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Introduction générale

Ce travail de thèse porte sur un problème de numération dépendant, par nature, de la manière d'écrire les nombres. Cela amène à une première question mathématique.

Comment écrire les nombres ?

La réponse n'est pas si simple. Historiquement déjà, c'est très compliqué. La réponse ferait intervenir beaucoup de civilisations différentes : égyptienne, grecque, chinoise,• • • Et, bien qu'étant passionnante, cette histoire sera probablement mal rapportée par un étudiant en mathématiques qui écrirait son introduction de thèse. Mathématiquement par contre, l'exercice sera plus simple. En fait, il existe plusieurs façons d'écrire les nombres. La plus usuelle est, du fait de nos dix doigts, le système de numération positionnel décimal. Son principe provient de la propriété que, pour tout entier naturel non nul n, il existe une unique suite de poids (n k ) k≥0 dans l'ensemble {0, 1, • • • , 9}, appelés chiffres, telle que n = k≥0 n k 10 k .

Bien entendu, il n'y a qu'un nombre fini de poids non-nuls. On note donc ℓ := max{i : n i ̸ = 0} et ainsi réduire la formule plus haut en

n = n ℓ × 10 ℓ + • • • + n 1 × 10 1 + n 0 .
Il en découle l'écriture dite en base 10 (ou décimale) de n

n ℓ • • • n 0 10 := n = ℓ k=0 n k 10 k .
Dans l'expression système de numération positionnel décimal, le mot décimal provient du fait qu'il y a 10 chiffres possibles et le mot positionnel du fait que la valeur d'un chiffre dépend de la position de celui-ci dans le nombre (il y a le chiffre des unités, celui des dizaines, celui des centaines, • • • ). Le mathématicien aime bien effacer les particularités des exemples qu'il choisit pour en tirer l'essence d'un problème plus général de sorte à y révéler des structures dissimulées sous leur surface. Après tout, pourquoi donner autant d'importance au nombre 10 ? En effet, si l'être humain avait eu 12 doigts, il aurait alors imaginé un système d'écriture adapté à ses 12 doigts et, cela, aussi naturellement que, nous, nous avons imaginé notre système décimal. Le nombre 10 n'a pas plus d'importance que le nombre 12. Ainsi, on peut généraliser ce système d'écriture décimal en un système de numération positionnel en base entière. Fixons un entier b ≥ 2, ce sera notre base de numération. Le principe est le même qu'en base 10 : tout entier naturel non nul n peut s'écrire à l'aide d'une unique suite de poids (n k ) k≥0 dans l'ensemble {0, 1, • • • , b -1}, que nous appellerons encore chiffres, telle que

n = k≥0 n k b k .
Comme tout à l'heure, il n'existe qu'un nombre fini de poids strictement positifs, on note ℓ l'indice maximal du dernier chiffre non nul et on écrit n en base entière comme

n ℓ • • • n 0 b := n.
On a vu que le cas b = 10 est le plus usité dans le monde. Le cas b = 2 est son concurrent direct : c'est le système de numération positionnel binaire (ou binaire simplement). En effet, c'est le langage des ordinateurs où, par "ordinateurs", on entend "tout appareil qui contient une unité centrale de traitement".

On peut aller encore plus loin dans la généralisation ! En effet, jusqu'à présent, on a décomposé les entiers selon une suite de puissances en pondérant chaque terme par un chiffre de la base (entière) b. Mais, après tout, pourquoi une suite de puissances ? Pourquoi ne pas décomposer les entiers selon une simple suite de nombres entiers ? Et bien, parce que ça ne marche pas toujours. Une suite permettant de décomposer les nombres entiers en une somme de ces termes est appelé une suite complète. Mais être complète n'est pas suffisant si l'on souhaite (et c'est plutôt pratique) l'unicité de l'écriture. On peut l'obtenir en ajoutant des contraintes à l'éventuelle décomposition. Voici un exemple d'une telle généralisation. Elle fait entrer en scène une suite qui est très probablement la plus connue du monde mathématique : la suite de Fibonacci. Elle est définie comme suit

   F 1 = 1, F 2 = 1, F k = F k-1 + F k-2 si k ≥ 3.
À partir de cette suite, on peut effectivement définir un système de numération : tout entier naturel non-nul peut se décomposer comme une somme de termes de la suite de Fibonacci. Cependant, il n'y a pas unicité de la décomposition. Pour l'avoir, il faut, comme on l'a suggéré plus tôt, ajouter une contrainte d'écriture. Ici, on interdira l'utilisation de deux termes consécutifs. Le théorème de Zeckendorf [START_REF] Zeckendorf | Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas[END_REF] dit que pour tout entier naturel non nul n, il existe une unique suite de chiffres (n k ) k≥2 dans {0, 1} ne contenant jamais deux 1 consécutifs et telle que

n = k≥2 n k F k .
Comme d'habitude, il n'y a en réalité qu'un nombre fini de termes dans cette sommation. Notons encore ℓ l'indice du dernier terme de la suite utilisé. Cela conduit à l'écriture

n ℓ • • • n 2 Z := n.
On peut penser à d'autres pistes de généralisations comme des systèmes de numérations où b n'est pas un entier mais un nombre réel. Et bien, sous conditions, il est possible d'imaginer de tels systèmes d'écriture mais ils rendront notre problème très différent. Mais d'ailleurs...

Et notre problème dans tout ça ?

Étant donné un entier r ∈ N, notre problème consiste à étudier la variation de la somme des chiffres lorsqu'on ajoute r à un entier. Plus précisément, en notant s(n) la somme des chiffres de n dans un système d'écriture fixé, on s'intéresse à la suite

∆ (r) (n) := s(n + r) -s(n).
Comme annoncé dans les premières lignes de l'introduction, notre problème dépend effectivement de la manière d'écrire les nombres. Dans cette thèse, le premier chapitre porte sur l'étude de cette suite dans le cas des systèmes en base entière et le second dans le cas de la représentation de Zeckendorf. La dépendance des notations au système d'écriture est consciemment omise : on fixera une base entière b dans le premier chapitre et le second chapitre sera traité indépendamment du premier.

L'intérêt porté à cette suite vient du fait que cette variation est intrinsèquement liée au comportement de l'addition dans le système de numération considéré. En effet, en base b ≥ 2, si on note c le nombre de retenues créées pendant l'addition n + r (en base b) alors

∆ (r) (n) = s(r) -c(b -1).
En binaire, l'étude de cette suite a beaucoup d'intérêt dans la compréhension des erreurs qu'une unité centrale de traitement pourrait faire.

Toute étude de suites devrait commencer par le calcul des premiers termes. Sur la Figure 1, on a tracé quelques exemples pour divers systèmes de numérations.

Visuellement, on peut constater que les valeurs prises par ∆ (r) sont réparties d'une manière plus ou moins régulière. On a envie de dire que ∆ (r) prend une valeur donnée pour une certaine proportion d'entiers. Une question naturelle (a priori mal posée) est donc à quel point ∆ (r) peut prendre une valeur donnée ? Dans le cas où la base est un nombre entier, on remarque que chaque ligne de niveau présente une périodicité : en fait, Bésineau a montré dans [START_REF] Bésineau | Indépendance statistique d'ensembles liés à la fonction "somme des chiffres[END_REF] que chaque ligne contient un nombre fini de suites arithmétiques. Il démontre que, dans le cas de la base entière, pour tout entier relatif d ∈ Z, la limite lim

N →+∞ 1 N |{n < N : ∆ (r) (n) = d}|
existe. Cette limite est la densité asymptotique de l'ensemble {n ∈ N : ∆ (r) (n) = d}. On la note µ (r) (d). Ainsi, Bésineau a montré qu'en base entière, la question plus haut est bien posée. Comme souvent en recherche, répondre à une question pousse à s'en poser (au moins) une nouvelle... ici on se demande assez naturellement combien peut valoir µ (r) (d) ? Bésineau a alors poussé son étude et est parvenu à la formule suivante : si k est un chiffre en base b ≥ 2 alors, pour tout d ∈ Z

µ (br+k) (d) = b -k b µ (r) (d -k) + k b µ (r+1) (d + b -k). (1) 
Il s'agit d'une relation de récurrence sur la famille de mesures (µ (r) ) r∈N où, à chaque application de celle-ci, on fait baisser le nombre de chiffres de r. Il suffit donc de connaître les mesures µ (r) pour les entiers r dont l'écriture en base b ne contient qu'un chiffre pour en déduire toutes les autres mesures. En réalité, il suffit de ne connaître que µ (0) et µ (1) . En calculant ces deux mesures, Bésineau s'est rendu compte que celles-ci étaient des mesures de probabilité et donc, par (1.1), les mesures µ (r) en sont également. Il a continué son étude en montrant des résultats d'indépendances statistiques : si on se donne b 1 et b 2 deux bases de numération entières premières entres-elles alors l'étude de ∆ (r) dans le premier système de numération est, en quelque sorte, indépendante de l'étude dans le second système.

Dans le cas de la représentation de Zeckendorf, des pistes ont commencé à apparaître dans la thèse [START_REF] Spiegelhofer | Correlations for numeration systems[END_REF] de Spiegelhofer qui, avec des arguments légèrement différents de ceux de Bésineau, a montré que la densité asymptotique de {n ∈ N : ∆ (r) (n) = d} existe également. Cependant, il n'y a pas de formule semblable à (1) connue à ce jour.

En 2012, T.W. Cusick a proposé une conjecture qui a dynamisé la recherche dans ce domaine. C'est une conjecture qui concerne le système de numération binaire.

Conjecture (de Cusick.). Soit r un entier. Dans le cas binaire, µ (r) (N) > 1 2 . Cette conjecture a de multiples traductions : elle revient à borner strictement par 2 r le nombre de racines du polynôme (X + 1)(X + 2) • • • (X + r) dans Z / 2 r+1 Z ; elle se traduit également par des conjectures de divisibilités dans les colonnes ou les lignes de triangles de Pascal ; un autre énoncé équivalent peut faire intervenir des écritures hyperbinaires dont on ne parlera pas ici. Toutes ses traductions sont détaillées dans l'article [START_REF] Drmota | On a conjecture of Cusick concerning the sum of digits of n and n + t[END_REF] publié par Drmota, Kauers et Spiegelhofer.

Mais revenons-en à la conjecture énoncée plus haut : derrière la simplicité de son écriture se cache une réelle difficulté dans la recherche de sa démonstration. Cependant, avec un ordinateur et à l'aide de l'équation (1), on peut vérifier qu'elle est valable pour un grand nombre d'entiers : cela a été donc fait pour r ≤ 2 30 . Le dynamisme créé a amené à la découverte de bon nombre de résultats. Chronologiquement, Morgenbesser et Spiegelhofer ont démontré dans [START_REF] Morgenbesser | A reverse order property of correlation measures of the sum-of-digits function[END_REF] une propriété étonnante valable en base entière : renverser l'ordre des chiffres de r ne modifie pas la loi µ (r) . Ensuite, Spiegelhofer a soutenu sa thèse [START_REF] Spiegelhofer | Correlations for numeration systems[END_REF] dans laquelle figurait le résultat d'existence de la densité asymptotique dans le cas Zeckendorf dont on a parlé plus haut mais également, à l'aide de son point de vue d'arithméticien, il a démontré que la Conjecture de Cusick est vraie pour un ensemble d'entiers de densité 1. Cette découverte a fait l'objet de l'article [START_REF] Drmota | On a conjecture of Cusick concerning the sum of digits of n and n + t[END_REF] co-écrit avec Drmota et Kauers. Ensuite, Emme a, dans le cadre de sa thèse, élargi la vision probabiliste de ce sujet. D'une collaboration avec Prikhod'ko est ressorti l'article [START_REF] Emme | On the asymptotic behavior of density of sets defined by sum-of-digits function in base 2[END_REF] dans lequel est décrit le comportement asymptotique de la mesure µ (r) dans le cas binaire à mesure que le nombre de motifs 01 augmente dans l'écriture binaire de r. En particulier, ils en déduisent un contrôle de la variance de µ (r) selon ce nombre de motifs. Aussi, dans les articles [START_REF] Emme | Normal distribution of correlation measures of binary sumof-digits functions[END_REF] et [START_REF] Emme | Central limit theorem for probability measures defined by sum-of-digits function in base 2[END_REF], Emme et Hubert montrent que, dans le cas binaire, la mesure µ (r) satisfait un Théorème Central Limite (TCL), à renormalisation près et à "un tirage presque sûr" de r. Leur technique consiste à montrer la convergence des moments de la loi renormalisée vers les moments de la loi normale centrée-réduite. Leur TCL implique que la valeur 1 2 est un point d'accumulation pour la Conjecture de Cusick. Très récemment, en 2021, Spiegelhofer et Wallner ont prouvé dans [START_REF] Spiegelhofer | The digits of n+t[END_REF] que la Conjecture de Cusick est vérifiée dès que l'écriture binaire de r fait intervenir assez de motifs 01 (au sens "plus qu'une quantité explicite").

Objectifs, approche et résultats.

Notre souhait de départ est de démontrer un TCL valable dans les systèmes de représentation de base entière et de Zeckendorf en explicitant davantage l'ensemble des r pour lesquels les mesures µ (r) renormalisées s'approchent d'une loi normale. Les mesures étant des lois de probabilité, il paraît judicieux, pour les étudier, de se placer dans le cadre d'un espace probabilisé adapté au problème :

• en base entière b : les entiers b-adiques (ils généralisent les entiers naturels écrits en base b, mais avec une infinité de chiffres) ou

• en représentation de Zeckendorf : les entiers Z-adiques (ils généralisent de la même manière l'écriture des entiers naturel dans ce système de numération).

Ces espaces d'entiers b-adiques ou Z-adiques sont munis de transformations appelées "odomètres" qui modélisent l'addition de 1 dans le cadre de ces entiers généralisés. Ainsi, plutôt que de voir ce problème sur les entiers naturels, on le regarde plutôt par le prisme de l'espace probabilisé des entiers adiques. À ce niveau, il convient de distinguer les systèmes de numération.

En On définit, de plus, la quantité ρ(r) comme étant le nombre de blocs dans l'écriture en base b de r. Les TCL dans le cadre de processus mélangeants ont été bien étudiés (voir par exemple [START_REF] Billingsley | Probability and measure[END_REF][START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF][START_REF] Herrndorf | A functional central limit theorem for strongly mixing sequences of random variables[END_REF][START_REF] Jiang | A self-normalized central limit theorem for ρ-mixing stationary sequences[END_REF][START_REF] Peligrad | Invariance principles for mixing sequences of random variables[END_REF][START_REF] Politis | Subsampling. Springer Series in Statistics[END_REF][START_REF] Rio | About the Lindeberg method for strongly mixing sequences[END_REF][START_REF] Rio | Inequalities and limit theorems for weakly dependent sequences[END_REF][START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF][START_REF] Kazys | Some estimates of the normal approximation for ϕ-mixing random variables[END_REF]). Néanmoins, nous avons besoin d'avoir un bon contrôle de la variance pour pouvoir obtenir un tel TCL. Le résultat suivant généralise le résultat en base 2 d'Emme et Priokhod'ko présent dans [START_REF] Emme | On the asymptotic behavior of density of sets defined by sum-of-digits function in base 2[END_REF]. Il donne un contrôle de la variance de µ (r) selon le nombre de blocs, valable en toute base.

Théorème (Theorem 1.1.2). Pour tout entier r ≥ 1 b 4 ρ(r) ≤ Var(µ (r) ) ≤ 2b 2 ρ(r).
Ce contrôle de variance a été obtenu dans la Section 1.3 et a pu être trouvé grâce à la relation de récurrence (1) sur µ (r) . En notant σ r := Var(µ (r) ) > 0, il nous permet de considérer la loi renormalisée suivante

∀d ∈ Z, µ (r) d σ r := µ (r) (d).
La mesure µ (r) est ainsi une mesure sur R concentrée sur les points de la forme d σr avec d ∈ Z. Le contrôle de variance associé à de bonnes propriétés de mélange (Lemme 1.4.3) nous a permis d'établir le TCL avec vitesse suivant.

Théorème (Theorem 1.1.3,1.1.4). On a la convergence en loi

µ (r) d ------→ ρ(r)→+∞ N (0, 1).
Plus précisément, si F r (respectivement F ) est la fonction de répartition de µ (r) (respectivement N (0, 1)), alors on a l'existence d'une constante K > 0 telle que

sup t∈R |F r (t) -F (t)| ≤ K ρ(r) 1 8 
.

Le lecteur pourra se référer aux Sections 1.1 et 1.5 du Chapitre 1 pour avoir des commentaires plus approfondis de ce résultat ainsi que sa démonstration. Nous précisons enfin que ce premier chapitre a fait l'objet d'une soumission à une revue.

En représentation de Zeckendorf

Le problème de variation de la somme des chiffres dans ce système de numération est plus difficile à appréhender qu'en base entière. Cette difficulté provient de l'étrangeté de l'addition dans ce système de numération : contrairement à l'addition en base entière, l'addition en représentation de Zeckendorf peut faire reculer des retenues ! Un travail de compréhension de ce phénomène est donc établi dans la Section 2.2. Ce comportement inhabituel de l'addition implique que certains résultats (quasiment) triviaux valables en base entière ne le sont plus dans ce système. Pire encore, ils peuvent devenir faux ! La formule (1) permettant, en base entière, le calcul de µ (r) en est un exemple. Avant de pouvoir développer des résultats, il faut commencer par adapter la méthodologie introduite en base entière. Les tours correspondant à l'odomètre étant plus complexes qu'en base entière (elles sont deux à chaque étape), il faut adapter la méthodologie à ce nouveau système de numération. Ainsi, dans la Section 2.4 et les Sous-sections 2.3.1 et 2.2.2, on étend ∆ (r) aux entiers Z-adiques et on démontre que ∆ (r) est une variable aléatoire centrée possédant des moments finis de tous ordres.

De plus, ainsi qu'en base entière, on a décomposé ∆ (r) en une somme de variables aléatoires formant un processus mélangeant. Ce processus possède de bonnes propriétés de mélange que l'on décrit dans la Section 2.7, plus précisément, dans le Théorème 2.1.5. On peut alors espérer obtenir un TCL si nous arrivons à obtenir un contrôle de variance similaire à celui trouvé en base entière.

Cependant, un tel contrôle n'est, ici, pas clair du tout parce que des relations vérifiées par µ (r) semblables à (1) ne sont (pour l'instant) pas connues. On peut néanmoins imaginer des pistes de réponses que l'on indiquera en Perspectives.

Malgré l'absence d'une formule semblable à (1), nous avons, grâce aux tours de Rokhkin, réussi à établir un algorithme effectuant le calcul de la mesure µ (r) . Une description de cet algorithme est donnée dans la Section 2.5 et, plus précisément, un code en pseudo-langage est écrit dans la Sous-section 2.5.2. Aussi, bien qu'étant énoncé et étudié dans ce système de représentation, cet algorithme s'adapte parfaitement au système en base entière. Il possède deux corollaires importants que nous énonçons. Le premier donne un contrôle de la queue de distribution de µ (r) .

Théorème (Théorème 2.1.1). Pour d assez petit dans Z

µ (r) (d -1) = µ (r) (d) × 1 φ 2 .
On peut adapter ce résultat pour obtenir une formule similaire en base entière. L'autre corollaire est le résultat suivant.

Théorème (Théorème 2.1.2). Pour ℓ ≥ 3 µ (F ℓ ) = µ (1) .

Ce résultat est incontestablement trivial en base entière (en remplaçant F ℓ par b ℓ et via (1)) mais il ne l'est pas du tout en représentation de Zeckendorf à cause du comportement inhabituel des retenues que l'on a mentionné précédemment.

Chapitre 1

A central limit theorem for the variation of the sum of digits Abstract. We prove a Central Limit Theorem for probability measures defined via the variation of the sum-of-digits function, in base b ≥ 2. For r ≥ 0 and d ∈ Z, we consider µ (r) (d) as the density of integers n ∈ N for which the sum of digits increases by d when we add r to n. We give a probabilistic interpretation of µ (r) on the probability space given by the group of b-adic integers equipped with the normalized Haar measure. We split the base-b expansion of the integer r into so-called "blocks", and we consider the asymptotic behaviour of µ (r) as the number of blocks goes to infinity. We show that, up to renormalization, µ (r) converges to the standard normal law as the number of blocks of r grows to infinity. We provide an estimate of the speed of convergence. The proof relies, in particular, on a ϕ-mixing process defined on the b-adic integers.

Keywords. Sum of digits, Central Limit Theorem, b-adic odometer, ϕ-mixing. MSC (2020). 11A63, 37A44 and 60F05. For an integer n, we consider the associated sequence of digits For n ̸ = 0 and ℓ := max{k : n k ̸ = 0}, we introduce the notation n ℓ • • • n 0 := n, which generalises the usual way we write numbers in base 10, and which we refer to as the (base b) expansion of n. By convention, we set 0 := 0. Then, we define the sum-of-digits function (in base b) as

Introduction

(n k ) ∈ {0, • • • , b -1} N ,
s(n) := k≥0 n k .
A central object in our paper is the variation of the sum of digits when we add a fixed integer r to n: for r, n ∈ N, we set

∆ (r) (n) := s(n + r) -s(n).
(1.1)

An interesting feature of ∆ (r) is that it gives the number of carries created during the addition n + r in base b. To be more precise, if c is the number of carries then

∆ (r) (n) = s(r) -c(b -1). (1.2)
Bésineau [START_REF] Bésineau | Indépendance statistique d'ensembles liés à la fonction "somme des chiffres[END_REF] proves that, for every d ∈ Z, the following asymptotic density exists

µ (r) (d) := lim N →+∞ 1 N n < N : ∆ (r) (n) = d
and he studies these asymptotic densities through their correlation function. Actually, since d∈Z µ (r) (d) = 1, the function µ (r) defines a probability measure on Z. Morgenbesser and Spiegelhofer [START_REF] Morgenbesser | A reverse order property of correlation measures of the sum-of-digits function[END_REF] show an amazing property: the measure µ (r) remains the same if we reverse the order of the digits in the expansion of r. They call it the reverse property.

In the particular case b = 2, Emme and Prikhod'ko [START_REF] Emme | On the asymptotic behavior of density of sets defined by sum-of-digits function in base 2[END_REF] show that the variance of µ (r) is bounded from above and below by a constant multiplied by the number of blocks of 1's in the binary expansion of r. In Section 1.3, we extend this result to each b ≥ 2.

Also in the binary case, Emme and Hubert [START_REF] Emme | Central limit theorem for probability measures defined by sum-of-digits function in base 2[END_REF] show that, for almost every sequence of integers (r n ) n∈N written in binary and defined via a balanced Bernoulli process, the sequence of measures (µ (rn) ) n∈N , after renormalization, converges in distribution to the standard normal law. The proof is done by computing all the moments of µ (rn) and by showing that, after renormalization, they converge to the moments of the standard normal law. In our paper, we prove a more accurate and more general Central Limit Theorem (CLT).

To do so, we study the variations of the sum of digits in the context of an appropriate probability space. We consider the compact additive group (X, +) of b-adic integers. The space X is endowed with the Borel σ-algebra and its normalized Haar measure P.

We extend ∆ (r) almost everywhere on X and show in Section 1.2 (Proposition 1.2.1) that, for every d ∈ Z

µ (r) (d) = P {x ∈ X : ∆ (r) (x) = d} .
To state our main result, we have to define the notion of blocks in the base b expansion of an integer r. Definition 1.1.1. A block in the expansion r ℓ • • • r 0 of an integer r ∈ N is defined as follows: it is either 1. a maximal sequence of consecutive digits equal to 0 ("block of 0's") or 2. a maximal sequence of consecutive digits equal to b -1 ("block of (b -1)'s") or 3. when b ≥ 3, a digit between 1 and b -2 ("single-digit block").

We also define the quantity ρ(r) as the number of blocks in the base b expansion of r. We specify that a block of 0's or of (b -1)'s of length 1 is not considered, in this paper, as a single-digit block.

The following theorem, which generalizes Emme and Prikhod'ko's result, states that the number of blocks ρ(r) controls the variance of µ (r) .

Theorem 1.1.2. For every integer r ≥ 1 b 4 ρ(r) ≤ Var(µ (r) ) ≤ 2b 2 ρ(r).
Now, we need to introduce, for an integer r ≥ 1, the standard deviation σ r := Var(µ (r) ) > 0 and the renormalized measure µ (r) which is the measure on R concentrated on the points of the form d σr (d ∈ Z) and which satisfies

∀d ∈ Z, µ (r) d σ r := µ (r) (d).
Our main result states that, for an integer r ≥ 1, the renormalized measure µ (r) converges in distribution to the standard normal law as the number of blocks tends to infinity.

Theorem 1.1.3. We have the convergence

µ (r) d ------→ ρ(r)→+∞
N (0, 1).

Theorem 1.1.3 can be seen as a direct consequence of the following theorem, which furthermore provides an estimation of the speed of convergence. Theorem 1.1.4. Let h : R → R be a thrice differentiable function with ||h ′′′ || ∞ < ∞. Let Z be a random variable following µ (r) and Y a standard normal random variable. Then

E(h(Z)) -E(h(Y )) = O ρ(r)→∞ 1 ρ(r) . (1.3)
Furthermore, if we denote by F r (respectively F ) the cumulative distribution function of µ (r) (respectively N (0, 1)), then there exists K > 0 such that for every integer r ≥ 1

sup t∈R |F r (t) -F (t)| ≤ K ρ(r) 1 8 
.

(1.4)

A result in the same spirit has recently been published by Spiegelhofer and Wallner [START_REF] Spiegelhofer | The digits of n+t[END_REF]. In the case of the base 2, they give a very accurate estimation of the measure µ (r) (d) for every d ∈ Z

µ (r) (d) = 1 σ r √ 2π e -d 2 2σ 2 r + O ρ(r)→∞ ρ(r) -1 (log(ρ(r)) 4 . (1.5)
Their result is proved using a combination of several techniques such as recurrence relations, cumulant generating functions, and integral representations. It seems possible but extremely difficult to generalize (1.5) to other bases. It also implies a CLT when ρ(r) tends to infinity: using (1.5), it is possible to show that for every real numbers a < b

µ (r) ([a, b]) -----→ ρ(r)→∞ 1 √ 2π b a e -t 2 2 dt
with a speed of convergence of log 4 (ρ(r))

ρ(r) 1 2 
. However, it is not clear how we can get a speed of convergence of F r (t) to F (t). On our side, we use a drastically different approach which applies directly in any base, relying on the concept of ϕ-mixing process and on a result from Sunklodas [START_REF] Kazys | Some estimates of the normal approximation for ϕ-mixing random variables[END_REF].

Roadmap

Section 1.2 is devoted to placing the study of the measures µ (r) in the context of the odometer on the set X of b-adic integers. We extend ∆ (r) almost everywhere on X and we show that the convergence lim

N →∞ 1 N n<N f (∆ (r) (n)) = X f (∆ (r) (x))dP(x)
(where P is the normalized Haar measure on X) is satisfied for functions f : Z → C of polynomial growth (Proposition 1.2.1) and, more generally, for functions f such that f • ∆ (r) is integrable (Proposition 1.2.4). We deduce from Proposition 1.2.1 that µ (r) (d) = P({x ∈ X : ∆ (r) (x) = d}) and that µ (r) has finite moments. In particular, we show that µ (r) is of zero-mean. In Section 1.3, we focus on the second moment of µ (r) . First, we establish in Proposition 1.3.1 an inductive relation between the measures in the spirit of Bésineau's result [3, p.13]. From that, we deduce an inductive relation on the variance of the measures (Lemma 1.3.3). Then, we prove the estimation of the variance stated in Theorem 1.1.2.

In Section 1.4, we build a finite sequence of random variables associated to the addition of some integer r that will be used to prove Theorem 1.1.4. We estimate the ϕ-mixing coefficients for this sequence.

The last section is devoted to the proof of Theorem 1.1.4. We show how we can apply a result from Sunklodas [29, Theorem 1] giving a speed of convergence in the CLT for ϕ-mixing process.

Odometer and sum-of-digits function

Unique ergodicity of the b-adic odometer

We define X as the space of b-adic integers, that is the space {0, • • • , b -1} N . Coordinates of a b-adic integer x ∈ X are interpreted as digits in base b: elements of X can be viewed as "generalized integers having possibly infinitely many non zero digits in base b". To comply with the usual writing of numbers in base 10, an element x = (x n ) n∈N ∈ X will be represented as a left-infinite sequence (• • • , x 1 , x 0 ), x 0 being the units digit. The space X is compact for the product topology. The set of integers N can be identified with the subset of sequences with finite support. More precisely, using the inclusion function

i : n ℓ • • • n 0 ∈ N -→ (• • • , 0, n ℓ , • • • , n 1 , n 0 ) ∈ X
we identify N and i(N).

X is equipped with an addition which extends the usual addition on N and turns X into an Abelian group. For x = (• • • , x 0 ) and y = (• • • , y 0 ) in X, (x + y) is determined recursively by the following process, in which we generate a sequence of carries (c ℓ ) ℓ≥0 ∈ {0, 1} N .

• Initialisation: if x 0 + y 0 < b then we set (x + y) 0 := x 0 + y 0 and c 0 := 0, else we set (x + y) 0 := x 0 + y 0 -b and c 0 := 1.

• Induction step: once, for some ℓ ≥ 1, we have computed (x + y) i and Now, since 1 belongs to N ⊂ X, we can consider the application T : X → X

c i for i = 0, • • • , ℓ -1, if x ℓ + y ℓ + c ℓ-
T : x -→ T (x) := x + 1,
which is usually refered to as the b-adic odometer. It is well-known that T is a homeomorphism and so (X, T ) is a topological dynamical system [START_REF] Fogg | Substitutions in dynamics, arithmetics and combinatorics[END_REF]. For ℓ ≥ 0 and for integers r ℓ ,

• • • , r 0 ∈ {0, • • • , b-1}, we define the cylinder C r ℓ •••r0 as the set of sequences x such that x i = r i for i = 0, • • • , ℓ.
We observe that the image by T of a cylinder is another cylinder :

for integers r ℓ , • • • , r 0 ∈ {0, • • • , b -1}, if there exists a minimal index i ∈ {0, • • • , ℓ} such that r i ̸ = b -1 then T C r ℓ •••r0 = C r ℓ •••ri+1(1+ri)0 i , otherwise T C r ℓ •••r0 = C 0 ℓ+1
. Also, we define the Rokhlin tower of order ℓ ≥ 0 as the family

C 0 ℓ+1 , T C 0 ℓ+1 , • • • , T b ℓ+1 -1 C 0 ℓ+1
where (T j C 0 ℓ+1 ) 0≤j≤b ℓ+1 -1 form a partition of X. We commonly represent this family as a tower as shown in Figure 1.2. By looking at the behavior of T on these towers, one can show that if P is a T -invariant probability measure on (X, T ), then P gives the same measure to each level in a given tower: for every ℓ ≥ 0 and r 0 ,

• • • , r ℓ ∈ {0, • • • , b -1} P (C r ℓ ...r0 ) = 1 b ℓ+1 .
Since the cylinders generate the Borel σ-algebra, P is uniquely determined by these values on the cylinders, hence (X, T ) is a uniquely ergodic dynamical system. We observe that choosing x in X according to the unique T -invariant law P means choosing its digits independently according to the uniform law on {0, • • • , b -1}. We also note that P is the normalized Haar measure on X.

For x in X, we define the sequence of empirical probability measures along the (beginning of the) orbit of x: for every N ≥ 1, we set

ϵ N (x) := 1 N 0≤n<N δ T n x
(where δ y denotes the Dirac measure on y ∈ X).

Since the space of probability measures on X is compact for the weak- * topology, every subsequential limit of (ϵ N (x)) is a T -invariant probability measure. By the uniqueness of the T -invariant probability measure, for every x ∈ X we have ϵ N (x) → P. In other words, we have the convergence

∀x ∈ X, ∀f ∈ C(X), 1 N 0≤n<N f (T n x) -----→ N →+∞ X f dP. (1.6)
We will be interested here in the special case

x = 0 because N = {T n 0 : n ∈ N}. Then (1.6) becomes ∀f ∈ C(X), 1 N 0≤n<N f (n) -----→ N →+∞ X f dP. (1.7)
Equation (1.7) shows that, for a continuous function f , averaging f over N (for the natural density) amounts to averaging over X (for P). The next section shows how this convergence can be extended to some non-continuous functions related to the sum-of-digits function.

Sum of digits on the odometer

For every integer k, we define s k : X → Z as the sum of the first (k + 1) digits function, that is to say

s k (x) := x 0 + • • • + x k .
Let r ∈ N. We define the functions

∆ (r) k : X → Z by ∆ (r) k (x) := s k (x + r) -s k (x).
The functions ∆

k are well-defined, continuous (and bounded) on X. By (1.7), we have 1

N n<N ∆ (r) k (n) = 1 N n<N ∆ (r) k (T n 0) -----→ N →+∞ X ∆ (r) k dP. (1.8)
Although the sum-of-digits function s is not well defined on X, we can extend the function ∆ (r) defined in (1.1) on the set of x ∈ X for which the number of different digits between x and x + r is finite. This subset contains the b-adic integers x such that there exists an index k ≥ max({ℓ :

r ℓ ̸ = 0} such that x k ̸ = b -1.
So, except for a finite number of b-adic integers, we can define

∆ (r) (x) := lim k→∞ ∆ (r) k (x).
Remark 1. Let t ≥ u be two integers. For every integer k we have the decomposition formula

∆ (t+u) k = ∆ (t) k + ∆ (u) k • T t . (1.9)
So, taking P-almost everywhere the limit when k tends to infinity, we get

∆ (t+u) = ∆ (t) + ∆ (u) • T t (P-a-s.). (1.10)
Then, by induction on t, we deduce

∆ (t) = ∆ (1) + ∆ (1) • T + • • • + ∆ (1) • T t-1 (P-a-s.). (1.11)
We observe that ∆ (r) also satisfies (1.2): for each x ∈ X for which ∆ (r) (x) is well defined, we have

∆ (r) (x) = s(r) -c(b -1), (1.12) 
where c := ℓ≥0 c ℓ < ∞ is the total number of carries generated during the computation of x + r.

Unfortunately, ∆ (r) is not continuous like the functions

∆ (r)
k , it is not even bounded on X, but we have the following result about functions with polynomial growth.

Proposition 1.2.1. Let r ≥ 1 and f : Z → C. Assume that there exist α ≥ 1 and C in R * + such that for every n ∈ Z |f (n)| ≤ C|n| α + |f (0)|.
(

Then f • ∆ (r) ∈ L 1 (P) and we have the convergence

lim N →∞ 1 N n<N f (∆ (r) (n)) = X f (∆ (r) (x))dP(x) = lim k→∞ X f (∆ (r) k (x))dP(x). Corollary 1.2.2. For every d ∈ Z µ (r) (d) := lim N →∞ 1 N n < N : ∆ (r) (n) = d = P x ∈ X : ∆ (r) (x) = d . (1.14)
Moreover, ∆ (r) has zero-mean and has finite moments.

In particular, we recover Bésineau's result on the existence of the asymptotic density and the fact that d∈Z µ (r) (d) = 1.

Remark 2. Using trivial arguments, Proposition 1.2.1 and Corollary 1.2.2 are also true when r = 0. We observe that µ (0) = δ 0 .

Before proving this proposition and its corollary, we need the following lemma.

Lemma 1.2.3. Let r ≥ 1. For N ∈ N * , for k ∈ N and d, d ′ ∈ Z, we have the inequality 1 N {n < N : (∆ (r) (n), ∆ (r) k (n)) = (d, d ′ )} ≤ rb P {x ∈ X : (∆ (r) (x), ∆ (r) k (x)) = (d, d ′ )} .
(1.15)

In particular, we have

1 N {n < N : ∆ (r) (n) = d} ≤ rb P {x ∈ X : ∆ (r) (x) = d} . (1.16)
Proof. Of course, (1.15) implies (1.16) so we just need to prove (1.15). We fix k ∈ N. For every ℓ ∈ N, let V ℓ be the set of the values reached by the couple (∆ (r) , ∆

k ) on the first b ℓ+1 -r levels of the Rokhlin tower of order ℓ (see Figure 1.4). Of course, if b ℓ+1 -r ≤ 0 then V ℓ := ∅. Otherwise, we observe that V ℓ is a finite set. Indeed, the first b ℓ+1 -r levels correspond to the b-adic integers x such that, when we add r, the carry propagation does not go beyond the first ℓ + 1 digits. Since these digits are fixed on a level of the Rokhlin tower of order ℓ, except for the last r levels, ∆ (r) and ∆ (r) k are constant on each such level. We observe that the sequence (V ℓ ) ℓ≥0 is increasing for the inclusion. Now, for d, d ′ ∈ Z, there are 2 cases.

1. If (d, d ′ ) / ∈ ∪ ℓ≥0 V ℓ , then for each n ∈ N we have (∆ (r) (n), ∆ (r) k (n)) ̸ = (d, d ′ )
. Indeed, for each n ∈ N, there exists a smallest integer ℓ such that n is in the first b ℓ+1 -r levels of the tower of order ℓ, hence (∆

(r) (n), ∆ (r) k (n)) ∈ V ℓ . In this case, (1.15) is trivial. 2. If (d, d ′ ) ∈ ∪ ℓ≥0 V ℓ then there exists a unique ℓ ≥ 0 such that (d, d ′ ) ∈ V ℓ \V ℓ-1 (with the convention V -1 := ∅). Since (∆ (r) , ∆ (r) 
k ) is constant on each of the first b ℓ+1 -r levels of the tower, it takes the value (d, d ′ ) on at least one whole such level of measure 1 b ℓ+1 . So, we have

P {x ∈ X : (∆ (r) (x), ∆ (r) k (x)) = (d, d ′ )} ≥ 1 b ℓ+1 .
Also, since the couple (d, d ′ ) does not appear in the first levels of the previous tower ((d, d ′ ) / ∈ V ℓ-1 ), we claim that, for every N ≥ 1 (d,d ′ ) can only appear inside the r highest levels of the tower of order ℓ -1. So, if we note C the union of these r highest levels, using the fact that 0 is in the first level of the tower, we have

1 N {n < N : (∆ (r) (n), ∆ (r) k (n)) = (d, d ′ )} ≤ r b ℓ . Indeed, (a) If r ≥ b ℓ , then the inequality is then trivial. (b) If r < b ℓ then, since (d, d ′ ) is not in V ℓ-1 ,
1 N {0 ≤ n < N : (∆ (r) (n), ∆ (r) k (n)) = (d, d ′ )} ≤ 1 N |{0 ≤ n < N : T n 0 ∈ C}| ≤ r b ℓ .
Combining both inequalities gives (1.15).

Figure 1.4: Visual description of V ℓ-1 , V ℓ and V ℓ \ V ℓ-1 .
Proof of Proposition 1.2.1. Let ε > 0. For any integer k, we have

1 N n<N f (∆ (r) (n)) - X f (∆ (r) (x))dP(x) ≤ A 1 + A 2 + A 3 ,
where

A 1 := 1 N n<N f (∆ (r) (n)) -f (∆ (r) k (n)) , A 2 := 1 N n<N f (∆ (r) k (n)) - X f (∆ (r) k (x))dP(x) , A 3 := X f (∆ (r) (x)) -f (∆ (r) k (x)) dP(x).
For A 1 , using Lemma 1.2.3, we get

A 1 = 1 N n<N j,j ′ ∈Z f (j) -f (j ′ ) 1 (j,j ′ ) ∆ (r) (n), ∆ (r) k (n) = j,j ′ ∈Z f (j) -f (j ′ ) 1 N n<N 1 (j,j ′ ) ∆ (r) (n), ∆ (r) k (n) ≤ rb j,j ′ ∈Z f (j) -f (j ′ ) P ∆ (r) (n) = j, ∆ (r) k (n) = j ′ = rb X f (∆ (r) (x)) -f (∆ (r) k (x)) dP(x) = rbA 3 .
Hence, controlling A 3 also enables us to control A 1 . For this, we note that the integrand in A 3 converges P-almost everywhere to 0, therefore it is enough to show that the dominated convergence theorem applies. To find a good dominant function, we write using (1.13)

f • ∆ (r) k (x) ≤ C ∆ (r) k (x) α + f (0) .
We get from (1.9)

∆ (r) k = ∆ (1) 
k + ∆ (1) 
k • T + • • • + ∆ (1) 
k • T r-1 , then we use the multinomial theorem (we can suppose α ∈ N) to write

∆ (1) k (x) + • • • + ∆ (1) k • T r-1 (x) α = j0+...+jr-1=α α j 0 , ..., j r-1 r-1 i=0 ∆ (1) k • T i (x) ji .
We now use Young's inequality to get

r-1 i=0 ∆ (1) k • T i (x) ji ≤ 1 r r-1 i=0 ∆ (1) k • T i (x) rji .
Then, we define, for i = 0,

• • • , r -1, g i (x) := sup k∈N |∆ (1) k • T i (x)| in order to get the inequality f • ∆ (r) k (x) ≤ C j0+•••+jr-1=α r-1 i=0 α j0,••• ,jr-1 r g i (x) rji + f (0) .
Moreover, when it is well defined, we have

∆ (r) • T i = lim k→∞ ∆ (r) k • T i therefore, we also get ∆ (r) • T i ≤ g i which yields the similar inequality f • ∆ (r) (x) ≤ C j0+•••+jr-1=α r-1 i=0 α j0,••• ,jr-1 r g i (x) rji + f (0) .
We just need to show that g rji i is integrable for the measure P. It is equivalent to show that m P {x ∈ X : g i (x) rji > m} is a convergent series. We have

g i (x) > m 1 rj i ⇔ sup k∈N |∆ (1) k • T i (x)| > m 1 rj i ⇔ ∃k ∈ N, |∆ (1) 
k (T i x)| > m 1 rj i .
From (1.12), this condition is true if and only if the addition T i x + 1 creates sufficently many carries: strictly more than ⌊ m

1 rj i +1
b-1 ⌋. But, we know that when we add 1 to T i x, the number of carries created by the addition is the number of (b -1)'s at the right-hand side of the expansion of

T i x. So, because of the T -invariance of P P {x ∈ X : g i (x) > m 1 rj i } ≤ 1 b m 1 rj i +1 b-1
.

The right quantity is the general term of a convergent series which shows that g rji i ∈ L 1 (P). So the dominated convergence theorem can be applied and, for k large enough, A 1 + A 3 ≤ ε 2 for every N ≥ 1. Now, once we have fixed such a k, for N large enough, A 2 is bounded by ε 2 because of (1.7) and the continuity of

∆ (r)
k and of f . The convergence in the statement is thus proved. Note that the argument of the dominated convergence theorem also proves that f

• ∆ (r) ∈ L 1 (P) and X f • ∆ (r) dP = lim k→∞ X f • ∆ (r) k dP.
Proof of Corollary 1.2.2. We just apply Proposition 1.2.1 with particular functions f . First, for d ∈ Z, we use the function f = 1 {d} . It gives

µ (r) (d) = P x ∈ X : ∆ (r) (x) = d .
Then, we take f as the identity function on Z for which (1.13) is clearly satisfied. Also, for every integer k, we have by T -invariance of

P X ∆ (r) k dP = X s k • T r dP - X s k dP = 0.
We then deduce that

d∈Z d µ (r) (d) = X ∆ (r) dP = lim k→∞ X ∆ (r) k dP = 0. (1.17)
Finally, we use, for every j ≥ 2, the function f (n) = n j which satisfies (1.13). This gives the existence of moments of order j for ∆ (r) .

More generally, we have the following convergence.

Proposition 1.2.4. Let r ≥ 1 and f : Z → C be such that f • ∆ (r) ∈ L 1 (P). Then lim N →∞ 1 N n<N f (∆ (r) (n)) = X f (∆ (r) (x))dP(x).
Proof of Proposition 1.2.4. By (1.12), the values reached by ∆ (r) are of the form a (r) k := s(r)k(b -1), k ≥ 0, and we have

X f ∆ (r) (x) dP(x) = k≥0 f a (r) k P {x ∈ X : ∆ (r) (x) = a (r) k } . (1.18)
On the other hand, we write

1 N n<N f ∆ (r) (n) = 1 N n<N f ∆ (r) (n) k≥0 1 a (r) k ∆ (r) (n) = k≥0 f a (r) k 1 N n<N 1 a (r) k ∆ (r) (n) :=u N ,k
.

We conclude by applying the dominated convergence theorem in the metric space ℓ 1 (N) endowed with the counting measure to show

k≥0 u N ,k -----→ N →+∞ k≥0 f a (r) k P {x ∈ X : ∆ (r) (x) = a (r) k } . 1. The pointwise limit on N of u N ,k is f a (r) k P {x ∈ X : ∆ (r) (x) = a (r)
k } by (1.14).

2. A dominant function is given using Lemma 1.2.3: for all k and N we have

u N ,k ≤ g(k) := f a (r) k rb P {x ∈ X : ∆ (r) (x) = a (r) k } .
By (1.18) and the hypothesis that

f • ∆ (r) is integrable, g(k) is convergent.
We have shown that, for any integer r, ∆ (r) has finite moments. The next section will focus on the second moment, which is the one we are most interested in for our CLT.

Variance of µ (r)

Inductive relation on the measures

Given r ∈ N, there exist r ∈ N and 0 ≤ r 0 ≤ b -1 such that r = b r + r 0 . The integer r 0 is actually the units digit of the expansion of r and, if r ≥ b, r corresponds to the integer whose expansion is obtained by erasing r 0 in the expansion of r. The expansion of r is then one digit shorter than the expansion of r. If r < b then, of course, r 0 = r and r = 0. First of all, we have a well known inductive relation on the length of the expansion of r.

Proposition 1.3.1. For r ∈ N, 0 ≤ r 0 ≤ b -1 and d ∈ Z µ (b r+r0) (d) = b -r 0 b µ ( r) (d -r 0 ) + r 0 b µ ( r+1) (d + b -r 0 ). (1.19) Proof. Let x = (• • • , x 1 , x 0 ) ∈ X. We define x := (• • • , x 1
). Let us consider the computation of the digits of x + r, where r

:= b r + r 0 = r ℓ • • • r 0 • • • x ℓ • • • x 1 x 0 + r ℓ • • • r 1 r 0 = • • • (x + r) 0 If x 0 + r 0 < b, no carry is created and ∆ (b r+r0) (x) = r 0 + ∆ ( r) ( x).
Otherwise, x 0 + r 0 ≥ b and we have to subtract b from the units digit of the result: we are left with the addition of x and r + 1: so

∆ (b r+r0) (x) = r 0 -b + ∆ ( r+1) ( x).
To sum up, we have

∆ (b r+r0) (x) = r 0 + ∆ ( r) ( x) if x 0 + r 0 < b, r 0 -b + ∆ ( r+1) ( x) otherwise. Now, let d ∈ Z. We partition the set {x ∈ X : ∆ (b r+r0) (x) = d} according to the value of x 0 {x ∈ X : ∆ (b r+r0) (x) = d} = b-r0-1 j=0 {x ∈ X : x 0 = j and ∆ ( r) ( x) = d -r 0 } b-1 j=b-r0 {x ∈ X : x 0 = j and ∆ ( r+1) ( x) = d + b -r 0 }.
We observe that if x is randomly chosen with law P, then x is independent of x 0 and also follows P. We just need to take the measure to conclude.

If we apply finitely many times (1.19), we can express µ (r) (d) as a convex combination of the measures µ (0) and µ (1) evaluated on particular points. We recall that µ (0) = δ 0 (Dirac measure on 0). We can also compute µ (1) .

Lemma 1.3.2. For every d ∈ Z µ (1) (d) := 1 b k -1 b k+1 if d = 1 -k(b -1) for some k ∈ N 0 otherwise.
Proof. We use again the notation a

(1)

k = 1 -k(b -1). By (1.12), it is trivial that if d ̸ = a (1)
k for all k ∈ N then µ (1) (d) = 0. Otherwise, we recall again by (1.12) that for all k ∈ N, ∆ (1) 

(x) = a (1)
k if and only if the right-hand side of the expansion of x is exactly a block of (b -1)'s of length k. Thus, if k ≥ 1

µ (1) a (1) k = P {x ∈ X : x 0 = • • • = x k-1 = b -1 and x k < b -1} = b -1 b k+1 . And, if k = 0 µ (1) a (1) k = P {x ∈ X : x 0 < b -1} = b -1 b .
Figure 1.5: Values of ∆ (1) on the levels of the Rokhlin tower of order 0, and the corresponding P-measures.

Inductive relation on the variance, first results

Emme and Hubert [START_REF] Emme | Central limit theorem for probability measures defined by sum-of-digits function in base 2[END_REF]Theorem 3.1] give an explicit formula for the variance in base 2. It is possible to adapt their methods in order to find a similar expression in any base. However, here we just need some basic estimations about the variance. We first deduce from Proposition 1.19 an inductive relation on the variance.

Lemma 1.3.3. For r ∈ N and 0 ≤ r 0 ≤ b -1, we have the relation

Var(µ (b r+r0) ) = b -r 0 b Var(µ ( r) ) + r 0 b Var(µ ( r+1) ) + r 0 (b -r 0 ).
Proof. We compute using (1.17) and (1. [START_REF] Morgenbesser | A reverse order property of correlation measures of the sum-of-digits function[END_REF])

Var(µ (b r+r0) ) = d∈Z d 2 µ (b r+r0) (d) = d∈Z d 2 b -r 0 b µ ( r) (d -r 0 ) + r 0 b µ ( r+1) (d + b -r 0 ) = b -r 0 b d ′ ∈Z (d ′ + r 0 ) 2 µ ( r) (d ′ ) + r 0 b d ′ ∈Z (d ′ + b -r 0 ) 2 µ ( r+1) (d ′ )
Using again (1.17), we get

Var(µ (b r+r0) ) = b -r 0 b Var(µ ( r) ) + r 2 0 + r 0 b Var(µ ( r+1) ) + (b -r 0 ) 2 = b -r 0 b Var(µ ( r) ) + r 0 b Var(µ ( r+1) ) + r 0 (b -r 0 ).
Even if we do not need an explicit formula of Var(µ (r) ) for a general r ∈ N, we will need one in some specific cases. First, we are interested in the variance of µ (r) when the expansion of r is one digit long.

Lemma 1.3.4. If 0 ≤ r ≤ b -1 then Var(µ (r) ) = r(1 + b -r).
Proof. We recall that µ (0) = δ 0 so Var(µ (0) ) = 0. Then, if r = 1, Lemma 1.3.3 gives

Var(µ (1) ) = b -1 b Var(µ (0) ) + 1 b
Var(µ (1) ) + (b -1).

It follows

Var(µ (1) ) = b. Finally, if 2 ≤ r ≤ b -1, again from Lemma 1.3.3, we have Var(µ (r) ) = b -r b Var(µ (0) ) + r b Var(µ (1) ) + r(b -r) = r(1 + b -r).
Now, we are interested in the variance of µ (r) when the expansion of r has a rightmost block of (b -1)'s of length m ≥ 1 that is to say when there exists r

∈ N such that r = b m r + b m -1. Lemma 1.3.5. For r ∈ N and m ≥ 1, the variance of µ (b m r+b m -1) is Var(µ (b m r+b m -1) ) = 1 b m Var(µ ( r) ) + 1 - 1 b m Var(µ ( r+1) ) + b - 1 b m-1 .
Remark 3. We observe that, if we take r = 0, then we find the variance of µ (r) where the expansion of r is composed of only one block of (b -1)'s. Thus, with Lemma 1.3.4, we now have the exact value of the variance of µ (r) when the expansion of r is composed of exactly 1 non-zero block:

Var(µ (r) ) = r(1 + b -r) if r = 1, • • • , b -2, 2b -2 b m-1 if r = b m -1 (m ≥ 1).
Proof. We prove the lemma by induction on m ≥ 1.

1. If m = 1 then, from Lemma 1.3.3 Var(µ (b r+b-1) ) = 1 b Var(µ ( r) ) + b -1 b Var(µ ( r+1) ) + (b -1).
That is what we want.

2. If we assume that the lemma is true for m -1 then we consider the integer b m r + b m -1. We observe the trivial identity

b m r + b m -1 = b × b m-1 r + b m-1 -1 + (b -1) It follows from Lemma 1.3.3 Var(µ (b m r+b m -1) ) = 1 b Var µ (b m-1 r+(b m-1 -1)) + b -1 b Var(µ (b m-1 ( r+1)) ) + (b -1).
We use the induction hypothesis and the fact that

µ (b m-1 ( r+1)) = µ ( r+1) (Lemma 1.19) Var µ (b m-1 r+(b m-1 -1)) = 1 b m-1 Var(µ ( r) ) + 1 - 1 b m-1 Var(µ ( r+1) ) + b - 1 b m-2 .
Combining both gives the result for m.

Finally, we consider the case where the expansion of r has a units digit 1, possibly with a block of 0's on its left. This corresponds to the existence of r ∈ N and m ≥ 1 such that r = b m r + 1.

Lemma 1.3.6. For r ∈ N and m ≥ 1, the variance of µ (b m r+1) is Var(µ (b m r+1) ) = 1 - 1 b m Var(µ ( r) ) + 1 b m Var(µ r+1) ) + b - 1 b m-1 .
Proof. We show by induction on m ≥ 1.

1. If m = 1 then, from Lemma 1.3.3 Var(µ (b r+1) ) = b -1 b Var(µ ( r) ) + 1 b Var(µ ( r+1) ) + (b -1).
That is exactly what we want.

2. If we assume that the formula is true for m -1, then we consider the integer b m r + 1. We have again by Lemma 1.3.3

Var(µ (b m r+1) ) = Var(µ (b×b m-1 r+1) ) = b -1 b Var(µ (b m-1 r) ) + 1 b Var(µ (b m-1 r+1) ) + (b -1).
We use the induction hypothesis.

Var(µ (b m-1 r+1) ) = 1 - 1 b m-1 Var(µ ( r) ) + 1 b m-1 Var(µ ( r+1) ) + b - 1 b m-2 .
Combining both gives the result for m.

Upper and lower bound of the variance

Since Var(µ (0) ) = 0, the case r = 0 is irrelevant and we suppose r ≥ 1. We wish to find an upper and a lower bound of the variance of µ (r) depending on ρ(r), the number of blocks of r defined in Definition 1.1.1. For convenient reasons, it is better to think in terms of non-zero blocks. We define, for an integer r, the quantity λ(r) which corresponds to the number of non-zero blocks. Of course, there is a relation between λ(r) and ρ(r) (we recall that r ≥ 1):

λ(r) ≤ ρ(r) ≤ 2λ(r).
(1.20)

We first give an upper bound of Var(µ (r) ) depending on λ(r).

Proposition 1.3.8. For any r ≥ 1

Var(µ (r) ) ≤ b 2 λ(r). (1.21)
We need the following lemma.

Lemma 1.3.9. For r ≥ 1, we have the following inequality

|Var(µ (r+1) ) -Var(µ (r) )| ≤ b.
Proof. We recall that r 0 ∈ {0, • • • , b -1} is the units digit of r and the relation r = b r + r 0 . Let us prove

|Var(µ (r+1) ) -Var(µ (r) )| ≤ |Var(µ ( r+1) ) -Var(µ ( r) )| b + b -1.
Indeed, there are two cases.

1. If r 0 = b -1, then r = b r + (b -1) and using twice Lemma 1.3.3, we get

Var(µ (r+1) ) -Var(µ (r) ) = Var(µ (b( r+1)) ) -Var(µ (b r+b-1) ) = Var(µ ( r+1) ) -Var(µ ( r) ) b -(b -1). 2. If r 0 ∈ {0, • • • , b -2}
then, using the same tools, we compute

Var(µ (r+1) ) -Var(µ (r) ) = Var(µ (b r+r0+1) ) -Var(µ (b r+r0) ) = Var(µ ( r+1) ) -Var(µ ( r) ) b + b -2r 0 -1.
We observe that |b -

2r 0 -1| ≤ b -1.
Then, we conclude by an easy induction on the number of digits of r and by checking that

|Var(µ (r+1) ) -Var(µ (r) )| ≤ |Var(µ ( r+1) ) -Var(µ ( r) )| b + b -1 ≤ b b + b -1 = b.
Proof of Proposition 1.3.8. Observe that we have

b 2 ≥ j(1 + b -j) for all j = 1, • • • b -1, (C 0 ) b 2 ≥ 2b, (C 1 ) b 2 ≥ jb for all j = 0, • • • , b -1. (C 2 )
We proceed by induction on λ(r) ≥ 1.

1. Initialisation: if λ(r) = 1 then we have two cases depending on the type of blocks we are considering. However, from Lemma 1.3.4, Lemma 1.3.5 and Conditions (C 0 ) and (C 1 ), we can deduce that in both cases we have Var(µ (r) ) ≤ b 2 .

2. Inductive step: we let n > 1 and we assume that if λ(r) ≤ n then Var(µ (r) ) ≤ b 2 λ(r). We now assume that our r ∈ N satisfies λ(r) = n + 1. Let ℓ ≥ 0, r ∈ N and B 1 a non-zero block such that we can write the expansion of r as follow

r B 1 0 ℓ .
We can assume ℓ = 0 but r may have a rightmost block composed of 0's. We discuss on the type of B 1 .

(a) If B 1 is a block of (b -1)'s of length m then r = b m r + b m -1 and we have the trivial equality

Var(µ (r) ) = Var(µ ( r) ) + Var(µ (r) ) -Var(µ (r+1) )
-Var(µ ( r) ) -Var(µ ( r+1) ) .

Using Lemma 1.3.9, the inductive hypothesis and Condition (C 1 )

Var(µ (r) ) ≤ b 2 n + b + b ≤ b 2 (n + 1).
(b) If B 1 is a single-digit block r 0 then r = b r + r 0 and with we have another trivial equality

Var(µ (r) ) = Var(µ ( r) ) + r0 k=1
Var(µ (b r+k) ) -Var(µ (b r+k-1) ).

Then, using Lemma 1.3.9, the inductive hypothesis and Condition (C 2 ), we find

Var(µ (r) ) ≤ b 2 n + r 0 b ≤ b 2 (n + 1).
This concludes the inductive step and the proof.

We also have a lower bound depending on λ(r).

Proposition 1.3.10. For any r ≥ 1

Var(µ (r) ) ≥ b 4 λ(r). (1.23) Proof. Observe that b 4 ≤ min{j(b -j) : j = 1, • • • b -1}, (C 3 ) b 4 ≤ (b -1), (C 4 ) b 4 ≤ min{j(b -j - 1 2 ) : j = 1, • • • b -1}, ( C 5 ) 
Of course, some of these conditions are redundant but we keep them all for simplicity because each one will be used in the proof. We prove the result using induction on λ(r) ≥ 1.

1. Initialisation: if λ(r) = 1 then we have two cases depending on the type of blocks we are considering. However, from Lemma 1.3.4, Lemma 1.3.5 and Conditions (C 3 ) and (C 4 ), we can deduce Var(µ (r) ) ≥ b 4 . 2. Inductive step: we let n > 1 and we assume that if λ(r) ≤ n then Var(µ (r) ) ≥ b 4 λ(r). We now take r ∈ N such that λ(r) = n + 1, and we write

r = b r + r 0 .
Without loss of generality, we can assume that r 0 ̸ = 0. Indeed, if r 0 = 0 then Var(µ (r) ) = Var(µ ( r) ) and λ(r) = λ( r).

From Lemma 1.3.3, we get

Var(µ (r) ) = b -r 0 b Var(µ ( r) ) + r 0 b Var(µ ( r+1) ) + r 0 (b -r 0 ). (1.25)
We discuss about the value of λ( r) which can be either n or n + 1. 

Var(µ (r) ) ≥ b -r 0 4 n + r 0 b Var(µ ( r+1) ) + r 0 (b -r 0 ).
We now observe that n -2 ≤ λ( r + 1) ≤ n + 1. The reader is referred to Figure 1.7 (with r instead of r) for more details. We consider two cases. We can apply Lemma 1.3.6

Var(µ ( r+1) ) = 1 - 1 b m Var(µ ( r) ) + 1 b m Var(µ ( r+1) ) + b - 1 b m-1 .
Since µ ( r) = µ ( r) and λ( r) = n, we deduce from the induction hypothesis and (1.25) that

Var(µ (r) ) ≥ b -r 0 4 n + r 0 b b 4 n + b - 3 2b m-1 + b 4 ≥ b 4 (n + 1) + r 0 1 - 3 2b m-1 ≥ b 4 (n + 1).
ii. If λ( r + 1) ̸ = n + 1 then we can apply the induction hypothesis.

Var(µ (r) ) ≥ b -r 0 4 n + r 0 2 (n -2) + r 0 (b -r 0 ) ≥ b 4 n - r 0 2 + r 0 (b -r 0 ). Thanks to (C 5 ) r 0 (b -r 0 ) - r 0 2 ≥ b 4 .
And so

Var(µ (r) ) ≥ b 4 n + b 4 = b 4 (n + 1).
We conclude the case λ( r) = n.

(b) If λ( r) = n + 1: it means that the rightmost block in the expansion of r is a block of (b -1)'s of length m ≥ 2. So, there exists r ∈ N such that r = b m r + b m -1 and the rightmost digit in the expansion of r is not (b -1), that is to say b̸ | r + 1. We are in the context of Lemma 1.3.5, we have

Var(µ (r) ) = 1 b m Var(µ ( r) ) + 1 - 1 b m Var(µ ( r+1) ) + b - 1 b m-1 .
Since λ( r) = n and n -1 ≤ λ( r + 1) ≤ n + 1 ( r does not start with a block of (b -1)'s so λ( r + 1) ̸ = n -2, see Figure 1.7), we have now

Var(µ (r) ) ≥ n 4b m-1 + 1 - 1 b m Var(µ ( r+1) ) + b - 1 b m-1 .
(1.26)

We discuss about the possible values of λ( r + 1).

i. If λ( r + 1) = n + 1 then it is just as in the point (a)i. of this proof, it means that r starts with a block of 0's. So we let m ′ ≥ 1 (2 if b = 2) and r ∈ N such that r = b m ′ r = and b̸ | r. We are again in the context of Lemma 1.3.6

Var(µ ( r+1) ) = 1 - 1 b m ′ Var(µ ( r) ) + 1 b m ′ Var(µ ( r+1) ) + b - 1 b m ′ -1 .
We observe λ( r) = λ( r) = n and n -2 ≤ λ( r + 1) ≤ n (again, it cannot be n + 1 because r does not start with a block of 0's). So we have

Var(µ ( r+1) ) ≥ 1 - 1 b m ′ b 4 n + 1 4b m ′ -1 (n -2) + b - 1 b m ′ -1 = b 4 n + b - 3 2b m ′ -1 .
From (1.26) we deduce

Var(µ (r) ) ≥ b 4 n + 1 - 1 b m b - 3 2b m ′ -1 + b - 1 b m-1 . We observe that b - 3 2b m ′ -1 ≥ 0 as well as b - 1 b m-1 ≥ b 4 .
So we can write

Var(µ (r) ) ≥ b 4 (n + 1).
ii. If λ( r + 1) ̸ = n + 1 then we can apply the induction hypothesis.

Var(µ (r) ) ≥ n 4b m-1 + 1 - 1 b m b 4 (n -1) + b - 1 b m-1 ≥ b 4 n -1 - 1 b m b 4 + b - 1 b m-1 We observe that b - 1 b m-1 -1 - 1 b m b 4 ≥ b 4 , so Var(µ (r) ) ≥ b 4 n + b 4 = b 4 (n + 1).
It concludes the case λ( r) = n + 1. The statement is thus true when λ(r) = n + 1.

The following figure shows how the number of blocks behaves of an integer when we add 1 to it. 

A ϕ-mixing process

We work on the probability space (X, B(X), P). For a given integer r, ∆ (r) is viewed as a random variable with law µ (r) by Corollary 1.2.2 (the randomness comes from the argument x of ∆ (r) , considered as a random outcome in X with law P). Our purpose in this section is to study the asymptotic behaviour of µ (r) as the number of blocks ρ(r) goes to infinity. For this, we will decompose ∆ (r) as a sum

∆ (r) = λ(r) i=1 X (r) i
where λ(r) is the number of non-zero blocks in the base-b expansion of r (see Section 1.3.3), and (X

(r) 1 , • • • , X (r) 
λ(r) ) is a finite process defined in the next section. We will prove and use some mixing properties of this process to get our result.

The process

Again, the case r = 0 is irrelevant so we assume r ≥ 1. For 1 ≤ i ≤ λ(r), we will write B i as the i th non-zero block present in the expansion of r, starting from the left-hand side of the expansion and ending at the units digit. We now define r[i] as the integer whose base-b expansion is obtained as follows: for k = i + 1, • • • , λ(r), we replace the block B k by a block of 0's of the same length (see Figure 1.8 below). We observe that r[λ(r)] = r. With the convention r[0] := 0, we observe the trivial equality

r = λ(r) i=1 r[i] -r[i -1].
For 1 ≤ i ≤ λ(r), we define almost everywhere on X (see Subsection 1.2.2)

X (r) i := ∆ (r[i]-r[i-1]) • T r[i-1] . Since r[i] -r[i -1] = B i 0 • • • 0, the function X (r) i
is a random variable corresponding to the action of the i th block B i once the previous blocks have already been taken into consideration. From (1.10), we deduce

∆ (r) = λ(r) i=1 X (r) i .
In particular, if x ∈ X is randomly chosen with law P, then λ(r) i=1 X (r) i (x) follows the law µ (r) . Hence, the standard deviation σ r of µ (r) defined in Theorem 1.1.4 satisfies

σ 2 r = Var   λ(r) i=1 X (r) i   .
We first show that every moment of X (r) i is bounded from above by a constant independent of r and i.

Lemma 1.4.1. For every k ∈ N, there exists a constant C k > 0 such that ∀r ∈ N, ∀1 ≤ i ≤ λ(r), E X (r) i k ≤ C k . Proof. Let k ∈ N. If X (r) i
corresponds to the action of a single-digit block, that is the action of one digit α between 1 and b -2, then its law is given by µ (α) whose moments are all finite (see Corollary 1.2.2). So, we have in this case

E X (r) i k ≤ max E ∆ (α) k : 1 ≤ α ≤ b -2 . Now, if X (r) i
corresponds to the action of a block of (b -1)'s, there exist two integers n ≤ m such that r 1) , we can write X (r) i as the difference of two dependent random variables following the law µ (1) which has finite moments. So there exists a constant that depends only on k such that E |X (r) i | k is bounded by this constant.

[i] -r[i -1] = b m -b n . It follows from the definition of X (r) i and (1.10) that X (r) i = ∆ (b m -b n ) • T b n d = ∆ (b m -b n ) = ∆ (b m ) -∆ (b n ) • T b m -b n where d = means the equality in distribution. Since µ (b n ) = µ (b m ) = µ (
The next part is devoted to the estimation of the so-called ϕ-mixing coefficients for the finite sequence (X (r) i ) 1≤i≤λ(r) .

The ϕ-mixing coefficients

There exist many types of mixing coefficients (see e.g. the survey [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF] by Bradley). Those we are working with are commonly called "ϕ-mixing coefficients". Definition 1.4.2. Let (X i ) i≥1 be a (finite or infinite) sequence of random variables. The associated ϕ-mixing coefficients ϕ(k), k ≥ 1, are defined by

ϕ(k) := sup p≥1 sup A,B |P A (B) -P(B)|
where the second supremum is taken over all events A and B such that

• A ∈ σ(X i : 1 ≤ i ≤ p), • P(A) > 0 and • B ∈ σ(X i : i ≥ k + p).
By convention, if X i is not defined when i ≥ k + p then the σ-algebra is trivial.

In the case of a finite sequence (X 1 , • • • , X n ), the convention implies that ϕ(k) = 0 for k ≥ n. We now give an upper bound on the ϕ-mixing coefficients for the process (X (r) i ) defined in Section 1.4.1.

Lemma 1.4.3. For r ≥ 1, the mixing coefficients of (X

(r) i ) 1≤i≤λ(r) satisfy ∀k ≥ 1, ϕ(k) ≤ 2 b -1 b k 2 -1 .
Proof. Let k and p be two integers. We observe that if k = 1, 2, the inequality is trivial so we assume that k ≥ 3. We call buffer strip the set of indices corresponding to the positions of the digits between B p and B k+p (both excluded). It depends on r, p and k so we denote it by I r,p,k . We consider the event C := {x ∈ X : ∃j ∈ I r,p,k with r j < b -1 such that x j = 0}.

We are going to show that, for k large enough, C is a high-probability event and that, conditionned to C, two events A ∈ σ X (r) i : 1 ≤ i ≤ p and B ∈ σ X (r) i : i ≥ k + p are always independent.

Figure 1.9: Visualization of the buffer strip.

P(C) = b -1 b t (1.27)
where t := {j ∈ I r,p,k : r j ̸ = b -1} . We are going to show that

t ≥ k 2 -1.
(1.28)

Indeed, there are k -1 non-zero blocks in the buffer strip. Let ℓ ∈ N be the number of blocks of (b -1)'s. Then there are k -1 -ℓ single-digit blocks. There are two cases.

1. If ℓ ≤ k 2 , then k -1 -ℓ ≥ k 2 -1 and we get (1.28). 2. Otherwise, ℓ > k 2 .
Since the blocks of (b -1)'s are separated using blocks of zeros or singledigit blocks, there are at least k 2 -1 blocks of zeros of single-digit blocks, which also yields (1.28).

So, we get from (1.27) and (1.28) that

P(C) ≥ 1 - b -1 b k 2 -1 > 0. Now, let A ∈ σ X (r) i : 1 ≤ i ≤ p with P(A) > 0 and B ∈ σ X (r) i 
: i ≥ k + p . Observe that A and C are independent. Indeed, C only depends on indices in I r,p,k while A, by construction of the random variables (X (r) i ) 1≤i≤λ(r) , only depends on the subset of indices on the left-hand side of the buffer strip. We deduce P(A ∩ C) = P(A)P(C) > 0.

(1.29)

Observe also that, conditionned to C, A and B are independent. Indeed, when C is realized, there exists an index j in I r,p,k such that r j ̸ = b -1 and x j = 0. At this position, a carry cannot be created and, furthermore, a carry propagation coming from the right-hand side will be stopped at this index. In other words, when C is realized, the carries created by the blocks B i , i ≥ k + p, never spread on the left-hand side of the buffer strip. Moreover, we deduce that A and B ∩ C are independent. Indeed, we compute Since both terms are non negative and less than 1, we have

P(A ∩ B ∩ C) = P C (A ∩ B)P(C) = P C (A)P C (B)P(C) = P(A)P(B ∩ C). ( 1 
P C (D) -P C (D) ≤ 1.
It follows

P(D) -P C (D) ≤ P C .
These computations are also true replacing P by P A . We observe that the measure P A conditionned to C is the measure P A∩C . So, coming back to (1.32), we get

|P A (B) -P(B)| ≤ P A C + P C = 2P C ≤ 2 b -1 b k 2 -1 .
1.5 Proof of Theorem 1.1.4

A result from Sunklodas and first step of the proof

In this section, we state a result by Sunklodas [START_REF] Kazys | Some estimates of the normal approximation for ϕ-mixing random variables[END_REF] about the speed of convergence in the Central Limit Theorem for ϕ-mixing sequences. Actually, our formulation is new but the proof is an immediate consequence of [29, Theorem 1].

We first need to introduce some notations. Let Y be a standard normal random variable. Consider ξ 1 , • • • , ξ n a finite sequence of n random variables with ϕ-mixing coefficients ϕ(k

) for k = 1, 2, • • • . Write V := Var n i=1 ξ i and Z := n i=1 ξ i V .
We need to add, for technical reason, some other notations.

Φ 1/2 := k≥1 k ϕ(k) and Φ 1/2 := max Φ 1/2 , Φ 2 1/2 .
We observe that Φ 1/2 is defined by a sum on, actually, a finite number of non-zero terms because we are in the case of a finite sequence of random variables. Our formulation of [29, Theorem 1] is the following.

Theorem 1.5.1. Assume for i = 1, • • • , n that E(ξ i ) = 0 and E(ξ 4 i ) < ∞. Let h : R → R be a thrice differentiable function such that ||h ′′′ || ∞ < ∞. Then E (h(Z) -h(Y )) ≤ ||h ′′′ || ∞ 5 2 + 28Φ 1/2 n i=1 E ξ i V 3 + 120||h ′′′ || ∞ Φ 1/2 n i=1 E ξ i V 2 n i=1 E ξ i V 4 .
We are going to show that we can apply this result to prove Theorem 1.1.4. We start with (1.3).

Proof of (1.3). Let r ∈ N * . The variables (X

i ) 1≤i≤λ(r) are of zero-mean and have a finite moment of order 4. Lemma 1.4.3 gives a universal upper bound for Φ 1/2 . So we can apply Theorem 1.5.1 to the sequence (X (r) i ) 1≤i≤λ(r) . We observe that, from (1.20), Theorem 1.1.2 and Lemma 1.4.1, for j = 2, 3, 4

λ(r) i=1 E   X (r) i σ r j   = C j λ(r) σ j r ≤ 2 j C j b j 2 ρ(r) 1-j 2 .
So, by Theorem 1.5.1, there exists K > 0 such that

E   h   λ(r) i=1 X (r) i σ r   -h(Y )   ≤ K||h ′′′ || ∞ ρ(r) (1.33) 
It remains to prove (1.4).

Speed of convergence of the cumulative distribution functions

Observe that for all t ∈ R

F r (t) -F (t) = E   1 ]-∞,t]   λ(r) i=1 X (r) i σ r   -1 ]-∞,t] (Y )   .
The idea is thus to find, for t ∈ R, a family of thrice differentiable function (h t,ε ) ε>0 with, for every ε > 0, ||h ′′′ t,ε || ∞ < ∞ and which converges pointwise to the indicator funtion 1 ]-∞,t] when ε tends to 0.

Approximation of the indicator function

There exists a function f : R → R ∈ C 3 (R) satisfying the following conditions f

′ (0) = f ′ (1) = f ′′ (0) = f ′′ (1) = f ′′′ (0) = f ′′′ (1) = 0, f (t) = 1 if t ≤ 0, f (t) = 0 if t ≥ 1 and 0 ≤ f (t) ≤ 1
, for all real t. Then we define the linear function θ t,ε :

[t -ε, t + ε] → [0, 1], u → 1 2ε (ε -t + u).
Finally, we get our approximation by

h t,ε (u) :=    1 if u ≤ t -ε, f • θ t,ε (u) if t -ε ≤ u ≤ t + ε, 0 otherwise. Figure 1.10: Graph of h t,ε .
We have the following properties satisfy by h t,ε .

Lemma 1.5.2. Let r ≥ 1, let Y be a standard normal random variable.

1. ∀t ∈ R, the sequence of C 3 (R) functions (h t,ε ) ε converges pointwise to the indicator function 1 ]-∞;t] when ε tends to 0.

2. ∀ε > 0, ∀t ∈ R, ||h ′′′ t,ε || ∞ = ||f ′′′ ||∞ 8ε 3
and, in particular, the upper bound is independent of t.

3. ∀ε > 0, we have, for any random variable X

sup t∈R P (X ≤ t) -P (Y ≤ t) ≤ sup t∈R E (h t,ε (X) -h t,ε (Y )) + 4ε √ 2π . (1.34)
Last step of the proof of (1.4)

Proof of (1.4). Let ε > 0. From (1.33) and (1.34), we obtain

sup t∈R P ∆ (r) σ r ≤ t -P (Y ≤ t) ≤ sup t∈R E h t,ε ∆ (r) σ r -h t,ε (Y ) + 4ε √ 2π ≤ sup t∈R K||h ′′′ t,ε || ∞ ρ(r) + 4ε √ 2π Lemma 1.5.2 gives ||h ′′′ t,ε || ∞ = ||f ′′′ || ∞ 8ε 3 . So, we obtain sup t∈R P ∆ (r) σ r ≤ t -P (Y ≤ t) ≤ ||f ′′′ || ∞ K 8ε 3 ρ(r) + 4ε √ 2π 
Now, we choose ε > 0 such that 1

ε 3 ρ(r) = 4ε √ 2π
and get the existence of a constant K > 0 such that

sup t∈R P ∆ (r) σ r ≤ t -P (Y ≤ t) ≤ K ρ(r) 1 8 
.

It only remains to prove Lemma 1.5.2.

Proof of Lemma 1.5.2

Proof of Lemma 1.5.2. Let ε > 0. The first point is trivial by construction of h t,ε . The second point is also quite simple to show. We write

sup u∈R h ′′′ t,ε (u) = sup t-ε≤u≤t+ε h ′′′ t,ε (u) = sup t-ε≤u≤t+ε θ ′ t,ε (u) 3 f ′′′ • θ t,ε (u) = 1 8ε 3 sup 0≤u≤1 f ′′′ (u) .
For the last point, let t and x ∈ R. Since

h t-ε,ε (x) ≤ 1 ]-∞,t] (x) ≤ h t+ε,ε (x),
we deduce that for any random variable X

E (h t-ε,ε (X)) ≤ P (X ≤ t) ≤ E (h t+ε,ε (X)) . (1.35)
Moreover,

E (h t+ε,ε (Y )) -E (h t-ε,ε (Y )) = t+2ε t-2ε (h t+ε,ε (y) -h t-ε,ε (y)) ≤1 e -y 2 2 √ 2π dy ≤ 4ε √ 2π .
Hence, we get that

E (h t+ε,ε (Y )) - 4ε √ 2π ≤ P (Y ≤ t) ≤ E (h t-ε,ε (Y )) + 4ε √ 2π . (1.36)
Then, we subtract (1.36) from (1.35) and we take the supremum over t ∈ R , observing that

sup t∈R E h t-ε,ε (X) -h t-ε,ε (Y ) = sup t∈R E h t+ε,ε (X) -h t+ε,ε (Y ) .
We get (1.34).

The analogous result in integer base b replaces F ℓ by b ℓ . It is actually a trivial result in base b. However, in the Zeckendorf decomposition this result is much less obvious, due to the particular behaviour of carry propagations that we describe in Subsection 2.2.1.

On the other side, to state our mixing result, we need to define the notion of blocks in the expansion of an integer r and to define a probabilistic notion of (α-)mixing coefficients (see the survey from Bradley [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF] for others).

Definition 2.1.3. A block in the expansion of an integer r ∈ N is defined as a maximal sequence of the pattern 10. (If r 2 = 1, we agree that a maximal sequence

r 2ℓ • • • r 2 is a block if r 2k = 1 for k = 1, • • • , ℓ.)
We define ρ(r) as the number of blocks in the expansion of r. 

|P(A ∩ B) -P(A)P(B)|

where the second supremum is taken over all events A and B such that

• A ∈ σ(X i : 1 ≤ i ≤ p) and • B ∈ σ(X i : i ≥ k + p).
By convention, if X i is not defined when i ≥ k + p then the σ-algebra is trivial.

For an integer r, we enumerate the blocks of r from the units position and we define X (r) i as the action of the i th block once the previous blocks have already been taken into consideration (see Subsection 2.7.1 for more details). These actions are constructed in order to have the equality

∆ (r) = ρ(r) i=1 X (r) i .
(2.5)

We state the following theorem which gives an upper bound on the α-mixing coefficients that is independent of r.

Theorem 2.1.5. The α-mixing coefficients of (X

(r) i ) i=1,••• ,ρ(r) satisfy ∀k ≥ 1, α(k) ≤ 12 1 - 1 φ 8 k 6 + 1 φ 2k .
A perspective we have with this result is to find a CLT for ∆ (r) . In [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF], a similar result together with some control of the variance depending on the number of blocks was used to prove a CLT for µ (r) in the integer-base case. Such a control is, here, not clear at all since, contrary the situation in integer base, we do not have inductive relations on µ (r) .

Roadmap

Section 2.2 is devoted to the comprehension of the additions "+1" and "+F k " on the set X of Z-adic integers. We emphasize the important role played by the patterns w 0 := 01000 and w 1 := 10010 during such additions.

In Section 2.3, we focus on the unique ergodic measure P of the odometer. We show P satisfies some renewal properties (Proposition 2.3.2) and we estimate the ϕ-mixing coefficients for the coordinates of a Z-adic integer (Proposition 2.3.5).

Then, in Section 2.4, we place the study of the measures µ (r) in the context of the odometer on X. We extend ∆ (r) almost everywhere on X and we show that the convergence lim

N →∞ 1 N n<N f (∆ (r) (n)) = X f (∆ (r) (x))dP(x)
is satisfied for functions f : Z → C of polynomial growth (Proposition 2.4.1) and, more generally, for functions f such that f • ∆ (r) is integrable (Proposition 2.4.5). We deduce from Proposition 2.4.1 that µ (r) (d) = P({x ∈ X : ∆ (r) (x) = d}) and that µ (r) has finite moments. In particular, we show that µ (r) is of zero-mean.

In Section 2.5, using several Lemmas (2.5.3,2.5.4,2.5.5) and Corollary 2.5.6, we construct an algorithm that computes µ (r) . A pseudo-code is given in Subsection 2.5.2. Also, in Subsection 2.5.4, we prove Corollary 2.1.1 which gives a control on the tail of µ (r) .

Section 2.6 is devoted to the proofs (there are two) of Theorem 2.1.2. The first proof consists in applying the algorithm while the second uses also the renewal properties we developed in Section 2.3.

In the last section, we build a finite sequence of random variables associated to the addition of some integer r that will give the decomposition of ∆ (r) mentioned at (2.5). Using that sequence, we prove Theorem 2.1.5 on the estimation of the α-mixing coefficients for this sequence.

Indeed, F 3 + • • • F 2ℓ+1 + F 2 = F 2ℓ+2 .
2. Or there exists ℓ ≥ 0 such that

n = ℓ+1 k=1 F 2k + k≥2ℓ+5 n k F k .
Then, for the same reasons

(n) • • • n 2ℓ+5 0 0 1 (01) ℓ + 1 (n + 1) = • • • n 2ℓ+5 0 1 0 (00) ℓ
We observe that adding 1 to the rightmost digit of a block as defined in 2.1.3 modifies that block into a chain of 0 digits of the same length and put a 1 at the first left position of the block.

Of course, in order to compute the addition of two integers, adding 1 as many times as needed is enough. However, we want to show a main difference with the addition in integer base. In integer base, adding 1 at some position k ≥ 2 to an integer n may change the digits of the expansion of n of higher indices due to a carry propagations. Here, it can also change the digits of lower indices. We consider the addition n + F k where k ≥ 3. We observe that a consequence of (2.1) is

2F k = F 2 + F 4 if k = 3, F k+1 + F k-2 otherwise.
(2.6) Many cases appear. For simplicty, the digit in color will represent the digit at position k and we do not represent digits that remain the same in the expansion of n and n + F k . We start with the cases that change only digits of indices ≥ k.

1. If n = • • • 000 • • • then (n) • • • 0 0 0 • • • (+F k ) + 1 (n + F k ) = • • • 0 1 0 • • • 2. If there exists ℓ ≥ 0 such that n = • • • 001(01) ℓ 0 • • • then (n) • • • 0 0 1 (01) ℓ 0 • • • (+F k ) + 1 (n + F k ) = • • • 0 1 0 (00) ℓ 0 • • •
We continue with the first case where the digit of index k -1 is changed.

If there exists

ℓ ≥ 0 such that n = • • • 00(10) ℓ 01 • • • then (n) • • • 0 0 (10) ℓ 0 1 • • • (+F k ) + 1 (n + F k ) = • • • 0 1 (00) ℓ 0 0 • • •
Now, we consider the cases where many digits of indices < k are changed. It is due to (2.6).

If k ≥ 5 and there exist

ℓ, ℓ ′ ≥ 0 such that n = • • • 00(10) ℓ 1(01) ℓ ′ 000 • • • then (n) • • • 0 0 (10) ℓ 1 (01) ℓ ′ 0 0 0 • • • (+F k ) + 1 (n + F k ) = • • • 0 1 (00) ℓ 0 (10) ℓ ′ 0 1 0 • • • 5. If k ≥ 6 and there exist ℓ, ℓ ′ ≥ 0 such that n = • • • 00(10) ℓ 1(01) ℓ ′ 0010 • • • then (n) • • • 0 0 (10) ℓ 1 (01) ℓ ′ 0 0 1 0 • • • (+F k ) + 1 (n + F k ) = • • • 0 1 (00) ℓ 0 (10) ℓ ′ 1 0 0 0 • • •
Finally, we consider the "boundary" cases where all the digits of indices < k are changed.

6. If k ≥ 4, k is even and there exists ℓ ≥ 0 such that n = • • • 00(10) ℓ 1(01) k-2 2 then (n) • • • 0 0 (10) ℓ 1 (01) k-2 2 
(+F k ) + 1 (n + F k ) = • • • 0 1 (00) ℓ 0 (10) k-2 2 7. If k ≥ 5, k is odd and there exists ℓ ≥ 0 such that n = • • • 00(10) ℓ 1(01) k-3 2 0 then (n) • • • 0 0 (10) ℓ 1 (01) k-3 2 0 (+F k ) + 1 (n + F k ) = • • • 0 1 (00) ℓ 0 (10) k-3 2 1

The Z-adic integers and how to add one of them to an integer

We define the Zeckendorf-adic integers (or Z-adic integers for simplicity) as elements of

X := x ∈ {0; 1} N ≥2 : ∀k ≥ 2 x k x k+1 = 0 .
Also, coordinates of a Z-adic integer x ∈ X are interpreted as digits in the Zeckendorf representation: elements of X can be viewed as "generalized integers having possibly infinitely many non zero digits in Zeckendorf representation". An element x = (x k ) k≥2 ∈ X will be represented as a left-infinite sequence (• • • , x 3 , x 2 ), x 2 being the unit digit. We endow X with the product topology which turns it into a compact metrizable space. The set N can be identified with the subset of sequences with finite support. More precisely, using the inclusion function

i : n = n ℓ • • • n 2 ∈ N -→ (• • • , 0, n ℓ , • • • , n 2 ) ∈ X
we identify N and i(N). We can also identify the notation

(• • • , x 3 , x 2 ) = • • • x 3 x 2 .
We take the opportunity to define X f as the finite sequences of 0's and 1's without two consecutive 1's. For instance, the Zeckendorf expansion of a given integer is composed using a sequence in X f .

Let us define, for ℓ ≥ 2 and (n k ) k≥2 ∈ X f , the cylinder C n ℓ •••n2 as the set of sequences x ∈ X such that x i = n i for i = 2, • • • , ℓ. We observe that n ℓ • • • n 2 is not necessarily the Zeckendorf expansion of a given integer : the leftmost digit(s) can be 0('s). We want to extend on X the transformation n → n + 1 defined on N. Thanks to the description given in Subsection 2.2.1, it is convenient to consider the transformation T on X defined by the following formula, where ℓ ∈ N

T : X -→ X • • • x 2ℓ+4 00(10) ℓ -→ • • • x 2ℓ+4 01(00) ℓ • • • x 2ℓ ′ +3 001(01) ℓ -→ • • • x 2ℓ ′ +3 010(00) ℓ (10) ∞ -→ 0 ∞ (01) ∞ -→ 0 ∞
Indeed, thanks to the Subsection 2.2.1, we observe that T |N (n) = n+1. Now, if we take x ∈ X whose expansion contains two consecutive 0's, we observe that the sequence (x ℓ • • • x 2 + 1) ℓ≥2 converges to T (x) because the digits will not changed eventually so we can define x + 1 := T (x) in that case. Otherwise, if x ∈ X does not have two consecutive 0's in its expansion, there are two cases : (10) ∞ and (01) ∞ . Adding 1 to the truncated sequence (10) ℓ ℓ∈N converges to (10) ∞ + 1 := 0 ∞ . It is the same for (01) ∞ . Thus, the transformation T can be described in a simpler way as

T : X -→ X x -→ x + 1
Due to the two pre-images of 0 ∞ , T is not a homeomorphism on X but we have the following result that ensures that (X, T ) is a topological dynamical system that we call the Odometer. Proposition 2.2.1. T is continuous on X, surjective on X and one-to-one on X\{0 ∞ }.

Proof. The surjectivity on X and the injectivity on X\{0 ∞ } follow immediately from the definition of T . Observing that the cylinders generate the topology, another consequence of the definition of T is that the pre-image of a cylinder is another cylinder. So T is also continuous on X.

We know how to add 1 to a Z-adic integer x. Repeating this operation enables us to add an integer r to x. For later purposes, we need to specify how to add F k (≥ 3) directly. In Subsection 2.2.1, we have compute x + F k for the x ∈ X which has two consecutive 0's at indices > k. Thus, we only need to focus on what happens if x does not have two consecutive 0's at indices > k. There is only a finite number of cases to consider which we detail below. For simplicity again, we write in color the digits at position k and we do not represent digits that are not modified. We start with the cases where the only digits that change are those of indices ≥ k -1.

1. If x = (10) ∞ 01 • • • then (x) (10) ∞ 0 1 • • • (F k ) + 1 (x + F k ) = (00) ∞ 0 0 • • • 2. If x = (01) ∞ 0 • • • then (x) (01) ∞ 0 • • • (F k ) + 1 (x + F k ) = (00) ∞ 0 • • •
Now we consider cases where digits of small indices are changed but not all them.

If k ≥ 5 and there exists ℓ

′ ≥ 0 such that x = (10) ∞ 1(01) ℓ ′ 000 • • • then (x) (10) ∞ 1 (01) ℓ ′ 0 0 0 • • • (F k ) + 1 (x + F k ) = (00) ∞ 0 (10) ℓ ′ 0 1 0 • • • 4. If k ≥ 6 and there exists ℓ ′ ≥ 0 such that x = (10) ∞ 1(01) ℓ ′ 0010 • • • then (x) (10) ∞ 1 (01) ℓ ′ 0 0 1 0 • • • (F k ) + 1 (x + F k ) = (00) ∞ 0 (10) ℓ ′ 1 0 0 0 • • •
Finally, we consider cases where the whole prefix of x is modified.

If k ≥ 4 and is even and x

= (10) ∞ 1(01) k-2 2 then (x) (10) ∞ 1 (01) k-2 2 
(F k ) + 1 (x + F k ) = (00) ∞ 0 (10) k-2 2 
6. If k ≥ 3 and is odd and x = (10) ∞ 1(01

) k-3 2 0 then (x) (10) ∞ 1 (01) k-3 2 0 (F k ) + 1 (x + F k ) = (00) ∞ 0 (10) k-3 2 1
We can sum up all these cases in the following proposition. We need to take k ≥ 6 to ensure each case appear.

Proposition 2.2.2. The table below summarises the action of the addition of F k (k ≥ 2) on the digits of x ∈ X. Here ℓ, ℓ ′ ∈ N and we represent in color, the digits at position k. The digits that are not explicitly written remain untouched by the operation.

T F k :X -→ X • • • 000 • • • -→ • • • 010 • • • (2.7) • • • 001(01) ℓ 0 • • • -→ • • • 010(00) ℓ 0 • • • (2.8) • • • 00(10) ℓ 01 • • • -→ • • • 01(00) ℓ 00 • • • (2.9) • • • 00(10) ℓ 1(01) ℓ ′ 000 • • • -→ • • • 01(00) ℓ 0(10) ℓ ′ 010 • • • (2.10) • • • 00(10) ℓ 1(01) ℓ ′ 0010 • • • -→ • • • 01(00) ℓ 0(10) ℓ ′ 1000 • • • (2.11) • • • 00(10) ℓ 1(01) k-5 2 001 -→ • • • 01(00) ℓ 0(10) k-5
2 100 (2.12)

• • • 00(10) ℓ 1(01) k-4 2 00 -→ • • • 01(00) ℓ 0(10) k-4
2 01 (2.13)

• • • 00(10) ℓ 1(01) k-2 2 -→ • • • 01(00) ℓ 0(10) k-2 2 
(2.14) 

• • • 00(10) ℓ 1(01) k-3 2 0 -→ • • • 01(00) ℓ 0(10) k-3 2 1 (2.15) (01) ∞ 0 • • • -→ 0 ∞ 0 • • • (7.bis) (10) ∞ 01 • • • -→ 0 ∞ 00 • • • (8.bis) (10) ∞ 1(01) ℓ ′ 000 • • • -→ 0 ∞ 0(10) ℓ ′ 010 • • • (9.bis) (10) ∞ 1(01) ℓ ′ 0010 • • • -→ 0 ∞ 0(10) ℓ ′ 1000 • • • (10.bis) (10) ∞ 1(01) k-5 2 001 -→ 0 ∞ 0(10) k-5 2 100 (11.bis) (10) ∞ 1(01) k-4 2 00 -→ 0 ∞ 0(10) k-4 2 01 (12.bis) (10) ∞ 1(01) k-2 2 -→ 0 ∞ 0(10) k-2 2 (13.bis) (10) ∞ 1(01) k-3 2 0 -→ 0 ∞ 0(10) k-3 2 

Stopping conditions when adding an integer to an adic number

Through the cases described in Proposition 2.2.2, we observe that if there is a 1 at position k in the expansion of x, the addition of F k yields a carry propagation in both directions:

• to the left, modifying digits of higher indices (as in integer base)

• to the right, modifying digits of lower indices.

The propagation (in both directions) happens through a maximal sequence of alternative 0's and 1's and is stopped at the first occurrence of two consecutive 0's. But the modifications depend on the propagation direction.

• In the propagation to the left, the maximal subword of alternative 1's and 0's will be transformed into a subword of 0's of the same length (case (2.10) for instance), and the stopping pattern 00 is transformed into 01. We precise this propagation also happens if x k = 0 (case (2.8) for instance).

• In the propagation to the right, which only happens if x k = 1, the maximal subword of alternative 1's and 0's is transformed into a symmetrical subword where the 1's become 0's and vice-versa (cases (2.10) and (2.11) for instance). Then the first occurrence of 00 (in the sense the largest index ≤ k such that the digits of x are 00) can either be part of the pattern w 0 := 01000 or w 1 := 10010. (We call w 0 and w 1 the right-stopping pattern.)

Depending on the right-stopping pattern (01000 or 10010), the modifications of digits at these indices are given by the next scheme. Note that in both cases, we get a new right-stopping pattern at the same position as before the addition of F k . This addition of F k to x ∈ X modifies some digits at positions ≤ k -2 only if x k = 1, and, in this case, the modification of the digits takes place up to the first occurrence of one of the right-blocking patterns.

Formally: let x ∈ X and k ≥ 2.

• If

x k = 0 then (x + F k ) n = x n for all n ≤ k -2. • If x k = 1 and if there exists j ≤ k + 1 such that x j x j-1 • • • x j-4 is a right-stopping patterns w i (i ∈ {0, 1}
), -we denote by j ′ the largest index with this property-then

-(x + F k ) n = x n for all n ≤ j ′ -4
w 1-i appears in (x + F k ) at the same position j ′ , unless w i = w 0 and j ′ = k + 1, in which case we might have 00010 instead of w 1 at position j ′ in x + F k (case (2.10) with ℓ = ℓ ′ = 0).

A straightforward consequence is the following Proposition.

Proposition 2.2.3. Assume that the right-stopping pattern w i (i = 0, 1) appears in x ∈ X at position j ≥ 5, that is:

x j x j-1 • • • x j-4 = w i . Let k ≥ j -1. Then • for all n ≤ j -4, (x + F k ) n = x n and
• w 0 , w 1 or 00010 appears in x + F k at some position j ′ with k + 1 ≥ j ′ ≥ j.

We now state the following corollary that enhances that property when we add not only a Fibonacci term but an integer whose expansion involves Fibonacci numbers of high indices.

Corollary 2.2.4. Let x ∈ X. Assume that, for some ℓ ≥ 2, x ℓ = x ℓ+1 = 0. Let r ∈ N be such that r j = 0 for j = 2, • • • , ℓ + 1. Then, for each n ≤ ℓ -2, we have (x + r) n = x n .
Proof. We are considering the following addition:

(x) • • • x ℓ+3 x ℓ+2 0 0 x ℓ-1 x ℓ-2 x ℓ-3 • • • (r) + • • • r ℓ+3 r ℓ+2 0 0 0 0 0 Let r = F k s(r) + • • • + F k1 be the Zeckendorf decomposition of r with k s(r) > • • • > k 2 > k 1 ≥ ℓ + 2.
We first consider the addition of F k1 to x:

• if, for all j such that k 1 ≥ j ≥ ℓ, we have x j = 0, then we have for every n ≤ ℓ + 1, (x + F k1 ) n = x n (in particular 00 appears at the same place in x + F k1 )

• otherwise, there exists a largest integer j ′ with k 1 + 1 ≥ j ′ ≥ ℓ + 2, such that one of the right-stopping pattern appears in x at position j ′ . We can then apply the above proposition which proves that either w 0 or w 1 appears at position j ′ in x + F k1

or 00 appears at position j ′ in x + F k1 , and j ′ ≥ ℓ + 3

In each case, we still have (x

+ F k1 ) n = x n for n ≤ ℓ -2.
Then we prove by induction on t such that for each t, 1 ≤ t ≤ s(r), the above is true for

x + F k1 + • • • + F kt .
The following lemma ensures that the pattern 00 is a left-stopping condition: it stops the propagation of a carry coming from the right. Lemma 2.2.5. Let x ∈ X, r ∈ N. Let ℓ ≥ 2 be such that r < F ℓ+1 and assume x ℓ+2 = x ℓ+3 = 0. Then, for all k ≥ ℓ + 3, we have

(x + r) k = x k . Proof. The assumption r < F ℓ+1 , implies r = r ℓ • • • r 2 with (r ℓ , • • • , r 2 ) ∈ X f . Since x ℓ+1 • • • x 2 +r < F ℓ+2 + F ℓ+1 = F ℓ+3 , a carry cannot propagate on digits of indices ≥ ℓ + 3 : we have the addition (x) • • • x ℓ+4 0 0 x ℓ+1 x ℓ • • • x 2 (r) + r ℓ • • • r 2 (x + r) = • • • x ℓ+4 0 (x + r) ℓ+2 (x + r) ℓ+1 (x + r) ℓ • • • (x + r) 2
The next lemma enhances the previous one: it shows that, given x with some restrictions, right-stopping patterns can appear in the expansion x + F k when k is a small integer. Lemma 2.2.6. Let x ∈ X and r ∈ N. Let ℓ ≥ 2 be such that x ℓ+1 = x ℓ+2 = x ℓ+3 = x ℓ+4 = 0 and r ℓ+2 = 1. We also suppose r < F ℓ+3 . Then, for k = 1, 2, 3, 4

(x + r) ℓ+k = r ℓ+k or (x + r) ℓ+1 = 0 and (x + r) ℓ+3 = 1.
Proof. We are actually considering the following addition

(x) • • • x ℓ+5 0 0 0 0 x ℓ • • • x 2 (r) + • • • 1 0 r ℓ • • • r 2
We want to show that the expansion of x + r is either

• • • x ℓ+5 0010(x + r) ℓ • • • (x + r) 2 (C1) or • • • x ℓ+5 0100(x + r) ℓ • • • (x + r) 2 . (C2)
Thanks to Lemma 2.2.5, we have (x + r) k = x k for every k ≥ ℓ + 4 which means that the digits of x + r of indices ≤ ℓ + 3 are given by the addition r + x ℓ • • • x 2 . Now, we claim

(x + r) ℓ+3 or (x + r) ℓ+2 is 1.
Indeed, if it is not the case then x ℓ • • • x 2 + r < F ℓ+2 while r ≥ F ℓ+2 (since r ℓ+2 = 1). We consider now both possibilities.

• If (x + r) ℓ+2 = 1 then we obtain (C1).

• If (x + r) ℓ+3 = 1 then we must have (x + r) ℓ+1 = 0 since we have

x ℓ • • • x 2 + r -F ℓ+3 = x ℓ • • • x 2 + r ℓ • • • r 2 + F ℓ+2 -F ℓ+3 < F ℓ+1 .
Thus, the expansion of x + r is (C2).

We deduce the next corollary.

Corollary 2.2.7. Let x ∈ X and r ∈ N such that it exists ℓ ≥ 2 with

x ℓ = • • • = x ℓ+5 = 0, r ℓ+1 = r ℓ+5 = 0 and r ℓ+3 = 1. Denote r := r ℓ • • • r 2 . Then, for any k ≥ ℓ + 4 (x + r + F ℓ+3 ) k = (x + r) k = x k (2.16) 
and, for any k ≤ ℓ + 2

(x + r) k = (x + r + F ℓ+3 ) k = (x + r) k .
(2.17)

Remark 5. The hypothesis means that we are considering the following addition

(x) • • • x ℓ+6 0 0 0 0 0 0 x ℓ-1 • • • x 2 (r) + • • • r ℓ+6 0 0 1 0 0 r ℓ • • • • • • r 2
and the conclusion ensures that the digits of indices ≤ ℓ + 2 (i.e. those on the right-hand side of the pattern we have imposed) of x + r are the same if we compute this previous addition as if we compute (x)

• • • x ℓ+6 0 0 0 0 0 0 x ℓ-1 • • • x 2 ( r + F ℓ+3 ) + 1 0 0 r ℓ • • • • • • r 2 or if we compute (x) • • • x ℓ+6 0 0 0 0 0 0 x ℓ-1 • • • x 2 ( r) + r ℓ • • • • • • r 2
In other words, the corollary states that the conditions we put on x and r stop the propagation of carries in both direction.

Proof. First, we have the following addition

(x) • • • x ℓ+6 0 0 0 0 0 0 x ℓ-1 • • • x 2 ( r) + r ℓ • • • • • • r 2 (x + r) = • • • x ℓ+6 0 0 0 0 (x + r) ℓ+1 • • • • • • • • • (x + r) 2
Indeed, due to Lemma 2.2.5, we have that (x + r) j = x j for every j ≥ ℓ + 2. Then, we add F ℓ+3 , it gives x + r + F ℓ+3 whose Zeckendorf expansion is

(x + r + F ℓ+3 ) = • • • x ℓ+6 0010(x + r) ℓ+1 • • • (x + r) 2 .
We thus get the relation (2.16).

We now consider the addition (denoting

x := x + r + F ℓ+3 ) ( x) • • • x ℓ+6 0 0 1 0 (x + r) ℓ+1 • • • (x + r) 2 + • • • r ℓ+6 0 0 0 0 0 • • • 0 
Now, using Corollary 2.2.4, we obtain (2.17).

The statement of Corollary 2.2.7 means that, given a given block of length 1 (in the sense that it has one pattern 10) in r, we are able to control the propagation of carries so that the left part of the addition does not change the expansion on the right part and vice versa. We now want to have the same kind of control for larger blocks. We could assume that x has many 0's facing the block in r that we want to control. However, this condition would more and more "expensive" (in the sense that the probability for x to satisfy it would decrease to 0) as the length of the block increases. To avoid this, we are looking for conditions on x that affect only a bounded number of digits, regardless of the length of the block. In other words, we want our conditions to appear in "most" of x ∈ X. We obtain the following corollary where the length of the block is m + 2 and where we fixed 8 digits in x.

Corollary 2.2.8. Let x ∈ X, r ∈ N and m ≥ 0. Suppose that it exists ℓ ≥ 2 such that

• x i = 0 where i ∈ {ℓ, ℓ + 1, ℓ + 2, ℓ + 3, ℓ + 2m + 4, ℓ + 2m + 5, ℓ + 2m + 6, ℓ + 2m + 7}, • r ℓ+1 = r ℓ+2m+7 = 0 and r ℓ+2i+3 = 1 for i = 0, • • • , m + 1. Denote r := r ℓ • • • r 2 . Then we have, for all k ≥ ℓ + 2m + 7 (x + r + m+1 i=0 F ℓ+2i+3 ) k = (x + r) k = x k (2.18)
and, for all k ≤ ℓ + 2m + 2

(x + r) k = (x + r + m+1 i=0 F ℓ+2i+3 ) k . (2.19) 
Proof. For simplicity, we write B as the block m+1 i=0 F ℓ+2i+3 . We decompose the addition x + r in several steps. First we add r. With the hypothesis on x, we actually consider the following addition

(x) • • • x ℓ+8+2m 0 0 0 0 x ℓ+2m+3 • • • x ℓ+4 0 0 0 0 x ℓ-1 • • • x 2 ( r) + r ℓ r ℓ-1 • • • r 2
Thanks to Lemma 2.2.5, we know that this addition can only modify digits of x of indices ≤ ℓ + 1.

We continue with the addition of B. For simplicity, we write x = x + r

( x) • • • x ℓ+8+2m 0 0 0 0 x ℓ+2m+3 • • • x ℓ+4 0 0 x ℓ+1 x ℓ x ℓ-1 • • • x 2 (B) + 1 0 1 • • • 0 1 0 0 0 0 • • • 0
Now, Lemma 2.2.6 ensures that the expansion of x is not modified for digits of indices ≥ ℓ + 2m + 7. We thus prove (2.18). But more precisely, Lemma 2.2.6 concludes that the expansion of x + B is either

• • • x ℓ+8+2m 0100( x + B) ℓ+2m+3 • • • ( x + B) 2 or • • • x ℓ+8+2m 0010( x + B) ℓ+2m+3 • • • ( x + B) 2 .
In both case, a pattern 00 appears between the indices ℓ + 2m + 4 and ℓ + 2m + 7. Thus, we can apply Corollary 2.2.4: the final step of the addition, which consists into adding what remains in r, will not modify the digits of indices ≤ ℓ + 2m + 2. We obtain the conclusion (2.19).

Unique Ergodicity of the Odometer

Rokhlin towers and the ergodic measure

In this Subsection, we focus on the action of T on cylinders. For each k ≥ 1, we consider the partition of X into F k+2 cylinders corresponding to all possible blocks formed by the rightmost k digits of a Z-adic integers (we call them "cylinders of order k"). For example, at order 1, we partition X into C 0 and C 1 . At order 2, we get X = C 00 ⊔ C 01 ⊔ C 10 . At order 3

X = C 000 ⊔ C 001 ⊔ C 010 ⊔ C 100 ⊔ C 101 .
In general, we order lexicographically the cylinders of order k:

• first, those whose name has a 0 at the leftmost position (there are F k+1 of them),

• then those whose name has a 1 at the leftmost position (there are F k of them).

We observe that each cylinders of order k with a 0 at the leftmost position, except the last one, is mapped by T onto the next one, giving rise to a Rokhlin tower of height F k+1 : we call it the large tower of order k. Similarly, each cylinders or order k with a 1 at the leftmost position, except the last one, is mapped by T onto the next one, giving rise to another Rokhlin tower of height F k : we call it the small tower of order k. Thus, for each k ≥ 1, we get a partition of X into two Rokhlin towers whose levels are all cylinders of order k. For instance, for k = 4, we get It remains to describe the transition from the Rokhlin towers of order k to those of order k + 1. First, note that all levels of the small tower of order k are also levels of the large tower of order k + 1, since a cylinder of order k with a 1 at the leftmost position coincides with the cylinders of order k + 1 with an additional 0 concatenated at the left of its name (e.g. C 101000 = C 0101000 ).

Each level of the large tower of order k is partitioned into two cylinders of order k + 1 : one obtained by concatenating a 0 at the left of its name and the other obtained by concatenating a 1. Thus, the large Rokhlin tower of order k is cut into two subtowers :

• the first one is the bottom part of the large Rokhlin tower of order k + 1 (the top part being nothing but the small Rokhlin towers of order k);

• the second one is the small Rokhlin tower of order k + 1.

This transition will be refered as the Cut and Stack process. The proceding analysis of the action of T on cylinders, yielding to the construction of the Rokhlin towers, enables us to describe the unique T -invariant probability measure. 

, • • • , r 2 ) ∈ X f P(C r ℓ •••r2 ) =      1 φ ℓ-1 if r ℓ = 0 1 φ ℓ if r ℓ = 1 (2.20)
Proof. Let P be a T -invariant measure. Due to T -invariance, we observe that, for each order k ≥ 1, the measure of each level of the large tower of order k is the same so as the measure of each level of the small tower of order k. We claim that

P(C 1 ) = 1 φ 2 . (2.21)
Indeed, if we denote by u k (resp. v k ) the number of levels included in C 1 in the large (resp. small) tower of order k, then, due to the Cut and Stack process, we have the relations for k ≥ 2

u k+1 = u k + v k v k+1 = u k
with initial conditions u 1 = 0 and v 0 = 1. We deduce that, for k ≥ 1,

u k = F k-1 and v k = F k-2 .
Also, for all k ≥ 1, we have the identity P(C 1 ) = u k P (x ∈ one level of the large tower of order k) + v k P (x ∈ one level of the small tower of order k) = u k F k+1 P (x ∈ the large tower of order k)

+ v k F k P (x ∈ the small tower of order k) = v k F k + ( u k F k+1 - v k F k
) P (x ∈ the large tower of order k)

Since both quotients u k F k+1 and v k F k converge to 1 φ 2 , we obtain (2.21). Then, we deduce that P(C 0 ) = 1 -1 φ 2 = 1 φ . At order 2, we observe that C 1 = C 01 so, by T -invariance, P(C 00 ) = 1 φ 2 . It follows P(C 10 ) = 1 -P(C 00 ) -P(C 01 ) = 1 φ 3 . Then, suppose that, at order k ≥ 2, each level of the large (resp. small) tower measures 1 φ k (resp. 1 φ k+1 ). We observe that a level of the small tower of order k is, due to the Cut and Stack process, exactly a level of the large tower of order k + 1. Thus, by T -invariance, we deduce that each level of the large tower of order k + 1 measures 1 φ k+1 . Also by T -invariance, each level of the small tower of order k + 1 has the same measure. We denote it p ∈ [0, 1]. Since there are F k+2 (resp. F k+1 ) levels in the large (resp.small) tower of order k + 1, we have the relation

F k+2 φ k+1 + pF k+1 = 1
which is equivalent to the relation

φF k+2 + pφ k+2 F k+1 = φ k+2
Combining with the classical identity φF k+2 +F k+1 = φ k+2 , we deduce that p = 1 φ k+2 . By induction, we prove (2.20).

Probabilistic interpretation of the measure

In the case of the b-adic odometer (b ≥ 2), the T -invariant measure can be interpreted as an independent choice of each digit according to the uniform law on the set of possible digits (see [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF], page 7). For the Z-adic odometer, it is not as easy to describe. First, the digits do not follow the same law. Indeed, for all k ≥ 2, P(

x k = 1) = F k-1
φ k and depends on k. That gives another proof about the frequency of 1's in the Zeckendorf expansion : P(x k = 1) -----→ k→+∞ 1 φ 2 +1 (see [START_REF] Griffiths | Digit proportions in Zeckendorf representations[END_REF], [START_REF] Lekkerkerker | Representation of natural numbers as a sum of Fibonacci numbers[END_REF] for other proofs). Therefore, if σ is the shift on X, the law of x is not the same as the law of σ k (x), for k ≥ 1 which means P is not stationary. Furthermore, the choice of a digit is not independent of the other digits because a 1 must be followed by a 0. However, the lack of stationarity and independency of P is compensed by the following renewal property.

Proposition 2.3.2. Let C be a cylinder, k ≥ 2, and (r k , • • • , r 2 ) ∈ X f . Then 1. P σ k x ∈ C | x ∈ C 0r k •••r2 = P(C) and 1. P σ k+1 x ∈ C | x ∈ C 1r k •••r2 = P(C) (if r k = 0).
Proof. Without a loss of generality, we can suppose C is a cylinder of order k 0 with a 0 at the left side of its name for some k 0 ≥ 1 so P(C) = 1 φ k 0 . Then

P (x∈C0r k •••r 2 ) σ k+2 x ∈ C = P x ∈ C 0r k •••r2 ∩ σ k+2 x ∈ C P(x ∈ C 0r k •••r2 ) .
We observe that the set {x ∈ C 0r k •••r2 ∩ σ k+2 x ∈ C} is actually a cylinder of order k + k 0 with a leftmost 0 in its name. Its measure is therefore 1 φ k+k 0 .

P (x∈C0r k •••r 2 ) σ k+2 x ∈ C = φ k φ k+k0 = 1 φ k0 = P(C).
We get the first point of the proposition. Then, we observe that, since

C 1r k •••r2 = C 01r k •••r2
, the second is a particular case of the first one (with k + 1 instead of k).

Once we know the value of x k , the conditionnal law of x k+1 depends neither on k or

x k-1 , • • • , x 2 .
In particular, we get that

P(x k+2 = 1 | x k+1 , • • • , x 2 ) =    1 φ 2 if x k+1 = 0 0 otherwise and P(x k+2 = 0 | x k+1 , • • • , x 2 ) =    1 φ if x k+1 = 0 1 otherwise.
Therefore, under P, the digits x 2 , x 3 , • • • form a Markov Chain with transition probabilities given on the figure, starting with the initial law 

P(x 2 = 1) = 1 φ 2 and P(x 2 = 0) = 1 φ . 0 1 1 φ 2 1 1 φ

Reminds on some notions of mixing coefficients

In the Introduction (more precisely at Definition 2.1.4), we introduced the notion of α-mixing coefficients. It happens that the distribution of the digits in a Z-adic integer satisfies a good inequality for another (better) notion of mixing coefficients : the ϕ-mixing coefficients. They are defined as follows. where the second supremum is taken over all events A and B such that

• A ∈ σ(X j : 1 ≤ j ≤ p),
• P(A) > 0 and

• B ∈ σ(X j : j ≥ k + p).
By convention, if X j is not defined when j ≥ k + p then the σ-algebra is trivial.

In the case of a finite sequence (X 1 , • • • , X n ), the convention implies that ϕ(k) = 0 for k ≥ n. Both α and ϕ-mixing coefficients are linked together and, as written above, ϕ-mixing coefficients are "better" than α-mixing coefficients. Indeed, we have the following property from the survey [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF] by Bradley. Proposition 2.3.4 (Bradley). For every k ≥ 1

α(k) ≤ 1 2 ϕ(k).
which has a probability

P(C) = 1 - 1 φ 2k > 0.
If y ∈ C then it implies that y j = 0 because of (2.23). Then, we take A ∈ σ(x j : 2 ≤ j ≤ p) and B ∈ σ(x j : j ≥ k + p). We observe that, due to (2.23), A ∈ σ(U j : 2 ≤ j ≤ p) while C ∈ σ(U j : p < j ≤ k + p) thus A and C are independent. Also, due to Proposition 2.3.2, we observe B ∩ C ∈ σ(U j : j > p). So A and B ∩ C are independent. Also, we have Another property about the measure is that if indeed P(x k = 1) depends on k, it is actually bounded between two positive values. We generalise that fact with the next proposition. Proposition 2.3.7. Let (k 0 , • • • , k ℓ ) be a collection of integers such that

2 ≤ k 0 < k 1 < • • • < k ℓ
and also A be a union of cylinders of order k 0 such that x k0 = 0 if x ∈ A and such that P(A) > 0.

Then 1 φ ℓ ≤ P A (∀1 ≤ i ≤ ℓ : x ki = 0) ≤ 2 φ 2 ℓ .
Proof. Let I ⊂ N. Since there is a finite number of cylinders of order k 0 , we can write A as a disjoint union ⊔ i∈I C (i) where C (i) is a cylinder of order k 0 . We have the identity

P A (∀1 ≤ i ≤ ℓ : x ki = 0) = ℓ i=1 P (x ki = 0 | A ∩ i-1 j=1 (x kj = 0)) (2.26)
with the convention ∩ 0 j=1 (x kj = 0) = X. But we have

P A (x k1 = 0) = P (x k1 = 0) ∩ x ∈ ⊔ i∈I C (i) P(A) = 1 P(A) i∈I P (x k1 = 0) ∩ x ∈ C (i) .
We recall P(A) = |I| φ k 0 and that the summand is the probability of a cylinder of order k 1 with a digit 0 at the leftmost position so its measure is 1 φ k 1 . Thus, we obtain P A (x k1 = 0) = P(x k1-k0 = 0).

We proceed similarly for the other terms in (2.26) and get

P A (∀1 ≤ i ≤ ℓ : x ki = 0) = ℓ i=1 P (x ki-ki-1 = 0). (2.27)
The last equality is given using the renewal of P. Now we claim that, for any k ≥ 2

1 φ ≤ P(x k = 0) ≤ 2 φ 2 .
Indeed, we recall P(x k = 0) = F k φ k-1 and observe that the subsequences

F 2k φ 2k-1
and F 2k+1 φ 2k are adjacent sequences.

Ergodic convergence

This subsection is exactly the same as the end of Subsection 2.1 in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF] in the context of an integer base but we write it again in the Z-adic context where the arguments are identical.

For x in X, we define the sequence of empirical probability measures along the (beginning of the) orbit of x: for every N ≥ 1, we set

ϵ N (x) := 1 N 0≤n<N δ T n x
(where δ y denotes the Dirac measure on y ∈ X).

Since the space of probability measures on X is compact for the weak- * topology, we can always extract a convergent subsequence. Moreover, every subsequential limit of (ϵ N (x)) is a T -invariant probability measure. By the uniqueness of the T -invariant probability measure, for every x ∈ X we have ϵ N (x) → P. In other words, we have the convergence

∀x ∈ X, ∀f ∈ C(X), 1 N 0≤n<N f (T n x) -----→ N →+∞ X f dP.
(2.28)

We will be interested here in the special case x = 0 because N = {T n 0 : n ∈ N}. Then (2.28) becomes

∀f ∈ C(X), 1 N 0≤n<N f (n) -----→ N →+∞ X f dP. (2.29)
Equation (2.29) shows that, for a continuous function f , averaging f over N (for the natural density) amounts to averaging over X (for P). The next section shows how this convergence can be extended to some non-continuous functions related to the sum-of-digits function.

Sum of digits on the Odometer

This section is very similar to the corresponding section in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF] for the integer base case. The only differences are the need of the new Lemma 2.4.4. All the other results in this section are the same even though we need to adapt the proofs. For every integer k ≥ 2, we define the continuous map s k : X → Z as the sum of the digits of indices ≤ k, that is to say

s k (x) := x k + • • • + x 2 .
Let r ∈ N. We define the functions

∆ (r) k : X → Z by ∆ (r) k (x) := s k (x + r) -s k (x).
The functions ∆ (r)

k are well-defined, continuous (and bounded) on X. By (2.29), we have 1

N n<N ∆ (r) k (n) = 1 N n<N ∆ (r) k (T n 0) -----→ N →+∞ X ∆ (r) k dP. (2.30)
Although the sum-of-digits function s is not well defined on X, we can extend the function ∆ (r) defined by (2.3) on the set of x ∈ X for which the number of different digits between x and x + r is finite. This subset contains the Z-adic integers x such that there exists an index k ≥ 2 + max({ℓ : r ℓ ̸ = 0}) such that x k = x k+1 = 0 (see Lemma 2.2.5). So, except for a finite number of Z-adic integers, we can define

∆ (r) (x) := lim k→∞ ∆ (r) k (x).
Remark 6. Let t, u be two integers. For every integer k we have the decomposition formula

∆ (t+u) k = ∆ (t) k + ∆ (u) k • T t . ( 2 

.31)

So, taking P-almost everywhere the limit when k tends to infinity, we get

∆ (t+u) = ∆ (t) + ∆ (u) • T t (P-a-s.). ( 2 

.32)

Then, by induction on t, we deduce

∆ (t) = ∆ (1) + ∆ (1) • T + • • • + ∆ (1)
• T t-1 (P-a-s.).

(2.33) ∆ (r) is not bounded on X therefore it is not continuous. So, (2.29) is not applicable for f • ∆ (r) with f a continuous map on X. However, it is possible to get the same convergence as in (2.29) with weaker assumptions on f than continuity. (2.34)

Then f • ∆ (r) ∈ L 1 (P) and we have the convergence

lim N →∞ 1 N n<N f (∆ (r) (n)) = X f (∆ (r) (x))dP(x) = lim k→∞ X f (∆ (r) k (x))dP(x). Also, since the couple (d, d ′ ) / ∈ V ℓ-1 , we claim that, for every N ≥ 1 1 N {n < N : (∆ (r) (n), ∆ (r) k (n)) = (d, d ′ )} ≤ r F ℓ-1 . Indeed, (a) If r ≥ F ℓ-1 , the inequality is then trivial. (b) If r < F ℓ-1 then, since (d, d ′ ) is not in V ℓ-1 , (d, d ′
) can only appear inside a part the r highest levels of the big or the small towers of order ℓ -1. Let us denote C the union of these r highest levels. Since 0 lies in the bottom level of the large tower of order ℓ -1, the set S of integers n ≥ 0 such that T n 0 ∈ C has the following properties :

• {0, • • • , F ℓ -r -1} ∩ S = ∅ and
• S is the union of subsets formed by r consecutive integers separated by gaps of length However, as in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF], we have

F ℓ -r or F ℓ-1 -r. So, we have 1 N {0 ≤ n < N : (∆ (r) (n), ∆ (r) k (n)) = (d, d ′ )} ≤ 1 N |{0 ≤ n < N : T n 0 ∈ C}| ≤ r F ℓ-1 . Since F ℓ-1 ≥ φ ℓ-3 (by double induction), we get 1 N {n < N : (∆ (r) (n), ∆ (r) 
k (n)) = (d, d ′ )} ≤ r φ ℓ-3 . ( 2 
A 1 = 1 N n<N j,j ′ ∈Z f (j) -f (j ′ ) 1 (j,j ′ ) ∆ (r) (n), ∆ (r) k (n) = j,j ′ ∈Z f (j) -f (j ′ ) 1 N n<N 1 (j,j ′ ) ∆ (r) (n), ∆ (r) k (n) ≤ rb j,j ′ ∈Z f (j) -f (j ′ ) P ∆ (r) (n) = j, ∆ (r) k (n) = j ′ = rb X f (∆ (r) (x)) -f (∆ (r) k (x)) dP(x) = rbA 3 . It follows that 1 N n<N f (∆ (r) (n)) - X f (∆ (r) (x))dP(x) ≤ A 2 + (1 + rb)A 3 .
We want to apply a Dominated Convergence Theorem to deal with A 3 (observe that we have

f (∆ (r) k (x)) ----→ k→∞ f (∆ (r) (x)) P-almost-surely).
For this, we need to find a good dominant function.

As in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF], we define g i := sup k≥2 |∆

k • T i (x)| for i = 0, • • • , r -1 and by (2.34) we get the inequalities f • ∆ (r) k (x) ≤ C j0+•••+jr-1=α r-1 i=0 α j0,••• ,jr-1 r g i (x) rji + f (0) and f • ∆ (r) (x) ≤ C j0+•••+jr-1=α r-1 i=0 α j0,••• ,jr-1 r g i (x) rji + f (0) . (1) 
We need to prove that g rji i is integrable for the measure P. It is equivalent to show that m P({x ∈ X : g rji i (x) > m}) is a convergent series. We have

g i (x) > m 1 rj i ⇔ sup k∈N |∆ (1) 
k • T i (x)| > m 1 rj i ⇔ ∃k ∈ N, |∆ (1) 
k (T i x)| > m 1 rj i . From Lemma 2.4.4 ∃k ∈ N, |∆ (1) 
k (T i x)| > m 1 rj i ⇔ T i x ∈ C 00(10) ⌊m 1 rj i ⌋ ∪ C 0(01) ⌊m 1 rj i ⌋ It follows, by T -invariance P({x ∈ X : g rji i (x) > m}) ≤ 1 φ 2+2⌊m 1 rj i ⌋ + 1 φ 1+2⌊m 1 rj i ⌋ = 1 φ 2⌊m 1 rj i ⌋ . Figure 2.10: Table of the values of ∆ (4) on NIZ k .
Thus, it is possible to know how many times some integer d ∈ Z appear in each column (ie at each order) and, since we know the measure of a cylinder at each order, it is possible to deduce the value of µ (r) (d). For instance • The value 2 appears once at order 4 so µ (4) (2) = 1 φ 4 .

• The value 1 appears twice at order 5, once at order 6 so µ (4) (1) = 2 φ 5 + 1 φ 6 .

• The value 0 appears once at order 5 and 8. It also appears twice at order 6 and 7, we deduce that µ (4) 

(0) = 1 φ 5 + 2 φ 6 + 2 φ 7 + 1 φ 8 .
• The value -1 appears once at order 6 and 10. It appears twice at order 7, 8 and 9. We deduce µ (4) (-1) = 1 φ 6 + 2 φ 7 + 2 φ 8 + 2 φ 9 + 1 φ 10 .

• Since -1 is a value at order ℓ + 2 = 6 that does not appear in the previous order, we deduce by Corollary 2.5.6 that the value -2 will appear as many times as -1 appear but at orders incremented by 2. In other words, the value -2 appears once at order 8 and 12. It appears twice at order 9, 10 and 11. Thus µ (4) (-2) = µ (4) (-1) × 1 φ 2 . We observe that -2 does not appear in the lower orders. This observation will be better explained in Proposition 2.5.7 and Corollary 2.1.1. So, we get after simplification

µ (4) (d) =            0 if d > 2 1 φ 4 if d = 2 1 φ 3 if d = 1 2 φ 4 if d = 0 µ (4) (-1) × φ 2d+2 if d < 0 (where µ (4) (-1) = 1 φ 4 + 1 φ 6 .)
Remark 10. The "small enough" assumption is precised in the proof.

It leads to the corollary 2.1.1 we state again here.

Corollary. For d small enough in Z, we have the formula

µ (r) (d -1) = µ (r) (d) × 1 φ 2 .
Remark 11. The analogous relation in the integer base b case is

µ (r) (d -(b -1)) = µ (r) (d) × 1 b .
This result is actually intuitive. We focus on the integer base 10 case for instance. The variation of the sum of digits when adding r is actually linked to the creation of carries during the addition : the variation is d if and only if the addition with r creates a precise number of carries (for more details, see [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF] Equation (12) page 9). Now, imagine r has, for instance, 2 digits in its expansion and we know the cylinders that creates 4 carries when we add r to our of their elements. To create 5 carries, we just take the same cylinders and concatenate a digit 9 at the right of the leftmost digit of its name : the concatenation divides the measure of the cylinder by b. For instance, if r = 17 in base 10, the cylinder C 69983 is a cylinder our integer-base algorithm will compute and elements in that cylinder create 4 carries. The cylinder C 699983 is a cylinder that appears at the next order in the New Information Zone and elements of this cylinder creates now 5 carries.

Proof of Proposition 2.5.7. For k ≥ ℓ + 2, there are r cylinders of order k that compose NIZ k so ∆ (r) takes, at most, r different values on those cylinders. For k ≥ ℓ + 2, let

i ) 1≤i≤r be the collection of values taken by ∆ (r) on the cylinders of order k in NIZ k , repeated with multiplicity. Denote m := min d

(k) i | i = 1, • • • , r and k = ℓ + 2, ℓ + 3 .
Now, let d ≤ m. We observe that due to Lemma 2.5.3 and Lemma 2.5.5, d is actually smaller than any value taken by ∆ (r) on NIZ ℓ or NIZ ℓ+1 . Furthermore, for any i ∈ [1, r] and any k ∈ {ℓ+2, ℓ+3}, there exists a unique j

(k) i ∈ N such that d = d (k) i -j (k) 
i . Due to Corollary 2.5.6, d will be a value reached by ∆ (r) on the corresponding cylinder of order k+2j (k) i (by repeated use of Lemma 2.41 and 2.5.5). There are 2r cylinders at order ℓ + 2 and ℓ + 3 so d will appear exactly on 2r cylinders.

Proof of Corollary 2.1.1. With the same notation as in the proof of Proposition 2.5.7, let d ≤ m. Then d is a value taken by exactly 2r different cylinders of some orders. But, due to Proposition 2.5.7 and Corollary 2.5.6, ∆ (r) will take the value d -1 on the same number of cylinders but with the orders of those cylinders shifted by +2 so their measures are divided by φ 2 .

2.6 How to prove µ (F ℓ ) = µ (1) We propose here two proofs of Theorem 2.4.

There is an analogous relation in the integer base b case. The law of adding b ℓ is the same as the one of adding 1. It is trivial in base b since the addition x + b ℓ will not change the first digits of x, the addition really consists in adding 1 from a certain position. In the Zeckendorf representation But, due to the Proposition 2.3.2, the law of distribution of σ ℓ x conditioned by the event x ℓ-1 = 1 is the same as the law of distribution of x conditioned by the event x 2 = 0. We write it shortly as follows

L σ ℓ x | x ℓ-1 = 1 = L (x | x 2 = 0) . It implies P ∆ (F ℓ ) (x) = d | x ℓ-1 = 1 = P ∆ (F3) (x) = d + 1 | x 2 = 0 .
(2.43)

2. If x ℓ = x ℓ-1 = 0, we now consider the addition (x)

x ℓ+1 0 0 x ℓ-2 • • • x 2 (F ℓ ) + 1 0 0 • • • 0
We proceed as before by he following lemma that transfer the dependence on ℓ on x Lemma 2.6.6. For almost every x ∈ X (for the measure P conditioned by

x ℓ = x ℓ-1 = 0) ∆ (F ℓ ) (x) = ∆ (F2) (σ ℓ x).
Proof. The ℓ -1 first digits of x + F ℓ are the same as those of x. The addition will modify only digits of indices ≥ ℓ. Thus, this addition only consists into adding 1 to σ ℓ x.

Thus, it follows the formula

P ∆ (F ℓ ) (x) = d | x ℓ = x ℓ-1 = 0 = P ∆ (F3) (σ ℓ x) = d | x ℓ = x ℓ-1 = 0 .
The renewal properties of P gives that

L σ ℓ x | x ℓ = x ℓ-1 = 0 = L (x | x 2 = 0) . It implies P ∆ (F ℓ ) (x) = d | x ℓ = x ℓ-1 = 0 = P ∆ (F2) (x) = d | x 2 = 0 .
(2.44)

3. If x ℓ = 1, we are considering the following addition

(x) • • • x ℓ+2 0 1 0 x ℓ-2 • • • x 2 (F ℓ ) + 1 0 0 • • • 0 (x + F ℓ ) = • • • x ℓ+2 0 2 0 x ℓ-2 • • • x 2 +1 -2 +1
Since it is the first time the addition creates carries in both directions, arguments are getting difficult. However, the good expansion of (x + r) for the digits of indices ≥ ℓ + 1 is given by the expansion of σ ℓ+1 x + 1. Also, the expansion of the digits of indices ≤ ℓ is given by the expansion of x ℓ-2 • • • x 2 + F ℓ-2 . In other words, for every k ≥ 2

∆ F ℓ k (x) = s k (x + F ℓ ) -s k (x) = s k (σ ℓ+1 x + 1) + s k (F ℓ-2 + x ℓ-2 • • • x 2 ) -(s k (σ ℓ+1 x) + 1 + s k (x ℓ-2 • • • x 2 )) = ∆ (1) k (σ ℓ+1 x) + ∆ (F ℓ-2 ) k (x ℓ-2 • • • x 2 ) -1.
Thus, for almost every x ∈ X (for the measure P conditioned by x ℓ = 1)

∆ (F ℓ ) (x) = ∆ (1) (σ ℓ+1 x) + ∆ (F ℓ-2) ) (x ℓ-2 • • • x 2 ) -1. (2.45) For the term ∆ (F ℓ-2 ) (x ℓ-2 • • • x 2 )
, we can take any combinations (x ℓ-2 , • • • , x 2 ) ∈ X f : the almost every x ∈ X assumption depends on digits of indices ≥ ℓ + 1 as we see in (2.45). We have the following lemma.

Lemma 2.6.7. For any

(x ℓ-2 , • • • , x 2 ) ∈ X f ∆ (F ℓ-2 ) (x ℓ-2 • • • x 2 ) = 1 for F ℓ-2 choices 0 for F ℓ-3 choices. Proof. Let (x ℓ-2 , • • • , x 2 ) ∈ X f . The integer x ℓ-2 • • • x 2 ∈ [0, F ℓ-1 -1]. We have the partition [0, F ℓ-1 -1] = [0, F ℓ-3 -1] ⊔ [F ℓ-3 , F ℓ-1 -1].
The integer interval [0, F ℓ-3 -1] is part of NIZ ℓ-2 the first non-empty New Information Zone for r = F ℓ-2 . Thus, due to Lemma 2.6.2, ∆ (F ℓ-2 ) = 0 on that part. For the other integer interval [F ℓ-3 , F ℓ-1 -1], we observe that it is part of NIZ ℓ-1 the first non-empty New Information Zone for r = F ℓ-2 . There are as many integers as cylinders of order ℓ -1 in that integer interval and to each integer corresponds a unique cylinders. Then, it follows from Proposition 2.6.3, that F ℓ-4 of these integers are mapped to 1 by ∆ (F ℓ-2 ) and F ℓ-3 are mapped to 0. To sum up, F ℓ-3 combinations (x ℓ-2 , • • • , x 2 ) ∈ X f gives 0 by ∆ (F ℓ-2 ) and F ℓ-2 combinations gives 1. Combining Lemma 2.6.7 and Equation (2.45), we obtain that for almost every x ∈ X (for the measure P conditioned by x ℓ = 1)

∆ (F ℓ ) (x) =
∆ (1) (σ ℓ+1 x) for F ℓ-2 choices ∆ (1) (σ ℓ+1 x) -1 for F ℓ-3 choices.

(2.46) where, by "choices", we mean "choices of (x ℓ-2 , • • • , x 2 ) ∈ X f ". For simplicity and the rest of this part, we will mention as (a) Condition 1 (or Cdt 1 ) the F ℓ-2 choices of (x ℓ-2 , • • • , x 2 ) ∈ X f that implies ∆ (F ℓ ) (x) = ∆ (1) (σ ℓ+1 x) and (b) Condition 2 (or Cdt 1 ) the F ℓ-3 choices of (x ℓ-2 , • • • , x 2 ) ∈ X f that implies ∆ (F ℓ ) (x) = ∆ (1) (σ ℓ+1 x) -1.

Thus, from (2.46), it follows that Coming back to the law of total probability, we obtain

P ∆ (F ℓ ) (x) = d | x ℓ =
P ∆ (F ℓ ) (x) = d = F ℓ-3 + φF ℓ-2 φ ℓ+1 P ∆ (1) (x) = d + 1 | x 2 = 0 + F ℓ-2 + φF ℓ-1 φ ℓ+1 P ∆ (1) (x) = d | x 2 = 0 = 1 φ 2 P ∆ (1) (x) = d + 1 | x 2 = 0 + 1 φ P ∆ (1) (x) = d | x 2 = 0 = P ∆ (1) (x) = d .

∆ (r) as a mixing process

We work on the probability space (X, B(X), P). For a given integer r, ∆ (r) is viewed as a random variable with law µ (r) by Corollary 2.4.2 (the randomness comes from the argument x of ∆ (r) , considered as a random outcome in X with law P). In this section, we will decompose ∆ (r) as a sum composed of a finite number of random variables satisfying a universal inequality on their mixing coefficients, as in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF].

The process

The case r = 0 is irrelevant so we assume r ≥ 1. For 1 ≤ i ≤ ρ(r), we will write B i as the i th block present in the expansion of r, starting from the unit digit. We define r[i] as the integer whose expansion is given by the i first blocks of the expansion of r (see Figure below). We observe that r[ρ(r)] = r. For 1 ≤ i ≤ ρ(r), we define almost everywhere on X (see Subsection 2.4)

X (r) i := ∆ (r[i]-r[i-1]) • T r[i-1] . Since r[i] -r[i -1] = B i 0 • • • 0, the function X (r) i
is a random variable corresponding to the action of the i th block B i once the previous blocks have already been taken into consideration. From (2.32), we get

∆ (r) = ρ(r) i=1 X (r) i .
In particular, if x ∈ X is randomly chosen with law P, then ρ(r) i=1 X (r) i (x) follows the law µ (r) .

The α-mixing coefficients on the actions of blocks

This part is devoted to the proof of one of the main theorem stated in the Introduction: we are going to show that the α-mixing coefficients for the process (X (r) i ) i=1,••• ,ρ(r) satisfy a universal upper bound which is independent of r. In particular, these coefficients exponentially decrease to 0.

Theorem. The α-mixing coefficients of (X (2.50)

As in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF] (Lemma 4.3), we will consider an event C which has a probability close to 1 and such that, conditionally to C, the events A and B are "almost" independent. A difference with [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF] is that, as the digits of a random Zeckendorf-adic numbers are not independent, the last term at the right-hand side of (2.50) will totally vanish and, thus, some extra work is needed. However, we can anticipate that this problem of "almost" independence will be solved using the inequality on the ϕ-mixing coefficients (on the law of coordinates) stated in Proposition 2.3.5.

To define the event C, we use the ideas developed in Subsection 2.2.3 (especially Corollaries 2.2.7 and 2.2.8). Since we are working with blocks, we introduce ℓ i as the number of patterns 10 in B i , the i th block of r. We also introduce n i as the minimal index of digits in B i . Then, we define, for i = 1, • • • , ρ(r), the set Adm(i) as the set of indices corresponding to the digits of x involved in the assumptions of Corollaries 2.2.7 and 2. Thus, x belongs to C if and only if the expansion of x satisfies the hypotheses of Corollary 2.2.7 or 2.2.8 for, at least, two blocks placed on the leftmost third of the window (for at least one block) and the rightmost third of the window (for at least one block).

We prove now that C is an event which has a high probability to happen. We claim that because the product contains ⌊ p+ k 3 -p+2-2 2 ⌋ = ⌊ k 6 ⌋ terms. We show that P(C 2 ) satisfies the same inequality. We thus obtain (2.51). Observe that, if k ≥ 194, P(C) > 0. Now, we want to control the term |P C (A ∩ B) -P C (A)P C (B)| that appears in (2.50). We want to use Proposition 2.3.5, and for that we have to clarify which digits of x the events A and B depends on.

P(C) ≥ 1 -2(1 - 1 φ 8 ) k 6 . ( 2 
But, conditionally to C and thanks to Corollaries 2.2.7 and 2.2.8, we have that the actions of the p first blocks will only modify digits of indices ≤ N 1 + 2 where N 1 is the index of digit of the leftmost 1 of the block B ⌊p+ k 3 ⌋ of r. Thus, there exists A ′ ∈ σ(x i : i ≤ N 1 + 2) such that A ∩ C = A ′ ∩ C. Likewise, the actions of the ρ(r) -k -p + 1 last blocks will only modify digits of indices ≥ N 2 where N 2 the index of the rightmost 0 of the block B ⌊p+ 2k 3 ⌋ . Thus, there also exists Taking the supremum on A and B, we conclude the proof.

B ′ ∈ σ(x i : i ≥ N 2 ) such that B ′ ∩ C = B ∩ C.

Questions ouvertes et perspectives

Cette thèse a permis d'apporter un nouveau point de vue au problème de variation de la somme des chiffres quand on ajoute un entier fixé. Cette approche, utilisant des techniques probabilistes et de théorie ergodique, se révèle être plutôt fructueuse. On nuancera le propos en précisant que cette approche n'est pas meilleure que l'approche arithméticienne de l'état de l'art mais lui est complémentaire : chacune de ses approches possède ses propres qualités et ses propres défauts. Au sortir de la thèse, des questions restent en suspens, des perspectives s'ouvrent. Nous en dressons ici une liste non-exhaustive.

En base entière b ≥ 2 Dans ce système de représentation, nous avons établi un TCL avec vitesse. L'optimalité de la vitesse est une première question que l'on peut se poser. D'abord, par la relation (1.3), on a obtenu une vitesse de convergence des moments partiels de la mesure µ (r) renormalisée vers ceux d'une loi normale en ρ(r). C'est une vitesse très satisfaisante : elle est équivalente à celle que l'on obtient dans le cas d'une somme de ρ(r) variables aléatoires iid. Or, c'est à peu près avec ce même nombre de variables que l'on décompose ∆ (r) . Néanmoins, cette vitesse ralentit quand on souhaite montrer la convergence des fonctions de répartitions : elle devient alors de l'ordre de ρ(r) 1 8 . On se pose donc les deux questions suivantes.

Questions. Est-ce une vitesse optimale ? Si non, comment l'améliorer ? La technique d'approximation employée dans la Sous-section 1.5.2 ne semble pas améliorable. Une piste d'amélioration serait d'avoir une meilleure borne des coefficients de mélange (se référer à la Proposition 1.4.3) voire un meilleur type de mélange. Le contrôle de la variance pourrait, a priori, être une seconde piste de réflexion. Cependant, le Théorème 1.1.2 indique que la variance croît linéairement en ρ(r) quand le nombre de blocs augmente. On peut tout de même se poser des questions quant à l'optimalité des constantes de majoration et de minoration que l'on obtient dans le Théorème 1.1.2. Comparativement aux résultats de Emme et Prikhod'ko dans [START_REF] Emme | On the asymptotic behavior of density of sets defined by sum-of-digits function in base 2[END_REF] ainsi qu'à ceux de Spiegelhofer et Wallner dans [START_REF] Spiegelhofer | The digits of n+t[END_REF], il semble assez clair que nos constantes ne sont pas optimales. On nuancera le propos en précisant que les auteurs pré-cités travaillaient en base 2. Or, le système binaire semble avoir un comportement spécifique par rapport aux autres bases entières b ≥ 3. Il semble judicieux de séparer le cas b = 2 du cas b ≥ 3. Deux nouvelles questions s'offrent alors à nous.
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 1 Figure 1: Quelques exemples de tracé de ∆ (r) avec, de gauche à droite r = 3 en base 10, r = 30 en base 2 et r = 3 en représentation de Zeckendorf

Définition.

  Un bloc dans l'écriture r ℓ • • • r 0 d'un entier r ∈ N est soit 1. une suite maximale de chiffres 0 consécutifs ou 2. une suite maximale de chiffres b -1 consécutifs ou 3. quand b ≥ 3, un chiffre entre 1 et b -2.

Figure 2 :

 2 Figure 2: Deux exemples en base 2 et 10.

  Throughout this article, integers mean elements of the set N := {0, 1, 2, • • • }, and b denotes a fixed integer, b ≥ 2.

  finitely many of them being strictly positive, such that n = k≥0 n k b k .

Figure 1 . 1 :

 11 Figure 1.1: Examples of the decomposition in blocks in decimal and binary bases. On the left-hand side, ρ(r) = 7. On the right-hand side, ρ(r) = 9.

  1 < b then we set (x + y) ℓ := x ℓ + y ℓ + c ℓ-1 and c ℓ := 0, else we set (x + y) ℓ := x ℓ + y ℓ + c ℓ-1 -b and c ℓ := 1.

Figure 1 . 2 :

 12 Figure 1.2: Behavior of T on the Rokhlin tower of order 0.It is classical that the sequence of towers can be constructed with the so-called Cut-and-Stack inductive process, as illustrated in Figure1.3.

Figure 1 . 3 :

 13 Figure 1.3: How to construct the tower of order 1 of T from the tower of order 0 in base b = 4.

Example 1 . 3 . 7 .

 137 We use again the example of Figure 1.1.

Figure 1 . 6 :

 16 Figure 1.6: On the left-hand side, ρ(r) = 7 and λ(r) = 5. On the right-hand side, ρ(r) = 9 and λ(r) = 5.

( a )

 a If λ( r) = n, which means that r 0 ̸ = b -1 or r 1 ̸ = b -1: we use the induction hypothesis to get Var(µ ( r) ) ≥ b 4 λ( r) = bn 4 , and it follows that

  i. If λ( r + 1) = n + 1 then we cannot apply the induction hypothesis. In this case r is a multiple of b if b ≥ 3 and even b 2 when b = 2 (see Figure 1.7). So, there exists r ∈ N and m ≥ 1 (or 2 if b = 2) such that r = b m r and b̸ | r.

Figure 1 . 7 :

 17 Figure 1.7: Variations of the number of non-zero blocks when we add 1.

Figure 1 . 8 :

 18 Figure 1.8: Example in base b = 10.

. 30 )

 30 Now, we have|P A (B) -P(B)| ≤ |P A (B) -P A∩C (B)| + |P A∩C (B) -P(B)|.(1.31) But, using (1.29) and (1.30), we obtainP A∩C (B) = P(A ∩ B ∩ C) P(A ∩ C) = P(B ∩ C) P(C) = P C (B).So, (1.31) becomes |P A (B) -P(B)| ≤ |P A (B) -P A∩C (B)| + |P C (B) -P(B)|. (1.32) Now, observe that for any event D, by the law of total probability, P(D) -P C (D) = P(C)P C (D) + P C P C (D) -P C (D) = P C P C (D) -P C (D) .

Figure 2 . 1 :

 21 Figure 2.1: Two examples of decomposition in blocks. Definition 2.1.4. Let (X i ) i≥1 be a (finite or infinite) sequence of random variables. The associated α-mixing coefficients α(k), k ≥ 1, are defined by α(k) := sup p≥1
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 22 Figure 2.2: Modifications at the position of the right-stopping pattern.

Figure 2 . 3 :

 23 Figure 2.3: Rokhlin tower of order 4 (the action of T is representing by the arrows).

Figure 2 . 4 :

 24 Figure 2.4: Visual description of the Cut and Stack process (for k = 4).
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 231 (X, T ) is uniquely ergodic and the unique T -invariant measure P satisfies ∀ℓ ≥ 2 and (r ℓ

Figure 2 . 5 :

 25 Figure 2.5: Transition probabilities of the Markov Chain.

Definition 2 . 3 . 3 .

 233 Let (X j ) j≥1 be a (finite or infinite) sequence of random variables. The associated ϕ-mixing coefficients ϕ(k), k ≥ 1, are defined by ϕ(k) := sup p≥1 sup A,B |P A (B) -P(B)|

  |P A (B) -P(B)| ≤ |P A (B) -P A∩C (B)| + |P A∩C (B) -P C (B)| + |P C (B) -P(B)|. But the independences between A and C or A and B ∩ C give that |P(A ∩ B) -P(A)P(B)| ≤ |P(A ∩ B) -P C (A ∩ B)| + |P C (B) -P(B)|. (2.24) As shown in [6] (Lemma 4.3), denoting C the complement of C, we have the general inequality for any event D |P C (D) -P(D)| ≤ P(C) (2.25) which implies in (2.24) that |P(A ∩ B) -P(A)P(B)| ≤ 2P(C).

Proposition 2 . 4 . 1 .

 241 Let r ≥ 1 and f : Z → C. Assume that there exist α ≥ 1 and C in R * + such that for every n ∈ Z |f (n)| ≤ C|n| α + |f (0)|.

Figure 2 . 6 :

 26 Figure 2.6: Visual description of V ℓ-1 , V ℓ and V ℓ \V ℓ-1 .
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 212 Figure 2.12: NIZ ℓ-1 and NIZ ℓ-2 in the Rokhlin towers of order ℓ -1.

2 . 1 + 2 = 1 P ∆ ( 1 )

 21211 [START_REF] Barat | Dynamical systems originated in the Ostrowski alpha-expansion[END_REF] and Cdt 1 = P ∆(1) (σ ℓ+1 x) = d | x ℓ = 1 and Cdt 1 P ∆ (F ℓ ) (x) = d | x ℓ = 1 and Cdt 2 = P ∆(1) (σ ℓ+1 x) = d + 1 | x ℓ = 1 and Cdt 2 .The renewal properties of P give thatL σ ℓ+1 x | x ℓ = 1 and Cdt 1 = L σ ℓ+1 x | x ℓ = 1 and Cdt 2 = L (x | x 2 = 0) . It implies P ∆ (F ℓ ) (x) = d | x ℓ = 1 and Cdt 1 = P ∆ (1) (x) = d | x 2 = 0 (2.47) P ∆ (F ℓ ) (x) = d | x ℓ = 1 and Cdt 2 = P ∆ (1) (x) = d + 1 | x 2 = 0 . (2.48)Now, we have all the ingredients to prove Theorem 2.1.Proof of Theorem 2.1.2. From (2.43), (2.44), (2.47), (2.48) and the law of total probability, one findP ∆ (F ℓ ) (x) = d = P (x ℓ-1 = 1) P ∆ (F ℓ ) (x) = d | x ℓ-1 = P (x ℓ = x ℓ-1 = 0) P ∆ (F ℓ ) (x) = d | x ℓ = x ℓ-1 = 0 + P (x ℓ = 1 and Cdt 1) P ∆ (F ℓ ) (x) = d | x ℓ = 1 and Cdt 1 + P (x ℓ = 1 and Cdt 2) P ∆ (F ℓ ) (x) = d | x ℓ = 1 and Cdt F ℓ-2 φ ℓ P ∆ (F3) (x) = d + 1 | x 2 = 0 + F ℓ-1 φ ℓ P ∆ (1) (x) = d | x 2 = 0 + F ℓ-2 φ ℓ+1 P ∆ (1) (x) = d | x 2 = 0 + F ℓ-3 φ ℓ+1 P ∆ (1) (x) = d + 1 | x 2 = 0 .We claim that for any d ∈ Z,P ∆ (1) (x) = d | x 2 = 0 = P ∆ (F3) (x) = d | x 2 = 0 .Indeed, it is trivial if d > 1. For d ≤ 1, we use the partition (2.42) and (left to the reader) the analogous partition given by the algorithm for ∆(F3) . We find that, for d ≤ (x) = d | x 2 = 0 = P(C 00(10) 1-d ) P(x 2 = 0) P ∆ (F3) (x) = d | x 2 = 0 = P(C 0(01) 1-d 00 ⊔ C 00(10) 2-d ) P(x 2 = 0 = 1 φ 3-2d .

Figure 2 . 13 :

 213 Figure 2.13: Example of the construction of (r[i]) i=0,••• ,ρ(r) .

  Let k, p ≥ 1. Let A ∈ σ(X (r) i : 1 ≤ i ≤ p) and B ∈ σ(X (r) i : i ≥ k + p). Let C ∈ σ(X (r) i : p < i < k + p)such that P(C) > 0. Then, we have the following inequality |P(A ∩ B) -P(A)P(B)| ≤ |P(A ∩ B) -P C (A ∩ B)| +|P C (A ∩ B) -P C (A)P C (B)| +|P C (A)P C (B) -P(A)P(B)|.

  [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], we get|P(A ∩ B) -P(A)P(B)| ≤ 3P(C) + |P C (A ∩ B) -P C (A)P C (B)|.

  2.8 if we want to apply them in the area of the block B i in r. More precisely, ifℓ i = 1, then Adm(i) := [n i -2, n i + 3]. And, if ℓ i ≥ 2 then Adm(i) := [n i -2, n i + 1] ⊔ [n i -2 + 2ℓ i , n i + 1 + 2ℓ i ].Observe that |Adm(i)| ≤ 8.

Figure 2 . 14 : 1 C 1 ∩

 21411 Figure 2.14: Indices of Adm(i).

Figure 2 . 15 :

 215 Figure 2.15: Location of the events C 1 and C 2 (dots represent blocks or possible zeros).

7 P(C 1 ) = 1

 711 .51) Indeed, denoting C 1 (resp. C 2 ) the complement of C 1 (resp. C 2 ) in X, we haveP(C) = 1 -P(C 1 ) -P(C 2 ) + P(C 1 ∩ C 2 ) ≥ P(C 1 ) + P(C 2 ) -1.Then, we obtain from Lemma 2.3.

Figure 2 . 16 :

 216 Figure 2.16: Location of indices N 1 and N 2 in the expansion of r.

• • • (x + r) = • • • ⋆ ⋆ ⋆ ⋆ ⋆ x ℓ-2 x ℓ-3 • • •

Questions. Quelles sont les constantes de majoration et de minoration optimales pour Var(µ (r) ) ? De plus, à un nombre fixé de blocs, quels sont les entiers réalisant la majoration (ou la minoration) de la variance ?
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Chapitre 2

On the variations of the sum of digits in the Zeckendorf representation : an algorithm to compute the distribution and mixing properties represents the golden ratio. We also define the well-known Fibonacci sequence as follows:

(2.1) By Zeckendorf's theorem (see [START_REF] Zeckendorf | Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas[END_REF], Theorem I.a, page 179 or [START_REF] Lekkerkerker | Representation of natural numbers as a sum of Fibonacci numbers[END_REF] Theorem A page 1), every natural integer can be uniquely written as a sum of non-consecutive Fibonacci terms. That is: for any n ∈ N, we consider the associated sequence of digits (n k ) k≥2 ∈ {0, 1} ∞ without two consecutive 1's, finitely many of them being strictly positive and such that

(2.2)

For n ̸ = 0 and ℓ := max{k : n k ̸ = 0}, we introduce the notation n ℓ • • • n 2 := n which generalises the usual way we write numbers in integer base, and which we refer to as the (Zeckendorf ) expansion of n. This way to expand numbers is actually a particular case of an Ostrowski's numeration system (see [20], page 1 or [START_REF] Berthé | Autour du système de numération d'Ostrowski[END_REF], page 211 or [START_REF] Barat | Dynamical systems originated in the Ostrowski alpha-expansion[END_REF]). By convention, we agree 0 := 0. Then, we define the (Zeckendorf-)sum-of-digits function as

A central object in our paper is the variation of the sum of digits when we add a fixed integer r to n: for r, n ∈ N, we set ∆ (r) (n) := s(n + r) -s(n).

(2.

3)

The analogous variation in integer base has been studied a lot: Bésineau has shown some statistical properties (in [START_REF] Bésineau | Indépendance statistique d'ensembles liés à la fonction "somme des chiffres[END_REF]), its variance has been studied, in binary base, by Emme and Prikhod'ko (in [START_REF] Emme | On the asymptotic behavior of density of sets defined by sum-of-digits function in base 2[END_REF]) or Spiegelhofer and Wallner (in [START_REF] Spiegelhofer | The digits of n+t[END_REF]), Emme and Hubert have proved a CLT (in binary, in [START_REF] Emme | Central limit theorem for probability measures defined by sum-of-digits function in base 2[END_REF]) which has been improved by Spiegelhofer and Wallner (in binary, in [START_REF] Spiegelhofer | The digits of n+t[END_REF]) or by the author in collaboration with de la Rue and Janvresse (in arbitrary integer base, in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF]). We also refer to [START_REF] Morgenbesser | A reverse order property of correlation measures of the sum-of-digits function[END_REF][START_REF] Spiegelhofer | Correlations for numeration systems[END_REF][START_REF] Drmota | On a conjecture of Cusick concerning the sum of digits of n and n + t[END_REF][START_REF] Spiegelhofer | A lower bound for Cusick's conjecture on the digits of n + t[END_REF] for connected results. Some theorems have been proved for the Zeckendorf expansion of an integer: for instance, Griffiths (in [START_REF] Griffiths | Digit proportions in Zeckendorf representations[END_REF]) about the digit proportions; or Labbé and Lepšovà about the addition in this numeration system (in [START_REF] Labbé | A fibonacci's complement numeration system[END_REF]). Drmota, Müllner and Spiegelhofer have obtained results about the existence of primes numbers with a fixed Zeckendorf sum-of-digits (in [START_REF] Drmota | Primes as sums of fibonacci numbers[END_REF]). However, not much has been done about this variation in the Zeckendorf representation except the work from Spiegelhofer (in [START_REF] Spiegelhofer | Correlations for numeration systems[END_REF], Lemma 1.30) which proves that, for any d ∈ Z, the following asymptotic density exists

In the present paper, we adapt the ergodic theory point of view introduced in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF] to the Zeckendorf expansion, recovering Spiegelhofer's result and getting new results about µ (r) and ∆ (r) . In particular, we provide an algorithm that computes µ (r) (d) and we represent ∆ (r) as the sum of a stochastic mixing process.

To do so, following the path started in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF], we study the variations of the sum of digits function in an appropriate probability space given by the compact set X of (Zeckendorf-)adic numbers. We consider on X the action of the odometer, and endow X with its unique invariant probability measure P.

We extend ∆ (r) almost everywhere on X and show in Section 2.4 (Proposition 2.4.1) that, for every d ∈ Z

Using the Rokhlin towers of the dynamical system, we provide an algorithm to compute µ (r) (d). This algorithm and its consequences can be adapted in integer base. A first implication is the following corollary on the behaviour of the (negative) tail of the distribution.

Corollary 2.1.1. For d small enough in Z, we have the formula

Remark 4. One can show that the analogous result in base b ≥ 2 is the same replacing φ 2 by b.

Another implication is the next theorem about the measure µ (F ℓ ) .

Theorem 2.1.2. For any ℓ ≥ 3 1) .

(2.4)

The author wishes to thank T. de la Rue and E. Janvresse who introduced him to this subject. They gave the author multiple good advices.

How to do additions

How to add integers

Here we describe the algorithm of the addition using the Zeckendorf way to represent numbers. We start with the addition of 1. There are two cases.

1. Either there exists ℓ ≥ 0 such that the Zeckendorf decomposition of n is

Then, with the relations (2.1), we get Observe that we also have the trivial identity

So, withou a loss of generality, we can suppose P(A) ≤ 1 2 . Now, taking the supremum over A, B and p, we conclude the proof.

ϕ-mixing property for Z-adic digits

As mentionned in the previous Subsection, there exists a good upper bound on the ϕ-mixing coefficients for the coordinates of x ∈ X. Proposition 2.3.5. For x = (x j ) j≥2 ∈ X randomly chosen with law P, we have for k ≥ 1

Our way to prove this result needs to introduce a parametrization of the Markov Chain. So, we define the function

Now, let (U j ) j≥2 iid random variables following a uniform law on the real unit interval and we define the sequence (y j ) j≥2 as

Lemma 2.3.6. The law of (y j ) j≥2 is P.

Proof of Lemma 2.3.6. The transition matrix is the same as for P and so is the initial law : the probability that y 2 is 0 is the same as the event

Proof of Proposition 2.3.5. Let k ≥ 1 and p ≥ 2. To choose x with law P is equivalent to construct a sequence y = (y j ) j≥2 using the process (2.23) thanks to Lemma 2.3.6. Thus, we have a sequence of iid random variables (U j ) j≥2 with a uniform law on the real unit interval. We consider the event

Moreover, ∆ (r) has zero-mean and has finite moments.

The proof of this corollary is exactly the same as in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF]. In particular, we just prove the existence of the asymptotic densities of the sets {n ∈ N | ∆ (r) (n) = d}, where d ∈ Z. In integer base, it is easy to prove (see [START_REF] Bésineau | Indépendance statistique d'ensembles liés à la fonction "somme des chiffres[END_REF] or [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF]). It is harder here to follow Besineau's proof because it uses the arithmetic properties of the sum-of-digits (in integer base) function that we do not have anymore.

Remark 7. Using trivial arguments, Proposition 2.4.1 and Corollary 2.4.2 are also true when r = 0. We observe that µ (0) = δ 0 .

Before proving this proposition and its corollary, we need the following lemma that looks like Lemma 1.29 in [START_REF] Spiegelhofer | Correlations for numeration systems[END_REF].

(2.36)

In particular, we have

Proof of Lemma 2.4.3. We adapt the proof of Lemma 2.3 in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF]. First, (2.36) implies (2.37) so we just prove (2.36). We fix k ≥ 2. For ℓ ≥ 1, let V ℓ be the set of the values reached by the couple (∆ (r) , ∆

k ) on the F ℓ+1 -r (resp. F ℓ -r) first levels of the large (resp. small) tower of order ℓ. Of course, if F ℓ+1 -r ≤ 0 then V ℓ := ∅. In particular, for any r ≥ 1, V 1 = ∅. Also, if F ℓ ≤ r < F ℓ+1 then V ℓ is defined considering only the large tower of order ℓ. For any ℓ, we observe that V ℓ is a finite set. On each level that is not in the r top levels of the large or small tower, the first ℓ digits of both x and x + r are constant, and digits of higher order are the same. Therefore, ∆ (r) and ∆ (r) k are constant on such a level. We observe that the sequence (V ℓ ) ℓ≥1 is increasing for the inclusion. Now, for d, d ′ ∈ Z, there are 2 cases.

We observe that, due to the Cut and Stack process, the value (d, d ′ ) must appear firstly in the large tower of order ℓ. Since (∆ (r) , ∆

k ) is constant on each of the first F ℓ+1 -r levels of the large tower, it takes the value (d, d ′ ) on at least one whole such level which is of measure 1 φ ℓ . So, we have

As shown in (2.33), the understanding of ∆ (1) (and so ∆

(1) k for k ≥ 2) is fundamental to understand ∆ (r) so we also state the following lemma. Lemma 2.4.4. The function ∆ (1) is well-defined for x ∈ X if and only if x ∈ C 00 [START_REF] Emme | Normal distribution of correlation measures of binary sumof-digits functions[END_REF] 

Proof of Lemma 2.4.4. If x ∈ C 00(10) d for some d ≥ 0, the definition of T gives that x + 1 ∈ C 01(00) d with the left digits unchanged. Thus the sequence (∆

In that case, x + 1 = 0 ∞ and the sequence (∆ Proof of Proposition 2.4.1. We adapt the proof of Proposition 2.1 in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF]. Let ε > 0. For any integer k ≥ 2, we have

where

The quantity on the RHS is the general term of a convergent series which shows that g rji i is integrable for the measure P. The dominated theorem can be applied and, for k large enough, (1 + rb)A 3 ≤ ε 2 for every N ≥ 1. Now, once we have fixed such a k, for N large enough, A 2 is bounded by ε 2 because of (2.29) and the continuity of ∆ (r) k and f . The convergence in the statement is thus proved. Note that the argument of the dominated convergence theorem also proves that f • ∆ (r) ∈ L 1 (P) and

More generally, we have the following convergence.

Proposition 2.4.5. Let r ≥ 1 and f :

The proof is exactly the same as Proposition 2.4 in [START_REF] Thierry De La Rue | A central limit theorem for the variation of the sum of digits[END_REF]. We have shown that the random variable ∆ (r) satisfies some good properties such as the finiteness of moments of any order of µ (r) , the law of ∆ (r) . The next section focuses on another natural question : how to compute the law µ (r) ?

How to compute µ (r)

In this section, we present an algorithm that computes exactly the measure µ (r) for any r in N and the consequences of it.

Description of the algorithm

This algorithm is different from the classical way to compute µ (r) in integer base (see [START_REF] Bésineau | Indépendance statistique d'ensembles liés à la fonction "somme des chiffres[END_REF], page 14 or [6] Proposition 3.1 for instance). In integer base b ≥ 2, the computation of µ (r) relies on inductive relations on the expansion of r which are easy to prove in that case. For instance, one of the relation states that if r is a multiple of b then the variation when adding r to x is the same as the variation when adding r b to σx. So the laws of the variation when adding r or r b are the same. In the Zeckendorf representation, this trivial argument is false because the carries can modify the digits on both sides (unlike the integer base case where only the left side can be affected). However, we find an algorithm to compute µ (r) , in this Zeckendorf system, that relies on Rokhlin towers. We precise that this algorithm can be adapted in integer base.

First, let r ≥ 1 (r = 0 is irrelevant) and let ℓ ≥ 2 be the unique integer such that F ℓ ≤ r < F ℓ+1 . At a given order k ≥ 1, we define CST k as the union of the levels of the large and small towers of order k, except the r highest levels. We observe CST 1 = ∅. On each level of CST k , ∆ (r) is constant (see Proof of Lemma 2.4.3). But, due to the Cut-and-Stack process, the value of ∆ (r) on these "constant" levels of CST k may be deduced from those taken in CST k-1 . That is why we also introduce, for k ≥ 2, the New information zone of the Rokhlin tower of order k as the set

Of course, everything depends on r but we do not emphasise on that in the notations of ℓ, NIZ k and CST k for simplicity. Let us define clearly this set NIZ k . Proposition 2.5.1. In a large tower, we enumerate, starting by 1, the levels from the base of the tower to the top of it. We have the following description of NIZ k .

• NIZ ℓ is the union of the F ℓ+1 -r first levels of the large tower of order ℓ.

• NIZ ℓ+1 is the union of the F ℓ levels between the F ℓ+1 -r + 1 th and the F ℓ+2 -r th levels of the large tower of order ℓ + 1.

• If k > ℓ + 1, NIZ k is the union of the r levels between the F k -r + 1 th and the F th k levels of the large tower of order k.

Remark 8. By definition, for every k ≥ 1, the set NIZ k is either empty or a disjoint union of cylinders of order k (exactly We also provide a more general figure to understand. Through the following lemmas, we state some observations on this sequence (NIZ k ) k≥1 . We start by a description of the cylinders of order k that appear in NIZ k for k ≥ ℓ + 2.

Lemma 2.5.3. If k ≥ 2, the set NIZ k is composed of cylinders of order k whose name has a double 00 at the leftmost position.

Proof. Let k ≥ ℓ + 2, consider a cylinder C n k+1 •••n2 of order k that belongs in NIZ k and where (n k+1 , • • • , n 2 ) ∈ X f . Since this cylinder is part of the Rokhlin tower of order k, n k+1 = 0. Moreover, this cylinder is not in the F k-1 highest cylinder so n k = 0 too. Now, we show a relation between cylinders of order k in NIZ k and those of order k + 2 in NIZ k+2 for k ≥ ℓ. Lemma 2.5.4. Let k ≥ 2 and let (n k-1 , • • • , n 2 ) ∈ X f . We have the implication

Proof. For r = 1, we let the reader check that C 00 ⊂ NIZ 2 and C 0010 ⊂ NIZ 4 . For r ≥ 2, we have NIZ 2 = ∅. So, we can assume

where the interval is an integer interval and considered as being part of X.

From (2.41), we get n

, we conclude as in the first point.

If

We conclude as in the first point.

Lemma 2.5.5. Let k ≥ ℓ and a collection

These lemmas imply the following corollary that will give birth to our algorithm.

Corollary 2.5.6. Let k ≥ ℓ + 4, the values taken by ∆ (r) on the cylinders of order k + 2 that compose NIZ k+2 are exactly the values taken on cylinders of order k in NIZ k shifted by -1.

Proof of Lemma 2.5.5.

which is, due to the Cut and Stack process, one of the r top levels of the large tower of order k -1. Also, due to the Cut and Stack process, n + r must lies in the small tower of order k -1 (see Figure 2.9) so (n + r) k must be 1. So, we have the following addition

with, by hypothesis, ∆ (r) (n) = d. Then n + F k+1 + r is calculated as follows

The sum of digits of n + F k+1 + r is the same as those of n + r shifted by -1 due to the correction of the expansion made. Hence, we get ∆ (r) (n

Proof of Corollary 2.5.6. Definition 2.5.1 ensures that the same number of cylinders of order k + 2 in NIZ k+2 is equal to the number of cylinders of order k in NIZ k : there are r cylinders of each order. Lemma 2.5.4 and Lemma 2.5.5 enable us to conclude.

These results enable us to give an algorithm that will compute the value of µ (r) (d) for any d ∈ Z. This algorithm has a low complexity (polynomial). Indeed, Corollary 2.5.6 implies that we can anticipate the values that will appear in the New Information Zone of order k. So we just need to compute ∆ (r) on a finite number of integers to compute exactly µ (r) (d) (d ∈ Z). We will precise this fact later in this Section. Before, we give a pseudo-code and provide an example of computation.

Pseudo-code

STEP 0: Find the unique ℓ ≥ 1 such that F ℓ ≤ r < F ℓ+1 STEP 1: Passage in NIZ ℓ Define App ℓ ← 0 (number of apparition of d during the for-loop)

2.5.3 An example : computation of µ (4) Let us compute the measure µ (r) for r = 4. We have ℓ = 4. Looking at the Rokhlin towers (see Example 2.5.2) gives that

The next terms of NIZ k are found using Lemma 2.5.4. Using Corollary 2.5.6, one can construct the following table that gives the values taken by ∆ (r) (with multiplicity) on each cylinder of NIZ k . 4) .

As an exercise, the reader can check that µ (1) = µ (F3) = µ (F4) . In the next Section, we are going to prove that, for any k ≥ 2 µ (F k ) = µ (1) .

Remarks on the algorithm

Once again, the algorithm described in Subsections 2.5.1 and 2.5.2 can be adapted in integer base so the following observations can also be adapted in integer base. Also, we write an algorithm that returns, for a given r ≥ 1 and d ∈ Z, the value µ (r) (d). Of course, the algorithm can also be adapted to return µ (r) (d) for every d ∈ Z or, at least to be executed on a computer, for a finite number of integers d without more computations (the adaptation only consist in manipulations of arrays). In this subsection, let r ≥ 1. Let also ℓ ≥ 1 be the unique integer such that F ℓ ≤ r < F ℓ+1 . The first important observation due to the algorithm is that we only need to compute ∆ (r) (n) for a finite number of n's to know exactly the quantity µ (r) . More precisely, we need to compute ∆ (r) for • F ℓ+1 -r integers during STEP 1,

• F ℓ integers during STEP 2,

• r integers during STEP 3 and • r integers during STEP 4.

So, we need to compute the image of F ℓ+2 + r different integers to compute µ (r) exactly. One can prove that, when r = F ℓ , it is possible to adapt the algorithm to reduce that number to F ℓ+2 . The adaptation consists into forgetting STEP 4 and store the F ℓ values in STEP 2.

The algorithm implies the following properties.

Proposition 2.5.7. If d is small enough in Z then there exist exactly 2r cylinders of (nonnecessarily distinct) orders

case, it is not trivial since carries propagate in both directions. Here we propose two proofs : the first one consists into looking at our algorithm described in Section 2.5 in the special case r = F ℓ . The other proof relies on the renewal properties of P we state in Proposition 2.3.2. Before starting, we need to compute µ (1) .

Proposition 2.6.1. For d ∈ Z, we have

Proof. Thanks to the algorithm, we explicit the following partition:

We observe that ∆ (1) (C 00 ) = 1 and, for every d ≤ 0,

Using Proposition 2.3.1, we also have that P(C 00 ) = 1 φ 2 and

First proof using only the algorithm

Let ℓ ≥ 3. We follow the path given by the algorithm. We can rewrite Proposition 2.5.1 in our special case r = F ℓ :

2. NIZ ℓ is the union of the F ℓ-1 first levels of the large tower of order ℓ and 3. if k ≥ ℓ + 1, NIZ k is the union of the F ℓ levels between the F k -F th ℓ and the F th k levels of the large tower of order k.

Executing the algorithm, we want to compute ∆ (F ℓ ) on the levels of NIZ ℓ . We obtain the following lemma.

Lemma 2.6.2.

Proof. Indeed, consider a cylinder of order ℓ in NIZ ℓ . Its name has for leftmost digits 000 since the cylinders contains one element of the integer interval [0, F ℓ-1 -1]. So the addition with F ℓ considered in these cylinders are

Thus the variation of the sum of digits is 1.
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We now look at NIZ ℓ+1 which is composed of F ℓ cylinders of order ℓ + 1. We have the following proposition.

Proposition 2.6.3. In NIZ ℓ+1 , there are

For technical reasons, we need to separate the proof in two parts : one when ℓ is odd and the other if ℓ is even. However, since both are treated the same way, the difference are only technicalities and we only consider the case where ℓ is odd. We are going to prove that the values taken by ∆ (F ℓ ) are the F ℓ first terms of the sequence

• 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, • • • (if ℓ is even) or where both sequences starts with 0 or 1 depending on the parity and then, the construction consists in concatenating alternatively 0's or 1's a Fibonacci number of times.

Proof of Proposition 2.6.3 if ℓ is odd. Let ℓ ′ ≥ 1 and ℓ := 2ℓ ′ + 1 ≥ 3 . The highest level in NIZ ℓ+1 is the cylinder C 00(10) ℓ ′ since it contains F ℓ+1 -1 ; the lowest is the cylinder C 00010 ℓ-3 since it contains F ℓ-1 .

The cylinder of order ℓ + 1 just below C 00(10) ℓ ′ is C 00(10) ℓ ′ -1 01 . We observe that, if ℓ = 3 (ie ℓ ′ = 1 or F ℓ = 2), this last cylinder C 00(10) ℓ ′ -1 01 is actually the same as C 00010 ℓ-3 . In general, there are two possibilities.

• Either there is no other cylinders of order ℓ + 1 which means ℓ = 3 (ie ℓ ′ = 1 or F ℓ = 2).

So far, we have mentioned 2 cylinders of order 4 in NIZ 4 and the values of ∆ (F3) on these cylinders are 0 and 1 (with an easy computation): it is the conclusion of the proposition if ℓ = 3 (if we agree F 0 := 1).

• Or there are other cylinders to find in NIZ ℓ+1 which means F ℓ > 2 (ie ℓ ≥ 5 or F ℓ ≥ 5) and implies that there are F ℓ -F 2 ≥ 3 levels to identify.

To continue, we suppose ℓ ≥ 5 (ie ℓ ′ ≥ 2) and identify the three cylinders that are below C 00(10) ℓ ′ -1 01 : they are

• C 00(10) ℓ ′ -1 00 on which ∆ (F ℓ ) equals 1,

• C 00(10) ℓ ′ -2 0101 on which ∆ (F ℓ ) equals 0 and

• C 00(10) ℓ ′ -2 0100 on which ∆ (F ℓ ) equals 0.

Once again, we observe that, if ℓ = 5 (ie ℓ ′ = 2), C 00(10) ℓ ′ -2 0100 = C 00010 ℓ-3 . There are again two possibilities.

• Either there is no other cylinders of order ℓ + 1 which means ℓ = 5 (ie ℓ ′ = 2 or F ℓ = 5). So far again, we have mentioned 5 cylinders of order 6 in NIZ 6 and ∆ (F5) takes thrice the value 0 and twice the value 1 on these cylinders : it is the conclusion of the proposition if ℓ = 5.
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• Or there are other cylinders to find in NIZ ℓ+1 which means F ℓ > 5 (ie ℓ ≥ 7 or F ℓ ≥ 13) and implies that there are F ℓ -F 5 ≥ 8 levels to identify.

We continue the same way. If we assume there are, for some k ∈ [1, ℓ -1], F ℓ -F 2k-1 ≥ F 2k cylinders. There are two kind of that cylinders.

• Those whose names are C 00(10) ℓ ′ -k+1 00n 2k-3 •••n2 for all (n 2k-3 • • • n 2 ) ∈ X f : there are F 2k-2 such cylinders and one can compute that ∆ (F ℓ ) is 1.

• Those whose names are C 00(10

such cylinders and one can compute that ∆ (F ℓ ) is 0.

We observe that if ℓ = 2k+1 (ie ℓ ′ = k) the last cylinder identified is C 00(10) ℓ ′ -k 010 2k-2 and is actually the same as C 00010 ℓ-3 . So far, we identified 1

It is exactly the conclusion when ℓ = 2k + 1.

Finally, we look at NIZ ℓ+2 which contains also F ℓ cylinders of order ℓ + 2.

Proposition 2.6.4.

Proof. Consider a cylinder of order ℓ + 2 in NIZ ℓ+2 . Since it contains exactly one integer of the interval [F ℓ+1 , F ℓ+2 -1], its name is

. We compute that, on such a cylinder, ∆ (F ℓ ) is null.

We do not need to prove anything for NIZ ℓ+3 , the algorithm teach us that ∆ (F ℓ ) is going to take the same values, but shifted by -1, on the same number of levels as in NIZ ℓ+1 . Now it is time to prove our theorem.

Theorem. For any ℓ ≥ 2, µ (F ℓ ) = µ (1) .

Proof. We recall

otherwise.

For ℓ = 2, it is trivial. Let ℓ ≥ 3 and d ∈ Z. It is also trivial when d ≥ 2 since ∆ (F ℓ ) does not take this value. Suppose that d = 1, this value appears in F ℓ-1 levels in NIZ ℓ , F ℓ-2 levels in NIZ ℓ+1 and nowhere else. So

.
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If d ≤ 0, the value d will appear, due to Corollary 2.5.6, on F ℓ-1 levels at order ℓ + 1 -2d, F ℓ levels at order ℓ + 2 -2d, F ℓ-2 levels at order ℓ + 3 -2d and nowhere else. Thus

Another proof using also the renewal

This second proof uses the renewal properties of the measure P described in Subsection 2.3.2. Let ℓ ≥ 3 and x ∈ X. We consider the addition

We are going to discuss on 3 possibilities : x ℓ-1 = 1 or x ℓ = x ℓ-1 = 0 or x ℓ = 1 and we will conclude using the law of total probability.

1. If x ℓ-1 = 1, we are considering the addition

We give an expression that transfer the dependence on ℓ on x through the following lemma.

Lemma 2.6.5. For almost every x ∈ X (for the measure P conditioned by x ℓ-1 = 1)

Proof. Let x ∈ X. Suppose x has two consecutive 0's at indices ≥ ℓ + 1. This assumption is of probability one. There are two cases. The rest of the proof is just computations we made in Subsection 2.2.1.

Thus, it follows the formula

Sur des propriétés stochastiques de la variation de la somme des chiffres en additionnant un entier fixé

Résumé. Le sujet de cette thèse vise à mieux comprendre les propriétés de la mesure de probabilité associée aux densités asymptotiques d'ensembles définis par la fonction somme des chiffres en base entière et non entière. Plus précisément, si on se donne un entier r, on s'intéresse aux ensembles d'entiers n tels que la différence entre la somme des chiffres de n et de n + r est un entier relatif d fixé. La densité asymptotique µ (r) (d) de ces ensembles peut être interprétée comme une mesure de probabilité sur les entiers. Évidemment, elle dépend du système de numération considéré. Dans cette thèse, nous établissons des propriétés de la mesure de probabilité µ (r) , en base entière et en représentation de Zeckendorf. Pour cela, nous faisons le lien entre ces propriétés et certains systèmes dynamiques sous-jacents. En base entière, nos montrons notamment un théorème central limite. Nous généralisons certaines propriétés de µ (r) en représentation de Zeckendorf et proposons un algorithme de calcul de µ (r) .

Mots clés : Théorème central limite, odomètre, fonction somme des chiffres, représentation de Zeckendorf, processus mélangeant.

On stochastic properties of the variation of the sum-of-digits function when adding a given integer

Abstract. The subject of this thesis aims to better understand the properties of the probability measure associated with asymptotic densities of sets defined by the digit sum in an integer base and not integer. More precisely, if we give ourselves an integer r, we are interested in sets of integers n such that the difference between the sum of the digits of n and n + r is a fixed integer d. The asymptotic density µ (r) (d) of these sets can be interpreted as a probability measure on the integers. Obviously, it depends on the numeration system we consider.

In this thesis, we describe properties of the probability measure µ (r) , in integer base and Zeckendorf representation. To do so, we make the link between these properties and some underlying dynamical systems. In integer base, we establish in particular, a central limit theorem. We generalise some properties of µ (r) in Zeckendorf representation and give an algorithm to compute µ (r) .

Keywords: Central limit theorem, odometer, sum-of-digits function, Zeckendorf representation, mixing process.