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Cette thèse s'articule autour de l'équation de Schrödinger, dans le cas avec nonlinéarité cubique ainsi que dans le cas linéaire avec un potentiel. Le premier travail, dans le cas cubique en dimension , permet la construction d'une nouvelle classe de solutions à régularité limite par rapport au changement d'échelle laissant l'équation invariante, c'est à dire dans les espaces F(L ∞ ) et dans Ḣs pour tout s < -1 2 . Ce travail est motivé par l'étude des tourbillons filamentaires dont la dynamique est modélisée par le flot binormal. C'est en s'appuyant sur la transformation de Hasimoto (permettant de relier directement les solutions de Schrödinger à celles du flot binormal) que dans un deuxième travail, il a été établi une nouvelle preuve de la formation de singularités pour les tourbillons, plus simple que les précédentes sous réserve de satisfaire des hypothèses plus fortes. Enfin, pour le cas linéaire, nous présentons les premiers éléments qui permettront d'obtenir une estimation de dispersion en présence d'un potentiel V = -a |x| 2 en dimension plus grande que 3, en s'appuyant sur des arguments dus à Ginibre ensuite adaptés dans les espaces de Lorentz.

. . Présentation des travaux

Cette thèse s'inscrit dans le domaine de l'étude des équations différentielles. Une équation différentielle est un objet mathématique décrivant l'évolution dans le temps d'un phénomène physique. Plus précisément, nous nous intéressons ici à l'équation de Schrödinger formulée de la manière suivante :

i∂ t u + ∂ 2 x u = f (u), (t, x) ∈ R × R n , u(0, x) = u 0 ,
x ∈ R n .

( . ) issue de la mécanique quantique et décrivant l'évolution d'une onde localisée u soumise à des forces extérieures représentées par f . Suivant les configurations possibles, quelques caractéristiques remarquables des solutions peuvent être observées, telles que la conservation de la masse, de l'énergie ainsi que des propriétés de symétries ou d'invariance que nous expliciterons plus tard. Il est également parfois possible de mettre en évidence le phénomène de dispersion, correspondant à l'étalement de la solution dans le temps.

Lorsque f = 0, cette équation représente l'évolution de la particule sans aucune contrainte, aussi appelée évolution libre. Les résultats théoriques dépendent alors uniquement de la condition initiale u 0 et de l'espace associé à la variable d'espace. Maintenant, lorsque f = 0, l'existence de solutions et leurs propriétés dépendent alors également de la régularité de cette donnée, que l'on quantifiera par son intégrabilité et celle de leurs dérivées par rapport à la mesure de Lebesgue. Rappelons donc ici la définition des espaces usuels que nous allons manipuler. Tout d'abord les espaces de Lebesgue : ) muni de la norme

∀1 ≤ p < ∞ L p (R n ) = f : R n → C/ R n |f (x)| p dx < ∞ , ( . 
f L p (R n ) = R n |f (x)| p dx 1 p . ( . )
Dans le cas où il n'y a pas de confusion sur les espaces, on notera L p au lieu de L p (R n ).

On peut ensuite affiner ces espaces en demandant également de l'intégrabilité sur les dérivées des fonctions, ce qui permet de définir les espaces de Sobolev d'ordre entier s.

W s,p (R n ) = {f ∈ L p (R n )/∀α |α| ≤ s, D α f ∈ L p }.
( . )

Dans le cas où p= , ces espaces normés sont des espaces de Hilbert. On notera alors W s,2 = H s . Grâce à l'identité de Parseval, on peut alors donner une définition équivalente faisant intervenir f , la transformée de Fourier de f : ) ce qui permet d'étendre les définitions à s ∈ R. Enfin, nous pouvons aussi considérer les espaces de Sobolev homogènes, définis par : ) qui demandent un comportement plus restrictif pour f au voisinage de l'origine. Ceci étant défini, revenons à l'équation de Schrödinger ( . ). Nous considérons dans cette thèse deux cas.

H s (R n ) = f ∈ L 2 (R n )/ R n (1 + |ξ| 2 ) s | f (ξ)| 2 dξ < ∞ , ( . 
Ḣs (R n ) = f ∈ L 2 (R n )/ R n |ξ| 2s | f (ξ)| 2 dξ < ∞ , ( . 
Tout d'abord, nous étudions l'équation en dimension avec non-linéarité cubique, c'est-à-dire lorsque

f (u) = |u| 2 u.
Les questions qui nous intéressent concernent des solutions de régularité critique par rapport au changement d'échelle laissant l'équation invariante, c'est-à-dire dans les espaces F(L ∞ ) (i.e. avec une transformée de Fourier dans L ∞ ) et aussi dans Ḣs pour s = -1 2 -. Un exemple de telle distribution est la masse de Dirac. L'un des travaux de cette thèse a été de construire une nouvelle classe de solutions à régularité critique dans [ ] en lien avec une somme de masses de Dirac et présentée plus en détail dans la Section . . de ce chapitre puis dans le Chapitre .

Ce problème est également motivé par l'étude des tourbillons filamentaires décrits par le modèle du flot binormal. Il existe en effet une correspondance (due à Hasimoto [ ]) entre ces deux équations permettant d'associer à chaque solution de l'équation de Schrödinger cubique, une solution du flot binormal. En partant d'une masse de Dirac, la solution du flot binormal que l'on obtient avec cette transformation est une solution présentant une singularité auto-similaire. Plus précisément, on peut démontrer l'existence d'une trace de cette solution à temps zéro formant géométriquement un coin grâce à [ ]. Ce type de comportement auto-similaire est cohérent avec des dynamiques observées dans les fluides (Figure . ci-dessous). Ces résultats expérimentaux ont motivé l'étude des perturbations de ces solutions. Durant cette thèse, nous avons proposé une démonstration plus directe dans [ ] de l'obtention de l'évolution par le flot binormal d'une courbe régulière partout sauf en un point. L'énoncé complet est détaillé dans la Section . . de ce chapitre puis dans le Chapitre .

Ensuite, nous considérons un cas linéaire en dimension supérieure ou égale à , avec

f (u) = a |x| 2 u =: -V u, pour a > -(n-2) 2 4
. Physiquement, cela correspond à l'évolution de la fonction d'onde en présence d'un potentiel dont la masse se trouve principalement en . D'un point de vue de la régularité, ce potentiel n'est pas intégrable car il possède trop de masse en , et aussi il ne décroit pas assez vite en l'infini. Ce défaut d'intégrabilité peut tout de même se quantifier puisque V est dans un espace de Lebesgue faible. C'est pourquoi, le bon espace fonctionnel dans lequel il faut travailler est celui des espaces de Lorentz, interpolant de L p à L p,∞ en intégrant sur des lignes de niveaux.

Dans ce contexte là, l'un des travaux de cette thèse consiste à retrouver le phénomène de dispersion dans certains espaces de Lebesgue. Cela dépend alors de la norme avec laquelle on veut mesurer cette décroissance, ainsi que de la régularité de la condition initiale. Lorsque a > 0, l'inégalité de dispersion L 1 → L ∞ a été démontrée par Fanelli, Fellia, Fontelos et Primo en dimension dans [ ] puis en dimension dans [ ]. Leur approche repose sur la théorie spectrale et leur permet d'obtenir le noyau de l'opérateur différentiel -∂ 2

x + a |x| 2 . Avec ce noyau, ils prouvent une estimation de dispersion L 1 → L ∞ plus faible lorsque -(n-2) 2 4 < a < 0 et montrent dans [ ] que l'opérateur n'est pas borné de L 1 vers L ∞ lorsque -(n-2) 2 4 < a < 0. La question est maintenant de savoir s'il est possible d'obtenir une estimation de dispersion L r → L r pour un r > 1 lorsque -(n-2) 2 4 < a < 0.

Une première démonstration dans le cas où le potentiel est plus régulier avait été proposé dans [ ], mais nous avons choisi de reprendre un argument perturbatif proposé par Jean Ginibre qui n'a cependant pas été publié à ce jour. Les premiers résultats obtenus sont décrits dans la Section . . de ce chapitre puis dans le Chapitre . L'introduction s'articule de la manière suivante. Dans la Section . , nous rappelons les principaux résultats permettant l'étude de l'équation de Schrödinger linéraire : existence et premières propriétés. Nous montrons ensuite dans la Section . comment ces résultats ont étés étendus au cas cubique D, avant d'étudier les singularitées cités ci-dessus à partir de la Section . . . Nous présentons ensuite dans la Section . le lien entre ces résultats et l'étude des Enfin, la Section . décrit le contexte dans lequel nous étudions l'équation de Schrödinger avec un potentiel.

. . Introduction à l'équation de Schrödinger linéaire

Nous rappelons dans cette partie les premiers résultats classiques que l'on peut obtenir sur l'équation de Schrödinger libre posée sur R n , qui sont l'existence, l'unicité et les propriétés de dispersion des solutions.

L'équation considérée est donc la suivante :

i∂ t u + ∂ 2 x u = 0, (t, x) ∈ R × R n u(0, x) = u 0 (x), x ∈ R n ( . )

. . . Condition initiale régulière

Commençons par regarder ce qu'il est possible d'obtenir avec une condition initiale très régulière. Pour cela, rappelons la définition de la classe de Schwartz S :

S(R n ) = {f ∈ C ∞ (R n )/∀(α, β) ∈ N 2 , f α,β < ∞}, ( . ) où f α,β = x α D β f ∞ .
( . )

Nous avons alors la propriété suivante.

Proposition . . Soit u 0 ∈ S(R n ), alors ( . ) admet une unique solution u ∈ C ∞ (R, S(R n ))

donnée par :

u(t) = K(t) * u 0 ( . ) avec K(t, x) = e i|x| 2 4t (4iπt) 
n 2 , ( . ) et û(t, ξ) = u 0 (ξ)e -it|ξ| 2 .

( . )

Démonstration. Puisque ( . ) est linéaire et définie sur l'espace tout entier, on utilise la transformation de Fourier. Pour u ∈ C ∞ (R, S(R n )) solution de ( . ), on a i∂ t û -|ξ| 2 û = 0 donc û(t, ξ) = e -i|ξ| 2 t u 0 (ξ).

Réciproquement, puisque u 0 ∈ S(R n ), on vient de définir une unique solution de ( . ) sur R × R n . Enfin, en remarquant que K(t, x) = F -1 (e -it|ξ| 2 ), nous utilisons les propriétés de la transformation de Fourier pour avoir ( . ).

Il est possible d'étendre facilement ce résultat pour une condition initiale choisie à un autre instant grâce à la remarque suivante.

Remarque . . Pour t 0 = t, nous avons par linéarité de l'exponentielle

û(t, ξ) = u 0 (ξ)e -i(t-t 0 )|ξ| 2 .
Dans le but de généraliser ce résultat aux espaces L p , nous allons d'abord traiter le cas des distributions.

. . . Condition initiale dans l'espace des distributions

L'espace des distribution S est défini comme le dual topologique de l'espace de Schwartz.

Proposition . . Soit u 0 ∈ S (R n ), il existe une unique solution u ∈ C(R, S (R n )) de ( . ) au sens où : ∀ψ ∈ S(R n ) t →< u, ψ > S ,S
est continue sur R, ( . )

et ∀φ ∈ C(R, S(R n )), ∀t ∈ R, < u(t), φ(t) > S ,S -< u 0 , φ(0) > S ,S = -i t 0 < u(s), (∂ s φ + i∂ 2 x φ)(s) > S ,S ds ( . ) Démonstration. Unicité : par linéarité, considérons u ∈ C(R, S (R)) tel que u 0 = 0 et mon- trons que u = 0. Soit ψ ∈ S(R n ) et t ∈ R. Soit φ la solution de i∂ s φ(s, x) -∂ 2 x φ(s, x) = 0 dans R × R n φ(t, x) = ψ(x). ( . )
En choisissant φ comme fonction test dans ( . ), il découle que

< u(t), ψ > S ,S = 0 donc u(t) = 0 pour tout t ∈ R. Existence : soit u(t) = F -1 (e -it|ξ| 2 u 0 (•)), alors ∀ψ ∈ S(R n ) < u(t), ψ > S ,S = 1 (2π) n < û(t), ψ > S ,S = (2π) -n < u 0 , e -it|•| 2 ψ > S ,S , donc u est continue. L'identité ( . ) se retrouve en calculant t 0 ∂ s (e -is|ξ| 2 φ(s, ξ))ds. Remarque . . Pour u 0 ∈ S (R n ) condition initiale de ( . ), nous noterons la solution u(t) = e it∂ 2
x u 0 .

. . . Invariances et lois de conservation

Maintenant que nous avons l'existence des solutions, remarquons ici quelques une de leurs propriétés.

Proposition . (Conservation de la masse). La quantité

M (t) = u(t) L 2 ( . )
est constante au cours du temps.

Physiquement, cela est cohérent avec le fait que u(t, x) représente la densité de probabilité d'une fonction d'onde à l'instant t en la position x.

Proposition . (Conservation de l'énergie). Soit

E(t) = R n |∇ x u(x)| 2 dx = ∇ x u(t) 2 L 2 , ( . )
alors E est constant au cours du temps.

Il s'agit là encore d'une quantité issue de la physique et permettant d'utiliser des techniques d'analyse variationnelle.

Disposant d'une solution, la propriété suivante nous montre comment en obtenir toute une famille, en jouant sur les symétries de l'équation.

Proposition . (Invariance Galiléenne). Soit u solution de ( . ), alors pour tout

N ∈ R n u N (t, x) = e -it|N | 2 +iN.x u(t, x -2N t) ( . )
est aussi solution de ( . ) pour u N 0 (x) = e iN.x u 0 (x). Il est possible de généraliser ces propriétés lorsque f = 0 dans certains cas, nous verrons quelques exemples au cours de ce chapitre.

. . . Estimations de dispersion dans les espaces de Lebesgue

En utilisant les formules précédemment démontrées, on obtient directement de premières estimations de l'opérateur e it∂ 2

x dans le cadres

L 2 → L 2 et L 1 → L ∞ . Théorème . . Soit u 0 ∈ L 2 (R n ) et u(t) = e it∂ 2 x u 0 , alors u(t) ∈ L 2 (R n ) et u(t) L 2 = u 0 L 2 . Soit u 0 ∈ L 1 (R n ) et u(t) = e it∂ 2 x u 0 , alors ∀t ∈ R u(t) ∈ C 0 (R n ) et u(t) L ∞ ≤ 1 |4πt| n 2 u 0 L 1 . Démonstration. Si u 0 ∈ L 2 , alors u 0 ∈ L 2 et u ∈ L 2 . De plus, par Plancherel u(t) L 2 = û(t) L 2 = u 0 L 2 = u 0 L 2 ( . ) Soit u 0 ∈ L 1 . La continuité est obtenue par densité de S(R n ) dans L 1 . En particulier, u ∈ L ∞ et u(t) L ∞ ≤ 1 |4πt| n 2 u 0 L 1 en utilisant la définition.
Afin de généraliser ce résultat à d'autres espaces de Lebesgue, nous avons besoin du résultat d'interpolation suivant (voir par exemple [ ]).

Théorème . (Interpolation complexe). Soit X 1 et X 2 deux espaces mesurés. Soit A un opérateur linéaire tel que A :

L p 0 (X 1 ) → L q 0 (X 2 ) et A : L p 1 (X 1 ) → L q 1 (X 2 ), avec (p 0 , q 0 , p 1 , q 1 ) ∈ [1, ∞] 4 . Soit θ ∈ [0, 1] et soit p 2 , q 2 tels que 1 p 2 = 1-θ p 0 + θ p 1 et 1 q 2 = 1-θ q 0 + θ q 1 , alors A : L p 2 (X 1 ) → L q 2 (X 2 ) et A L(L p 2 (X 1 ),L q 2 (X 2 )) ≤ A 1-θ L(L p 0 (X 1 ),L q 0 (X 2 )) A θ L(L p 1 (X 1 ),L q 1 (X 2 )) .
La preuve repose sur des éléments d'analyse complexe et les inégalités de Hölder. Nous allons tout de suite appliquer ce théorème à l'opérateur du groupe libre de Schrö-

dinger. Soit θ ∈ [0, 1] et posons 1 p 2 = 1-θ 1 + θ 2 et 1 q 2 = θ 2 . Alors 1 p 2 + 1 q 2 = 1 et θ = 2( 1 p 2 -1 2 ),
d'où le résultat suivant.

Théorème . (Estimations de dispersion dans les espaces de Lebesgue

). Soit r ∈ [2, ∞] et r son exposant conjugué, alors e it∂ 2 x L(L r ,L r ) ≤ 1 (4π|t|) n( 1 2 -1 r )
.

( . )

L'exposant n 1 2 -1 r est parfois appelé exposant de dispersion.

. . . Estimations de Strichartz

Une application de l'estimation de dispersion repose sur le théorème suivant et permet d'obtenir les estimées de Strichartz.

Théorème . (L'argument

T T * ). Soit (U (t)) t∈R une famille d'opérateurs unitaires de L 2 (R n ) telle que ∃c > 0, ∀f ∈ L 1 , ∀(t, t ) ∈ R 2 , U (t)U * (t )f L ∞ ≤ c |t -t | σ f L 1 , ( . ) alors pour tout (p, q) ∈ [2, ∞] 2 tel que 2 p + 2σ q = σ et (q, σ) = (∞, 1), ( . ) il existe c p,q tel que ∀u 0 ∈ L 2 , U (t)u 0 L p (R,L q (R n )) ≤ c p,q u 0 L 2 .
( . )

En appliquant ce résultat à l'opérateur de Schrödinger avec σ = n 2 , on obtient les inégalités de Strichartz. À noter également que dans des cas non euclidiens ces inégalités restent vraies même si ce n'est pas le cas pour les estimations de dispersion. La démonstration de ces dernières peut alors être basée sur des estimations de résolvante, comme par exemple dans [ ].

Théorème . (Estimations de Strichartz homogènes

). Soit (p, q) ∈ [2, ∞] 2 sauf (2, ∞) si n = 2 tels que 2 p + n q = n 2 ( . ) alors ∀u 0 ∈ L 2 , e it∂ 2 x u 0 L p (R,L q (R n )) ≤ c p,q u 0 L 2 . ( 

. . . Équation de Schrödinger linéaire avec un terme source

Nous présentons enfin d'un dernier résultat, dans le cas où il y a un terme source ne dépendant pas de u :

i∂ t u + ∂ 2 x u = f (t, x) u(0, x) = u 0 . ( . )
Rappelons tout d'abord que nous disposons d'une expression explicite des solutions.

Proposition . (Formule de Duhamel

). Soit u 0 ∈ S (R n ) et f ∈ C(R, S (R n )), alors il existe une unique solution u ∈ C(R, S (R n )) donnée par u(t) = e it∂ 2 x u 0 + t 0 e i(t-s)∂ 2 x f (s)ds.
( . )

Cette formule s'obtient en intégrant ( . ). Le résultat annoncé est le suivant, donnant un contrôle du terme de Duhamel pour des couples espace-temps admissibles.

Proposition . (Estimations de Strichartz inhomogènes

). Soient (p, q) et (p, q) deux couples admissibles. Soient T > 0 et f ∈ L p(R, L q(R n )), alors t 0 e i(t-s)∂ 2 x f (s)ds L p ([0,T ],L q (R n )) ≤ c p,q,p,q f L p([0,T ],L q (R n )) .
( . )

Ces estimations sont dues à K. Yajima dans [ ]. Sa démonstration utilise l'estimation de dispersion puis l'inégalité de Hardy-Littlewood-Sobobev, et ensuite les estimations de Strichartz et le lemme de théorie de la mesure de Christ-Kiselev. Il est également possible de les obtenir par l'argument T T * , comme dans le Théorème . . de Keel-Tao de [ ].

Nous pouvons alors les combiner avec les estimations de Strichartz pour l'évolution libre pour obtenir un contrôle sur les solutions.

Corollaire

. . Soit u 0 ∈ L 2 (R n ), soient u solution de ( . ) et (p, q), (p, q) deux couples ad- missibles, alors ∃c p,q,p,q ∀T > 0, u L p ([0,T ],L q (R n )) ≤ c p,q,p,q u 0 L 2 + f L p([0,T ],L q (R n )) .
( . )

Ces inégalités permettent d'obtenir des résultats sur le caractère bien posé de l'équation de Schrödinger non-linéaire.

. . Solutions à régularité critique pour l'équation de Schrödinger cubique en dimension

Afin de comprendre dans quelle mesure les solutions que nous allons présenter sont de régularité critique, présentons tout d'abord quelques résultats sur l'équation de Schrödinger non-linéaire pour un degré de non-linéarité et une dimension quelconques.

. . . Équation de Schrödinger non-linéaire en dimension n

Dans cette partie nous considérons l'équation de Schrödinger suivante, posée sur R n , avec non-linéarité type puissance a ∈ R * + :

i∂ t u + ∂ xx u ± |u| a u = 0 (t, x) ∈ R × R n , u(0, x) = u 0 (x) x ∈ R n . ( . )
Le choix du signe détermine le caractère de l'équation : focalisant ou défocalisant. En effet, lorsque le coefficient devant le terme non-linéaire est négatif, le paquet d'onde va avoir tendance à se confiner afin de minimiser son énergie, tandis que dans le cas inverse la densité de probabilité sera encline à s'étaler, se défocaliser. Afin de comprendre dans quel contexte cette équation sera bien posée, il faut remarquer l'invariance par changement d'échelle suivante. Soit u λ défini par : Théorème . . Soit a < 4 n , on obtient la majoration suivante en utilisant les inégalités de Strichartz et de Hölder valables pour tout couple (p 1 , q 1 ) admissible :

u λ (t, x) = λ 2 a u(λ 2 t, λx),
t 0 e i(t-τ )∂ 2 x |u| a udτ L p 1 ([0,T ],L q 1 (R n )) ≤ cT θ u L p 2 ([0,T ],L q 2 (R n )) u a L p 3 ([0,T ],L q 3 (R n )) , ( . ) et pour certains θ ∈ R + et (p 2 , q 2 ), (p 3 , q 3 ) admissibles.
De même, pour a < 4 n-2 et 0 ≤ β ≤ a on obtient la majoration suivante en utilisant les inégalités de Strichartz et de Hölder valables pour tout couple (p 1 , q 1 ) admissible : ) et pour certains θ ∈ R + et (p 2 , q 2 ), (p 3 , q 3 ) admissibles.

t 0 e i(t-τ )∂ 2 x |u| a udτ L p 1 ([0,T ],W 1,q 1 (R n )) ≤cT θ u L p 2 ([0,T ],W 1,q 2 (R n )) u a-β L p 3 ([0,T ],L q 3 (R n )) u β L ∞ ([0,T ],H 1 (R n )) , ( . 
Ces deux estimations permettent donc d'obtenir l'existence locale de solutions dans

L 2 si a < 4 n et dans H 1 si a < 4
n-2 à l'aide d'un argument de point fixe.

. . . Équation de Schrödinger non-linéaire cubique en dimension À partir de maintenant et pour le reste de l'étude de l'équation non-linéaire, nous considérons le cas a = 2 et n = 1. L'équation considérée est alors appelée D cubic NLS (de l'anglais cubic, signifiant cubique car c'est le degré de la non-linéarité, et NLS acronyme en anglais de Non Linear Schrödinger) :

i∂ t u + ∂ 2 x u ± |u| 2 u = 0 (t, x) ∈ R × R. u(0, x) = u 0 (x) x ∈ R. (NLS)
Nous ne disposons cette fois-ci que d'une formule implicite des solutions via la formule de Duhamel ( . ).

Au vu de ce qui précède, le caractère bien posé de l'équation a été prouvé dans [ ] 

. . . La solution fondamentale et ses perturbations

Le but de cette partie est de présenter toute une famille de solutions de (NLS) à régularité critique. Le prix à payer est que ces solutions n'admettrons donc pas de trace à temps zéro à cause d'une divergence logarithmique de la phase. On parle ici de famille ou de classe de solutions, car d'une manière qui sera définie plus loin, ces solutions sont toutes proches d'une solution en lien avec une masse de Dirac, présentée ci-dessous.

1.3.3.1 Caractère mal posé lorsque u 0 = δ Étant donné les résultats ci-dessus, (NLS) est mal posée pour u 0 = δ car δ ∈ H s pour s < -1 2 . Le théorème suivant, antérieur à ceux déjà cités, nous décrit plus précisément ce qui se passe pour cette donnée particulière.

Théorème . (Kenig, Ponce, Vega [ ]). Soit il n'y a aucune solution faible à (NLS) dans l'ensemble

{u/|u| 2 u ∈ L ∞ ([0, ∞), S (R)) tels que lim t→0 u(t, •) = δ dans S (R)}, ( . )
soit il y en a plus qu'une.

La preuve de ce théorème est constructive, nous prenons donc le temps de l'écrire ici pour comprendre la forme d'une solution exhibée, qui est une modification de la solution fondamentale de l'équation de Schrödinger linéaire.

Démonstration. Par l'absurde, considérons u = u(t, x) l'unique solution faible de (NLS) telle que |u| 2 u ∈ L ∞ ([0, ∞), S (R)) et que u 0 = δ. Alors, pour tout φ ∈ S(R), la définition de solution au sens faible donnée par ( . ) dans le cas de l'évolution libre se généralise en écrivant que :

∞ -∞ ∞ 0 (iu∂ t φ -u∂ 2 x φ ∓ φ|u| 2 u)(t, x)dxdt = φ(0).
Par invariance galiléenne énoncée dans la Proposition . , encore valable pour (NLS), nous

avons que pour tout N ∈ R u N (t, x) = e -itN 2 +iN x u(t, x -2N t)
est aussi solution faible de (NLS). Puisque e iN x δ = δ, on a par unicité que

u(t, x) = e -itN 2 +iN x u(t, x -2N t).
En différentiant par rapport à N , on obtient que

0 = i(x -2tN )u(t, x -2N t) -2t∂ x u(t, x -2N t).
En posant η = x -2N t, on a u(t, η) = g(t)e i η 2 4t , où g(t) est choisie tel que u soit solution de (NLS). Nous allons maintenant déterminer l'expression de g(t). En injectant cette expression dans (NLS), on obtient que pour tout t > 0 :

ig (t) + i g(t) 2t ± |g(t)| 2 g(t) = 0.
( . )

En multipliant ( . ) par 2tg(t) et en prenant la partie imaginaire, on obtient que :

|g(t)| 2 + 2t (g (t)g(t)) = 0, ( . ) 
ce qui permet de dire que t|g| 2 est constante. Ainsi, il existe α ∈ C et θ(t) réel, tels que t) . En utilisant cette nouvelle expression de g(t) dans ( . ), on a pour tout t > 0 :

g(t) = α √ t e i θ(
θ (t) = ± |α| 2 t , ( . ) 
et nous avons donc :

g(t) = α √ t e ±i|α| 2 ln t+ic avec (α, c) ∈ C 2 .
Sans perdre de généralité, on peut prendre c = 0. Ainsi en reprenant la notation usuelle x pour la variable d'espace, on a construit une solution ) de (NLS) sur (0, ∞) qui ne converge pas en 0 (divergence logarithmique de la phase).

u α (t, x) = α √ t e ±i|α| 2 ln t+ i|x| 2 4t , ( . 
Notons qu'en l'absence de divergence, il aurait fallu choisir α = 1 pour retrouver δ.

Nous allons maintenant nous servir de cette solution pour construire d'autres solutions de (NLS) que u α (t, x) dans des conditions de régularité similaires. Le problème peut être vu de deux manières différentes. Tout d'abord, existe-t-il un opérateur d'onde, c'est-à-dire est-il possible de construire une solution de (NLS) ayant comme état asymptotique une solution de l'équation d'évolution de Schrödinger libre ( . ) donnée ? Réciproquement, vérifie-t-on la complétude asymptotique : c'est-à-dire estil possible d'associer un tel état asymptotique à chaque solution globale de (NLS) ? Cette deuxième question est plus délicate car demande de trouver des propriétés qualitatives d'une solution non-linéaire en temps grands.

Pour commencer nous réécrivons le problème sous une meilleure forme avec deux transformations. Tout d'abord le changement de phase ψ(t, x) = e -iα 2 ln t u(t, x), ( . ) donnant la renormalisation de Wick de l'équation (NLS) :

i∂ t ψ + ∂ 2 x ψ + (|ψ| 2 - α 2 t )ψ = 0, ( . ) 
permet de traiter la divergence de la phase en zéro. Remarquons alors que le changement de phase ( . ) appliqué à la solution u α ( . ) exhibée dans la preuve du Théorème .

est la solution fondamentale

ψ α (t, x) = α e i x 2 4t √ t .
( . )

Ensuite, comme annoncé, on effectue une transformation pseudo-conforme : ) qui appliquée à ( . ) donne :

v(t, x) = T (ψ)(t, x) = e i x 2 4t √ t ψ 1 t , x t , ( . 
T (e -iα 2 ln t u α ) = T (ψ α ) = α.

L'équation (NLS) est alors équivalente à ) et la question est donc de savoir s'il existe des solutions sur [t 0 , ∞) proches de solutions constantes. En notant

i∂ t v + ∂ 2 x v + 1 t (|v| 2 -α 2 )v = 0, ( . 
v 1 (t, x) = T (e -iα 2 ln t u α ) + e it∂ 2 x u + (x) = a + e it∂ 2 x u + (x), ( . ) 
nous sommes désormais ramenés à un point fixe avec la fonctionnelle

φ(v)(t) = v 1 (t) + i ∞ t e i(t-τ )∂ 2 x (|v| 2 -α 2 )v τ -(i∂ τ + ∂ 2 x )v 1 (τ ) dτ.
( . )

Nous expliquons dans les deux prochaines sections dans quels contextes les questions d'existence d'opérateur d'onde et de complétude asymptotique ont été traitées.

1.3.3.2.a Existence d'opérateurs d'ondes

Les premiers résultat démontrés sont l'existence d'opérateur d'onde pour des états asymp-

totiques associés à u + ∈ L 1 ∩ L 2 dans [ ]. Ainsi, il a été obtenu un résultat d'existence de solutions dans l'espace C([t 0 , ∞), L 2 ) ∩ L 4 ([t 0 , ∞), L ∞ ) en supposant u + assez petit ou t 0
assez grand. La nature de cet espace est dictée par l'utilisation des estimations de Strichartz ( . ) dans la preuve pour les couples (∞, 2) et (4, ∞). La décroissance obtenue, quantifiée par

v(t) -v 1 (t) L 2 x = r(t) L 2
x , est alors en t -1 4 . Dans le but d'obtenir une meilleure vitesse de convergence, le contrôle des intégrales oscillante sera plutôt traité par des intégrations par parties que par les estimations de Strichartz ( . ). Pour obtenir des solutions plus régulières, à savoir avec un nombre s de dérivées, on suppose u + ∈ W s,1 ∩H s ∩ Ḣ-2 , ce qui permet d'avoir l'existence de solutions dans C([t 0 , ∞), H s (R)) toujours dans [ ]. On obtient alors une décroissance des normes L 2 en t -1 2 , et des normes H s en t -1 . En développant ( . ), différentes puissances de e it∂ 2

x apparaissent. Dans le cas L 2 , la décroissance est gouvernée par le terme quadratique en e it∂ 2 x . Dans le Théorème A de [ ] l'hypothèse u + ∈ L 1 peut en fait être relaxée en demandant juste xu + intégrable près de l'origine.

Enfin, il est possible de préciser l'estimation L 2 transférée sur u en supposant u + dans L 2 (x 4 dx) en utilisant une propriété du groupe de Schrödinger. Pour

u 1 (t, x) = α e i ix 2 4t √ t + e iα 2 ln t u + - x 2 , ( . ) on a u -u 1 ∈ C([t 0 , ∞), L 2 ) ∩ L 4 ([t 0 , ∞), L ∞
), avec un taux de convergence dans ces espaces en t -1

1.3.3.2.b Complétude asymptotique

La complétude asymptotique étant une propriété plus forte, elle n'a pour l'instant été prouvée que dans un cadre fonctionnel plus restreint. Pour cela, considérerons 0 < γ < 1 4 , α > 0 et t 0 > 0 afin de définir l'espace X γ t 0 de fonctions f telles que

f X γ t 0 = 1 t 1 4 0 f L 2 + t γ 0 √ t 0 |ξ| 2γ f (ξ) L ∞ (ξ 2 ≤1) ( . ) soit borné, et l'espace Y γ t 0 de fonctions g dont g Y γ t 0 = sup t≥t 0   1 t 1 4 0 g(t) L 2 + t 0 t α 2 t γ 0 √ t 0 |ξ| 2γ ĝ(t, ξ) L ∞ (ξ 2 ≤1)   ( . )
est borné. Le Théorème . de [ ] donne alors l'existence de solutions globales u dans Y γ 1 ∩ L 4 ((1, ∞), L ∞ ) admettant un état asymptotique f + ∈ L 2 avec un taux de convergence donné par

T (e -iα 2 ln t u(t)) -e i(t-1)∂ 2 x f + L 2 ≤ C(α, δ) t 1 4 -(γ+δ) u(1) X γ 1 , ( . ) où 0 < δ < 1 4 -γ.
Ce résultat plus difficile à obtenir est tout d'abord prouvé pour l'équation linéarisée avant d'utiliser un argument perturbatif reposant sur l'étude d'intégrales oscillantes.

. . . Solutions en lien avec une somme de masses de Dirac

Une question naturelle est maintenant de considérer non pas une unique masse de Dirac mais une somme, avec des poids en chaque point. On est alors confrontés à des phénomènes d'interaction entre les différentes singularités.

Il a été cette fois-ci possible d'anticiper la forme des solutions et de directement vérifier cet ansatz, sans passer par la transformation pseudo-conforme. Il a ainsi été prouvé dans le Theorem . de [ ] qu'il existe T > 0 et une unique solution de (NLS) sur (0, T ] de la forme

u {α j } (t, x) = e -2iM ln t j∈Z A j (t) e i (x-j) 2 4t √ t , ( . ) où A j (t) = e -i|α j | 2 ln t (α j + R j (t)) et M = j∈Z |α j | 2 .
En introduisant l'espace l 2,q associé à la norme

α j 2 l 2,q = j∈Z (1 + |j|) 2q |α j | 2 , ( . )
les (R j ) j∈Z sont une famille de fonctions telles que pour 0 < γ < 1 :

sup 0<τ <T τ -γ R j (τ ) l 2,q < C(T, α j l 2,q , γ).
( . )

Là encore, il est possible d'obtenir un résultat de stabilité sur les solutions de (NLS) données par ( . ) en utilisant la théorie du scattering, comme présenté ci-dessous.

. . . Contribution : nouvelle classe de solutions pour l'équation de Schrödinger cubique D

La question de l'existence d'opérateur d'onde (présentée dans la Section . . . .a) a été traitée autour de la solution T (e 2iM ln t u {α j } ) de L'énoncé du théorème fait intervenir la solution u {α j } de (NLS) donnée par ( . ), la norme l 2,q définie par ( . ), la transformation pseudo-conforme définie par ( . ), et également l'opérateur pseudo-conforme, défini par :

i∂ t v + ∂ 2 x v + 1 2t |v| 2 -2M v = 0, ( 
J(f )(t, x) = x 2 + it∇ f (t, x).
( . )

Théorème . (Théorème de [ ]). Soit s ∈ N * , (α j ) ∈ l 2,q avec q -s > 1 2 , u + ∈ H s ∩ Ḣ-2 ∩ W 1,s tel que ∀p ∈ Z ∀k ≤ s u + (•) • + p/2 ∈ H k (R). ( . ) Soit u 1 (t, x) = u {α j } + e -2iM ln t u + - x 2 .
Alors, si α j l 2,q est suffisement petit, il existe T 1 < T et une unique solution u de (NLS) sur (0, T 1 ], telle que :

u -u {α j } -e -2iM ln t T e it∂ 2 x u + (x) ∈ C((0, T 1 ], L 2 (R)), avec : ∀k ∈ 0, s , (-i) k J k u(t, x) -u {α j } (t, x) -e -2iM ln t T e it∂ 2 x ∇ k u + (x) L 2 = O(t 1 2 - ).
( . )

De plus, si

∇ k u + ∈ (x 4 L 2 (R)) pour tout k ∈ 0, s , alors : u -u 1 ∈ C((0, T 1 ], L 2 (R)), avec : ∀k ∈ 0, s , J k u(t, x) -u {α j } (t, x) -e -2iM ln t x 2 k u + - x 2 L 2 = O(t 1 2 - ). ( . )
En particulier, pour k = 0 on obtient :

u -u 1 L 2 = O(t 1 2 - ).

( . )

. Les techniques utilisées sont celles présentées ci-dessus, à savoir essentiellement l'étude des intégrales oscillantes. La démonstration de cet énoncé consiste à montrer un théorème de point fixe appliqué dans un espace de Sobolev approprié. Comme dans [ ], la fonctionnelle utilisée pour le point fixe est donnée par la formule de Duhamel. Le développement de la non-linéarité cubique fournira plusieurs termes que nous regrouperons en puissances de e it∂ 2

x u + . L'hypothèse de petitesse sur α j l 2,s provient du terme linéaire.

Le terme qui fournira la décroissance temporelle la plus faible est le terme quadratique avec des phases conjuguées.

. . Lien entre l'équation de Schrödinger D cubique et la dynamique des tourbillons

la variable d'espace sur un domaine d'intégration borné (de la forme [-L, L]) donne :

u(t, (x 1 , x 2 , 0)) ≈ Γ 4π L -L ((x 1 , x 2 , 0) -sχ s (t, 0) -s 2 2 χ ss (t, 0)) ∧ (χ s (t, 0) + sχ ss (t, 0)) |(x 1 , x 2 , -s)| 3 ds = Γ 4π (-x 2 , x 1 , 0) 2 L -L ds (1 + s 2 ) 3 2 + Γ 4π (x 1 , x 2 , 0) ∧ χ ss (t, 0) L -L s | 2 + s 2 | 3 2 ds - Γ 8π χ s (t, 0) ∧ χ ss (t, 0) L -L s 2 |1 + s 2 | 3 2 ds.
Le premier terme décrit la rotation d'un fluide autour de l'axe vertical. Il ne donne cependant pas d'information sur la manière avec laquelle ce tourbillon se déplace. Le deuxième terme est en fait nul, par parité. Enfin le troisième terme est équivalent après renormalisation temporelle au terme à droite de l'égalité dans (BF). Ainsi, ce modèle est parfois également appelé en anglais Local Induction Approximation (LIA). 

T t = T ∧ T xx . ( . )
Puisque T (t, x) ∈ S 2 , on retrouve la Schrödinger map sur R à valeur dans la sphère. À partir de là, on peut obtenir le système d'EDO en dérivant (T, n, b) selon la variable temporelle :

  T n b   t =    0 -cτ c x cτ 0 cxx-cτ 2 c -c x -cxx-cτ 2 c 0      T n b   , ( . )
mais aussi un système pour la courbure et la torsion : L'idée est la suivante : considérer la courbure comme un module et la courbure comme la dérivée d'une phase.

c t = -(c 2 τ )x c τ t = cxx-cτ 2 c x + c x c , ( 
Proposition . (Transformation de Hasimoto). Soit χ une solution de (BF), c sa courbure et τ sa torsion. On définit ψ(t, x) = c(t, x)e i x 0 τ (t,s)ds .

( . ) Si c ne s'annule pas, alors ψ est solution de l'équation de Schrödinger cubique

iψ t + ψ xx + 1 2 (|ψ| 2 -A(t))ψ = 0, ( . )
pour un certain potentiel A dépendant seulement du temps.

La preuve consiste simplement en un calcul.

Démonstration. On obtient par ( . ) :

ψ t = c t + ci x 0 τ t (t, s)ds e i x 0 τ (t,s)ds = - (c 2 τ ) x c + ic x 0 ( c xx -cτ 2 c ) x + ( c 2 2 ) x ds e i x 0 τ (t,s)ds = - (c 2 τ ) x c + ic xx -icτ 2 + i c 3 2 e i x 0 τ (t,s)ds + ic(t, x) c xx (t, 0) -c(t, 0)τ 2 (t, 0) c(t, 0) + c 2 (t, 0) 2 e i x 0 τ (t,s)ds .
Or

ψ xx = (c xx + iτ x c + 2iτ c x -τ 2 c)e i x 0 τ (t,s)ds , ( . ) 
donc en posant

A(t) = 2 c xx (t, 0) -τ 2 (t, 0)c(t, 0) c(t, 0) + c 2 (t, 0)
on obtient que ψ est solution de l'équation de Schrödinger cubique ( . ).

Il est maintenant possible de construire une solution u de (NLS) à partir de la solution ψ de ( . ) en effectuant d'abord le changement d'échelle :

ψ(t, x) = ψ t 2 , x 4 , ( . ) 
de sorte que ψ soit solution de :

i∂ t ψ + ∂ xx ψ + (| ψ| 2 -A(t)) ψ = 0, ( . ) 
suivi du changement de phase :

u(t, x) = e i A(t) ψ(t, x), ( . ) 
Notons que la renormalisation ( . ) est alors un cas particulier de ( . ) pour A(t) = α 2 t le potentiel associée est la solution fondamentale ( . ). Nous donnons d'autres exemples de solutions dans la Section . . . En pratique, c'est cette transformation qui est utilisée pour obtenir une solution de (BF) à partir d'une solution de (NLS). Dans l'autre sens, nous allons voir qu'il est possible d'obtenir des formules plus simples à utiliser en se plaçant dans un autre repère.

. . . Repère de transport parallèle d'une courbe

Introduit dans l'article de de Bishop [ ] nommé à juste titre "There is More than One Way to Frame a Curve", le repère de transport parallèle se construit sur l'idée suivante. En gardant le vecteur tangent, il est en fait possible de former un repère orthonormé avec un couple qui varie seulement dans la direction de T .

Pour étudier de plus près le lien entre repère de transport parallèle et repère de Frenet, on peut se référer à [ ].

Équations intrinsèques au repère de transport parallèle

Un repère de transport parallèle est un repère (T, e 1 , e 2 ) déterminé par

(α, β) ∈ R 2 et tel que   T e 1 e 2   x =   0 α β -α 0 0 -β 0 0     T e 1 e 2   . ( . )
Tout comme dans la Section . . . , il est possible d'obtenir un système sur la dérivée en temps de ce repère, lorsque T est le vecteur tangent à χ, une solution de (BF) :

  T e 1 e 2   t =   0 -β x α x β x 0 γ -α x -γ 0     T e 1 e 2   , ( . ) 
où γ vérifie γ x = -αα x -ββ x et peut donc être choisi à une fonction dépendant uniquement de t près. Par la suite, on note N le vecteur complexe e 1 + ie 2 .

1.4.3.2 Utilisation du repère de transport parallèle pour obtenir une solution de ( . )

Nous présentons ici un moyen de définir une solution ψ de ( . ) à partir d'une solution χ de (BF) décrite dans un repère de transport parallèle.

Proposition . . Soit α, β et γ les paramètres définis dans la Section . . . associés à la description d'une solution χ de (BF). Soit ψ = α + iβ, alors on a

iψ t + ψ xx -γψ = 0, avec γ x = - (|ψ| 2 ) x 2 .
( . )

Puisque γ n'est défini que par sa dérivé par rapport à la variable d'espace on peut encore une fois choisir un potentiel A ne dépend que de t tel que

γ(t, x) = A(t) 2 - |ψ(t, x)| 2 2 , ( . )
de sorte que ψ défini ci-dessus vérifie bien ( . ). La preuve est tout simplement calculatoire, c'est pourquoi nous ne la reportons pas ici. Remarquons cependant que, comme annoncé, il n'y a plus besoin d'avoir des paramètres qui ne s'annulent pas pour procéder à la transformation.

Utilisation du repère de transport parallèle pour obtenir une solution de (BF)

On dispose de ψ solution de Schrödinger cubique et on veut construire une solution du flot binormal correspondante, avec condition initiale en (t 0 , x 0 ). Proposition . . Soit ψ une solution de ( . ), alors il existe (T, N ) un repère de transport parallèle tel que :

T x = (ψN ), N x = -ψT, T t = (ψ x N ), N t = -iψ x T -i 1 2 (|ψ| 2 -A(t))N, ( . )

où (respectivement ) désigne la partie réelle (respectivement la partie imaginaire). De plus,

T vérifie la Schrödinger map sur R à valeur dans S 2 , à savoir

T t = T ∧ T xx , ( . )
ce qui permet de déduire qu'il s'agit du vecteur tangent à une solution χ de (BF).

Cette proposition est très utile car elle permet ainsi de relier directement les vecteurs T et N avec ψ. Nous allons voir dans la démonstration comment sont construits les vecteurs T et N mais aussi χ. On parle encore de ( . ) et non de (NLS) car le potentiel A intervient dans l'expression de N t dans ( . ). Remarquons que l'on peut partir d'une solution e iφ(t) ψ(t, x) de (NLS) pour laquelle la construction de la Proposition ( . ) donne (T, e iφ(t) N ), donc la même solution de (BF).

Démonstration. Soit (α(t, x), β(t, x)) = ( (ψ(t, x)), (ψ(t, x))) et γ = 1 2 (|ψ| 2 -A(t)
). On veut définir (T, e 1 , e 2 ) comme suit. Soit (t 0 , x 0 ) ∈ R 2 , on commence par poser (T, e 1 , e 2 )(t 0 , x 0 ) = (v 1 , v 2 , v 3 ) une base orthonormée de R 3 .

On définit ensuite cette base pour (t, x 0 ) pour tout t ∈ R en imposant les évolutions suivantes dictées par ( . ) :

   T t (t, x 0 ) = -β x e 1 (t, x 0 ) + α x e 2 (t, x 0 ), e 1t (t, x 0 ) = β x T (t, x 0 ) + γe 2 (t, x 0 ), e 2t (t, x 0 ) = -α x T (t, x 0 ) -γe 2 (t, x 0 ). ( . )
Ensuite, ces valeurs en (t, x 0 ) nous permettent de définir ce repère pour tout x ∈ R en les imposant en condition initiale de

∀t ∈ R    T x (t, x) = αe 1 (t, x) + βe 2 (t, x), e 1x (t, x) = -αT (t, x), e 2x (t, x) = -βT (t, x).
( . )

Vérifions alors que

  T (t, x) e 1 (t, x) e 2 (t, x)   t
satisfait la même EDO pour tout x que celle imposée en

x 0 .
Soit (a, b, c) fonctions telles que :

  T e 1 e 2   t (t, x) =   0 a b -a 0 c -b -c 0     T e 1 e 2   (t, x). ( . )
En effet, (T, e 1 , e 2 ) est un repère orthogonal donc la matrice ci-dessus est anti-symétrique.

Les vecteurs de ce repère sont également de norme constante, donc la matrice ci-dessus est à diagonale nulle. Par définition, nous avons au point (t, x 0 ) :

   a(t, x 0 ) = -β x (t, x 0 ), b(t, x 0 ) = α x (t, x 0 ), c(t, x 0 ) = -γ(t, x 0 ). ( . )
Ensuite en calculant T xt = T tx et e 1xt = e 1tx on arrive au système suivant :

  a b c   x =   0 0 -β 0 0 α β -α 0     a b c   +   α t β t 0   . ( . ) Or α + iβ est solution de ( . ), donc i(α + iβ) t + (α x + iβ x ) x -γ(α + iβ) = 0, ( . ) et par définition de γ, γ x = αα x + ββ x , ( . ) 
donc (-β x , α x , -γ) est solution du même problème de Cauchy que (a, b, c) et on obtient l'égalité désirée :

(a, b, c)(t, x) = (-β x , α x , -γ)(t, x).
( . )

Maintenant que le système est bien défini, on peut calculer

T xx = -(α 2 -β 2 )T + α x e 1 + β x e 2 , donc T xx ∧ T = -β x e 1 + α x e 2 = T t ,
ce qui signifie que T vérifie la Schrödinger map sur R à valeur dans S 2 . Pour construire une solution de (BF), et on pose alors

χ(t, x) = χ(t 0 , x 0 ) + t t 0 (T ∧ T x )(τ, x 0 )dτ + x x 0 T (t, s)ds.
( . )

En effet, d'une part :

χ t (t, x) =T (t, x 0 ) ∧ T (t, x 0 ) + x x 0 T (t, s) ∧ T xx (t, s)ds = x x 0 (T (t, s) ∧ T x (t, s)) x ds =T (t, x) ∧ T x (t, x) mais également χ x (t, x) = T (t, x) et χ xx (t, x) = T x (t, x).
Avec la notation N = e 1 + ie 2 on obtient les relations suivantes :

T x = (ψN ), N x = -ψT, T t = (ψ x N ), N t = -iψ x T -iγN.
( . )

Notons que nous disposons également d'une autre relation qui n'était pas annoncée dans l'énoncé :

χ t = (ψN ).
( . )

En pratique, on utilise la transformation de Hasimoto pour passer de solutions de (BF) aux solutions de ( . ) et la Proposition ( . ) utilisant le repère de transport parallèle pour obtenir une solution de (BF) à partir d'une solution de ( . ).

. . . Quelques solutions particulières régulières

Nous donnons ici quelques exemples simples de solutions obtenues par la construction de la Proposition . . Pour A = 0, ψ = 0 est solution de ( . ). On obtient immédiatement que cela correspond à la solution de courbure nulle. Le filament correspondant est alors une ligne droite.

Pour A = 1 R , ψ = 1
R est solution de ( . ). Le filament correspondant a une courbure constante égale à 1 R et une torsion nulle. Il s'agit donc de cercles de rayon R. Par invariance galiléenne, énoncée dans la Proposition . , si ψ est solution de ( . ), alors ∀N ∈ R ψ N (t, x) = e -itN 2 +ixN ψ est solution de ( . ). Ainsi pour A = 1, ψ N (t, x) = e -itN 2 +ixN est donc solution de ( . ). En considérant le repère de transport parallèle, on obtient que le filament correspondant est une hélice :

χ t = (ψ.(e 1 + ie 2 )) = -sin(N 2 t + xN )e 1 + cos(tN 2 + xN )e 2 .
( . ) Enfin, pour A = 1, les ondes solitaires sont aussi solutions :

Q(t, x) = e it 2 √ x cosh(x) . Donc les fonctions Q N (t, x) = e -itN 2 +ixN e it 2 √
x cosh(x) aussi. Ici, on peut montrer qu'il s'agit de la "bosse" du soliton qui se déplace sur l'hélice.

. . . Solutions auto-similaires

Nous allons maintenant relier ce qui faisait l'objet de l'étude de la partie précédente, à savoir les solutions de (NLS) à régularité critique issue de masses de Dirac, avec leurs correspondants en mécanique des fluides.

Le cas de la solution fondamentale auto-similaire

Les solutions auto-similaires de (BF) jouent un rôle important car permettent de mettre en évidence un lien avec les solutions fondamentales de (NLS) définies par ( . ). Puisque (BF) est invariante par le changement d'échelle :

χ(t, x) → λ -1 χ(λ 2 t, λx), ( . )
une solution χ est dite auto-similaire lorsque l'on peut trouver G fonction d'une seule variable, telle que

χ(t, x) = √ tG( x √ t ), c'est-à-dire en choisissant λ = 1 √ t .
Proposition . . Les solutions de (BF) auto-similaires forment une famille {χ α } α>0 , où chaque χ α est défini dans le repère de Frenet par c(t, x)

= α √ t et τ (t, x) = x 2t .
De plus, la solution de

( . ) (c'est-à-dire de ( . ) pour A(t) = α 2 t ) correspondante est u α (t, x) = α e i x 2 4t √ t .
( . )

Il s'agit de la solution fondamentale ( . ).

Nous sommes donc en présence d'un filament dont la courbure explose à temps . Cela rend compte d'une irrégularité en ce temps. Quand à la torsion, elle est d'autant plus grande que l'on s'éloigne du centre. La caractérisation de [ ] (faisant l'objet de la Section . . . ) permet d'affirmer que la courbe forme un coin en (0, 0). La preuve cidessous montre comment obtenir des solutions auto-similaire et utilise la transformation de Hasimoto pour faire la correspondance avec (NLS).

Démonstration. Tout d'abord, cherchons une solution de (BF) auto-similaire de la forme

χ(t, x) = √ tG( x √ t
) pour une certaine fonction G. En injectant dans (BF), on retrouve toutes les solutions auto-similaires :

1 2 √ t G( x √ t ) - x 2t G ( x √ t ) = G ( x √ t ) ∧ 1 √ t G ( x √ t ).
( . )

On pose ensuite s = x √ t , où s est la variable auto-similaire. Ceci implique alors :

1 2 G(s) - s 2 G (s) = G (s) ∧ G (s). ( . ) En dérivant et puisque G (s) = T , on a -x 2 T x = T ∧ T xx i.e
. dans le repère de Frénet :

- x 2 cn = c x b -cτ n .
( . )

En identifiant les coefficients, il s'ensuit qu'il existe une constante a ∈ R + telle que :

c x = 0 donc c = α et τ = s 2 .
( . )

En reprenant les variables usuelles (en opposition à la variable auto-similaire), on obtient que

c(t, x) = α √ t et τ (t, x) = x 2t . 
( . )

Par ailleurs, avec la transformation de Hasimoto, on obtient que

ψ(t, x) = α √ t e i x 0 s 2t ds = α √ t e i x 2 2t
est solution de (NLS).

Nous avons donc bien retrouvé la solution ( . ) de ( . ). 

sin θ 2 = e -α 2 2 . ( . ) et vérifiant |χ α (t, x) -xA + α 1 [0,∞) -xA - α 1 (-∞,0]) | ≤ 2α √ t.
( . )

L'étape suivante est donc d'obtenir des résultats de stabilité sur cette solution à partir des résultats sur (NLS).

Perturbations de la solution fondamentale

Les résultats de scattering de la Section . . . donnent alors l'existence de solutions du flot binormal définies pour des temps strictement positifs. Comme expliqué précédemment, deux questions ont été traitées : l'existence d'opérateurs d'ondes et la complétude asymptotique.

Pour les opérateurs d'ondes, ce résultat va nous permettre de répondre à la question suivante : étant donné une courbe χ 0 donnée présentant une singularité, existe-t-il une solution χ de (BF) admettant χ 0 comme limite en zero ?

La complétude asymptotique permet de se demander si en partant d'une perturbation de solution auto-similaire à temps strictement positif, la solution forme une singularité à temps zéro possédant les mêmes caractéristiques que la solution auto-similaire.

Les deux réponses à ces questions ont été traitées dans [ ]. En fait elles suivent rigoureusement la même démonstration une fois le résultat de scattering obtenu. Tout d'abord, on peut construire des solutions de (BF) pour t > 0 à partir des résultats de scattering en utilisant la Proposition . . Il faut pour cela choisir le bon état asymptotique u + pour trouver le profil de la courbe désiré lorsque t → 0. La Proposition . construit un repère de transport parallèle (T, N ), l'étape suivante consiste à obtenir une limite pour ces vecteurs T et N lorsque x → ±∞, qui s'avère également être indépendant du temps. À partir de là, une méthode itérative donne un développement des vecteurs T et N au voisinage de la singularité, permettant de faire tendre t vers 0. On utilise alors la caractérisation des singularités des solutions auto-similaires χ α de (BF), prouvée dans [ ] et présentée dans la section précédente. Ce type de résultat a déjà été prouvé par exemple dans le Théorème . de [ ], mais la preuve établie ici est plus directe. L'énoncé est donc le suivant.

Théorème . (Théorème de [ ])

. Soit χ 0 une courbe paramétrée de R 3 , régulière partout sauf en un point situé au point de paramétrisation x = 0 où elle forme un coin d'angle θ. Soit c la courbure de χ 0 , τ sa torsion et α donné par ( . ) à partir de θ. Si α est suffisamment petit, et si ) une solution de (BF) sur (0, t 0 ], admettant χ 0 comme limite à t = 0, et il existe C > 0 tel que :

c ∈ W 3,1 ∩ H 2 , c x ∈ W 2,1 ∩ H 2 , x 2 c ∈ W 3,1 ∩ H 2 , (1 + x 2 )c ∈ L 2 , x -2 c ∈ L 2 , τ ∈ H 2 and τ 2 ∈ H 1 , alors il existe t 0 > 0 et χ(t, x) ∈ C([-t 0 , t 0 ], Lip) ∩ C([-t 0 , t 0 ]\{0}, C 4 ), ( . 
sup x |χ(t, x) -χ 0 (x)| ≤ C √ t.
( . )

De plus, le vecteur tangent T = ∂ x χ a une limite en zéro vers laquelle il converge à la même vitesse : 

∀t > 0 ∀x ∈ R ∃C(x) |T (t, x) -∂ x χ 0 (x)| ≤ C(x)

. . Dispersion pour l'équation de Schrödinger avec un potentiel

Dans cette section, nous considérons l'équation de Schrödinger avec un terme source : 

i∂ t u + ∂ 2 x u + V u = 0 dans R × R n u(0, x) = u 0 (x) dans R n .
L 2 α (R n ) = {f : R n → C/ x α f L 2 < ∞}, ( 
. Soit r ∈ [2, ∞], notons r son conjugué. Soit δ = n 1 2 -1 r . Supposons que V ∈ F(L 1 ), V ∈ L n 2δ and x α V ∈ L n δ , ( . 
)

P ∈ L(L 2 ) ∩ L(L r ) ∩ L(L r
) and [P, W (t)] = 0, ( . ) ) alors on a

P c W (t) ∈ L(L 2 α , L 2 -α ) and P c W (t) L(L 2 α ,L 2 -α ) ≤ C(2πt) -δ , ( . 
P c W (t) L r ,L r ≤ 1 t δ .
( . )

La première étape de la démonstration consiste à itérer la formule de Duhamel. Nous avons tout d'abord :

P c W (t) =W (t)P c = U (t)P c -i t 0 U (t -τ )V P c W (τ )dτ =U (t)P c -i t 0 U (t -τ )V P c U (τ )dτ + t 0 U (t -τ )V τ 0 U (τ -σ)V P c W (σ)dσdτ.
Maintenant nous pouvons utiliser le résultat suivant : Lemme . . L'opérateur P c W peut s'écrire pour tout τ ∈ R :

P c W (τ ) = P c U (τ ) -i τ 0 P c W (τ -σ)V U (σ)dσ.
Autrement dit, le flot de l'évolution libre appliqué à l'évolution avec un potentiel est le même que le flot de l'évolution avec un potentiel appliqué à l'évolution libre. Nous avons donc

P c W (t) = U (t)P c -i t 0 U (t -τ )V P c U (τ )dτ + t 0 U (t -τ )V τ 0 P c W (τ -σ)V U (σ)dσdτ.
À partir de là, nous pouvons esquisser en quelques lignes la suite de la preuve. L'objectif est d'utiliser l'estimée de dispersion dans les espaces L 2 à poids sur W de [ ]. C'est possible car de par sa nature, le potentiel V envoie en effet L 2 dans L 2 α , défini par ( . ). Pour les autres intégrales, on peut utiliser des estimations usuelles en remarquant également que grâce à l'hypothèse ( .

), V envoie L r dans L r quand U envoie L r dans L r . Enfin, l'intégrabilité de la transformée de Fourier de V permet de traiter les singularités en zéro de l'intégrale sur la variable τ en justifiant que d'une certaine manière U (t -τ )V U (τ ) se comporte comme U (t)V . Tous les détails sont dans le Chapitre de cette thèse.

. . . Contribution : vers le cas

V ∈ L n 2 ,∞
L'un des travaux mené dans cette thèse, décrit dans le Chapitre , consiste à obtenir une estimation de dispersion pour V = -a |x| 2 . Ce potentiel n'est dans aucun L p , il faut donc trouver d'autres espaces dans lesquels travailler.

Le cadre fonctionnel : les espaces de Lorentz

Si V n'est dans aucun L p , il est en fait dans l'espace L n 2 ,∞ , défini de la manière suivante : ) associé à la quasi-norme

L p,∞ = {f : R n → C/ sup t>0 {t p µ{x/|f (x)| > t} < ∞}, ( . 
f L p,∞ = sup t>0 {t p µ{x/|f (x)| > t}.
( . )

Une manière de mettre en lien ces espaces dits de Lebesgue faible avec les espaces de Lebesgue est de regarder ce que donne le calcul d'une norme en intégrant sur les lignes de niveaux : ) Enfin, les espaces de Lorentz L p,q sont définis comme l'interpolation entre L p = L p,p et L p,∞ , et associés à la quasi-norme :

f L p = ∞ 0 µ{x/|f (x)| > t}pt p dt t 1 p = ∞ 0 tµ{x/|f (x)| p > t} dt t 1 p . ( . 
f L p,q (X) = p 1 q ∞ 0 t q µ{x/|f (x)| > t} q p dt t 1 q . ( . )
Ces espaces sont alors adaptés à notre étude et disposent d'inégalités de Hölder et d'un théorème d'interpolation réelle. Cela va nous permettre d'adapter la preuve présentée dans la Section . . , ce qui fait l'objet du chapitre de ce manuscrit.

Présentation des résultats

La démarche proposée consiste à adapter la preuve de Ginibre. . De plus, pour avoir

V ∈ L r,∞ , il faut également choisir r = 2n n -2 , ( . )
ce qui a pour conséquence de fixer δ = 1, nous plaçant dans le cas limite pour intégrer des quantités en 1 t δ . Il faudra alors plutôt s'attendre à une borne en ln t t . Ayant ceci en tête, les deux lemmes suivants permettent de vérifier que la formule de Duhamel sera bien définie, pour pallier à l'hypothèse ( .

).

Lemme . . Pour

V = -a |x| 2 , on a V U (t) ∈ L(L r , L r ). Plus précisément : ∀ϕ ∈ L r V U (t)ϕ L r ≤ t -δ V L n 2 ,∞ ϕ L r .
Ce résultat découle des inégalités de Hölder dans les espaces faibles et du théorème d'interpolation réelle de Marcinkiewiez. Il est possible d'énoncer un résultat similaire pour les espaces L 2 α .

Lemme . . Pour

V = -a |x| 2 , on a V U (t) ∈ L(L r , L 2 α ). Plus précisément : ∀ϕ ∈ L r V U (t)ϕ L 2 α ≤ t -δ V L n 2 ,∞ ϕ L r .
Il faut cette fois-ci utiliser le fait que V ∈ L(L r,r , L 2 α ), ou bien que x α V ∈ L n δ ,∞ . Enfin, reste à traiter les singularités de

t 0 U (t -τ )V U (τ )dτ ( . )
en contournant l'hypothèse V ∈ F(L 1 ). Nous disposons à ce jour d'un premier résultat permettant d'analyser une partie de l'intégrande.

Lemme . . Soit τ > 0, l'opérateur U (-τ )V U (τ ) est dans L(L r , L r ) et son noyau est donné par K(x, y) = (-1) n 2 a 2 n+2 π n (iτ ) 2 e |x| 2 -|y| 2 4iτ (x -y) n-2 .
( . )

De plus,

U (-τ )V U (τ )ϕ L r ≤ |a| 2 n+2 π n (τ ) 2 ϕ L r .
( . ) L'estimation ( . ) s'obtient avec l'inégalité d'Hardy-Littlewood-Sobolev, pouvant être vue comme l'analogue de l'inégalité de Young pour une fonction de type puissance inverse. Contrairement à la démonstration initiale, nous regardons ici des estimations L r → L r et non L 1 → L ∞ . En interpolant avec la conservation de la masse, nous n'obtiendrons donc pas toutes les inégalités de dispersion entre

L 1 → L ∞ et L 2 → L 2 , mais seulement celles entre L r → L r et L 2 → L 2 . Lorsque a est négatif, il est expliqué dans [ ] qu'il n'est de toute façon pas possible d'obtenir de dispersion L 1 → L ∞ .
Les travaux actuels consistent à partir de cette estimation pour contrôler ( . ) dans L r .
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Résumé

Le but de cet article est de prouver l'existence d'une nouvelle classe de solutions de l'équation de Schrödinger non-linéaire cubique -D avec une donnée initiale liée à une somme de masses de Dirac, de régularité critique dans F(L ∞ ), et appartenant à Ḣs pour tout s < -1 2 . Ce problème est motivé par l'absence de résultat pour des conditions initiales de régularité critique, et aussi par l'étude de la dynamique des vortex filamentaires approchés par le flot binormal. Notre résultat est basé sur une approche de scattering, après avoir effectué une transformation pseudo-conforme, ainsi que sur des estimations fines d'intégrales oscillantes.

Abstract

The aim of this article is to prove the existence of a new class of solutions of D cubic NLS with an initial data related to a sum of Dirac masses, of critical regularity F(L ∞ ), and belonging to Ḣs for any s < -1

. . Introduction . . . The cubic NLS on R

The starting point of this article is the cubic nonlinear Schrödinger equation on R:

i∂ t u + ∂ 2 x u ± |u| 2 u = 0.
(NLS)

This equation has been largely studied from theoretical and applied points of view, and appears in several areas of physics such as optics and plasma.

In the following, all the results will be valid for both focussing and defocussing cases. For simplicity we shall consider the focussing case.

Let us first recall the local well-posedness results in Sobolev spaces. It has been proven

in [ ] and [ ] that the equation is well-posed in H s for any s ≥ 0. However, it is no longer the case when s < 0. For exemple, in [ ] a norm inflation phenomena is pointed out. Then, the critical Sobolev space associated with the scaling invariance uλ(t, x) One would like to consider the initial value problem with data a sum of Dirac masses.

:= λu(λ 2 t, λx) is Ḣ-1 2 . For s ≤ -1 2 , it
Unfortunately, Dirac masses are in F(L ∞ ) and borderline in Ḣ-1 2 , and the problem is ill-posed for data u 0 = αδ 0 . Indeed, in [ ] the authors proved, using Galilean invariance, that there is either no weak solution or more than one to that Cauchy problem. More precisely, assuming uniqueness, the solution for t > 0 of (NLS) is:

u α (t, x) = αe -iα 2 ln t e i x 2 4t √ t , ( . ) 
but does not converges towards u 0 as t goes to zero.

However, this issue can be bypassed by a change of phase, which shows that

ψ α (t, x) = α e i x 2 4t √ t
is the solution of the renormalized equation (see ( . )) with initial condition αδ 0 . As a matter of fact, similar problems have also been treated using renormalisation in context of Gibbs measures, such as in [ ] or [ ]. Once this obstruction has been identified, Banica and Vega constructed in [ ] and [ ] solutions of (NLS) that are smoother perturbations of u α . Now, we shall recall the results related to a sum of several Dirac masses. Let q > 1 2 , let (α j ) j∈Z ∈ l 2,q (C) , and set:

M = j∈Z |α j | 2 .
( . )

It has been proven in Theorem . of [ ] that there exists T > 0 and a unique solution of (NLS) on (0, T ] of the form

u {α j } (t, x) = e -2iM ln t j∈Z A j (t) e i (x-j) 2 4t √ t , ( . ) 
where

A j (t) = e -i|α j | 2 ln t (α j + R j (t)),
with (R j ) j∈Z a family of functions such that for any 0 < γ < 1:

sup 0<τ <T τ -γ R j (τ ) l 2,q < C(T, α j l 2,q ).
( . )

In this article, we construct in Theorem . much more solutions of (NLS) as large perturbations of the particular one given by ( . ). The theorem involves the pseudo-conformal transformation given by:

T (f )(t, x) = e i x 2 4t √ t f 1 t , x t ,
and the pseudo-conformal operator:

J(f )(t, x) = x 2 + it∇ f (t, x).
( . )

Theorem . . Let s ∈ N * , (α j ) ∈ l 2,q with q -s > 1 2 , u + ∈ H s ∩ Ḣ-2 ∩ W 1,s such that ∀p ∈ Z ∀k ≤ s u + (•) • + p/2 ∈ H k (R). ( . ) Let u 1 (t, x) = u {α j } + e -2iM ln t u + - x 2 .
Then, if α j l 2,q is small enough, there exist T 1 < T and a unique solution u of (NLS) on (0, T 1 ],

such that:

u -u {α j } -e -2iM ln t T e it∂ 2 x u + (x) ∈ C((0, T 1 ], L 2 (R)),
with:

∀k ∈ 0, s , (-i) k J k u(t, x) -u {α j } (t, x) -e -2iM ln t T e it∂ 2 x ∇ k u + (x) L 2 = O(t 1 2 - ).

( . )

. we define the space l 2,q with α j 2

l 2,q = j∈Z (1 + |j|) 2q |α j | 2 .
Moreover, if ∇ k u + ∈ (x 4 L 2 (R)) for all k ∈ 0, s , then:

u -u 1 ∈ C((0, T 1 ], L 2 (R)),
with:

∀k ∈ 0, s , J k u(t, x) -u {α j } (t, x) -e -2iM ln t x 2 k u + - x 2 L 2 = O(t 1 2 - ). ( . )
In particular, for k = 0 we have:

u -u 1 L 2 = O(t 1 2 - ).
( . )

Condition ( . ) is not very restrictive and is only about u + being small enough at equidistant points. The fact that those points are in Z/2 should not be surprising since bounds in terms of 1/d(x, Z/2) already appear in proofs of [ ].

The proof of Theorem . starts by performing, as in [ ], a change of phase ψ(t, x) = e i2M ln t u(t, x), leading to the Wick renormalisation of equation (NLS):

i∂ t ψ + ∂ 2 x ψ + |ψ| 2 - 2M t ψ = 0. ( . )
Then, if we define v as the pseudo-conformal transformation of ψ:

v(t, x) = T (ψ)(t, x) = e i x 2 4t √ t ψ 1 t , x t , ( . )
the function v is a solution of:

i∂ t v + ∂ 2 x v + 1 2t (|v| 2 -2M )v = 0. ( . )
Since those transformation are reversible, we can rephrase Theorem . in term of ( . ) as follows. First, define

v 1 (t, x) = T (e 2iM ln t u {α j } ) + e it∂ 2 x u + (x) = A(t, x) + e it∂ 2 x u + (x), ( . ) 
where

A(t, x) = j∈Z e -i|α j | 2 ln t (α j + R j ( 1 t ))e -i tj 2 4 +i xj 2 ( . )
solves ( . ). We want to find T 1 > 0 and a solution v of ( .

) such that v-v 1 ∈ C([T 1 , ∞), H s (R)),
with a decay rate given by:

∀k ∈ 0, s , ∇ k (v -v 1 )(t) L 2 = O(t -1 2 - ).
( . )

This v will write

v(t) = j∈Z e -i|α j | 2 ln t (α j + R j ( 1 t ))e -i tj 2 4 +i xj 2 + e it∂ 2 x u + (x) + r(t, x).
for some remainder term r of decay given by ( . ). Note that this will prove the decay ( . ), but not ( . ) yet. To obtain ( . ), we make use of Schrödinger linear evolution properties, as explained in section . . . Although a bit computational, the proof can now be sum up as a fixed point theorem in an appropriate Sobolev space. As in [ ], the functional used for the fixed point is given by the Duhamel's formula. The expansion of the cubic non linearity will provide several terms that we will group in powers of e it∂ 2

x u + . The smallness hypothesis on α j l 2,s comes from the linear term. The term that will provide the weaker time decay is the quadratic one, with conjugated phases. Finally, we perform the reverse pseudo-conformal transformation in section . . to conclude with the proof.

Concerning the tools at our disposal, we will deal with oscillatory integrals on which we often perform integration by parts after a Fourier transform. That gives sharper estimates than the use of Sobolev embeddings or Strichartz estimates.

. . . Link with vortex dynamics singularities

In addition to the study of low regularity solutions of the -D cubic Schrödinger equation, this article is also motivated by the study of dynamics of vortex filaments. More precisely, we are referring to a model derived from Euler equations by Da Rios in in [ ] called the binormal flow:

χ t = χ x ∧ χ xx , (BF)
where χ is an arc length parameterized curve in R 3 and where the vortex is supposed to be located near χ(t). For further informations and references about this equation, see for instance the introduction of [ ].

If T represents the tangent vector of a solution χ, then T solves the Schrödinger map with values in S 2 :

T t = T ∧ T xx .

( . )

Moreover, Hasimoto constructed in [ ] a correspondance between solutions of (NLS) and solutions of (BF) using the Frenet frame, considering the curvature of χ(t, x) as the modulus of the NLS-solution, and the torsion as the derivative of its phase. This transformation stands in the spirit of the Madelung transform.

In [ ], Banica and Vega showed that the solution ( . ) (for which we are proving the stability) depicts, via the Hasimoto transform, the evolution of a polygonal line through the binormal flow. In a few words, every Dirac mass corresponds to the formation of a corner in χ(t) at arclength parameter x = j ∈ Z, as the one developed by the self-similar solution of (BF) of curvature α j √ t . Hence, the odds are high that the class of solutions exhibited in Theorem . could correspond to the evolution of a curve with several corners through binormal flow. With the convergence rate of O(t 1 2 -) in Theorem . , the method should be the same as for the case of one corner done in [ ] and [ ]. However, this method is quite intricate, and adding much more complicated terms when considering several Dirac masses makes this task dense enough to be the object of a future work.

. . Scattering in Sobolev spaces: proof of Theorem .

The proof follows the same path as the proof of Theorem . in [ ] and is based on a scattering argument. To do so, we introduce an appropriate functional φ on which we perform a fixed point argument. Compared to [ ] where only one term is considered, the analysis will be much more delicate here, due to the increased complexity of the function A(t, x) defined by ( . ).

. . . Fixed point functional

Comparing at infinity the solution v of ( . ) to v 1 defined by ( . ) amounts to consider the functional given by the Duhamel's formula:

φ : v(t, x) → v 1 (t, x) + i ∞ t e i(t-τ )∂ 2 x - |v| 2 -2M 2τ v -(i∂ t + ∂ xx )v 1 dτ.
Since A solves ( . ), we have

(i∂ t + ∂ xx )v 1 = (i∂ t + ∂ xx )A + (i∂ t + ∂ xx )e it∂ 2 x u + = - |A| 2 -2M 2t A.
We will control the non linear term in v by comparing it to the nonlinearity of v 1 :

φ(v) -v 1 = +i ∞ t e i(t-τ )∂ 2 x - |v| 2 -2M 2τ v + |v 1 | 2 -2M 2τ v 1 - |v 1 | 2 -2M 2τ v 1 + |A| 2 -2M 2τ A dτ.
We then develop the v 1 -cubic term:

(|v 1 | 2 -M )v 1 =((A + e it∂ 2 x u + )(A + e -it∂ 2 x u + ) -2M )(A + e it∂ 2 x u + ) =(|A| 2 -2M )A + 2|A| 2 e it∂ 2 x u + -2M e it∂ 2 x u + + A 2 e -it∂ 2 x u + + 2A|e it∂ 2 x u + | 2 +A(e it∂ 2 x u + ) 2 + |e it∂ 2 x u + | 2 e it∂ 2 x u + , so we get φ(v) -v 1 = + i ∞ t e i(t-τ )∂ 2 x - |v| 2 -2M 2τ v + |v 1 | 2 -2M 2τ v 1 dτ +i ∞ t e i(t-τ )∂ 2 x (-2|A| 2 e iτ ∂ 2 x u + + 2M e iτ ∂ 2 x u + -A 2 e -iτ ∂ 2 x u + -2A|e iτ ∂ 2 x u + | 2 -Ae 2iτ ∂ 2 x u 2 + -|e it∂ 2 x u + | 2 e iτ ∂ 2 x u + ) 1 τ dτ.
Finally, after expanding |A| 2 , the functional φ writes

(φ(v) -v 1 )(t, x) = + i ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ ( . ) -2i ∞ t e i(t-τ )∂ 2 x p =j e -i(|αp| 2 -|α j | 2 ) ln τ e i(p-j) x 2 α p α j e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ ( . ) -2i ∞ t e i(t-τ )∂ 2 x (p,j)∈Z 2 e -i(|αp| 2 -|α j | 2 ) ln τ +i(p-j) x 2 ( . ) × (α p R j + R p α j + R p R j )e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ -i ∞ t e i(t-τ )∂ 2 x A 2 e -iτ ∂ 2 x u + dτ τ ( . ) -i ∞ t e i(t-τ )∂ 2 x (2A|e iτ ∂ 2 x u + | 2 + A(e iτ ∂ 2 x u + ) 2 ) dτ τ ( . ) -i ∞ t e i(t-τ )∂ 2 x |e iτ ∂ 2 x u + | 2 e iτ ∂ 2 x u + dτ τ ( . ) =I(v) + J a + J b + J c + J d + J e ,
where I(v) is the first term and J * are the following source terms. Since we will treat the norm of each integral separatly, we will not be regarding whether they write with +i or -i.

We will not either keep the minus sign in the phase as it doesn't affect the computation.

Thanks to their behavior, the R j terms inside J b and J c will be very easy to treat, as well as J e where we can largely exploit dispersion of the Schrödinger operator:

e it∂ 2 x u + L ∞ x ≤ 1 √ t u + L 1 . ( . )
Then, the fact that there is a phase depending on j or p in some of these integrals will produce a shift after an integration by parts and requires the hypothesis on u + /(• + Z/2).

Finally, the slowest decay rate 1/t 1 2 comes from using dispersion estimates for J d .

We want to apply the fixed point theorem on φ : X δ → X δ , where

X δ = {v ∈ C([t 0 , ∞), L ∞ (R))/ v -v 1 S ≤ δ} , with f S = 0≤k≤s sup t 0 ≤t t µ ∇ k (f )(t) L 2
for µ and δ strictly positives, to be chosen later. The first step is to verify that φ(X δ ) ⊂ X δ .

. . . Estimates on the fixed point argument terms

In this subsection, we give estimations of I(v), J a , J b , J c , J d , J e and the iterated gradients.

Lemma . (Estimation of I(v)).

Let I be defined by ( . ):

I(v) = i ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ,
then,

I(v) S v -v 1 S α j 2 l 2,q µ + C(t 0 , α j l 2,s ) t 2γ 0 (µ + 2γ) + u + 2 L 1 t 0 (1 + µ) + v -v 1 2 S t µ 0 .
Note that we do not need any smallness hypothesis on u + if we choose t 0 large and α j l 2,q small. Proof. The idea of the proof is to first apply Strichartz inhomogeneous inequality with the admissible couple (∞, 2) and then use the dispersion inequality ( . ) as well as ( . ) and some usual upper-bounds:

sup t 0 ≤t t µ ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ L 2 sup t 0 ≤t t µ ∞ t |v| 2 v -|v 1 | 2 v 1 -2M (v -v 1 ) L 2 dτ τ sup t 0 ≤t t µ ∞ t (2M + v 1 2 L ∞ + v 2 L ∞ ) v -v 1 L 2 dτ τ v -v 1 S sup t 0 ≤t t µ ∞ t (2M + v 1 2 L ∞ + v 2 L ∞ ) dτ τ 1+µ v -v 1 S 2M µ + sup t 0 ≤t t µ ∞ t 3 v 1 2 L ∞ + 2 v -v 1 2 L ∞ dτ τ 1+µ v -v 1 S 2M µ + 6 α j 2 l 2,q µ + C(t 0 , α j l 2,s ) t 2γ 0 (µ + 2γ) + 6 1 + µ u + 2 L 1 t 0 + 2 sup t 0 ≤t t µ ∞ t v -v 1 2 L ∞ dτ τ 1+µ .
Since q > 1 2 , we have also controlled in the last steps the l 1 norm with the l 2,s norm of (α j ) j∈Z , using Cauchy-Schwarz. Finally, we apply Gagliardo-Nirenberg's interpolation

f 2 ∞ ≤ f L 2 f L 2 ( . )
on the last integral:

sup t 0 ≤t t µ ∞ t v -v 1 2 L ∞ dτ τ 1+µ ≤ sup t 0 ≤t t µ ∞ t v -v 1 L 2 ∇(v -v 1 ) L 2 dτ τ 1+µ ≤ v -v 1 2 S t µ 0 ,
. Where means "≤ up to a constant".

to conclude that

I(v) S v -v 1 S α j 2 l 2,q µ + C(t 0 , α j l 2,s ) t 2γ 0 (µ + 2γ) + u + 2 L 1 t 0 (1 + µ) + v -v 1 2 S t µ 0 .
We now control the gradient of this integral with the following lemma.

Lemma . (Estimation of ∇ k I(v)). Let I be defined by ( . ):

I(v) = i ∞ t e i(t-τ )∂ 2 x (|v| 2 -2M )v 2τ - (|v 1 | 2 -2M )v 1 2τ dτ,
then, for k ∈ 1, s and v ∈ X δ :

sup t 0 ≤t t µ ∇ k I(v)(t) L 2 v-v 1 S   α j l 2,q µ 2 + C(t 0 , α j l 2,s ) (µ + γ)t γ 0 2 + u + W 1,s √ t 0 ( 1 2 + µ) 2 + δ 2µt µ 0 2   .
Proof. To obtain this, we need the following computations. Using Gagliardo-Nirenberg interpolation ( . ), we have for k ∈ 0, s -1 :

|∇ k (v -v 1 )(t)| ≤ C ∇ k+1 (v -v 1 )(t) 1 2 L 2 ∇ k (v -v 1 )(t) 1 2 L 2 δ t µ . ( . )
Since ∇ k commute with the Schrödinger operator, we have

|∇ k e it∂ 2 x u + | ≤ ∇ k u + L 1 √ t .
( . )

Thus, we can control the k th gradient of v, for k ∈ 0, s -1 , introducing v 1 :

|∇ k v(t)| ≤ C|∇ k v 1 (t)| + |∇ k (v -v 1 )(t)| ∇ k A L ∞ + ∇ k u + L 1 √ t + δ t µ ( . ) α j l 2,q + 1 t γ + ∇ k u + L 1 √ t + δ t µ .
( . )

Indeed, by hypothesis q -k > 1 2 for each k considered here, so we can control ∇ k A L ∞ with the l 2,q norm of α j and with the bound ( . ). Similarly, the expansion of the k th gradient of v 2 with k ∈ 1, s -1 gives:

|∇ k v 2 | ≤ k p=0 k p |∇ p v||∇ k-p v| ( . ) k p=0 k p ∇ p A L ∞ + ∇ p u + L 1 √ t + δ t µ ( . ) × ∇ k-p A L ∞ + ∇ k-p u + L 1 √ t + δ t µ . Now, let k ∈ 1, s -1 , the first step is to use L ∞ L 2 Strichartz estimates on I: sup t 0 ≤t t µ ∇ k I(v)(t) L 2 ≤ sup t 0 ≤t t µ ∞ t ∇ k (|v| 2 v -|v 1 | 2 v 1 ) L 2 + 2M ∇ k (v -v 1 ) L 2 dτ τ .
The first norm in this integral can be expanded as follows:

∇ k (|v| 2 v -|v 1 | 2 v 1 ) = k p=0 k p (∇ p v∇ k-p v 2 -∇ p v 1 ∇ k-p v 2 1 + ∇ p v 1 ∇ k-p v 2 -∇ p v 1 ∇ k-p v 2 ) = k p=0 k p (∇ p (v -v 1 )∇ k-p v 2 + ∇ p (v 2 -v 2 1 )∇ k-p v 1 ) = k p=0 k p (∇ p (v -v 1 )∇ k-p v 2 + ∇ p [(v -v 1 )(v + v 1 )]∇ k-p v 1 ) = k p=0 k p   ∇ p (v -v 1 )∇ k-p v 2 + p q=0 p q (∇ q (v -v 1 )∇ p-q (v + v 1 ))∇ k-p v 1   .
Therefore, using the preliminary computations:

sup t 0 ≤t t µ ∇ k I(v)(t) L 2 ( . ) ≤ 2M µ v -v 1 S + sup t 0 ≤t t µ ∞ t   k p=0 k p ∇ p (v -v 1 ) L 2 ∇ k-p v 2 L ∞ ( . ) + k p=0 p q=0 k p p q ∇ q (v -v 1 ) L 2 ∇ k-p v 1 L ∞ ( ∇ p-q v L ∞ + ∇ p-q v 1 L ∞ )   dτ τ 2M µ v -v 1 S + sup t 0 ≤t t µ ∞ t k p=0 v -v 1 S τ 1+µ k-p j=0 k -p j ∇ j A L ∞ + ∇ j u + L 1 √ τ + δ τ µ ( . ) ∇ k-p-j A L ∞ + ∇ k-p-j u + L 1 √ τ + δ τ µ + sup t 0 ≤t t µ ∞ t k p=0 p q=0 v -v 1 S τ 1+µ ∇ k-p A L ∞ + ∇ k-p u + L 1 √ τ ∇ p-q A L ∞ + ∇ p-q u + L 1 √ τ + δ τ µ + ∇ q A L ∞ + ∇ q u + L 1 √ τ dτ.
We are now left with integrations:

sup t 0 ≤t t µ ∇ k I(v)(t) L 2 ≤ v -v 1 S   2M µ + α j 2 l 2,q µ + C(t 0 , α j l 2,s ) (µ + 2γ)t 2γ 0 + u + W 1,s √ t 0 ( 1 2 + µ) + Cδ 2µt 2µ 0 2 + α j l 2,q µ + 1 (µ + γ)t γ 0 + u + W 1,s √ t 0 ( 1 2 + µ) + δ 2µt 2µ 0 α j l 2,q µ + C(t 0 , α j l 2,s ) (µ + γ)t γ 0 + u + W 1,s √ t 0 ( 1 2 + µ) ,
which implies the conclusion of the Lemma for k ∈ 1, s -1 . For k = s, we proceed similarly but instead of estimating

sup t 0 ≤t t µ ∞ t v -v 1 L 2 v L ∞ ∇ s v L ∞ dτ τ
in ( . ) by using Gagliardo-Nirenberg ( . ) on ∇ s v L ∞ , we rather write

sup t 0 ≤t t µ ∞ t ( v -v 1 L ∞ v L ∞ ∇ s (v -v 1 ) L 2 + v -v 1 L 2 v L ∞ ∇ s v 1 L ∞ ) dτ τ .
Similarly, instead of estimating

sup t 0 ≤t t µ ∞ t v -v 1 L ∞ v 1 L 2 ∇ s v L ∞ dτ τ ,
in ( . ), we rather write

sup t 0 ≤t t µ ∞ t ( v -v 1 L ∞ v 1 L ∞ ∇ s (v -v 1 ) L 2 + v -v 1 L 2 v 1 L ∞ ∇ s v 1 L ∞ ) dτ τ ,
and obtain a similar bound.

Lemma . (Estimation of ∇ k J a ). Let J a be defined by ( . ):

J a (t, x) = -2i ∞ t e i(t-τ )∂ 2 x p =j e -i(|αp| 2 -|α j | 2 ) ln τ e i(p-j) x 2 α p α j e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ , then sup t 0 <t t µ ∇ k J a L 2 ≤ C( α j l 2,k ) sup t 0 ≤t t µ t u + • + Z/2 H k .
Proof. The first step is to perform a Fourier transform on the space variable:

∇ k J a (t, x) =e it∂ 2 x ∞ t R (iξ) k e iτ ξ 2 e ixξ p =j α p α j e -i(|αp| 2 -|α j | 2 ) ln τ e -iτ (ξ-j-p 2 ) 2 × u + (ξ - j -p 2 )e i j 2 -p 2 4 τ dξ dτ τ =e it∂ 2 x p =j α p α j R (iξ) k e ixξ u + (ξ - j -p 2 ) ∞ t e iτ (j-p)( j+p 4 +ξ-j-p 4 ) e -i(|αp| 2 -|α j | 2 ) ln τ dτ τ dξ
As p = j, for all ξ except ξ = p 2 we now perform an integration by parts on the variable τ to gain integrability:

∞ t e iτ (j-p)(ξ-j-p 2 + j 2 ) e -i(|αp| 2 -|α j | 2 ) ln τ dτ τ = - e it(j-p)(ξ-j-p 2 + j 2 ) i(j -p)(ξ -j-p 2 + j 2 ) e -i(|αp| 2 -|α j | 2 ) ln t t + ∞ t e iτ (j-p)(ξ-j-p 2 + j 2 ) i(j -p)(ξ -j-p 2 + j 2 ) e -i(|αp| 2 -|α j | 2 ) ln τ τ τ dτ.
Undoing the Fourier transform, we have:

∇ k J a (t, x) = e it∂ 2 x i t p =j e -i(|αp| 2 -|α j | 2 ) ln t j -p α p α j e i j 2 -p 2 4 t ∇ k [e i(p-j) x 2 e it∂ 2 x u j + (x)] + e it∂ 2 x i ∞ t p =j e -i(|αp| 2 -|α j | 2 ) ln τ τ τ α p α j e i j 2 -p 2 4 τ ∇ k [e i(p-j) x 2 e iτ ∂ 2 x u j + (x)]dτ,
where

u j + (ξ) = u + (ξ) ξ + j 2 .
( . )

To conclude, we now take L 2 norm and use the fact that (α j ) ∈ l 2,k to obtain:

sup t 0 <t t µ ∇ k J a L 2 ≤ C( α j l 2,k ) sup t 0 ≤t t µ t u + (•) • + Z/2 H k .
Lemma . (Estimation of ∇ k J b ). Let J b be defined by ( . ):

J b = -2i ∞ t e i(t-τ )∂ 2 x (p,j)∈Z 2 e -i(|αp| 2 -|α j | 2 ) ln τ +i(p-j) x 2 (α p R j + R p α j + R p R j ) × e i j 2 -p 2 4 τ e iτ ∂ 2 x u + dτ τ , then sup t 0 ≤t t µ ∇ k J b (t) L 2 ≤ C(t 0 , α j l 2,k ) sup t 0 ≤t t µ t γ u + H k .
Proof. This proof does not require any integration by parts. We only exploit the integrability provided by the decay ( . ) of the R j 's:

∇ k J b (t) L 2 x ≤ ∞ t (p,j)∈Z 2 e -i(|αp| 2 -|α j | 2 ) ln τ (α p R j + R p α j + R p R j ) × e i j 2 -p 2 4 τ ∇ k [e i(p-j) x 2 e iτ ∂ 2 x u + (x)] L 2 x dτ τ ≤ ∞ t (p,j)∈Z 2 C(t 0 α j l 2,k ) u + H k dτ τ 1+γ , so that sup t 0 ≤t t µ ∇ k J b (t) L 2 ≤ C(t 0 , α j l 2,k ) sup t 0 ≤t t µ t γ u + H k .
Lemma . (Estimation of ∇ k J c ). Let J c be defined by ( . ):

J c = -i ∞ t e i(t-τ )∂ 2 x A 2 e -iτ ∂ 2 x u + dτ τ , then sup t 0 ≤t t µ ∇ k J c L 2 ≤ C(t 0 , α j l 2,k ) sup t 0 <t t µ t u + (•) • + Z/2 H k-1 + sup t 0 <t t µ t γ u + H k .
Proof. The proof is in two steps, according to the following decomposition:

J c = - ∞ t e i(t-τ )∂ 2 x (j,p)∈Z 2 α p α j e -iτ p 2 +j 2 4 +ix p+j 2 e -i(|α j | 2 -|αp| 2 ) ln τ e -iτ ∂ 2 x u + dτ τ - ∞ t e i(t-τ )∂ 2 x (j,p)∈Z 2 α p R j + R p α j + R p R j e -iτ p 2 +j 2 4 +ix p+j 2 e -i(|α j | 2 +|αp| 2 ) ln τ × e -iτ ∂ 2 x u + dτ τ = -J c 1 -J c 2
The diagonal term (when j = p) of J c 1 could be controlled with inhomogeneous Strichartz with the couple (4, ∞) of dual ( 4 3 , ∞), but we rather use IBP in Fourier space on the whole term to obtain a better time decay:

∇ k J c 1 =∇ k ∞ t e i(t-τ )∂ 2 x (j,p)∈Z 2 α p α j e -iτ p 2 +j 2 4 +ix p+j 2 e -i(|α j | 2 +|αp| 2 ) ln τ e -iτ ∂ 2 x u + dτ τ =e -it∂ 2 x ∞ t R (iξ) k e iτ ξ 2 e ixξ (j,p)∈Z 2 α p α j e -iτ p 2 +j 2 4 e -i(|α j | 2 +|αp| 2 ) ln τ e iτ (ξ+ p+j 2 ) 2 × u + (ξ + p + j 2 )dξ dτ τ =e -it∂ 2 x (j,p)∈Z 2 α p α j R (iξ) k e ixξ u + (ξ + p + j 2 ) × ∞ t e -iτ p 2 +j 2 4 -i(|α j | 2 +|αp| 2 ) ln τ +iτ (p+j) 2 4 e 2iτ ξ 2 e iτ ξ(p+j) dτ τ dξ =e -it∂ 2 x (j,p)∈Z 2 α p α j R (iξ) k e ixξ u + (ξ + p + j 2 ) × ∞ t e -i(|α j | 2 +|αp| 2 ) ln τ e iτ (2ξ(ξ+ p+j 2 )+ pj 2 ) dτ τ dξ
We now perform for any ξ -except the countably set of roots of the phase -an IBP on the time integral:

∞ t e -i(|α j | 2 +|αp| 2 ) ln τ e iτ (2ξ(ξ+ p+j 2 )+ pj 2 ) dτ τ = - e -i(|α j | 2 +|αp| 2 ) ln t e it(2ξ(ξ+ p+j 2 )+ pj 2 ) (2iξ(ξ + p+j 2 ) + pj 2 )t + ∞ t e iτ (2ξ(ξ+ p+j 2 )+ pj 2 ) 2ξ(ξ + p+j 2 ) + pj 2 e -i(|α j | 2 +|αp| 2 ) ln τ τ τ dτ.
Undoing the Fourier transform, we have:

∇ k J c 1 = ie it∂ 2 x 2t (j,p)∈Z 2 α j α p e -it p 2 +j 2 4 e -i(|α j | 2 -|αp| 2 ) ln t ∇ k-1 [e it (p+j) 2 x e -it∂ 2 x u pj + (x)] + e it∂ 2 x 2i (j,p)∈Z 2 ∞ t α j α p e -iτ p 2 +j 2 4 e -i(|α j | 2 +|αp| 2 ) ln τ τ τ ∇ k-1 [e iτ (p+j) 2 x e -iτ ∂ 2 x u pj + (x)].
where u pj + has been defined by ( . ). As for J a , we conclude with this term by taking the L 2 norm on the space variable and use the fact that (α j ) ∈ l 2,q :

sup t 0 <t t µ ∇ k J c 1 L 2 x ≤ C( α j l 2,k ) sup t 0 <t t µ t u + (•) • + Z/2 H k-1
.

Finally, we estimate J c 2 as for J b using ( . ):

sup t 0 <t t µ ∇ k J c 2 L 2 x ≤C(t 0 , α j l 2,k ) sup t 0 <t t µ ∞ t 1 τ γ ∇ k u + L 2 dτ τ ≤C(t 0 , α j l 2,k ) u + H k sup t 0 <t t µ t γ ,
hence:

sup t 0 ≤t t µ ∇ k J c L 2 ≤ C(t 0 , R j l 2,k ) sup t 0 <t t µ t u + (•) • + Z/2 H k-1 + sup t 0 <t t µ t γ u + H k .
Lemma . (Estimation of ∇ k J d ). Let J d be defined by ( . ):

J d = -i ∞ t e i(t-τ )∂ 2 x (2A|e iτ ∂ 2 x u + | 2 + A(e iτ ∂ 2 x u + ) 2 ) dτ τ , then sup t 0 ≤t t µ ∇ k J d L 2 ≤ C(t 0 , α j l 2,k ) sup t 0 ≤t t µ t 1 2 u + L 1 u + H k .
As announced, this is the limiting term for the time decay.

Proof. In this proof, we just use direct upper-bounds and dispersion estimate ( . ) on the Schrödinger group.

sup t 0 ≤t t µ ∇ k J d L 2 ≤ sup t 0 ≤t t µ ∞ t j∈Z (|α j | + |R j |) ∇ k [e i xj 2 |e iτ ∂ 2 x u + | 2 + e -i xj 2 (e iτ ∂ 2 x u + (x)) 2 ] L 2 dτ τ ≤C(t 0 , α j l 2,k ) sup t 0 ≤t t µ ∞ t u + H k e iτ ∂ 2 x u + L ∞ dτ τ ≤C(t 0 , α j l 2,k ) sup t 0 ≤t t µ ∞ t u + H k u + L 1 √ τ dτ τ ≤C(t 0 , α j l 2,k ) sup t 0 ≤t t µ t 1 2 u + L 1 u + H k .
The last term J e is easier to control, using again Schrödinger dispersion inequality.

Lemma . (Estimation of ∇ k J e ). Let J e be defined by ( . ):

J e = -i ∞ t e i(t-τ )∂ 2 x |e iτ ∂ 2 x u + | 2 e iτ ∂ 2 x u + dτ τ , then sup t 0 ≤t t µ ∇ k J e L 2 sup t 0 ≤t t µ t u + 2 L 1 u + H s
Proof. For this lemma, we write:

J e (t) H s ≤ ∞ t |e iτ ∂ 2 x u + | 2 e iτ ∂ 2 x u + H s dτ τ ∞ t e iτ ∂ 2 x u + 2 L ∞ e iτ ∂ 2 x u + H s dτ τ u + 2 L 1 u + H s t .

. . . The stability

Combining the lemmas from the previous section,

φ(v) -v 1 S ≤ v -v 1 S   α j l 2,q µ 2 + C(t 0 , α j l 2,s ) (µ + γ)t γ 0 2 + u + W 1,s √ t 0 ( 1 2 + µ) 2 + δ 2µt µ 0 2   + C(t 0 , u + , α j l 2,q ) sup t 0 <t t µ t + sup t 0 <t t µ t γ + sup t 0 <t t µ t 1 2 , ( . 
)
so we have the stability inclusion φ(X δ ) ⊂ X δ holds for α j l 2,q and δ small and t 0 large enough, and choosing µ < max( 1 2 , γ).

. . . The contraction

In order to apply the fixed point, we still have to prove that φ contracts. Let v and ṽ in X δ .

From

φ(v) -φ(ṽ) = ∞ t e i(t-τ )∂ 2 x |v| 2 -2M 2τ v - |ṽ| 2 -2M 2τ ṽ dτ, yields sup t 0 ≤t t µ φ(v) -φ(ṽ) L 2 sup t 0 ≤t t µ ∞ t |v| 2 v -|ṽ| 2 ṽ -2M (v -ṽ) L 2 dτ τ sup t 0 ≤t t µ ∞ t (2M + v 2 L ∞ + ṽ 2 L ∞ ) v -ṽ L 2 dτ τ v -ṽ S 2M µ + sup t 0 ≤t t µ ∞ t ( v(τ ) 2 L ∞ + ṽ(τ ) 2 L ∞ ) dτ τ 1+µ v -ṽ S 2M µ + sup t 0 ≤t t µ ∞ t (2 v -v 1 2 L ∞ + 2 ṽ -v 1 2 L ∞ + 4 v 1 2 L ∞ ) dτ τ 1+µ v -ṽ S 2M µ + sup t 0 ≤t t µ ∞ t (8 A 2 L ∞ + 8 u + 2 L 1 τ + 4 δ 2 τ 2µ ) dτ τ 1+µ v -ṽ S 2M µ + 8 A L ∞ µ + 8 u + 2 L t 0 (1 + µ) + (2δ) 2 t 2µ 0 (1 + 2µ)
.

Moreover, for k ∈ 1, s -1 :

sup t 0 ≤t t µ ∇ k (φ(v) -φ(ṽ)) L 2 ≤ 2M µ v -ṽ S + sup t 0 ≤t t µ ∞ t   k p=0 k p ∇ p (v -ṽ) L 2 ∇ k-p v 2 L ∞ + k p=0 p q=0 k p p q ∇ q (v -ṽ) L 2 ∇ k-p ṽ L ∞ ( ∇ p-q v L ∞ + ∇ p-q ṽ L ∞ )   dτ τ v -ṽ S   2M µ + ∞ t k p=0 k p k-p q=0 k -p q ∇ q A L ∞ + ∇ q u + √ τ + δ τ µ ∇ k-p-q A L ∞ + ∇ k-p-q u + √ τ + δ τ µ dτ τ 1+µ + v -ṽ S ∞ t k p=0 p q=0 k p p q ∇ k-p A L ∞ + ∇ k-p u + √ τ + δ τ µ 2 ∇ p-q A L ∞ + ∇ p-q u + √ τ + δ τ µ dτ τ .
As for Lemma . , we must avoid estimating

sup t 0 ≤t t µ ∞ t v -ṽ L 2 w 1 L ∞ ∇ s w 2 L ∞ dτ τ ,
by using Gagliardo-Nirenberg ( . ) on ∇ s v L ∞ . Therefore we rather write

sup t 0 ≤t t µ ∞ t ( v -ṽ L ∞ w 1 L ∞ ∇ s (w 2 -v 1 ) L 2 + v -ṽ L 2 w 1 L ∞ ∇ s v 1 L ∞ ) dτ τ ,
for (w 1 , w 2 ) ∈ {ṽ, v} 2 .

To conclude, we finally use the Gagliardo-Niremberg interpolation inequality

v -ṽ L ∞ ≤ v -ṽ 1 2 L 2 ∇(v -ṽ) 1 2 L 2 ≤ v -ṽ S τ µ so that sup t 0 ≤t t µ ∞ t ( v -ṽ L ∞ w 1 L ∞ ∇ s (w 2 -v 1 ) L 2 + v -ṽ L 2 w 1 L ∞ ∇ s v 1 L ∞ ) dτ τ ≤ sup t 0 ≤t t µ v -ṽ S ∞ t w 1 L ∞ w 2 S τ µ + ∇ s A L ∞ + ∇ k u + L 1 √ τ dτ τ 1+µ .
Putting everything together, we have that φ(v) -φ(ṽ) S ≤ v -ṽ S C(t 0 , α j l 2,q , u + ), therefore φ contracts for α j l 2,q and δ small and t 0 large enough, and solutions exists on [t 0 , ∞). This terminates the first part of existence of solutions of Theorem . . . . . End of the proof: estimates ( . ) to ( . ) Let v be the solution of ( . ) on [t 0 , ∞) constructed in Section . . Note that we also dispose of the following estimate ( . ) on v:

∀k ∈ 0, s , ∇ k (v -v 1 )(t) L 2 = O(t -1 2 - ).
( . )

First we set T 1 = 1 t 0 and use the pseudo-conformal transformation ( . ) on v to obtain ψ, a solution of ( . ) on (0, T 1 ] that satisfies:

v(t, x) = T (ψ)(t, x) = e i x 2 4t √ t ψ 1 t , x t .
Since v 1 is defined by ( . ), we have:

v 1 (t, x) = T (e 2iM ln t u {α j } (t, x)) + e it∂ 2 x u + (x),
and estimate ( . ) becomes:

∀k ∈ 0, s , ∇ k T ψ(t, x) -e 2iM ln t u {α j } (t, x) -e it∂ 2 x u + (x) L 2 = O(t -1 2 -
).

Then we normalize back the solutions ψ of ( . ) to obtain an estimate on the solutions u of (NLS) on (0, T 1 ]. As T preserves the L 2 norm, we use the fact that, for J defined in the introduction by ( . ) we have:

∇ k T = T (-i) k J k ,
to obtain estimate ( . ):

∀k ∈ 0, s , (-i) k J k [u(t, x) -u{α j }(t, x)] -e -2iM ln t T e it∂ 2 x ∇ k u + (x) L 2 = O(t 1 2 - ).
Finally, when ∇ k u + ∈ (x 4 L 2 (R)) for all k ∈ 0, s , the L 2 estimate ( . ) comes from Schrödinger evolution properties applied to the perturbation and has already been done in section . of [ ]:

T e it∂ 2 x ∇ k u + (x) --i x 2 k u + - x 2 L 2 = O(t 1 2 - ).
( . )

The last estimate ( . ) is exactly estimate ( . ) with k = 0 and Theorem . is proven.

-On self-similar singularity formation for the binormal flow

Bend it like Geller -Ben Harris

This chapter is the reproduction of the article [ ].

Résumé

Le but de cet article est d'établir une preuve concise d'un résultat de stabilité des solutions auto-similaires du flot binormal, dans certains cas plus restrictifs que dans [ ].

Cette équation, également connue sous le nom d'approximation d'induction locale, est un modèle standard pour décrire la dynamique des vortex filamentaires, et sa solution autosimilaire décrit la formation d'une singularité présentant un coin sur le filament. Notre approche utilise fortement le lien que Hasimoto a mis en évidence en entre la solution du flux binormal et celle de l'équation de Schrödinger cubique -D, ainsi que les résultats d'existence associés à cette dernière.

Abstract

The aim of this article is to establish a concise proof for a stability result of self-similar solutions of the binormal flow, in some more restrictive cases than in [ ]. This equation, also known as the Local Induction Approximation, is a standard model for vortex filament dynamics, and its self-similar solution describes the formation of a corner singularity on the filament. Our approach strongly uses the link that Hasimoto pointed out in between the solution of the binormal flow and the one of the -D cubic Schrödinger equation, as well as the existence results associated to the latter.

. . Introduction

In this paper, we propose a new proof of the stability of self-similar solutions of the binormal flow

χ t = χ x ∧ χ xx . ( . )
In terms of physics, χ(t, x) belongs to R 3 , t represents the time and x is the arclength variable. This equation was proposed in by DaRios in [ ] and re-discovered in by Arms and Harma in [ ], for modeling a vortex filament dynamic under Euler equations. In a few words, its formal derivation goes as follows. If we consider the velocity of an incompressible fluid u and its vorticity ω, the Biot-Savart law tells us that:

u(t, x) = R 3 (x -y) ∧ ω(t, y) 4π|x -y| 3 dy.
Then, if we suppose that ω(t) belongs to a 1D curve (i.e. ω = Γχ x δ χ ) with χ x of norm 1, we can write:

u(t, x) = ∞ -∞ (x -χ(t, s)) ∧ ω(t, χ(t, s)) 4π|x -χ(t, s)| 3 ds.
Conducting a Taylor expansion around zero on the space variable and restricting the domain of integration to [-L, L] approximates the previous integral by:

u(t, 0) ≈ Γ 4π L -L ((x 1 , x 2 , 0) -sχ s (t, 0) -s 2 2 χ ss (t, 0)) ∧ (χ s (t, 0) + sχ ss (t, 0)) |(x 1 , x 2 , -s)| 3 ds = Γ 4π (-x 2 , x 1 , 0) 2 L -L ds (1 + s 2 ) 3 2 + Γ 4π (x 1 , x 2 , 0) ∧ χ ss (t, 0) L -L s | 2 + s 2 | 3 2 ds - Γ 8π χ s (t, 0) ∧ χ ss (t, 0) L -L s 2 |1 + s 2 | 3 2 ds.
The first term corresponds to a fluid rotating around a still vertical axis, the second term vanishes by a parity argument, and the third term gives us ( . ), after a time-renormalization. This model is sometimes called the Local Induction Approximation (LIA) or vortex filament equation (VFE), and is the subject of further discutions in [ ], [ ] and more recently by Jerrard and Seis in [ ] with stronger assumptions but rigorous arguments.

In , Hasimoto linked the solutions χ(t, x) of ( . ) to solutions of a -D cubic Schrödinger equation by using the Frenet and parallel frames in [ ]. This transformation is in the same spirit as the Madelung transform.

Conversely, for a given real potential a and a given solution ψ of

iψ t + ψ xx + 1 2 (|ψ| 2 -a(t))ψ = 0, ( . ) 
the Hasimoto transformation is reversible by using Frenet frames for non vanishing curvatures vortices. However the calculations are much faster and work for any curvatures by constructing first parallel frames (T, e 1 , e 2 )(t, x) that satisfy:

T x = (ψN ), N x = -ψT, T t = (ψ x N ), N t = -iψ x T - i 2 (|ψ| 2 -a(t))N, ( . )
with N = e 1 + ie 2 , and any orthonormal basis as initial data. It follows that the vector T satisfies the -D Schrödinger map with values in S 2 :

T t = T ∧ T xx ,
and can be integrated into a solution χ of the binormal flow ( . ) starting at a point P at (t 0 , x 0 ) with the formula:

χ(t, x) = P + t t 0 (T ∧ T x )(τ, x 0 )dτ + x x 0 T (t, s)ds, ∀(t, x).
In this paper, we study the stability of the self-similar solutions {χ α } α>0 of ( . ) determined for t > 0 by a curvature of α √ t and a torsion of x 2t .The behaviour of χ α (t, s) for t > 0 was exhibited by physicists in [ ] and [ ] and a numeric study on it was done in [ ]. In [ ], it has been proven that they are solutions of ( . ), smooth as long as t > 0 and have a trace at t = 0 forming a one corner polygonal line of angle θ such that

sin θ 2 = e -π α 2 2 .
( . )

This class of solutions correspond to solutions of -D cubic NLS solutions

ψ α (t, x) = α e i x 2 4t √ t ,
taking a(t) = α 2 t in ( . ).

Theorem . (The initial value problem for the binormal flow). Let χ 0 a smooth arc-length parametrized curve of R 3 , except at one point located at arc-length x = 0 where it forms a corner of angle θ. Let c be the curvature of χ 0 , τ its torsion and α given by ( . ).

If α defined from θ by ( . ) is small enough, and if

c ∈ W 3,1 (R)∩H 2 (R), c x ∈ W 1,2 (R)∩H 2 (R), x 2 c ∈ W 3,1 (R)∩H 2 (R), (1+x 2 )c ∈ L 2 (R), x -2 c ∈ L 2 (R), τ ∈ H 2 (R) and τ 2 ∈ H 1 (R),
then there exists t 0 > 0 and

χ(t, x) ∈ C([-t 0 , t 0 ], Lip) ∩ C([-t 0 , t 0 ]\{0}, C 4 ), ( . ) 
a solution of the binormal flow ( . ) on (0, t 0 ], having χ 0 as a limit at time t = 0, and there exists C > 0 such that:

sup x |χ(t, x) -χ 0 (x)| ≤ C √ t.
( . )

Moreover, the tangent vector T = ∂ x χ has a limit at time zero with the same time-decay rate:

∀t > 0 ∀x ∈ R ∃C(x) |T (t, x) -∂ x χ 0 (x)| ≤ C(x)t 1 4 . ( . )
This type of result has already been proven by Banica and Vega in Theorem . of [ ], under weaker assumptions on the curvature and torsion of χ 0 . As a counterpart, the corresponding scattering results for ( . ) (existence of wave operator and asymptotic completeness) obtained in [ ] are with weaker decay. As a consequence, the proof require to obtain asymptotic space states for T (t, x) and N (t, x) when x → ±∞, and a much more technical iterative argument to obtain the limit for T and N at time t = 0.

In here, we will use a stronger convergence rate (obtained in the existence result of the wave operator in [ ]) to give a concise proof of Theroem . . We note that even under more restrictive hypotheses than in [ ], we do not have an asymptotic completeness result with better decay, that would allow us to give also a concise proof of Theorem . of the second stability result in [ ].

Let us streamline here the constructive proof of Theorem . . Denoting T 0 the tangent vector to χ 0 , we define the complex valued functions g ∈ C and N 0 ∈ S 2 + iS 2 defined by the parallel frame system:

T 0x (x) = (g(x)N 0 (x)), N 0x (x) = -g(x)T 0 (x), ( . )
with initial data (A + α , B + α ) for x > 0 and (A - α , B - α ) for x < 0, where A ± α and B ± α stand for the complex vectors appearing in the asymptotics of the normals vectors of the same self-similar solution χ α (see Theorem of [ ]). Let us note that, using Frenet frame, there exists γ ∈ [0, 2π] such that:

g(x) = c(x)e i( x 0 τ (s)ds+γ) , ( . ) 
as explained in Remark . of [ ]. Now set:

u + = F -1 √ i g(2•)e iα 2 log |•| . ( . )
The hypotheses of Theorem . on c and τ allow u + to belong to some particular Sobolev spaces in order to use the existence of a wave operator for ( . ) proved in Theorem . of

[ ]. More precisely, u + is in Ḣ-2 ∩ H 2 ∩ W 1,2
and α is small, so there exists t 0 > 0 and a unique solution of ( . ) on (0, t 0 ] of the form:

ψ(t, x) = e i x 2 4t √ t α + u 1 t , x t , ( . ) 
with u being a perturbation that writes:

u(t, x) = e it∂ 2 x u + (x) + r(t, x).
( . )

The proof of this result uses scattering methods after performing a pseudo-conformal transformation, and allows us to have the following control on the time decay of the remainder term r, for k = 1 and k = 2:

r(t) L 2 x = O(t -1 2 ) , ∇ k r(t) L 2 x = O(t -1 ).
( . )

The next step in our proof is to use the parallel frame ( . ) with the function ψ given by ( . ) to construct a solution χ of ( . ) on (0, t 0 ].

Then, we consider the vectors T and N given by ( . ), as well as Ñ a modulated version of N defined later. We prove in section . . that T and Ñ admit a trace at time t = 0, thanks to bounds on the perturbation u given in Corollary , consequence of bound ( . ).

Then, in section . . we find the ODE system satisfied by T |t=0 and Ñ|t=0 for x = 0 that turns out to be the same as the one of T 0 and N 0 , due to ( . ). Sections . . and . . are the part of the proof that simplify consistently the proof in [ ].

Finally, in section . . , we use self-similar paths to determine T |t=0 and Ñ|t=0 at x = 0 + and x = 0 -for the ODE system, that coincides with the corner singularity directions of χ 0 and complete the Cauchy Problem. These last results allows us to conclude in section . that we recovered χ 0 at time t = 0.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

. . Construction of perturbed self-similar solution of the binormal flow

As announced in the introduction, we first define the complex-valued function g with the system satisfied by χ 0 's tangent and normal vectors T 0 and N 0 :

T 0x (x) = (g(x)N 0 (x)) N 0x (x) = -g(x)T 0 (x) , ( . ) 
with initial data (A + α , B + α ) for x > 0 and (A - α , B - α ) for x < 0, and consider

u + = F -1 √ i g(2•)e iα 2 log |•| .
( . )

We now deduce regularity on u + from the the hypotheses of Theorem . on c and τ , which is the purpose of the following lemma.

Lemma . . Consider the curvature c and the torsion τ of a parametrized curve. Define u + by formula ( . ) and recall expression ( . ) of g.

If c ∈ W 3,1 (R)∩H 2 (R), c x ∈ W 1,2 (R)∩H 2 (R), x 2 c ∈ W 3,1 (R)∩H 2 (R), (1+x 2 )c ∈ L 2 (R), and 
x -2 c ∈ L 2 (R), τ ∈ H 2 (R) and τ 2 ∈ H 1 (R), then u + ∈ W 1,2 (R) ∩ H 2 (R) ∩ Ḣ-2 (R) and (1 + x 2 )u + ∈ L ∞ (R), (1 + x 2 )xu + ∈ L ∞ (R).
This lemma will allow us to apply a wave operator existence theorem right after, but also to use the weighted L ∞ bound on u + in the proof of Corollary .

Proof. The idea of the proof is to write the inverse Fourier transform formula and perform integration by parts on it, to gain decay. We have by definition:

u + (x) = R
e -ixy √ ic(2y)e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy, so integrating by parts two times leads to:

u + (x) = - R e -ixy -ix √ i(2c (2y) + ic(2y)τ (2y) + iα 2 c(2y) y )e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy = R e -ixy x 2 √ i(4c (2y) + i2c (2y)τ (2y) + i2c(2y)τ (2y))e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy + R e -ixy x 2 √ iiα 2 2yc (2y) + c(2y) y 2 e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy + R e -ixy x 2 √ iiτ (2y)(2c (2y) + ic(2y)τ (2y) + iα 2 c(2y) y )e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy + R e -ixy x 2 √ i iα 2 y (2c (2y) + ic(2y)τ (2y) + iα 2 c(2y) y )e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy.
Because all of the terms in those integrals are by hypotheses either L 1 , or a product of two L 2 functions, it all converges and we deduce that u + ∈ L 1 and

(1 + x 2 )u + ∈ L ∞ .
Then, it is straightforward to check that (1 + x 2 )xu + ∈ L ∞ with an additional integration by parts. To obtain ∇u + ∈ L 1 , we write :

∇u + (x) = -i R e -ixy y
√ ic(2y)e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy, and perform as well two integration by parts. We similarly show that ∇ 2 u + ∈ L 1 . Finally, for the L 2 hypothesis, we use Parseval identity to claim that

(1 + x 2 )c ∈ L 2 and x -2 c ∈ L 2 imply that u + ∈ H 2 ∩ Ḣ-2 .
Thanks to this lemma we have that u + is in W 1,2 ∩ H 2 ∩ Ḣ-2 under the hypotheses of Theorem . . Therefore, we can apply Theorem . of [ ], to obtain a unique solution of ( . ) on (0, t 0 ] that writes: ) where: ) with r satisfying ( . ). Then, equations ( . ) of Hasimoto's construction allows us to construct χ, a solution of ( . ) on (0, t 0 ] by its tangent and normal vectors T and N . However, in order to identify the trace of χ(t) at time t = 0, we need a better understanding of the perturbation u.

ψ(t, x) = e i x 2 4t √ t α + u 1 t , x t , ( . 
u(t, x) = e it∂ 2 x u + (x) + r(t, x), ( . 

. . . Preliminary bound

In order to obtain a bound on u that is sharp enough, we shall use the decay given by ( . ).

Corollary (L ∞ bound on the perturbation u). Let u defined by ( . ). Under the hypotheses of Theorem . , we have the following bound on u and its derivative as t goes to zero:

u 1 t , x t ≤ t 1 2 , with r 1 t , x t ≤ t 3 4 ,
and

∂ x u 1 t , x t ≤ x √ t + t 1 2 , with ∂ x r 1 t , x t ≤ t 1 2 .
Moreover, we have:

ix 2t e i 1 t ∂ 2 x u + 1 t , x t -e i 1 t ∂ 2 x u + 1 t , x t x ≤ t 1 2 .
( . )

The last estimate comes from a cancellation, and gives us more decay than expected.

Proof. First, we give a bound of the remainder term r and its derivative using the decay ( . ) given in Theorem . of [ ] (wave operator existence). For this, we apply the Gagliardo Niremberg interpolation inequality:

r 1 t , x t ≤ t 1 4 r 1 t , • 1 2 L 2 t -1 4 ∂ x r 1 t , • 1 2 L 2 ≤ t 3 4 ,
and similarly:

∂ x r 1 t , x t ≤ t 1 2 .
Next, we simply write:

e i 1 t ∂ 2 x u + x t = √ te i t 4 ( x t -y) 2 u + (y)dy ≤ √ t u + L 1 ,
and for the other term we use the fact that xu + (x) ∈ L 1 , obtained in Lemma . :

∂ x e i 1 t ∂ 2 x u + x t = ∂ x √ te i t 4 ( x t -y) 2 u + (y)dy = ix 2t e i 1 t ∂ 2 x u + x t + √ te i t 4 ( x t -y) 2 iy 2 u + (y)dy ,
that ensures:

∂ x u 1 t , x t ≤ x √ t + √ t.
Finally, ( . ) comes directly from the previous expression, as we write:

ix 2t e i 1 t ∂ 2 x u + 1 t , x t -e i 1 t ∂ 2 x u + 1 t , x t x = √ te i t 4 ( x t -y) 2 iy 2 u + (y)dy .
We are now ready to tackle our proof.

. . . Limit at time t = 0

As announced, the next step is to prove the existence of a limit for vectors T and N , up to a phase.

Lemma . (Limit of vector T ). The tangent vector T of χ has a limit at time zero with a convergence rate given by:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * |T (t 2 , x) -T (t 1 , x)| ≤ |x|t 1 4 2 + t 3 4 2 + √ t 2 |x| .
This lemma, gives us the convergence rate ( . ) announced in Theorem . .

Proof. Now let t 2 ≥ t 1 > 0, |T (t 2 , x) -T (t 1 , x)| = t 2 t 1 T t (t, x)dt = t 2 t 1 ψ x N (t, x)dt = t 2 t 1 e -i x 2 4t √ t -ix 2t u 1 t , x t -i xα 2t + u 1 t , x t x N (t, x)dt ≤xt 1 4 2 + t 2 + t 2 t 1 e -i x 2 4t ixα 2t √ t N (t, x)dt + t 2 t 1 e -i x 2 4t √ t -ix 2t e i 1 t ∂ 2 x u + x t + e i 1 t ∂ 2 x u + x t x N (t, x)dt ,
where the terms with the remainder r has provided enough decay. Then, if we use ( . ), we have that:

t 2 t 1 e -i x 2 4t √ t -ix 2t e i 1 t ∂ 2 x u + x t + e i 1 t ∂ 2 x u + x t x N (t, x)dt ≤ t 2 .
For the other term, we integrate by parts:

t 2 t 1 e -i x 2 4t ixα 2t √ t N (t, x)dt ≤ e -i x 2 4t 2 √ tα x N (t, x) t 2 t 1 + t 2 t 1 e -i x 2 4t α x √ t N (t, x)dt + t 2 t 1 e -i x 2 4t 2 √ tα x N t (t, x)dt ≤ 2α √ t 2 x + t 2 t 1 e -i x 2 4t 2 √ tα x N t (t, x)dt .
We must now expand the term in N t :

t 2 t 1 e -i x 2 4t 2 √ tα x N t (t, x)dt ≤ t 2 t 1 e -i x 2 4t 2 √ tα x i e i x 2 4t √ t ix 2t u 1 t , x t + i xα 2t + u 1 t , x t x T (t, x)dt + t 2 t 1 e -i x 2 4t 2 √ tα x i 2 |u 1 t , x t | 2 t + 2 (u 1 t , x t α) t N (t, x)dt ≤t 3 4 2 + t 2 x ,
using both ( . ) and the fact that T is real, so we have:

t 2 t 1 α 2 t T (t, x)dt = 0.
To sum up, we showed that:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * |T (t 2 , x) -T (t 1 , x)| ≤ xt 1 4 2 + t 3 4 2 + √ t 2 x ,
and the lemma is proven.

Note that, for self similar paths, we also obtained that T (t, x √ t) has a limit as t, 1

x and x √ t simultaneously go to zero.

In order for N to converge, we must add a phase.

Lemma . (Limit of vector N). Let us write

Ñ (t, x) = e iα 2 ln |x| √ t N (t, x) = e iφ N,
where N is the normal vector of χ. Then Ñ has a limit at time zero with a convergence rate given by:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * | Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + √ t 2 x + t 2 x 2 .
Note that the factor |x| in φ could be replaced by anything independent of t, but is chosen for assuring properties at time t = 0 as we will see in Lemma . . Proof. To follow the proof, the reader must only keep in mind that |u 

Ñt = e iφ N t -i α 2 2t N (t, x)e iφ ,
given 0 < t 1 ≤ t 2 ≤ t 0 , we have:

Ñ (t 2 , x) -Ñ (t 1 , x) = t 2 t 1 Ñt (t, x)dt = t 2 t 1 -iψ x T e iφ + i 2 (|ψ| 2 - α 2 t )N e iφ dt -i α 2 2t N (t, x)e iφ = - t 2 t 1 i e i x 2 4t √ t ix 2t u 1 t , x t + i xα 2t + u 1 t , x t x T (t, x)e iφ dt + i 2 t 2 t 1 ¡ ¡ ¡ α 2 t + |u 1 t , x t | 2 t + 2 (u 1 t , x t α) t - ¡ ¡ ¡ α 2 t N (t, x)e iφ dt.
-

t 2 t 1 i α 2 2t N (t, x)e iφ dt.
As before, we use ( . ) so terms with u in the first integral partially cancel with each other.

Using bounds of Corollary , we are now left with only a difference to study:

| Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + - t 2 t 1 i e i x 2 4t √ t ix 2t αT (t, x)e iφ dt - t 2 t 1 i α 2 2t N (t, x)e iφ dt .
For that, we integrate by parts the first term: 

| Ñ (t 2 , x)-Ñ (t 1 , x)| ≤ xt 1 4 2 +t 1 2 2 + √ t 2 x + t 2 t 1 e i x 2 4t 2 √ t ix αT t (t, x)e iφ dt - t 2 t 1 i α 2 2t N (t, x)e iφ dt .
We then use the fact that T t = (ψ x N ) = 1 2i (ψ x N -ψ x N ) to write:

t 2 t 1 e i x 2 4t 2 √ t ix αT t (t, x)e iφ dt = 1 2i t 2 t 1 2 ix α -ix 2t u 1 t , x t -i xα 2t + u 1 t , x t x N (t, x)e iφ dt - 1 2i t 2 t 1 e i x 2 4t 2 ix αe i x 2 4t ix 2t u 1 t , x t + i xα 2t + u 1 t , x t x N (t, x)e iφ dt.
Again, thanks to Corollary , only the terms without u are worth studying. Moreover, the first term cancels with the term coming from the phase φ. Therefore we have:

| Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + √ t 2 x + 1 2i t 2 t 1 e i 2x 2 4t α 2 t N (t, x)e iφ dt .
The other one has a phase, so we perform a second integration by parts on it:

1 2i t 2 t 1 e i 2x 2 4t α 2 t N (t, x)e iφ dt = 1 2i e i 2x 2 4t 2α 2 t ix 2 N (t, x)e iφ t 2 t 1 + 1 2i t 2 t 1 e i 2x 2 4t 2α 2 ix 2 N (t, x)e iφ dt - 1 2i t 2 t 1 e i 2x 2 4t 2α 2 t ix 2 N t (t, x)e iφ dt + 1 2i t 2 t 1 e i 2x 2 4t α 2 α 2 x 2 N (t, x)e iφ dt.
We finally expand the N t term and observe that it has the desired behavior:

- 1 2i t 2 t 1 e i 2x 2 4t 2α 2 t ix 2 N t (t, x)e iφ dt = + 1 2i t 2 t 1 e i x 2 4t 2α 2 t ix 2 i √ t -ix 2t u 1 t , x t -i xα 2t -u 1 t , x t x T (t, x)e iφ dt - 1 2i t 2 t 1 e i 2x 2 4t 2α 2 t ix 2 |u 1 t , x t | 2 t + 2 (u 1 t , x t α) t N (t, x)e iφ dt.
To sum up, we proved that:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * | Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + √ t 2 x + t 2 x 2 .
As for T , we also obtained that, for self similar paths, Ñ (t, x √ t) has a limit as t, 1

x and x √ t simultaneously go to zero.

. . . More information about the tangents vectors at time t = 0

The aim of this section is to quantify the evolution of T |t=0 and Ñ|t=0 with respect to the space variable. More precisely, we will show that:

T x (0, x) = 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x), Ñx (0, x) = -1 √ i u + x 2 e -iα 2 log |x| T (0, x), ∀x = 0.
Those two claims can be proved separately and that is what we are going to do.

Lemma . (Properties of T |t=0

). Let x ∈ R * , then we have:

T x (0, x) = lim t→0 T x (t, x) = 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x). Proof. Let (x 1 , x 2 ) ∈ R * + 2
. We are going to write the variation of T at t > 0 between x 1 and x 2 , with the idea to make t go to zero:

T (t, x 2 ) -T (t, x 1 ) = x 2 x 1 T x (t, s)ds = x 2
x 1 (ψN )(t, s)ds Then, let us consider (t n ) n∈Z such that ∀n ∈ N, e iα 2 log √ tn = 1 and t n -→ n→∞ 0,

= x 2 x 1 e -i s 2 4t √ t (u 1 t , s t + α)N (t, s)ds = e -i s 2 4t 2 √ t is αN (t, s) x 2 x 1 + x 2 x 1 e -i s 2 4t 2 √ t is 2 αN (t, s)ds + x 2 x 1 e -i s 2 4t 2 is 2 e i s 2 4t α 2 T (t, s)ds + x 2 x 1 e -i s
N (t n , x) = e -iφ(tn,x) Ñ (t n , x) = e -iα 2 log |x| √ t n Ñ (t n , x) -→ n→∞ e -iα 2 log |x| Ñ (0, x),
so by multiplying the limits:

e -i x 2 4tn √ t n u 1 t n , x t n N (t n , x) -→ n→∞ 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x),
and by dominated convergence:

x 2

x 1

e -i s 2 4tn u 1 tn , x tn √ t n N (t n , s)ds -→ n→∞ x 2 x 1 1 √ i u +
x 2 e -iα 2 log |x| Ñ (0, x).

To sum up, we proved that:

T (t n , x 2 ) -T (t n , x 1 ) -→ n→∞ x 2 x 1 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x)dx,
and the conclusion of the lemma is obtained by taking x 1 = x, x 2 = x + h, dividing by h, using Lemma . and chosing n large with respect to h.

Lemma . (Properties of Ñ|t=0

). For x = 0, we have:

Ñx (0, x) = lim t→0 Ñx (t, x) = 1 √ i u + s 2 e -iα 2 log |x| T (0, s). Proof. Let (x 1 , x 2 ) ∈ R * + 2
, we write:

Ñ (t, x 2 ) -Ñ (t, x 1 ) = x 2 x 1 Ñx (t, s)ds = x 2 x 1 (-ψT + i α 2 s N )e iφ ds.
The term produced by the phase will help removing an otherwise non vanishing term, so we start by looking at the integral of N x :

x 2

x 1 ψ(t, s)T (t, s)e iφ ds = As with T , we will treat the term with u at the end, first we have to make sure that the T s term goes to zero with t, using that T s = (ψN ):

x 2 x 1 e i s 2 4t 2 √ t is αT s (t, s)e iφ ds = x 2 x 1 e i s 2 4t 2 √ t is α e i s 2 4t √ t u 1 t , s t N (t, s)e iφ ds + x 2 x 1 e 2i s 2 4t 1 is α 2 N (t, s)e iφ ds + x 2 x 1 1 is α 2 N (t, s)e iφ ds + x 2 x 1 e i s 2 4t 1 is αe -i s 2 4t u 1 t , s t N (t, s)e iφ ds.
The first term is treated with Cauchy-Schwarz, as well as the fourth. The third one is canceled by the phase. For the second term, an IBP shows that it goes to zero with t, using that N s = -ψT :

x 2

x 1

e 2i s 2 4t 1 is α 2 N (t, s)e iφ ds = e 2i s 2 4t t -s 2 α 2 N (t, s)e iφ x 2 x 1 + x 2 x 1 e 2i s 2 4t 2t -s 3 α 2 N (t, s)e iφ ds + x 2 x 1 e 2i s 2 4t t -s 2 α 2 ψ(t, s)T (t, s)e iφ ds - x 2 x 1 e 2i s 2 4t t -s 2 α 2 N (t, s) iα 2 s e iφ ds.
We shall now obtain the differential equation satisfied by Ñ . Again, using (t n ) n∈Z such that e iα 2 log √ tn = 1 and t n -→ n→∞ 0,

e iφ(tn,x) T (t n , x) -→ n→∞ e iα 2 log |x| T (0, x),
and by multiplying the limits under the integral we write:

x 2 x 1 e i s 2 4tn √ t n u 1 t n , s t n e iφ T (t, s)ds -→ n→∞ x 2 x 1 1 √ i u + s 2 e iα 2 log |x| T (0, s).
Hence:

Ñ (t n , x 2 ) -Ñ (t n , x 1 ) -→ n→∞ - x 2 x 1 1 √ i u + s 2 e -iα 2 log |s| T (0, s)ds,
and the conclusion of the lemma is obtained by taking x 1 = x, x 2 = x + h, dividing by h, using Lemma . and chosing n large with respect to h.

. . . Description of the angles via self-similar paths

For the description of the angles, we will follow the same proof as for Proposition . of [ ]. For sake of completeness, we recall here the proof. As recalled in the introduction, we denote by A ± α ∈ S 2 the directions of the corner generated at time t = 0 by the canonical self-similar solution χ α (t, x) of the binormal flow of curvature α √ t :

A ± α := ∂ x χ α (0, 0 ± ).
The frame of the profile χ(1) satisfies the system:

∂ x T α (1, x) = (αe -i x 2 4 N α (1, x)), ∂ x N α (1, x) = -αe i x 2 4 T α (1, x), ( . ) 
and for x → ±∞, there exists

B ± α ⊥ A ± α , with (B ± α ), (A ± α ) ∈ S 2 such that: T α (1, x) = A ± α + O( 1 x ) and e iα 2 log |x| N α (1, x) = B ± α + O( 1 x ).
Lemma . (Self similar paths ). Let t n be a sequence of positive times converging to zero. Up to a subsequence, there exists for all x ∈ R a limit given by:

(T * (x), N * (x)) = lim t→0 (T (t n , x √ t n ), N (t n , x √ t n )),
such that (T * , N * (x)) satisfies system ( . ) in the strong sense. Moreover, there exists a unique rotation Θ, such that, for x → ±∞:

T * (x) = Θ(A ± α ) + O( 1 |x| ), N * (x) = Θ(B ± α ) + O( 1 |x| ). Proof. Let (t n ) n∈N ∈ R N + a sequence of positive times converging to 0. As explained in [ ], u ∈ L 4 ((1, ∞), L ∞ ) so we can chose (t n ) n∈N such that u(1/t n ) L ∞ goes to zero.
We now naturally define the following sequences:

∀n ∈ N (T n , N n ) = (T (t n , x √ t n ), N (t n , x √ t n )).
Since T L ∞ ≤ 1 and N L ∞ ≤ 2 it is obvious that those sequences are bounded. Let us prove their equicontinuity.

For all n ∈ N, T n is differentiable and using that T x = (ψN ) and N x = -ψT ,

T n (x) = √ t n (ψN )(t n , x √ t n ) = [αe -i x 2 4 N (t n , x √ t n )] + o(1)N n (x).
Similarly, for all x ∈ R,

N n (x) = √ t n (-ψN )(t n , x √ t n ) = -αe i x 2 4 T (t n , x √ t n ) + o(1)T n (x).
Sequences (T n , N n ) are uniformly bounded, so (T n , N n ) are equicontinuous. By d'Arzela-Ascoli theorem on T = {T n , n ∈ N} and N = {N n , n ∈ N}, there exists a subsequence of (T n , N n ), converging toward (T * (x), N * (x)). For convenience, we will not write the extractice.

As the coefficients involved in the ODE are analytic, we conclude that (T * , N * (x)) satisfies system ( . ) in the strong sense, as (T α (x), N α (x)).

Therefore, there exists a unique rotation Θ such that

   T * (x) = Θ(T α (x)), (N * (x)) = Θ( (N α (x))), (N * (x)) = Θ( (N α (x))).
So we conclude that for x → ±∞:

T * (x) = Θ(A ± α ) + O( 1 |x| ), N * (x) = Θ(B ± α ) + O( 1 |x| ).
Lemma . (Description of the singularity). We have

T (0, 0 ± ) = Θ(A ± α ) and e iα 2 log |x| Ñ (0, 0 ± ) = Θ(B ± α ),
where Θ has been introduced in Lemma . .

The proof of this lemma uses all we did in the previous section concerning the limit of vectors Ñ and T .

Proof. Let ε > 0. The main idea of this proof is to write

|T (0, 0 + ) -Θ(A + α )| ≤|T (0, 0 + ) -T (0, x √ t n )| + |T (0, x √ t n ) -T (t n , x √ t n )| + |T (t n , x √ t n ) -T * (x)| + |T * (x) -Θ(A + α )|.
First, we chose x big enough, such that |T * (x) -Θ(A + α )| ≤ ε 4 , thanks to Lemma . .

Then we chose n big enough, such that

|T (t n , x √ t n ) -T * (x)| ≤ ε 4 thanks to conver- gence, such that |T (0, x √ t n ) -T (t n , x √ t n )| ≤ ε 4 thanks to Lemma . and finally such that |T (0, 0 + ) -T (0, x √ t n )| ≤ ε
4 , using Lemma . :

|T (0, 0 + ) -T (0, x √ t n )| ≤ T x ∞ x √ t n ≤ C(u + )x √ t n . So we have |T (0, 0 + ) -Θ(A + α )| ≤ ε, i.e.
T (0, 0 + ) = Θ(A + α ).

Similarly, for x < 0 we prove that T (0, 0 -) = Θ(A - α ). For Ñ we follow the same path, taking care to handle the phases. For (

t n ) n∈N ∈ R N + converging to zero, such that exp(iα 2 log √ t n ) = 1,
we have:

|Θ(B + α ) -Ñ (0, 0 + )| ≤|Θ(B + α ) -e iα 2 log |x| N * (x)| + |e iα 2 log |x| N * (x) -e iα 2 log |x| N (t n , x √ t n )| + |e iα 2 log |x| N (t n , x √ t n ) -e iα 2 ln |x √ t n | √ t n N (t n , x √ t n )| + | Ñ (t n , x √ t n ) -Ñ (0, x √ t n )| + | Ñ (0, x √ t n ) -Ñ (0, 0 + )|.
The first term is small for x big enough thanks to Lemma . . The second is small for n big enough thanks to Lemma . . The third term is zero, the fourth term is small when t n is small enough using Lemma . . Finally, the last term is controlled by C(u)x √ t n due to Lemma . , and we have the desired result.

. . Recovering the initial curve χ 0

In this section, we prove that the curve χ is equal to χ 0 at time zero, combining the results of the two previous parts and the choice of u + in the introduction. The system that verify N and T at time zero is the following:

T x (0, x) = 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x), Ñx (0, x) = -1 √ i u + x 2 e -iα 2 log |x| T (0, x), ∀x = 0,
with initial value given by T (0, 0 ± ) = Θ(A ± α ) and e iα 2 log |x| Ñ (0, 0 ± ) = Θ(B ± α ).

Recalling the definition of u + given by ( . ), T (0) and Ñ (0) satisfy the same Cauchy system ( . ) as T 0 and N 0 , hence χ(0) = χ 0 . Finally, we are left to prove the convergence rate ( . ) of χ(t, x) as t goes to zero. Since χ t (t, x) = c(t, x) and c(t, x) = |ψ(t, x)| ≤ C √ t , we have:

|χ(t 2 , x) -χ(t 1 , x)| ≤ t 2 t 1 C √ t dt ≤ C √ t 2 ,
and Theorem . is proven.

-Dispersion for the Schrödinger equation with the inverse square potential in dimension n ≥ 3

Blomberg's laboratories -Andi Gladwin

This chapter depicts the state of our work on this problem.

. . Introduction to dispersion estimate for the Schrödinger equation with a potential

In this section, we will consider the Schrödinger equation with a source term:

i∂ t u + ∂ 2 x u + V u = 0, ( . ) 
in dimension n ≥ 3. This corresponds to the evolution of a particle in presence of a potential V . We will note W := e it(∆+V ) the operator of the associated semigroup and U := e it∆ the operator of the free group. The goal is to obtain dispersion estimates on the Schrödinger operator of the type:

u(t) L r ≤ 1 t δ u 0 L r ( . )
for a solution u of ( . ) and (r, r) conjugated exponents. We can already direct the reader to survey [ ] conducted by Schlag in which references are given on this subject. A first point to note is that W can have non-zero eigenvectors. These particular solutions will not be subject to the phenomenon of dispersion. In order to avoid these cases, we must consider the operator W P c where P c is the projection onto the continuous spectrum of -∆ + V . In this context, the results obtained depend on the decay of the potential V , which can be measured by upper-bounds like ) for some β (where the notation • designates the Japanese bracket: x = √ 1 + x 2 ), or by asking that V ∈ L p for some p. One of the first proof of dispersion estimate has been proven for even more regular decaying potentials with exponential decay in [ ]. Then, Jensen and Kato in [ ] obtained estimates in L 2 weighted spaces in dimension n ≥ 3, defined as follows: ) and for V controlled by ( . ) with β > 2. This allowed them to obtain the L 1 → L ∞ dispersion in [ ] by perturbative arguments still for n ≥ 3. Just as explained in the introduction of this thesis, one then obtains all the dispersion relations by interpolation with L 2 mass conservation.

|V (x)| x -β , ( . 
L 2 α (R n ) = {f : R n → C/ x α f L 2 < ∞}, ( . 
To cite other methods, scattering arguments have been used in [ ], [ ] and [ ] allowing to obtain L 1 → L ∞ estimates under weaker assumptions. Note that it is in [ ] that the first estimates in dimension 2 (i.e. lower that 3) have been proved for dispersion and Strichartz. In fact, this method can also be called perturbative insofar as the sufficient decrease of V allows one to assimilate solutions to a solution of the free evolution. Now when V = -a |x| 2 , let us first notice that the homogeneity of the potential is the same as the one of the Laplacian. For this reason, it is then a priori no longer possible to use perturbative arguments. The problem is in fact that the potential in |x| -2 is a limiting case for the existence of global time estimates of the Schrödinger equation as explained in [ ]. Moreover, the lack of integrability of this potential no longer satisfies the assumptions of the previous results. This chapter is constructed as follows: in Section . we detail the proof of the result of [ ] with the simplification by Ginibre in [ ] and in Section . we present the work that has already been done to adapt those arguments to the case where V = -a |x| 2 .

. . Comments on the paper [ ] by Jean Ginibre in [ ]

In this section, we detail the arguments given by Ginibre in [ ] and provide all the proofs of his estimates. From now on, we consider r ∈ [2, ∞] and r its conjugate. The theorem studied is the Theorem . of [ ].

Theorem . (Dispersion for Schrödinger with a potential, [ ])

. Let δ = n 1 2 -1 r . If V ∈ F(L 1 ), V ∈ L n 2δ and x α V ∈ L n δ , ( . 
) ) then we have the following dispersion estimate for any r > 2:

P c ∈ B(L 2 ) ∩ B(L r ) ∩ B(L r ) and [P c , W (t)] = 0, ( . ) P c W (t) ∈ B(L 2 α , L 2 -α ) and P c W (t) B(L 2 α ,L 2 -α ) ≤ C(2πt) -δ , ( . 
P c W (t) L r ,L r ≤ 1 t δ .
( . )

Note that the estimate ( . ) is taken here as an hypothesis but has been proven in our case in [ ]. The original proof relies on high and low energy estimates. However, Ginibre arrived to the same result with simpler perturbative arguments that we detail below.

. . . Iterations of Duhamel's formula

The first step is to iterate the Duhamel's formula k times, for k ≥ δ. We will apply later the formula one more time. If we write it two times, we have:

W (t)P c =U (t)P c -i t 0 U (t -τ )V P c U (τ )dτ ( . ) + t 0 U (t -τ )V τ 0 U (τ -σ)V P c W (σ)dσdτ.
In order to generalize this formula, we introduce U 0 (t) = U (t) and for k ∈ N * :

U k (t) = (-i) k 0≤t 1 ≤...≤t k ≤t U (t -t k )V...V U (t 2 -t 1 )V U (t 1 )dt 1 ...dt k ,
and by induction, we obtain that:

W (t)P c = k j=0 U j (t)P c -i t 0 U k (t -τ )V W (τ )P c dτ. ( . )
The following lemma will allow us to make use of the Jensen-Kato estimate ( . ) by commutating some terms in the last integral.

Lemma . . For any τ ∈ R, for any k ∈ N, we have:

P c W (τ ) = P c k j=0 U j (τ ) -i τ 0 P c W (τ -σ)V U k (σ)dσ. ( . )
Proof. First, for k = 0 we have U 0 = U . Since ∆ = (∆ + V ) -V , the use of the Duhamel's formula for this operator gives us another expression for U :

U (τ ) = W (τ ) + i τ 0 W (τ -σ)V U (σ)dσ,
( . ) so we deduce that:

P c W (τ ) = P c U (τ ) -i τ 0 P c W (τ -σ)V U (σ)dσ. ( . )
Now, iterating this k times gives us the desired result, similar to ( . ):

P c W (τ ) = P c k j=0 U j (τ ) -i τ 0 P c W (τ -σ)V U k (σ)dσ.
( . ) Dispersion estimates on U provide a 1 t δ bound, so t = 0 would become a singularity in the integrals. To avoid that, Ginibre proposes the following expression, by using the formula of the Lemma . on the last integral, and for some ã > 0: Finally, we cut the last integral to avoid τ -σ be close to zero: . ) and this expression ( . ) can be adequately treated with the following estimations.

W (t)P c =
W (t)P c = k j=0 U j (t)P c -i t 0 χ(τ ≤ ã)U k (t -τ )V W (τ )P c dτ -i t 0 χ(τ ≥ ã)U k (t -τ )V P k j=0 U j (τ )dτ + t 0 τ 0 χ(τ ≥ ã)χ(τ -σ ≤ ã)U k (t -τ )V P c W (τ -σ)V U k (σ)dσdτ + t 0 τ 0 χ(τ -σ ≥ ã)U k (t -τ )V P c W (τ -σ)V U k (σ)dσdτ, ( 

. . . Estimations of the operators

All our upper-bounds are supported by the three following estimates:

U k (t) X ≤(2πt) -δ C k min(1, t k ), ( . ) t 0 χ(τ ≤ ã)U k (t -τ )V W (τ ) X ≤(2πt) -δ C k min(1, t k )ãe ã V 1 V 1 , ( . 
) ) with δ = n 1 2 -1 r the usual dispersion exponent obtained by interpolation and X = B(L r , L r ) our ambient space. Using Ginibre's indication , we obtain this bound for k ≥ δ:

P c W (t) L 2 α ,L 2 -α ≤C 1 (2πt) -δ , ( . 
W (t)P c X ≤ k j=0 C j min(1, t j ) (2πt) δ P + C k min(1, t k ) (2πt) δ ãe ã V 1 V 1 + t 0 χ(τ ≥ ã)C k min(1, (t -τ ) k ) (2π(t -τ )) δ V P k j=0 C j min(1, τ j ) (2πτ ) δ + t 0 χ(τ ≥ ã)C k min(1, (t -τ ) k ) (2π(t -τ )) δ C k min(1, τ k ) (2πτ ) δ ãe ã V 1 V 1 + t 0 τ 0 χ(τ -σ ≥ ã)C k min(1, (t -τ ) k ) (2π(t -τ )) δ C 1 (2π(τ -σ)) δ C k min(1, σ k ) (2πσ) δ dσdτ.
We are left to show that

I δ = t-ã ã dt 1 (t -t 1 ) δ t δ 1 ≤ 1 t δ ,
to obtain ( . ).

Since δ > 1:

I δ = 2 t 2 ã dt 1 (t -t 1 ) δ t δ 1 ≤ 2 δ t δ t 2 ã dt 1 t δ 1 = 2 δ t δ 1 t δ-1 -ã-δ+1 (1 -δ) 1 t δ ,
and we have ( . ).

. . . Proof of the estimations ( . ) and ( . )

For those two inequalities, Ginibre refers to the Lemma . , . and . of [ ]. For the sake of completeness we recall them here, along with their proofs.

Lemma . (Lemma . of [ ])

. For k ∈ N * , for any family of positive times (s j ), we have:

U (-t) k j=1 U (s j )V U (-s j ) L 1 ,L ∞ ≤ V k 1 t n 2 . ( . 
)
This lemma is a consequence of a kind of commutation between U and Fourier frequencies.

Proof. In the case n = 1, the kernel K(x, y) of U (-u)e ixξ U (-v) writes: . "The first estimate above takes care of the second integral: no singularity in t -τ because k is large, and no singularity in τ because τ ≥ a. The second estimate takes care of the first integral.

In the third integral, use the first estimate on the left of P and the second estimate on the right of P .

In Then, Lemma . is obtained by dispersion inequality, after writing V with the Fourier formula and noting that V ∈ L 1 . When n > 1, the properties of the exponential allow us to proceed similarly.

There is a similar result with the operator W :

Lemma . (Lemma . of [ ]). For k ∈ N * , for any family of positive times (s j ), we have:

U (t)   k j=2 U (-s k )V U (s k )   U (-s 1 )V W (s 1 ) L 1 ,L ∞ ≤ t -n 2 V k 1 e s 1 V 1 .
( . )

Since we don't have dispersion for W , this lemma requires a bootstrap argument, handled by the Gronwald's lemma.

Proof. Let , and if we apply Lemma . :

F t (s) ≤ 1 n 1 2 + V 1 sup ξ∈R n s 0 U (u -t)e ixξ W (-u)du L 1 ,L ∞ ≤ 1 n 1 2 + V 1 s 0 F t (u)du.
Finally, we conclude with Gronwald's lemma:

F t (s) ≤ 1 n 1 2 e s V 1 ,
and we have Lemma . by writing V as the integral of its Fourier transform.

With those two lemmas, we can obtain a first estimation of U k and the integral of U k V W . By interpolation we have that:

U (-t) k j=1 U (s j )V U (-s j ) X ≤ V k 1 t δ .
( . )

So for U k , we can compute:

U k X ≤ 0≤t 1 ≤...≤t k ≤t U (t -t k )V...V U (t 2 -t 1 )V U (t 1 ) X dt 1 ...dt k ≤ 0≤t 1 ≤...≤t k ≤t V k 1 t δ dt 1 ...dt k ≤ V k 1 t k t δ .
Similarly, we deduce:

t 0 χ(τ ≤ ã)U k (t -τ )V W (τ ) X ≤ (2πt) -δ C k t k ãe ã V 1 V 1 .
( . )

Since k ≥ δ, this bound will be useful for t close to zero. However, we need to be sharper for large times, obtain the min(1, t k ) in ( . ) and ( . ). For that, we use a last lemma.

Lemma . (Lemma . of [ ])

. For m ≥ 1, for δ > 0, (u 1 , ..., u m ) in either R + or R -, so that | u j | > ε there exists C such that

m-1 j=1 U (u j )V U (u m ) L 1 ,L ∞ ≤ C( V 1 + V 1 ) m j=1 1 < u j > n 2 , ( . ) m-1 j=1 U (u j )V W (u m ) L 1 ,L ∞ ≤ C( V 1 + V 1 ) m j=1 e um V 1 < u j > n 2 . ( . )
In the originial paper, the proof of Lemma . was omitted, but let us write it here.

Proof. Let {k 1 , ..., k p } ⊂ 1, m the maximal set of increasing indices such that ∀q ∈ 1, p |u kq | > ε m . So we can write:

m-1 j=1 U (u j )V U (u m ) L 1 ,L ∞ ≤ p-1 q=1 k q+1 -1 j=kq U (u j )V L 1 ,L ∞ m j=kp U (u j )V U (u m ) L 1 ,L ∞ .
The last terms behaves exactly as the other, except that it lacks a factor V . For the previous ones, it depends of the number of terms in the product.

If k q+1 -k q = 1, we use dispersion inequality:

k q+1 -1 j=kq U (u kq )V L 1 ,L ∞ = U (u kq )V L 1 ,L ∞ ≤ V 1 1 u n 2 kq ≤ V 1 (1 + m ε ) n 2 < u kq > n 2
.

If k q+1 -k q > 1, we use Lemma . :

k q+1 j=kq U (u j )V L 1 ,L ∞ ≤ V k q+1 -kq 1   k q+1 j=kq u j   -n 2 ≤ V k q+1 -kq 1 u -n 2 kq ≤ V 1 (1 + m ε ) n 2 < u kq > n 2
.

Therefore we have:

m-1 j=1 U (u j )V U (u m ) L 1 ,L ∞ ≤ C m,ε F (V ) p q=1 < u kq > -n 2 ≤ C m,ε F (V ) m j=1 < u j > -n 2 ,
where F (V ) is a product of powers of V 1 and V 1 at the power at most m -1, hence ( . ). The proof is exactly the same for ( . ), except that we apply Lemma . for the majoration of the last product.

Those results are for L 1 , L ∞ estimate, but as usual, by interpolation we can deduce the ones in the X spaces that replaces the exponent d 2 by δ.

If we apply Lemma . on the lefthand side of ( . ) and ( . ), we have that:

U k (t) X ≤ C(k, V 1 , V 1 ) 0≤t 1 ≤...≤t k ≤t 1 < t -t k > δ ... 1 < t 2 -t 1 > δ 1 < t 1 > δ dt 1 ...dt k and t 0 χ(τ ≤ ã)U k (t -τ )V W (τ ) X ≤C(k, V 1 , V 1 )e ã V 1 0≤t 1 ≤...≤t k ≤τ ≤ã 1 < t -t k > δ ... 1 < t 2 -t 1 > δ 1 < t 1 -τ > δ 1 < τ > δ dt 1 ...dt k dτ.
So to obtain ( . ) and ( . ), we want to have:

t 0 dt 1 < t -t 1 > δ < t 1 > δ ≤ t -δ ,
that is for large t the same as:

I δ = t-ã ã dt 1 (t -t 1 ) δ t δ 1 ≤ 1 t δ ,
that has already been treated.

. . Case V = -a |x| 2 for r = 2n n-2 and a > -(n-2) 2 4

In this section we discuss the case where V = -a |x| 2 , which does not satisfies the hypothesis ( . ) required in the previous section, that is the core of our current work. (x -y) n-2 .

( . )

Moreover, we have

U (-τ )V U (τ )ϕ L r ≤ |a| 2 n+2 π n τ 2 ϕ L r . ( . )
Proof. Let ξ ∈ R and let K ξ be the kernel of U (-τ )e ixξ U (τ ). We have we apply Hardy-Littlewood-Sobolev inequality to obtained the desired estimate:

K ξ (x, y) = 1 (4iπτ )
U (-τ )V U (τ )ϕ L r ≤ |a| 2 n+2 π n τ 2 ϕ L r .
( . ) Note that we don't obtain an estimate for the L ∞ norm. Therefore, after interpolating with the conservation of the mass we won't get all the dispersion estimate between L 2 and L ∞ but only those between L 2 and L r . Our current work consist in using this lemma to bound t 0 U (t -τ )V U (τ )dτ in L r .
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  Figure . -Observation d'un tourbillon présentant une singularité auto-similaire, H. Werlé, ONERA .

Figure . -

 . Figure . -Représentation tronquée du potentiel V = -a |x| 2 en dimension 3

  . ) Un couple (p, q) vérifiant ( . ) est appelé un couple admissible. La première démonstration de ces inégalités en a été faite par R. Strichartz dans [ ], pour p = q = 2 + n 4 . J. Ginibre et G. Velo les ont ensuite généralisées dans [ ] dans le cas p > 2. Les cas limites p = 2 pour n ≥ 3 ont par la suite été traités par Keel et Tao dans [ ]. Pour n = 2, le contre-exemple pour le cas (p, q) = (2, ∞) a été donné par Montgomery-Smith dans [ ].

  u λ est solution de ( . ) avec pour condition initiale u λ 0 (t, x) = λ 2 a u 0 (λx). Ensuite, l'exposant critique pour la régularité L 2 (c'est-à-dire laissant invariante par ce changement d'échelle la norme L 2 des solutions) est a = 4 n . De même, l'exposant critique pour la régularité Ḣ1 est a = 4 n-2 .

  Figure . -Représentation du repère de Frenet

  . ) sous réserve que la courbure c ne s'annule pas. Ces systèmes différentiels se retrouvent en dérivant les vecteurs et en utilisant quelques relations d'orthogonalités. 1.4.2.2 Utilisation du repère de Frenet : la transformation de Hasimoto En , Hasimoto relia les solutions de χ(t, x) de (BF) avec les solutions de Schrödinger -D cubique en utilisant le repère de Frenet introduit ci-dessus dans [ ]. Cette transformation est similaire à la transformation de Madelung introduite en [ ], envoyant l'équation de Gross-Pitaevskii sur l'équation d'Euler-Korteweg.

  L'un des travaux de cette thèse, pré-publié dans [ ], consiste à donner une preuve du résultat associé à l'existence d'opérateur d'onde [ ] permettant de retrouver à t = 0 une singularité auto-similaire. Cette nouvelle démonstration ne s'appuie pas sur l'existence des limites de T et N lorsque x → ±∞ et est donc plus directe. Cela est possible grâce au meilleur taux de décroissance pour l'existence des opérateurs d'onde dans [ ] par rapport au résultat de [ ] utilisé pour [ ]. Plus de détails sont donnés dans la Section suivante. Concernant le résultat de [ ] présenté dans la Section . . sur l'existence de solution ( . ) de (NLS) associée à une somme de masses de Dirac, il est montré dans le même article [ ] que la solution de (BF) correspondante décrit l'évolution d'une ligne brisée à travers le flot binormal. On s'attend alors à ce que le résultat de stabilité de [ ] de cette solution ( . ) de (NLS) corresponde à l'évolution d'une courbe présentant un nombre dénombrable de singularités. . . . Contribution : formation de singularité pour le flot binormal Nous présentons ici l'un des travaux de cette thèse, faisant l'objet du Chapitre et prépublié dans [ ]. Le principal résultat donne l'existence d'une solution de (BF) admettant à temps zéro une trace donnée présentant une singularité en 0 et régulière partout ailleurs.

  l'évolution d'une particule en présence d'un potentiel V . Nous noterons W l'opérateur du semi-groupe associé et U l'opérateur du groupe libre. L'objectif est d'obtenir des inégalités de dispersion sur l'opérateur de Schrödinger comme présentées pour l'évolution libre dans la Section . . . Nous pouvons d'ores et déjà orienter le lecteur vers [ ] dans lequel d'autres références sont listées à ce sujet. Une première différence avec l'évolution libre à noter est que W peut posséder cette fois-ci des vecteurs propres non nuls. Ces solutions ne seront donc pas sujettes au phénomène de dispersion. Afin d'éviter ces cas là, nous devons considérer l'opérateur W P c où P c est la projection sur le spectre continu de -∂ 2x + V . Dans ce contexte, les résultats obtenus sont dépendants de la décroissance de V , pouvant être quantifiée de manière ponctuelle par|V (x)| x -β ( . )pour un certain β (où la notation • désigne le crochet japonais : x = √ 1 + x 2 ), ou encore en demandant V ∈ L p pour un certain p.L'une des premières démonstration d'estimées de dispersion a été donné par Rauch dans [ ] pour des potentiels encore plus décroissants, à savoir à décroissance exponentielle. Par la suite, Jensen et Kato ont obtenus des résultats en dimension n ≥ 3 dans [ ] pour des estimations des espaces L 2 à poids, définis de la manière suivante :

  . ) avec une condition de type ( . ) pour β > 2. Cela a permis d'obtenir la dispersion L 1 → L ∞ dans [ ] par des arguments perturbatifs toujours en dimension n ≥ 3. Tout comme dans la Section . . , on retrouve alors toutes les relations de dispersion par interpolation avec la conservation de la masse L 2 . Pour citer d'autres méthodes, des arguments de scattering ont étés utilisés dans le cas de potentiels dépendant du temps dans [ ], [ ] et [ ] permettant d'obtenir les estimations L 1 → L ∞ sous des hypothèses plus faibles. Notons que c'est dans [ ] que les premières estimations en dimension 2 ont étés prouvés pour la dispersion et Strichartz. En fait, cette méthode peut également être qualifiée de perturbative dans le mesure où la décroissance suffisante de V permet de se ramener à une évolution libre. Maintenant lorsque V = -a |x| 2 , remarquons d'abord que l'homogénéité du potentiel est la même que celle du Laplacien. Pour cette raison, il n'est alors a priori plus possible d'utiliser des arguments perturbatifs. Le problème est en fait que le potentiel en |x| -2 est un cas limite pour l'existence d'estimations globales en temps de l'équation de Schrödinger comme expliqué dans [ ]. De plus, le manque d'intégrabilité de ce potentiel ne satisfait plus les hypothèses des résultats précédents. Cependant, Burq, Planchon, Stalker et Tahvildar-Zadeh ont obtenu des estimations de Strichartz pour a > -(n-2) 2 4 via des estimations de L 2 pondérées dans l'espace-temps pour l'équation de Schrödinger dans [ ]. La borne inférieure pour a est nécessaire pour que l'opérateur auto-adjoint -∂ 2 x + a |x| 2 soit bien défini (voir [ ] pour l'exemple). Les estimations de Strichartz au point final a = -(n-2) 2 4 ont été traitées plus tard dans [ ]. En ce qui concerne la dispersion, Fanelli, Fellia, Fontelos et Primo ont obtenu l'estimation classique de L 1 → L ∞ pour a > 0 en dimension dans [ ] et plus tard en dimension dans [ ] également pour a > 0, comme un cas particulier de l'étude des flux de Schrödinger électromagnétiques. Leur approche repose sur la théorie spectrale et leur permet d'obtenir le noyau de l'opérateur différentiel -∂ 2 x + a |x| 2 en fonction de ses fonctions propres généralisées. Avec ce noyau, ils prouvent une estimation plus faible de la dispersion L 1 → L ∞ lorsque -(n-2) 2 4 < a < 0 et montrent dans [ ] que l'opérateur n'est pas borné de L 1 à L ∞ lorsque -(n-2) 2 4 < a < 0. Ceci valide le fait que la dispersion faible de L 1 → L ∞ est optimale. Le but de ce chapitre est de rechercher une estimation régulière de la dispersion L r → L r pour un certain r > 1 approprié lorsque -(n-2) 2 4 < a < 0, avec une approche basée sur les idées de Ginibre. . . . Commentaires de J. Ginibre sur le papier [ ] : le cas V ∈ L n 2δ Dans cette section, nous présentons les arguments de J. Ginibre présentés dans [ ] permettant d'obtenir une preuve plus concise du résultat de [ ]. L'objectif est ensuite d'étendre cette preuve au cas où V est moins régulier. Le résultat de [ ] est le suivant. Théorème . (Dispersion pour l'équation de Schrödinger avec un potentiel)

  Tout d'abord, la dispersion dans les espaces à poids ( . ) (initialement prouvée par Jensen-Kato dans [ ]) a été démontrée pour le potentiel V = -a |x| 2 dans la Proposition de [ ] et impose d'avoir le coefficient des espaces à poids α = δ et la condition a > -(n-2) 2 4

  has been proven in [ ] and [ ] that norm inflation happens along with a loss of regularity, and in [ ] that we have in fact a norm inflating phenomena around any data. For -1 2 < s < 0, the control of Sobolev norms of Schwartz solutions on the torus and the line is proven in [ ] and [ ]. More recently, global wellposedness has been proven in [ ] for any s > -1 2 . On the other hand, the critical Fourier-Lebesgue space associated to this equation is F(L ∞ ), i.e. Fourier transform in L ∞ . The well-posedness has been proven for initial data with Fourier transform in L p for p < +∞ in [ ],[ ] and [ ].

  ≤ ã)U k (t -τ )V W (τ )P c dτ -i t 0 χ(τ ≥ ã)U k (t -τ )V W (τ )P c dτ = ≤ ã)U k (t -τ )V W (τ )P c dτ -i t 0 χ(τ ≥ ã)U k (t -τ )V P ≥ ã)U k (t -τ )V P c W (τ -σ)V U k (σ)dσdτ.

  the last integral, use the first estimate for the two U k 's and the Jensen-Kato black box for W ." in [ ].wich is of the formG(x, y) × H ξ + x 2u + y 2vwhere H is the Fourier transform of e -iz 2 (1 4u + 1 4v ) , that is ce -i uv u+v (•) 2. So K is of the form e iaξ 2 e i(bξx+cξy) G(x, y), with a, b, c constants depending on u and v. Letting ξ go to zero, we identify G with the kernel of U (-(u + v)), so we have U (-u)e ixξ U (-v) = e iθ e iηx U (-(u + v))e iζx .

F 0 U

 0 t (s) = sup ξ∈R n U (s -t)e ixξ W (-s) L 1 L ∞ .With Duhamel's formula, we have:F t (s) ≤ sup ξ∈R n U (s-t)e ixξ U (-s) L 1 ,L ∞ + sup ξ∈R n s (s -t)e ixξ U (u -s)V W (-u)du L 1 ,L ∞

e

  transform of 1 is the Dirac δ in the sense of the distributions. Now, -iy•λξ a λ 2 |y| 2 λ n dy,so F a |z| 2 (λξ) = λ 2-n F a |z| 2 (ξ) and F a |z| 2 (ξ)is an homogeneous function of degree 2 -n. Using that, the kernel K of U (-τ )e ixξ U (τ ) is given by:K(x, y) = G(x, y)1 ξ= y-x 2iτ V (ξ)dξ = G(x, y) V y -x 2iτ = G(x, y) (2iτ ) n-2 (x -y) n-2 . ( . )Finally, for ϕ ∈ L r , we have U (-τ )V U (τ )ϕ =a G(x, y) (2iτ ) n-2 (x -y) n-2 ϕ(y

  

Table des matières

 des Introduction. Présentation des travaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction à l'équation de Schrödinger linéaire . . . . . . . . . . . . . . . . . Condition initiale régulière . . . . . . . . . . . . . . . . . . . . . . . . . . Condition initiale dans l'espace des distributions . . . . . . . . . . . . . Invariances et lois de conservation . . . . . . . . . . . . . . . . . . . . . Estimations de dispersion dans les espaces de Lebesgue . . . . . . . . . Estimations de Strichartz . . . . . . . . . . . . . . . . . . . . . . . . . . . Équation de Schrödinger linéaire avec un terme source . . . . . . .

. Solutions à régularité critique pour l'équation de Schrödinger cubique en dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Équation de Schrödinger non-linéaire en dimension n . . . . . . . .

Table des matières

 des . Présentation des travaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repère de transport parallèle d'une courbe . . . . . . . . . . . . . . . . Quelques solutions particulières régulières . . . . . . . . . . . . . . . . . Solutions auto-similaires . . . . . . . . . . . . . . . . . . . . . . . . . . . Contribution : formation de singularité pour le flot binormal . . . . . . Dispersion pour l'équation de Schrödinger avec un potentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

		Commentaires de J. Ginibre sur le papier [ ] : le cas V ∈ L	n 2δ . . . .
	. .	Contribution : vers le cas V ∈ L	n 2 ,∞

. Introduction à l'équation de Schrödinger linéaire . . . . . . . . . . . . . . . . . Condition initiale régulière . . . . . . . . . . . . . . . . . . . . . . . . . . Condition initiale dans l'espace des distributions . . . . . . . . . . . . . Invariances et lois de conservation . . . . . . . . . . . . . . . . . . . . . Estimations de dispersion dans les espaces de Lebesgue . . . . . . . . . Estimations de Strichartz . . . . . . . . . . . . . . . . . . . . . . . . . . . Équation de Schrödinger linéaire avec un terme source . . . . . . . . Solutions à régularité critique pour l'équation de Schrödinger cubique en dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Équation de Schrödinger non-linéaire en dimension n . . . . . . . . . . Équation de Schrödinger non-linéaire cubique en dimension . . . . . . La solution fondamentale et ses perturbations . . . . . . . . . . . . . . Solutions en lien avec une somme de masses de Dirac . . . . . . . . . . Contribution : nouvelle classe de solutions pour l'équation de Schrödinger cubique D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lien entre l'équation de Schrödinger D cubique et la dynamique des tourbillons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Le modèle du flot binormal . . . . . . . . . . . . . . . . . . . . . . . . . . Repère de Frenet d'une courbe . . . . . . . . . . . . . . . . . . . . . . . Suite aux recommandations ministérielles concernant la francophonie cette partie est en français.

  Par ailleurs, l'espace critique Fourier-Lebesgue pour cette équation est F(L ∞ ), i.e. transformée de Fourier dans L ∞ . Le caractère bien posé a été prouvé pour des données initiales à transformée de Fourier dansL p avec p < +∞ dans [ ],[ ] et [ ].La suite de cette section va traiter le cas limite d'une donnée dans H -1

	Pour -1 2 < s < 0, le contrôle des solutions de Schwartz dans les espaces de Sobolev
	sur le tore et la ligne ont été prouvés dans [ ] et [ ]. Plus récemment, leur caractère
	globalement bien posé a été prouvé dans [ ] pour tout s > -1 2 . Lorsque s ≤ -1 2 , des exemples de norm inflation avec perte de régularité ont été
	exhibés dans [ ] et [ ]. Ceci a été généralisé autour de n'importe quelle condition initiale
	dans [ ].
	2 et à transfor-
	mée de Fourier dans L ∞ .

et [ ] dans H s lorsque s ≥ 0. Ce n'est cependant plus le cas lorsque s < 0. Par exemple, un phénomène de norm inflation (signifiant que le flot n'est pas uniformément continu sur les bornés de H s ) est mis en avant dans [ ]. On peut donc trouver des conditions initiales très proches qui après un temps très court s'écartent beaucoup. Ensuite, l'espace de Sobolev critique pour le changement d'échelle ( . ), ici u λ (t, x) := λu(λ 2 t, λx) est Ḣ-1 2 .

Stabilité de la solution fondamentale

  

	1.3.3.2 Les résultats obtenus à présent ne dépendent pas du caractère focalisant ou défocalisant
	de l'équation, nous ne noterons donc plus que + au lieu de ±. Il a été prouvé dans [ ] que
	la solution u α est stable, au sens où elle appartient à une classe de solution plus large, du
	type	u(t, x) = u α (t, x) + e i|α| 2 ln t u + -	x 2	+ r(t, x),
	où u + caractérise la perturbation et r est un reste dont la convergence vers 0 à t = 0
	est contrôlée. Pour obtenir ce résultat, on applique la transformation pseudo-conforme.
	Cela permet de regarder l'équation sous une autre échelle, qui envoie notamment t = 0
	en l'infini. Par la suite, il s'agit de montrer un théorème d'existence en temps grand, autour
	d'une solution de type libre. Disposant de la formule de Duhamel, nous appliquons une
	méthode de point fixe. La théorie correspondante est appelée la théorie de la diffusion
	(aussi appelée scattering en anglais) et consiste à associer, si possible, aux solutions du
	problème non-linéaire un état asymptotique de type évolution libre.

des solutions auto-similaires par Gutiérrez, Rivas et Vega Les

  

	1.4.5.2 Caractérisation

solutions χ α exhibées dans la Proposition . ont été caractérisées plus en détail par Gutiérrez, Rivas et Vega dans [ ]. Il a été établi que ces solutions auto-similaires présentent une singularité issue de l'intersection de deux lignes droites. Plus précisément, il existe A + α et A - α deux vecteurs unitaires de S 2 dont l'angle θ entre eux est donné par la relation

  t La première partie de la preuve consiste à appliquer un résultat d'existence d'opérateur d'onde présenté dans la section . . . .a, à partir d'un état asymptotique u + déterminé en fonction de χ 0 . À l'aide du repère de transport parallèle ( . ), on construit les vecteurs T et N caractérisant une solution χ de (BF) pour des temps strictement positifs. Dans cette nouvelle démonstration, il est possible d'obtenir directement la limite des vecteurs T (t, x) et N (t, x) quand t tend vers zéro, sans passer par leurs limites lorsque x → ±∞. Ceci a été possible en supposant plus de régularité sur χ 0 , impliquant plus de régularité sur u + , permettant d'obtenir un meilleur taux de convergence du résultat d'existence d'opérateur d'onde vers l'état asymptotique déterminé par u + . À partir de là, la singularité de χ à (x, t) = (0, 0) est caractérisé par les résultats de Gutiérrez, Rivas et Vega présentés dans la Section . . . .

	1 4 .	( . )

  The last term will provide us the differential equation that we are looking for. The term in α 2 vanishes since it is an imaginary term inside the operator. All the other terms go to zero with t thanks to Corollary .

																			2 4t	2 is 2 e i s 2 4t u	1 t	,	s t	T (t, s)ds
						+		x 2 x 1	e -i s 2 4t √ t	u	1 t	,	s t	N (t, s)ds.		
	Now, recall that u 1 t , x t = e i 1 t ∂ 2 x u +	x t + r 1 t , x t . If we write:
								e i 1 t ∂ 2 x u +	x t	=	e i x 2 4t i	e -i xy 2 e i y 2 4 t u + (y)dy,
														t				
	we have:																	
	e -i x 2 4t √ t	u	1 t	,	x t	=	1 √ i	e -i xy 2 e i y 2 4 t u + (y)dy +	e -i x 2 4t √ t	r	1 t	,	x t	-→ t→0	1 √ i	u +	x 2	,
	since r 1 t , x t	L ∞ ≤ t	3 4 . Note that in [ ], r decays like t	1 4 so the present argument is not
	enough.																	
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Avant de mettre en évidence le lien que nous utilisons entre la mécanique des fluides et la mécanique quantique, présentons d'abord le modèle utilisé pour décrire la dynamique des tourbillons filamentaires.. . . Le modèle du flot binormalLe modèle du flot binormal est défini parχ t = χ x ∧ χ xx ,(BF) où χ(t, x) est à valeur dans R 3 , t représente le temps et x est la variable de paramétrisation de longueur d'arc. Cette équation a été posée en par DaRios dans [ ] avant d'être retrouvée en par Arms et Harma dans [ ], dans le but de modéliser la dynamique des vortex filamentaires soumis aux équations d'Euler incompressible. En quelques mots, voici comment l'équation se dérive. En notant u la vitesse du fluide et ω sa vorticité, la loi de Biot et Savart s'écrit :u(t, x) = R 3 (x -y) ∧ ω(t, y) 4π|x -y| 3 dy.Maintenant, puisque l'on suppose que le fluide représente un tourbillon filamentaire, cela revient à supposer que ω(t) est localisé sur une courbe 1D (i.e. ω = Γχ x δ χ ) avec χ x de norme 1, ce qui donne :u(t, x) = Γ 4π ∞ -∞ (x -χ(t, s)) ∧ χ s (t, s) |x -χ(t, s)| 3 ds.On va de plus supposer que χ(t, 0) = (0, 0, 0), que χ x (t, 0) = (1, 0, 0) et que x = (x 1 , x 2 , 0). On pose = x 2 1 + x 2 2 . En première approximation, un développement limité en zéro sur

. This problem is motivated by the lack of result for critical regularity initial condition, and also by the study of the vortex filaments dynamics approximated by the binormal flow. Our result is based on a scattering approach, after performing a pseudo-conformal transformation, and on fine estimations of oscillatory integrals.
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. . . Comments on the constants and Jensen-Kato estimate

Before we begin, we shall explain the choices of the values of a and r and their potential consequences. First, the condition a > -(n-2) 2 4 is determined by the Lemma . in the use of Hardy's inequality and has already been asked in [ ] to obtain the Strichartz estimates for the equation but doesn't interfers anywhere else in the proof. By the way, Lemma . also imposes to set the exponent of the weighted spaces α = δ. Now, the choice r = 2n n-2 is necessary for V to belong in a weak L p space in Lemma . (that ensures the formula ( . ) to be well defined). It's interesting to note that r is then the Sobelev exponent for the classical Sobolev injection W 2,p (R n ) → L 2n n-2 . However, this sets δ = 1 and will get us in trouble when integrating 1 t δ . That's why we shall expect dispersion in ln t t . Since δ = 1, we can chose k = 1 and the starting point of our computations is:

Finally, the only inequality that we obtained are for the moment in B(L r , L r ), so instead of expecting all the dispersion estimates between L 2 and L ∞ by interpolation, we will much probably have them between L 2 and L r .

That being said, we already have a Jensen-Kato (like ( . )) estimation at our disposition, proved in [ ].

Lemma . (Proposition of [ ]). Let u be a solution of Schrödinger equation with

( . )

The proof relays on the introduction of the pseudo-conformal vectorfield.

Proof. Let L = x 2 + it∇ the pseudo-conformal vectorfield, and C = L 2 + at 2 1 |x| 2 . We have, after computations

we apply the Hardy inequality:

( . )

Then we get rid of M and use the norm conservation:

Finally, we end the proof by interpolating this with the L 2 conservation, i.e. for α = 0.

Consequently, we must take α = δ.

. . . Current work in the Lorentz spaces

If V isn't in any L p space, it however belongs to L n 2 ,∞ , defined as follows:

associated with the quasi-norm

( . )

If we integrate Lebesgue function on level sets, we can see how Lorentz spaces can be seen:

( . ) so that L p,q are defined as the interpolation between L p = L p,p and L p,∞ , and associated with the quasi-norm:

Those spaces provide us with the proper framework of our study, as they dispose of Hölder inequalities as well as a real interpolation theorem. Moreover, the choice r = 2n n-2 implies having V ∈ L n 2 ,∞ . This will allow us to bypass the lack of regularity of V as a multiplication operator. For this, we will use the following interpolation theorem on U (t).

Theorem . (The general Marcinkiewiez interpolation theorem).

Let A a linear operator such that A : L p 0 ,r 0 → L q 0 ,s 0 and A : L p 1 ,r 1 → L q 1 ,s 1 , with p 0 = p1 and q 0 = q 1 . Let θ ∈ [0, 1] and set p 2 , q 2 such that 1 p 2 = 1-θ p 0 + θ p 1 and 1 q 2 = 1-θ q 0 + θ q 1 , then for any r ∈ (0, ∞] we have A : L p 2 ,r → L q 2 ,r and

This theorem can be found in Theorem . . of [ ], and will provide a key argument in the next lemma.

Lemma . . We have that V U (t) ∈ L(L r , L r ). More precisely:

Proof. First, using the general Marcinkiewiez interpolation theorem we have:

( . )

Then, since V ∈ L n 2 ,∞ , we have by Hölder on Lorentz's spaces that:

because

Now we let ϕ ∈ L r and set φ = U (t)ϕ. By ( . ), φ ∈ L r,r , and the desired result is given by ( . ).

Then we also need the same result for weighted spaces L 2 α .

Lemma . . We have that V U (t) ∈ L(L r , L 2 α ). More precisely:

The proof is the same as the one of Lemma . if we notice that V ∈ L(L r,r , L 2 α ), or also

Next, we need a way to bypass the singularities near zero without having V ∈ F(L 1 ).

More precisely, we aim to recover bounds like ( . ) and ( . ). We have a first result given by the following lemma.

Lemma . . Let τ > 0, the operator U (-τ )V U (τ ) sends L r to L r and its kernel is given by K(x, y) = (-1) n 2 a 2 n+2 π n (iτ ) 2