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Titre : Excitations de basse énergie des verres de spin vectoriels
Mots clés : Verres de spin, Matrices aléatoires, Verres structurels
Résumé : Le travail de cette thèse concerne leproblème des excitations linéaires à basse én-ergie des modèles de verre de spin vectoriel.Une étude analytique et numérique est menée,considérant unmodèle de Heisenberg à champaléatoire entièrement connecté à températurenulle, un modèle de verre de spin p vectorielentièrement connecté et unmodèle de Heisen-berg dilué à champ aléatoire. Nous testons cesmodèles par rapport au comportement à bassetempérature des systèmes vitreux de dimen-sion finie, en particulier nous montrons qu’ilspossèdent des phases où la den- sité d’états estsans lacunes avec des modes quasi-localisés.Dans le cas du modèle dilué, nous montronsque la densité d’états suit une loi quartique àbasse fréquence, en accord avec plusieurs me-

sures récentes de cette quantité que l’on peuttrouver dans la littérature des modèles com-putationnels de verres. Dans les trois modèles,la transition de verre de spin est caractériséeen termes de comportement des ex- citationsles plus douces. Nous avons constaté que dansles modèles entièrement connectés, la transi-tion de verre de spin à température zéro dansun champ est une transition de délocalisationdes modes les plus douces. Dans le cas di-lué, une forme plus faible de délocalisation ap-paraît à la transition. Ces résultats élargissentnotre compréhension du point critique à tem-pérature zéro, en montrant comment l’ordredu verre de spin affecte la façon dont le sys-tème répond à de petites perturbations ma-gnétiques.

Title : Low energy excitations of vector spin glasses
Keywords : Spin Glasses, Random Matrices, Structural Glasses
Abstract : The work of this thesis concerns theproblem of linear low energy excitations of vec-tor spin glass models. An analytical and nu-merical study is carried out, con- sidering afully connected random-field Heisenberg mo-del at zero temperature, a fully-connected vec-tor p-spin glass model and a sparse random-field Heisenberg model. We test these modelsagainst the low temperature behavior of finitedi- mensional glassy systems, in particular weshow that they posses phases where the den-sity of states is gapless with quasi-localisedmodes. In the case of the sparse model, weshow that the density of states follows a quar-tic law at low frequency, consistently with se-

veral recent measures of this quantity that canbe found in the literature of computer glasses.In all the three models, the spin glass transitionis characterised in terms of the behavior of thesoftest excitations. We found that in the fullyconnected models the zero temperature spinglass transition in a field is a delocalisation tran-sition of the softest modes. In the sparse case,a weaker form of delocalisation appears at thetransition. These results broaden our unders-tanding of the zero temperature critical point,by showing how spin glass ordering affects theway the system responds to small magneticperturbations.



Titolo : Eccitazioni di bassa energia dei vetri di spin vettoriali
Parole chiave : Vetri di spin, matrici aleatorie, vetri strutturali
Sommario : Il lavoro contenuto in questa tesiriguarda il problema dell’eccitazioni di bassaenergia dei modelli di vetri di spin vettoriali.Viene proposto uno studio analitico e numericodi tre modelli : il primo consiste in un vetro dispin di Heisenberg con campo magnetico es-terno random con grafo di interazioni denso,il secondo in un modello p-spin di Heisenbergcon grafo di interazioni denso, il terzo infine inun modello di Heisenberg con campo magne-tico esterno random e grafo di interazioni di-luito. Questi modelli sono valutati rispetto alcomportamento dell’eccitazioni dei sistemi ve-trosi a basse temperature : in particolare, nellatesi si mostra che questi modelli posseggonodelle fasi in cui la densità degli stati è senzagap e i modi sono quasi-localizzati. Nel mo-

dello sparso la densità degli stati ha una dipen-denza quartica dalla frequenza, in accordo conmolteplici misure di questa quantità reperibilidalla letteratura sui modelli vetrosi computa-zionali. In tutti e tre i casi di studio, la transi-zione nella fase del vetro di spin è caratteriz-zata rispetto al comportamento dei modi sof-fici. Troviamo che nei modelli densi la transi-zione del vetro di spin è una transizione di de-localizzazione dei modi soffici. Nel caso sparso,la delocalizzazione alla transizione si manifestain forma più debole. Questi risultati ampliano lanostra comprensione del punto critico di tem-peratura nulla, mostrando come l’emergenzadi un ordinamento da vetro di spin modifichila risposta del sistema a piccole perturbazionimagnetiche.
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Résumé étendu en français

Les verres de spin sont l’archétype des systèmes désordonnés et complexes. Introduits au début
des années 1970 comme modèles théoriques pour expliquer le comportement anormal de certains
alliages magnétiques [AHV72], Suite à l’introduction du modèle d’Edwards et Anderson [EA75 ; EA76],
qui identifie un paramètre d’ordre pour la transition spin-verre, avec l’étude du modèle de champ
moyen associé [SK75] et la solution fournie par G. Parisi [Par79b ; Par80a ; Par80b ; Par80c], on s’est
vite rendu compte qu’ils étaient capables de capturer des phénomènes bien plus variés. Les verres
de spin ont un lien naturel avec les verres structuraux, comme leur nom l’indique : les deux systèmes
présentent un ordre amorphe, dont les propriétés sont hautement non triviales. En particulier, les
deux systèmes sont caractérisés par une dynamique de relaxation extrêmement lente qui est forte-
ment influencée par leur hétérogénéité spatiale [Sve+87 ; CC05 ; Cav09 ; Bai+23]. Les verres de spin
s’apparentent également à des systèmes granulaires : ces systèmes réagissent très fortement à de
très petites perturbations, ce qui entraîne des déformations plastiques de leur structure appelées
avalanches. Des phénomènes similaires se produisent également dans les verres de spin et sont liés
au concept de phase "marginalement stable" [MW15]. Enfin, les verres de spin se sont révélés être des
modèles pour les problèmes de satisfaction des contraintes [MPZ02], les réseaux neuronaux [Hop82 ;
Ami89], les problèmes écologiques [Alt], le repliement des protéines [Wol05], la dynamique des mar-
chés financiers [PB20] et bien d’autres applications intéressantes.

Au cours des quarante dernières années, les modèles de verre de spin avec des spins d’Ising ont
été étudiés demanière intensive. Les modèles de verre de spin avec des variables de spin vectorielles
à norme unitaire ont reçu moins d’attention, même s’ils ont été étudiés depuis les premières an-
nées de la théorie du verre de spin [Alm+78 ; GT81 ; GGD82 ; CSG82 ; CS82 ; ES82] (que nous supposons
avoir commencé en 1972 avec l’article de P. W. Anderson [AHV72]). Les spins sphériques vectoriels
représentent des systèmes magnétiques désordonnés avec des interactions isotropes. Expérimenta-
lement, il apparaît que les effets tels que la "mémoire", le "rajeunissement" et le "vieillissement", qui
sont typiques de la dynamique hors équilibre du verre de spin, sont d’autant plus forts que le degré
d’anisotropie des spins est faible [Ber+04]. Les verres de spin vectoriels permettent également d’étu-
dier les excitations de faible énergie, c’est-à-dire qu’ils présentent un spectre vibrationnel d’excitations
autour des minima locaux de leur énergie potentielle. Ils semblent donc idéaux pour modéliser les
modes linéaires des systèmes désordonnés, en particulier ceux des verres structuraux. Dans les cha-
pitres un et deux de la première partie de cette thèse, une introduction sur les verres de spin et leur
lien avec les verres structuraux est présentée.

Les excitations de faible énergie dans les verres structuraux et les solides amorphes sont surabon-
dantes par rapport à celles des solides ordinaires, c’est-à-dire les cristaux. En plus de la prédiction de
Debye, les systèmes vitreux ont une densité d’états vibratoires (VDoS) qui s’étend jusqu’à la fréquence
zéro, obéissant à une loi quartique. Les modes à basse fréquence associés sont quasi-localisés, étant
confinés à l’échelle microscopique du système : ces excitations sont liées à des points faibles, des
groupes de particules voisines présentant des susceptibilités mécaniques anormalement élevées. La
présence de telles excitations est une conséquence de l’hétérogénéité spatiale du verre : dans les cris-
taux, seules les excitations délocalisées, représentées par les phonons, sont présentes. Il est à noter
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que ces excitations sont également présentes dans les verres : cependant, elles sont fortement hybri-
dées avec des excitations quasi-localisées [LB21]. Le VDoS quartique et les excitations quasi-localisées
associées ont été prédits dans les années 80 par les théories phénoménologiques du potentiel mou
[KKI82 ; KKI83 ; Buc+91 ; Buc+92 ; Buc92 ; Gur+93 ; GPS03 ; GC03] et ont été observés numériquement
dans plusieurs modèles différents de verres [LDB16 ; MSI17 ; LB17 ; SMI18 ; KBL18 ; Ang+18 ; Wan+19a ;
Wan+19b ; Ric+20 ; Bon+20 ; Ji+20 ; Ji+21], ce qui semble donc être une caractéristique universelle de la
physique du verre. Expérimentalement, on a observé depuis les années 70 que la chaleur spécifique
à basse température des verres est plus élevée que celle des cristaux [ZP71] : cet excès de chaleur
spécifique a été interprété en termes de "systèmes à deux niveaux à effet tunnel" [Phi72 ; AHV72] : de
petits groupes de particules qui sautent facilement entre deux états quasi-dégénérés au moyen d’un
effet tunnel quantique. Dans le troisième chapitre, nous examinons les propriétés des excitations vi-
treuses, en montrant comment, dans les modèles de champ moyen, elles peuvent être représentées
au moyen d’ensembles de matrices aléatoires.

Des théories de premier principe des excitations vitreuses ont été absentes jusqu’à présent. Les
modèles de verre de spin avec des variables continues sont des candidats naturels pour un tel ob-
jectif, étant donné leur relation avec les verres structurels et étant donné que, contrairement aux
premiers, les modèles de verre de spin ont un hamiltonien bien défini, permettant ainsi des pré-
dictions théoriques analytiques. Dans cette thèse, nous étudions les modèles vectoriels de verre de
spin sous l’approximation du champ moyen : nous commencerons par des modèles définis sur des
graphes complets ou entièrement connectés (modèles denses), où les champs locaux ressentis par
chaque spin sont statistiquement les mêmes site par site, puis nous considérerons des modèles sur
des graphes épars aléatoires. Ce cas correspond à une amélioration de l’approximation précédente
du champmoyen, en considérant les corrélations entre les spins voisins par la méthode de la cavité :
un ensemble d’équations auto-cohérentes pour les distributionsmarginales de spin en un point et en
deux points peut être résolu exactement dans la limite thermodynamique, en conséquence des struc-
tures localement arborescentes des graphes aléatoires avec une connectivité faiblement fluctuante.
Dans cette thèse, nous montrons que les modèles vectoriels de verre de spin reproduisent les prin-
cipales caractéristiques des excitations vitreuses, telles que la quasi-localisation et la pseudo-densité
d’états. Le choix des variables de spin vectoriel est fondamental pour l’observation de ces proprié-
tés. En effet, des modèles plus simples avec des variables continues comme le spin p sphérique ne
montrent pas ces propriétés. Nous établissons un lien entre l’émergence de phases marginalement
stables, telles que la phase de verre de spin, et les modes localisés du spectre vibrationnel.

Nous avons organisé nos résultats dans les parties II et III : la première, qui contient les chapitres
quatre et cinq, concerne l’étude des modèles de verres de spin sur des graphes entièrement connec-
tés, tandis que la seconde concerne un modèle de verres de spin sur un graphe régulier aléatoire et
est contenue dans le chapitre six.

Le premier modèle que nous examinons est un modèle de verre de spin à champ aléatoire avec
interaction par paire, défini sur un graphe complet. Nous étudions tout d’abord le modèle de ma-
nière analytique, en commençant par un calcul répété de l’énergie libre du système. Nous discutons
à la fois de la phase de réplique symétrique (RS) et de la phase de rupture de symétrie (RSB), en
soulignant les similitudes et les différences avec le modèle de spins d’Ising (le modèle SK). Ensuite,
nous nous concentrons sur le problème des excitations à basse énergie : nous abordons d’abord le
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problème de la température finie, en étudiant le hessien de l’énergie libre TAP du modèle et ses pro-
priétés. Nous nous concentrons ensuite sur le spectre harmonique lié à la fonction hamiltonienne :
nous considérons le système à température zéro, en étudiant les excitations à basse énergie autour
des minima locaux du paysage énergétique, grâce à la diagonalisation numérique de la hessienne de
l’hamiltonien sur les configurations de spin qui représentent les minima locaux. Un travail numérique
approfondi est effectué, qui est comparé aux prédictions analytiques sur les propriétés spectrales
qui proviennent de l’application de la méthode de la cavité. Les résultats présentés dans le chapitre
quatre sont contenus dans notre publication scientifique [Fra+22]. Avant d’examiner les propriétés
spectrales de ces systèmes, nous procédons à une analyse des performances de l’algorithme de mi-
nimisation que nous utilisons, l’algorithme de "descente de gradient avec surrelaxation" (GD-OR). Le
test de performance est effectué en tenant compte de la qualité des niveaux d’énergie atteints par la
procédure de minimisation (à quelle profondeur dans le paysage énergétique l’algorithme est allé) et
du temps de convergence de l’ensemble de la procédure, en fonction de la taille du système (nombre
de spins) et de la largeur (l’écart-type) du champ magnétique externe aléatoire. Nous avons constaté
que dans la phase paramagnétique complète (RS), la présence d’une sur-relaxation affecte fortement
les performances de la procédure en termes de temps de convergence, même si aucun avantage si-
gnificatif en termes d’énergie n’est obtenu. Pour systèmes paramagnétiques le paysage est souvent
trivial, montrant pour certains échantillons une forme complexe apparemment seulement proche
du point critique. Dans la phase RSB, l’algorithme GD-OR garantit plutôt de meilleures performances
en termes d’énergie et de temps, par rapport à l’algorithme GD. Comme nous l’avons déjà indiqué,
nous avons obtenu des prédictions analytiques sur les propriétés statistiques des valeurs propres et
des vecteurs propres et les avons comparées aux données issues des simulations numériques. Nous
nous sommes principalement concentrés sur le système avec des spins à trois composantes, souvent
appelé "modèle de Heisenberg" dans la littérature. Pour cemodèle, et pour tous lesmodèles avec des
spins à plus de trois composantes, une transition de phase de verre de spin à température zéro dans
la largeur du champ externe aléatoire a été trouvée. Nos travaux ont permis de caractériser cette
transition de phase en ce qui concerne les propriétés des modes normaux, près du bord inférieur
du spectre. Nous avons trouvé un spectre sans lacune qui s’étend jusqu’à l’énergie zéro, pour n’im-
porte quelle valeur du champ externe. Les excitations douces au bord inférieur sont localisées dans
la phase paramagnétique et subissent une transition de délocalisation au point critique : en consé-
quence, la queue inférieure de la densité spectrale subit une transition d’un comportement en loi de
puissance ρ(λ) ∼ λm−1, où m est la dimension de la variable de spin, à un comportement de racine
carrée ρ(λ) ∼ √λ, typique des statistiques du bord inférieur des matrices de Wigner. Cette transition
est comprise au moyen du phénomène dit de "condensation de Bose-Einstein sur matrice aléatoire"
[LS16]. Dans la phase paramagnétique, dans la limite de taille infinie, il existe une correspondance
biunivoque entre les champs de cavité les plus faibles et les valeurs propres les plus faibles, et les
vecteurs propres correspondants développent une composante condensée qui apporte une contri-
bution finie à la normalisation globale. À la transition du verre de spin, cette corrélation est détruite
et la normalisation des vecteurs propres les plus faibles est dominée par des grappes multifractales
de spins. Nous avons testé ces prédictions à l’aide de nos données numériques : nous nous sommes
principalement concentrés sur la phase paramagnétique, trouvant une bonne correspondance pour
des valeurs élevées du champ externe. Cependant, à l’approche du point critique, de très forts ef-
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fets de taille finie apparaissent : d’une part, si la taille du système est trop petite, la corrélation entre
les champs de cavité les plus faibles et les valeurs propres les plus faibles est très faible, et le sys-
tème se comporte comme s’il était au point critique ; d’autre part, même si la taille du système est
suffisamment grande, des effets de taille finie non négligeables, liés aux fluctuations des entrées de
la matrice de résolvants, apparaissent. Notre théorie permet de calculer l’échelle des effets de taille
finie dominants.

Le secondmodèle que nous avons étudié est unmodèle de verre de spin "p-spin" avec un spin vec-
toriel et aucun champexterne aléatoire. Dans cemodèle, chaque spin interagit avec p autres spins par
le biais d’interactions aléatoires éteintes, comme dans les verres de spin ordinaires interagissant par
paire. Il est bien connuquede tels verres de spin sont desmodèles jouets de verres structurels. En par-
ticulier, ils reproduisent qualitativement la dynamique expérimentale hors équilibre des verres réels.
Dans notre cas, nous nous intéressons aux propriétés statiques : Les modèles "p-spin" présentent le
diagramme de phase de la "transition aléatoire du premier ordre", qui est un cadre théorique décri-
vant le passage d’un liquide à un liquide surfondu et enfin à un verre : cette théorie prédit l’existence
d’une transition thermodynamique statique du verre [Cav09] . Dans cette thèse, nous nous sommes
concentrés sur les propriétés des spectres harmoniques des minima du paysage énergétique : nous
discutons des résultats présentés dans notre travail [FNR22]. Le p-spin subit une transition de verre
de spin 1RSB à la température critique vitreuse. Le paysage énergétique correspondant est constitué
de bassins bien séparés, avec des barrières étendues. Plus haut dans le paysage apparaissent des
minimamarginaux avec de nombreuses directions plates. Nous avons effectué une étude analytique
complète du modèle, en nous concentrant en particulier sur les propriétés spectrales du système :
une fois de plus, nous avons exploité laméthode de la cavité pour obtenir des prédictions analytiques
sur le comportement des excitations linéaires du système. Le spectre harmonique autour d’un mini-
mum local subit une transition de délocalisation similaire à celle du modèle précédent : lorsque nous
considérons des minima dans la bande stable 1RSB du paysage énergétique, la densité spectrale a
un comportement en loi de puissance et la localisation au bord inférieur se produit, conformément
à l’image de la "condensation de Bose-Einstein à matrice aléatoire". Outre les minima stables avec
des spectres sans lacunes, la bande 1RSB présente des minima rares avec des spectres sans lacunes
et des excitations totalement délocalisées. Nous avons calculé analytiquement leur complexité et les
propriétés statistiques du spectre, en les comparant à celles desminima typiques sans lacunes décrits
ci-dessus. Nous appelons ces minima à trous "ultra-stables" : ce sont des versions à champmoyen de
verres ultra-stables, qui sont des matériaux obtenus par une procédure appelée dépôt physique en
phase vapeur, qui diffère de la procédure habituelle d’annhealing par laquelle un verre est préparé à
partir d’un liquide surfondu.

Le derniermodèle analysé dans cette thèse est un verre de spin à champ aléatoire dans un graphe
régulier aléatoire à connectivité finie. Bien qu’il s’agisse toujours d’un modèle de champ moyen en
raison de la structure arborescente locale, la présence d’un réseau de connectivité clairsemé rend ce
modèle plus proche des systèmes de dimension finie. On peut donc s’attendre à ce que les proprié-
tés des systèmes réels soient prises en compte avec une plus grande précision, en comparaison avec
les modèles entièrement connectés. Les résultats présentés dans cette thèse concernant ce modèle
sont inédits et encore incomplets. Notre travail est divisé en deux parties : dans la première, nous
résolvons numériquement les équations de la cavité pour les marginaux de spin et les perturbons,
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afin d’évaluer la stabilité des points fixes atteints. Cela nous a permis de fournir une mesure du dia-
gramme de phase du modèle, en établissant pour quelles valeurs de la largeur du champ externe et
de la température le système se trouve dans la phase RS ou RSB. Nous avons fait cela pour le système
de spins à trois composants (verre de spin deHeisenberg) et nous avons utilisé un pavage aléatoire de
la sphère unitaire. Dans la deuxième partie, nous avons étudié numériquement les spectres harmo-
niques du système, en procédant comme dans l’étude du premier modèle au chapitre quatre : nous
avons minimisé avec GD-OR l’hamiltonien et diagonalisé le hessien évalué sur la configuration du mi-
nimum atteint. Nous avons constaté que pour des champs externes importants, le spectre est fermé
et qu’il n’existe pas d’excitations à basse énergie. La lacune se referme à une valeur du champ de
l’ordre de la connectivité du système : pour des valeurs inférieures, les spectres sont sans lacune. La
queue inférieure de la densité d’états vibrationnels suit une loi quartique, comme celle observée dans
les systèmes vitreux à dimension finie. Il convient de noter que dans la version entièrement connec-
tée de ce modèle, nous avons trouvé un exposant qui était fonction de la dimension des spins. Ici,
l’exposant quatre semble être robuste à travers les dimensions des spins, ayant déjà été observé dans
le verre de spin XY [Lup17]. Notre interprétation de la loi quartique est ancrée dans l’image classique
des systèmes à deux niveaux : les structures inhérentes du paysage énergétique sont localement des
potentiels à double puits, séparant les configurations de spin qui diffèrent pour l’orientation d’un petit
nombrede spins. Ce scénario a été confirmépour le verre de spin tridimensionnel deHeisenberg dans
[Bai+15]. Nous avons constaté que les modes liés à ces excitations vitreuses sont quasi-localisés dans
le graphe aléatoire : chacun de ces vecteurs propres mous est centré sur des régions contenant un
petit nombre fini de spins, les amplitudes des modes propres décroissant exponentiellement à partir
de ces noyaux. Nous avons observé que, lorsque le système entre dans la phase de verre de spin,
des vecteurs propres de faible énergie présentant unmodèle de "multi-localisation" apparaissent, où
au moins deux pics d’amplitudes de vecteurs propres éloignés (dans le graphe aléatoire, donc à des
distances s’échelonnant avec le logarithme de la taille du système) sont présents. Malgré un "rapport
de participation inverse" (RPI) fini, comme c’est le cas pour les modes localisés à noyau unique, ces
types d’excitations sont topologiquement délocalisés, car ils impliquent des régions microscopiques
très éloignées de l’échantillon. Nous montrons la présence de telles excitations pour des énergies
apparemment arbitraires, proches du bord inférieur du spectre. Cet effet semble être beaucoup plus
important dans le verre de spin de Heisenberg (variables de spin à trois composantes) que dans le
verre de spin XY (variables de spin à deux composantes). L’existence de cette famille d’excitations à
basse énergie est interprétée par nous comme un signal de la transition de phase dans ces modèles
dilués (verres de spin vectoriels dans des graphes réguliers aléatoires).

Nos travaux ont établi un lien entre les propriétés des excitations vitreuses et l’émergence de
l’ordre du verre de spin. Ce lien est interprété à l’aide des outils de la théorie des matrices aléatoires
dans le cas de modèles de champ moyen entièrement connectés. Dans le cas peu dense, nous trou-
vons un lien plus direct avec les systèmes vitreux de dimension finie. Nous pensons qu’un dévelop-
pement naturel et stimulant de notre recherche serait de considérer le problème des excitations non
linéaires. D’une part, on pourrait étudier les systèmes à deux niveaux par une expansion d’ordre supé-
rieur de l’hamiltonien autour d’un minimum local. D’autre part, il serait intéressant d’étudier les ava-
lanches déclenchées par la perturbation exercée par un champ magnétique externe : contrairement
aux systèmes à deux niveaux, les avalanches sont caractérisées par un changement macroscopique
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de l’état du système.
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Introduction

Spin glass models are an example of the power of simple but complex ideas. From their very first
introduction in the seventies, by the hands of P. W. Anderson [AHV72] and subsequent models [EA75 ;
SK75], they have attracted the interest ofmany scientist, first in the condensedmatter community and
secondly fromother communities, also external to physics. In particular, the breakthroughs of Giorgio
Parisi [Par79b ; Par79a ; Par80c ; Par80a ; Par80b] have opened the Pandora box of complex systems.
Beside the natural connection between spin glasses, structural glasses and granular systems, appli-
cations to neuroscience [Hop82 ; Ami89], optimization problems [MPZ02], protein folding [Wol05] and
many others confer to the original simple problem the status of archetype of disorder and complexity.

While the first efforts were mainly concentrated on discrete models, spin glass models with conti-
nuous degrees around the nineties acquired great importance thanks to the introduction of p-spin
spherical models. These models are mean field toy models of the glass transition : they have a phe-
nomenology that features many dynamical behaviors found in experiments [CC05]. Beside spherical
models, vector spin glasses have been studied since the beginning [Alm+78 ; GT81 ; GGD82 ; CSG82 ;
MB82b]. Vector models are more closer to real systems than discrete ones : in particular, they allow
for the study of magnetic response at low temperatures, featuring arbitrarily small excitations : thus,
vector models are ideal proxies to understand the spectrum of harmonic excitations in disordered
systems. In recent years, there has been a renown interest in vector models [Coo+05 ; SY10 ; BP15 ;
Bai+15 ; SYM16 ; YM04 ; LR17 ; LR18 ; LPR19]. While dense models of vector spin glasses have been stu-
died with greater detail, very few results are available on sparse vector spin glasses. Many properties
of these models remained so far undisclosed : in particular, the relation between the spin glass tran-
sition and the statistical properties of low energy excitations.

In this thesis work, we consider two related problems : the behavior of excitation spectra at zero
temperature, i.e. how the system responds to small perturbations around a stable configuration, and
the properties of the zero temperature critical point.

In part I we provide a background, covering spin glasses, structural glasses and randommatrices.
The introduction of these topics is functional to the discussion made in the following of the manus-
cript.

In part II we discuss a fully connected vector spin glass model, subjected to the action of a random
field : we show that the zero temperature spin glass critical point features a delocalisation transition
for the lowest modes of the density of states, from a phase with localised states at the lower edge of
the spectrum to a delocalised spin glass phase. We show that these results, when applied to a vector
p-spin model, prove the existence of a stable band of the energy landscape with localised excitations.

In part III, we consider a sparse spin glass model under a random field, defined on a random
regular graph. For sufficiently weak external field, localised soft excitations, featuring a quartic DoS
at low frequency, appear. These excitations are ubiquitous in finitely-connected disordered systems.
Finally, we show that at the spin glass transition a delocalisation transition can occur, even though in
a weaker form than that observed in the dense case.
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Introduzione in Italiano

I modelli di vetro di spin sono un esempio di come da dell’idee semplici possa scaturire un’inas-
pettata complessità. Fin dalla loro prima introduzione negli anni Settanta, permano di P. W. Anderson
[AHV72] e dei modelli successivi [EA75 ; SK75], questi modelli hanno attirato l’interesse di molti scien-
ziati, in primo luogo nella comunità della materia condensata e in secondo luogo in altre comunità,
anche esterne alla fisica. In particolare, le scoperte di Giorgio Parisi [Par79b ; Par79a ; Par80c ; Par80a ;
Par80b] hanno aperto il vaso di Pandora dei sistemi complessi. Oltre alla naturale connessione tra
vetri di spin, vetri strutturali e sistemi granulari, le applicazioni alle neuroscienze [Hop82 ; Ami89], ai
problemi di ottimizzazione [MPZ02], al ripiegamento delle proteine [Wol05] conferiscono al semplice
problema originale lo status di archetipo del disordine e della complessità.

Mentre i primi sforzi si sono concentrati principalmente su modelli discreti, i modelli di spin glass
con gradi continui hanno acquisito grande importanza intorno agli anni Novanta grazie all’introdu-
zione dei modelli sferici p-spin. Questi sonomodelli di campomedio della transizione vetrosa : hanno
una fenomenologia che presenta molti comportamenti dinamici riscontrati negli esperimenti [CC05].
Oltre ai modelli sferici, i vetri di spin vettoriali sono stati studiati fin dall’inizio [Alm+78 ; GT81 ; GGD82 ;
CSG82 ; MB82b]. I modelli vettoriali sono più vicini ai sistemi reali rispetto a quelli discreti ; in parti-
colare, permettono di studiare la risposta magnetica a basse temperature, con eccitazioni arbitraria-
mente piccole : sono quindi ideali per comprendere lo spettro delle eccitazioni armoniche nei sistemi
disordinati. Negli ultimi anni si è assistito a un rinnovato interesse per i modelli vettoriali [Coo+05 ;
SY10 ; BP15 ; Bai+15 ; SYM16 ; YM04 ; LR17 ; LR18 ; LPR19]. Mentre i modelli densi sono stati studiati con
maggiore dettaglio, sono disponibili pochissimi risultati sui vetri di spin vettoriali sparsi. Molte pro-
prietà di questi modelli sono rimaste finora sconosciute : in particolare, la relazione tra la transizione
di spin glass e le proprietà statistiche delle eccitazioni a bassa energia.

In questo lavoro di tesi, consideriamo due problemi correlati : il comportamento degli spettri di
eccitazione a temperatura zero, cioè come il sistema risponde a piccole perturbazioni intorno a una
configurazione stabile, e le proprietà del punto critico a temperatura zero.

Nella prima parte forniamo un inquadramento di base, che riguarda i vetri di spin, i vetri strutturali
e le matrici casuali. L’introduzione di questi argomenti è funzionale alla trattazione del seguito del
manoscritto.

Nella seconda parte discutiamo un modello di vetro di spin vettoriale con rete d’interazioni com-
pletamente connessa, soggetto all’azione di un campo aleatorio : dimostriamo che il punto critico
del vetro di spin a temperatura zero presenta una transizione di delocalizzazione per i modi soffici
della densità di stati, da una fase con stati localizzati al margine inferiore dello spettro a una fase de-
localizzata del vetro di spin. Mostriamo che questi risultati, applicati a un modello vettoriale p-spin,
dimostrano l’esistenza di una banda stabile del paesaggio energetico, con eccitazioni localizzate.

Nella terza parte, consideriamo un modello di spin glass sparse sotto un campo stocastico, de-
finito su un grafo aleatorio regolare. Per un campo esterno sufficientemente debole, appaiono ec-
citazioni localizzate soffici, caratterizzate da una densità degli stati con dipendenza quartica a bassa
frequenza. Queste eccitazioni sono onnipresenti nei sistemi disordinati con connettività sparsa. In-
fine, mostriamo che alla transizione spin glass si puòmanifestare una transizione di delocalizzazione,
in una forma più debole rispetto a quanto osservato nel caso diluito.
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Première partie

Background
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1 - Spin Glasses

Spin glasses are archetipal models of complex systems [MPV87 ; AB23]. Introduced in the 70s to
idealise the behavior of magnetic alloys, it was soon clear that their thermodynamic and dynamic be-
havior had a more general nature. Starting from their natural connection to structural glasses [CC05 ;
Cav09], spin glass models nowadays embrace a plethora of different fields of knowledge : from opti-
mization problems [MPV87] to neural networks [Hop82 ; Ami89], from applications to finance [PB20],
to ecology [Alt].

In this chapter we give a survey of the earliest results in spin glass theory, discussing mean field
models on fully connected graphs both in the discrete and in the vector case. A section at the end of
the chapter is devoted to spin glassmodels on random sparse graphs, amore recent field of research.

1.1 . Disordered Magnetic Alloys

Starting from the 50s there was a growing interest within the condensed matter community in the
properties of magnetic alloys [Zen51a ; Zen51b ; Zen51c ; RK54 ; Kas56 ; Yos57], obtained by doping 1 a
paramagnetic matrix of a noble metal with magnetic impurities of a transition metal : some notable
examples are given by alloys of Manganese (Mn) and Copper (Cu) and Iron (Fe) and Gold (Au). When
the concentration of magnetic impurities is very high (far greater than 10%), the resulting solid is a
ferromagnet at low temperatures. Conversely, if the concentration is sufficiently low (less than 10 %),
there are compelling evidences of a new kind of magnetism. Even though the sample does not de-
velop spontaneous magnetisation, no matter how low the temperature, several experimental results
suggested the presence of a freezing phase transition occurring at low temperatures. In [dd59 ; ZH60]
the specific heat of CuMn alloys wasmeasured : while at high enough temperature the system follows
Curie-Weiss prediction, it is found a peak at low temperatures, which broadens under the application
of an external magnetic field [dd59], and a linear scaling with temperature, with no dependence on
Mn concentration [ZH60] ; the measured specific heat is anomalously large with respect to that of
pure Cu. In [CMB71] workers show that the magnetic susceptibility has a cusp peak at a temperature
in an interval 1 − 100 K for concentrations of impurities ranging in 0.01 % − 10%. The magnetic
susceptibility follows the Curie Law χ ∝ 1/T of paramagnets at high temperatures, but strongly de-
viates from it under the freezing temperature, being roughly constant. The susceptibility peaks at a
lower temperature than the specific heat and the cusp is smoothed when an external magnetic field
is present. All these anomalous behaviors were also related to an exotic form of antiferromagnetism
[AR74], but later experiments excluded this hypothesis [Mur78].
After this brief account of the most relevant experiments, let us discuss the first microscopic theore-
tical models of these systems. The puzzling low temperature behaviors of CuMn, AuFe and similars
was related to s-d interactions [Mar60], coupling electrons of unfilled inner shells with conduction
electrons. The electrons in the conduction band of the alloy are polarised by the presence of the im-

1. Impurities diffuse inside the paramagnetic metal at fusion temperature. After the right quantity of ma-gnetic impurities has been let diffuse, the sample is brought to room temperatures and solidifies.
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purities : as a consequence, they mediate interactions between the magnetic moments of impurities
[RK54 ; Kas56 ; Yos57], namely RKKY (Ruderman-Kittel-Kasuya-Yoshida) interactions

J(r⃗i, r⃗j)
rij/a→∞
∼ 2 cos(kF rij)

r3ij
(1.1)

where rij = |r⃗i − r⃗j | is the distance between the centers of mass of Mn atoms and a is the reticu-
lar step. Besides the fast r−3 decay, the cosine term in eq. (1.1) tells us that both ferromagnetic and
antiferromagnetic couplings are possible. Moreover, since Fermi wavevector is kF = O(1/a), spatial
oscillations of RKKY interactions are very quick, so if the concentration of magnetic ions is low en-
ough, ferromagnetic and antiferromagnetic couplings are equally probable ; on the contrary, if there
is a high density of magnetic impurities, many ions interact within a reticular step, and thus ferroma-
gnetism is favoured.

Magnetic impurities are let diffuse freely during the preparation of the sample, so their final po-
sitions are random : thus, both the absolute value and the sign of (1.1) are random. The equal oc-
currence of ferromagnetic and antiferromagnetic interactions and their randomness are the funda-
mental features that make these materials different from ordinary magnets. The first phenomenon
is called frustration and represents the impossibility for local degrees of freedom of simultaneously
satisfying contradictory constraints [Tou+87 ; VT77]. In magnetic systems, frustration occurs in pre-
sence of ferromagnetic and antiferromagnetic couplings or in particular lattices : for instance, the
two-dimensional antiferromagnet in the triangular lattice is frustrated 2. The second crucial ingre-
dient is quenched disorder : the magnetic ions are in random positions that are frozen with respect
to the time-scale of the dynamics of the system, so that the related interactions can be regarded as
random external parameters. Frustration and disorder are not necessarily related : there are frustra-
ted systems with no disorder, like the two-dimensional antiferromagnet in the triangular lattice, and
systems with disorder but no frustration, like in one-dimensional spin glasses.

1.2 . The Edwards-Anderson model

In 1970 P.W. Anderson introduces the term Spin Glasses for the disordered magnets discussed
above, to make an analogy with structural glasses, since in both systems there seems to be an uni-
dentified low temperature phase [And70].

Anderson claims that the low temperature behavior of spin glasses is due to the interactions bet-
ween Mn and Cu ions, rather than to conduction electrons. He proposes an idealised model of RRKY
interactions (1.1), proposing the following Hamiltonian for a system of N Heisenberg spins

HJ [S] = −
1

2

∑
x⃗,y⃗ ∈ R3

JxyS⃗x · S⃗y (1.2)
where R3 is the three-dimensional regular lattice of side L = N1/3 and the couplings Jxy are taken
as quenched random variables, with an unspecified distribution that should reproduce the salient
features of RKKY interactions (1.1). The distributions fromwhich couplings are drawn should havemo-
ments that decay with distance not faster than RKKY interactions (1.1) and admits both positive and

2. However, in this case it is possible to map the antiferromagnet to an unfrustrated ferromagnet.
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negative values. The simplest idealisation consists in cut-offing interactions to nearest neighbours
and to draw couplings from a gaussian distribution. In order to model the emergence of ferroma-
gnetism at high concentrations of magnetic ions, the gaussian should have a non-zero mean value,
representing a ferromagnetic bias.
In [And70], Anderson proposes amean field approach without averaging over the disorder. In the spi-
rit of his pioneering work on localisation [And58], the system is represented as a set of independent
clusters, each with its own critical temperature. This interpretation had a discrete success on conden-
sed matter community : the most accepted idea was that each of these subsystems is either a fer-
romagnet or an anti-ferromagnet, and as temperature is lowered enough long range interactions
between different clusters appear [Bec71 ; CM72 ; Smi74]. This approach had a discrete success, being
able to reproduce the magnetic susceptibility cusp. Nevertheless, it did not give a true understanding
of the low temperature phase, since no order parameter was yet defined.
The first proposal of an order parameter for Spin Glasses came later in 1975-76 [EA75 ; EA76]. Ed-
wards and Anderson propose a model based on the idea that at low temperatures spins freeze along
random directions, dependent on the specific realisation of the disorder. Even though these micro-
scopic amorphous magnetisation profiles are unknown and unrelated to any global spin symmetry 3,
long-range order can be detected bymeasuring how the orientation of a spin changes with time. They
assume that the average autocorrelation of a spin does not depend on the sample in the thermody-
namic limit : they introduce the overlap

q = lim
t→∞

1

N

∑
x⃗

∫ t

0
dt′ S⃗x(t

′) · S⃗x(0). (1.3)
If the system is ergodic, (1.3) can be rewritten in terms of an ensemble average on Gibbs measure

q =
1

N

∑
x⃗

|⟨S⃗x⟩|2 ≡
1

N

∑
x⃗

|m⃗x|2. (1.4)
At high temperature, thermal fluctuations are too strong and no ordering can occur, thus |m⃗x| = 0

and q = 0. At a critical temperature Tc there is a second order phase transition such that, for any
T < Tc

m⃗x ̸= 0 m⃗ ≡ 1

N

∑
x⃗

m⃗x = 0 q > 0 (1.5)
The spin glass phase can be defined with a dynamical point of view as the low temperature region
with persistent correlations in spin orientations. The simplest parameter capturing spins freezing is q
in (1.3), (1.4), which is thus named Edwards-Anderson Order Parameter.

In their work of 1975, they study the thermodynamics of a spin glass model with Hamiltonian (1.2)
and gaussian couplings with zero mean and variance J2ρ, being ρ0 the mean bond occupation num-
ber. In the following, we sum up their results in [EA75]. Since disorder is quenched, the free-energy
of the system must be computed as an average over the free-energies of many different samples

f(T ) = − T

N
lim

N→∞

∫
DJ P (J) log ZN (T ;J) ≡

∫
DJ P (J) f(T ;J) (1.6)

3. In Ising ferromagnets, for instance, the low temperature phase emerges as a result of the spontaneousbreaking of the global inversion symmetry.
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where ZN (T ;J) is the canonical partition function of a sample with disorder realisation of bonds J .
In order for the thermodynamic limit to exist 4, sample-to-sample fluctuations must not affect the
values assumed by extensive quantities : this property is called self-averaging. In formulae

lim
N→∞

|f (N)
J − fJ | = 0 or f2J = fJ

2 (1.7)
where we have introduced the notation (·) for the average over disorder.

The disorder average in (1.6) cannot be done directly : it is needed to average the logarithm of a
function of the couplings. In general, one cannot assume that the partition function is self-averaging 5,
logZ ̸= logZ. In order to circumvent this difficulty, Edwards and Anderson propose the so called
Replica Trick :

logZN (T ;J) = lim
n→0

ZN (T ;J)n − 1

n
(1.8)

which is based on the identity
xn = 1 + n log x+O(n2).

If one assumes gaussian couplings, the disorder average can be performed 6 yielding
Zn = Tr

{Sa}
e−β

∑n
a=1 HJ [Sa] = Tr

{Sa}
e

β2J2

2

∑
a

∑′
(ij) S

a
i S

a
j S

b
i S

b
j (1.9)

where Tr stands for a sum over spin configurations and∑′

(ij) is a sum over nearest neighbour links.
If the disorder average is performed before the thermal average, the system is mapped into an ef-
fective theory where replica are coupled through quartic interactions. Edwards and Anderson make
a mean field approximation 7 and complete the computation. In particular, they find that their order
parameter satisfies the self-consistent equation

q =

∫
d3r

(2π)3/2

[
coth

(√
2

3
βJ
√
q

)
− 3√

2βJ
√
q

]2
(1.10)

which admits a non-zero solution under Tc = √2J/3. The magnetic susceptibility, which is related to
q via

χ = β (1− q) (1.11)
is found to have a cusp at the freezing temperature, with a Curie-Weiss behavior for T > Tc and a
quadratic scaling in Tc − T slightly below Tc. The specific heat as well is peaked with a cusp at the
critical temperature. Edwards and Anderson theory, based on the order parameter (1.4), already at
the mean field level reproduces key features of Spin Glasses, observed experimentally.

4. Imagine to divide the system in macroscopic subsystems : any extensive observable averaged over thesesubsystem concentrates around the expected value, thanks to the law of large numbers. This must be true withor without disorder in the subsystems5. This is the case for spin glasses with pairwise interactions. Conversely, in spin glasses with p-body inter-actions (p > 2) the partition function is actually self-averaging.
6. One can make use of the standard identity ⟨ex⟩ ≡ e 1

2 Var x.7. They make use of a standard variational principle and replace the quartic form in (1.9) with a best qua-dratic.
8



1.3 . SK model

Given the success of EAmean field theory, defining and solvingmodels wheremean field approxi-
mation is exact was the natural next step. In 1975 Sherrington and Kirkpatrick propose an infinite-
range model for spin glasses with Ising spins Si = ±1 [SK75] :

HSK [S] = −1

2

1,N∑
ij

JijSiSj −H
N∑
i=1

Si (1.12)

where Jij are gaussian variables with
Jij =

J0√
N

J2
ij =

J2

N

andH is an external magnetic field. In this section, we report their results in the article for the J0 = 0

case, corresponding to magnetic alloys in the zero impurities concentration limit. They make use of
Replica Trick (1.8) to compute the free energy of their model : the sample average of the replicated
partition function 8 reads

Zn
J =

∑
{S}na=1

exp

β2Nn
4

+
β2N

2

1,n∑
(ab)

(
N∑
i=1

Sa
i S

b
i

N

)2

+ βH
N∑
i=1

n∑
a=1

Sa
i

 .
The presence of disorder has mapped the original Hamiltonian (1.12) into an effective Hamiltonian

that couples replica. To complete the computation, sites should be decoupled : this can be achieved
through an Hubbard-Stratonovich rappresentation 9, returning

(ZJ)
n =

∫ ∏1,n
(ab) dQab

(
Nβ2

2π

)1/2
exp
[
−NA(Q)

] (1.13)
A[Q] = −nβ2

4 + β2

4 Tr Q2 − log
∑

{S}R
e−βHR[Q, {S}R] (1.14)

HR[Q, {S}R] = −β
∑1,n

(ab)QabSaSb −H
∑n

a=1 Sa (1.15)
where {S}R indicates the 2n configurations of single-site replica. The n×n overlap matrixQ is the

order parameter of the model. By exchanging the order of the two limitsN →∞ and n→ 0, the free
energy density of the system can be computed with the saddle point method

f(T,H) = lim
n→0

T

n
A[Q∗] (1.16)

where saddle point matrix Q∗ satisfies the self-consistency equation
8. The computation exploits the relation ⟨eJ z⟩J = e

1
2 V ar(J)z2 , where the variable J is a gaussian variablewith zero mean.

9. eλ2

2 =
∫ +∞
.∞

dx√
2π
e−

x2

2 +λx

9



Q∗
ab =

Tr
{S}R

SaSb e−βHR[Q∗, {S}R]

Tr
{S}R

e−βHR[Q∗, {S}R]
≡ ⟨SaSb⟩R. (1.17)

The action A[Q] is invariant under exchange of rows or columns of the overlap matrix : thus the
group of permutations of n elements Pn is a symmetry of the problem; this group is often called the
Replica Group and any function of the overlap matrix left invariant by its action is Replica Symmetric
(RS).

For positive integer n > 0, the minimum ofA can be found through the following parametrization
of the overlap matrix

Q∗
ab = q, a < b

Q∗
aa = 0 (1.18)

This is the only form of thematrix left invariant by the action of the replica group. After analytically
continuing the solution of dA/dq = 0 to n = 0, the self-consistency equation of the order parameter
becomes

q =

∫ +∞

−∞

dz√
2π
e−

z2

2 tanh2(β
√
qz + βH) (1.19)

while the free energy reads

f(β,H) = −β
4
(1− q)2 −

∫ +∞

−∞

dz√
2π
e−

z2

2 log 2 cosh(β
√
qz + βH) (1.20)

The solution of this model provided by Sherrington and Kirkpatric captures many qualitative fea-
tures of the spin glass behavior [SK75], [KS78]. In particular, it correctly reproduces the cusp of the
magnetic susceptibility and of the specific heat at the critical temperature Tc = J . The order parame-
ter q is zero for T > Tc ≡ J/kB , returning the Curie-Weiss paramagnetic solution, but as T < Tc, q > 0

and the system is in the spin glass phase. Despite these encouraging results, Sherrington and Kirkpa-
tric notice that their solution cannot be correct down to zero temperature. Indeed, they encounter a
serious physical inconsistency : the entropy becomes negative at low temperatures. The entropy of a
discrete system is non-negative by definition, since S[P ] ≡ −⟨logP ⟩ > 0. In particular, they find the
zero temperature result

S(0) = − 1

2π
≈ −0.17

Comparing their Monte-Carlo simulations with theoretical predictions of the RS solution (1.20), they
notice that in the same region where the entropy becomes negative all thermodynamic observables
are inconsistent with theoretical predictions. They claim that these strange results are consequence
of the exchange of limits N =∞ and n = 0 in the saddle point evaluation.
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1.4 . Instability of SK solution : the dAT line

In their work of 1978 [AT78], de Almeida and Thouless (dAT) show that the RS solution of SKmodel
becomes unstable at low enough temperature for anyH ≥ 0. In order to study the stability of the RS
saddle point (1.18), they consider the Hessian of the replica action (1.14), that can be easily computed

∂A(Q)

∂Qab∂Qcd
≡ D(ab)(cd) = δ(ab)(cd) − J2β2(⟨SaSbScSd⟩ − ⟨SaSb⟩⟨ScSd⟩) (1.21)

where averages ⟨·⟩ are with respect to the Gibbs measure of the Hamiltonian in (1.15). The Hessian is
a matrix of order n(n− 1)/2. When evaluated at the RS saddle point, as a consequence of RS ansatz
(1.18) it acquires a much simpler form

D(ab)(ab) = 1− β2J2(1− q2) ≡ P
D(ab)(ac) = −β2J2q (1− q) ≡ tildeQ, c ̸= b

D(ab)(cd) = −β2J2(r − q2) ≡ R, (ab) ̸= (cd) (1.22)
where q satisfies the saddle point eq. (1.19) and

r =
1√
2π

∫
dh e−

h2

2 tanh4(βJ
√
q + βH) +O(n). (1.23)

WhenH = 0, one hasQ = R = 0, the Hessian is diagonal and hence the stability is given by requiring
P > 0, which means β < J : the instability of RS solution extends to the whole spin glass phase.
In presence of a field H , it is necessary to determine the eigenvalues and eigenvectors of (1.22). This
can be done by considering the symmetries under replica indices permutations of the elements of
(1.22). There are three different invariant families, represented by the three different values P,Q,R :
the related replica permutations must respect the constraints on the indices in (1.22). Given (1.22), the
eigenvalue equation can be written as∑

(cd)

D(ab)(cd)η(cd) = R
∑

{(cd)̸=(ab)}

ηcd + 2Q̃
∑
d

ηad + P ηab = λ ηab (1.24)
For any n > 0, there are three distinct eigenvalues, related to the three symmetry group under which
the elements of the Hessian are invariant.

Here we do not report the details of the calculation, which can be found in [AT78], but only the
final result. In the limit n→ 0, two of the three eigenvalues become equal. The final result is

λs = P − 4Q̃+ 3R (1.25)
λr = P − 2Q̃+R (1.26)

dAt found that λs > 0 for any temperature and field, whereas at low temperatures and fields λrcrosses zero and becomes negative. This eigenvalue in literature is called Replicon. It is connected
with the Spin Glass susceptibility through

χSG ≡
1

N

∑
(ij)

χ2
ij =

βJχ
(0)
SG

1− βJχ(0)
SG

(1.27)
λr = 1− βJχ(0)

SG (1.28)
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where χ(0)
SG ≡ χ2

00 is the single-site spin glass susceptibility. It is called like this because when the repli-con becomes zero, χSG diverges, as it is expected in second order phase transitions. By substituting
the expressions in (1.22),(1.23) in the second of (1.25) they find the stability condition

1

β2J2
>

∫ +∞

−∞

dh√
2π

exp
(
−h2

2

)
cosh4(βJ

√
q + βH)

(1.29)
This condition, when the ’>’ is replaced by an equality, defines an instability line for the RS solution of
the SK model in the (h, T ) plane, called dAT line. The asymptotic expressions of the line in the limits
H → 0 and T → 0 are

H(T ) ∼ 2√
3
J

(
1− T

J

)3/2

H → 0 (1.30)
H(T ) ∼

√
2 J

√
log

(
4J

3
√
2πT

)
T → 0 (1.31)

Close to the zero-field transition temperature the dAT line is non-analytic, whereas close to zero-
temperature the instability line slowly diverges : in SK model there is no zero-temperature phase
transition in the external field. This last prediction appears to be quite unphysical, since physically a
very large field freezes the orientation of spins, no matter how low the temperature. This result holds
only at this level of mean field approximations. In improvements of mean field theory, such as the
Bethe theory discussed later in section 1.9.2, the dAT line of SK model is finite at zero temperature.
For mean field models with infinite-range interactions one should resort to Heisenberg vector spins
in order to observe a zero temperature field phase transition : this will be discussed later in section
1.8.
The result found by dAT has deep consequences : since the RS solution of SKmodel is unstable also in
presence of a field, it seems that there is a phase transition unrelated to the spontaneous breaking of
a spin symmetry. The destabilisation of the RS saddle point at low temperatures can only imply that
under the dAT line replica permutation symmetry spontaneously breaks.

1.5 . TAP approach

Not much after the seminal work of Sherrington and Kirkpatric, a different approach was propo-
sed by Thouless, Anderson, Palmer (TAP) [TAP77]. They suggest to build a mean field theory for the
given sample, i.e. before averaging out the disorder. Given that the problems encountered by SKwere
believed to be due to the exchange of the two limits n → 0, N → ∞, it was natural to build a mean
field theory following a different strategy. Their approach is based on a high temperature expansion
of the free-energy functional of the system : we briefly sketch its details, making use of an equivalent
technique [GY91], [Ple82] instead of their original derivation. The free energy functional is

−βF [m|b] ≡ A[m|b] = log Tr exp

(
−βHJ [S] + β

N∑
i=1

bi(Si −mi)

)
. (1.32)
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External fields {bi} are Lagrange multipliers that fix the thermal average of each spin Si to mi in a
self-consistent way : by imposing ∂F/∂bi = 0, one gets

⟨Si⟩b = mi. (1.33)
Physical magnetisations are obtainable by setting b = 0. The Georges-Yepidia expansion consists in
expanding (1.32) in powers of β around β = 0. For Hamiltonians of fully connected spin models, since
couplings are weak inN large, the series truncates at a finite order. In ordered models the expansion
stops at O(β) because J ∼ 1/N , while in the disordered case J ∼ 1/

√
N and one must include also

the β2 term into the expansion. After performing the computation, the final result is TAP free energy

FTAP [m] = A0[m]−

1

2

∑
ij

Jijmimj −H
N∑
i=1

mi

− Nχ2

4β
(1.34)

A0[m] =
1

2β

∑
i

[
(1 +mi) log

(1 +mi

2

)
+ (1−mi) log

(1−mi

2

)] (1.35)

χ ≡ β

(
1− 1

N

N∑
i=1

m2
i

)
= β(1− q) (1.36)

The interpretation of addenda in (1.34) is straightforward : the first addendum is the the total entropy
of a system of binary spins constrained to magnetisation profile {mi}, in the limit of infinite tempera-
ture ; the second is the infinite-temperature internal energy of a system of spins with magnetisations
{mi} ; finally, the third term is Onsager term, expressing the energetic contribution of mutual correla-
tions between spins. The first two terms appear also in spins systems without disorder, whereas the
term term is peculiar of frustrated disordered systems. By computing ∂FTAP /∂mi = 0, one finds the
renown TAP equations

mi = tanhβhi (1.37)
hi =

∑
j:j ̸=i

Jijmj +H − χ mi (1.38)

These equations remind of the mean field equation of Curie-Weiss model :
m = tanh(βh)

h = Jm+H

TAP equations feature an additional term −χmi, called Onsager reaction term : for a given spin i, it
represents the mean reaction of all the other spins to the polarising effect of i. Thus, {hi} are usuallycalled cavity fields : each hi is the field that would act on site i in a system where spin Si has beenremoved.
In the paramagnetic phase T > Tc eq.(1.34) coincides with the result from the original diagramma-
tic expansion in TAP article [TAP77]. When H = 0, the resummation of the expansion diverges as
T < J ≡ Tc [Ple82]. They extend it to temperature close to T−

c by enforcing TAP equations : the new
13



convergence criterion found by them is J(1− q) ≤ T . Indeed, as T < Tc, non trivial solutions to TAPequations appear and consequently, a non-zero EA overlap emerges : TAP are able to estimate it close
to the critical temperature, finding a linear scaling q ≈ 1− T

Tc
for Edwards-Anderson overlap, in agree-

ment with calculations from SK. In the paramagnetic phase and close to the critical temperature, all
predictions coming from TAP and SK approaches are mutually compatible. Close to T = 0, they make
precise phenomenological assumptions, based on numerical simulations performed by themselves :

Ph(h) ∼ h/H2
0 , h→ 0 (1.39)

q ∼ 1− a T 2, T → 0 (1.40)
where Ph(h) is the T = 0 cavity fields pdf. Notice that from the second of eqs (1.37) one deduces that
cavity fields are gaussian variables with zeromean and variance J2q : since in this case Ph(h) ∼ const,the first assumption in (1.39) is equivalent to ask that at low temperatures very small cavity fields are
rare. This is the concept of pseudo-gap : in a later paper [MW15], it was shown that the first eq. (1.39)
is a fundamental property of glassy systems with marginal stability. As to the second in (1.39), it is
actually a consequence of the first : indeed, by enforcing TAP equations close to zero temperature
(β →∞)

m2
i =

∫
dh Ph(h) tanh(βhi)

2 ≃ 1−
∫

dh Ph(h)e
−2βh

≃ 1−
∫

dh h e−2βh = 1− c T 2

Basing on eqs (1.39), they find that the inconsistencies of SK theory (in particular the entropy be-
coming negative) disappear.

In conclusion TAP approach correctly predicts the presence of a freezing phase transition, finding
results that agree qualitatively-and in some cases also quantitatively with previous predictions yielded
by EA and SK and correcting inconsistencies found in the SK analysis. Nevertheless, TAP solution is
still far from being a satisfactory solution of SK mean field model. Indeed, assumptions (1.39) are
phenomenological, and are not predicted by their theoretical framework.Moreover, their theory does
not account for the intermediate temperature region 0 ≪ T ≪ Tc and cannot explain the instabilityof SK solution in presence of a field predicted by dAT.

1.6 . Breaking Replica Symmetry : Parisi Solution

1.6.1 . 1RSB
In the years following the works of EA, SK, TAP and dAT, it was clear that a correct mean field

theory had to deal with the breaking of replica symmetry. The correct solution was found by Parisi in
1979 : he proposed a RSB scheme in a series of three articles [Par79b ; Par79a ; Par80a ; Par80b]. Parisi
assumes a RSB ansatz of the form (a ̸= b)

Qab =

{
Qab = q0, I(a/m) = I(b/m)

Qab = q1, I(a/m) ̸= I(b/m)
(1.41)
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where 1 < m < n is such that n/m is an integer. Eq.(1.41) corresponds to an overlap matrix with n/m
blocks of order m centered on the main diagonal, with elements a ̸= b all equal to q0 ; outside theseblocks, every entry is equal to q1 ̸= q0. The parametrisation in (1.41) is called One Step Replica Symmetry
Breaking (1RSB) ansatz. It is worth to mention a remark made by de Almeida and Thouless regarding
the use of Saddle Point method when n→ 0. The analytic continuation of this method to non-integer
n < 1 values implies that, in the n → 0 limit, the correct saddle point, in the sense of a non-negative
spectrum of the Hessian, is obtained bymaximising the Action (and thus the free energy) with respect
toQ. Consider, for instance, the second addendum in (1.14) : in the RS case, this term for finite integer
n becomes

1

n
TrQ2 =

(n− 1)

2
q2

This curvature term is non-negative for any n > 1, suggesting that in this case the correct saddle-point
is a minimum of the Action. However, as n < 1, this term becomes negative ! Having said this, the free
energy of SK model becomes 10

f1RSB(β,H) = max
q0,q1,m

Φ(q0, q1,m) (1.42)
Φ(q0, q1,m) = −β

2

4
[1 +mq20 + (1−m)q21 − 2q1]− log 2 (1.43)

− 1

m

∫
dG(z0; q0) log

∫
dG(z1; q1 − q0) coshm[β(z0 + z1 +H)]

where dG(z;σ2) is a gaussian measure with zero mean and variance σ2. The crucial novelty of Parisi
approach is to consider the block dimensionm as a variational parameter of the problem : in earlier
attempts [Bla78 ; BM78], a block construction with a fixed value ofm similar to (1.41) was considered.
The smaller overlap between q0 and q1 must be zero in absence of an external magnetic field, for
continuity with RS solution. Let us now consider the overlap pdf

Pn(q) ≡
2

n(n− 1)

∑
(ab)

δ(q −Qab) (1.44)

When (1.44) is evaluated in the 1RSB ansatz with n > 1, it becomes
Pn(q) =

n−m
n− 1

δ(q − q0) +
m− 1

n− 1
δ(q − q1) (1.45)

As n < 1, this expression makes sense as a probability distribution 11 if and only if n < m < 1. The
continuation ofm to real values is legitimated by that of n. At n = 0 one has

P (q) = mδ(q − q0) + (1−m)δ(q − q1) (1.46)
Then, m acquires the meaning of probability weight of the overlap q0. One can wonder if the incon-
sistencies found by SK in the RS ansatz get any better. Parisi shows that within the 1RSB scheme,
10. We set J = 1.11. Probabilities are non-negative by definition.
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all observables but the entropy agree with measures from computer simulations performed by SK
[SK75]. As to the entropy, he finds a lesser negative value

S1RSB(T = 0, h = 0) ≃ −0.01

to be compared with SRS(T = 0, h = 0) ≃ −0.17 found by SK. This results is a clear improvement
with respect to the RS case, suggesting that a generalisation of 1RSB schememay give a correct saddle
point. PAR understood that a hierarchical iteration of 1RSB ansatz (1.41) was the key for a mean field
theory of spin glasses.

1.6.2 . Full RSB
In [Par80a] he proposes the k-RSB scheme, defined as

Qab =

{
Qab = qi, I(a/mi) = I(b/mi)

I(a/mi+1) ̸= I(b/mi+1), i=0,. . ., k (1.47)
The overlap matrix is parametrised through a sequence of blocks nested into each other, in a way to
reproduce k times the 1RSB scheme. In the kRSB ansatz, the order parameters of the model are the
overlaps q0, q1, . . . , qK and the block sizes n = m0 ≥ m1 ≥ · · · ≥ mK > 1. The pdf of the overlaps is

Pn(q) =

K∑
i=0

mi −mi+1

n− 1
δ(q − qi) (1.48)

for n > 1. Again, when n < 1, one must reverse the order of the {mi} in order to have a non-negativeprobability, so we have now weights n = m0 ≤ m1 ≤ . . .mK < 1. At n = 0 we get
P (q) =

K∑
i=0

(mi+1 −mi)δ(q − qi) (1.49)
We can define a step-wise function

q(x) = qiθ(x−mi)θ(mi+1 − x) (1.50)
where θ(x) is the Heavised Function. With this definition, we can write in the limit n going to zero any
thermodynamic quantity, smooth function of the overlap, as an integral in the interval [0, 1], since for
any positive l

lim
n→0

1

n
TrQl =

∫ 1

0
q(x)l dx =

∫ 1

0
ql P (q)dq ≡ ql (1.51)

P (q) =
dx(q)

dq
x(q) ≡

∫ 1

0
P (q′)dq′ (1.52)

We introduced Parisi function x(q), which is the inverse 12 of the order parameter q(x). Functions
x(q) and P (q) are stepwise with support in [qmin, qmax] : by maximising the free energy functional at
12. In the sense of generalised functions.
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growing values of k, it was deduced that the overlaps satisfy q0 ≡ qmin < q1 < · · · < qk−1 < qk ≡ qmax[Par80a]. In order to be consistent with EA picture, themaximum overlap is identified as the Edwards-
Anderson overlap (1.4). The free energy of the k-RSB system is

fkRSB = max
q(x)

ΦkRSB[q(x)] (1.53)

ΦkRSB[q(x)] = −
β

4

(
1− 2q(1) +

∫ 1

0
q2(x)dx

)
(1.54)

− 1

βm1

∫ +∞

−∞
dGq0(z0) log I(q0, z0)

I(qi−1, zi−1) =

∫ +∞

−∞
dGqi−qi−1(zi − zi−1)[I(qi, zi)]

mi+1/mi (1.55)
I(qk, zk) = log 2 cosh(β(zk + h)) (1.56)

It is observed that for growing k, the illness of the entropy tends to disappear. Already for k = 2, the
entropy is equal to −0.004, two order of magnitudes smaller than the initial RS result : thus, it seems
that to obtain the solution of SK model, the limit k → ∞ must be performed. All terms involving
integrals of functions of q(x) are easy to extend to this limit : the step-wise function q(x) becomes a
continuous function of the interval [0, 1]. As to the k-fold integral in the expression of the free energy
(1.54), it is sufficient to notice that

I(q, zi−1) = exp

(
q

2

d

dz

)
[Ii+1(z)]

mi+1/mi

∣∣∣
z=zi−1

(1.57)
since the Gaussian is the Green function of heat equation. So, the i-RSB fold is the result of a backward
diffusion in "time" q of the "observable" [I(q, zi)]mi+1/mi , in the interval [qi−1, qi+1]. The limit to infinite
breakings, called Full Replica Symmetry Breaking (fRSB), is the limit to continuity of this process : the
resulting free-energy is

f(β, h) = max
q(x)

Φ[q(x)] (1.58)
Φ[q(x)] = −β

4

(
1− 2qEA +

∫ 1

0
q2(x)dx

)
− 1

β

∫ +∞

−∞
dGq0(z)φ(q0, z)

where the maximisation is over the space of non-decreasing functions q(x) in the interval [q0, qEA].We have introduced the function φ(q, z) = log I(q, z)1/x(q), which in the same interval satisfies Parisi
equation

∂φ

∂q
= −1

2

[
∂2φ

∂z2
+ x(q)

(
∂φ

∂z

)2
]

(1.59)
with the boundary condition (1.56). Notice that the function I(q, z) = expx(q)φ(q, z) satisfies a back-
ward diffusion equation. The overlap pdf can be written as

P (q) = x(q+m)δ(q − qm) + P̃ (q) + [1− x(q−M )]δ(q − qM ) (1.60)
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where P̃ (q) is a smooth function in the interval (q0, q1). When the dAT line is approached from the
SG phase, the two delta peaks gets closer and closer until they collapse in a unique spike : the RS
saddle point becomes stable and theP (q) acquires the trivial form observed in unfrustratedmagnets.
The overlap distribution P (q), or equivalently q(x) or x(q), is the true order parameter of SG phase
transition. Parisi solution was found to bemarginally stable in the whole Spin Glass phase [DK83] and
only less than two decades ago it was rigorously proven that it is indeed the correct solution of SK
model [Tal03].

1.7 . Physical Meaning

1.7.1 . Pure states
It is an established result of statistical mechanics that the configuration space of any system can

be decomposed in thermodynamics pure states. A pure state is a region of configuration space where
Gibbs measure concentrates in the thermodynamic limit. Usually, pure states are defined in terms of
different boundary conditions or through the application of specific magnetic fields. The decomposi-
tion of Gibbs measure in pure states reads

P (S) =
∑
α

wαPα(S) (1.61)
wherewα are probability weights summing to unity. Usually, at high-temperature there is only a single
pure states, calledGibbs state. However, in some systems at low enough temperatures the Gibbsmea-
sure splits in many different pure states 13, following a thermodynamic continuous phase transition.
The simplest system exhibiting such a behavior is Ising Ferromagnet : at the onset of the transition,
Gibbs measure decomposes in two "up" and "down" pure states, as a consequence of the sponta-
neous breaking of the global inversion symmetry. Generally, the appearance of many pure states is
related to a second order phase transition, in which a global symmetry of the system spontaneously
breaks. Disordered systems are special because it is the addition of frustration and disorder that leads
to the appearance of exponentially many 14 pure states.

1.7.2 . Equivalence between replica and pure states
A necessary condition for a pure stateα is the so called clustering property : connected correlations

evaluated with the Gibbs measure restricted to α decay to zero at large distances
1

N r

∑
i1...ir

⟨si1 . . . sir⟩connα →
δr→∞

0 (1.62)

When it comes to mean field models, the absence of a spatial structure makes clustering property
(1.62) reduce to

⟨Si1 . . . Sir⟩α =

r∏
k=1

⟨Sik⟩α =

r∏
k=1

mα
i (1.63)

13. When there is more than a pure state, the system ceases to be ergodic.14. The term "exponential" refers to the concept of Complexity, which will be discussed in next chapter.
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In the context of mean field theories, pure states are completely identified by amorphous magneti-
sation profilesmα. The most relevant information regarding two pure states is their similarity : this
can be measured through the overlap

qαβ ≡
1

N
mα ·mβ =

1

N

N∑
i=1

mα
i m

β
i (1.64)

which is also a measure of their distance in configuration space, given that d2αβ ≡ ∥mα −mβ∥2 =

2(qEA−qαβ). Since states are not coupled in the decomposition of Gibbsmeasure, the self-overlap qααis equal to the Edwards-Anderson order parameter for any pure state. We can define the probability
distribution of the overlaps

PJ(q) =
∑
αβ

wαwβ δ(q − qαβ) (1.65)
between the pure states of a given sample, identified by a realisation of the couplings. Thanks to
clustering property (1.63), we can compute any spin correlation as an average over the overlaps :

q
(k)
J =

1

Nk

∑
i1...ik

⟨si1 . . . sik⟩
k =

∑
αβ

wαwβq
k
αβ =

∫
dqPJ(q)q

k (1.66)

The physical values q(k) ≡ q
(k)
J of these correlations are obtained by performing a sample average :

by comparison with replica
⟨sai sbi⟩k = (Q∗

ab)
k = qk

it can be shown that the sample average of (1.65) is equal to the distribution of replica overlaps
[MPV87]

PJ(q) =
∑
αβ

wαwβδ(q − qαβ) = lim
n→0

2

n(n− 1)

∑
(ab)

δ(q −Qab) (1.67)
This equivalence between pure states and replica is discussed in the paper [Méz+84] by Parisi, Mézard,
Virasoro. We conclude this section by reporting some of the most important physical consequences
of Parisi solution.

1.7.3 . Properties of Parisi solution
Ultrametricity

Consider now three different replicas a, b, c and suppose one wants to measure the joint pdf of
their overlaps Qab, Qbc, Qac. In physical terms, this corresponds to study the statistics of relative dis-
tances in phase space between triples of pure states, extracted according to their weights. Within
Parisi solution, a short calculation [Méz+84] returns the following striking result

P (q, q′, q′′) =
1

2
P (q)x(q)δ(q − q′)δ(q′ − q′′) + 1

2
[P (q)P (q′)θ(q − q′)δ(q′ − q′′)

+P (q′)P (q′′)θ(q′ − q′′)δ(q′′ − q) + P (q′′)P (q)θ(q′′ − q)δ(q − q′)] (1.68)
This equation states that in phase space the sets of distances of any triple of pure states forms a tri-
angle that is either equilateral or isosceles with a shorter third site. Basically, the triangular inequality

dab ≤ dac + dcb
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holding in Euclidean spaces is replaced by the stronger inequality
dab ≤ max(dac, dcb) (1.69)

in the phase space of a RSB system. Any set of real numbers satisfying eq. (1.69) is called Ultrametric
(UM). In phase space, ultrametricity prescribes a precise organisation of pure states into clusters,
grouping pure states with the same overlap in clusters. This structure can be represented through a
Caley tree of depth k+1, if the system is k-RSB : at the root, we define the cluster of pure states with
overlap q0 ≡ qmin (maximally different), at the first level (offsprings of the root) states with overlap
q0 < q1 < q2, at the l-th level states with overlap ql. Finally, at the k-th we have qk ≡ qEA and at the
leaves the configurations belonging to each state. Note that the branching of each node is random
and that in the full RSB limit the tree becomes continuous. It can be shown that ultrametricity implies
that free energies fluctuations at each level of the tree are distributed exponentially [MPV87] : the
average number of clusters at overlap q and with free energies in f , f + df reads

dN(f) = exp(x(q)f) df (1.70)
In particular, at the last level x(qEA) = 1 and

dNα(ϵ) ∝ exp(βϵ− Fα))dEα ≡ eβSαdEα (1.71)
as it should be. Note that these distributions are universal : all the details of the particular SG model
are contained in function x(q).
Susceptibilities

Another important consequence of Parisi solution concerns the response of the system to ex-
ternal perturbations. The breaking of erdogicity-i.e. the existence of infinitely many pure states-in
the context of Parisi solution translates in the existence of a spectrum of time-scales in the relaxa-
tion dynamics of the system, such that relaxation becomes increasingly slow as time passes and new
epochs (time-scales) are entered. This phenomenon is called aging [Sve+87]. Aging dynamics affects
also the response of the system : suppose to measure the out-of-equilibrium magnetic susceptibility
χ(t), considering the two limits N →∞ and t→∞ in different order. It holds

lim
N→∞

lim
t→∞

χN (t) ≡ β(1− qJ) = χeq (1.72)
lim
t→∞

lim
N→∞

χN (t) ≡ β(1− qEA) = χLR (1.73)
Whenever there is RSB, qJ < qEA, implying that χLR < χeq : χLR is the linear response susceptibility
inside a pure state, whereas χeq is the equilibrium susceptibility. The interpretation of the two suscep-
tibilities in a large but finite sized system is the following : at small times the system has explored only
the configurations of the state where it was initialised and χ(t) ≈ χLR, but asymptotically χ(t) ≈ χeq.At intermediate times, families of states belonging to different ultrametric clusters are explored, and
χ(t) ≈ χ(q) in the time scale corresponding to level q. As to spin-glass susceptibilities, by exploiting
pure states decomposition (1.61) it can be shown that

χSG = N Var qJ (1.74)
so that it is infinite in the thermodynamic limit whenever the system is RSB.
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PJ(q) is not self-averaging

Another important result concerns sample fluctuations of PJ(q) [Méz+84]. Take four distinct re-
plica and consider a pair of overlaps corresponding to two distinct couples among them : since in the
usual framework they are non-interacting, the joint pdf of the overlaps factorizes

PJ(q12, q34) = PJ(q12)PJ(q34)

Anyway, after performing the sample average the result is
PJ(q, q′) =

1

3
PJ(q)δ(q − q′) +

2

3
PJ(q)PJ(q′) (1.75)

implying that the sample-dependent overlap distribution is not self-averaging. This results tells us that
the organisation of states of each sample is unique : non-trivial sample-to-sample fluctuations are
present and one must take them into account when performing, for instance, numerical simulations.
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1.8 . Vector Models

The history of mean field theories of SG started with the study of SK model, which defines an
Ising spin system with frustrated infinite-range interactions. Generalisations of SK model to systems
of vector spins were studied in the same years. The most important advantage to deal with vector
spins is that in these systems it is possible to study a zero temperature RSB transition in the external
field. Beside the theoretical interest, a mean field theory of vector spin glasses is of great interest in
order to reproduce features of real systems that are absent in discrete models : the most important
one, that is also the object of this thesis, is the study of low energy excitations. In this section we will
discuss general features of vector spin glasses, stressing on the effect of an external magnetic field on
the RSB transition. We consider the generalisation of SK model to vector spins with arbitrary number
of componentsm

HJ [S] = −
1

2

∑
i,j

JijS⃗i · S⃗j − H⃗ ·
N∑
i=1

S⃗i (1.76)
where each spin has fixed norm |S⃗i| = 1.

1.8.1 . Isotropic case
Let us begin with the case H⃗ = 0 : in absence of an external field, the system is isotropic, being in-

variant under the groupO(m) ofm-dimensional global rotations. The replica computation for generic
m was firstly performed by de Almeida and Thouless [Alm+78] with a RS ansatz

Q
(αβ)
ab = δ(αβ)[pδab + q(1− δab)] (1.77)

following the same steps as SK. After eliminating the diagonal overlaps since saddle point equations
trivially return p = 1/m, the RS Replica Action reads

ARS(q) =
β2J2mn(n− 1)

4
q2 − β2J2n

4m
+
β2J2n

2
q − logW (q) (1.78)

W (q) = Sm(1)

∫ ∞

0

dh

(2π)m/2
hm−1 exp

(
−h

2

2

)
Km(βJ

√
qh)n. (1.79)

where Sm(1) is the total solid angle of them-dimensional sphere of radius one and Ym(x) is a deco-
rated modified Bessel function of orderm/2− 1 :

Sm(1) =
2πm/2

Γ(m/2)

Km(x) = (2π)m/2 Im/2−1(x)

xm/2−1
. (1.80)

The RS free energy after the n→ 0 limit reads
f(β) = max

q
Φβ(q)

Φβ(q) = −
J2βm

4

( 1

m
− q
)2
− 1

β

∫ ∞

0

dh

Zm
hm−1e−

h2

2 log Ym(βJ
√
qh) (1.81)
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where Zm = (2π)m/2/Sm(1) = 2m/2−1Γ(m/2). The saddle point equation giving the overlap q is
q =

1

m

∫ ∞

0

dh

Zm
hm−1e−

h2

2

[
Im/2(βJ

√
qh)

Im/2−1(βJ
√
qh)

]2 (1.82)
The saddle point value in the high temperature region, as in the SK model, is q = 0, yielding

f(β) = −J
2β

4m
− 1

β
logSm(1) (1.83)

At T = Tc = J/m a q ̸= 0 saddle point appears : the free energy is non-analytic and the system
undergoes a freezing phase transition. However, as in the SK case, for any finitem the RS solution is
unstable for T < Tc. Generalising the analysis made in [AT78] to vector models, close to T = T−

c they
find that the Replicon eigenvalue

λR ≈ 1− J

mT

which becomes negative for T < Tc. In the m → ∞ limit, the vector model converges to the p = 2

spherical model [KTJ76], which is RS-stable.
The correct solution satisfies the fRSB ansatz, with eqs. (1.58) and (1.59) generalised to the m-

dimensional case. The boundary condition for Parisi equation is now
f(qEA, h) = log Ym(βh)

In the isotropic case, all the properties of the overlap distribution are identical to the ones found in the
casem = 1. When there is a non-zero external field, either uniform or random with non-zero mean,
the RSB scenario becomes more complicated, since one has longitudinal and transverse fluctuations
with respect to the external field.

1.8.2 . Anisotropic case
In presence of an external field, the RS saddle point is

Q
(αβ)
ab =


q⊥ δαβ a ̸= b, α, β ̸= 1
δαβ

m a = b, α, β ̸= 1

q∥ a ̸= b, α = β = 1

r a = b, α = β = 1

(1.84)

where the external field is taken as directed along direction α = 1. Take any spin and decompose
it into its projection along and perpendicularly to the external field. When the field is strong, the
system will be strongly magnetised along the field direction, destroying the interaction frustration.
Upon lowering the field, the effect of interactions becomes increasingly important, until the system
freezes in a spin glass state. Note that in the anisotropic case it is expected for the spin glass phase

q∥ ̸= 0 m∥ ̸= 0 (1.85)
q⊥ ̸= 0 m⊥ = 0 (1.86)

In the plane (|H⃗|, T ), there are two instabilities lines :
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• The Gabay-Tolouse (GT) line [GT81 ; GGD82] : under this line, the transverse overlap distribution
undergoes a fRSB transition. For the longitudinal overlaps, one only has a weak RSB transition :
the function q(x) shows a weak dependence on the Parisi parameter x. Close to zero field, the
GT line behaves as (

H

J

)2

≈ 4(m+ 2)2

m[(m+ 2)2 − 2]

(
T
(0)
c − T
T
(0)
c

)
(1.87)

• The de Almeida Thouless (dAT) line [CS82 ; ES82] : this is the generalization of the instability line
found in [AT78]. Under the dAT line, the longitudinal overlap distribution acquires the fRSB form
(1.60). Close to zero field, one has the same scaling found in them = 1 case

(
H

J

)2

≈ 4

m(m+ 2)

(
T
(0)
c − T
T
(0)
c

)3

(1.88)
The dAT line thus in the anisotropic case figures as a crossover from a weak to a strong fRSB regime,
rather than a true instability line. It has been pointed out in [MB82b ; GGD82] that, as far as criticality
is concerned, the RSB at the GT line of am vector model is equivalent to the RSB of an isotropicm−1-
vector model : the authors find that the expansion of the Parisi function q⊥(x) of them-vector model
is the same as that of q(x) of the isotropicm− 1 vector model. Thus, the RSB of an anisotropic vector
model with m-dimensional spins can be understood in terms of a m − 1 dimensional vector model
that enters the SG phase strongly 15 at the GT line and a SK model that freezes at the dAT line. The
two behaviors at small magnetic field, eqs. (1.87), (1.88) are observed experimentally in [MB82a ; LK82 ;
Fog+83 ; CAF83], showing the goodness of the RSB transition as a theoretical description of the SG
phase.
One aspect peculiar of vector models is that, for m > 2, both GT and dAT lines converge to finite
critical fields at T = 0 : thus, in these cases there is a zero-temperature SG phase transition in the
external field strength.

1.8.3 . Random Field
Let us consider now the case of quenched and uncorrelated random external fields {H⃗i}Ni=1 in eq.(1.76)

H[S] = −1

2

1,N∑
i,j

JijS⃗i · S⃗j −
N∑
i=1

H⃗i · S⃗i. (1.89)
If we take external fields with non-zero mean, we fall back into the anisotropic case previously dis-
cussed. Instead, it is interesting to consider random fields with zero mean : in this situation, even
though the O(m) symmetry is broken for any possible sample, the system is on average isotropic. In-
deed, since external fields have zero mean, the system does not develop a global magnetization, and
so all physical quantities are isotropic. In real system, a spatially random external field can be well
represented by an external field that oscillates very fast and irregularly in space.

Before discussing the random field SG, it is worth to briefly discuss the main features of Random
Field Ferromagnets. The Random Field Ising Model (RFIM) was introduced by Larkin in 1970 in order
15. According to the distinction between weak and strong RSB that we made a few lines before.
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to model the pinning of vortices in superconductors [Lar70]. The Random Field Ising Model (RFIM)
has been studied extensively in the last fifty years [Fyt+18] : it consists of a system of Ising spins with
ferromagnetic interactions and random fields with zero mean and variance H2. In the plane (H,T ),
there is an instability line which separates a high-temperature or/and high-field paramagnetic phase
and a low temperature-low field ferromagnetic phase. Random fields introduce frustration, so the
ferromagnetic phase displays features similar to those of spin glasses, such as a slow relaxation dy-
namics [Bel98]. One can wonder if spin glass long range order can occur in such systems : in mean
field theories on fully connected graphs, the RFIM cannot display any RSB, because the overlaps do
not figure as order parameters of the Replica Action, but only replica magnetisation. Conversely, in
finite dimensional systems and in mean field theories defined on random graphs with finite connec-
tivity this is not true and spin glass ordering is possible. For the RFIM, it was shown recently [KRZ10]
that RSB never occurs : the Spin-Glass susceptibility is always upper bounded by the Ferromagne-
tic susceptibility. In vector models with random field this is not true : indeed, just a few years ago it
was shown [LPR19] that the Random Field XY model can develop a spin glass phase intermediately
between the paramagnetic and the ferromagnetic phase.
Let us switch back to the random field spin glass and let us consider a gaussian random field with
zero mean and covariance matrix H2I. A replica computation of the free energy including also the
gaussian field average yields

Φβ,H(q) = −J
2βm

4

( 1

m
− q
)2
− 1

β

∫ ∞

0

dh

Zm
hm−1e−

h2

2 log Ym(βJ
√
q +H2h) (1.90)

q =
1

m

∫ ∞

0

dh

Zm
hm−1e−

h2

2

[
Y ′
m(β

√
J2q +H2h)

Ym(β
√
J2q +H2h)

]2
(1.91)

The RS equation in presence of an external field admits a q > 0 solution. In particular, for low H one
finds q ≈ H2/3, as expected for mean field theories. The most important physical effect related to
the random external field is the depletion of small local fields : for sufficiently strong H , typical local
fields of the sample and fluctuations about them scale as H . The depletion of small fields corres-
ponds to a depletion of high local responses, making the system increasingly stable against external
perturbations.

In the random field scenario, the GT line disappears and the dAT line reacquires its role of instabi-
lity line. The stability analysis of the RS saddle point of the Replica Action is done both in [SY10] : in the
n→ 0 limit, nine distinct eigenvalues of the Hessian are found. As in them = 1 case, the vanishing of
the smallest eigenvalue, the Replicon, defines the dAT line : the related stability condition reads

1

β2J2
>

∫ ∞

0

dh

Zm
hm−1e−

h2

2

[(
1− 1

m

)
gm(βσh)2

(βσh)2
+

1

m
g′m(βσh)2

]
(1.92)

σ =
√
J2q +H2 gm(x) =

Y ′
m(x)

Ym(x)
≡

Im/2(x)

Im/2−1(x)
. (1.93)

Form > 2 one can explicitly compute the T = 0 critical field
σ2(0)

J2
=

∫ ∞

0

dh

Zm
hm−3e−

h2

2 =⇒ Hc(0) =
J√

m(m− 2)
(1.94)
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The critical field decreases with increasing m and goes to zero in the spherical limit, as it should be,
since the system in the m → ∞ limit after proper rescaling converges to the spherical model which
is known to be RS.

1.9 . Spin Glasses on random graphs

So far we have discussed spin glass models with infinite-range interactions, such that each spin
interacts with all the others spins, with no underlying space structure. An improvedmean field theory
can be obtained by studying spin glass models such that in the thermodynamic limit each spin in-
teracts with a finite neighborhood, chosen at random. We refer to this models as Diluted Spin Glass
models.
Brief digression on Random Graphs

A graph is specified by the couple (V,E) consisting of the vertex or node set V and the edge or link
set E. The adjacency or connectivity matrix of a graph is defined by

Aij =

{
1 [ij] ∈ E i,j ∈ V

0 otherwise (1.95)
The adjacency matrix and its powers contain all the topological information of the network. For ins-
tance, the l-th power of the adjacency matrix yields all the paths of length l connecting two sites. A
random graph is an instance of the ensemble G(N,M), where N is the number of vertices, M the
number of edges and links are assigned to nodes according to some statistical rule. Consider the
degree d of a node, which is the number of other nodes to which it connects : by choosing different
probability distributions for it, one can define different random graphs ensembles. The simplest and
also most important examples are

• The Random Regular Graph (RRG) : each node has a fixed connectivity d = c. Thus, if N is the
number of nodes, the number of links is exactlyM = Nc/2.

• The Erdos-Renyi Graph (ERG) : the connectivity of each node is a poissonian variable with mean
c. The average number of link isM = Nc/2.

Any graph with c = O(1) is a sparse graph. Note that the fully connected graph is the special case
c = N − 1 ; in general, if c = O(N) we deal with dense graphs. Graphs such RRG and ERG belong to
the class of Bethe Random Graphs : these graphs forN going to infinity are equivalent to the infinite
Caley tree. A tree is a graph without loops, i.e. there is a unique path connecting any couple of nodes :
thus, in RRG and ERG loops should become infinitely long in the thermodynamic limit. Indeed, it can
be shown that the loops on such graphs have typical lengths

ℓRRG(N) =
logN

log(c− 1)
(1.96)

ℓERG(N) =
logN

log c
(1.97)

An important property of random graphs is the shortest path lengths distribution. In RRG, it can be
rigorously shown that forN large the probability that any two nodes are connected by a shortest path
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of length at most L− 1 is a discrete Gompertz distribution [Tis+22] :
P(ℓ < L) = η exp(−η (ebℓ − 1))θ(ℓ) + θ(−ℓ) (1.98)

η = c
N(c−2) b = log(c− 1)

For the ERG one obtains the same formula if b = log(c) is used (verificare se è vero). The probability
of having a path of exactly length ℓ and the expected number of nodes at the same distance are

P (ℓ) = P(ℓ− 1 < L)−P(ℓ < L) (1.99)
N(ℓ) = N P (ℓ) (1.100)

Note that when ηebℓ ≪ 1, corresponding to ℓ≪ ℓRRG (see eq. (1.96)), one finds the tree growing law
N(ℓ) = c(c− 1)ℓ−1θ(ℓ) + δℓ,0 +O

( 1

N

) (1.101)
which becomes exact only for N →∞.

1.9.1 . Bethe-Peierls approximation
Mean field (MF) approximations for finite-dimensional systems are based on the assumption that

spatial fluctuations of macroscopic observables are negligible 16. In order to achieve that, typically one
assumes that all connected correlations are zero in the thermodynamic limit : this implies (eq. (1.63)
in presence of a single pure state)

P (S) ≈
N→∞

N∏
i=1

ηi(Si)

⟨f(S)⟩ ≈
N→∞

f(m)

where here we are considering generic spin variables, ηi(Si) is themarginal on site i and f is a generic
smooth function of the configurations. If these approximations hold, each site feels exactly the same
field from its neighbors. Indeed, consider a ferromagnetic system with pairwise interactions : the
magnetisation satisfies

m = ⟨f(βJ
∑
j

Sj)⟩

In the MF approximation, this simplifies in
m = f(βJ cm) ≡ f(βh)

In disordered systems, because of disorder the mean field criterion can be restated by saying that
statistically each site feels the same field from its neighborhood : there is a site-independent pdf of
the local field.
16. It is known that close to critical pointsmeanfield approximations often fail, like in the case of Isingmodel inthree dimensions. For anymodelwith a secondorder phase transition there is anupper critical space dimensionover which mean field approximation works at the critical point.
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It is well known that only in fully connected systems the MF approximation is exact : we shall call
theories of these kind naiveor long rangeMF theories.MF approximation can be improved by including
pair correlations between nearest neighbours. The Gibbs measure is factorised as

P (S) =
N→∞

∏
(ij)

ηij(Si|Sj) =
∏
(ij)

ηij(Si, Sj)

ηi(Si)ηj(Sj)

∏
k

ηk(Sk) (1.102)
=
∏
(ij)

ηij(Si, Sj)
∏
k

ηk(Sk)
1−dk

where dk is the degree of node k. Normalisation and marginalisation constraints hold
Tr
Si

ηi(Si) = 1 Tr
Si Sj

ηij(Si, Sj) = 1

Tr
Sj

ηij(Si, Sj) = ηi(Si)

Theories based on this last equation are known as Bethe-PeierlsMF theories [Bet35 ; Pei36]. It can be
rigorously proven that they are exact on tree graphs [MM09]. Therefore, in the thermodynamic limit
they are exact on any Bethe random graph.

1.9.2 . Belief Propagation and Cavity Method
A way to exploit eq. (1.102) is to use a probabilistic technique called Belief Propagation (BP) [Pea88],

firstly developed in the fields of Information Theory and Artificial Intelligence. Suppose to have a se-
quence of events labelled with indices i and to assign to each of them a value xi and a belief ηi(xi)about its probability. If the events are not independent, it is always possible to build a Bayesian net-
work of their mutual causal relations. Let us stick only to the simpler case where events are pairwise
related : the probability of event j as a cause of event i is written as an input "message" η̂j→i(xi)corresponding to a directed edge on the network. Let us assume that the Bayesian network is sparse
and Markovian

P(xi|{xj}j ̸=i) = P(xi|{xj}j∈∂i) (1.103)
i.e. that event i depends only on the events directly related to it : ∂i stands for the neighborhood of i.
In this case, it is possible to substitute cause-effect relations with non-negative functions {ψij(xi, xj)}and express the effect of external sources with non-negative functions {ϕi(xi)}. In a Markovian net-
work one-point and two point marginals satisfy

ηi(xi) =
1

Zi
ϕ(xi)

∏
k∈∂i

η̂k→i(xi) (1.104)
ηij(xi, xj) =

1

Zij
ϕi(xi)ϕj(xj)ψij(xi, xj)

∏
k∈∂i/j

η̂k→i(xi)
∏

l∈∂j/i

η̂l→j(xj)

whereZi andZij are normalisation constants and ∂i/j is the neighborhood of iminus j. The margi-
nalisation condition returns a set of self-consistent equations for input messages

η̂j→i(xi) =
Zi

Zij
Tr
xj

ϕj(xj)ψij(xi, xj)
∏

l∈∂j/i

η̂l→j(xj) = Tr
xj

ψij(xi, xj)ηj→i(xj) (1.105)
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where we have introduced output "messages"
ηi→j(xi) =

ϕi(xi)

Zi→j

∏
k∈∂i/j

η̂k→i(xi) (1.106)

which satisfy BP equations
ηi→j(xi) =

ϕi(xi)

Zi→j

∏
k∈∂i/j

Tr
xk

ψik(xi, xk)ηk→i(xk) (1.107)

It is instructive to consider eq.(1.107) as dynamical equations on the network, by including a time index
t+1 in the r.h.s. and t in the l.h.s. : they describe the flowof information in the network in terms of local
updates of the single nodes ; the belief of a single node is the balance of input and output messages
from and towards neighbors. In a tree graph messages can be updated moving backwards from the
leaves to the root. Notice that BP algorithm yields a fixed point in a tree-like graph in a time that grows
linearly with the size of the system : it is an exponential speed-up with respect to a naive sampling of
configuration space. One and two-pointmarginal can be computed once a fixed point of BP equations
has been reached

ηi(xi) =
ϕi(xi)

Zi

∏
k∈∂i/j

Tr
xk

ψik(xi, xk)η
∗
k→i(xk) (1.108)

ηij(xi, xj) =
1

Zij
ψij(xi, xj)η

∗
i→j(xi)η

∗
j→i(xj) (1.109)

Let us make a connection with physical systems : if instead of causal relations we consider inter-
actions, then it is natural to set

ψij(xi, xj) ≡ expβJij(xi, xj) ϕ(xi) ≡ expβbi(xi) (1.110)
where Jij(xi, xj) is a pair interaction and βbi(xi) is the interaction with an external source. Indeed,
ψij(xi, xj)ϕ(xi) ≡ eβ(Jij(xi,xj)+bi(xi)) is just the number density of xi given xj . In unfrustrated homo-
geneous systems one-point and two-points marginals are the same in all the sites. If disordered is
added, they become random variables differing from site to site. In the thermodynamic limit finding
a fixed point of eqs (1.107) is equivalent to find the pdf of cavity marginals : in fact, one can forget the
underlying graph and consider eqs (1.107) as an equivalence in distribution sense ; this technique is
the Population Dynamics Algorithm (PDA) and it will be discussed in greater detail in next section. Given
a BP fixed point, one can compute the Bethe free-energy

F [{η∗i→j}(ij)] = −
1

β
(
∑
i

logZi[{η∗i→j}(ij)]−
∑
(ij)

Zij [{η∗i→j}(ij)]) (1.111)

It consists of the balance between the free energy cost of sites and links. In fact, BP equations are
equivalent to what in physics is called Cavity Method [MPV87]. If a given node is isolated from the rest
of the system or if its degree of freedom is constrained to assume a fixed value, in a tree graph its
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neighbors get uncorrelated, since the system has only pairwise interactions 17. The physical interpre-
tation of message ηi→j(xj) is that of marginal of the system without node j, as if this very node is
isolated from the system through a cavity : therefore, eq. (1.108) is also called cavity marginal. Eq. (1.111)
can be straightforwardly interpreted as the balance between the free energy gain of adding new sites
and the cost related to the interactions with the nodes they are connected to. Notice that eq. (1.103)
can hold if and only if there is no long-range order in the system : hence, at phase transitions the stan-
dard BP approach fails. In presence of RSB, eqs. (1.107) do not converge in the SG phase of diluted spin
systems. If RS is broken, one has a different pdf of cavity marginals for any different pure state : BP
and Cavity method can be extended to RSB systems by correctly taking into account the multiplicity
of states [MP01].
To conclude this section, suppose to expand eqs (1.107) in the couplings : it is not hard to show that
in the dense limit c = O(N) and |Jij | = O(1/

√
N) they converge to TAP eqs (1.37). In dense sys-

tems cavity method coincide with linear response theory : the system is continuous under addition
or subtraction of any spin. Again, this claim is true only in the RS phase : in the RSB phase the system
responds non-trivially to any external perturbation, thanks to marginal stability [DK83].

17. In presence of group interactions, this is not true anymore : if an edge between twonodes is removed, theyremain correlated through another node participating to the group interaction. The generalisation of graphsto multi-body interactions are the factor graphs [MPV87], [Zam10].
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2 - Structural Glasses

The word structural glasses refers to a class of solids whose microscopic spatial structure is disor-
dered. Thesematerials sharemany properties with spin glasses, such as aging dynamics,memory and
an anomalous low temperature response [CC05 ; Cav09]. This chapter is devoted to the discussion of
the Random First Order Transition (RFOT), a mean field theoretical framework that describes the glassy
state as the result of a thermodynamic transition : we will do it through the lenses of p-spin models,
generalised spin glass models where each spin interacts with the others via p-body interactions.

2.1 . The glass transition

If a liquid is cooled down to the freezing temperature, it forms a crystal if a long enough time,
comparable with the nucleation time scale of crystals, is waited. However, if cooling is sufficiently
fast, crystallization can be bypassed : in this situation, the liquid enters a metastable phase and be-
comes a super-cooled liquid (SCL) [Cav09]. While a liquid shows exponentially fast relaxations, with a
unique Arrenhius-like time scale τ ∝ 1/T , the SCL exhibits an increasingly slower relaxation dynamics
the lower the temperature, with the appearance of two different relaxation regimes. In figure 2.1 we
show the typical phase diagram of the liquid-glass transition, featuring the entropy versus the tempe-
rature. The glass transition temperature Tg is conventionally defined as the temperature at which the
experimental time waited for relaxation is τ = 103s. From the freezing (or melting) temperature Tm to
Tg the measured relaxation time grows of sixteen orders of magnitude (τ = O(10−13)s at Tm). In theintermediate region between these two temperatures, two different relaxation regimes are found :

• β or fast relaxation : in this regime, the auto-correlation function of the system develops a pla-
teau

C(t) ∼ q + c1(t/τβ)
−a 1≪ t≪ τβ

We can have a physical intuition of this residual correlation with the cage picture : the β regime
is the time scale during which a target particle of the system explores the limited environment
defined by its neighborhood.

• α or slow relaxation : this asymptotic regime is related to the diffusion of particles in the system,
after they have escaped their cages. The total time needed for such an event is t ∼ τα. As theparticle diffuses out of the cage, the auto-correlation function decays from the plateau to zero

C(t) ∼ exp(−(t/τα)δ) t ≃ τα

following a stretched exponential, δ < 1.
Between Tm and Tg , the SCL undergoes a crossover at T = Tx from a regime where τβ ∼ τalpha(T > Tx) to a regime where τβ ≪ τα (T < Tx). This crossover phenomenon from strongly coupled
time-scales to decoupled ones is a signature of the emergence of glassy behavior. This behavior was
interpreted in 1969 by Golstein as a crossover for activated dynamics [Gol69]. At the temperature T =

Tx, identified by him as the temperature where experimentally τα ∼ 10−9s, the dynamics of the SCL
is driven by hopping processes through potential energy barriers whose height is significantly larger
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Figure 2.1 – A standard diagram of the liquid-SCL-glass phenomenology. Image taken from [Cav09].

than kBT , the scale of thermal fluctuations. For higher temperatures, jumps are very frequent and
the system does not spendmuch time in a local minimum of the potential energy landscape, so there
is no net distinction between the two relaxation regimes ; as temperature is lowered, jumps become
rarer, the system spends longer times visiting a local minimum and the two time scales separate.

The glass transition temperature Tg , at variance with the Golstein crossover temperature Tx, hasless significance being conventional. It is legit to see how the alpha-relaxation time behaves as tem-
perature is further lowered, by waiting longer experimental times between a cooling step and the
next. It is observed experimentally that τα becomes exponentially large as temperature is decreased,
until the point that the scl appears essentially frozen at antropic time-scales. It is conjectured that in
the limit of quasi-static cooling 1 the SCL displays a thermodynamic phase transition and freezes in
what is called ideal glass. The limiting temperature T = TK is called Kauzmann temperature after W.
Kauzmann, who claimed of its existence in 1948 [Kau48] : he observed that measures of entropy and
enthalpy in temperature intercept their respective values on the crystalline state at a finite non-zero
temperature. He suggested that at this temperature a phase transition should occur, in order to avoid
the paradoxical scenario of a SCL with lower entropy than that of the crystal for T < TK .The existence of a thermodynamic phase transition of glasses, in which an amorphous long-range
order emerges, is still a debated problem. There are essentially two hypothesis at stake :

• The formation of a glass is a purely kynetic process, with no underlying thermodynamic phase
transition, but rather a dynamic crossover : in this picture, τα grows exponentially as T → 0.
The theoretical framework to describe this phenomenon is Facilitation theory [KA93 ; CG10].

• There is an underlying 1RSB thermodynamic phase transition atT = TK , and the glass formation
process is described by RFOT [KT87 ; KT88 ; KTW89; BB11 ; BB22] : in this picture, τα diverges
at the Kauzmann temperature, following a super-Arrhenius law driven by the phenomenon of
entropy-crisis predicted by Kauzmann. Any glass formed at T > TK is a meta-stable state 2 of

1. Also called adiabatic, the system is let equilibrate at each step.2. In finite dimensions there is no universally accepted definition of meta-stable state. Extensions of theRFOT picture to finite dimensions rely on themosaic picture [KTW89] and on the point-to-set correlation length
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the free energy landscape.
We devote the rest of this chapter to outline key features of the RFOT, using spherical p-spin models
and focusing on static aspects.

2.2 . Mean field picture of glass formation

In this section we describe Random First Order Transition (RFOT), the mean field theory of glass
transition which is conjectured to exist also in finite dimensions. At themean field level, the phenome-
nology of the liquid-SCL-glass process is essentially captured, with a crucial difference. While in real
systems theα relaxation timediverges only atTK , inmean fieldmodels it does exist a sharp dynamical
phase transition at a higher temperature, which is calledmode coupling temperature T = TMCT > Tg ,after the renown Mode Coupling theory developed in [Göt84]. This mean field theory describes the
equilibrium dynamics of a tagged particle with massm in a liquid. In Fourier space, the transform of
the correlation density F (k, t) (it is assumed isotropy) satisfies the self-consistent equations

∂2F (k, t)

∂t2
+

k2T

mS(k)
F (k, t) = −

∫ t

0
ds M(k, t− s)F (k, s) (2.1)

where S(k) = F (k, 0) is the structure form factor andM(k, t− s) is a memory kernel between times
s < t. This theory describes correctly the dynamics of SCL only in the region Tx < T < Tm where the
two modes ωα = 1/τα and ωβ = 1/τβ are coupled. The solution of eq. (2.1) predicts a divergence of ταat TMCT ∼ Tx : at the mean-field level barriers are extensive, so the crossover to activation observed
in finite dimensions is replaced by a fictitious ergodicity breaking transition.

This undesired mean field result can nevertheless be more useful when a connection to statics
is made. This was firstly done by Kirkpatric, Thirumalai and Wolynes [KTW89], who unified the phe-
nomenology of p-spin models to the MCT of Gotze and co-workers. Let us consider the free energy
landscape of the system. The anticipated divergence of τα is related to the splitting of the Gibbs mea-
sure into an exponential number of thermodynamic states, each one separated by extensive barriers.
Let us consider the partition function of a thermodynamic system and decompose it in pure states :

Z =
∑
α

e−βFa =

∫
dfe−βNf

∑
α

δ(f − fα) =

∫
dfe−βNfΩ(f) (2.2)

We define as Complexity of the free energy level f the quantity
Σ(f) = lim

N→∞

1

N
log Ω(f) (2.3)

When Σ(f)>0, there is an exponential number of metastable states with free energy f . Conversely, if
the complexity is zero, the number of metastable states with the corresponding free energy is subex-
ponential. Finally, if the complexity is negative, no metastable states exist with that free energy. The
dynamical phase TK < T < TMCT corresponds to a non-negative equilibrium complexity, Σ(f∗) > 0,
where f∗ is the saddle point in the last r.h.s. of (2.2). At the dynamical transition the free-energy is
[BB04].
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analytic, so thermodynamic is untouched. In the dynamical phase the temperature has a two-fold
meaning. Indeed, from the saddle point (2.2) we have

dΣ

df
(f∗) ≡

1

T
(2.4)

At short times, when the system is exploring a valley, the temperature is the parameter coupling the
system with a thermal bath, according to the usual dS

dE
(E∗) = 1/T . At later times, when the system

has explored multiple basins, the temperature mediates free energy exchanges from one valley to
the other through (2.4). So, in the dynamical phase the total equilibrium entropy reads

S(T ) = S0(T ) + Σ(T ) (2.5)
where the first addendum in the r.h.s. is the internal entropy of basins and expresses vibrations of
particles around their β regime configurations, the second is the complexity and accounts for the
multiplicity of cages.

What about the Kauzmann temperature? The interpretation is that it is the temperature such that
intervalley jumps are not thermodynamically favoured : the complexity of equilibrium states vanishes
at T = TK . The equilibrium measure is concentrated on the states at the bottom of the landscape,
whose number is subexponential. This is a 1RSB thermodynamic transition, since now feq is non-analytic at T = TK . From (2.5), one has

S(T ) = S0(T ). (2.6)
which brings to the identification of the condensation of the equilibrium measure in the lowest free
energy states in mean field models to the phenomenon of entropy crisis.

2.3 . The pure p-spin model

We consider a spin glass model with the following Hamiltonian
Hp[σ] = −

∑
(i1...ip)

Ji1...ipσi1 . . . σip (2.7)
where (i1, . . . , ip) stands for a combination of the p indices, the σi are real variables satisfying the
global spherical constraint

N∑
i=1

σ2i = N

and the couplings are quenched normal variables with zero mean and variance
E[J2

i1...ip ] =
p!J2

2Np−1
.

As before, we solve the model using replica trick (1.8)
logZ = lim

n→0

Zn − 1

n
.
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The computation leads to the Replica Action
A[Q] = −β

2J2

4

∑
ab

Qp
ab −

1

2
log detQ− ns∞ (2.8)

where s∞ is the infinite-temperature entropy. The free energy evaluated at the RS saddle point is
f(β; q) = −βJ

2

4
+
βJ2

4
qp − 1

2
log(1− q)− 1

β
s∞. (2.9)

The physical value of q that minimises f is q∗ = 0, yielding
f(β) = −J

2β

4
− 1

β
s∞ (2.10)

i.e. the paramagnetic free-energy. This solution is stable at all temperatures, but for T ≤ TK the 1RSB
saddle point maximises the free energy functional [CS92] :

f1RSB(β) = max
m,q1

Φβ(0, q1,m) (2.11)
Φβ(q0, q1,m) = −βJ

2

4
+
βJ2

4
(1−m)qp1 +

βJ2

4
m qp0 −

1

β
s∞

− 1

2m
log(1− (1−m)q1 −mq0) +

1−m
2m

log
(
1− q1 −

m

1−m
q0

) (2.12)
We set q0 = 0 because there is no external magnetic field. Eq. (2.11), despite not being the optimal
solution, is also stable for TK < T < Ton, where T = Ton is the temperature over which only the
paramagnetic state exists. At T = TK the system has a second order thermodynamic phase transition
with a jumping order parameter : more precisely, q0 = q1 = q∗ = 0 for T = T+

K and q0 = 0, q1 = q∗ > 0

for T = T−
K .As expected, the dynamical phase is invisible to any thermodynamic approach. In order to unveil

its presence, we need a tool to explore metastable states.
Monasson Potential

In [Mon95] R. Monasson develops a technique that allows to explore different metastable states
at given temperature T < Ton. He proposes the following potential

Gβ(m, q) = − 1

β
logZβ(m, q) (2.13)

Zβ(m, q) =

∫
dσ1 . . . dσne

−β
∑m

a=1 Hp[σa]
∏
ab

δ(N q − σa · σb)

Replica of the system are constrained to have fixed mutual overlap : this is equivalent to introduce
a coupling between different replicas. In this framework, replica are not introduced as an artifact to
perform the computation : their number m is a parameter of the problem, and because of this they
are often appointed as Real Replicas.
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Consider the standard decomposition in pure states
Z =

∫
dfe−βNφ(f) φ(f) = f − 1

β
Σ(f)

This equation does not allow for a direct computation of the Complexity of meta-stable states. The
advantage of (2.13) is that it allows to compute the Complexity by means of a Legendre transform :

βG(m) = βmf − Σ(f) (2.14)

f ≡ ∂G

∂m
Σ(f) = β [m(f)f −G(m(f))] (2.15)

where the overlap is evaluated at the larger of theminimaofG(m, q). Hence, at a given temperatureT ,
varying the parameterm allows the exploration of different families of metastable states. Equilibrium
states correspond to the choice m = 1. The expression one obtains from (2.13) is identical to (2.12),
with q0 = 0

Gβ(q,m) = −βJ
2

4
− βJ2

4
(m− 1)qp

− 1

2mβ
log(1 + (m− 1)q)− m− 1

2mβ
log(1− q) (2.16)

The equation for q reads
q[qp + (m− 2)qp−1 + qp−2 − 2

(βJ)2p
] = 0. (2.17)

In order to study metastable states, one has to select the largest solution q∗ of this last equation,which will be a maximum or a minimum depending ifm < 1 orm > 1. For evaluating the Complexity
at equilibrium, one has to consider the solution q∗ in the limit m = 1. The dynamical temperature is
defined as the temperature where the Replicon eigenvalue evaluated at q = q∗ vanishes [CS92]

λR(T ) =
2

(1− q∗)2
− p(p− 1)qp−2

∗
T 2

=⇒ Td =

√
p(p− 1)qp−2

∗
2

(1− q∗) (2.18)

Road to T = 0

One can build a phase diagram in the plane T,m for the p-spin model, such that in figure 2.2. The
tree lines refer to the following :

• The linem∗(T ) is the spinodal line : it represents the value ofm for temperature T such that a
q∗ solution of (2.17) appears.• The line mth(T ) ≥ m∗(T ) is the stability line : it is identified through the condition of marginal
stability λR = 0. Solutions with m < mth(T ) are unstable, so meta-stable states exist for m ≥
mth. Thus we identify fth(T ) = f(mth(T )).• The line ms(T ) is the entropy crisis line, where the configurational entropy vanishes. The freeenergy and the complexity as functions of m decrease from mth to ms. Clearly, fmin(T ) =

f(ms(T )).
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Figure 2.2 – Phase diagram in the plane m,T of the p = 3 spherical spin glass. Picture taken from[Zam10].
Notice that in the whole dynamical phase mth < 1 < ms, whereas ms < 1 as the glassy phase is
entered. By inverting m through f = ∂G/∂m, one can follow TAP states in temperature, down to
T = 0. In pure p-spin models it does exist a perfect mapping between energy levels and TAP levels :
in other words, each level f that for some T in the dynamical phase is of equilibrium can be written
as f = f(e(T )), with fmin = f(emin(T )) and fth = f(eth(T )). This property is a consequence of thehomogeneity of the Hamiltonian (2.7) with respect to the configuration S : at finite temperatures,
the TAP free energy as well is homogeneous with respect to the magnetisation profile, so thanks
to the global spherical constraint a stationary point of the TAP free energy is followed radially in the
N−spherewhen temperature is changed. Inmore sophisticatedmodel, such asmixed p-spinmodels
[Fol20], this property is lost and together with it the perfect matching between e and f . Behind this
failure there is the so-called chaos in temperature [RC03], the property for which the overlap between
any pair of equilibrium states referring to two different temperatures is zero. What happens in mixed
models and in the model we will study in chapter 5 as well is that only states that are of equilibrium
for some TK < TSF < Td can be followed down to zero temperature. By fixing

y =
m

T
≡ dΣ

df
(2.19)

the Monasson free energy Gβ(m, q∗) has a good limit for T → 0

G∞(y) = −1

4
(pχ0 + y) +

1

2y
log

χ0

χ0 + y
(2.20)

where χ0 = limT→0(1− q∗)/T . One can compute the Complexity of energy levels from
e =

d(yG∞)

dy
Σ(e) = y[e−G∞(y(e))]. (2.21)
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Linear excitations of the pure p-spin

We conclude this chapter by discussing the properties of the linear excitations of the energy Hes-
sian, evaluated on a point of minimum. The spherical p-spin is the most simple spin glass model
featuring continuous spins, so is a ground zero for the study of excitation spectra in spin glasses.

We define a Lagrangian associated to (2.7)
L = Hp +

1

2
µ(|S|2 −N) (2.22)

The parameter µ is a radial force that enforce the spherical constraint. Local minima of the energy
landscapes satisfy the stationarity condition :

µSi = −∂Hp

∂Si
µ = p|e| (2.23)

The Hessian can be computed with a further derivative
∂L

∂Si∂Sj
=

∂2Hp

∂Si∂Sj
+ p|e|δij (2.24)

The Hessian in this last equation is a shifted Wigner random matrix : we will discuss in greater detail
these kind ofmatrices and their properties in section 3.2. Here we anticipate some of their properties :
the spectrum of (2.24) is the interval [p|e| − 2

√
p(p− 1)/2, p|e| + 2

√
p(p− 1)/2], and the eigenvalues

are random variables distributed according to a Wigner semi-circular law [Wig58]
ρ(λ) =

√
(λ− λ−)(λ+ − λ)
2π
√
p(p− 1)/2

with λ±(e) = ±2√p(p− 1)/2 + p|e|. The energy levels can be classified in [Fol20]
• Stable minima e < eth = −2

√
(p− 1)/p : the spectra of these minima are gapped. Relaxation

inside these minima is exponentially fast, with an asymptotic time-scale τ ∼ 1/λ−.• Marginal minima e = eth : the spectra are gapless, with lower edge at λ = 0. Relaxation is only
algebraically fast : the exponent of the decay is determined by the concentration of eigenvalues
close to the origin : ρ(λ) ∼ λ1/2 → C(t) ∼ t−1/2.

• Saddles (dominant only for e > eth) : part of the spectrum is negative. Here it is found C(t) ∼
t−2/3.

When studying randommatrices, another important task is the computation of eigenvectors and
their statistics. In particular, an interesting property to measure is the degree of localisation, namely
how the amplitudes of the components are "spatially" distributed. We anticipate that in Wigner ma-
trices such as (2.24) eigenvector are completely delocalised and thus featureless. The triviality of ei-
genvectors is shared by other popular mean-field models of disordered systems, like the perceptron
[Fra+15]. Since in many finite-dimensional systems under specific conditions localised excitations can
appear, as we shall see in the first part of next chapter, it is important to have a class of mean field
models for disordered systems able to feature less trivial properties in their excitations : in chapters 4,
5, 6 we define a class of mean field spin glass models able to capture non-trivial localisation features
and thus to better represent glassy systems at low temperature.
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3 - Low energy excitations of disordered systems

Thebehavior of thermodynamic susceptibilities at low temperatures is a central problem in conden-
sed matter. About a century ago, the newborn theory of quanta proved itself to be fundamental for
correctly understanding the low temperature regime of solids. As to structural glasses, from early
experimental studies it was clear that these systems possessed an anomalous low temperature phe-
nomenology [ZP71]. The specific heat of many different glassy systems was found to scale linearly
in temperature below 10K. Since crystals specific heat follows a cubic scaling at low temperature,
glassy systems must possess an excess of excitations above Debye prediction. The diverse behavior
of glasses at very low temperature was addressed in the first 70s by means of phenomenological
tunnelling models [Phi72 ; AHV72].

The Hessian of disordered systems are randommatrices [Wig58 ; RP60]. In the case of mean field
systems, Hessians can be represented by statistical ensembles of random matrices. With the purest
spirit of statistical physics, the problem of determining the excitations of a specific physical system is
replaced by the problem of diagonalising instances drawn from an assigned measure over the space
of matrices. The spectral statistics obey self-averaging properties and thus the full information about
the original system in the infinite size limit is equivalent to that of the representative random matrix
ensemble.

This chapter is divided in two sections : in the first we will convey a brief account of the problem
of excitations in glassy systems and of recent advancements [LB21]. In section 3.2 we will present
fundamental concepts of Random Matrix Theory [PB20] and discuss how it helps in the study of the
excitations of disordered systems.

3.1 . Excitations of solids at low temperature

3.1.1 . Vibrational modes of crystals : Debye-Law

A crystal is a solid whose constituent molecules are positioned at the vertices of a regular Bra-
vais lattice [AM22]. For most of purposes, electronic degrees of freedom can be decoupled from ionic
ones 1, so that the ionic part of the crystal can be conceived as a system of coupled harmonic oscilla-
tors 2. In the harmonic approximation, the overall dynamical behavior of the system is determined by

1. This is the Adiabatic Approximation and it is based on the different time scales of electron and ionicdynamics.2. Anharmonic terms in ionic interactions of crystals are important close to the melting point and in thedescription of volume thermal dilatation [AM22].
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the Dynamical Matrix
DR R′ =

∂2U

∂x⃗R∂x⃗R′
(x⃗i, . . . , x⃗j)

F⃗R = −
∑
R′

DRR′ x⃗R

U(x) ≃ U0 +
1

2

∑
RR′

x⃗R · DRR′ x⃗R′

where index R stands for the position of the ion in the lattice, {x⃗R}R are displacements about equili-
briumpositions and {F⃗R}R are forces felt by oscillators. The eigenvalues {λk} of the dynamicalmatrix
define harmonic frequencies ωk ≡ ±

√
λ/M , whereM is the ionic mass. Since the system is traslatio-

nally invariant, the Dynamical matrix must satisfy DRR′ ≡ D|R−R′| : thus, by Goldstones’ theorem ei-
genvectors are planewaves with wave-vectors k⃗ in the Brillouin zone, related to harmonic frequencies
through a dispersion relation ω ≡ ωs(k⃗), where s is the branch index of the spectrum 3. In literature
they are called normal modes of vibration. In the long wavelenght (small frequency) limit they describe
the propagation of sound waves in the solid, with velocity vs = ω/k.

In the quantum description, necessary at low temperatures, normal modes are substituted by
bosonic quasi-particles called phonons and the vibrational state of the solid is described in terms of
Bose-Einstein density of occupation numbers of phononic levels

ns(k⃗) =
1

eβ ℏ ωs(k⃗) − 1
⟨O⟩ ≡

∑
s

∫
d3k

(2π)3
ns(k⃗)O(ωs(k⃗))

where the integral is performed in the first Brillouin zone and O is a physical observable. Since occu-
pation numbers depend on wave-vectors only through phonon frequencies, a fundamental quantity
is the Vibrational Density of States or Phonon Level Density

D(ω) ≡
∑
s

∫
d3k

(2π)3
δ(ω − ωs(k⃗)) ⟨O⟩ =

∫
dωD(ω) n(ω) O(ω) (3.1)

At low temperatures, only phonons with energy ℏ ω ≪ kBT are excited and n(ω) is dominated by
them. As a consequence, at low T only the ω → 0 behavior of phonon density is relevant : setting
ωs(k⃗) = v|⃗k|

D(ω) ∼ 3

2π2
ω2

v3
(3.2)

Therefore, the lower edge of the vibrational spectrum determines the temperature dependence of
physical observables, in particular that of the specific heat. Around a century ago, Debye predicted
through (3.2) the behavior cv ∼ T 3 for the specific heat : this prediction was the first great success of
the quantum theory of solids, since classically it was impossible to explain the discrepancy between
experimental data of low temperature specific heats and Dulong-Petit law cv = 6 nkBT .

3. In three dimensions, there are one longitudinal branch and two transverse branches, discriminating vi-bration modes that are respectively. parallel and orthogonal to displacement vectors.
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Classically, the lowest vibrational modes control the long-time equilibrium dynamics. When the
DoS is gapped, the system relaxes exponentially fast, with a characteristic time scale τ = 1/ωmin. Ifinstead the spectrum is gapless, relaxation slows down to a power law behavior, controlled by the
exponent of the VDoS close to ω = 0.

3.1.2 . Vibrational modes of glasses : the Boson peak
The low temperature physics of glasses strongly differs from that of crystals. As the system is co-

oled down, molecular vibrations are more and more dumped and thus the entropy gets less and
less important : the underlying disordered structure of the glass, which determines the potential
energy landscape (PEL), becomes relevant. Early experiments [ZP71] show that the specific heat of
many glassy samples as a linear behavior in temperature, at variance with the cubic scaling of crys-
tals : glasses have low frequency excitations in excess. Following these experimental observations,
phenomenological theories identified the anomaly in terms of two-level systems [Phi72 ; AHV72] :
these are localised excitations, consisting in small and localised group of particles that tunnel bet-
ween two quasi-degenerate mechanically stable configurations. The existence of such a populations
of excitations was conjectured for the first in 1962 by Rosenstock [Ros62] : he claimed that in solids
with structural defects non-Debye, short-range acoustic waves could emerge.

At the level of the VDoS, these localised excitations in excess of the Debye spectrummanifest in a
peak of the reduced VDoS D̃(ω) = D(ω)/Ddebye(ω) at a characteristic frequencyωBP in theTHz range
called in literature boson peak ([MS86 ; SDG98 ; Kir99 ; Tar+01 ; GPS03 ; GPS05 ; PSG07 ; ST08 ; Gri+03 ;
Mar+13 ; ML15 ; Yan+19]). The physical origin of this feature is still debated and there is no consensus
on a commonly accepted theory.

Another important feature of glassy vibrations is that they seem to possess a high degree of uni-
versality. Superimposed to phononic vibrations, the VDoS of localised glassy excitations seems to
follow a quartic law at low fequency

Dg(ω) ∼ A ω4 (3.3)
for a variety of models [LDB16 ; MSI17 ; LB17 ; SMI18 ; KBL18 ; Ang+18 ; Wan+19a ; Wan+19b ; Ric+20 ;
Bon+20 ; Ji+19 ; Ji+20 ; Ji+21]. The quartic scaling seems to be robust with respect to system type (kind
of interactions, symmetries) [Ric+20 ; Das+20 ; Bon+20], preparation protocol [LDB16] and physical di-
mensions [KBL18]. The prefactor in (3.3) instead depends on all these parameters, including the prepa-
ration protocol [Ji+20 ; Ji+21]. Spatially, these low frequency quasi-localisedmodes exist in microscopic
cores with a diameter of the order of ten average lattice spacings, and their amplitude seems to decay
with distance from the core center as rd−1, as it happens for the spatial response of elastic media to
dipolar perturbations [LB21]. Because of this, these modes are often called quasi-localised instead of
simply "localised".

3.1.3 . Soft potential model
Between the 80s and the 90s, new phenomenological theories ascribed the existence of quasi-

localised excitations to regions of the glassy sample with anomalously small stiffness [KKI82 ; Kli83 ;
KKI83 ; Buc+91 ; Buc+92 ; Buc92 ; Gur+93]. The theoretical framework resulting from them is known in
literature as soft potential model. This theory schematise the just mentioned localised groups of soft

41



particles as non-interacting anharmonic oscillators
V =

∑
i

V (xi)

V (x) = V (0) +
∞∑
k=1

an
k!
xk

where x is the projection of particle displacements along some assigned direction. The coefficients of
the expansion are assumed to be random variables, with a joint distribution P ({an}) with no zeros
and singularities. If one centers the expansion around an equilibrium configuration {x(eq)i }, truncating
at fourth order one can represent the potential acting on each oscillator as a quartic polynomial. One
can show that for a generic minimum, the distribution of its curvature b2 behaves as P (b2) ∼ b2 atsmall curvatures : this corresponds toD(ω) ∼ ω3. With the additional constraint that {x(eq)i } is a global
minimum, one has P (b2) ∼ b3/22 , yieldD(ω) ∼ ω4.

In spite of their ability of predicting the quartic law, this early version of the soft potential model
cannot say anything about the degree of localisation of the modes. The next natural step is to include
interactions in the effective potential energy

V =
∑
i

V (xi) +
1

2

∑
ij

J(xi, xj) (3.4)

The first successful phenomenological theory basing on this potential is theGurevich-Parshin-Schober
(GPS) theory [GPS03], formulated almost twenty years ago. Their theory bears some similarities with
earlier attempts to introduce interactions between defects [GRS90a ; GRS90b ; KH97]. GPS theory as-
sumes couplings of the form J(xi, xj) = Jgijxixj/r

−d
ij , with gij random uniform variables in the in-

terval [−1/2, 1/2]. They write an Hamiltonian
HGPS =

1

2

∑
i

kix
2
i +

1

4!

∑
i

x4i +
1

2

∑
i,j

Jgijxixj

rdij
(3.5)

with stiffness distribution P (k) ∼ kβ for some β > 0 and J interaction strenght. Their theory predicts
both the quartic law and the presence of the Boson peak, finding for the reduced VDoS the behaviors

D̃(ω) ≡ D(ω)

ω2
=


A ω2 ω ≪ ωBP

B ω−1 ωBP ≪ ω ≪ ωphon

C ω ≥ ωphon

(3.6)

They tested their theoretical predictions with numerical simulations, and compared their data with
experiments, finding a very good agreement. Very recently, a mean field theory on a fully-connected
graph inspiring from GPS model was proposed [Bou+21 ; Rai+21 ; FU21]. Interactions in the GPS Ha-
miltonian (3.5) are replaced by quenched gaussian variables with the usual scaling, and a linear term
controlled by an external field h is added. This model has a RS and RSB phase in the plane h, J , and
in a segment of the critical line separating the two the system features Hessian spectra with quartic
VDoS.
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So far we did not explicitly mention the relation between glassy excitations and phonons, which in
absence of external forces must exist. The frequency ω1 in eq. (3.6) is a crossover frequency beyondwhich the phonon spectrum is essentially continuous. For lower frequencies, phonons typically ga-
thers in bands of width ∝ N−1/2, appearing as sharp peaks in the VDoS and thus being more easily
distinguishable from non-phononic modes ; only for ω ≪ ωBP phonons are absent. In the region
of the Boson peak, there is strong hybridization between phonons and quasi-localised modes : to
correctly disentagle them is still an open problem of structural glasses[LB21].
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3.2 . RandomMatrix Theory

Random Matrix Theory (RMT) is a relatively new branch of probability theory : its history as a well
defined research field begins in the late 50s. The theoretical physicist E. Wigner proposed a toy mo-
del for excited energy levels of atomic nuclei. At that time, the problem of characterising the energy
spectrum of atomic nuclei was very challenging. Popular quantum models for the nucleus consisted
in hermitian Hamiltonian operators represented as very big and complicated matrices. Wigner pro-
posed to tackle the problem by considering the entries of this matrix as random gaussian variables
[Wig58] 4 and to call the resulting operators Random Matrices. An important problem was to charac-
terise the typical spacing between atomic energy levels. Wigner guessed the correct form for the PDF
of the spacing s between adjacent levels (s0 is a characteristic scale)

Ps(s) =
πs

2s0
e
−πs2

4s20 (3.7)
which is thus named Wigner surmise after him. The form of this PDF has very deep physical implica-
tions :

• Firstly, since Ps(0) = 0, arbitrarily close energy levels are suppressed. This means that eigenva-
lues of random matrices 5 repel each other : this effect can happen only if adjacent levels are
strongly correlated. Indeed, the form of eq. (3.7) in the region of small spacings is quite different
from the spacing pdf of two adjacent iid variables, for which Poisson statistics holds :

P (iid)
s (s) =

1

s0
e
− s

s0 P (iid)
s (0) =

1

s0
> 0

• Secondly, the PDF in (3.7) decay exponentially for large spacings : two adjacent levels cannot be
too far, there is a confinement effect.

The interplay between repulsion and confinement is the signature feature of the eigenvalues of ran-
dom matrices. Another important result obtained by Wigner is the so called Wigner semi-circle law 6
for the eigenvalue probability distribution or spectral density

ρ(λ) =
1

2π

√
4− λ2 (3.8)

Wigner’s law is an universal law for random matrices in the limit N →∞, where N is the rank of the
matrix under consideration : it is the limiting eigenvalue distribution for any random matrix whose
entries are iid variables with zero mean and finite variance [PB20]. Conversely, when fluctuations of
the entries are strong or when there are non-negligible correlations betweenmatrix entries, different
limiting distributions appear. In the following pages, after introducing some fundamental tools and
concepts, we will mostly discuss gaussian matrices and problems related to them.

4. This is the same reason why statistical mechanics was introduced : to deal with the problem of manydegrees of freedom by means of statistical ensembles.5. Wigner proved this result for Gaussian matrices, but it is actually a general result for the bulk of thespectrum of generic random matrices, as we will show later in this chapter.6. Ironically, eq. (3.8) is actually a semi-ellipse.
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3.2.1 . Randommatrices : fundamental tools
We define as RandomMatrix Ensemble E(V, dM(N)) as a set {M1, . . . ,Mk, . . . } ofN×N matrices

drawn from the matrix vectorial space V according to the probability measure
dM(M) ≡ PM ({Mij})

∏
ij

dMij (3.9)

We consider matrices with either real, complex or quaternion 7 entries : if a random matrix is either
symmetric, hermitian or simplectic, then its eigenvalues are random real variables, otherwise the
matrix admits a singular values decomposition 8. In the following, we will stick to the first case.
Resolvent Function and Spectral Density

We define the Resolvent Matrix of matrixM as
GM (z) = (M− zI)−1 =

N∑
k=1

ψ(λk)ψ(λk)
T

λk − z
(3.10)

where ψ(λk) is the k-th eigenvector ofM. The domain of the resolvent matrix is the resolvent set : it
is the complex plane minus first order poles on the eigenvalues of M. Thus, the spectrum of matrix
M is the complementary of the resolvent set. The resolvent encloses the spectral properties of the
system : this can be seen by considering the Green Function

G
(N)
M (z) ≡ 1

N
TrGM (z) =

1

N

N∑
k=1

1

λk − z
(3.11)

G(z) = lim
N→∞

G
(N)
M (z) =

∫
dλ

ρ(λ)

λ− z
. (3.12)

In the case of random matrices, the choice to drop the subscript in (3.12) is not arbitrary : there is a
self-averaging property, which we will explain a few lines below. Before that, let us finish to show the
relevance of the Green function for the spectral problem. The green function is the moment gene-
rating function of the spectral density. Indeed, by considering the |z| → ∞ expansion of (3.12) one
has

G(z) = −1

z

∫
dλ

ρ(λ)

1− λ
z

=
∞∑
k=0

(−1)k+1 λk

zk+1
(3.13)

d

dwk

(
1

w
G(w)

) ∣∣∣
w=0
≡ (−1)k+1λk w ≡ 1/z (3.14)

7. Quaternions are an extension of complex numbers. The set of quaternions obeys a non-commutativealgebra, in which each number is represented as a four-dimensional vector n = a + bi + cj + dk. The basisvector i, j,k obey the multiplication rule i2 = j2 = k2 = ijk = −1. Quaternions in modern physics find manyapplications : for example, they allow for a simplified descriptions of spinors.8. The matrix can be decomposed as M = USVT , where U, V are two orthogonal/unitary/self-similar ma-trices of orders N , M respectively and S is a N × M diagonal matrix, whose elements si ≡ √λi are calledsingular values and are complex numbers. More on [PB20].
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The spectral density can be obtained directly throughout the inversion of Steltjes transform, namely
Stokhosky-Plemelj formula

ρ(λ) =
1

π
lim
ϵ→0+

ImG(λ+ iϵ) (3.15)
This last formula can be extended to finite matrices by taking the prescription ϵ = O(N−1) for de-
terministic matrices and ϵ = O(N−1/2) for random ones [PB20]. If one is able to write an equation
for the Green function and solve it, one can get the spectral density of the system. However, when
dealing with random matrices, sample fluctuations must be taken into account. It can be rigorously
proven that a self-averaging principle holds for the spectral density [Meh04] : more specifically, the
sample average of the empirical spectral density

ρM (λ) =
1

N

N∑
k=1

δ(λ− λk) (3.16)
concentrates around ρ(λ) :

lim
N→∞

∥ρ(N)
M (λ)− ρ(λ)∥2 = 0 (3.17)

lim
N→∞

P
[
∥φM (λ)− ρM (λ)∥2 < ϵ

]
= 1 ∀ϵ > 0 (3.18)

where φM (λ) is the empirical histogram of the eigenvalues of M. Thus, for very large matrices the
histogram of a single instance is very close to the asymptotic distribution ρ(λ). Convergence in the
bulk of the spectrum is typically fast : large deviations occur typically in vanishing intervals λ− < λ <

λ−(N), λ+(N) < λ < λ+, i.e. close the edges of the spectrum [PB20]
λ− ≡ inf Supp(ρ(λ)) λ+ ≡ sup Supp(ρ(λ))

Before discussing the statistical properties of eigenvector, it is instructive to discuss two classical ran-
dom matrices ensemble : the Gaussian and Wishart-Laguerre ensembles.

3.2.2 . Gaussian Ensembles : GOE, GUE, GSE
The Gaussian Orthogonal Ensemble (GOE) was introduced by E. Wigner to represent Hamiltonian

operators of time-reversal invariant systems. An instance of it is a symmetric randommatrixM gene-
rated as following

M = X+ XT

where X is a random matrix with gaussian real entries with iid zero mean and variance 9 σ2/2N . The
joint pdf of the entries ofM can be readily written

PM (M) =
∏
(ij)

√
N

2πσ2
exp

(
−
NM2

ij

2σ2

)∏
i

√
N

4πσ2
exp

(
−NM

2
ii

4σ2

)
(3.19)

9. The choice of the scaling in N ensures that all elements of the matrix are O(1) in the thermodynamiclimit.
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The variance of diagonal elements is two times that of off-diagonal ones. This choice has the cru-
cial benefit of making the GOE a Rotational Invariant ensemble. Indeed, notice that eq. (3.19) can be
rewritten as

PM (M) = 2−N/2

(
N

2πσ2

)N(N+1)/4

exp
(
− N

4σ2
TrM2

) (3.20)
which implies that

PM (M) = PM (OMOT ) (3.21)
for any orthogonal order N matrix O. Any ensemble such that (3.21) holds is rotational invariant : we
will come back to this later, in section 3.2.3.With a similar procedure to that of the GOE, one can define
the Gaussian Unitary Ensemble (GUE) and the Gaussian Simplectic Ensemble (GSE) : the first represents
quantum hamiltonians in presence of an external magnetic field, whereas the second hamiltonians
in presence of a spin-orbit coupling. GUE matrices are hermitian matrices with complex entries, GSE
matrices are self-similar matrices with quaternion 10 entries. Let us write down the joint pdf of the
eigenvalues ofM in a form valid for GOE, GUE, GSE :

ρM (λ) =
1

ZN,β
exp

(
− N

4σ2

N∑
k=1

λ2k

)
1,N∏
(ij)

|λi − λj |β. (3.22)

The prefactor enforces the normalisation of the joint distribution of the unordered eigenvalues : the
distribution of ordered eigenvalues is just (3.22) with a rescaled prefactorZ(ord)

N,β ≡ N !ZN,β . The squa-red eigenvalues sum in the exponential clearly stems from the trace term in (3.20). The last term in
the r.h.s. is called Vandermonde determinant : its role is to suppress statistically very close eigenvalues
pairs and it is responsible for the repulsion effect previously discussed, at the beginning of this sec-
tion about random matrices ; it depends by an exponent β = 1, 2, 4 for GOE, GUE, GSE respectively,
usually called Dyson index. We will provide a justification of (3.22) in section 3.2.3.
The semi-circle law

The most natural idea to compute ρ(λ) is to start from the definition of spectral density in terms
of the joint pdf (3.22), writing

ρ(λ) =

∫
dλ2 . . . dλN

1

Zβ
e−βN2V(λ) (3.23)

V(λ) =
1

4 βNσ2

N∑
k=1

λ2k −
1

N2

∑
(jk)

log |λj − λk| (3.24)

From these last expressions it is evident that the eigenvalues of a gaussian matrix can be mapped
to a classical one-dimensional electrons gas, confined to be in an interval of width O(2

√
βσ) and in-

teracting through the two-dimensional Coulomb potential. In the light of this mapping, notice that
10. A self-similar matrix with quaternion entries can be represented as the symmetrization of M =

[A,B;− conjB,− conjA], where A and B are complex matrices and conj denotes the conjugation of all ma-trix entries.
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sequences of iid variables are equivalent to confined systems of non-interacting particles in one di-
mension. One can understand from this analogy why correlations between neighboring eigenvalues
are responsible for the shape of (3.7) close to the origin. The integral appearing in (3.23) is a Stielberg
integral. Its computation is quite laborious, and results in an integral equation for the spectral density

Pr

∫
dλ′

ρ(λ′)

λ− λ′
= λ

Here we prove the semicircular law (3.8) following a different approach. We introduce Schur comple-
ment formula 11

1

Gjj(z)
= z −Mjj −

∑
k,l ̸=j

MjkG
(j)
kl (z)Mlj (3.25)

where {Gjj} are the diagonal elements of the resolvent matrix (3.10) and {G(i)
kl } are the entries of thesubmatrix of (3.10) where row and column i have been removed. Eq. (3.25) is a very general formula,

holding for the resolvent of any invertible symmetric matrix [PB20]. Let us trace over the two sides of
(3.25)

1

N

N∑
j=1

1

Gjj(z)
= z − 1

N

N∑
j=1

Mjj −
1

N

N∑
j=1

∑
k,l ̸=j

MjkG
(j)
kl (z)Mlj

1

G(z)
= z − σ2

N

N∑
j=1

G(j)(z) +O(N−1/2)

We have used the fact that the Green function is self-averaging,Mii = 0 and that the elements ofM
along row and column i are by construction uncorrelated to the {G(j)

kl }, so that∑
k,l ̸=j

MjkG
(j)
kl (z)Mlj ≃

∑
k

M2
jkG

(j)
kk = NM2

jkG
(j)
kk (z) ≡ σ

2βG
(j)
kk = σ2βG(j)(z).

Finally, notice thatG(j)(z) is the green function of a large gaussianmatrix of orderN−1with variance
(1 − 1/N)σ2 : it is clear then that G(j)(z) = G(z) + O(N−1), which allows us to write down a second
order algebraic equation for the Green function of gaussian ensembles

1

G(z)
= z − σ2βG(z) (3.26)

This admits two solutions, of which we choose the one with minus sign, in order to correctly have
G(z) ∼ 1/z for large |z| :

G(z) =
z −

√
z − 2β1/2σ

√
z + 2β1/2σ

2βσ2
(3.27)

Take z = λ+i0+ : when the infinitesimal is removed, the argument of the square root is non-negative
for any |λ| > 2

√
βσ, so that the Green function in this subset of the real line is real. Au contraire, in

11. We picked the definition related to a different definition of the resolvent : G(z) ≡ (zI−M)−1.
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the interval |λ| < 2
√
βσ there is a non-zero imaginary part. Thus, by using (3.15) we finally obtain the

spectral density of gaussian ensembles
ρ(λ) =

1

2πβ1/2σ2

√
4βσ2 − λ (3.28)

which is just (3.8) with β = 1 (GOE case) and σ = 1.
Levels spacing and Tracy-Widom distribution

Wigner surmise formula (3.7) is an approximation of the actual level spacing distribution
Ps(s) =

∫
dλdλ′ρord(λ, λ

′)δ(s− (λ′ − λ))

Here we will not discuss the exact case 12 : we will show how to derive (3.7) from the study of 2 × 2

GOE matrices. The characteristic polynomial det(M− λI) of a 2× 2matrix is quadratic, so it is easily
solvable : the solution is given by the two eigenvalues

λ± =
TrM
2
±

√(
TrM
2

)2

− detM s ≡ λ+ − λ− =
√
(TrM)2 − 4 detM

The distribution of s can be obtained through
Ps(s) =

1

2π2σ4

∫
dM11dM22dM12 e

− 1
2σ2 TrM2

δ
(
s−

√
(TrM)2 − 4 detM

)
The final results is eq. (3.7). The computation forGUE andGSEholds is analogous : one findsPs(s) ∼ sβclose to the origin. In the light of the Coulomb gas picture, the fact that it suffices the N = 2 case
to grasp the qualitative behavior of neighboring eigenvalues is not surprising, since an eigenvalue
"interacts" strongly only with its two neighbors. Taken a pair, the effect of the other eigenvalues can be
treated effectively as a boundary condition : eigenvalues in the center of the spectrumare compressed
from both sides by other eigenvalues, but as we move towards the edges, the compression effect
becomes asymmetric. Then, it is insightful to consider the large deviation problem for the largest
eigenvalue of a gaussian matrix :

P
[
λmax − 2

√
βσ > x

]
≡ e−NCβ(x) (3.29)

The resulting density function is the Tracy-Widom distribution [TW94]
lim

N→∞
P (N2/3(λmax − λ+)) ≡

x=N2/3(λmax−λ+)
P

(β)
TW (x) P

(β)
TW (x) ∼ e−

2β
3
x3/2

x≫ 1 (3.30)
In figures 3.1 we show the Tracy-Widom distributions for the three cases β = 1, 2, 4. Notice that they
are peaked at negative values of x : fluctuations are most likely to be below the upper edge λ+. Thefinite size scaling of the largest eigenvalue at leading order is

λmax = λ+ − C N−2/3 (3.31)
Finite size effects are stronger at the edges than in the bulk : this is a general feature of random
matrices.
12. The two-point eigenvalue correlation is expressed in terms of Airy functions. See [PB20] for details.
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Figure 3.1 – Tracy-Widom distribution for the three cases β = 1, 2, 4.

3.2.3 . Haar measure
We begin this section sketching a proof for the eigenvalues joint distribution formula (3.42). For a

generic random matrix ensemble, it is always possible to write
PM (M)

N∏
i=1

dMii

∏
(ij)

dMij = ρ(λ,O)

N∏
i=1

dλi
∏
ij

dOij , (3.32)

where λ = (λ1, . . . λN ) and O is the eigenvector matrix. Then, the jpdf of eigenvalues reads
ρ(λ1, . . . , λN ) =

∫
DO ρ(λ,O) =

∫
DO PM (M(λ,O))|J(M→ {λ,O})| (3.33)

The Jacobian in (3.33) can be computed explicitly [LNV18] and is equal to Vandermonde determinant
(3.34) : we will show its computation in the case of symmetric matrices. Starting from M ≡ OXOT ,
with X ≡ diag(λ1, . . . , λN ), one can write

δM = OδXO+ δOXOT +OXδOT

δ(OOT ) = 0 =⇒ δOT = −OT δO OT

δM̂ = δX+ δWX− X δW δM̂ = OT δMO δW = OT δO

Since M̂ and M are connected by an orthogonal transformation, the original Jacobian is equal to
δM̂/δXδW, whose elements are

∂M̂ij

∂λk
= δijδik

∂M̂ij

∂Wkl
= δikδjl(λj − λi)

Thismatrix can bemade diagonal after a finite number of row switches, so its determinant in absolute
value is

|det ∂M̂/δXδW| = |J(M→ {λ,O})| =
1,N∏
(ij)

|λi − λj | (3.34)
which is just eq. (3.34) in the GOE case. Let us go back to eq. (3.33) : after the computation of the
Jacobian, it reads
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ρ(λ1, . . . λN ) =

1,N∏
(ij)

|λi − λj |β
∫

DO PM (M(λ,O))

= ρ̃(λ1, . . . , λN )

1,N∏
(ij)

|λi − λj |β
(3.35)

This is themost general form for the joint distribution of eigenvalues and inmost cases one cannot go
any further than it. An exception to this is given by rotational invariant ensembles, for which (3.35) can
be made explicit. In a rotational invariant ensemble, as (3.21) dictates, any vector basis is statistically
equivalent to the other : in particular, the eigenvector basis does not play any special role. In this
situation, the joint distribution of eigenvalues and eigenvectors factorises :

ρ(λ,O) = ρ(λ) P
(N)Haar(O). (3.36)

We introduced Haar measure :

P
(N)
Haar(O) = 1

VHaar(N)

∏N
i=1 δ(Oi ·Oi − 1)

∏1,N
(ij) δ(Oi ·Oj) (3.37)

VHaar(N) ≡
∫
DO =

∫ ∏1,N
ij dOij

∏N
i=1 δ(Oi ·Oi − 1)

∏1,N
(ij) δ(Oi ·Oj). (3.38)

where Oi is the i-th column of matrix O, i.e. the i-th eigenvector. In the large N limit, Haar measure
is a uniformmeasure over theN /2N /4N -dimensional spheres of radius one 13. Then, the distribution
of the rescaled eigenvectors components absolute values {N |ψk| ≡ ηk} is

PGOE(η) =
1√
2πη

e−η (3.39)
PGUE(η) = e−η. (3.40)

The first of these is called Porter-Thomas distribution [RP60] : it was introduced in the study of nu-
clear fission rates by Porter and Thomas. Given the very nature of Haar measure, the normalisation
of each eigenvector must be finely distributed among its components, and thus the distributions in
(3.39).(3.40) decay exponentially fast for large η. In this situation, eigenvectors are called delocalised :
they correspond to wave functions of ergodic physical systems. If the wave-functions of rotational
invariant randommatrices are extended, one realises that when this symmetry is broken localisation
phenomena-i.e. breaking of ergodicity-may happen. This phenomenon, called localisation transition,
it is at the core of this thesis.

Let us complete the derivation of the joint pdf : a necessary condition for RI is that the distribution
PM satisfies Wyel’s Lemma :

PM (M) = f(TrM, . . . ,TrMN ) (3.41)
13. In the infinite dimensional limit, the sphere "squeezes" on the equator and the zenit axe, i.e. the scalarproduct of any two random vectors on it tends to zero.
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Combining (3.33), (3.34), (3.36), finally we get

ρ(λ1, . . . , λN ) = VHaar(N) f
( N∑
i=1

λi, . . . ,
N∑
i=1

λNi

) 1,N∏
(ij)

|λi − λj |β. (3.42)
This is the general expression for the joint eigenvalues distribution of rotational invariant random
matrices. Consider now f factorised as

f(s1, . . . , sN ) ≡ exp

(
−Nβ

2

N∑
k=1

aksk

)
≡ exp

(
−Nβ

2

N∑
k=1

ak TrMk

)

This is a generalisation of the Coulomb gas picture discussed in section 3.2.2 : a rotational invariant
random matrices ensemble, if function f is factorised, is completely identified by its confinement
potential (per site)

V (x) =
N∑
k=1

akx
k (3.43)

The gaussian case is V (x) = x2/2, which is the harmonic potential. To conclude this section, let us
make two remarks. First, at short enough scales, the dominant term in the Coulomb gas effective
hamiltonian is the repulsive interaction : in this situation the details of the confinement potential are
not important,meaning that there is local universality. Properties like the spacing betweenneighboring
eigenvalues have a high degree of generality. As to the universality of Wigner law (3.8), at page 48 at
the beginning of 3.2 we stated that it holds for any randommatrix with centered iid entries with finite
variance : if instead one deals with non-trivial 14 randommatrices with positive spectrum, it is intuitive
from the Coulomb gas picture that the limiting spectral density cannot beWigner law. If electrons feel
an infinite potential barrier at the origin, there is no way their equilibrium configuration density will
be (3.8) : this is what happens for instance in ensembles whose matrices have correlated entries.

3.2.4 . Layman classification of randommatrix ensembles
We concluded last section mentioning a situation in which Wigner law cannot be the limiting dis-

tribution. The simplest matrix ensemble satisfying this description is Wishart-Laguerre ensemble : an
instance of it is a N ×N random matrix

C =
1

N
XXT (3.44)

i.e. sample covariance matrices. Here X is a matrix N × T matrix of data, containing observations of
N quantities at different times : {x(t)i }, with i = 1, . . . , N and t = 1, . . . , T and α = N/T is fixed. Such
covariance matrices were studied for the first time by mathematician J. Wishart in the 30s [WB33].
Wishart matrices are rotational invariant matrices, non-negative by definition 15 : their limiting distri-
bution is Marchenko-Pastur law

ρ(λ) =

√
(λ+ − λ)(λ− λ−)

2παλ
+
α− 1

α
δ(λ)θ(α− 1) (3.45)

14. We mean we neglect the case of a positively shifted spectrum.15. For any vector v, one has vTCv ≡ ∥XTv∥2 ≥ 0.
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and their confinement potential per site is
V (x) =

x

α
− (1− 1/α) log x (3.46)

We introduced Wishart matrices because of Layman classification of matrix ensembles [LNV18]. There
are essentially two macro-categories

• Random matrix ensembles with independent entries : the most notable examples are Wigner en-
sembles, random graphs adjacencymatrices [McK81], Lévy matrices [CB94] and power-law ban-
ded matrices.

• Rotational invariant ensembles : here we have gaussian ensembles, Wishart-Laguerre ensemble,
Jacobi classical ensembles and many other examples.

These two sets, apart from gaussian ensembles 16, are disjoint. If we require rotational symmetry, en-
tries get correlated and eigenvectors become irrelevant. On contrary, if we want to have independent
entries, eigenvectors and eigenvalues are not independent.

3.2.5 . Perturbation of Wigner Matrices
In the first part of this chapter, we discussed and compared the properties of linear excitations

for crystal and glassy systems. We then showed how the Hessian matrix of the potential energy of
a generic mean field disordered system could be represented by an ensemble of random matrices.
This section aims to show this connection : after briefly introducing free probability theory, we discuss
the Rosenzweig-Porter ensemble and highlight its applications.
Dyson brownian motion

In this section we will show how aWigner matrix is modified by the addition of an another Wigner
matrix. In order to do that, let us consider a problem studied by F. Dyson in 1962 [Dys62], concerning
the study of time-dependent stochastic perturbations of quantum systems :

M = M0 +
√
dt X

whereM0 is the Wigner initial matrix and X is another Wigner matrix that is independent ofM0. Forour purposes, we will consider it a random matrix problem and take real matrices. The evolution
equations of the eigenvalues and eigenvectors can be deduced from perturbation theory and read

dλi =

√
2

βN
dBi +

1

N

∑
j ̸=i

dt

λi − λj
(3.47)

dvi =

√
1

N

∑
j ̸=i

dBij

λi − λj
vj −

1

2N

∑
j ̸=i

dt

(λi − λj)2
vi (3.48)

These equations describe the evolution of a gaussian matrix process
M(t) = M0 + X(t)

16. It is a consequence of a theorem from Rosenzweig-Porter [RP60].
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such that at any time t the resulting matrix is a Wigner matrix with variance σ2 = σ20 + t. This is the
generalisation of the diffusion process of a particle to randommatrices : it shows us that by summing
Wigner matrices (respectively, gaussian random variable) up to infinitesimal steps, one still obtains
a Wigner matrix (respectively, another gaussian random variable). This stochastic dynamics enforces
the Green function to satisfy a Burgers partial differential equation (PDE)

∂Gt(z)

∂t
= −z ∂Gt(z)

∂z
G0(z) = GM0(z). (3.49)

This equation canbe solvedwith themethodof characteristics, and its solution gives us a self-consistent
equation for the resolvent

Gt(z) = G0(z − tGt(z)) (3.50)
Since the perturbation is rotational invariant, we can assume that the initial matrix is diagonal : then
we have

G(z, t) =

∫
dλ0

ρ(λ0)

z − tGt(z)− λ0
(3.51)

If we fix time t, what we have obtained is the equation for the Green function of the sum of two dif-
ferent Wigner matrices. But in showing this, we have also shown that as in random scalars or vectors,
the stochastic evolution conserves up to continuous times the gaussian measure. Notice that since
we are assuming a rotational invariant perturbation, it is not important for the initial matrix to be Wi-
gner : equation (3.51) would work also for a deterministic initial matrix. The crucial hypothesis is that
the eigenvectors of the perturbation are uncorrelated to those of the initial matrix : in next section
we define a more precise criterion for the validity of (3.51).
Free probability and R-transform

Let us consider two generic commutative variablesA andB and let τ(·) a scalar function returning
their moments, such that the k-th moment is τ(Ak). The two variable are said independent if for any
k, l such that the moments exist

τ(AkBl) = τ(Ak)τ(Bl) (3.52)
In particular, this criterion ensures that the probability distribution of their sum is just a convolution
of the their respective distributions

PC(C) = PA(A) : PB(C −A) ≡
∫
dAPA(A)PB(C −A)

The generalisation of this formula for an arbitrary sequence of independent variables satisfies the
central limit theorem. Let us now consider non-commutative variables, such as random matrices : in
this case, the function τ(·) is the rescaled trace : the k-th matrix moment is

τ(Ak) =
1

N
TrAk.

Given the existence of Dyson process, one wonders how to extend central limit theorem to random
matrices. Unfortunately, the usual independence definition (3.52) does not work on non-commutative
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variables. Indeed, because of the presence of terms like τ(ABAB), i.e. products of matrices invariant
under cyclic permutations i.e. terms that cannot be simplified from the trace, thematrix cumulants of
the sumofmany randommatrices do not converge to those of gaussianmatrices. A stronger criterion
of independence is freeness : two random variables A and B are "free" if for any two sequences of
polynomials p1, . . . , pn, q1, . . . , qn for which

τ(pk(A)) = 0 τ(qk(B)) = 0 ∀k

it holds
τ

(
n∏

k=1

pk(A)qk(B)

)
= 0 (3.53)

This property ensures that all terms like τ(ABAB) vanish, allowing the generalisation of central limit
theorem to random matrices [PB20] :

The matrix cumulants of the sum of N free random matrices with zero mean and nor-
malised by N−1/2 converge to the matrix cumulants of a Wigner matrix :

κ
(k)
A1+···+AN

(C) =
N→∞

δk,2 (3.54)
We conclude this section introducing the R-transform, a tool which allows to write a self-consistent
equation for the Green function of the sum of two free random matrices :

R(g) = B(g)− 1

g
(3.55)

where B(g), the Blue function, is the inverse of the Green function 17. In the gaussian case, by compa-
rison with eq. (3.27) one sees that the R-transform is the identity (we put β, σ=1)

Rgauss(g) = g

The R-transform is additive under addition of two free matrices :
RC(g) = RA(g) +RB(g) (3.56)

If we have diagonalised one between A and B, let say A, we can write a self-consistent equation for
Gc(z) ≡ g(z) by exploiting (3.56). Indeed, from definition (3.55) we have

RC(g) = BC(g)−
1

g
= BA(g)−

1

g
+RB(g),

BA(g) = z −RB(g)

where we used Bc(g) ≡ z. The final formula, after inverting the last of these two equations, reads
g(z) = GA(z −RB(g(z))) ≡

∫
dλ

ρA(λ)

z −RB(g(z))− λ
(3.57)

17. The inversion of the green function is a delicate job : in this thesis we keep a low level of rigor and weassume to be in the conditions such that this inverse exists.
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If we know the R-transform of B, we can solve this equation and compute the green function of the
new system. In particular, notice that when B is a gaussian matrix, (3.57) becomes (3.51) with t = 1.
Hessians of mean field disordered systems usually figure as the sum of a off-diagonal couplingmatrix
and a diagonal stiffnessmatrix, representing respectively structural and on site disorder : typically, the
off-diagonal matrix is a Wigner matrix 18 and the diagonal elements have a non-gaussian distribution
a-priori known :

M = J+ diag(d1, . . . , dN ) (3.58)
For finite N , interactions and stiffness are correlated to make the spectrum non-negative, and thus
the two addenda are not free. However, since interactions are weak and stiffness depend weakly
on couplings, in the thermodynamic limit these two contributions are free : hessians of mean field
disordered systems can be represented as instances of a random matrix ensemble.
Rosenzweig-Porter ensemble

We define as Rosenzweig-Porter ensemble [RP60] an ensemble of matrices given by the sum of two
freematrices, a Wigner matrix and a diagonal matrix, with iid elements distributed according to some
Pv(v) :

M = W+ diag(v1, . . . , vN ) (3.59)
In the standard setting, the diagonal matrix represents a quantum hamiltonian operator represented
on its eigenbasis and theWignermatrix acts as a noisy perturbative term. In the thermodynamic limit,
Hessians of mean field disordered systems become instances of (3.59). The spectral density of M
can be computed by solving (3.57) and computing the imaginary part of the Green function through
(3.15). Here, we analyse the statistical properties of the eigenvectors of these matrices : since the
unperturbed system has fully localised eigenstates, the idea is to understand how these are changed
by the action of a Wigner perturbation. We consider a diagonal matrix with Pv(v) = N(0, σ2), and
discuss the three cases σ2 = O(N0)≪ 1, σ2 = O(N0)≫ 1, σ2 = O(Nγ−1) for some real γ, reporting
the result of [TO16] ; in order to have the two terms in (3.59) of the same order, the typical spacing
between the {vi}must beO(1/N). The last scaling is the one studied in the original Rosenzweig-Porter
model in [RP60]. Let us consider local eigenvectormoments of the form I

(q)
n (λ) ≡ ⟨|ψn(λ)|2q⟩W , where

n stands for the component, the argument is the eigenvalue and the average is performed only with
respect to theWignermatrix, i.e. at fixed diagonal. Notice that eigenvectormoments can be computed
from eq. (3.10) through

I(q)(λ) = lim
ϵ→0+

ϵq
N∑

n=1

|Gnn(λ+ iϵ)|qW (3.60)
For Rosenzweig-Porter ensemble, the following formula stands [TO16]

I(q)n (λ) =
1

N q

[
1

(λ− τ(λ)− vn)2 + π2ρ(λ)2

]q
Γ(1 + q)

≡ lim
ϵ→0+

ϵq|Gnn(λ+ iϵ)|qW
(3.61)

18. In some disordered models the interaction matrix is a Wishart matrix : renown examples are the percep-tron [Ros58] and Hopfield model [Hop82].
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where τ(λ) and ρ(λ) are respectively the real and imaginary part (spectral density) of the Green func-
tion. Let us start from σ = O(N0). For σ ranging from zero to infinity, the spectral density of the sys-
tem interpolates from the semi-circle (3.8) to the gaussian N(0, σ2). The total eigenvector moments
Iq ≡

∑
n I

(q)
n averaged over the diagonal elements have the following asymptotic forms [TO16]

Iq(λ) ≡ Iq(λ) ∼

{
1

Nq−1 σ ≪ 1, ∀λ
σ2q

Nq−1 σ ≫ 1, ∀λ
(3.62)

In both cases, the Wigner perturbation has the effect of making eigenstates delocalised, no matter
how strong is σ. However, sinceIq/I(gauss)

q ∼ σ2q , the degree of delocalisation in the non-perturbative
regime is far less than the gaussian one. Indeed, eigenvectors moments give us information about
how the normalisation is distributed : in particular the second moment, called Inverse Participation
Ratio, is a measure of the fraction of components participating to eigenvector normalisation. So, one
understands that in the strong σ2 regime, the normalisation mass among the rescaled components
{Nψ2

n} is not as homogeneous as in the gaussian case. When σ2 = Nγ−1, the statistical properties
of eigenvectors become richer. It is found

Iq(λ) ∼


N1−q γ < 1

NDq(1−q) 1 < γ < 2

N0 γ ≥ 2

(3.63)

for any λ. In the interval 1 < γ < 2, eigenstates become non-ergodic : they are still delocalised,
since level spacing statistics follow Wigner-Dyson formula, but their moments scale with system size
in a non-trivial way. This regime is called multi-fractal regime and Dq are the corresponding fractal
dimensions. For Rosenzweig-Porter model, it is found for any q > 1/2 [TO16]

Dq = 2− γ

For γ ≤ 1, the fractal dimension is unity and eigenvectors are statistically equivalent to gaussian ones.
At γ = 2, eigenvectors are fully localised and two points correlations have a transition from Wigner-
Dyson formula to Poisson statistics, meaning that Wigner perturbation does not change the nature of
initial states. This is true also for γ > 2, but the relative importance of the two terms in (3.59) changes,
with the Wigner matrix becoming dominant with respect to the diagonal, implying that the problem
should be studied using a different setting.

3.2.6 . Sparse matrices
A N ×N matrix is said sparse when the number of non-zero entries per row is finite for N going

to infinity. The adjacency matrices of networks and graphs are sparse : they appear naturally in the
study of Hessian matrices in statistical physics [Dor+03 ; AB02] and Markovian transition matrices in
stochastic processes in physics and information theory [Lov93]. Historically, the first physical pro-
blem studied in a sparse random matrix setting is Anderson localisation [And58] : this phenomenon
consists in the transition of a metal to an insulator when disorder is sufficiently strong. The elec-
tron gas wave-functions, which in a metal are extended, can become localised around specific lattice
sites in presence of disorder. Anderson localisation has been observed in semiconductors with insu-
lating impurities or defects. Sparse randommatrices have been studied also in the field of disordered

57



systems, from Replica method [EJ76] to semi-numerical techniques, like Population Dynamics for the
resolution of cavity self-consistent equations [ATA73]. In this section, we discuss notable spectral pro-
perties of adjacency matrices and the relevance of cavity method in this context.
Kesten-Mc Kay distribution

We recall for reader convenience the definition of adjacency matrix of a graph (1.95) :
Aij =

{
1 (ij) ∈ E i,j ∈ V ≡ {1, . . . , N}
0 otherwise

The adjacency matrix of a random regular graph (RRG) has a fixed number c of non-zero elements
per row, where c is the connectivity of the graph. The spectral density of random matrices A corres-
ponding to the adjacency of RRG is named Kesten-Mc Kay distribution [Kes59 ; McK81]. Its expression
reads

ρ(λ) =
c
√
4(c− 1)− λ2
2π(c2 − λ2)

|λ| ≤ 2
√
c− 1 (3.64)

In addition to (3.64), which describes the continuous spectrum, there is for anyN an isolated eigenva-
lue located at λ = c : indeed, the constant vector is always an eigenvector of the adjacency matrix. If
one considers a random matrix whose entries are Ãij = σijAij , with σij = ±1 with probability 1/2,
the isolated eigenvalue disappears and the continuous spectrum retains (3.64) as its spectral den-
sity. Eigenvectors of the RRG are all delocalised : intuitively, since each node is perfectly equivalent,
there is no way the system can exhibit localisation, which usually is driven by extreme values of site
or bond quantities. In figure (ref) we show a plot of Kesten-Mc Kay formula (3.64) for growing values
of c, showing how it approaches Wigner law (3.8) in the dense limit.
Introducing disorder

Let us consider sparse matrices of the form
Mij = Aijσij + Viδij (3.65)

where {Aij} is the connectivity matrix of a RRG and σij and Vi are non correlated 19 random variables
with given probability distributions. When disorder is introduced 20, localised states appear in the
spectrum, close to the lower and upper edges. When disorder is sufficiently strong, all delocalised
states disappear. Let us make a specific example, considering (3.65) with only diagonal disorder {Vi}distributed uniformly in [−W/2,W/2], for some W > 0. This case is the original model studied by
Anderson, whose adaption to random graphs topology has been studied in [ATA73] and then more
recently in [BST10]. For non-zero W , no matter how small, the system develops a band of localised
19. The reader may have noticed that (3.65) has the standard form of Hessian matrices appearing in physicalsystems. Unfortunately, in the sparse case usually it is not possible to define proper randommatrix ensemblesto describe Hessians : this happens because, in order for the spectrum to be positive, stiffness and interactionsare strongly correlated also in the thermodynamic limit.20. We mean that we deal with sparse random matrices with non homogeneous entries.
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states, close to the edges λ± = 2
√
c− 1 : indeed, the edges remain the same as in (3.64). At a critical

value Wc ≈ 17.4, localised states extend up to λ = 0, and extended ones disappear. An interesting
phenomenon occurring in these models is that of Lifshitz tails [Lif64 ; BS11] : the spectral density close
to the edges has a singular behavior of the form

ρ(λ) ∼ exp

(
−k1 exp

(
k2

δ
1/2
±

))
δ± = |λ± − λ| (3.66)

with k1 and k2 constant depending onW . The spectral density decays extremely fast as the edges are
approached, making its numerical estimation close to them quite hard. The behavior in (3.66) can be
understood through an argument made by Lifshitz [Lif64] for finite dimensional systems, which we
adapt in the case of RRG. Consider the node around which a wave-function with energy close to the
band-edge localises, and suppose that in a bubble of radius n around this node the Vi assume values
in [−W/2,−W/2 + δ] : the probability of this event is (δ/W )#n , with #n ∝ (c − 1)n the number of
nodes in the bubble. The radius of the bubble must be chosen as n ∝ δ−1/2, and so one finds back eq.
(3.66). Lifshitz tails like (3.66) are not present for arbitrary forms of the Vi distribution : for instance, ifone chooses a gaussian, the spectrum will extend to the whole real line and the spectral density will
have a different decay [BS11].
Spectral Cavity Method and Population Dynamics Algorithm

Let us consider the following self-consistent equations
Gi→j(z) =

1

z −Mii −
∑

k∈∂i/j M
2
ijGk→i(z)

(3.67)
where z is a complex number, M is a generic sparse matrix of the form (3.65) and Gi→j(z) are theentries of the resolvent matrix in a system where the link (i, j) has been removed. These equations
were firstly derived in [ATA73] through perturbation theory : they can be derived rigorously through
Schur-Complement formula (3.25). Once a fixed point of eq. (3.67) is found, the diagonal entries of
the resolvent, the spectral density and eigenvectors moments can be computed through

Gii(z) =
1

z −Mii −
∑

k∈∂iM
2
ijG

∗
k→i(z)

(3.68)
ρ(λ) =

1

π
Im∑

k

Gkk(λ+ iϵ) (3.69)
I(n)q (λ) = ϵq

∑
k

|Gkk(λ+ iϵ)|q (3.70)
Eqs. (3.67), (3.68) yield the solution for a given sample, so a full solution should be an average over
many different solutions (3.68).
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Deuxième partie

Vector spin glasses on fully connected
graphs
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4 - The fully connected vector spin glass

In this chapter, we introduce and study in detail a random field vector spin glass, defined on a fully
connected graph : as discussed in chapter 1, these models are generalisations to multi-dimensional
spins of the renown SK model. After an initial general presentation of the model, we focus on the
problem of linear excitations of energy minima. The motivation behind this choice is to find a toy
model for excitations of stable glassy minima.

The chapter is organised as follows : in section 4.1 we study the general case, performing a Replica
Computation of the free energy of the model and discussing the properties of the solution both in
the RS and in the RSB phase. After that, in section 4.2 we re-derive the TAP equations of the model
and discuss linear excitations around TAP solutions.

Finally, in section we present our results about the problem of the linear excitations around mi-
nima of the energy landscape. This part of the chapter is a re-elaboration of our work [Fra+22]. We
show that energy minima in the RS phase feature soft localised excitations at the edge and that the
onset of the Spin Glass transition is related to a delocalisation transition of the softest modes of the
Energy Hessian spectrum, providing a non trivial connection between the static response properties
of the system at criticality and Random Matrix Theory.

4.1 . The model

We consider a spin glass model with the following Hamiltonian

H[S] = H0[S]−
N∑
i=1

S⃗i · b⃗i (4.1)
H0[S] = −

∑
ij

JijS⃗i · S⃗j (4.2)

As usual, we considerm-dimensional vector spins with unit norm. The disorder is site-site uncorrela-
ted and quenched, where

• Couplings Jij are uncorrelated gaussians with zero mean and variance
JijJkl = δ(ij),(kl)

J2

N
Jii = 0 (4.3)

• External fields {⃗bi} are uncorrelated random vectors, distributed with an unspecified Pb(⃗b) sa-tisfying
b
(α)
i = 0 b

(α)
i b

(β)
j = δijδ

αβH2. (4.4)
The gaussianity of the couplings is not strictly necessary : since couplings are weak for large N , their
distribution has no impact on the thermodynamics, provided that it has finite variance. In this case,
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for the central limit theorem the Hamiltonian (4.2) is a gaussian random function with zero mean and
covariance

H0[S]H0[S′] =
1

N

1,m∑
αβ

(
N∑
i=1

S
(α)
i S

(β)
i

)2

(4.5)

≡ N

1,m∑
αβ

g(qαβ(S,S
′
)) (4.6)

where
qαβ(S,S

′
) =

1

N

N∑
i=1

S
(α)
i S

(β)
i g(x) =

x2

2
(4.7)

Notice that if one considers a different Hamiltonian for the interactions, like the isotropic p-spin Ha-
miltonian

H0[S] = −
1

p!

∑
i1...ip

Ji1...ip
∑
α

Sα
i1 · · ·S

α
ip

with couplings properly normalised, all the dependence on the kind of interaction will be bound to the
function g(qαβ) : for this reason, this function is called characteristic function of the spin glass model.

At variance with couplings, the distribution of external fields is relevant in the thermodynamic
limit. On one hand, it affects quantitatively the values of physical quantities. Consider for instance a
m-dimensional gaussian distribution and a uniform distribution on them-sphere of radiusH :

P
(1)
b (⃗b) =

1

(2πH2)m/2
e−|⃗b|2/2H2

P
(2)
b (⃗b) =

δ(|⃗b| −H)

Sm(H)
(4.8)

In the first case, external fields can be arbitrarily small in magnitude : this clearly affects all relevant
physical observables, since they are computed in terms of averages over the distribution of the local
fields

µ⃗i ≡
∑
j

JijS⃗j + b⃗i

For instance, the two distributions (4.8) lead to very different values of the magnetic susceptibility for
a given value ofH , and to a different value of the critical point.

On the other hand, the choice of the distribution does not change qualitatively the physical beha-
vior of the system at T = 0, provided has zero mean and finite variance, which eqs. (4.4) ensure. As
pointed out in [SY10], the crucial property to preserve the dAT picture is to have randomly oriented
external fields.

4.1.1 . Replica computation of the free-energy
In this section we derive the free energy of the model (4.1), characterising the RS solution in all

ranges of temperatures and fields where it is stable and making considerations regarding the fRSB
solution.
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From the gaussianity of the Hamiltonian, we can steadily write
exp

(
−β

n∑
a=1

H0[Sa]

)
= exp

(
β2

2

∑
ab

H0[Sa]H0[Sb]

)

= exp

β2N
2

∑
ab

∑
αβ

g(Qαβ
ab )

∫ DQ
∏
αβ

∏
ab

δ

(∑
i

Sα
i,aS

β
i,b −NQ

αβ
ab

)

After replacing the deltas with their Laplace representation and neglecting unrelevant prefactors of
the integral, the replicated partition function at fixed {⃗bi} reads

E
J
[Zn] =

∫
DQDQ̂ exp

β2N2 ∑
a,b,α,β

[
g(Qαβ

ab )− Q̂
αβ
ab Q

αβ
ab

] (4.9)

×
∫
DS1 . . . DSn exp

∑
a,b

∑
α,β

β2Q̂αβ
ab

2

∑
i

Sα
i,aS

β
i,b + β

n∑
a=1

N∑
i=1

b⃗i · S⃗i,a


where we set

DSa ≡
N∏
i=1

n∏
a=1

dmSi,a. (4.10)
We absorbed the constraints on the norms of the spin into the constraints of the overlaps, in order
to have the summations involving the latter running over all indices. Introducing the average over the
external fields with the symbol E

b
[·], the replica action assumes the standard form

A[Q, Q̂] = −β2

2

∑
a,b

∑
α,β

[
g(Qαβ

ab )− Q̂
αβ
ab Q

αβ
ab

]
− logE

b
[Wb[Q̂]] (4.11)

Wb[Q̂] =
∫
dmS1 · · · dmSn exp

{
β2

2

∑1,n
ab

∑1,m
αβ Q̂αβ

ab S
α
a S

β
b + β

∑
a S⃗a · b⃗

} (4.12)
These conjugated parameters {Q̂αβ

ab } can be eliminated through saddle point equations
∂A

∂Qαβ
ab

= 0 =⇒ Q̂αβ
ab = g′(Qαβ

ab ). (4.13)
Moreover, since the system is statistically isotropic, we shall restrict to order parameter matrices Q
of the form

Qαβ
ab = δαβQab. (4.14)

Let us consider first the RS solution and then the fRSB solution.
RS solution

If we plug the RS ansatz
Qab = q, a ̸= b

Qaa = 1/m.
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into (4.12), we can apply a Hubbard-Stratonovich transform and rewrite it as
Wb(q) = e

β
2
g′(1/m)−β

2
g′(q)− 1

2
b2
∫
dG

(m)
g′(q)(h) exp

(
h⃗ · b⃗
g′(q)

)
Km(βh).

Once we plug it into (4.11), the free energy density reads
f(β,H) = max

q
ΦRS(q) (4.15)

ΦRS(q) =
βm

2

[
g(q)− g′(q)q

]
− βm

2
[g(1/m)− g′(1/m)/m

] (4.16)

−β
2
(g′(1/m)− g′(q))− 1

β

∫
dG

(m)
g′(q)(h)Eb

[
exp

(
−b

2 + 2h⃗ · b⃗
2g′(q)

)]
logKm(βh).

where dG(m)
g′(q) is am-dimensional isotropic gaussian measure

dG
(m)
g′(q) =

dmh

(2πg′(q))m/2
exp

(
− |⃗h|

2

2g′(q)

)
(4.17)

andKm is the usual rescaled modified Bessel function, which we report here for reader convenience
Km(x) ≡ (2π)m/2 Im/2−1(x)

xm/2−1
.

Equation (4.15) is just a generalisation to random external fields of the free energy derived by de
Almeida and Thouless (eq. (1.83)) in [Alm+78] for the zero external field case. By noticing that∫

dG
(m)
g′(q)(h)Eb

[
exp

(
−b

2 + 2h⃗ · b⃗
2g′(q)

)]
= 1

we deduce that the distribution of cavity fields is
Ph(⃗h) = G

(m)
g′(q)(h)Eb

[
exp

(
−b

2 + 2h⃗ · b⃗
2g′(q)

)]
(4.18)

For example, in the case of gaussian and uniform external fields we have
Ph(⃗h) = G

(m)
g′(q)+H2(h) Gaussian (4.19)

Ph(⃗h) =
G

(m)
g′(q)(h) Km

(
hH
g′(q)

)
Sm(H) eH2/2g′(q)

Uniform (4.20)
The guassian case is trivial, since it is the distribution of the sum of two independent gaussian vectors,
the internal fields h⃗(0)i = −∂iH0 and the external fields b⃗i. In the uniform case we find a less trivial
distribution. We make two remarks about (4.20) :
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• The scaling ofPh(|⃗h|) in the pseudo-gap region (h→ 0) does not depend on the particular choice
of external fields distribution. Indeed, the term inside the average over the external field in (4.81)
is a constant for |⃗h| → 0. Thus, it holds

Ph(h) ∼ hm−1 ∀ isotropic Pb(⃗b), (4.21)
the abundance of small fields only depends on the dimensions of the spins. Conversely, the tail
of the distributions at large h depends on the statistics of the external fields : in the uniform
case for instance

Ph(h) ∼ e−h2/2g′(q)+hH/g′(q)

the decay is slower than in the gaussian case.
• The normalisation of the distributions can have very different behaviors as a function of H .
Indeed, in the gaussian and uniform cases we find respectively

Zgauss
m (H) = (2π)m/2[g′(q) +H2]m/2 (4.22)

Zunif
m (H) = [2πg′(q)]m/2Sm(1)Hm−1eH

2/2g′(q), (4.23)
meaning that the normalisation in presence of random uniform fields is exponentially larger
than that of the case with gaussian fields. This result is easily understandable : in the uniform
case the only way that a cavity field can be small is that the internal field balances the external
field, whereas in the gaussian case external fields can be arbitrarily small, so there are many
more ways to make |⃗hi| small 1. In numerical simulations it seems more convenient to deal with
gaussian external fields, so from now on we will only consider gaussian external fields.

The overlap as usual satisfies the self-consistent equation
q =

1

m

∫
dmh Ph(h)

[
Im/2(βh)

Im/2−1(βh)

]2 (4.24)
from which the magnetic susceptibility χ = β(1− q) follows.

In next section we expand observables in the paramagnetic phase around T = 0.
Low temperature expansion of observables

We begin with the expansion of the overlap (4.24) up to order T 2 : the result is
q =

1

m
− χLR(0)T −

[
χLR(0)

2

2
+

(m− 1)(m− 5)A

8

]
T 2 +O(T 3) (4.25)

χLR(0) = (1− 1/m)

〈
1

h

〉
A = (1− 1/m)

〈
1

h2

〉
(4.26)

and is obtainable by considering the expansions of Bessel functions in Appendix A. For m > 1, the
expansion in powers of T terminates atO(Tm−1) because the coefficient of next term contains ⟨1/hm⟩

1. The abundance of small fields is ∫ h

0
h′m−1/Zm ∝ hm/Zm, thus the larger the normalisation the moredepleted are small fields.
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and thus is divergent, remembering that Ph(h) ∼ hm−1 : so in general the overlap can be written as
the sum of a polynomial in T of orderm− 1 and a singular function with leading behavior

qsing ∼ ⟨1/hm⟩Tm ∼ Tm log(1/T ) (4.27)
Whenm > 3, if H > Hc(0) the coefficients of the regular part of the expansion are all O(1) in H , but
in the casesm = 1, 2 one has to scale H with temperature, since the dAT line is divergent (the critica
field is infinite) : indeed, χLR(0) = O(H−1) and A = O(H−2), and one has to plug in this expressions
the divergence of H in T . We are not interested in discussing this case, since we want to study the
paramagnetic phase at T = 0, so in other words them > 2 case.

The expansions of thermodynamic observables can be readily obtained once (4.25) is substituted.
Let us consider the internal energy and the specific heat :

U(T ) = −⟨h⟩h + cv(0)T +O(T 2) (4.28)
cv(0) =

m− 1

2
+

m

2(1/m+H2)1/2

[√
2

m

Γ(m/2 + 1/2)

Γ(m/2)

]2
(4.29)

For large H spins do not interact and the specific heat satisfies equipartition theorem 2, as it should
be. Thus the second term in the expression of the specific heat is a correction coming from inter-
actions. Notice that coherently with continuous classical theories, the positive specific heat implies
a logarithmic divergence of the entropy. At the transition, this RS expression (4.28) does not exhibit
any singularity, at variance with the RSH = 0model whose susceptibility has a cusp at the transition
[SK75 ; EA75 ; EA76]. The dAT line expanded close to T = 0 form > 2 reads

Hc(T ) =
1√

m(m− 2)
−

m−3∑
k=1

ck T
k − ksingTm−2 log(1/T ) (4.30)

so form = 3 one has the singular leading behavior∆Hc ∝ T log(1/T ).
fRSB solution

Let us go back to (4.11), (4.12) and let us consider the isotropic saddle point (4.14). We averageWbover gaussian external fields
E
b
[Wb[Q]] =

∫
dmS1 · · · dmSn exp

{
β2

2

1,n∑
ab

[g′(Qab) +H2]S⃗a · S⃗b

}
(4.31)

The logarithm of (4.31) can be written exactly as the integral in (1.54), except for the final condition :
log I(qea, h) ≡ φ(qea, h) = logKm(βh). (4.32)

The first term in (4.11) is trivial to write in the fRSB formalism :
β2

2

∑
a,b

∑
α,β

[
g(Qαβ

ab )− Q̂
αβ
ab Q

αβ
ab

]
=

mβ

2

{
g(1/m)− g′(1/m)/m−

∫ 1/m

0
dq P (q)[g(q)− g′(q)q]

}

2. Each spin hasm− 1 degrees of freedom, since their moduli are fixed.
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We write the fRSB free energy functional following a variational approached used in [SD84] :
Φ[x(q)] = −mβ

2

{
g(1/m)− g′(1/m)/m−

∫ qea

q0

dq P (q)[g(q)− g′(q)q]
}

(4.33)
−β(g

′(1/m)− g′(qea))
2

− 1

β

∫
dmhP (q0, h)φ(q0, h)

− 1

β

∫ 1/m

0
dqP (q)

∫
dmh P (q, h)

{
∂φ

∂q
+

1

2
g′′(q)

[
∂2φ

∂h2
+
m− 1

h

∂φ

∂h
+ x(q)

∣∣∣∣∂φ∂h
∣∣∣∣2
]}

+
1

β

∫
dmh P (qea, h)[φ(qea, h)− logKm(βh)].

We introduced the functional Lagrange multipliers P (q, h) to enforce Parisi equations
∂φ

∂q
= −1

2
g′′(q)

[
∂2φ

∂h2
+
m− 1

h

∂φ

∂h
+ x(q)

∣∣∣∣∂φ∂h
∣∣∣∣2
]

(4.34)

and their boundary condition, eq. (4.32). The physical meaning of P (q, h) is the following : they are the
probability density of observing a cavity field h⃗ when measuring the system in a cluster of the phase
space with overlap q. Dynamically, this corresponds to measure the cavity field acting on a spin for a
time interval covering all dynamical epochs from qini = qea to qfin = q, following the interpretation of
RSB in [Som81]. The P (q, h) satisfy the pde

∂P

∂q
=

1

2
g′′(q)

[
∂2P

∂h2
+
m− 1

h

∂P

∂h
− 2x

∂

∂h
·
(
P
∂φ

∂h

)]
(4.35)

with initial condition
P (q0, h) = G

(m)
g′(q0)+H2(h). (4.36)

We can derive a self-consistent equation for the overlap if we impose that φ(q, h) and P (q, h) satisfy
their pde :

δΦ

δx(q)
= 0 =⇒ q =

1

m

∫
dmh P (q, h) T 2

(
∂φ

∂h

)2 (4.37)
In the RS limit one finds back eq. (4.24). By deriving again Φ and setting the result to zero, one finds
the condition of marginal stability (Λ=0) of the spin glass phase

1 =

∫
dmhP (q, h)

[
m− 1

m

(
M

h

)2

+
1

m

(
∂M

∂h

)2
]
. (4.38)

where we introducedM(q, h) = T∂hφ(q, h) : this is the RSB magnetisation corresponding to a cavity
field h⃗. The functional found in (4.33), constraints aside, is just a special case of that found by D.
Panchenko in [Pan18]. There, the author vector spin variables constraint to generic compact subsets
of Rm, whereas we analyse only the case of spins constraint to live on the hypersphere.
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Zero temperature limit

Eqs. (4.33), (4.35), (4.37) and (4.38) can be straightforwardly extended to T = 0 if the following
scaling laws are assumed

• φ(q, h) = β ϕ(q, h) = O(β)

• P (q, h) = P0(q, h) = O(1)

• βx(q) = y(q) = O(1)

• β (1/m− qea) = χLR = O(1)

The first assumption is motivated by observing that the boundary condition function (4.32) behaves
as

φ(qea, h) = logKm(βh) = βh+O(log β) β →∞

as one can verify by checking the asymptotic expansions of Bessel functions in Appendix A. The third
condition is just a consequence of the first, see eq. (4.34) for confirmation. The second condition
ensures that the consistency equation (4.37)

q =
1

m

∫
dmh P (q, h) T 2

(
∂φ

∂h

)2

=
1

m

∫
dmh P0(q, h)

(
∂ϕ

∂h

)2

has a good T = 0 limit. It is known fact that the smallest overlap q0 depends very weakly on tempera-
ture [MPV87], so that it can be considered temperature independent : thus we have that P (q0, h) =

P0(q0, h). The fourth assumption ensures the stability of the zero temperature solution in the RSB
phase [PP79]. At variance with the SK model (m = 1), we expect the local fields {µ(α)i } inside any purestate α to be gapped at T = 0, and that

minµ
(α)
i = χLR ≡ (1− 1/m)

∫
dmh

P (qea, h)

h
.

Note that this would also ensure continuity at the critical field. The fact that χLR(0) ̸= 0 at H = 0

follows from the continuity of the vector spins, thus the existence of arbitrarily small excitations. Note
that the isotropy of the model implies that the cavity field distributions should have the form

P (h, q) = hm−1p(h, q) (4.39)
In the m = 1 case it is known that the p(h, q) starting from q = q0 should progressive go from a
gaussian behavior at small fields to the behavior at q = qea predicted in equation (1.39), P (h, qea) ∼ h.As it was previously discussed, this scaling implies qea ∼ 1 − aT 2 : this low temperature behavior of
Edwards-Anderson overlap is equivalent to the absence of low energy excitations, χLR = 0. It is not
yet clear to us if for m > 1 the function p(h, q) should change close to the origin similarly to what
happens in them = 1 case.

With these assumptions we can write the equation for the ground state energy in the RSB phase :

E(H) = max
y(q),q0

{m
2

∫ 1/m

q0

dq q y(q)−
∫
dmhP0(q0, h)ϕ(q0, h)

}
. (4.40)

The ground state can be computed numerically from (4.34), (4.35) at T = 0 and (4.40) by adapting
to the vector spin glass the strategy in [OS08 ; SO08] where the authors maximise (1.58) with respect
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to q(x), or that in [AM20], where instead the equations are solved by maximising x(q). Parisi solution
of vector systems has been explored mainly close to the critical line [ES82]. As a future development
of our work, it would be interesting to solve the RSB phase of vector models in full generality.

4.2 . TAP equations

In this section we derive the TAP equations of the model, by means of a Georges-Yepidia-Plefka
expansion [Ple82 ; GY91] of the Gibbs potential. The TAP equations of vectorial model were derived
for the first time in [BM80] : we find back their result, modulo a different normalisation of the spins.
The derivation of the equations and in particular of the TAP free energy is preparatory for the discus-
sion we wish to do about linear excitations around TAP solutions in next section. We expand at high
temperatures the free-energy functional

−βF [m] ≡ A[m;β] = log

∫
DS exp[−βH[S] +

∑
i

λ⃗βi · (S⃗i − m⃗i)] (4.41)

where the Lagrange multipliers {λβi = βηi} are external fields that enforce magnetizations to their
ensemble averages :

∂ ⃗
λβ
i

A[m;β] = 0 =⇒ m⃗i = ⟨S⃗i⟩λ. (4.42)
This self-consistent equation returns physical magnetisations when the Lagrange fields are set to
zero. Solutions of (4.42) define metastable states of the system. Thus, the function (4.41) is generally
non-convex : one can obtain the Gibbs potential through its convex-envelope.

In this section and in the next we use the letter "m" formagnetisations and "d" for spin dimension.
We expand (4.41) up to order β2 :

A[m;β] = A[m; 0] + ∂βA[m; 0]β +
1

2
∂2βA[m; 0]β2 +O(β3). (4.43)

For fully connected models it is well known that the high-temperature expansion truncates after a
finite number of terms [TAP77]. In the case of disordered models such those studied hereby, in the
thermodynamic limit all terms o(β2) vanish. Consider the following observable

Uβ = H− ⟨H⟩ −
∑
i

∂β
⃗
λβi · (S⃗i − m⃗i). (4.44)

It’s not hard to show 3 that
∂βAβ = −⟨H⟩β (4.45a)
∂2βAβ = ⟨U2

β⟩ (4.45b)
Let’s compute the order zero term of (4.43)

A0 = log

∫
DS exp

∑
i

λ⃗0i · (S⃗i − m⃗i) =
∑
i

[Kd(λ
0
i )− λ⃗0i · m⃗i] (4.46)

3. To retrieve (4.45), use that ⟨U⟩ = 0, d
dβ ⟨O⟩ = ⟨

dO
dβ ⟩ − ⟨OU⟩ and finally that dn

dβλ
β
i = − ∂

∂mi

∂nA[m;β]
∂βn .
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where as usual ∫
dΩde

λ0
i ·ẑ = Sd(1)

∫ π
0 dθ(sin θ)

d−2eλ
0
i cos θ∫ π

0 dθ(sin θ)
d−2

= (2π)d/2
Id/2−1(λ

0
i )

(λ0i )
d/2−1

Note that at β = 0 equation (4.42) can be rewritten as
mµ

i ≡ ⟨S
µ
i ⟩0 =

d

dλ0i
[logKd(λ

0
i )]
λµi (0)

λ0i
≡ gn(λ0i )

λµi (0)

λ0i
(4.47)

where
gd(λ) =

Id/2(λ)

Id/2−1(λ)
. (4.48)

This is the generalisation to d-dimensional spins of eq. (1.37) found in [TAP77] for the d = 1 case.
Function (4.48) in the d = 3 case is the well known Langevin function describing the polarisation of
electric or magnetic dipoles under the effect of an external electrostatic or magnetostatic field :

g3(λ) ≡ coth(λ)− 1

λ
.

The properties of functions gd for general d can be found in Appendix A. Having obtained the relationbetween magnetisations and fields, in order to close them we need to find the expression of the {λi}in terms of the {mi}. Let us now compute the second order term of (4.43) using the second relation
of (4.45), at β = 0 : firstly, we note that

(∂β
⃗
λβi )(0) = [∂β(−∂m⃗i

A[m;β])](0) = −(∂m⃗i
∂βA[m;β])(0) = ∂m⃗i

⟨H⟩0

and thanks to this we can write the square of (4.44) at β = 0 in a very compact way :
(U0)

2 =
1

4

∑
i ̸=j

∑
k ̸=l

JijJkl(S⃗i − m⃗i) · (S⃗j − m⃗j)(S⃗k − m⃗k) · (S⃗l − m⃗l) (4.49)
At β = 0, which corresponds to infinite temperature, the spins are non interacting : all the connected
correlation functions are strictly null in the Gibbs state, and this allows us to factorize all the thermal
averages. In particular, in the thermal average of (4.49) only the i = k, j = l or i = l, j = k terms
contribute, thanks to condition (4.42). Thus, we have

⟨U2
0 ⟩0 =

1

2

∑
i ̸=j

J2
ij [⟨(S⃗i · S⃗j)2⟩0 − ⟨(S⃗i · m⃗j)

2⟩0 − ⟨(m⃗i · S⃗j)2⟩0 − (m⃗i · m⃗j)
2]

We can further simplify this last expression : writing the scalar products explicitly, factorizing the
thermal averages in single site factors and remembering that (derive once again (4.47))

⟨Sµ
i S

ν
i ⟩0 = ∂λµ

i (0)
mν

i +mµ
im

ν
j

with some manipulations we finally get
∂2βA[m; 0] =

1

2

∑
i ̸=j

J2
ij

∑
µ

∇λ0
i
mµ

i · ∇λ0
j
mµ

j =
1

2

∑
i ̸=j

J2
ij

∑
µ

(χ̃iiχ̃jj)µµ =
N

2
Tr(χ̃

2
).
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where in the last equality we used self-averaging. We introduced the tensor
χ̃µν
ii =

∂mµ
i

∂λν
i (0)

. (4.50)
which is related to the magnetic susceptibility tensor by χµν

ii = βχ̃µν
ii . Finally, the free energy functio-nal in power of β is

FTAP [m] = −A0

β
−

1
2

∑
i ̸=j

Jijm⃗i · m⃗j +
∑
i

b⃗i · m⃗i

− N

4β
Tr(χ2) (4.51)

Let us comment the three terms at the r.h.s. of this last expression : the first term is the infinite
temperature entropy of the system; the second term is the familiar ’mean field’ energy ; finally the
third term is the energetic contribution of Onsager reaction field, so it is a signature of the linear
response that follows the addition of a novel spin. For the systems we are studying are statistically
isotropic (random external fields), Onsager term could be further simplified

Trχ2 = d χ2 χ = χµµ
ii

In deriving the TAP free energy, we neglected higher order terms because they yield subextensive
contribution. One can show that in the RSB phase these neglected terms yield a divergent contribu-
tion. The stability condition that one can find for the high-temperature expansion at a given T,H is
exactly the positivity of the Replicon eigenvalue [Ple82].

TAP equations are straightforwardly obtained from TAP free energy (4.51) with a derivation with
respect to m⃗i, finding

h⃗i =
∑
j

Jijm⃗j + b⃗i − χm⃗i m⃗i = gd(β |⃗hi|)
h⃗i
hi

(4.52)
A solution of (4.52) is a TAP state : in the RS high temperature phase, it represents a local minimum of
the free-energy landscape. In 1RSB systems TAP states are equivalent to pure states, but in fRSB sys-
tems this is false in general [MPV87]. TAP equations (4.52) lend themselves to an iterative algorithm
to computemagnetisations corresponding to local minima of the free energy. In the spin glass phase,
simple iterative approaches hardly converge [BM79] ; an improved scheme, based on the minimisa-
tion of |mi− tanhβhi|, is proposed in [NT85]. A rigorous proof of the convergence of Eqs. (4.52) in theRS phase is provided in [Bol14], where the author considers the SK model (m = 1). The proof is based
on the behavior of the function

ψ(t) = E
Z,Z′,Z′′

[tanh(b+
√
tZ +

√
q − tZ ′) tanh(b+

√
tZ +

√
q − tZ ′′)]

defined in [0, q], which corresponds to the overlap between the on-site magnetisation at different
times. Indeed, one finds that ψ(t) ∼ q − (1 − Λ)t, where Λ is the Replicon eigenvalue. Thus, |mi(t)−
mi(t − 1)|2 = 2(q − ψ(t)) → 0 and (4.52) admit a fixed point. The proof could be straightforwardly
extended to the family of vector models hereby studied, since the functions gm(x) relating magneti-
sations and cavity fields are qualitatively very similar to the hyperbolic tangent.
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4.2.1 . Fluctuations around TAP states : the Hessian
In this section we compute the Hessian matrix related to TAP free energy, eq. (4.51). To do the

computation, we define the inverse function of gd(x) :
hd(y) ≡ g−1

d (y)

With this definition, one has
∂FTAP

∂mµ
i

=
hd(mi)

mi
mµ

i + χmµ
i −

∑
j

Jijm
µ
j − b

µ
i

and deriving one more time, one obtains the Hessian matrix, expressed in terms of its matrix i, j
elements :

Mij = M(L)
ij +M(T )

ij (4.53)
M(L)

ij = Pi

[
−Jij −

2βd

N
mimj +

(
χ+

dhd
dm

(mi)

)
δij

]
Pj (4.54)

M(T )
ij = P(⊥)

i

[
−Jij +

(
χ+

hd(mi)

mi

)
δij

]
P(⊥)
j (4.55)

Pi =
m⃗im⃗

⊺
i

m2
i

P(⊥)
i = I−

m⃗im⃗
⊺
i

m2
i

(4.56)
The Hessian is naturally decomposed in two contributions : the first accounts for longitudinal fluctua-
tions m⃗i → αim⃗i for some random αi, the second for transverse ones m⃗i → Rim⃗i for some random
local rotation Ri. The eigenvectors of the Hessian thus split into two orthogonal subspaces : longi-
tudinal excitations in the N -dimensional space spanned by m, whereas transverse modes span the
orthogonal spacem⊥ with dimensionN×(m−1). As a first check, the Hessian evaluated at theH = 0

paramagnetic solutionm reads
∂2FTAP

∂mν
l ∂m

µ
k

∣∣∣
[mi]=0

= δµν
[( d
β
+
β

d

)
δlk − Jlk

] (4.57)
from which we can easily 4 see that Tc = 1/d. When one wants to study the model in the infinite d
limit (spherical limit), it is convenient then to rescale all spins to have norm√d.

The eigenvalue spectrum of (4.53) was studied in [YM04] considering the isotropic case H = 0 in
the spin glass phase. The authors find a spectrummade ofm null eigenvalues and a continuum band
with strictly positive lower edge for any 0 < T < Tc. Exactlym− 1 null eigenvalues are related to the
globalO(m) symmetry ; the remainder null eigenvalue is non-trivial and stems from theprojector term
−2βm⃗im⃗

⊺
j/N in the longitudinal Hessian (4.53). The null eigenvalue is found in the case of Ising spins

as well [ABM04]. It was shown in [PR04] in the casem = 1 that the nullity of this isolated eigenvalue
is related to the breaking of super-symmetry (SUSY) of the Action appearing in the computation of
the Bray-Moore complexity [BM80]. The physical meaning of the isolated eigenvalue is the marginal
stability of the spin glass phase. TAP states of spin glassmodels with pairwise interactions cannot trap

4. Themaximal eigenvalue of the interactions matrix is 2, and this shall be equated to the diagonal element.
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the system forever, thus a remanent magnetization is asymptotically lost with relaxation : this is at
variance with p-spin models, where instead in the glassy phase there are stable TAP solutions.

Let us restrict to the paramagnetic phase. The longitudinal and the transverse Hessian matrix
for large N are both instances of a Rosenzweig-Porter ensemble. In both cases the Hessian is the
sum of a Wigner matrix and a diagonal matrix, whose entries distribution differs from that of the
couplings. In order to acquire some physical insight, let us consider the diagonal elements in both
cases. The uniform shift provided by χ ensures the stability of the solution, coherently with [PP79].
The residual terms are related to the inverse of the local susceptibilities : from (4.52), by deriving the
second equation with respect to h⃗i one finds for the susceptibility tensor

χii = βg′d(βhi)Pi +
gd(βhi)

hi
P

(⊥)
i ≡ 1

h′d(mi)
Pi +

mi

hd(mi)
P

(⊥)
i (4.58)

Therefore, the smallest residual values over the stability offset in the diagonal of both matrices are
related to the most susceptible spins. As a check, let us verify that longitudinal excitations disappear
at zero temperature and how temperature affects transverse ones. It is convenient to write {hd(mi)}as functions of the cavity fields, and introduce random variables {κi}, {ℓi}

hd(mi) ≡ βhi =⇒


dhd
dm

(mi) ≡
1

β g′d(βhi)
=
d

β
+ κi

hd(mi)
mi

≡ hi
gd(βhi)

= d
β + ℓi.

(4.59)

where we used gd(x) ∼ x/d for small x. The term d/β is just the energy provided to each degree
of freedom by the thermal bath. In the zero temperature limit, variables κi are of order β for any
hi ≫ 1/β, whereas ℓi are equal to hi in the same situation : as it is natural to expect, when temperature
is decreased longitudinal excitations are increasingly harder to trigger than transverse ones ; at exactly
T = 0, longitudinal modes are absent, as it should be. More specifically, for d > 1 we have (αi = βhi)the following behaviors

κi ∼
2αihi
d− 1

αi ≫ 1 (4.60)
κi ∼

3αihi
2(d+ 2)

αi ≪ 1 (4.61)
ℓi ∼

[
1− d+ 1

2αi

]
hi αi ≫ 1 (4.62)

ℓi ∼
[

αid

2(d+ 2)

]
hi αi ≪ 1 (4.63)

The temperature affects transverse excitations only in a regionO(T ) close to the stability edge : if we
treat a small temperature as a perturbative effect, it is clear that its effect would affect strongly only
cavity fields of the same order of the effect. A detailed study of the TAP Hessian in presence of an
external random field would be an interesting development of our current research. In the following,
we begin to study the T = 0 limit of (4.53), the Hessian of the Hamiltonian, whose spectrum describes
the properties of linear excitations around energy minima.
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4.3 . Linear excitations of inherent structures

We finally begin to study the stability properties of energy minima. In RS phases, or in simple
glassy models such as the spherical p-spin, energy minima can be obtained by following TAP minima
down to zero temperature. In the generic RSB case this is no possible, either because of temperature
chaos [RC03], the phenomenon for which energy levels cross each other following tiny variations of
temperatures, or for the renown Gardner transition [Gar85], the phenomenon observed in the p-spin
Ising spin glass for which a stable state becomes marginal.

The energy landscape of the SK model and its vector version was firstly characterised in [BM80;
BM81b ; BM81a]. In these works Bray and Moore compute the complexity of stationary points of the
TAP free energy and the Hamiltonian. They identify a critical energy level such that for lower energies
the annealed and the quenched complexities ( 1N logN and 1

N logN) are equal, but for higher energies
the quenched complexity undergoes a RSB transition and it becomes lower than the annealed one.
Later, it was shown that Bray-Moore complexity breaks a SUSY symmetry [Kur91].

A practical approach to study the properties of energy minima is to define a numerical minimi-
sation protocol for the Hamiltonian. The problem of reaching fixed points of (1.89) is a constrained
optimization problem : wewant to find a configuration of spins S ≡ (S⃗1, . . . , S⃗N ) in the subsetSm(1)N

of RN , where Sm(1) is the m-dimensional unit sphere, that is a local minimum of (1.89). In order to
take account of constraints, we introduce the Lagrangian

L[S,µ] = −1

2

∑
ij

JijS⃗i · S⃗j −
∑
i

b⃗i · S⃗i +
∑
i

µi (|S⃗i| − 1). (4.64)
A stationary point of the Hamiltonian satisfying the local spherical constraints is a solution of the
N ×m+N equations

∂L

∂S⃗i
= 0 (4.65)

∂L

∂µi
= 0 (4.66)

One can easily show by combining these last two equations that stationary points of (4.64) are confi-
gurations S(∗) such that each spin is aligned to its local field

µiS⃗
(∗)
i ≡ µ⃗i =

∑
j

JijS⃗
(∗)
j + b⃗i (4.67)

S⃗
(∗)
i =

µ⃗i
µi

(4.68)
The local field counts two contributions : the first is the internal field∑j JijS⃗j generated by its neigh-bors, the second is the random external field. While the first is responsible for mutual correlations
which result in frustrated ordering, the second can be regarded as a "spatial" noise term, which re-
duces the correlations among neighboring spins. At H = 0 the system is in the RSB phase : as the
standard deviation of the external field is raised, spins alignments are perturbed by the external fields,
to the extent the latter become the dominant contribution in (4.67) and the system becomes RS. This
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Algorithm 4.1 Update move of the GCD algorithm.
1: Read spin label label← i.
2:
3: Compute the local field on site i : µ⃗i ←

∑
j JijS⃗j + b⃗i4:

5: Align spin i to local field : S⃗i ← µ⃗i

|µ⃗i|6:
7: Return S⃗i.

scenario describes the zero temperature phase transition in spin glass systems. As it has been already
pointed out in section 1.8, in fully-connected models this transition does not occur for spins with less
thanm = 3 components. Only in sparse models one can study a T = 0 SG transition for Ising and XY
spins [PRR14], [Lup17].

4.3.1 . Numerical minimisation of the energy
The fixed point condition (4.67) invites for the use of a renown gradient descent protocol, named

Greedy Coordinate Descent (GCD) algorithm, also known as Gauss-Seidel procedure : a gradient descent
move consists in aligning at each step a spin to its instantaneous local field. Introducing a discrete time
step t, we can write an equation for the update move

(. . . , S⃗i−1, S⃗i, S⃗i+1, . . . ) =⇒ (. . . , S⃗i−1, S⃗′
i, S⃗i+1, . . . ) (4.69)

S⃗i(t) =

∑
j JijS⃗j(t− 1) + b⃗i

|
∑

j JijS⃗j(t− 1) + b⃗i|
(4.70)

We propose code 4.1 as an algorithm for the single update step.
We compute the local field acting on spin i at time t − 1, we align S⃗i(t) to it and then we select

another spin and repeat the procedure. Every timeN spins have been update, we count a sweep time
and measure the overlap of the global configuration with the configuration at the previous sweep
time :

q(tsw) =
1

N
S(tsw) · S(tsw − 1) (4.71)

If this quantity is closer to unity than a user input threshold ϵ, the algorithm reaches convergence.
The full algorithm is reported in code 4.2 : the algorithmic complexity to complete a sweep is clearly
O(N2), since for any spin we have to compute the instantaneous local field. The total algorithmic time
complexity at reached convergence isO(N2tconv(N,H)), where tconv(N,H) is the typical convergence
time at sizeN and field widthH : we will measure later in this section the scaling withN of tconv(N,H)

in the Heisenberg case (m = 3).
How do we choose the next spin after an update? There are two sensible options : we can either

select at each time step a spin at random, or update each spin sequentially with its index i = 1, . . . , N .
The first case corresponds to a T = 0 Monte-Carlo algorithm, the second is a deterministic gradient
descent protocol. The first choice allows to study different trajectories and stationary points obtained
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Algorithm 4.2 GCD algorithm.
1: while 1− q(tsw) ≥ ϵ do
2:
3: Save previous spin configuration Sold(tsw)← S(tsw − 1)
4:
5: for 1 ≤ i ≤ N do
6: Update Spin i with code 4.1.
7: end for
8:
9: Compute overlap with previous configuration : q(tsw)← 1

N
S(tsw)Sold(tsw).10:

11: end while

by starting the descent dynamics from a fixed initial condition, whereas the second approach yields
a deterministic descent dynamics, such that for each initial condition there is a unique trajectory and
final stationary point. We chose to adhere to the second protocol, since our goal in this chapter is only
to study excitation spectra of energy minima.

An important question we did not raised so far is that of initialisation : what is themost convenient
initialisation? A random initialisation, obtained by drawing uniformly 5 a configuration on themanifold
Sm(1)N , is equivalent to a quench from infinite temperature. A local energy minimum reached after
performing a gradient descent from a quenched initial condition is called in gergon inherent structure.
In phases that exhibit RSB, inherent structures related to infinite-temperature quenches usually are
not very good in energy. In models of structural glasses, such as p-spin models, under the right condi-
tions 6 one can improve the quality of inherent structures by considering a quench from states that
are of equilibrium for some preparation temperature in the dynamical phase [Fol20]. This technique
is not helpful in fRSB models, because of temperature chaos and level crossing phenomena. In this
case, a standard approach to numerical simulations is given by Monte-Carlo simulated tempering
[MP92].

Since we focused mainly on the paramagnetic phase, we chose to use a random initial condition
for our minimisation. Even though in finite size systems one does encounter structured landscapes
with multiple energy minima close to criticality, one can still modify the GCD algorithm (4.70) in order
to avoid bad high energy minima, even with a random initial condition.
Over-Relaxation

In finite size systems one can have more than an energy minimum also in the RS phase, up to
very large sizes in the vicinity of a critical point. Since in numerical simulations one always deal with
finite systems, it is crucial to have a minimisation algorithm able to avoid high-energy minima. With a
random initial condition, unfortunately, when there are many local minima there is a high probability

5. We can obtain these by extracting each spin component from a gaussian and then to normalise to unityeach spin.6. In the case of generalised glasses, to consider states that can be followed in temperature.
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to fall in a high-energyminimum through a simple gradient descent algorithm like the GCD. Intuitively,
this happens because as H is decreased toward the critical field, the landscape loses convexity and
new basins in the energy landscape start to form.

In order to deal with this unfortunate situation, we adopt the trick of Over-Relaxation (OR). We
modify equation (4.70) as follows

S⃗i(t) =

∑
j JijS⃗j(t− 1) + b⃗i +O S⃗

(R)
i (t− 1)

|
∑

j JijS⃗j(t− 1) + b⃗i +O S⃗
(R)
i (t− 1)|

(4.72)

S⃗
(R)
i = S⃗

(∥)
i − S⃗

(⊥)
i = 2[S⃗i · µ̂i]µ̂i − S⃗i (4.73)

The new update move consists in the linear combination of two vectors : the instantaneous local field
and the OR termwith weightO > 0. The vector S⃗(R)

i (t) is a reflection of the spin S⃗i about the local fieldaxis, and is weighted trough the over-relaxation parameterO. Since the OR vector has the same angle
with the local field as the spin it refers, the OR term preserves the energy. In particular, the reflection
movemaximises the distance from the starting point in the constant energymanifold. TheOR descent
can be visualised as a spiralling descent in the landscape. The bigger O, the more "spiralling" is the
descent in the energy landscape. TheOR algorithmwas usedwith success in previous studies of vector
spin glass models, like for instance in [Bai+15].
Study of algorithmic performances in energy and sweep time

In this section we analyse the performance in energy and convergence time of the OR algorithm,
with threshold δ = 10−12. We modify the single update move 4.1 by replacing the true local field
with the OR one (4.72) We restrict our study to the Heisenberg m = 3 system and consider the five
values H/Hc = 0.5, 0.87, 1.04, 1.7, 5.0. These values, for the sizes N = 128, 256, 512, 1024 considered
by us, refer respectively to the case of a complex landscape (H = 0.5Hc, deep spin glass phase), a
weakly complex landscape (H = 0.87Hc, not deep spin glass phase), the emergence of complexity
(H = 1.04Hc, close to critical point), the non-convex paramagnetic phase (H = 1.7Hc) and the trivialparamagnetic phase (H = 5.0Hc). For each size and external field of this test, we simulatedNs = 100

samples ; for each sample, we performed Nrun = 10 runs for different values O = 0, . . . , 10, starting
from a random initial condition : in total, we performed Ns × Nrun × 10 GD-OR, yielding as much
measures of E and tconv.The main conclusions of this brief study are the following :

• The OR algorithm performs largely better in convergence time than the simple gradient descent
for H ∼ Hc and below. The improvement holds both for fixed value of N and for growing N :
for a given range of sizes, the OR parameter O can be chosen in order to have computational
complexity CC = O(N2), namely to have tconv independent of N . Conversely, the simple GD
performs with CC ≫ O(N2), tconv is always an increasing function of N .

• In the paramagnetic phase, the gain in energy of the OR is marginal if compared to that in
convergence time. In the spin glass phase, the average energy gain of the OR algorithm is a
slowly increasing function of the OR parameter : the greater its value, the deeper in the land-
scape.
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In order to measure the energy gain with respect to the simple GD algorithm, O = 0, we consider
for each different run the following quantity

∆(O) =
E(0)− E(O)

|E(0)|
. (4.74)

We consider then its average with respect to the different runs within each sample and finally the
sample average of the run-averaged gains. We found that in the spin glass phase the fluctuations
of∆(O) between runs are comparable with those of ⟨∆(O)⟩run between different samples, whereas
in the case H = 1.04Hc run-to-run fluctuations are negligible. In the cases H/Hc = 1.7, 3.0 we did
not found any complex landscape. As to the convergence time, for allH,N we found that run-to-run
fluctuations are similar to sample-to-sample fluctuations, so we consider the average of tconv as afunction of O over Ns ×Nrun values.Let us begin by showing a comparison between sample-to-sample fluctuations of the energies
reached and fluctuations within samples, or to be more precise between levels of the same energy
landscape. In figures 4.1 we show how they looks in the spin glass phase (H = 0.5Hc, left figure) andclose to criticality (H = 1.04Hc, right figure), for the largest size N = 1024 and some samples. While
in the spin glass phase the difference is less marked, close to criticality sample-to-sample fluctuations
are dominant. In the inset of the right figure in 4.1 we highlight the presence of non-trivial landscapes,
by zooming on samples with a two-levels structure.

On the bottom of the same figure, we show the sample-averaged relative energy gain of the OR
algorithm for H/Hc = 0.5, 0.87 (left) and for H/Hc = 1.04 (right), considering all sizes simulated.
The relative energy gain ranges between 10−4 and 10−3 for H/Hc = 0.5, between 10−5 and 10−4 for
H/Hc = 0.87 and between 10−6 and 10−5 forH/Hc = 1.04. The energy gain of the OR algorithm is the
better the deeper in the spin glass phase. Moreover, for the values H < Hc the gain appears to de-
crease with increasing size : the curves∆(O) versusO seem to approach the x-axis. This observation
is consistent with the theoretical prediction that in the spin glass phase levels of the energy density
are typically split by O(1/N).

Our measures of convergence time show that also for apparently large values of H , like H/Hc =

1.7, the GD-OR algorithm offers a notable improvement in time performance, when compared to
the simple GCD algorithm. We show this in figures 4.2, where we show the sample-run averaged
convergence time as a function of the OR weightO for the valuesH/Hc = 0.5, 1.04, 1.7, 5.0. It appears
that for the range of sizes of our simulations, the convergence time can be minimised by choosing
0 < O < 10, only in the trivial case H/Hc = 5.0 the GCD algorithm outperforms GD-OR. We also
studied the finite size scaling of the averaged convergence time of the GCD algorithm (O = 0), as
represented in figures a1,b1,c1,d1 in 4.2. The average convergence time of the GCD algorithm grows
with size

tconv(N,H,O = 0) ∼ Na.

The exponent a is very small for largeH and seems to be roughly a ≈ 0.5 in the spin glass phase : we
provide its values for the values of H studied in table 4.1. Therefore, the time complexity of the GCD
algorithm is roughly O(N2.5) forH < Hc and tends to O(N2) for largeH . As to the GD-OR algorithm
(O > 0), note that for any H one can choose O large enough in order to have a = 0, at least for the
range of sizes we simulated, which are those typically accessible in numerical simulations of dense
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Figure 4.1 – Top : comparisons between energies reached in different samples, for the largest size
N = 1024. Each color is a different sample, each curve is a sequence of runs from the same initialcondition, where each point of the curve is the energy reached with a value of O reported on the x-axis. The figure on the left shows fluctuations in the spin glass phase, on the right in the paramagneticphase, close to the critical point. The inset is a zoom on specific samples that in the caseH = 1.04Hcexhibit a multi-level structure.
Bottom : On the left, average and typical energy gains of the OR algorithm, forH/Hc = 0.5, 0.87 andall sizes simulated. On the right, same forH/Hc = 1.04.
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H/Hc a
0.50 0.50
0.87 0.50
1.04 0.45
1.70 0.25
3.00 0.10

Table 4.1 – The size-scaling exponent of the converge time in absence of over-relaxation,
tconv ∼ Na, as a function of H . In the spin glass phase it seems to be independent of H andequal to a = 0.5, and to decrease as a function of H in the paramagnetic phase.
systems. Thus, over-relaxation brings two time advantages : on one side, it sensitively reduces the
convergence time for any givenN andH not too large ; on the other side, it weakens the dependence
of the convergence time on the size of the system, reducing the computational time complexity of the
minimisation algorithm.

The GD-OR algorithm impacts more significantly time performances than energy ones in the non-
trivial paramagnetic phase : our data suggest that up to the critical point the algorithm ensures for
O large enough to go deep in the energy landscape, if not directly into the ground state. In the spin
glass phase, for sufficiently large sizes this is clearly impossible. Nevertheless, the GD-OR algorithm
is far better than the naive GCD, yielding deeper energy minima the larger the over-relaxation.

4.3.2 . The Hessian
Having discussed how to compute numerically configurations of minimum of the energy function,

it is time to discuss how to compute the spectrum of the Hessianmatrix and the related eigenvectors.
The Hessian matrix we wish to diagonalise is the zero temperature limit of the transverse Hessian

(4.53), namely
Mij [S] = P(⊥)(S⃗i)(−Jij + |µ⃗i[S]|δij)P(⊥)(S⃗j) (4.75)
µ⃗i[S] =

∑
j

JijS⃗j + b⃗i (4.76)

P(⊥)(S⃗) = I− S⃗S⃗⊺ (4.77)
The Hessian, when evaluated in a configuration of minimum, is positive definite. In order to achieve
that, correlations among the entries must exist : the form of these correlations in the general case is
arbitrarily complicated, making a description in terms of RMT hard. In the specific case of Hessians
of disordered mean field systems, correlations among the entries are weak. Indeed, in all theories
described by an Hamiltonian which is linear in its disorder parameter, diagonal entries are correlated
with the off-diagonal ones through functions of linear combinations of them, such as the {µi} in (4.76).In order to ensure the existence of the thermodynamic limit, couplingsmust scale asN−(p−1)/2, being
p the degree of interaction, and as a direct consequence the diagonal elements, the local forces, are
O(1).WhenN grows, the correlation of anyµiwith single values of the couplings becomes increasingly
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weaker. So, correlations among interactions (off-diagonal entries) and fields (diagonal entries) must
vanish in the thermodynamic limit). As to the correlations between off-diagonal entries with each
other, in this theory for finite N there are correlations between entries (i, j), (k, l), with i ̸= j ̸=
k ̸= l, enforced by the orthogonal constraint on the spins. These correlations vanish because in a
fully connected system spins orientations tend to be random for N → ∞. Similarly, diagonal entries
becomeuncorrelated. Therefore, forN →∞, theHessianmatrix (4.75) is an instance of a Rosenzweig-
Porter or Deformed Wigner ensemble

M ∼ RPN (W,blockdiag({V})) (4.78)
Wij = −JijP(⊥)

i P(⊥)
j W ∼ Wig(N) (4.79)

Vi = µiP
(⊥)
i µi − χ0 ∼ Chim(1/m+H2) (4.80)

where Chim(σ2) is the chi-distribution withm degrees of freedom and scale σ
Chim(x;σ2) =

xm−1e−x2/2σ2

2m/2−1Γ(m/2)σm
(4.81)

that it is the distribution of the norm of a gaussian vector with m components. Recall that thanks to
cavity method in the thermodynamic limit the cavity fields

h⃗i
N→∞
=

∑
j

JijS⃗j + b⃗i − χ0S⃗i

are gaussian vectors with zero mean and covariance matrix (1/m+H2)I. Notice that since in a confi-
guration of minimum spins and local fields are aligned, cavity fields and spins are also aligned, thus
one can also sum their norms µi = hi + χ0. In the infinite volume limit, Hessians of disordered
systems can be represented by RM ensembles. However, for finite sizes there is a finite probability of
measuring a negative eigenvalue in the spectrum of a RM drawn from (4.78). We shall write equations
for the resolvent function that give us the infinite size theory.
Derivation of resolvent equations through the cavity method

We learnt in section 3.2.5 that the equation for the resolvent or Green function of the sum of two
free matrices yield by the R-transform is (3.57), which we rewrite for reader convenience

g(z) = GA(z −RB(g(z))) ≡
∫
dλ

ρA(λ)

z −RB(g(z))− λ
(4.82)

This equation adapted for the resolvent of (4.78) reads (we change convention on the resolvent and
consider G(z) = (M− zI)−1)

G(z) =

(
1− 1

m

)∫ ∞

0
dh

Ph(h)

h+ χ0 − z −G(z)
(4.83)

where the prefactor comes from the projectors Pi in (4.80). Indeed, since projectors are idempotent,
all moments of the random variables µiPi are just rescaled of a factor TrP/m = (m − 1)/m. Notice
that (4.83) implies

G(0) =

(
1− 1

m

)∫ ∞

0
dh

Ph(h)

h
(4.84)
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so we identify G(0) = χ0. This is just a consistency check, since we know by definition that the sus-
ceptibility tensor is the inverse of the Hessian, or equivalently, the resolvent matrix (3.10) in z = 0.

We want to provide a different derivation of (4.83), using the cavity method. To this purpose, we
write the eigenvalue equations for the eigenpairs {λ,ψ(λ)} in presence of a small external source ϵαi(we consider the form (4.75) of the Hessian)

−
∑
j

Jij(P
(⊥)
i ψ⃗j)

α + µiψ
α
i − λψα

i = (P(⊥)
i ϵi)

α , (4.85)
where the index α runs over them components, the eigenvector withmN components can be written
as ψ(λ) = (ψ⃗1, . . . , ψ⃗N ) and each ψ⃗i is orthogonal to the corresponding S⃗i, i.e.∑m

α=1 ψ
α
i S

α
i = 0. Since

we are considering a perturbation of the inverse of the resolvent in (4.85), a small imaginary part in λ
is implicitly assumed to insure invertibility.

We single out a site i and compare the solution of the full system (4.85) to the one where the site
i is removed. Defining ψ⃗(i)

j the solution of Eq. (4.85) in absence of spin i and assuming continuity, we
can write

−
∑
j

JijP
(⊥)
i ψ⃗

(i)
j −G(λ)ψ⃗i + µiψ⃗i − λψ⃗i = P(⊥)

i ϵ⃗i , (4.86)
where

G(λ) =
1

Nm
Tr(M− λI)−1

is the Green function of our Hessian. The continuity assumption, necessary to use cavity method,
does not work in the spin glass phase because of marginal stability. Knowing that resolvent entries
are eigenvector susceptibilities Gij(λ) ≡ dψ⃗i(λ)/de⃗j , by deriving (4.86) with respect to ϵ⃗i and tracingover them components, we get an equation for the local resolvent 7

Gii(λ) = (1− 1/m) (hi +G0 − λ−G(λ))−1 , (4.87)
from which we get the spectral density by the usual limit

ρ(λ) = lim
η→0

m

π(m− 1)
Im (G(λ+ iη)) .

The prefactor m/(m − 1) takes into account that fluctuations are restricted to the directions ortho-
gonal to the spins. Finally, by averaging over i, we arrive to (4.83), the self-consistent equation for
G(λ). Equations of the form of (4.83), (4.87) were already derived in [BM81b ; BM82a ; BM82b] : in the
last paper in particular, the authors show a connection between the asymptotic decay of the spin
autocorrelation function and the abundance of eigenvalues close to λ = 0. Under the hypothesis that
temperature is sufficiently small in order to exclude barrier hopping and that the initial perturbation
is sufficiently small so that it does not trigger a change of state, they consider the linearised dynamical
equations with a white noise term to model the thermal bath

dS⃗i
dt

= P(⊥)
i µ⃗i + 2kBTη

7. The ψ⃗(i)
j do not depend on the small perturbation by construction.
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that describe the relaxation dynamics at low temperatures and in a range of perturbations where
linear response theory holds. In this context, if ρ(λ) ∼ λx, then C(t) ∼ C(∞)− c

tx , according to
C(t) = 1− (m− 1)kBT

∫ ∞

0

dλ

λ
ρ(λ)[1− exp(−λt)].

The smallest eigenvalue refer to the longest time-scales of relaxation dynamics, if linear response
theory is valid. In the thermodynamic limit, we know that linear response theory should fail in the
spin glass phase of fRSB because of marginality.

If one knows the cavity field distribution Pm(h), Eq. (4.83) can be solved numerically and analysed
analytically for small λ. giving us access the spectral density, once we separate the real, ReG(λ), and
imaginary, ImG(λ), parts of G(λ).
Numerical simulations

The numerical diagonalisation of the Hessian has been carried out through Lapack libraries pa-
ckage https://netlib.org/lapack/. We used the dsyev subroutine which returns the complete set
of eigenvalues and eigenvectors of a symmetric matrix. This is achieved by reducing the symmetric
matrix in a tridiagonal form and then using the Pal-Walker-Kahan variant of the QR algorithm [Fra61 ;
Fra62], an improvement of the original LR transformation [Rut58], to compute eigenvalues. The QR
algorithm works as follows : the original matrix A, given in input is associated a sequence of matrices
{Ak} satisfying

A1 = A
Ak = QkRk

Ak+1 = RkQk k ≥ 1

where {Qk} are orthogonal matrices and {R}k are upper triangular matrices. In the limit k → ∞
the sequence converges to the Schur form of the original matrix, which is a tridiagonal matrix having
the eigenvalues on the diagonal. The computational complexity of this algorithm is O(N3), with N
being the size of the square matrix. Since in addition a dense matrix occupies O(N2) of memory, in
all practical applications Lapack can be used efficiently with dense matrices of size N = O(103). On
a machines cluster one can also deal with N = O(104), but the computational complexity, to which
computation time is proportional, in this situation is very demanding being O(1012).

We performed numerical simulations combining the OR version of code 4.2 and the diagonali-
sation of the Hessian evaluated on the computed spin configuration. The Hessian was given in the
following form

Mab
ij = (êai · êbj)(−Jij + µiδij) (4.88)

where {êai }a, a = 1, . . . ,m − 1, is a orthonormal basis of the space orthogonal to spin S⃗i. In this
form the Hessian is full rank, that is N × (m − 1) : this choice reduces the RAM requirement for the
Hessian. If the resulting spectrumwas strictly positive, we saved eigenvalues and the IPR of the related
eigenvectors. In some cases, we saved the full eigenvectors and higher order eigenvectors moments
(3.60).
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We chose external scales H in the paramagnetic phase ranging in H = Hc, . . . , 10Hc, and a fewsimulations in the spin glass phase, considering H = 0.87Hc and H = 0.5Hc. For each value of H ,
we measured system sizes N = 2k × 64, with k = 0, . . . , 5, with a number of samples per size such
thatN Ns ≥ 3× 106. We report in 4.2, 4.3 two detailed tables with the parameters of our simulations,
reporting also the average convergence time and energy density. Data reported are for the m = 3

system.
4.3.3 . The spectral density

The spectral density can be compute numerically by solving (4.83), written in terms of its real and
imaginary part. Defining the quantity x (λ) = G(0) − G(λ) − λ and calling its real and imaginary part
x′ and x′′ respectively, we rewrite equation (4.83) as

x′(λ) = G(0)− λ−
(
1− 1

m

)∫
dh Ph(h)

h+ x′

(h+ x′)2 + (x′′)2
(4.89)

1 =

(
1− 1

m

)∫
dh

Ph(h)

(h+ x′)2 + (x′′)2
(4.90)

In [SYM16], by studying the spectrum of metastable energy minima of Heisenberg spin glasses, the
authors claim that as the paramagnetic phase is entered a spectral gap appears. In this chapter we
shall revisit this result : indeed, also in the paramagnetic phase, the lower band edge of the spectrum
is λ = 0. In order to see this, consider (4.83) and set to zero the imaginary part of the Green function,
ImG(λ) ≡ −x′′. In the paramagnetic phaseH > Hc one can expand x′ close to λ = 0 one has

x′(λ) ≃ −λ− dG

dλ
(0)λ = −λ

Λ
Λ = 1−

(
1− 1

m

)〈
1

h2

〉
(4.91)

where Λ is the zero temperature limit of the Replicon eigenvalue of the RS saddle point of the replica
action, so Λ > 0 if H > Hc. Since in addition Ph(h) is gapless, the denominator of (4.83) close to
zero eigenvalue would be (h − λ/Λ) : if x′′ = 0, the integral is divergent. So, it is necessary that
|x′′| = πρ(λ) ̸= 0 for any positive λ if the equation defining the resolvent exists.

Equations (4.89) are closed in the variables x′ and x′′, so we can solve them numerically. In 4.3
we show some of the analytical curves we obtained for the spectral density and compare them with
eigenvalues histograms fromour numerical data for sizeN = 210 = 1024. Thanks to the self-averaging
property (3.17), we can compute the histogram by considering for fixed N,H the eigenvalues of the
different samples all together. We see from this figure a excellent agreement with the theoretical
prediction in a wide range of values of H . In addition, we show in the same panel histograms of the
cavity field norms for H in the paramagnetic phase and Hc. We estimated cavity fields through the
asymptotic cavity relation

hi = µi − χ0 (4.92)
As already discussed, the gap of the local fields norm µ is the zero T susceptibility only at N = ∞.
Then, it may happen in some simulations that with (4.92) the smallest estimated cavity fields are
negative. This effect is stronger the smaller the size. We observed µi < χ0 for reasonably large sizesonly very close to criticality, where χ0 is higher. Clearly (4.92) brings systematic finite size effects, that
will be analysed in section 4.3.5. Having said this, we observe anyway that histograms shapes agree
very well with the theoretical distribution (4.81).
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H/Hc N Ns OR tconv E/N Theory (N =∞)10.4 64 4× 104 0 5.425(2) −9.617(3) −9.6188410.4 128 2× 104 0 5.578(4) −9.626(3) ""10.4 256 104 0 5.758(6) −9.621(3) ""10.4 512 5× 103 0 5.92(1) −9.620(2) ""10.4 1024 2× 103 0 6.06(2) −9.627(4) ""10.4 2048 103 0 6.18(4) −9.621(2) ""5.0 64 4× 104 0 10.05(1) −4.712(3) −4.7185505.0 128 2.5× 104 0 11.09(2) −4.718(1) ""5.0 256 2.0× 104 0 11.83(2) −4.717(1) ""5.0 512 104 0 12.61(4) −4.717(1) ""5.0 1024 2× 103 0 13.46(7) −4.720(1) ""5.0 2048 103 0 14.5(1) −4.719(1) ""3.1 64 4× 104 1 7.21(1) −3.0110(5) −3.0165243.1 128 2.5× 104 1 8.44(4) −3.0124(2) ""3.1 256 2× 104 1 8.91(1) −3.0145(4) ""3.1 512 104 1 9.06(2) −3.0152(7) ""3.1 1024 2× 103 1 9.39(2) −3.0159(8) ""3.1 1500 1.2× 103 1 9.40(2) −3.016(1) ""2.08 64 4× 104 2 14.6(3) −2.1215(5) −2.1250312.08 128 2.5× 104 2 15.02(3) −2.1227(5) ""2.08 256 2.0× 104 2 15.81(2) −2.1240(3) ""2.08 512 104 2 16.40(2) −2.1240(4) ""2.08 1024 2× 103 2 16.82(4) −2.1246(5) ""2.08 2048 103 2 16.98(4) −2.1251(4) ""1.73 64 4× 104 2 19.2(3) −1.8466(4) −1.8426361.73 128 2× 104 2 19.6(2) −1.8446(6) ""1.73 256 104 2 20.1(4) −1.8442(2) ""1.73 512 5× 103 2 20.5(2) −1.8439(2) ""1.73 1024 103 3 20.98(6) −1.8436(6) ""1.73 2048 7.5× 102 2 18.9(3) −1.8431(5) ""1.47 64 4× 104 3 19.04(1) −1.6320(5) −1.6397131.47 128 2× 104 3 19.18(2) −1.6361(4) ""1.47 256 2× 104 3 19.9(1) −1.6380(5) ""1.47 512 104 3 23.3(2) −1.6391(3) ""1.47 1024 3× 103 3 26.0(3) −1.6397(3) ""1.47 1500 7× 102 3 28.0(5) −1.6390(6) ""
Table 4.2 – Table with the parameters of our simulations and average energies and conver-gence times.
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H/Hc N Ns O tconv E/N Theory (N =∞)1.30 64 4× 104 3 19.77(2) −1.5007(4) −1.5103711.30 128 2× 104 3 20.07(2) −1.5059(3) ""1.30 256 6× 103 3 25.8(2) −1.5079(4) ""1.30 512 6× 103 3 30.9(2) −1.5090(3) ""1.30 1024 3× 103 3 36.7(4) −1.5092(3) ""1.30 1500 7× 102 3 39.7(7) −1.5099(4) ""1.13 64 4× 104 3 18.1(4) −1.3810(2) −1.3873401.13 128 2× 104 3 21.4 −1.3825(1) ""1.13 256 104 3 26.2(1) −1.3840(3) ""1.13 512 3× 103 3 29.6(3) −1.3860(4) ""1.13 1024 1.5× 103 3 34.2(4) −1.3870(3) ""1.13 1500 7× 102 3 39.0(7) −1.3870(4) ""1.04 64 2× 104 3 21.1(7) −1.3211(4) −1.3287431.04 128 2× 104 3 24.4(5) −1.3225(3) ""1.04 256 104 3 28.3(2) −1.3249(3) ""1.04 512 5× 103 3 33.8(3) −1.3269(3) ""1.04 1024 1.5× 103 3 42.0(6) −1.3275(3) ""1.04 1500 7× 102 3 50(1) −1.3278(4) ""1.0 64 4× 104 5 52.1(5) −1.2932(4) −1.3029401.0 128 2.5× 104 5 56.04(7) −1.2957(2) ""1.0 256 2× 104 5 58.0(1) −1.2989(2) ""1.0 512 104 5 62.1(3) −1.3011(2) ""1.0 1024 2.5× 103 5 73.8(9) −1.3023(2) ""1.0 2048 1.5× 103 5 98(2) −1.3027(2) ""0.87 64 4× 104 5 54.3(2) −1.2054(2) X0.87 128 2.5× 104 5 57.52(7) −1.2086(2) ""0.87 256 2× 104 5 61.1(2) −1.2135(1) ""0.87 512 104 5 69.1(4) −1.2161(1) ""0.87 1024 2.5× 103 5 88(1) −1.2172(2) ""0.87 2048 1.5× 103 5 125(2) −1.2181(2) ""0.52 64 4× 104 10 95.2(1) −1.0121(2) X0.52 128 2.5× 104 10 103.93(5) −1.0166(1) ""0.52 256 2× 104 10 105.1(1) −1.0257(1) ""0.52 512 104 10 110.4(4) −1.0311(1) ""0.52 1024 1.5× 103 10 124(1) −1.0346(7) ""0.52 2048 5× 102 10 163(4) −1.0356(2) ""
Table 4.3 – Second table with the parameters of our simulations and average energies andconvergence times.
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Figure 4.3 – Top : The full spectrum ρ(λ) for N = 1024 and several H values. The inset is a zoom onthe lower edge. The pseudo-gap is clearly visible for largeH values. Approaching the critical point thepseudo-gap region shrinks and the curves progressively approach the critical density. Bottom : Thedistribution of cavity fields, estimated as h = µ− χ0.90



Expansions close to the edges

The asymptotic behavior of the spectral density in the vicinity of the band edges can be compute
from equations (4.83). In Appendix B we convey the full calculation. Here, we report the final. In the
paramagnetic phaseH > Hc

ρ(λ) ∼


1
ΛPh

(
λ
Λ

)
≃ λm−1

ΛmZm
λ→ 0+

Ph(λ) = λm−1

Zm
exp

(
− λ2

2(1/m+H2)

)
λ→∞

(4.93)

where againΛ is the Replicon eigenvalue. We write its explicit expression as a function of the distance
w = H −Hc > 0 to the critical field

Λ = 1−A = 1−
(
1− 1

m

)〈
1

h2

〉
=

(2Hc + w)w

(m− 1)H2
c + (2Hc + w)w

(4.94)
As expected frommeanfield theory,Λ ∝ w close to the critical point and thusχSG ∝ 1/Λ ∝ w−1. Close
to the band edges, the spectral density follows the distribution of cavity fields moduli, i.e. the non-
trivial part of the diagonal of the Hessian matrix. This suggests that edges eigenvalues are strongly
correlated to edges cavity fields. This statement has been rigorously proven recently in [LS16] : we will
come back to the consequences of this correlation later at the end of section 4.3.4.

Notice that while the second expansion in (4.93) is true for any H > 0, at the lower edge the ex-
pansion in (4.93) cannot hold at the critical point, where Λ = 0. The computation of the expansions
in Appendix B holds on the hypothesis |x′′| ≪ |x′| approaching the band edges. Whenever this hypo-
thesis is verified, the related spectrum possesses localised excitation states [PB20]. So, at the critical
point localised states disappear : in this situation, one has that the inequality reverses and |x′′| ≫ |x′|.
The spectral density at the critical point has the lower edge behavior (details in B)

ρ(λ) ∼


1
π

√
λ
J m > 3

√
Z3
π

√
λ

| log λ| m = 3

the square root behavior typical of the edges ofWignermatrices. We claim that this scaling, pre-factor
aside, holds as it is in thewhole spin glass phase. Indeed, the square-root behavior was observed deep
in the spin glass phase in [SYM16]. Moreover, in [BM82b] the scaling exponent of the autocorrelation is
found to be 1/2 for mean field vector spin glasses, for a low temperature spin glass with no external
field. In addition, in [BM81b] it is found that the typical energy minimum 8 for m ≥ 2 at T = 0 and
H = 0 has a cavity field distribution exhibiting an essential singular behavior close to the origin :

Ph(h) ∼ hm−1e−
m−1
h (4.95)

With this distribution in the asymptotic expressions in B, one still finds (4.95). What makes a crucial
difference is that Λ = 0, or equally, χSG =∞ for any H ≤ Hc : it is this result that implies the scaling

8. With typical we mean the level with the largest complexity.
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Figure 4.4 – Spectral densities in the spin glass phase.

(4.95) of the spectral density. As a check of these claims, in figure 4.4 we show numerical measures of
the spectral density forH = 0.5, 0.87Hc andN = 2048 spins. In the inset we zoom on the lower edge,
showing the square-root behavior.

Statistics of edge eigenvalues

In many situations one could be interested not only in determining the bulk distribution of a set
of iid random variables, but also the distribution of the smallest or the biggest elements of such a
set, which is a large deviation problem. It is known that there are three universality classes for the
distributions of extremes : Gumbel, Fréchet, Weibull, whose cumulative functions read (we consider
the case x > 0)

C(x) = e−e−
x−µ
ν Gumbel (4.96)

C(x) = e−x−α Fréchet (4.97)
C(x) = 1− e−(

x
ν )

α Weibull (4.98)
We are interested in Weibull distribution, since it is the distribution of the smallest eigenvalue. In
Appendix C we show that in the paramagnetic phase the smallest eigenvalue is distributed with a
Weibull distribution with shape parameter α = m and scale ν = (mZm)1/m Λ/N1/m in the infinite
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size limit
P(λ1|λ1 < λ2 < · · · < λ(m−1)N ) ∼ 1− exp

(
− Nλm1
mZmΛm

)
(4.99)

It is not hard to show that also the smallest cavity field is a Weibull variable, with
P(h1|h1 < h2 < · · · < h(m−1)N ) ∼ 1− exp

(
−Nh

m
1

mZm

)
(4.100)

Upon comparing these two last equations we see that
λ1

d
= Λh1 N →∞ (4.101)

where d
= stands for "equal in distribution". Eq. (4.101) expresses the correlation between the smallest

eigenvalue and the smallest cavity field. If one generalises these statements to the distribution of the
smallest k-th eigenvalue, with k = O(1) for N → ∞, one can see that it follows Weibull order statis-
tics : this statement has been proven rigorously in [LS16]. The lower edge eigenvalues, considered all
together, are a Poisson point process, the spatial distribution on the real line of uncorrelated random
variables. This implies tha the distribution of their spacings is exponential. Thus, in the paramagnetic
phase, the correlation between smallest eigenvalues and smallest cavity fields is so strong that repul-
sion between neighbors eigenvalues (see chapter 3) is overcome. For eigenvalues with rank k = O(1)

it holds asymptotically (notice that equation below could be guessed also from equation (4.93))
λk

d
= Λhk N →∞ (4.102)

We will come back to equation (4.102) later in the last subsection of 4.3.4, where we show the stronger
proposition that (4.102) is a full identity.

In figure 4.5 the empirical CDF of the smallest eigenvalue for some values ofH in the paramagnetic
phase and the same for the smallest cavity field. We scaled both the variables in the x-axis with the
empirical mean, rather than the asymptotic expectations values

⟨h1⟩W = (mZm)1/mΓ

(
1 +

1

m

)
⟨λ1⟩W = Λ⟨h1⟩W (4.103)

This choice seems to reduce finite size effects for the lowest values of the external field. Having speci-
fied that, it seems that plots in 4.5 seem to fully confirm the validity of Weibull statistics and of (4.101).
Computation of the pseudo-gap width

Let us estimate the interval 0 < λ < λ∗ such that (4.93) holds. In order to do this, we consider
(4.83) and rewrite it in the following form :

−λ− Λx =

(
1− 1

m

)
x2
∫
dh

P (h)

h2(h+ x)
. (4.104)

Ifm > 3, the integral appearing in the r.h.s. of (4.104) is convergent for x→ 0, in our region of interest
we can therefore estimate it simply as B = (1− 1/m)

∫
dhP (h)/h3. We obtain

λ = (1−A)x+Bx2 (4.105)
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Figure 4.5 – Cumulative distributions for the lowest eigenvalue and lowest cavity field, measured atdifferent ∆ values, follow nicely the theoretical prediction (N = ∞). We considered high values ofexternal field because of the strong finite size effects emerging at criticality, see section 4.3.5.
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with B = (1 − 1/m)
∫
dhP (h)/h3 and A defined in (4.94). We actually cannot remove x from the

integral for arbitrary small value of λ (see B) : close to the lower edge |x′′| ≪ |x′| and the integral in
(4.104) develops a divergence. Whenever |x′′| ≫ |x′|, we can correctly approximate the integral with
B to leading order in small λ.

The width of the pseudo-gap is the value of λ that cancels the discriminant of (4.105), namely
λ∗ =

Λ2

4B
(4.106)

In the m = 3 case, B is divergent : we estimate its singularity as in section B, obtaining B ∼ (1 −
1/m) log(1/Λ)/Z3, so that

λ∗ =
3Z3Λ

2

8| log Λ|
(4.107)

Close to the apparent lower edge, the spectral density can be written as
ρ(λ) ∼ λ∗

πΛ

√
λ

λ∗
− 1 λ

>∼ λ∗ (4.108)
In figure 4.6 we show for m = 3 the spectral density for several values of fields and N = 1024 in
log-scale, showing for some values ofH the position of λ∗.The scenario of the lower edge is as follows : in the paramagnetic phase, H > Hc, the spectraledge has a crossover from the Wigner form in (4.108) to the power law λm−1 in (4.93) at an eigenva-
lue proportional to the square of the Replicon eigenvalue. Therefore, the region of the psuedo-gap
shrinks as (H −Hc)

2 when the critical field is approached from above, as equation (4.94) suggests. At
the critical point and below it, the Replicon eigenvalue is identically zero and no pseudo-gap exists.
This crossover occurring a criticality is actually a random matrix delocalisation transition, as we are
going to show in next section, where we study the eigenmodes of our model.

4.3.4 . Eigenvectors
The study of eigenvector statistics give us important information on the localisation properties of

excitation modes. In the fully connected model object of this chapter, there is no spatial structure, so
the concept of localisation has to be interpreted in spin space : what are the sites where the eigenvec-
tors has maximal amplitudes? We learnt in chapter 3 that this information is enclosed in eigenvector
moments (3.60). Let us local consider eigenvector moments of Rosenzweig-Porter ensemble at fixed
diagonal disorder, equation (3.61), and the total moments : for our model, these can be written as

I(q)n,α(λ) =
Γ(1 + q)P (⊥)(n)αα
mN q|hn + x(λ)|2q

(4.109)
Iq(λ) =

1

m

∑
n,α

I(q)n,α(λ) =
(1− 1/m)Γ(1 + q)

mN q−1

∫
dh

Ph(h)

|h+ x(λ)|2q
(4.110)

where indexn is a site index andα a cartesian component. Thesemoments are not rotational invariant
in the space of spins : however, from a choice of basis to the other the only difference is a geometrical
pre-factor, whose computationwe show in Appendix D. The rotational invariant eigenvectormoments

Ĩq(λ) ≡
∑
n

|ψ⃗n(λ)|2q (4.111)
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Figure 4.6 – The log-log plot of the Hessian spectrum ρ(λ) form = 3 and N = 1024 clearly shows thecrossover in the behavior at the lower band edge : from λ2 at large fields to √λ at the critical field.The continuous lines are the analytical spectral densities computed in the large N limit. The dashedvertical lines mark the cross-over values λ∗ in the curves corresponding to H/Hc = 1.3, 1.7, 2.1. Theinset is a scaling plot with the dependence of the coefficient (4.93) (first equation) on the repliconeigenvalue made full explicit.
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differ from equations (4.110) of a constantm-dependent prefactor, as N goes to infinity.
Let us comment on equations (4.109), (4.110). The q = 1 moment is the normalisation condition

and reads
1 = (1− 1/m)

∫
dh

Ph(h)

|h+ x(λ)|2
(4.112)

which is no others than the second equation in (4.89), the imaginary part of (4.83). The q = 2moment
is the Inverse Participation Ratio (IPR)

I2(λ) =
(1− 1/m)

N

∫
dh

Ph(h)

|h+ x(λ)|4
=

i2(λ)

N
. (4.113)

The IPR measures how the normalisation of the eigenvector is distributed among its components.
Whenever the integral in (4.113) is finite, the IPR scales as the inverse of system size : in this situa-
tion, the normalisation is distributed equally among O(N) components and we call the eigenmode
delocalised. Higher-order q moments

Iq(λ) ≡
iq(λ)

N
(4.114)

give more and more grained information on localisation properties, since with increasing q eigen-
vector components are more and more suppressed in magnitude : for instance, moment I4 gives usinformation about the degree of localisationwithin the cluster of components identified by I2. Usually,in dense mean field systems localisation can only occur at the edges when i2(λ) → ∞ faster than N
as λ→ 0. The only exception is given by the ensemble of Levy Matrices 9 [CB94] : the spectra of these
matrices can have localised bands, similarly to many problems involving sparse random matrices.

What about fractional moments? The only interesting case is q < 1/2. Since for q < 1/2 the impor-
tance of componentswith small amplitudes is enhanced, thesemoments allow to probe the scattering
of normalisation in the bulk : they are particularly useful in systems defined on randomgraphs, as they
can highlight the presence of strong multi-fractal behaviors even within localised phases [Gar+20].
Edge modes in the paramagnetic phase

The eigenvector moments of our model are finite for any finite λ, being the integrals in iq(λ) welldefined in this situation. In the limits λ→ 0 and λ→∞, the definition (4.110), based on the assumption
1

|h+ x(λ)|
= O(1) N →∞ (4.115)

brings to absurdity whenH > Hc and thus Λ > 0. Indeed, we find the behaviors

iq(λ) ∼


Λ2q−1

(
λ
Λ

)−2(m−1)(q−1)
λ→ 0

Ph(λ)
−3(q−1) λ→∞

(4.116)

Since λ ∼ ΛN−1/m, we find Iq(λ) ∼ λ−(m−2)(q−1) close to the lower edge, whereas close to the upper
edge λ ∼ log(N) and Iq(λ) ∼ Ph(λ)

3(q−1). These predictions are non-sense for any q : for q > 1 they
9. It is an ensemble of randommatrices having entries with heavy tail statistics (like the Cauchy distribution).
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predict diverging moments at the edges, which is impossible because these moments are all upper
bounded by the normalisation, the q = 1moment∑

n,α

|ψn,α(λ)|2q <
∑
n,α

|ψn,α(λ)|2 = 1.

For q < 1 they are wrong as well, since they predict vanishing Iq(λ), but q < 1 moments are by
definition all greater than unity. Finally, for q = 1 we find that in the limits λ = 0 and λ =∞ limit the
normalisation condition is violated

I1(0) = (1− 1/m)

〈
1

h2

〉
= 1− Λ < 1 if Λ > 0 (4.117)

I1(λ) ∼
1

λ2
λ→∞ (4.118)

It is evident that hypothesis (4.115) must be revisited. We should choose a scaling of (4.115) in N for
which all expressions of eigenvector moments are consistent up to the edges. We need first of all to
fix equations (4.117), (4.118). Looking at (4.110), we understand that the only way to do that is to set

1

|h+ x(λ)|
= O(N1/2) (4.119)

as lower and upper edges are approached. This last condition implies the existence of a condensate,
a finite set of components that give a finite contribution to the normalisation of edge modes in the
thermodynamic limit. We expect bulk condition(4.115) to hold only for λ > λ∗, the crossover computed
in section 4.3.3 separating the pseudo-gap band from the bulk, and to interpolate from (4.115) to (4.119)
as λ < λ∗. With (4.119) normalisation is restored

I1(0) =
1

N

N∑
i=1

(1− 1/m)

h2i
= Ψ2

L + (1− Λ) =⇒ Ψ2
L = Λ (4.120)

I1(λ) = Ψ2
U + (1− 1/m)

∫
dh

Ph(h)

|h+ x(λ)|2
λ−→∞∼ Ψ2

U +O(λ−2) =⇒ Ψ2
U = 1 (4.121)

and higher order moments Iq(λ) ∝ Λq for λ going to zero. In the lower edge the condensate is the
Replicon eigenvalue itself : given that Λ < 1, the normalisation of the modes is split between the
condensate and the bulk. We refer to these as localised states. On the contrary, in the upper edge the
condensate yields all the normalisation. We call the related states fully localised. We show in 4.7 the
sample-averaged rescaled IPRs i2 ≡ NI2 with ranks k versus the related sample averaged eigenva-
lues, for a valueH = 1.7Hc and several sizes in the paramagnetic phase. This measure shows clearly
that approaching the edges the bulk prediction (4.110) fails.

The physical interpretation in our model of localisation is straightforward : if the random external
field is sufficiently strong, the vast majority of spins is locked by strong local fields, responding weakly
to small perturbations. Only on a finite number of sites the local field is sufficiently week so that spins
can be appreciably excited. Together with this, sites with the strongest fields, whose number again
is finite, are practically frozen. Upon lowering H , the number of soft spots in the system increases
until the condensate disappears. In 4.8 we show the sample averaged IPR of the smallest eigenvalue
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Figure 4.7 – Plot of the sample average of i(λ) versus the sample average of λ, forH = 1.0 ≃ 1.7∆c.
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Figure 4.8 – The IPR of the lowest eigenvector versus N−1 for several values of H . For H > Hc theIPR converges to a finite value, signalling a localization on sites with the smallest external field. At thecritical point a delocalization transition takes place, and the IPR decays to zero as N−2/3.
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versus the inverse of the size 1/N , for them = 3 case. It is evident that asH is lowered the IPR crosses
over from finite values to the critical scaling N−2/3, which we will discuss in next subsection.

Since Λ = 0 at the critical point H = Hc, we find the result anticipated at the end of section
4.3.3 : soft modes delocalise entering the SG phase, or conversely, soft modes exhibit a condensation
transition entering the paramagnetic phase. In fact, equations (4.120), (4.121) have the mathematical
form of a Bose-Einstein condensation, an ubiquitous phenomenon in Bosonic systems. However, in
order to fully comply with this analogy, the condensation should occur on a single component. We
will show that this is indeed the case soon. Before discussing this interesting matter, we first consider
equations (4.110) in the Λ = 0 case.
Edge modes at the critical point

Eigenvector moments are consistent up to the lower edge whenever Λ = 0, whereas modes at
the upper edge are always fully localised. Thus, let us focus on the non trivial case λ → 0. When the
system is critical, close to the lower edge rescaled eigenvector moments iq(λ) ≡ N q−1Iq(λ) behaveas

iq(λ) ∼


Γ(1 + q)(1− 1/m)C

(q)
1 ρ(λ)−2(q−m/2) ∼ λ−(q−m/2) q > m/2

C
(q)
1 = 1

Zm

∫∞
0

hm−1

(1+h2)q
dh

(4.122)

iq(λ) ∼


Γ(1 + q)(1− 1/m)C

(q)
2 ∼ const 1 < q < m/2

C
(q)
2 = 1

Zm

∫∞
0 hm−1−2qe

− h2

2(1/m+H2
c ) dh

(4.123)

iq(λ) ∼
Γ(1 + q)(1− 1/m)

Zm
| log ρ(λ)| ∼ | log λ| q = m/2 (4.124)

Moments with 1 < q < m/2 scale regularly as N q−1, whereas for q > m/2 a multi-fractal regime
appears (see equations (4.125), (4.126)). In order to make it manifest, we use the scaling of the spectral
density close to the lower edge : since ρ(λ) ∼ (1/π)

√
λ/J (let us ignore the log correction atm = 3)∫ λ

0
ρ(λ′)dλ′ =

1

N
=⇒ λN ∼

(
3

2

√
J

N

)2/3

and we can use this to get
Iq(λ) =

iq(λ)

N q−1
∝ N−(q−1)ρ(N−2/3)−2(q−m/2) ∝ N−(q−1)D(q) (4.125)

with a fractal dimension
D(q) =

1

3

q +m− 3

q − 1
(4.126)

for q > m/2. In particular, the IPR shows the behaviors

I2 ∝


N−2/3 m = 3
logN
N m = 4

1
N m > 4

(4.127)
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Figure 4.9 – The sample-averaged IPR versus the sample-averaged eigenvalue, at the critical point inthem = 3 case.

This implies that in the m = 3 case the dominant cluster grows to infinity but it is still subextensive
O(N2/3) (there is actually an irrelevant (logN)1/3 factor coming from the log previously ignored), whe-
reas for m > 3 the dominant cluster is extensive (modulo the log term for m = 4). In this last case,
multi-fractality emerges only when probing the hierarchy of normalisation weights within the domi-
nant cluster. Remarkably, multi-fractality is a signature feature of the extended states of Anderson
model in presence of non-zero disorder [De +14].

We expect this scenario to hold deep within the spin glass phase : nevertheless, one has to pay
attention to correctly evaluate the prefactors C(q) in eq. (4.122). One could compute them using the
distribution found by Bray and Moore in [BM81b] for typical energy minima in theH = 0 case

Ph(h) =
1

Zm
hm−1 exp

(
−(m− 1)∆2

0

h
− m(h−∆0)

2

2

)

where∆0 > 0 is an order parameter, and adapt it to theH > 0 case.
In 4.9 we show the sample averaged rescaled IPR at criticality, for several sizes in them = 3 case,

versus the respective sample averaged eigenvalue.We see that our numerical data at the critical point
agree perfectly with the bulk prediction (4.110).
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Condensation theorems

Let us come back to the condensation phenomenon. We found the following results, forH > Hc,
λ→ 0 and N →∞

λ
d
= Λh (4.128)

Ĩq(λ) = Λq. (4.129)
If one considers the non-rotational invariant moments, Iq , a factor (1 − 1/m) should be introduced.
Relations (4.128), (4.129) are actually stronger, as proven recently in [LS16]. Consider a random matrix
ensemble

M = W+ diag(v1, . . . , vN )

where W is a Wigner matrix and the {v}i are iid random variables drawn from a Pv(v) ∼ vα close
to v = 0, with α > 1. Suppose that the diagonal elements are in ascending order 10. Lee-Schnelli
condensation theorems say that, for N going to infinity, the following statements hold true for the
k = O(1) smallest eigenvalues :

• The order statistics of the smallest eigenvalues is the same as that of the smallest diagonal
elements, a Poisson order statistics. In particular, the distribution of the smallest eigenvalue is
a Weibull distribution.

• With high probability 11

N1/(1+α)|λk − (1− ⟨1/v2⟩v) vk| ≤
c1

N1/2−1/(1+α)
+
c2(logN)2

N1/(1+α)
(4.130)

which means that (4.128) is an exact identity, or stated in another way, the distribution of the
difference of the r.h.s. and l.h.s. of (4.128) tends to a delta function.

• With high probability
|ψk(λk)

2 − (1− ⟨1/v2⟩v)| ≤
d1

N1/2−1/(1+α)
+

d2

N1/(1+α)
(4.131)

whichmeans that the condensate set is given, formode k, by a single element, corresponding to
the site with the k-th smallest diagonal element. A single component of the eigenvector yields
a finite contribution to its normalisation. So, the delocalisation transition we discussed so far
is a genuine Bose-Einstein condensation for random matrices. A more general study of this
kind of problem has been recently carried out in [Ike23]. See [GB17 ; EM08] for condensation
phenomena in extreme value statistics related problem.

It is time to compare our numerical data with these theoretical predictions.
4.3.5 . Finite size effects

To fully characterise localised states in finite size system, we shall study finite size effects on
condensation relations (4.130), (4.131). In order to take into account the vector nature of our degrees
10. Notice that if the diagonal elements are in ascending order, also the eigenvalues are so.11. They establish conditions for likely events based on large deviations relations on the elements of theirmatrix. Details in [LS16].
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of freedom, the correct way to write these relations, showing explicitly Lee-Schnelli leading finite size
corrections, is as follows

N1/m|λai − Λhi| = O(max(c1N
−1/2+1/m, c2N

−2/m)) (4.132)
||ψ⃗i(λ

a
i )|2 − Λ| = O(max(c1N

−1/2+1/m, c2N
−2/m)) (4.133)

where a = 1, . . . ,m−1 and i = O(1) but in general i = 1, . . . , N . Eigenvalues are divided in multiplets
ofm− 1, which in the termodynamic limit form a degenerate space. This is an echo of the infinite H
limit : in this limit, the Hessian is given only by the diagonal part. Them− 1 degeneracy comes from
the fact that in (4.88) each diagonal element µi is repeatedm− 1 times.

The leading order of (4.132) can be deduced within our formalism. First, assuming |x′′| < |x′|, we
write (remember x(λ) = G(0)−G(λ)− λ)

|hi + x(λai )| = |hi + x′i,a|

√
1 +

x′′2i,a
(hi + x′i,a)

2
≃ |hi + x′i,a|+

1

2

x′′2i,a
|hi + x′i,a|

(4.134)
Then, remembering condition (4.119), we set |hi+xi,a| = ki,a N

−1/2 , with a > 0. Solving the quadratic
equation in |hi + x(λi)| in (4.134), we have the solutions

|hi + x′i,a| =
ki,aN

−1/2

2

[
1±

√
1− 2a2x′′2i,aN

]
We select the ’+’ solution because is the only one consistent with condensation condition. We have

|hi + x′i,a| = ki,aN
−1/2 −

a3N1/2x′′2i,a
2

.

Next, we expand x′i,a up to second order
x′i,a ≃ x′i,a(0) +

dx′i,a
dλi

∣∣∣
λ=0

λai +
1

2

d2x′i,a
dλ2i

∣∣∣
λ=0

(λai )
2 + . . . = −λ

a
i

Λ
+

1

2
∆2(λ

a
i )

2. (4.135)
Noticing that N1/2x′′2i,a = O(N−2+ 2

m
+ 1

2 ) ≪ N−1/2, we deduce that hi + xi > 0. Finally, we have after
writing (λai )2 at leading order in N

Λhi − λai = Λki,aN
−1/2 +

1

2
|∆2|Λ3(mZm)1/mN−2/m + . . . (4.136)

The coefficient∆2 is negative : it is equal tominus the second derivative of the real part ofG evaluated
in zero, which is a response function and so non-negative by definition. Its expression is

∆2 =

{
−3(1−1/m)

Λ3

〈
1
h3

〉
m > 3

− 2
Z3Λ3 log(1/λ) +O(1). m = 3

We could not yield a prediction of coefficient ki,a, since there are finite size corrections to G(0) (the
lower edge of the local fields) we cannot evaluate. We know that they scale as N−1/2 [LS16], but we
do not know their coefficient, so we absorb them into ki,a.
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The finite size effects we just estimated are valid for eigenvalues sufficiently small to ensure |x′′| ≪
|x′|. In our model this condition holds only for λ≪ λ∗, eqs. (4.106), (4.107). For λ ∼ λ∗ eigenvalues arein a crossover region and for λ > λ∗ they are effectively critical. We are able to estimate the scaling
in H − Hc of the crossover size N∗ such that, for N ≫ N∗, estimates (4.136) are correct. Indeed,
combining eqs. (4.106), (4.107) with λ ∼ Λ(mZm)1/mN−1/m, we get

N∗ ∼
BmmZm

Λm
∝ (H −Hc)

−m (4.137)
modulo a log correction in them = 3 case. Close to criticality, it is impossible in numerical simulations
to observe condensation.

In what follows, we will study finite size effects directly on our numerical data. We will consider
• Finite size effects on the local fields, quantifying the systematic error we make by using G(0)

instead of GN (0).
• Finite size effects on spectral quantity, to test (4.136) and the related prediction on the conden-
sate.

We considered only them = 3 case.
Finite size effects on the local fields

Cavity fields norms in our analysis have been evaluated from thenumerically evaluated local fields,
through the asymptotic relation

µi = hi + χ0 = |
∑
j

JijS⃗j + b⃗i + χ0S⃗i| (4.138)

where as usual χ0 the N =∞ is the zero temperature susceptibility :
χ0(H) = (1− 1/m)

√
2

π(1/m+H2)
(4.139)

An improvement would be to use
hi = µi −

∑
j

J2
ijχjj (4.140)

with
χii =

1

µi −GN (0)

GN (0) =
1

N

∑
i

1

µi −GN (0)

Finding a good initial condition for an iterative equation built on this last one is not easy. Indeed,
one can verify with euristic attempts that there is a chance already at the second step to develop a
destabilizing term : this happens anytime one of local fields verify µi − G

(2)
N (0) ≪ 1/N , which can

happen easily at intermediate range of sizes. In any case, the problem related to the usage of (4.138)
concerning for the finite size effects on the smallest elements is relevant only in an intermediate range
betweenH ∼ Hc andH ≫ Hc. Indeed, in the first case for the range of sizes we were able to simulate
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we are always in the critical region N ≪ N∗ : in this situation, even though the choice (4.138) gives asystematic error that adds up to finite size effects, the trend would be a critical λ ∼ N−2/3 decay. In
the second case χ0 ∝ H−1 is small and the probability µi < χ0 even at finite sizes is basically zero. Inthe casesH = 5 : 10Hc we never observed a sample where such a thing happened.

From estimates in [LS16], we expect finite size effects with the leading behavior
|G(0)−GN (0)| = O(N−1/2) (4.141)

In order to verify that, in figure 4.10 we show the smallest cavity field versus the size N , for several
values of the external field and for m = 3. At high values of H there is perfect agreement with the
expectation value from a Weibull distribution

⟨h1⟩W = (mZm)1/mΓ

(
1 +

1

m

)
N−1/m

but already at H = 2Hc we can detect significant deviations. In the inset, we show the quantity 1 −
⟨h⟩emp/⟨h⟩W . This quantity is a measure of the difference G(0)−GN (0) : calling h̃ = µ−GN (0) the
exact cavity field, we have

1− ⟨h⟩emp

⟨h⟩W
= 1− ⟨h̃⟩emp

⟨h⟩W
+
G(0)−GN (0)

⟨h⟩W
(4.142)

In order to complywith prediction (4.141), the last quantity on the r.h.s. should scale asN−1/2+1/m. This
is checked in the inset, where we show that the quantity just described scale as N−1/6, in agreement
with theoretical expectation. Notice that the first term in the r.h.s. of (4.142), which represents finite
size effects on the empirical mean of a Weibull variable, is smaller than O(N−1/2+1/m).
Measure of finite size effects of spectral quantities

Let us recap the finite size effects we expect for the smallest eigenvalues λai : for N ≫ N∗

λai ∼ Λhi (4.143)
Λhi − λai = max

(
Λki,aN

−1/2,
1

2
|∆2|Λ3(mZm)1/mN−2/m

)
.

For N ≪ N∗, λai ∼ N−2/3. In the crossover region N ∼ N∗ terms with different scaling in N are very
similar, so we expectΛhi−λai to feature amaximum for these sizes. Form = 3, the leading correction
is O(N−1/6), in them = 4 case the two corrections in the second of (4.143) are of the same order, for
m > 4 the correction O(N−2/m) is dominant.

In figure 4.11. we show a plot of the smallest eigenvalue versus the sizeN , comparing it to Weibull
prediction. While for high H there is very good agreement, approaching the critical field finite size
effects emerge in all their strength.

In figures 4.12, we show scatter plots of the smallest eigenvalue, rescaled with its empirical mean,
versus the smallest cavity field rescaled with its empirical mean. In the thermodynamic limit all points
should align along the bisector line.We see that at high field (top and central figure), whereN∗ is small,

106



Figure 4.10 – The size dependence of the smallest cavity field. In the inset we show the deviation fromthe asymptotic values, highlighting finite size effects.

the correlation between the two quantities is very strong, but already at H = 2Hc the correlation is
way weaker. All this is in perfect agreement with the considerations made so far.

To corroborate this assessment, in 4.13 we show a plot of Λ⟨h1/λ1⟩emp− 1 versusN−1/6. While at
H = 5.0, 10.0Hc our data are consistent with a curve decaying asN−1/6, in theH = 2.0Hc case we arefar from the asymptotic behavior. Naively, one could think that data are converging to a finite value.
It is actually the maximum of Λhi − λai that appears at N = O(N∗). To give further evidence to this
claim, in the plot below in the same figurewe show the difference between the asymptotic value of the
condensate and the measured squared larger component |ψk(λ

a
k)|2 for the first two eigenvalues. It ismore evident in these plots that theH = 2Hc curve is starting to fall down from a peak approximately

at N = 1024.
To conclude this section, we show how finite size effects impact degenerate m − 1 multiplets.

Our theory predicts |∆λabi | = O(max(N−1/2),max(N−2/m)), with a, b = 1, . . . ,m− 1. We see it easily
thanks to triangular inequalities

|Λhi − λai | − |Λhi − λbi | ≤ |λai − λbi | ≤ |Λhi − λai |+ |Λhi − λbi |.

In figure 4.14 we show our measures of the splittings of the two smallest duplets in the m = 3 case,
forH = 5Hc. For lower fields, we could not observe duplets : it is a feature of the asymptoticN ≫ N∗system. On the y-axis of the main plot, we show rescaled eigenvalues Nλai , in the inset the splitting
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Figure 4.11 – The size-scaling behavior of the sample-averaged smallest eigenvalue, for H/Hc =
10.4, 5.0, 2.1, 1.5, 1.0. Data in the paramagnetic phase are compared with Weibull prediction, data atthe critical point are fitted with N−2/3.

between adjacent eigenvalues. Our measures met theoretical predictions : splittings between eigen-
values of the same pair scale as N−1/2, those between different pairs as N−1/3. Our measures show
that within a pair the largest eigenvalue is closer to the asymptotic behavior. This results can be in-
terpreted more easily with the help of perturbation theory : the degenerate pair of eigenvalues is
split at finite sizes in two distinct eigenvalues, with spacing ∝ 1/

√
N , which is the magnitude of the

perturbation, coming from the interactionmatrix. More generally, one can consider the largeH limit :
since the replicon Λ → 1 for H → ∞, one can define δ = 1 − Λ and after proper rescaling consider
the interaction matrix a perturbation proportional to√δ/N . Then, by defining the rescaled matrices
(we use the notation of eq. (4.78) for the Hessian, the interaction matrix and the diagonal matrix)
M̃ =

√
δM, Ṽ =

√
δV, W̃ =

√
NW, one can rewrite the Hessian as

M̃ =

√
δ

N
W̃+ Ṽ. (4.144)

The perturbative expansion of the smallest eigenvalues pair up to second order formally reads

λ̃±1 = h̃1 + δ G̃(0)± 2

√
δ

N
+

2δ

3N

N∑
j=1

1

h̃1 − h̃j
+O

(
δ3/2

N3/2

)
(4.145)
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Figure 4.12 – Scatter plots of the smallest eigenvalue versus the smallest cavity field for all sizes si-mulated, normalised with their empirical averages. The top figure isH = 10.4Hc, the central figure is
H = 5Hc and the bottom one isH = 2.1Hc.
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The leading perturbative order is given by the splitting of the degenerate pair triggered by the per-
turbation. As to next order, we can divide the summation in two parts : the sum over j > 2 and the
term with j = 2. We thus have

2δ

3N

N∑
j=1

1

h̃1 − h̃j
≃ − 2δ

3N

1

h̃2 − h̃1
− 2δ

3N

∑
j≥3

1

h̃j − h̃1

≃ − 2δ

3N

1

h̃2 − h̃1
− 2δ

3

〈
1

h̃

〉
− 2δ

3
hi

〈
1

h̃2

〉
= − 2δ

3N

1

h̃2 − h̃1
− δ G(0)− δ h̃i

so that we can rewrite (4.145) as
λ̃±1 ≃ Λh̃1 ± 2

√
δ

N
− 2δ

3N

1

h̃2 − h̃1
+O

(
δ3/2

N3/2

)
(4.146)

For N going to infinity, the average of the coefficient of the O(δ/N) term is divergent : indeed, the
pdf of the differences of two iid random variables is finite in zero, so the average value of 1/∆h is
infinite. However, if one considers finiteN sequences, one finds that the average value of the splitting
∆h scale as N1/2. We show this in figure 4.15, where the averages of 1/(h2 − h1) for five distinct
runs of Ns = 104 samples are computed for growing N . We considered sequences of N iid random
variables hi sampled by a Chi distribution with two degrees of freedom (the pdf of the cavity fields in
the thermodynamic limit).

We conclude that the separations between eigenvalues in each pairs observed in figure 4.14 are
the results of two contributions : the first comes from the splitting of degenerated eigenvalues in
perturbation theory, the second from the divergence of the quantities 1/∆h. Physically, these are
related to the finite size effects of the unperturbed resolvent function

G
(0)
N (z) =

2

3N

N∑
k=1

1

hk − z

In fact, by setting z = h1 + iϵ and ϵ = O(N−1/2), we get
G

(0)
N (h1 + iϵ) =

2i

3Nϵ
+

2

3N(h2 − h1)
+G(0)(hk + iϵ) = G(0)(hk + iϵ) +O(N−1/2).

4.4 . Conclusions

In this chapter we studied a fully connected model of vector spin glasses. We began with a replica
computation of the free energy of the model, discussing both the RS and RSB phase, and then we
focused on the low temperature phase, studying the problem of the linear excitations of energy mi-
nima. We showed that this mean field model features localised modes at the lower edge, a feature
observed in real glasses. This result is at variance with what is often a common belief, that mean field
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models with Hessian represented by dense matrix ensembles cannot have localised modes. In ad-
dition to that, we showed that the spin glass transition, by the point of view of linear excitations, is
a delocalisation transition. We believe that these results enrich the picture of the zero temperature
spin glass phase transition.
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Figure 4.13 – Plots of the relative differences between empirical and asymptotic average quantities :the relation ⟨ΛH1/λ1⟩−1 (top) and the largest component of the smallest eigenvectors ϵ−⟨|ψ⃗1(λ1)|2⟩and Λ− ⟨|ψ⃗1(λ2)|2⟩ (bottom). We plot these differences as a function of N−1/6 which is the expectedleading finite size correction. All data are compatible with a zero value in the large N limit, but finitesize effects become very severe asH is lowered, showing a non-monotonic dependence of the curveswith respect to the size N . Dashed lines are quadratic interpolations to the data.
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Figure 4.14 – The sample means of the four smallest rescaled eigenvalues N1/3λi converge to aconstant in the large N limit, as they should. The differences within a pair scale as N−1/2, while dif-ferences between pairs scale as N−1/3 (see the inset), so each pair converges to a unique value with
N−1/6 corrections (hence the horizontal scale).
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Figure 4.15 – The divergence with size of the 1/(h1−h2) term appearing in the perturbative approachgiven by eq. (4.146).
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5 - The fully connected vector p-spin

In previous chapter we studied the spin glass transition at T = 0 of a generalisation of the ori-
ginal SK model to vector spins with random external fields. In the RS phase, where linear response
theory is exact, energy minima possess localised excitations down to λ = 0, with the spectral density
featuring a pseudo-gap ρ(λ) ∼ λm−1. At the onset of the transition, the number of soft excitations
grows rapidly as ρ(λ) ∼ √λ and excitations delocalise. This randommatrix transition is connected to
the onset of marginal stability, i. e. full replica symmetri breaking. It is natural to consider as a natural
continuation of our work in the previous chapter a p-spinmodel with vector spins. Thesemodels have
been extensively studied in the annhealed and quenched case in [TF92 ; TF93] : the authors however
focused on them→∞ limit.

As discussed in Chapter 2, p-spin models are toy models of the glass transition, according to the
1RSB-RFOT scheme.While in Ising p-spinmodels the low-temperature phase is fRSB [Gar85], spherical
p-spin models feature at zero temperature an energy band with stable minima, i.e., inside each basin
linear response theory is satisfied [CS92]. Actually, the minima of spherical p-spin model are ultra-
stable : the spectrum is gapped in the whole stable band, becoming gapless only at the threshold
level. As to vector p-spin models, the results from our previous work hint the existence of a stable
band of energy minima with gapless spectra. This is what we will show in this chapter, which shall be
thought of as an application of our results in Chapter four to mean-field models of structural glasses.

The chapter is organised as follows : in Section 5.1 we introduce the model, discussing its general
features. In Section 5.2, we briefly discuss the dynamical phase, computing the complexity through
the Monasson method and the Replicon eigenvalue from the Hessian of the replicated free-energy.
In section 5.3 we perform the T = 0 limit and study eigenvalue spectra as functions of the energy
level of the 1RSB landscape. We show how our results of Chapter 4 extend to these minima. Finally,
in section 5.4 we show the most interesting result of this chapter : the existence of rare ultra-stable
energy minima among the exponentially many gapless ones. These minima are interpreted as mean-
field equivalent of ultra-stable glasses [Rod+22].

The content of this chapter is based on our work [FNR22].

5.1 . The model

The model is defined by the following p-spin Hamiltonian
H[S] = −

∞∑
p=3

ap
∑
i,α

J
α1,...,αp

i1,...,ip
Sα1
i1
· · ·Sαp

ip
(5.1)

where in the second summation i = (i1, . . . , ip) is a disposition of the p indices without repetitions,
i1 ̸= i2 ̸= . . . ip−1 ̸= ip, whence α = {α1 . . . αp}. The couplings Jα1,...,αp

i1,...,ip
are Gaussian variables sym-

metric over all the indexes but otherwise independent, with zero mean and variance (J
α1,...,αp

i1,...,ip
)2 =

p!
2N

−(p−1). Themodel generalizes tom-components spins themixed p-spinmodel usually considered
for Ising or spherical variables. It differs from the model considered by Panchenko in [Pan18] by the
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fact that here all the spin components interact with each others, while in that model only components
with the same label interact. This is a minor difference that does not affect physics, and it is only for
notational simplicity that we choose the present version.

The model defined in (5.1) represents a mixed p-spin model, where contributions with different
interactions are weighted by ap. Note that one must have∑p a

2
p < ∞. As we learnt in section 4.1 of

Chapter 4, the Hamiltonian of spin glass models is a Gaussian function with covariance
H[S]H[S′] = Ng(q(S,S′)) (5.2)

where q(S,S′) is the overlap

q(S,S′) =
1

N

N∑
i=1

Si · S′
i (5.3)

and the function g is
g(q) =

1

2

∑
p

a2pq
p. (5.4)

Notice that here, because the couplings are nonisotropic 1, the natural definition of the overlap (5.3)
returns a value in the interval [0, 1] for any m. This different definition will result in a minor change
from (1− 1/m) factors to (m− 1) ones in all equations related to transverse excitations. In this paper
we concentrate on the cases m > 2 and the pure monomial case where a single ap with p > 2 does
not vanish.

5.2 . The dynamical phase

The dynamical phase can be unveiled by replica method exploiting the smart Monasson method
[Mon95] described in chapter 2. The complexity of meta-stable states is the Legendre transform of
minus the Monasson potential, evaluated at the largest q = q∗ among those extremising it :

Φ(n, β, q) =
1

nN
log

∫
dS exp

(
−β

n∑
a=1

H[Sa]

)∏
a,b

δ(Sa · Sb −Nq) (5.5)

Σ(f, β) = βnf +Φ(n, β, q∗) f = − 1

β

∂Φ

∂n

∣∣∣∣
q=q∗

(5.6)
The complexity of equilibrium states is achieved at n = 1, while n ̸= 1 allows for the exploration
of different families of metastable states at a certain temperature T . The equilibrium free energy is
obtained at n = 1 by evaluating the Monasson potential at the trivial q = 0 solution

feq(β) = − 1

β

∂Φ

∂n

∣∣∣∣
n=1,q=0

(5.7)
1. However, since they have zero mean and an isotropic covariance matrix, the physical solution is isotropic
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and is equal to the paramagnetic free energy fpara = g(1)
2 + logSm(1). As usual, the dynamical phase

is defined as the interval [TK , Td] such that Σeq(T ) > 0 and the replicon Λ > 0. The complexity of
the equilibrium states vanishes at the glass transition, identified by the Kautzmann temperature TK ,whereas the Replicon eigenvalue vanishes at the dynamical transition, identified by Td.

5.2.1 . The complexity
In our model, the Monasson potential reads (computation in Appendix E)

Φ(n, β, q) =
nβ2

2

{
g(1) + (n− 1)[g(q)− qg′(q)]− g′(q)

}
+ log

(∫ ∞

0

dh

Z
(0)
m

hm−1e
− h2

2g′(q)Km(βh)n

)
, (5.8)

Km(u) = (2π)m/2
Im−2

2
(u)

u
m−2

2

Z(0)
m =

∫ ∞

0
dh hm−1e

− h2

2g′(q) ,

The equation for the overlap is obtained by extremising (5.8) with respect to q, and is equal to

q =

∫∞
0 dh hm−1 exp

[
− h2

2g′(q)

]
Km(βh)ngm(βh)2∫∞

0 dh hm−1 exp
[
− h2

2g′(q)

]
Km(βh)n

. (5.9)

gm(x) =
d logKm

dx
(5.10)

Notice that from this last equation we read the distribution of cavity fields as a function of n and β

Ph(h;n, β) =
hm−1 exp

[
− h2

2g′(q)

]
Km(βh)n∫∞

0 dh hm−1 exp
[
− h2

2g′(q)

]
Km(βh)n

(5.11)

where q = q∗ to have a nontrivial result. Eq. (5.11) prescribes the statistics of cavity fields for differentfamilies of meta-stable states. The Complexity reads
Σ(n, β) = −n

2β2

2
[g(q)− qg′(q)] + log ζ − n⟨ log Y (βh) ⟩n (5.12)

ζ =

∫ ∞

0

dh

Z
(0)
m

hm−1e
− h2

2g′(q)Km(βh)n (5.13)
where ⟨·⟩n is an average over (5.11) and q = q∗. In figure 5.1, we show the equilibrium Complexity in the
dynamical phase, for the pure p-spin models with p = 3, 4, 5 andm = 4 components. We see that the
maximum complexity increases with p, as expected since the number of ways to obtain a stationary
configuration grows when the coupling involves increasingly larger groups of spins.

5.2.2 . The Replicon
The stability of TAP states within the dynamical phase can be studied by means of the Replicon

eigenvalue of the Hessian of the Replicated Action related to (5.1). The elements of its Hessian read
D(ab)(cd) = −β

2g′′(Qab)

2
[δ(ab)(cd) − g′′(Qcd)(⟨S⃗a · S⃗b S⃗c · S⃗d⟩ − ⟨S⃗a · S⃗b⟩⟨S⃗c · S⃗d⟩)].
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Figure 5.1 – Left : Equilibrium complexity in the dynamical phase, for p = 3, 4, 5. The complexity isnon zero only in the interval [TK , Td]. The maximal complexity at T = Td is Σd = 0.0627787 (p = 3),
Σd = 0.220444 (p = 4), and Σd = 0.396359 (p = 5).

To study the stability of the dynamical phase, we have to evaluate the Hessian on 1RSB saddle points
with Qab = q on the block diagonals and Qab = 0 otherwise ; in order to study the stability of equili-
brium states in the dynamical phase, the dimension x of the diagonal blocks must be sent to 1. The
resulting Replicon eigenvalue is equal to

Λ(β) = 1− β2g′′(q)

[
(m− 1)

〈
g2m(βh)

(βh)2

〉
+
〈
(g′m(βh))2

〉]∣∣∣∣
q=q∗

(5.14)
where as usual gm(x) = d logKm(x)/dx. We plot the Replicon eigenvalue in Figure 5.2, form = 4 and
p = 3, 4, 5. The Replicon eigenvalue has a square-root singularity close to the dynamical temperature.

5.3 . Stable glasses

In 1RSB-RFOTmean-field models with continuous variables the energy landscape usually features
a low-lying band dominated by stable gappedminima and a high-energy band dominated bymarginal
gapless minima. In the pure p-spin spherical model, the marginal band corresponds to a single level
E = Emg , with saddles dominating the landscape for larger energies [Ros20]. In the spherical mixed
p-spin model, there is a wide band of marginal energy minima in an energy interval centred around
the threshold energy. In this model, the T = 0 relaxation dynamics in the marginal phase is richer in
comparison to that of the pure p-sin model, featuring both memoryless and memorious relaxations
according to the temperature at which the system has been prepared before the quench to zero
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Figure 5.2 – The replicon eigenvalue Λ for the pure models with m = 4 and p = 3 (blue), p = 4 (red)and p = 5 (green). The replicon eigenvalue vanishes at Td as (Td − T )1/2.

temperature [Fol20].
In this model we focus on the stable band of the energy landscape : at variance with spherical

models, we show that the energy minima of our vector model represent mean field gapless stable
glasses,meaning that within these basins linear response theory holds but at the same time excitation
modes related to arbitrary small energies exist.

Zero temperature limit of Monasson Potential

To take the zero temperature limit, as usual, we fix y = n/T forn→ 0 andT → 0. This corresponds
to fixing the slope of the Complexity of meta-stable states :

dΣ

df
=

n(f)

T
= y (5.15)

which allows to have the Legendre relation between Σ and Φ0 weel defined in the T = 0 limit. This
condition is satisfied for all equilibrium states that can be followed down to T = 0, that is, those
equilibrated in TK < T < TSF .The Monasson potential (2.13), evaluated at q = q∗, in the T = 0 limit becomes

Φ0(y) =
1

2
y2
[
g(1)− g′(1)

]
+ log

∫∞
0 dhhm−1 exp

(
− h2

2g′(1) + yh
)

∫∞
0 dhhm−1 exp

(
− h2

2g′(1)

)
 (5.16)
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Figure 5.3 – The complexity of the energy minima for the pure models with m = 4 and p = 3 (blue),
p = 4 (red) and p = 5 (green). Themaximum complexity isΣmax = 0.0760961 (p = 3),Σmax = 0.236176(p = 4) and Σmax = 0.409372 (p = 5). The number of stable minima is considerably larger that thenumber of states at Td

and the Complexity of energy minima is evaluated through a Legendre transform of minus (5.16) :
Σ(E) = y(E)E +Φ0(y(E)) E(y) = −∂Φ0

∂y
(5.17)

The figure in 5.3 is the Complexity of pure p-spins with p = 3, 4, 5. The complexity grows from the
ground state E = Egs, where it is zero, until the level E = Emg where marginal minima become
dominant. The computation of the dominant branch of the Complexity in this regime requires RSB
[MR03 ; Riz13]. The complexity atE = Emg is larger than that of the states at T = Td, consistently withthe impossibility of following these states down to zero temperature.

The Replicon eigenvalue in the T = 0 limit assumes the simpler form
Λ = 1− (m− 1)g′′(1)

〈
1

h2

〉
(5.18)

where the distribution of cavity field reads
P (h; y) =

hm−1

Z0(y)
exp

(
− h2

2f ′(1)
+ yh

)
(5.19)

Z(0)(y) =

∫ ∞

0
dhhm−1 e

− h2

2f ′(1)+yh
. (5.20)
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Figure 5.4 – The replicon eigenvalue in the energy minima for the pure models withm = 4 and p = 3(blue), p = 4 (red) and p = 5 (green). Notice that here the replicon eigenvalue vanishes as Emg − E,although the slope is very large : we have |Λ′(Emg)| ≃ 23, 82, 212 respectively for p = 3, 4, 5

The value of y corresponding to E = Egs returns the Parisi distribution P0(1/m, h) inside the groundstates, whereas trivially P0(0, h) = δ(⃗h)/(2π)m/2. The parameter y when manipulated in the interval
[ymg, ygs] corresponding to [Egs, Emg] allows one to explore the statistics of different energy minima
of the 1RSB part of the landscape, where E(y) is a decreasing function of y. The energy level at which
marginal states become dominant is evaluated from the nullity condition of the Replicon eigenvalue :

1 = (m− 1)g′′(1)

〈
1

h2

〉∣∣∣∣
y=ymg

(5.21)
We show the Replicon eigenvalue as a function of the energy E in figure 5.4 The Replicon eigenvalue
is linear at the left of E = Emg , at variance with the square root behavior found for the Replicon
eigenvalue close to T = Td.ForE > Emg , the RSB theory is required to describe the distribution of cavity fields and thus studythe stability. In the stable phase, we see that Ph(h) ∝ hm−1 in the pseudo-gap for any level E. The
dependence on the specific level in the pseudo-gap is all enclosed in the prefactor 1/Z0(y). A weakerdependence is found at the tail of the distribution, where the linear term in the exponential in (5.19)
modulates the decay of the distribution. It is enough to show that the Hessian of Hamiltonian (5.1) is
of the Rosenzweig-Porter ensemble as (1.89) to conclude that our results found in chapter 4 extend
to the excitations of the stable glasses of this model.

5.3.1 . Excitation spectra of stable energy minima
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The Hessian of the Hamiltonian (5.1) with spins constrained to have unit norm is given by
Mij = P(⊥)

i (∂∂Hij + µiδijI)P
(⊥)
j (5.22)

∂∂Hαβ
ij ≡

∂2H

∂Sα
i ∂S

β
j

(5.23)

µ⃗i = −∂H
∂S⃗i

µi = hi + g′′(1)χ χ = (m− 1)

〈
1

h

〉
(5.24)

The off-diagonal part, containing interaction, now depends explicitly on the configuration : this depen-
dence, however, has no effect. Indeed, the matrix ∂∂H in p-spin models is a Wigner matrix [CGP98 ;
AAC13]. To prove this, we have to evaluate the covariance functions

Wαβγδ
ijkl (S,S′) =

∂2H

∂Sα
i ∂S

β
j

∂2H

∂S′γ
k∂S

′δ
l

(5.25)

Clearly, the average value of each entry of ∂∂H is zero since it is a linear function of the couplings.
With some effort, one finds the following covariance functions for the first and second derivatives of
the Hamiltonian :

∂Hα
i ∂H

β
j = δijδαβg

′(q) (5.26)
∂∂Hαβ

ij ∂∂H
γδ
kl = δ(ij)(kl)δ(αβ)(γδ)

g′′(q)

N
(5.27)

Therefore, given that the entries of the interactionmatrix have zeromean and finite varianceO(1/N),
forN →∞ the off-diagonal matrix is a Wigner matrix with semi-circular spectrum. Thus, the Hessian
of the vector p-spin Hamiltonian is a Rosenzweig-Portermatrix. In the stable phase, since we know the
statistics of the strengths of the local fields µi, we are able to analytically solve the spectrum, following
the samemethods as in Chapter 4. We compute the spectral density as usual from the solution of the
self-consistent equation for the resolvent, written in its real and imaginary part

ReG(λ) = (m− 1)

〈
h+ Rex(λ)

(h+ Rex(λ))2 + Imx(λ)2

〉
(5.28)

1 = g′′(1)(m− 1)

〈
1

(h+ Rex(λ))2 + Imx(λ)2

〉
(5.29)

with x(λ) = g′′(1)[G(0)− G(λ)]− λ and ρ(λ) = π
g′′(1)(m−1) |Imx|. The only difference is that the distri-

bution of cavity fields is controlled not by an external control parameter (the external field) but by an
internal one (the energy level we consider).

5.3.2 . Localised soft excitations in the whole stable phase
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Using the results of Chapter 4, we can straightforwardly write the behaviour of the spectral density
close to the lower edge

ρ(λ) ≃


A(E)λm−1 λ≪ λ∗

√
λ− λ∗(E) λ ∼ λ∗

λ∗(E) ∼ Λ2 ∝ (Emg − E)2

The spectral density behaves as a power law in the pseudo-gap λ ≪ λ∗. At the marginal energy
level E = Emg the spectral density changes behavior to a Wigner law, and the Hessian undergoes a
delocalisation transition. In figures 5.5 we show the spectral densities of them = 4 and p = 3 system
corresponding to values of y in ymg ≤ y ≤ ygs (top), the coefficient of the spectral density for m = 4

and p = 3, 4, 5 (center) and the rescaled IPR i(λ) = NI2(λ) (from eq. (3.60)) form = 4, p = 3 and y in
ymg ≤ y ≤ ygs (bottom). The curves shown are theoretical curves obtained by numerically solving the
resolvent equations (5.30). Note that the theoretical curves of i(λ) report the bulk prediction (4.113) :
for any N , at sufficiently low λ ≪ λ∗ localisation effects take place. We remark that the spectral
density and the IPRs seem to be independent of y in the bulk. This property is probably related to the
fact that the variance of the Ph(h) has a weak dependence on y in the physical interval [ymg, ygs]. Thedependence on the energy level is mostly in the lower edge, through the pre-factor

A(E) =
1

Z(0)(E)Λm(E)
(5.30)

where Z(0)(E) is the normalisation of the cavity pdf in (5.11), written as a function of E. In the central
figure of 5.5, we show the dependence ofA on the energy for p = 3, 4, 5 andm = 4. The prefactor is an
increasing function of the energy, implying that low-lyingminima in the landscape aremore stable and
with modes in the pseudo-gap increasingly localised. This property has been observed in numerical
simulations of three-dimensional computer glasses : better optimised samples, corresponding to low
energy minima of the landscape, are depleted of soft excitations, in corrispondence of a lower value
of the prefactor [Ji+20 ; Ji+21].

5.4 . Ultra-stable glasses

Ultra-stable glasses are non-crystalline materials which have enhanced thermal and mechanical
stability properties [Swa+07 ; Kea+07 ; Pér+14 ; Yu+15 ; Lut+18 ; Rod+22], with respect to ordinary glasses
obtained by annhilation from the super-cooled liquid state. An ultra-stable glass is usually prepared
through a physical vapour deposition process : inside a vacuum chamber, the original system is depo-
sited at the gaseous state over a thin film of a different material, which is in contact with a substrate
material that acts as thermal bath. Discovered in 2007 by Swallen et al. [Swa+07 ; Kea+07], the study of
these materials has more recently led to successful numerical studies [SED13 ; FB17 ; Kap+19 ; POB20],
confirming the hypothesis that these glasses correspond to deep minima of the potential energy
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Figure 5.5 – Top : The spectrum of the Hessian in log-log scale for m = 4 and p = 3. The curves for
y < ymg cross-over from a λ3 behavior to a √λ behavior at λ∗ marked by coloured vertical dashedlines. In the bulk of the spectrum, the spectral density does not depend on y.
Center : The prefactor A4 of stable glassy minima is smaller for better optimized glasses. The depen-dence on the energy levelE is very strong for high values of p : even far fromEmg this quantity variesby several order of magnitudes.
Bottom : The scaled bulk inverse participation ratio i(λ) as a function of λ for m = 4 and p = 3 ona log-log scale. Notice the different behavior between the stable minima and the marginal one. Thecurve at ymg diverges logarithmically, while the other curves behave as λ−6 for λ→ 0.
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landscape. In particular, numerical glassy minima obtained through a generalisation of Swap Monte-
Carlo techniques [Ber+16 ; NBC17] in [Kap+19] show that the DoS of ultra-stable glasses features a gap,
whose amplitude is the greater the more polydisperse the glass former.

In this section, we provide mean-field representatives of ultra-stable glasses. We consider energy
minima with holed cavity field distributions : we introduce a cavity gap h0

µi = hi + g′′(1)χ+ h0. (5.31)
This quantity enhances the stability of the system : indeed, as we learnt so far, in stable phases low
energy excitations are driven by the statistics of small local fields, therefore a cavity gap induces a
gap in the spectrum of linear excitations. Last but not least, the linear response of the system in
these states will necessarily be smaller than that of gapless minima. As we will show in next section,
ourmodel features a non-zero complexity of ultra-stableminima, which however is always lower than
that of gapless minima.

5.4.1 . Complexity of energy minima
In order to confirm these predictions, we have to compute the complexity of energy minima sa-

tisfying the constraint (5.31). We do this using the Kac-Rice formula [BLL22], a standard technique for
complexity calculation, used for the first time in the context of spin glasses in [BM80]. We define

Φ0(y, h0) = log

∫
hi>h0

dSdµ e−yH
∏
i,α

δ (∂Hα
i − µiSα

i ) |det (∂∂H− diag(µ))| (5.32)
This ’free energy’ is computed through a partition function that weights the stationary points of the
Hamiltonian with the parameter y : the ground state is given by ’low temperatures’ y → y−gs, whencemarginal states are approached in the opposite limit y → y+mg. The delta functions enforce the confi-gurations and the local field to satisfy the stationary configuration condition ∂Hα

i = µiS
α
i , the mo-

dulus of the Hessian determinant is the usual Jacobi volume factor that accompanies the constraint.
While this formula is generally valid, we added an additional constraint on the integration, hi > h0for any i = 1, . . . , N , in order to unveil the presence of ultra-stable minima. The use of the annhealed
approximation is justified by the 1RSB form of the energy landscape.

In order to compute a complexity of energy minima, we shall consider solutions with a strictly
positive determinant of the Hessian. If we remove the modulus from (5.32), we can straightforwardly
carry on the computation, following the steps of Bray and Moore [BM80]. The computation with the
signed determinant, however, is equivalent to computing the number of solutions weightedwith their
Morse index 2, including also saddles in the calculations. Luckily, previous results on p-spin models
ensure us that there are no saddles in the stable band, so we can steadily proceed with the com-
putation. We commence with the determinant : by exploiting self-averageness, we can evaluate its
disorder average separately, writing

|det (∂∂H− diag(µ))| = det (−∂∂H+ diag(µ))
=

{∫
dX

(2π)
N (m−1)

2

exp
[
−1

2X
T · (−∂∂H+ diag(µ))X]}−2

.

2. The number of negative directions of the eigenspace : stationary points with an even number of thesefeature a positive determinant, the others negative.
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where we introduced the gaussian representation of the determinant. By averaging over the cou-
plings, performing a Hubbard-Stratonovich transformation and subsequently applying the saddle
point method, we end up with

|det (∂∂H− diag(µ))| = e
Ng′′(1)w2

2

∏
i

[µi − g′′(1)w]m−1 (5.33)

where w is given by the solution of the saddle point equation

w =
1

N

N∑
i=1

(m− 1)

µi − g′′(1)w
(5.34)

Notice that by setting µi = hi + g′′(1)w, this last equation can be rewritten for N →∞ as
w = (m− 1)

∫ ∞

h0

dh
Ph0(h)

h
, (5.35)

so that w is just a ’cut’ version of the h0 = 0 susceptibility. To distinguish it from this quantity, from
now on we will write (5.35) w ≡ χh0 , introducing the cut susceptibility.The disorder average over the delta function times the ’Boltzmann weight’ in (5.32) is performed
following standard paths

∫
dS e−yH

∏
k,α δ(∂H

α
k + µk Sk) =∫

dSdŜ exp−i
∑N

k=1 µk S⃗k ·
⃗̂
Sk

×exp
[
−
(
i
∑

k,α Ŝ
α
k

∂
∂Sα

k
+ y
)
H
]

where the Ŝ are Lagrange multipliers introduced by the Fourier Representation of the delta function.
After the average over the disorder and one Hubbard-Stratonovich transformation this last expres-
sion becomes [

1

Γ(m/2)g′(1)m/2

]N
exp

[
1

2
Ny2g(1)−N g′′(1)u2

2
(5.36)

−
∑
i

1

2g′(1)
[yg′(1) + g′′(1)u− µi]2

]

with u given by the saddle point equation

u =
1

g′(1)N

N∑
i=1

[µi − yg′(1)− g′′(1)u] =⇒ u =
µ− g′(1)y
g′(1) + g′′(1)

. (5.37)
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Putting (5.33) and (5.36) together and setting hi = µi − g′′(1)χh0 we finally write
Φ0(y;h0) =

y2

2
[g(1)− g′(1)]− g′′(1)

2g′(1)
(χh0 − u)2

−g′′(1)y(u− χh0)−
g′′(1)

2
(u2 − χ2

h0
) + ln I(y;h0) (5.38)

I =

∫∞
h0
dhhm−1e

− h2

2g′(1)+
h

g′(1) [g
′′(1)(u−χh0

)+yg′(1)]

∫∞
0 dhhm−1e

− h2

2g′(1)

Notice that the cavity field probability distribution
Ph0(h) =

θ(h− h0)
Z(y;h0)

hm−1e
− h2

2f ′(1)+

[
y+f ′′(1)

(u−χh0
)

f ′(1)

]
h (5.39)

for h0 > 0 has a finite cut on the lower edge, that is, Ph0(h0) > 0, and is reweighted in the exponential
through the coefficient y(h0) = y +

f ′′(1)(u−χh0
)

f ′(1) . Different families of ultra-stable minima can be
studied by varying y and h0. The energy level and the Complexity at a given y and h0 are obtainedfrom (5.17) adapted to the presence of a cavity gap :

Σ(y, h0) = yE(y, h0) + Φ0(y;h0) E(y;h0) = −∂Φ0(y, h0)

∂y
(5.40)

Let us begin by considering the complexity in the small h0 limit. The Complexity of our model has a
quite lengthy expression (see Appendix F), which however simplifies a lot when expanded at small h0.The result of the expansion is

Σ = Σ0 −
[
1 + y ⟨h⟩0
mZ0

]
hm0 +O(hm+1

0 ) (5.41)
which shows that the complexity of ultra-stable minima is a decreasing function of h0. The differencebetween the Complexity of dominant gapless minima and gapped ones is small for small cavity gaps,
∆Σ = O(hm0 ). In figure 5.6 we report on the left the Complexity of the p = 3,m = 4 system for three
different values of y in [ymg, ygs]. In the inset, a zoom in on the small h0 region, showing the O(h40)behaviour.

The plot on the right is the value of h0 at which the complexity, for the chosen level y vanishes.
It is shown that this maximal cavity gap behaves singularly as h(max)

0 (y) ∼ (ygs − y)1/m close to the
ground state level. This singularity can be estimated from (5.41), by setting Σ = 0 on the l.h.s. and
expanding Σ0 close to y − ygs. Since the gapless minima complexity is linear on the left of ygs, we getthe estimate [

1+y ⟨h⟩0
mZ0

]
(hmax

0 )m ≃ dΣ0
dy (ygs)(ygs − y)

h
(max)
0 ≃ A (ygs − y)1/m (5.42)

A =
[
(mZ0)

Σ′
0(y)

1+y⟨h⟩0

]1/m ∣∣∣
y=ygs

. (5.43)
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Figure 5.6 – Top-left : the Complexity of gapped minima, normalised with that of ungapped minima,for the values of y reported in legend. Top-right : the maximal cavity gap as a function of the distancefrom the ground state. This quantity close to this point is singular. Bottom : the energy of the gappedminima as a function of the position y in the landscape. The are no gapped minima at the groundstate level.
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We conclude this subsection by showing in the bottom figure of 5.6 the energy at the maximal cavity
gap as a function of y. The energy is equal to the ground state at y = ygs, as it should. This self-consistently checks the validity of our results.

5.4.2 . Response function of ultra-stable glasses
In complexity computations à la Bray-Moore usually one of the order parameters of the problem

is the susceptibility inside a solution, when this is positive definite. In our problem, we have two candi-
dates : the cut susceptibility χh0 and the order parameter u, given by (5.37). When h0 = 0, by integra-
ting by parts (5.37), one immediately realises that these two quantities are the same, u = χ. However,
when h0 > 0 the true susceptibility is the function u. Eq. (5.37), after an integration by parts, reads

u = χh0 + Ph0(h0) (5.44)
which is a self-consistent equation since Ph0(h) depends on u. Note that the existence of the cut
Ph0(h0) for h0 > 0 implies that the coefficient of the linear term in (5.39) is strictly positive : u > χh0from (5.44). This is equivalent to consider a shifted level y(h0) = y+(u−χh0)/g

′(1) > y, corresponding
to a lower energy in the landscape and thus to increased stability.

One can see that u is the true response function by direct computation of this quantity. Suppose
to perturb the systemwith an external field ϵ⃗i on each site : the static linear response function is givenby

R = 1
N

∑
i,αR

αα
ii (5.45)

Rαβ
ij =

∂⟨Sα
i ⟩

∂ϵβj

∣∣∣
ϵ=0

(5.46)
Here ⟨·⟩ is an average according to Kac-Rice-Moore measure :

PKRM ∝ e−yH
∏
i,α

δ
(
Hα′

i − µiSα
i

) ∣∣det (H ′′ − diag(µ))∣∣ .
The full computation of (5.45), where we show that R = u, can be found in Appendix G. In figure 5.7
we show the response function u of the p = 3, m = 4 system as a function of h0, for some values of
y. At small h0, its expression is

u = χ− 1

Z0
[(m− 1)(m− 2)− 1]hm−1

0 +O(hm0 ). (5.47)

5.4.3 . Spectra of ultra-stable glasses
Ultra-stableminimahave gapped spectra. The spectral gapλ0 can be calculated from the resolvent

equations (4.89) in the limit λ→ λ+0

1 = (m− 1)g′′(1)
∫∞
h0
dh

Ph0
(h)

[h+Rex(λ0)]2
(5.48)

λ0 = (m− 1)(Rex(λ0))2 ∫∞
h0
dh

Ph0
(h)

h [h+Rex(λ0)]2
(5.49)
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Figure 5.7 – The response function of ultra-stableminima, normalisedwith the susceptibility of gaplessminima χ(y), for them = 4, p = 3 system and values of y in legend.

where we remind that x(λ) = g′′(1)[G(0) − G(λ)] − λ. We solve Eq. (5.48) and plug its solution into
(5.49). Notice that (5.49) in this form can be obtained with few manipulations of the equation of the
real part in (4.89).

The spectral gap for small h0 behaves as

λ0 =



Λh0 +O(h20) y > ymg[
g′′(1)(m−1)

4 (m−2)2 Z2
0 ⟨1/h3⟩0

]
h
2(m−2)
0 +O(h

2(m−1)
0 ) m > 3, y = ymg

[
g′′(1)
2 Z0

]
h2
0

| lnh0| +O(h40) m = 3, y = ymg.

The result at y > ymg tells us that when h0 is small, the spectrum of ultra-stable minima is obtained by
cutting off excitations O(h0) from the gapless spectrum. The prefactor is the expected one since for
h0 small the spectral gap is small and (4.132) holds. We show in the central figure in 5.8 the spectral
gap for the m = 4, p = 3 system and some values of y as shown in legend. The spectral gap has
a linear behavior at small cavity gap and saturates for higher values of h, being roughly constant
in a wide interval before having a final steep growth close to h0 = h

(max)
0 (y). In general, it appears

that the spectral gaps are numerically very small if compared with the cavity gap : for instance, for
y = (ymg + ygs)/2 we have h(max)

0 ≃ 1.71 and λ(max)
0 ≃ 0.07. The inertia to develop a spectral gap is

even more pronounced in the vicinity of the marginal level : in the bottom figure of 5.8 we show the
spectral gap as a function of h0, comparing it with the predictions in (5.50) form = 3, 4, 5. The different
order of magnitudes spanned by the spectral gaps in the y < ymg and y = ymg cases is remarkable.

The spectral density of ultra-stable minima is Wigner-like sufficiently close to λ0
ρ(λ) ∼

√
λ− λ0 (5.50)
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Indeed, the existence of the spectral gap necessarily requires (see (5.48) and remember thatPh0(h0) >

0) |h0 + Rex(λ0)| > 0 as a necessary condition, and as a consequence no condensation can occur in
ultra-stable minima. Indeed, in order to observe a crossover to a power-law behaviour, one should
see |h+ x| = O(N−1/2) in the limit λ→ λ0. We show the spectral density close to the lower edge for
m = 4, p = 3, y = (ymg + ygs)/2 and h0 = 0.0, 0.15, 0.25, 0.80 in the upper figure of 5.8. When λ0 ≪ λ∗,the crossover eigenvalue of the h0 = 0 system, the spectral density of the ultra-stableminima tends to
follow the spectral density of the related gapless minimum, departing from it only in the immediate
surroundings of λ0. The excitations of ultra-stable minima close to the lower edge are completely
delocalised, I2(λ0) ∝ 1/N with no multi-fractal behavior. Through formula

I2(λ) =
3(m− 1)g′′(1)

N

∫
Ph0(h)

|h+ x(λ)|2
(5.51)

one can show that for small h0 the rescaled IPR i(λ) = NI2(λ)mimes the divergence of the bulk IPR
of gapless minima close to λ = 0. Indeed, we find the following.

i2(λ) ∼ h−2 (m−1)
0 , y > ymg

i2(λ) ∼ 1/
√
h0, y = ymg, m = 3

i2(λ) ∼ | lnh0|, y = ymg, m = 4

i2(λ) ∼ const, y = ymg, m ≥ 5.

(5.52)

to be compared with equations (4.116), (4.122), (4.123), (4.124) with q = 2. The fact that excitations
are completely delocalised is a direct consequence of the cut on the distribution of cavity fields,
Ph0(h0) > 0, which implies that in ultra-stable minima there are always finite fractions of spins in
the thermodynamic limit feeling cavity fields O(h0).

5.5 . Conclusions

In this chapter, we studied a toy model of structural glasses, the vector p-spin model. We consi-
der the problem of linear excitations of energy minima belonging to the stable energy band of the
landscape. We found that typical minima feature gapless spectra with localised excitations, following
the condensation mechanism described in Chapter 4. At the top of stable band marginal minima be-
come dominant and excitations delocalise. In the stable band, in addition to stable gapless energy
minima, there are rare stable and gapped energy minima, named by us in this chapter ultra-stable
energy minima. These minima constitute a mean field representative of ultra-stable glasses, disorde-
redmaterials obtained by circumventing the usual supercooling through a physical vapour deposition
process. We believe that this mean-field model constitutes an improvement with respect to spherical
p-spin models, for it is able to reproduce localisation mechanisms which are present in real glassy
system and absent in spherical models.

An interesting path for future research would be to study its dynamics, extending the studies
made in [Fol20] for mixed p-spin models.
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Figure 5.8 – Top : Spectral properties in presence of a cavity gaph0, for them = 4 and p = 3pure p-spinat y = (ygs+ymg)/2. The spectral density of gapless minima is compared to that of minima with cavity
gaps h0 = 0.15, 0.25, 0.8. The dashed vertical line marks the position of the crossover λ∗ ≡ Λ2

4⟨1/h3⟩ .
Center : The relation between the spectral gap and the cavity gap for the three values of y ∈ [ymg, ygs],the dotted lines are Λ(y)h0.
Bottom : The spectral gap at the critical point y = ymg for m = 3, 4, 5 : the scaling provided by eq.(5.50) is verified. Marginal minima develop extremely small gaps in a broad range of values of h0.
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Troisième partie

Vector spin glasses on sparse random
graphs
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6 - The sparse vector spin-glass

We learnt from the last two chapters that it is possible to observe in fully connected first-principle
mean field models low energy excitation modes with localisation features. The natural development
of our previous work is to consider mean-field models defined in finitely connected random graphs.
The study of magnetic systems in the Bethe lattice began over eighty years ago : Peierls studied the
Ising ferromagnet [Pei36], weiss the Heisenberg ferromagnet [Wei48], while Ziman and Li the Ising
and Heisenberg antiferromagnets respectively [Zim51 ; Li51]. For long time, Bethe lattice theories were
considered to be just a refinement of naive mean field theories for quantitative predictions. The tip-
ping point is due to the work of Anderson, Thouless and Abou-Chakra [ATA73], who pioneered the
study Anderson transition on the Bethe lattice. With years passing, the interest in network models in
physics has flourished.

In particular, in the field of spin glasses in the last decade, much effort has been put into unders-
tanding the Bethe lattice SK model [VB85 ; MP01 ; PRR14 ; Par17 ; Per+22 ; Ang+22 ; Ang23]. One of the
most fascinating idea is that the T = 0 Bethe lattice theory of SK model is the correct mean field
limit of the finite dimensional model [Ang+22]. In general, understanding the properties of the T = 0

random field critical point is crucial [Ang23].
In this chapter, we consider again the problem of linear excitation modes. We will study a vector

spin glass model. In the first section, a replica computation is considered to show how in diluted
systems a new order parameter emerges. After that, we will introduce the BP equations (1.107) for
vector systems. We will develop an algorithm to solve them at finite temperature and estimate the
location of the dAT line of our model, for the Heisenberg case m = 3. Finally, in the last section
we consider linear excitations of inherent structures : after conveying a general picture about the
qualitative behaviour of the system in different parametric regions inH , wewill focus on the "gapless"
region, where low-energy quasi-localised modes featuring a quartic law in their DoS are observed.
Note that the results discussed in this chapter are unpublished, therefore they may be limited and
incomplete in some aspects.

6.1 . The model

The Hamiltonian of the model is
H[S] = −

∑
[ij]∈E

JijS⃗i · S⃗j −H
N∑
i=1

b⃗i · S⃗i (6.1)

where as usual the spins are with unit norm andm components. The system is defined on a RRG with
connectivity c, [i, j] is a link and E is the edge set. We consider homogeneous disorder

• Rademacher uncorrelated couplings
PJ(J) =

1

2
δ(J − 1) +

1

2
δ(J + 1) (6.2)
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• Spherical uniform uncorrelated external fields
Pb(⃗bi) =

δ(|⃗bi| − 1)

Sm(1)
(6.3)

At variance with chapter 4, here we prefer to work with uniform spherical fields. Given the sparse na-
ture of the model, if one chose gaussian couplings or gaussian fields the disorder would be strongly
heterogeneous, and linear excitations would be strongly affected by weakly interacting neighbou-
rhoods or neighbourhoods with very small external fields. In the dense case due to the extensive
number of neighbours, the effect of heterogeneity could not affect the localisation properties of the
system. The reason we want a homogeneous disorder is because we are interested in studying how
the properties of linear modes change with respect to the interplay between the internal field and the
external field.While the former enforces correlation between neighboring spins, the external field can
be regarded as a spatial (in the sense of random graphs) white noise term. It is interesting then to
study the spectral properties of this system as one approaches the spin glass phase and compare the
results with the dense model studied in Chapter 4.

Before studying linearmodes of inherent structures, however, we prefer to outline someanalytical
results. We want to show how the sparse model contains a richer degree of information, by showing
through replica method the emergence of a new order parameter.

6.2 . Replica computation for diluted systems

In this section, we explain how to use Replica method in diluted system. Let us consider the Viana-
Bray [VB85] version of (6.1), corresponding to substituting the RRG graph with an ERG graph with
average connectivity c : setting Jij = ηijKij

PJ(J) = Pη(η)PK(K) (6.4)
Pη(η) =

c

N
δ(η − 1) +

(
1− c

N

)
δ(η) (6.5)

PK(K) =
1

2
δ(K − κ) + 1

2
δ(K + κ) (6.6)

We choose this setting because the computation is simpler than the RRG. Clearly, the linear excitation
properties change on an ERG graph, but in this section we are interested in discussing the order
parameter that emerges in diluted systems and the properties of the solution. We will come back to
the original problem later in this chapter. We also set the absolute value of the couplings to κ, to show
later how the solution we find converges to that of the dense model if for c → ∞ κ = 1/

√
c− 1 is

chosen.
The computation of the free energy proceeds as usual : after averaging out the couplings and the

connectivity factors, we are left with
Zn = Tr

S1

· · ·Tr
S1

exp

 c

2N

∑
ij

[
cosh

(
βκ
∑
a

S⃗a
i · S⃗a

j

)
− 1

] . (6.7)
For the moment, we do not consider the external field and set H = 0. We need to find an order
parameter that allows us to decouple spins and apply the saddle point method.
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6.2.1 . The order parameter
The order parameter of diluted systems is

ρ(σ) =
1

N

N∑
k=1

n∏
a=1

δm(σ⃗a − S⃗a
k) (6.8)

The physical meaning of this order parameter is the following : while the Hamiltonian of dense sys-
tems is a gaussian function whose covariance matrix is a function of the sole overlaps (second order
spin correlations), in the diluted case the Hamiltonian is not gaussian, and its properties are deter-
mined by the whole set of spin correlations. Physically, this corresponds to the strong degree of cor-
relation between a spin and its finite neighbourhood. So, the order parameter (6.8) is exactly the
probability density function of observing σ⊺ = (σ⃗1, . . . , σ⃗n) for the n replica of a single spin.The necessity of such an order parameter can be deduced by the Mc-Laurin expansion of hyper-
bolic cosine in (6.7)

cosh

(
βκ
∑
a

S⃗a
i · S⃗a

j

)
= 1 +

β2κ2

2

∑
ab

(S⃗a
i · S⃗a

j )(S⃗
b
i · S⃗b

j )

+
β4κ4

4!

∑
abcd

(S⃗a
i · S⃗a

j )(S⃗
b
i · S⃗b

j )(S⃗
c
i · S⃗c

j )(S⃗
d
i · S⃗d

j ) + . . .

If κ = O(1), we have to keep all terms of the expansion, whereas if κ = 1/
√
N (dense limit) all terms

of order greater than two are irrelevant in the thermodynamic limit and the order parameter is just
the overlap matrix.

6.2.2 . A Bray-Rodgers equation
The order parameter is inserted in (6.7) through a functional delta

1 = N

∫
Dρ δ

[
Nρ(σ)−

N∑
k=1

n∏
a=1

δm(σ⃗a − S⃗a
k)

]

After this, by following standard steps one arrives to
Zn ∝

∫
DρDρ̂ e−NS[ρ,ρ̂] (6.9)

where S[ρ, ρ̂] = S1[ρ, ρ̂] + S2[ρ, ρ̂] + S3[ρ̂], ρ̂ is the conjugated of the order parameter and
S1[ρ, ρ̂] = i

∫
Sm(1)n

dσρ̂(σ)ρ(σ) (6.10)
S2[ρ, ρ̂] = −

c

2

∫
Sm(1)n

∫
Sm(1)n

dσdσ′ρ(σ)ρ(σ′)[cosh(βκσ · σ′)− 1] (6.11)
S3[ρ̂] = − log

∫
Sm(1)n

dσ exp(iρ̂(σ)). (6.12)
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From the saddle point equations we get
ρ∗(σ) =

eiρ̂(σ)∫
Sm(1)n dσe

i ˆρ(σ)
(6.13)

iρ̂∗(σ) = c

∫
Sm(1)n

dσ′ρ(σ′)[cosh(β σ · σ′)− 1]. (6.14)
These equations combined together yield Bray-Rodgers equation

ρ∗(σ) =
exp(g[σ; ρ∗])∫

Sm(1)n dσ
′ exp(g[σ; ρ∗)])

(6.15)

g[σ; ρ] = c

∫
Sm(1)n

dσ′ρ(σ′)[cosh(βκσ · σ′)− 1] (6.16)
which is a functional self-consistent equation for the saddle point value of the order parameter. It
was introduced by A. J. Bray and G. J. Rodgers in [RB88], where the authors study the random matrix
problem of determining the density of states of the interaction matrix of the Viana-Bray model.

The free energy density of the system is computed as usual
f(β) = lim

n→0

1

nβ
S[ρ∗] (6.17)

S[ρ] =
1

2

∫
Sm(1)n

dσg(σ; ρ)ρ(σ)− log

∫
Sm(1)n

dσ′ exp(g[σ; ρ]) (6.18)
In the following, we show how to deal with (6.15),(6.17) in the paramagnetic case, in absence and in
presence of an external random field.

6.2.3 . Paramagnetic solution at zero external field
To solve (6.15) in the paramagnetic case, we have to define an RS ansatz for the order parameter

ρ(σ). The simplest choice is to consider isotropic functions in the replica space. Given the spherical
constraint on each of the replicas n, this amounts to considering the uniform solution.

ρ0(|σ|) =
1

Sm(1)n
. (6.19)

This solution is the correct one for theH = 0 paramagnetic phase : it tells us that within any single re-
plica each spin value is equally probable, so it reproduces all features of the high-temperature phase.
With (6.19), also the Bray-Rodgers function is constant

g(|σ|, ρ0) =
c

Sm(1)n

∫
dσ′[cosh(βκσ · σ′)− 1] = c [Km(κβ)n − 1]

where Km(β) is as usual defined by (1.80). After performing the n = 0 limit, the free energy density
reads

f(β) =
( c
2
− 1
) logSm(1)

β
− c

2β
logKm(βκ) (6.20)
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while the internal energy and the entropy densities are
u(β) =

d(βf)

dβ
= −cκ

2

Im/2(βκ)

Im/2−1(βκ)
(6.21)

s(β) = β(u− f) = −cκβ
2

Im/2(βκ)

Im/2−1(βκ)
−
( c
2
− 1
)
logSm(1) +

c

2
logKm(βκ). (6.22)

In the high temperature limit, we correctly find s(β) ≈ logSm(1), since Km(0) = Sm(1). If we set
κ = J/

√
c, in the limit c→∞ we retrieve the solution of the dense system (1.83).

The location of the critical temperature can be determined by studying the stability of the uniform
solution under perturbations. The condition for criticality is determined by solving the following kernel
eigenvalue equation [Coo+05] :∫∫

Sm(1)
dmτ1d

mτ2 e
βκ(σ⃗1·τ⃗1+σ⃗2·τ⃗2)ψ(τ⃗1 · τ⃗2) =

K2
m(βκ)

c
ψ(σ⃗1 · σ⃗2) (6.23)

(6.24)∫
Sm(1)

dmτψ(τ1) = 0 (6.25)
where the constraint stems from the requirement that the perturbed probability measure is still nor-
malised. One has to find the temperature T at which the largest eigenvalue of the Kernel operator be-
comes equal to unity. In the casesm = 1, 2, the last equation can be solved explicitly. Them = 1 case
has been studied extensively in the last decades, starting from the initial papers [VB85 ; KS87 ; MP87 ;
DM87]. The condition for criticality is found easily from (6.23) by remembering that ∫S1(1)

≡
∑

σ=±1andK1(x) = 2 cosh(x). The result is
c tanh2(βcκ) = 1

For XY spins (m = 2), (6.23) is solvedwith Fouriermodes [SCH05 ; Coo+05 ; Lup17]. The solution is given
by the lowest-order mode and reads

c

[
I1(βcκ)

I0(βcκ)

]2
= 1

For general m, the solution of (6.23) is more involving and, unfortunately, does not lead to explicit
equations. However, in the Heisenberg case, the problem can be solved by considering eigenvectors
ψk(φ, θ) = fk(cos θ)e

ikφ. This parametrisation is similar to that of spherical harmonics. The origi-
nal equation simplifies and the solution is obtained by diagonalising the following symmetric Ker-
nel[Coo+05] (x ≡ τ1 · τ2 ≡ cos θ, the overlap between two different replica vectors)

M(x, y) = 1
4π

∫ 1
0

∫ 1
0 ds dtI0

(
βκ
√
1− x2

√
1− s2

)
eβκ(sx+t)

× θ((1−s2)(1−t2)−(y−st)2)√
(1−s2)(1−t2)−(y−st)2

(βκ)2c
sinh(βκ)2

(6.26)
We found that its largest eigenvalue in the case c = 3, κ = 1 studied by us becomes equal to unity at
Tc(0) = 0.296(2) : in figure 6.1 we show the largest eigenvalue of the kernel operator as a function of
temperature. The temperature we found, when rescaled by√c− 1, is equal to Tc(0)′ = 0.209(1) : this
value is less than the dense limit T (∞)

c (0) = 1/3, as expected. We replaced the c factor in (6.26) with
c− 1, since we work on RRG : this takes into account the different branching factor between the two
graphs, c in ERG and c− 1 in RRG respectively.
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Figure 6.1 – The largest eigenvalue of the Heisenberg kernel (6.26). The zero field spin glass transitionfor the c = 3 RRG and for unit couplings κ = 1 is at Tc(0) = 0.296(2). We represented the Kernel witha 500× 500matrix : we observed that for this graining discretisation errors were neglibile.
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6.2.4 . General RS solution
When a random external field is added, the solution (6.17) is modified via Bray-Rodgers function

which becomes
g[σ; ρ] = c

∫
Sm(1)n

dσ′ρ(σ′)[cosh(βκσ · σ′)− 1]⟨eb⃗·
∑

a σ⃗a⟩b (6.27)
Clearly, now the uniform solution is wrong. The most general RS ansatz for ρ(σ) must take into ac-
count all the possible combinations of the n replica that are invariant under permutations. Excluding
those RS combinations that couple replica, like σµ1 · · ·σµn , we have that the order parameter must be
a function of any possible sum of the form ∑

a,µ(σ
µ
a )k, for k > 0 integer 1. This is accomplished by

parametrising the order parameter as follows [Coo+05]
ρ(σ) =

∫
Dp W [p]

n∏
a=1

p(σ⃗a) (6.28)

where we introduced the functional measure DpW [p] which, together with the factorisation in the
single replica of the remainder of the integrand accounts for all the permutation invariant terms
described above. Notice that the previously used uniform solution consists in the choice W [p] =

δ[p(σ⃗)− 1/Sm(1)].
The functionalW [p] is the true order parameter of the sparse spin glass. When the system is RS,

W is unique and its stationary value describes the Gibbs state. When RS breaks, the stationary point
should be given by a set of functionals {Wk[p]} that represent spin statistics within different clustersin the phase space, following the ultrametric scheme. For instance, in [MP03] M. Mézard and G. Parisi
consider the sparse Ising spin glass at zero temperature, in the 1RSB approximation.

Once (6.28) is imposed, with some effort, the n = 0 limit can be performed, giving the RS free
energy density. Without specifying the distribution of couplings and random fields and the underlying
random graph, its expression reads in terms of the functionalW reads [Coo+05]

fRS =
c

2β

∫
Dp1Dp2W [p1]W [p2]

∫
dK PK(K) logZ

(2)
β [p1, p2;K] (6.29)

− 1

β

∞∑
l=0

Pc(l)

∫ l∏
i=1

DpiW [pi]dKiPK(Ki)d
mbPb(⃗b) logZ

(1)
β,H [{pl};K, b⃗]

Z
(1)
β,H [{pl};K, b⃗] =

∫
dmσeβσ⃗·⃗b

l∏
i=1

∫
dmσ′pi(σ⃗

′
)eβKσ⃗·σ⃗′ (6.30)

Z
(2)
β (p1, p2;K) =

∫
dmσdmσ′p1(σ⃗)p2(σ⃗′)e

βKσ⃗·σ⃗′ (6.31)
where Pc(l) is the probability of having connectivity l : in a RRG with connectivity c one has Pc(l) =

δ(l−c), in an ERG Pc(l) = cle−c/l!, the Poisson distribution. In this expression we can read an average
over probability densities, connectivity, couplings, and fields of the Bethe free energy (1.111), derived

1. In them = 1 case only∑a σa terms are present : in this situation the order parameter is represented interms of a distribution of cavity fields, rather than a functional distribution like in the vector case (6.28).
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in the context of Belief Propagation or Cavity Method in Section 1.9.2. We identify the single site dis-
tribution p(σ⃗) as an instance of the spin cavity marginal, eq. (1.107) defined in section 1.9.2. Then, the
functionals Z(1)

β,H [{pl};K, b⃗] and Z
(2)
β (p1, p2;K) are the site and link partition functions respectively,

written in a form suitable for population dynamics algorithms (PDA). All this proves the equivalence
between Replica and Cavity approaches in the diluted case.

6.3 . Cavity method

The RS solution of the sparse case for any H ̸= 0 is given in terms of a nontrivial stationary
functional densityW∗[p] of spin cavity marginals. This statement is equivalent to considering the BP
equations, which yield the set of cavity marginals for a given graph, in a distributional sense. Then, if
one is not interested in the properties of a particular instance of the graph ensemble, as we learnt in
Section 1.9.2 the most profitable approach is to consider a PDA algorithm.

6.3.1 . BP equations and Discretization
Let us write equations (1.107) explicitly for the problem we are interested in (we switch back to the

notation of section 1.9.2)
ηi→j(S⃗i) = eβb⃗i·S⃗i

∏
k∈∂i/j

∫
Sm(1)

dmSke
βJij S⃗i·S⃗jηk→i(S⃗k) (6.32)

The PDA equivalent of this last equation reads
ηc(S⃗) = eβb⃗·S⃗

c−1∏
k=1

∫
Sm(1)

dmS′eβJS⃗·S⃗
′
η(k)c (S⃗′) (6.33)

where b⃗ and J are drawn from the respective PDFs. As usual, (6.33) can be implemented numerically
by representing the target density functional with a population {η(p)c (S⃗)}Np

p=1. Each member of the
population should be discretized on them sphere :

η(p)c (S⃗) =⇒ (η(p)c (S⃗1), . . . , η
(p)
c (S⃗Nd

)) (6.34)
In the m = 1 case, cavity marginals can be parametrised in terms of a single parameter u, a cavity
field, as

ηc(S) =
euS

2 cosh(u)
(6.35)

The discretisation over the scalar variable u is straightforward, and in the RS phase the pda fixed point
is the cavity fields distribution Pu(u).In the m = 2 case, spins are continuous variables, and our fixed point is a probability density
functional over spin marginals W [ηc]. The discretisation of XY models has been studied thoroughly
in [LR17], and is based on the so-called clock model [NS86 ; NS89 ; IB13 ; IB14]. The circumference is
uniformly discretised in Q notches ϕq = (2π/Q)(q − 1), with q = 1, . . . , Q. For high temperatures,
physical observables of the clock model converge exponentially fast to the observables of the XY
model, whereas at very low T convergence is only algebraically fast [LR17 ; LPR19].
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Form > 2, the problem concerning the discretization of them-sphere is much harder. In 1904 J. J.
Thomson 2 studied the problem of determining the ground state configuration of classical electrons
interacting with a repulsive Coulomb potential on a sphere, the first atomic model in history [Tho13].
The problem generalised to an arbitrary repulsive potential 3 is a century-old mathematical puzzle
[SK97]. The optimal arrangement of particles on a sphere can be regarded as well as a Voronoi tiling
of the sphere [SK97]. The sphere is covered in terms of non-overlapping Voronoi-Dirichlet cells :

Di = {x⃗ ∈ S3(1) : |x⃗− x⃗i| = min |x⃗− x⃗k|}
N⋃
k=1

Dk = S3(1) (6.36)
The Voronoi-Dirichlet cell of particle with label i is the set of points of the sphere closer 4 to i than
to any other particle. Extensive numerical studies with large number of particles have shown that all
but exactly 12 of the Dirichlet cells of an optimal tiling configuration are hexagonal, the exceptional
cells are pentagons [SK97]. With a relatively small number of particles, N ≤ 150, the 12 exceptional
particles are at the vertices of an icosahedron [EH97]. The presence of exactly twelve topological
defects (disclinations) is a consequence of a Euler theorem, stating that the number of topological
defects for the optimal tessellation of a surface is 6ε, where ε is the Euler characteristic (f is the number
of faces, e the number of edges, v the number of vertices)

ε = f − e+ v.

The characteristic of the sphere is ε = 2, that of the plane is ε = 0 : indeed, the hexagonal tiling is an
optimal planar tessellation.

The potential energy landscape in the generalised Thomson problem is complex : it is estimated
that the number of local minimum is exponentially large in N [EH95]. So, determining an optimal
configuration is a non-convex optimisation problem. First numerical attempts relied on building so-
called icosadeltahedral configurations, i.e. arrangements with icosahedral symmetry. The number of
particles of such configurations satisfies the equationN = 10(h+ k)2− 10hk+2, with h, k integer. It
has been conjectured in [Alt+97] that ground states configuration of the Thomson problem possess
this symmetry. However, in [PDM97; Pér+97] it was pointed out that there are configurations with
five-fold and seven-fold dislocations 5 with lower energy. Later, in [PM99] it was shown that there
exist configurations with icosahedral symmetry and dislocation defects.

Finding a good discretization of the sphere is crucial for solving (6.33) at low temperature. Even
in the RS phase, when temperature is low we shall expect that typical fixed point marginals of the
populations to polarise in regions with small solid angle. Therefore, the systematic error related to
discretization in the small temperature region is enhanced. A poor tiling has a significant impact also
on the factor with the external field in (6.33). When the external field is drawn in a badly covered
region (large Voronoi cell), the scalar product b⃗ · S⃗ is biased to be with relatively high probability less

2. He is the discoverer of the electron !3. Some interesting physical realizations regardmulti-electron bubbles [Lei95] and surface ordering of liquidmetal drops [Dav97].4. Using the Euclidean distance in R3.5. A dislocation is a translation topological defect of a crystal : it can be obtained for instance through anexternal shear.
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than b⃗ · S⃗∗, where S⃗ is the spin representing the cell. These events bias the population dynamics as if
the standard deviation of the external fieldH had a lower value.

6.3.2 . Random grid algorithm
We introduce an algorithm to solve eqs (6.33) in the m = 3 case. We consider random uniform

tessellations of the unit sphere
S(Np) = {r⃗1, . . . , r⃗Np} r⃗i

d
= Unif(Sm(1)) (6.37)

and solve BP equations (6.33) written in discretised form (let us use the symbol ν for cavity marginals)

ν(r⃗) = eβb⃗·r⃗
c−1∏
k=1

∑
r⃗′∈S(Np)

eβJr⃗·r⃗
′
ν(k)(r⃗′). (6.38)

We kept random uniform external field, but we chose to use anti-ferromagnetic couplings PJ(J) =

δ(J + 1). The RS phase of the antiferromagnet is the same as that of the J = ±1 spin glass, and the
location of the instability line is also the same.

As one can expect, this algorithm has a very poor tiling performance. In figure 6.2 we show single
instances of the random uniform grid generator (6.37) for points numbers Np = 100, 500, 1000. We
superimposed the Voronoi cells of the obtained particles configuration. For all three sizes the shape
of Voronoi cells fluctuates wildly : even at the larger size, we can see the presence of clusters with
high concentration of points 6. In the bottom figure, we show the anisotropy bias ρ = x2 + y2 + z2/3,
where x, y, z are the cartesian coordinates of a given r⃗i and · is an average over different grids, for gro-wing number of points. This number should be exactly 1/√Np for largeNp, since single components
are normal variables. Our data agree very well with the theoretical expectation.

The reasonwe chose this algorithm is the following : wewant to see how in theworst case scenario
(the random grid) physical observables depend on the discretisation, depending on temperature and
external field. Then, we can use our results as a reference for future work, aimed at developing a good
tiling algorithm taylored for disordered systems problems on the 3-dimensional sphere.

6.3.3 . Numerical simulations
We performed a series of simulations in a range of temperature T ∈ [0.0, Tc(0)] and field H ∈

[0.0, 1.5], using discretizations Np = 100, 250, 500, 1000. We used Npop = 104 population size in all
simulations. For each temperature T , starting from a sufficiently high value of H = Hini, we perfor-med an annealing in the external field : the fixed point of each run at H = H ′ was used as an initial
condition for the next run at H = H ′ − ∆H . In almost all runs we iterated (6.38) tpda = 25 sweeps
time, in some runs we used tpda = 50.

In figure 6.3 we show the overlap as a function of t, for T = 0.28, H ranging from Hini = 0.82

to Hfin = 0 and Np = 500 points. We can see that in all cases convergence is reached within t ≃ 10

6. This is a consequence of the random tesselation : the distribution of points on the sphere surface is aPoisson points statistics, and the distance between pairs of points is exponentially distributed : thus, any paircan be arbitrary close with finite probability.
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Figure 6.2 – Three instances of the random grid generator. Voronoi meshing generatedwith Mathematica™ using a script available on https://demonstrations.wolfram.com/
VoronoiDiagramOnASphere/. On the bottom, the anisotropy bias as a function of the discreti-sation.
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Figure 6.3 – The self-overlap as a function of sweep iteration time. The top purple curve correspondstoH = 0.87, the bottom toH = 0. Data are from simulations with Np = 500.

sweeps. We measured it at the end of each sweep using

q(t) =
3

Ng

Ng∑
i=1

1

Npop

Npop∑
p=1

 1

Np

Np∑
k=1

ηp(r⃗
(i)
k , t)x

(i)
k

2

(6.39)

ηp(r⃗, t) = eβb⃗·r⃗
c∏

k=1

∑
r⃗′∈S(Np)

e−βr⃗·r⃗′ν(k)(r⃗′, t) (6.40)

where ηp is the exact marginal and ν(r⃗, t) are cavity marginals from the time t (in sweep units) popu-
lation {νt} and Ng is the number of simulated grids : we used Ng = 100 grids for Np = 100, Ng = 50

forNp = 250 andNg = 25 forNp = 500, 1000. Clearly, in the second formula (6.39) the external field b⃗
is drawn from the uniform distribution on the sphere each time a marginal is updated. The top curve
corresponds to H = 0.87, the bottom to H = 0.0. For T = 0.28, the fixed points found become RS-
unstable at H ≃ 0.09 (see next section). Note that sample-to-sample fluctuations become very large
approaching criticality.

6.3.4 . Measure of the dAT line
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A fixed point reached through algorithm is stable if, after a random small perturbation of the fixed
point population

ν(p)ϵ (r⃗i) = ν
(p)
∗ (r⃗i) + ϵδ(p)(r⃗i)

1

Np

Np∑
i=1

δ(p)(r⃗i) = 0 (6.41)
the pda algorithm with initial condition {ν(p)ϵ } converges back to the original fixed point. We perform
in parallel population dynamics for the perturbed population and the original fixed point population,
and at each sweep time step wemeasure the discretisedL2 norm on the unit sphere of the difference
νϵ(r⃗)− ν∗(r⃗), averaged over populations

∆(t) =
1

Npop

∑
p′

√
1

Np

∑
i

|ν(p
′)

ϵ (r⃗i, t)− ν(p
′)

∗ (r⃗i, t)|2 (6.42)

where ν(r⃗, t) are themarginals at the end of the t-th population sweep. When the fixed point is stable,
∆(t) is expected to decay to zero exponentially fast. If instead

∆(t) ∼ const t→∞ (6.43)
then the pda dynamics from the perturbed population has reached a different fixed point 7. When for
a givenH,T this happens for ϵ no matter how small, the RS phase is unstable. We tested the stability
of our fixed points using always ϵ = 10−6.

In figures 6.4 we show averages over different grids of the discrepancy ∆ at fixed H (top) and at
fixed T (bottom), for Np = 100, 500. We compare the two different sample averages

∆1(t) = ∆(t) =
1

Ng

Ng∑
i=1

∆i(t) (6.44)

∆2(t) = exp(log∆(t)) = exp

 1

Ng

Ng∑
i=1

log∆i(t)

 (6.45)

in order to check sample to sample fluctuations. Indeed, we observe that withNp = 100 the difference
between ∆1 and ∆2 is significant. In some cases, like the green curve (T = 0.24, H = 0.5), also for
Np = 500. Since we are interested in typical trajectories, we chose to consider only∆2(t). Apparently,as the discretisation is improved, sample-to-sample fluctuations seem to diminish. In the bottom pair
of figures in 6.4we show∆2(t) versus t varyingNp. In the left picture T = 0.28, H = 0.41 the difference
between the two largestNp curves is relatively small, whereas in the right picture T = 0.02, H = 0.82

finite discretisation effects are strong. This does not come as a surprise to us, since at low temperature
we expect marginals to be localised around specific sectors of the spheres.

In order to measure the values of H,T on which the RS instability line is located, we adopt the
following measure protocol :

7. Notice that the Lyapunov exponent log∆/t cannot be strictly positive-modulo the perturbed marginalconverges to a delta function, we do not think this is possible at finite T -because the marginals are defined ona compact set, the unit sphere.
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Figure 6.4 – Top : the discrepancy ∆(t) at fixed temperature, left is Np = 100 and right is Np =
500. Center : the discrepancy ∆(t) at fixed field, left is Np = 100 and right is Np = 500. In all plotsshaded curves are trajectories of ∆ on different samples. Bottom : dependency on the number ofdiscretiation points. Left is "high" temperature, right is "low".
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Figure 6.5 – The exponents ℓ∞ as functions of H . On the left a comparison of the curves at differenttemperatures, with the largest Np available. On the right, the effect of discretisation at intermediatetemperature.

• We measure the slope of the curve log∆2(t) versus t in intervals of length 5, from t0 = 5 to
tM = 50

ℓi ≡
log∆2(5(i+ 1))− log∆2(5i)

5
i = 1, . . . , 9 (6.46)

• We extrapolate the asymptotic slope of the curve log∆2(t) through a fit 8 of the {ℓi} for any
T,H,Np

ℓ(t) = ℓ∞ −
a

t
(6.47)

• For any T,Np, we consider the curves s∞ versusH and extrapolate from the interval where l∞ <

0 (RS stable points) the valueHc such that ℓ∞ = 0. We show an example of these curves in figure
6.5. In the top picture we show curves at different temperatures and Np = 1000, while in the
bottom we show the dependency on the discretisation for the values Np = 100, 250, 500, 1000.

At the end of this procedure, we have an instability lineHc versus Tc for each value ofNp measu-
red. In figure 6.6 we show the dAT lines we obtained. The red curve is our extrapolation at Np = ∞,
obtained through a power-law approach

Hc(T ) = H(∞)
c (T ) +

A

Nγ
p
. (6.48)

We computed the exponent of the power law considering our data at T = Tc(0) (since we know that
in this caseHc(Tc(0)) = 0). We found that the exponent should be roughly γ ≃ 0.72 : we assume this
as the exponent of the leading corrections for all other temperatures.

It is worth to consider discretisation finite size effects : in the case we are analysing, the points
on the sphere are morally a perfect gas. For a perfect gas living in a sphere, the typical distance l
between particles is given by the inverse of the number density, implying l ∼ N−1/2

p . This scaling can
be considered an upper bound for the error made with discretisation, and write the true marginal

8. We assume analytic corrections to the asymptotic value
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corresponding to a certain ν ad ν(∞) = ν+O(N
−1/2
p ). If in the term (νϵ− ν∗)2 in (6.42) the correction

does not cancel, theO(N−1/2) propagates in (6.44) and all the following expressions. If theO(N
−1/2
p )

corrections of the marginals in (6.42) tend to cancel, then the exponent γ > 1/2 : it appears that
this is the case for our simulations. We expect that computations performed on optimised grids of
the sphere further reduce the overall error, possibly giving reliable estimates for Np = O(102), as it
happens for instance in the clock model of the XY spin glass.

Figure 6.6 – The instability line of them = 3 spin glass on the c = 3 random regular graph. Units arefor unit in norm couplings. The red line is our extrapolation of the instability line from data at finitediscretisation.
Unfortunately, we were unable to provide a reliable estimate of the zero-temperature critical field

H = H(0). Indeed, as the inset in figure 6.6 shows, we do not have any argument for the scaling of
the dAT line close to zero temperature. We show in the inset extrapolations using different possible
exponents : the lower dashed-dotted curve is a linear extrapolation, the upper curves are extrapo-
lation with an exponent less than unity, Hc = Hc(0) − AT a, 0 < a < 1. In the dense case, one has
Hc ∝ T log(1/T ) : based on our numerical data concerning eigenvalues and eigenvector, we do not
believe that this scaling is the correct one. However, we do not know the value of exponent a ; based
on our data on eigenvalues and eigenvectors, we will discuss in the next section, we believe that the
zero-temperature critical point should be located in the interval [0.81, 0.91], roughly corresponding to
0.2 < a < 1/3. We believe that with a grid-optimised algorithm it will be possible to make a precise
estimate of this point, possibly extending vector BP equations (6.33) to zero temperature.
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6.4 . Linear excitation modes of inherent structures

The rest of this chapter is devoted to the study of linear excitation modes of inherent structures
of the energy landscape. In Chapters 4 and 5 we learnt that the softest linear modes of the dense
system are localised in the paramagnetic phase H > Hc(0) = 1/

√
m(m− 2) and delocalised in the

spin glass phase H < Hc(0). In particular, we showed that they possess multi-fractal features at the
critical point.

We would like to extend these studies to the finitely connected system analysed in this chap-
ter. Systems defined on sparse graphs, even if still mean-field, are much closer to real systems.
Even though their topological structure, induced by the underlying random regular graph, is infinite-
dimensional, each spin interacts with a finite neighbourhood, so one hopes that the local properties
of these systems resemble to some extent those of finite-dimensional systems. Clearly, in the latter
the abundance of short loops for any size N makes cavity method a terrible approximation ; howe-
ver, one wonders if the locally tree-like approximation is enough to capture some important physical
features.

Glassy systems in finite dimensions showa feature thatwas not reproducedby our fully connected
models : a vibrational density of states (VDoS) following a quartic law close to zero frequency (see
section 3.1.2, eq. (3.3)). In the models studied in chapter 4 and 5 the lower tail of the spectral density
is λm−1, so for the VDoS one has D(ω) ∼ ω2m−1 : the exponent depends on the dimension of the
spins 9. This is in contrast with what is observed in finite dimensions, where the quartic law seems to
be almost ubiquitous among many different glassy models in different settings (see the discussion in
3.1.2). In this chapter we show that the sparse system we study (eq. (6.1)) has linear excitations of the
energyminimawhose VDoS follows the quartic law of finite dimensional systems. The quartic lawwas
already observed in spin glasses : in [Bai+15] for the three-dimensional random field Heisenberg spin
glass and in [Lup17] for the random field XY spin glass model. We confirm the result for the m = 2

case and show that it extends also to them = 3, 4 cases. We consider this result quite interesting, not
so much for the ω4 law in itself, but for the fact that it shows off in a first principle mean field theory.
There are mean field theories that feature ω4 modes, even at the dense level (like the model studied
in [Rai+21]), but they are phenomenological. Our theory, instead, is a first-principle theory.

Another important aspect concerns the localisation properties of eigenvectors. At variance with
the dense case, in the sparse case the eigenvector has a "spatial" structure, even though an infinite-
dimensional one ; one can study the topological relation between different "soft spots" of the ran-
dom graph, by which we mean regions where the normalisation is concentrated and thus the linear
response of the system to perturbations is strong. In dense systems, one can at most classify sites
according to their energetic and susceptibility contributions. We already discussed the relevance of
localisation in sparse systems in section 3.2.6 of Chapter 3. As far as spin glasses are concerned, the
study of localisation in random graphs is a very recent research topic. First steps have been moved in
[Lup17], here we want to pursue that research, by considering also the casem = 3. Given our results
of chapter 4 concerning the dense case, it is worth to see if something analogous happens in dilu-
ted models. In particular, what kind of changes, if any, eigenvectors undergo at the T = 0 spin glass

9. In particular, one recovers the quartic law form = 2.5 : unfortunately, it is not easy to imagine a systemwith spins having rational dimension.
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transition. We will show by means of numerical simulations that in the m = 2 case there are appa-
rently no significant changes in the properties of themodes, whereas form = 3 non-trivial topological
long-range effects appear asH → Hc(0).The remainder of the chapter is organised as follows : in section 6.4.1 we consider the Hessian
matrix in the sparse case as a randommatrix. In section 6.4.2 we consider the largeH case, for which
we able to define a random matrix ensemble for the Hessian. We also discuss the closure of the
spectral gap, yielding an estimate of the location of the valueH = Hgap where the spectrum becomes
gapless. In section 6.4.3 we discuss the spectrum in the gapless region H < Hgap, focusing on the
softest modes. Finally, in section 6.4.4 we discuss the nature of eigenvectors in the region Hc(0) ≪
H < Hgap andH ∼ Hc(0).

6.4.1 . The Hessian
This model formally has the same Hessian as the dense case, eqs. (4.76), (4.88), modulo the spar-

sity of the interaction matrix
Mab

ij [S] = −(êai · êbj)Jij1(j ∈ ∂i) + |µ⃗i(S∂i)|δijδab (6.49)
where1 is an indicator function representing the adjacencymatrix.We remind that {êai }, a = 1, . . . ,m−
1, are random bases satisfying the orthogonal constraints êai · S⃗i = 0. The local fields µ⃗i are functionsof the neighborhoods {S∂i}

µ⃗i(S∂i) = −∂L
∂S⃗i

=
∑
j∈∂i

JijS⃗j + b⃗i (6.50)
where as usual the random external field acts as a spatial noise term and L is the Lagrangian (4.64)
but with (6.1) as Hamiltonian.

Being amean-field theory on randomgraphs, one can on principle exploit the semi-analytical tools
(3.68) provided by cavity method to have a theoretical prediction. This task was done in [Lup17] on the
XY model. Here, considered also the great difficulty one encounters in finding a good discretisation
of the sphere, we decided to attack the problem of low energy linear excitations only numerically, in
order to verify the results in [Lup17] and generalise them to them > 2 case.

The procedure we follow for the numerical simulations presented in this chapter is the same as
that described in chapter 4. We find stationary points through the over-relaxation algorithm (4.72),
we diagonalise the Hessian evaluated at the configuration found and, if the stationary point is a mi-
nimum, we measure the statistics of eigenvalues and eigenvectors. All figures concerning numerical
simulations we show are for c = 3 RRGs. Our discussion will mostly focus on them = 3 case, but we
will discuss them = 2 andm = 4models as well.

The sparse nature of (6.49) implies that for any finite H , local fields are strongly correlated to
couplings, which in addition are finite (J = ±1) in the thermodynamic limit. This is exact opposite of
the dense case, where precisely because of the decorrelation between fields, couplings and spins we
were able to classify the Hessian as a Rosenzweig-Porter matrix. There is no obvious random matrix
ensemble to classify our Hessian : it seemsmore convenient to study the statistics of the off-diagonal
matrix, the diagonal entries and their correlation and from these informations try to build a random
matrix ensemble representing Hessians of sparse matrices. It is worth to consider the limit of large
external field H → ∞. In this limit, the correlation between fields and interactions is suppressed by
the random fields : in this special case, we are able to find a randommatrix ensemble for our Hessian.
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6.4.2 . The case of strong external field
WhenH →∞, it is possible to expand local fields representing a stationary point of the Hamilto-

nian in 1/H . We can rewrite them as follows
µ⃗i = η⃗i +Hb⃗i (6.51)

The first term in the r.h.s. is the field generated by the neighborhood of spin i, and enforces correla-
tions between neighbors. The second, the random external field, has the opposite role of promoting
decorrelations between neighbors. In the RSB phase the first term is dominant, but as H > c the
second starts to be dominant. Let us rewrite (6.51) in a form suitable for the expansion in 1/H . Since
µ⃗i = µiS⃗i in a stationary point, we can also write

µi = η⃗i · S⃗i +H (⃗bi · S⃗i) (6.52)
We have to expand S⃗i and then the neighbors field η⃗i. Let us begin with spins first :

S⃗i =
µ⃗i
µi

=
b⃗i + (1/H)η⃗i√

(b2i + (2/H )⃗bi · η⃗i + (1/H)2η2i

= b⃗i + corrections

The O(1/H1) term is
∆⃗

(1)
i =

∑
j∈∂i

Jij [⃗bj − (⃗bj · b⃗i)⃗bi] = P(⊥)
bi
η⃗
(0)
i η⃗

(0)
i =

∑
j∈∂i

Jij b⃗j (6.53)

which is a vector orthogonal to b⃗i, as it should be for the leading perturbative correction of an unit
vector. Thus, at order 1/H

b⃗i · S⃗i = 1−O(1/H2)

η⃗i = η⃗
(0)
i +

1

H

∑
j∈∂i

JijP
(⊥)
bj
η⃗
(0)
j +O(1/H2)

η⃗i · S⃗i =
∑
j∈∂i

Jij b⃗i · b⃗j +
1

H

∑
j∈∂i

Jij [⃗bj · P(⊥)
bi
η⃗
(0)
i + b⃗i · P(⊥)

bj
η⃗
(0)
j ] +O(1/H2)

µi = H +
∑
j∈∂i

Jij b⃗i · b⃗j +
1

H

∑
j∈∂i

Jij [⃗bj · P(⊥)
bi
η⃗
(0)
i + b⃗i · P(⊥)

bj
η⃗
(0)
j ] +O(1/H2)

At leading order, the Hessian reads
Mab

ij = −(êai · êbj)Jij + (H + µ
(0)
i )δijδab +O(1/H) (6.54)

êai · b⃗i = 0 (6.55)
µ
(0)
i = η⃗

(0)
i · b⃗i =

∑
j∈∂i

Jij (⃗bj · b⃗i). (6.56)
Let us comment the terms in (6.54) : the off-diagonal entries aremade by the couplings and the scalar
product (êai · êbj) between respectively a vector of a random basis orthogonal to b⃗i and one of another
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random basis orthogonal to b⃗j . The scalar product between two random uniform vector is distributed
according to

Pu(u) =
(1− u2)

m−3
2∫ π

0 dθ(sin θ)
m−2

θ(u+ 1)θ(1− u) (6.57)
If J = ±1, this is also the distribution of the off-diagonal entries, since the sign of the interaction can
be absorbed into the other factor. Notice that in them = 2 case Pu(u) is very large close to u = ±1,
whereas in them = 3 case it is the uniform distribution and form = 4 it is a semi-circular distribution ;
form going to infinity, (6.57) tends to a delta-function 10. If one considers also the diagonal term, the
overall form of (6.57) resembles that of a graph Laplacian :

Lij = Aij +
∑
k∈∂i

Aikδij

where Aij is the adjacency matrix of a graph. In this zero-th order case, the only correlation between
diagonal entries and off entries is given by the orthogonality conditions in (6.54). If one we ignore this
week correlation, the randommatrix in (6.54) as the structure of eq. (3.65), which is quite common in
the study of Anderson models. Under precise conditions on the distributions of the disorder in the
adjacency matrix and in the diagonal, the spectral densities of models of this kind have Lifshitz tails
[BS11], of which we discussed in 3.2.6.

At order 1/H , the Hessian becomes
Mab

ij = −(êai · êbj)Jij +
{
H + µ

(0)
i +

1

H

∑
j∈∂i

Jij [⃗bj · P(⊥)
bi
η⃗
(0)
i (6.58)

+b⃗i · P(⊥)
bj
η⃗
(0)
j ]
}
δijδab

êai ·
(⃗
bi +

1

H
P(⊥)
bi
η⃗
(0)
i

)
= 0 (6.59)

The new term introduces correlations between different sites : we can see it from the second of these
last equations, which feature a projection of the vector η⃗(0)i =

∑
j∈∂i Jij b⃗j . In figure 6.7 we show a

plot of the spectral density for RRG with c = 3 and H = 12, averaged from Ns = 2000 samples of
systems with sizeN = 500. We compare it with the spectral density obtained with the diagonalisation
of as many samples of randommatrices generated from (6.58). We see that already at order 1/H the
agreement is very good.

As H is lowered, the effect of the neighbors fields η⃗ becomes more and more relevant, so the
perturbative expansion in 1/H becomes useless. To describe theHessian in termsof randommatrices
following this strategy, at H = O(c) we would need all terms of the expansion. Nevertheless, by
discussing it we showed that the Hessian of a sparsematrix evaluated on aminimum can be seen as a
strong perturbation of an initial settingwhere theHessian has the structure ofmatrices of generalised
Anderson models (3.65).
10. This is a known properties of high-dimensional spaces.
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Figure 6.7 – The spectral density for H = 12 : we compare the spectral density obtained from thefull diagonalisation ofNs = 500 Hessian matrices with the spectral density obtained by diagonalisinginstances of the two randommatrix ensembles (6.54), (6.58). We see that the ensemble at order 1/Hreproduces very well the spectrum.
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The spectral gap

The spectrum for H ≫ O(c) is gapped. The gap is caused by the following constraints respected
by the local fields of our model

H − c ≤ µi ≤ H + c (6.60)
which can be understood by simple geometrical considerations based on (6.50). For finite H , we ex-
pect physical gaps induced by Onsager reaction, so that µgap = H − c+O(1/H). This relation is true
as long asH ≫ c.

The spectral gap vanishes at a value of external field H = Hgap which is O(c). We can make a
rough estimate of this value through the following argument : consider the eigenvalue equation

−
∑
j∈∂i

JijP(⊥)(S⃗i)ψ⃗j(λ) + (µi − λ)ψ⃗i = 0 (6.61)

where for an eigenvector ψ(λ) ≡ (ψ⃗1, . . . , ψ⃗N ), being each ψ⃗i a m-component vector. Rearranging
this expression, we can write

λ = µi −
∑
j∈∂i

Jij
P(⊥)(S⃗i)ψ⃗j · ψ⃗i

ψ2
i

= µi −
∑
j∈∂i

Jij
ψj

ψi
(ψ̂i · ψ̂j) (6.62)

which is true for any i (now i is again a site index) and in particular for the spin forwhichµi isminimum.
We can write a lower bound for λ

λ > H − c−K = λ(0)gap (6.63)
K = max

∑
j∈∂i

Jij
ψj

ψi
(ψ̂i · ψ̂j) (6.64)

where with λ(0)gap wemean an estimate of the spectral gap using the rough lower bound µgap = H − c
for the local fields, i.e. ignoringO(1/H) corrections. By imposing λ(0)gap = 0, we find an estimate for the
value of external field at which the spectrum becomes gapless

H(0)
gap = c+K. (6.65)

The quantityK must be evaluated using constraints that come from physical considerations. In parti-
cular, if themaximum is at a site where the eigenvector is strongly localised, typically one hasψj ∼ ϵψi,for some 0 < ϵ < 1. Indeed, in sparse systems localised eigenvectors typically decay exponentially
from a sharp well defined peak on a single site. One can safely assume that the normalisation is yield
by the site where the eigenvector is peaked and its neighbors, so that ϵ ∼ 1/c. This would return

H(0)
gap ≃ c+

√
c. (6.66)

We expect for the true gap closure field to satisfyHgap < H
(0)
gap. In figure 6.8 we show an extrapolation

of the external field through our data forH = 17, 12, 8.7, 5.2. With a careful extrapolation including a
1/H correction to λ(0)gap, we findHgap = 4.12(4). If instead we use a simple linear extrapolation of λ(0)gap,we findHgap = 4.73(4), which is quite close to (6.66).
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Figure 6.8 – Extrapolation of the field at which the spectrum becomes gapless. The units of H in thisfigure are those with couplings |Jij | = 1/
√
3.

6.4.3 . The gapless region
It is time to study the gapless region H < Hgap. Qualitatively, the appearance of low energy ex-

citations, i.e. λgap = 0 is related to the fact that the alignment of spins is no more dominated by the
external fields. In the RS phase Hc < H < Hgap there is an even competition between internal and
external fields. AsH is lowered down to the critical region, internal fields become dominant and spins
get strongly correlated or anti-correlated to their neighbors, respectively for ferromagnetic and anti-
ferromagnetic couplings. In figures we show the probability distributions of the local overlap with the
internal field qη = η⃗i · S⃗i/ηi (main plot) and the local overlap with the external field b⃗i · S⃗i (inset). Thefigures shown are for m = 3 and N = 220 spins, with H = 2.60, 1.73, 1.30, 0.87, 0.52 : the first three
values are in the RS gapless region, the last two, according to our rough estimateHc(0) ∈ [0.81, 0.91],
in the spin glass phase. The distribution of the overlap with external fields do not show any particular
feature : for large H it tends to a delta function in qν -i.e. spins strongly correlated to external fields,
for smallH to a uniform distribution-i.e. spins uncorrelated to external fields. The distribution of the
overlap with the internal field is more interesting : as H is lowered towards criticality it develops a
maximum at a value quite close to unity : for instance, at H = 0.87 one has q(∗)η ≈ 0.95. As the spin
glass phase is entered, the maximum becomes a sharp peak. We did not observe this feature in the
distribution of the qν for largeH .
Lower edge : the quartic law

Wemeasured numerically the spectrum of energy minima for four orders of magnitudes of sizes
N = 28, . . . , 220 and for several values of H . We used a statistics N ×Ns ≥ 3 × 107. For some of the
lowest sizes, we measured the full spectrum, whence forN ≥ 210 we computed only the 100 smallest
eigenvalues using the Arnolid method through the Python library Arpack™.
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Figure 6.9 – Empirical pdfs of the overlap with the internal field and that with the external field (inset).
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Figure 6.10 – Measure of the empirical cumulative distribution for values of H =
5.20, 3.46, 2.60, 1.73, 1.30, 0.87, 0.52. We used data ranging in five orders of magnitudes of sizes.Our data are fairly consistent with a = 2.5 in the whole gapless region.

The tails of the spectral densities of our data seem to robustly show ρ(λ) ∼ λ3/2, which corres-
ponds to a density of states D(ω) ∼ ω4. We remind the reader that the relation between the two
exponents in ρ(λ) ∼ λa andD(ω) ∼ ωb is given by

D(ω) = 2ωρ(ω2) =⇒ b = 2a+ 1

We show this in figure 6.10, where we convey a measure of the empirical cumulative distribution of
the eigenvalues, the relative rank r ≡ k/N of each eigenvalue versus its sample average λk. Indeed,
r clearly tends to the cumulative function for N → ∞. For a wide range of values of H , both in the
RS gapless phaseHc < H < Hgap and in the spin glass phaseH < Hc, the lower tail of our empirical
spectral cumulative is consistent with C(λ) ∼ λ5/2. For a given H in the spin glass phase, this beha-
vior is robust provided we typically reach minima sufficiently deep in the energy landscape. In figure
6.11 we report on the top the same measure as before for the single value H = 0.87 but comparing
spectra of minima obtained with different values of the over-relaxation parameter, representing dif-
ferent depths in the energy landscape, as shown in the bottom picture of the same figure. While the
lower tail of the cumulatives related to the deepest minima, obtained withO = 50, is λ2.5, for minima
obtained with O = 1, 10 the tail is better described by λ2.3. We interpret this result following [GC03] :
the pdf of the curvature on the minima of a quartic random polynomial, constrained in a double-well
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Figure 6.11 – Top : the lower tail of the empirical cdf for H = 0.87, showing data from minimisationswith O = 1, 10, 50. Even though the three curves are almost indistinguishable, the exponent of thelower tail is 2.5 for data withO = 50 but 2.3 forO = 1, 10. Bottom : The average energies reached for
N = 212, . . . , 220 usingO = 1, 10, 50. As already shown in chapter 4, the greaterO the lower in energy.

configuration, is P (λ) ∼ λ for small curvatures, corresponding to D(ω) ∼ ω3 ; if however one is in-
terested in the curvature of the global minimum, then P (λ) ∼ λ3/2 and D(ω) ∼ ω4. If we assume
the validity of this reasoning for our model, then having an exponent lower than 2.5 for O = 1, 10

implies that in these minimisations we did not always reach the local ground state within a basin of
the energy landscape. The idea that in spin glassmodels with finite-connectivity the energy landscape
is locally double-well-like is supported by [Bai+15]. Even though in that work the authors consider a
three-dimensional Heisenberg model, we believe that the same scenario reoccurs in our model : in-
deed, if the properties of these double-well configurations are dictated by a small group of spins, like
a spin and its neighborhood, then there should not be much difference with a model defined on a
tree-like random graph. Despite the statistics of the smallest eigenvalues is susceptible of the depth
reached in a local valley of the energy landscape, we will show in next section that the properties of
the related eigenvectors are totally robust.

The quartic law is robust with respect to the dimension of spins : in figures 6.12 we show the cumu-
lative distributions form = 2, 4. Our data are consistent with an exponent a = 2.5 for the cumulative
distribution. In finite dimensional systems the quartic law is robust with respect to dimensionality
[KBL18]. In these models on sparse graphs however only the dimension of the degrees of freedom
can be varied. Thus, these analogies between finite dimensional and random graph models seem to
suggest that what matters is the local behavior of a spins with its finite neighborhood, rather than the
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Figure 6.12 – Measures of the cumulative distributions of them = 2 andm = 4 systems. The spectraare from minima obtained with O = 50. The data agree very well with C(λ) ∼ λ2.5.
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underlying geometry.
6.4.4 . Properties of the eigenvectors

When studying vector spin glasses in the fully connected case in chapters 4 and 5we characterised
the properties of their excitations bymeans of eigenvector moments (3.60). In sparse systems we can
definemore sophisticated tools to study the localisation properties of eigenvectors.While eigenvector
moments give a global information on the nature of the mode, namely if it is localised or delocalised,
properly defined correlation functions could shed some light on the dependency of the mode on the
underlying graph. Given that eigenvector components are related to the local linear response of the
system, by identifying local maxima of the eigenvector on the graph one can classify soft spots, i.e.
regions strongly susceptible to external perturbations. The condensate we found in the paramagnetic
phase of the fully connected model in a random graph becomes a soft spot, around which the mode
is exponentially localised. Since the dense model has a delocalisation transition at the T = 0 critical
point, it is natural to see if this phenomenon is present also in the sparse model.

The section is organised as follows : in the first subsection we start with an overall view of the
localisation properties of the system, discussing our measures of the IPR in all the spectral phases
(gapped, RS gapless, RSB gapless) previously identified. In the second subsection, we define a strategy
to unveil the presence of long-range order approaching the SG transition. In the third, we show our
results and compare them = 2, 3, 4 systems.

The lowest modes are always localised

We begin our analysis of eigenvector by considering the IPR of our modes :

I2(λk) =
N∑
i=1

|ψ⃗i(λk)|4

In figure 6.13 (top plot) we show the sample-averaged IPR of the smallest eigenvalue as a function of
the external field strengthH , ranging fromH = 17 in the gapped phase toH = 0.17 deep in the spin
glass phase. We consider N = 218, the largest size available for all H . The IPR tends to a constant
for large H , has a peak supposedly at H = Hgap

11 and decrease with decreasing field in the whole
gapless region. In the inset we show a zoom of the smallH region, with a quadratic fit of our data.

The infinite-size IPR is finite for anyH wemeasured. In figure 6.13 (bottom plot) we show the IPRs
of the n = 12 smallest modes. Even for the smallest H we simulated, H = 0.17, the IPRs seem to
converge to a finite value as the size increases.

These measures unambiguously show that modes whose rank isO(1) withN growing are always
localised, deep in the spin glass phase as well. However, a finite IPR does not imply necessarily that
the system is localised around a single spin. It is possible that with the transition soft modes localise
around multiple soft spots, separated by distances comparable with the global scale of the random
graph L = logN/ log(c− 1).
11. It is not at H = 3.46 for sure, since for this value we observe the glassy lower tail in figure 6.10 : thus aposteriori 3.46 < H < 4.33.
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Figure 6.13 – Top : The sample-averaged IPR related to the smallest eigenvalue, as a function of H .The localisation decreases asH is lowered. Bottom : the sample-averaged IPRs of the smallest twelvemodes versus the number of spins. Cold colors are measures in the gapless RS phase, warm colorsmeasures in the RSB phase. The asymptotic IPRs are finite in both cases.
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Probing multiple soft spots

In order to measure the emergence of multiple soft spots we abide to the following strategy :
• First, we consider the following correlation functions

C
(k)
2 (d) =

∑
i∈∂d0

|ψ⃗i(λk)|2
∞∑
d=0

C
(k)
2 (d) = 1 (6.67)

where ∂d0 is the set of nodes with distance d from node 0 (the d-th shell). We label the site
where each eigenvector has its absolute maximumwith i = 0. The Correlation function in (6.67)
tells us how the normalisation is distributed in the various shells centered on node 0. When
an eigenvector is localised in one single core, typically these function decay exponentially with
distance. The emergence of a maximum of these functions at distances d = O(logN) is a signal
of the presence of other relevant spots. In order to distinguish between average and typical
behavior, we consider both C2(d) and exp logC2(d).• Second, for each sample and eigenvector among the first n = 100 we consider the first l = 10

maximaof the density profiles {|ψ⃗i(λk)|2}. Related to these,wemeasure the following quantities
• The histogram of the distances d1k between the absolute maximum on the eigenvector and
secondary maxima, focusing in particular on d12.

Pd1k(d) =
1

Ns

Ns∑
k=1

δ(d− d1k) (6.68)
d1k ≡ d(Ψ2

1,Ψ
2
k) ≡ {length of shortest path connecting 1 and k}

Ψ⃗k(λ) ∈ {ψ⃗i ∈ ψ(λ) : |ψ⃗i|2 > |ψ⃗j |2 ∀j ∈ ∂i}

• The values of the maxima : their distribution with distance and their sample averages.
• Considering the shortest path connecting the absolutemaximum and a secondarymaximum,
we measure for each such pair the absolute minimum along the path and the distance bet-
ween the absolute minimum and the secondary maximum.

By measuring directly different soft spots we can get a connection with the underlying topology
given by the random graph.

Weak delocalisation at the spin glass transition

We start showing our measures of (6.67) through figure 6.14. The top figure on the left contains
curves C(d) VS d for H = 1.73, N = 212, 220 and the modes with rank n = 1, 20, 40, 60, 80. The top
figure on the right same plot but with exp logC(d). In the bottom figures same forH = 0.87 < Hc(0).In both cases a maximum at distance ∼ log(N)/ log(2) appears for N = 212 = 4096. Conversely, for
the largest size N = 220 = 1048576 one has typically a maximum for modes 1 ≪ k ≪ N in the case
H = 0.87 but not in the case H = 1.73. This hints a difference between the modes in the RS phase
and those in the RSB one. However, since the behavior of the smallest mode seems to be very similar
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Figure 6.14 – The correlation function defined by (6.67). Left figures are sample-averages, right onesevaluations of typical values through the exponentiation of the averaged logarithm of the correla-tions. Modes with rank 1 ≪ k ≪ N feature correlations with a maximum at distances O(logN) (Foreach group of curves, the lowest one refers to mode n = 1, the others in ascending order to the re-mainders).
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in both cases, we should study the properties of eigenvectors by rescaling the rank of our modes with
the size of the system : kN = k/Na, for some 0 < a < 1.

In order to do this, we proceed with the second step of our strategy. We begin by showing in figure
6.15 measures of the histograms P (d12) VS d12/dg(N), where (c = 3)

dg(N) = Floor

(
log(N/3)

log(2)

)
+ 1 (6.69)

is the distance at which N(d) in (1.99) is maximised. We show histograms of the m = 3 system for
the largest size measured, N = 106, and for the values H = 1.7, 1.3, 0.87, 0.5. We can appreciate
two maxima, one at distances d = O(1) and the second at d = O(logN) : as H is lowered down to
the spin glass phase, the relative importance between the twomaxima change, with the maximum at
large distances becomingmore andmore important. These twomaxima identify two different kind of
samples : in those with d12 = O(1) the second dominant contribution to normalisation belong to the
same regular subtree 12 of the absolute maximum, whereas when d12 = O(logN) the two dominant
spots Ψ2

1 and Ψ2
2 belong to different subtrees. We estimated that on average in a RRG the regular

subtree that emanates from any node has depth dt = L/2 ∼ 1
2

logN
log(c−1) , i.e. the half of the global scaleof the graph ; details in Appendix I. So, we decided to split the histogram in two parts, d12 < dt and

d12 > dt, and measure
A ≡ P[d12 ≥ L/2] =

∑
d≥L/2

Pd12(d) (6.70)
for each mode at given N,H . Eq. (6.70) is just the area of the "long distance" region in figures 6.15,
corresponding to the probability to observe a sample with Ψ2

1 and Ψ2
2 at distance O(logN). We study

this probability as a function of modes rank, and in particular of the rescaled rank kN = k/Na, for
0 < a ≤ 1. In figures 6.16 we show these probabilities as functions of the rank n of the mode, for
the value H = 0.87 in the spin glass phase. The figure on the left is the probability as a function of
the rank, on the right, we rescaled the rank with a suitable power ofN . This measure shows that, for
any k, the probability of finding a sample with the two main soft spots separated decreases as the
size is increased. On the other hand, the picture on the right tells us that by rescaling the rank with a
suitable power (for our data a = 0.65 works well), the probability of finding samples with separated
Ψ2

1 andΨ2
2 does not depend onN for largeN . A similar phenomenology holds for soft spots of lower

rank, i.e. for the distance between Ψ2
1 and Ψ2

k with k > 2.
This evidence suggests thatwith the transition there is aweakdelocalisationphenomenon :modes

with multiple soft spots appear when k = O(Na), with a < 1. Since each finite eigenvalue in the
infinite-size limit is in one-to-one corrispondence with k/N , we conclude that this separation of spots
holds for eigenvectors whose related eigenvalues in the thermodynamic limit are arbitrarily close to
the lower edge 13. Note that in this situation if one considers a fixed position in the spectrum by set-
ting k = O(N), the probability A increases with size. This is at variance with the same measures in
the RS phase : in figures 6.17 we show A but for H = 1.3 : here only for k = O(N) the quantity A is
size-independent. In figure 6.18 we show the typical ratio of the two main soft spots, calling u1 = Ψ2

1

12. The regular tree rooted on the absolute maximum.13. They are eigenvalues with rank k = O(Na), thus CDF ≈ k/N = Na−1 which vanishes for a < 1 and Ngoing to infinity.
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Figure 6.15 – Histogram of the distance on the RRG between the two most relevant spots of eachsample, for samples with size N = 220 = 1048576. Figure on top is an average over the first tenmodes, on bottom an average over the last ten within the n = 100modes available.
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Figure 6.17 – The probability of observing two soft spots at distance O(logN), as a function of modesrank (left) and the rescaled rank (right) forH = 1.30. In the RS phase we can have a size independentprobability only by rescaling k with N .

and u2 = Ψ2
2, as a function of the rank k. For finite ranks the second spot becomes smaller and

smaller with respect to the main one, as size increases. With proper rescaling, the quantity becomes
size-independent. In the RS phase, as before, the only scaling yielding collapse is k = O(N).

In figure 6.19, we show the same plot as in 6.15 but for the XY model, considering H = 1.50 (RS
phase), H = 1.15 (critical point), H = 1.00, 0.600 (spin glass phase 14). The histograms in these figure
are computed from data gently offered by Dr. Lupo, from his PhD thesis work [Lup17]. Apparently,
the phenomenon just described for the Heisenberg model seems to be very weak in this case : only
for the quite low value H = 0.60 we observe a bimodal pattern in the histogram. At the critical point
Hc(0) = 1.15(1) nothing seems to happen. Finally, in figure 6.20 we show the measure of A for the
value H = 1.00 in the spin glass phase. Data referring to power of two sizes are from us, the others
again from [Lup17]. The probability of observing two modes is finite only for k = O(N). The absence
of a clear signal at criticality seems to suggest that, by the point of view of low energy excitations, the
behavior of Heisenberg and XY models is differrent.

6.5 . Conclusions

In this chapter we discussed a diluted version of the model studied in chapter 4. The main focus
of the chapter has been the extension of our results in the dense case to the sparse model (6.1). We
found a gapless phase inH with spectra populated by low energy linear excitations with a density of
states following a quartic law. In the RS phase, the modes are localised on a single core, whence as
criticality is approached long-range order seems to emerge under the appearance of localisedmodes
withmultiple localisation cores. This effect is not as strong in the XYmodel, hinting possibly a different
critical behavior with respect to the Heiseberg as long as the low linear excitations are concerned. We
believe these results enrich the picture around the zero temperature criticality of sparse spin glass
14. The critical field estimated in [LR17] isHc(0) = 1.15(1)
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Figure 6.18 – The sample-averaged logarithm of the ratio between the two main spots. Top-left is
H = 0.87 (putative RSB) with k = O(1), top-right same but with k = O(N0.65). Bottom-left isH = 1.30(RS) with k = O(1), bottom-right same but k = O(N).
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Figure 6.19 – Histograms of the distance between the two most relevant soft spots in the XY model.The probability of observing separated couples is far lower than in the Heisenberg case.
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7 - Conclusions and Perspectives

In this thesis we studied three different vector spin glass models. The first model is am-vector SK
model with a random field on a fully-connected graph, the second is a m-vector p-spin model on a
fully-connected graph and finally the third is a randomm-vector SG on a random regular graph with
connectivity c = 3. We focused on the low and zero temperature physical behavior, by considering the
problem of linear low energy excitations. Soft modes are a central topic in condensed matter : they
rule the low-temperature mechanical responses and specific heat. Structural glasses feature an ad-
ditional density of quasi-localised states in their vibrational spectrum. While many numerical results
have been available in the last decades, first principle theories of glassy excitations are still missing.
Our work can be considered as an attempt to explore this problem in a first-principle theoretical fra-
mework, that of continuous spin glasses. Vector models constitute an improvement with respect to
spherical models. While the energy Hessians of the latter are represented by classical randommatrix
ensembles, which feature only delocalised excitations as a consequence of rotational invariance in the
space of matrices, vector models Hessians are represented by rotationally non-invariant randomma-
trix ensembles, like for instance the Rosenzweig-Porter or Deformed Wigner ensemble. In this case,
localisation in the softest and/or hardest eigenvectors can occur. In the dense case, we characterised
the transition from RS (stable) to RSB (marginal) phases in terms of a random matrix transition, in-
volving the softest modes of the energy Hessian. In the sparse case we were not able to characterise
excitations in terms of random matrices.

Let us make a resume of the work contained in this thesis. In the first part (Background) of the
manuscript we introduced the reader to the main tools used in our research.

• In chapter 1 we discussed spin glass theory in a historical perspective. We wanted to give an idea
to the reader of the steps that progressively led to the RSB theory of G. Parisi, in order to make
apparent its central role as a tool to understand the physics of disordered system. After that,
we considered vector models. These models posses a richer critical phenomenology, featuring
weak and strong RSB according to whether one considers longitudinal or transverse alignment
with respect to an external magnetic field. When a random external field with zero mean is
applied, these models allow to study non-Goldstone soft modes. In addition, a random exter-
nal field destroys the Gabay-Tolouse line, leaving a dAT instability line with zero temperature
phase transition. This transition exists only for spins withm > 2 components in the dense case,
while it is always present in sparse models. In the last part of the chapter we introduced Belief
propagation and showed its connection to cavity method. These techniques permit to find a so-
lution of the system in sparse tree-like graphs, solution which is obtained from self-consistent
analytical equations that connect the on-site spin cavity marginals : from the solution of these
equations, the actual one-point and two-point spinsmarginals can be computed. Sparsemodels
can be considered as an improvement of the naive mean field theory yielded by fully connected
models.

• In chapter 2 we introduced structural glasses and the glass transition framework, through the
lenses of Random First Order Theory, a mean field approach that explains glass formation by
means of the emergence of a complex 1RSB landscape. After considering glass formation by
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a dynamical point of view, we showed how a connection with statics and in particular with
the energy landscape through the study of complexity could help to characterise the different
phases of glass formation.
We then considered the spherical p-spin model, a toy model for structural glasses. This model
features a paramagnetic (liquid) phase at high temperatures, a dynamic (supercooled liquid)
phase at intermediate temperatures and a glassy phase (spin glass) at low tempeartures. The
Golstein crossover to activated dynamics in finite dimensions corresponds to a dynamic transi-
tion in the mean field case. The glass transition is characterised by the entropy crisis phenome-
non, which in the p-spin case corresponds to the vanishing of the equilibrium complexity : the
equilibrium measures condensates in the lowest free energy states.
Finally, we considered excitation spectra : the Hessian of spherical p-spinmodels is shifted (non-
centered) Wigner matrix. The energy landscape is divided in two disjoint intervals : the lowest
one contains energy minima that are stable with a gapped spectrum, whence the one on top
is populated by saddles. The common point between the two is the level of marginal energy
minima : these have gapless spectra with delocalised excitations.

• Chapter 3 wants to show how potential energy Hessians of disordered systems can be repre-
sented in the dense mean field case by random matrix ensembles. To this purpose, we start
by discussing the general problem of harmonic vibrational excitations in crystals and structu-
ral glasses. We discuss how much they differ from each other, by pointing out the existence
of low frequency quasi-localised excitations in glassy systems, that qualitatively strongly differ
from phonon excitations. We introduce soft potential models, phenomenological theories that
explain the appearance of these modes by representing the potential energy of a glass as a
superimposition of anharmonic potentials, identifying strucural local defects of the sample.
The second part of the chapter introduces random matrix theory. After a general introduction
about gaussian ensembles, we consider the problem of deformed gaussian ensembles, where
a Wigner matrix is perturbed by a diagonal random matrix. The resulting ensemble, named
Rosenzweig-Porter, represents the Hessians of a large class of disordered systems.

The second part of the thesis (Vector spin glasses on fully connected graphs) is divided in two chap-
ters : chapter 4 contains our original results about the random field Heisenberg spin glass, chapter 5
involves our findings related to the p-spin vector model.

• Chapter 4 begins with a general replica computation of the free energy of themodel, both in the
replica-symmetric case and in the spin glass phase. We discuss the low temperature behavior
in both cases, hinting at possible future research developments in the spin glass regime.
After that, we re-derive the TAP free energy of the model, through a Plefka-Georges-Yepidia
expansion of the Gibbs potential. This is preparatory for a brief discussion about the Hessian of
the TAP free energy, specialising on the low temperature limit.
The last part of the chapter contains our study of soft modes of the inherent structures of the
energy landscape, i.e. the study of theHessians of theHamiltonian function evaluated on amini-
mum configuration. The results are based on our paper [Fra+22]. We derive analytical equations
for the resolvent function through cavity method and test its predictions through an extensive
set of numerical simulations.
We begin by testing the performances of the algorithm chosen for obtaining energyminima, the
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over-relaxated gradient descent algorithm with random initial condition. We find that whene-
ver the landscape is non-trivial-in finite size systems this happens close to criticality in the para-
magnetic phase and in the spin glass phase-the gradient descent with over-relaxation reaches
lower energy minima than the simple gradient descent. The lower the random external field
strength, the broader is the range of values of the over-relaxation weight for which this state-
ment is true. The energy advantage provided by the over-relaxated descent is relevant only in
the spin glass phase has the size of the system is increased. The convergence time advantage
instead is relevant also in the paramagnetic phase, for values of H up to 2Hc (the non-trivialparamagnetic phase). The convergence time of the simple gradient descent grows with size ap-
proximately asN0.5 in the spin glass phase, while in the non-trivial paramagnetic phase it grows
withN through anH dependent exponent. For allH,N , it does exist a value of O such that for
any stronger over-relaxation the convergence time is size-independent. This impacts the overall
time complexity of the minimisation. This non-trivial dependence of the convergence time on
the over-relaxation also in the paramagnetic phase suggests that also in this case the landscape
is non-convex, provided that H is close enough to Hc. In this scenario, scenarios with multiple
energy levels and abundance of saddles occur with finite probability.
Once the performances of the algorithm have been tested, we begin the numerical study of
the Hessians, evaluated for each sample with given H and N at a fixed point configuration of
the over-relaxated descent. We focused on the m = 3 model, with several values of H in the
paramagnetic phase, at the critical point and few in the spin glass phase. We measured sizes
ranging from N = 26 = 64 to N = 211 = 2048 : these are sizes typically accessible in numerical
simulations of dense systems. Diagonalisation is achieved through the Lapack library : spectra
having all eigenvalues positive were identified as minima and saved. We studied the properties
of eigenvalues and eigenvectors : we tested the prediction of the theory both in the bulk of the
spectrum and in the lower edge. In the paramagnetic phase the theory predicts a condensation
of the softest eigenvectors on single sites of the sample, related to the smallest cavity fields of
the system : in a fully-connected model, these unambiguously identify the most magnetically
susceptible spins. At the spin glass transition, the condensate disappears and the lower edge
modes undergo a delocalisation transition. We find that our data from simulations agree well
with bulk predictions but are affected by strong finite size effects at the lower edge : these effects
prevent to observe the condensation in near critical (H ∼ Hc but larger) finite size systems. Only
in the trivial paramagnetic phase condensation can be observed.
Our results in this chapter yield a naive mean field description of glassy excitations. The exis-
tence of localisation phenomena in densemean fieldmodels revisits commonbeliefs, stemming
from the study of excitation of popular mean field models of disordered systems, such as the
spherical p-spin and the perceptron. The zero temperature spin glass transition is characterised
as a randommatrix transition : this gives us a greater insight on the proeprties of the zero tem-
perature critical point. In particular, the softest modes at criticality and in spin glass phase are
multi-fractal : these suggests even in presence of delocalisation a highly non-trivial organisation
of the local responses.

• In chapter 5 we applied the results obtained in chapter 4 to a mean field model of structural
glasses, them-vector p-spin. The findings in this chapter are contained in our work [FNR22]. The
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results discussed are entirely analytical.
We begin the study by characterising the dynamical phase of the model, through the computa-
tion of Monasson potential and the equilibrium Complexity of energy minima. The dynamical
temperature is identified by the vanishing of the Replicon eigenvalue of the Hessian of the re-
plicated action, whereas the glass trnasition temperature is identified by the vanishing of the
equilibrium complexity.
Following that, we focus on the zero temperature limit. We compute the zero temperature limit
of Monasson free energy and the related complexity of the energy minima of the landscape. By
studying the Hessian of the energy, we identify two bands in the energy landscape : the first is
identified byEgs ≥ E < Emg and is dominated by minima whose excitation spectra are gapless
and related lower edge eigenvectors condensated.We call theseminima "stable" becausewithin
them no avalanche phenomena can occur. Depper minima in the landscape have increasingly
localised soft excitations, in agreements with observation in numerical simulations of computer
glasses. The second, identified by Emg ≤ E < Eth, is dominated by marginal minima : these
feature excitation gaussian-like excitation spectra, with delocalised soft eigenvectors. In these
minima the system responds finitely to infinitesimal perturbations, leading to avalanches. We
did not compute the energy level Eth, whose existence we postulate by comparison with the
spherical mixed p-spin.
Besides gapless stable minima, in the stable phase there are rare ultra-stable minima, with a
lower complexity with respect to typical gapless ones. These are mean field representatives
of ultra-stable glasses : these are obtained by circumventing usual super-cooling vitrification
through a physical vapor deposition process. Ultra-stable minima are identified through an en-
hanced stability condition on the local fields. The resulting excitation spectra are gapped and
related excitations all delocalised, with nomulti-fractality. This trivial behavior is a consequence
of the enforced excess stability. Ultra-stable minima populate the whole stable energy band,
being absent at the ground state level.

In this chapter we showed the generality of our results in chapter 4. We provided a non-trivial
mean field framework for glassy excitations. In this framework, many properties of finite-dimensional
glassy excitations are reproduced, even though in a mean field fashion. What is missing is the univer-
sal quartic law of the density of states. This property, as we learn in chapter 6, is peculiar of sparse
systems. Actually, it is reproduced in a recently studied dense system, but that theory is a mean field
transposition of the phenomenological soft potential model. Our theory instead is a first-principle
mean field theory.

The third part of the thesis (Vector spin glasses on sparse graphs) contains our yet unpublished
results concerning the excitation properties of the randomfield vector spin glass on a random regular
graph. The work is almost entirely numerical, considering only systems with connectivity c = 3 and
focusing mostly onm = 3.

The chapter begins with a replica computation : we want to stress the difference between the
sparse and densemodel, by showing the emergence of a new order parameter. The order parameter
of the diluted model is a functional that takes account of all possible spins correlations : it is a re-
flection of the uniqueness of each neighborhood of the underlying random graph and of the strong
correlation standing between each spin and its neighborhood. The most convenient way to deal with
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this new object is to use the cavity method.
We consider the problem of determining the instability line of them = 3 system in the planeH,T ,

whereH is the strength of the random external field. Auxiliary to this problem, there is that of finding
a good discretisation of the sphere : while the XY model can be effectively represented through the
clockmodel, the discretisation of the sphere is a long-standing problemnamed "generalised Thomson
problem". The points on the sphere are represented as particles, and different grids can be obtained
by imposing different kinds of repulsive interactions. In general, the best discretisation for a given
problem on the sphere is system dependent, so a thorough study of it taylored to the random field
Heisenberg spin glass should be pursued. In this thesis we considered the case of random grid : while
this choices yields poor tiling of the sphere and unfortunately enhances the discretisation effects
especially at low temperature, with some efforts predictions on the instability line can be carried out.
From our knowledge of the zero field critical temperature, we were able to extrapolate the instability
line, though failing in computing accurately the zero temperature critical field : we instead identified a
likely interval ofH where, comparing with our numerical data on eigenvectors, the transition occurs.

In the last part of the chapter we report our finding concerning the excitations of energy minima,
focusing on the m = 3 system. At variance with the dense case, we were not able to represent the
Hessian in terms of a simple randommatrix ensemble. This is possible only in the largeH limit, where
ourHessians are similar to a generalised Andersonmatrix. For sufficiently lowH correlations between
diagonal and off-diagonal entries are too strong.

In this system, the spectrum is gapped for H ≫ c : for H ∼ c and lower the spectrum becomes
gapless and soft excitations appear. We identify a RS gapless phase and a RSB gapless phase. In the
gapless RS phase we find density of states featuring the quartic law of finite-dimensional glassy sys-
tems. This observation stands also in the spin glass phase, provided that the minimisation goes suffi-
ciently deep in the energy landscape : indeed, by averaging spectra related to minima with different
relative depth in their respective basins, we observe a slight bias towards lower exponents. Only with
sufficiently strong over-relaxation we robustly observe the quartic law. We test the robustness of the
quartic scaling also inm = 2 andm = 4 system, finding a very good agreement with an exponent four.
This results suggests that the statistics of the softest eigenvalues does not depend onm, provided it
is finite.

Finally, we considered the properties of eigenvectors. We find that for anyH > 0 the softest eigen-
vectors are localised : their related density functions decay exponentially from a single microscopic
core of the sample. However, in the spin glass phase we observe in the m = 3 system the existence
of excitations with a multi-core localisation pattern : eigenvectors amplitudes peaked in different re-
gions of the random graph, separated by a long-range distance of the order of logN . We interpret
this as a signal of long-range order. In the XY model (m = 2) this signal is far weaker, suggesting that
them = 3 andm = 2 system may have a different qualitative behavior at the spin glass transition.

Results concerning sparse vector spin glasses are relatively few. Following the thesis work of Dr.
Lupo about the XY model, this chapter has to be considered a continuation of his efforts. To our
knowledge, the sparse Heisenberg model was not studied in past works as we did in this thesis : we
believe then that our work can provide some insight on the nature of the zero temperature spin glass
transition in sparse random graphs.

In these years, we studied most exclusively problems related to linear excitations, but some pro-
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jects considering the problem of non-linear excitations were started. In particular, two interesting
lines of research are the following :

• In the sparse case, the existence of double-well structures can be probed by considering ex-
citations beyond the Hessian, i. e. to expand the Hamiltonian of the system to higher order.
Following [LB21], a study of cubic and quartic excitation modes of the energy landscape can be
pursued. This is particularly relevant for the sparse spin glass model studied in chapter 6.

• The problem of finding algorithms able to solve Parisi equations in the whole spin glass phase
is an interesting line of research. To my knowledge, no systematic numerical studies for vec-
tor models have been carried out. Connected to this problem, it is particularly interesting the
study of avalanches, i. e. abrupt reorganisations of spins orientations following a change of
configuration induced by an external driving force. The study of avalanches can improve the
understanding of the spin glass phase, both in the dense and in the sparse case.

In addition to these considerations, we believe that a detailed study of the best-discretisation of the
sphere and of the sparse model in different networks can be an interesting continuation of our re-
search.
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A - Bessel Functions

Bessel functions are generalisations of oscillatory functions. They are ubiquitous in all transport
processes on variable media, like the propagation of elastic waves on a membrane or along a string
with variable thickness. They were introduced by Friedrich Bessel as canonical solutions of the follo-
wing differential equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0.

A canonical Bessel function of order α (a generic complex number) is written as Jα(x). It holds thefollowing integral representation for integer n
Jn(x) =

1

2π

∫ π

−π
einτ−x sin τdτ

This representation holds for non-integer orders if Rex > 0. In this thesis, modified Bessel functions
were ubiquitous. They are related to canonical Bessel functions through

Iα(x) = i−αJα(ix)

and are also called "hyperbolic Bessel functions". In the following, a formularium for the Iα(z) :• Asymptotic expansion large |z|, |Arg(z)| ≤ π
2 :

Iα(z) ∼
ez√
2πz

(
1− 4α2 − 1

8z
+

(4α2 − 1)(4α2 − 9)

2!(8z)2
− (4α2 − 1)(4α2 − 9)(4α2 − 25)

3!(8z)3
+ . . .

)
• Recurrence relations

2α

z
Iα(z) = Iα−1(z)− Iα+1(z)

dIα
dz

=
Iα−1(z) + Iα+1(z)

2

• Phase space volume of the local field x⃗ acting on a spin
Km(x) ≡

∫
Sm(1)

dmS ex⃗·S⃗

Km(x) =
(2π)m/2Im/2−1(x)

xm/2−1

• Activation function (expresses relation betweenmagnetisation and effective field, see TAP equa-
tions (1.37)) :

gm(x) ≡ d logKm

dx
=

Im/2(x)

Im/2−1(x)

gm(x) ∼


x
m x≪ 1

1− m−1
2x +O(x−2) x≫ 1,m > 1

1− 2e−2x +O(e−4x) x≫ 1,m = 1
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• Special cases
K1(x) = 2 cosh(x) K3(x) = 4π

sinh(x)

x

g1(x) = tanh(x) g3(x) = cothx− 1

x
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B - Expansion of ρ(λ) close to λ = 0

This is a reprint from [Fra+22].
In the following primed quantities will indicate real parts and double primed imaginary parts of

complex variables. In general, the solutions to resolvent equations will be complex if λ lies in the
spectrum of the Hessian. Let us define then x = G0−G(λ)−λ = x′+ix′′ and P̃h(h) = (1−1/m)Ph(h).Detailing the real and immaginary part of the resolvent equation, we have

G′ =

∫
dh P̃h(h)

h+ x′

(h+ x′)2 + (x′′)2
(B.1)

G′′ =

∫
dh P̃h(h)

G′′

(h+ x′)2 + (x′′)2
(B.2)

These equations can be easily solved numerically if we know the distribution of the cavity field h, in
particular this is possible in the paramagnetic phase since the distribution Ph(h) is known exactly.
In this appendix we study analytically the spectral edge. We would like first to illustrate a simple
mechanism implying the absence of spectral gap, for any choice of the parameters in the model,
and then to show that in the whole paramagnetic phase the spectral density presents a pseudo-gap
ρ(λ) ∼ x′′(λ) ∼ λm−1 at small λ.

We can prove that the spectrum is ungapped with the following argument. From the definition
of x, we have x = 0 for λ = 0, while A < 1 in the whole paramagnetic phase. We should then have
x′ = G0 −G′(λ)− λ ≈ −(1 + χSG)λ < 0 for small but positive λ > 0. But in that case, admitting that
x′′ = 0, the resulting integral forG in (B.1) would be divergent. In order to have a convergent result for
x′ < 0 one clearly needs a small imaginary part x′′ ̸= 0. Let us then proceed to estimate the spectrum
in the vicinity of 0. To this aim we observe that defining ϵ = 1 − A, the resolvent equation can be
rewritten as

λ+ ϵx = −
∫
dh P̃h(h)

x2

h2(h+ x)
(B.3)

= −
∫
dh P̃h(h)

x2h+ x|x|2

h2|h+ x|2

= −x2J − x|x|2I

with
J =

∫
dh P̃h(h)

1

h|h+ x|2
(B.4)

I =

∫
dh P̃h(h)

1

h2|h+ x|2

giving
I|x|2 = −ϵ− 2x′J (B.5)
λ = |x|2J
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It is clear that for λ → 0, in order to compensate for the λ-independent term in the first of (B.5) at
small x′ and x′′, the integrals I and J must be dominated by divergent contributions. Using x′′/((h+

x′)2 + (x′′)2) ≈ πδ(h + x′), valid for |x′| ≫ x′′ we can estimate the leading behavior of the integrals
as :

J ≈ π P̃h(|x′|)
|x′||x′′|

(B.6)
I ≈ π P̃h(|x′|)

|x′|2|x′′|

so that
ϵ = π

P̃h(|x′|)
|x′′|

(B.7)
J = ϵ/|x′|
|x′| = λ/ϵ

ρ(λ) =
m

m− 1
|x′′|/π = Ph(λ/ϵ)/ϵ ∼ λm−1/ϵm

This analysis is valid as long as |x′| ≪ ϵ and x′′ ≪ |x′|, i.e. λ/ϵ ≪ λm−1/ϵm or λ ≪ ϵ
m−1
m−2 . As we

approach the critical point, when |x′| ∼ ϵ the singular contribution to J would not be divergent any
more and the analysis needs to be revised.
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C - Statistics of the lowest eigenvalues

The probability distribution of the smallest eigenvalue can be derived very simply once one re-
members that in the RS phase ρ(λ) ∼ Ph(λ/Λ)

Λm for small λ. We have
P(λmin ≤ λ) ≈ 1−

(
1−

∫ λ

0
dλ′

Ph(λ
′/Λ)

Λ

)N−1

1−
(
1−

∫ λ

0
dλ′

Ph(λ
′/Λ)

Λ

)N−1

≈ 1− exp

(
− Nλm

mZmΛm
+O(Nλ2m)

)
where we used Ph(x) ≈ xm−1/Zm. As declared in the main test, the smallest eigenvalue is a Weibull
variable.
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D - Transformationof eigenvectormoments after abase change

Let us consider a random base B = {S⃗, ϵ⃗1, . . . , ϵ⃗m−1}, where ϵ⃗a · S = 0 for any a = 1, . . . ,m− 1. A
generic vector orthogonal to S⃗ can bewritten in this base as v⃗ = a1ϵ⃗1+. . . am−1ϵ⃗m−1 : if its coordinatesare gaussian variables with zero mean and variance σ2, then their transformation in the canonical
base {e⃗1, . . . , e⃗m} of Rm are gaussian variables with zero mean and variance (σ′)2 = (1 − S2

α)σ
2 :

upon performing the angular average, one finds that their second and fourth moments read
m′

2 = (1− 1/m)σ2 m′
4 =

3(m2 − 1)

m(m+ 2)

Generalising this formula to arbitrary gaussian moments, one can compute the geometrical factors
emergening when representing non-rotational invariants eigenvector moments (3.60) in one of the
two bases introduced above. For instance, the IPR from (3.60) in the canonical base reads

IPR =
3(m2 − 1)

Nm2(m+ 2)

∫
Ph(h)dh

|h+G0 − λ−G(λ)|4
. (D.1)

In the base B1 × · · · × BN instead the IPR reads
IPR0 = 3(m− 1)

Nm2

∫
Ph(h)dh

|h+G0 − λ−G(λ)|4
(D.2)

thus the ratio between the two quantities is IPR/IPR0 = (m+ 2)/(m+ 1).
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E - Derivation of Monasson Potential

This is a reprint from [FNR22].
The computation of G = −βnf +Σ follows standard paths [Mon95], for completeness we sketch

it here the main steps :
Zn = eNG =

∑
Sa

e−β
∑n

a=1 H(Sa)

1,n∏
a<b

δ(Sa · Sb − qN)

where∑
S

(·) ≡
N∏
k=1

∫
dS⃗k δ(Sk − 1)(·). Performing the average and usingH(S)H(S′) = Nf(qS,S′) one

gets
eNG = exp

{
Nβ2

2
[nf(1) + n(n− 1)f(q)]

}
ζ(q)

ζ(q) =
∑
Sa

1,n∏
a<b

δ(Sa · Sb − q)

The quantity ζ after oneHubbard-Stratonovich transformation and the integration on spins becomes :
ζ = Stq̂

exp

−N n(n− 1)

2
q̂q +

q̂

2

∑
a̸=b

Sa · Sb


= Stq̂

{
exp

[
−N n(n− 1)

2
q̂q −N n

2
q̂

] [∫
Dq̂h⃗ Y (h)n

]N}
.

Y (h) = (2π)m/2
Im−2

2
(h)

h
m−2

2∫
Dq̂h⃗ (·) ≡

∫
dh⃗

(2πq̂)m/2
e
−h2

2q̂ (·)

Putting everything together and using the saddle point equation q̂ = β2f ′(q) we get
G(n, T ) =

nβ2

2

[
f(1) + (n− 1)(f(q)− qf ′(q))− f ′(q)

]
+ log

∫∞
0 dh hm−1e

− h2

2f ′(q)Y (βh)n∫∞
0 dh hm−1e

− h2

2f ′(q)

 , (E.1)

Y (u) = (2π)m/2
Im−2

2
(u)

u
m−2

2

.

The physical overlap is found by extremizing G with respect to q and is given by
q =

∫∞
0 dh hm−1 exp

[
− h2

2f ′(q)

]
Y (βh)n−2Y ′(βh)2∫∞

0 dh hm−1 exp
[
− h2

2f ′(q)

]
Y (βh)n

. (E.2)
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When T > Td, there is only the q = 0 solution, the system is in a paramagnetic phase with a unique
equilibrium state and

βgpara =
β2f(1)

2
+ logSm. (E.3)

In the range TK < T < Td, (E.2) has a non-trivial solution, corresponding to a non-zero ConfigurationalEntropy : configurations inside the same state have a non-zero overlap, whereas two configurations
belonging to two different states have zero overlap. The stability of the non-trivial q is determined by
the positiveness of the Replicon Eigenvalue of the Replica Free-Energy Hessian :

Λ = 1− β2f ′′(q)
〈{ m

(βh)2

[
Y ′(βh)

Y (βh)

]2
+ (E.4){Y ′′(βh)

Y (βh)
−
[
Y ′(βh)

Y (βh)

]2
− Y ′(βh)

(βh)Y (βh)

}2
+

2Y ′(βh)

(βh)Y (βh)
×
{Y ′′(βh)

Y (βh)
−
[
Y ′(βh)

Y (βh)

]2
− Y ′(βh)

(βh)Y (βh)

}〉
= 1− β2f ′′(q)

[〈( d

dβh

Y ′(βh)

Y (βh)

)2〉
+ (m− 1)

〈( Y ′(βh)

hY (βh)

)2〉] (E.5)

The internal free-energies of TAP states and their Complexity are obtained by eqs.(E.2) and they read
g = −β

2 [f(1) + (2n− 1)f(q)− (2n− 1)qf ′(q) (E.6)
−f ′(q)]− 1

β ⟨lnY (βh)⟩n

Σ = −n2β2

2 [f(q)− qf ′(q)] + ln ζ − n⟨lnY (βh)⟩n (E.7)
where ζ is defined in (E.1) and ⟨·⟩n is an average with respect to

P (h) =
hm−1 exp

[
− h2

2f ′(q)

]
Y [βh]n∫∞

0 dh hm−1 exp
[
− h2

2f ′(q)

]
Y [βh]n

.

Setting q equal to the correct physical value, one can explore different families of metastable states
by varying n at fixed T in the range [TK , Td], whereas the equilibrium values in the same interval
are computed by setting n = 1. The equilibrium Replicon vanishes at Td as (Td − T )1/2 : at higher
temperatures, the thermodynamic equilibrium is completely determined by the paramagnetic state
m = 0. The equilibrium Complexity vanishes at TK as T−TK : for lesser temperature, the Equilibrium
Complexity remains zero, meaning that the Gibbsmeasure is concentrated on the lowest free-energy
states.

The T = 0 limit is performed sending T and n to zero with y = n/T fixed : the result obtained for
the Monasson free energy and the Replicon are retrieved by considering the asymptotic expansions
of Y (x), Y ′(x)/Y (x) and Y ′′(x)/Y (x) :
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Y (x)
x→∞∼ (2π)m/2 ex

xm/2−1

[√
1

2πx
+O

(
1

x

)3/2
]

(E.8)
Y ′(x)

Y (x)

x→∞∼ 1− m− 1

2x
+O

(
1

x

)2 (E.9)
Y ′′(x)

Y (x)

x→∞∼ 1− m− 1

x
+O

(
1

x

)2

. (E.10)
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F - Complexity of Ultra-stable minima

This is reprinted from [FNR22].
In this Appendix we show in greater detail all the computations concerning the Complexity of the

Ultra-Stable Minima of the energy. First of all, we set u − χh0 = ∆, and rewrite the Monasson free
energy with the cavity gap as

G0(y;h0) =
y2

2 [f(1)− f
′(1)]− f ′′(1)

2f ′(1)∆
2 (F.1)

−yf ′′(1)∆− f ′′(1)
2 ∆(∆+ 2χh0) + ln ζ(y;h0)

ζ∆ =

∫∞
h0

dhhm−1e
− h2

2f ′(1)+
h

f ′(1) [f
′′(1)∆+yf ′(1)]

∫∞
0 dhhm−1e

− h2

2f ′(1)

P∆(h) = θ(h−h0)
Z(y;∆) h

m−1e
− h2

2f ′(1)+[yf ′(1)+f ′′(1)∆] h
f ′(1)

By combining the equations in the main text defining χh0 and u and approximating the sums with
integrals, we find that∆ satisfies the self-consistent equation

∆ =
hm−1
0 e

− h20
2f ′(1)+[y+f ′′(1)∆]h0∫∞

h0
dhhm−1 e

− h2

2f ′(1)+[y+f ′′(1)∆]h
≡ P∆(h0) (F.2)

In particular, for small h0 one has (Z0(y) = 1/p0 defined in eq.(??))
∆ =

hm−1
0

Z0(y)
(1 + h0y) +O(hm+1

0 ). (F.3)
The expression of Σ(y;h0) is obtained by applying the definition Σ(y;h0) = yE(y;h0) + G0(y;h0),and the full expression is

Σ(y;h0) = Σ(y; 0)−
[
f ′′(1)2

f ′(1) + f ′′(1)
] (F.4)

×
[
1
2 + yf ′(1)(⟨h⟩∆−h0)

f ′(1)+(⟨h⟩∆−h0)f ′′(1)∆

]
∆2 +

−y[χh0 + yf ′′(1)] f ′(1) (⟨h⟩∆−h0)
f ′(1)+(⟨h⟩∆−h0)f ′′(1)∆∆− χ∆

+
yf ′(1)[f ′′(1)(m−1)−χh0

⟨h⟩∆]

f ′(1)+f ′′(1)(⟨h⟩∆−h0)∆
∆

−yf ′(1)[⟨h⟩∆−⟨h⟩0]−⟨h⟩0(⟨h⟩∆−h0)∆
f ′(1)+(⟨h⟩∆−h0)∆

+ ln[ζ∆(y)/ζ0(y)]

where ⟨·⟩∆ is amean according toP∆ in (F.1). This nasty expression canbe simplified a lot by expanding
for low cavity gap : by substituting (F.3) one gets

Σ = Σ0 −
[
1 + y ⟨h⟩0
mZ0

]
hm0 +O(hm+1

0 ). (F.5)
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For h0 = O(1), Σ becomes proportional to h(max)
0 (y)− h0, thus vanishing at a certain maximal cavity

gap. This last quantity is O(1) far from ygs ; as this point is approached, the maximal cavity gap is
expected to vanish, since ultra-stable minima cannot be lower in energy than the ground state level.
Taking Σ = 0 in (5.41), we can consider Σ0 small and expand it linearly in ygs − y, getting[

1+y ⟨h⟩0
mZ0

]
(hmax

0 )m ≃ dΣ0
dy (ygs)(ygs − y)

h
(max)
0 ≃ A (ygs − y)1/m (F.6)

A =
[
(mZ0)

Σ′
0(y)

1+y⟨h⟩0

]1/m ∣∣∣
y=ygs

(F.7)
that is, a singularity approaching ygs.
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G - Response function of Ultra-Stable minima

This is reprinted from [FNR22].
This appendix is devoted to the computation of the linear response function of the system when

perturbed in a ultra-stable configuration at zero temperature : we show that the linear response func-
tion in this case is given by the order parameter u, which satisfies

u = χh0 + P∆(h0)

Suppose to perturb the systemwith an external field ϵ⃗i on each site : the static linear response functionis given by
R = 1

N

∑
i,αR

αα
ii (G.1)

Rαβ
ij =

∂⟨Sα
i ⟩

∂ϵβj

∣∣∣
ϵ=0

(G.2)
where off-diagonal terms of the response matrix are neglected since their disorder average is zero.
Here ⟨·⟩ is an average according to Kac-Rice-Moore measure :

PKRM ∝ e−yH
∏
i,α

δ
(
Hα′

i − µiSα
i

) ∣∣det (H ′′ − diag(µ))∣∣
Then, one has for the response

Rαα
ii = ⟨(Sα

i )
2⟩ − ⟨Sα

i ⟩2 + i⟨Sα
i Ŝ

α
i ⟩ (G.3)

→ R = 1
N

N∑
k=1

⟨S⃗k · i ⃗̂Sk⟩

where Ŝα
i are Lagrange multipliers that ensures the S configuration is one of minimum of H (they

are obtained from the Fourier Representation of the delta function in (G.3)). After performing similar
passages to those used to derive the zero-temperature Monasson potential of ultra-stable minima,
one finds for the relevant part of the integrals involved in the second eq. of (G.3)

∏
l

∫
dµ⃗l
∫
d
⃗̂
Sl (S⃗k · i ⃗̂Sk)e−

f ′(1)
2

Ŝ2
l −i[µl−u−yf ′(1)](S⃗k·i

⃗̂
Sk) ∝

∝ −
∫
dµ ∂ e

−
∑

l
c2l

2f ′(1)
∂ck∫

dµ e
−

∑
l

c2
l

2f ′(1)

∣∣∣
cl≡µl−u−yf ′(1)

= µ−u−yf ′(1)
f ′(1)

The remainder of the integrals and factors cancel out with the normalization, and in the end we get
R =

1

N

∑
k,α

Rαα
kk =

1

f ′(1)
[µ− u− yf ′(1)] ≡ u. (G.4)
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To conclude this Appendix, we show that u is always smaller than the susceptibility χ of the typical
minimum configurations. From the definition of χh0 (eq.(5.34))

χh0 = χ− (m−1)
∫ h0
0 dhhm−2e

− h2

2f ′(1)+[yf ′(1)+f ′′(1)∆] h
f ′(1)∫∞

h0
dhhm−1e

− h2

2f ′(1)+[yf ′(1)+f ′′(1)∆] h
f ′(1)

≡ χ−Q(h0) < χ

one finds
u = χ− [Q(h0)− P∆(h0)].

We notice that Q(h0) = (m − 1)
∫ h0

0 dh g̃(h) and P∆(h0) = h0g̃(h0), and thus we must determine
if (m − 1)

∫ h0

0 dhg̃(h) − h0g̃(h0) > 0 ; this inequality is indeed always verified for m > 2, since in this
circumstance Q is a convex function : we conclude that u < χ. In particular, for small h0 it holds

u = χ− 1

Z0
[(m− 1)(m− 2)− 1]hm−1

0 +O(hm0 ). (G.5)
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H - Spectrum of Ultra-Stable minima

This is reprinted from [FNR22].
When a cavity gaph0 is present, one has a spectral gapλ0 > 0 if the quantity Rex(λ) = f ′′(1)[χh0−

GR(λ)]−λ satisfies |Rex(λ0)| < h0 : in these circumstances, the spectral gap is determined by solving
1 = (m− 1)f ′′(1)

∫∞
h0
dh

Ph0
(h)

[h+Rex(λ0)]2
(H.1)

λ0 = (m− 1)(Rex(λ0))2 ∫∞
h0
dh

Ph0
(h)

h [h+Rex(λ0)]2
.

We shall now consider the small h0 limit of these last equations and the two cases y > ymg and
y = ymg. Let’s begin with y > ymg : the first integral in H.13 is dominated by the values of h close to the
cavity gap h0 ; here Ph0(h0) ∼ h

m−1
0 , thus integrating in a small region [h0, c h0] we get (x0 ≡ x(λ0))

1 ∼ (1−1/c)(−x0)(m−1)

Zh0
(h0+x0)

x0 ∼ −h0 + (1−1/c)
Zh0

|x0|m−1 (H.2)
which ensures us that |x0| < h0. Then, rearranging the second of H.13

λ0 = f ′′(1)χh0 − x0 − f ′′(1)(m− 1)

〈
1

h+ x0

〉
h0

expanding 1/(h+ x0) in x0/h and simplifying :
λ0 = Λ|x0| − f ′′(1)(m− 1)x20

〈
1

h3

〉
h0

+O(x30)

and plugging into this last equation eq. (H.14), it is found at leading order in h0
λ0 = Λh0 +O(h20) (H.3)

We consider now the case y = ymg , i.e. Λ = 0. Here one finds from the first of (H.13)〈
1

h2

〉
0

=

〈
1

(h+ x0)2

〉
h0

(H.4)
which after a few manipulation yields

(H.5)

|x0| =


hm−2
0

2 (m−2)Z0 ⟨1/h3⟩0 +O(hm−1
0 ), m > 3

h0
2 | lnh0| +O(h20), m = 3

(H.6)
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From the second of (H.13) then expanding Λh0 , setting Λ = 0 and keeping terms up to order x20, wefind
λ0 =


[

f ′′(1)(m−1)
4 (m−2)2 Z2

0 ⟨1/h3⟩0

]
h
2(m−2)
0 +O(h

2(m−1)
0 ), m > 3

[
f ′′(1)
2 Z0

]
h2
0

| lnh0| +O(h40), m = 3.

(H.7)

We shall now consider the scaling of the spectral density and of the IPR close to λ0. The equationsfor I and J found for instance in B are still valid if one replaces the ungapped P0(h) with the gappedone Ph0(h) :
λ+ Λh0x = −x2 Jh0 − x|x|2 Ih0

Jh0(λ) = f ′′(1)(m− 1)

〈
1

h|h+ x|2

〉
h0

Ih0(λ) = f ′′(1)(m− 1)

〈
1

h2|h+ x|2

〉
h0

Differently from the gapless case, here the integrals Jh0 and Ih0 are always finite in the limit λ→ λ0,for any ymg ≤ y ≤ ygs : at λ = λ0, it follows directly from h0 + x0 > 0. For λ > λ0, one finds
h+ x ≃ h+ x0 − m−3

m−2(λ− λ0) + Imx, since dRex(λ0)/d λ = −m−3
m−2 ; so the integrals are well definedif and only h0 + x0 + Imx > m−3

m−2(λ− λ0), so necessarily Imx≫ O(λ− λ0). In fact, one finds that thespectral density has a square root behavior close to the spectral edge :

ρ ≃
√

(1−Ch0
)(λ−λ0)

Jh0
(H.8)

Ch0 = |x0|
(
m−3
m−2

)
[2 J0 + |x0| (dJ(x0)/dx)] (H.9)

Jh0 = f ′′(1)(m− 1)
〈

1
h(h+x0)2

〉
h0

(H.10)
As a consequence, the related lower edge eigenvectors of ultra-stable minima are found to be

fully delocalised. Indeed, the IPR close to the spectral edge for y > ymg behaves as
N IPR(λ) ∝

∫ ∞

h0

dhPh0(h)

|h+ x|4
=

∫ ∞

h0

dhPh0(h)

(h+ x0)4

+O(λ− λ0) ≈
|x0|m−1

3Z0 (h0 + x0)3
∼ h−2 (m−1)

0 (H.11)
At the critical point we find by similar manipulations

N IPR(λ0) ∼


1/h0, m = 3

lnh0, m = 4

const, m ≥ 5.

(H.12)
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When a cavity gap h0 is present, one has a spectral gap λ0 > 0 if the quantity Rex(λ) = f ′′(1)[χh0 −
GR(λ)]−λ satisfies |Rex(λ0)| < h0 : in these circumstances, the spectral gap is determined by solving

1 = (m− 1)f ′′(1)
∫∞
h0
dh

Ph0
(h)

[h+Rex(λ0)]2
(H.13)

λ0 = (m− 1)(Rex(λ0))2 ∫∞
h0
dh

Ph0
(h)

h [h+Rex(λ0)]2
.

We shall now consider the small h0 limit of these last equations and the two cases y > ymg and
y = ymg. Let’s begin with y > ymg : the first integral in H.13 is dominated by the values of h close to the
cavity gap h0 ; here Ph0(h0) ∼ h

m−1
0 , thus integrating in a small region [h0, c h0] we get (x0 ≡ x(λ0))

1 ∼ (1−1/c)(−x0)(m−1)

Zh0
(h0+x0)

x0 ∼ −h0 + (1−1/c)
Zh0

|x0|m−1 (H.14)
which ensures us that |x0| < h0. Then, rearranging the second of H.13

λ0 = f ′′(1)χh0 − x0 − f ′′(1)(m− 1)

〈
1

h+ x0

〉
h0

expanding 1/(h+ x0) in x0/h and simplifying :
λ0 = Λ|x0| − f ′′(1)(m− 1)x20

〈
1

h3

〉
h0

+O(x30)

and plugging into this last equation eq. (H.14), it is found at leading order in h0
λ0 = Λh0 +O(h20) (H.15)

We consider now the case y = ymg , i.e. Λ = 0. Here one finds from the first of (H.13)〈
1

h2

〉
0

=

〈
1

(h+ x0)2

〉
h0

(H.16)
which after a few manipulation yields

(H.17)
|x0| =


hm−2
0

2 (m−2)Z0 ⟨1/h3⟩0 +O(hm−1
0 ), m > 3

h0
2 | lnh0| +O(h20), m = 3

(H.18)

From the second of (H.13) then expanding Λh0 , setting Λ = 0 and keeping terms up to order x20, wefind
λ0 =


[

f ′′(1)(m−1)
4 (m−2)2 Z2

0 ⟨1/h3⟩0

]
h
2(m−2)
0 +O(h

2(m−1)
0 ), m > 3

[
f ′′(1)
2 Z0

]
h2
0

| lnh0| +O(h40), m = 3.

(H.19)
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We shall now consider the scaling of the spectral density and of the IPR close to λ0. Equations (??)are still valid if one replaces the ungapped P0(h) with the gapped one Ph0(h) :
λ+ Λh0x = −x2 Jh0 − x|x|2 Ih0

Jh0(λ) = f ′′(1)(m− 1)

〈
1

h|h+ x|2

〉
h0

Ih0(λ) = f ′′(1)(m− 1)

〈
1

h2|h+ x|2

〉
h0

Differently from the gapless case, here the integrals Jh0 and Ih0 are always finite in the limit λ→ λ0,for any ymg ≤ y ≤ ygs : at λ = λ0, it follows directly from h0 + x0 > 0. For λ > λ0, one finds
h+ x ≃ h+ x0 − m−3

m−2(λ− λ0) + Imx, since dRex(λ0)/d λ = −m−3
m−2 ; so the integrals are well definedif and only h0 + x0 + Imx > m−3

m−2(λ− λ0), so necessarily Imx≫ O(λ− λ0). In fact, one finds that thespectral density has a square root behavior close to the spectral edge :

ρ ≃
√

(1−Ch0
)(λ−λ0)

Jh0
(H.20)

Ch0 = |x0|
(
m−3
m−2

)
[2 J0 + |x0| (dJ(x0)/dx)] (H.21)

Jh0 = f ′′(1)(m− 1)
〈

1
h(h+x0)2

〉
h0

(H.22)
As a consequence, the related lower edge eigenvectors of ultra-stable minima are found to be

fully delocalised. Indeed, the IPR close to the spectral edge for y > ymg behaves as
N IPR(λ) ∝

∫ ∞

h0

dhPh0(h)

|h+ x|4
=

∫ ∞

h0

dhPh0(h)

(h+ x0)4

+O(λ− λ0) ≈
|x0|m−1

3Z0 (h0 + x0)3
∼ h−2 (m−1)

0 (H.23)
At the critical point we find by similar manipulations

N IPR(λ0) ∼


1/h0, m = 3

lnh0, m = 4

const, m ≥ 5.

(H.24)
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I - Typical subtrees in random regular graphs

In this appendixwe estimate the distance froma reference vertex atwhich the first loop containing
the same vertex appears. In order to do this, we consider the exact number of neighbors at distance
d on a random regular graph and the same quantity in a regular tree : these are given for d > 0 by
the following formulae [Tis+22]

N(d) = Neη
{
e−η(c−1)d−1 − e−η(c−1)d

} (I.1)
Ntree(d) = c(c− 1)d−1. (I.2)

where η = c
N(c−2) . In figure I.1 we compare numerical measures of the number of neighbors at dis-

tance d in a RRG with formula (I.1). The distance of first loop d∗ is estimated through the equation
Ntree(d∗)− N(d∗) = 2. (I.3)

Indeed, imagine to generate a graph by starting froma generic root : after forming the first generation,
one can progressively assign links in sequence, leaf by leaf, forming new generations. By definition,
a loop is created whenever two leaves belonging to the same generation are connected with each
other : this implies two less leaves for that shell, compared with what would be expected in a regular
tree. We can get an explicit expression for d∗ by expanding Eq. (I.3) for η(c− 1)d small, corresponding
to

d≪
log
[
(c−2)N

c

]
log(c− 1)

≡ L (I.4)
where this last quantity defines the global scale of the graph. Retaining terms up to order 1/N , Eq.
(I.3) can be rewritten as a second degree algebraic equation

Ntree(d∗)
2 − 2Ntree(d∗)−

4(c− 2)

c
N = 0

and we extract d∗ for large N from its solution, finding

d∗ =
1

2

log
[
(c−2)N

c

]
log(c− 1)

+

[
1− log(c/2)

log(c− 1)

]
=
L

2
+ const (I.5)

that is, first loops typically form at a scale which is half the global scale of the system. Notice that
the reasoning behind this derivation can be easily generalised, yielding the typical distance at which
O(Na) loops are created, for some 0 < a < 1. One can easily verify that

d
(a)
∗ =

(
1 + a

2

)
L+ const. (I.6)
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Figure I.1 – Number of neighbors at distance d in a Random Regular Graph with connectivity c = 3.Numerical measures are compared with the analytical prediction.
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