≤
G∥x− y∥.

Smoothness : A function f is β-smooth with respect to the ℓ2-norm that is ∀x,y ∈ K, f(y) ≤
f(x) + ⟨∇f(x),y − x⟩+ (β/2)∥y − x∥2 or equivalently ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

Indexing in Decentralized Online Optimization.

In decentralized online optimization algorithms, there are three levels of indexing used to keep
track of different components. The first level of indexing is related to the decentralization aspect
of the problem, where i is used as an index to represent the model of agent i with xi and the
function of agent i with fi. The second level of indexing is related to the online nature of the
problem, where t is used as an index to represent different rounds of the algorithm, where agent
i makes a decision xt

i and receives the loss function f t
i , running from 1 to T . Finally, the third

level of indexing is related to the iterative nature of the algorithm, where ℓ is used as an index to
represent different iterations within each round, where agent i updates its decision xt

i,ℓ, running
from 1 to L.

12 Chapter 1 Introduction

Tab. 1.1: Summary of notations

x ∈ Rd we use lowercase bold font to indicate vectors
A ∈ Rp×q we use UPPERCASE bold font to indicate matrices
K ⊆ Rd the optimization constraint set
G = (V, E) the graph with the set of nodes/agents V = [n] = {1, . . . , n} and edges

E
N (i) the set of neighbors of agent i in the graph G
deg (i) the number of neighbors of agent i in the graph G
n the number of nodes/agents
d the dimension/size of the model
T the time horizon, meaning the number of online rounds
f t

i the local function of agent i at round t
F t the aggregated normalized sum of all local functions : F t = 1

n

∑n
i=1 f

t
i

RT or R(T) the regret with hindsight of an online algorithm running for T rounds
∇f(x) the gradient of the function f at x

∇̃f(x) a stochastic estimate of the gradient of the function f at x

G the Lipschitz constant
β the smoothness constant
Mx(e) the output of the model when given input e
Φ(e) the ground truth output for input e.

1.7 Contributions

This thesis aims to propose decentralized online convex optimization algorithms with tight
theoretical regret bounds and conducts experimental studies within the desired constraints of
the edge computing paradigm.

1.7.1 A decentralized online algorithm with tight regret guarantee
(DMFW)

We first present in chapter 2 an online algorithm for decentralized online convex optimization
that uses stochastic gradient estimates and achieves an asymptotically tight regret bound. Our
algorithm is inspired by the Meta Frank-Wolfe (MFW) algorithm in the (centralized) online setting
and the Decentralized Frank-Wolfe (DFW) algorithm in the decentralized (offline) setting.

Meta Frank Wolfe (Centralized Online Settings) [CHK18].

1.7 Contributions 13

The MFW algorithm, introduced by Chen et al. [CHK18] in the context of online convex and DR-
submodular (Diminishing Returns-submodular) optimization, generalizes the classic Frank-Wolfe
algorithm to an online version where offline linear minimization is replaced by online ones. MFW
uses the concept of meta-actions first introduced in [SG08]. Meta-actions allow the conversion of
offline algorithms into online ones. In MFW, we use meta-actions to mimic the process of the
(offline) FW algorithm in an online setting. Recall that in online settings, f t remains unknown
until the algorithm commits to a decision xt at round t. As a thought experiment, suppose that
we are given the sequence of functions

{
f t
}

t∈[T] in advance to optimize. Therefore, we could
construct the normalized aggregate function f = 1

T

∑T
t=1 f

t as an offline objective function,
and use the FW algorithm to optimize f . FW requires to compute L linear optimizations (see
equation 1.5) where L is the number of iterations:

v1 ← arg min
v∈K

⟨v,∇f(x1)⟩ , · · · , vL ← arg min
v∈K

⟨v,∇f(xL)⟩ (1.13)

Nevertheless, it is impossible to execute the above sequence 1.13 in online settings because
f t is unknown. Thus, MFW mimics the sequence 1.13 by using L online linear optimizers
{Oℓ}ℓ∈[L], called oracles. The oracles aim to learn in an online fashion to produce vt

ℓ according
to the previously observed sequence of gradients ∇f1(x1

ℓ), . . . ,∇f t(xt−1
ℓ). Thus, we obtain the

following sequence at each online round t :

vt
1 ← output of O1 at round t , · · · , vt

L ← output of OL at round t (1.14)

Using the sequence vt
1, . . . ,v

t
L, we compute the sequence of iterates xt

1, . . . ,x
t
L with the FW

update described in equation 1.6. Once the MFW algorithm commits to its decision xt
L at round

t, the function f t is observed, and we can compute the sequence of gradients
{
∇f t(xt

ℓ)
}

ℓ∈[L],
and feedback the gradients respectively to each L online oracles as linear coefficients:

O1
feedback←−−−−− ∇f t(xt

1) , · · · , OL
feedback←−−−−− ∇f t(xt

L) (1.15)

Formally, each oracle Oℓ yields a sequence of decisions v1
ℓ , . . . ,v

T
ℓ in an online fashion while

minimizing the regret RT
Oℓ

defined as follows :

RT
Oℓ

=
T∑

t=1
⟨vt

ℓ,∇f t(xt
ℓ)⟩ − min

v∗
ℓ

∈K

T∑
t=1
⟨v∗

ℓ ,∇f t(xt
ℓ)⟩ (1.16)

Decentralized Frank Wolfe (Decentralized Offline Settings) [Wai+17].

The DFW algorithm, given by [Wai+17], solves (offline) decentralized convex and non-convex
problems. Recall that in decentralized optimization, the aim is to optimize a function F which is

14 Chapter 1 Introduction

spread through a network into n smaller component {fi}i∈[n]. In [Wai+17], it is assumed that
the objective function F is of the form

F (·) = 1
n

n∑
i=1

fi(·) (1.17)

DFW extends the classic Frank-Wolfe algorithm in such a way that at every step, each agent
computes the update direction using local information aggregating from its neighbors (similar to
[Joh+08; SJ16]). Let the graph G = (V, E) be the topology of the network with n agents, DFW
builds a matrix W ∈ Rn×n such that

• W is a doubly stochastic matrix:

n∑
i=1

Wij =
n∑

j=1
Wij = 1 with 0 ≤Wij ≤ 1 for all i, j ∈ [n]

• and W is a weighted adjacency matrix of G:Wij = 0 if i and j are not neighbors

0 < Wij ≤ 1 otherwise.

Each agent i uses this matrix W to reach a local consensus with its neighborhood N (i) by
computing in a synchronized fashion a local network average yi,ℓ of their local models xi,ℓ. Recall
that in a decentralized setting, access to the global objective function F is not possible, therefore
DFW uses a gradient-tracking technique (see [Wai+17; QL18; NOS17; DS16]) that computes gi,ℓ

to estimate the gradient ∇F (xi,ℓ). More specifically, each agent i decentralizes the FW iterations
as follows:

FW DFW

vℓ ← arg minv∈K⟨v,∇F (xℓ)⟩
gradient-tracking−−−−−−−−−−→



gi,1 ← ∇fi(yi,1)

di,ℓ ←
∑

j∈N (i) Wij∇gj,ℓ

gi,ℓ+1 ← ∇fi(yi,ℓ+1)−∇fi(yi,ℓ) + di,ℓ

vi,ℓ ← arg minv∈K⟨v, gi,ℓ⟩
(1.18)

where di,ℓ is the local network average that estimates ∇F (xℓ).

1.7 Contributions 15

FW DFW

xℓ+1 ← (1− ηk)xℓ + ηℓvℓ
model- consensus−−−−−−−−−−→

yi,ℓ ←
∑

j∈N (i) Wijxj,ℓ

xi,ℓ+1 ← (1− ηℓ)yi,ℓ + ηℓvi,ℓ

(1.19)

where yi,ℓ is the local network average that estimates xℓ.

Decentralized Meta Frank Wolfe (Decentralized Online Settings).

We combine the ideas of MFW and DFW to design our algorithm. At a high level, we maintain
several oracles that solve online linear optimization problems (for example, online gradient de-
scent, follow-the-perturbed-leader algorithms [Haz16, chapter 5],etc). Each agent i is equipped
with L oracles {Oi,ℓ}ℓ∈[L]. At every round t, each agent i performs L update steps as in the
Frank-Wolfe algorithm where every update vector is constructed by combining the outputs of
online oracles

{
vt

i,ℓ

}
ℓ∈[L]

and the current iterates of its neighbors
{

xt
j,ℓ

}
j∈N (i)

:

vt
i,ℓ ← output of Oi,ℓ at round t (similar to MFW, see (1.14))yt
i,ℓ ←

∑
j∈N (i) Wijxt

j,ℓ

xt
i,ℓ+1 ← (1− ηℓ)yt

i,ℓ + ηℓv
t
i,ℓ

(model-consensus from DFW, see (1.19))

After aggregating information from neighbors, each agent subtly computes a sequence of feedback
linear functions with coefficients

{
dt

i,ℓ

}
ℓ∈[L]

using the gradient-tracking technique to its associated

oracle for the subsequent time:


gt

i,1 ← ∇f t
i (xt

i,1)

dt
i,ℓ ←

∑
j∈N (i) Wijgt

i,ℓ

gt
i,ℓ+1 ← ∇f t

i (xt
i,ℓ+1)−∇f t

i (xt
i,ℓ) + dt

i,ℓ (ℓ > 1)

(gradient-tracking from DFW, see (1.18))

Oi,ℓ
feedback←−−−−− dt

i,ℓ (similar to MFW)

The main features of our algorithms are the following.

• They achieve asymptotically tight regret bounds of O
(√

T
)

matching to the optimal regret
bound for online convex optimization even in the centralized setting.

• They have the flexibility to be converted into projection-free. Using projection-free ora-
cles (provided, for instance, by the follow-the-perturbed-leader oracle), the algorithm is

16 Chapter 1 Introduction

projection-free O
(√

T
)
-regret which improves upon the best-known O

(
T

3/4
)

projection-
free the online algorithm in the decentralized setting [Zha+17].

• They are robust to stochastic gradient estimates (note that the one in [Zha+17] requires
exact gradients). To achieve this result, we provide a distributed variance reduction version,
which might be of independent interest to designing algorithms in decentralized online
settings. Moreover, by reducing variance in our algorithms, we can reduce the effect of
data heterogeneity1 closely related to the variance.

Synchronization issues of DMFW.

The DMFW algorithm executes L iterations in each round. Each agent makes L synchronized
exchanges with its direct neighbors in a round. Thus, the number of communications for each
agent i is of order O (deg (i)L) where deg (i) is the degree of i, and the overall number of
communications is of order O (|E|L) where |E| is the number of edges of the given graph.
Moreover, the regret analysis of DMFW depends on the number of iterations. Hence it depends
on the number of synchronized communication in each round. In other words, there is a trade-off
between the quality of prediction and communication complexity.

1.7.2 A random walk walk approach (RWMFW)

Synchronization is a strong property that in some applications we wish to avoid. In chapter 3,
we propose an alternative algorithm, Random Walk Meta Frank Wolfe (RWMFW), keeping most
of the desired features.

Random Walk Meta Frank Wolfe (Decentralized Online Settings).

Inspired by the Random Walk Gradient Descent [SSY18; AR21] in the offline decentralized
settings, instead of exchanging with all neighbors, only one agent communicates with only one of
its neighbors chosen with a uniform probability distribution. Intuitively, instead of the consensus
and gradient-tracking technique of DMFW, RWMFW moves the model in the graph via a random
walk. At each step k of the walk, the visited agent ik updates the model xk with the help of the
corresponding online oracle Ok, and then feedbacks the local gradient ∇f t

i (xk) after observing
its local cost function f t

i .

DMFW vs RWMFW.

To summarize, RWMFW maintains the following features :

1Heterogeneity in stochastic gradient estimates refers to the diversity or non-uniformity in the data being analyzed,
which can lead to high variance in the gradient estimates and negatively impact the optimization process. Variance
reduction techniques help address this issue by reducing the variance of the gradient estimates, resulting in a
more stable and reliable optimization process.

1.7 Contributions 17

• It achieves asymptotically tight regret bounds of O
(√

T
)
, when the length of the walk is

of order O (T).
• It still has the flexibility to be converted into projection-free.

RWMFW brings the following advantages compared to DMFW:

• It has an asynchronous communication protocol.
• Only one agent is active at a given iteration of the algorithm.

However, the convergence of the RWMFW depends on the number of steps of the uniform
random walk for the distribution to reach the uniform stationary distribution, known as the
mixing-time of the Markov chain. Therefore, the advantages and disadvantages of RWMFW over
DMFW depend on the network’s topology. To further illustrate this dependence, consider the
contrast between the mixing time of the complete graph topology and the cycle graph:

• Mixing time of a complete graph of n nodes is 1.
• Mixing time of a cycle graph with n nodes is of order O

(
n2) .

1.7.3 Experimental contributions

Validation of the theoretical results.

We demonstrate the performance of both DMFW and RWMFW for optimizing the online mul-
ticlass logistic regression model on real-world standard image datasets (MNIST,CIFAR10) on
a simulated decentralized environment by comparing with centralized online projection-free
algorithms([Xie+20]). We outperform the best-known decentralized constrained online algo-
rithms (Decentralized Regularized Online Frank Wolfe (DROFW) [Zha+17]) in terms of regret
bounds.

A proof of concept.

In addition, we implemented DMFW on the multiclass logistic regression problem on a physical
network of computing units with limited memory and processing power, specifically Raspberry
Pi 3b+. We demonstrate the algorithms’ scalability and their potential to edge computing
applications.

A smart-building application (Temperature forecasting).

Finally, we conducted an experiment using DMFW to an actual smart-building application by
optimizing non-convex models, more precisely a Long Short-Term Memory (LSTM) artificial
neural network.

18 Chapter 1 Introduction

1.7.4 Positioning of the proposed algorithms (DMFW, SDMFW and
RWMFW)

This section serves to summarize and position the contribution of this thesis. It is first important
to establish that any algorithm for the online convex optimization settings incurs Ω

(√
T
)

regret

in the worst case([Haz16]). In other words, if an algorithm incurs O
(√

T
)

regret then its regret
bound is tight. A summary of our results and previous ones is provided in Table 1.2.

Regret Per round Decentralized Proj-free Stochastic
cost Per round Sync Gradients

communications
OGD O

(√
T
)

O (1) _ _ No Yes
[Zin03]

OFW O
(
T

3/4
)

O (1) _ _ Yes No
[Haz16]

MFW O
(√

T
)

O
(
T

3/2
)

_ _ Yes Yes
[Che+18]
DROFW O

(
T

3/4
)

O (1) O (1) Yes Yes No
[Zha+17] (per node)

DMFW O
(√

T
)

O
(√

T
)

O
(
|E|
√
T
)

Yes Yes No
Chapter 2 (per node)
SDMFW O

(√
T
)

O
(
T

3/2
)

O
(
|E|T 3/2

)
Yes Yes Yes

Chapter 2 (per node)
RWMFW O

(√
T
)

O (T) O (T) No Yes No
Chapter 3 (overall nodes)

Tab. 1.2: Comparison with previous work on both decentralized and centralized online algorithms, and
our proposed algorithms (in bold). Stochastic Decentralized Meta Frank-Wolfe (SDMFW) is
an extension of DMFW in which a variance reduction is used to handle stochastic gradient
estimates. The first column shows the theoretical regret bound. The second column shows
the computation cost per round to achieve such a regret bound. Note that for decentralized
algorithms, the per round cost is distinguished by two types. DROFW, DMFW and SDMFW’s
cost are counted for each node. However, RWMFW is of different nature: the cost of nodes
is not equally balanced and depends on the random walk. Therefore, we present the overall
combined cost per round of all the nodes is O (T). For decentralized algorithms, the column
"per round communications" shows the number of exchanges done in a round. The column
"Sync" shows whether or not synchronization is required. The column "Proj-free" shows whether
or not the algorithm is projection-free. Finally, the last column shows whether or not the
algorithm is robust to stochastic gradient estimates.

Many decentralized algorithms have been proposed in both offline and online settings based on
gradient methods. To further understand the positioning of this work, we will present related
works in both offline and online decentralized optimization

1.7 Contributions 19

Decentralized Offline Optimization.

Many algorithms have been proposed for decentralized optimization. Decentralized gradient
and sub-gradient descent methods are the most popular algorithms that combine local gradient
descent steps with a surrogate gradient averaging using consensus algorithm [KQW16; Ned+09].
Later, building on the idea of penalty functions in the centralized Nesterov method, Jakovetic et
al. [JXM14] proposed distributed Nesterov gradient with consensus iterations that achieve faster
convergence for smooth convex functions. However, the algorithm in [JXM14] places a large
communication burden and needs extra coordination among agents. Thus, Qu and Li [QL20]
presented an accelerated distributed Nesterov gradient descent that uses only communication
step per gradient evaluation and achieves a fast convergence rate. Mokhtari et al. [AQA17] and
Bajovic et al. [Baj+17] proposed Newton-like methods for distributed optimization whereas Eisen
et al. [EMR17] presented quasi-Newton algorithms. Apart from these primal methods, numerous
dual methods have been proposed in the literature for decentralized optimization [IAG08; RNB05;
JMX15] and methods that use dual variables to coordinate solutions to local subproblems include
ADMM [BPC11] and CoCoA [Jag+14; Ma+15; Ma+17]. Accelerated decentralized methods
have been recently studied [HBM19a; HBM19b]. Very recently [Sca+19] provided optimal
convergence rates and corresponding optimal algorithms for distributed convex problems under
a variety of regularity assumptions and communication schemes. The most closely related to
this thesis’s work is the DFW algorithm, given by Wai et al. [Wai+17] to study (offline) convex
and non-convex problems, extends the classic Frank-Wolfe algorithm by using local information
aggregating from its neighbors.

Decentralized Online Optimization.

Decentralized optimization has also been explored in the online setting. Yan et al. [Yan+13]
introduced distributed online projected subgradient descent and showed vanishing regret for
convex and strongly convex functions. In contrast, Hosseini et al. [HCM13] extended distributed
dual averaging technique to online setting using a general regularized projection for both
unconstrained and constrained optimization. Furthermore, Shahrampour and Jadbabaie [SJ18]
proposed a decentralized variation of the celebrated mirror descent algorithm. Decentralized
online unconstrained optimization problems have been investigated in [DJ14] and [AGL17],
where an online descent algorithm and a distributed online sub-gradient push sum algorithm
are presented, respectively. Many other algorithms for global/local constrained decentralized
optimization have been proposed [KJR15; NLR15; HCM16; LNR17]. Despite their success, these
algorithms have limited applicability to many real-world problems as they require expensive
projection operators. To circumvent these costs, a distributed variant of online conditional
gradient [Haz16] was designed and analyzed in [Zha+17] that requires linear minimizers and
uses exact gradients. Their algorithm is inspired by the original online conditional gradient
algorithm for centralized settings that requires the computation of exact gradients [Haz16].

20 Chapter 1 Introduction

However, computing exact gradients may be prohibitively expensive for moderately sized data
and intractable when a closed form does not exist.

1.7 Contributions 21

2A Stochastic Conditional Gradient
Algorithm for Decentralized Online
Convex Optimization

2.1 Introduction

We study in this chapter several problems at the intersection of decentralized optimization and
online learning. Decentralized optimization plays a vital role in machine learning and has
recently garnered much attention due to its inherent advantage in handling edge computations.
Many decentralized optimization algorithms, both projection and projection-free algorithms with
theoretical guarantees, have been proposed in the literature, focusing mainly on offline settings.
However, for most real-world machine learning problems, the data is often revealed online,
for example, in the case of recommender systems, image/video processing, and stock portfolio
management. Therefore, in this work, we study decentralized optimization within the framework
of online settings with constraints imposed on the optimization solutions (e.g., sparsity or low
rank of matrices). More specifically, we consider the problem of optimizing an aggregate of
convex loss functions that arrive over time such that their components are distributed over a
connected network. We present a consensus-based online decentralized Frank-Wolfe algorithm
that uses stochastic gradient estimates, which achieves an asymptotically tight regret guarantee
of O

(√
T
)

where T is a given time horizon.

2.1.1 Contributions

In this chapter, the main contribution is to propose new online decentralized convex optimization
algorithms that achieve asymptotically tight regret bounds. We highlight the main features of
our algorithms.

• They achieve asymptotically tight regret bounds of O
(√

T
)

1 matching to the optimal
regret bound for online convex optimization even in the centralized setting.

1The dependence of different constant parameters is explicitly specified in corresponding theorems.

23

• They have the flexibility to be converted into projection-free. Using projection-free ora-
cles (provided, for instance, by the follow-the-perturbed-leader oracle), our algorithm is
projection-free O

(√
T
)
-regret which improves upon the best-known O

(
T

3/4
)

projection-
free online algorithm in the decentralized setting [Zha+17].

• They are robust to stochastic gradient estimates (note that the one in [Zha+17] requires
exact gradients). To achieve this result, we provide a distributed version of variance
reduction (Lemma 4), which might be of independent interest for designing algorithms in
decentralized online settings. Moreover, by reducing variance in our algorithms, we can
reduce the effect of data heterogeneity closely related to their variance.

• Additionally, the experimental results demonstrate their advantages over the other existing
methods, and they validate that the empirical regret is similar to the one of the centralized
setting.

Federated Learning.

Our work is along the line of federated learning [McM+21; Li+20]. In the latter, offline
centralized training (a start network where a central server is connected to several devices) is the
currently dominant paradigm. However, decentralized training is more efficient than centralized
one when operating on networks with low bandwidth or high latency [Lia+17; HBJ18]. In this
chapter, we consider a further step by studying arbitrary communication networks without a
central coordinator, and the local data (so local cost functions) evolve over time.

2.2 Conditional Gradient based Algorithms for
Decentralized Online Convex Optimization

In this section, we present first an online algorithm in the setting where the exact gradients of
functions can be computed efficiently and the functions are smooth. Subsequently, we show that
the smoothness assumption on functions can be avoided using standard techniques. Finally, we
extend the algorithm to the setting with stochastic gradients estimates. In those algorithms, for
clarity, we assume the knowledge of the time horizon T . This assumption can be removed by the
standard doubling trick (algorithm 4).

2.2.1 An Algorithm with Exact Gradients.

Algorithm description.

Our algorithm is inspired by two recent algorithms, namely, the centralized Meta Frank-Wolfe
(MFW) algorithm in the online setting and the Decentralized Frank-Wolfe (DFW) algorithm in the

24 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

decentralized (offline) setting. The MFW algorithm was introduced by [CHK18] in the context
of online convex and DR-submodular optimization, for generalizing the online Frank-Wolfe
algorithm where offline linear optimization functions are replaced by online linear minimization
oracles. The DFW algorithm was proposed by [Wai+17] to study (offline) convex and non-convex
problems. Essentially, it extends the classical Frank-Wolfe algorithm in such a way that at every
step, each agent computes the update direction using local information aggregating from its
neighbors (similar to [Joh+08; SJ16]).

At the beginning of the algorithm, we maintain several gradient-based optimizers that solve
online linear optimization problems (for example, online gradient descent, follow-the-perturbed-
leader algorithms, etc.). We call them oracles. At every time t, each agent i executes L steps of
the Frank-Wolfe algorithm where every update vector (for iterations 1 ≤ ℓ ≤ L) is constructed by
combining the outputs of linear optimization oracles Oj,ℓ and the current vectors of its neighbors
j ∈ N (i). The solution xt

i for each agent/node 1 ≤ i ≤ n is produced at the end of the L-th step.
Subsequently, after aggregating informations related to functions f t

j for j ∈ N (i), the algorithm
subtly computes a vector dt

i,ℓ and feedbacks ⟨·,dt
i,ℓ⟩ as the reward function at time t to the oracle

Oi,ℓ for 1 ≤ ℓ ≤ L.

Metropolis-Hastings matrix.

Given a graph G = (V, E), fix a doubly stochastic, non-negative symmetric matrix W such that
Wij > 0 iff (i, j) ∈ E; and

∑n
j=1 Wij = 1 for all i; and

∑n
i=1 Wij = 1 for all j. We use this matrix

to compute the aggregation between neighbours. A desired mixing matrix can be constructed
using Metropolis-Hastings weights [Has70]:

Wij =


1/(1 + max{di, dj}) if (i, j) ∈ E,

0 if (i, j) /∈ E and i ̸= j,

1−
∑

j∈N(i) Wij if i = j,

The formal description is given in Algorithm 1.

2.2 Conditional Gradient based Algorithms for Decentralized Online Convex Optimization 25

Algorithm 1 Decentralized online algorithm with exact gradients
Input: A convex set K, a time horizon T , a parameter L, online linear optimization oracles
Oi,1, . . . ,Oi,L for each player 1 ≤ i ≤ n, step sizes ηℓ ∈ (0, 1) for all 1 ≤ ℓ ≤ L
Output: Each agent i, plays in an online fashion x1

i , . . . ,x
T
i

1: Initialize linear optimizing oracle Oi,ℓ for all 1 ≤ ℓ ≤ L
2: for t = 1 to T do
3: for every agent 1 ≤ i ≤ n do
4: Initialize arbitrarily xt

i,1 ∈ K
5: for 1 ≤ ℓ ≤ L do
6: Let vt

i,ℓ be the output of oracle Oi,ℓ at time step t.
7: Send xt

i,ℓ to all neighbors N (i)
8: Once receiving xt

j,ℓ from all neighbors j ∈ N (i), set yt
i,ℓ ←

∑
j Wijxt

j,ℓ.
9: Compute xt

i,ℓ+1 ← (1− ηℓ)yt
i,ℓ + ηℓv

t
i,ℓ.

10: end for
11: Set xt

i ← xt
i,L+1

12: Decision at time t: play xt
i

13: Receive function f t
i

14: Set gt
i,1 ← ∇f t

i (yt
i,1)

15: for 1 ≤ ℓ ≤ L do
16: Send gt

i,ℓ to all neighbors N (i).
17: After receiving gt

j,ℓ from all neighbors j ∈ N (i), compute dt
i,ℓ ←

∑
j∈N (i) Wijgt

j,ℓ

and gt
i,ℓ+1 ←

(
∇f t

i (yt
i,ℓ+1)−∇f t

i (yt
i,ℓ)
)

+ dt
i,ℓ.

18: Feedback function ⟨dt
i,ℓ, ·⟩ to oracles Oi,ℓ. (The cost of the oracle Oi,ℓ at time t is

⟨dt
i,ℓ,v

t
i,ℓ⟩.)

19: end for
20: end for
21: end for

Theorem 1. Let K be a convex set with diameter D. Assume that functions F t are β-smooth and
∥∇F t∥ ≤ G for every t.
Then, with the step-sizes ηℓ = min {1,A/ℓ} where A = max

{
G

βD ,
(Cd+βCp)

2βD , 3
}

for all 1 ≤ ℓ ≤ L,

Cp = ℓ0
√
nAD andCd = ℓ0

√
nmax

{
|λ2(W)|

(
βD

1−|λ2(W)| +G)
)
, (6Cp + 10AD)β

}
+3β (Cp + 2AD),

Algorithm 1 guarantees that for every 1 ≤ i ≤ n,

T∑
t=1

F t(xt
i) ≤ min

x∈K

T∑
t=1

F t(x) + 2βAD2T

L
+ 3(A+ 1) · RT + GCpT

L

26 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

where RT is the regret of online linear minimization oracles. Consequently, choosing L = O
(√

T
)

and oracles as gradient descent (or follow-the-perturbed leader if aiming for projection-free algo-
rithm) with regret RT = O

(
GD
√
T
)
, for every 1 ≤ i ≤ n, we have

T∑
t=1

F t(xt
i) ≤ min

x∈K

T∑
t=1

F t(x) +O
(
(G+ Cd + βCp + 3β)GD

√
T
)
.

You will find the analysis in Section 2.3.

Remark 1.

At each time step, each agent performs O (L) computations and O (L) communications. In
terms of the complexity, for a precision of ϵ, the algorithm performs L = O

(√
T
)

= O (1/ϵ)
computations and O (1/ϵ) of communications for each time step. Moreover, each message is of
size d which is typically much smaller than the size of the data batch for each time step.

Remark 2.

Projection-free methods for online convex optimization with smooth functions have been widely
studied. Several algorithms have been given with regret bound depending on the number of
linear optimization computations per time step; some of them make only a single computation
per time step whereas others perform more. Recently, [EE20] proposed a refined metric to
compare different methods: let A be an online optimization algorithm, and define Tϵ(A) to
be the overall number of gradient oracle calls as well as linear optimization calls made until
the average regret becomes at most ϵ. Subsequently, they gave an algorithm with Tϵ = O (d/ϵ3)
for smooth functions (in the centralized online setting). Inspecting the guarantee bound of
Theorem 2, we obtain Tϵ = O (dn2/ϵ3) in the decentralized online setting; restricting to the
centralized setting (i.e., n = 1), our bound matches to that in [EE20] up to a constant factor.

2.2.2 Extension to Non-Smooth Functions

Given a function f , we smooth the function by the standard convolution technique. Specifically,
define

f̂δ(x) :=
∫
Rn
f(x− r)µδ(r)dr =

∫
r∼Bn

f(x− δr)dr

where µδ is density of the uniform distribution on a ball of radius δ.

2.2 Conditional Gradient based Algorithms for Decentralized Online Convex Optimization 27

Algorithm 2.

At every time step t, apply Algorithm 1 in which every function f t
i is replaced by its smooth

counterpart (f̂ t
i)δ where δ = 1/

√
T for all 1 ≤ i ≤ n and 1 ≤ t ≤ T . The parameters are

ηℓ = min{1,A/ℓ} where A = max{ G
βD ,

(Cd+βCp)
2βD , 3} for all 1 ≤ ℓ ≤ L and the parameter L = T .

We make use of the following lemma.

Lemma 1 ([Haz16], Lemma 2.6). Assume that function f : K(⊆ Rd) → R is convex and G-
Lipschitz. Then, function f̂δ is convex, β-smooth with β = Gd

δ . Moreover, ∥f̂δ(x)− f(x)∥∞ ≤ δG
for every x ∈ K.

Theorem 2. Let K be a convex set with diameter D. Assume that ∥∇F t∥ ≤ G for every t. Then,
Algorithm 2 achieves that for every 1 ≤ i ≤ n,

T∑
t=1

F t(xt
i) ≤ min

x∈K

T∑
t=1

F t(x)

+O
(
(G+ Cd + βCp)dGD

√
T
)
.

Proof. Define F̂ t
δ (·) = 1

n

∑n
i=1(f t

i)δ(·) for every time 1 ≤ t ≤ T . So F̂ t
δ is convex and β-smooth

with β = Gd
√
T . Applying Theorem 1, we get

T∑
t=1

F̂ t
δ (xt) ≤ min

x∈K

T∑
t=1

F̂ t
δ (x) + 2βAD2T

L
+ 3(A+ 1) · O

(
GD
√
T
)

+ GCpT

L

≤ min
x∈K

T∑
t=1

F̂ t
δ (x) + 2GdAD2T

√
T

L
+ 3(A+ 1) · O

(
GD
√
T
)

+ GCpT

L
.

(Definition of β = Gd
√
T)

Besides, by the choice of L = T and ∥F̂ (x)− F (x)∥∞ ≤ G/
√

T for every x ∈ K, we deduce

T∑
t=1

F t(xt) ≤ min
x∈K

T∑
t=1

F t(x) +O
(
(G+ Cd + βCp)dGD

√
T
)
.

28 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

2.2.3 An Algorithm with Stochastic Gradient Estimates

In this section, we extend the previous algorithm to the setting where one has access only to
stochastic estimates of gradients. The new algorithm, Algorithm 3, is similar to Algorithm 1
but now instead of using exact gradient, we use stochastic gradient estimates. (Note that the
stochastic variables/parameters are denoted by the same letter as its exact counterpart with an
additional tilde symbol.) The only difference is the use of variance reduction (line 19) and so the
oracle feedback (line 20) in Algorithm 3. Variance reduction is necessary in order to deal with
stochastic gradient estimate and in the algorithm, we adopt the technique proposed by [MHK18]
(which has been used in several contexts for example [Che+18; Xie+20]).

Building on the analysis of Theorem 2 and a variance reduction technique, we show that
Algorithm 3 achieves an assymptotically tight regret guarantee.

Theorem 3. Let K be a convex set with diameter D. Assume that for every 1 ≤ t ≤ T ,

1. functions f t
i are β-smooth, i.e. ∇f t

i is β-Lipschitz, (so F t is β-smooth);
2. ∥∇f t

i ∥ ≤ G (so ∥∇F t∥ ≤ G);
3. the gradient estimates are unbiased with bounded variance σ2, i.e., E[∇̃f t

i (xt
i,ℓ)] = ∇f t

i (xt
i,ℓ)

and
∥∥∇̃f t

i (xt
i,ℓ)]−∇f t

i (xt
i,ℓ)
∥∥ ≤ σ for every 1 ≤ i ≤ n and 1 ≤ ℓ ≤ L;

4. the gradient estimates are β̃-Lipschitz.

Then, choosing the step-sizes ηℓ = min{1,A/ℓ} where A = max{ G
βD ,

(Cd+βCp)
2βD , 3} for all 1 ≤ ℓ ≤ L,

Algorithm 1 guarantees that for every 1 ≤ i ≤ n,

T∑
t=1

E
[
F t(xt

i)
]
≤ min

x∈K

T∑
t=1

F t(x) + 2βAD2T

L

+ 3(A+ 1) · O
(√

T
)

+O
(
ATDQ

1/2

L1/3

)

where Q = 6(β̃2 + β2)(2Cp +AD)2 + σ2 + 3B2/2,B = 4Cd + 2β [2Cp +AD,], Cp = ℓ0
√
nAD and

Cd = ℓ0
√
nmax

{
|λ2(W)|

(
βD

1−|λ2(W)| +G)
)
, (6Cp + 10AD)β

}
+ 3β (Cp + 2AD).

Consequently, by choosing L = T
3/2, we obtain the regret of O

(√
T
)
.

You will find the analysis in 2.4.

2.2 Conditional Gradient based Algorithms for Decentralized Online Convex Optimization 29

Algorithm 3 Stochastic online decentralized algorithm
Input: A convex set K, a time horizon T , a parameter L, online linear optimization oracles
Oi,1, . . . ,Oi,L for each player 1 ≤ i ≤ n, step sizes ηℓ ∈ (0, 1) for all 1 ≤ ℓ ≤ L.
Output: Each agent i, plays in an online fashion x1

i , . . . ,x
T
i

1: Initialize linear optimizing oracle Oi,ℓ for all ℓ ∈ {1, . . . L}
2: Initialize arbitrarily xt

i,1 ∈ K and set at
i,0 ← 0

3: for t = 1 to T do
4: for every agent 1 ≤ i ≤ n do
5: Let vt

i,ℓ be the output of oracle Oi,ℓ at time step t for all ℓ ∈ [L] and i ∈ [n]
6: for every ℓ ∈ [L] do
7: Send xt

i,ℓ to neighbors in N (i).
8: Once receiving xt

j,ℓ from all neighbors j ∈ N (i), compute yt
i,ℓ ←

∑
j Wijxt

j,ℓ.
9: Compute xt

i,ℓ+1 ← (1− ηℓ)yt
i,ℓ + ηℓv

t
i,ℓ.

10: end for
11: Set xt

i ← xt
i,L+1

12: Decision at time t: play xt
i

13: Receive function f t
i (·) and an unbiased gradient estimate ∇̃f t

i (·).
14: Set g̃t

i,1 ← ∇̃f t
i (xt

i,1).
15: for 1 ≤ ℓ ≤ L do
16: Send g̃t

i,ℓ to all neighbors N (i).
17: Once receiving g̃t

j,ℓ from all neighbors j ∈ N (i), set d̃t
i,ℓ ←

∑
j∈N (i) Wij g̃t

j,ℓ.
18: Set g̃t

i,ℓ+1 ←
(
∇̃f t

i (xt
i,ℓ+1)− ∇̃f t

i (xt
i,ℓ)
)

+ d̃t
i,ℓ

19: Set ãt
i,ℓ ← (1− ρℓ) · ãt

i,ℓ−1 + ρℓ · d̃t
i,ℓ.

20: Feedback ⟨ãt
i,ℓ,v

t
i,ℓ⟩ to oracles Oi,ℓ. (The cost of the oracle Oi,ℓ at time t is

⟨ãt
i,ℓ,v

t
i,ℓ⟩.)

21: end for
22: end for
23: end for

Remark 3.

The effect of σ, a measure of data heterogeneity [McM+21; Li+20], on the regret can be reduced
by increasing the number of iteration L. Thus, a feature of our algorithms is the ability to reduce
the heterogeneity of agents’ data.

2.2.4 Removing the knowledge of T

In this section, we show how to remove the assumption on the knowledge of T for Algorithm 3.
The procedure for Algorithms 1 is similar. In particular, we use the standard doubling trick in
which Algorithm 3 is invoked repeatedly with a doubling time horizon.

30 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

Algorithm 4 Stochastic online decentralized algorithm with Doubling Trick
Input: A convex set K and Algorithm 3

1: for m = 0, 1, 2, . . . do
2: L := (2m+1)3/2

3: Run Algorithm 3 with horizon 2m, from the (2m + 1)-th iteration to the 2m+1-th iteration.
4: Let xt

i ’s for 2m + 1 ≤ t ≤ 2m+1 be the solution of Algorithm 3.
5: end for

Theorem 4. Given Theorem 3, the following inequality holds true for Algorithm 4:

T∑
t=1

E
[
F t(xt

i)
]
≤ min

x∈K

T∑
t=1

F t(x) +O
(√

T
)
.

Proof. Fix an 1 ≤ i ≤ n. From Theorem 3, for each m, it follows that

2m+1∑
t=2m+1

E
[
F t(xt

i)
]
≤ min

x∈K

2m+1∑
t=2m+1

F t(x) +O (2(m+1)/2)

Summing this quantity of m = 0, 1, 2, . . . , ⌈log2(T + 1)⌉ − 1, we have that

T∑
t=1

E
[
F t(xt

i)
]
≤ min

x∈K

T∑
t=1

F t(x) +
⌈log2(T +1)⌉−1∑

m=0
O (2(m+1)/2)

≤ min
x∈K

T∑
t=1

F t(x) +O
(√

T
)
.

2.3 Analysis in Section 2.2

In the analysis, we denote xt
ℓ := 1

n

∑n
j=1 xt

j,ℓ and F t
ℓ := 1

n

∑n
j=1 f

t
j (yt

j,ℓ). We adapt the lemma 2
from [Wai+17]. First, let us establish some useful claims:

Claim 1 ([Wai+17], Fact 1). Let x1, . . . ,xn ∈ Rd be as set of vectors and x = 1
n

∑n
i=1 xi be their

average. Suppose W is a doubly stochastic, non-negative matrix. The output after performing one
round of average consensus:

yi =
n∑

j=1
Wijxj (2.1)

2.3 Analysis in Section 2.2 31

must satisfy √√√√ n∑
i=1
∥yi − x∥2 ≤ |λ2(W)| ·

√√√√ n∑
i=1
∥xi − x∥2 (2.2)

where λ2(W) is the second largest eigenvalue of W.

Lemma 2 ([Wai+17], Lemmas 1 and 2). Define ℓ0 as the smallest integer such that

λ2(W) ≤
(

ℓ0
ℓ0 + 1

)2
(2.3)

Notice that ℓ0 is upper bounded by: ℓ0 ≤
⌈(
|λ2(W|− 1/2 − 1

)−1
⌉

which is finite under the as-

sumption that the second largest (in magnitude) eigenvalue of W is strictly less than one, i. e .,
|λ2(W)| < 1. Assume that functions f t

j ’s are β-smooth, G-Lipschitz that is, ∥∇f t
j∥ ≤ G for every

1 ≤ t ≤ T and every 1 ≤ j ≤ n and the diameter of K is D. Then, for every 1 ≤ ℓ ≤ L+ 1,

∆pℓ := Tmax
t=1

nmax
i=1
∥yt

i,ℓ − xt
ℓ∥ ≤

Cp

ℓ
(2.4)

∆dℓ := Tmax
t=1

nmax
i=1
∥dt

i,ℓ −∇F t
ℓ∥ ≤

Cd

ℓ
(2.5)

whereCp = ℓ0
√
nAD andCd = ℓ0

√
nmax

{
|λ2(W)|

(
βD

1−|λ2(W)| +G)
)
, (6Cp + 10AD)β

}
+3β (Cp + 2AD)

where λ2(W) is the second largest eigenvalue of W.

Proof. Proof for ∆pℓ ≤ Cp

ℓ .

We will prove this lemma by using an induction on ℓ. It suffices to show that for all ℓ ≥ 1 that for
ℓ = 1 to ℓ, √√√√ n∑

i=1

∥∥∥yt
i,ℓ+1 − xt

ℓ+1

∥∥∥2
≤ Cp

ℓ
(2.6)

For the base case (1 ≤ ℓ ≤ ℓ0), the above inequality is true since yt
i,ℓ,x

t
ℓ ∈ K and the diameter

of K is bounded by D. For the induction step, let us assume that
√∑n

i=1

∥∥∥yt
i,ℓ+1 − xt

ℓ+1

∥∥∥2
≤ Cp

ℓ

until some ℓ ≥ ℓ0.

Using claim 1, we observe that

n∑
i=1

∥∥∥yt
i,ℓ+1 − xt

ℓ+1

∥∥∥2
≤ λ2(W)2

n∑
i=1

∥∥∥xt
i,ℓ+1 − xt

ℓ+1

∥∥∥2

32 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

= λ2(W)2
n∑

i=1

∥∥∥∥∥(1− ηℓ)(yt
i,ℓ − xt

ℓ) + ηℓ

(
vt

i,ℓ −
1
n

n∑
i=1

vt
i,ℓ

)∥∥∥∥∥
2

(Definition of xt
i,ℓ and Lemma 3)

≤ λ2(W)2
n∑

i=1

[
∥yt

i,ℓ − xt
ℓ∥2 + 2ηℓD∥yt

i,ℓ − xt
ℓ∥+ η2

ℓD
2
]

(By Cauchy-Schwarz and
∥∥∥vt

i,ℓ −
1
n

∑n
i=1 vt

i,ℓ

∥∥∥ ≤ D because K is bounded)

≤ λ2(W)2
[
C2

p

ℓ2
+ n

A2

ℓ2
D2 +

n∑
i=1

AD

ℓ
∥yt

i,ℓ − xt
ℓ∥
]

(Applying induction hypothesis)

≤ λ2(W)2

C2
p

ℓ2
+ nA2D2

ℓ2
+ 2A

ℓ
D
√
n

√√√√ n∑
i=1
∥yt

i,ℓ − xt
ℓ∥2


(By Cauchy-Schwarz)

≤ λ2(W)2
[
C2

p

ℓ2
+ nA2D2

ℓ2
+ 2AD

ℓ2
√
nCp

]
(Applying induction hypothesis)

≤ λ2(W)2
[
C2

p + nA2D2 + 2AD
√
nCp

ℓ2

]

≤ λ2(W)2 (Cp +
√
nAD)2

ℓ2

Note that by definition of Cp = ℓ0
√
nAD, we observe Cp +

√
nAD ≤ Cp + Cp

ℓ0
. Thus, we get

n∑
i=1

∥∥∥yt
i,ℓ+1 − xt

ℓ+1

∥∥∥2
≤ λ2(W)2

[
ℓ0 + 1
ℓ0 · ℓ

]2
C2

p (2.7)

Consequently, from equation 2.3, we observe that for all ℓ ≥ ℓ0,

|λ2(W)| ℓ0 + 1
ℓ0 · ℓ

≤ 1
ℓ+ 1 (2.8)

Hence, we complete the induction step by the following:

n∑
i=1

∥∥∥yt
i,ℓ+1 − xt

ℓ+1

∥∥∥2
≤ Cp

ℓ+ 1 (2.9)

Proof for ∆dℓ ≤ Cd
ℓ .

In this proof, we will use an intermediate step in which we will define ∇̂F
t

ℓ = 1
n

∑n
i=1∇fi,ℓ(xi,ℓ)

and bound the following:

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥ ≤ Ĉd

ℓ
(2.10)

2.3 Analysis in Section 2.2 33

where Ĉd = ℓ0
√
nmax

{
|λ2(W)|

(
βD

1−|λ2(W)| +G)
)
, (6Cp + 10AD)β

}
.

Assume that we already bounded (2.10), we can prove the lemma as follows:∥∥∥dt
i,ℓ −∇F t

ℓ

∥∥∥ ≤ ∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥+
∥∥∥∇F t

ℓ − ∇̂F
t

ℓ

∥∥∥ (Triangular inequality)

≤ Ĉd

ℓ
+ β

1
n

n∑
i=1

∥∥∥xt
i,ℓ − yt

i,ℓ

∥∥∥
(Assumption of equation 2.10 and β-smoothness of F)

≤ Ĉd

ℓ
+ β

n

n∑
i=1

[∥∥∥xt
i,ℓ+1 − yt

i,ℓ

∥∥∥+
∥∥∥xt

i,ℓ+1 − xt
i,ℓ

∥∥∥] (Triangular inequality)

≤ Ĉd

ℓ
+ β

n

n∑
i=1

ηℓ

∥∥∥vt
i,ℓ − yt

i,ℓ

∥∥∥+ (3Cp + 5AD)
ℓ

(By definition of xt
i,ℓ+1)

≤ Ĉd

ℓ
+ β

[
AD

ℓ
+ (3Cp + 5AD)

ℓ

]
(By definition of ηℓ and the constraint set is bounded by D)

where

Cd = ℓ0
√
nmax

{
|λ2(W)|

(
βD

1− |λ2(W)| +G)
)
, (6Cp + 10AD)β

}
+ 3β (Cp + 2AD) (2.11)

We will prove that by induction on ℓ that 1
n

∑n
i=1 gt

i,ℓ = 1
n

∑n
i=1 dt

i,ℓ = ∇̂F t

ℓ.

First, observe that

1
n

n∑
i=1

dt
i,ℓ = 1

n

n∑
i=1

n∑
j=1

Wijgt
j,ℓ

= 1
n

n∑
j=1

gt
j,ℓ

n∑
i=1

Wij

= 1
n

n∑
j=1

gt
j,ℓ (2.12)

We can also observe that, for ℓ = 1 we get by definition of gt
1,ℓ = ∇f t

i (xt
i,ℓ):

1
n

n∑
i=1

gt
i,1 = 1

n

n∑
i=1
∇f t

i (xt
i,1) = ∇̂F t

1 (2.13)

34 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

By induction on ℓ, assume that 1
n

∑n
i=1 gt

i,ℓ = ∇̂F t

ℓ, then:

1
n

n∑
i=1

gt
i,ℓ+1 = 1

n

n∑
i=1

dt
i,ℓ + ∇̂F t

ℓ+1 − ∇̂F
t

ℓ (Definition of gt
i,ℓ+1)

= 1
n

n∑
i=1

gt
i,ℓ + ∇̂F t

ℓ+1 − ∇̂F
t

ℓ (By equation 2.12)

= ∇̂F t

ℓ + ∇̂F t

ℓ+1 − ∇̂F
t

ℓ (By induction hypothesis)

= ∇̂F t

ℓ+1 (2.14)

We are now proving equation 2.5. As mentioned earlier, it suffices to prove:√√√√ n∑
i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥ ≤ Ĉd

ℓ
(2.15)

where Ĉd = ℓ0
√
nmax

{
|λ2(W)|

(
βD

1−|λ2(W)| +G)
)
, (6Cp + 10AD)β

}
for all ℓ ≥ 1 using induc-

tion. For ℓ = 1 to ℓ = ℓ0, we shall prove that the left hand side of the inequality is bounded. To
proceed, we define the d× n matrices:

Et
ℓ =

(
dt

1,ℓ · · ·dt
n,ℓ

)
−
(
∇̂F

t

ℓ · · · ∇̂F
t

ℓ

)
, (2.16)

Zt
ℓ =

(
∇f1(xt

n,ℓ) · · · ∇fn(xt
n,ℓ)
)

(2.17)

and observe

n∑
i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥2
=
∥∥∥vec(Et

ℓ)
∥∥∥2

(2.18)

where vec is the vectorization of a matrix is a linear transformation which converts the matrix
into a column vector. Specifically, the vectorization of a p× q matrix M, denoted vec(M), is the
pq × 1 column vector obtained by stacking the columns of the matrix M on top of one another.
Furthermore, Et

1 = Z1(W− 1
n11⊤), and we have the following recursion for ℓ ≥ 2,

Et
ℓ =

(
dt

1,ℓ · · ·dt
n,ℓ

)
−
(
∇̂F

t

ℓ · · · ∇̂F
t

ℓ

)
=
[(

dt
1,ℓ−1 · · ·dt

n,ℓ−1

)
+ Zt

ℓ − Zt
ℓ−1

]
W−

(
∇̂F

t

ℓ · · · ∇̂F
t

ℓ

)
(2.19)

=
(
Et

ℓ−1 + Zt
ℓ − Zt

ℓ−1

)(
W− 1

n
11⊤

)
(2.20)

where we have used the equivalence below:

1
n

Zt
ℓ11⊤ = 1

n

(
dt

1,ℓ · · ·dt
n,ℓ

)
11⊤ =

(
∇̂F

t

ℓ · · · ∇̂F
t

ℓ

)
(2.21)

2.3 Analysis in Section 2.2 35

For ℓ = 1,
∥∥vec(Et

1)
∥∥ ≤ |λ2(W)|

√
nG since

∥∥vec(Zt
1)
∥∥ ≤ √nG. For ℓ ≥ 2, we have

∥∥∥vec(Et
ℓ)
∥∥∥ ≤ ∥∥∥∥(W− 1

n
11⊤

)
⊗ I
∥∥∥∥ (∥∥∥vec(Et

ℓ−1)
∥∥∥+

∥∥∥vec
(
Zt

ℓ − Zt
ℓ−1

)∥∥∥) (2.22)

Since
∥∥∥(W− 1

n11⊤
)
⊗ I
∥∥∥ ≤ |λ2(W)| and the β-smoothness of f t

i implies
∥∥∥vec

(
Zt

ℓ − Zt
ℓ−1

)∥∥∥ ≤
√
nDβ, this leads to ∥∥∥vec(Et

ℓ)
∥∥∥ ≤ |λ2(W)| ·

(∥∥∥vec(Et
ℓ−1)

∥∥∥+
√
nDβ

)
(2.23)

Evaluating the recursion above shows

∥vec(Eℓ)∥ ≤
|λ2(W)|

√
nDβ

1− |λ2(W)| + |λ2(W)|
√
nG (2.24)

and thus proving the base step for ℓ = 1 to ℓ = ℓ0.

For the induction step with ℓ > ℓ0, we suppose that
√∑n

i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥2
≤ Ĉd

ℓ until some
ℓ ≥ ℓ0.

n∑
i=1

∥∥∥dt
i,ℓ+1 − ∇̂F

t

ℓ+1

∥∥∥2
=

n∑
i=1

∥∥∥∥∥∥
n∑

j=1
Wijgt

j,ℓ+1 − ∇̂F
t

ℓ+1

∥∥∥∥∥∥
2

(Definition of dt
i,ℓ+1)

=
n∑

i=1

∥∥∥∥∥∥
n∑

j=1
Wijgt

j,ℓ+1 −
1
n

n∑
j=1

gt
j,ℓ+1

∥∥∥∥∥∥
2

(By equation 2.14)

≤ |λ2(W)|2
n∑

i=1

∥∥∥∥∥∥gt
i,ℓ+1 −

1
n

n∑
j=1

gt
j,ℓ+1

∥∥∥∥∥∥
2

(By claim 1)

= |λ2(W)|2
n∑

i=1

∥∥∥gt
i,ℓ+1 − ∇̂F

t

ℓ+1

∥∥∥2
(By equation 2.14)

≤ |λ2(W)|2
n∑

i=1

∥∥∥dt
i,ℓ +∇f t

i (xt
i,ℓ+1)−∇f t

i (xt
i,ℓ)− ∇̂F

t

ℓ+1

∥∥∥2

(Definition of gt
i,ℓ+1)

Define δf t
i,ℓ+1 = ∇f t

i (xi,ℓ+1)−∇f t
i (xt

i,ℓ) and observe that ∇̂F
t

ℓ+1 − ∇̂F
t

ℓ =
∑n

i=1 δf
t
i,ℓ+1. Then,

we can observe the following:

n∑
i=1

∥∥∥dt
i,ℓ + δf t

i,ℓ+1 − ∇̂F
t

ℓ+1

∥∥∥2
≤

n∑
i=1

(∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥+
∥∥∥δf t

i,ℓ+1 − ∇̂F
t

ℓ+1 + ∇̂F t

ℓ

∥∥∥)2

(Triangular inequality)

36 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

≤
n∑

i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥2
+

∥∥∥∥∥∥δf t
i,ℓ+1 −

1
n

n∑
j=1

δf t
j,ℓ+1

∥∥∥∥∥∥
2

+2
∥∥∥dt

i,ℓ − ∇̂F
t

ℓ

∥∥∥
∥∥∥∥∥∥δf t

i,ℓ+1 −
1
n

n∑
j=1

δf t
j,ℓ+1

∥∥∥∥∥∥


(Cauchy-Schwartz)

Observe that for all 1 ≤ i ≤ n, we have the following chain:∥∥∥δf t
i,ℓ+1

∥∥∥ =
∥∥∥∇f t

i (xt
i,ℓ+1)−∇f t

i (xt
i,ℓ)
∥∥∥

≤ β
∥∥∥xt

i,ℓ+1 − xt
i,ℓ

∥∥∥ (β-smoothness of f t
i)

≤ β(3Cp + 5AD)
ℓ

(By equation 2.31)

Using the triangular inequality, we observe that∥∥∥∥∥∥δf t
i,ℓ+1 −

1
n

n∑
j=1

δf t
j,ℓ+1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
(

1− 1
n

)
δf t

i,ℓ+1 −
1
n

∑
j∈[n]:j ̸=i

δf t
j,ℓ+1

∥∥∥∥∥∥
≤
(

1− 1
n

)∥∥∥δf t
i,ℓ+1

∥∥∥+ 1
n

∑
j∈[n]:j ̸=i

∥∥∥δf t
j,ℓ+1

∥∥∥ (2.25)

≤ 2
(

1− 1
n

)((3Cp + 5AD)β
ℓ

)
(2.26)

≤
((6Cp + 10AD)β

ℓ

)
(2.27)

Finally, by using equation 2.27 and applying the induction hypothesis, we can bound the
following:

n∑
i=1

∥∥∥di,ℓ+1 − ∇̂F
t

ℓ+1

∥∥∥2
≤ |λ2(W)|2

 n∑
i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥2
+

n∑
i=1

∥∥∥∥∥∥δf t
i,ℓ+1 −

1
n

n∑
j=1

δf t
j,ℓ+1

∥∥∥∥∥∥
2

+2
n∑

i=1

∥∥∥∥∥∥δf t
i,ℓ+1 −

1
n

n∑
j=1

δf t
j,ℓ+1

∥∥∥∥∥∥
∥∥∥dt

i,ℓ − ∇̂F
t

ℓ

∥∥∥


≤ |λ2(W)|2
[

n∑
i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥2
+ n

[(6Cp + 10AD)β
ℓ

]2

+2(6Cp + 10AD)β
ℓ

n∑
i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥] (By equation 2.27)

≤ |λ2(W)|2
[

n∑
i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥2
+ n

[(6Cp + 10AD)β
ℓ

]2

2.3 Analysis in Section 2.2 37

+2
√
n

(6Cp + 10AD)β
ℓ

√√√√ n∑
i=1

∥∥∥dt
i,ℓ − ∇̂F

t

ℓ

∥∥∥
 (Cauchy-Schwarz)

≤ |λ2(W)|2
(Ĉd

ℓ

)2

+ n

((6Cp + 10AD)β
ℓ

)2
+
√
n
Ĉd2 (6Cp + 10AD)β

ℓ2


(Applyting induction hypothesis)

≤ |λ2(W)|2
(
Ĉd +

√
n(6Cp + 10AD)β

)2

ℓ2

≤ |λ2(W)|2
(
ℓ0 + 1
ℓ0 · ℓ

Ĉd

)2
(2.28)

Using the equation 2.8, we conclude:√√√√ n∑
i=1

∥∥∥di,ℓ+1 − ∇̂F
t

ℓ+1

∥∥∥2
≤ |λ2(W)|

(
ℓ0 + 1
ℓ0 · ℓ

Ĉd

)

≤ Ĉd

ℓ+ 1 (By equation 2.8)

Claim 2. It holds that ∥∥∥xt
i,ℓ+1 − xt

i,ℓ

∥∥∥ ≤ AD

ℓ
(2.29)∥∥∥yt

i,ℓ+1 − yt
i,ℓ

∥∥∥ ≤ 3Cp + 2AD
ℓ+ 1 (2.30)∥∥∥xt

i,ℓ+1 − xt
i,ℓ

∥∥∥ ≤ 3Cp + 5AD
ℓ

(2.31)∥∥∥dt
i,ℓ+1 − dt

i,ℓ

∥∥∥ ≤ B

ℓ+ 4 (2.32)

where B = 4Cd + 2β(2Cp +AD).

Proof of claim.

∥∥∥xt
ℓ+1 − xt

ℓ

∥∥∥ = ηℓ

∥∥∥∥∥∥
 1
n

 n∑
j=1

vt
j,ℓ

− xt
ℓ

∥∥∥∥∥∥ (By Lemma 3)

≤ ηℓD (1
n

∑n
j=1 vt

j,ℓ ∈ K, xℓ−1 ∈ K and D = supx,y∈K2 ∥x− y∥)

≤ AD

ℓ
(Definition of ηℓ = min

{
1, A

ℓ

}
)

∥∥∥yt
j,ℓ+1 − yt

j,ℓ

∥∥∥ ≤ ∥∥∥yt
j,ℓ+1 − xt

ℓ+1

∥∥∥+
∥∥∥xt

ℓ+1 − xt
ℓ

∥∥∥+
∥∥∥xt

ℓ − yt
j,ℓ

∥∥∥ (Triangle inequality)

38 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

≤ Cp

ℓ+ 1 +
∥∥∥xt

ℓ+1 − xt
ℓ

∥∥∥+ Cp

ℓ
(By Lemma 2)

≤ Cp

ℓ+ 1 + Cp

ℓ
+ AD

ℓ
(By equation 2.29)

≤ 3Cp + 2AD
ℓ+ 1 (2.33)

∥∥∥xt
i,ℓ+1 − xi,ℓ

∥∥∥ =
∥∥∥∥yt

i,ℓ + ηℓ

(
vt

i,ℓ − yi,ℓ

)t
− yt

i,ℓ−1 − ηℓ

(
vt

i,ℓ−1 − yt
i,ℓ−1

)∥∥∥∥ (Definition of xt
i,ℓ)

≤
∥∥∥yt

i,ℓ − yt
i,ℓ−1

∥∥∥+ ηℓ

∥∥∥vt
i,ℓ − yt

i,ℓ

∥∥∥+ ηℓ−1
∥∥∥vt

i,ℓ−1 − yt
i,ℓ−1

∥∥∥
≤ 3Cp + 2AD

ℓ
+ AD

ℓ
+ AD

ℓ− 1 (By equation 2.30)

≤ 3Cp + 5AD
ℓ

(2.34)

∥∥∥dt
i,ℓ+1 − dt

i,ℓ

∥∥∥ ≤ ∥∥∥dt
i,ℓ+1 −∇F t

ℓ+1

∥∥∥+
∥∥∥∇F t

ℓ+1 −∇F t
ℓ

∥∥∥+
∥∥∥∇F t

ℓ − dt
i,ℓ

∥∥∥ (Triangle inequality)

≤ Cd

ℓ+ 1 +
∥∥∥∇F t

ℓ+1 −∇F t
ℓ

∥∥∥+ Cd

ℓ
(By Lemma 2)

≤ Cd

ℓ+ 1 + Cd

ℓ
+ 1
n

n∑
j=1

∥∥∥∇f t
j (yt

j,ℓ+1)−∇f t
j (yt

j,ℓ)
∥∥∥ (Definition of ∇F t

ℓ)

≤ Cd

ℓ+ 1 + Cd

ℓ
+ β

n

n∑
j=1

∥∥∥yt
j,ℓ+1 − yt

j,ℓ

∥∥∥ (f t
j is β-smooth)

≤ Cd

ℓ+ 1 + Cd

ℓ
+ βCp

ℓ+ 1 + βCp

ℓ
+ βAD

ℓ
(By equation 2.30)

≤ 4Cd + 4βCp + 2βAD
ℓ+ 4 (When ℓ ≥ 7)

= 4Cd + 2β(2Cp +AD)
ℓ+ 4 (2.35)

Lemma 3. For every 1 ≤ t ≤ T and 1 ≤ ℓ ≤ L, it holds that

xt
ℓ+1 = xt

ℓ + ηℓ

(1
n

n∑
j=1

vt
j,ℓ − xt

ℓ

)

Proof. By Steps 8 and 9 in Algorithm 1, we have

xt
ℓ+1 = 1

n

n∑
i=1

xt
i,ℓ+1 (Definition of xt

ℓ+1)

2.3 Analysis in Section 2.2 39

= 1
n

n∑
i=1

(
(1− ηℓ)yt

i,ℓ + ηℓv
t
i,ℓ

)
(Definition of xt

i,ℓ)

= 1
n

n∑
i=1

(1− ηℓ)

 n∑
j=1

Wijxt
j,ℓ

+ ηℓv
t
i,ℓ

 (Definition of yt
i,ℓ)

= (1− ηℓ)
1
n

n∑
i=1

 n∑
j=1

Wijxt
j,ℓ

+ 1
n
ηℓ

n∑
i=1

vt
i,ℓ

= (1− ηℓ)
1
n

n∑
j=1

[
xt

j,ℓ

n∑
i=1

Wij

]
+ 1
n
ηℓ

n∑
i=1

vt
i,ℓ

= (1− ηℓ)
1
n

n∑
j=1

xt
j,ℓ + 1

n
ηℓ

n∑
i=1

vt
i,ℓ (

∑n
i=1Wij = 1 for every j)

= (1− ηℓ)xt
ℓ + 1

n
ηℓ

n∑
i=1

vt
i,ℓ

= xt
ℓ + ηℓ

(
1
n

n∑
i=1

vt
i,ℓ − xt

ℓ

)

where we use a property of W which is
∑n

i=1Wij = 1 for every j.

We are now proving Theorem 1.

Theorem 1. Let K be a convex set with diameter D. Assume that functions F t are β-smooth and
∥∇F t∥ ≤ G for every t.
Then, with the step-sizes ηℓ = min {1,A/ℓ} where A = max

{
G

βD ,
(Cd+βCp)

2βD , 3
}

for all 1 ≤ ℓ ≤ L,

Cp = ℓ0
√
nAD andCd = ℓ0

√
nmax

{
|λ2(W)|

(
βD

1−|λ2(W)| +G)
)
, (6Cp + 10AD)β

}
+3β (Cp + 2AD),

Algorithm 1 guarantees that for every 1 ≤ i ≤ n,

T∑
t=1

F t(xt
i) ≤ min

x∈K

T∑
t=1

F t(x) + 2βAD2T

L
+ 3(A+ 1) · RT + GCpT

L

where RT is the regret of online linear minimization oracles. Consequently, choosing L = O
(√

T
)

and oracles as gradient descent (or follow-the-perturbed leader if aiming for projection-free algo-
rithm) with regret RT = O

(
GD
√
T
)
, for every 1 ≤ i ≤ n, we have

T∑
t=1

F t(xt
i) ≤ min

x∈K

T∑
t=1

F t(x) +O
(
(G+ Cd + βCp + 3β)GD

√
T
)
.

40 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

Proof. Let x∗ be an optimal solution in hindsight that is x∗ = arg minx∈K
∑T

t=1 F
t(x). Fix a time

step t ∈ {1, 2, . . . , T}. By Lemma 3,

xt
ℓ+1 = xt

ℓ + ηℓ

(1
n

n∑
j=1

vt
j,ℓ − xt

ℓ

)
. (2.36)

For every 1 ≤ ℓ ≤ L, we have:

F t(xt
ℓ+1)− F t(xt

ℓ) ≤ ηℓ

〈
∇F t(xt

ℓ),
1
n

n∑
j=1

vt
j,ℓ − xt

ℓ

〉
+ β

2 η
2
ℓ

∥∥∥∥ 1
n

n∑
j=1

vt
j,ℓ − xt

ℓ

∥∥∥∥2

(using β-smoothness of F t)

= ηℓ

〈
∇F t(xt

ℓ),x∗ − xt
ℓ

〉
+ ηℓ

〈
∇F t(xt

ℓ),
1
n

n∑
j=1

vt
j,ℓ − x∗

〉
+ β

2 η
2
ℓ

∥∥∥∥ 1
n

n∑
j=1

vt
j,ℓ − xt

ℓ

∥∥∥∥2

≤ ηℓ⟨∇F t(xt
ℓ),x∗ − xt

ℓ⟩+ ηℓ

〈
∇F t(xt

ℓ),
1
n

n∑
j=1

vt
j,ℓ −

1
n

n∑
j=1

x∗
〉

+ β

2 η
2
ℓD

2

(diameter of K is bounded)

= ηℓ⟨∇F t(xt
ℓ),x∗ − xt

ℓ⟩+ ηℓ

n

n∑
j=1
⟨∇F t(xt

ℓ),vt
j,ℓ − x∗⟩+ β

2 η
2
ℓD

2

≤ ηℓ

(
F t(x∗)− F t(xt

ℓ)
)

+ ηℓ

n

n∑
j=1
⟨dt

j,ℓ,v
t
j,ℓ − x∗⟩

+ ηℓ

n

n∑
j=1
⟨∇F t(xt

ℓ)− dt
j,ℓ,v

t
j,ℓ − x∗⟩+ β

2 η
2
ℓD

2 (convexity of F t)

≤ ηℓ

(
F t(x∗)− F t(xt

ℓ)
)

+ ηℓ

n

n∑
j=1
⟨dt

j,ℓ,v
t
j,ℓ − x∗⟩

+ ηℓ

n

n∑
j=1
∥∇F t(xt

ℓ)− dt
j,ℓ∥ · ∥vt

j,ℓ − x∗∥+ β

2 η
2
ℓD

2 (Cauchy-Schwarz)

Moreover, for every j, ℓ, t, we have (recall that F t
ℓ = 1

n

∑n
j=1 f

t
j (yt

j,ℓ)):

∥∇F t(xt
ℓ)− dt

j,ℓ∥ ≤ ∥∇F t
ℓ − dt

j,ℓ∥+ ∥∇F t(yt
ℓ)−∇F t

ℓ∥ (triangle inequality)

≤ ∆dℓ +
∥∥∥∥ 1
n

n∑
j=1
∇f t

j (xt
ℓ)−

1
n

n∑
j=1
∇f t

j (yt
j,ℓ)
∥∥∥∥ (definition of ∆dℓ, Lemma 2)

≤ ∆dℓ + 1
n

n∑
j=1
∥∇f t

j (xt
ℓ)−∇f t

j (yt
j,ℓ)∥ (triangle inequality)

≤ ∆dℓ + 1
n

n∑
j=1

β∥xt
ℓ − yt

j,ℓ∥ (β-smoothness of f t
j)

= ∆dℓ + β∆pℓ (definition of ∆pℓ, Lemma 2)

2.3 Analysis in Section 2.2 41

Hence,

F t(xt
ℓ+1)− F t(xt

ℓ) ≤ ηℓ

(
F t(x∗)− F t(xt

ℓ)
)

+ ηℓ

n

n∑
j=1
⟨dt

j,ℓ,v
t
j,ℓ − x∗⟩

+ ηℓ(∆dℓ + β∆pℓ)D + β

2 η
2
ℓD

2.

Define ht
ℓ = F t(xt

ℓ+1)− F t(x∗). By Lemma 2, we deduce that

ht
ℓ ≤ (1− ηℓ)ht

ℓ−1 + ηℓ

n

n∑
j=1
⟨dt

j,ℓ,v
t
j,ℓ − x∗⟩+ ηℓ

(Cd + βCp)D
ℓ

+ β

2 η
2
ℓD

2. (2.37)

Using Inequality (2.37) recursively and by the choice of ηℓ’s, we deduce the following bound by
standard techniques.

Claim 3. For every t, it holds that

ht
L = F t(xt

L+1)− F t(x∗) ≤ 2βAD2

L
+ 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

 ⟨dt
j,ℓ,v

t
j,ℓ − x∗⟩

Proof of claim. Fix a time t. We prove by induction the following inequality for every 1 ≤ ℓ ≤ L

ht
ℓ = F t(xt

ℓ+1)− F t(x∗) ≤ 2βAD2

ℓ
+ 1
n

n∑
j=1

ℓ∑
ℓ′=1

ηℓ′

[
ℓ∏

k=ℓ′+1
(1− ηk)

]
⟨dt

j,ℓ′ ,vt
j,ℓ′ − x∗⟩ (2.38)

The claim follows by applying ℓ = L.

For the base case where ℓ = 1, Inequality (2.38) reads

ht
1 = F t(xt

2)− F t(x∗) ≤ 2βAD2 + η1
n

n∑
j=1
⟨dt

j,1,v
t
j,1 − x∗⟩

where by the choice of step-sizes, η1 = min{1, A} = 1. As F t is G-Lipschitz and set K has
diameter D, the left-hand side of the above inequality is at most G∥xt

2 − x∗∥ ≤ GD; whereas
the right-hand side is

2βAD2 + 1
n

n∑
j=1
⟨dt

j,1,v
t
j,1 − x∗⟩ ≥ 2βAD2 − 1

n

n∑
j=1
∥dt

j,1∥ · ∥vt
1 − x∗∥ ≥ 2βAD2 −GD ≥ GD

42 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

since ∀1 ≤ j ≤ n

∥dt
j,1∥ =

∥∥∥∥∥
n∑

i=1
Wijgt

i,1

∥∥∥∥∥ (Definition of dt
j,1)

=
∥∥∥∥∥

n∑
i=1

Wij∇f t
i (xt

i,1)
∥∥∥∥∥ (Definition of gt

j,1)

≤
n∑

i=1
Wij

∥∥∥∇f t
i (xt

i,1)
∥∥∥ (Jensen’s inequality)

≤ G (
∑n

i=1 Wij = 1 and
∥∥∥∇f t

i (xt
i,1)
∥∥∥ ≤ G)

and A ≥ G
βD (by the definition of A). Hence, the base case of Inequality (2.38) holds.

Assume the induction hypothesis that Inequality (2.38) holds for ℓ− 1. We have

ht
ℓ ≤ (1− ηℓ)ht

ℓ−1 + ηℓ

n

n∑
j=1
⟨dt

j,ℓ,v
t
j,ℓ − x∗⟩+ ηℓ

(Cd + βCp)D
ℓ

+ β

2 η
2
ℓD

2 (by Inequality (2.37))

≤ (1− ηℓ)
(

2βAD2

ℓ− 1

)
+ (1− ηℓ)

n

 n∑
j=1

ℓ−1∑
ℓ′=1

ηℓ′

 ℓ−1∏
k=ℓ′+1

(1− ηk)

 ⟨dt
j,ℓ′ ,vt

j,ℓ′ − x∗⟩


+ ηℓ

n

n∑
j=1
⟨dt

j,ℓ,v
t
j,ℓ − x∗⟩+ ηℓ

(Cd + βCp)D
ℓ

+ β

2 η
2
ℓD

2 (using the induction hypothesis)

= (1− ηℓ)
(

2βAD2

ℓ− 1

)
+ (1− ηℓ)

n

 n∑
j=1

ℓ−1∑
ℓ′=1

ηℓ′

 ℓ−1∏
k=ℓ′+1

(1− ηk)

 ⟨dt
j,ℓ′ ,vt

j,ℓ′ − x∗⟩


+ ηℓ

n

n∑
j=1

 ℓ∏
k=ℓ+1

(1− ηk)

 ⟨dt
j,ℓ,v

t
j,ℓ − x∗⟩+ ηℓ

(Cd + βCp)D
ℓ

+ β

2 η
2
ℓD

2

= (1− ηℓ)
(

2βAD2

ℓ− 1

)

+ 1
n

n∑
j=1

 ℓ−1∑
ℓ′=1

ηℓ′

 ℓ−1∏
k=ℓ′+1

(1− ηk)

 (1− ηℓ)⟨dt
j,ℓ′ ,vt

j,ℓ′ − x∗⟩+

 ℓ∏
k=ℓ+1

(1− ηk)

 ⟨dt
j,ℓ,v

t
j,ℓ − x∗⟩


+ ηℓ

(Cd + βCp)D
ℓ

+ β

2 η
2
ℓD

2

= (1− ηℓ)
(

2βAD2

ℓ− 1

)

+ 1
n

n∑
j=1

 ℓ−1∑
ℓ′=1

ηℓ′

 ℓ∏
k=ℓ′+1

(1− ηk)

 ⟨dt
j,ℓ′ ,vt

j,ℓ′ − x∗⟩+

 ℓ∏
k=ℓ+1

(1− ηk)

 ⟨dt
j,ℓ,v

t
j,ℓ − x∗⟩


+ ηℓ

(Cd + βCp)D
ℓ

+ β

2 η
2
ℓD

2

2.3 Analysis in Section 2.2 43

= (1− ηℓ)
(

2βAD2

ℓ− 1

)
+ 1
n

n∑
j=1

 ℓ∑
ℓ′=1

ηℓ′

 ℓ∏
k=ℓ′+1

(1− ηk)

 ⟨dt
j,ℓ′ ,vt

j,ℓ′ − x∗⟩


+ ηℓ

(Cd + βCp)D
ℓ

+ β

2 η
2
ℓD

2

≤ 2βAD2

ℓ
+ 1
n

n∑
j=1

ℓ∑
ℓ′=1

ηℓ′

 ℓ∏
k=ℓ′+1

(1− ηℓ′)

 ⟨dt
j,ℓ′ ,vt

j,ℓ′ − x∗⟩

The last inequality holds since

(1− ηℓ)
2βAD2

ℓ− 1 + ηℓ
(Cd + βCp)D

ℓ
+ β

2 η
2
ℓD

2

≤
(

1− A

ℓ

)2βAD2

ℓ− 1 + A(Cd + βCp)D
ℓ2

+ βA2

2ℓ2 D
2

≤ 2βAD2

ℓ− 1 − 2βA2D2

ℓ(ℓ− 1) +
A(Cd + βCp)D + β

2A
2D2

ℓ2

≤ 2βAD2

ℓ− 1 −
2βA2D2 −A(Cd + βCp)D − β

2A
2D2

ℓ(ℓ− 1)

≤ 2βAD2

ℓ− 1 − βA2D2

ℓ(ℓ− 1) ≤
2βAD2

ℓ− 1 − 2βAD2

ℓ(ℓ− 1)

≤ 2βAD2

ℓ

where the fourth and the fifth inequalities are due to A ≥ (Cd+βCp)
2βD and A ≥ 3, respectively. The

claim follows.

Summing the inequality in Claim 3 over all 1 ≤ t ≤ T , we get

T∑
t=1

(
F t(xt

L+1)− F t(x∗)
)
≤ 2βAD2T

L
+

T∑
t=1

 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

 ⟨dt
j,ℓ,v

t
j,ℓ − x∗⟩


= 2βAD2T

L
+ 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(T∑
t=1
⟨dt

j,ℓ,v
t
j,ℓ − x∗⟩

)

≤ 2βAD2T

L
+ 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

 · RT

≤ 2βAD2T

L
+ 3(A+ 1) · RT (2.39)

44 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

The second holds by the fact that the linear oracles Oℓ for 1 ≤ ℓ ≤ L has regret RT , i.e.,∑T
t=1⟨dt

j,ℓ′ ,vt
j,ℓ′⟩ ≤ minx∈K

∑T
t=1⟨dt

j,ℓ′ ,x⟩ + RT ≤
∑T

t=1⟨dt
j,ℓ′ ,x∗⟩ + RT . The last inequality is

due to the following claim.

Claim 4. By the choice of the step-sizes ηℓ, it holds that
∑L

ℓ=1 ηℓ
∏L

ℓ′=ℓ+1(1− ηℓ′) ≤ 3(A+ 1).

Proof of claim. First, we bound the term
∏L

ℓ′=ℓ+1(1 − ηℓ). In the first case if A
ℓ′ ≥ 1 for some

ℓ ≤ ℓ′ ≤ L then ηℓ′ = 1; so
∏L

ℓ′=ℓ+1(1− ηℓ′) = 0. We consider the second case where A
ℓ′ < 1 for

every ℓ ≤ ℓ′ ≤ L; so ηℓ′ = A/ℓ′. Using the inequality 1− z ≤ e−z for z ≥ 0,

L∏
ℓ′=ℓ+1

(1− ηℓ′) ≤ e−A
∑L

ℓ′=ℓ+1
1/ℓ′

≤ e−A
∫ L

ℓ+2
dℓ′/ℓ′

≤ e−A(ln L−ln(ℓ+2) =
(
ℓ+ 2
L

)A

. (2.40)

So, in both cases, the term
∏L

ℓ′=ℓ+1(1− ηℓ′) is upper bounded by
(

ℓ+2
L

)A.

We deduce that

L∑
ℓ=1

ηℓ

L∏
ℓ′=ℓ+1

(1− ηℓ′) ≤ ηL + ηL−1 + ηL−2 +
L−3∑
ℓ=1

A

ℓ

(
ℓ+ 2
L

)A

≤ 3 min
{

1, A

L− 2

}
+ A

L

L−3∑
ℓ=1

ℓ+ 2
ℓ

(
ℓ+ 2
L

)A−1

≤ 3 + A

L

L−3∑
ℓ=1

(
ℓ+ 2
L

)A−1

≤ 3 + 3A.

By Inequality (2.39) and using Lemma 2 together with the fact that F t is Lipschitz, for every
1 ≤ i ≤ n, we have

T∑
t=1

(
F t(xt

i)− F t(x∗)
)

=
T∑

t=1

(
F t(xt

i,L+1)− F t(x∗)
)

=
T∑

t=1

(
F t(xt

L+1)− F t(x∗)
)

+
T∑

t=1

(
F t(xt

i,L+1)− F t(xt
L+1)

)

≤ 2βAD2T

L
+ 3(A+ 1) · RT +

T∑
t=1

G
∥∥∥xt

i,L+1 − xt
L+1

∥∥∥

2.3 Analysis in Section 2.2 45

≤ 2βAD2T

L
+ 3(A+ 1) · RT +

T∑
t=1

G(1− ηL)
∥∥∥yt

i,L − xt
L

∥∥∥+ ηL

∥∥∥vt
i,L − vt

L

∥∥∥
≤ 2βAD2T

L
+ 3(A+ 1) · RT +

T∑
t=1

G
∥∥∥yt

i,L − xt
L

∥∥∥+ ηL

∥∥∥vt
i,L − vt

L

∥∥∥
≤ 2βAD2T

L
+ 3(A+ 1) · RT + GT (Cp +AD)

L

This completes the theorem proof.

2.4 Analysis in Section 2.2.3

In the analysis, we aim to show that, given unbiased gradient estimates, the regret bound is
asymptotically not worse than the case where we have access to exact gradients. In order to
prove that, we use a part of the analysis of Theorem 1 for exact gradients and argue that when
we switch to gradient estimates, we encounter only an additional loss of O

(√
T
)

in term of the
regret.

First, we prove a variance bound between the random variables d̃t
i,ℓ in Algorithm 3 and their

exact counterparts dt
i,ℓ in Algorithm 1.

Lemma 4. Given the assumptions of Theorem 3, for every 1 ≤ t ≤ T , 1 ≤ i ≤ n and 1 ≤ ℓ ≤ L, it
holds that

E
[
∥d̃t

i,ℓ − dt
i,ℓ∥2

]
≤ 4(β̃2 + β2)(3Cp + 5AD)2 + σ2.

Proof. Fix an arbitrary time t. For any 1 ≤ i ≤ n, we have

E∥d̃t
i,ℓ+1 − dt

i,ℓ+1∥2 = E

∥∥∥∥∥∥
n∑

j=1
Wij

[
∇̃f t

j (xt
j,ℓ+1)− ∇̃f t

j (xt
j,ℓ)−∇f t

j (xt
j,ℓ+1) +∇f t

j (xt
j,ℓ) + (d̃t

j,ℓ − dt
j,ℓ)
]∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥
n∑

j=1
Wij

[
∇̃f t

j (xt
j,ℓ+1)− ∇̃f t

j (xt
j,ℓ)−∇f t

j (xt
j,ℓ+1) +∇f t

j (xt
j,ℓ)
]∥∥∥∥∥∥

2

+ E

∥∥∥∥∥∥
n∑

j=1
Wij

(
d̃t

j,ℓ − dt
j,ℓ

)∥∥∥∥∥∥
2

≤ max
1≤j≤n

{
E
∥∥∥∇̃f t

j (xt
j,ℓ+1)− ∇̃f t

j (xt
j,ℓ)−∇f t

j (xt
j,ℓ+1) +∇f t

j (xt
j,ℓ)
∥∥∥2
}

+ max
1≤j≤n

{
E
∥∥∥d̃t

j,ℓ − dt
j,ℓ

∥∥∥2
}

46 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

≤ max
1≤j≤n

{
2E
∥∥∥∇̃f t

i (xt
j,ℓ+1)− ∇̃f t

i (xt
j,ℓ)
∥∥∥2

+ 2E
∥∥∥∇f t

i (xt
j,ℓ+1)−∇f t

j (xt
j,ℓ)
∥∥∥2
}

+ max
1≤j≤n

{
E
∥∥∥d̃t

j,ℓ − dt
j,ℓ

∥∥∥2
}

≤ max
1≤j≤n

{
E
[
2(β̃2 + β2)

∥∥∥xt
j,ℓ+1 − xt

j,ℓ

∥∥∥2
]}

+ max
1≤j≤n

{
E
∥∥∥d̃t

j,ℓ − dt
j,ℓ

∥∥∥2
}

(2.41)

The second equality holds since E
[
∇̃f t

i (xt
i,ℓ+1)−∇̃f t

i (xt
i,ℓ)− (∇f t

i (xt
i,ℓ+1)−∇f t

i (xt
i,ℓ))

]
= 0. The

first inequality follows the fact that ∥a + b∥2 ≤ 2(∥a∥2 + ∥b∥2). The last inequality is due to the
β-Lipschitz and β̃-Lipschitz of ∇f t

i and ∇̃f t
i , respectively.

Moreover, by using equation 2.31, we obeserve

∥∥∥xt
i,ℓ+1 − xt

i,ℓ

∥∥∥ ≤ 3Cp+ 5AD
ℓ

(2.42)

where in the last inequality,
∥∥ 1

n

∑n
j=1 vt

j,ℓ − xt
ℓ

∥∥ ≤ D for every t, ℓ since both 1
n

∑n
j=1 vt

j,ℓ and xt
ℓ

are in K.

Therefore, combining (2.41) and (2.42), we get

max
1≤j≤n

{
E
∥∥∥d̃t

i,ℓ+1 − dt
i,ℓ+1

∥∥∥2
}
≤ 2(β̃2 + β2)(3Cp + 5AD)2

ℓ2
+ max

1≤j≤n

{
E
∥∥∥d̃t

j,ℓ − dt
j,ℓ

∥∥∥2
}

(2.43)

Applying (2.43) recursively on ℓ, we deduce that

max
1≤j≤n

{
E
∥∥∥d̃t

i,ℓ+1 − dt
i,ℓ+1

∥∥∥2
}
≤ 2(β̃2 + β2)(3Cp + 5AD)2

ℓ∑
l=1

1
l2

+ max
1≤j≤n

{
E
∥∥∥d̃t

j,1 − dt
j,1

∥∥∥2
}

≤ 4(β̃2 + β2)(3Cp + 5AD)2 + max
1≤j≤n

{
E
∥∥∥d̃t

j,1 − dt
j,1

∥∥∥2
}

since
∑ℓ

l=1
1
l2 ≤

π2

6 ≤ 1.7.

Besides, for any 1 ≤ i ≤ n

max
1≤j≤n

{
E
∥∥∥d̃t

j,1 − dt
j,1

∥∥∥2
}

= max
1≤j≤n

E
∥∥∥∥∥∑

i

Wij(g̃t
i,1 − gt

i,1)
∥∥∥∥∥

2


≤ max
1≤j≤n

{∑
i

WijE
∥∥∥g̃t

i,1 − gt
i,1

∥∥∥2
}

= max
1≤j≤n

{∑
i

WijE
∥∥∥∇̃f t

i (xt
i,1)−∇f t

j (xt
i,1)
∥∥∥2
}
≤ σ2

2.4 Analysis in Section 2.2.3 47

since
∑

j Wij = 1.

Hence,
E
[
∥d̃t

i,ℓ+1 − dt
i,ℓ+1∥2

]
≤ 4(β̃2 + β2)(3Cp + 5AD)2 + σ2.

Before presenting the proof of Theorem 3, we mention a useful recent variance reduction
technique proposed by [Che+18], Stated as follows.

Lemma 5 ([Che+18], Theorem 3). Let {dℓ}ℓ≥1 be a sequence of points in Rn such that ∥dℓ − dℓ−1∥ ≤
B/ℓ + 3 for all ℓ ≥ 1 with fixed constant B ≥ 0. Let {d̃ℓ} be a sequence of random variables such that
E[d̃ℓ|Hℓ−1] = dℓ and E

[∥∥d̃ℓ − dℓ

∥∥2|Hℓ−1
]
≤ σ2 for every ℓ ≥ 1, where Hℓ−1 is the history up to

ℓ− 1. Let {ãℓ}ℓ≥0 be a sequence of random variables defined recursively as

ãℓ = (1− ρℓ)ãℓ−1 + ρtd̃ℓ

For ℓ ≥ 1 where ρℓ = 2
(ℓ+3)2/3 and ã0 is fixed. Then we have

E
[∥∥ãℓ − dℓ

∥∥2] ≤ Q

(ℓ+ 4)2/3
,

where Q = max
{

4
∥∥ã0 − d0∥∥2

, 4σ2 + 3B2

2

}
.

Theorem 3. Let K be a convex set with diameter D. Assume that for every 1 ≤ t ≤ T ,

1. functions f t
i are β-smooth, i.e. ∇f t

i is β-Lipschitz, (so F t is β-smooth);
2. ∥∇f t

i ∥ ≤ G (so ∥∇F t∥ ≤ G);
3. the gradient estimates are unbiased with bounded variance σ2, i.e., E[∇̃f t

i (xt
i,ℓ)] = ∇f t

i (xt
i,ℓ)

and
∥∥∇̃f t

i (xt
i,ℓ)]−∇f t

i (xt
i,ℓ)
∥∥ ≤ σ for every 1 ≤ i ≤ n and 1 ≤ ℓ ≤ L;

4. the gradient estimates are β̃-Lipschitz.

Then, choosing the step-sizes ηℓ = min{1,A/ℓ} where A = max{ G
βD ,

(Cd+βCp)
2βD , 3} for all 1 ≤ ℓ ≤ L,

Algorithm 1 guarantees that for every 1 ≤ i ≤ n,

T∑
t=1

E
[
F t(xt

i)
]
≤ min

x∈K

T∑
t=1

F t(x) + 2βAD2T

L

+ 3(A+ 1) · O
(√

T
)

+O
(
ATDQ

1/2

L1/3

)

48 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

where Q = 6(β̃2 + β2)(2Cp + AD)2 + σ2 + 3B2/2,B = 4Cd + 2β [2Cp +AD],Cp = ℓ0
√
nAD and

Cd = ℓ0
√
nmax

{
|λ2(W)|

(
βD

1−|λ2(W)| +G)
)
, (6Cp + 10AD)β

}
+ 3β (Cp + 2AD).

Consequently, by choosing L = T
3/2, we obtain the regret of O

(√
T
)
.

Proof. Recall that, in our notions, stochastic variables/parameters are denoted by the same letter
as its exact counterpart with an additional tilde symbol. Let x∗ ∈ arg minx∈K

∑T
t=1 F

t(x). Based
on the proof of Theorem 1, in particular Claim 3 over all 1 ≤ t ≤ T , we get

T∑
t=1

(
F t(xt

L+1)− F t(x∗)
)
≤ 2βAD2T

L
+

T∑
t=1

 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

 ⟨dt
j,ℓ,v

t
j,ℓ − x∗⟩


= 2βAD2T

L
+ 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(T∑
t=1
⟨ãt

j,ℓ,v
t
j,ℓ − x∗⟩

)

+ 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(T∑
t=1
⟨dt

j,ℓ − ãt
j,ℓ,v

t
j,ℓ − x∗⟩

)

≤ 2βAD2T

L
+ 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

 · RT

+ 1
n

n∑
j=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(T∑
t=1
⟨dt

j,ℓ − ãt
j,ℓ,v

t
j,ℓ − x∗⟩

)

≤ 2βAD2T

L
+ 3(A+ 1) · RT + 1

n

n∑
j=1

T∑
t=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(⟨dt
j,ℓ − ãt

j,ℓ,v
t
j,ℓ − x∗⟩

)

≤ 2βAD2T

L
+ 3(A+ 1) · RT + 1

n

n∑
j=1

T∑
t=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(1
γℓ
∥dt

j,ℓ − ãt
j,ℓ∥2 + γℓ∥vt

j,ℓ − x∗∥2
)

(Young’s Inequality)

≤ 2βAD2T

L
+ 3(A+ 1) · RT + 1

n

n∑
j=1

T∑
t=1

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(1
γℓ
∥dt

j,ℓ − ãt
j,ℓ∥2 + γℓD

2
)

(2.44)

The second inequality follows the fact that online linear oracles has regret RT . The third
inequality holds by Claim 4.

2.4 Analysis in Section 2.2.3 49

Claim 5. Let γℓ = Q
1/2

D(ℓ+3)1/3 for 1 ≤ ℓ ≤ L where Q = 6(β̃2 +β2)(2Cp +AD)2 +σ2 + 3B2/2, it holds
that

E
[L∑

ℓ=1
ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(1
γℓ
∥dt

j,ℓ − ãt
j,ℓ∥2 + γℓD

2
)]
≤
O
(
ADQ

1/2
)

L1/3
.

Proof of claim. Fix a time step t. We aim to apply Lemma 5. We first verify the conditions in that
lemma: E[d̃t

j,ℓ] = dt
j,ℓ, by Lemma 4, E

[
∥d̃t

i,ℓ − dt
i,ℓ∥2

]
≤ 6(β̃2 + β2)(2Cp + AD)2 + σ2, and by

Claim 2,
∥∥∥dt

i,ℓ − dt
i,ℓ−1

∥∥∥ ≤ B
ℓ+3 . Hence, applying Lemma 5 (recall that ρℓ = 2

(ℓ+3)2/3 for 1 ≤ ℓ ≤ L),
we have

E
[
∥dt

j,ℓ − ãt
j,ℓ∥2

]
≤ Q

(ℓ+ 4)2/3
(2.45)

where Q = 6(β̃2 + β2)(3Cp + 5AD)2 + σ2 + 3B2/2.

Hence,

E
[

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(1
γℓ
∥dt

j,ℓ − ãt
j,ℓ∥2 + γℓ∥vt

j,ℓ − x∗∥2
)]

≤
L∑

ℓ=1
ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(1
γℓ
· Q

(ℓ+ 4)2/3
+ γℓD

2
)

≤
L−1∑
ℓ=1

A

ℓ

(
ℓ+ 2
L

)A (1
γℓ
· Q

(ℓ+ 4)2/3
+ γℓD

2
)

+ ηL

(1
γL
· Q

(L+ 4)2/3
+ γLD

2
)

=
L−1∑
ℓ=1

A

L
· ℓ+ 2

ℓ
·
(
ℓ+ 2
L

)A−1 (1
γℓ
· Q

(ℓ+ 4)2/3
+ γℓD

2
)

+ ηL

(1
γL
· Q

(L+ 4)2/3
+ γLD

2
)

where in the second inequality we use Inequality (2.40), specifically

L∏
ℓ′=ℓ+1

(1− ηℓ′) ≤ e−A
∑L

ℓ′=ℓ+1
1/ℓ′

≤ e− A
∫ L

ℓ+2
dℓ′/ℓ′

≤ e−A(ln L−ln(ℓ+2) =
(
ℓ+ 2
L

)A

.

Choosing γℓ = Q
1/2

D(ℓ+3)1/3 , we obtain:

E
[

L∑
ℓ=1

ηℓ

 L∏
ℓ′=ℓ+1

(1− ηℓ′)

(1
γℓ
∥dt

j,ℓ − ãt
j,ℓ∥2 + γℓD

2
)]

50 Chapter 2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization

≤
L−1∑
ℓ=1

A

L
· ℓ+ 2

ℓ
·
(
ℓ+ 2
L

)A−1 2DQ1/2

(ℓ+ 3)1/3
+ A

L
· 2DQ1/2

(L+ 3)1/3

≤ 1
L
· O

(
ADQ

1/2
) L∑

ℓ=1

1
ℓ1/3
≤ 1
L
· O

(
ADQ

1/2
) ∫ L

ℓ=1

dℓ

ℓ1/3
≤ 1
L
· O

(
ADQ

1/2
)
· L2/3.

where the second inequality holds since A ≥ 3. The claim follows. Combining Claim 5 with
the Inequality (2.44), we have:

T∑
t=1

(
F t(xt

L+1)− F t(x∗)
)
≤ 2βAD2T

L
+ 3(A+ 1) · RT +O

(
ATDQ

1/2

L1/3

)
.

Using Lemma 2 together with the fact that F t is Lipschitz, for every 1 ≤ i ≤ n, we have

T∑
t=1

(
F t(xt

i)− F t(x∗)
)

=
T∑

t=1

(
F t(xt

i,L+1)− F t(x∗)
)

=
T∑

t=1

(
F t(xt

L+1)− F t(x∗)
)

+
T∑

t=1

(
F t(xt

i,L+1)− F t(xt
L+1)

)

≤ 2βAD2T

L
+ 3(A+ 1) · RT +O

(
ATDQ

1/2

L1/3

)
+

T∑
t=1

G∥xt
i,L+1 − xt

L+1∥

≤ 2βAD2T

L
+ 3(A+ 1) · RT +O

(
ATDQ

1/2

L1/3

)

+
T∑

t=1
G(1− ηL)

∥∥∥yt
i,L+1 − xt

L+1

∥∥∥+ ηL

∥∥∥vt
i,L − vt

L

∥∥∥
≤ 2βAD2T

L
+ 3(A+ 1) · RT +O

(
ATDQ

1/2

L1/3

)

+
T∑

t=1
G
∥∥∥yt

i,L+1 − xt
L+1

∥∥∥+ ηL

∥∥∥vt
i,L − vt

L

∥∥∥
≤ 2βAD2T

L
+ 3(A+ 1) · RT +O

(
ATDQ

1/2

L1/3

)
+ GT (Cp +AD)

L
.

As the chosen oracles has regret RT = O
(√

T
)

and L = T
3/2, the theorem follows.

2.4 Analysis in Section 2.2.3 51

3Meta Frank Wolfe on a Random Walk
Journey

3.1 Introduction

In chapter 2, we present a decentralized version of Meta Frank Wolfe that requires synchronized
communications between neighbours. This chapter investigates Markov chain Meta Frank Wolfe,
a version of Meta Frank Wolfe in which random samples are taken along the trajectory of a
Markov chain. Recall that, we are looking for a decentralized online algorithm that can learn the
model without requiring the participation of a centralized body and in which nodes only share
information with their immediate neighbors. To accomplish this goal, we devised a random walk
for each online round t that, at each node it visits, triggers an update to the global model based
on the local data of the triggered node.

3.2 Uniform Random Walk Meta Frank Wolfe

The method starts at one node that is chosen evenly at random to be activated at the first
iteration in order to carry out the update. This node is the starting point for the algorithm. After
that, during each iteration k, the global model iterate xt

k is given to a node ik+1 that is picked
at random in order for that node to update the model with the data that is stored locally and
obtain the updated model xt

k+1. In light of the fact that connections must be maintained at all
times, the currently activated node ik must be a neighbor of the node ik−1 that came before it in
the activation process, more formally ik ∈ N (ik−1). A random walk is defined by the mechanism
described above, and we model it using a Markov chain. The sequence of active nodes ik ∈ V
represents the states of the Markov chain with the transition matrix P; this structure is passed
down from the underlying linked graph G = (V, E), which has the same connection structure.
We construct the uniform transition matrix P using the Metropolis-Hastings [Has70]:

Pij =


1/(1 + max{di, dj}) if (i, j) ∈ E,

0 if (i, j) /∈ E and i ̸= j,

1−
∑

j∈N(i) Pij if i = j,

53

In order to ensure that there is convergence, we assume that the Markov chain
(
ik
)

k∈N
defined

on the finite space V with homogeneous transition matrix P is irreducible and aperiodic and has
a stationary distribution π∗ on V.

The formal description is given in Algorithm 5.

Algorithm 5 Random Walk Meta Frank-Wolfe algorithm (RWMFW)

Initialization: Initial node i(1) chosen uniformly at random for [N], Initial model x1
1 chosen

uniformly at random from K

1: for t = 1 to T do ▷ The variable t represents rounds
2: Initialize xt

1
3: for k = 1 to K do ▷ The variable k represents iterations
4: vt

k ← output of the online oracle Ok

5: xt
k+1 ← xt

k + ηk(vt
k − xt

k)
6: Feedback ⟨∇f t

ik(xt
k), ·⟩ to the oracle Ok ▷ This step is done once the f t

ik is revealed to
node ik: after the step 15. See Remark 4

7: Choose node ik+1 with probability p ∼ Pik,∗
8: ▷ Pik,∗ = "row ik of P" which defines a probability distribution
9: Send xt

k+1 to node ik+1

10: x̂t
k+1 ← x̂t

k + ηkxt
k+1

11: Send x̂t
k to node ik+1

12: Send the oracle O1, · · · , Ok updates to node ik+1 ▷ See Remark 5
13: end for

14: xt
K+1 ←

x̂t
K+1∑K+1

k=1 ηk

▷ xt
K+1 =

∑K+1
k=1 ηkxt

k∑K+1
k=1 ηk

15: Every node plays xt
K+1

16: end for

Remark 4: (The feedback step 6 in Algorithm 5).

The feedback to the oracles can only occur once the decision at time t has been committed
(step 15) and the feedback function f t

i is revealed to each agent. This means that once the walk
has ended, each node provides the oracles with the agreed upon feedback.

Remark 5: (Shared oracles).

Furthermore, the current iteration of the algorithm requires that all agents must have access to
the same set of oracles, which is not ideal in decentralized settings. This means that each agent
must pass on the updates of the oracles to the next agent in the walk. However, if agents have
shared memory access to the oracles, this becomes more efficient. Our research aims to fully
decentralize the process, and therefore, we aim to modify the algorithm so that each agent has
their own private set of oracles. This is not currently possible, but our work represents a step
towards achieving this goal.

54 Chapter 3 Meta Frank Wolfe on a Random Walk Journey

Remark 6.

The unconventional form of the final decision, xt
K+1, arises from the analytical technique that

draws heavily from the analysis of Markov Chain Gradient Descent (MCGD) in offline settings,
as presented in [SSY18]. The primary challenge in this work is to adapt this technique to the
online setting by utilizing the meta-actions from the Meta Frank-Wolfe algorithm.

Theorem 4. Assume that for every round 1 ≤ t ≤ T

1. the local loss function f t
i for each node i ∈ V is a convex function on K, β-smooth, and

G-Liptschitz continuous
2. the markov chain

(
ik
)

k∈N
defined on the finite state space V with homogeneous transition

matrix P is irreducible and aperiodic and has stationary distribution π∗ on V
3. the online linear optimization oracles have regret RT

Then, with the step-size ηk = 1/kq with q ∈ [1/2, 1) and the number of iterations K ≥ KP where
KP is a constant1 that depends on λ(P) and λ2(P), the Algorithm 5 yields in an online fashion a
sequence of decisions

{
xt

K

}
t∈[T] with regret

T∑
t=1

E
[
F t
(
xt

K

)]
− min

x∗∈K

T∑
t=1

F t (x∗) ∈ O
(

T

K1−q
+RT

)
(3.1)

where xt
K = 1∑K

ℓ=1 ηℓ

∑K
ℓ=1 ηℓx

t
ℓ.

Moreover, if we take K ∈ O
((√

T
) 1

1−q

)
and if RT ∈ O

(√
T
)
, then the algorithm’s regret is

sublinear, in particular :

T∑
t=1

E
[
F t
(
xt

K

)]
− min

x∗∈K

T∑
t=1

F t (x∗) ∈ O
(√

T
)

(3.2)

To get the smallest value for K, one should choose q = 1
2 which implies K ∈ O (T).

Theorem 4 is a result about the performance of Algorithm 5, in terms of its regret. Recall that
the regret of an optimization algorithm is defined as the difference between the value of the
function F t at the solution chosen by the algorithm at each time step t and the value of the
optimal solution that could have been achieved with perfect knowledge of the problem. The
goal of the optimization process is to find a sequence of solutions that minimizes the cumulative
regret over all time steps.

1For further details on KP , see the proof of Lemma 1 in [SSY18] (stated as Lemma 6 in this chapter).

3.2 Uniform Random Walk Meta Frank Wolfe 55

The theorem states that under certain assumptions about the local loss functions, the markov
chain, and the online linear optimization oracles being used, the Algorithm 5 can achieve a regret
bound of the form O

(
T

K1−q +RT
)
, where K is the number of iterations per round and RT is

the regret of the online linear optimization oracles. This means that the cumulative regret of
the algorithm decreases at a rate of O

(
T

K1−q

)
as the number of time steps T increases, provided

that K is chosen appropriately.

The theorem also states that if K is chosen to be of the form O
((√

T
) 1

1−q

)
and if the regret

of the online linear optimization oracles is O
(√

T
)
, then the algorithm’s regret is sublinear,

meaning that it decreases at a rate faster than O (T) as the number of time steps T increases. In
this case, the cumulative regret of the algorithm is bounded by O

(√
T
)
, which means that the

per-round regret decreases at a rate of O
(

1√
T

)
as the number of time steps increases.

One of the assumptions made in the theorem is that the local loss functions f t
i for each node

i ∈ V are convex, β-smooth, and G-Lipschitz continuous. This assumption is often made in the
analysis of optimization algorithms because it allows for the use of tools from convex analysis to
study the properties of the optimization problem.

The assumption that the Markov chain
(
ik
)

k∈N
is irreducible and aperiodic and has a stationary

distribution π∗ on V is used to ensure that the algorithm is able to explore the entire space of
solutions and that it is able to find good solutions even if it starts in a suboptimal state.

The eigenvalues of the transition matrix P can be used to measure the convergence rate of
the markov chain and to obtain a more precise bound on the regret of the Algorithm 5. For
example, if the transition matrix P has a small eigenvalue, it may indicate that the Markov chain
converges slowly, which could lead to a larger regret for the algorithm. On the other hand, if
the transition matrix P has a large eigenvalue, it may indicate that the Markov chain converges
quickly, which could lead to a smaller regret for the algorithm. The analysis of the theorem
provides the dependence to λ(P) defined in Lemma 6. Hence, we obtain :

T∑
t=1

E
[
F t
(
xt

K

)]
− min

x∗∈K

T∑
t=1

F t (x∗) ∈ O
(

ln
(1
λ(P)

)√
T

)
(3.3)

56 Chapter 3 Meta Frank Wolfe on a Random Walk Journey

3.3 Proof of Theorem 4

Lemma 6 (Mixing Time, see Lemma 1 in [SSY18]). Assume that the Markov chain (Xk)k≥0 is
time-homogeneous, irreducible, and aperiodic with the transition matrix P ∈ Rn×n and stationary
distribution π∗. Let λi(P) be the ith largest eigenvalue of P, and

λ(P) = max {|λ2(P)| , |λn(P)|}+ 1
2 ∈ [0, 1)

Then, we can bound the largest entry-wise absolute value of deviation matrix δk = Π∗−Pk ∈ Rn×n

as ∥∥∥δk
∥∥∥

∞
≤ CP · λk(P) (3.4)

for k ≥ KP , where CP is a constant that depends on the Jordan canonical form of P, and KP is a
constant that depends on λ(P) and λ2(P).

Claim 6. Let f t
i a G-Lipschitz convex function, and

(
xt

i,x
∗) ∈ K2, then∣∣∣f t

i (xt
i)− f t

i (x∗)
∣∣∣ ≤ H = GD

Proof.

f t
i (xt

i)− f t
i (x∗) ≤ G

∥∥∥xt
i − x∗

∥∥∥ (G-Lipschitz)

≤ GD
(Both xt

i and x∗ are in the bounded constrained set K ⇒
∥∥xt

i − x∗∥∥ ≤ D)

Lemma 7. Let (xt
k)k≥0 be generated by Algorithm 5. For any x∗ being the minimizer of F t

constrained on K, and i ∈ [n], and ∀k, t ∈ N2, then∣∣∣f t
i (xt

k)− f t
i (x∗)

∣∣∣ ≤ Hk

with Hk = H
kq + βD2

2k + 1
kq

∑k
ℓ=1⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩

Proof of Lemma 7.

f t
j (xt

k+1)− f t
j (x∗) = f t

j (xt
k + ηk(vt

k − xt
k))− f t

j (x∗) (By Algorithm 5 line 5)

3.3 Proof of Theorem 4 57

≤ f t
j (xt

k)− f t
j (x∗) + ηk⟨∇f t

j (xt
k),vt

k − xt
k⟩+ η2

k

β

2

∥∥∥vt
k − xt

k

∥∥∥2

(β-smoothness)

≤ f t
j (xt

k)− f t
j (x∗) + ηk⟨∇f t

j (xt
k),vt

k − xt
k⟩+ η2

k

βD2

2
(K is bounded with diameter D)

Observe that we can decompose ⟨∇f t
j (xk),vt

k − xk⟩ as

⟨∇f t
j (xt

k),vt
k − xk⟩ = ⟨∇f t

j (xk),vt
k − x∗⟩+ ⟨∇f t

j (xk),x∗ − xt
k⟩

Since ⟨∇f t
j (xt

k),x∗ − xt
k⟩ ≤ f t

j (x∗)− f t
j (xt

k), we get

⟨∇f t
j (xt

k),vt
k − xt

k⟩ ≤ f t
j (x∗)− f t

j (xt
k) + ⟨∇f t

j (xt
k),vt

k − x∗⟩

Combining all the inequalities, therefore

f t
j (xt

k+1)− f t
j (x∗) ≤ (1− ηk)(f t

j (xt
k)− f t

j (x∗)) + ηk⟨∇f t
j (xt

k),vt
k − x∗⟩+ η2q

k

βD2

2 (3.5)

Applying recursively on k the Inequality (3.5). We have

f t
j (xt

k+1)− f t
j (x∗) ≤ (f t

j (xt
1)− f t

j (x∗))
[

k∏
ℓ=1

(1− ηℓ)
]

+
k∑

ℓ=1
ηℓ

k∏
m=ℓ+1

(1− ηm)
[
⟨∇f t

iℓ(xt
ℓ),vt

ℓ − x∗⟩+ βD2

2 ηℓ

]

≤ H
[

k∏
ℓ=1

(1− ηℓ)
]

+
k∑

ℓ=1
ηℓ

k∏
m=ℓ+1

(1− ηm)
[
⟨∇f t

iℓ(xt
ℓ),vt

ℓ − x∗⟩+ βD2

2 ηℓ

]
(By Claim 6)

(a)
≤ H

kq
+

k∑
ℓ=1

1
ℓq
ℓq

kq

[
⟨∇f t

iℓ(xt
ℓ),vt

ℓ − x∗⟩+ βD2

2
1
ℓq

]

≤ H

kq
+ 1
kq

k∑
ℓ=1
⟨∇f t

iℓ(xt
ℓ),vt

ℓ − x∗⟩+ 1
kq

k∑
ℓ=1

βD2

2ℓq

≤ H

kq
+ βD2

2kqk(1−q) + 1
kq

k∑
ℓ=1
⟨∇f t

iℓ(xt
ℓ),vt

ℓ − x∗⟩ (
∑k

ℓ=1
1
ℓq = O

(
1

k(1−q)

)
)

≤ H

kq
+ βD2

2k + 1
kq

k∑
ℓ=1
⟨∇f t

iℓ(xt
ℓ),vt

ℓ − x∗⟩

(a) follows from the fact that

(1− 1
mq

) ≤ (1− 1
m

) (Because q < 1)

58 Chapter 3 Meta Frank Wolfe on a Random Walk Journey

k∏
m=ℓ+1

(1− 1
mq

) ≤
k∏

m=ℓ+1
(1− 1

m
)

k∏
m=ℓ+1

(1− 1
mq

) ≤ ℓ

k
(
∏k

m=ℓ+1(1− 1
m) = ℓ

k)

k∏
m=ℓ+1

(1− 1
mq

) ≤
(
ℓ

k

)q

(ℓ
k ≤ 1 and q < 1⇒

(
ℓ
k

)q
≥ ℓ

k)

Recall that in order to optimize F t = 1
n

∑n
i=1 f

t
i , the algorithm proceeds by doing a random walk

while updating locally f t
ik (the local function of node ik for iteration k. Therefore, to analyse the

convergence, we will bound the following :

∑
k

ηkE
[
f t

ik(xt
k+1)− f t

ik(x∗)
]
≤
∑

k

ηkHk (By lemma 7)

≤
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩+ H

k2q
+ βD2

2k

(By definition of ηk = 1/kq and Hk = H
kq + βD2

2k + 1
kq

∑k
ℓ=1⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩)

≤ ζ(2q)H +
∑

k

βD2

2k2 +
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩

(ζ being the Riemann Zeta Function)

= ζ(2q)H + βD2π2

12 +
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩

Thus,

∑
k

ηkE
[
f t

ik(xt
k+1)− f t

ik(x∗)
]
≤ ζ(2q)H + βD2π2

12 +
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩ (3.6)

In our analysis, we will make use of Tk defined as follows

Tk = min
{

max
{⌈ ln (2CPH · k)

ln (1/λ(P))

⌉
,KP

}
, k

}
(3.7)

with H a constant such that H ≥
∣∣f t

i (xt
k)− f t

i (x∗)
∣∣. Specifically, by Claim 6 the value of H is

H = GD.

3.3 Proof of Theorem 4 59

Claim 7. With Tk defined in (3.7), for all k ≥ KP and for all i, j ∈ V2, the following inequality
holds

f t
i (xt

k−Tk
)− f t

i (x∗)
n

− 1
2k ≤

(
f t

i (xt
k−Tk

)− f t
i (x∗)

) [
PTk

]
i,j
≤
f t

i (xt
k−Tk

)− f t
i (x∗)

n
+ 1

2k (3.8)

Proof. Notice that Tk (3.7) is defined using constants (CP , KP and λ(P)) derived from the
transition matrix P and H which upper-bounds f t

i (xt
k+1)− f t

i (x∗) for all i ∈ [n]. Therefore, by
using the Mixing Time lemma 6, we get∣∣∣∣[PTk

]
i,j
− 1
n

∣∣∣∣ ≤ CP · (λ(P))Tk (By lemma 6, equation 3.4)

= CP · (λ(P))
min
{

max
{⌈

ln (2CP H·k)
ln (1/λ(P))

⌉
,KP

}
,k

}
(By equation 3.7)

≤ CP · (λ(P))
ln (2CP H·k)

ln (1/λ(P))

ln
(∣∣∣∣[PTk

]
i,j
− 1
n

∣∣∣∣) ≤ ln (CP) + ln
(

(λ(P))
ln (2CP H·k)

ln (1/λ(P))

)

= ln (CP) + ln (λ(P)) ln (2CPH · k)
ln (1/λ(P))

= ln (CP) + ln (λ(P))− ln (2CPH · k)
ln (λ(P))

= ln (CP)− ln (2CPH · k)∣∣∣∣[PTk

]
i,j
− 1
n

∣∣∣∣ ≤ eln
(

CP
2CP H·k

)
= 1

2H · k

Since H ≥
∣∣f t

i (xt
k)− f t

i (x∗)
∣∣ for all k and by Claim 6, H = GD > 0, therefore for all i, j ∈ [n]2,

we obtain the following

f t
i (xt

k−Tk
)− f t

i (x∗)
n

− 1
2k ≤

(
f t

i (xt
k−Tk

)− f t
i (x∗)

) [
PTk

]
i,j

≤
f t

i (xt
k−Tk

)− f t
i (x∗)

n
+ 1

2k

The idea of the proof at this point is to bound the model to the optimal with local functions f t
i

and show that it does converge. Then, by using the Markov chain’s property and the claim 7, we
can obtain a bound on our objective global function F t.

ηkE
[
f t

ik(xt
k−Tk

)− f t
ik(xt

k)
]
≤ GηkE

∥∥∥xt
k−Tk

− xt
k

∥∥∥ (Recall that ∀i, f t
i is G-Lipschitz)

≤ GηkE

 k−1∑
ℓ=k−Tk

∥∥∥xt
ℓ+1 − xt

ℓ

∥∥∥
 (Triangle inequality)

60 Chapter 3 Meta Frank Wolfe on a Random Walk Journey

= Gηk

k−1∑
ℓ=k−Tk

E
∥∥∥xt

ℓ+1 − xt
ℓ

∥∥∥ (Linearity of expectation)

= Gηk

k−1∑
ℓ=k−Tk

E
∥∥∥xt

ℓ + ηℓ

(
vt

ℓ − xt
ℓ

)
− xt

ℓ

∥∥∥ (By Algorithm 5, line 5)

= Gηk

k−1∑
ℓ=k−Tk

ηℓE
∥∥∥vt

ℓ − xt
ℓ

∥∥∥
≤ GDηk

k−1∑
ℓ=k−Tk

ηℓ

(The constrained set K is bounded with diameter D)

≤ GD

2

k−1∑
ℓ=k−Tk

[
(ηℓ)2 + (ηk)2

]
(Cauchy-Shwartz)

≤ GD

2 Tk(ηk)2 + GD

2

k−1∑
ℓ=k−Tk

(ηℓ)2

The asymptotic definition of Tk defined in (3.7) is as follows

Tk ∈ O
(ln k

ln (1/λ(P))

)

∑
k

ηkE
[
f t

ik(xt
k−Tk

)− f t
ik(xt

k)
]
≤ GD

2
∑

k

Tk(ηk)2 + GD

2
∑

k

k−1∑
ℓ=k−Tk

(ηℓ)2

∑
k

k−1∑
ℓ=k−Tk

(ηℓ)2 ≤
∑

k>Tk

Tk(ηk−Tk
)2

≤
∑

k

Tk(ηk)2

≤ O
(

2
ln(1/λ(P))

∑
k

(ηk)2 ln k
)

≤ O
(

2
ln(1/λ(P))

∑
k

√
k

k2q

)

= O
(2ζ(2q − 1/2)

ln (1/λ(P))

)
<∞

Therefore, ∑
k

ηkE
[
f t

ik(xt
k−Tk

)− f t
ik(xt

k)
]
≤ O

(2GDζ(2q − 1/2)
ln (1/λ(P))

)
(3.9)

3.3 Proof of Theorem 4 61

By combining equation 3.6 and equation 3.9, we obtain

∑
k

ηkE
[
f t

ik(xt
k−Tk

)− f t
ik(x∗)

]
≤ O

(2GDζ(2q − 1/2)
ln (1/λ(P))

)
+Hζ(2q)+βD2π2

12 +
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ−x∗⟩

(3.10)
Let Xk =

(
xt

k, i
k−1

)

Eik

[
f t

ik(xt
k−Tk

)− f t
ik(x∗)|X1, ...Xk−Tk

]
=

n∑
i=1

(
f t

i (xt
k−Tk

)− f t
i (x∗)

)
P
[
ik = i|X1, ...,Xk−Tk

]
(By definition of expectation)

=
n∑

i=1

(
f t

i (xt
k−Tk

)− f t
i (x∗)

)
P
[
ik = i|Xk−Tk

]
(Using Markov’s property)

=
n∑

i=1

(
f t

i (xt
k−Tk

)− f t
i (x∗)

) [
PTk

]
ik−Tk,i

(P
[
ik = i|Xk−Tk

]
=
[
PTk

]
ik−Tk,i

)

≥
n∑

i=1

[
(f t

i (xt
k−Tk

)− f t
i (x∗)

n
− 1

2k

]
(By claim 7)

= (F t(xt
k−Tk

− F t(x∗))− n

2k
(By definition of F t = 1

n

∑n
i=1 f

t
i)

Therefore, we get the following inequality

Eik

[
f t

ik(xt
k−Tk

)− f t
ik(x∗)|X1, ...Xk−Tk

]
≥ (F t(xt

k−Tk
− F t(x∗))− n

2k (3.11)

Equation 3.11 allows us to bring the established bounds on the local functions f t
i to our objective

function being F t = 1
n

∑n
i=1 f

t
i

Hence, by using equation 3.10 and the previous inequality 3.11, we obtain

n∑
i=1

ηkE
[
F t(xt

k−Tk
)− F t(x∗)

]
≤
∑

k

ηkE
[
f t

ik(xt
k−Tk

)− f t
ik(x∗)

]
+

n∑
i=1

ηk
n

2k

≤ O
(2GDζ(2q − 1/2)

ln (1/λ(P))

)
+Hζ(2q) + nζ(q + 1)

2

+ βD2π2

12 +
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩ (3.12)

62 Chapter 3 Meta Frank Wolfe on a Random Walk Journey

Similarly, by using equation 3.9 and the previous inequality 3.11, we obtain

∑
k

ηkE
[
F t(xt

k)− F t(xt
k−Tk

)
]
≤ O

(2nGDζ(2q − 1/2)
ln (1/λ(P))

)
(3.13)

We were able to bound the distance between F t(xt
k−Tk

) · · ·F t(xt
k) with equation 3.13 and

the distance F t(xt
k−Tk

) · · ·F t(x∗) with equation 3.12. Combining both equation 3.12 and
equation 3.13 we are able to bound the distance between F t(xt

k) · · ·F t(x∗):

∑
k

ηkE
[
F t(xt

k)− F t(x∗)
]
≤ O

(2(n+ 1)GDζ(2q − 1/2)
ln (1/λ(P))

)
+Hζ(2q) + nζ(q + 1)

2

+ βD2π2

12 +
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩ (3.14)

Define xt
K and xt as

xt
K = 1∑K

k=1 ηk

K∑
k=1

ηkxk (3.15)

xt = 1∑
k ηk

∑
k

ηkxk (3.16)

(∑
k

ηk

)[
F t(xt)− F t(x∗)

]
≤
∑

k

ηkE
[
F t(xt

k)− F t(x∗)
]

(By Jensen’s inequality)

≤ O
(2(n+ 1)GDζ(2q − 1/2)

ln (1/λ(P))

)
+Hζ(2q) + nζ(q + 1)

2 + βD2π2

12

+
∑

k

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩

1
T

T∑
t=1

(
K∑

k=1
ηk

)
E
[
F t(xt

K)− F t(x∗)
]
≤ O

(2(n+ 1)GDζ(2q − 1/2)
ln (1/λ(P))

)
+Hζ(2q) + nζ(q + 1)

2 + βD2π2

12

+ 1
T

T∑
t=1

K∑
k=1

1
k2q

k∑
ℓ=1
⟨∇f t

jℓ(xt
ℓ),vt

ℓ − x∗⟩

3.3 Proof of Theorem 4 63

(a)= O
(2(n+ 1)GDζ(2q − 1/2)

ln (1/λ(P))

)
+Hζ(2q) + nζ(q + 1)

2 + βD2π2

12

+
K∑

k=1

1
k2q

k∑
ℓ=1

1
T

T∑
t=1
⟨∇f t

jℓ(xt
jℓ),vt

ℓ − x∗⟩

(b)
≤ O

(2(n+ 1)GDζ(2q − 1/2)
ln (1/λ(P))

)
+Hζ(2q) + nζ(q + 1)

2 + βD2π2

12

+
K∑

k=1

RT

kqT

≤ O
(2(n+ 1)GDζ(2q − 1/2)

ln (1/λ(P))

)
+Hζ(2q) + nζ(q + 1)

2 + βD2π2

12

+ R
T

T

K∑
k=1

ηk

We get equality (a) because the feedbacks for the oracles from the walk j1, . . . , jk are

⟨∇f t
j1(xt

j1), ·⟩ , . . . , ⟨∇f t
jk(xt

jk), ·⟩.

We get inequality (b) from the assumption that oracles have regret RT . Finaly, we conclude with
the following:

1
T

T∑
t=1

E
[
F t(xt)− F t(x∗)

]
≤
O
(

2(n+1)GDζ(2q−1/2)
ln (1/λ(P))

)
+Hζ(2q) + nζ(q+1)

2 + βD2π2

12 + RT

T

(∑K
k=1 ηk

)
(∑K

k=1 ηk

)
= O

(
1

K1−q
+ R

T

T

)

If we take K = O
((√

T
)1/(1 − q)

)
then we finally get

1
T

T∑
t=1

E
[
F t(xt)− F t(x∗)

]
= O

(1√
T

)
(3.17)

64 Chapter 3 Meta Frank Wolfe on a Random Walk Journey

4Experiments and Applications

In this chapter, we first demonstrate the performance of both Algorithm 3 and Algorithm 5
for optimizing the online multiclass logistic regression model on real-world standard image
datasets (MNIST,CIFAR10) by comparing with centralized online algorithms. We outperform the
best-known decentralized constrained online algorithms in terms of regret bounds. In addition,
we run this experiment on a network of computing units with limited memory and processing
power, specifically Raspberry Pi 3b+, demonstrating the algorithm’s frugality and its suitability
to edge computing applications. In conclusion, we discuss the applicability of Algorithm 3 to an
actual smart building application.

4.1 Decentralized Online Multiclass Logistic Regression

This section begins by describing the settings of the Decentralized Online Multiclass Logistic
Regression, derived from [Xie+20]. Then, we respond to the following questions based on our
experimental findings:

1. Are both Algorithm 3 and Algorithm 5’s theoretical results regarding the regret bound
validated?

2. How do they compare to the centralized model1 ([Xie+20]) and the best-known algorithm
in identical settings ([Zha+17])?

3. How do they scale depending on the size and the topologies of graphs?
4. Are these algorithms resource-efficient enough to be embedded in devices with limited

resources?

4.1.1 Settings of Decentralized Online multiclass Logistic Regression

[Setting 1] The Online Multiclass Logistic Regression.

We consider the online version of the multiclass logistic problem on two standard image datasets;
MNIST [Lec+98] and CIFAR10 [Kri09]. At each time step t = 1, . . . , T , we receive a subset

1The centralized model is equivalent to when the given graph is of size one. Note that when given such a graph,
Algorithm 3 is equivalent to the MFW algorithm from [Che+18].

65

Bt whose size is the same for all the iterations. Each image in Bt is of the form (x, y) ∈
Rd × {1, . . . , C}. Here x is an image feature vector, and y is the class corresponding to that
image. The multiclass logistic loss function f is defined as follows:

f(X,B) = −
∑
b∈B

C∑
c=1
{yb = c} log exp(X⊺

cxb)∑C
i=1 exp(X⊺

i xb)

and the constraint is set to be K =
{
X ∈ Rd×C : ∥X∥1 ≤ r

}
for some constant r ∈ R+,

where ∥X∥1 denotes the matrix ℓ1 norm, i. e. ∥X∥1 = max1≤j≤C
∑d

i=1 |[X]i,j |. We consider the
adversarial online settings where the data points are sorted by class label and then the sorted
batches

{
B1, . . . ,BT

}
are selected sequentially from these datasets. For the MNIST dataset, we

set
∣∣Bt
∣∣ = 600 and r = 8. For CIFAR10, we set

∣∣Bt
∣∣ = 500 and r = 32. Next, we describe the

problem in the distributed settings.

[Setting 2] Distributed Online Logistic Regression.

Given a network of n-agents, at each time t = 1, . . . , T , we split each batch Bt into n parts
{Bt

1, . . . ,Bt
n} that are evenly sized that is, for every player i we have

∣∣Bt
i

∣∣ ≈ ⌊ |Bt|/n⌋. Thus, at
each time t, each agent i ∈ [n] only observes its private loss function f t

i defined as f t
i (X) =

f(X,Bt
i). For the regret computation, we are interested in the following loss function: F t(X) =

1
n

∑n
i=1 f

t
i (X). Note that at time step t, each player i takes a local decision Xt

i in a distributed
setting. Thus, while computing the regret of the algorithm, we consider the loss function that
maximizes the total loss, that is

Et = max
X∈{Xt

j : 1≤j≤n}
F t(X)

where Et denote the cost/error of the algorithm at time t.

4.1.2 Simulated SDMFW

In this section, we demonstrate the performance of the algorithm in terms of minimizing the
regret. We want to verify the theoretical bound of the regret on the decentralized online
multiclass logistic regression problem and position the method at the cutting edge of the field.
We benchmark Algorithm 3 (denoted by SDMFW) on real-world datasets. Our experiments are
broadly categorized as follows:

66 Chapter 4 Experiments and Applications

• In the first set of experiments, we show that Algorithm 3 is competitive and achieves the
theoretical regret of O

(√
T
)
.

• Next, we compare the performance of SDMFW, to the Distributed Regularized Online
Frank-Wolfe algorithm(denoted by DROFW) [Zha+17] on grid networks with varying
sizes.

• Finally, we present the performance of our algorithm SDMFW, on different types of network
topologies.

Although the algorithm is distributed, all experiments in this section are performed in MATLAB
9.8 (release 2020A) running on a single machine with Ubuntu version 20.04 LTS as an operating
system. You can find the source code in https://gricad-gitlab.univ-grenoble-alpes.fr/
youssefp/sdmfw

To compare with the centralized version of our algorithm, we derived our experiment’s setup
from [Xie+20]’s setup (Section 6 , [Xie+20]). We reconducted the same online setting
(described in [Setting 1]) and distributed the data on a decentralized topology (described in
[Setting 2]) in which we can compare with DROFW from [Zha+17].

Choice of hyperparameters.

For both MNIST and CIFAR10 testbeds, we chose the hyperparameters via grid search. For the
sake of direct comparison with [Xie+20], we took the same initial point arbitrarily to be 0. Recall
that in these experiments, the functions are convex; therefore, the choice of the initial point is
not crucial. As for the number of steps L in each iteration, we found that L = 10 for MNIST and
L = 50 for CIFAR10 is enough to ensure our guarantees instead of L = T

3/2.

Observation of our experiments.

By comparing our results with the experiments of the centralized setup of [Xie+20]2, we conclude
that our algorithm is robust to stochastic gradient estimates. It indeed achieves the expected
theoretical regret guarantee of O

(√
T
)
. Next, we observe that SDMFW’s regret (showing in

Figure 4.1(a) vs. Figure 4.1(b) and Figure 4.3(a) vs. Figure 4.3(b) for MNIST and CIFAR10
datasets, respectively) has a lower regret value than the current best-known algorithm in these
settings, namely DROFW. Finally, we show the robustness of our algorithm according to the
topology and the size of a given network. We focus on cycle graphs since they are the least
connected topologies and have a high diameter. Observe in Figure 4.1(c) and Figure 4.3(c) that
the regrets of SDMFW for different sizes of the cycles remain close. However, there is a slight
degradation when the network size increases. It is also interesting to notice that the obtained

2The results of the experiments conducted on centralized settings can be found in [Xie+20], as depicted in Figure 2.
Please be aware that the scale of the regret values is different from ours, as we normalized the regret values in our
experimentation.

4.1 Decentralized Online Multiclass Logistic Regression 67

https://gricad-gitlab.univ-grenoble-alpes.fr/youssefp/sdmfw
https://gricad-gitlab.univ-grenoble-alpes.fr/youssefp/sdmfw

regret of SDMFW on grids is slightly better than the regret on cycles. This implies that the
performance of SDMFW is closely related to the connectivity (average fan-out) and the diameter
of the underlying graph.

Remark 7.

Recall that we consider regret with hindsight, meaning that the algorithm can achieve negative
regret. One does not always expect the regret to decrease. The regret can increase over time.
However, if it does increase, it should increase sublinearly (in our case, bounded by O

(√
T
)
).

We can also observe small bumps on the curves. The adversarial setting explains this behavior
since the data arrives sorted by class labels in this setting. Thus, we expect the online algorithms
to increase their regret as soon as the adversary newly introduces batches of data with a never
seen class label.

(a) (b)

(c)

Fig. 4.1: Performance of SDMFW on grid network with varying sizes (a), DROFW with varying network
size (b), and DMFW with cycle network with varying sizes (c) on MNIST dataset. (L = 10)

68 Chapter 4 Experiments and Applications

(a) (b)

Fig. 4.2: Average performance of 100 runs of RWMFW on grid topology with varying network size (a),
RWMFW with a cycle network topology with varying sizes (b) on MNIST dataset. Note that the
variability due to the random walk is not presented in this figure: See Figure 4.5 to visualize the
spread. L = 10

4.1 Decentralized Online Multiclass Logistic Regression 69

(a) (b)

(c)

Fig. 4.3: Performance of SDMFW on grid topology with varying network sizes (a), DROFW with vary-
ing network size (b), and SDMFW with cycle network with varying sizes (c) on CIFAR10
dataset.(L = 20)

70 Chapter 4 Experiments and Applications

(a) (b)

Fig. 4.4: Average performance of 100 runs of RWMFW on grid topology with varying network size (a),
RWMFW with a cycle network topology with varying sizes (b) on CIFAR10 dataset. Note that
the variability due to the random walk is not presented in this figure: See Figure 4.6 to visualize
the spread.(L = 50)

(a) (b)

Fig. 4.5: Average performance of 100 runs of RWMFW on cycle network of size 250 (a), RWMFW with a
complete network of size 250 (b) on MNIST dataset.(L = 100)

4.1 Decentralized Online Multiclass Logistic Regression 71

(a) (b)

Fig. 4.6: Average performance of 100 runs of RWMFW on cycle network of size 250 (a), RWMFW with a
complete network of size 250 (b) on CIFAR10 dataset. (L = 100)

72 Chapter 4 Experiments and Applications

4.1.3 Random Walk Approach of the Decentralized Online Multiclass
Logistic Regression

In this section, we benchmark Algorithm 5 (denoted by RWMFW) on the same datasets as in
section 4.1.2 and with analogous settings. Our experiments are broadly categorized as follows:

• In the first set of experiments, we show that Algorithm 5 is competitive and achieves the
theoretical regret of O

(√
T
)
.

• Next, we compare the performance of RWMFW to the centralized Meta Frank Wolfe
algorithm (denoted by MFW) [Che+18], and our algorithm SDMFW (Algorithm 3).

• Finally, we present the performance of our algorithm, RWMFW, on different network
topologies.

Although the algorithm is distributed, all experiments in this section are conducted in a simulated
environment with Python 3.8 running on a single machine with Ubuntu version 20.04 LTS as an
operating system. You can find the source code in https://github.com/pyouss/SimRWMFW

Similarly to section 4.1.2, to compare with the centralized version of our algorithm, we derived
our experiment’s setup from [Xie+20]’s setup. We reconducted the same online setting (described
in [Setting 1]) and distributed the data on a decentralized topology (described in [Setting 2]) in
which we can compare with DROFW from [Zha+17].

Choice of hyperparameters.

For both MNIST and CIFAR10 testbeds, we chose the hyperparameters via grid search. For
the sake of direct comparison with [Xie+20] and section 4.1.2, we took the same initial point
arbitrarily to be 0. Recall that in these experiments, the functions are convex; therefore, the
choice of the initial point is not crucial. As for the number of steps L in each iteration, we found
that L = 50 is enough to ensure our theoretical guarantees instead of L = T . Nevertheless,
when given weakly connected graphs such as cycles with a large number of agents (n > 100), we
observe that choosing higher values of L improves the quality of the incurred regret. Therefore,
for such instances, we chose L = 100, which corresponds with the theoretical requirement.

Observation of our experiments.

By comparing our results with the experiments in [Xie+20], we conclude that RWMFW competes
with even centralized projection-free algorithms. It achieves the expected theoretical regret
guarantee of O

(√
T
)
. Next, we observe that RWMFW’s regret (showing in Figure 4.2(a) vs.

Figure 4.1(b) and Figure 4.4(a) vs. Figure 4.3(b) for MNIST and CIFAR10 datasets, respectively)

4.1 Decentralized Online Multiclass Logistic Regression 73

https://github.com/pyouss/SimRWMFW

has a lower regret value than the current best-known algorithm in these settings, namely
DROFW.

Topology matters.

Finally, we study the robustness of our algorithm according to the topology and the size of a
given network. We focus on cycle graphs since they are the least connected topologies and with a
diameter of order O (n). Observe in Figure 4.2(b) and Figure 4.4(b) that the regrets of RWMFW
for different sizes of the cycles remain close. However, there is a slight degradation when the
network size increases. It is also interesting to notice that the obtained regret of RWMFW on
grids with a better diameter of order O (

√
n) is slightly better than the regret on cycles. To

further investigate topology dependence, we show with Figure 4.5 and Figure 4.6 that the spread
(the blue shaded area) of the regret values with 100 runs of simulations on a cycle graph with
250 nodes is larger much larger than the one with a complete graph topology. This implies
that the performance of RWMFW is closely related to the connectivity (average fan-out) of the
underlying graph. Nevertheless, the average regret value in Figure 4.5 is much closer to the
lower extremity of the spread area, implying that the lower part of this area is dense. Another
point to note is that even the upper part of the spread still guarantees our theoretical bounds
and still has a lower value than DROFW (Figure 4.1 (b) and Figure 4.3 (b)).

RWMFW vs SDMFW.

We observe that RWMFW yields in average slightly better results in terms of regret with the same
number of iterations L per round which is expected by the theoretical analysis: RWMFW requires
L = O (T) to bound the regret by O

(√
T
)

and in contrast SDMFW requires L = O
(
T

3
2
)

. In
terms of computations, the algorithm SDMFW is scaled by the number of agents n, and the
communication is scaled according to the number of edges in the graph |E|. In contrast, the
RWMFW algorithm’s dependence on the graph’s topology is more subtle and is related to the
Markov mixing time. To illustrate, given a complete graph, RWMFW’s output varies less then
when given a cycle. This variation of ouputs is not present in SDMFW which makes it more
reliable. Nevertheless, when choosing the same number L of iterations or oracles, RWMFW
is more efficient in computation and communication cost. This is because of the protocol of
RWMFW in which, at each iteration, only one agent is performing the computation. After the
iteration is performed, this agent communicates only the updates to only one other agent.

4.1.4 Deployment of the online multi-class logistic regression on
devices with limited resources (Raspberry Pi)

In section 4.1.2, we validated the theoretical bound of chapter 2 on the decentralized online
multiclass logistic regression problem. The purpose of this section is to show that learning

74 Chapter 4 Experiments and Applications

algorithms can be deployed on hardware with restricted in both memory and computing.
Our goal is not to provide an efficient/practical solution (in particular in the view point of
communication) but to assess the feasibility on constrained devices.

To demonstrate the aforementioned, we implemented the experiment described in section 4.1.2
and deployed the algorithm on a network of Raspberry Pi connected by WiFi using the WalT
platform [Bru+16] (see Fig.4.10). Simply put, WalT enables simple deployment as well as
reproducibility. Practically speaking, you first have to install a WalT server in order to manage
the deployment of your application into the desired devices (see [Dub22]). The WalT server
is used to build and deploy WalT images onto the computing units of your choice, referred to
as WalT nodes. WalT images are similar to Docker containers, except unlike Docker containers,
WalT images have a Linux kernel.

Remark 8.

WalT is not necessary for the algorithm’s implementation. Despite the fact that we are using
a WalT server, it should not be confused with a central server that orchestrates the learning
algorithm. It is simply a tool for configuring the experiment’s settings and making it easy to
replicate.

Communication protocol.

We are utilizing WiFi technology as a communication tool. The devices are all connected to
a WiFi access point router. In fact, the physical network topology for the experiment is a star
(see Fig. 4.8) where the central node is the router. This router is equipped with a RabbitMQ
PUB/SUB broker that enables us to manage device-to-device communication given a specific
topology (see Fig. 4.9). To accomplish this, the broker creates n channels for each agent, where
n is the total number of working agents. Consider a given graph G, where a node i is a neighbor
of j, then i can broadcast a message on j’s channel. Once a node is ready to receive a message, it
simply pulls the last published message of its corresponding channel. It is important to note that
the communication protocol used in this part of the experiment is a centralized one. However,
the focus of this section is not to find the optimal communication decentralized protocol. The
protocol was chosen for experimental purposes as opposed to its practical network efficiency in
real-world applications. Its simplicity and flexibility to simulate any graph topology allows to
focus on whether or not the computation scales to the limited local computation and storage
resources.

The online stream of the data.

Using the WalT platform, we distribute data in batches to each node as needed. This platform
serves as an environment that provides feedback to each agent once they make a decision. In
practice, each WalT node has a network file system shared with the WalT server in which a node

4.1 Decentralized Online Multiclass Logistic Regression 75

can access files using the WalT network. We utilize this feature to store the distributed online
dataset batches βt

i in the WalT server; and at each round t, a node i can read his respective batch
βt

i .

Emphasis and observation of this experiment.

The focus of this study is efficiency in relation to the limited resources a user may have for an
edge application. In other words, we would like to be able to execute a nontrivial learning
optimization process on devices with limited storage and computing capability. For instance,
the centralized classic train and test approach are usually not feasible for restricted devices
(see Remark 9). In contrast, our algorithm, SDMFW, fits the online and distributed settings
(see 4.1.2) in which the problem gets decomposed into extremely small pieces. Therefore, a
nontrivial optimization algorithm for machine learning can be run on an edge device, such as an
embedded computing unit like a Raspberry Pi.

Hardware and technology we used for WalT nodes.

We chose the WalT node’s hardware to have limited resources regarding working memory (RAM)
and computing power (CPU frequency and without GPU). As a result, the Raspberry Pi 3 Model
B+ is a good choice for this constraint; its hardware specifications are as follows:

Raspberry Pi 3 Model B+
■ BUS width : 32 bits
■ number of cores : 4
■ CPU capacity : 1400 MHz
■ RAM memory : 923 MiB

Since our algorithm is online, a node receives a small batch of data, then discards it after
processing it. Consequently, WalT nodes do not require storage; in our experiment, they do not
have any. RAM memory of 923 MiB is sufficient to store all algorithm requirements and run the
algorithm, including the oracle feedback, data buffer, libraries, and learning model. Due to the
lack of disk memory, the complete Linux file system is stored on the WalT server. Thus, in order
to implement this experiment without WalT, one may need storage for its operating system that
is not excessively large for Linux distributions.

Remark 9.

With such limited hardware specifications, it is impossible to read the entire dataset of CIFAR10

at once, hence an offline method like Frank Wolfe is unfeasible. (The CIFAR10 dataset is larger
than 2GB, which surpasses the devices’ RAM memory capacity of less than 1GB.)

Discussion and benchmark.

76 Chapter 4 Experiments and Applications

First, we show that it is feasible to optimize the online multiclass logistic regression problem
described in 4.1.2 with our algorithm SDMFW using a cluster of Raspberry Pi Model 3 B+. In
fact, the bigger the cluster, the smaller the batches that each node has to process. However, the
connectivity of the network also has a computational cost. The higher the degree of a node, the
more it has a larger number of iterates to federate. As shown in section 4.1.2, the performance of
SDMFW in terms of regret is robust to the number of nodes. However, there is a minor trade-off
between network connectivity and SDMFW’s regret performance. As a result, when deploying
on edge devices with limited resources, one should consider maximizing the number of nodes
while minimizing connectivity to meet his needs in accuracy.

We benchmarked how long a round takes on average in our experiment. To have a better idea of
what is the most expensive in the experiment, we conducted the following timing benchmarks:

• τround : average time of a round
• τcomm : average time of communication exchanges in a round
• τi/o : average time for receiving and reading a batch of data from the WalT server
• τproc : average local execution time done by the Rasberry Pi in a round.

In a round, a node receives a batch of data. There are L iterations in a round, each with
two communication exchanges. The residual operations are the local computations for the
optimization process. Thus,

τround = τcomm + τi/o + τproc (4.1)

MNIST with batch size 600
Line graph Complete Graph

n 3 5 7 3 5 7
τcomm 5.24 5.802 7.267 5.615 12.048 24.032
τproc 0.447 0.288 0.223 0.458 0.298 0.223
τi/o 1.35 1.267 1.238 1.340 1.268 1.232
τround 7.078 7.393 8.703 7.457 13.642 25.508

Tab. 4.1: Benchmarking the different types of operations’ average execution time in seconds of SDMFW
with the least connected graph topology (a line) and various sizes (3, 5 and 7). In the
experiment, L being the number of iterations in a round, we take L equals to 10 which yields
the best known regret bound.

4.1 Decentralized Online Multiclass Logistic Regression 77

CIFAR10 with batch size 500
Line graph Complete Graph

n 3 5 7 3 5 7
τcomm 29.383 32.951 37.997 30.503 66.338 139.883
τproc 1.508 0.964 0.707 1.506 0.963 0.709
τi/o 5.48 5.013 4.775 5.46 5.013 4.822
τround 36.372 38.929 43.479 37.470 72.314 145.415

Tab. 4.2: Benchmarking the different types of operations’ average execution time in seconds of SDMFW
with the least connected graph topology (a line) and various sizes (3, 5 and 7). In the
experiment, L being the number of iterations in a round, we take L equals to 10 which yields
the best known regret bound.

Concluding remarks.

We showed that the decentralized online settings allows the learning problem to fit within the
constraints of the hardware. Therefore, Algorithm 3 which deals with the uncertainties coming
from both the online and the decentralized settings proved to be implementable with computing
and memory restrictions. However, the proposed implementation emulates a decentralized
peer-to-peer communication using a central router. To achieve full deployment in practice of
the algorithm, it would be convenient to improve on the implementation of the communication.
Towards improving the communication protocol, we suggest two approaches :

• Note that Algorithm 3 requires local synchronization between neighbors. The synchroniza-
tion highly slows down the global computation of the algorithm by a cascading waiting
effects (agent i waits for agent j which consequently blocks agent k that waits for agent i
and so on...) . The conception of RWMFW (Algorithm 5) which drops synchronization is
motivated by the synchronization’s drawbacks.

• A different direction which is out of scope of this research is to investigate technologies
and communication protocols that better suited for decentralized algorithms.

How to reproduce the experiment.

In order to reproduce our experiment, you will have to follow the following steps :

1. Create your own WalT server by following the tutorial described in https://walt-project.
liglab.fr/-/wikis/Resources-and-Documentation (for more details see [Bru+16]

2. Gather similar/compatible hardware components
3. Clone the WalT images from the dockerhub in your WalT server
4. Clone the git repo, which contains scripts that handle the experimentation with instruction

on how to use: https://github.com/pyouss/WalT-SDMFW-Log-Reg
5. Using the scripts handler :

a) Boot the WalT images on your WalT nodes. (Fig. 4.7)

78 Chapter 4 Experiments and Applications

https://walt-project.liglab.fr/-/wikis/Resources-and-Documentation
https://walt-project.liglab.fr/-/wikis/Resources-and-Documentation
https://github.com/pyouss/WalT-SDMFW-Log-Reg

b) Connect the nodes to the broker. (Fig. 4.8)
c) Configure the parameters as desired.
d) Send the desired graph topology, algorithm’s parameters (number of rounds, size of

batches, . . .), and the dataset to the nodes and the WalT platform. (Fig. 4.9)
e) Launch the experiment.

Fig. 4.7: Using the WalT server, we deploy the needed WalT images onto our WalT nodes. Suppose
having n+ 1 Raspberry Pi then n of them will boot with a WalT image containing the algorithm
SDMFW. The remaining node receives a WalT image configured to act as a WiFi access point
(router). In addition to the access point feature, the image contains a RabbitMQ broker, which
enables handling the exchanges between the nodes.

4.1 Decentralized Online Multiclass Logistic Regression 79

Fig. 4.8: Suppose having n+ 1 Raspberry Pi then n of them are booted with a WalT image containing
the algorithm SDMFW. The remaining node is configured to act as WiFi access point (router).
All the node connect to the node that acts as a router through WiFi.

Fig. 4.9: The broker/router node manages the communication to satisfy a given graph topology. For
instance, in this diagram, according to the broker, node 1 can connect with nodes 2 and 5, but
not with nodes 3 and 4.

80 Chapter 4 Experiments and Applications

Fig. 4.10: Cluster of 10 Raspberry Pi with WiFi drivers, connected to a WalT server.

4.1 Decentralized Online Multiclass Logistic Regression 81

4.2 An IoT application: Temperature Forecasting
Experiments on Thailand’s Smart Building Dataset

All prior analyses and experiments are based on the assumption that the objective functions is
convex. However, the majority of predictive models that have proven to be effective in practice
are not convex, in particular neural networks. In this section, we apply the Algorithm 3 to the
optimization of an online neural network (non-convex objective) by a group of autonomous
learners. We demonstrate its usefulness in a smart building application in which zones of the
building imitate learners optimizing a temperature forecasting problem. This study was done
with the collaboration of Angan Mitra and Tuan Anh Nguyen ([Mit+22]) in which include both
theoretical and experimental analysis. The main purpose of this section is to show the utility of
the proposed algorithms where convexity assumptions are relaxed.

4.2.1 Settings and formulation

In this experiment, we are using a data set from a building [Pip+20] that includes ambient time
series captured on seven floors, with four sensor-equipped zones on each floor. Using a network
of n nodes/zones involved in the learning process, we arranged a zone-by-zone knowledge
exchange. Each zone has its own knowledge of local temperature history and seeks to produce
temperature forecasts via a decentralized online collaborative learning utilizing Algorithm 3. For
practical efficiency of prediction accuracy, the learning model is not convex; rather, each node
is embedded with a neural network, specifically a two-layer long-short-time-memory (LSTM,
see [HS97]) network that processes entire sequences of data, followed by a fully connected layer.
Denote the output of the predictive model with its weight vector x for data sequence e byMx(e)
and its ground truth by Φ(e). Consider the ℓ1 norm as the objective loss function to optimize :

δ(Mx(e),Φ(e)) =


1
2 (Mx(e)− Φ(e))2 if |Mx(e)− Φ(e)| ≤ 1

|Mx(e)− Φ(e)| − 1
2 otherwise.

(4.2)

Consider the constraint set K =
{

x ∈ Rd, , ∥x∥1 ≤ r
}

, where x is the model’s weight, d its dimen-
sion and r = 1. The (normalized) loss incurred by the data of agent i is 1

|Bt
i|
∑

e∈Bt
i
δ (Mx(e),Φ(e)).

The global loss function incurred by the overall data is

F t(x) = 1
|∪n

i=1Bt
i |

∑
e∈∪n

i=1Bt
i

δ (Mx(e),Φ(e))

that can be written as F t(x) = 1
nf

t
i (x) where f t

i = 1
|Bt

i|
∑

e∈Bt
i
δ (Mx(e),Φ(e)).

82 Chapter 4 Experiments and Applications

Remark 10.

Even though the function δ is a convex function, the function F t is not convex due to the
non-convexity of the model functionMx.

Remark 11.

In situations where the optimization problem is non-convex, it may not be possible to uniquely
define an optimal solution. This is because non-convex optimization problems can have multiple
local minima, and it is not always clear which of these minima is the global minimum. As a result,
it is difficult to evaluate the regret with hindsight measurement, as the term minx∗

∑T
t=1 F

t(x∗)
in the regret definition assumes the ability to find a unique global optimal vector x∗. Therefore,
in order to evaluate the performance of an algorithm in a non-convex optimization setting, it may
be more appropriate to focus on the accuracy of the predictions made by the algorithm, rather
than on the regret with hindsight measurement. This can help to provide a more meaningful
assessment of the algorithm’s performance, even in situations where it is not possible to uniquely
define an optimal solution.

4.2.2 Observation and discussion

Prediction performance.

We are given a set B of prediction points between the 21st and 24th of April and n zones within
one configuration (the number of zones n is equivalent to the number of agents). We use the
mean absolute error (MAE equation 4.3) and mean square error (MSE equation 4.4) to measure
between the prediction ŷi,e of agent i for data point e and the ground truth ye.

MAEi = 1
n |B|

n∑
i=1

∑
e∈B
|ŷi,e − ye| (4.3)

MSEi = 1
n |B|

n∑
i=1

∑
e∈B

(ŷi,e − ye)2 (4.4)

Figure 4.11 demonstrates empirically the convergence of loss values for different network sizes.
However, as seen in table 4.3 and 4.4, increasing the number of nodes in a network does not
always lead to better online performance. In fact, the 7-node configuration achieved the lowest
MSE (0.64) and MAE (0.77) values for floors 6 and 7. When 3 extra peers from floor 7 joined
the group, there was a 40% drop in MSE and 20% reduction in MAE for floor 6 zonal models.
In contrast, adding zonal nodes from floor 7 to a 10-node group resulted in a 19% and 25%
increase in MSE and MAE values, respectively. This may be due to the fact that the top floor of a
building has a different thermal variation than the other floors.

4.2 An IoT application: Temperature Forecasting Experiments on Thailand’s Smart Building Dataset 83

Topology Metric Mean Var Max Min

cycle MAE 1.09 0.48 1.80 0.56
cycle MSE 0.78 0.21 1.09 0.52
complete MAE 0.77 0.38 1.47 0.27
complete MSE 0.64 0.20 1.04 0.39
line MAE 0.81 0.53 1.95 0.24
line MSE 0.66 0.28 1.26 0.34

Tab. 4.3: Impact of Topology on 7 learners configuration.

Topology Metric Mean Var Max Min

cycle MAE 1.51 1.46 6.16 0.36
cycle MSE 0.94 0.38 1.90 0.48
complete MAE 1.26 0.82 3.64 0.32
complete MSE 0.85 0.27 1.50 0.42
line MAE 1.38 0.91 3.17 0.50
line MSE 0.90 0.35 1.66 0.49

Tab. 4.4: Impact of Topology on 13 learners configuration.

Effect of Network Topology.

We examined the impact of network topology on learning in 7-node and 13-node configurations
with complete, cycle, and line graph structures containing 28, 7, and 6 edges and 78, 13, and 12
edges, respectively. The results in Table 4.3 and Table 4.4 show that the complete graph consis-
tently resulted in the lowest prediction error and mean absolute error for both configurations.
However, we also noticed that the line graph performed better than the cycle graph in some
cases and had an error margin of about 10% compared to the complete configuration.

84 Chapter 4 Experiments and Applications

Fig. 4.11: Loss values of different network size on complete topology (Plot on log-scale)

4.2 An IoT application: Temperature Forecasting Experiments on Thailand’s Smart Building Dataset 85

5Conclusion

5.1 Summary

In conclusion, we have proposed two decentralized online convex optimization algorithms,
Decentralized Meta Frank Wolfe and Random Walk Meta Frank Wolfe, which are well-suited
for addressing optimization problems in the edge paradigm. These algorithms excel at real-
time decision making and adaptability to dynamic environments while also maintaining low
computational overhead and offering robustness to failures, making them ideal for various edge
applications such as smart cities, connected vehicles, and industrial IoT.

To ensure the effectiveness of our algorithms, we provided theoretical bounds on the regret,
which measures the deviation from the optimal solution. We also conducted experiments and
implemented a proof of concept on devices with low resources to validate their practicality. We
even tested their performance when the assumption of convexity was relaxed in a smart building
application for temperature forecasting, and our algorithms still performed well.

When considering the trade-offs between Decentralized Meta Frank Wolfe and Random Walk
Meta Frank Wolfe, it is important to consider both the performance and computational complexity
of each algorithm. Decentralized Meta Frank Wolfe is more stable when considering the topology
of the graph, but it requires more communication and computation compared to Random Walk
Meta Frank Wolfe. On the other hand, Random Walk Meta Frank Wolfe is more sensitive to
the graph topology but requires less computation and communication. One key advantage of
Random Walk Meta Frank Wolfe over Decentralized Meta Frank Wolfe is that it does not require
synchronization among the nodes in the network. This can be especially useful in scenarios
where synchronization is difficult or impossible to achieve, such as in distributed systems with
limited bandwidth or high levels of interference. However, it is worth noting that the current
version of Random Walk Meta Frank Wolfe has not yet been analyzed for its ability to handle
stochastic gradient estimates using variance reduction, which is a feature that Decentralized Meta
Frank Wolfe possesses. Ultimately, the optimal choice between the two algorithms will depend
on the specific requirements and constraints of the system, including the network topology and
technological restrictions.

87

It is worth noting that the suitability of our proposed algorithms for the edge paradigm also
depends on the learning model being used. The chosen learning model should be able to fit
within the constraints of the edge, such as limited resources and communication bandwidth,
in order for the optimization approach to be practically effective. Therefore, it is important to
consider both the optimization algorithm and the learning model when designing solutions for
the edge paradigm.

5.2 Perspectives

Overall, our proposed algorithms make a valuable contribution to the field of online decentralized
convex optimization, and we believe that further research and development in this area has the
potential to unlock even more of their capabilities. By exploring different classes of functions,
dynamic graphs, and specific extensions, we can continue to improve the performance and
efficiency of our algorithms and make them even more suitable for use in the edge paradigm. In
addition, it may also be useful to study the best technologies and protocols for communication in
order to fully enable decentralization and make our algorithms even more effective and efficient
in distributed systems.

5.2.1 Different Classes of Functions

One possibility is to study different classes of functions, such as submodular functions, with our
algorithms ([Fuj05; Bac13; Bac15]). Submodular functions are known to be good at capturing
certain types of structure in optimization problems, and Frank Wolfe based methods have
been shown to be particularly well-suited for submodular optimization ([MHK18; CHK18]).
Incorporating submodular functions into our algorithms has the potential to greatly improve their
performance and efficiency, making them even more suitable for use in the edge paradigm.

5.2.2 Decentralized optimization with dynamic graphs

Another direction for future work is to study decentralized online optimization with dynamic
graphs. Dynamic graphs, where the structure of the graph changes over time, are common
in many real-world systems, such as in distributed sensor networks or in social networks.
Optimization algorithms that are able to adapt to these dynamic environments can be more
effective and efficient at solving optimization problems in the edge paradigm. There has been
some work on decentralized optimization with dynamic graphs [Zhu+21], but there is still much
room for further research and development in this area.

88 Chapter 5 Conclusion

5.2.3 Experiments in edge computing applications

A third direction for future work is to conduct more interesting sets of experiments to demonstrate
the utility of the algorithms in various edge computing applications. One specific application
that could be explored is recommendation systems, where the algorithms could be used to
improve the efficiency and effectiveness of personalized recommendations. Another application
that could be explored is video streaming, where the algorithms could be used to optimize the
delivery of video content to users in real-time. There are many other potential applications of
the algorithms in edge computing, such as IoT, smart cities, and industrial automation, and
conducting experiments in these areas will be valuable for understanding the full potential of
the algorithms.

5.2.4 Improving the Random Walk Meta Frank Wolfe Algorithm

There are several ways that the performance and capabilities of the Random Walk Meta Frank
Wolfe algorithm can be improved and extended.

Variance reduction techniques.

One possibility for improving the performance of the Random Walk Meta Frank Wolfe algorithm
is to use variance reduction techniques, which can help to reduce the variability of stochastic
gradient estimates and improve the robustness of the algorithm in convex optimization. For
example, [LZ16; HL16] discuss various variance reduction techniques that can be used in convex
optimization. These techniques have the potential to improve the efficiency and accuracy of the
algorithm, particularly in cases where the data is noisy or the optimization problem is complex.

Privacy-preserving techniques.

Another extension that could be explored is the use of privacy-preserving techniques. In dis-
tributed systems, it is often important to protect the privacy of individuals, particularly when
sensitive data is involved. The paper "Private Weighted Random Walk Stochastic Gradient De-
scent" ([AR21]) proposes a method for making the stochastic gradient descent (SGD) algorithm
privacy-preserving by replacing the standard uniform sampling of data points with a weighted
random walk. This technique aligns with the concept of local differential privacy, which seeks to
prevent the disclosure of sensitive information about individual data points while still allowing
for useful analytics to be conducted on the data as a whole. Essentially, local differential privacy
helps to preserve the privacy of individuals while still enabling the collection and analysis of data
for the benefit of the larger group.

5.2 Perspectives 89

Local oracle updates.

There is an opportunity to enhance the Random Walk Meta Frank Wolfe algorithm by finding
ways to minimize oracle update exchanges in the network. In the current implementation of
the algorithm, a node updates its set of oracles by exchanging them with one of its neighbors in
the network. However, this process can be inefficient and may not be suitable for handling a
large number of online rounds, as the number of oracles grows proportionally to the number of
rounds. By addressing this issue, it may be possible to improve the efficiency and scalability of
the algorithm, making it more suitable for use in large-scale distributed systems.

These extensions have the potential to improve the performance and efficiency of the Random
Walk Meta Frank Wolfe algorithm, making it even more suitable for use in distributed systems
and the edge paradigm. By continuing to research and develop these and other extensions, it is
possible to unlock even more of the capabilities of this powerful optimization algorithm.

5.3 Exploring the benefits and implications of bringing
machine learning to the edge

While technical improvements and extensions are crucial for the advancement of our algorithms,
it is also essential to consider the larger picture and the potential impact of bringing machine
learning to the edge. As decentralized optimization algorithms become increasingly sophisti-
cated, they have the potential to transform the way machine learning is utilized in a range of
applications.

As a reminder, machine learning at the edge involves using machine learning algorithms and
models on devices located at the edge of a network, which can provide numerous benefits for
various applications. One advantage is the ability to process data in real-time on devices at the
edge of the network, improving processing speed and efficiency, especially in applications with
low latency requirements like autonomous vehicles or industrial automation. Edge computing
can also reduce the strain on network infrastructure and save energy by minimizing the amount
of data transmitted over the network, as an IoT device with a machine learning model can
process and analyze data locally rather than sending it to the cloud.

Edge computing can also enable the development of new types of applications and services not
possible with traditional centralized architectures. For example, edge computing could be used to
create smart cities where a network of IoT devices uses machine learning to collect and analyze
data in real-time to optimize urban systems such as traffic management and energy use.

90 Chapter 5 Conclusion

In addition, edge computing can improve accessibility and enable offline capabilities. For
example, an IoT device with a machine learning model can analyze and process data locally
even when offline, allowing it to continue providing services like environmental monitoring
or navigation assistance in situations with limited or unreliable internet connectivity. Edge
computing can also make it easier for individuals to access and use machine learning algorithms
and models, even without specialized hardware or infrastructure.

In conclusion, edge computing can offer benefits such as faster and more efficient data processing,
reduced energy consumption, and offline capabilities. It can also improve accessibility and make
it easier to use machine learning algorithms and models. However, it is important to consider
the ethical and ecological implications of edge computing, including concerns about privacy and
security and the potential for bias in algorithms and models. In order to mitigate the potential
risks of bringing machine learning to the edge, it is important to carefully design and implement
machine learning systems that are transparent, accountable, and fair. This involves ensuring
that machine learning algorithms are trained on representative and unbiased data, and that
their outcomes are monitored and evaluated for potential biases. It also involves implementing
strong privacy and security measures to protect sensitive personal information and prevent cyber
attacks. In addition, it is important to consider the ethical implications of using machine learning
at the edge and ensure that it is being used for legitimate and beneficial purposes.

5.3 Exploring the benefits and implications of bringing machine learning to the edge 91

Bibliography

[AGL17] M. Akbari, B. Gharesifard, and T. Linder. „Distributed Online Convex Optimization on Time-
Varying Directed Graphs“. In: IEEE Transactions on Control of Network Systems 4.3 (2017),
pp. 417–428 (cit. on p. 20).

[AQA17] A. Mokhtari, Q. Ling, and A. Ribeiro. „Network Newton Distributed Optimization Methods“.
In: IEEE Trans. Sig. Proc. 65.1 (Jan. 2017), pp. 146–161 (cit. on p. 20).

[AR21] Ghadir Ayache and Salim El Rouayheb. „Private Weighted Random Walk Stochastic Gradient
Descent“. In: IEEE Journal on Selected Areas in Information Theory 2.1 (2021), pp. 452–463
(cit. on pp. 17, 89).

[Bac13] Francis Bach. „Learning with Submodular Functions: A Convex Optimization Perspective“. In:
Foundations and Trends® in Machine Learning 6.2-3 (2013), pp. 145–373 (cit. on p. 88).

[Bac15] Francis Bach. Submodular Functions: from Discrete to Continous Domains. 2015 (cit. on p. 88).

[Baj+17] D. Bajovic, D. Jakovetic, N. Krejic, and N.K. Jerinkic. „Newton-like Method with Diagonal
Correction for Distributed Optimization“. In: SIAM Journal on Optimization 27.2 (2017),
pp. 1171–1203 (cit. on p. 20).

[BCN18] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. „Optimization Methods for Large-Scale
Machine Learning“. In: Siam Reviews 60.2 (2018), pp. 223–311 (cit. on pp. 2, 4).

[BPC11] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and Trends in Machine Learning,
2011 (cit. on p. 20).

[Bra+22] Gábor Braun, Alejandro Carderera, Cyrille W Combettes, et al. Conditional Gradient Methods.
Nov. 2022. arXiv: 2211.14103 [math.OC] (cit. on p. 4).

[Bru+16] Pierre Brunisholz, Etienne Duble, Franck Rousseau, and Andrzej Duda. „WalT: A Reproducible
Testbed for Reproducible Network Experiments“. In: IEEE INFOCOM International Workshop
on Computer and Networking Experimental Research Using Testbeds (CNERT). CNERT 2016
Best Demo Award. San Francisco, USA, Apr. 2016 (cit. on pp. 75, 78).

[Cao+13] Y. Cao, W. Yu, W. Ren, and G. Chen. „An Overview of Recent Progress in the Study of
Distributed Multi-Agent Coordination“. In: IEEE Transactions on Industrial Informatics 9.1
(2013), pp. 427–438 (cit. on p. 7).

93

https://arxiv.org/abs/2211.14103

[Che+17] Tianyi Chen, Yanning Shen, Qing Ling, and Georgios B. Giannakis. „Online learning for “thing-
adaptive” Fog Computing in IoT“. In: 2017 51st Asilomar Conference on Signals, Systems, and
Computers. 2017, pp. 664–668 (cit. on p. 9).

[Che+18] Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. „Projection-Free Online
Optimization with Stochastic Gradient: From Convexity to Submodularity“. In: Proceedings of
the 35th International Conference on Machine Learning. 2018, pp. 814–823 (cit. on pp. 19, 29,
48, 65, 73).

[CHK18] Lin Chen, Hamed Hassani, and Amin Karbasi. „Online continuous submodular maximization“.
In: Proc. 21st International Conference on Artificial Intelligence and Statistics (AISTAT). 2018
(cit. on pp. 13, 14, 25, 88).

[Cla10] Kenneth L. Clarkson. „Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algo-
rithm“. In: ACM Trans. Algorithms 6.4 (Sept. 2010) (cit. on p. 4).

[DJ14] D. Mateos-Nunez and J. Cortes. „Distributed Online Convex Optimization Over Jointly
Connected Digraphs“. In: IEEE Transactions on Network Science and Engineering 1.1 (2014),
pp. 23–37 (cit. on p. 20).

[DMP16] L. Deori, K. Margellos, and M. Prandini. „On decentralized convex optimization in a multi-
agent setting with separable constraints and its application to optimal charging of electric
vehicles“. In: IEEE Conference on Decision and Control (CDC). 2016, pp. 6044–6049 (cit. on
p. 7).

[DS16] Paolo Di Lorenzo and Gesualdo Scutari. NEXT: In-Network Nonconvex Optimization. 2016
(cit. on p. 15).

[Dub22] Etienne Dublé. WalT, https://walt-project.liglab.fr. 2022 (cit. on p. 75).

[EB12] E. Candès and B. Recht. „Exact Matrix Completion via Convex Optimization“. In: Communica-
tion of ACM 55 (2012), pp. 111–119 (cit. on p. 7).

[EE20] E. Hazan and E. Minasyan. „Faster Projection-free Online Learning“. In: Proc. of 33rd Confer-
ence on Learning Theory. Vol. 125. 2020, pp. 1877–1893 (cit. on p. 27).

[EMR17] M. Eisen, A. Mokhtari, and A. Ribeiro. „Decentralized Quasi-Newton Methods“. In: IEEE
Transactions on Signal Processing 65.10 (2017), pp. 2613–2628 (cit. on p. 20).

[Fuj05] Satoru Fujishige. „Submodular functions and optimization“. In: Annals of Discrete Mathematics
58 (2005), pp. 3–10 (cit. on p. 88).

[FW56] Marguerite Frank and Philip Wolfe. „An algorithm for quadratic programming“. In: Naval
Research Logistics Quarterly 3.1-2 (1956), pp. 95–110. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/nav.3800030109 (cit. on p. 4).

[Has70] W.K. Hastings. „Monte Carlo sampling methods using Markov chains and their applications“.
In: Biometrika 57.1 (1970), pp. 97–109 (cit. on pp. 25, 53).

[Haz16] Elad Hazan. „Introduction to online convex optimization“. In: Foundations and Trends® in
Optimization 2.3-4 (2016), pp. 157–325 (cit. on pp. 6, 16, 19, 20, 28).

[HBJ18] Lie He, An Bian, and Martin Jaggi. „Cola: Decentralized linear learning“. In: Advances in
Neural Information Processing Systems. 2018, pp. 4536–4546 (cit. on pp. 8, 9, 24).

94 Bibliography

https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800030109

[HBM19a] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. „Accelerated decentralized optimiza-
tion with local updates for smooth and strongly convex objectives“. In: The 22nd International
Conference on Artificial Intelligence and Statistics. 2019, pp. 897–906 (cit. on p. 20).

[HBM19b] Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. „An accelerated decentralized
stochastic proximal algorithm for finite sums“. In: Advances in Neural Information Processing
Systems. 2019, pp. 954–964 (cit. on p. 20).

[HCM13] S. Hosseini, A. Chapman, and M. Mesbahi. „Online distributed optimization via dual av-
eraging“. In: 52nd IEEE Conference on Decision and Control. 2013, pp. 1484–1489 (cit. on
p. 20).

[HCM16] S. Hosseini, A. Chapman, and M. Mesbahi. „Online Distributed Convex Optimization on
Dynamic Networks“. In: IEEE Transactions on Automatic Control 61.11 (2016), pp. 3545–3550
(cit. on p. 20).

[HK12] Elad Hazan and Satyen Kale. „Projection-Free Online Learning“. In: Proceedings of the 29th
International Coference on International Conference on Machine Learning. ICML’12. Edinburgh,
Scotland: Omnipress, 2012, pp. 1843–1850 (cit. on p. 7).

[HL16] Elad Hazan and Haipeng Luo. Variance-Reduced and Projection-Free Stochastic Optimization.
2016 (cit. on p. 89).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. „Long Short-Term Memory“. In: Neural Comput.
9.8 (Nov. 1997), pp. 1735–1780 (cit. on p. 82).

[IAG08] I.D. Schizas, A. Ribeiro, and G.B. Giannakis. „Consensus in Ad Hoc WSNs With Noisy Links-
Part I: Distributed Estimation of Deterministic Signals“. In: Trans. Sig. Proc. 56.1 (2008),
pp. 350–364 (cit. on p. 20).

[Jag+14] Martin Jaggi, Virginia Smith, Martin Takác, et al. „Communication-efficient distributed dual
coordinate ascent“. In: Advances in neural information processing systems. 2014, pp. 3068–
3076 (cit. on p. 20).

[Jag11] Martin Jaggi. „Sparse convex optimization methods for machine learning“. In: 2011 (cit. on
p. 4).

[Jag13] Martin Jaggi. „Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization“. In:
Proceedings of the 30th International Conference on Machine Learning. Ed. by Sanjoy Dasgupta
and David McAllester. Vol. 28. Proceedings of Machine Learning Research 1. Atlanta, Georgia,
USA: PMLR, 17–19 Jun 2013, pp. 427–435 (cit. on p. 4).

[Jin+20] Yibo Jin, Lei Jiao, Zhuzhong Qian, et al. „Provisioning Edge Inference as a Service via Online
Learning“. In: 2020 17th Annual IEEE International Conference on Sensing, Communication,
and Networking (SECON). Como, Italy: IEEE Press, 2020, pp. 1–9 (cit. on p. 9).

[JMX15] D. Jakovetic, J. M. F. Moura, and J. Xavier. „Linear Convergence Rate of a Class of Distributed
Augmented Lagrangian Algorithms“. In: IEEE Transactions on Automatic Control 60.4 (2015),
pp. 922–936 (cit. on p. 20).

[Joh+08] Bjorn Johansson, Tamás Keviczky, Mikael Johansson, and Karl Henrik Johansson. „Subgradi-
ent methods and consensus algorithms for solving convex optimization problems“. In: 47th
IEEE Conference on Decision and Control. 2008, pp. 4185–4190 (cit. on pp. 15, 25).

Bibliography 95

[JXM14] D. Jakovetic, J. Xavier, and J. M. F. Moura. „Fast Distributed Gradient Methods“. In: IEEE
Transactions on Automatic Control 59.5 (2014), pp. 1131–1146 (cit. on p. 20).

[KJR15] A. Koppel, F. Y. Jakubiec, and A. Ribeiro. „A Saddle Point Algorithm for Networked Online
Convex Optimization“. In: IEEE Transactions on Signal Processing 63.19 (2015), pp. 5149–
5164 (cit. on p. 20).

[KQW16] K. Yuan, Q. Ling, and W. Yin. „On the Convergence of Decentralized Gradient Descent“. In:
SIAM J. on Optimization 26.3 (2016), pp. 1835–1854 (cit. on p. 20).

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009. Chap. 3
(cit. on p. 65).

[Lec+98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. „Gradient-based learning applied to document
recognition“. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on p. 65).

[Li+20] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. „Federated learning: Chal-
lenges, methods, and future directions“. In: IEEE Signal Processing Magazine 37.3 (2020),
pp. 50–60 (cit. on pp. 9, 24, 30).

[Lia+17] Xiangru Lian, Ce Zhang, Huan Zhang, et al. „Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized parallel stochastic gradient descent“.
In: Advances in Neural Information Processing Systems. 2017, pp. 5330–5340 (cit. on pp. 8, 9,
24).

[LNR17] S. Lee, A. Nedic, and M. Raginsky. „Stochastic Dual Averaging for Decentralized Online
Optimization on Time-Varying Communication Graphs“. In: IEEE Transactions on Automatic
Control 62.12 (2017), pp. 6407–6414 (cit. on p. 20).

[LV10] Z. Liu and L. Vandenberghe. „Interior-point method for nuclear norm approximation with
application to system identification“. In: SIAM J. Matrix Anal. 31.3 (2010), pp. 1235–1256
(cit. on p. 7).

[LZ16] Guanghui Lan and Yi Zhou. „Conditional Gradient Sliding for Convex Optimization“. In: SIAM
Journal on Optimization 26 (Jan. 2016), pp. 1379–1409 (cit. on p. 89).

[Ma+15] Chenxin Ma, Virginia Smith, Martin Jaggi, et al. „Adding vs. averaging in distributed primal-
dual optimization“. In: International Conference on Machine Learning. 2015, pp. 1973–1982
(cit. on p. 20).

[Ma+17] Chenxin Ma, Jakub Konečnỳ, Martin Jaggi, et al. „Distributed optimization with arbitrary
local solvers“. In: Optimization Methods and Software 32.4 (2017), pp. 813–848 (cit. on
p. 20).

[McM+21] H Brendan McMahan et al. „Advances and Open Problems in Federated Learning“. In:
Foundations and Trends® in Machine Learning 14.1 (2021) (cit. on pp. 9, 24, 30).

[MHK18] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. „Conditional Gradient Method for
Stochastic Submodular Maximization: Closing the Gap“. In: Conference on Artificial Intelligence
and Statistics. Vol. 84. 2018, pp. 1886–1895 (cit. on pp. 29, 88).

[Mit+22] Angan Mitra, Nguyen Kim Thang, Tuan-Anh Nguyen, Denis Trystram, and Paul Youssef.
„Online Decentralized Frank-Wolfe: From theoretical bound to applications in smart-building“.
In: GloTS 2022 - Global IoT Conference. Dublin, Ireland, June 2022, pp. 1–12 (cit. on p. 82).

96 Bibliography

[Ned+09] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. „On Distributed Averaging Algorithms
and Quantization Effects“. In: IEEE Trans. on Automatic Control 54 (2009), pp. 2506–2517
(cit. on p. 20).

[NLR15] A. Nedic, S. Lee, and M. Raginsky. „Decentralized online optimization with global objectives
and local communication“. In: 2015 American Control Conference (ACC). 2015, pp. 4497–4503
(cit. on p. 20).

[NOS17] Angelia Nedić, Alex Olshevsky, and Wei Shi. „Achieving Geometric Convergence for Dis-
tributed Optimization Over Time-Varying Graphs“. In: SIAM Journal on Optimization 27.4
(2017), pp. 2597–2633. eprint: https://doi.org/10.1137/16M1084316 (cit. on p. 15).

[Pip+20] Manisa Pipattanasomporn, Gopal Chitalia, Jitkomut Songsiri, et al. „CU-BEMS, smart building
electricity consumption and indoor environmental sensor datasets“. In: Scientific Data (2020)
(cit. on p. 82).

[QL18] Guannan Qu and Na Li. „Harnessing Smoothness to Accelerate Distributed Optimization“. In:
IEEE Transactions on Control of Network Systems 5.3 (Sept. 2018), pp. 1245–1260 (cit. on
p. 15).

[QL20] G. Qu and N. Li. „Accelerated Distributed Nesterov Gradient Descent“. In: IEEE Transactions
on Automatic Control 65.6 (2020), pp. 2566–2581 (cit. on p. 20).

[Rei+19] A. Reisizadeh, A. Mokhtari, H. Hassani, and R. Pedarsani. „An Exact Quantized Decentral-
ized Gradient Descent Algorithm“. In: IEEE Transactions on Signal Processing 67.19 (2019),
pp. 4934–4947 (cit. on p. 7).

[RM51] Herbert Robbins and Sutton Monro. „A Stochastic Approximation Method“. In: The Annals of
Mathematical Statistics 22.3 (1951), pp. 400–407 (cit. on p. 4).

[RNB05] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew. „Generalized consensus computation in
networked systems with erasure links“. In: IEEE Workshop on Signal Processing Advances in
Wireless Communications. 2005, pp. 1088–1092 (cit. on p. 20).

[Sca+19] K. Scaman, F. Bach, S. Bubeck, Y.T. Lee, and L. Massoulié. „Optimal Convergence Rates for
Convex Distributed Optimization in Networks“. In: Journal of Machine Learning Research
20.159 (2019), pp. 1–31 (cit. on p. 20).

[SG08] Matthew Streeter and Daniel Golovin. „An Online Algorithm for Maximizing Submodu-
lar Functions“. In: Advances in Neural Information Processing Systems. Ed. by D. Koller, D.
Schuurmans, Y. Bengio, and L. Bottou. Vol. 21. Curran Associates, Inc., 2008 (cit. on p. 14).

[SJ16] Andrea Simonetto and Hadi Jamali-Rad. „Primal recovery from consensus-based dual de-
composition for distributed convex optimization“. In: Journal of Optimization Theory and
Applications 168.1 (2016), pp. 172–197 (cit. on pp. 15, 25).

[SJ18] S. Shahrampour and A. Jadbabaie. „Distributed Online Optimization in Dynamic Environ-
ments Using Mirror Descent“. In: IEEE Transactions on Automatic Control 63.3 (2018), pp. 714–
725 (cit. on p. 20).

[SSY18] Tao Sun, Yuejiao Sun, and Wotao Yin. „On Markov Chain Gradient Descent“. In: Proceedings of
the 32nd International Conference on Neural Information Processing Systems. NIPS’18. Montréal,
Canada: Curran Associates Inc., 2018, pp. 9918–9927 (cit. on pp. 17, 55, 57).

Bibliography 97

https://doi.org/10.1137/16M1084316

[TLR12] K. I. Tsianos, S. Lawlor, and M. G. Rabbat. „Consensus-based distributed optimization:
Practical issues and applications in large-scale machine learning“. In: 50th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). 2012, pp. 1543–1550
(cit. on p. 7).

[Vap98] V. Vapnik. Statistical learning theory. Wiley, 1998 (cit. on pp. 2, 7).

[Wai+17] H. Wai, J.Lafond, A. Scaglione, and E. Moulines. „Decentralized Frank–Wolfe algorithm for
convex and nonconvex problems“. In: IEEE Transactions on Automatic Control 62.11 (2017),
pp. 5522–5537 (cit. on pp. 14, 15, 20, 25, 31, 32).

[WAP18] W. Zheng, A. Bellet, and P. Gallinari. „A Distributed Frank—Wolfe Framework for Learning
Low-Rank Matrices with the Trace Norm“. In: Machine Learning 107.810 (2018), pp. 1457–
1475 (cit. on p. 7).

[Xie+20] Jiahao Xie, Zebang Shen, Chao Zhang, Boyu Wang, and Hui Qian. „Efficient Projection-
Free Online Methods with Stochastic Recursive Gradient.“ In: AAAI Conference on Artificial
Intelligence. 2020, pp. 6446–6453 (cit. on pp. 18, 29, 65, 67, 73).

[Yan+13] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi. „Distributed Autonomous Online
Learning: Regrets and Intrinsic Privacy-Preserving Properties“. In: IEEE Transactions on
Knowledge and Data Engineering 25.11 (2013), pp. 2483–2493 (cit. on p. 20).

[Zha+17] W. Zhang, P. Zhao, W. Zhu, S.C.V. Hoi, and T. Zhang. „Projection-Free Distributed Online
Learning in Networks“. In: Proceedings of the 34th International Conference on Machine
Learning. 2017, pp. 4054–4062 (cit. on pp. 17–20, 24, 65, 67, 73).

[Zhu+21] Junlong Zhu, Qingtao Wu, Mingchuan Zhang, Ruijuan Zheng, and Keqin Li. „Projection-free
Decentralized Online Learning for Submodular Maximization over Time-Varying Networks“.
In: Journal of Machine Learning Research 22.51 (2021), pp. 1–42 (cit. on p. 88).

[Zin03] Martin Zinkevich. „Online Convex Programming and Generalized Infinitesimal Gradient
Ascent“. In: 2 (Apr. 2003) (cit. on pp. 6, 19).

98 Bibliography

List of Figures

1.1 In the graph G with 9 agents, the agent 6 can only send messages to its neighbors
(N (6) = {2, 7, 8}) colored in red. 10

1.2 Diagram describing an online decision-making process for each agent i ∈ V. 11

4.1 Performance of SDMFW on grid network with varying sizes (a), DROFW with
varying network size (b), and DMFW with cycle network with varying sizes (c) on
MNIST dataset. (L = 10) . 68

4.2 Average performance of 100 runs of RWMFW on grid topology with varying network
size (a), RWMFW with a cycle network topology with varying sizes (b) on MNIST
dataset. Note that the variability due to the random walk is not presented in this
figure: See Figure 4.5 to visualize the spread. L = 10 69

4.3 Performance of SDMFW on grid topology with varying network sizes (a), DROFW
with varying network size (b), and SDMFW with cycle network with varying sizes
(c) on CIFAR10 dataset.(L = 20) . 70

4.4 Average performance of 100 runs of RWMFW on grid topology with varying network
size (a), RWMFW with a cycle network topology with varying sizes (b) on CIFAR10
dataset. Note that the variability due to the random walk is not presented in this
figure: See Figure 4.6 to visualize the spread.(L = 50) 71

4.5 Average performance of 100 runs of RWMFW on cycle network of size 250 (a),
RWMFW with a complete network of size 250 (b) on MNIST dataset.(L = 100) . . 71

4.6 Average performance of 100 runs of RWMFW on cycle network of size 250 (a),
RWMFW with a complete network of size 250 (b) on CIFAR10 dataset. (L = 100) . 72

4.7 Using the WalT server, we deploy the needed WalT images onto our WalT nodes.
Suppose having n + 1 Raspberry Pi then n of them will boot with a WalT image
containing the algorithm SDMFW. The remaining node receives a WalT image con-
figured to act as a WiFi access point (router). In addition to the access point feature,
the image contains a RabbitMQ broker, which enables handling the exchanges
between the nodes. 79

4.8 Suppose having n+ 1 Raspberry Pi then n of them are booted with a WalT image
containing the algorithm SDMFW. The remaining node is configured to act as WiFi
access point (router). All the node connect to the node that acts as a router through
WiFi. 80

99

4.9 The broker/router node manages the communication to satisfy a given graph
topology. For instance, in this diagram, according to the broker, node 1 can connect
with nodes 2 and 5, but not with nodes 3 and 4. 80

4.10 Cluster of 10 Raspberry Pi with WiFi drivers, connected to a WalT server. 81
4.11 Loss values of different network size on complete topology (Plot on log-scale) 85

100 List of Figures

List of Tables

1.1 Summary of notations . 13
1.2 Comparison with previous work on both decentralized and centralized online al-

gorithms, and our proposed algorithms (in bold). Stochastic Decentralized Meta
Frank-Wolfe (SDMFW) is an extension of DMFW in which a variance reduction is
used to handle stochastic gradient estimates. The first column shows the theoretical
regret bound. The second column shows the computation cost per round to achieve
such a regret bound. Note that for decentralized algorithms, the per round cost is
distinguished by two types. DROFW, DMFW and SDMFW’s cost are counted for
each node. However, RWMFW is of different nature: the cost of nodes is not equally
balanced and depends on the random walk. Therefore, we present the overall
combined cost per round of all the nodes is O (T). For decentralized algorithms,
the column "per round communications" shows the number of exchanges done in a
round. The column "Sync" shows whether or not synchronization is required. The
column "Proj-free" shows whether or not the algorithm is projection-free. Finally,
the last column shows whether or not the algorithm is robust to stochastic gradient
estimates. 19

4.1 Benchmarking the different types of operations’ average execution time in seconds
of SDMFW with the least connected graph topology (a line) and various sizes (3, 5
and 7). In the experiment, L being the number of iterations in a round, we take L
equals to 10 which yields the best known regret bound. 77

4.2 Benchmarking the different types of operations’ average execution time in seconds
of SDMFW with the least connected graph topology (a line) and various sizes (3, 5
and 7). In the experiment, L being the number of iterations in a round, we take L
equals to 10 which yields the best known regret bound. 78

4.3 Impact of Topology on 7 learners configuration. 84
4.4 Impact of Topology on 13 learners configuration. 84

101

	Cover
	Titlepage
	Abstract
	Acknowledgment
	1 Introduction
	1.1 Edge computing paradigm
	1.2 Classical machine learning
	1.2.1 Settings
	1.2.2 Offline learning algorithms

	1.3 Online machine learning
	1.3.1 Online settings
	1.3.2 Online algorithms

	1.4 Decentralized machine learning
	1.4.1 Decentralized optimization settings

	1.5 Decentralized online machine learning at the edge
	1.6 Problem statement and preliminaries
	1.6.1 Distributed environment
	1.6.2 Online decision-making in distributed environment

	1.7 Contributions
	1.7.1 A decentralized online algorithm with tight regret guarantee (DMFW)
	1.7.2 A random walk walk approach (RWMFW)
	1.7.3 Experimental contributions
	1.7.4 Positioning of the proposed algorithms (DMFW, SDMFW and RWMFW)

	2 A Stochastic Conditional Gradient Algorithm for Decentralized Online Convex Optimization
	2.1 Introduction
	2.1.1 Contributions

	2.2 Conditional Gradient based Algorithms for Decentralized Online Convex Optimization
	2.2.1 An Algorithm with Exact Gradients.
	2.2.2 Extension to Non-Smooth Functions
	2.2.3 An Algorithm with Stochastic Gradient Estimates
	2.2.4 Removing the knowledge of T

	2.3 Analysis in Section 2.2
	2.4 Analysis in Section 2.2.3

	3 Meta Frank Wolfe on a Random Walk Journey
	3.1 Introduction
	3.2 Uniform Random Walk Meta Frank Wolfe
	3.3 Proof of Theorem 4

	4 Experiments and Applications
	4.1 Decentralized Online Multiclass Logistic Regression
	4.1.1 Settings of Decentralized Online multiclass Logistic Regression
	4.1.2 Simulated SDMFW
	4.1.3 Random Walk Approach of the Decentralized Online Multiclass Logistic Regression
	4.1.4 Deployment of the online multi-class logistic regression on devices with limited resources (Raspberry Pi)

	4.2 An IoT application: Temperature Forecasting Experiments on Thailand's Smart Building Dataset
	4.2.1 Settings and formulation
	4.2.2 Observation and discussion

	5 Conclusion
	5.1 Summary
	5.2 Perspectives
	5.2.1 Different Classes of Functions
	5.2.2 Decentralized optimization with dynamic graphs
	5.2.3 Experiments in edge computing applications
	5.2.4 Improving the Random Walk Meta Frank Wolfe Algorithm

	5.3 Exploring the benefits and implications of bringing machine learning to the edge

	Bibliography
	Colophon

